
........... ===~-~--- ---.. --- .- --- --=== - - -- -- .-w --- w _.. --- _.._
~---~---

Instruments

Unilablltm

Volume One
User's Guide

Copyright 1984, 1985, 1986 by Orion Instruments, Redwood City, California
All rights reserved

NOTE SOME OF OUR l'JEW FEATURES:

Extensive On-Line Help

Press function key 1 (F1), to get. the opening screen
help message.

While holding down CTRL press any of the function keys,
F2 through F10, to get one of the help screens. CTRL-F1
tells you what subjects you can get help on.

To get the on-line glossary entry for a command, type
HELP <command>.

To get an alphabetical listing of commands starting with
some character or characters, type WORDS <character(s)>.

Windows

While in command mode, hit F2 to split the screen.

The on-line glossary entries for SPLIT, ON and MODE
will tell you more.

IN CASE OF l"ROUBLE

If your Unilab is not properly connected to serial
port 1, then the program will stop while displaying:
Initializing Unilab ... Hold down the CTRL and BREAK
keys at the same time to unfreeze the program.

After you have connected the instrument to the
computer, type INIT to initializE~ the Unilab.

If you have a different problem, consult the Trouble­
Shooting chapter.

.ft.11'1: I! 0 liUE Vnl •ft
Instruments

702 Marshall Street
Redwood City, CA 94063

(415) 361-8883

Unilablltm ·
Universal Development Laboratory

SOFTWARE INSTALLATION
Your Unilab software comes on two diskettes.

One diskette .contains the executable files _and
- overlays for your UniLab. Any disassemblers o.r de­

buggers you ordered are already installed in one of
the .COM files on the disk. For example, if you ordered
a Z80 support package, there will be a file called
ULZ80.COM on your diskette.

The second diskette contains the on-line glossary
and its supporting files. If you have a hard disk, you will
want to copy these files into your C:\ORION directory. If
you have a floppy, you will need to have this second disk­
ette in drive B: when you use either HELP or WORDS.

The instructions in this booklet tell you how to get
your software ready to use. To find ·out how. to connect
the Unilab to your tarqat board, refer to the Jnstallation
chapter of the manual. For information on .how to use
the program, read the Guid~::d Demo and Getting Started
chapters.

Unilab is a trademark of Orion Instruments, Inc.

HOW TO INSTALL YOUR NEW S0FTWARE:

ON A HARD (WINCHESTER) DISK
1) Put the master Unilab diskette into drive A. Call up

the Unilab hard disk install program by typing A:INSTALL.

The program will create a directory on your C drive
called \ORION, and copy the Unilab files from the distri­
bution diskette to that directory.

The install program adds two lines to the AUTOEXEC.BAT
file in your root directory:

SET ORION=C:\ORION
SET GLOSSARY=C:\ORION

2) You must either create or change your CONFIG.SYS
file, in your root directory. This file sets system variables,
files and buffers. A sample CONFIG.SYS file is included on
the distribution diskette. ·

Our software requires 16 files for full functionality:

files=16
If you don't put this line into CONFIG.SYS, some Unilab
features will not work.

The Unilab software will perform better if you allocate
at least 10 buffers:

buffers=10
but this is not necessary.

Now go to step 3 on the next page.

HOW TO INSTALL YOUR NEW SOFTWARE:

ON FLOPPY DISK SYSTEMS
1) Put your DOS diskette in drive A, and a blank,

unformatted floppy in drive B. Use the DOS command
FORMAT B: /S to format the blank disk as a "bootable"
system diskette.

2) Put the master UniLab diskette into drive.A. Use the
DOS command COPY A:*.* B: to copy all the Unilab files
onto the bootable diskette in drive B.

The distribution diskette includes the CONFIG.SYS and
AUTOEXEC.BAT fites necessary for your floppy disk system.

Put the new bootable diskette into drive A, and go on
to step 3.

ON BOTH HARD AND FLOPPY
3) Put the distribution diskette away. Now reboot your

computer system so that the new settings in the CONFIG.SYS
and AUTOEXEC.BAT files can take effect. Reboot by turning
the power off and then back on, or by holding down the
CTRL, ALT and DEL keys at the same time.

· 4) After you have rebooted, execute the Unilab soft­
ware by typing in the name of the Ulxxx.COM file you were
sent. For example, the command for the 8096 package is
UL96. On hard disk systems you must type \ORION\Ulxxx.

The software will take a few seconds to load, then print
an opening screen and initialize the Unilab. See the next
page if your software freezes during this process.

After that, you are ready for action. Hit F10 to enter the
fast new menu mode. Type in BYE when you want to exit
from. the program.

Power On
LED

Power
On/Off
Switch

ORION
Instruments

Universal Development Laboratory

Unilab][

~160 B~T0l~-~l~~U:T:~~~~O~ ~
48 CHANNEL BUS STATE ANALYZER

··············~!
Emulator {ROM)
Cable Connector

{CS-24/28, C16-24/28,
CS-D, or C16-D)

........................

Analyzer Cable
Connector
{CA-A,B, ...)

Oscilloscope
Trigger Output

(Strobes when trigger
is met. Can be connected

to oscilloscope to
synchronize scope with

analyzer trigger.)

24-pin Package is
shifted all the way

to the left

EPROM PROGRAMMER

Perse>nality
Module fit>r EPROM

EPROM PROGRAMMER

EPROM Clamp
{Down to connect
EPROM in Soc:ket)

EPROM Socket:
{Also used for

Stimulus Cable:~

Vp

•

Programming
Voltage for

EPROM Burner
(Vpp)

24 Pin EPHOM in Programming Socket

EPROM PROGRAMMER

Vp •

28 Pin EPROM in Programming Socket

TO HOST
COMPUTER'S

RS232 PORT

INTERNAL
CPU

EMULATOR

TO ROM
SOCKET

I SERIAL 110 I

ANALYZER

POWER
SUPPLY

PPI

CPU DIP CLIP

CONNECTIONS TO
TARGET BOARD

Chapter One:

Chapter Two:

Table of Contents
UniLab Manual

VOLUME ONE
User's Guide

The UniLab IItm Method

Installing The UniLab

For Me?
Introduction
Useful Information
Quick Step-by-Step

Detailed
1.

2.

3.

4.

Step-by-Step
Connect the UniLab to Host

Find the Correct Port
Serial Port of AT
Connect the Cable
Turn on the UniLab
Trouble?

Software Installation
Install the Software

On a Hard Disk
On a Floppy Disk Drive

Reboot Your Computer
Start Up the UniLab Program
Patch Required?

Connect the UniLab to Target Board
Overview
All About Cables
Take PROM off Board
Put ROM Cable in ROM Socket
Put DIP Clip onto Microprocessor
Attach Proper Wires to the Clip
Attach the RESET Wire
Attach the NMI Wire
Plug Cables into UniLab Connectors

Check Out Your Equipment
Load a Sample Program
Run the Program
Compare to Sample Trace
Play Around a Little
How to Exit

Where to Go Next
Special Note: Display Characteristic Commands

UniLab is a trademark of Orion Instruments, Inc.

2-2
2-3
2-7
2-9

2-10
2-11

2-14

2-25

2-40

2-46
2-47

July 15, 1986 Page i Contents --

Chapter Three: Guided Demonstration

Overview
Call Up the Software
Get the MAIN Menu

The Five-Step Procedure:

3-2
3-3
3-4

1. Enable Memory 3-5
2. Load a Program 3-6
3. Examine the Program 3-7

Memory Dump
Disassemble from Memory

4. Use the Analyzer 3-9
Get the First Cycles of Program
Sample the Bus
Set a Trigger on an Address

5. Use the Debugger 3-13
Set a Breakpoint to Establish Debug Control
Set Another Breakpoint
Single Step Through Code

Summary 3-16

Chapter Four: Getting Started-- The Menus, the Commands,
and the Special Features

Overview 4-2

1. Menu Mode

2. Command Mode
Command Tail and Batch Files
Using the Command Language
Trigger Specs: Theory and Conventions
Trigger Specifications: Examples

3. Special Features
Function Keys

-- Contents --

Cursor Keys: Traces and Line History
Windows
Viewing Textfiles
Cursor Key Summary

Page ii

4-4

4-19
4-20
4-23
4-24
4-27

4-33
4-34
4-36
4-41
4-49
4-51

Chapter Five: On-Line Help

1.. Command Reference 5-2

2. Alphabetical Lookup 5-3

3. Reminders 5-4

4. Function Keys 5-5

5. Mode Panels 5-7

6. Help Screens: By Category 5-10

INDEX for volume one

JU 1 Y 1 5 I 1 9 8 6 Page iii -- Contents --

VOLUME TWO
Reference Manual

Chapter Six: The UniLab in Detail

A Guide to This Chapter 6-2

1. Interpreting the Trace Display 6-5
What Each Column M~ans ••• Sample Traces ••• Moving
through Trace ••• Symbolic Names ••• Toggling Display
Options (Mode Panels)

2. Readying and Loading Memory 6-34
Emulation ROM ••• Getting Ready ••• Loading Programs
••• saving Programs

3. Examining and Altering Memory 6-47
Memory Access ••• Read ••• Alter ••• Optional Assembler

4. Setting up a Trigger (generating a trace) 6-64
Simple Example ••• NORMx Words ••• RESETting ••• General
Purpose Triggers ••• Real-life Examples ••• Limits •••
Filtered Traces ••• Qualifying Events ••• Refining

5. Saving Information 6-90
Screen History ••• Log File ••• Printer ••• Trace Save ••.
Symbol Table ••• Binary Image ••• SAVE-SYS

6. Breakpoints and the Debugger 6-100
Establish Debug Control ••• Breakpoint Display •••
Within the Debugger ••• Trigger-Style Breakpoints
••• Exit from Debugger ••• Disable

7. Burning Proms 6-125
Personality Modules ••• Plugging In ••• Checksums
••• Verify ••• 16-bit ••• Standalone ••• Macros

8. Generating Stimuli 6-135
How to do it

9. Special Keys 6-140
Function Keys ••• Cursor Keys

10. Mode Panels-- easy toggling of options 6-146
Analyzer ••• Display ••• Log

11. Windows 6-151

12. Histograms 6-152
When to Use ••• How to Make a Histogram

-- Contents -- Page iv

Chapter Seven:

Chapter Eight:

UniLab Command Reference

The Categories
The Commands

Target Notes

7-2
7-9

(software order #)
r-onor~l Tnrnrm~rinn Q_~
'-''-' ... "''-~ """"'.... ~ ~ """" ""'....._, -- ~

1802/4/5/6 (disassembler only) •••••••••••• (DIS-18) ••• 8-5
6301/3 •••••••••••••••••••••••••••••••••••(DDB-63) ••• 8-7
6500 series where the SYNC output exists •• (DDB-65) ••• 8-10
6500 series piggyback devices w/o SYNC •••• (DDB-65P) •• 8-14
6800/2/8 with external memory at page 0 •• (DDB-68) ••• 8-18
6801/3 •••••••••••••••••••••••••••••••••••(DDB-681) •• 8-21
6802 without external RAM at page 0 •••••• (DDB-682) •• 8-24
6805 ••••••••••••••••••••••••••••••••••••• (DDB-685) •• 8-25
6809 •••••••••••••••••••••••••••••••••••••(DDB-689) •• 8-30
68000 ••••••••••••••••••••••••••••••••••••(DDB-68K) •• 8-32
68008 ••••••••••••••••••••••••••••••••••••(DDB-688) •• 8-36
68HC11 ••••••••••••••••••••••••••••••••••• (DDB-611) •• 8-38
8048/35/39/40/49/50 ••••••••••••••••••••••• (DDB-48) ••• 8-40
8051/31/32/52 & 8051P ••••••••• (DDB-51) & (DDB-51P) •• 8-45
8085 or 8080 ••••••••••••••••••••••••••••• (DDB-85) ••• 8-50
8086/186/286 & 8088/188 •••••••• (DDB-86) & (DDB-88) ••• 8-53
8094/5/6/7 •••••••••••••••••••••••••••••••(DDB-96) ••• 8-61
SUPER 8 ••••••••••••••••••••••••••••••••••(DDB-S8) ••• 8-65
Z8 ••••••••••••••••••••••••••••••••••••••• (DDB-Z8) ••• 8-68
Z80 and NSC-800 and HD64180 •••••••••••••• (DDB-Z80) •• 8-72
Z8000 ••••••••••••••••••••••••••••••••••••(DDB-Z8K) •• 8-76

July 1 5 I 1 986 Page v -- Contents --

Chapter Nine: Troubleshooting

Explanation 9-2
Solutions in Depth:

Program hangs up on "Initializing UniLab ••• " message ••
Program hangs on initialization some of the time, not all of

the time •
RS-232 error message "RS-232 Error #XX" • • • • • • • ••
STARTUP does not work -- never get to see trace, or see

trace filled with garbage • • • ••
Error message: "NO ANALYZER CLOCK" • • • • • • • • • • • •
Program runs, UniLab traces, but reads bad data from stack
Program runs and UniLab traces, but does not disassemble

properly •
Program runs, UniLab traces properly, but cannot set a

breakpoint-- gives a Debug Control not Established
message •

Program runs, UniLab traces properly, but cannot set a
breakpoint-- hangs with red light next to Analyzer
socket on until key pressed • • • • • • • • • • • • •

Bad Input buffers on the UniLab, as if an IC has been blown.
Screen flickers when you use PgUp key to look at line

history. •

APPENDICES:

Appendix A: UniLab Command and Feature List

Appendix B: Sources of Cross Assemblers

Appendix C: Cabling Chart

Appendix D: Custom Cables

Appendix E: Uni Lab II Specifications

Appendix F: Writing Macros

Appendix G: EPROMs and EEPROMs Supported

Appendix H: Microprocessors Supported

Appendix I: System Messages

Appendix J: .BIN files and .TRC files

INDEX for both volumes

-- Contents -- Page vi

9-3

9-5
9-6

9-8
9-10
9-12

9-13

9-14

9-15
9-16

9-17

Chapter One: The UniLab Method

Introduction

Welcome to a new world of development systems.

The UniLab IItm will change the way you develop software for
your microprocessor projects. The UniLab does away with most of
the guesswork and frustration associated with hunting for bugs in
your code.

What Is the UniLab?

The UniLab (Universal Development Laboratory) is a personal
microprocessor development system.

rn·one box, the UniLab includes all of the instruments
needed for the development of microprocessor-based products. It
transforms your personal computer into a complete workstation for
prototyping, testing, and debugging.

The UniLab monitors the address, data and control signals on
your microprocessor board. This lets you see how the board
responds to your programmed instructions.

You use the UniLab to tell your processor what you want it
to do, and at the same time watch what it really does.

How Does the UniLab Do It?

The UniLab connects to your board's address, data, and
control lines. Your microprocessor stays in control of the
board-- but the UniLab is in control of your processor.

The UniLab's emulation ROM feeds instructions to the
processor while the bus state analyzer watches the effect of
those instructions. When you use the UniLab, you watch your
processor executing your code.

July 15, 1986 Page 1-1 -- The UniLab Method --

How You Work with the UniLab

You conduct a dialogue with the UniLab. The topic of
conversation is the system you are testing. You describe some
condition that appears on the bus, and the UniLab replies with a
display of the program execution.

Non-Intrusive Analysis

The UniLab can watch your target board's bus without
interfering with your processor. Unlike other hardware debugging
systems, the UniLab does not alter the flow of your program.
This means that your processor continues to run after the UniLab
has captured a trace of the program activity.

The UniLab can also act like older debugging systems, and
stop your processor by setting a breakpoint.

A New Way to Solve Your Problems

The UniLab is a step ahead of traditional debugging
techniques.

Older methods work best when you know the cause of the
problem at the beginning of the debugging procedure. With those
methods you could only look at the program's execution by
stopping at specific code addresses. Since you usually don't
start out knowing the cause of your problem, the older methods
required that you spend a lot of time guessing.

With the UniLab, you can describe the symptom of your bug.
Then you watch what the program does both before and after the
symptom occurs. The symptom that you describe is called the
"trigger." For example, you might start out by asking the UniLab
to show you when your stack has grown too much, or you might want
to see each re-write of a particular variable.

You start by asking general questions, and quickly zero in
as your understanding of the problem improves.

If you are in the habit of single-stepping, or setting
multiple breakpoints, you will appreciate the new, more powerful
method of observing program flow with the UniLab.

Breakpoints and Single-stepping

The UniLab's unique approach to debugging emphasizes the
actions of your processor. After all, what you really care about
is getting results, not the contents of Register DX at step 235.

The UniLab Method -- Page 1-2

But sometimes, to get the job done, you do need to know the
"internal state" of the processor. The UniLab's processor­
specific debuggers let you set breakpoints, look at and alter
internal registers, and single-step through code.

In order to do this, the UniLab needs some of your target
processor's resources. Usually all the UniLab needs is a working
stack and one to four bytes of ROM. We call the required bytes
of ROM "the reserved area."

Simulating Inputs

You use the stimulus generator to simulate inputs to your
target board. You control the stimulus generator from the
keyboard, and eliminate the need for the usual input switches on
prototype boards.

Programming EPROMs and EEPROMs

When you have completed the design and testing of your
software, you use the UniLab's built-in EPROM programmer to burn
your code into an EPROM.

July 15, 1986 Page 1-3 -- The UniLab Method --

Chapter Two:
Installing The UniLab

Contents

For .Me?
Introduction
Useful Information

Quick Step-by-Step

Detailed
1.

2.

3.

Step-by-Step
Connect the UniLab to Host

Find the Correct Port
Serial Port of AT
Connect the Cable
Turn on the UniLab
Trouble?

Software Installation
Install the Software

On a Hard Disk
On a Floppy Disk Drive

Reboot Your Computer
Start Up the UniLab Program
Patch Required?

Connect the UniLab to Target Board
Overview
All About Cables
Take PROM off Board
Put ROM Cable in ROM Socket
Put DIP Clip onto Microprocessor
Attach Proper Wires to the Clip
Attach the RESET Wire
Attach the NMI Wire

2-2
2-3
2-7

2-9

2-10
2-11

2-14

2-25

Plug Cables into UniLab Connectors
4. Check Out Your Equipment 2-40

Load a Sample Program
Run the Program
Compare to Sample Trace
Play Around a Little
How to Exit

Where to Go Next 2-46

Special Note: Display Characteristic Commands 2-47

July 15, 1986 Page 2-1 -- Installation --

For Me?

All the discussions that follow assume that your host
computer is a PC compatible machine, running MS-DOS version 2.0
or higher. Unless you have this equipment, you will not be able
to run version 3.0 and higher of the UniLab software.

DOS Version

Type VER at a DOS prompt (A> or B> or C>) to find out what
version you are using.

Your operating system will respond with a short message that
includes the version number, such as:

XXX Personal Computer DOS Version 3.10

If the version is lower than 2.0, you will not be able to run the
UniLab software until you get a more recent version of DOS.

If your operating system does not recognize the command VER,
then you probably need a software up-grade.

-- Installation -- Page 2-2

Introduction

Controls

The UniLab instrument has almost no controls of its own.
You control it through a program running on your personal
computer.

The only important control is the ON/OFF switch. When you
turn on the UniLab, the light above the switch goes on. Then the
Unilab is ready to accept commands from the host computer.

File Names

All of your interactions with the UniLab will be done
through a program called ULxx.COM, which runs under the host
operating system.

Disassemblers and debuggers are shipped already installed as
part of this file. To distinguish between different
disassembler/debuggers, each .COM file has a descriptive name
such as UL48, UL88, etc.

Other files included on your distribution diskette supply
the help screens and other features.

July 15, 1986 Page 2-3 -- Installation --

-- Introduction --

Get Started Quickly.

You might be impatient to get the UniLab hooked up and
running.

If you want to jump right in, the Quick Step by Step section
following this introduction contains stripped down instructions-­
and not much explanation.

Or Learn as You Get Started

You might have the time and desire to get more familiar with
the UniLab while you set it up.

To learn more about the instrument while you get it ready,
you can use the Detailed Step by Step, which contains more
thorough instructions and longer explanations.

The Best of Both Worlds

You might want more detail on only one step of the
installation process.

While you are following the quick set-up procedure, you can
read more about any topic by dipping into the detailed procedure.
The entries in the Quick Step by Step refer you to the
appropriate pages in the Detailed writeup.

For example, most people will want to read the Detailed
description of how to connect the RES- wire to their target
board.

-- Installation -- Page 2-4

-- Introduction --

Overview of the Installation Process

You go through a four-step installation process the first
time you get the UniLab ready for work:

1 • Connect the Uni Lab to the serial port on your
computer.

2. Install the UniLab software.
-::t Connect '\Tr'l.11,... Uni Lab +-r.. +-l-io +- ::::> ,...,.....,..... +- ~'t:7r<t .._r"\T"rt -· 1'-'""" .. '-'-' '-"'"''- '::I c; '- .;;>:! .;;> '-C::!ll e

4. Test it out.

Test Procedure

After the first three steps, you will want to run the simple
test program that is included with your software. You should
compare the results you get with the printout of the standard
results, which appear both in the Target Notes chapter of the
Manual and in the Disassembler/Debugger writeup for your
microprocessor.

If there are no differences, then you can be certain that
you have connected everything properly, and get on to your work
with confidence.

Automated Test Procedure

A UniLab command, <#_of_cycles_to_cornpare> TCOMP <filename>,
compares the current trace with the trace stored in a file. Turn
to page 2-42 for more details.

Most of the disassembler package$ include a file containing
a known good trace (consult Appendix J). That trace is contained
in a file with the suffix .TRC on your distribution diskette. If
your package does not include a·trace, you can visually compare
the trace you get to·the trace in your Disassembler/Debugger
writeup.

16-bit Systems

If your target system has a 16-bit data bus, you follow the
same installation procedure described in this chapter, except
that you must use a 16-bit emulator cable. These cables have two
separate ROM plugs, one of which must be plugged into an odd byte
ROM socket and the other into an even byte ROH socket.

Wh~ther the odd or even byte is the most significant byte of
the 16-bit word depends upon whether your processor follows the
Intel or Motorola model.

July 15, 1906 Page 2-5 -- Installation --

-- Introduction --

Where to Go After You Have Everything Hooked Up

Some people prefer jumping_into a task, and figuring out
what they need to know on the fly. The Menu system lets you
learn the commands as you go along.

Other people prefer to get more background before they start
working with a program. The next chapter, Guided Demo, takes you
through the process of loading a program into emulation memory
and using the UniLab ~o debug it. You should follow this demo at
your computer, but be ~ware that what you see on the screen will
be different if you have any processor besides the zao.

The Getting Started chapter gives you an overview of the
capabilities of the UniLab. And you will find that the In Detail
chapter lives up to its name, thoroughly covering the use of the
UniLab, including the optional Graphical Performance Measurement
feature (AHIST and THIST). .

For your convenience the on-line help screens appear in the
On-Line Help chapter. The Command Reference chapter gives you a
definition, explanation and example for every command.

The separate writeup on your Disassembler/Debugger package
provides information on the specifics of using the UniLab with
your microprocessor.

If You Have Trouble

The Troubleshooting chapter starts with a list of symptoms.
The SOLUTIONS IN DEPTH section of that chapter then helps you
solve your problems.

If you do not understand an error or status message, you
will want to consult Appendix I.

-- Installation -- Page 2-6

Useful Information

Who Is Hosting This Party? What All the Names Mean

The UniLab receives all commands from your personal
computer-- the host. The UniLab software resides on the host. A
little bit of code resides in the UniLab's ROM. The UniLab
receives instructions from the host, and sends information to it.

The UniLab, in turn, controls the target board. The target
board is the microprocessor control system that you are
developing-- or the one that Orion sent you as part of the
demo/training package. In either case, the UniLab's emulation
memory contains the program that runs the target board.

How They All Talk to One Another: UniLab & Host

The host talks to the UniLab through the RS-232 interface at
19,200 baud. We achieve this high speed by talking directly to
your serial communications chip.

The serial port is rated at only 9600 baud, because that is
the highest speed you can achieve when using DOS calls for serial
communications. The higher speed used by the UniLab does not
harm your serial port in any way.

After the UniLab gets an instruction, it performs actions
without needing to talk to the host again. When the UniLab needs
to send information back to the host it uses the same RS-232
interface.

But the speed of most UniLab operations does not depend on
the speed of the serial interface. The rate of serial data
transfer will make you wait only when you load or save large
programs.

Serial port of AT

The UniLab plugs into a standard 25 pin serial port, not the
9 pin port of the AT. If you have an AT or AT compatible you
must put a 9 to 25 pin adapter on the serial port of your
computer.

July 15, 1986 Page 2-7 -- Installation --

-- Useful Information --

How They All Talk to One Another: UniLab & Target

The UniLab communicates with the target board through two
fifty-pin parallel connectors on the front of the UniLab.

UniLab Inputs

The bus state analyzer has 48 input bits. The addresses
take up to twenty bits, the data takes eight or sixteen, and the
control lines take another four. Between eight and twenty lines
are left over for miscellaneous uses, to be chosen by you.

The UniLab also has four clock inputs from the target board:
K2-, Kl-, RD-, and WR-.

UniLab Outputs

The emulator looks at the twenty bit address and the read
signal, and responds with eight- or 16-bit data when appropriate.

The UniLab also sends a RESET signal out on the wire
labeled RES-. This wire usually requires special connection.

On most processors-- those that have a non-maskable hardware
interrupt-- a Non-Maskable Interrupt signal is sent out on the
wire labeled NMI-. This wire sometimes requires special
handling.

-- Installation -- Page 2-8

Quick Step-by-Step

1. CONNECT THE UniLab TO HOST (page 2-11)
Connect the UniLab to your host computer, and turn it on.

2. SOFTWARE INSTALLATION (page 2-14)
On hard disk systems:

Use the command INSTALL to move the UniLab software
onto your hard disk. Change or create a CONFIG.SYS
file in your hard disk's root directory, so that it
contains the settings in the sample CONFIG.SYS file on
your distribution diskette. Copy the glossary files
from the second diskette to the directory C:\ORION.

On floppy disk systems:
Copy all the files from your UniLab distribution
diskette to a "bootable" diskette.

Reboot your system and then start up the UniLab program.
Check Appendix H to determine whether you need a patch word.

3. CONNECT THE UniLab TO TARGET BOARD (page 2-25)
You should keep the UniLab turned on while you connect it to
the target board, but we recommend that you turn off the
power supply to the target. You must turn off the power to
your system if it runs on anything but +5 voltage.

Remove the ROM from its socket on your board, and put the
ROM plug of the emulator cable in its place. Connect the
other end of the cable to the emulator socket.

Clip the DIP clip onto your microprocessor and connect the
wires from the emulator cable and the analyzer cable to the
proper pins. See Target Notes chapter or use the PINOUT
command. Connect the other end of the analyzer cable to the
analyzer socket.

Connect the RES- wire to the proper place in the reset
circuit. See pages 2-33 to 2-35 for details.

Turn on the power supply to your target board.

4. CHECK OUT YOUR EQUIPMENT (page 2-40)
From within the UniLab program, press function key 10 (F10)
to enter the menu mode. Use F2 to select the "LOAD OR SAVE
A PROGRAM" sub-menu, and select the "LOAD A SAMPLE PROGRAM"
option by hitting F4.
F10 will then return you to the Main Menu, where you can use
F4 to select the "USE THE ANALYZER" sub-menu. In that menu,
use F1 to select "RESET AND TRACE FIRST CYCLES."

--- - -

Now go to page 3-1 to learn more about the UniLab.
When you want to exit, just type in the command BYE.

July 15, 1986 Page 2-9 -- Installation

Detailed Step by Step

You might want more information than you can find in the
very sparse Quick Step-by-Step. You will find detailed
assistance in the next pages. The numbered headings follow the
outline of the Quick section, but here you get at least one page,
usually several pages, for each heading rather than only a few
sentences.

Each numbered task has been broken down into several
subtasks. Some troubleshooting help appears in each section, but
the main help comes in the separate Troubleshooting chapter.

-- Installation -- Page 2-10

1~ CONNECT THE UniLab TO HOST
FIND THE CORRECT PORT
SERIAL PORT OF AT
CONNECT THE CABLE
TURN ON THE UniLab
TROUBLE?

-- Connect UniLab to Host --

First connect UniLab, THEN start up software

The first thing you will want to do is connect the UniLab to
your personal computer.

Once it has been connected, you will never need to
disconnect it unless you have to use the serial port for some
other instrument or device. The UniLab will not interfere with
the proper functioning of your other personal computer software.

You could go directly to step two and install your software
without the UniLab attached to the host computer. However, you
would not be able to use the program, since the first thing it
does is send a message to the UniLab and wait for a reply.

When you do start up your software, the UniLab must be
properly connected and turned on-- otherwise the software will
freeze up (hit CTRL-BREAK to unfreeze). So we recommend that
you first connect the UniLab, then install your software.

July 15, 1986 Page 2-11 -- Installation --

-- Connect UniLab to Host

FIND THE CORRECT PORT

The UniLab usually talks with the host through
communications port one (COM1)-- the usual default serial
communications port. In general COM1 will either be the only
serial port on your system or be one of two ports. Look for the
male DB-25 connector on the back or side of your computer. The
female DB-25 connector is for a parallel printer.

If you do not have a serial port on your computer, then you
will need to purchase and install a serial port board before you
can connect to the UniLab.

DB-25 Connector

SERIAL PORT OF AT

1 2 3 4 5 6 7 8 9 10 11 12 13

0000000000000
000000000000

14 15 16 17 18 19 20 21 22 23 24 25

The UniLab plugs into a standard 25 pin serial port, not the
9 pin port of the AT. If you have an AT or AT compatible you
must put a 9 to 25 pin adapter on the serial port of your
computer.

CONNECT THE CABLE

After you've found the serial port, plug in the RS-232 cable
from the UniLab.

TURN ON THE UniLab

Then plug the UniLab into an electrical outlet, and turn it
on. Your UniLab is now connected and ready for the software.

-- Installation -- Page 2-12

-- Connect Uni~1b to Host --

TROUBLE?

CAN'T FIND ANY PORT
Look at the sides, the back, and the bottom of the

computer. Some even have them hidden behind removable
panels (especially some of the popular lap-tops).

If you do not have a serial port, you will have to
acquire and install a serial port board before you can
continue.

FOUND.MORE THAN ONE PORT

You might have more than one RS-232 standard serial
port. If they both are female (that is, they both accept the
host end of the UniLab-to-host cable), then you have several
choices. You could check the manual for your computer, or
look at its internal connections-- but there is a much
simpler approach.

The easiest approach:

Choose one of the ports, and plug the UniLab into it.
Later in this process, after you have the software
installed, start it up. If it doesn't freeze-up, then you
have the UniLab connected to the correct port.

If it does freeze-up immediately after displaying
"Initializing UniLab," then use CTRL-BREAK (tap the break
key while holding down the control key) to break out of the
freeze. Plug the UniLab into the other port, and type INIT.
The program should initialize the UniLab without freezing
up.

If the program freezes with the UniLab plugged into
either port, consult the Troubleshooting chapter.

July 15, 1986 Page 2-13 -- Installation --

Software Installation --

2. SOFTWARE INSTALLATION
INSTALL THE SOFTWARE

ON A HARD DISK
ON A FLOPPY DISK DRIVE

REBOOT YOUR COMPUTER
START UP THE UniLab PROGRAM
PATCH REQUIRED?

INSTALL THE SOFTWARE

If you have a hard disk on your computer, you will want to
use the INSTALL.BAT file to install the UniLab software on your
hard disk.

If you have only floppy drives on your computer, you will
need to copy the UniLab software onto a 11 bootable" DOS diskette.

-- Installation -- Page 2-14

-- Software Installation --

ON A HARD DISK

Explanation

The INSTALL batch file automatically makes a directory
called \ORION on your hard disk and copies to that directory all
the files on the distribution diskette.

It also adds two lines to your AUTOEXEC.BAT file:

set ORION=C:\ORION
set GLOSSARY=C:\ORION

which set up two "environment strings" that the UniLab software
requires. The first string tells the UniLab program where to
look for various overlay files, the second tells the program
where to look for the on-line glossary file.

You will need to create or alter your CONFIG.SYS file so
that DOS allows the UniLab software to have 16 files open and use
10 buffers. The CONFIG.SYS file resides in your root directory
(C:\). It should contain these two lines:

files=16
buffers=10

If these system variables are already set to higher values,
that is fine. However, some of the UniLab features will not work
if "files" is set too low. If "buffers" is smaller than 10, then
the UniLab software will run slower.

The new settings will not take effect until you reboot your
computer.

July 15, 1986 Page 2-15 -- Installation --

Software Installation --

ON A HARD DISK (continued)

Procedure

Put the master UniLab diskette into floppy drive A. Execute
the INSTALL batch file by typing

A: INSTALL

The INSTALL program will copy all of your software into a
directory called ORION, and either create or alter the
AUTOEXEC.BAT file in your root directory.

In fact, INSTALL does everything for you except create or
alter the CONFIG.SYS file in your root directory (C:\). You will
find a sample CONFIG.SYS file on the distribution diskette.

You will also need to copy the files from the second
diskette to your C:\ORION directory. Unless you copy to the hard
disk the glossary file and its supporting files, the commands
WORDS and HELP <command> will not work.

-- Installation -- Page 2-16

-- Software Installation --

ON A FLOPPY DISK DRIVE

Explanation

You need to set up two "environment strings" and two system
variables before you can use all the features of the UniLab
software •

... _, __ a.- -11::::.~w· ni...f- i-..1,..,. ,.;i.: lr,.....f-.f-,..,.ll .,..,...,,.;i -.lT.T_,~,. ,, ,..,. .:.f- .f- i....f- ··-
l.•10...r..t:UVVl..0.J.J..l..C U...L~n.o;:;:;1..1..o;:;:; Q.L.LU. O...LVYQ.l:'~ u~c ..LI.. '-V .UVVI.. u~

your system, so that those environment characteristics are always
set to the values that your new software requires. You can
either copy the entire UniLab system onto the bootable diskette,
or just the CONFIG.SYS and AUTOEXEC.BAT files that are included
on the distribution diskette.

The AUTOEXEC.BAT included on the distribution diskette sets
the environment string "ORION" to the correct value for running
the UniLab software from floppy disk drive A.

set ORION=A:\
set GLOSSARY=B:\

The first string tells the UniLab program where to look for
various overlay files, the second tells the program where to look
for the on-line glossary file.

Of course, if you wanted to run the UniLab software from drive B
you would have to change this to:

set ORION=B:\

The CONFIG.SYS file included on the distribution diskette
tells DOS to allow any piece of software to have a maximum of 16
files open and use 10 buffers. It contains these two lines:

files=16
buffers=10

If these system variables are already set to higher values,
that is fine. However, some of the UniLab features will not work
if "files" is set too low. If "buffers" is smaL~er than 1 O, then
the UniLab software will run slower.

The new settings will not take effect until you reboot your
computer.

The se1:tings tell 1:11~ 2:r:-2gram to look on drive B: for the
glossary files. That means you must have the glossary diskette in
drive B: in order to use HELP <command> or WORDS <character>.

July 1 5, 1 986 Page 2-17 -- Installation --

Software Installation --

ON A FLOPPY DRIVE (continued)

Procedure

Put your DOS master diskette in drive A. Put a new blank
diskette in drive B and format it as a "system" diskette with the
DOS command:

FORMAT /S B:

After you have formatted the diskette, take your DOS master
out of drive A, and replace it with the UniLab distribution
diskette. To copy all the UniLab files to the newly formatted
diskette, use the DOS command:

COPY A:*.* B:

Instead, you might decide to put only the AUTOEXEC.BAT and
CONFIG.SYS files on the newly formatted diskette.

Just remember that each time you use your UniLab software,
you must be sure that you booted up the computer from a diskette
with the correct CONFIG.SYS file on it.

-- Installation -- Page 2-18

-- Software Installation --

REBOOT YOUR COMPUTER

Explanation

The new settings in the CONFIG.SYS file will not take effect
until you reboot your computer-- and the settings of the system
constants "files" and "buffers" can only be changed by rebooting
+-'ha C!uC!ram
'-"'.&.'- ..., i "-""""'"'"".

The lines in AUTOEXEC.BAT are not as vital-- you can set or
change the value of the variable "ORION" at any time, by typing
in from your keyboard:

SET ORION=<path name>

where <path name> is any valid DOS path description, such as
C:\ORION or C:\ASM\UNI. You can change the value of "GLOSSARY"
in the same way. Of course, you will want to change the setting
of these two variables only if you actually move the UniLab files
to a new directory.

The GLOSSARY variable tells the program where to look for
the on-line glossary and its associated files. The UniLab
software needs the glossary only when you use either HELP or
WORDS. On a floppy drive system, you have to put the glossary
diskette in drive B: when you want to use the on-line glossary.
With a hard disk, you will want to copy the files from the
glossary diskette to the \ORION directory on drive C:.

Rebooting Procedure

With a hard disk computer:
Hold down the CTRL and ALT keys, and tap the DEL key.

Or, turn the power off and back on again. On some computers
you must wait half a minute before turning the power back
on.

With a floppy disk system:
First put your new bootable diskette in drive A.

Then you can reboot the same way that you do with the hard
disk (see above).

July 15, 1986 Page 2-19 -- Installation --

-- Software Installation --

START UP THE UniLab PROGRAM

The diskette you received contains eight or more files.
Though you need all of the .SCR and .VIR files for the software
to run properly, you only call one file by name-- the command
file, which ends in .COM.

Use the DOS command DIR to get a listing of all your UniLab
files. You will see one with .COM at the end of its name.

Hard disk: DIR C:\ORION

Floppy disk: DIR A:

Start up the program by typing in the name of the command
file.

First actions

The first thing the program does is spend a second or two
loading itself from disk. Then it will display the welcoming
help screen, reproduced on the next page.

After it has displayed that screen, it sends an
initialization message to the UniLab and waits for a reply from
the UniLab. When it receives a reply the program displays the
message "Initialized," then determines and displays the size of
your UniLab's emulation memory (BK, 32K, 64K, or 128K).

You, and the program, are now ready to get started.

-- Installation -- Page 2-20

-- Software Installation --

WELCOMING HELP SCREEN:

Uni Lab
II

Version X.XXX

Copyright 198X
Orion Instruments
Redwood City, CA

XXXXX disassembler installed - with debugger.

HELP is available on-line by entering HELP or F1.
Enter HELP command to see the definition of "command."
Type WORDS command to see a list of commands.

Use the function key F10 for MENU mode operation and quick
access to most common commands.

More help is available on the Ctrl-F1 key.
Press Ctrl-F10 for display of cursor key functions.

Type MESSAGE for current messages.
Initializing UniLab •••

Initialized 32K Emulation Memory

NOTE: Tyoe in MESSAGE to get information about the most recent
additions and updates.

July 1 5, 1 9 8 6 Page 2-21 -- Installation --

-- Software Installation --

Trouble?

If the UniLab does not respond, you will see the program
freeze-up after printing the "Initializing UniLab ••• " message on
the screen. If the response from the UniLab was somehow garbled,
you will see a "RS-232 error fxx" message. See below and in the
TroubleShooting chapter.

If the program does not get a response from the UniLab, you
will have to press the CONTROL and BREAK keys at the same time.

You probably have the UniLab plugged into the wrong port.
Plug the RS-232 cable into the alternative port, and use the
UniLab command INIT to send the initializing message to the
instrument again. If the program again freezes, consult the
Troubleshooting chapter.

If you get an "RS-232 Error #xx" then you probably have a
background task running, such as a printer spooler, or have a
"bus contention problem" on the serial ports of your computer.
Both problems can be quickly solved. See the Troubleshooting
chapter.

-- Installation -- Page 2-22

-- Software Installation --

PATCH REQUIRED?

Some Orion software packages support more than one
processor, and require you to type in a "patch word," which tells
the software which processor you will use the software with.

Appendix H tells you which processors require a patch word,
and what the patch word is. You will also find that information
in the DisassembleriDebugger notes for your software package.

After you enter the patch word, you should use SAVE-SYS to
save the patched version of the software. That way, you only
need to enter the patch word once. We recommend that you save
the patched program to the same file that you used to call the
program in the first place (that is, UL48, or ULZ80, or
whatever).

July 15, 1986 Page 2-23 -- Installation --

-- Connect UniLab to Target --

TO HOST
COMPUTER'S

RS232 PORT

INTERNAL
CPU

I SERIAL 1/0 I
POWER
SUPPLY

EMULATOR

TO ROM
SOCKET

-- Installation --

ANALYZER

PPI

CPU DIP CLIP

CONNECTIONS TO
TARGET BOARD

Page 2-24

-- Connect UniLab to Target --

3. CONNECT THE UniLab TO THE TARGET BOARD
OVERVIEW

OVERVIEW

ALL ABOUT CABLES
TAKE PROM OFF BOARD
PUT ROM CABLE IN ROM SOCKET
PUT DIP CLIP ONTO MICROPROCESSOR
ATTACH PROPER WIRES TO THE CLIP
ATTACH THE RESET WIRE
ATTACH THE NMI WIRE
PLUG CABLES INTO UniLab CONNECTORS

Two fifty-pin connectors sit on the front of the UniLab,
between the power switch on the left side and the EPROM
programmer socket on the right. The UniLab controls and monitors
the target board through the cables that connect to these two
outlets.

The emulator cable plugs into the socket on the left. This
cable carries the data signals from the UniLab to the board, and
the address signals from the board back to the UniLab.

The analyzer cable plugs into the socket on the right, and
carries control signals back and forth. The analyzer cable also
picks up some of the address signals.

ORION Universal Development Laboratory
Instruments

EPROM PROGRAMMER 1 rr·--· Unilab Il
I !11111111111111 la!;r:r

e ~ e e
I II 111111 11111 11 I

18116 BIT IN-CIRCUIT EMULATOR~

1

1 · · · · · · · · · · · · · · · · · ·······I

48 CHANNEL BUS STATE ANALYZER ljl I
I I I
························@.

July 15, 1986 Page 2-25 -- Installation --

-- Connect UniLab to Target --

ALL ABOUT CABLES

Make certain that you have the proper cable for your
microprocessor. Most analyzer cables support several different
processors. The cables are labeled with a letter, which must
match the letter on the pinout diagram in the Target Notes
chapter.

You can also get a cabling diagram on the screen with the
PINOUT command. This on-line diagram usually shows only the main
processor supported by the software package.

When you connect to your target board, you will be hooking
up to your board at three different places:

1) at a ROM socket (with the ROM connector plug),
2) at the microprocessor (with the DIP Clip),
3) and at the reset circuit (with the RES- wire).

With some processors, you will also need to make a special
connection for the NMI- wire from the UniLab.

ROM Connector

Most of the wires from the outlet on the left side, labeled
8/16 BIT IN-CIRCUIT EMULATOR, go to a ROM connector. This
connector plugs into the target board, occupying a ROM socket.
Here the UniLab picks up data signals and address inputs. You
must be certain to orient the plug properly.

DIP Clip

The remaining wires from the EMULATOR cable go to the DIP
clip, along with most of the wires from the right side outlet-­
labeled 48 CHANNEL BUS STATE ANALYZER. The DIP clip physically
clips onto the microprocessor. Here the UniLab picks up and
asserts control signals. Sometimes the NMI- wire requires a
special connection, similar to that for the RES- wire.

-- Installation -- Page 2-26

-- Connect UniLab to Target --

Reset Wire and the NMI Wire

These two wires carry output signals from the UniLab to the
target processor. The reset signal tells your processor to start
executing the program from the beginning. The NMI signal tells
your processor to jump to a special interrupt vector.

Both these wires would be connected directly to the pins of
xvY• processor, in the best of all possible worlds. However!
the real world is not always that simple.

Complications

These two outputs from the UniLab are "open collector"
(RTL)-- which means the signal coming from the UniLab is not
strong enough to pull down the output of a logic element (TTL).

These two signals are inputs to a "logic element" -- your
processor. However, these input pins of your processor are often
driven by the (TTL) outputs of other chips (logic elements) on
your target board.

If the pin of your processor that you are trying to connect
the UniLab's wire to is driven by an external logic gate, you
might have to:

July 1 5, 1 986

disconnect your processor's pin from the circuit
that drives it,
connect the pin to a "pullup resistor,"
and then connect the UniLab wire directly to your
processor's pin;

OR

disconnect from the circuit the pin that drives
your microprocessor's pin,
and then connect the pullup resistor and the
UniLab wire to the processor pin;

OR

connect the UniLab wire to the input of the chip
whose output drives your processor's pin;

OR

depending upon the unique configuration of your
target board, you might have to do something else.

Page 2-27 -- Installation --

-- Connect UniLab to Target --

TAKE PROM OFF BOARD

The UniLab emulates the Read Only Memory (ROM) of the target
board. To avoid bus contention problems, you will need to take
off your target board any PROM chips you plan to emulate.

With the power to the target system turned off, remove all
the ROMs that you will be emulating.

Exception

The only time you will want to keep the ROM chips on your
target board is when you want to watch the execution of a program
running from the chip. Before you can execute a program from a
chip, make certain that you disable the emulation ROM with EMCLR,
and disable the debugger functions with the Mode Panel option SWI
VECTOR (mode panel 3) or with the command RSP'.

When you want to run the program in a ROM, you would
probably be better off using the PROM READER MENU. You can read
the program from the chip into the UniLab's emulation memory, and
then run the program while it resides in emulation memory.

-- Installation -- Page 2-28

-- Connect UniLab to Target --

PUT ROM CABLE IN ROM SOCKET

The ROM plug on the emulator cable goes into any ROM socket
in the target system. A single connection allows you to emulate
several ROMs, but all ROMs that are to be emulated must be
removed from their sockets.

Put the ROM plug into a vacant ROM socket, preferably the
one the microprocessor reads from on reset.

24 Pin ROM Plug
in 24 Pin Socket

PIN 1

24-pin ROM plugs go into 24-pin ROM sockets. And 28-pin
plugs (not pictured) are suitable for 28-pin sockets.

24-pin Plug in 28-pin Socket

A 24-pin ROM plug can also go into a 28-pin socket, if pin
one of the cable goes into pin three of the ROM it replaces.
That will leave four unfilled positions on the socket, 1 & 2 and
27 & 28.

July 15, 1986

24 Pin ROM Plug
in 28 Pin Socket

Page 2-29 -- Installation --

-- Connect UniLab to Target --

16-bit ROM Plugs

The 16-bit ROM cables are a pair of ROM plugs on a single
cable. One goes into an odd byte plug, the other goes into an
even byte plug.

16 bit ROM CABLE

-- Installation -- Page 2-30

-- Connect UniLab to Target --

PUT DIP CLIP ONTO MICROPROCESSOR

With the power to the target system still turned off, put
the DIP clip onto the microprocessor, being sure to orient pin
one of the DIP clip with pin one of the microprocessor.

~H H U U U U H U U U U U U U U ~ I I

Placing DIP CLIP on Processor

July 1 5, 1 986 Page 2-31 -- Installation --

-- Connect UniLab to Target --

ATTACH PROPER WIRES TO THE CLIP

Connect the proper wires from the emulator cable and from
the analyzer cable to the pins on the 40-pin DIP clip provided.
The connection diagram is in the section on your processor in the
Target Notes chapter-- or type PINOUT to get an on-line diagram.
The cable Wiring appendix (Appendix C) contains a table of the
connections for all processors.

Double-check your wiring of the cable, to be sure that it is
correct.

-- Installation --

Making Connections from
Analyzer and Emulator Cables

Page 2·~32

-- Connect UniLab to Target --

ATTACH THE RESET WIRE

The RES- wire carries the reset signal from the UniLab to
your target board. This signal causes the target board to start
the target program from the beginning.

Connecting to Simple Circuits

If you have a simple RC (Resistance-Capacitance) network
attached to the reset pin of your microprocessor, then you can
connect the RES- wire directly to the reset pin.

Common Complication

However, many boards have a logic element in the reset
circuit, an SSI or MSI chip that drives the reset pin, and gets
driven in turn by a simple RC network.

An "open collector" circuit in the UniLab generates the
signal on the RES- wire, so you cannot use it to "pull down" the
output of a logic gate (a "totem pole" output).

Common Solution

The UniLab's RES- output can pull down the input of the
logic gate. By controlling the logic gate, the UniLab controls
the RESET pin of your microprocessor.

In general, you will find it easiest to clip the RES- wire
onto the positive side of the capacitor in the RC circuit. See
the diagrams on following pages that show typical reset circuit
connections for an INTEL processor and for the ZBO.

If you have trouble finding the capacitor, try asking the
board designer, if you can find him. It might be easier to find
and read the schematics. If neither personnel nor diagrams can
be found, then you might have to trace the circuit.

Less Common Solution

Sometimes the common solution will not work, and you will
have to alter your reset circuit. You might have to remove the
chip that drives the reset circuit, and connect a pullup resistor
in its place.

July 1 5, 1 986 Page 2-33 -- Installation --

-- Connect UniLab to Target

8051 Family Complication

If your processor is in the 8051 family, the RESET pin of
your processor requires a positive going signal. You will have
to feed the UniLab's negative going signal through a special
inverting circuit, such as the one below.

The members of the 8051 family are:

8051, 8052, 8031, and 8032.

+S V

4.7 K ohms ~

Connect RES- wire 1 LS 14

from Unileb here~--;::.. To Reset Pin of
8051 Femi l y processor

Typical Reset Circuit necessary
for 8051 family processor

-- Installation -- Page 2-34

Connect RES- w; re
from Unilab here

+5 v

1N914

+ 147 Jlf

-- Connect UniLab to Target --

--7 To RESET PIN
of M1 croprocessor

Typical "power on reset circuit" for
Z80 microprocessor, showinq connection

of RES- line from Unilab·

Connect RES- wire
from Uni Lab here

+5

>
10Kf2

\V
+
-~ 33uF

I

CLK
8284A

CLOCK GEN.

RESET
OUT

11
RES

19 CLK
8 I

8086
PROCESSOR

10 21 RESET
IN

Typical "power on reset circuit" for
Intel microprocessor, showinq connection

of RES- line from Unilab

July 15, 1986 Page 2-35 -- Installation --

-- Connect UniLab to Target --

A'l'TACH NIU WIRE

The NMI signal asserted by the UniLab causes the target
microprocessor to vector to a special interrupt location. The
UniLab software uses this signal for three debugger features:

NMI RI and SI SSTEP

These commands are not supported by all processors. Consult
Appendix H to find out whether your software package supports
NMI.

If your processor does not support NMI then you do not need
to have this wire connected. But see the note that appears on
the next page about processors that don't support NMI.

Simple Pullup Circuits

If you have a simple pullup resistor (a resistor running
from the pin to the power supply voltage) attached to the Non
Maskable pin of your microprocessor, then you can connect the
NMI- wire from the UniLab directly to the pin.

Common Complication

However, some boards have a logic element in the circuit, an
SSI or MSI chip that drives the NMI pin. Sometimes an output of
the processor causes the NMI pin to be activated.

Since an "open collector" circuit in the UniLab generates
the signal on the NMI- wire, you cannot use it to "pull down"
the output of a logic gate.

Hardware Solution

If you encounter this problem, the easiest solution is to
temporarily alter your target board:

isolate the NMI pin from the circuit that drives it,
connect a resistor of from 1K to 10K ohms between the

pin and your power supply voltage (pullup
resistor),

connect the wire from the UniLab directly to the
processor pin.

-- Installation -- Page 2-36

Connect UniLab to Target --

To isolate the NMI pin from the circuit that drives it you
can either:

bend the pin of your processor out of the socket on
your target board

OR
build a stacked socket arrangement by cutting the
appropriate pin off of a "soldertail socket" and
plugging the processor into this new socket. Then put
this stacked arrangement into the socket on your target
board.

Software Solution

If your target board makes use of the NMI pin of your
processor, you might choose to do without the UniLab features
that require this resource.

Simply type in the command NMIVEC' to disable the UniLab's
use of the NMI vector, and then use SAVE-SYS to save the newly
configured software.

You can always enable this feature again with NMIVEC.

Processors that do not support NMI

On these processors you can make use of the INT command to
produce a low-going transition on the NMI- wire when the UniLab
goes into trigger search state.

You can then connect the UniLab wire to the IRQ pin of your
processor (along with a pullup resistor). This will cause your
processor to execute a maskable interrupt. You will have to
write your own interrupt routine. You would want to do this if
you need to shut down peripheral equipment when some error
condition occurs. See the entry on INT in the Command Reference
chapter.

July 15, 1986 Page 2-37 -- Installation --

-- Connect UniLab to Target --

8088 and 8086 Family Complication

Most NMI pins are "active low"-- that is, the pin should
normally be held at high voltage, and the program gets
interrupted when the pin is pulled to low voltage.

However, Intel chose the opposite convention for their 8088
and 8086 family of processors. , The NMI pin on these processors
is active high.

This means that you must feed the signal coming from the
UniLab through an inverting circuit. One choice is to use a
74LS14, as shown below.

NMI wire from
Uni Lab

+5 v

To NMI pin of
8088/86 family
processor

Typical NMI circuit needed for
8088/8086 family processors

-- Installation -- Page 2-38

Connect UniLab to Target --

PLUG CABLES INTO UniLab CONNECTORS

Plug the 50-pin cable labeled "Emulator" into the left
socket on the UniLab, plug the "Analyzer" cable into the right
socket.

Both connectors must be plugged in with the plastic key on
the upper surface, and the red edge of the cable to the left.

ORION Universal Development Labor;
Instruments

Red Stripe ----1~

Emulator Cable

3tory

Unilabll EPROM PROGRAMMER-------.
...o=..PINI

~ 1111111111111111
PM1S • ~

2716

!,',~ II I 11 I I I I I I I I I II

Vp

• •

Analyzer Cable

July 15, 1986 Page 2-39 -- Installation --

Checkout Your Setup --

4. CHECKOUT YOUR SETUP

OVERVIEW

LOAD A SAMPLE PROGRAM
RUN THE PROGRAM
COMPARE TO SAMPLE TRACE
PLAY AROUND A LITTLE
HOW TO EXIT
GET TO WORK

Now that you have your target board properly connected, you
should give it a small shakedown cruise.

You will load in a sample program and run it while it
resides in UniLab emulation ROM.

This will only take a few minutes, and will provide you with
a broad idea of what the UniLab can do, at the same time as you
test out your installation.

This section assumes that you have one of the
disassembler/debugger packages. If you do not, then a sample
program is not included in your software.

Where next?

For more instruction, follow along with the Guided Demo in
the next chapter. See also the Getting Started chapter.

-- Installation -- Page 2-40

-- Checkout Your Setup --

LOAD A SAMPLE PROGRAM

Start up the UniLab program if you have not already done so~
Hit function key 10 (F10) to get the main menu.

From the main menu of the UniLab program, press

to - _, - -.L.
:::H::! J. ~ l; L.

.L.1-­
L..1.l~

F2

submenu, then press

F4

to select "LOAD A SAMPLE PROGRAM" (LTARG). This will enable
memory and load the simple demo program for your target
processor.

RUN THE PROGRAM

To watch the program executing, first hit

F10

to return to the main menu and use

F4

to select the "USE THE ANALYZER" sub-menu. Then, press

Fl

to select "RESET AND TRACE FIRST CYCLES."

You should get a trace display that agrees with the one in
the writeup on your processor in chapter 9. See the next page
(2-42) to find out how to have the computer compare your trace to
the sample trace produced by Orion.

Trouble?

If you get a "NO ANALYZER CLOCK" message, or find that your
trace buffer is filled with garbage, or have any other problem,
then consult the Troubleshooting chapter.

July 15, 1986 Page 2-41 -- Installation --

-- Checkout Your Setup --

COMPARE TO SAMPLE TRACE

After you have generated a trace with the simple target
program, compare your trace to the standard trace. Either look
at the printout in the Disassembler/Debugger writeup for your
processor, or use the UniLab command

AA TCOMP TESTxxxx.TRC

to compare your trace to the sample trace included on the
distribution diskette. The sample trace, stored as an encoded
file called TESTxxxx.TRC on your distribution diskette, is not
available for all processors. See appendix J, or check the
contents of your distribution diskette.

If your trace checks out to be okay, then you can be
confident that you have connected your UniLab properly and that
your target board is working.

If you have a bad trace, whether you detect it visually or
with TCOMP, see the next page.

Visual Inspection

You should be especially sensitive to four aspects of the
trace when examining it:

1) The very first address-- if it is not right, then
you've already found the problem, and shouldn't bother
to look any further.
2) The very first item in the data column-- if it is
wrong, then you probably have bad data lines on your
target board.
3) The value popped off the stack-- if it is not the
same as the value pushed, then you probably need to
patch the value of the stack pointer in the test
program.
4) Other addresses and data-- you can have a problem
even though the first part of the program looks okay.
For example, you have a grounded address line on your
target board, bit 6 of the address. You won't notice
this until bit 6 is supposed to go high (40 hex), and
doesn't.

Using TCOMP

If TCOMP detects a difference between your trace and the
known good trace that we send to you, it will show you part of
the good trace, and then the first differing line of your trace.
See also the entries on TCOMP and TMASK in the Command Reference.

-- Installation -- Page 2-42

-- Checkout Your Setup --

Bad Trace?

Typically you will find one of three things wrong with your
trace if the fault lies in your connection to the UniLab:

1) Very first address wrong-- you should check:
RES- wire and address wires.

2) Control column incorrect-- you should check
wires C4 through C7.

3) Bad data popped off stack-- see below.

Bad Data from stack?

Be especially aware of the push and pop instructions early
on in the program. Is the same value getting read as is being
written? If the answer is no, then it might be that your stack
pointer points at RAM that does not exist.

Check the Stack Pointer-- Processors with Stack in External RAM

The simple test programs generally set the stack pointer
within the first few steps. The program sets the stack pointer
so that it points at the RAM on the Orion target board. If you
do not have RAM at that and lower addresses, then the program
will pop garbage data off the stack, and you will not be able to
set a breakpoint.

Look at the program as it executes, or look at the listing
of it in the debugger notes. Is the stack pointer pointing to
RAM on your target board?

If the stack pointer needs a different value, use the
optional on-line assembler, ASM, or the UniLab command
<word> <addr> MM!. You use that command to poke a new 16-bit
word into the address field of the stack pointer initializing
instruction. You can easily patch the program, so that the 16-
bit address of the stack pointer points to RAM. For example,
FFFE 10 MMl will put the value FFFE into bytes 10 and 11 of
emulation ROM.

Stack Pointer Note
If you do change the address of the stack, TCOMP will

indicate a difference between your trace and the standard trace
at that point in the program. You will have to visually inspect
the trace to determine whether everything is properly connected.

Once everything is properly connected, you can use TSAVE to
save a trace for future regression testing.

July 15, 1986 Page 2-43 -- Installation --

-- Checkout Your Setup

PLAY AROORD A LI'l"l'LE

Your target system should now work normally with the
emulated ROM. Consult the Troubleshooting chapter if you have
any problems.

Play with the menu system a bit, to get an idea of the
capabilities of the UniLab. The menu mode makes a good
interactive learning tool-- before each command that it executes,
it echoes to the screen the words that you would type in from
command mode.

Experiment a bit with the instrument. For guidance, turn to
the next chapter, the Guided Demo. When you feel ready to use
the command mode, hit F10 once to get into the Main menu, and
then a second time to get to command mode.

-- Installation -- Page 2-44

-- Checkout Your Setup --

HOW TO EXIT

When you want to leave the program, type BYE on a line by
itself, followed by a carriage return.

GET TO WORK

You should take a break, and then use the UniLab some more,
to set triggers and examine more traces. You will probably want
to follow along with the Guided Demo in the next chapter.

July 15, 1986 Page 2-45 -- Installation --

Where to go Next

WITH TROUBLE

If you have trouble getting your system running, follow the
suggestions in the Troubleshooting chapter.

WITH A FUNCTIONING SYSTEM

You want to either learn more about the UniLab, or to start
using it immediately.

You can take one of four different pathways:

1) Go through the Guided Demo chapter first. You can
just read through it, but will learn more if you follow
it while seated at the computer.

2) Look at the chapter on Getting Started, then start
using the instrument.

3) Use the UniLab· in MENU mode, to gain familiarity
with basic commands.

4) Start using the UniLab on a task, with the help of
the Command Reference card.

-- Installation -- Page 2-46

Special Note: Display Characteristic Commands

Color Monitor
If you have a color monitor, you will want to let the UniLab

software know, by entering the command COLOR. You can change the
default colors with the menu-driven command SET-COLOR. See the
entries in the Command Reference chapter for more information.
After you issue the command COLOR, you will want to use SAVE-SYS
to save the newly configured program.

Screen Flicker
If your monitor flickers when you use the PgUp key, you will

want to issue the command CLEAR, and then use SAVE-SYS to save
the newly configured program. You can turn this alteration off
with CLEAR'.

July 15, 1986 Page 2-47 -- Installation --

Chapter Three:
Guided Demonstration

Introduction

This chapter shows you how to use the UniLab. It takes you
through the process you must go through when analyzing your
software. Before using this chapter, you should have already
followed the installation instructions in Chapter Two.

This is not an exhaustive introduction to the UniLab, nor to
the menus.

Instead, it illustrates the steps you will follow when
testing and debugging any program on any processor.

For purposes of illustration, we use a Z80 processor and a
very simple program. However, you will always follow the same
basic procedure, no matter which processor you use or how
involved your program.

Contents

Overview
Call Up the Software
Get the MAIN Menu

The Five-Step Procedure:

3-2
3-3
3-4

1. Enable Memory 3-5
2. Load a Program 3-6
3. Examine the Program 3-7

Memory Dump
Disassemble from Memory

4. Use the Analyzer 3-9
Get the First Cycles of Program
Sample the Bus
Set a Trigger on an Address

5. Use the Debugger 3-13

Summary

Set a Breakpoint to Establish Debug Control
Set Another Breakpoint
Single Step Through Code

3-16

July 15, 1986 Page 3-1 -- Guided Demo --

Overview

This Guided Demo uses the menu mode of the UniLab software
to:

1. Enable emulation memory
2. Load a program into memory
3. Look at the program in memory
4. Get a trace of the program executing
5. Set a breakpoint in the program.

You get the instrument ready in steps one and two, double­
check your preparations in optional step three, and then work
with the program in steps four and five.

These are the steps that you will almost always follow when
working with a program, whether you use the menus or commands.
The heading of each page tells you what command you could use.

Warning

Though this chapter is laid out as a demonstration that you
should follow on your computer, be aware that your traces will
look different if you are using any processor besides the Z80.

The trigger specs and breakpoint addresses that you must
enter are different from the ones in this text, as well as the
name of the .BIN file that you read into memory and the locations
into which you read it.

If you aren't certain what addresses to use for trigger
specs and breakpoint addresses, you should look at the ''sample
session" in the Disassembler/Debugger writeup for your processor.

If you aren't certain what .BIN file to read in, or what
addresses to load it into then consult Appendix J.

Where to Go Next

See the Getting Started chapter for information on the
commands and the special features, as well as more information on
the menu system. Or see the In Detail chapter for reference
material.

-- Guided Demo -- Page 3-2

call Up the UniLab Software

When you call up the UniLab program, there will be a
brief pause while the software gets loaded from disk.
The first actions the program takes:

1. display the opening screen,
2. initialize the UniLab.

you for action.

Uni Lab
II

Version X.XXX

Copyright 198X
Orion Instruments
Redwood City, CA

XXXXX disassembler installed - with debugger.

HELP is available on-line bytentering HELP or Fl.
Enter HELP command to see the definition of "command".
Type WORDS command to see a list of commands.

Use the function key F10 for MENU mode operation and quick
access to most common commands.

More help is available on the Ctrl-Fl key.
Press Ctrl-F10 for display of cursor key functions.

Type MESSAGE for current messages.
Initializing UniLab •••

Initialized 32K Emulation Memory

July 15, 1986 Page 3-3 -- Guided Demo --

Get the Main Menu

Hit the function key 10 (F10) to get the main menu.

The first thing you must do when working with the
UniLab on any program is enable a range of emulation
memory. You enable memory to tell the UniLab which
addresses it should respond to. You must do this before
you load a program (with the exception of the test program
loaded by LTARG, since that command enables the memory it
needs).

F1
F2
F3
F4
FS
F6 •t

F7
FB
F9

F10

UniLab MAIN MENU

ENABLE PROGRAM MEMORY
LOAD OR SAVE A PROGRAM
EXAMINE OR CHANGE PROGRAM MEMORY
WATCH PROGRAM EXECUTE
SET ANALYZER TRIGGER
SET BREAKPOINTS AND SINGLE STEP PROGRAM
USE THE STIMULUS GENERATOR
TOOLKIT ROUTINES
READ OR PROGRAM A PROM
EXIT TO COMMAND MODE

Use function key 1 (F1) to get to the ENABLE menu from
the MAIN MENU.

-- Guided Demo -- Page 3-4

The Five-Step Procedure

Enable a segment of memory The command is: EMENABLE

We will be loading a program into the lowest 2K of
memory, addresses 0 through 7FF. This range includes the
reset address of the zao processor: 0000.

Your processor's reset address is probably different-­
which means that you need to enable a different range of
memory. Type in LTARG to find out what range of memory
should be enabled for your processor. Note that the UniLab
expects all numbers in hexadecimal.

The value of =EMSEG will also differ from processor to
processor-- and is already set to the correct value for
you.

Hit F2 to enable a range of memory.

Notice that the menu system tells you which command
gives the same effect as your menu choice.

This command shows what effect it has on emulation
memory.

ENABLE PROGRAM MEMORY MENU

F1 DISPLAY CURRENT STATUS OF EMULATION MEMORY
F2 ENABLE A RANGE OF EMULATION MEMORY
F3 ADD ANOTHER RANGE OF MEMORY
F4 SET A16-A19 MEMORY SEGMENT BITS
FS DISABLE ALL EMULATION MEMORY

F10 RETURN TO MAIN MENU

Enter starting address of emulation memory (on 2K boundary):O

Enter ending address of emulation memory (rounded to 2K blocks):7FF

The command is: 0 7FF EMENABLE

Emulator Memory Enable Status:
7 =EMSEG

0 TO 7FF EMENABLE

After you load the sample program, hit F10 to get back to the
MAIN menu.

Ju 1 y 1 5 , 1 9 8 6 Page 3-5 -- Guided Demo --

2. Load a program into memory The command is: BINLOAD

From the MAIN menu hit F2 to get the LOAD menu.

UniLab MAIN MENU

F2 LOAD OR SAVE A PROGRAM

We shall load the short and simple program included on
the distribution diskette. Some disassembler packages
support several different processors, and so will have
several different .BIN files on the diskette. Consult
Appendix J if you are not certain what file to load in, or
what address to start loading it at.

Use BINLOAD to load a binary format file. You will
have to specify the starting and ending addresses for this
memory load. The UniLab will stop loading when it finds
the end of the file, or when it reaches the "Ending
address," whichever comes first.

The program for the Z80 gets loaded in starting at
address 0000.

With the Z80, the UniLab stops loading after address
31. This sample program is very short-- only 32 bytes.

LOAD OR SAVE PROGRAM MENU

F1 LOAD INTEL HEX FILE
F2 LOAD BINARY OBJECT FILE
F3 SAVE A BLOCK OF MEMORY ~O DISK FILE
F4 LOAD A SAMPLE PROGRAM

F10 RETURN TO MAIN MENU

Enter the Starting address:O
Enter the Ending address:7FF

The command is: 0 7FF BINLOAD

Pile Name? --- a:testZ80.bin end = 31

After you load the program, hit F10 to return to the
HAIN menu.

Guided Demo -- Page 3-6

Examine the program in emulation memory
Memory Dump The command is: MDUMP

From the MAIN menu, hit F3 to get the EXAMINE MEMORY
menu.

UniLab MAIN MENU

F3 EXAMINE OR CHANGE PROGRAM MEMORY

The simplest command for examining memory just dumps
out the contents of memory, showing you the hex adecimal
code and the ASCII interpretation of each byte.

Hit F1 to "dump" a range of memory. Notice that the
command works on 10 hex byte chunks of memory-- it dumps
the full range 0 through 2F.

You will probably prefer to use the command that
disassembles from memory, rather than just dumping memory.
See the next page.

EXAMINE OR CHANGE PROGRAM MEMORY MENU

F1 EXAMINE A BLOCK OF MEMORY
F2 DISASSEMBLE FROM MEMORY
F3 CHANGE ONE BYTE
F4 CHANGE ONE WORD
FS FILL A BLOCK OF MEMORY WITH ONE VALUE
F6 MOVE A BLOCK OF MEMORY
F7 COMPARE TWO BLOCKS OF MEMORY

F10 RETURN TO MAIN MENU

Enter the Starting address:O
Enter the Ending address:2B

The command is: 0 2B MDU MP
0 31 00 19 3E 12 01 56 34 1 1 9A 78 21 DE BC cs C1 1 •• > •• V4 •• x! ••••

1 0 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C <<<<<<<<<<<<<<<<
20 3C 3C 3C 3C 3C 3C 3C 3C JC C3 03 00 BE 84 F7 AO < < < < < < < < < • • • • • • •

July 1 5, 1 986 Page 3-7 -- Guided Demo --

h Examine the program in emulation memory
Disassemble the program The command is: DM

To see the disassembly of a range of program memory,
use F2.

The 32 byte program is short enough that we can just
disassemble the whole thing-- although we should do it
about ten lines at a time, so that it fits on the screen.

EXAMINE OR CHANGE PROGRAM MEMORY MENU

F1 EXAMINE A BLOCK OF MEMORY
F2 DISASSEMBLE FROM MEMORY
F3 CHANGE ONE BYTE
F4 CHANGE ONE WORD
FS FILL A BLOCK OF MEMORY WITH ONE VALUE
F6 MOVE A BLOCK OF MEMORY
F7 COMPARE TWO BLOCKS OF MEMORY

F10 RETURN TO MAIN MENU

Enter the Starting address:O
Enter the number of lines to disassemble (default=5):10

The
0000
0003
0005
0008
OOOB
OOOE
OOOF
0010
0011
0012

command
310019
3E12
015634
119A78
21DEBC
cs
C1
3C
3C
3C

is: 0 10 OM
LO SP,1900
LO A,12
LO BC,3456
LO DE,789A
LO HL,BCDE
PUSH BC
POP BC
INC A
INC A
INC A

Hit F10 to return to the MAIN menu.

Familiar? You might have already noticed that this
simple program is identical to the Z80 LTARG
program.

-- Guided Demo -- Page 3-8

4. Use the Analyzer

Though it was helpful to see a disassembly of the
program from memory, the value of the UniLab comes from the
ability to watch your microprocessor system as it executes
the program.

From the MAIN menu, hit F4 to get the ANALYZER menu.

UniLab MAIN MENU

F4 WATCH PROGRAM EXECUTE

July 15, 1986 Page 3-9 -- Guided Demo --

~ Use the Analyzer

The
cy#

0
3
5
8
B
E
F

10
1 1
1 2
1 3
1 4
1 5

Reset the microprocessor, and watch the first cycles
The command is: STARTUP

In the ANALYZER menu, hit Fl to get a trace of the
first cycles of the processor as it executes the sample
program.

Only the first few lines of the trace are shown, but
you can look at more of the trace by using the Down Arrow
and the PgDn keys on the numeric key pad.

If you were to look at the rest of the trace, you
would see it continues with the series of "INC A"
instructions, ending with a "JP 3" instruction at address
29. And then you would see the code at address 3 being
executed again.

ANALYZER MENU

Fl RESET AND TRACE FIRST CYCLES
F2 'TRACE IMMEDIATELY
F3 TRACE FROM A SPECIFIC ADDRESS
F4 COUNT CYCLES BETWEEN TWO ADDRESSES
F5 SAMPLE THE BUS CONTINUOUSLY
F6 SAMPLE ADDRESS ACTIVITY

F10 RETURN TO MAIN MENU

command is: STARTUP resetting
CONT ADR DATA

B7 0000 310019 LD SP,1900
B7 0003 3E12 LO A, 12
B7 0005 015634 LD BC,3456
B7 0008 119A78 LD DE,789A
B7 OOOB 21DEBC LO HL,BCDE
B7 OOOE CS PUSH BC
D7 18FF 34 write
D7 18FE 56 write
B7 OOOF C1 POP BC
F7 18FE 56 read
F7 18FF 34 read
B7 0010 3C INC A
B7 0011 3C INC A

See section one of the In Detail chapter to find out more about
interpreting the trace.

-- Guided Demo -- Page 3-10

4. Use the Analyzer
Sample the bus The command is: SAMP

Even though you are looking at a trace of the first
cycles of the program, the program continues to run.

You can get a sampling of the instructions that the
program is executing right now. Hit F5. These samples are
random selections from the bus.

You hit any key to stop the display of bus samplese

The transcript below confirms what was already pretty
obvious from the trace-- the program spends most of its
time executing "INC A" instructions.

Note that the disassembler sees one isolated byte (or
word, with 16-bit processors), and therefore it fairly
often sees only one part of an instruction that takes
several bus cycles to be read from memory.

For example, the very first cycle captured by SAMP in
the transcript below shows a read of DE. But the program
never reads a value of DE-- except when it reads the
immediate value to load into the HL register, in the fifth
line of the program (see previous page).

The lesson: while using SAMP either turn off the
disassembler, or leave it on while realizing that it can be
"fooled."

F1
F2
F3
F4
F5
F6

F10

ANALYZER MENU
RESET AND TRACE FIRST CYCLES
TRACE IMMEDIATELY
TRACE FROM A SPECIFIC ADDRESS
COUNT CYCLES BETWEEN TWO ADDRESSES
SAMPLE THE BUS CONTINUOUSLY
SAMPLE ADDRESS ACTIVITY

RETURN TO MAIN MENU

The command is: SAMP

F7 oooc DE read
D'7 001C 3C INC 7\
.U I C'l.

B7 001C 3C INC A
B7 001F 3C INC A
F7 002B 00 read
B7 0010 3C INC A
F7 0007 34 read

July 1 5 I 1 986 Page 3-11 -- Guided Demo --

4. Use the Analyzer
Set a triqqer on an address The command is: <address> AS

Though the preset triggers of the UniLab are helpful, you
will usually set up your own trigger specification.

Use F3 to set up a trigger that will show the trace starting
at whatever address you specify-- in this case, address 29, the
address of the jump instruction. (Note that 29 is specific to
the testZ80 program. The test program for your processor will
have different instructions at different addresses.)

Note that the trigger address is labeled as cycle O, and
that the UniLab shows you the five bus cycles before that
address.

As always, the program shows you only a screenful of trace.
You must use PgDn or Down Arrow to see more of the trace display.

ANALYZER MENU

F1 RESET AND TRACE FIRST CYCLES
F2 TRACE IMMEDIATELY
F3 TRACE FROM A SPECIFIC ADDRESS
F4 COUNT CYCLES BETWEEN TWO ADDRESSES
F5 SAMPLE THE BUS CONTINUOUSLY
F6 SAMPLE ADDRESS ACTIVITY

F10 RETURN TO MAIN MENU

Enter the Trigger address:29
The command is: 29 AS

-5 B7 0024 3C INC A
-4 B7 0025 3C INC A
-3 B7 0026 3C INC A
-2 B7 0027 3C INC A
-1 B7 0028 3C INC A

0 B7 0029 C30300 JP 3
3 B7 0003 3E12 LD A,12
5 B7 0005 015634 LD BC,3456
8 B7 0008 119A78 LD DE,789A
B B7 OOOB 21DEBC LD HL,BCOE
E B7 OOOE cs PUSH BC
F 07 18FF 34 write

1 0 07 18FE 56 write

-- Guided Demo -- Page 3-12

5. Use the Debugger
Set a breakpoint to Establish Debug Control

The command is: RESET <address> RB

Now hit F10 to get back to the MAIN menu, and then choose
the SET BREAKPOINTS menu with F6.

UniLab MAIN MENU

T:IC
.ro SET BREAKPOINTS AND STEP PROGRAM

Whenever you want to use any of the debug features, you must
first establish debug control-- which causes special hardware in
the UniLab to take control of your microprocessor.

Hit Fl to set a breakpoint. The example shows a breakpoint
set at address 27, two cycles before the JUMP instruction.

See the In Detail chapter for a complete explanation of the
debugger and the breakpoint display.

DEBUG MENU

Fl SET A BREAKPOINT TO ESTABLISH DEBUG CONTROL
F2 RESUME EXECUTION TO A BREAKPOINT
F3 EXECUTE THE NEXT STEP (WON'T FOLLOW JUMPS)
F4 GO TO AN ADDRESS WITH A BREAKPOINT SET
FS GO TO AN ADDRESS AND EXIT THE DEBUGGER

F10 RETURN TO MAIN MENU

Enter the breakpoint address in emulation memory:27
The command is: RESET 27 RB resetting

AF=2928 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900 PC=0027
0027 3C INC A (next step)

July 1 5, 1 986 Page 3-13 -- Guided Demo --

5. Use the Debugger
Set another breakpoint The command is: <address> RB

Once you have established debug control, you can use
any of the other debugger features.

F2 lets you set a breakpoint at a new address, and
then releases the program from debug control. When the
program reaches the new breakpoint, you will again see the
breakpoint display.

Here we begin with the processor stopped just before
address 27. Press F2 and enter the value 3 to set a
breakpoint at address 3.

That allows us to see the state of the processor
immediately after it executes the JUMP instruction.

Of course, you could set this second breakpoint
anywhere in the program.

DEBUG MENU

F1 SET A BREAKPOINT TO ESTABLISH DEBUG CONTROL
F2 RESUME EXECUTION TO A BREAKPOINT
F3 EXECUTE THE NEXT STEP (WON'T FOLLOW JUMPS)
F4 GO TO AN ADDRESS WITH A BREAKPOINT SET
FS GO TO AN ADDRESS AND EXIT THE DEBUGGER

F10 RETURN TO MAIN MENU

AF=2928 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900 PC=0027
0027 3C INC A (next step)

Enter the breakpoint address in emulation memory:J
The command is: 3 RB

AF=2B28 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900 PC=0003
0003 3E12 LD A,12 (next step)

-- Guided Demo -- Page 3-14

Use the Debugger
Single-step through code The Command is: N

The UniLab single-steps by setting a breakpoint just
after the instruction currently pointed to by the program
counter. Then it releases your processor.

The processor executes the instruction that the
program counter points to, and stops when it hits the
breakpoint. Tap Fl to single-step.

Note that in the transcript below, we begin with the
processor stopped at address 3. Then we hit F3 twice, to
step through the next two instructions.

The breakpoint display shows that 12 was properly
loaded into the A register by the LD A, 12 instruction.

DEBUG MENU

F1 SET A BREAKPOINT TO ESTABLISH DEBUG CONTROL
F2 RESUME EXECUTION TO A BREAKPOINT
F3 EXECUTE THE NEXT STEP (WON'T FOLLOW JUMPS)
F4 GO TO AN ADDRESS WITH A BREAKPOINT SET
FS GO TO AN ADDRESS AND EXIT THE DEBUGGER

F10 RETURN TO MAIN MENU

\F=2B28 {sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900 PC=0003
)00~ 3E12 LD A,12 (next step)

The command is: N
\F=1228 {sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900 PC=0005
)OOS- 015634 LD BC,3456 (next step)

The command is: N
\F=1228 {sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900 PC=0008
)008 119A78 LD DE,789A {next step)

Problems with N?
N sets a breakpoint at the address following the instruction

pointed to by the program counter. If you use N when the program
counter points at a jump instruction, then the program will not reach
the breakpoint. It will seem as if nothing happened.

You're actually releasing the program from debug control with a
breakooint set at a code address that is not executed. Most
proce;sors support a command, called SSTEP";-that allows you to watch
jumps and branches.

July 15, 1986 Page 3-15 -- Guided Demo --

Summary

We've gone through the process of loading a program, looking
at it, and running it. We generated two traces of the program,
and then set several breakpoints.

Though the program was very simple, the process you go
through will be the same for any program.

More advanced work

Note that so far we have only set a trigger specification on
2 bytes of the 6 bytes of bus activity that the UniLab looks at
during each bus cycle. The Guided Demo used the AS command to
set a trigger specification on the 16 bits of the address input.

You can also:

1) set triggers on any combination of the 6
bytes of the UniLab inputs from the turget
board,

2) use qualifiers to delay the search for the
trigger until after some other bus activity
occurs.

3) and produce filtered traces that include or
exclude whatever bus cycles you describe.

These capabilities are described in the Command Language
section of the next chapter, and more completely in the In Detail
chapter.

Learning

As you use the menus, you will gain familiarity with the
UniLab methodology and commands. Most people find that they soon
are operating in command mode and making use of the split screen
(F2).

But everyone turns to the menus for help with seldom used
tasks, such as PROM reading and programming.

Next

See the next chapter, Getting Started, for a complete guide
to the menu system, and an introduction to the commands and to
the special features (such as mode panels and split screens).

-- Guided Demo -- Page 3-16

Chapter Four:
Getting Started-- The Menus, the Commands,

and the Special Features

Introduction

You use this chapter to get an overview of the capabilities
of the UniLab software.

Before using this chapter, you should have installed the
UniLab system on your personal computer, and have connected the
instrument to your microprocessor board.

You would also benefit from looking over the Guided Demo
chapter before reading this one.

When you require more information than Chapter Four has to
offer, the In Detail chapter provides you with in-depth
information about every aspect of the instrument.

Contents

Overview

1. Menu Mode

2. Command Mode
Command Tail and Batch Files
Using the Command Language
Trigger Specs: Theory and Conventions
Trigger Specifications: Examples

3. Special Features
Function Keys
Cursor Keys: Traces and Line History
Windows
Viewing Textf iles
Cursor Key Summary

4-2

4-4

4-19
4-20
4-23
4-24
4-27

4-33
4-34
4-36
4-41
4-49
4-51

July 15, 1986 Page 4-1 -- Getting Started --

Overview

The organization of this chapter mimics the stages you will
pass through as you start using the UniLab.

When you start working with the UniLab, you will need the
prompting and guidance that the menus provide.

After you have gained some familiarity with the instrument,
you will find that your work goes faster using commands.

You will soon find that you want to look at several
different types of information at the same time. That is when
you will need and appreciate the split screen-- though the split
screen will be valuable to you from the moment you start using
the instrument.

The bulk of the chapter covers these three major topics:

Menus,
Commands,
Special features.

This third section contains a tutorial on the use of
function keys, cursor keys and split screens (windows).

-- Getting Started -- Page 4-2

Overview --

When to use: Menus and commands and special features

Menus

Use the menu mode when you first work with the UniLab. The
menus help you by guiding your activities. The menus also help
you learn, by telling you which command corresponds to the menu
selection you have made.

The Menu Mode section of this chapter shows each or Lne
menus, and explains what each menu choice does. Consult this
section to learn what functions each menu performs, and which
commands correspond to each menu choice.

You don't have to exit from menu mode to try out commands.
At any time, you can type in most UniLab commands. After a short
time, you will be ready to work without menus.

Commands

Use the command mode when you have a passing familiarity
some of the UniLab's functions. When you are in command mode you
can make use of the full power of the UniLab, and take advantage
of the special features that are not available in menu mode, such
as split screens, calls to DOS, the mode panels, and text file
review.

The Command mode section of this chapter introduces you to
the use of commands, concentrating on setting trigger
specifications. Consult this section to learn the command
conventions, and find out how to use UniLab commands to capture
information about your target processor program.

This section also includes information about the use of
command tails and batch files with the UniLab software.

Special features

You can use the special features as soon a; you start using
command mode. The UniLab software provides you with:

split screens,
reassignable function keys,
mode panels for easy toggling of options,
a history of the current session,
and other special features.

These easy to use features are completely explained by the
third section of this chapter.

July 15, 1986 Page 4-3 -- Getting Started --

~ The Menu Mode

The UniLab software provides a powerful command language
that allows control of all facilities from a single context.
However, command languages can be intimidating to first-time or
infrequent users.

The menu system allows you to gain familiarity with the
UniLab-- and to test commands from within the UniLab.

You enter (and leave) the menu system with function key 10
(F10).

Choosing options

You make choices from the menu by pressing a function key.

Whenever you make a menu choice, the program will ask you
for any needed parameters, tell you what command you would use,
and then execute the command.

The test in the following pages also tells you the command
corresponding to each menu choice.

The arrangement of options

Within many of the menus, the options appear in the order
that you will need them. For example, the ANALYZER TRIGGER menu
shows the trigger spec commands in order of increasing
complexity.

Using commands from inside menu mode

You can use most of the UniLab commands from within the menu
mode, though of course you cannot use the function keys to call
up commands. Also, the mode panels and windows are not available
to you.

-- Getting Started -- Page 4-4

-- Menu Mode --

Map to the menu system

Each of the following pages shows one of the menus, and
briefly explains the menu choices.

The chart below shows you the straightforward arrangement of
the menus. The only complication, and that a mild one, is that
you must travel through the EPROM reader menu to get to the two
EPROM programmer menus. Even with this inconvenience, you can
get any EPROM programmed with five key strokes, in the very worst
case.

F1 I
F2

Enable
Program
Memory

Load
Save

F3

Examine
or Alter
Memory

or
Program

I
F4

Main Menu

I
FS

Set
Analyzer
Trigger

Watch
Program
Execute

I
F6

F7

Use the
Stimulus
Generator

I
FB

F9

Read an
EPROM

Set Use
Breakpoints Toolkit

F9

I
EPHOH

Programmer N1
I

F9
I

EPIWM
Programmer #2

From the Main menu, F10 puts you into command mode.

From any of the sub-menus, F10 puts you into the Main menu.

July 15, 1986 Page 4-5 -- Getting Started --

Menu Mode --

The UniLab system will present you with the main menu when
you enter menu mode by hitting function key 10, or when you type
the command MENU :

Explanation

UNILAB MAIN MENU

F1 ENABLE PROGRAM MEMORY
F2 LOAD OR SAVE A PROGRAM
F3 EXAMINE OR CHANGE PROGRAM MEMORY
F4 WATCH PROGRAM EXECUTE
FS SET ANALYZER TRIGGER
F6 SET BREAKPOINTS AND SINGLE STEP PROGRAM
F7 USE THE STIMULUS GENERATOR
F8 TOOLKIT ROUTINES
F9 READ OR PROGRAM A PROM

F10 EXIT TO COMMAND MODE

None of the entries on this menu actually correspond to
UniLab commands. You use this menu to choose the appropriate
sub-menu.

The options appear in the order you will need to use them:

When checking out a program, you need to enable memory (Fl),
then load the program into emulation memory (F2).

After that, you will probably want either to look at the
program in memory (F3) or to watch it execute (F4). You will
probably need to do both of these at different times.

Most of your time with the UniLab will be spent setting
trigger specifications and examining the traces that result.
This is how you track down bugs. The menu supplies the most
common trigger commands (FS), but you will need to use commands
to make use of the full power of the UniLab.

After you track the bug down to a small section of code, you
might want to look at the internal state of the processor (F6)
while it executes that portion of the program-- though this is
not necessary for most debugging work. But if you want to do
it, you must first establish debug control by setting a
breakpoint. You can then single-step from that point in the
program.

When you are done with your debugging work, you can burn the
tested program into an EPROM (F9).

-- Getting Started -- Page 4-6

-- Menu Mode --

Hit F1 to get the first sub-menu:

Explanation

ENABLE PROGRAM MEMORY MENU

F1 DISPLAY CURRENT STATUS OF
EMULATION MEMORY

F2 ENABLE A RANGE OF EMULATION MEMORY
F3 ADD ANOTHER RANGE OF MEMORY
F4 SET A16-A19 MEMORY SEGMENT BITS
FS DISABLE ALL EMULATION MEMORY

F10 RETURN TO MAIN MENU

Because you can only put a program into a range of emulation
memory that has already been enabled, you will want to check the
current status of emulation memory (Fl or ESTAT) before loading
in a program.

If the range of memory you need isn't enabled, you will need
to correct that (F2 or <start addr> <end addr> EMENABLE). This
clears out any previous enable settings.

You might later want to enable another range of memory
without clearing out the previous setting (F3 or ALSO <start
addr> <end addr> EMENABLE).

You can use SAVE-SYS <filename> to save the UniLab software
after you enable the range of memory that you need for your
project. That way, you only need to enable memory once.

The upper four bits of the address are set properly for you,
unless you don't have a disassembler software package, or have an
abnormal memory map. In the unlikely event that you need to
change that setting you can (F4 or <hex digit> =EMSEG). The
change does not have any effect until the next EMENABLE command.
See the first section of the In Detail chapter if you need more
information about the upper four bits of the address.

You will never need to disable all emulation memory, unless
you want to run a program from a ROM chip on the microprocessor
board (FS or EMCLR). Before you can analyze a program running
from a ROM, you will need to disable the debugger (with the mode
panel choice SWI VECTOR or RSP').

As in all sub-menus, FlO returns you to the MAIN MENU.

July 15 I 1986 Page 4-7 -- Getting Started --

Menu Mode --

Hit F2 from the MAIN MENU to get the second sub-menu:

Explanation

LOAD OR SAVE PROGRAM MENU

F1 LOAD INTEL HEX FILE
F2 LOAD BINARY OBJECT FILE
F3 SAVE A RANGE OF MEMORY TO DISK FILE
F4 LOAD A SAMPLE PROGRAM

F10 RETURN TO MAIN MENU

This sub-menu allows you to load two types of program files
into emulation memory.

An INTEL hex format file contains within it the address that
every byte of code will go to. When you load one of these files,
you specify only the name of the file, since you cannot choose
what addresses it will load into (F1 or HEXLOAD <file name>).

When you load a binary object file, you must specify the
address in emulation ROM to start and the address to end (F2 or
<from addr> <to addr> BINLOAD <file name>). You must stay aware
that the program will load until it reaches the <to addr>, or
until it reaches the end of file, whichever comes first. If you
are not cautious, you might accidentally load only part of your
program.

You can just as easily save a range of memory to a disk file
(F3 or <from addr> <to addr> BINSAVE <file name>).

Loading and running the simple test program can be a
valuable way to test out your UniLab (F4 or LTARG). Watch out,
since this command changes the enable status of emulation ROM.

As in all sub-menus, F10 returns you to the MAIN MENU.

-- Getting Started -- Page 4-8

-- Menu Mode

Hit F3 from the HAIN MENU to get the third sub-menu:

Explanation

EXAMINE OR CHANGE PROGRAM MEMORY MENU

F1 EXAMINE A RANGE OF MEMORY
F2 DISASSEMBLE FROM MEMORY
F3 CHANGE ONE BYTE
F4 CHANGE ONE WORD
FS FILL A RANGE OF MEMORY WITH ONE VALUE
F6 MOVE AN AREA OF MEMORY
F7 COMPARE TWO AREAS OF MEMORY

F10 RETURN TO MAIN MENU

You can perform all memory operations on RAM after you have
established debug control. Otherwise you can only work on
enabled emulation ROM.

You can examine memory by performing a hexadecimal dump of
some range (Fl or <from addr> <to addr> MDUMP). This command
operates on 10-byte blocks of memory, and shows you the numbers
~tored in memory.

You will probably find it more valuable to see the
disassembly of the instructions stored in memory (F2 or
<from addr> <number of instructions to decode> DM).

You might want to alter the instructions in program memory.
If you know the number that corresponds to an instruction, you
can push into memory either a byte (F3 or <byte> <address> M!),
or a 16-bi t word (F4 or <word> <address> MM!).

If you choose, you can make use of a more heavy-handed way
to alter memory, and fill an entire range of memory with the same
byte value (FS or <from addr> <to addr> <byte value> MFILL).
This command is useful for putting a bunch of identical
instructions into program memory, for testing purposes.

Sometimes when you need to alter your program, you need to
move blocks of code from one place to another (F6 or
<start addr source> <end addr source> <start addr dest> MMOVE).

For testing purposes, and in the course of verifying PROMs,
you might want to find out how two areas of memory differ, if
they do differ (F7 or <from addr> <to addr> <comp addr> MCOMP).
This command operates on 100-byte blodk~.

As in all sub-menus, FlO returns you to the MAIN MENU.

July 1 5, 1 986 Page 4-9 -- Getting Started

Menu Mode --

Hit F4 from the MAIN MENU to get the fourth sub-menu:

Explanation

ANALYZER MENU

F1 RESET AND TRACE FIRST CYCLES
F2 TRACE IMMEDIATELY
F3 THACE FROM A SPECIFIC ADDHESS
F4 COUNT CYCLES BETWEEN TWO ADDRESSES
F5 SAMPLE rrIIE BUS COi'J'rINUOUSLY
F6 SAMPLE ADDRESS ACTIVITY

F10 RETURN TO MAIN MENU

Especially when you first start testing a new piece of
software for your microprocessor board, you will want to look at
the first cycles that it executes (Fl or STARTUP).

Another way to explore your program when you first start
working with it is to capture the trace of what it is now
executing (F2 or NOW?). You can also use this command to
demonstrate to yourself that your processor does not stop when
you capture a trace-- while you are examining the "instant
replay," the game continues.

One of the simplest and most frequently used trigger
specifications tells the UniLab to show you what happens after
the program reaches a given address (F3 or <addr> AS).

While trying to figure out where your program is spending
its time, you will find it useful to count the number of bus
cycles that occur between addresses (F4 or <first addr> <second
addr> CYCLES?).

You can get a rather rough grained view of your program by
displaying a sample of bus activity, randomly snatched from the
bus, one per second (FS or SAMP).

An even rougher grained view is available. You can look at
only random samples of the address bus (F6 or ADR?).

As in all sub-menus, F10 returns you to the MAIN MENU.

-- Getting Started -- Page 4-10

-- Menu Mode

Hit FS from the MAIN MENU to get the fifth sub-menu:

ANALYZER TRIGGER MENU

F1 TRIGGER ON AN ADDRESS
F2 TRIGGER ON A RANGE OF ADDRESSES
F3 TRIGGER ON A RANGE OF ADDRESSES AND A DATA VALUE
F4 TRIGGER OUTSIDE A RANGE OF ADDRESSES
FS FILTER EXCLUDING A RANGE OF ADDRESSES

AF'rrER AN ADDRESS
F6 TURN RESET OFF OR ON (reset is now on)

F10 RETURN TO MAIN MENU

Explanation

The menu mode does not provide you with the full power and
flexibility of the command mode-- but the ANALYZER TRIGGER MENU
does provide you with some of the most useful trigger commands.

This menu repeats the option from the fourth menu, allowing
you to set a trigger on an address (Fl or <addr> AS).

You can also trigger when any member of some range of
addresses appears on the bus (F2 or <addr> TO <addr> ADR S). You
can also set a trigger on several ranges of addresses, but not
from within the menus.

But the menu does allow you to trigger only when both a
given range of addresses and a given data value appearc;n-the bus
(F3 or NORMT <addr> TO <addr> ADR <byte> DATA S).

You can also trigger when the processor goes outside a given
range of memory, for either reads or fetches (F4 or
NOT <addr> TO <addr> ADR S). This trigger specification is more
useful as a command, since you can, with most processors, limit
the trigger event still further by specifying READ or FETCH.
This lets you, by specifying the appropriate addresses, trigger
when the processor tries to fetch from outside of ROM, or read
from outside of RAM.

You often find that the majority of your trace is filled
with the record of some delay or status loop that occurs again
and again. You will find it useful to capture a trace that
triggers on one address, and excludes some other range of
addresses from the trace (FS or ONLY NOT <addr> TO <addr> ADR
AFTER <trigger addr> ADR S).

July 15, 1986 Page 4-11 -- Getting Started --

Menu Mode --

When you have RESET turned on, your target board starts the
target program from the reset address when the analyzer starts
watching the bus for a new trigger-- that is, whenever an S is
issued.

With RESET turned off, the analyzer will search the program
"in progress" for the trigger whenever an S is issued.

You can toggle RESET on and off (F6 or RESET and RESET').

As in all sub-menus, F10 returns you to the MAIN MENU.

-- Getting Started -- Page 4-12

1~1enu Mode

Hit F6 from the MAIN MENU to get the sixth sub-menu:

Explanation

DEBUG MENU

F1 SET A BREAKPOINT TO ESTABLISH DEBUG CONTROL
F2 RESUME EXECUTION TO A BREAKPOINT
F3 EXECUTE THE NEXT STEP (WON'T FOLLOW JUMPS)
F4 GO TO AN ADDRESS WITH A BREAKPOINT SET
FS GO TO AN ADDRESS AND EXIT THE DEBUGGER

F10 RETURN TO MAIN MENU

After you have established debug control, you can read and
alter RAM, read and alter internal registers, single step through
your program, and perform many other traditional debugging
functions. The menu does not provide you with access ~o all the
features available in command mode.

To establish debug control, you set a breakpoint on the
first address of an instruction (Fl or RESET <addr> RB). When the
program reaches the breakpoint and shows the internal register
display, you have established debug control. This command causes
the processor to start executing the program from the beginning.
RB also disables RESET.

From a breakpoint, you can instruct the UniLab to set a new
breakpoint and free the processor from debug control, so that it
can run until it reaches the new breakpoint (F2 or <addr> RB).
This command does not cause your program to start again.

From a breakpoint, you can also step through instructions
one at a time, looking at the internal register display after
each step (F3 or N). This command will not follow jumps, calls
or branches, but processors with a hardware Non-Haskable
Interrupt support a SSTEP command. See Appendix H.

The SSTEP command allows you to follow non-sequential code.
See the chart in Appendix H to find out whether your processor
supports this and other features that depend upon the Non­
Maskable Interrupt.

From a breakpoint, you can also change the program counter
and then set a breakpoint, before releasing the processor from
debug control (F4 or <New PC> <addr> GB).

You can also change the program counter and then release the
program from debug control without a breakpoint set (F~ or
<New PC> G}.

As in all sub-menus, FlO returns you to the MAIN filENU.

July 15, 1986 Page 4-13 Getting Started

Menu Mode --

Hit F7 from the MAIN MENU to get the seventh sub-menu:

Explanation

STIMULUS MENU

F1 SET A STIMULUS BIT
F2 RESET A STIMULUS BIT
F3 DEFINE ALL 8 STIMULUS BITS

F10 RETURN TO MAIN MENU

You can use the stimulus generator to send signals out
through th~ PROM PROGRAMMER socket. These eight signals, which
you control from your keyboard, can replace the usual prototype
board dip switch.

You can set (change to high signal) a single bit of the
stimulus output (F1 or <bit number> SET).

You can also "reset" (change to low signal) a single bit of
the stimulus output (F2 or <bit number> RESET).

You might prefer to specify all eight bits at once, by
setting the output to the value of two hexadecimal digits (F3 or
<byte value> STIMULUS).

As in all sub-menus, F10 returns you to the MAIN MENU.

-- Getting Started -- Page 4-14

-- Menu Mode

Hit F8 from the MAIN MENU to get the eighth sub-menu:

TOOLKIT MENU

F1 DISPLAY PINOUT OF 2716 PROM
F2 DISPLAY PINOUT OF 2764 PROM
F3 DISPLAY PINOUT OF PROCESSOR

AND UniLab CABLE
F4 DISPLAY CATALOG OF AVAILABLE PINOUTS
FS DISPLAY ASCII TABLE

F10 RETURN TO MAIN MENU

Explanation

The toolkit menu provides you with some reference material
that you will find invaluable.

The most valuable is the chip diagram that shows how the
cables connect to your processor (F3 or PINOUT).

The other choices show you the chip diagram of two PROMs (F1
and F2), a catalog of commands you can use to get the chip
diagrams of many processors (F4-- but note that these commands
are not functional in menu mode), and a display showing the
hexadecimal codes for every ASCII character (FS).

As in all sub-menus, FlO returns you to the MAIN MENU.

July 15, 1986 Page 4-15 -- Getting Started --

Menu Mode --

Hit F9 from the MAIN MENU to get the ninth sub-menu:

PROM READER MENU

F1 READ 2716/48016 - use PM16
F2 READ 2532 - use PM16
F3 READ 2732 - use PM32
F4 READ 2764 - use PM64
F5 READ 27128 - use PM64

(PM56 for 27128A)
F6 READ 27256 - use PM56
F7 READ 27512 - use PM512
F9 Go to Prom Programmer Menu

F10 RETURN TO MAIN MENU

Explanation

You use this menu to load a program from an EPROM into the
UniLab's emulation ROM. Each entry on the menu tells you which
Personality Module (PM) you need to use while reading from the
PROM. The PM nestles next to the EPROM PROGRAMMER socket, and
alters control signals as necessary for each PROM.

You can perform all EPROM programming and reading from
within the menu system. We recommend that you not bother to make
use of the commands, though they are available for use in macros.

See Appendix G if you want more information on EPROMs and
commands.

This menu also provides you with access to the PROM
PROGRAMMER MENU. Hit F9.

As in all sub-menus, F10 returns you to the MAIN MENU.

ORION Universal Development Laboratory
Instruments

Unilab ll n--P1N1 iJ
I EPROM PROGRAMMER

c;- llllllllllllllllllZr--;J
,.W: ~ YO

I~". •.rr.•~-~'~"'.'.'~~~~o~
1 I

48 CHANNEL BUS STATE ANALYZER PM11 • • • • 21tl

I I@~
J~32 II llllllllllll II

'
e e f e f • • e e I I I I I I I I I I I I I I I

/

PERSONALITY MODULE /

-- Getting Started -- Page 4-16

-- Menu Mode --

Hit ¥~ rrom the PHOM READER MENU to get the first
PROM PROGRAMMER sub-menu:

PROM PROGRAMMING MENU #1

F1 PROGRAM A 2716 (use PM16 personality module)
F2 PROGRAM A 2532 (use PM16 personality module)
rt"" PROGRA!•'i A -.~~~"ll I - - - - PM32 personality module) 1' .J ~/.J~R. \USe

F4 PROGRAM A 2764A (use PM64 personality module)
F5 PROGRAM A 27128A (use PM56 for A version)
F6 PROGRAM A 27256A (use PM56 personality module)
F7 PROGRAM A 27512 (use PM512 personality module)
F9 Next page of Prom Programming Menu

F10 HETURN TO MAIN MENU

Explanation

You use the two PROM PROGRAMMING menus to program any EPROM
that Orion supports.

Hit F9 to get the second page of the menu.

See Appendix G if you want more information on EPROMs and
commands.

As in all sub-menus, F10 returns you to the MAIN MENU.

July 15, 1986 Page 4-17 -- Getting Started --

-- Menu Mode --

Hit F9 from the first PROM PROGRAMMER sub-menu to get
the second PROM PROGRAMMER sub-menu:

PROM PROGRAMMING MENU #2

F1 PROGRAM A 27C16 (use PM16 personality module)
F2 PROGRAM A 48016 (use PM16 personality module)
F3 PROGRAM A 27C32 (use PM16 personality module)
F4 PROGRAM A 2764 (use PM64 personality module)
FS PROGRAM A 27128 (use PM64 personality module)
F6 PROGRAM A 27256 (use PM56 personality module)
F9 RETURN TO PROM READER MENU

F10 RETURN TO MAIN MENU

Explanation

These two PROM PROGRAMMING menus provide you with all the
EPROM burning tools you need.

See Appendix G if you want more information on EPROMs and
commands.

Hit F9 to return to the PROM READER MENU.

As in all sub-menus, FlO returns you to the MAIN MENU.

-~ Getting Started -- Page 4-18

~ The Command Mode

In command mode, the line of text you type in gets
interpreted whenever you press the carriage-return (enter) key.

Common commands are assigned to some function keys, while
other function keys summon help screens. Altogether forty soft­
keys are available to you on the function keys. Several more
features are assigned to the numeric key pad (cursor keys).

The key functions are covered in the Special Features
section of this chapter.

The UniLab software understands the command words and
hexadecimal numbers. Words must be separated from one another by
at least one space. Multiple commands can be strung together on
a single line if desired.

Entering command mode

You enter the command mode by pressing function key 10 (F10)
from the main menu.

Of course, you are normally in command mode when you first
start the program.

Most commands can also be executed from within the menu
mode. Most of the exceptions are window and pop-up panel display
words.

You can re-enter menu mode by pressing FlO at any time.

July 15, 1986 Page 4-19 -- Getting Started --

-- Command Mode --

Command Tail and Batch Files

The optional information on this page and the two following
tells you how to use the batch file facility of DOS and the
command tail feature of the UniLab software to automate the
process of producing object files and loading them into the
UniLab's emulation ROM.

Command tail

The UniLab program allows you to include a "command tail" on
the DOS command line, each time you call up the software. You do
it this way:

C> ULZ80 <UniLab command>

The UniLab command that you include on the DOS command line will
be executed after the instrument is initialized.

For example, if you want to go into menu mode as soon as you
start up, you could type in:

C> ULZ80 MENU

Simple batch files

If you find yourself executing the same instruction every
time you start up your UniLab software, you might want to include
that command in a batch file, as a command tail.

Batch files are DOS text files that contain commands. Their
names should end in .BAT. The easiest way to make them is to
copy from the screen (CONsole) into a file.

For example, if you will always want to load in the contents
of a binary file, you could make your batch file like this:

C> COPY CON UNI.BAT
ULZBO 0 7FF BINLOAD MYPROG.BIN

1 File(s) copied
C>

Notice that you have to finish entering information by pressing
CTRL-Z, followed by a carriage return.

Once the batch file was made, you would call it this way:

C> UNI

-- Getting Started -- Page 4-20

-- Command Mode --

More sophisticated batch files

You can create batch files that call several different
programs, one after another.

For example, you probably go through the same cycle of
procedures time after time:

1) edit your source file to correct an error.
2) assemble (and link) your program.
3) enter the UniLab program and load your newly
altered program into emulation memory.

You can save yourself time by putting all this into a batch
file. For example, if you are using the Norton Editor and a
cross assembler for the 8096, you could make a batch file called
CHANGE3.BAT

C> COPY CON CHANGE3.BAT
NE MODULE3.ASM
X8096 MODULE] -ep
ERASE TEST.BIN
LINK -c MODULE1 MODULE2 MODULE] -o TEST.BIN -X
UL96 2080 3FFF BINLOAD TEST.BIN STARTUP
AZ

After you've made this batch file, you could start the
process of altering MODULE] by typing in the command:

C> CHANGE]

You would then be able to alter the source file with the editor.
When done editing, you could exit from the editor, which would
return you to the batch file. You would not have to touch the
keyboard again-- the batch file would assemble the code, erase
the old version of the program, link a new version, load the
program into emulation memory, and start it executing.

You could work on something else, and avoid the tedium of
going through these mechanical steps.

July 15, 1986 Page 4-21 -- Getting Started --

-- Command Mode

Complex command tails

The command tail can include as much as you want, as long as
it all fits on one line. For example, you could not only load a
binary file into emulation memory, you could also load in the
symbol file, disassemble the program starting from address 00,
and then start the program running:

C> ULZ80 0 7FF BINLOAD DEMO.BIN SYMFILE DEMO.SYM 0 DN STARTUP

You would probably want to put this command tail into a
batch file if you were going to use it more than once. If you
make a typing mistake while entering the command tail, you might
not discover it until the UniLab software tries to find a file
called DEMO.BQ.N.

You could write a UniLab macro that does all the above and
more:

: LOADUP
0 7FF BINLOAD DEMO.BIN
SYMFILE DEMO.SYM
000
ONLY NOT 200 TO 2A3 ADR AFTER FE DATA 1200 ADR S ;

and use that on the command line:

C> ULZ80 LOADUP

By using a macro, you would be able to avoid the limitation
on the length of your command tail. Be sure to use the UniLab
command SAVE-SYS after you make a macro that you want to
preserve. See Appendix F and the entry for : in the Command
Reference chapter.

-- Getting Started -- Page 4-22

-- Command Mode --

Using the Command Language

Controlling the UniLab with commands doesn't differ much
from controlling it with the menu system-- except that you have:

more power,
more flexibility,
access to the mode panels
and the split screen capability.

But nothing fundamental changes. You approach a task in the
same way.

Whether you use commands or the menu mode, you:

enable memory,
load in a program,
set trigger specs and examine traces.

The big difference is that you make up any trigger
specification you want, as explained in the next few pages.

The mode panels, split screen, and several other features
are described in the third section of this chapter, Special
Features.

Saving the emulation settings

You can avoid repetition-- you don't have to enable memory
every time you start up the UniLab software. Instead, use

SAVE-SYS <filename>

to save the current state of the system after you have enabled
the proper range of memory.

After that, call up the UniLab software by using the new
name. Orion recommends that you always save the system to the
same name, rather than keeping several versions of the UniLab
software. You can always retrieve the original, unaltered
verstion from the distribution diskette.

July 15, 1986 Page 4-23 -- Getting Started --

-- Command Mode --

Trigqer Specs: Theory and Conventions

The UniLab allows very complex triggers to be defined, using
all 48 analyzer inputs. For more details consult sections 1 and
4 of Chapter 6.

The groupings

Every bus cycle, the UniLab software reads six bytes of
inputs from the target system's bus: two bytes of address, two
bytes of data, a byte of control values and a byte of
miscellaneous inputs. You can set a trigger on any of the bytes
separately or in combination, using the names that the UniLab
assigns to the groupings.

The names

Each of the groupings of inputs is ref erred to using the
same descriptive name used to label it on the trace display:

CONT ADR DATA HDATA MISC

Each of these names labels one byte of the inputs into the
UniLab, except for ADR, which labels 2 bytes. LADR and HADR each
label one byte of the address inputs.

The HDATA column appears on the trace only with processors
that have an 8-bit data bus. 16-bit processors show both the
HDATA and the DATA byte under the HDATA column.

Setting a trigger

To set a trigger on a single value, you first clear out any
previous definitions with NORMT or NORMM or NORMB, and then
define the new trigger with a value followed by the name of one
of the groupings:

<16-bit value> ADR to trigger on a 16-bit address (AO to A15).

<8-bit value> CONT to trigger on cycle type and on A16-A19.

<8-bit value> DATA to trigger on the data byte.

<8-bit value> HDATA to trigger on the upper byte of data on
16-bit processors, or on anything you
like with an 8-bit processor.

<8-bit value> MISC to trigger on anything you like.
(Usually target system inputs and
outputs.)

-- Getting Started -- Page 4-24

-- Command Mode --

Starting the analyzer

After you have defined a trigger, you start the analyzer
with the single letter command S. You will usually enter the
NORMx word, the trigger specification and the start command all
on the same line:

to see a
bus.

trace of

NORMT 100 ADR S

--1--J.... 1-.------
W.lld.l.. J.ld.f:J~t:::u;::,

Triggering on ranges

1 () (\
I VV

You can trigger on a range of values by using
<value> TO <value> instead of a single value. For example:

10 TO 1A DATA

You can trigger outside a range by preceding the range with
the keyword NOT.

Examples

The next several pages show several of the most useful ways
to put together trigger spec commands, and explains a bit about
each trigger spec. These examples are mostly drawn from the
Command Reference chapter of the manual.

Notation conventions

Throughout the manual, UPPER CASE BOLDFACE type represents
commands. The UniLab program accepts commands in any mixture of
upper and lower case.

Command conventions

Many commands must be preceded by one or more parameters.
The command can be entered in upper or lower case. Commands that
require a file name, such as SYMSAVE, BINLOAD, etc., will prompt
you for the file name if you do not enter it.

July 15, 1986 Page 4-25 -- Getting Started --

-- Command Mode --

Flexible entry of parameters

Entering the parameters before the command allows unlimited
flexibility in how you enter the number. For example, you can
enter a symbol, the number itself, or an equation (using reverse
polish notation) which uses as many numbers and symbols as you
like.

Other number bases

Though numbers are usually entered in hexadecimal, you can
also use decimal or binary if you just precede the number with 0#
or Bl respectively.

Spaces

Spaces are used to separate commands. It doesn't matter how
much "white space" (blank spaces) you use, as long as you do use
at least one space. The absence of space can cause the UniLab
software to misinterpret your intentions.

Not recognized

If the UniLab software does not understand the command or
parameter that you have entered, it will respond with the message
"not recognized," and a row of carats (") pointing to the first
word that it does not recognize.

-- Getting Started -- Page 4-26

-- Command Mode --

Trigger Specifications: Examples

Simple triggers

Trigger when one condition on one grouping is met.

Trigger on a value

1205 AS
clear out the previous trigger, set up a new
trigger on address 1205 appears and start the
analyzer (abbreviated version).

NORMT 1205 ADR S
the non-abbreviated version of the above command.

NORMT 12 DATA S
after clearing all previous settings with NORMT,
sets up a trigger for data input 12. S starts the
analyzer.

Trigger on a range

NORMT 110 TO 138 ADR S
triggers when any one of a range of addresses
appears on the bus.

NORMT 10 TO 21 DATA S
triggers when any one of a range of data values
appears on the bus.

Trigger on a range with the CONT grouping

NORMT 70 TO 7F CONT S
triggers when any one of a range of values appear
on the CONTrol lines of the UniLab. Because of
the mixed nature of this grouping, this trigger
spec requires C7=0, C6-C4 = 1, and A16-A19 =any
value.

Trigger outside a range

NORMT NOT 0 TO 100 ADR S

July 15, 1986

triggers when any address outside of a range
appears on the bus

Page 4-27 -- Getting Started --

-- Command Mode

"AND" triggers: Trigger when several conditions are true

Trigger when one condition holds on one grouping and an
independent condition is met on another grouping.

Trigger on an ADR and DATA combination

NORMT 1E DATA 1200 ADR S
triggers on 1200 address and 1E data.

Trigger on a DATA and HDATA combination

NORMM 23 HDATA 1 7 DATA S
triggers when 2317 appears on the data lines.

Trigger on a CONT and ADR combination:
fetch from outside program memory

NORMT FETCH NOT 0 TO 7FF ADR S
triggers if the program tries to fetch an
instruction from outside the 0 to 7FF range.
FETCH is a command with a processor-specific
definition. It sets up a trigger on the CON~
grouping. Not supported on some processors.

-- Getting Started -- Page 4-28

-- Command Mode --

"OR" triggers

Trigger when one condition or another is met by one of the
groupings of UniLab inputs.

NOR.MT 3 DATA ALSO 7 DATA S
triggers when the data is either 3 or 7

NORMT 43 DATA ALSO 20 TO 3E DATA S

NORMM

triggers when the data is either 43 or between 20
and 3E nex.

NOT 12 DATA ALSO NOT 34 TO 56 DATA S
triggers when the data is not either 12 nor
between 34 and 56.

"OR/AND" triggers

Trigger when any one of several conditions holds true on one
grouping, and another condition holds true on another grouping.

Trigger when "bad" values are associated with any of several
addresses.

NORMM 1 0 DATA ALSO 5 DATA ALSO 3 DATA 1200 ADR S
sets the analyzer to trigger when the data is 10
or 5 or 3 and the address is 1200 •

Trigger on any member of a complicated set of addresses

NORMT 12 HADR ALSO 34 LADR ALSO 10 LADR ALSO 5 LADR
sets up the analyzer to trigger on any of the
addresses 1234, 1210, or 1205.

July 15, 1986 Page 4-29 -- Getting Started --

-- Command Mode --

Filters: Only show • •

Save in the trace only the cycles that meet the trigger
specification-- or save only those cycles and the one, two,or
three that follow.

The xAFTER commands are especially useful for finding what
part of the program is causing bad data to be written to some
address or some range of addresses. The second example below
will show you all access to address 1200, and then the first byte
of the next instruction.

When you filter the trace, the cycle numbers will be marked
with "f" for filter.

One cycle

ONLY 0100 ADR S
records only those cycles that accesses address
0100.

ONLY 10 TO 30 DATA 8FDO ADR S
records only those cycles that access this RAM
address when the data is between ten and thirty.

rrwo cycles each trigger

1AFTER 1200 ADR S
shows only those cycles with the address 1200 and
one bus cycle following.

Filter to exclude

By including NOT in the trigger spec, you can produce a
filtered trace that excludes certain cycles, rather than one that
only shows certain cycles.

You could filter out a single address, or a single data
value, but usually will want to filter out a range of addresses.
That way you can see a trace that shows everything except some
segment of code.

ONLY NOT 50 TO 100 ADR S
shows only those cycles that are not accessing the
memory in the address range 50 to 100.

-- Getting Started -- Page 4-30

Command Mode --

Qualifiers: Start searching for trigger after ••

Don't start to look for the trigger until after some other
condition has been seen on the bus.

Start searching after an address is seen

NORMT 100 ADR AFTER 535 ADR S
will trigger on address 100 anytime after address
535 is seen on the bus.

Multiple qualifiers

You can specify up to three qualifiers. When you have more
than one qualifier, they must appear on the bus one immediately
after another ..

If the first qualifier appears on the bus and the very next
cycle is not the second qualifier, then the UniLab will start
looking for the first qualifier again.

The trigger can occur anytime after all the qualifiers have
been found.

Add a second qualifying event

NORMT 100 ADR AFTER 535 ADR
AFTER 3F DATA S

You can add a second qualifying event-- which
must occur earlier than the first. Now
address 535 must be immediately preceded by
data 3F hex before UniLab will look for
address 100 on the bus.

Qualifiers without triggers

If you specify a qualifier but no trigger, the UniLab will
trigger on the very first cycle after the qualifiers have been
seen.

NO RMB

July 15, 1986

AFTER 1500 ADR AFTER 235 ADR S
triggers as soon as address 1500 immediately
follows address 235. This would be useful
when there is a conditional jump to 1500 at
address235. I-f- that-jump--±s- not:--t:aken-,- the
UniLab will start looking for address 235
again.

Page 4-31 -- Getting Started --

-- Command Mode --

Qualifiers and filters

This very useful combination allows you to set up a
specification that triggers on one condition and filters on
another.

Your trace will be filtered, but the trace buffer will not
start to fill up until after the qualifier appears on the bus.

That way you can, for example, start your trace when a
certain routine is executed, and make it a filtered trace that
shows only memory reads.

ONLY READ AFTER 1235 ADR S
show only reads from RAM, starting after the code
at 1235 is fetched. NOTE: READ is a processor
specific macro. It is not defined on some
processors.

Exclude a loop from trace

Another very useful spec: trigger on one address, and filter
out a status loop from your trace.

ONLY NOT 120 TO 135 ADR AFTER 750 ADR S
triggers on address 750, excludes from the trace
the routine at addresses 120 through 135.

-- Getting Started -- Page 4-32

Special Features: Function keys, Cursor keys, and Windows

This section tells you more about how to use the function
keys and the cursor keys. The function keys allow you to call
commands with a single key stroke.

For example, you use F2 to split the screen, F8 to enter the
mode panel.

The cursor keys are used to move about on the screen-­
between windows or within the mode panels.

July 15, 1~86 Page 4-33 -- Getting Started --

-- Special Features

Function Keys

This section tells you more about the features that have
been pre-assigned to function keys, and explains how to reassign
the function keys.

As you see from the chart on the next page, many of the
forty functions have been left unassigned. These keys can be
assigned by you to any command you choose, as long as that
command does not require parameters. For example, to assign the
command SAMP to ALT-FS, you would type in 5 ALT-FKEY SAMP. You
can also assign to a function key a macro that you have defined.
See Appendix F to learn how to define a macro.

The four commands that assign commands to function keys are:

<key number> FKEY <command>
<key number> ALT-FKEY <command>
<key number> SHIFT-FKEY <command>
<key number> CTRL-FKEY <command>

Fl F2

F3 F4

FS F6

F7 FB

F9 FlO

Function Keys and Cursor Keys

ALT, SHIFT and Control Keys

-- Getting Started --

7 8 9 - t "Up

! ~

1 I ~ 3
End "°"

Help for using
on-line displays

Help for Debuggers

Help for Emulation
memory functions

Help for loading I
saving programs

Help for displaying I
altering memory

List Function Key
assignments for Shift

List Function Key
assignments for Alt

HELP with genera 1 instructions
for using glossary . Also
Function Key assignments.

Next Step - Execute next
instruction. Will not follow jumps
or branches.

Restore window split to
Default sizes.

TST AT - Display current
trigger spec.

STARTUP - Issue reset pulse
to target and tr ace first
cycles of target operation.

July 15, 1986

Help for using windows

Help for simple analyzer
triggers

More he 1p for ana 1y zer
triggers

Help for mode panel
switches

Help for tr ace display

Memo - Bring up system editor
for use as custom memo pad

AscH display - Shows ascii values
for keys.

SPLIT mode - Enter /Exit split
screen mode.

NM I - Issue NM I pulse to target
to get breakpoint.

Single Step - Execute next
instruction. will f 0 liow jumps

Function Key
assignments
when

gkey
\....__/

held down

Function Key
assignments
when

~keg
held down

Function Key
assignments
when

8keg

held down

Function Key
assignments
when
no other key
held down

and branches. May be same as NM I.

MODE - Bring up pop-up mode
pane ls for changing display or
system modes.

MENU - Enter /Exit menu mode.

Page 4-35 -- Getting Started --

-- Special Features

Cursor Keys

The cursor keys on the computer will be used to move around
to see different parts of the trace. Since you will want to go
forward and backward, the keys you will be using are these:

Up Arrow
Down Arrow
PgUp
PgDn

-- Getting Started --

(also labelled with an 8)
(also labelled with a 2)
(also labelled with a 9)
(also labelled with a 3)

Page 4-36

-- Special Features --

Moving through the trace

Use LTARG followed by F9 (STARTUP) to get a trace of the
first 170 cycles of the sample program's operation. Or use
whatever trigger spec you want to generate a trace of your
program.

Now that you have a display of the first part of the trace,
press the PgDn cursor key to display the next screen full of
data:

,,.
1111111111111111111111111111111 11111111111 1111111111 """
1111111 1111111111111111111 111111111111111111111
1111111 1111111111111111111 11111111111 1111111111 t ~~R.] ([] (~~UJ 1111111 111111111111111111111 11111111111 1111111111
1111111 11111111111111111111 lllllllllll 1111111111 s
1111111 11111111111111111111111 11111111111 1111111111 creen

[][]([) 1111111 11111111111111111111111 11111111111 1111111111 scrolls up
1111111 111111111111111 11111111111 1111111111 from
1111111111111111111111111111111 11111111111 1111111111

bottom [J[]. 1111111 1111111111111111111 11111111111 1111111111
1111111 1111111111111111111 11111111111 1111111111 filling entire
1111111111111111111111111111 11111111111 1111111111 p&Qe with
1111111 11111111111111111111 11111111111 1111111111
1111111 11111111111111111111111 11111111111 1111111111 ne>4 data
1111111 11111111111111111111111. 11111111111 1111111111 from trace

' ...I

Press PgDn again to see the next portion of the trace
buffer. Do not press PgDn more than twice for now-- you would
come to the end of the trace. That gets you a whole new screen
of information. If you want to see just one or two more lines
press the Down Arrow cursor key:

1111111 111111111111111111111111 11111111111 1111111111
1111111 1111111111111111111 11111111111 1111111111
1111111 1111111111111111111 11111111111 1111111111 t (Zu) [] (~:~J 1111111 111111111111111111111 11111111111 1111111111
1111111 11111111111111111111 11111111111 1111111111 Screen
1111111 11111111111111111111111 11111111111 1111111111 scrolls up [][]([) 1111111 11111111111111111111111 111111111111111111111

one line 1111111 111111111111111 11111111111 1111111111
1111111 111111111111111111111111 11111111111 1111111111

[Jfl)(Q 1111111 1111111111111111111 11111111111 1111111111
11111111111111111111111111 11111111111 1111111111
1111111 111111111111111111111 11111111111 1111111111
1111111 11111111111111111111 111111111111111111111
1111111 11111111111111111111111 11111111111 1111111111
1111111 11111111111111111111111. 11111111111 1111111111

One additional
by one line.
lines.

line is shown, and everything else is scrolled up
Press the Down Arrow 4 or 5 times to see a few more

July 15, 1986 Page 4-37 -- Getting Started --

Special Features

The history mechanism

The Up Arrow, of course, must scroll back one line. Even
though it appears to be just the opposite of the Down Arrow, it
is remarkably different. First, try it once:

r
1111111 111111111111111111111111 111111111111111111111
1111111 1111111111111111111 111111111111111111111

+ 11111111111111111111111111 11111111111 1111111111

~-~
1111111 111111111111111111111 111111111111111111111
1111111 11111111111111111111 11111111111 1111111111 Screen
1111111 11111111111111111111111 11111111111 1111111111
1111111 11111111111111111111111 111111111111111111111 scrolls [][)[] 1111111111111111111111 111111111111111111111 down one
1111111 111111111111111111111111 111111111111111111111 line

(kJ([)~ 11111111111111111111111111 111111111111111111111
1111111 1111111111111111111 111111111111111111111
1111111111111111111111111111 111111111111111111111
111111111111111111111111111 11111111111 1111111111
1111111 11111111111111111111111 11111111111 1111111111
1111111 11111111111111111111111. 11111111111 1111111111

'
1111111111111111111111 11111111111 1111111111

It seems as if you are looking back through the trace. But
in fact you are looking back through the record of everything
that has appeared on your screen.

How do a PgUp to see more of the trace buff er before this
line:

1111111111111111111111111111111 11111111111 1111111111
1111111 1111111111111111111 11111111111 1111111111
1111111 1111111111111111111 11111111111 1111111111 + ~([)· 1111111111111111111111111111 11111111111 1111111111
lllHll 11111111111111111111 11111111111 1111111111 Screen
111111111111111111111111111111 11111111111 1111111111
1111111 11111111111111111111111 111111111111111111111 scrolls [][)[] 1111111111111111111111 11111111111 1111111111 down one
1111111 111111111111111111111111 111111111111111111111 entire [~nd J ([) (::on] 1111111 1111111111111111111 111111111111111111111
11111111111111111111111111 111111111111111111111 p8Qe
1111111 111111111111111111111 11111111111 1111111111
1111111 11111111111111111111 11111111111 1111111111
1111111 11111111111111111111111 11111111111 1111111111
1111111 11111111111111111111111. 11111111111 1111111111

\. 1111111 111111111111111 11111111111 1111111111)

Getting Started Pa9e 4-38

Special Features --

You will notice that the screen display backed up a whole
page, but the display looks a little funny. There is a break in
the display in the middle of the page with lines that look like
the heading for the trace display:

cy# Adr Data etc.

a blank line and a line that looks like the prompt at the end of
.1..1....- l-~-1- .-::i~~~i- ••
l.Ut: .J.a::>L. U.J.o::>}:J.J.O,Y

PgDn or <trace resume> Home, etc.

When you scroll back, you are really looking at a history of
the screen. Almost everything that is scrolled off the top of
the screen is recorded by the UniLab program (the exceptions will
be explained later). Every line that scrolls off the top of the
screen is recorded and can be "played back" by using the Up Arrow
and PgUp cursor keys.

This means that you can retrieve information that has
disappeared off the top of the screen. Any trigger spec,
command, or display that scrolled off the top of the screen can
be seen again by scrolling the screen down.

Summary: Line history and trace listing

Going forward with the Down Arrow or the PgDn cursor keys
always shows new analyzed data from the trace buffer, employing
the resident disassembler if it is turned on.

Going backward with the Up Arrow or the PgUp cursor keys
will show the history of the current session with the UniLab.

July 15, 1986 Page 4-39 -- Getting Started --

-- Special Features

See trace from top

Going backward with the Up Arrow or the PgUp keys will
always show data that was scrolled off the top of the screen. It
is recorded history rather than newly analyzed data. A
different cursor key shows the trace listing from the top.

The Home key shows the trace starting from the very
beginning, the top of the trace buffer. Press the Home key:

-- Getting Started -- Page 4-40

-- Special Features --

Windows

Now you're probably eager to hit the End key, but please
don't yet. It won't do anything until we use one of the function
keys. Press F2:

r 111111111111111111111111111111111 111111111111111111111
ii iiiiiii iiiiiiiiiiiiiiiiiii iiiiiiiiiii iiiiiiiiii
II 1111111 1111111111111111111 111111111111111111111
II 1111111111111111111111111111 111111111111111111111
II 1111111 11111111111111111111 111111111111111111111
II 111111111111111111111111111111 11111111111 1111111111
11111111111111111111111111111111 111111111111111111111

divider line
shows window
split

~l=====================I

_ / cursor shows you are
~ lowerheJf ,-

You should see a display like the one shown above. The lower
portion of the screen has been blanked out, and the upper section
still shows your last action.

Notice the horizontal dividing line, and the flashing cursor
in the bottom line of the screen. Press the PgDn key:

r 1111111111111111111111111111111 111111111111111111111
11111111111111111111111111 111111111111111111111
11111111111111111111111111 111111111111111111111
1111111111111111111111111111 111111111111111111111
111111111111111111111111111 111111111111111111111
111111111111111111111111111111 111111111111111111111
1111111 11111111111111111111111 111111111111111111111

1111111 111111111111111111111111 111111111111111111111 t 11111111111111111111111111 11111111111 1111111111
1111111 1111111111111111111 111111111111111111111 Scrolls up
1111111111111111111111111111 111111111111111111111 lowerheJf
1111111 11111111111111111111 11111111111 1111111111
111111111111111111111111111111 11111111111 1111111111 only
111111111111111111111111111111. 11111111111 1111111111

" .,I

The trace listing scrolls up the screen,
fills only the lower half of the screen.
notice that the trace listing scrolls by
screen only.

July 15, 1986 Page 4-41

(~H) ([] [~,uJ
[)e][J
lWUB

but it stops when it
Hit PgDn again, and

in the lower half of the

-- Getting Started --

-- Special Features --

Moving from window to window

The display is now set up
RETURN key four or five times.
commands and their actions are
window.

for two viewing windows. Hit the
Type the word ESTAT. All of your

displayed only in the lower

Now you can use the End key. Press it once and notice that
the cursor goes into the upper window:

Press it again:

I' II 1111111111111111111111111111111 11111111111 1111111111 "I
II 11111111111111111111111111 111111111111111111111 tv-bves
II 1111111 1111111111111111111 11111111111 1111111111 cursor
II 1111111 111111111111111111111 111111111111111111111

to top (ZR.)[] (~,uJ II 1111111 11111111111111111111 11111111111 1111111111
II 111111111111111111111111111111 111111111111111111111 haJt
.IL 1111111 11111111111111111111111 11111111111 11111!1111 [][][] II 1111111111111111111111111111111 111111111111111111111 tv-bves 1111111111111111111111111111 111111111111111111111

BJ[]~ Cursor now 1111111111111111111111111111 111111111111111111111 cursor
II 1111111111111111111111111111 111111111111111111111 to bottom appears down II 111111111111111111111111111 111111111111111111111

haJf here<_ II 111111111111111111111111111111 111111111111111111111
11111111111111111111111111111111. 11111111111 1111111111

\. ~

The End key moves you back and forth between the two
windows. You can do this at any time. It is especially useful
if you have a portion of the trace that you want to refer to
while you are doing other operations on the screen. Try the
cursor keys in both windows. If you know other UniLab
disassembler or debug commands, go ahead and use them.

-- Getting Started -- Page 4-42

-- Special Features --

A note on history and windows

Here is an important difference in the way the line history
works in the upper and lower windows. Lines scrolled off the top
of the upper window are not recorded. If you want the trace
recorded, do it from the bottom window or from the full screen
mode. Line History can be viewed in either window.

Leaving split mode

How do you get out of this? Hit the F2 key again
one that got you into the split mode):

11 1111111111111111111111111111111 11111111111 1111111111

~-II 1111111 1111111111111111111 111111111111111111111
II 11111111111111111111111111 11111111111 1111111111
111111111111111111111111111111 11111111111 1111111111 §)§_) 111111111 11111111111111111111 11111111111 1111111111
II 111111111111111111111111111111 11111111111 1111111111
.&Llltllll 11111111111111111111111 11111111111 1111111111 @§]

di\lider line II 1111111 111111111111111111111111 11111111111 1111111111

removed
II 11111111111111111111111111 111111111111111111111 @)§] II 11111111111111111111111111 11111111111 1111111111
II 1111111 111111111111111111111 11111111111 1111111111
II 1111111 11111111111111111111 111111111111111111111

§)~ 11 111111111111111111111111111111 11111111111 1111111111
II 1111111 llllllllllllllUUIUlla 11111111111 1111111111

the same

The divider line is erased. If you scroll now, the entire
screen will be used for the display. Press F2 again to get a
split screen back on the display:

r 111111111111111111111111111111111 111111111111111111111
II 1111111 1111111111111111111 111111111111111111111
II 11111111111111111111111111 111111111111111111111
II 1111111111111111111111111111 11111111111 1111111111
II 111111111111111111111111111 111111111111111111111
II 1111111 11111111111111111111111 111111111111111111111
II 111111111111111111111111111111 111111111111111111111

\.

Now press the Home key to bring the top of the trace into
the lower window. If you have done any other command since you
executed STARTUP (F9), hit F9 again, then press Home so that you
will have a trace that starts from the reset address.

July 15, 1986 Page 4-43 Getting Started

-- Special Features

Showing disassemble

Type 0 DN followed by a return. You should see a display
like below. DN is a special word that means disassemble from
memory and display it in the right window.

DN works just like DM command, except that it always fills
up the right hand window, and so does not need the number of
lines as a second parameter.

/ 1111111 111111111111111111111111
11111111111111111111111111
11111111111111111111111111
1111111 111111111111111111111
111111111111111111111111111
1111111 11111111111111111111111
111111111111111111111111111111

1111111111111111111111111111111
11111111111111111111111111
11111111111111111111111111
1111111 111111111111111111111
111111111111111111111111111
1111111 11111111111111111111111

11 1111111 111111111111111111111111

'
ODN

111111111111111111111
111111111111111111111
111111111111111111111
111111111111111111111
11111111111 1111111111
11111111111 1111111111
11111111111 1111111111

11111111111 1111111111111111
11111111111 111111111111111111
11111111111 1111111 111111
11111111111 1111111 11111 11111
11111111111 1111111 1111 1111
11111111111 1111111 1111 111111
11111111111 1111111 1111

,

..I

ODN
puts disassembly
from memory into
right window ..

You should now see in the lower two windows a trace of the
program after the target was reset (in the big left-hand window)
and a listing of the disassembled code (in the little right-hand
window). This right hand window is used only by the DN command.
You can see a disassembly starting from any address with
<addr> DN.

-- Getting Started -- Page 4-44

Special Features

You can also use the upper right hand window.
the End key to move the cursor up there:

cursor moves
t~upper ~
window_/

/'

-

\...

1111111 111111111111111111111111
11111111111111111111111111
11111111111111111111111111
1111111111111111111111111111
111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111

1111111111111111111111111111111
1111111 1111111111111111111
11111111111111111111111111
1111111 111111111111111111111
111111111111111111111111111
111111111111111111111111111111

II 1111111111111111111111111111111

ODN

11111111111 1111111111 ""\
111111111111111111111
111111111111111111111
111111111111111111111 '
111111111111111111111
11111111111 1111111111
111111111111111111111

11111111111 1111111111111111
11111111111 111111111111111111
11111111111 1111111111111
11111111111 1111111 11111 11111
11111111111 111111111111111
11111111111 11111111111111111
11111111111 1111111 1111

~

First press

Use ON again. This time it will display in the upper righthand
window:

/' II 1111111 111111111111111111111111 11111111111
II 1111111 1111111111111111111 11111111111
II 1111111 1111111111111111111 11111111111
II 1111111111111111111111111111 11111111111
11111111111111111111111111111 11111111111
II 111111111111111111111111111111 11111111111

-ODN
II 1111111 111111111111111111111111 11111111111
II 11111111111111111111111111 11111111111
II 1111111 1111111111111111111 11111111111
II 1111111 111111111111111111111 11111111111
II 1111111 11111111111111111111 11111111111
11111111111111111111111111111111 11111111111
II 1111111111111111111111111111111 11111111111

"
ODN

11111111111
11111111111
1111111 111111
1111111 11111
111111111111111
11111111111 111111

1111111111111111
111111111111111111
1111111111111
111111111111 11111
111111111111111
1111111 1111111111
11111111111

""\

~

ODN
puts disassembly
from memory into
right window ..

You can also use ON with the full screen.

July 1 5 I 1 986 Page 4-45 -- Getting Started

-- Special Features --

Changing window size

If you would rather have a larger lower window, you can
change the size of the split by hitting the F8 function key while
holding down the Shift key (the hollow arrow on the left side of
the keyboard, not the cu~sor Up Arrow key). You will see this
display:

, Press ln to quit

t
+

Arrow keys
mow split
810Und

Use the cursor arrow keys to move the split up or down, and
the right or left. Move the split up to make the top half a
little smaller than it was. Hit the End key when you want to
exit this size-setting mode. No other keys will have any effect
while you are setting the window partition. Try displaying the
trace in the new window sizes:

r
II 1111111111111111111111111111111 111111111111111111111
II 1111111 1111111111111111111 111111111111111111111
II 1111111 1111111111111111111 111111111111111111111

1111111 11111111111111111111111 11111111111 1111111111 ~-~ 1111111 111111111111111 11111111111 1111111111
111111111111111111111111111111 11111111111 1111111111 [)[][] 1111111111111111111111 11111111111 1111111111
1111111111111111111111111111111 11111111111 1111111111
11111111111111111111111111 111111111111111111111

(~nd J ([] (~gDnJ 1111111 1111111111111111111 111111111111111111111
1111111111111111111111111111 11111111111 1111111111
1111111 11111111111111111111 111111111111111111111
1111111 11111111111111111111111 11111111111 1111111111
1111111 11111111111111111111111. 11111111111 1111111111

\... 1111111 111111111111111 11111111111 1111111111 ..)

-- Getting Started -- Page 4-46

-- Special Features --

Split screens and help displays

When in the split screen mode, the HELP screen displays will
automatically change the size of the window so that the text of
the help display fills the upper window. Press function key F1 to
see this:

divider line
now shows
function key
assignments

HELP Disoiav
li•iitli. !0 !Ulll!lhllllll'tl1ll lllll'll 1111'\1. t!l!llMi:ll ..

••lll"1!i1111t1!1•m•m•1••1•····•111111•1111•1m111:

111111111t1illll•!i:llilil!:m1•1lililll•!i:llil!lllll!:11:1:i!I
•lli1l11!l•lllllllllll""'illlilllllt1•1lllllllhl:Ullilill

!11l!!1:1illl 11!1t!ol!1illlilll!tllillllllll!ll!1
1111;11a111111m•!1:;m1111mm :11ma1:1:::

11111goggg11gggggggggggg111111gggggg11ggggg111111111111111111111111
111111111 1111111111111111111 111111111111111111111
111111111 1111111111111111111 111111111111111111111
111111111 111111111111111111111 111111111111111111111
II 1111111 11111111111111111111 111111111111111111111
II 111111111111111111111111111111 111111111111111111111
II 1111111111111111111111111111111 111111111111111111111

' ~

Press the PgDn key to see the trace listing presented in the
lower window only:

July 15, 1986

li•iitli. Mll•ll!l~~~.r..1P.!~R.11~~- 1!1!11Mi:ll ..

•1lll''1!illlhl!l•!11•11!11•1•1""•111111•1111o11;1111:

11111111•1lillll•!i:llilil!:11:1•1li•ill••!i:llil!ll•l•::1•!l!i!I
•l!i1!1l!l•lllllllllll""'illlilllll1l•1!l!llllhl!ll!li•i11

:111::1:,;111 m.1:.t:1;111a11lol1;1111111•lll:.
1111:11111111m1•:1:;:111111mm :1111m1:1:::

lllll!lll!l!l!lll!l!l!l!l!l!l!l!l!l!l!l!lllllll!l!l!l!l!l!lll!l!l!l!l!llllllllllllllllllllllll
11 1111111 1111111111111111111
11 11111111111111111111111111
II 1111111 111111111111111111111
111111111 11111111111111111111
II 111111111111111111111111111111
II 1111111111111111111111111111111

Page

11111111111 1111111111
111111111111111111111
11111111111 1111111111
11111111111 1111111111
111111111111111111111
11111111111 1111111111

4-47

Bottom
scrolls up
leaving
Helpin t
top

-- Getting Started --

Special Features --

Now press the End key again to move the cursor to the top
window, and press the Home key. The text of the help screen will
be overwritten by the trace, but you've got a different split
from the one you set not long ago.

If you want to return to the split that you set before, tap
FS and the window split will return to the default.

I" 111111111111111111111111111111111 11111111111 1111111111 ""' 11 11111111111111111111111111 11111111111 1111111111
Retums EJ§J II 11111111111111111111111111 11111111111 1111111111

II 1111111 lllllllllllllllllllll 11111111111 1111111111 to dehwlt

§)EJ II 111111111111111111111111111 111111111111111111111 split size II 1111111 11111111111111111111111 111111111111111111111
lL 1111111 lllllllllllllllllllllll 11111111111 1111111111

(l)§J 111111111111111111111111111111111 11111111111 1111111111
II 11111111111111111111111111 11111111111 1111111111
II 11111111111111111111111111 111111111111111111111 @)§] 111111111111111111111111111111 111111111111111111111
11111111111111111111111111111 111111111111111111111
11111111111111111111111111111111 11111111111 1111111111 8~ II 1111111 111111111111111111111111 11111111111 1111111111

'
The window size you set with Shift-Fa will be saved if you

use SAVE-SYS to save the current configuration of the system to
disk. Of course, you can use Shift-Fa again to change the split
size again.

-- Getting Started -- Page 4-48

-- Special Features --

Viewing Text Files

Often, while working with the UniLab, you will need to view
a text file. Just being able to look at the source code for your
application is much easier than having to go dig though a
printout (assuming you had the fo+esight to make one).

The UniLab allows you to view source code in a convenient
------ ~ .. - ... ,.:J_..,....., .,_ h 'T'P""- " Y"'\,,.; ,...,,+- ""',, , ,...... l""' ,.........r= , ; ,...~; 1""\.,.....,... ,......_...,.._ l """" .. .,.""'
1UC11Ult::J. I ;:,v yvu u.vu '- llClVC \..U t:J..L.L.U\.. VU\.. .J..U\..~ U..L .J...J..~\...J..11'j~, U..L .J..CClVC

the UniLab program, enter a text editor, and come back again.

This is done with the TEXTFILE command. TEXTFILE always
uses a split window. The text always appears in the top window.
If you have a small text file (source code for your

cross-assembler or a long .BAT file), open it in the UniLab
environment by typing

TEXTFILE <name>

where <name> is the full pathname of your file. If it's called
MYFILE and is on drive B, then specify B:MYFILE just like you
would in DOS.

This should be a DOS textfile, not a file that is to be used
by a text editor with embedded formatting commands. Most text
editors have the capability of saving files as text only, or as
"non-document" files.

If you try to use TEXTFILE to open a file that is not text,
you will get the " Not a DOS TextFile" message.

After a few seconds (or more if it's a large file), you'll
see the first few lines of the text file in the top window.

Cursor key assignments when viewing a text file

PgDn
Down Arrow
Pg Up
Up Arrow
Home

July 1 5, 1 986

shows the next screen full of the textfile
shows the next line of the textf ile
shows the previous screen full of textfile
shows the previous line in the textf ile
shows the top of the file

Page 4-49 -- Getting Started --

Special Features --

Unlike when you view the trace buffer, reverse scrolling is
not showing you a line history, but rather is moving you around
in the image of your text file. (Remember that lines in the top
window are not recorded.) Try moving around in this image of
your text file. Remember that you cannot change your file with
this command:

r 1111,11 1:.:11111111111111;::;1i!iM1ll1l•1mlllllllilEI:
11111;,.:·•=•.m111111:!1: •:=•1:m;11: m1•:i!·
11111 .. 1 •• ·1:111111m•:! 11;11··1;1m 111111
1:1111!.I i!=!•1111111:1:111 1111,1r.::1m mm
1lllHi:' :1!111!!1'•,::·1 1:;1::.:::1::: 1•::::ti1

m: .,: 11;1•11i1:.: .. 11i1; :11·:; 'A'JJIJ»•• ·:1::• ...
•:;: 1:1 m11111:1;11i•1:•: mm:11:11111
mi:·· •;mm• :111!:.

'- TEXTF ILE DEM04 .C

-- Getting Started -- Page 4-50

••• [][)[)
(kJ ••
These cursor
keys allow you
to move through
a text file

-- Special Features --

Cursor Key Summary

There are no specific keys or commands to change the way
the cursor keys work-- their purpose changes as the task you are
working on changes.

The PgDn key, for example, can sometimes be used to move the
trace display and other times can give you more WORDS or scroll
down in a text file. However, there should be little confusion
as to which function is currently active.

Viewing the trace buff er

Mainly you use the cursor keys to view the trace buffer. If
you ever get into a mode where you want PgDn to go down in the
trace buffer rather than show more WORDS or more of a glossary
definition, press the Down Arrow key. This will get you back
into full control of the trace with the cursor keys.

If you are in a window viewing a text file, and want to see
the trace buffer, you must first enter a trace view command such
as TR or <cy#> TN. After that the cursor keys will again work
with the trace.

Other uses

Anytime you use the analyzer in a window where you are
looking at a text file, the cursor keys will be re-assigned to
work with the trace display. The analyzer is usually started
with a command like STARTUP, <trig spec> S, or <adr> AS. There
is then no way to go back to the text file-- you have to type in
the command TEXTFILE to gather the file in again.

You
(usually
window.
function
function

can, however, keep a text file open in one window
the top is preferable), and view the trace in the other
You can move the cursor back and forth with the End
key, and the cursor keys will keep the appropriate
for the window you are in

The cursor keys have special uses in the setting of the
window size, and in the use of the pop-up panels. When in either
of these modes, no other keys will be effectivea These special
modes should introduce no confusion.

July 15, 1936 Page 4-51 -- Getting Started --

-- Special Features

Cursor Key Chart

The next two pages summarize the uses of the cursor keys in
various different contexts.

Cursor Key Assignments for Viewing Trace Buffer Display

Trace Display Previous Line

Trace Display
Top of Buffer • [J[J[J
Toggle betveen ~
Upper & Lover
Vindow End •

Trace Display
Previous Screen

Trace Display
Next Screen

Trace Display Dovn One Line

-- Getting Started -- Page 4-52

-- Special Features --

Cursor Key Assignments for Viewing Text Flies
Up One Line

Beginning of File

Toggle betveen
Upper & Lover
Vindov

Other Cursor Key Uses

Dovn One Line

Split Screen rt Up One Line

~me)([] (~gup)
Split Screen Set (4+ J (5) (~ J
Left One Column L_),.

Exit Mode Panel (11 ~ (31
Exit Split Screen Setting ~ l!__j ~

Mode select toggle
Split Screen Set
Right One Column

Hore Words
Hore HELP
Next Hade Panel

Split Screen Set Dovn One Line

July 15, 1986 Page 4-53 -- Getting Started --

Chapter Five:
On-Line Help

Introduction

The UniLab software provides you with extensive on-line
help. The help facilities give you the
avoid confusion and to solve problems.

___ .,:_ .. _______ ___ _J L-

Q>:)::>.l.;:) L.a.1.11..;e yuu 1it:eu L.U

The Menu system, demonstrated in chapter three and fully
mapped out in chapter four, gives you help while you gain
familiarity with the instrument. The menus help you get to work
with the UniLab right away.

The command MESSAGE will give you information on the most
. recent updates and additions.

Other On-Line Help includes:

abridged version of the Command Reference Chapter

alphabetical lookup capability

reminders when parameters are missing

reassignable function-keys, assigned to the most common
commands

help for the mode panel options

help by category

Contents

1 • Command Reference 5-2

2. Alphabetical Lookup 5-3

3. Reminders 5-4

A Function Keys ':I: • 5-5

5. Mode Panels 5-7

6. Help Screens: By Category 5-10

July 15, 1986 Page 5-1 -- On-Line Help --

1. Command Reference

The on-line version of the command reference includes the
definition of the commands and features in the UniLab software.
Type in

HELP <command>

to get the information on your screen.

To use the HELP feature, you must have the DOS variable
GLOSSARY properly set, as is explained in the installation
chapter.

The on-line glossary contains the same information that
appears in the printed manual. It is formatted slightly
differently.

Command Reference Example

HELP BYE

BYE no parameters
Exits from UniLab program.

ok

USAGE
To return to DOS. Use SAVE-SYS first, if you want to
save the current state of the system.
Use DOS instead if you want to execute just a few DOS
commands and then return to the UniLab program.

HELP MFILL

M.FILL <from addr> <to addr> <byte> MF'ILL
Fills every location in an area of memory with the same byte.

USAGE
A good way to check that memory address and data lines
connect properly on the target board. Use in
combination with MDUMP.
Also a heavy-handed way to push a byte into memory.
See also MM, M, MM!, and M!, for more elegant ways to
manipulate memory.
Note that the <from> and <to> addresses must be in the
same 32K block.

EXAMPLES
1200 1300 20 MFILL

fills locations 1200-1300 with the value 20 hex.

-- On-Line Help -- Page 5-2

2. Alphabetical Lookup

If you forget the full name of a command, you can look up
~ne names of all the commands that start with a particular
character. Type in

WORDS <character>

to get a list of all the commands that start with that character.

Or use
WORDS <command>

to get a list of commands, starting from that command.
The list shows the first line of each command reference entry,
which tells you what parameters the command requires
(type HELP <command> to see the full entry).

Note the F8 that appears to the right on some of the
entries-- this indicates that the command is also a mode panel
feature (press function key 8 to get the mode panel).

Some commands are assigned to other function keys. The name
of the key will always be shown to the far right.

Alphabetical Lookup Example

WORDS N

NMIVEC
NMIVEC'
NORMB
NORMM
NORMT
NOT
NOW?
ONLY
ORG
PAGEO
PAGINATE
PAGINATE'
PCYCLES

July 15, 1986

no parameters F8
no parameters F8
no parameters
no parameters
no parameters
NOT <trigger description>
no parameters
ONLY < trigger description >
<address> ORG
no parameters
no parameters F8
no parameters F8
<count> PCYCLES

Page 5-3 -- On-Line Help --

h Reminders

If you forget what parameters a command requires, enter the
command by itself to get a message describing the required
inputs. For example, if you enter MFILL, you will get the
following message:

"Requires the First-address the Number-of-bytes and a Value"

-- On-Line Help -- Page 5-4

~ Function Keys

In menu mode, the function keys F1 through F10, are assigned
to menu choices.

When you enter the command mode, the function keys are
automatically reassigned to some of the most common UniLab
commands. This allows you to execute with a single key-stroke
any command that does not have parameters.

Altogether, you can have forty features assigned to the
function keys. Each function key can be assigned four commands:

you get one function by pressing a
function key by itself,

a second by pressing the function
key while holding down the ALT key,

a third by pressing the function while
holding down the SHIFT key,

and a fourth by pressing the
function key while holding down the
CTRL key.

Help for using
on-line displays

Help for Debuggers

Help for Emulation
memory functions

Help for loading I
saving pro gr ams

Help for displaying I
altering memory

Help for using windows

Help for simple analyzer
triggers

More help for analyzer
triggers

Help for mode pane 1
switches

Help for tr ace display

Function Key
assignments
vhen

Gkey
held dovn

July 1 5 I 1 9 8 6 Page 5-5 -- On-Line Help --

List Function Key
assignments for Shift

List Function Key
assignments for Alt

HELP with genera 1 instructions
for using glossary . Also
Function Key assignments.

Next Step - Execute next
instruction. Will not follow jumps
or branches. lhnrm

Restore window split to
Default sizes.

TST AT - Display current
trigger spec.

STARTUP - Issue reset pulse
to target and tr ace first
cycles of target op er at ion.

-- On-Line Help --

Memo - Bring up system editor
for use as custom memo pad

Ascii display - Shows ascii values
for keys.

Set new window split size

SPLIT mode - Enter /Exit split
screen mode.

NMI - Issue NMI pulse to target
to get breakpoint.

Single Step - Execute next
instruction. Will follow jumps

Function Key
assignments
when

~key
held down

Function Key
assignments
when

8key

held down

Function Key
assignments
when
no other key
held down

and branches. May be same as NMI.

MODE - Bring up pop-up mode
panels for changing display or
system modes.

MENU ... Enter /Exit menu mode.

Page 5-6

~ Help for the Mode Panels

You use the mode panels to easily turn features on and off.

On-line help for the Mode Panels makes them as easy to
understand as they are to use.

Hit F8 or type MODE to get into the mode panels.

While in a mode panel hit Fl to get the help display for the
current option.

The display that you get for each option includes the name
of the command that the mode panel replaces. Type in

HELP <command>

if you need more information on any particular feature.

Example: Panel One

1. ANALYZER modes
DISASSEMBLER
SYMBOLS
RESET

Help with the DISASSEMBLER option of Mode Panel
This option toggles the processor-specific disassembler.
Turn off when examining most filtered traces.
The equivalent commands are: DASM DASM'

Help with the SYMBOLS option of Mode Panel
Toggles translation of numbers into symbolic names.
Define symbols with IS , or load from file with SYMLOAD
or SYMFILE • The equivalent commands are: SYMB SYMB'

Help with the RESET option of Mode Panel
When enabled, the processor is reset whenever the
analyzer starts up. Turn off to catch trace of program
in progress. The equivalent commands are: RESET RESET'

July 1 5 I 1 986 Page 5-7 -- On-Line Help --

-- Mode Panels --

Example: Panel Two

2. DISPLAY modes
MISC COLUMN
CONT COLUMN
MISC # BASE
PAGINATE
FIXED HEADER

Help with the MISC COLUMN option of Mode Panel
When enabled, shows the MISCellaneous inputs to
the UniLab (wires MO through M7) on the trace display.
The equivalent commands are: SHOWN SHOWM'

Help with the CONT COLUMN option of Mode Panel
When enabled, shows on the trace display the CONTrol
inputs (C4 to C7), along with the high four bits of the
address (A16 to A19). The commands are: SHOWC SHOWC'

Help with the MISC fBASE option of Mode Panel
Changes the base in which the MISCellaneous inputs are
displayed. Toggles between binary and octal.
The equivalent command is: <base> =MBASE

Help with the PAGINATE option of Mode Panel
When enabled, stops the trace display when screen fills.
Disable only when you want to log entire trace to a file
or a printer. The commands are: PAGINATE PAGINATE'

Help with the FIXED HEADER option of Mode Panel
Labels the columns of the trace display with a fixed
header, rather than one that scrolls up with the display.
Lower window only. The equivalent commands are: HDG HDG'

-- On-Line Help -- Page 5-8

Example: Panel Three

3. LOG modes
LOG TO PRINT
LOG TO FILE
PRINTER
NM! VECTOR
SW! VECTOR

-- Mode Panels --

Help with the LOG TO PRINT option of Mode Panel
When enabled, logs on the printer any commands that
alter memory, such as M! and MM! • See also PRINTER
option. The commands are: LOG LOG'

Help with the LOG TO FILE option of Mode Panel
Starts logging all screen output to the logfile. Create
the file with 'l'OFILE <name>, which can appear on the
DOS command line. The commands are: TOFILE TOFILE'

Help with the PRINTER option of Mode Panel
When enabled, logs all screen output to the printer.
The commands are: PRINT PRINT'

Help with the NMI VECTOR option of Mode Panel
When disabled, turns off the UniLab software's use of
the hardware interrupt feature of your microprocessor.
Disable if your target board needs to use that feature,
or to have nearly transparent emulation. NMIVEC NMIVEC'

Help with the SWI VECTOR option of Mode Panel
When disabled, turns off all the debugger features of the
UniLab software, such as RB and N • Turn off for
completely transparent emulation. The commands: RSP RSP'

July 1 5, 1 986 Page 5-9 -- On-Line Help --

~ Help Screens: By category

The command HELP by itself (or hit Fl) gives you general
information on commands that give you help with the UniLab
software.

If you hit a function key while holding down the CTRL key,
the UniLab program will display a help message for one of the
categories of commands. Use CTRL-Fl to display the selection of
help screens available

The help screens appear on the following pages.

Example: General Help Fl

HELP is available on-line by entering HELP or Fl.
Enter HELP COIDIBand to see the definition of "command"
Type WORDS command to see a list of commands.

Use the function key FlO for MENU mode operation and quick
access to most common commands.

More help is available on the Ctrl-Fl to Ctrl-FlO Keys.
Press ctrl-F2 for display of cursor key functions.

Type MESSAGE for current messages.
l=HELP F2=SPLIT F3=N F4=NMI FS=DEF F6=SSTEP F7=TSTAT F8=MODE F9=STARTUP FlO=ME

-- On-Line Help -- Page 5-10

Help Screens --

Example: Using On-Line Help CTRL-Fl

Help By Category
Hold down CTRL and tap one of the function keys to get a

few hints on using the UniLab.

Help On:
Using On-line Help Cl
Debugger Commands CJ
Enabling Memory CS
Load/Save Programs C7
See/Alter Memory C9

C2
C4
C6
ca
ClO

Windows
Simple Triggers
More on Triggers
Mode Panels
rrrace Di splay

Type HELP <command> for more information about any command.
HELP BYE, for example, will give you information about the

command that you use to exit from the UniLab program.

July 15, 1986 Page 5-11 -- On-Line Help --

-- Help Screens

Example: Windows CTRL-F2

Help for Windows
Windows make it easy for you to organize information on your
screen. Once you split the screen, you can show different
parts of a trace in the upper and lower windows, compare
a trace to the disassembled program, examine source files, etc.

SPLIT or F2 to enter split window mode.
SHIFT-F8 to change window size w/cursor keys.
END key to move from one window to another.

Other window commands: DN TEXTFILE.

Example: Debugger Commands CTRL-F3

Note that this help screen includes information
on the processor specific debugger that you are using.

Help for The Debugger
You use the debugger commands to look at the internal state of
your microprocessor, single-step through your program, and
examine or change target board RAM. But first you have to
Establish Debug Control with NMI (not supported on all
processors) or by setting a breakpoint with RESET <address> RB
Once you have established debug control, you can resume
program execution with a breakpoint set at another address
witn <address> RB. You single step through a program starting
at a breakpoint, with F3 or N, if you don't want to see
execution of jumps and branches. You use SSTEP (available on
your processor if NMI is) to follow jumps and branches.
All commands for reading and changing memory work on RAM when
stopped at a breakpoint. CTRL-F9 tells you more about memory.

[PROCESSOR SPECIFIC INFORMATION FOR Z80]
m n OUT writes m to port n. n INP reads port n.
EINT reenables target IRQ'S after bp, DINT leaves disabled
reg change: n =AF n =BC n =DE n =HL n =IX n =IV
locations 38-30 reserved, overlay starts at 30

-- On-Line Help Page 5-12

Help Screens --

Example: Simple Triggers CTRL-F4

Simple Trigger Commands
You use the trigger commands to describe bus conditions. When
the UniLab's bus state analyzer sees the event you described,
it will "trigger" and capture a record of the bus activity.
The simplest trigger searches for an address on the bus and
freezes the trace buffer five bus cycles after finding the
address: NORMT <address> ADR S

rrhe NORMx words clear out previous trigger specs. ADR tells
the analyzer that you want it to monitor the address lines.

S starts the analyzer.
S+ shows you bus activity starting after the end of the

current trace buffer.
Type HELP <command> for more information on these and other

trigger words: NORMM NORMB DATA CONT MISC
CTRL-F6 gives you more hints about triggers.

Example: Enabling Memory CTRL-FS

Help for Enabling Memory
Before you load a program into the UniLab's emulation memory
you must first enable the memory.

You specify the upper four bits of the address with
<hex digit> =EMSEG

and then specify the remaining 16 bits of the address with
<value> TO <value> EMENABLE.

To see the current status of memory, use ESTAT.

July 15, 1986 Page 5-13 -- On-Line Help

-- Help Screens --

Example: More on Triggers CTRL-F6

More on Triggers: Filters, Qualifiers and Reset
You can fill a trace buffer with only the bus cycles that rnatch
a description (filtering), specify pre-conditions for trigger,
(qualifiers), or turn reset of your target board on or off.
Precede a trigger spec with ONLY to get a filtered trace.
See also 1AFTER 2AFTER 3AFTER. To avoid confusion, turn off
your disassembler while reading a filtered trace.
Precede a trigger spec with AFTER to make the condition
described by the spec a precondition for trigger.
See also PCYCLES PEVENTS.

RESET enables resetting of your target board-- your program
starts over whenever you start the analyzer with S or S+. If
you want to capture a trace of a program in progress, disable
resetting with 1•1ode Panel F8 or with RESET'.

Example: Load/Save Programs CTRL-F7

Help for Loading and Saving Programs
Load programs from ROM with the ROM reader Menu: F10 then F9.
Load from disk files with HEXLOAD <file name> for Intel Hex
format files, or <from addr> <to addr> BINLOAD <file name> £0
binary files.
Load from host RAM with <from srce> <to srce> <target> MLOADN.

Save a program to disk with
<from addr> <to addr> BINSAVE <file name> •

-- Un-Line Help -- Page 5-14

Help Screens --

Example: Mode Panels CTRL-F8

Help for Mode Panels
The mode panels, entered with F8 and left with END,
allow you to change display options, save information to the
printer or a file, turn off the debugger, etc. F8 also moves you
.s;: ___ --- --..:J- -~--1 -1-- -1-1....- __ ,.-1-
J. L VHI VUI::: HIVUI::: paut.L l-U l-Uit:: Uit::.h l-.

To get more information about any of the options of the display
panel, hit Fl while in the mode panel. Also try HELP MODE.

Example: See/Alter Memory CTRL-F9

Help for Examining and Altering Memory
Unless you have debug control (hit CTRL-F3 for more on that)
you can only operate on emulation ROM.

<address> <count> DM disassembles from memory.
<from address> <to address> MDUMP dumps a section of memory.
<byte> <address> M! stores a byte of data.

Use HELP <command> for info on: M? MM! MM? ORG MFILL MMOVE.

Example: Trace Display CTRL-FlO

Reading through your Trace Display
HOME shows you the trace display starting from the top
PgDn shows you the next page, while Down arrow shows one

more line.
<n> TN shows the trace starting from step n .

Note that PgUp and Up Arrow show you history , not trace
display.

July 1 5, 1 986 Page 5-15 -- On-Line Help --

MR LhdUU.EllMWM4AOM&CAM&4iiUIUIQQJCCQl41 I AW&llUL US UCL ·-· : '

JS SHEET REPLACES CABLE WIRING INSTRUCTIONS OF THE INSTALLATION CHAPTER

Connecting the UnlLab to your 8031 target board with an
In-Place (tm) Emulation Module

Introduction

The In-Place (tm) Emulation Module ls the new way to connect
the Un!Lab to your target board: you simply remove the
microprocessor from your board and put the module ln lts place.

Please read all instructions before attempting to install
your new module, as incorrect procedures may cause damage to the
Un!Lab.

Power Supply

The module can even supply power to your target, 1f your
board takes 5 Vdc power and draws less than 1 amp.

Power ls normally provided. to the 8031 from the target
system, but, the UnlLab can also provide power to the 8031 and
the target system by placing a jumper on pins 11 & 12 of the
12-pln jumper (refer to diagram on EM31.06).

WARNING: If your target board requires more than 1 amp of
power,or does not take TTL voltage, then you will need a separate
power supply. When you use your own power supply you must keep
the +5V jumper disconnected-- otherwise damage to the UnlLab may
result.

INTERNAL/EXTERNAL RAM: If your board has external RAM, the UniLab
normally uses RD7 (pln 17) and WR6 (pin 16) of the 8031 as inputs
to clock external RAM reads and writes. If you .are not using
external RAM and are using these pins .for some other function,,
these UniLab clock inputs can be disabled by changing the jumpers
on the 12-pln jumper header on the Emulation Module: The 8031
Emulation Module normally comes with these inputs hooked up, with
a jumper on plns 5 & 6 and a jumper on plns 9 & 10 for WR6 and
RD7 respectively. To DISABLE the UniLab inputs, REMOVE the
jumper on plns 5 & 6 and place lt on plns 6 & 8; and REMOVE the
jumper on pins 9 & 10 and place 1t on pins 7 & 9.

SPECIAL FEATURE1 The UnlLab ls also able to generate an
interrupt on INTO (pin 12) of the 8031. The 8031 Emulation
Module normally comes with this capability disabled. By REMOVING
the jumper on pins 1 & 2 and placing it at pins 1 & 3 of the 12-
p1n jumper header, you will be able to interrupt the 8031 from
your target board OR the Un1Lab.

The Three Step Connection Process:

1) Remove mlcropro~essor from board

With the module connection, the UniLab still runs all the
target code on your microprocessor. The module just moves your
processor a centimeter or two away from the board.

2) Plug module 1nto microprocessor socket

Put the module into the microprocessor socket on the target
board. Double check that you have oriented the module correctly,
so that pin one of the processor on the module lines up with pin
one of the processor socket.

3) Plug cables into Un1Lab sockets

Plug the 50-pin connector labeled "Emulator" into the left
socket on the UniLab, plug the "Analyzer" connector lnto the
right socket. Both connectors must be plugged in with the
plastic "key" on the upper surface, and the red edge of the cable
to the left.

-H7 11' I
-H6 f

=~~--k--• . 2,
-H3 ~' 'I
-M2 I '6
-H 1 t ' I -H0 7 -

ANALYZER CABLE CONFIGURATION
e--M 8
2~ 7 U7

e--M 3
4~ 17 MISC

e-M--13(M0A-
5 9--M 14 M7A)

e--M 18
8~ 4 11

•

.FOR 8031 EMULATION MODULE

o::~ Of--! lns1:rumen1:s © 198&

DRAWlNG:# 5181-31 DATE: 10ct86

I GND~ ,s,
-A19 - IOM 10••----

f!i -A 18 I t 10
'---t--43 2
~--t--4 5

~ -A 17 1

1
1 f 1 J

~ -A15 t ·• I
-+5V 1 ~ T I

~-ROD I f 14
: -RES 15 f I s --NHI I ~15
A -GND 17 f 181
§ -K2 It
1-"7" -c1 19 t I
2 -K1 I t 20 INA
~ -c5 21 ~}
!3 -WR I t I OR
~-cs 23 '
f4 -RO I &24
2 -c4 25 t I
I -A15 I t 25
L.;;----ALE 27 f I

-INV I· I t 28
-INVO· 29 t I
-orcv I~ 30
-CCK' 31 'i I ~~~~ t:3'
TCV' 34
ITCV' I
~~~~· J1' r1 

< 

~~~E' ig~ 1:J ' 
OEE' 4,' \ I
C3

.c2
C1
C0
A19S
A1BS
A 17S

49
A16S I 5,

To connections
on target r µP boa.rd

UDL Analyzer
Connector

•
'"---+---4 7 6

us
(A17E­

A19E)
11

---S-A15
E' ANALYZER

LATCH
• ~DLE'
40• ~E'
• - _J}_tJ,,_
42e--OE~·7
• C1o---------__.
44~»------------~ • C1-----------------
46 ~L-J-----------------1
• :\19·~-----------'

48.-/\18~------~-----i
• A17~---------------i
50.-/\16~------------------------1

Internal Circuitry
of UN ILAB II / UDL

9J.:la _
~

(ROM)

7
8
4

U14. 3
18

(A1E-17
ASE) 14

13

11

A9
(ROM)

A1
(ROM)

_JJJ/"L___ __

~

HD AT A
8 us 7
3

(oes-1 ~
015S)14

18
11 4

(ROM)

08
(ROM)

8000
CPU

0000 MIN EMULATION MODULE SCllEMATIC

2 A 14 --------------- A 14 1 •
4 A12 A12 2•
3 A13---------------A13
9 AD7 A7
8 A8 AS

10 AD6 A6
7 A9 A9

11 ADS A5
5 All All

12 AD4 A4
0:-: 5 Of--f I ns"trurnen"ts © 1986 OE

13 AD3---------------A3
6 AlO AIO

14 AD2 A2
N/C CE

15 AD1-----------------A1
16 ADO AO
20 VSS GND

b. HCT132 Schmitt Trigger NAND gate.
a ALS32 OR gate.

&ALSOB AND gate

*Connected to logic IC 's.

07
D6
DO
D5
Dl
D4
D2

35 A19 ------------------------.
36 At 8 -------------
37 A17-------------~

D3
N/C
N/C
N/C
N/C

38 At6~------------------
40 vcc__/ ______ __,

Jumper

*

21

Pin_JGIIfuJ 8 9 .
b. 10

12
D. 13

17 NMI

GND
A19
A18

---A17
A16

------+5V
RDD
RES

---l--NMI
*-GND

24 INA------------1---K2
28 10/M C7
27 DTR Kt

N/C C6
29 WR -------------~--WR
34 BHE C5
32 RD RD

Pin
32

3 •
4 0..-.t·--
5 •...

6 .---1-i
7 •
8 .--1---1--+-~

9 •
10 0 f-t--.

11 .__
1 2 .__, _ _...-1----1----1---

13 •

14 .__ ·-
15 •
1 6 .__..__...-1-----'-

! ~ :-~ 19 .-1
20 .__.
21 .__
22 .__.._ __ __,
23 .__, ___ _.
24 .__, ____ __.
25 .__, ____ ____,
26 .__, _____ __,

27 •
28 •
29 •
30 •
31 •
32 •
33 •
34 •
35 • 36.--ill 37 •

i::: tlµF
40 .__

41 •
42 .--.-,

:!::J~ I
45 •
46 • 12 11
47 .__. 13 a

8-12-8 6

I
391A1s--------------N-/CA~~ :~ :-,~
25 ALE-------------- ALE I 50 • .._ ___ _..

<{ ~
H

8031 EMULATION MODULE SCHEMATIC

~~~~---------~~---------------~~~~ 
A13 A13 

I 32 A7 A7 

1 • 
2 • 
3 • 
4 ~h 
5 • 

( 

8031 
CPU 

21 AS AS 
33 A6 A6 
22 A9 A9 
34 AS AS 
24 A 11 A 11 
35 M M 

0::1nr--J lns1:rumen1:s © 1986 OE 
36 A3~----------------------------------------A3 
23 AiO A10 
37 A2 A2 

N/C CE 
38 A1-----------------------------------A1 
39 AO AO 

A HCT132 Schmitt Trigger NANO gate. 
a ALS32 OR gate. 
*connected to.logfc IC's. 

100KO (R4) · 

9 RES------6c 

---GN~ 
07 
06 
DO 
05 
·01 
04 
02 
03 

N/C 
N/C 
N/C 
N/C 

20 Vss~------------------------+-~t----~GND 

Pin 29 

A19 
A18 
A17 * A16 

--1..-....---+sv 
----~~-------------t-~----RDD 

--+---- iITT 
~--~-~f---NMI 

---GND 12 INTO----~ 

* N/C K2 
N/C C7 

----Ki 
17 RD7 1 N/C C6 
16 WR6---t-----~ --------------~1~,,__ _______ WR 

+SV -c:: N/C CS 
29 PSEN------------------------------ RD 

N/C C4 
28 A15~~~--~-----------------------------A15 
30 ALE ALE 

6 9-jr+ 

7 • 
8• -- -+-+i-1 

9 • 10 __ ._......._ 

11 e.-+-++-+-+---12 ._._........._._ 

13 • 
14 ·--+-t-'.--
15 • 
1 6 e-9-+-++-t-f-I 

17 ·-~-
18 • 

19 --t-
20 --t--' 
21 • 
22 ·-.--... \, 
23 ·---
24 ·-f---
25 e-~----' 
26 e--.ii-----' 

27 • 
28 • 
29 • 
30 • 
31 • 
32 e 
33 e 
34. 
35 • 

..... --..... --..... --..... --
36 ·~--..--
37 • 10KO 
38 • Pyy_y R1 
39 --~R3 
40. 1~ 
41 e- u 0.1 µF 
42 ..._.: 

43 e II 
44 •-4_..J 
45 e-.-..-
469-+ e---
47 .,.._.. ___ .... 

48 •-.ii--•~ 

49 • 
so • 

Title: EM31 Schematic Rev: A 
D'i'ffiit: 5128 drawn by: PAB appv'd: 

DATE: 1 Oc\86 ORION INSTRUl1ENTS, INC 



I 
emulator cable f analyzer ca bf e 

I I . 
. A 12 A7 A6 Ar:.; A 4 A3 A2 A1 GND 06 Os 04 D3 f f A19A17+S RE'S GND C7 C6 Cs C4ALE 

2 4 6 8 10 12 14 f6 18 20 22 24 2s
1

2s 30,32 34 36 38 40 42 44 46 4S so 
® ® ® ~) ® ® ® ® ® ® ® ® ® ®· ® ® ® ® ® ® ® ® ® ® ® 
® ® ® ®® ® ® ® ® ® ® ® ®'® ®'® ® ® ® ® ® ® ® ®® 
1 3 s 1 g 11 13 1s 11 19 21 23 2sl212gf31 33 35 37 39 41 43 45 47 49 

A 14 A 13 A 8 A 9 A 11 0 E A 10 CE A 0 0 7 0 0 0 1 D 2 I JG-ND A 1 8 A 16 RD D NM I K2 _K 1 w R RD A 1 s 

I I 
I I 

··50-PIN EMULATION MODULE BUS HEADER 
C=::H.::g·.j lns'trumen'ts © 198S 

INTO, out 
pin 12 

WR,BSHDR RD7,UP 
pin. 45 +SV pin 1 7 +SV 

INTO, UP ALS132 WR6, UP +SV K1, BSHDR Vee, UP 
pin 12 pin 8 pin 16 pin 43 pin 40 

12-PIN JUMPER HEADER -----------------

' 

.• ~ 

Title: 50-pin EM BUS HE.ADER Rev: A 
DWG#: 5180A drawn by: PAB appv' d: 
DATE :12Aug86 ORION INSTRU11F ....... ,S, INC 



User Updates 
from Orion 
This Newsletter is designed to provide Orion customers with 
important update information about the use of their Orion 
purchase. It contains product facts from our engineering and 
marketing staff as well as contributions and user-hints from our 
customers. 

We invite you to share your personal user "discoveries" and 
techniques that might be passed along to other Orion cus­
tomers involved in microprocessor development. Send your 
material to the attention of Joyce Waterhouse, the Orion Express 
Editor. Naturally, we'll give you credit for your contributions. 

Target Hardware 
Debugging with 
your Unilab 
Orion's Unilab benefits go far beyond conventional in-circuit 
emulators, and are particularly useful in situations where the 
target processor system is not yet working. 

A conventional emulator depends on the emulation processor 
to send traces back to the host system; therefore, if the target 
processor is disabled for any reason (such as a bus short), then 
you won't be able to look at register or trace memory displays. 
As a result, an oscilloscope is the only tool that can be used to 
fix the system. 

Only a Microprocessor 
Clock Needed 
Since the Orion Unilab has its own independent hardware for 
handling traces and emulation memory loading, it uses the tar­
get processor only for debug operations. For Uni Lab to function, 
all that is needed is for the target processor to have a clock. If a 
clock is not available, Unilab cannot tell what is happening on 
the bus. If this is the case, a "no target clock" message will be 
displayed. An oscilloscope then becomes your only alternative. 

tocating Bus Problems 
If a clock is present in the target processor, either Unilab's 
ROM emulation or its bus state analyzer can be used to deduce 
the problem. For example, to find address line shorts, use the 
MFILL command to fill the beginning of the target system's 
memory with the "no-op" instruction opcode. 

(continued on page 2) 

Cross lab 

All words are in the UniLabtm Glossary. 

Across 
1. Key to Library 
3 You can see ali the 

· symbols with this 
word 

5. Word used to 
indicate range 

6. Display symbols 
8. Display trace, but 

don't change de­
fault starting point 

9. Select automatic 
initialization of tar­
get when analyzer 
starts. 

10. Establish com­
munications with 
Unilab and Host 

13. Display byte con­
tents of memory 

14. Move up to next 
qualifying event 
level 

15. Turn on filter to 
capture only se­
lected bus cycles 

17. Macro for con­
ditional execution, 
used with THEN 

18. From a new 
beginning, please 

20. Check time 
optimization 

22. Trigger spec used 
to focus on ram 
variable values 

24. Multiplexed display 
25. Throw filter out 
27. Symbolic append 
28. Can you wait just a 

thousandth? 
29. It's all this, but this 

is essential 
30. Do it at BP 
31. Take this byte and 

shove it 
32. A name_ a 

name_ a 
number 

33. Double print 
35. Won't go on fire 
37. Categorical 

additive 
38. Miscellaneous is 

extraneous 
43. Restore startup 

patch 
44. Needs a place to 

start, a place to 
stop 

46. Adjust tints 
47. Two bites, no 

chocolate inside 
48. What's happenin', 

analyzer? 
50. What it is, target? 
52. Just the points of 

interest are tested 
55. Format translator 

(Answers to Puzzle Inside) 

Down 
1. Can't tell a read 

from a write 
without this 

2. Where are you, 
program? 

4. Waiter, selections 
please 

5. Once more, from 
the top 

6."_ me_, and 
I'll never stop" 

7. Same as 30 across 
11. Set span 
12. Compliments of the 

host 
16. Dos, take a memo 
19. The pulse that 

invigorates 
20. Don't forget the 

lines-Where did 
we fail? 

21. May the source be 
with you 

23. Elbow room? 
24. What's next? 
26. Poking point 
27. Startus lnterruptus 
29. Don't disassemble 
30. Next is ones and 

zeroes 
33. AO, 55, and 4 are 

normal 
34. Make Macros 

permanent 

36. On you mark, get 
ready ... wait 

40. Resume to break 
41. The middle point, 

before and after 
42. Opposite 
45. Abbreviation for 

Unilab storage 
46. Use symbols 
47. Can't filter on this 
49. Upload trace buffer 
51. Rerun trace 
53. NORMT ADR S 
54. Impatient tester 
57. Around and around 
58. For extensible 

keyboard 
59. Unilab 

acknowledge 
60. Byte to the max 



Target Hardware 
Debugging 
(continued from page 1) 

If a Z80 is used, for example, fill the memory with O's. At 
STARTUP, the very first cycle is the most interesting one. A trace 
will be seen of the first instructions being executed. This means 
that the emulation ROM, when Address 0 .is fetched, gives a 0 
on the data bus. 

If the first instruction is not fetched correctly, ignore the rest of 
the trace and work mainly with that first instruction. If there is a 
short to Plus on one of the data lines, you will get, for example, 
04 instead of 0. This would indicate that data bit D2 is shorted 
high. Experiment by inserting different values in location 0 and 
initiating STARTUP Observe what happens on the bus when 
location 0 is fetched. 

If 0 is fetched properly, the NOP instruction is executed at 
successive addresses. A trace shows a 0 being fetched from 
Location 0, then another 0 from Location 1, and another from 
Location 2, etc., in a conventional counter sequence. A break 
in that sequence indicates one of the address lines is shorted. 

Here's an example: if address line 4 is shorted, you will count 
0 through F hex address, but when the address line should be 
going to hex address 10, the trace will show a 0 instead. This is 
because the line which has to go high to make it address 10 is 
shorted to ground. Note that if address bit 4 had been shorted 
to Plus, the very first cycle of the STARTUP trace would have 
been 10 instead of 0. 

Solutions by Deduction 

The process of tracking down bus shorts 1s a matter of deduc­
tion. By putting different values into the emulation ROM and 
observing the trace, you can track down the problem. If the 
counting starts out correctly, the triggers can be set at later 
points in the count. Looking at the STARTUP trace works well 
for the least significant part of the address, however, higher bits 
can be checked quickly using the AS command to trigger on 
the address of interest. For example, 1000 AS will show the 
trace as it passes from FFF to 1000 to confirm that all is func­
tioning correctly. 

It is important not to look past the first bad instruction. Quite 
often the first bad instruction will be the very first instruction. If 
address 0 cannot be fetched it may be because of a high short. 
Another subtle type of bus short occurs between lines-either 
between one data line and another, or between address lines. 
This type of problem is more difficult to deduce. 

Let's say, if data bits DO and D1 were shorted together, then op­
eration would appear normal when the memory is fi!!ed with O's. 
But, if a 1 were fetched, it may come out as a 3. Or, because of 
the short, it may come out as a 0. The problem can be deduced 
by trying STARTUP with various values stored in location 0 and 
observing what gets fetched (ignore all but the very first cycle). 

The principle holds true with address shorts. Watch the address 
sequence. As soon as there is an unusual occurrence, some 
type of a short or open is generally indicated. It may be neces­
sary to look at different addresses to get the complete picture­
for example, to determine if one address bus is shorted to 
another. Jump commands can be put in memory to exercise 
the address bus. 

Testing for Malfunctions 

Basic system malfunctions can also be tested. For example, 
if debug has not established control, and if there is a RAM in 
the circuit, a short program can be devised using the on-line 
assembler that writes to location in RAM and then reads from 
that location. You will see data being written on the analyzer 
trace, and then read back. If the read-back data doesn't agree 
with what's being written, a RAM malfunction is indicated. 

User Definable Macros 

The macro capabilities of the UniLab are a great help in 
automating deductive testing. For example, if you are having 
trouble fetching the first byte, a macro can be made which 
enters a value to location 0, then does STARTUP every time 
"P" is entered, like this: 

: P 0 M! STARTUP; 

It is also possible to effectively use DOS calls in a macro. 
The following example sets up the macro name DOS-DIR, which 
allows you to display the DOS directory when invoked from UniLab: 

: DOS-DIR " DIR \ ORION\*.* " <DOS> ; 

To implement other DOS calls in this manner, simply place the 
desired DOS call within the quotation marks and change the 
macro name. 

Another example: 
To format a disk on drive B, set up the macro name FORMATB 
like this: 

: FORMATB" FORMAT B:\S "<DOS>; 

Most of the things that debug can do can be implemented with 
short macros. Debug will function only if the program execution 
in the target system is working, and generally the stack must 
also be functioning properly. Stack operation can be determined 
by writing a PUSH instruction followed by a POP instruction 
and observing the trace. 

In Summary 
The debug capabilities of the UniLab, of course, require that 
the target system be functioning properly. However, the basic 
ROM emulation and analyzer functions are independent of the 
target system. By using the UniLab tools and your powers of 
deduction, you should be able to find, quickly, most types of 
problems in the target system. 

Program Performance 
Analysis Option 
A new analysis package from Orion is now available, affording 
you all the tools you need in a single instrument for beginning­
to-end development and optimization of microprocessor code. 

UniLab II users can now add comprehensive Program 
Performance Analysis (PPA) capability to their present system. 
Program Performance Analysis is used to evaluate and inves­
tigate any section of code, from a single byte to a complete 
program. UniLab hardware tallies every program event of interest 
in real time at full speed, and the results are automatically dis­
played in both tabular form and as bar graph histograms. 

Address displays show both the number and percentage of 
accesses to user-specified address ranges, or to named sub­
routines. To evaluate the performance of particular subroutines, 
time domain analysis precisely measures elapsed time between 
entry and exit points. The combination of these techniques 
eliminates sampling errors associated with statistical approaches. 



Invisible bugs and inefficient code are quickly uncovered by 
comparing PPA-generated data with expected program per­
formance. Complete screen set-ups for recording and displaying 
data as well as results can be saved to disk or printed out for 
future reference, or for comparison with other runs. The PPA 
upgrade for Unilab is available at a list price of $1250. 

UDL users are not forgotten. Orion's UniUp package, selling for 
$1985, will upgrade your system to Unilab performance. And 
for even greater capability, the Program Performance Analysis 
upgrade package can also be added. 

Support Services Options to extend your warranty are available 
for $700, and will cover both your system and any upgrades. 

Orion's Rental and 
LeaseiPurchase Plans 
Rental and lease/purchase plans are available for all Orion 
products. These plans have been devised to further augment 
our policy of full customer service. 

The rental plan assists the customer who has only a short term 
requirement for a microprocessor development system, or 
wishes an extended trial before he buys. The lease/purchase 
plan is ideal for the customer who requires a longer-term rental 
or an extended payment plan. 

Term 

Renewable 

Purchase 

Rate 

Credit 

Taxable in CA 

Warranty 

Application 

Rental Plan 

3 Month Minimum 

Month-to-Month 
after 1st 3 Months 

50% of rent paid 
applies up to 50% 
of purchase price 

10% per month, 
payable in advance. 
Initial 3 months 
payable in advance 

Approval Required 
(or automatic bill 
with credit card) 

Yes 

Lease/Purchase Plan 

12 months 

Yes, for an additional 
12 Months 

1 additional payment of 
11% ot total configuration 
price after 12 Month 
lease 

11% per month, payable 
in advance. 1st and last 
month's payment re­
quired at signing of 
lease 

Approval Required 
(or automatic bill 
with credit card) 

Yes 

Included. Return to Included. Return to 
Orion. Cables: 90 day Orion. Cables: 90 day 
warranty only warranty only 

Engineering Support Included Included 

Updates 

Support Services 
Option 

Ask Dr. D. 

Included 

$500/Year 
(After Purchase) 

Questions from Orion Customers 

Included 

30% Discount ($350 
Net for Unilab) for 12 
Months after Purchase 

Q. I'm experiencing erratic trace displays with my UDL 
(high-speed model). Any ideas? Signed A.E. 

A. Dear A.E., 
Recently we have seen a few problems apparently 
caused by degradation of parts used in the high-speed 
models. Standard speed units are not affected. Call 
our Applications Engineering Group at (415) 361-8883 
and they'll get the problem solved. Signed Dr. D. 

Crosslab Solution 
How did you do? 

Put a Unilab or UDL 
on Your VAX or PDP-11 
Users of Digital Equipment Corp. (VAX and PDP-11) can now 
connect Unilab or UDL instruments directly to ·their DEC com­
puters. The DEC-compatible software has been developed by 
Compu-Mech, Inc., one of Orion's long-time distributors. For 
more information, contact Compu-Mech at 5242 Angola Road, 
Toledo, Ohio 43615. Telephone (419) 535-6702. 

WESCON Optilab Winner 
Visitors to Orion's booth at the recent WESCON show in Anaheim 
were entered in a drawing to win a complete Optilab work 
station, including an ACS Turbo XT computer. The Optilab 
product includes program performance analysis capability along 
with the integrated instrument set for microprocessor develop­
ment. The winning entry was submitted by Mr. Keith Venne!, 
Director of Engineering at Micro Concepts Corporation, 1630 
South Sunkist Street, Anaheim, CA 92806. 

Terry Zimmerman, Orion's Vice President of Marketing, telephoned 
Keith with the announcement shortly after the close of the show. 
It appears Keith's good fortune was timely since he tells us that 
Micro Concepts builds stand-alone, in-circuit testers and currently 
is involved in projects using 68000 and NSC 800 microprocessors. 
Both are supported by the Orion Optilab toolbox. 

Our congratulations to Keith Venne! of Micro Concepts. 

..=. =. = ..=.. :=.. = --------- ----- -- ---- --------- --~ .___. - --~ _ .... 
~---~---

Instruments 
©Qrion Instruments, Inc. 1987 

Orion Sales Hotline: (800) 245-8500 
(in California (415) 361-8883) 



99G 'ON l!WJ8d 
V':J 'All':) pooMp8t:J 

OIVd 
85BlS0d ·s·n 

SSBl':J lSJl.:J 

~---......-.....-­
~--.-..-..---------- ----- --- .,__......... ___ ... --
.._.. - -- .._.. _._ 
~---...._.....-~ 

Instruments 

ian pue qe11un uo1JO 10 sJesn JOI Ja11e1sMaN 

News Briefs 

1!e1N sse1:> ISJ!.:1 

pa1sanbat;1 uo!i:>aJJO:> ssaJppy 

890176 V':J 'All':) pooMp8t:J 
l88JlS llBL1SJBV\J GOL 

stuawnJtsu1 
-.-...-...---~ ----~ - - - .-.. --~----~---- ----- ---------_._ ~ - ._ ._.. __ ..._.,.._..._~ 

• Unilab now supports these symbol file formats: 
2500AD; Allen Ashley; Intel; Microtek; Manx Aztec C; 
Avocet; and a generic fixed format. 

•New disassembler debug packages now available 
for Zilog Super 8, NEC 78310/12, and Motorola 68HC11 
microprocessors. 

•The 6305 microprocessor is now supported by the 6805 
disassembler debug package. 

•Movable overlays and line-by-line assemblers are now 
included in all disassembler debug packages (except 
Z8000). 



Orion Express Rolls On 
This Newsletter is designed to provide Orion customers 
with important and useful information to help you get 
the most from your Orion purchase. It contains proq~ct 
facts from our engineering and marketing staff as well 
as contributions from our customers. 

We invite you to share your experiences, questions, 
and "discoveries" with other Orion users through this 
Newsletter. Please mail your material to the attention of 
Editor, Orion Express. Naturally, we'll give you credit for 
any contributions. ~~~lj~ 

Unilab Macros for the 
Power User 
The Unilab command set can be easily extended by 
creating custom commands specific to your needs. The 
basic techniques are to use combinations of commands 
to form Macros, and to use PC-DOS's "command tail" 
feature to pass these macros to the Unilab from the 
keyboard or from a DOS batch file. 

For example, if you switch back and forth often between 
the Unilab and a cross-assembler to make progressive 
changes in your code, you may have found yourself 
entering commands like this each time you re-enter the 
Uni Lab system: 

0 7FF BINLOAD TARGET.BIN (load new binary file 
from cross assembler) 

SYMFILE TARGET.SYM (load new symbol table 
from cross assembler) 

STARTUP (Start the target system up from reset) 

42F RB (get a breakpoint at address 042F, reset still 
on from STARTUP) 

NMI (singte step) 

NMI (single step again) 

There are a couple of ways you can automate much of 
this procedure. 

Automate your procedures 
If you wanted to automate only the file loading part, you 
could make a macro called LOAD-FILES like this: 

LOAD-FILES 0 7FF BINLOAD TARGET. BIN 
SYMFILE TARGET. SYM ; 

Now, every time you want to load in the binary file and 
symbol file with these names you just type LOAD-FILES. 

Suppose you change the name of the binary file for 
different versions. You can construct another macro a 
little differently to make it prompt you for the file name 
when you enter LOAD-FILES1: 

LOAD-FILESl 0 7FF [COMPILE] BINLOAD 

SYMFILE TARGET.SYM ; 

Using the command [COMPILE] immediately before 
BINLOAD causes BINLOAD to ask for the file name 
when the macro is executed, rather than when the macro 
is defined (compiled). You could also have preceded 
SYMFILE with [COMPILE] and then a macro called 
LOAD-FILES2 could prompt you for both file names. 

More time savers 
The second part of your procedures could also be 
automated by a macro command. For purposes of this 
demonstration, let's define a macro and name it RUN. 

: RUN STARTUP 42F RB NMI NMI 

Now, you can just type LOAD-FILES RUN to do 
everything. 

One point: If you wanted to set the breakpoint at an­
other address, you would have to retype in all of the 
commands that are in the RUN macro separately. If 
RUN were defined without the 42F address, then you 
could supply the address as a parameter to the macro 
when it was executed, !ike this: 

: RUN+ STARTUP RB NMI NMI ; 

This allows you to execute 42F RUN+ or 174 RUN+ , 
or any address you want 

Putting these two together produces a macro which 
can save you a lot of keystrokes: 

LRUN LOAD-FILES RUN+ 

(continued on page 2) 



(continued from page 1) 

Create your own custom Unilab 
Now, if you save your customized Uni Lab system to 
disk with SAVE-SYS, your new commands will be 
permanently added to the regular command set of your 
system. You can get rid of them by typing FORGET 
LOAD-FILES. (Using FORGET will delete every new 
macro made since LOAD-FILES was defined.) 

There is another technique which can take the place of 
some of these commands, or can be used to extend 
them even further. 

If you had defined these commands and saved the 
system, you could enter the system and execute the 
commands immediately by entering from DOS: 

C>ULZ80 42F LRUN 

Now this "command tail" will be executed by the 
Uni Lab after it boots up. 

You also could have entered the comands separately: 

C>ULZS 0 0 7FF BINLOAD TARGET. BIN 
SYMFILE TARGET. SYM 482 RUN+ 

(Note: Type as one line on screen or in batch file.) 

Using the command tail lets you make very useful batch 
files. You may already have a batch file to use with your 
cross-assembler. By adding an additional line like the 
one above, you can quickly get from DOS into your 
editor, then to your cross-assembler to assemble a new 
file, and finally to the UniLab, executing commands 
automatically. A real time saver. 

Now, if you end the command tail with BYE, then you 
would automatically exit from the UniLab, and be back 
in DOS, or the next line of your executing batch file. 

The power of DOS and the Uni Lab macro capability 
gives you great flexibility in setting up your own devel­
opment environment. So have fun and let us know what 
especially useful macros you create. See the article 
below for advanced programming information. ORIOiii 

~ 
~ Electro/~'P, 

SHOW SPECIAL 

UP TO 15% OFF ON A 

Unilab Ir or Optilabtm 
MICROPROCESSOR DEVELOPMENT 

TOOLBOX! 

TAKE ADVANTAGE OF ORION'S SPECIAL 
ELECTRO '87 DISCOUNT OFFER. 

~ CALL TOLL-FREE - TODAY! 

\...l.::.J (800) 245·8500 
IN CALIFORNIA CALL (415) 361-8883 

THIS OFFER HAS BEEN EXTENDED TO 
ALL CUSTOMERS THROUGH JUNE 15, 1987. 

New Programmer's Guide 
A comprehensive new Uni Lab Programmer's Guide is 
available for advanced users of the UniLab and OptiLab 
systems. This 8112 by 11-inch, 45-page document enables 
programmers familiar with the Forth programming lan­
guage to write advanced macros utilizing the UniLab's 
operating system. Differences from the PADS Forth 
system are noted, and special words are explained 
which are not covered in the UniLab manual. Material 
covered: 

• File and Editor Commands 
• Accessing the Uni Lab trace buffer directly 
• UniLab String Package 
• Changes to the PADS nucleus 

Examples of automated test routines are included, as 
is a source listing of the Uni Lab Forth nucleus. The 
manual, affectionately given Part Number "PROGO", is 
priced at U.S. $45.00, including airmail postage, and is 
available from stock. ~~~lj~ 

Ask Doctor D 
Each month our product gurus select interesting 
questions asked by users for inclusion in this 
column. Maybe some of Doctor D's answers can 
help you too. 

Q. I understand the UDL and UniLab need four 
overlay bytes in ROM space. I have code at 
your overlay area. Is there anything I can do? 

A. All Disassembler/Debug (DOB) packages now 
have an =OVERLAY command to relocate the 
area that our DEBUG program needs. If you 
type HO or press Ctrl-F3, the help screen for 
DEBUG will show the current location for the 
overlay area. One common mistake in changing 
the overlay area, is moving up too high. The 
amount of space needed varies from proces­
sor to processor, but a good rule of the thumb 
is to keep the low byte of the overlay area the 
same or less than the low byte of the default 
overlay address. 

For instance, if the overlay area is currently set 
to FFB2, then don't try to change it to FFC4. 
This might make the overlay area cross a page 
boundary, or try to use non-existent emulation 
memory. In some processors it cou Id even 
overwrite the reset and interrupt vector area. It 
is better to move it to FEB2 or FF20, allowing 
the overlay area to remain on a single page of 
memory. 

Send your questions to Doctor D. We'll publish 
the ones of most general interest, but if you'll 
include your phone number, we'll give you a 
personal call back. Write today! Right now! 



Do You Have the 
Latest and Greatest? 

~. Here's a listing of the latest revisions of popular Orion 
software. Check to see which revision you have by 
typing the command: ".DOB" while in the Disassemble/ 
Debug (DOB) package. If you don;t have the latest, 
read below to see how you can get updated. 

PROCESSOR LATEST REVISION 

1802 October 23, 1986 
6301 May 4, i987 
65P November 12, 1987 
6502 October 13, 1986 
6800 December 18, 1986 
6801 May 4, 1987 
6802 December 18, 1986 
6805 January 13, 1987 
6809E November 5, 1986 
68000 January 14, 1987 
68008 October 15, 1986 
68HC11 May 4, 1987 
8048 November 11, 1986 
8051 January 29, 1987 
8051P January 29, 1987 
8085 May 6, 1987 
8086 February 5, 1987 
8088 December 18, 1986 
8096 October 15, 1986 
SUPER 8 May 5, 1987 
Z-80 May 4, 1987 
Z-8000 October 21, 1986 
78312 May 4, 1987 

SYSTEM PREVIOUS LATEST 
SOFTWARE RELEASE RELEASE 

UDL MSDOS 2.42 UDL2.5 (Nov. 25, 1986) 

l 
Unilab II 3.2 UN 13.3 (April 1987) 
Optilab 3.21 OPT3.3 (April 1987) 

How to Obtain Latest Releases: 

Of course, if you haven't purchased a particular package 
from Orion, call your local Orion Sales Representative 
or our Sales Hotline to place your order. If all you need 
is an update, each is available for U.S. $50.00 including 
airmail postage. Subscribers to Orion's Support Services 
Option receive updates free of charge. The Support 

Services Option costs just $500/year and gives you 
free updates plus unlimited free Applications Engineer­
ing telephone support, and free factory repair of your 
unit in case of failure. Ask for full details. ~~~~~ 

New Convenience and 
Power for Your System 
Emulate with a MicroTargettm 
Many customers have wanted to test their software 
before they actually have their own target hardware up 
and running. Orion's new MicroTargets allow you to do 
just that. The MicroTargets are completely functional 
circuit boards built around the most popular micro-
- ... ------ .... +...,---Th-,, : ...... -l11rJ- D/\P\'1 D""'v,....,11-i l/r"\ ,....nrJ 
1-JIUvt;:,;:,u1 LY!-Jt;:,. 111ty 111v1uuc 1 V""\1v1, 1a1a11c;1 1;v, a11u 

in many cases timer chips. 

Even after your own target hardware is up, the Micro­
Targets can provide a ready means of verifying that 
your Orion system is functioning properly. MicroTargets 
can be purchased separately, and include the micro­
processor itself and a schematic of the circuit. You may 
find that the MicroTarget is all the hardware you need 
for some smaller projects. 

Available MicroTargets are: 
63P01 64180 6502 68P05 68000 8031 8051 P 
8085 8086MIN 8086MAX 8088MIN 8088MAX 
ZS Z80. 

Prices range from $150 to $300. 

Emulation Modules Speed Hookup 
As you probably know, Orion's technique for perform­
ing emulation functions uses an actual microprocessor 
in your target circuit. This technique, which we call 
In-Place Emulation, eliminates 

1
the timing and signal 

errors often experienced with conventional emulators 
due to long cables between processor and target. The 
result is that Orion allows your circuit to run at full 
speed while you observe the performance in real-time. 

Orion's new line of In-Place Emulaton Modules™ make 
connecting your Orion system to your target circuit 
easy. Just remove your microprocessor from its socket 
and plug-in the Emulation Module! The cabling is all 
done for you, and all necessary connections are auto­
matically made. Of course, if you have a soldered-in 
microprocessor or extremely limited physical space 
where the Emulation Module won't fit, you can still con­
nect to your circuit with ROM cables and jumpers -
another advantage of using the versatile Orion approach. 

Emulation Modules are available for these processors: 
6303R 63P01 64180 6502 65C02 6805E2 
14-6805E2 68P05WO 68POV07 6809E 6809 
68000 80188 8031 80031 8032 8048/P 8050 
8051 P 87P5D 8DC51VS 8085 8086 (MIN/MAX/C) 
8088 (MIN/MAX/C) Z8 Z80. 

Prices range from $190 to $390. 

Call the Orion Sales Hotline, 800-245-8500 
for more information on these useful 
new products. ~~~~~ 



99G "ON l!WJ9d 
'V'J 'Al!'J poOMP9tf 

Ol'Vd 
a5eisod ·s·n 

SS'Bl'J JSJ!:! 

.....-.....-..-~-­
~--~-.---------- ----- --- .___,_, --- --~ ._.._.. ___ ........ _~ 
....._....---~-~ 

Instruments 

1an pue qe11un uo1JO 10 sJasn JOJ Ja11a1sMaN 

News Briefs: 

new sse1:> ISJ!:I 

paisanbat:t uo!i:>aJJO~ ssaJppy 

890v6 'V':J 1All':J pOOMpa1::1 
iaaJlS 11e4SJBV'J cOL 

s1uawnJtsu1 
--~---..-....... 
~ .=-:. = :....: =-=. -- ----- ---- ----- --~~-~~ 
__ ..._...,. ___ _ 

• NEW and HOT! Full support for 68HC11 now avail­
able in stock! Save thousands over the competition! 

• Z80 support now includes Alternate Register Display/ 
Alter feature. See inside for update info. 

• True single stepping, breakpoint on trigger condition, 
and auto-breakpoint features now implemented for 
6805, 8048, 8051, Z8, and SUPER 8 processors. 

• NEC latest processor, the 78310/12 is now 
supported by Orion. 



Index for Volume One 

The full index can be found at the end of 
Volume II. 

.BIN file 

.. TRC file 

=EMSEG • 

\ORION • 

16-bit Systems 

3-6 
2-42 

4-7 

• • 2-1 5 

ROM cable • • • • • • • • • 2-5 
1AFTER • • • •••••••••• 4-30 
48 CHANNEL BUS STATE ANALYZER • • • 2-26 

8/16 BIT IN-CIRCUIT EMULATOR • 
8051 

• 2-26 

reset • • 
8086/88 family 

NMI • • • • 

•• 2-34 

• • 2-38 

ADR • • • • • • • • • • 4-24 
ADR? • • • • • • • ••••• 4-10 
AFTER • • • • • • • • • 4-11 
ALSO • • • • • • • • • • • • • • 4-29 
ALT-FKEY • • • • • • • • • • • • • • 4-34 
Analyzer • • • • • • 2-8 

cable • • • • • • • • • • • 2-25 
menu • • • • • 4-10 

AS • • • • • • • • • 3-1 2 
ASM • • • • • • • • • • 2-43 
AT 

serial port • 
AUTOEXEC.BAT ••• 

Batch files ••••• 
writing • 

Baud rate 
19,200 

BINLOAD • • • • 
BINSAVE • • • • • • • 
Breakpoint 

setting • . . . • • 
Bus state analyzer • 
BYE • • • 

July 15, 1986 

2-7, 2-12 
••• 2-15, 2-16 

• • • 4-3 
• 4-20 

. . . . . . 2- 7 
• 3-6, 4-8 

4-8 

• 3-1 3 
1 -1 

2-9, 2-45 

Page 1 -- Index --



Cable connection 
verify 

Circuit 
open collector 

CLEAR 
Clock inputs • 
COLOR 
COM1 
Command file 

.COM 
ULxx.COM 

Command tail • 
CONFIG.SYS • 
Connect 

UniLab to host 
Connection 

diagram • 
DIP CLIP 
NMI­
RES-
ROM cable • 
verify 

Connections 

2-42 

• 2-27, 2-33, 2-36 
• 2-47 

2-8 
• 2-47 
• 2-12 

• 2-20 
2-3 

4-3, 4-20 
2-9, 2~15, 2-17, 2-19 

• 2-11 

• 2-26 
• 2-31 
• 2-36 
• 2-33 

2-29 
2-5, 2-42 

UniLab to host 
UniLab to target 

2-9, 
2-9, 

4-24, 

2-11 
2-25 
4-27 CONT • 

Controls • 
CTRL-BREAK • 
Cursor keys 

chart • 
screen history 

Cycle numbers 
"f" • 

CYCLES? 

DATA • 
Data bus 

16-bit 
DB-25 
Debug control 

menu 
Debugger 

menu 
Demo program 

.BIN 
trace (.TRC) 

Development system • 
DIP clip • 

Connection 
Disassemble 
DM • 

Index 

2-3 
• 2-13 
• 4-36 
• 4-52 
• 4-38 

• 4-30 
• 4-10 

• 4-24 

2-5 
• 2-12 
• 3-13 

4-13 

• 4-13 

3-6 
2-42 

1-1 
• 2~31 

2-31 
3-8 
3-8 

Page 2 



DN • 
DOS command 

VER • 
Dos command files 

.COM 
Down Arrow • 

EMCLR 
EMENABLE • 
Emulation memory • 
Emulation ROM 
Emulation settings 

save 
Emulator • 

cable • 
Enable memory 

menu 
End key 
EPROM programmer • 
Error messages • 

RS-232 error #xx 
EST AT 
Exit • 

f 
cycle numbers • 

F8 • 
FETCH 
Filter 

cycle numbers • 
Filters 

trigger specs • 
Flicker 
Function keys 

GB • 
GLOSSARY • 
Guided demo 

HDATA 
HELP • 
HEX LOAD 
Home • 
Host • 

INIT • 
Initializing UniLab 

July 15, 1986 

4-44 

2-2 

2-3 
• 4-36, 4-37, 4-52 

2-28, 4-7 
• 3-5, 4-7 

2-7 
1 -1 

• 4-23 
2-8 

• 2-25 
• 3-2 I 3-4 

4-7 
• 4-42 I 4-46 I 4-52 

1-3 
• 2-22 
• 2-22 

4-7 
2-9, 2-45 

• 4-30 
5-3 

• 4-11, 4-28 

• 4-30 

• 4-30 
• 2-47 

4-34, 5-5 

• 4-13 
• 2-15, 2-17 

3-2 

• 4-24 
• 5-2, 5-3 

4-8 
• 4-40, 4-52 

2-7 

• 2-13 
• 2-13, 2-22 

Page 3 -- Index --



Input 
INSTALL 
INSTALL.BAT 
Installation 
INT 
INTEL 

reset 
Internal state 
IRQ 

Leave 
Load program 

into memory 
menu 

LTARG 

M! 
Macro 

from menu 

example 
Main menu 
MCOMP 
MDU MP 
Memory 

emulation 
Memory access 

menu 
MENU 

map 
Menu system 

guided demo 
MF ILL 
MISC 
MM! 
MMOVE 
Mode 

CONT COLUMN 
DISASSEMBLER 
FIXED HEADER 
LOG TO FILE 
LOG TO PRINT 
MISC # BASE 
MISC COLUMN 
NM! VECTOR 
PAGINATE 
PRINTER 
RESET 
SW! VECTOR 
SYMBOLS 

Index --

2-8 
2-16 
2-14 

2-5, 2-9 
2-37 

2-33 
1-3 

2-37 

2-45 

3-6 
4-8 

3-5, 4-37 
2-41 

4-9 

4-22 
2-44, 3-4, 4-6 

4-9 
3-7, 4-9 

2-7 

4-9 
2-22, 4-4 

4-5 

3-4 
4-9 

4-24 
2-43, 4-9 

4-9 

Page 4 

5-8 
5-7 
5-8 
5-9 
5-9 
5-8 
5-8 
5-9 
5-8 
5-9 
5-7 
5-9 
5-7 



Mode panels 
help 

MS-DOS • 

N 
single step • 

NMI 
8086/88 family 

NMI-
circuit 
connection 

NMIVEC • 
NORMB 
NORMM 
NORMT 
NORMx 
NOT 
Not recognized • 
NOW? • 
Numeric key pad 

On-Line Help • 
ONLY • 
Open collector • 
ORION 

Parallel interface • 
Patch word • 
PC compatible 
PgDn • 
PgUp • 

flicker • 
PINOUT • 
PROM • 
PROM programming 

menu 
PROM reading 

menu 

Qualifiers 
trigger specs • 

RB • 
Reboot • 
RES-

circuit • 
connection 

July 1 5 I 1986 

5-3 
5-7 
2-2 

• 3-15 

• 2-38 

.. 2-26 
• 2-36 
• 2-37 
• 4-24 
• 4-24 
• 4-24 
• 4-25 
• 4-11 
• 4-26 
• 4-10 
• 4-52 

• 4-11 I 

• 2-27, 2-33, 
• 2-15, 

5-1 
4-30 
2-36 
2-17 

• 4-36, 
• 4-36, 

2-9, 2-26, 

2-8 
• 2-23 

2-2 
4-3 7 I 4-52 
4-38, 4-52 

• 2-47 
2-32, 4-15 

• 4-16 

• 4-17 

4-16 

• 4-31 

• 3-13, 3-14 
2-9, 2-19 

• 2-26 
• 2-33 

Page 5 -- Index --



Reset 

RI 
ROM 

8051 
INTEL 
z8o 

emulation • 
enable 

ROM cable 
16-bi t 
connection 

ROM chip 
analyze 

RS-232 
RS-232 error #xx • 
RSP' 

SAMP 
Sample program • 
Sample session • 
SAVE-SYS 
Screen Flicker 

fix • 
Screen history 
Serial interface 
Serial port 

SET 

9 pin 
AT 

Set GLOSSARY 
Set ORION 
SET-COLOR 
SI 
Single step 
Soft-keys 
Software 

installation 
SS TEP 
Stack pointer 
STARTUP 
STIMULUS 
Stimulus generator 

menu 
SWI VECTOR • 

Tail 
command • 

Target 
Target board 

Index 

2-8, 

• 

2-33, 4-12, 

.. . • 

3-11 ' 

2-23, 

2-5, 2-7, 
2-7, 
2-7, 

2-15, 
2-15, 

2-9, 
2-36, 3-15, 

3-10, 

Page 6 

4-14 
2-34 
2-33 
2-35 
2-36 

2-7 
4-23 

2-5 
2-29 

2-28 
2-7 

2-22 
2-28 

4-10 
2-41 

3-2 
4-23 

2-47 
4-38 

2-7 
2-12 
2-12 
2-12 
4-14 
2-17 
2-17 
2-47 
2-36 
3-15 

5-5 

2-14 
4-13 
2-43 
4-10 
4-14 
1-3 

4-14 
2-28 

4-20 
2-7 

2-7 



TCOMP 
TEXTFILE 
TMASK 
TO • 
Trace compare 

TMASK and TCOMP • 
Trigger 

menu 
Trigger specs 

examples 
filtered 

Up Arrow • 

VER 
Verify 

cable connection 
Version 

Watch program 
STARTUP 

Windows 
change size 

WORDS 

Z80 
reset • 

July 15, 1986 

4-36, 

2-5, 

• 

4-38, 

Page 7 

2-42 
4-49 
2-42 
4-11 

2-42 
1-2 

4-11 
4-24 
4-27 
4-30 

4-52 

2-2 

2-42 
2-2 

3-10 
4-41 
4-46 

5-3 

2-35 

-- Index --


	0000
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	A-01
	A-02
	A-04
	A-05
	A-06
	A-07
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07

