
m111

Applied
Microsystems
Corporation

ES 1800 Emulator
User's Manual for
80186/188 and 80C186/C188
Microprocessors

------ ____ " ____ ----- ---- -----

llllH
Applied
Microsystems
Corporation

ES 1800 Emulator
User's Manual for
80186/188 and 80C186/C188
Microprocessors

July 1989
p~ 922-oooo3-0.5
Copyright © 1989 Applied Microsystems Corporation.
All rights reserved.

ES 1800 for 8018X/80C18X Microprocessors User's Manual

Table of Contents

PREFACE

Unpacking and Inspection .. i

Service-....................................... ii

Warranties ... ii

Section 1: INTRODUCTION

How to Use This Manual ... 1-1

Introduction to the ES 1800 ... 1-3

System Configuration .. 1-3

System Overview ... 1-6

Steps for Using an ES 1800 Emulator ... 1-7

Software Options ... 1-16

Section 2: GETTING STARTED

Introduction .. 2-1

Emulator Setup .. 2-2

Target System Setup .. 2-4

Power-Up Sequence ... 2-5

Getting Started with ESL ... 2-6

Test Run of System .. 2-7

Section 3: HARDWARE

Emulator Chassis ... 3-1

Pod ... 3-7

Time Stamp Module .. 3-11

l.ogic State Analyzer ~SA) .. 3-12

Ports ... 3-14

Maintenance ... 3-17

Troubleshooting ... 3-20

ES 1800 Emulator Specifications .. 3-21

Table of Contents, continuec

Section 4: PREPARING FOR EMULATION

Terms ... 4-2

Establish Communication with the Emulator .. 4-3

Set Up Target Environment ... 4-7

Run Your Program ... 4-25

Set Up Breakpoints .. 4-28

Isolate a Problem .. 4-45

Modify Your Program .. 4-49

Shortcuts .. 4-54

Section S: BRINGING UP HARDWARE

RAM Tests ... 5-2

Scope Loops ... 5-2

Miscellaneous Special Functions ... 5-3

Section 6: TIME STAMP MODULE

fusta.llation ..•...•............•.........•......................... 64

Using the Time Stamp Module .. 6-6

Examples ...•.. 6-14

Section 7: ALPHABETICAL COMMAND REFERENCE

Introduction ...•.. 7-1

Alphabetical Commaild List•..••....•.........•................................... 7-2

Section 8: ES LANGUAGE

Structure of tlle ES Language .. 8-1

Notes on ESL ... 8-5

Help .. 8-17

wg In Bailll.er••...........•..•.•.....•••.•..•.••.•....••...•...•.•....•.•................•. 8-20

Prompts .. 8-22

Special Modes .. 8-23

Special Characters .. 8-25

Errors .. 8-26

ES Language Error Messages .. 8-27

Table of Contents, contin

Appendix A: ERROR MESSAGES

Target Hardware Error Messages ... A-1

Emulator Hardware Error Messages ... A-4

Target Software Error Messages ... A-5

Appendix B: SERIAL DATA FORMATS

MOS Technology Format ... B-2

Motorola Exorcisor Format ... B-3

In.tel Intellec Format .. B-4

Signetics/Absolute Object File Format ... B-5

Tektronix Hexadecimal Format .. B-6

Extended Tekllex Fonnat .. B-7

Motorola S-Record Format ... B-14

Intel Hex Fonnat ... B-19

Appendix C: POD JUMPER DEFINITIONS

80 l 8X Pod J "Um.pers .. C-1
) 80C18X Pod J"Um.pers ... C-3

Appendix D: APPLICATION NOTES

Appendix E: TIMING SPECIFICATIONS

Table of Contents

PREFACE

. d I . · Unpacking an nspect1on ... 1

Standard Equipment ... i
Optional Equipment ... i

Service .. ii

Limited Hardware Warranty .. ii

Hardware Extended Warranty ... iii

Hardware Service Agreements ... iii

W
arn1ng .. 111

)

PREFA<

Unpacking and Inspection

Your ES 1800 emulator bas been inspected and tested for electrical and mechar
defects before shipping, then configured for the line voltage requested. Although
emulator was carefully packed, check it for possible transit damage and verify that
following components are present.

If you f"md any damage, file a claim with the carrier and notify Applied Microsyst
Corporation. In the United States and Canada, call 800-426-3925 (206-882-20()(
Washington) and ask for Customer Service. Outside the U.S. and Canada, pl
contact your local sales office or representative. Before turning on the emulator, pl
follow the instructions in Section 2, Getting Started.

Standard Equipment

1. Emulator chassis with power cord, includes two boards: main control b
and trace and break board

2. Processor specific equipment: emulation board and either an 80186/188
or an 80C186/C188 pod

3. ES 1800 Emulator User's Manual/or 801 BX and 80C8X Microprocessors

Optional Equipment

1. Overlay memory board (choice of 128K, 256K, 512K, lM or 2M)

2. Symbolic debug

3. Dynamic trace board

4. Time stamp module and manual addendum

5. Logic state analyzer pod

6. SCSI high speed communications: includes SCSI board, terminator re~
network, SCSI cable and manual. PC version includes Emulex IB02 card.

7. ES Driver emulator control software, ES Driver User's Manual and cable

8. Software debugger with associated manuals and cables

9. Compiler, assembler and associated manuals

10. Carrying case

11. Additional processor suppon: additional control board and pod

Preface

Service

Service

H the ES 1800 unit needs to be returned for repairs, please follow these instructions:

In the United States and Canada Call 800-426-3925 (in Washington, 206-882-
2000) and ask for Customer Service. They will
give you a return authorization number and
shipping information.

Outside the U.S. and Canada Please contact your local sales office or
representative for repair procedures.

After the expiration of the warranty period, service and repairs are billed at standard
hourly rates, plus shipping to and from your premises.

Limited Hardware Warranty

Applied Microsystems Corporation warrants that all Applied Microsystems
manufactured products are free from defects in materials and workmanship from date of
shipment for a period of one (1) year, with the exception of mechanical parts (such as
probe tips, cables, pin adapters, test clips, leadless chip sockets, and pin grid array
adapters), which are warranted for a period of 90 days. H any such product proves
defective during the warranty period, Applied Microsystems Corporation, at its option,
will either repair or replace the defective product. This warranty applies to the origina1
owner only and cannot be transferred.

To obtain warranty service, the customer must notify Applied Microsystems
Corporation of any defect prior to the warranty expiration and make arrangements fo1
repair and for prepaid shipment to Applied Microsystems Corporation. Appliec
Microsystems Corporation will prepay the return shipping to US locations. F01
international shipments, customer is responsible for all shipping charges, duties anc
taxes. Prior to returning any unit to Applied Microsystems Corporation for warrant)
repair, a return authorization number must be obtained from Applied Microsysteiru
Corporation's Customer Service Department (see Service section).

This warranty shall not apply to any dcf ect, failure, or damage caused by improper use
improper maintenance, unauthorized repair, modification, or integration of the product.

Prefac'

Hardware Extended Warr1

Hardware Extended Warranty

Applied Microsystems Corporation's optional extended warranty is available for
hardware products for an additional charge at the time of the original purchase.
extended warranty may be purchased to extend the warranty period on mechar.
parts normally restricted to 90 days to a total of one (1) or two (2) years and to ext
the warranty on electrical parts and all other mechanical parts to two (2) years.

Hardware Service Agreements

Service agreements are available for purchase at any time for qualified App
Microsystems Corporation manufactured products. The service agreement covers
repair of electrical and mechanical parts for defects in materials and workmanship.
information, contact your local sales office.

Warning

This equipment generates, uses, and can radiate radio frequency energy and if
installed and used in accordance with the instructions manual, may cause interfere:
to radio communications. It is tempor~ly permitted by regulation and has not t
tested for compliance with the limits of Class A computing devices pursuant to Sub
J of Part 156 of FCC Rules, which are designed to provide reasonable protection aga
such interference. Operation of this equipment in a residential area is likely to Cc

interference. It is up to the user, at his own expense, to take whatever measures 1

be required to correct the interference.

Preface

Section 1

Table of Contents

INTRODUCTION

How to Use This Manual ... 1-1

Introduction to the ES 1800 1-3

System Configuration .. 1-3

System Overview.. 1-6

ES Un.guage .. 1-6

Real Time Operation .. 1-6

Steps for Using an ES 1800 Emulator .. 1-7
Esta.blishin.g Commun.i.cations•............................•............•..•...•.•.......•. 1-9

SCSI High Speed Communications (Optional) 1-9

Setting Up tlle Target Etlvironment ······························••!t••······················· 1-9
Overlay Memory (Optional) ..•............... 1-9

ES Driver Control Software (Optional) ... 1-10

R'Ull .Pt-ograni ..•....•...•.....•...........•.•.•..•.....•..•.•••.•..•.....•......•........•.....••...... 1-10

hl.temal Cloc:k•...•..••...................•..............................•....... 1-10

Break Einulation .. 1-11

Setting Up Breakpoints .. 1-11

Event Monitor System ... 1-11

Logic State Analyzer LSA (Optional) ... 1-12

Isolating the ProbleIIl ... 1-12

Trace Meni.ory .. 1-13

Registers ... 1-13

Modifying Your Program .. 1-13

Using Shoncuts .. 1-14

Symbolic Debugger (Optional) .. 1-14

Bringing up Prototype Hardware ... 1-15

Table of Contents, continuec

Diagnostic Functions ... 1-15
Time Stamp Module (Optional) ... 1-15

Software Options .. 1-16
ES Driver Emulator Control Software ... 1-17
Symbolic Debuggers .. 1-17

GeneProbe Symbolic Debugging (Intel processors only) 1-17
High Level Language Debuggers .. 1-18

VALIDATE/Soft-Scope Debugger (Intel only) 1-18
VALIDA TE/Soft-Scope 286 Debugger (80286 only) 1-19

XDB Source Level Debugger .. 1-19
Compilers and Assemblers .. 1-19

Sectio,

INTRODUCTIOr

This section provides an overview of the manual, an introduction to the ES 1800, an
description of all the hardware and software features and options available with
ES 1800.

How to Use This Manual

The manual is organized as follows:

Section 1: Introduction introduces Applied Microsystem Corporation's ES U
emulator for the 8018X and 80C18X microprocessors. It explains possi
configurations, and provides an overview of how the ES 1800 is used in debuggi
ES 1800 features and options which can be used at various stages of debugging
described.

Section 2: Getting Started provides a checklist for setting up the emulator and ta.I

system, starting and testing the ES 1800, and storing customized system variables
EEPROM.

Section 3: Hardware contains all the information on the ES 1800, the control boai
the rear panel, the pod, and the serial ports, as well as information on maintenance :
troubleshooting.

Section 4: Preparing for Emulation explains the steps required to use the ES 180(
debug a problem in software or hardware. It is organized sequentially, taking :
through establishing communications, setting up your target environment, running y
program, breaking emulation, examining the results and making modifications to y
program.

Section S: Bringing Up Hardware shows you how to use the ES 1800 when brin~
up target hardware.

Section 6: Performance Analysis, explains how to decide where to optimize)
code based on time stamp information.

Section 7: Alphabetical Command Reference provides an alphabetical reference
all emulation commands.

Section 8: ES Language is a reference for the structure of the language that cont
the ES 1800, with explanations of the help menus, prompts, special modes
characters, and language related error messages.

Introduction

How to Use This Manual

Appendix A provides explanations of the hardware error messages and serial· date
formats.

Appendix B describes the object module formats available for uploading anc
downloading files.

Appendix C describes jumpers on the 8018X pod which can be used to control chi1
selects and clock circuitry.

Appendix D lists the available application notes.

Appendix E provides the ES 1800/80186 AC timing specifications.

1-2 I ntroducti<.

)

Introduction to the ES le

Introduction to the ES 1800

The ES 1800 emulation system allows you to analyze and control a target environm1
consisting of hardware or software, in real time. To use the ES 1800 with your taJ

hardware, remove the target system's microprocessor and plug in the ES 1:
emulator. Your system uses the emulator in place of the microprocessor and beha
as if the target microprocessor were there. The ES 1800 emulator also allows ymi
debug software without being physically connected to the target system. In ·
configuration, the ES 1800 uses its own real-time clock feature combined with ove1
memory capabilities.

During the integration and debugging process you can read and write to
microprocessor registers or memory locations and execute programs contained in
target system or overlay memory. A program will run until you manually stop it c
encounters a user-defined stop condition. This predefined condition can be in the fom
single-step operation statements or more complex statements.

Information in this manual applies to the Intel 8018X and 80C18X microproces:
only. For more complete information on these chips, refer to the Intel hard1-11
reference manuals: iAPX 86188, 1861188 User's Manual , and Embedded Contro
Handbook, Volume II, 16-Bit, published by Intel Corporation.

System Configuration

The ES 1800 can be used to help integrate and debug software and hardware. T1
are several configurations depending on what stage of integration you are at. and v
debugging software you are using.

In each configuration, there is a target system, which can be hardware, software al
(if you are using the emulator's overlay memory to debug software), or a combinatio:
the two. The target system is the environment you intend to emulate.

The ES 1800 emulator consists of a chassis which houses the control boards and
ES 1800 pod which houses the emulating microprocessor. The emulator can
controlled from a dumb terminal or a host computer, or you can use a software pacl
on the host computer to control the emulator. These two basic environments
described below.

ESL Control

Introduction

In this environment (ref er to diagram in Figur·
1), you use the ESL language to control
emulator. Access to the emulator is either v:
dumb terminal, or via a terminal emula
program on your host computer, such as kerr.
tip or cu . This environment requires

System Configuration

ES 1800 and a either a dumb terminal or a host
computer connected to the ES 1800 terminal
port.

When used with a dumb terminal. this
configuration is useful for debugging target
systems with software already installed or short,
hand-entered routines. When used with a host
computer, you can load data from the host
computer's data files. By attaching a printer, data
and code from the target system can be printed
out in assembly language. You can also print all
emulator commands and their results.

Figure 1-1: ES 1800 Controlled via ESL

1-4

r.-~11~
l~IW
~~~ 

TERMINAL 

TERMINAL 

POD 

----- ---

:-i~ ·~I 

11illl1111m11111111111~ 
"B f!!Jl§MffiZa g 

HOST 

Host Computer Software Package Control 
The ES 1800 can also be totally controlled by a 
host system. This hosted software environment 
requires special host resident software: either the 
ES Driver emulator control software, or a high 
level language debugger. 

Introduction 



System Conjigura 

ES Driver emulator control software prov: 
symbolic debugging, and a convenient ID{ 

driven interface to the ES 1800. The various l 
level language debuggers have been integr: 
with the ES 1800, providing a flexible integra 
environment that provides high and low le 
language control and debugging, and still all1 
direct access to the ES 1800 via ESL. 

ES Driver control software and high 11 
language debuggers are available from App 
Microsystems for most languages and l 
systems. For a complete list of softv 
products that work with the 8018X and 80C 
processors, see the "Software Opti< 
information at the end of this section. 

Figure 1-2: ES 1800 Run Via Host Computer Software 

l@@I 
• D 

Introduction 



System Overview 

System Overview 

The ES 1800 has two basic operational modes: emulation and pause. Pause mode is 
generally used to set up the system configuration and to display information after 
exiting emulation. 

Emulation. or run mode, means that the microprocessor in the ES 1800 pod is running 
a program in the target system. Emulation stops when (1) you stop it, (2) user-defined 
breakpoints are enabled and occur, (3) you reset the emulator with <ctrl-z>, or (4) 
errors occur in the target system. During run mode, you have access to commands 
which let you view the target system. 

When you manually stop emulation or a breakpoint is reached, you enter pause mode. 
In pause mode, all commands for viewing the target system are available, including 
commands to view the trace history of performance of the microprocessor. A command 
language allows you to start emulation and leave emulation when the desired 
combination of events are detected in the target. 

ES Language 

The ES 1800 uses its own command language called ESL, Emulator Standarc 
Language. To take full advantage of the ES 1800, you must understand the general 
concepts of the ESL language. 

The ES 1800 operates in response to command statements composed of commanc 
mnemonics and, for some commands. arguments. The command statements form ~ 
control language, similar to high-level computer languages. 

An argument to a command is an additional value entered as part of the commanc 
sequence, such as an address range or data value. Arguments can consist of singl( 
values, expressions, or lists. Like a computer language, the operators and values car 
be combined to form complex expressions. Statements have a maximum length of 7t 
characters and can be extended by the use of macros. 

The ES language contains registers, counters, and conditional statements allowing y01. 
full control over the operation of the target system. To complete the language, a full se 
of error messages is provided for (1) target hardware, (2) ES 1800 hardware, (3: 
target software, and (4) ESL command language syntax. 

Real Time Operation 

Since the pod processor is identical to the target microprocessor, the target systen 
runs in real time. No wait states are inserted by the ES 1800 emulator during run mode 
while accessing code, memory or 1/0 in the target. 

1-6 I ntroductio1 



Steps for Using an ES 1800 Emula 

Steps for Using an ES 1800 Emulator 

This section explains the process of using an emulator, and describes the main featu 
and optional accessories used at each step. Detailed explanations of each step 
provided in Section 4, Preparing for Emulation. Since debugging is an iterative pr()C( 
these steps are meant only as a rough sequence of typical tasks, rather than a step-· 
step guide. 

fu order to provide a complete embedded system development environment, Appl 
Microsystems Corporation regularly adds new software and hardware options for 
ES 1800, so this list may not be comprehensive. Please contact your local sales oft 
or representative if you are interested in extending the capabilities of the ES 1800 
ways not listed here. Phone numbers of all our offices are on the last page of 1 
manual. 

1. Establishing communications with the emulator. 
• Features: 

Two convenient setup menus 
Communications setup can be saved between sessions 
Variety of configurations supponed 
Two serial pons 

• Options: 

SCSI high speed communications 

2. Setting up the target environment . 
• Features: 

Built in download commands 
Convenient commands for manipulating information in memory and 
space 
Convenient access to registers, including PCB registers 

0 Options: 

Overlay memory 
ES Driver control software 

3. Running your program from overlay or target memory. 
• Features: 

Clock choices 
Choice of run commands 
Force special interrupt to enable safe shutdown of equipment 

Introduction 



Steps for Using an ES 1800 Emulator 

1-8 

4. Setting up breakpoints. 
• Features: 

Event Monitor System 

• Options: 

Logic State Analyzer Pod 

5. Isolating a problem by examining the trace memory, checking registers 
or single stepping. 
• Features: 

Trace memory 
Registers 

• Options: 

Dynamic trace 
Time Stamp Module 

6. Modifying your program, either in the target or overlay memory. 
• Features: 

Built-in single line assembler 
Disassembler for trace and memory 
Single address and block memory manipulation commands 

7. Using shortcuts. 
• Features: 

Repeat commands, macros, general purpose registers 
Saving setups between sessions for multiple users 

• Options: 

Symbolic debugging 

8. Bringing up prototype hardware. 
• Features: 

Special functions (RAM tests, scope loops ... ) 

9. Measuring code performance. 
• Options: 

Time stamp module 

I ntroductio 



\ 

Steps for Using an ES 1800 Emu[, 

Establishing Communications 

How you establish communications depends on the configuration of your debug1 
environment: whether you are using the ES 1800 from a dumb terminal, from a l 
computer without a software debugger, or controlled by a software debugger on 
host computer, and whether you are using serial or SCSI communications betVI 
your host computer and the ES 1800. 

System setup is accomplished from two menus which contain all exte 
communication variables and the control switches for emulation. Both setups car 
saved to EEPROM and automatically loaded at power-up. 

SCSI High Speed Communications (Optional) 

Standard communications is via an RS-232 serial pon, at speeds up to 19,200 b 
SCSI communications provides faster download speeds. Data can be transferre1 
rates of up to 1.5MB/second. 

Setting Up the Target Environment 

) This step includes downloading your code to either target memory or overlay men 
verifying that the program is where you want it and making sure that everything i: 
up correctly to begin emulating. 

The ES 1800 provides convenient commands for all these tasks, including: 

- soft switches to control using the emulator with target hardware 

overlay memory, so that you can run code. before hardware is 
available or use a combination of existing hardware and new code 

- memory commands to examine and compare memory regions in 
overlay and target memory 

Overlay Memory (Optional) 

Overlay memory is ES 1800 working memory, which can be used in a variety of' 
When debugging software without target hardware, the target program is loaded 
overlay memory, where it can be edited and positioned in the target system ad 
space as desired (null target mode). The program executes in real time as if it re: 

Introduction 



Steps for Using an ES 1800 Emulator 

totally in the target system. Overlay memory is also useful when a target is connected, 
for loading portions of software, making patches, and checking programs not yet 
committed to PROM. 

The overlay memory is RAM with appropriate address and control logic. Overlay 
memory comes on a separate board that is inserted into the ES 1800 chassis. You 
have a choice of a 128K, 256K, 512K, IM or 2M Overlay Memory board. Overlay is 
mappable in 2KB segments. Each segment can be assigned one of four attributes: 
target, read/write, read-only, or illegal. 

When a segment of memory is mapped, program accesses in that memory range are 
directed to the overlay instead of the target. Overlay memory accesses occur in real 
time at speeds up to 12 MHz. 0-15 wait states can be· optionally inserted for overlay 
access. 

ES Driver Control Software (Optional) 

ES Driver software provides a simple, menu-driven interface to the ES 1800. 
ES Driver provides convenient menu access for common tasks such as configuration, 
uploading and downloading files and diagnostics, and allows transparent access to the 
full range of ESL commands. It also includes on-line help for each function, simplifying 
operation for new users. 

Run Program 

You can run your program from either target memory or overlay memory. If you are not 
using a target, the ES 1800 provides an internal clock. There are a variety of run 
commands which you can use, depending on what information you are looking for. 

Internal Clock 

When there is no target system, you may select the internal clock feature, which place~ 
the ES 1800 in null target mode. Overlay memory can then be used to develop code ru 
if a target system were attached. 

1-10 I ntroducti01 



Steps for Using an ES 1800 Emul 

Break Emulation 

Emulation can be halted in three ways: by you, by the Event Monitor System, or 1 
program error. You can enter a command to stop emulation at any time the emulat< 
running. You can set up the Event Monitor System to break emulation at a partic 
program state. If your target program commits an access or write violation in ove 
memory, emulation breaks automatically. The force special interrupt command offe 
way to safely stop equipment that requires a special shut-down routine. 

Setting Up Breakpoints 

The primary way you determine where to break emulation is by setting up the powc 
Event Monitor System to detect a particular program state, and then perform a spe 
action. 

Event Monitor System 

The Event Monitor System is structured in three basic units: 

Events 

Actions 

WHEN/THEN Statements 

Events identify specific target conditions. " 
these conditions are encountered, actions cm 
performed. 

Actions are what the emulator does wher 
event is detected. There are many actions 
the event system can take, including stan 
features such as forcing a special interrup 
jump to a soft shutdown routine before stop 
the target program, sophisticated trace co 
and breaking emulation. 

Statements coordinate the events and actions. 

You define statements that specify single or multiple events that are lo. 
combinations of address, data, status, counter, and optional logic field states. V 
those events are encountered in the target system program, the ES 1800 can t 
emulation, trace specific sequences, count events and trigger outputs, allowing ye 
analyze the cause-effect relationship established by the event/action seque 
defined. 

There are four event groups which provide the logical structure necessary for trac 
deeply nested bugs. This structure lets you debug any problem you can imagine, usi 
combination of events and actions. 

Introduction 



Steps for Using an ES 1800 Emulator 

Figure 1-3 shows the structure of the Event Monitor system. 

Figure 1-3: Figure 1-3. Event Monitor System Structure 

Events 
(input) 

CPU Bus Comparators 

AC1 
AC2 
DC1 
DC2 

Address 

Data 

Status 

Logic 
State 
Probe 

S1 
S2 

LSA 
Count 
Limit 

Logic State Analyzer LSA (Optional) 

Actions 
(output) 

WHEN!THEN 
STATEMENTS Group 

Select 

Counter 
Control 

The optional logic state analyzer pod (LSA) allows tracing of additional signals in the 
target system. It provides 16 additional input lines, giving access to signals other than 
the normal address, data, and control signals of the microprocessor. It also provides 
one trigger output line, which can be used with an oscilloscope or with another emulatm 
for multiprocessor development. 

In the simplest form, specific bit patterns at the LSA inputs can cause a breakpoint 
The LSA comparator can detect arbitrarily complex event specifications as well. This b 
useful when monitoring (1) buffers suspected of failure, (2) decode logic, (3) memo!) 
management circuit translations, and (4) asynchronous external events. 

Isolating the Problem 

Breakpoints are used to stop program execution at specific times in order to trad 
down a hardware or software problem. After a break you can disassemble the tract 
memory, look at the LSA bits in the raw trace, check the CPU register values, or begir 
stepping through your code. 

1-12 IntroductioJ 



Steps for Using an ES 1800 Emu/ 

Trace Memory 

Trace memory contains a history of the target system program's execution. 
memory can record 2046 bus cycles and can be displayed in raw bus cycle dat 
disassembled into instructions. All address lines, data lines, processor status li 
and 16 bits of external logic input are traced. If something unexpected happens du 
program execution, trace memory can be reviewed to determine the sequenc( 
instructions executed by the CPU prior to the unexpected event. When usec 
conjunction with the trace disassembler, hardware and software problems can 
quickly tracked down. 

The Dynamic Trace feature of the ES 1800 allows you to read trace while the targ, 
running. Dynamic Trace is a standard feature in performance packages, and is opti 
otherwise. With Dynamic Trace, you can trace in target systems which require 
program to remain running, such as control systems. With targets using mul 
multiprocessors, dynamic trace lets you examine trace from one processor wit 
shutting down all processors. 

If you have the Dynamic Trace feature, you can view trace without stopping emula 
Without the Dynamic Trace feature, you can stop the program to read trace with e 
an asynchronous stop or by using the Event Monitor System to stop at the ( 
program state you are interested in. 

Registers 

The registers can be logically divided into five groups: 

1. Microprocessor registers 

2. General ES 1800 registers 

3. Target Peripheral Control Block (PCB) registers, including registers 
only in iRMX mode and registers used in non-iRMX mode 

4. Event Monitor System registers 

5. 80C 18X enhanced mode registers 

These registers can be viewed and modified using the ES 1800. Each register ac 
either integer values or a choice of integer, range and don't care values. Registen 
be displayed in your choice of base, and can be saved between emulation sessions. 

Modifying Your Program 

Once you have run your program, stopped at a particular place, and isolated the pro 
by looking at trace memory, the next step is to design and test possible solutions ti 
problem. The ES 1800 emulator lets you easily modify memory in either your targ 
the emulator overlay memory to make changes to your program or data. 

Introduction 



Steps for Using an ES 1800 Emulator 

Using Shortcuts 

There are many shortcuts to shorten your setup time and reduce the number o1 
keystrokes you must use. 

Symbolic debugging The symbolic debug option allows you to assigr 
frequently used values to symbol names. These 
can either be the same symbol names you use ir 
your program, or an easy-to-remember name tc 
use while debugging. Symbols can be used ru 
arguments to all commands. 

Repeat commands Repeat commands let you repeat a command line 
a specified number of times or indefinitely. 

Macros Up to 10 macros can be set up for lists o: 
commonly used commands or expressions. 

General Purpose Registers You can set these registers to commonly usec 
addresses or expressions, and then use them a 
arguments to commands. 

Saving setups Emulation setups for two users can be savec 
between sessions. There are six categories o 
information which may be saved separately: th 
setup menu, emulator registers, Event Monita 
System WHEN{fHEN statements, overlay ma1 
software switch settings and macros. 

Symbolic Debugger (Optional) 

The symbolic debug option allows you to assign frequently used values to symbc 
names that make sense. Features include: 

1-14 

1. Reference to an address by a name instead of a value. 

2. Display of all symbols and sections with their values. 

3. Editing (entry and deletion) of symbols and their values. 

4. Automatic display of symbolic addresses during disassembly. 

5. Section (module) symbols that can be used as range arguments and fc 
section offsets in trace disassembly. 

6. Upload and download of symbol and section definitions using standard seri• 
formats. 

Introductic 



Steps for Using an ES 1800 Emu/, 

Bringing up Prototype Hardware 

The ES 1800 includes a set of commands specifically used for bringing up ta 

hardware, called the diagnostic functions. 

Diagnostic Functions 

Diagnostics available in the ES 1800 emulator include RAM/ROM tests and S< 

loops. RAM test routines verify that RAM is operating properly. They can be rw 
the target or ES 1800 overlay memory and may be executed in either byte or v 
mode. ROM tests include a built-in CRC algorithm. 

High speed memory and IJO scope loops for troubleshooting with an oscilloscope 
built into the ES 1800 firmware. They can be used for locating stuck address, c 
status or control lines, and generating signatures using signature analysis equipment. 

The firmware that generates the scope loops is optimized for maximum speec 
execution. This short cycle time allows the hardware engineer to review the timin 
pertinent signals in the target system without using a storage oscilloscope. The s1 
loops can be executed in either byte or word mode. 

Time Stamp Module (Optional) 

The Time Stamp Module adds performance analysis capabilities to the ES 1800. 
module is standard with performance packages, and optional otherwise. With it, 
can measure the elapsed time your program spends in a module, outside of a modu 
between modules for up to 4 modules at once. This helps provide a picture of VI 

your program spends the most time, so you can choose the areas which benefit • 
from optimization. 

The Time Stamp Module also allows you to count the number of times a modu· 
address range is accessed in order to troubleshoot iteration problems and help 
optimization decisions. 

You can measure the time from a hardware interrupt to a software service routitl 
direct electrical connection between the interrupt line on your target processor anc 
Time Stamp Module lets you avoid delay in measuring interrupts. 

Introduction 



Software Options 

Software Options 

You have a choice of software options, including emulator control software, symbolic 
debuggers, high level language debuggers and a wide range of compilers and 
assemblers. Applied Microsystems Corporation's goal is to provide you with a 
complete microprocessor development environment for both software and hardware 
design and debugging. 

Figure 1-4: Microprocessor Development Environment 

Unified Data Base 

The key to this development environment is the shared information provided in the 
object module format. Applied Microsystems products use a variety of object module 
formats, including most popular standards. However, to choose a complete 
development environment, your compiler and assembler must produce an object module 
format that the assembly level or high-level language debugger and ES 1800 emulat01 
can use. 

Software options for Intel 16-bit microprocessors include: 

• ES Driver Emulator Control Software 

• Symbolic debuggers 

GeneProbe Symbolic Debugging 

1-16 Introductio1 



• High level language debuggers 

VALIDA TE/Soft-Scope Debugger 

• VALIDATE/Soft-Scope 286 Debugger 

XDB 

• Compilers and Assemblers 

ES Driver Emulator Control Software 

Software Opti 

ES Driver software provides a simple, menu-driven interface to the ES 1800, ' 
convenient access for common tasks such as configuration, uploading and downloac 
files and diagnostics, and allows transparent access to the full range of 1 
commands. It also includes on-line help for each function, simplifying operation for 1 

users. 

An RS-232 cable and a manual are provided with ES Driver. The manual depends 
the host computer: ES Driver/PC User's Manual and ES Driver/Sun User's Manual. 

Intel: 808X, 80C8X, 8018X, 80C18X, 8028€ 
Microprocessors supported: Motorola: 68000/08, 68010, 68020 

Zilog: zaoo 1 aaoo2 

Hosts supported: PC, Sun 

Object module formats supported: Extended Tekhex, Intel OMF, Intel Hex, 
Motorola S-Records, Microtec 

Symbolic Debuggers 

GeneProbe Symbolic Debugging (Intel processors only) 

The GeneProbe debugger provides debug support for assembly level problems invol1 

CPU registers and memory or 1/0 ports. It has been integrated with the ES 1 
emulator, in order to provide access and control of your target. The debugger disp 
trace history and memory disassembly on a split screen. You can use high-I 
language symbols, line numbers, procedure names, code labels and variable name 
place of absolute addresses. 

Introduction 



Software Options 

GeneProbe executes on the IBM PC and compatibles to debug programs written in C, 
PL/M, FORTRAN and assembly language. 

Microprocessors supported: Intel: 808X, 80C8X, 8018X, 80C18X 

Hosts supported: PC 

Object module formats supported: Intel OMF 

High Level Language Debuggers 

VALIDATE/Soft-Scope Debugger (Intel only) 

The VALIDA TE/Soft-Scope debugger includes two versions: an integrated tooJ 
designed to work with the ES 1800, and a simulator version. Both versions provide high 
level language, assembly level and symbolic debugging. The program allows easy 
access to high level language data, such as structures, arrays and dynamic variables. 

The trace display is available in many forms, including display of source lines only, 
source lines with disassembled instructions and source lines with all associated 
machine cycles. 

A format converter called MSOMF is included with V ALlDATE/Soft-Scope, so that 
you can use the Microsoft C compiler. Other linkers are also available which let you use: 
a variety of other popular C compilers. 

Microprocessors supported: Intel: 808X, 80C8X, 8018X, 80C18X 
80286 (real mode only) 

Hosts supported: PC 

Object module formats supported: OMF 86 

1-18 I ntroductioJ 



Software Opti 

VALIDA TE/Soft-Scope 286 Debugger (80286 only) 

The VALIDA TE/Soft-Scope 286 debugger provides protected-mode support for 
80286, with all the same features as VALIDATE/Soft-Scope. 

Microprocessors supported: Intel: 80286 (protect mode only} 

Hosts supported: PC 

Object module formats supported: OMF 286 

XDB Source Level Debugger 

The XDB debugger provides high-level language support for C and Pascal for t 
Motorola and Intel microprocessors. You can step over functions, and set breakpo 
on line numbers or procedures. When a breakpoint is reached, you can use 
emulator's trace memory to analyze exactly what led up to the breakpoint. X 
includes a powerful assertion feature to specify conditions to be tested after execu 
of each high level language statement. 

Intel: 808X, 80C8X, 8018X, 80C18X 
Microprocessors supported: 80286 (real mode only} 

Motorola: 68000/08, 68010, 68020 

Hosts supported: PC, Sun, Apollo, VAX (UNIX and VMS} 

Object module formats supported: Intermetrics 

Compilers and Assemblers 

A wide range of compilers and assemblers are available through App 
Microsystems. Please consult a current price list, or contact your sales office 
representative for information. 

Introduction 





Section 2 

Table of Contents 

GETTING STARTED 

Introduction .................................................................................................. 2-1 

Emulator Setup ............................................................................................ 2-2 

Target System Setup .................................................................................... 2-4 
Emulating in Targets with Attached CPUs (80C18X) ............................. 2-5 

Power-Up Sequence ..................................................................................... 2-5 
Target System Present .............................................................................. 2-5 
No Target System .................................................................................... 2-6 

Getting Started with ESL ............................................................................ 2-6 

Test Run of System ...................................................................................... 2-7 

1. Initialize The ES 1800 ......................................................................... 2-7 

2. Map Overlay Memory .......................................................................... 2-8 
3. Test RAM ............................................................................................ 2-9 

4. Enter Program ...................................................................................... 2-9 
5. Verify The Program ............................................................................. 2-9 
6. Run The ES 1800 ............................................................................... 2-10 

7. Stop The Program .............................................................................. 2-10 

8. Display The Trace Buffer .................................................................. 2-10 

9. Set A Breakpoint ................................................................................ 2-10 

10. Initialize Peripheral Control Registers ............................................. 2-11 





Sec tic, 

GETTING STARTE 

Introduction 

This section provides a step-by-step guide for setting up the ES 1800 and ta 
system, starting and testing the ES 1800 and storing customized system variable: 
EEPROM. You should bring up the ES 1800 in stand-alone mode, using RS
communications to verify that it is working before trying to set it up to work wi 
software debugger or with SCSI communications. 

For specific getting started information on using the ES 1800 controlled from a 
computer via ES Driver or a software debugger, please see your appropriate soft, 
manual. 

Detailed information on the hardware ref erred to in this section can be foum 
Section 3, and complete descriptions of the steps can be found in Section 4. 

For a complete description of commands referenced, see Section 7. 

The instructions provided in this section apply to ES 1800 emulators purchased in : 
or later. If your ES 1800 was purchased before 1988, and has not been brought up t< 
current revision, there will be minor variations. Please follow the instructions pro~ 
at the time of purchase. 

NOTE 

If you are using the 80C186/Cl88 pod, you must properly configure the 
pod with several jumpers before attempting operation. Failure to properly 
set the jumpers results in emulator failure. See the 80C186/C188 
addendum (Applied Microsystems part number 923-00026-0x) for 
instructions. There are also five jumpers in the 80186/188 pod. See the 
801861188 Pod Jumpers portion of this section for more information on 
these jumpers. 

Getting Started 



Emulator Setup 

Emulator Setup 

2-2 

1. Refer to page 3-1 and verify that proper grounding and power requiremenu 
have been met. 

2. Verify that the emulator has been configured for the correct voltage b~ 

checking the fuse on the back of the ES 1800. Pull out the fuse holder: you'l 
see one functional fuse and one spare fuse. The functional fuse should be ~ 
amps for 115 volt, and 1.5 amp for 220 volt. Replace the fuse holder with the 
correct fuse in place. 

3. Remove the front cover of the ES 1800 by turning the two release screw! 
counterclockwise. The pod and LSA pod may need to be unplugged in orde 
to do this. 

4. If you are not using SCSI communications, verify that the MCB controlle 
board is in the top slot of the ES 1800 chassis. (See pages 3-2 and 3-3 fo 
descriptions of each board and board positions). 

If you are using SCSI communications, the SCSI board should be in the to] 
slot, and the MCB controller board should be in the second slot. 

5. Verify that the trace/break board is in the third bus slot of the ES ism 
chassis. 

6. If you are using overlay memory, verify that the RAM overlay board i 
inserted under the trace and break board. Note that the 2MB overlay boar 
requires a slave board. 

7. Verify that the correct ES 1800 board for your target microprocessor is in th 
bottom slot. 

8. Verify that all boards are firmly seated. 

9. Set the thumbwheel switch on the MCB controller board for your particul; 
system variables. See page 3-4 for switch settings. 

System default variables in switch position 0 are: 

- 9600 baud - 8-bit word length 
- One stop bit 
- Full duplex 

- No parity 
- No echo 

- Terminal control - XON and XOFF are recognized 

- 8th data bit set to 0 (space) 

10. Verify that the three-position toggle switch on the MCB controller board 
in the center position. 

11. Set the 80186 pod jumpers as appropriate for your target. The jumpers a 
located in the pod, and you can get to them by removing the four screws c 
the bottom of the pod to open the cover. Read the 80186 Pod Jump 

Getting Start, 



Emulator Se, 

Descriptions section below to determine if you need to change any of 
jumpers from their factory-configured positions. 

80186 Pod Jumper Descriptions 

There are five jumpers in the 80186 pod. P.ach jumper sets different cl< 
and chip select circuitry operation. Each jumper is described below. 
JPI Determines whether DT/R- is high (2-3) or low (1-2 defa1 

in PAUSE mode. DT/R- controls the direction of data fl 
through external 8286/8287 data bus transceivers. 

JP2 Determines whether chip selects (UCS, LCS, MCS0-3, PC: 
3) are allowed out to the target in PAUSE mode. 

JP2 1-2 

JP2 2-3 

Allows chip selects to the target in PAL 
mode. 

Allows chip selects to the target only in R 
mode or during peek/poke cycles. 

JP3 Determines whether chip selects (PCS2-6) are allowed 
to the target in PAUSE mode. 

JP3 1-2 

JP3 2-3 

Allows chip selects to the target in PAl 
mode. 

Allows chip selects to the target only in R 
mode and during peek/poke cycles. 

JP4 and JPS Determine whether the target clock bypasses the cl 
conditioning circuitry in the pod. You can bypass 
conditioning circuitry if the target clock is generated by 3.I1 

in order to decrease the "clock-in to clock-out" delay. If 
clock is generated by a crystal, use the conditioning circuitry, 

Getting Started 

JP4 1-2 with 
JPS 1-2 

JP4 1-2 with 
JPS 2-3 

JP4 2-3 with 
JPS 1-2 

All target clock conditioning circuitry is used. 

Target clock uses US7 (74HC04) and bypa 
other conditioning circuitry. 

Bypasses all clock conditioning circuitry. Ta 
clock goes through Kl relay and directly to 
pod CPU. 



Target System Setup 

JP4 2-3 with 
JP5 2-3 Invalid 

12. Replace the front panel and attach the pod for the microprocessor you are 
emulating. The pod must be connected to the ES 1800 even if you are not 
connecting it to a target system. 

13. Check that the pod cable is securely connected. 

14. OPI'IONAL: Connect optional accessories such as the Logic State Analyzer 
pod or Time Stamp module. (see Section 3 for details) 

15. Connect the RS232 cable to the TERMINAL port and to your terminal. For 
other setups, please see Section 4, Serial Communications. 

16. Verify that the RS232 baud rates and data requirements are set the same on 
both the ES 1800 and the terminal. See page 3-4 for thumbwheel switch 
settings. 

17. If using communications without a modem, you may need a null modem 
cable. If you purchase a null modem cable, it is likely to have the following 
configuration: 

Figure 2-1. Null Modem Cable Wiring Diagram 
1 1 
2 2 
3 3 
4 4 
5 5 
6 

·><~ 
6* 

8 8* 
20 20* 
7 7 

Check the specifications in your terminal manual before reversing the pins. 

* Note that pins 6, 8, and 20 are not used and are unaffected by the cable 
configuration. 

Target System Setup 

24 

1. Check that the target has a 68 contact leadless chip carrier socket. Ar. 
adapter, Part No. 210-00023-00, is available for plastic leaded chip carriers. 

2. Using an ohmmeter, check that a good ground exists at the microprocesso1 
socket. Measure from pin 26 and 60 to power supply ground on the targe' 
board. 

3. Verify that all the power supplies in the target system are functionin~ 
properly. 

Getting Starte£ 



Power-Up Seque, 

4. Check for a valid clock signal at the target microprocessor socket. 

5. Tum off target system power and ES 1800 power. 

6. Plug in the probe tip. (See Section 3 for probe tip precautions.) 

Emulating in Targets with Attached CPUs (80C18X) 

When your target CPU is soldered directly to the PCB, it is necessary to place 
attached CPU in ONCE mode before emulating. The ONCE mode on the 80Cl 
processor causes all CPU output lines to be tristated. You can enter ONCE mode 
pulling the LCS- and UCS- signals low during a reset. 

To do this with the 80C18X emulator, follow these steps: 

1. Power off the target and emulator. 

2. Attach the 80C18X emulator pod to the target CPU with the special adaptor. 

3. Jump the LCS- and UCS- lines from the target CPU to target ground. 

4. Apply target power. The target-mounted CPU will come up in ONCE mode. 

5. Apply emulator power and wait for the normal prompt. 

6. Remove the jumpers from the target UCS- and LCS- pins. 

NOTE 

1. The procedure above assumes your target asserts a power-on reset to 
80C18X. 

2. Any emulator operations which cause a target reset, such as ON CK, 1 

CK. or RST will cause the target to exit from ONCE mode. If you wru: 
perform such operations and remain in ONCE mode, set the LCS- and U 
jumpers as described above, set the PCS soft-switch off, and enter PAl 
mode to perform the reset operations. Never leave the LCS" and U 
jumpers attached during run mode. 

A target system generated RESET during RUN mode will bring the 
CPU out of ONCE mode and into immediate contention with the 
emulator, causing unpredictable results. 

Power-Up Sequence 

Target System Present 

1. Tum on the target system. 

2. Tum on the ES 1800. 

3. Reset the target system. (<ctrl-z> default) 

Getting Started 



Getting Started with ESL 

NOTE 

When you tum off the emulator, you should also tum off power to your 
target. The target VCC is fed to the pod and emulator, and can cause 
heat problems in the emulator if the target is left on. 

No Target System 

1. Verify that the pod is connected to the ES 1800. 

2. Be sure there is nothing in contact with the probe tip. 

3. Power-up the ES 1800. 

4. The power-up banner should be displayed. Select the internal clock source 
by typing Y. If a "NO TARGET POWER" error message appears, then 
type <ctrl-z> to reset the emulator. The power up banner will be 
redisplayed. Type Y again and the emulator prompt (>)will appear. 

When you power-up the ES 1800, all registers, maps, event clauses, and system 
variables are either cleared or set to default values. Examine the SET and ON menus 
(see Section 7) and configure the system to your liking. Your special setup can then be 
stored in EEPROM (see the SA V command in Section 7). By setting the thumbwheel 
switch on the MCB controller board to the proper position, your set-up can be 
automatically loaded on power-up, (see page 3-4), or you can load it manually with the 
LD command. 

The ES 1800 emulator system is now running and ready to accept ESL commands. 

Getting Started with ESL 

ESL is extremely easy to use. The rest of this section shows you exactly which ESI 
commands to type as you use your ES 1800 for the first time. 

If the ESL command interpreter detects an illegal statement, it beeps and places ; 
question mark under the command line at the position the error was detected. EnterinJ 
a ? following an error will cause the appropriate error message to be displayed. 

There are two pages of help information available. Enter a ? as the first character o 
a command line to display the first help page. This page gives examples of the mos 
commonly used commands and their meanings. The second page describes the Even 
Monitor System registers and commands. Enter a <return> at the end of the first pag1 
to move to the second page. The menus are shown on pages 8-18 and 8-19. 

Information on switch settings, configuration settings, and special functions is availabl1 
without using the? help menus. 

2-6 Getting Starte, 



Software Switches 

Communications Set-up 

Special Diagnostic Functions 

Test Run of Sys 

Enter either ON or OFF to display the cur 
settings and definitions of all software switc: 
(See ON in Section 7.) 

Enter SET to display the current configura 
settings and possible values. (See SET 
Section 7.) 

Enter SF to display a list of the available spe 
functions (RAM/ROM tests, scope loops, c 
(See SF in Section 7 .) 

For complete information on ESL syntax, see Section 8. 

Test Run of System 

Use this test guide after the system configuration is correct and the ES promi: 
displayed ( > ). 

A system test run consists of the following 9 steps: 

1. lnitialire ES 1800. 

2. Map overlay memory. 

3. Test overlay memory. 

4. Enter a program. 

5. Verify a program. 

6. Run the ES 1800. 

7. Stop the program. 

8. Display the trace buff er. 

9. Set a breakpoint. 

10. Initialize PCB registers. 

Titis test requires an optional overlay memory board, but does not require a t 
system. 

If you suspect trouble with the ES 1800 hardware, call Applied Microsys 
Corporation Customer Service at 800-426-3925 for assistance. 

1. Initialize The ES 1800 

Enter the following to initialize the ES 1800 for two users. 
>SAV 1,0 The following commands apply to user 0 

Getting Started 



Test Run of System 

>SAV 

>SET l,l 

>SAV 

>SET 1,0 

Save setup for user 0. 

The followinq commands apply to user l. 

Save setup for user l. 

The followinq commands apply to user 0. 

This will ensure that all necessary emulator firmware parameters have been loaded intc 
the EEPROM on the MCB controller board. These paramters will be used anytime th~ 
MCB rotary switch is positioned to select EEPROM control. This EEPROM 
initialization should be done whenever: 

1. The emulator board is changed to a different ESL revision or processo1 
family. 

2. At initial power-up of a newly purchased or rented emulator. 

3. If the emulator experiences communication anomalies with the hos 
computer. 

The EEPROM initialization must be done with the MCB controller board switch in one 
of the factory default positions (e.g., 0 for 9600 baud, or B for 19.2 Kbaud) 

This operation can take up to four minutes if major changes have been made. Do no 
interrupt the operation. 

2. Map Overlay Memory 

Map all of the overlay memory available to the ES 1800. 
>MAP 0 to XXXX XXXX is the endinq address (in hex) o 

the amount of overlay memory installed. 

The following table provides a quick reference for hex values corresponding to overla 
memory sizes: 

Hex Value 

lFFFF 

3FFFF 

7FFFF 

OFFFFF 
lFFFFF 

For example, to map 128K, enter: 

>MAP 0 to lFFFF 

2-8 

128K 

256K 

512K 

lM 
2M 

lFFFF is 128K in hex. 

Getting Start~ 



Test Run of Sy~ 

3. Test RAM 

Test all overlay memory installed by entering: 

>SF l.,0 to XXXX XXXX is the ending address (in hex) 
the amount of overlay memory installed. 
e.g., SFl,O to lFFF (for 128K) 

If there is a failure, repeat mapping and testing. 

4. Enter Program 

Enter a short program by invoking the line assembler and entering 8018X op cc 
See the ASM command in Section 7 for more information. 

>ASM 10 Enter line assembl.er at address 10. 

**** 8086/88/186/188 LJ:NE ASSEMBLER VX.XLA **** 
CSEG -= 0000 

0010> NOP 

0011>/ 

0012>/ 

0013>/ 

0014>/ 

0015>JMP lOH 

0017>X 

Set code byte aaqment window. 

Enter NOP instruction. 

Repeat previous NOP 

.. 

.. 
Enter jump instruction. 

Exit line assembler. 

NOP is a null operation. Each time you type the slash ( I ), you repeat the pre' 
command, so you have entered the equivalent of five lines of NOPs. The X at the 
exits the assembler. 

5. Verify The Program 

Single step through the program to verify that it works, by entering: 
>CS = o 
>IP = 10 

>STP;DT 

>I 
>I 

>I 

>I 
>I • .... 

Getting Started 

Set the CS register to O. 

Set the IP to 10. 

Single step, and display trace. 

Repeat previous command. 

.. 

.. 
II 

II 



Test Run of System 

The disassembled trace should show that NOPs were executed and that the jump was 
taken correct! y. 

6. Run The ES 1800 

Enter RUN. 

>RUN 

R> 

Beqin runninq the emulator. 

The prompt will chanqe to indicate run 
mode. 

The R > prompt should be displayed with no error messages. This indicates the 
ES 1800 is running in real time, executing the program. 

7. Stop The Program 

Enter STP to stop. 
R>STP The STP command from run mode stops 

emulation. 

The ES 1800 should stop running and display the CS:IP register value and Group 1. 
The CS:IP value should not exceed 0:15. 

8. Display The Trace Buffer 

Enter DRT to display the execution history of the program. 
>DRT 

>DTB 

9. Set A Breakpoint 

Display raw trace. Th• display ahoulc 
show aequence numbera between 0 and 20. 
and address values between 10 and 17. 

Thia ahould ahow a disassembled trace o:I 
the proqram with NOPs and .JMI? 10s. 

Verify that the Event Monitor System halts execution when a defined condition is me 
by setting a breakpoint. In this case, the ES 1800 executes 100 (hex) bus cycles, the1 
breaks. 

2-10 

>DCl = OX:XXX 

>CTL = 100 

>WHEN DCl THEN CNT 

WHEN CTL THEN BRK 

Set up data comparator 1 to be OX:XXX. 

Set up the counter limit to be 100. 

Start countinq at data bus value OX:XXX. 

When count limit is reached, brea: 
emulation. 

Getting Starte, 



>RBK 

R> 

Test Run of Sy~ 

Run until a breakpoint is reached. 

This causes the counter to increment each time data comparator 1 sees a data 
value between 00000 and OFFFF. When the count limit of 100 is reached, emula 
breaks. 

If a break does not occur: 

1. Set CS and IP to 0 and 10. 

2. Enter DES 1 and verify that you have entered the WHEN/THEN state11 
and comparator values as shown above. 

3. Type RBK again. 

If no break occurs call Applied Microsystems Applications Engineering at 80()-4 
3925 for assistance. 

10. Initialize Peripheral Control Registers 

The ES 1800 emulator enables you to modify PCB register values by ESL comrru 
(e.g., LMCS = lFFF). If your PCB initialization code is already resident in your taJ 
you do not need to set it up manually with ESL commands: you can skip this sec 
and just run your code. 

If your PCB code is not resident in the target and you need to access target memor 
download your code, then you must manually set up the PCB using ESL commands, 
execute at least one STP to load the emulators copy of the PCB into the pod CPU. 

1. Set up the PCB relocation register. If you do not relocate the peripl 
control block from $FFOO in I/O space, then go to step 2. 

>REL = <register value>Set the REL register 

Refer to the Intel iAPX 86188, 1861188 User's Manual for the proper we: 
set up the PCB relocation register. 

2. Set up the read-chip-select soft-switch. If you do not use on-chip 
selects, then go to step 3. 

>ON RCS Enables the display of the PCB chip 
select register values. 

With RCS set to ON, the following will be true: 

Pause-to-run transitions will write the ES 1800 chip select 
values into the target PCB. 

Run-to-pause transitions will read the ES 1800 chip select 
values from the target PCB. 

>UMCS = <register value> Set UMCS register. 

Getting Started 



Test Run of System 

2-12 

>LMCS = <register value> 

>MPCS = <register value> 

>MMCS = <register value> 

>PACS = <register value> 

Set LMCS register. 

Set MPCS register. 

Set MMCS register. 

Set PACS register. 

Refer to the Intel iAPX 86188, 1861188 User's Manual for the proper way to 
set up the registers. 

3. Set up the on-chip DMA peripheral. If on-chip DMA circuitry is not used, 

4. 

then go on to step 4. 
>USRCO = <register value> 

>SRCO = <register value> 

>UDSTO • <register value> 

>DSTO • <register value> 

>XCO • <register value> 

>CWO = <register value> 

Refer to the Intel iAPX 86188, 1861188 User's Manual for the proper setup. 

If you do not need DMA active while paused, then go on to step 4. 

>ON DME Set DMA controllers active during pause 
mode. 

Set up the on-chip timer peripheral. If on-chip timer circuitry is not used, 
then go on to step 5. 

>TCO = <register value> 

>TCl = <register value> 

>TC2 = <register value> 

>MAO = <register value> 

>MAl = <register value> 

>MA2 = <register value> 

>MBO = <register value> 

>MBl-= <register value> 

>MB2 = <register value> 

>MCWO = <register value> 

>MCWl = <register value> 

>MCW2 = <register value> 

Refer to the Intel iAPX 86188, 1861188 User's Manual for the proper setup. 

Getting StarteG 



Test Run of Syj 

If you need a timer circuit active while paused, then turn on the approp1 
emulator software switch, as follows: 

>ON TEO 

>ON TEl 

>ON TE2 

This will turn on timers zero, one, and two respectively. 

5. Set up the on-chip interrupt control peripheral. If on-chip interrupt cor 
circuitry is not used, then proceed to step 6. 

>:INTO = <reqiater value> 

>:INTl • <reqister value> 

>:INT3 • <reqiater value> 

>EO:I ... <reqister value> 

>POL ... <reqiater value> 

>POS -<reqister value> 

>MSK,.. <reqiater value> 

>PLM • <reqiater value> 

>:ISV • <reqister value> 

>:IRQ -<reqister value> 

>:IST = <reqister value> 

>TCR • <reqister value> 

>DMAO .. <reqister value> 

>DMAl .. <reqister value> 

>DMA2 = <reqister value> 

Refer to the Intel iAPX 86188, 1861188 User's Manual for the proper setup. 

6. Display the status of the PCB registers. 
>PCB Display PCB registers. 

The screen displays the current contents of the PCB registers. 

7. Set up overlay and a minimal program. This step assumes you have ne 
target memory nor a valid program located at the startup location (*FFF 
If you have target memory and a valid program, then go on to step 8. 

>MAP $FF800;DM This maps in overlay from $FF800 to 
$FFFFF and displays the memory map. 

>ON ROY 

>ASM 

>CSEG = OFFFF 

Getting Started 

This ensures that reads and writes to 
overlay memory use the ES 1800's interz 
ready signal. 

This invokes the single-line assembler 
enter a sequence of NOP instructions. 

This sets the assembler to an absolute 



Test Run of System 

2-14 

>NOP 

>NOP 

>NOP 

>NOP 

>X 

address of $FFFFO. 

This throw-away program initializes the 
on-chip peripheral circuitry. 

Exit the line assembler. 

8. Activate the on-chip peripherals. The following tasks should have been 
accomplished before reaching this point: 
• The state of all on-chip peripherals should have been set up via the 

PCB registers. 

• The ES 1800's ON and OFF software switches have been properly set 
up. 

• A program resides at the start up location ($FFFFO). 

>ACl = <stopping point> 
Set address comparator 1 to the end of 
the program. This should follow the 
initialize section. 

The on-chip peripherals are activated by either a read from, or write tc 
appropriate registers. The setting of the ES 1800's switches to 01' 
guarantees the chosen peripheral registers will be written and read followin! 
the execution of at least one instruction cycle. Therefore, set up ACl, ru 
either: 

ACl = $FFFF2 

or 

~f manually initializing and using NOP 
program in step 7, 

ACl c <stopping point>if using your own PCB initializing 
program. 

WHEN ACl THEN BRK Set up WHEN/THEN statement. This allows a 
breakpoint when ACl is recognized during 
emulation. 

>RST;RBV RST sends a reset signal to the target 
system via the RESET OUT line. RBV sets 
CS:~ registers to the absolute address 
of $FFFFO, activates the Event Monitor 
System, and initiates a real-time run. 

Getting Starte. 



Section 3 

Table of Contents 

HARDWARE 

Emulator Chassis ......................................................................................... 3-1 

System Grounds ....................................................................................... 3-1 

Emulator Control Boards ......................................................................... 3-2 

ES 1800 Olassis Front Panel ................................................................... 3-4 

ES 1800 Olassis Rear Panel .................................................................... 3-5 

Pod ................................................................................................................. 3-7 

Saving Desk Space ................................................................................... 3-8 

Time Stamp Module .................................................................................. 3-11 

Logic State Analyzer (LSA) ...................................................................... 3-12 

LSA Timing Strobe ................................................................................ 3-12 

Ports ............................................................................................................ 3-14 

Serial Ports ............................................................................................. 3-14 

Serial Port Pin Configurations ......................................................... 3-14 

Data Requirements ................................................................................. 3-15 

Maintenance ............................................................................................... 3-17 

Cables ..................................................................................................... 3-17 

Probe tip ................................................................................................. 3-17 

Cleaning the Fan Filter .......................................................................... 3-17 

Parts ....................................................................................................... 3-19 

Troubleshooting ......................................................................................... 3-20 

ES 1800 Emulator Specifications .............................................................. 3-21 

Input Power ............................................................................................ 3-21 

Environmental ........................................................................................ 3-21 

Physical .................................................................................................. 3-21 





Sectio 

HARDWAA 

This section describes the emulator chassis, control boards, pod, optional hardVI. 
(Time Stamp Module and Logic State Analyzer pod), ports, maintena.t 
troubleshooting and emulator specifications. 

Emulator Chassis 

The ES 1800 chassis is the metal enclosure housing the control boards for the tal 

system. This rack-mountable chassis houses up to six boards as shown in Figure~ 
The ES 1800 power supply is also in this chassis. A power switch on the rear pane 
the only external panel control. 

WARNING 

A cooling fan and vent for the ES 1800 are located on the left side panel 
of the chassis. The warm air exhaust vent is in the right side panel. 
Blocking either of these panels may cause the ES 1800 to overheat. 

The end of this section includes information on regular required cleaning 
of the fan filter. Heat problems can also be caused by leaving target 
power on when the emulator is turned off Always turn off target power 
when the emulator is off 

System Grounds 

The ES 1800 emulator has three grounding systems: 

1. A chassis ground from the metallic enclosure of the unit to the power filter. 

2. An AC protective ground from the green ground wire of the AC power c 

and the chassis ground at the power filter. 

3. A signal ground connected by means of a jumper at the power SU] 

terminal strip to the chassis ground. The ES 1800 has a three-wire pc 
cord with a three-terminal polarized plug. The ground terminal of the plu 
connected internally to the metal chassis parts of the ES 1800. 

WARNING 

Failure to ground the system properly may create a shock hazard. 

Hardware 



Emulator Chassis 

Emulator Control Boards 

Removing the front panel of the ES 1800 chassis exposes the chassis card cage as 
shown in Figure 3-1. Open this panel by turning the two knobs in the upper corners of 
the front panel counterclockwise. The list below starts with the top board. 

· Verify that all boards are seated properly before turning on power to the emulator. 

SCSI Board 

MCB Controller Board 

Trace/Break Board 

RAM Overlay Board(s) 

Emulation Board 

3-2 

The SCSI board is required in order to use SCSI 
communications between the ES 1800 and host 
computer. If present. it should be in the top slot in 
the chassis. The SCSI port is discussed in detail 
under Ports. later in this section. 

The MCB controller board holds the controlling 
6809 CPU for the ES 1800, the EEPROM, two 
serial ports, RAM, the memory management logic 
and optional symbolic memory. 

The 16-position thumbwheel switch on this board 
determines the system variables and serial line 
baud rates for autoloading on power-up. Refer to 
page 3-4 for each switch position setup. Switch 
position 0 auLoloads default system variables. 

The three-position toggle switch must be in the 
center position. If the toggle switch is in either of 
the other two positions, the ES 1800 will not 
work properly. 

If there is no SCSI board, this board should be rn 
the top slot in the chassis. 

The trace/break board holds trace memory, thf 
Event Monitor System, and the logic statf 
analyzer (LSA) interface. 

The RAM overlay board is optional and can hok 
128K, 256K. 512K, IM or 2M of memory. 2M oJ 
memory requires a slave board. 

The emulation board depends on the targe 
microprocessor you are using. It contains th< 
target processor specific logic. 

Hardwan 



Emulator Cha 

Figure 3-1: Control Boards 
f 

~-- JJ=>1 : : ---=--~---==-~o : 
I . I 
I . I 
I I 
I 

SCSI CONNECTOR OPENING 

POD CONNECTOR OPENING 

LSA POD CONNECTOR OPENING 

FRONT PANEL RELEASE KNOBS 

Hardware 

SCSI CONTROLL 

MCB CONTROLLEI 

TRACE/BREAK BOAi 

RAM OVERLAY BOARC 

EMULATION BOARD 



Emulator Chassis 

MCB Controller Board 
Thumbwheel Switch Settings 

POSITION PARAMETERS BAUD RATE 

0 Factory Default* 9,600 
1 User "O" defined User defined 

Terminal control 
2 User "1" defined User defined 

Terminal control 

3 User "O" defined User defined 
Computer control 

4 User" 1" defined User defined 
Computer control 

5 Factory Default* 110 

6 Factory Default* 300 

7 Factory Default* 1,200 

8 Factory Default* 2.400 

9 Factory Default* 4,800 

A Factory Default* 7,200 

B Factory Default* 19,200 

C,D,E,F Reserved for factory use 

*Factory Default Parameters 

- 8-bit word length - one stop bit 
- no parity - full duplex 
- Terminal control - XON and XOFF are recognized 
- no echo - baud rate the same for both terminals 

- 8th data bit set to 0 or a space 

ES 1800 Chassis Front Panel 

The front panel of the ES 1800 is shown in Figure 3-1. 

Release screws 

LSAport 

34 

Unscrewing these two screws makes it possibl 
to remove the front panel of the ES 1800 to g{ 
access to the control boards. 

The LSA port is used for either the Logic Stat 
Analyzer pod or the Time Stamp module. 

Hardwa1 



) 

SCSI port 

Pod connection 

ES 1800 Chassis Rear Panel 

Emulator Cha. 

The SCSI port is used only if you are using SC 
communications. 

The pod is attached here. 

The rear panel of the ES 1800 is shown in Figure 3-2. 

Serial Ports 

Trigger Output 

Hardware 

The two serial ports are RS 232C pons lab( 
TERMINAL and COMPUTER. Serial ports 
discussed in detail under "Pons" later in 
section. 

The ES 1800 emulator provides a TIL tri~ 

strobe output controlled by the Event Mon 
System. The trigger output is available at a B 
connector on the rear panel of the chassis and 
a clip lead attached to the optional logic s 
analyzer (LSA) pod. See Figure 3-8 for tin 
information on the trigger ouptut, and refe1 
Section 4 for information on Event Mor 
System actions. 

The trigger can be used for such things as: 

1. Synchronizing an oscilloscope to 
execution of an l/O routine. 

2. Measuring the duration of a routine 
asserting the trigger for its duration 
using a timer-counter. 

3. Cross-coupling two or more ES 1800s 
that an event in one can control event 
the others. 



Emulator Chassis 

Power Switch 

Line Fuse 

Before powering up, two items should be 
checked: 

1. Proper grounding of power cable (see page 3· 
1). 

2. Proper power-up sequence of ES 1800, targe1 
system, and/or peripheral equipment. (See 
Power-Up Sequence.) 

A 3 amp slow-blow fuse for 110V operation or~ 
1.5 amp slow-blow fuse for 220V operations 
Remove the fuse by turning the fuse holde1 
counterclockwise. 

Figure 3-2: Rear Panel 

3-6 

115V/230V SWITCH 
UNEFUSE 

!~@--q-~-~-~-~-~-p-T-EA~-N-AL--·f--------------------------@----------........ ©, 
I 

o( ~ P COMPUTER 

9 3AMP1t1SVAC I @ 1.5AMPl230VAC 

i $ t•~ E AC :OWER CONNECTION 

TRIGGER OUTPUT 

POWER SWITCH 

Hardwar 



) 

Pod 

The pod is the link between the ES 1800 emulator and the target system. A 40-
ribbon cable connects the pod to the ES 1800 board. An 11-inch ribbon cable ends 
probe tip that is normally inserted into the microprocessor socket in the target system. 

The proper pod is determined by the microprocessor being emulated. Two pods 
available from Applied Microsystems Corporation: one for the 80186 and 80188 and 
for the 80C186 and 80C188. 

The 80186 and 80188 microprocessors can be emulated with the same pod, but 
cliff erent microprocessors in the pod. The pod should have been shipped from the fac 
with the correct microprocessor installed. 

80186 80186/188 pod, with 80186 processor 

80188 80186/188 pod, with 80188 processor 

The 80Cl86 and 80Cl88 can be emulated with the same pod, but with diffi 
microprocessors in the pod. 

80C186 80C186/Cl88 pod, with 80C186 processor 

80C188 80C186/C188 pod, with 80C188 processor 

To install the probe tip into your target system, remove the retainer clip from the 
socket. place the probe tip in the socket as you would the microprocessor, then re1 
the retainer clip. Always check that pin 1 is aligned correctly. 

Hardware 



Pod 

Figure 3-3: 8018X and 80C18X Pod Assemblies 

Check that the target has a 68 contact leadless chip carrier (LCC) socket. An adapter, 
Pan No. 210-00023-00, is available for plastic leaded chip carriers (PLCC). 

Saving Desk Space 

To save limited desk or table space, the 80C186/C88 pods can be supported from walls, 
an overhead hook, or other non-horizontal surfaces either by velcro tape or by a 
hanging strap. 

Velcro Tape 

To support the pod using velcro tape, you must first attach the 5" long bracket to the 
bottom sheet metal of the pod (you may need to bend the bracket slightly). Figure 3-4 
shows bracket placement. When the bracket is in place, simply peel off the adhesive 
backing on the velcro tape strip and firmly press the tape onto the bracket as shown in 
Figure 3-4. You can now attach the 80C86/C88 pod to any surface that adheres to 
velcro, such as many types of office partitions. 

3-8 Hardware 



Figure 3-4: Velcro Tape Support 

5" long bracket 

velcro tape strip 

bottom view of pod 

Hanging Strap 

The hanging strap can be threaded through either set of eyelets on the bottom s 
metal of the pod. The 5" long bracket is not needed when using the hanging s 
Figure 3-5 shows both of these configurations. After threading the strap through 
eyelet, bend the strap back on itself and fasten it with the enclosed fasteners. ~ 

sure the fasteners on both sides are firmly closed before hanging the pod from 
strap. 

Hardware 



Pod 

Figure 3-5: Hanging Strap Support 

hanging strap 

bottom view of pod 
eyelets 

3-10 Hardwan 



Time Stamp Mol. 

Time Stamp Module 

An optional feature, the Time Stamp Module, adds performance analysis capabilitiei 
the ES 1800. This module allows you to measure the elapsed time your program spe 
in a module, outside of a module or between modules for up to 4 modules at once. 1 
can provide a picture of where your program spends the most time, so you can cho 
the areas which benefit most from optimization. 

The Time Stamp module also allows you to count the number of times a module 
address range is accessed in order to troubleshoot iteration problems and help v 
optimization decisions. The time from a hardware interrupt to a software service rou: 
can be measured. A direct electrical connection between the interrupt line on ~ 
target processor and the Time Stamp Module lets you avoid delay in proces~ 

interrupts. 

The time stamp module connects directly above the ES 1800 pod to the conne~ 
labelled LSA Pod. You cannot use both the LSA pod and time stamp module at 
same time. 

For complete information on setting up and using your Time Stamp Module, 
Section 6. 

Figure 3-6: Time Stamp Module 

''111111 
1111111 

Applied 
Micmsystems 
CofporatlOll 

TIME STAMP MODULE 
~ ~ '? '? f 
~ . :-: ~ . 

. ~overflow light 
J 

r+-- reset button 

trigger Input TG 

Hardware j 



Logic State Analyzer (LSA) 

Logic State Analyzer (LSA) 

An optional feature, the logic state analyzer (LSA) pod, connects directly above the 
ES 1800 pod. The LSA includes a pod, cables, and probe clips. The LSA pod provides 
16 input lines and one trigger output line. 

The one trigger output line behaves the same as the BNC signal on the rear panel of 
the ES 1800 and can be used with an oscilloscope. Th.is allows triggering an 
oscilloscope or external logic analyzer for events that are set up in the Event Monitor 
System with a 'then TOR' statement. 

To use the pod, you plug it in to the port on the front of the ES 1800 labeled "LSA." The 
16 input clips can be attached anywhere in your target. Then you use the LSA 
comparators in the Event Monitor System to monitor the input pulses from the Logic 
State Analyzer. 

Figure 3-7: Logic State Analyzer Pod 

LSA Timing Strobe 

The ES 1800 uses a bus request signal, shown in Figure 3-8, to generate a trigger 
which is sent to the LSA pod and to the BNC connector on the rear panel. The trigger is 
a low-going-high signal for approximately one bus cycle, and is generated 
approximately 70 ns after an event. 

3-12 Hardware 



Logic State Analyzer(~ 

Figure 3-8: LSA and Trigger Timing 

CPU State T1 T2 T3 T4 

CPU Clock 

BCR Bus Cycl Request i 
Event .... : i--

TGR Output 

~ ... 70 nSec 

Hardware 3 



Ports 

Ports 

There are two serial ports and one optional SCSI port on the ES 1800. For information 
on the SCSI port, see either your SCSI Addendum for ES 1800 Emulators or your 
ES Driver/Sun user's manual. 

The SCSI option requires installation at both the host computer and emulator sides. On 
the host side, the installation depends on which host computer you are using. For PCs 
and compatibles, an Emulex IB02 board (supplied with the option) must be installed in 
order to add a SCSI port to the PC. For Sun workstations, a new SCSI device driver 
must be installed. The SCSI option is not available on VAX and Apollo computers. On 
the emulator side, the SCSI board must be installed in the ES 1800. A special SCSI 
cable is also provided with the option to connect the ES 1800 to the host computer. 

Serial Ports 

Both the terminal port and the computer port end in standard RS232C female 
connectors. Make sure peripheral hardware is connected to the correct port. 

Baud rate 

Port Control 

Upload/Download 

Serial Port Pin Configurations 

Baud rates and data lengths for each port are 
independent. Refer to the SET command in 
Section 7 for available baud rates on each port. 

Only one port can be the controlling port. Eithe1 
port can give control to the other port. Fo1 
complete information, see Serial CommunicatioN. 
in Section 5. 

The ES 1800 accepts commands to begir 
uploading/downloading from either port 
However, the ES 1800 uploads/downloads heJ 
format data files only through the computer port. 

The pin configuration of your equipment (terminal, PC or host) may not match that o 
the ES 1800. It is important to be familiar with the pin configurations of all periphera 
equipment you intend to use with the ES 1800 emulator. 

The ES 1800 emulator is configured as Data Terminal Equipment (DTE). Befort 
powering up, make sure the ES 1800 emulator system and peripheral hardware art 
compatible. Pins 1, 2, 3 and 7 must be connected to peripheral hardware. Pins 4 and: 
need to be connected if peripherals attached to the ES 1800 use these pins. 

3-14 /lardwar1 



) 

Both ES 1800 serial ports use the same pin assignment. All pin assignments 
voltage levels conform to Electronics Industries Association (EIA) RS232C standa 
The following chart lists the signals present on each pin. 

Pin Name Description 

1 Protective Ground Connected in the ES 1800 emulator to 
logic ground. 

2 Serial Data Out This signal is driven to nominal 12 voltagf 
levels by an RS232C compatible driver. 

3 Serial Data In Data is accepted on this pin if the voltage 
levels ( 12V) are as specified by RS232C 
specifications. 

4 Request to Send (Output) This signal is driven to nominal 12V level 
by an RS232C compatible driver. It signals 
other equipment that the ES 1800 emulator 
is ready to accept data at this port. 

5 

6 
7 

8-25 

Clear to Send (Input) 

Not Used 
Signal Ground 

Not Used 

Data Requirements 

An input signal to the ES 1800 emulator 
indicates another piece of equipment in the 
system is ready to accept data. This signal 
terminated so the ES 1800 emulator operat 
with the signal disconnected. 

Connected in the ES 1800 emulator to the 
system logic ground. 

These pins are not used by the ES 1800 
emulator but may be required by your 
peripheral hardware. 

The data requirements are set in the SET menu. See Section 7 for details on usinJ 
SET menu. 

Stop Bits 

Parity 

Hardware 

The ES 1800 software transmits and receivf 
bit ASCII characters. The number of stop b 
determined by SET parameter #11 for 
terminal port and #21 for the computer 
(Section 7). 

The ES 1800 sends and checks parity acco: 
to system SET parameter #12 for the terr 
port and #22 for the computer port. 



Ports 

Hardware Handshake 

Software Handshake 

3-16 

Each character consists of a start bit followed by 
8 data bits. When no data is being transmitted, 
the serial data out pin (pin #2) will be at the 12V 
level. 

When the ES 1800 is ready to receive data, it 
asserts the Request To Send line (pin #4). When 
a receive buffer is nearly full, the ES 1800 
deasserts the Request To Send line. 

When the ES 1800 is ready to transmit data, it 
checks the status of the Clear To Send line (pin 
#5). Data is transmitted only when Clear To 
Send is high. 

XON XOFF . The ES 1800 uses normal flow 
control codes to control software handshaking. 
The default values are XON (DCl) and XOFF 
(DC3). 

The ES 1800 serial I/0 system contains internal 
buffers to smooth the transmission of data via the 
serial ports. If an input buffer becomes nearly full, 
the system immediately transmits an XOFF 
character. When the software empties the inpu1 
buffer, the system transmits an XON character. 

Although the user cannot overfill the input buffe1 
from a controlling terminal, a controlling compute1 
is quite capable of doing so. The input buffer fo1 
the computer port is 64 characters deep. Whe1 
eight characters have been placed in the compute: 
input buff er, the XOFF character is transmitted 
Allowing two character times for skew, the 
computer must transmit no more than S..: 
characters until the next XON from the ES 1800. 

The RTS hardware handshake follows the 
software handshake described above. When ru 
XOFF is transmitted, RTS is dropped on that l/C 
port; when an XON is transmitted, RTS i: 
reasserted. 

Hardwar1 



Maintena. 

Maintenance 

Maintenance of the ES 1800 emulator has been minimized by the extensive use 
solid-state components throughout the instrument. There are three areas where · 
need be concerned: cables, probe tip and cleaning the fan filter. 

Cables 

The cables are the most vulnerable part of the instrument, due to constant fle:x 
during insertion and extraction. First, inspect the cables for any obvious damage, s· 
as cuts, breaks, or tears. Even if you have thoroughly inspected the cables and car. 
find any damage, there may be broken wires within the cables (usually located close 
the ends). A broken wire within the cable will cause the instrument to run erraticall~ 
intermittently if the cables are flexed during emulation. By swapping the cables 
question with a known good set of cables, you can easily isolate the faulty cable. 

Probe tip 

The probe tip consists of a ceramic lead-less chip, four ribbon cables and an ada: 
board. The adapter board is inside the pod case. When the ES 1800 is not in use, 
protective cover should be installed over the ceramic chip to prevent cable abrasion 
to protect it from being damaged by other objects. Folding or kinking of the rib 
cables may result in premature failure. 

Cleaning the Fan Filter 

The fan filter should be cleaned regularly. The recommended interval is every 90 d 
If you are working in a dusty environment, you may need to clean the filter r. 
frequent! y. 

1. Unplug the ES 1800. 

WARNING 

Electrical shock and moving fan parts are dangerous. Make sure you 
unplug the unit before proceeding. 

2. Remove the front cover of the ES 1800. (Loosen the two release screws.) 

3. Remove the top cover of the ES 1800. (Unscrew six screws, and lift 
cover off.) 

4. Unscrew the two screws at the top of the chassis which hold the fa 
place. 

Hardware 



Maintenance 

Figure 3-9: ES 1800 Fan Mounting 

3-18 Hardwart 



Mainteru 

5. Tilt the fan towards the boards in the chassis. 

Figure 3-10: ES 1800 With Fan Tilted/or Easy Access to Filter 

FAN FILTER 

6. Remove the fan filter. 

7. Rinse the fan filter in cold water. Thoroughly shake out the excess water. 

8. Replace the fan filter. 

9. Tilt the fan Qack into the correct position. 

10. Replace the screws connecting the top of the chassis to the fan. 

11. Replace the top and front covers. 

Parts 

The following parts are available for you to order: 

• Probe tip 

• Short cable set 

• Long cable set 

Hardware 



Troubleshooting 

Troubleshooting 

Check that the cables are installed properly, that the probe tip is plugged into a 
compatible target system, with power applied to both the target system and the 
ES 1800 before starting troubleshooting procedures. 

The most common problems encountered arc listed below. We recommend that you 
contact Customer Service at Applied Microsystems Corporation if you experience any 
problems that do not fall within this range of items. Before you call our service 
department, display your software revision number by typing REV and record the 
serial number located on the back of the chassis. You will be asked for the revision 
number and serial number when you call. 

We do not recommend a component-level repair in the field, unless performed by a 
qualified service engineer. 

Troubleshooting 

SYMPTOM POSSIBLE CAUSES 

Target system 1. Faulty cables. 
runs erratically 

2. Broken pin on adapter. 

3. ES 1800 emulator and target system not compatible. 

4. LDV not executed before RUN (vector not loaded). 

Emulator will 1. Baud rate set incorrectly. 
not communicate 
over RS232 2. Target system requires "null" modem cable 

(pin 2 and pin 3 of RS232 connector reversed). 

3. For terminal operation, thumbwheel switch located 
on the top card is not in the "O" position or the cable 
is not properly attached to the terminal port in the 
back of the ES 1800. 

4. Cable not going to correct port of the terminal or PC. 

5. Toggle switch located on the second card from the 
top in the ES 1800 not in the middle position. 

6. Power LED not on. 

7. Control boards not seated properly. 

3-20 Hardwar£ 



ES 1800 Emulator Specificatii 

ES 1800 Emulator Specifications 

Input Power 

Standard 

Optional 

Environmental 

Operating Temperature 

Storage Temperature 

Humidity 

J Physical 

Mainframe 

80186/188 Pod 

80C186/C188 Pod 

Target System Connection 
(total length including pod) 

LSAPod 

Hardware 

90 to 130 V AC, 47 to 60 Hz consumption l 
than 130W 

180 to 260 V AC, 4 7 to 50 Hz consumption l 
than 130W 

0 C to40 C (32 Fto 104 F) 

-40 C to 70 C (-40 F to 158 F) 

5% to 95% relative humidity, noncondensing 

13.2 cm x 43.18 cm. x 34.29 cm. 
(6.2 in. x 17 in. x 13.5 in) 

22.6 cm. x 12.9 cm. x 4.1 cm. 
(8.9 in. x 5.1 in. x 1.6 in.) 

21.6 cm. x 27 .9 cm. x 2.2 cm. 
(8.5 in. x 11.0 in. x 0.85 in.) 

1.5 m 
(60 in.) 

12.4 cm. x 7.9 cm. x 2.3 cm. 
(4.9 in. x 3.1 in. x .9 in.) 





Section 4 

Table of Contents 

PREPARING FOR EMULATION 

Terms ............................................................................................................ 4-2 

Establish Communication with the Emulator ....................................•...... 4-3 
Serial Commun.ication ............................................................................. 4-3 

From a Terminal or Host Computer ................................................... 4-3 

Data Buffering 3Ild Baud Rate ..................................................... 4-4 
Commun.ication with the Host Computer .................................... 4-4 

Controlled by Host Computer ............................................................ 4-5 
Setup Comm3Ilds ..................................................................................... 4-5 
Port Dependent Comm3Ilds ..................................................................... 4-5 

Transparent Mode .............................................................................. 4-5 

SCSI Commun.ication .............................................................................. 4-6 

Set Up Target Environment ........................................................................ 4-7 

Map Overlay Memory ............................................................................... 4-8 

Down.load Files ...................................................................................... 4-10 

Down.load from Terminal Port ......................................................... 4-10 

Down.load from Computer Pon ....................................................... 4-11 

Return Control to ES 1800 ............................................................... 4-11 

Symbolic Down.load ........................................................................ 4-13 

Check Registers ..................................................................................... 4-13 

Registers hi Run Mode .................................................................... 4-14 

Peripheral Control Block (PCB) Registers ...................................... 4-14 

General PCB Hml.dling .............................................................. 4-14 

Relocation of the PCB ............................................................... 4-14 

Using Peripherals During Pause ................................................ 4-16 

Timers ........................................................................................ 4-17 
DMA Controllers ....................................................................... 4-17 



Table of Contents, continuec 

Chip Select Registers ....................................................................... 4-17 

Interrupt Controller Registers .......................................................... 4-18 
Register Lists ................................................................................... 4-19 

Set Up Soft Switches ............................................................................. 4-23 

Run Your Program .................................................................................... 4-25 
Break Emulation .................................................................................... 4-27 

Set Up Breakpoints .................................................................................... 4-28 
Set Up the Event Monitor System .................... -..................................... 4-28 

Structure ................................................................................................. 4-29 
Def me Events ......................................................................................... 4-30 

Address Comparators ....................................................................... 4-32 
Odd Address Boundaries ................................................................. 4-32 
Data and LSA Comparators ............................................................. 4-33 
Status Comparators .......................................................................... 4-34 
Count Limit Comparator .................................................................. 4-37 

Defme WlffiNmIBN Statements ......................................................... 4-37 
Defme Action Lists .......................................................................... 4-37 

Event Monitor System Examples .......................................................... 4-38 
Using Software Debuggers .................................................................... 4-43 

ES Driver ......................................................................................... 4-43 
VALID A TE/XEL ............................................................................ 4-4 3 

VALIDA TE/Soft-Scope .................................................................. 4-43 

XDB ................................................................................................. 4-43 
GenePro be ........................................................................................ 4-44 

Isolate a Problem ........................................................................................ 4-45 

Run Program from Overlay ................................................................... 4-46 
Examine the Trace Memory ................................................................... 4-46 

Dynamic Trace (Optional) ............................................................... 4-4 7 

Check CPU Registers ............................................................................. 4-4 7 
Single Step Through Program ................................................................ 4-48 

Miscellaneous Useful Commands .......................................................... 4-48 

Modify Your Program ................................................................................ 4-49 

Memory Commands .............................................................................. 4-50 



Table of Contents, contin 

Line Assembler ...................................................................................... 4-51 
Memory Mode ....................................................................................... 4-5 2 
l/O Mode ................................................................................................ 4-53 

Shortcuts ..................................................................................................... 4-54 
Use Symbols Rather than Addresses ..................................................... 4-55 
Repeat Operators .................................................................................... 4-60 

Macros .................................................................................................... 4-61 

General Purpose Registers ..................................................................... 4-62 

Save Setup to EEPROM ........................................................................ 4-62 

Configure System for Two Users .......................................................... 4-63 
Clear Commands .................................................................................... 4-6 3 





Sectio 

PREPARING FOR EMULATIC 

This section guides you through the steps required to use the ES 1800 emulat01 
debug hardware and software problems. The general steps are: 

• establishing communication with the emulator 

• setting up your target environment by mapping overlay memory. chec1 
registers, setting up soft switches, and downloading program 

• running your program 

• breaking emulation 

• isolating a problem by examining the trace memory, checking register: 
single stepping 

• modifying your program, either in the target or overlay memory 

• using shortcuts, such as symbols, repeat commands, macros, saving s 
between sessions, maintaining different setups for multiple users and < 

commands 

Each step includes a summary of the commands used during that step and examplf 
using groups of commands to do useful tasks. 

Section 7 provides a detailed alphabetical reference for all the commands mentiom 
this section. 

Preparing for Emulation 



Terms 

Terms 

Before using this section, you should be familiar with the following terms: 

target Generally, the target is the hardware and software that you are 
debugging. If there is no target hardware available, the target 
may be just a program, downloaded into the overlay memory. 

run mode Indicates that emulation has begun. The microprocessor in the 
pod is running a program in the target. The run mode prompt is 
R>. 

pause mode Indicates that emulation is not taldng place. The pause mode 
prompt is>. Many commands can only be used in pause mode. 

transparent mode Transparent mode is used to communicate with a host computer 
or any other peripheral you attach to a serial port on the 
ES 1800. In transparent mode, the two ES 1800 serial ports 
(TERMINAL and COMPUTER) are connected. 

peek/poke Peeks and pokes are single bus cycle reads and writes to target 
or overlay memory. When a peek/poke is requested during run 
mode, we break emulation (you don't see this) and do a single 
target bus cycle, then go back into emulation. 

4-2 Preparing for Emulati01 



Establish Communication with the Emula 

Establish Communication with the Emulator 

How you establish communication depends on the configuration of your debugg 
envirorunent and whether you are using serial or SCSI communication between y1 
host computer and the ES 1800. 

This section describes establishing communication when you are using the emul~ 
with a dumb terminal or with a terminal and a host computer. For information 
establishing communication from ES Driver or one of the VALIDA TE softw 
debuggers, please use the appropriate software manual. 

Note that Section 2 of this manual provides quick instructions to get you start 
whereas this section provides a more complete explanation of the process. 

Command 

CCT 
SET 
TCT 
TRA 

Commands Used to Establish and Verify Communication 

Description 

Control emulator from COMPUTER port 
· Set up port parameters 
Control emulator from TERMINAL port 
Enter transparent mode 

Serial Communication 

The ES 1800 can communicate through both DB-25 connectors on the chassis : 
panel using standard RS232C serial protocol. The ports can be independe: 
configured for baud rate, data length, and number of stop bits. 

From a Terminal or Host Computer 

When using a dumb terminal to control the ES 1800, you connect a terminal to 
TERMINAL port on the back of the ES 1800 using an RS-232 cable. When the ES 1 
is shipped, it is configured for TERMINAL port control. 

One common development configuration is with a terminal connected to 
TERMINAL port of the ES 1800 and a host development system connected to 
COMPUTER port. The ES 1800 provides a transparent mode that essentially conn 
your terminal to the computer. The ES 1800 also has a special download commanc 
load modules from the host system and commands to upload data and symbols to 
host system. 

In configurations where the ES 1800 is connected directly to a host computer, there 
a few details that need to be considered. 

Preparing for Emulation 



Establish Communication: Serial 

Data Buffering and Baud Rate 

When downloading from a computer, the ES 1800 buffers all the data bytes until the end 
of record. If the checksum is correct, the data are then loaded into target memory. 
During this load time, the host computer may start sending the next data record. The 
serial data buffer in the ES 1800 is 64 bytes deep. When the sixth character is placed 
in the buffer, an XOFF character is sent to the host computer. This means that the host 
computer must transmit no more than 58 characters after the XOFF. Some multi
tasking development systems may not be capable of quickly stopping character 
transmission. For these systems, it may be advisable to lower the COMPUTER pon's 
and host computer's baud rates. 

The XON/XOFF problem described in the above paragraph can also happen in the 
reverse direction. If the ES 1800 is uploading data to the host, it may be able to ovemm 
the host's ability to receive characters. While lowering baud rates may help, there are 
probably commands available on the host to solve the problem. You should also make 
sure that the host does not echo characters sent to it while uploading data. If the 
characters are echoed, the ES 1800 will quickly send an XOFF to the host while 
continuing to send normal upload characters. The host system will then probably senc 
an XOFF to the ES 1800 because the host's buffers are full. The result of this situatior 
is that both systems will lock up waiting for the other to send an XON. See yow 
system administrator or call Applied Microsystems Corporation Customer Service: 
department at 800-426-3925 for help. 

XON and XOFF characters can be used to control either output pon on the ES 1800 
These characters can be redefined using the SET command. 

Communication with the Host Computer 

While in transparent mode, the ES 1800 passes characters between the computer anc 
TERMINAL ports. There is a user definable two-character escape sequence to exi 
transparent mode, set with the SET command ( <csc><esc> default). If the firs 
character of the escape sequence arrives at either port, the ES 1800 holds it until i 
receives another character from the same port. If the second character matches th1 
second character of the escape sequence, transparent mode is terminated. If th1 
second character is not part of the escape sequence, t11cn both the character being hel1 
and this second character are sent to the proper port. 

While in transparent mode, the only characters that arc meaningful to the ES 1800 ar' 
XON, XOFF, the first character of the escape sequence, and the reset character. Th1 

reset character may be sent from the host as part of a command sequence to th, 
terminal. You should define the reset character (<ctrl-z> default) using the SE 
command to be a character that will not normally be used by the host system or a: 
editor. 

4-4 Preparing for Emulatio 



) 

Establish Communication: Setup Comm 

Controlled by Host Computer 

In this configuration, a software package on the host computer actually controls 
ES 1800. Please see your ES Driver or VALIDATE debugger manual for informatim 
setting up communication. 

Setup Commands 

The SET menu contains all of the external communication variables such as baud r: 
parity, and upload/download data format. Some SET parameters require a reset be 
becoming effective. You can set the serial communication parameters and save the1 
EEPROM without affecting the parameters currently in use. 

The three categories of parameters are summarized in the following table: 

Category 

System 

Terminal pon 

Computer port 

Parameters 

User number, reset character, XON/XOFF characters, 
LSA display 
Baud rate, stop bits, parity, screen display length, 
transparent mode escape sequence 
Baud rate, stop bits, parity, transparent mode escape 
sequence, command terminator sequence, record length, 
download/upload data format, acknowledge character. 

Port Dependent Commands 

The 'controlling' pon is determined at power-up by the setting of the thumbv 
switch on the controller board (see Section 3). After power-up, the commands 1 

and TCT switch control from one pon to the other. TCT entered to the TERMI 
port acts like a null command as does a CCT entered at the COMPUTER pon 
commands except UPL, DNL and UPS respond in the same manner if entered 
either the computer pon or the TERMINAL port. 

Transparent Mode 

Entering transparent mode from either pon causes both ports to be 'connected' to 
other. If transparent mode is terminated from either port, control returns to the 
that initiated the transparent mode (TRA) command. 

Preparing for Emulation 



Establish Communication: SCSI 

SCSI Communication 

For information on the SCSI port, sec either your SCSI Addendum for ES 1800 
Emulators or your ES Driver/Sun user's manual. 

4-6 Preparing for Emulatio. 



Set Up Target Environm 

Set Up Target Environment 

After you have established communication with the emulator, you must download ) 
code to either target or overlay memory. Once the code is downloaded, you will wan 
verify that the program is where you want it, and that everything is set up correctl~ 
begin emulating. 

The ES 1800 provides convenient commands for all these tasks, including: 

overlay memory commands, so that you can run code before hardware 
available or use a combination of existing hardware and new code 

download commands to load code into target or overlay memory 

memory commands to examine and compare memory regions in overlay 
target memory 

register commands to examine and modify registers 

soft switches to control using the emulator with target hardware 

Commands Used to Set Up Target Environment 

Command Descrivtion 

Overlay Memory Commands 

CLM Clear memory map 
DM Display memory map 
LOV Load overlay memory from target 
MAP Set memory map 
OVE Enable overlay memory 
OVS Overlay memory speed 
VFO Verify overlay memory 

Clock Commands 

CK 
CLK 

Choose target clock 
Read target clock 

Download Commands 

DNL 
SET 
TRA 
VFY 

Download file to target or overlay 
Set up communication parameters 
Enter transparent mode 
Verify serial download data 

Preparing for Emulation 



Set Up Target Environment: Map Overlay 

Command Used to Set Up Target Environment (cont) 

Command Description 

Memory Commands/IO Commands 

ASM Enter single line assembler 
DB Display memory block 
DIS Memory disassembler 
M Enter memory mode 
MIO Enter J/O mode 

Register Commands 

BAS Set/display default register base 
CLR Clear CPU registers 
DFB Display default register base 
DR Display microprocessor registers 
LD 1 Load registers from EEPROM 
LDV Load reset vectors into CPU registers 
PCB Display PCB registers 
SA V 1 Save registers to EEPROM 

Softswitch Commands 

LD 4 Load soft switch settings from EEPROM 
ON/OFF Soft switch menu 
SA V 4 Save soft switches to EEPROM 

Map Overlay Memory 

Overlay memory can be used to debug target hardware and software. It can be used t1 
create and verify programs before hardware is available, determine whether th 
program is making illegal accesses, and patch target PROM code quickly and easily. 

Overlay memory is available in memory ranges from 128K to 2M and can be mapped i 
segments as small as 2K bytes. Each segment can be assigned one of four attribut~ 
target, read/write, read only, or illegal. If memory is mapped, it means that you hav 
assigned at least one segment of overlay as read/write, read only, or illegal memol") 
Unmapped memory is assigned the target attribute. Memory mapped as target or illeg~ 
does not use up overlay memory. 

4-8 Preparing for Emulatio 



Set Up Target Environment: Map Ove 

You can always modify overlay memory mapped as read-only. However, if a prog 
tries to write to read-only overlay, emulation stops and an error message is displa: 
Overlay memory mapped as read/write can be written to or read from. If a prog 
attempts to read or write to memory mapped as illegal, emulation stops and an e 
message is displayed. 

Overlay memory is mapped with the MAP command, and the map is displayed with 
DM command. Once you have memory mapped, you can move a program from w 
memory to overlay with the LOV command. The VFO command lets you compa 
range of memory in your target to the same range in the overlay memory. 

When a segment of memory is mapped, program accesses in that memory range 
directed to the overlay instead of the target. The overlay can be further qualified b) 
overlay enable switch (OVE). This register indicates whether code, data, or 
accesses in a mapped memory range should be directed to the overlay memory. 

Overlay memory accesses occur in real time at speeds up to 12.S:MHz. To opera! 
speeds greater than 12.5MHz, you will need to add wait states using the C 
command. The OVS command requires the RDY switch to be set: this switch se 
an internally generated ready signal to complete memory accesses. 

Since the contents of overlay memory are not affected by changing the overlay map, 
can compare the operation of a program in target memory with one in overlay memory. 

The following examples show using overlay memory to patch a program. 

>CLM 

>MAP 1000 to 7FFF:RO 

>LOV 1000 to 7FFF 

>ASM 2000 

(Assembler commands) 

>RNV 

>STP;MAP 1000 TO 7FFF:RO;RUN 

>STP;MAP 1000 to 7FFF:RO;RNV 

Preparing for Emulation 

Clear any previous 
mapping. 

Map ROM over existing 
target program. 

Copy target program 
into overlay memory. 

Use line assembler to 
make a patch. 

Run patched version. 

Stop, remove map, run 
normal version. 

Stop, restore map, run 
patched version. 



Set Up Target Environment: Download Files 

Download Files 

You can enter the download command from either the TERMINAL port or COMPUTER 
port, but download data is always received by the emulator through the computer port. 
The data will be written to the target system memory, or to overlay memory if it is 
mapped. 

Before downloading, you should verify the following: 

• Overlay is mapped to the appropriate address range. 

• The start address of the file is the address to which you expect to download 
(see TRA in Section 7). 

• The data format of the host system matches that used by the ES 180C 
emulator (see SET parameter #26 and TRA in Section 7). 

Download from Terminal Port 

When you type DNL from the TERMINAL port, the ES 1800 automatically enten 
transparent mode. The ES 1800 will expect data records to arrive at the COMPUTER 

. port, so entering transparent mode allows communication with the host system via thf 
TERMINAL port. 

When you are ready to download a file, enter a command that causes the host systerr 
to display a file to the terminal, but in place of a <return>, enter the transparent mod< 
escape sequence (<esc><esc> default). The user definable command terminato1 
sequence is sent to the host system {<return>,null,null default), and the emulato: 
prepares itself to receive data at the computer port. 

The ES 1800 is now ready to read the data records the host system will be sending 
Data records are displayed as they are received by the ES 1800. Each data byte i: 
verified with a 'read after write' cycle. If an error is detected, the download is aborted 
Checksums are verified and if a checksum error occurs, the download is aborted with a:i 

error message. The data in the erroneous record will not have been written to memory 
No special characters are sent to the host, however, so it is likely that the next timi 
you enter transparent mode, the host will send the remainder of the download dat 
records. 

The host system responds by sending the data records from the formatted object file 
Any characters sent by the computer are echoed to the TERMINAL port. All valid dat 
records are copied into internal buffers and the data written into target memory. Whei 
the End of File (EOF) record is received, the download process terminates and . 
normal ESL prompt is displayed. 

4-10 Preparing for Emulatio 



Set Up Target Environment: Download 1 

Download from Computer Port 

If the download command is entered from the COMPUTER port, the proces 
different. In this case, the ES 1800 does not enter transparent mode. The I 
command can be immediately followed by data records. 

After the host sends the download command, the emulator waits for data at 
COMPUTER port. The host computer should then send the downloadable rec 
followed by an end of file record. After the end of file record, the system prompt (: 
sent to the COMPUTER port. 

Each data record is acknowledged with an ACK (6) character if its checksum is co: 
and correctly written into target memory (verified with read-after-write cycles). 
EOF record is also acknowledged if valid. If an error occurs during a download, the 
character sent back to the host will be the BEL (7) code. Programs written on the 
system can use these two characters to handshake the data records in an auton 
download routine. 

There are some differences between COMPUTER port control and TERMINAL 
control during the downloading process. Under COMPUTER port control: 

1. All good records are acknowledged with an ACK $6. 

2. All error messages from bad records are received on the COMPUTER · 
therefore the host program that is controlling the ES 1800 will need t' 
able to interpret error messages. 

3. Records are not echoed. 

Return Control to ES 1800 

Once the download command (DNL) is entered, control is returned to the emulat~ 
one of three ways: 

1. An end of file record is received. If an end of file record is not recogniu 
the ES 1800, control will not be returned to the emulator TERMINAL 
This can be caused by: 

• Using a <return> instead of the proper escape sequence to term 
the command line to the host computer. 

• Selecting the incorrect data format. 

2. An ES 1800 reset is executed (default is <ctrl-z>). 

3. An error is detected. 

Preparing for Emulation 



Set Up Target Environment: Download Files 

Errors 

CHECKSUM ERROR IN THE DATA RECORD 

The download process is aborted because the checksum sent with a record file is not 
the same as the checksum calculated by the ES 1800. 

READ·AFfER· WRITE VERIFY ERROR 

Every byte in a data record is verified after it is stored. This error indicates that the 
data in memory does not match the data that was stored. 

Problem 

Emulator does not return a prompt 

Read-after-write verify error 

Checksum error 

Display of data does not commence 
after entering transparent mode 
escape sequence 

What to Check 

1. Serial data format - SET menu. 
2. No end of file (EOF) record. 
3. You entered a <return> instead of 

the transparent mode escape 
sequence after entering the host 

copy command. 

1. Target hardware problem. 
2. Overlay memory not mapped in 

download range. Address is 
indicated by misverify message. 

1. Improperly formatted record sent 
by host. 

2. Noisy serial data lines. 
3. Host computer is not responding to 

XON/XOFF protocol. 

1. Host not responding to user defined 
command terminator sequence - see 
SET menu. 

If the ES 1800 does not return a prompt, you will need to reset the system (default i 
<ctrl-Z>) in order to enter any other ES 1800 commands. 

If the host computer does not respond to the XON/XOFF protocol fast enough, you ma: 
need to lower the baud rate on the COMPUTER port and the host computer. 

4-12 Preparing for Emulatio 



Set Up Target Environment: Check Regis 

Symbolic Download 

The download command accepts symbolic definition records as well as data rec< 
when the symbolic debug option is used and the ES 1800 download format variabl1 

set to 5 (Extended Tekhex). (See SET parameter #26). 

Serial data can be verified with memory using the VFY command. 

Check Registers 

Before going into run mode, you will want to be sure that the code segment 
instruction pointer (CS:IP) contain the correct values. You may also want to set av 
stack pointer, initialize the CPU status register (FLX) or some of the PCB registers. 

You can either set registers by hand or use the LDV command to load them with 1 

power-up values. 

This section includes information on using the registers and a complete list of all 
registers in the ES 1800. 

The registers can be logically divided into five groups: 

I. microprocessor registers 

2. general ES 1800 registers 

3. Peripheral Control Block (PCB) registers, those used only in iRMX n 
and those used in non-iRMX mode 

4. Event Monitor System registers 

5. 80C18X enhanced mode registers 

Each ES 1800 or Event Monitor System register accepts one or two of three v 
types: integer values, range values or don't care values. The value of any register 
be displayed by entering its name on the command line. Register values can be mod 
using the syntax register= value. 

Registers that accept range and don't care types can also be assigned integer va 
Each register has a separate display base. The display base is viewed and chai 
with the BAS command. Display bases are often changed for registers such as 
Event Monitor LSA comparators, which you might like to see in binary, and the c 
limit (CTL) register, which you might want to see in decimal. 

The CPU registers and the Event Monitor registers can be displayed as a grou1 
using the DR and DES n commands. 

The complete register set can be loaded from or saved to EEPROM. Executing a ~ 

or LD copies all system variables. A SAV 1 or LD 1 copies only the register group. 

Preparing for Emulation 



Set Up Target Environment: Check Registers 

Registers In Run Mode 

Setting and displaying the microprocessor registers during run mode can lead to 
unexpected results because the ES 1800 keeps a RAM image of the microprocessor 
registers. This image is copied to the processor whenever run mode is entered. The 
image is copied from the processor when emulation is stopped by the STP command or 
the Event Monitor System. 

Because of this, modifying these registers during run mode simply alters the ES 1800's 
image of the registers. The ES 1800 does not copy the new values of the registers tc 
the microprocessor. When emulation is broken, the current values of the microprocess01 
registers are copied and the RAM image is overwritten. Thus, you cannot dynamical!) 
change the value of the microprocessor registers while emulating, and a display registe1 
command entered after emulation has begun will show you the register values upor 
entry to emulation, not the values the registers currently contain. 

Peripheral Control Block {PCB) Registers 

Because of the dynamic nature of some PCB registers, they are handled slight!~ 
differently than regular CPU registers. The following sections describe the problem: 
and their solutions. 

General PCB Handling 

When the ES 1800 exits run mode, all memory and 1/0 space is searched for the PCB 
When the PCB is located, it is moved to locations $FFOO-$FFFF in I/0 space. AJ 
register values are then copied to a table in internal RAM and uploaded to the E! 
controller. These register values are the ones displayed in response to the PCI 
command. The values in this table are modified by commands such as: 

>MCW0=$1234 

or 

>IST=$5678 

Relocation of the PCB 

The PCB is completely relocatable in memory or I/O. It contains an interrupt controlle1 
two timers, three counters, two DMA channels and chip select circuitry for decodin. 
memory and 1/0 space. For the 80C186/C188, the PCB also contains a dynamic RA1' 
refresh controller and a power save mode controller. There are many details t 
understand and remember when dealing with the PCB. These details are pointed out i 
the following subsections. 

4-14 Preparing for Emulatio 



Set Up Target Environment: Check Regi~ 

Since the PCB is relocatable, there are several things that need to be unders 
concerning the registers in the PCB. On a run-to-pause transition the firmware tak 
copy of the CPU registers and the registers in the PCB and stores them first in a R 
table on the ES 1800 board and then passes a copy of the registers to ESL. The < 

that is sent to ESL is what is shown to you. When you make a change to any oi 
registers, that change is simply stored in the RAM table kept by ESL. If you then 
to look at those registers you see the change made, but the change is only to the R 
table and not to the CPU. 

Prior to a pause-to-run transition, the registers are passed from ESL to the firmv 
The registers are then loaded into the CPU, and control is turned over to the target. 
if you want to load a register into the CPU, you first need to equate the register tc 
correct value and then put the ES 1800 into either run mode or execute a single 
command (STP). 

On a run-to-pause transition, the firmware locates the PCB and moves it back t<J 

power-up location of OFF20 in 1/0 space. This is done because some users actt 
move the PCB to some other location. The firmware moves the PCB to its de 
location so that it will not write over the top of the PCB while in pause mode. 

Preparing for Emulation 



Set Up Target Environment: Check Registers 

If you use the MI 0 command to write to the PCB and change the contents of the 
registers, the following situations may cause confusion: 

Situation Resolution 

1. You can't find the PCB at The PCB is moved to the default location, so you 
the location you expect it. will not find the PCB in the spot you moved it to. 

The PCB is always moved back to the correct 
location on a pause-to-run transition. Look for it 
at OFF20 in l/0 space. 

2. If you modify a PCB The values in the ESL RAM table are only loaded 
register directly, using the from the PCB on a run-to-pause transition. Also, 
MIO command, and then the values loaded back into the PCB on a pause-
look at the PCB registers to-run transition are from the ESL RAM table and 
through the ESL command therefore write over the top of anything that you 
(PCB) you will find that the ·put into the PCB. To avoid this problem, change 
register you changed in the the PCB registers using the ESL command format 
PCB was not changed in the register= value. 
ESL RAM table. 

3. If you modify a PCB Commands do not modify the CWTent contents of 
register directly, by using the physical PCB w1til the next pause-to-run 
the MIO command, and transition. 
then go into run mode, you 
will find that the CPU did 
not use the value you 
changed in the PCB. 

When the ES 1800 enters run mode, the PCB register values contained in the ~ 
table mentioned above are reloaded into the physical PCB. The PCB is then move1 
back to its location in the target address space and the ES 1800 enters the targe 
system. 

Using Peripherals During Pause 

The ES 1800 may be configured to allow some or all of the integrated peripheral 
controlled by the PCB to continue operating during pause mode. See the ON/OFF menu. 

The dynamic RAM refresh registers arc controlled by the PRE switch, and can be use1 

to enable continuous refresh of target RAM during pause mode. 

4-16 Pre paring for Emulatio 



Set Up Target Environment: Check Regis 

Timers 

The ON/OFF TE switches are used to enable/disable the integrated timers du 
pause mode. 

If the switch is set to ON. on a run-to-pause transition. the timer registers are bani 
as described in the General PCB Handling section. On a pause-to-run transition. r 
of the timers• values are reloaded to the physical PCB, as this would destroy the 
generated during pause mode. 

If the switch is set to OFF (disable timer during pause mode). the mode cm 
(MCWO) for the particular timer is copied to the RAM table upon run to pause; 
timer is then disabled by clearing bit 15 of the mode control word. Upon a pause-to 
transition, the value in the RAM table is reloaded to the physical PCB. This rest 
the timer to its configuration when last running in the target system. 

OMA Controllers 

The ON/OFF DME switch enables/disables DMA operation during pause mode. 
that all DMA cycles are disabled immediately upon a run-to-pause transition by 
assenion of an NMI to the CPU. which then sets bit 15 of the IST register (DfilT bit). 

) If the switch is set to ON DME, the IST register is copied to the RAM table. 
DfilT bit is then cleared, causing DMA cycles to resume. All DMA cycles are ste 
to the target system. 

Upon a pause-to-run transition, the RAM table value of the IST register is reloadf 
the physical PCB. If you want DMA activity to continue when reentering run modi 
sure the CDH soft switch is turned on. 

No DMA register values are reloaded to the physical PCB with this setting. 

If the switch is set to OFF DME. the DMA registers are handled as describe 
"General PCB Handling". 

Chip Select Registers 

The ON/OFF RCS switch controls the emulator's reading of the LMCS. M] 
MPCS, and PACS registers upon a run-to-pause transition. 

If the switch is set to ON RCS. all chip select registers are read and restore 
described in "General PCB Handling." 

Preparing for Emulation 



Set Up Target Environment: Check Registers 

If the switch is set to OFF RCS, these chip select registers are read and copied to the 
RAM table only if you have manually set the register value during pause mode (e.g .. , 
LMCS=1234). This is necessary because reading of these chip select registers 
enables them to drive the 80186/188/C186/Cl88's chip select lines. 

Upon a pause-to-run transition, only the registers that have been modified during 
pause mode are reloaded to the physical PCB. Note that when the switch is OFF, the 
displayed values of the chip select registers (LMCS, MMCS, MPCS, PACS) do not 
show what is actually in the PCB. 

When attempting to peek and poke into target space it is necessary to set up the CS 
registers first so the address is decoded and the correct CS line toggled. The CS 
registers can be set up either by running the code in the target system or by setting up 
each of the registers using ESL and then executing an STP to load them into the CPU. 

The LMCS register is especially critical to emulator operation because the NMI vectoI 
is located in the LMCS memory area. When making a run-to-pause transition, whethe1 
from a run or step command, the CPU picks up its NMI vector from the emulator'! 
internal memory space, but it uses the target's RDY line to complete the bus cycle. fi 
LMCS is not setup when you enter a step command or go into run mode with 2 

breakpoint set, the emulator may hang up waiting for a target RDY signal. 

When reading the contents of the CS registers the value returned is often different frorr. 
the value written into the register. This is because the CS registers have some read· 
only bits. 

LMCS register bits 3, 4 and 5 are always high. 
MMCS register bits 3 through 8 are always high. 
P ACS register bits 3 through 5 are always high. 
UMCS register bits 3 through 5, 14 and 15 are always high. 

Interrupt Controller Registers 

Upon a pause-to-run transition, the poll status register (POS) is read and its valu1 
stored both to its own RAM table entry, and to the polling register (POL) table entt) 
The emulator does not read the poll register as this would cause any pending interrui: 
to be treated as if it had been serviced. When you enter the PCB command, POL an1 
POS will contain the same value. · 

Because POL and POS are read-only registers, they are not reloaded to the physic2 
PCB upon a pause-to-run transition. 

4-18 Preparing for Emulatio. 



Set Up Target Environment: Check Regisi 

For the 8018X processors, on a run-to-pause transition all interrupts are disal: 
because there is no way for the ES 1800 to handle interrupts during pause. This me 
that both externally generated and chip generated interrupts are ignored during pa 
mode. 

For the 80C18X processors, on a run-to-pause transition all interrupts are disat 
unless the IDP switch is set to ON. 

futerrupts are restored to their previous condition upon a pause-to-run transition. 
interrupts occur during pause and are still pending upon a pause-to-run transition, t 
are serviced at that time. 

Register lists 

This section lists all the registers: 

• Microprocessor Registers 

• Target Peripheral Control Block (PCB) Registers 

• PCB Registers Used Only in iRMX Mode 

• PCB Registers Used in Non-iRMX Mode 

• PCB Registers Used in Enhanced Mode (80C18X Only) 

• Event Monitor System Registers 

• General ES 1800 Registers 

Preparing for Emulation 



Set Up Target Environment: Check Registers 

AX, AL, AH 
BP 
BX, BL, BH 
cs 
CX,CL,CH 
DI 
DS 
DX,DL,DH 
ES 
FLX, FLL, FLH 
IP 
SI 
SP 
SS 

4-20 

---~-- ·-~----~~ 

Microprocessor Registers 

Description 

accumulator (low and high) 
base pointer 
base (low and high) 
code segment 
count (low and high) 
destination index 
data segment 
data (low and high) 
extra segment 
flags (low and high) 
instruction pointer 
source index 
stack pointer 
stack segment 

Integer 
Integer 
Integer 
Integer 
Integer 
Integer 
Integer 
Integer 
Integer 
Integer 
Integer 
Integer 
Integer 
Integer 

Length (bits) 

16,8,8 
16 
16,8,8 
16 
16,8,8 
16 
16 
16,8,8 
16 
16,8,8 
16 
16 
16 
16 

Preparing for Emulation 



liam&. 

REL 

UMCS 
LMCS 
MMCS 
MPCS 
PACS 
TCO 
TCl 
TC2 

MAO 
MAI 
MA2 
MBO 
MBI 

MCWO 
MCWl 
MCW2 

USRCO 
USRCI 
SCRO 
SCRl 

UDSTO 
UDSTI 
DSTO 
DSTl 

XCO 
XCI 
cwo 
CWI 

Set Up Target Environment: Check Regis 

Target Peripheral Control Block (PCB) Registers 

Description 

relocation register 

upper memory chip select control 
lower memory chip select control 
mid-range memory chip select control (base address) 
mid-range memory chip select control (block size) 
peripheral chip select control 
timer #0 count register 
timer #1 count register 
timer #2 count register 

timer #0 max count A register 
timer #1 max count A register 
timer #2 max count A register 
timer #0 max count B register 
timer #1 max count B register 

timer #0 mode control word register 
timer #1 mode control word register 
timer #2 mode control word register 

dma #0 upper 4 bits of source address 
dma #1 upper 4 bits of source address 
dma #0 lower 16 bits of source address 
dma #I lower 16 bits of source address 

dma #0 upper 4 bits of destination address 
dma #1 upper 4 bits of destination address 
dma #0 lower 16 bits of destination address 
dma #I lower 16 bits of destination address 

dma #0 transfer count 
dma #1 transfer count 
dma #0 control word 
dma#l control word 

Preparing for Emulation 



Set Up Target Environment: Check Registers 

limM. 

EOI 
MSK 
PLM 
ISV 
IRQ 
IST 
IV 

DMAO 
DMAl 
TMRO 
TMRl 
TMR2 

liilIM. 

POL 
POS 
MSK 
PLM 
ISV 
IRQ 
IST 
IV 
TCR 

DMAO 
DMAl 

INTO 
INTI 
INT2 
INT3 

4-22 

PCB Registers Used Only in iRMX Mode 

Description 

specific end of interrupt register 
mask register 
priority level mask register 
in service register 
interrupt request register 
interrupt status register 
interrupt vector register 

level #2 interrupt control register (dma #0) 
level #3 interrupt control register (dma #1) 
level #0 interrupt control register (timer #0) 
level #4 interrupt control register (timer #0) 
level #5 interrupt control register (timer #0) 

PCB Registers Used in Non-iRMX Mode 

Descriotion 

poll register 
poll status register 
mask register 
priority level mask register 
in service register 
interrupt request register 
interrupt status register 
interrupt vector register 
timer interrupt control register 

dma #0 interrupt control register 
dma #1 interrupt control register 

interrupt control register #0 
interrupt control register #1 
interrupt control register #2 
interrupt control register #3 

Preparing for Emulatio 



Set Up Target Environment: Soft Swit£ 

PCB Registers Used in Enhanced Mode (80Cl8X Only) 

Name Descriotion 

MDR DRAM memory partition register 
CDR DRAM clock pre-scalar register 
EDR DRAM enable RCU register 
PDC Power save control register 

Event Monitor System Registers 

~ Description ~ l&neth (bit 

ACl.1-ACl.4 address comparator Range 24 
AC2.1-AC2.4 address comparator Range 24 
CTL.1-CTL.4 count limit comparator Integer 16 
DCl.1-DCl.4 data comparator Don't care 16 
DC2.1-DC2.4 data comparator Don't care 16 
LSA.1-LSA.4 logic state comparator Don't care 16 
Sl.1-Sl.4 status comparator Don't care 16 
S2.1-S2.4 status comparator Don't care 16 
SIA special interrupt address Integer 32 

General ES 1800 Registers 

Name Description bM l&ngth (bi1 

BTO ms to wait before NO BUS 
CYCLES error Integer 8 

DFB default base hlteger 8 
GDO-GD7 general purpose data Don't care 32 
GRO-GR7 general purpose range Range 32 
IDX repeat index register hlteger 32 
IOP 1/0 mode pointer hlteger 16 
LIM repeat limit register hlteger 32 
MMP memory mode pointer hlteger 32 
OVE overlay enable Don't care 8 
TST terminator for repeats hlteger 32 

Set Up Soft Switches 

If you have target hardware, the ON/OFF menu contains switches which allow ye 
configure the emulation environment to your liking. For example, you can run 
ES 1800 without a target system by using the ES 1800-supplied clock signal 

Preparing for Emulation 



Set Up Target Environment: Soft Switches 

emulator-generated ready signal and overlay memory. The copy switch copies data to 
both serial ports for obtaining hard copy of your emulation session. 

The ON/OFF menu can be saved to EEPROM with the SA V 4 command. These values 
may then be automatically loaded into the ES 1800 on power-up by setting the 
thumbwheel switch to the appropriate value, or manually by typing the load comrnanc 
(LD 4) to the ES 1800 after power-up. 

The following chart summarizes the switches: more information can be found in Sectior 
7 under each switch name. 

BKX 
BTE 
CDH 
CK 
CPY 
DME 
FSX 
IDP 
nm 
PRE 
PPT 
RCS 
ROY 
STI 
TCE 
TEO 
TEl 
TE2 

4-24 

Description 

Break on instruction execution (not prefetch) 
BUS(RDY) timeout enable 
Clear D~ T bit in IST register on a pause-to-run 
Select internal clock 
Copy data to TERMINAL & COMPUTER ports 
Enable OMA during pause 
FSI on instruction execution (not prefetch) 
Enable interrupts during pause (80C18X only) 
Ignore halt errors 
Refresh enable during pause (80C18X only) 
Enable peek/poke trace 
Enable chip select registers display 
Select internal ready when accessing overlay 
Enable step through interrupts 
Enable trace memory during run 
Enable timer 0 during pause (80186/188 only) 
Enable timer 1 during pause (80186/188 only) 
Enable timer 2 during pause 

Preparing for Emulati<.. 



Run Prog1 

Run Your Program 

This section explains how to run and stop your program. 

To run your program, you must put the emulator into run mode. You can enter run m 
by executing any of four run commands. You can also single step your program us 
the STP command. The STI switch controls whether the emulator should recognize 
ignore interrupts while single stepping. 

Emulation can be halted in one of four ways, single stepping, manual reset, reaching 
error or reaching a breakpoint preset with the Event Monitor System. Before runr 
your program, you should choose a method for stopping emulation. The method 
choose depends on what data you want to look at when emulation stops. 

Event monitor system breakpoints may be enabled or disabled during run mode. E 
when breakpoints are disabled, all other Event Monitor System functions are active. 

Command 

Start Emulation 

LDV 
RBK 
RBV 
RNV 
RUN 
STI 
STP 

Stop Emulation 

BKX 
BRK 
FSI 
FSX 
RST 
SET#2 
WHEN 

Commands Used to Start and Stop Emulation 

Description 

Load reset vectors 
Run with breakpoints enabled 
Run, load reset vectors, breakpoints enabled 
Run, load reset vectors, breakpoints disabled 
Run with breakpoints disabled 
Step through interrupts 
Step through target system 

Break on instruction execution or address 
Break emulation 
Force special interrupt 
FSI on instruction execution 
Reset pod microprocessor, load reset vectors 
Set reset character 
Enter when/then statement 

Two of the run commands load the reset vectors before entering run mode, and tw 
them enable the breakpoints in the Event Monitor System. The reset vectors 
defined by Intel as: 

Preparing for Emulation 



Run Program 

CS =FFFFH 
IP =0 
FLX=F002H 

The reset vectors cannot be loaded during run mode. RUN and RBK are typically used 
in run mode to disable and enable break points. The following chart is a quick reference 
to the RUN commands. 

Commands Used to Start Emulation 

Run Load.Reset Breakpoints Valid in 
Command Vectors Enabled Run mode 

RUN NO NO YES 
RNV YES NO NO 
RBK NO YES YES 
RBV YES YES NO 

Some commands need to communicate with the pod processor, and many of these 
commands cannot be entered during run mode, because emulation must stop in order to 
complete the command. If you are unsure whether a command may be entered during 
run mode, just enter it. An error message is displayed if it is not valid. 

The following commands may be entered in run mode, but do halt emulation briefly in 
order to read or write data to the target system or overlay memory. 

M 
MIO 
@ 
DB 
ASM 
DIS 
NXT 
LST 

Memory mode 
J/Omode 
Indirection operator 
Display block of memory 
In-line assembler 
Memory disassembler 
Memory mode 
Memory mode 

If there are target hardware problems, it may not be possible to enter run mode. h 
these cases, error messages are displayed describing the problem. Some erro 
conditions may require a reset to bring the system back into command entry mode. 

4-26 Preparing for Emulatioi 



Run Program: Break Emula1 

Break Emulation 

Emulation can be halted in one of four ways. Before running your program, you sho 
choose a method for stopping emulation. The method you choose depends on what c 
you want to look at when emulation stops. 

1. Enter the stop emulation command, STP. When this command is ente 
during run mode, emulation is stopped and the values of the microproce.5 
registers are copied into ES 1800 memory. The current CS:IP and e-v 
monitor group number are displayed. 

2. The Event Monitor System can stop emulation if you have set 
breakpoints and the breakpoints are enabled. When a breakpoint condit 
occurs, emulation is halted, the microprocessor registers are copied i 
ES 1800 memory, and the CS:IP and event monitor group number 
displayed. 

3. Issuing the reset character (<ctrl-z> default) stops emulation. After 
reset character is issued, the ES 1800 registers have the same value t 
had before emulation began. You should check those values or load the n 
vectors (LDV) before restarting emulation. 

4. Emulation breaks automatically if the target program commits an acces~ 
write violation in overlay memory. The condition that caused the erro: 
displayed. 

Breaking can also be qualified by a soft switch, BKX. This soft switch determine 
breaks will occur only on instruction execution, or on any access to an addr 
including pref etches. 

Preparing for Emulation 



Set Up Breakpoints 

Set Up Breakpoints 

Once you have run your program, and discover a problem, the next step is typically to 
decide where to break so that you can find the problem. This section describes using 
the Event Monitor System to break emulation and to perform other actions. It begins 
with an overview, and then describes each unit of the Event Monitor System in detail. 
The end of the section includes a variety of useful examples. 

Commands Used to Decide Where to Break Emulation 

Command Description 

Setup/Display/Clear Advanced Event System 

CES [1-4] Clear event monitor system setup 
DES [1-4] Display event monitor system setup 
WHEN Enter when/then statement 

Advanced Event System Actions 

BRK Break emulation 
CNT Count bus cycle 
FSI Force special interrupt 
GRO n Change event group 
RCT Reset count value 
TGR Output trigger signal 
TOC Toggle count state 
TOT Toggle trace state 
TRC Trace bus cycle 

Set Up the Event Monitor System 

The ES 1800's Event Monitor System provides extremely flexible system an1 
breakpoint control, enabling you to isolate or break on any predefined series of event 
and then perform various actions. You control and monitor the target by enterin 
commands that define events as logical combinations of address, data, status, cour 
limit, and optional Logic State Analyzer pod inputs. When an event is detected, th 
ES 1800 can break emulation, trace specific sequences, count events, execute use 
supplied target routines, and trigger TTL outputs. 

The Event Monitor System monitors target information at the bus cycle level, includin 
every read or write cycle that the microprocessor executes. The Event Monitor syster 
'sees' every signal that can affect the target system. It can also monitor inputs from th 
logic state analyzer probe. 

4-28 Preparing for Emulatio 



Set Up Breakpoints: Event Monitor System Struci 

The Intel 80186/188/C186/C188 microprocessors multiplex address and data lines. ' 
ES 1800 demultiplexes those signals so that the Event Monitor System sees 
signals at the same time. The Event Monitor system essentially takes a picture of 
microprocessor's signals at the beginning of every T4 state (refer to the Intel mam.J 
iAPX 86188, 1861188 Users Manual and iAPX C86/C88, C186/C188 Users Mam. 
The information that is recorded into trace memory is the same information that 
Event Monitor system is monitoring. 

The address comparators in the 80186/188/Cl86/Cl88 may need to be specially set 
These are 16-bit chips, with a prefetch QUE and byte based instructions. 111.is ca1 
problems when breaking on instructions that occur on odd boundaries. 

You can enter Event Monitor System WHEN/fHEN statements while in run m~ 
You can also modify the event comparator values during run mode. 

These new statements and values will not go into effect until you stop 
and restart run mode. 

NOTE: Simultaneous use of the Dynamic Trace feature and the Event monitor sy~ 
is not possible. (See TCE in Section 7). 

Structure 

The Event Monitor System is structured in three basic units: 

Events 

Actions 

WHEN/THEN Statements 

Events identify specific target conditions. " 
these conditions are encountered, actions can 
performed. 

Actions are what the emulator does when an eve 
detected. There are many actions that the e 
system can take, including standard features sue 
forcing a special interrupt to jump to a soft shutd 
routine before stopping the target prog 
sophisticated trace control and breaking emulation. 

Statements coordinate the events and actions. 

You define statements that specify single or multiple events that are lo, 
combinations of address, data, status, counter, and optional logic field states. V 
those events are encountered in the target system program, the ES 1800 can t 
emulation, trace specific sequences, count events and trigger outputs, allowing yo 
analyze the cause-effect relationship established by the event/action seque 
defined. 

Preparing for Emulation 



Set Up Breakpoints: Events 

There are four event groups which provide the logical structure necessary for tracking 
deeply nested bugs. This structure lets you debug any problem you can imagine, using a 
combination of events and actions. Figure 4-1 shows the structure of the Event 
Monitor system. 

Figure 4-1: Event Monitor System Structure 

Events 
(Input) 

CPU Bus 

Address 
AC1 

AC2 

Data DC1 

DC2 

Status S1 
S2 

LSA Logic 
State Count 
Probe Limit 

Counte 

Actions 
(output) 

WHEN/THEN 
STATEMENTS ~~?~& 

Break 
Trace 
Control 
Trigger 
FSI 

Counter 
Control 

There can be several actions for any event. There can be many WHEN/THE1' 
statements in effect at any time. 

The basic Event Monitor System WHEN/THEN statement is of the form: 

[Group] WHE[N] event THE[N] action 

The system only recognizes the first three letters of any word in a control statemen 
(e.g., WHEN=WHE; THEN=THE). 

Define Events 

You can define an event to be some combination of address, data, status, count, an< 
Logic State Analyzer pod conditions. Numerous Event Monitor System WHEN/THEI' 
statements may be entered and in effect simultaneously. Conflicting statements ma~ 
cause unpredictable action processing. Parentheses are not allowed in even 
specifications. 

4-30 Preparing for Emulatim 

""--~--------·- -------



Set Up Breakpoints: Ei 

The NOT operator reverses the sense of the comparator output. NOT has hi 
precedence than either of the conjunctives (AND and OR). 

WHEN ACl AND NOT DCl THEN BRK 

means break whenever any data pattern other than that in DC 1 is read from or wr 
to an address in ACl. 

AND and OR can be used to form more restrictive event definitions. AND terms l 
higher precedence than OR terms. For example: 

WHEN ACl AND DCl OR DC2 THEN BRK 

is the same as 

WHEN ACl AND DCl THEN BRK 

WHEN DC2 THEN BRK 

If you are looking for two different data values at an address, you would use 

WHEN ACl AND DCl OR ACl AND DC2 THEN BRK . 

The OR operator is evaluated left to right and is useful for simple compa 
combinations. For complex event specifications, OR combinations can be replaced 
separate WHEN/fHEN statements for clarity. 

WHEN ACl AND Sl OR AC2 AND S2 THEN BRK 

is the same as 

WHEN ACl AND Sl THEN BRK 

WHEN AC2 AND S2 THEN BRK . 

There are eight comparator registers for each of the four event groups. These f 

registers are listed in the following table. 

address comparators 

data comparators 

status comparators 

count limit 

LSA registers 

Preparing for Emulation 

Used to detect discrete addresses or addresses insid 
outside a specified range. 

Used to detect specific data patterns (can iE 
specified bit positions) 

Monitor all of the status signals from the microproc1 
as well as some generated by the ES 1800. The s 
comparators can also ignore bit positions. 

Used to detect when an event has occurred more tl: 
specified number of times. 

Detect bit patterns in the inputs from the logic 
probe. Specified bit positions can be ignored. 



Set Up Breakpoints: Events 

The following table describes the available event comparator registers 

Register Size Name by Group 
Description bu£ (bits) l l J. 1. 

Address 1 Range.Int 24 ACl or ACl.l ACl.2 ACl.3 ACl.4 
Address 2 Range.Int 24 AC2orAC21 AC2.2 AC2.3 AC2.4 
Data 1 Don't Care.Int 16 DCl orDCl.l DCl.2 DCl.3 DCl.4 
Data2 Don't Care.Int 16 DC2orDC21 DC2.2 DC2.3 DC2.4 
Status 1 Don't Care.Int 16 Sl or Sl.l Sl.2 Sl.3 Sl.4 
Status 2 Don't Care.Int 16 S2orS2.l S22 S2.3 S2.4 
LSA Don't Care.Int 16 LSAorLSA.l LSA.2 LSA.3 LSA.4 
Count Int 16 CTLorCIL.l CTL.2 CTL.3 CTL.4 

Address Comparators 

Address comparators may be assigned integer values or range values. Ranges may be 
either internal (IRA) or external (XRA). If a range is specified without IRA or XRA 
operators, the default range type will be IRA. The following are examples of valid 
address comparator assignments. 

>AC1=2000 

>AC2=1000 LEN 20 

>AC2.2=XRA 1100 ~O 1250 

>ACl.4 • mA $FF006 LEN $FF 

>ACl.l • @SS:SP 

>AC2='Symbol 

>ACl =J:P + 200 

>ACl.2 = !ACl.4 

Odd Address Boundaries 

The address comparators in the 80186/188/C186/C188 may need to be specially set up 
These are 16-bit chips, with a prefetch QUE and byte based instructions. This causei 
problems when breaking on instructions that occur on odd boundaries. 

This section describes three distinct conditions, and suggestions for resolving them. 

1. 8018X/Cl8X pre/etches an instruction. 

4-32 

When the 8018X/C18X prefetches an instruction, it outputs the ever 
address. Both bytes are fetched. and the actual (odd) address of the byte ir 
question is never seen. This means that you can't set the Event Monitoi 
System to break on the odd address. 

Preparing for Emulatio1 



Set Up Breakpoints: Ev 

2. 8018XIC18Xjumps to an odd address. 

When the 8018X/C18X jumps to an odd address. the odd address < 
appear on the bus. and only that byte is fetched. In this case. the E 
Monitor System works as expected. 

3. Only the low byte is read. 

If only the low byte is read, the even address appears on the bus, and 
odd byte is not read. This means you can't set the Event Monitor Syster 
break on the odd address. 

The ES 1800 Event Monitor System can be set up to resolve conditions 1 and 3, an 
guarantee correct operation in condition 2. 

Assume the byte in question is at $4001. This byte could be accessed by the adc 
$4001 or $4000 . . 

If the address $4001 is on the bus, then the byte is accessed. 

If the address $4000 is on the bus, and the bus cycle is a 16-bit cycle, 
the byte is accessed. 

If the address $400 is on the bus, and the bus cycle is an 8-bit cycle, 
the byte is not accessed. 

This Event Monitor System setup handles this condition: 

>AC1=4000 

>AC2=4001 

>Sl""WRD 

>WHEN ACl AND Sl OR AC2 THEN BRK 

ACl contains the even address. Sl is the word bus cycle condition. If both are true 
high or odd byte has been accessed. AC2 contains the actual odd address. If it is 
then the byte is always being accessed. If neither is true, then the byte is not t 
accessed. 

Data and LSA Comparators 

The data comparators monitor the data bus for specified patterns. The 
comparators monitor the input signals from the Logic State Analyzer pod. 

Preparing for Emulation 



Set Up Breakpoints: Events 

Data and LSA comparators may be assigned integer values or don't care values. Don' 
care values may be assigned in two ways. 

1. The first is to specify the value followed by the don't care mask 

2. The second is to specify the value using X in the don't care positions. 

The following are examples of valid data and LSA comparator assignments. 

>DC1=237F 

>LSA=5300 DC $FF 

>LSA.3 = 53XX 

>LSA = %110101 DC $FFOO 

>DC2.2 = 42 DC %101 

>DC2 a:: GDO + $F 

>DCl.4 a:: @'data_table + 56 

The following example shows turning on trace when an activity occurs and turning of 
the trace when the activity finishes. Note the use of two event groups to specify th1 
on/off conditions. This setup waits for the logic state analyzer bit 0 to go low, and thei 
uses the toggle trace command (TOT) to turn on trace memory, and ORO 2 to switcl 
groups. In group 2, all bus cycles are traced until LSA pod bit 0 goes high. The: 
emulation is broken. 

>WHEN LSA THEN TOT, GRO 2 

>2 WHEN LSA THEN BRK 

>LSA = 0 DC $FFFE 

>LSA.2 = 1 DC $FFFE 

Status Comparators 

The status comparators are assigned values from the list of status constants. Many c 
these constants can be combined to specify a complex comparator value. The list o 
the next page shows the available mnemonics. Any of these status lines can be used i 
event specifications. 

4-34 Pre paring for Emulatio 



ALT 
BYT 
COD 
DAT 
HLT 
IAK 
IF 
IOA 
MEM 
NMI 
OVL 

STATUS MNEMONICS 

Alternate Data Access 
Byte Access 
Code Access 
Data access 
Halt Status 
Interrupt Acknowledge Status 
Instruction Fetch Status 
IO Access 
Memory Access 
NMJCycle 
Overlay Access 

QDl-6 
QF 
RD 
RIO 
RM 
STA 
TAR 
WIO 
WM 
WR 
WRD 
DMA 

Set Up Breakpoints: Ev, 

Queue Depth (1-6) 
Queue Flush Cycle 
Read 
Read IO Status 
Read Memory Statu: 
Stack Access 
Target Access 
Write IO Status 
Write Memory Statu 
Write 
Word Access 
DMA Cycle 

The status mnemonic table shows which status values can be assigned to 
comparators. You may assign a status comparator a single mnemonic, or you · 
combine a mnemonic from each of the columns 2-8 and any or all from colum: 
Mnemonics are combined using an addition operator(+) as a Boolean AND. 

STATUS MNEMONIC TABLE 

l 2 3 4 5 6 7 8 9 
Sl = TAR + RD + BYT + MEM + ALT + HLT + QDI + QF 
S2 OVL WR WRD IOA COD IAK QD2 NMI 

Some examples of status comparator assignments: 

>Sl=BYT 

>S2=0VL+RD+DAT 

>Sl.3=WR+IOA 

>S2.4=RIO 

>Sl.2=QF 

Preparing for Emulation 

DAT RIO QD3 DMA 
STA RM QD4 

WIO QD5 
WM QD6 
IF 



Set Up Breakpoints: Events 

Figure 4-2: Status Translation Table 

.SEGMENT 
NMI=O ALT=O 

STA=l 
COD=2 
DAT=3 

CPU STATIJS 
X87=1 IAK=O 

RIO=l 
WI0=2 
HLT=3 
IF=4 
RM=S 
WM=6 

QUEDEPTII 
QDl=l 
QD2=2 
QD3=3 
QD4=4 
QDS=S 
QD6=6 

EMULATOR STATIJS 
MEM=l TAR=l RD=l BYT=l 

Qf::() IOA=O OVL--0 WR=O WRD=O 

When you display the value of the status comparators, you will see a 32-bit don't can 
value rather than the mnemonics you originally assigned them. The Status Translatior 
Table is provided to aid you in decoding the numbers back into the mnemonics. 

The don't care mask is the value to the right of the DC. A 'O' in a mask bit positior 
enables the status bit in the same position on the left side of the DC, and a '1' in ' 
mask bit position masks or disables the corresponding bit on the left side of the DC. 

Determine which bit positions are unmasked (those containing O's in the mask value) 
It may be easier to do this by setting the status comparator's display base to binary 1 

BAS S 1 = 2 ). Then refer to the translation table and find the unmasked bit positions 
Look at the value contained on the left side of the DC and match it with th( 
corresponding value shown underneath the bit position in the table. 

>Sl 
$00000504 DC OOOOBSFS 

All bits except bits 2, 8, 9, 10 and 14 are masked. Bit 14 is enabled and a 0 is in the bi 
14 of the status value, so NMI was entered. 

Bits 8,9, and 10 are enabled and there is a 101 (5) in those bits in the status value s< 
RM was entered. 

Bit 2 is enabled and there is a 1 in bit 2 of the status value so TAR was entered. 

Therefore, the original input was: 

>Sl=NMI+RM+TAR 

4-36 Preparing for Emulatim 



Set Up Breakpoints: WHEN/THEN Statem 

NOTE 

Although it may be tempting to use the NMI status to break on NMI, do 
not use this status with the break action. Setting a breakpoint on an NMI 
fetch will cause the emulator to hang, requiring a reset ( <ctrl-z>) to 
recover. To break on an NMI, set the event system to break on the 
starting address of the NMI interrupt routine. The NMI status may be 
used as a qualifier for other actions. 

Count Limit Comparator 

The count limit comparator, CTL, is used to detect when events have occurred ace 
number of times. The CTL value for group 1 is loaded into a hardware counter whi1 
decremented whenever the action CNT is executed (see Define Action Lists). 
group switch occurs, the hardware counter can be loaded with the new group's c 
limit by executing the RCT (Reset Count) action. Otherwise, the hardware counter 
not change its limit value when switching groups. 

Define WHEN/THEN Statements 

The syntax of WHEN/THEN statements is: 

[group] WHE <eventS> THE <action>, <action> ... , 

This will cause the emulator to take the specified actions when the events are reached. 

Event monitor system-WHEN/THEN 

The Event Monitor System is arranged in four independent groups. Each WHEN/f 
statement is associated with one of the four groups. If no group numbers are ment 
in the WHEN/THEN statement, the statement is assigned to group 1. There arc; 
ways to override this default selection of group 1. You can begin the WHEN{I 
statement with a group number, or you can add a group number to any one of the 
comparator names. For example: 3 WHEN ACl THEN BRK is functionally the 
as WHEN ACl.3 THEN BRK. You cannot mix group numbers within a i 

WHENtrHEN statement. 

Define Action Lists 

The action list in a WHEN{fHEN statement defines what the ES 1800 does whi 
event is detected. Actions are specified in an action list separated by commas. 
action list may have one or more actions defined. 

Preparing for Emulation 



Set Up Breakpoints: Examples 

The following table lists all possible actions. Each action is described in detail in 
Section 7: "Alphabetical Command Reference." 

Action 

BRK 
CNT 
FSI 
GROn 
RCT 
TGR 
TOC 
TOT 
TRC 

Event Monitor System Actions 

Description 

Break emulation 
Count bus cycle 
Force special interrupt 
Change event group 
Reset count value 
Output trigger signal 
Toggle count state 
Toggle trace state 
Trace bus cycle 

For details on the actions, see Section 7, Alphabetical Command Reference. 

The Event Monitor System resolves conflicting WHEN{TIIEN statements. Fo 
example, the TOC action in the first statement is ignored. 

>WHEN ACl THEN TOC 
>WHEN ACl THEN CNT 

Event Monitor System Examples 

There are three examples shown on the following pages: 

1. Using the trigger out action to display the duration of a software routine o 
an oscilloscope. 

2. Using the force special interrupt action to safely stop a mechanical system. 

3. Debugging a suspected problem in a belt jam routine that uses reentrru 
code. 

Example 1 

The trigger out action (TGR) can be used to trigger a logic analyzer, oscilloscope < 

counter-timer. fu this example, it is used to display the duration of a software routir 
on an oscilloscope. 

Three actions are done at the same time in this example. When the routine starts, trac 
is turned on (TRC), the trigger out is started (TGR), and we switch to event group 
(GRO 2). Note the use of symbols: the symbols 'sub _start and 'sub _end. 

4-38 Pre paring for Emulatil 



>ACl = 'sub start 

>ACl.2 •'sub end 

>DCl.2 = oxxxx 

Set Up Breakpoints: Exam. 

Set an 
comparator in 
(ACl) to 
subroutine's 
address. 

Set an 
comparator in 
(ACl .2) to 
subroutine's 
address. 

address 
group 1 

the 
start 

address 
group 2 

the 
end 

Set a 
(DCl. 2) 
(XXXX) 
trigger 

data comparator 
to don't cares 
to keep the 

high. 

>WHEN ACl THEN TRC, TGR, GRO 2 In group 1, at the 
the 
the 
the 
and 

beginning of 
subroutine, start 
trace (TRC), set 
trigger high (TGR) 
switch to group 2 
2) • 

(GRO 

>2 WHEN DCl THEN TRC, TGR In group 2, use DCl as 
a dummy value, used to 
keep the trace on and 
the trigger high during 
the subroutine. 

>2 WHEN ACl. THEN GRO 1 At the subroutine end 
(ACl.2), return to 
group 1 and stop the 
trace and trigger 
pu1se. 

Figure 4-3: Display the Duration of a Software Routine on An Oscilloscope Using the 
Trigger Out 

ACl.1 ACl.2 

i i 
I DCl.2 I 

Trigger ----------------------

Program 

Preparing for Emulation 

Routine of 
interest 



Set Up Breakpoints: Examples 

Example 2 

The problem with debugging a mechanical system like a robot arm is that an: 
interruption to the controlling software may cause the system to crash. The Even 
Monitor System provides a special interrupt system so that when a specifi~ 
breakpoint is reached, a soft shutdown routine can safely stop the mechanical systerr. 
and only then is the program stopped to locate the problem. 

>SIA • ' shut down 

>ACl .. $7F4E2 

>AC2 • 'shut down+ 4E 

>WHEN ACl THEN FSI 

>WHEN AC2 THEN BRK 

>RBK 

Set the special 
interrupt address (SIA) 
to the address of the 
soft shutdown routine, 
specified by the symbol 
'shut down. 
Set the first address 
comparator (ACl) to the 
address of the 
suspected problem where 
you want to break 
emulation. 
Set the second address 
comparator (AC2) to the 
end of the soft 
shutdown routine 
When you qet to the 
address where you want 
to break, first execute 
the forced special 
interrupt (FSI) . 
When you qet to the end 
of the ' shut down 
routine, E'reak 
emulation (BRK) . 
Run to the breakpoint. 

Figure 4-4: Safely Debug a Problem with a Robot Arm by Jumping to a Specified Ad
dress and Executing a Soft Shutdown 

ACl SIA AC2 

l l l 
Routine with Soft 

Program suspected shutdown 
problem routine 

4-40 Preparing for Emulatii 



) 

Set Up Breakpoints: Exam, 

Example3 

In this example, debugging a suspected problem in a belt jam routine requ 
debugging reentrant code. The state diagram identifies the route of suspected trou 
the problem occurs only after initialization, when the specified belt is stuck (belt C 
conveyor 2), and the jam routine is called with a particular value. 

Note that the program continues to execute in real-time while several events isc 
the problem. The breakpoint is set only after the exact program state is identified. 

Figure 4-5: Debugging a Problem in a Belt Jam Routine 

., ., 
'• ,, ., ,, 

'• ,, ,, 

" 
ACl = 'end init 

WBE ACl THE GRO 2 

ACl.2 = 'conveyor2 
2 WBE ACl THE GRO 3 

AC1.3='checkbelts 

Preparing for Emulation 

Group 1 is used to step 
over the initialization 
routine. 
Thia is done 
sure 
initialization 
complete. 

to make 
that 

is 

Group 2 is used to 

specify that you are 
only interested in when 
conveyor#2 calls the 
routine that checks the 
belts. 
Group 3 is used to 
specify that the 
checkbelt routine has 
identified that belt C 
is the one with the 
problem. This is 
specified in your code 
by bit 3 at the address 
'checkbelts. 



Set Up Breakpoints: Examples 

DCl .3 = 0004 DC OFFF7 Use the data comparator 
(DCl.3) to specify the 
value read at the 
address ACl. 3. 0004 DC 
OFFF7 means to check 
bit 3 of the data word 
(0004) , and ignore the 
other bits (DC OFF7) • 

Sl. 3 = RD Use the status 
comparator (Sl.3) to 
qualify only reads from 
address ACl.3. 

3 WHE ACl AND DCl AND Sl TBE RCT, GRO 4When all these 
conditions are met, it 
is time to qo to qroup 
4 (GRO 4) and to reset 
the counter (RCT) so 
you can use it in qroup 
4 . Group 4 is used to 
identify the portion of 
the belt jam routine 
which you suspect 
contains the problem. 

ACl.4 "" 'beltjam LEN 400 Set the address 
comparator in qroup 4 
(ACl.4) to a ranqe 
which starts at the 
beqinninq of the 
beltjam routine. 

Sl. 4 "" IF Use the status 
comparator (Sl.4) to 
monitor for an 
instruction fetch (IF) 
from the ranqe ACl.4. 

CTL. 4 = #100 set the count limit to 
100, ao that you can 
break after the first 
100 instruction in the 
routine. Thia assumes 
that you suspect the 
problem ia in these 
instructions. 

4 WHE ACl AND Sl TBE CNT When you' re in the 
belt jam routine, 
increment the counter 
at every instruction 
fetch. 

4 WHE CTL TBE BRK When the count limit ia 
reached, than break. 

RBK Run to the breakpoint. 
The events leading up 
to the breakpoint are 
checked while the 
software is running in 
real time. 

4-42 Preparing/or Emulatio, 



Set Up Breakpoints: Using Software Debug~ 

Using Software Debuggers 

There are some constraints and differences in operation when using the Event Mon 
system with some software debuggers. 

ES Driver 

The Target Emulation menu allows transparent access to setting up the event mo11 
system: in transparent mode, you enter ESL commands just as you would when ui 

the ES 1800 without a host computer. 

The Event Monitor System menu provides a convenient display of the set up. 
68020 processors, the Event Monitor System menu also provides a convenient wa: 
set up the Event Monitor System without typing in ESL commands. 

VALIDATE/XEL 

When you use VALIDA TE/XEL, you must enter ICE mode in order to access 
Event Monitor System and ESL. Once in ICE mode, you enter ESL commands jm 
you would when using the ES 1800 without a host computer. To return 
VALIDA TE/XEL, type NOICE. 

VALIDATE/Soft-Scope 

When you use VALIDATE/Soft-Scope or VALIDATE/Soft-Scope 286, you must 
the CONSOLE command in order to access to the Event Monitor System and 1 
Once connected, you enter ESL commands just as you would when using the ES : 
without a host computer. Use a Q to return to VALIDA TE/Soft-Scope. 

XDB 

When you use XDB, you must use the "Interactive Transparency Mode" in ordc 
access the Event Monitor System and ESL. The o command enters intera 
transparency mode. Once connected, you enter ESL commands just as you would ' 
using the ES 1800 without a host computer. Use a <ctrl-d> to return to XDB. 

Preparing for Emulation 



Set Up Breakpoints: Using Software Debuggers 

GeneProbe 

When using ESL with GeneProbe, you can suppress GeneProbe' s command processing 
by prefixing the line with a semicolon (;). This allows you to use ESL expressions if 
you need to use them. For example: 

;AC1=$FDE02 

4-44 Preparing for Emulatio1 



Isolate Prob 

Isolate a Problem 

There are two parts to isolating a problem: 

1. If you can't make your target program run, you can often use overla~ 

determine if the problem is in software or hardware. 

2. Once you have an idea of where a problem is occurring, you can use 
breakpoints of the Event Monitor System to stop program executiOI 
specific times and then disassemble the trace memory, look at the LSA 
in the raw trace, check the CPU register values, or begin stepping thrc 
your code. 

This section describes the commands used to examine trace memory, registers 
other status information. 

Commands Used to Isolate a Problem 

Command Descriotion 

RunProgramfrom Overlay Commands 

LOV Load overlay from target memory 
MAP Map overlay memory 

Trace Commands 

DRT 
DT 
DTB 
DTF 
TCE 
TRC 

Register Commands 

Display raw trace bus cycles 
Disassemble trace memory 
Disassemble previous page of trace memory 
Disassemble next page of trace memory 
Trace capture enable 
Trace events 

BAS Change default register display base 
CLR Clear CPU registers 
DR Display registers 
LD 1 Load register set from EEPROM, 
LD V Load reset vectors 
ON/OFF Control various registers 
PCB Display PCB registers 
SA V 1 Save register set into EEPROM 

Single Step Commands 

STI Single step through interrupts 
STP Single step through program 

Preparing for Emulation 



Isolate Problem: Run Program from Overlay 

Commands Used to Isolate a Problem (cont) 

Command Description 

Miscellaneous Useful Problem Isolation Commands 

BUS Display status of bus status lines 
COM Communication with target programs 
CPY Copy data to both ports 
DIA Display character string 
RET Insert a blank line in display 
TGR Send trigger signal 
WAI Wait until emulation break 

Uploading Data to Host Computer Commands 

UPL Upload data to host 
UPS Upload symbol table to host 

Run Program from Overlay 

If your program doesn't seem to run correctly in your target system. you can try running 
it from overlay instead. Map the appropriate address range using the MAP command, 
and load the program from your target memory using LOV. 

This can help isolate target hardware problems such as addresses not being decoded 
properly, timing problems, or memory accesses not being terminated properly. 

Examine the Trace Memory 

Trace is your window to the activity of the microprocessor. You can disassemble the 
trace buff er to see assembly instructions or you can look at raw trace to see the statm 
of the CPU during each bus cycle. You will probably need to use both of these 
commands to get enough infonnation to solve a problem. 

During emulation, the activity of the executing program is recorded and stored in traa 
memory. All address lines, data lines, processor status lines, and 16 bits of externa: 
logic-state are traced. This record becomes a history of the program. If somethin~ 
unexpected happens during program execution, trace memory can be reviewed tc 
determine what exactly took place. When used in conjunction with the traa 
disassembler, hardware and software problems may be found. 

Trace memory is 71 bits wide and 2046 bus cycles deep. Some bus cycles may be usec 
for marks to identify start and stop points within the trace buffer. An unqualified trace 
contains all bus activity for the last 2046 bus cycles. 

4-46 Preparing/or EmulatioT. 



Isolate Problem: Check Regi~ 

There are several commands available to display trace in different formats: DRT 
raw trace, and DT for disassembled trace. You can scroll the trace buffer with the I 
and DTF commands. The WAI command is used to wait until execution stop 
execute a particular command. 

The DIA command can be used to check the contents of any null terminated strin 
target memory. One common use is for test purposes in target systems that hav( 
human-readable l/O channels. When a test routine detects a problem. it can lm 
register with the address of a null terminated error message. The routine then jumJ 
an address that causes the ES 1800 to break emulation. The DIA command can 
be used to display the error message. 

You cannot access trace memory during emulation unless you have the Dynamic 1 
feature. Therefore, you must stop program execution before reading the trace. You 
stop the program either manually or by using the Event Monitor System to stop al 

exact program state you are interested in. After program execution is stopped, you 
review the address, data and control signals of the most recently traced cycles. 

Dynamic Trace (Optional) 

The Dynamic Trace feature of the ES 1800 allows you to read trace while the targ 
running. You can trace in target systems which require the program to remain rum 
such as control systems. With targets using multiple multiprocessors, dynamic 1 

lets you examine trace from one processor without shutting down all processors. 

Simultaneous use of the Dynamic Trace feature and the Event Monitor System is 
possible. Refer to the Dynamic Trace Capture Enable command (TCE) in Section · 
more information. 

Check CPU Registers 

Before going into run mode, you will want to be sure that the code segment 
instruction pointer (CS:IP) contain the correct value. You may also want to set a · 
stack pointer, initialize the CPU status register (FLX) or some of the PCB registers. 

You can either set registers by hand or use the LDV command to set them tc 
values defined by Intel at power-up. 

Each register has a separate display base. The display base is viewed and cha 
with the BAS command. Display bases are often changed for registers such ru 
Event Monitor LSA comparators, which you might like to see in binary, and the 
register, which you might want to see in decimal. 

Preparing for Emulation 



Isolate Problem: Single Step 

The CPU registers and the Event Monitor registers can be displayed as a group b~ 
using the DR and DES n commands. 

The complete register set can be loaded from or saved to EEPROM. Executing a SA\ 
or LD copies all system variables. A SAV 1 or LD 1 copies only the register group. 

Single Step Through Program 

From pause mode, the STP command executes one instruction. To receive visua 
feedback, combine this command with a trace display command such as STP;DT. 

Stepping through code is a common way to locate software bugs. The STI switcl 
allows you to ignore interrupts while debugging higher level routines, or to step througl 
and debug the interrupt routine itself. 

Miscellaneous Useful Commands 

The COM command establishes a 'transparent communication mode' between th1 
running target program and the controlling pon of the ES 1800. An address is specifi~ 
from which ASCII characters can be passed from the user to the target program an1 
from the target program to the user. For example, 

The target program can ask the user a question, and the user can type a 
answer at the terminal. 

You can simulate I/O before hardware is read 

You can use COM in test situations 

The BUS displays the status of several bus lines: NMI, ARDY, SRDY, INTO, INT 
INT2/INT AO, INT3/INT Al, and TEST. This command may be entered in run mode. 

The ON CPY soft switch provides a way to make a hard copy of emulation data. It 
also useful for monitoring computer control commands. 

4-48 Preparing for Emulatic 



') 

ModifyProg 

Modify Your Program 

Once you have run your program, stopped at in a particular place, and isolated 
problem, the next step is to design and test possible solutions to the problem. 
ES 1800 emulator lets you easily modify memory either in your target or in the emul 
overlay memory to make changes to your program. 

This section includes information on memory commands, memory mode and 1/0 m1 
The term 'memory' is used here to describe memory in the target system or 
ES 1800's overlay memory. 

Memory commands allow you to modify and display memory in five different ways. 

1. Copy blocks of memory, fill blocks with a constant data pattern, search f 
pattern or a particular block, and load or verify memory using men 
commands. 

2. Directly modify single lines in memory using the line assembler. 

3. View data from memory using the memory disassembler. 

4. View and modify memory using a simple scrolling scheme using meIJ 
mode. 

5. View and modify 1/0 address space data using l/0 mode. 

Preparing for Emulation 



Modify Program: Memory Commands 

Commands Used to Modify the Emulation Environment 

Command 

Memory Commands 

@ 
BMO 
BYM 
DB 
DIS 
FIL 
FIN 
LOV 
VBL 
VBM 
WDM 

Description 

Read/write memory 
Move memory block to new address 
Set default data length to byte 
Display memory block 
Disassemble memory 
Fill memory with constant 
Find pattern in memory 
Load overlay memory from target 
Verify pattern in memory 
Verify block move 
Set default data length to word 

Line Assembler Commands 

ASM 
END 
x 

Line assembler 
Exit line assembler 
Exit line assembler 

Memory Mode Commands 

M Enter memory mode 
MMP Display/set memory mode pointer 
X Exit memory mode 

1/0 Mode commands 

IOP Display 1/0 mode pointer 
MIO Enter l/O mode 
X Exit l/O mode 

Memory Commands 

If the overlay memory is mapped (mapped memory will have the RW, RO or IL 
attributes assigned to it), read and write accesses are directed to it. Mapped memo: 
is modified by a memory command even if it is mapped as read only. If memory 
unmapped, (memory with the TGT attribute assigned to it), memory comm.al 
accesses are directed to the target system memory. Mapped and unmapped memo: 
may be interleaved in any way you desire. See the Overlay Memory section for detai 
on mapping overlay memory. 

The default data length affects most memory commands. There are two data lengths 
choose from: byte mode (BYM) and word mode (WDM). Commands that accept da 

4-50 Preparing for Emulati( 



Modify Program: Line Assem1 

parameters truncate the data entered to the current default data length. If you e: 
FIN 0 LEN 20, 23F6 and the default data length is byte mode, the find comm 
truncates the data field to F6 and searchs the range for that byte. Commands 
display data use the current data length. 

Some memory commands may be executed during run mode. These commands 
emulation for a brief time in order to read from or write to memory. H memory comm2 
are executed while in run mode, remember that you are not emulating in real-time. 

The following table shows the target-related commands that can be entered in 
mode and the commands that are affected by the default data length. 

Command 

DB 
FIN 
FU.. 
BMO 
VBL 
LOV 
VFO 
ASM 
DIS 
M 
MIO 
@ 

Line Assembler 

Legal in Run Mode? 

YES 
NO 
NO 
NO 
NO 
NO 
NO 
YES 
YES 
YES 
YES 
YES 

Uses Default Data Length 

YES 
YES 
YES 
NO 
NO 
NO 
YES 
N/A 
N/A 
YES 
YES 
YES 

The line assembler is used to make small modifications to your program. For exan 
if you wanted to branch when a variable was equal to 0, and you realize your c 

inadvertently checked to see if the variable was not equal to 0. 

All 80186/188 and 80C186/C188 instructions can be entered from line assembly m 
The instructions are converted to machine code and are loaded into memory at 
address specified in the prompt. 

Preparing for Emulation 



Modify Program: Memory Mode 

The assembler directives are: 

'symbol 
<return> 
$ 
CSEG 
DB 
DW 
END 
EQU 
FAR 
LO-L9 
NEAR 
ORO 
PRE 
x 

Memory Mode 

Print value of symbol 
Disassemble one instruction 
Display current assembler offset address 
Set 64K byte code segment. 
Define constant byte data 
Define constant word data 
Exit line assembler 
Define local symbol 
Outside current line assembly segment 
Print value of local symbol 
Within current line assembly segment 
Set 64K byte offset into code segment window. 
Toggle preview mode 
Exit line assembler 

If you need to modify data space, memory mode is convenient. It allows you to view an< 
modify memory using a simple scrolling scheme.. Enter memory mode by executing tl11 
M command. The current address and associated data are displayed. If the firs 
character entered on a memory mode command line is a <return> , the next addres 
and its data are displayed. If a value is entered before the <return> , that value i 
written to the current address before displaying the next address. A list of up to nin, 
values separated by commas may be entered after a memory mode prompt. This dat 
is stored to consecutive addresses. 

The scroll direction is determined by two commands, NXT and LST. NXT (next 
increments the address and LST (last) decrements the address. Entering either c 
these commands during run or pause mode sets the scroll direction and enters memor 
mode. The scroll direction can also be changed after you have already entered memor 
mode by executing the appropriate command. The scroll direction can be manual! 
overridden at any time by using the period(.) and comma(,) keys. A period incremen1 
the address; a comma decrements it. 

The MMP register (Memory Mode Pointer) is always set to the current address bein 
accessed. If memory mode is entered without specifying an address, the value in th 
register specifies the starting address. On power-up, MMP is set to zero. 

The @ command is a shorthand command for reading and writing to memory. It US( 

the default data length. 

4-52 Preparing for Emulati<.. 



Modify program: 110 M 

1/0 Mode 

I/O mode allows viewing and modification of the data in I/O address space. I/O mod 
entered with the MIO command. Data is not automatically read from an 1/0 address 
entry to 1/0 mode. Many 1/0 ports are 'write only' ports, and trying to read from tl 
may cause hardware problems. In order to read data from an 1/0 port, you must ent1 
<return> as the only character on the line. The data is displayed, but the addres 
not automatically incremented. You must manually change the address while in 
mode using the period and comma keys. A period (.) increments the address an 
comma (,) decrements the address. Up to nine values separated by commas can 
entered in response to the 1/0 mode prompt. All of the values in the list are writte1 
the same l/O address. 

lOP 

The lOP register (I/O Pointer) is always set to the current l/O address b 
accessed. If l/O mode is entered without specifying an address, the value in 
register will determine the starting address. On power-up, lOP is set to zero. 1 

IOP in Section 7). 

Preparing for Emulation 



Shortcuts 

Shortcuts 

There are many shortcuts to shorten your setup time and reduce the number of 
keystrokes you must use. They include: 

Using symbols rather than hex addresses. 

Repeating a command indefinitely or a specified number of times. 

Creating and storing macros to use for common command sequences. 

Using general purpose emulator registers for common addresses or data 
values. 

Saving setup information to ES 1800 EEPROM and reloading it later for one 
or two users. 

Using clear commands for registers, memory maps, macros and symbols . 

Commands Used in Short£Uts 

Command Description 

Symbol Commands 

DEL 
PUR 
SEC 
SYM 

Repeat Commands 

I 
* 
<Ctrl·Z> 
IDX 
LIM 
TST 

Macro Commands 

CMC 
MAC 

4-54 

Define symbol or section 
Delete symbol or section 
Clear all symbols and sections 
Display all sections 
Display all symbols 

Repeat last command line (no <return>) 
Repeat operator 
Reset emulator (terminates repeat) 
Counter register (can be used to terminate repeat) 
Limit register (can be used to terminate repeat) 
Test variable (can be used to terminate repeat) 

Define macros 
Clear macros 
View macros 

Preparing for Emulatio. 



Commands Used in Shortcuts (cont) 

Command Descriotion 

General Purpose Register Commands 

BAS Set/display register default base 
DFB Dsiplay default base 
GDO-7 General purpose data registers 
GR0-7 General purpose address registers 

Saving and Loading Setup Commands 

LD Load setup from EEPROM 
SA V Save setup to EEPROM 
SET Determine configuration for two users 

Clear Commands 

CES 
CLM 
CLR 
CMC 
DEL 
OFF-1 
PUR 

Clear When/Then statements 
Clear memory map 
Clear CPU registers 
Clear macros 
Delete section or symbol 
Set all on/off switches to off 
Delete all symbols and sections 

Miscellaneous Useful Commands 

REV Display revision level 

Use Symbols Rather than Addresses 

Shortcuts: Syn 

Symbol definitions allow you to refer to addresses or data values using names r: 
than numbers. Section definitions allow you to refer to a range of addresses and 
values using names rather than addresses. Symbols and sections are somet 
collectively referred to as symbols. 

Symbols are 32-bit integer values and sections are 32-bit ranges. 64K bytes of ov~ 
memory are allocated for symbol definitions. To determine approximately how 11 

symbols you can define, take the average symbol name length, add six and divide 
64K (64 x 1024). 

Symbols are not typed within the ES 1800, so all symbols are global. This implies 
a symbol and a section may not be defined using the same name. Duplicate syr 
names are not allowed. Section range values may not overlap. 

Preparing for Emulation 



Shortcuts: Symbols 

Symbols may be redefined by assigning a new value to the symbol name. If you want to 
reassign a symbol name to a section value. or if you want to change the range value of a 
section. you need to delete the symbol or section name before assigning the new value. 

Most compilers and assemblers create symbol tables from the symbols def'med in the 
program. These symbols can be easily downloaded. If you have a linker and converter 
that can create Extended Tekhex serial data records, you .can download the symbol 
table using the DNL command. If your linker produces another type of object module 
format, you must either use a format converter to convert to Extended Tekhex, or use 
ES Driver. ES Driver accepts a variety of object module formats. See Appendix B. 

If you are going to download sections that have already been def'med (perhaps from a 
previous download of the same file), purge all symbols or delete the section definitions 
from memory before downloading. If you do not, an error occurs when you attempt to 
redefme the value of a section, and the download aborts. 

Symbols may be used as parameters to any ESL commands. The only limitation OIJ 

symbols is that they cannot be used meaningfully with the colon operator (:). The 
single line assembler accepts symbols as address references and data values. 

Memory and trace disassembly display symbol names in place of absolute values fo1 
address fields. The following examples illustrate the difference when the same prograrr. 
is disassembled with and without symbol def'mitions. 

First, define the symbols and sections: 

4-56 

>S'XM $00000480 car 

$00000486 ah_car 

$00001000 CMND 

$00001022 Tauc 

$00000004 busy 

$00000002 got_it 

$00000080 action 

$00004020 eslO 

>SEC 

$00001000 TO $0000104F monitor 

Preparing for Emulatio1 



Shortcuts: Sym. 

The following example shows memory disassembly with symbol definitions. 

>GRO=lOOO LEN 2A 

>Dl:S GRO 

CMND 

1000 F70680048000 TEST WORD PTR csr,0080 

1006 74F8 .J'E SHORT CMND 

1008 C606800402 MOV BY'lE PTR car,02 

lOOD C606860402 MOV BY'lE PTR ah_car,02 

1012 A02040 MOV AL,BY'lE PTR aalO 

1015 800E860404 OR BY'lE PTR sh_csr,04 

lOlA 8A268604 MOV AB,BY'lE PTR sh_csr 

lOlE 88268004 MOV BY'lE PTR car,AB 

Tauc 

1022 F70680048000 TEST WORD PTR csr,0080 

1028 75F8 JNE SHORT Tauc 

The following example shows trace disassembly with symbol definitions. 

>DTB 

>P.ARTl:AL T .M. MAP: PASS l PASS 2 

i'- \ 
FOLL T .M. MAP: PASS l PASS 2 

} SEQ# ADDR OPCODE MNEMONl:C OPERAND Fl:ELDS BOS CYCLE DATA 

SEC:monitor 

0038+cMND 

0038+0000 F7068004800 TEST WORD PTR car,0080 

0034+0006 74F8 .J'E SHORT CMND 

0033+0008 C606800402 MOV BY'lE PTR car,02 

003l+OOOD C606860402 MOV BY'lE PTR ah_csr,02 

0027+0012 A02040 MOV AL, BY'lE PTR ealO 

0026+0015 800E860404 OR BYTE PTR ah_csr,04 

002l+OOlA 8A268604 MOV AB,BYTE PTR ah_csr 

0018+00lE 88268004 MOV BYTE PTR csr,AB 

0014+Tauc 

014+0022 F70680048000 TEST WORD PTR csr,0080 

0010+0028 75F8 JNE SHORT Tauc 

0008+002.A EBD4 .JMP SHORT CMND 

0005+CMND 

0005+0000 F706 TEST WORD PTR 0000,06F7 

Preparing for Emulation 



Shortcuts: Symbols 

The following example shows trace disassembly without section definitions. 

>DEL 'monitor;DTB 

FULL T .M. MAP: PASS l PASS 2 

SEQ# ADDR OPCODE MNEMONIC OPERAND FIELDS BOS CYCLE DATA 

----------------------------------------------------
0038 CMND 

0038 1000 F7068004800 TES'? WORD PTR csr,0080 

0034 1006 74F8 JE SHORT CMND 

0033 1008 C606800402 MOV BYTE PTR csr, 02 

0031 1000 C606860402 MOV BYTE P'?R sh_csr,02 

0027 1012 A02040 MOV AL,BY'l'E PTR eslO 

0026 1015 800E860404 OR BY'l'E PTR ah_csr,04 

0021 lOlA 8A268604 MOV AH, BY'l'E PTR ah_csr 

0018 lOlE 88268004 MOV BY'l'E PTR csr,AH 

0014 Tauc 

0014 1022 F70680048000 TEST WORD PTR csr,0080 

0010 1028 75F8 JNE SHORT Tauc 

0008 102A EBD4 ~ SHORT CMND 

0005 CMND 

0005 1000 F706 TEST WORD PTR 0000, 06F7 

4-58 Preparing for EmulatiOI 

·----~--·~~--



Shortcuts: Syml 

The following example shows a memory disassembly with both sections and syml 
purged. followed by a trace disassembly with no section or symbol definitions. 

>POR 

>SYM;SEC 

> 

>DIS GRO 

1000 F70680048000 TEST WORD PTR 0480,0080 

1006 74F8 .:ra SHORT 1000 

1008 C606800402 MOV BYTE PTR 0480,02 

1000 C606860402 MOV BYTE PTR 0486,02 

1012 .A02040 MOV AL,BYTE PTR 4020 

1015 800E860404 OR BYTE PTR 0486,04 

lOlA 8A268604 MOV AB,BYTE PTR 0486 

lOlE 88268004 MOV BYTE PTR 0480,AB 

1022 F70680048000 TEST WORD PTR 0480,0080 

1028 75F8 JNE SHORT 1022 

> 

>DTB 

FOLL 'l' .M. MAP: PASS l PASS 2 

SEQ# .ADDR OPCODE MNEMON:IC OPERAND FIELDS BOS CYCLE D.A'l'.A 

0038 1000 F7068004800 TEST WORD PTR 0480,0080 

0034 1006 74F8 .:ra SHORT CMND 

0033 1008 C606800402 MOV BYTE PTR 0480,02 

0031 1000 C606860402 MOV BYTE PTR 0486,02 

0027 1012 .A02040 MOV AL, BYTE PTR 4020 

0026 1015 800E860404 OR BYTE PTR 0486,04 

0021 lOlA 8A268604 MOV AB,BY'l'E PTR 0486 

0018 lOlE 88268004 MOV BYTE PTR 0480,.AH 

0014 1022 F70680048000 TEST WORD PTR 0480,0080 

0010 1028 75F8 JNE SHORT 1022 

0008 102.A EBD4 JMP SHORT 1000 

0005 1000 F706 TEST WORD PTR 0000,06F7 

Preparing for Emulation 



Shortcuts: Repeat Operators 

Repeat Operators 

The command repeat feature provides a way to repeat a command line a specifiec 
number of times or indefinitely. 

I Repeat the last command one time. No <return> is necessary. 

* [n] Repeat the last command n times. If no number is specified. repeat commanc 
indefinitely. If n=O, *does not cause the command to be repeated. 

fu these three equivalent examples, the STP;DT command is repeated five times. 

>*SSTP;DT 

>*5 STP:DT 

>* 5 STP;DT 

If the slash key is typed after one of the above examples is input, the entire line h 
repeated. causing five more STP;DT commands to be executed. 

There are four rules for using the repeat operators: 

1. Repeat commands must be the first character on a line. 

2. The repeat argument must be entered as a number. The number will be 
interpreted as a decimal value. Do not enter a base prefix before entering the 
repeat value. When no repeat argument is specified, it is assumed to be 

32 4,294,967,295(2 - 1). 

3. You cannot use a register, variable or symbol as the repeat argument. 

4. There must be a space following the repeat count if the next character is ; 
decimal digit. 

You can always use the system reset character to stop the repeat if the specified tes 
conditions are never reached. However, this will also abort emulation, if it is i.J 
progress, without saving the state of the CPU. 

The TST variable terminates a repeat when it becomes zero. It is used in a 
expression on the command line. It is tested just before the command line is execute1 

and if it has become zero, the command buffer is not executed and the repeat halts. 

To single step and disassemble until a specified address is reached: 

>*STP;DT; TST=CS:IP-$C324 

If you are waiting for an overlay memory location to be cleared: 

>*STP;DT;TST=@87020 

The TST variable is set to all 1 's at the start of a repeat. This is necessary so that th 
register is in a known state at the start of a repeat loop. 

4-60 Preparing for Emulatio 



. ) 
~ ··- _.,.,. 

Shortcuts: Ma. 

Repeats can also be terminated by the states of the limit (LThf) and index (Il 
registers. Just before execution begins, the values of LIM and IDX are compared. 
IDX is greater than or equal to LIM, the repeat is terminated. The LIM registe 
initialized to the number of times the loop will execute, which is the decimal loop C4 

you specified in the command line. 

IDX is a counter. It starts at zero and is incremented every time the repeat loo 
executed. You may assign new values to these registers within repeat command 1 
if you wish. 

For example, if you need a decimal counter: 

>BAS IDX=#lO 

>*#3 IDX 

#0 

#1 

#3 

<ctrl-Z> stops the repeat early. 

Initialize a block of memory to a decrementing count ending in zero, then display it. 

>B'YM; M $1000 

$001000 $34 >*4 L:IM-IDX-1 

Old data in memory. 

$001001 $CO 

$001002 $BF 

$001003 $00 

$001004 $21 >M MMP-4 

$001000 $03 >*4 

$001001 $02 

$001002 $01 

$001003 $00 

$001004 $21 > 

Macros 

New data written to 

memory with repeat 
command 

A macro defmes a list of commands or expressions that are executed with 
command key word. This allows you to execute repetitive operations quickly 
easily. You can defme up to ten macros using the underscore (_I). Macros are ref( 
to by the decimal numbers #0-9. 

Macros can be saved in the ES 1800 EEPROM with the SA V S command, and relo; 
using the LD S command. 

Preparing for Emulation 



shortcuts: General Purpose Registers 

The ten macros are linked in one buffer with #1 first, #2 ... #9, and #0 last. If the lengths 
of all ten macros exceeds the buffer length of 125 characters, the highest numbered 
macro is truncated. Spaces are also considered characters, so use them only when 
required, to save macro buffer space. 

Once the buffer is full, attempting to add a macro with a higher numbers will result in 
those macros remaining null. For example, if macros #1 to #8 are defined and in this 
process use up all of the space in the buffer, then an attempt to define macro #9 and #0 
results in those macros remaining null. Also, if the length of any macro from #1 to #7 is 
increased after filling the buff er, then macro #8 will be truncated. If the increase is more 
than the size of macro #8, macro #8 becomes null and macro #7 is truncated. 

When you define a number of long macros, execute the MAC command to determine if 
the macros of the highest numbers are still intact. Using the general purpose registers 
in macros helps minimire the number of characters you need to use. 

WARNING 

There are no warnings when truncation or nullification of a macro occurs. 

General Purpose Registers 

There are two sets of general purpose registers: 8 data registers and 8 general purpose 
registers. These registers can be used as integer or range arguments to commands tc 
save keystrokes when using values repeatedly. They can also be used to save space ir 
macro definitions. 

Save Setup to EEPROM 

The SET menu, registers, Event Monitor System setup, overlay map, ON/OFI 
switches and macros can be saved to EEPROM. them with the SA V command. These 
values may then be automatically loaded into the ES 1800 on power-up by setting the 
thumbwheel switch to the appropriate value, or loaded manually after power-up b~ 
typing a load command (LD). 

The EEPROM is divided into two groups of six sections. Each section within a grou1 
may be loaded and saved individually. The two groups designate two users, referred tc 
as user 0 or user 1 in the SET menu. This allows two users to save complete 
information about their emulation session, and reload it later. The six sections o: 
information are: 

4-62 Preparing for Emulatioi 



Section# 

0 
1 
2 
3 
4 
5 

Descriotion 

SET menu 
Registers 
Event Monitor WHEN{fHEN clauses 
Overlay map 
ON/OFF menu 
Macros 

Shortcuts: Two Users. 

Configure System for Two Users 

Jn the SET menu, you can specify whether the setup you are doing is for user 0 or · 
1. Any configuration changes you make to registers. Event Monitor System se 
overlay map. ON/OFF setup and macros will only apply to whichever user you l 
specified. 

This allows you to create two completely different setups. These can be save< 
EEPROM between emulation sessions using the SA V command, and reloaded with 
LD command. The default is user 0. To save the configuration for user 1: 

>SE'l' 1,1 
>SAV 
>SE'l' 1, 0 

Clear Commands 

Chanqe to aecond uaer 

Save confiquration 
Chanqe back to first 
uaer 

There are commands to clear WHEN/I'HEN statements, 1/0 map. memory map. < 
registers, macros, symbols and sections, and to set all ON/OFF soft switches to ei 
ON or OFF. These are handy when you want to set your target environment l 
known state. 

The CES command clears only the WHEN{fHEN statements, and leaves 
comparators unchanged. 

The 1/0 and memory map clear commands assign all overlay memory the Ul 

attribute. 

The CLR command clears the CPU registers AX. BX, CX and DX. The segr 
registers, flags. CS:IP and stack registers remain unchanged. 

Preparing for Emulation 





Section 5 

Table of Contents 

BRINGING UP HARDWARE 

RAM Tests .................................................................................................... 5-2 

Scope Loops .................................................................................................. 5-2 

Miscellaneous Special Functions ................................................................ 5-3 





) 
,' ,__._ 

Sectio 

BRINGING UP HARDWAF 

The diagnostic functions (also called special functions or SFs) are a group of uti 
routines and special tests. They are valuable for locating address, data, status 
control line problems. There are three categories: 

1. RAM tests 

2. Scopeloops 

3. Miscellaneous special functions 

Command 

SF 
SFO 
SFl 
SF2 
SF3 
SF4 
SFS 
SF6 
SF7 
SF8 
SF9 
SF 11 
SF12 
SF13 
SF24 
SF25 
SF26 
SF27 
SF28 
SF29 
SF31 
SF32 
BUS 
BYM 
CLK 
CRC 
CRFlCRO 
WDM 

Bringing Up Hardware 

Commands Used for Diagnostic Functions 

Descriotion 

Display list of special functions 
Simple RAM test, single pass 
Complete RAM test, single pass 
Simple RAM test, looping 
Complete RAM test, looping 
Toggle data at address 
Peeks into the target system 
Pokes into the target system 
Write alternate patterns 
Write pattern then rotate 
Write data then read 
Write incrementing value 
Read data over an entire range 
Cyclic redundancy check 
Toggle data at address 
Peeks into the target system 
Pokes into the target system 
Write alternate patterns 
Write pattern then rotate 
Write data then read 
Write incrementing value 
Read data over an entire range 
Display status of bus status lines 
Set global data length to byte 
Display target clock frequency 
Calculate CRC of specified range 
Calculate CRC of even/odd bytes only 
Set global data length to word 



Scope Loops 

RAM Tests 

The RAM tests (SF 0 to SF 3) check that RAM is operating properly. They can be run 
on the target or overlay memory and may be executed in either byte or word mode. 
Byte or word mode must be specified prior to initiating the SF test. 

If you are going to test a large section of RAM, it may take a significant amount of 
time. If you attach a printer to the computer port and tum on the copy switch 
(ON CPY) you can let the test run while you do something else. The printer will record 
any errors that may occur in your absence. 

SF 1 and 3 are modeled after a study by Abraham, Thatte, and Narir titled Efficieni 
Algorithms for Testing Semiconductor Random-Access Memories [IEEE Transaction on 
Computers, vol. c-27, no. 6 June 1978]. Refer to this publication for background 
information on these two diagnostics. Reprints are available from the Applied 
Microsystems Applications Engineering department. 

Scope Loops 

Scope loops are diagnostic routines for use when troubleshooting with an oscilloscope 
Uses include locating stuck address data, status or control lines, and generatin~ 

signatures using signature analysis equipment. 

There are two types of scope loops: memory and l/O. Memory scope loops (SF 4-12: 
access Llie memory space defmed by the current MMS (Memory Mode Status: 
register. 1/0 scope loops (24-32) access the target system's l/O space. 

The scope loops are optimized so that they execute at maximum speed. This shor 
cycle time allows you to review the timing of pertinent signals in the target systen 
without using a storage oscilloscope. All of these routines must be terminated b: 
resetting the emulator with the reset character ( <cttl-z> default). The scope loops cal 

be executed in either byte or word mode. 

5-2 Bringing Up Hardwar 



Scope Lo. 

Miscellaneous Special Functions 

There are additional special functions for: 

1. Reading the target system clock frequency. 

2. Calculating a cyclic redundancy check on all, or just even or odd addresse! 
a range. 

3. Displaying the status of bus status lines. 

Bringing Up Hardware 





Section 6 

Table of Contents 

TIME STAMP MODULE 

Overview ....................................................................................................... 6-1 

Possible Measurements ............................................................................ 6-2 
Elapsed Time Measurements ............................................................. 6-2 

Count Occurrences ............................................................................. 6-2 

Using the Time Stamp Counter Value as a Condition ............................. 6-3 

Installation .................................................................................................... 64 
liardware Installation ............................................................................... 6-4 

Software lnsta.llation ................................................................................ 6-5 

Using the Time Stamp Module ................................................................... 6-6 
Getting Started ......................................................................................... 6-6 
Steps for Using the Time Stamp Module ................................................. 6-8 

Step 1: Set ESL Soft-Switch 9 ........................................................... 6-8 

Step 2. Set Time Stamp Module Switch ............................................ 6-9 
Step 3. Set Up TGR Input ................................................................ 6-11 
Step 4. Set up the Event Monitor System ........................................ 6-11 

Step 5. Run your Program ................................................................ 6-12 

Step 6. View Time Stamp Information ............................................ 6-12 

Step 7. Interpret Time Stamp Information ....................................... 6-12 

Collecting Time Stamp Information in a File ............................ 6-13 

Exam pl es ..................................................................................................... 6-14 

Measuring Elapsed Time ....................................................................... 6-14 

A to B Mode .................................................................................... 6-15 

Range Mode ..................................................................................... 6-17 
Interrupt Latency .............................................................................. 6-20 

Counting Occurrences ............................................................................ 6-23 



Table of Contents, continued 

A to B Mode .................................................................................... 6-23 

Range Mode ..................................................................................... 6-25 
Using the Time Stamp Counter Value as a Condition ........................... 6-28 



Sectio 

TIME STAMP MODUl 

This section describes what the Time Stamp Module does, and how to install and 
the module. Complete examples are provided for using the module to do each poss 
type of measurement. 

The Time Stamp Module adds performance analysis to the ES 1800 Series emula 
for 16 bit microprocessors. You can use this module when you use your ES 1800 fro1 
dumb terminal or host computer, or from your host computer using ES Driver con 
software. Differences in operation for these two configurations are noted wl 
appropriate. 

There are two ways the module can be used: 

1. To measure elapsed or absolute time. 

2. To trigger the Event Monitor System to cause an action such as breal 
emulation once a time stamp counter value is reached. 

Command 

SET#9 
CTS 
WHEN 
MAP 
OVE 
ovs 
VFO 

Time Stamp Module 

Commands Used to Set Up Time Stamp 

Description 

Choose timestamp or LSA 
Convert timestamp value 
Event monitor system statements 
Set memory map 
Enable overlay memory 
Overlay memory speed 
Verify overlay memory 



Possible Measurements 

There are eight distinct measurements that can be made using the Time Stamp Module: 

Elapsed Time Measurements 

Measure time spent in a module 

Measure time spent between modules 

Measure duration of time when memory is accessed (opcode or data) 

Measure duration of time when code is accessed (opcode only) 

Measure interrupt response time directly 

Count Occurrences 

Count number of times address or range of memory is accessed (opcode 01 

data) 

Count number of times code is accessed (opcode only) 

Count module linkage activity (the number of times one module calb 
another) 

Each time measurement can be based on one of five scales: .luS, luS, .OlmS, .lmS oi 
lmS, so you can collect your data using the appropriate time scale. The maximun 
number of counts for any time base is 65,535 so you have a maximum period of 6~ 
seconds without overflow. 

Time can be measured on an absolute time frame, or on a relative time frame. When y01 
use the absolute time frame, the measurement is from when the counter is reset. Whet 
you use the relative time frame, the measurement is from one traced cycle to the nex 
traced cycle. For example, if you were measuring the elapsed time for entering anc 
exiting a module, the time displays would show as follows: 

enter 
exit 
enter 
exit 
enter 
exit 

Absolute 
3000 
3005 
3007 
3012 
3014 
3019 

Relative 
3000t 
5 
2 
5 
2 
5 

t The first line on the relative trace screen shows the absolute count. 

6-2 Time Stamp Moduli 



Using the Time Stamp Counter Value as a Condition 

The ES 1800 Event Monitor System lets you specify complex program states, u 
WHEN-THEN statements: 

WHEN conditions THEN actions 

You can use the absolute value of the time stamp counter as one condition. For n 
details on using CTS, see the example on page 6-28. 

Time Stamp Module 



Installation 

Installation 

Hardware Installation 

The Time Stamp Module consists of the module and the cable to connect it to th( 
emulator. 

There are three steps to hardware installation: 

1. Turn the emulator off. 

CAUTION 

The ES 1800 emulator must be off before plugging in the Time Stamp 
Module, or the cable and module may be damaged. Do not plug in or 
unplug the Time Stamp Module with power turned on . 

2. Connect the module to the LSA port on the front of the ES 1800 emulator a 
shown in the following illustration. Note that you cannot use the Logic Statj 
Analysis pod and the Time Stamp Module at the same time. 

Figure 6-1: Connecting the Time Stamp Module to the ES 1800 

64 Time Stamp Modu 



Installa 

3. The Time Stamp Module requires a certain revision of ESL (the Emul 
Standard Language). To check your revision: 

ESL command Type REV from the ES 1800 prompt. 

from ES Driver Enter the Target Emulation menu, and type REV from 
ES 1800 prompt. 

If you have an ESL equal to or greater than that shown in the chart below, you can 
your Time Stamp Module as is. If your ESL is below the revision shown below, pl1 
contact your local sales office or representative, or call the Order Adminismi 
department at 800-426-3925 for information on upgrading your ESL revision. 

Product 
8018X 
80C18X 

Software Installation 

Minimum Revision Level 
ESL 3.2 
ESL 1.0 

No software changes are required to operate the Time Stamp Module for any of 
following software packages available from Applied Microsystems Corporation. 

• ES Driver 

• V ALIDATE/XEL 

• VALIDATE/Soft-Scope 

• GeneProbe 

Time Stamp Module 



Using the Time Stamp Module 

Using the Time Stamp Module 

This section explains the meaning of the labels, buttons, switches and LEDs on the 
Time Stamp Module, and then provides complete inf onnation on how the unit works . 

. Figure 6-2: Time Stamp Module 

.,,,,. 
1111111 

Applied 
Microsystems 
Corporatoo 

TIME STAMP MODULE 

Getting Started 

. ~overflow light 

"'" 

~-reset button 

trigger Input TGR 

Look at the end of your Time Stamp Module and identify the trigger inputs, resf 
button, switch and overflow indicator LED as shown in the following diagram. 

6-6 Time Stamp Modul 



Using the Time Stamp Mo, 

Figure 6-3: End View o/Time Stamp Module 

TGR 

TGR 

RST 

Switch 

O/F 

switch 

TGR TGR O/F 

reset button overflow light 

The TGR input is used to measure interrupt latency dire• 
You connect the TGR input directly to the interrupt line in : 
target circuit, avoiding any logic delays due to use of the E 
Monitor System. It is designed for processors that pull lines 
for interrupts. (Motorola and Zilog processors) (see page 6-20) 

The TGR input is used to measure interrupt latency dire 

You connect the TGR input directly to the interrupt line in : 
target circuit, avoiding any logic delays due to use of the E 
Monitor System. It is designed for processors that pull 1 
high for interrupts. (Intel processors) (see page 6-20) 

The reset button is used to reset the time stamp counter to 0. 

The. switch is used to determine the time base and the typ 
counting done. (see page 6-9) 

The overflow LED is lit when the counter overflows the 65 
limit. 

The examples of each type of measurement give complete information on when to 
the manual reset button, TGR and TGR, and how to use the switch to choose the 
stamp mode and time base. 

CAUTION 

Do not plug in or unplug the Time Stamp Module when power is turned 
on to the emulator. 

Time Stamp Module 



Using the Time Stamp Module 

Steps for Using the Time Stamp Module 

In order to make a measurement, there are seven steps you must follow: 

1. Set the ESL soft-switch 9 to the appropriate position for the measurement 
you want to make. 

2. Choose a switch setting on the Time Stamp Module. 

3. Set up your trigger inputs. 

4. Set up the Event Monitor System to trigger the Time Stamp Module at the 
appropriate program states. 

5. Run your program. 

6. View the time stamp information. 

7. Interpret the time stamp information. 

Each step is described in detail below. 

Step 1 : Set ESL Soft-Switch 9 

ESL soft-switch 9 controls the LSA display of information coming in on the LSA pon 
Settings 1 and 2 are used with the Time Stamp Module. Setting 0 is used when ym 
use the LSA pod. 

0 Default: LSA value shown as 16 bits 

1 Display the absolute time value 

2 Display the relative time value 

Absolute time values are used when you want to measure the total amount of tim1 

spent or the number of occurrences. Relative time values are used when you ar 
interested in the time spent between points A and B in your code, but are nc 
interested in how long it takes to get to point A. 

To get to ESL soft-switch 9: 

ESL commands 

from ES Driver 

6-8 

Type SET 9, n, where n is 0, 1 or 2. 

Select Target Emulation mode, and type SET 9, n, where n is ( 
1 or2. 

Time StampModuj 



Using the Time Stamp Mo. 

Step 2. Set Time Stamp Module Switch 

Choose a switch setting on your Time Stamp Module based on your measurement 1 

and preferred time base. We recommend staning with the slowest time frame: 1 
The table below shows the maximum measurable time period for each switch setting. 

Time Base 
0.1 us 
1.0 us 
.01 mS 
0.1 mS 
1.0mS 

Maximum Measurable Time Period 
6.5 milliseconds 
65 milliseconds 
.65 second 
6.5 seconds 
65 seconds 

IMPORTANT 

If the counter overflows, the yellow overflow LED will be lit. Check to 
see if you are using the correct time base for the duration of your 
measurements. When the counter overflows the 65,355 limit, it starts 
again at 0. 

When the emulator is paused, no TGR is generated by the Event Monitor 
System in positions 0-4, so the counter is not reset and is likely to 
overflow. This is not a problem. 

For example, the ORT display might be as follows. The highlighted counter value in 
last line of the example shows the counter overflow. 

LINE ADDRESS DATA R/W M/10 BCYC QUE ABS TI~ 

#20 000344 > E2FD R TAR M IF 2 #63590 

#19 000346 > 80F9 R TAR M IF 2 #64592 

#18 000342 > 754B R TAR M IF F3 #65032 

#17 000344 > E2FD R TAR M IF 2 #01222 

Time Stamp Module 



Using the Time Stamp Module 

The following table summarizes the switch positions. 

The trigger to start and stop the counter in the Time Stamp Module is either the TGR 
signal from the Event Monitor System (Step 4), or the TGR or TGR direct input frorr 
your target interrupt line (Step 3). 

Position Time Base 

0 .1 us 
1 1 us 
2 .OlmS 
3 . 1 mS 
4 lmS 

5 .1 us 
6 1 us 
7 .OlmS 
8 .1 mS 
9 1 mS 

A .1 us 
B 1 us 
c .OlmS 
D .1 mS 
E 1 mS 

F n.a. 

Effect o(TGR on Time Stamp Counter Useful Measurements 

Any TGR high causes the time stamp 
counter to be reset to 0. No manual 
reset is required in this mode for either 
absolute or relative time stamping . 

While the TGR is held high by the 
Event Monitor Syste~ the time stamp 
counter counts. Manual reset is required 
in this mode for absolute time stamping, 
but not for relative time stamping. 

In this mode, a long TOR signal I from 
the Event Monitor System resets the 
counter. After that, successive short TOR 
signals tum the counter on and off. Manual 
reset stops the counter and sets it to zero. 

This setting is used to count occurrences. 
Each time the TGR signal goes high, the 
time stamp counter is incremented. 
Manual reset is required. 

Elapsed time 

Elapsed time 

Elapsed time 

Count 
occurrences 

1 A long TGR is defined as being longer than 1.6 uS. This is the only mode where the length of tl 
TGR matters. The following diagram shows what happens to the counter depending on the TGR signal. 

6-10 Time Stamp Modu 



Using the Time Stamp Mo 

Figure 6-4: Positions A-E: Effects of Multiple TGR Signals 

1.6 us 

count=n count:O counting stop counting 
counting 

Step 3. Set Up TGR Input 

The counter in the Time Stamp Module can be controlled in one of three ways: 

1. The Event Monitor System TOR action. 
2. The TOR input. 

3. The TOR input. 

ate 
coun· 

The default is the Event Monitor System trigger input. No additional wires 
necessary. 

To use the TOR and TOR lines to measure interrupt latency, you must connect on 
these lines to an interrupt line on your target. Use of the TOR and TOR external in 
is described fully in the example on page 6-20. 

Step 4. Set up the Event Monitor System 

In this step, you set up the Event Monitor System to selectively trace the men 
program activity, or modules you are interested in time stamping. Setting up the E 
Monitor System can be done through ESL or through the Target Emulation men 
ES Driver. 

There are three steps to setting up the Event Monitor System: 

1. Decide what conditiQn you want to look at, and what actions to take ' 
that condition is reached. 

2. Set up the comparators to isolate that condition. 

3. Set up WHEN/THEN statements using the appropriate conditions 
actions. 

Time Stamp Module 



Using the Time Stamp Module 

For more information on using the Event Monitor Syste~ please see Section 4 of thi~ 
manual. The examples beginning on page 6-14 provide examples of using the Even 
Monitor System to specify conditions appropriate for time stamping. 

Step 5. Run your Program 

ESL commands 

from ES Driver 

Run the program using the RUN command, or run to « 
breakpoint using RBK. 

Select the Target Emulation menu, and the Run or Run-to 
Breakpoint command. 

Step 6. View Time Stamp Information 

There are several ways to display the time stamp information. 

ESL commands 

from ES Driver 

The first step is to display the trace by either: 

- stopping emulation with the STP command 
- using the Event Monitor System to break emulation 
- if you have Dynamic Trace available, you can use th 

OFF TCE command to view the trace while your program i 
still running 

Then view the trace, using the DRT command. The last colum 
shows the absolute or relative time stamp, depending on th 
position you specified with the SET command. 

Enter the Target Emulation menu, and do the same commanc 
as listed in stand-alone mode. 

Step 7. Interpret Time Stamp Information 

The time stamp information is always given as a number of units: the units are the on~ 
you specify when you set the switch on the Time Stamp Module. 

6-12 

IMPORTANT 

You must multiply this number by the time base you selected on the Time 
Stamp Module switch in order to determine the elapsed time in seconds. 

Time Stamp Modu 



Using the Time Stamp Mm 

Collecting Time Stamp Information In a File 

After setting up your Event Monitor System and Time Stamp Module to provide. 
the information you need, you can use ES Driver to save the specific DRT display: 
an ASCII file. Once the information is stored in the file, you can use a spreadshee 
data base management program to analyze the data. 

While in Target Emulation mode, 

1. Press <F3> to open a file to save the session record in. You will 
prompted to enter a file name. The default extension for this file is .rec. 

2. Run the DRT command to print the trace. It will appear on the screen, 
also be stored in the file. Note the prompt on the bottom of the sci 
"SA VE file .rec <F8>=close." 

3. Press <F'S> to close the session record file. 

Time Stamp Module 



Examples 

Examples 

There are two basic measurement modes: Elapsed Time and Counting Occurrences. 
The examples are organized as follows: 

Measuring elapsed time 

measuring the time it takes to go from event A to event B 

measuring the time the program is in the specified range 

measuring the time between an interrupt and interrupt servicing 

Counting occurrences 

counting the number of times the program transitions from event A to 
eventB 

counting the number of accesses to a memory location or range 

Measuring Elapsed Time 

The elapsed time measurement can be used to measure in-module time, out-of-module 
time, inter-module time, and memory and program access time. These measuremen~ 
use switch positions 0 to E. 

Conceptually, there are three types of elapsed time measurements: 

1. Measuring the time from event 11 A11 to event 11B" 

6-14 

used for measuring program time, out-of-module execution time, anc 
inter-module execution time 

2. Measuring the time spent in an address range 

used for measuring memory time and program time (excluding calls tc 
other modules) 

3. Measuring the time between an interrupt and interrupt servicing 

used for measuring interrupt latency 

Time Stamp Moduli 



EI.APSED TIME: A 

Ato B Mode 

To measure the time it talces a program to get from event "A" to event "B," the ea 
way is to set up the Event Monitor System so only event "B" appears in the t 
display. 

Step 1. Set LSA Display Type 

SET 9, 1 Set display format to absolute time stamp 

Step 2. Select Time Stamp Module Switch Setting 

Use positions 0-4, depending on your preferred time base. In positions 0-4, 
TOR from the Event Monitor System resets the time stamp counter to 0. 

If you're not sure which time base to use, use position 4 for the slowest. If 
counter overflows, the yellow overflow LED will light. See page 6-9 for a chai 
maximum time periods per setting. 

Step 3. Set up the Trigger Input 

To measure elapsed time, use the EventSystem Trigger input. 

Step 4. Set up the Event Monitor System 

ACl ='a 

AC2 = 'b 

Specify address comparator 1 in group 1 to be event A 

Specify address comparator 2 in group 1 to be event B 

WHEN ACl THEN TGR 
The TGR action resets the time stamp counter to 0 at event A 

WHEN AC2 THEN TRC 
Trace event B 

Step 5. Run your Program 

ESL commands RUN Run program 

from ES Driver Target Emulation Menu Run 

Step 6. View Time Stamp Data 

ESL commands 

from ES Driver 

Time Stamp Module 

DRT 

Trace Menu: 

Display the trace 

Display the trace 



ELAPSED TIME: A to B 

Step 7. Interpret Time Stamp Information 

The last column of the trace display gives you the absolute time stamp information. 
Note that if event A and B are called more than once, you will get the time betweer. 
events for each occurrence. 

IMPORTANT 

You must multiply this number by the time base you selected on the Time 
Stamp Module switch in order to determine the elapsed time in seconds. 

The following screen shows the raw trace display. Since the Time Stamp Module: 
switch was set to position #1 (1 uSec), the time to go from A to B is shown to Vm) 

from 29 uSec to 39 uSec. 

Figure 6-5: Sample DRT Screen/or Measuring Time from A to B 

>DRT 
LINE ADDRESS DATA R/W FC IPL ABS TIME 
#20 001100> 4E71 R OVL SP 0 #35 
#19 001100> 4E71 R OVL SP 0 #32 
#18 001100> 4E71 R OVL SP 0 #30 
#17 001100> 4E71 R OVL SP 0 #30 
#16 001100> 4E71 R OVL SP 0 #29 
#15 001100> 4E71 R OVL SP 0 #30 
#14 001100> 4E71 R OVL SP 0 #30 
#13 001100> 4E71 R OVL SP 0 #31 
#12 001100> 4E71 R OVL SP 0 #30 
#11 001100> 4E71 R OVL SP 0 #38 
#10 001100> 4E71 R OVL SP 0 #31 
#9 001100> 4E71 R OVL SP 0 #34 
#8 001100> 4E71 R OVL SP 0 #34 
#7 001100> 4E71 R OVL SP 0 #36 
#6 001100> 4E71 R OVL SP 0 #32 
#5 001100> 4E71 R OVL SP 0 #30 
#4 001100> 4E71 R OVL SP 0 #31 
#3 001100> 4E71 R OVL SP 0 #39 
#2 001100> 4E71 R OVL SP 0 #34 
#1 001100> 4E71 R OVL SP 0 #30 
#0 BREAK 

6-16 Time Stamp Modui 



ELAPSED TIME: Range N 

Range Mode 

In range mode, the trace display will show the amount of time the program is in 
specified range. 

The manual reset button should be pressed prior to performing this measurement. 

Step 1. Set LSA Display Type 

SET 9, 1 Set display format to absolute time stamp 

Step 2. Select Time Stamp Module Switch Setting 

Use positions 5-9, depending on your preferred time base. In these positions, 
Event Monitor System TGR enables the counter. 

If you 're not sure which time base to use, use position 9 for the slowest. I1 
counter overflows, the yellow overflow LED will light. See page 6-9 for a cha 
maximum time periods per setting. 

Step 3. Set up the Trigger Input 

To measure elapsed time, use the Event System Trigger input. 

) Step 4. Set up the Event Monitor System 

ACl ='range Specify address comparator 1 in group 1 to be the spec 
address range 

ACl.2 ='range Specify address comparator 1 in group 2 to be the spec 
address range 

WHEN ACl THEN TGR,GR02 
While the range is being accessed, enable the counter and J 

group2 

WHEN ACl.2 OR NOT ACl.2 THEN TGR 
Keep counter enabled while in group 2 

WHEN NOT ACl.2 THEN GROl 
Disable counter when not accessing range 

If you are tracing program flow rather than just memory access, the addresses 
to be qualified with status. The following is an example for the 80186: 

Time Stamp Module 



ELAPSED TIME: Range Mode 

ACl ='range Specify address comparator 1 in group 1 to be the specified 
address range 

Sl =COD Qualify access as program code 

ACl.2 ='range Specify address comparator 1 in group 2 to be the specified 
address range 

Sl.2 = COD Qualify access as program code 

WHEN ACl AND Sl THEN TGR,GR02 
While the range is being accessed, enable thecounter and go to 
group 2 

WHEN ACl.2 OR NOT ACI.2 THEN TGR 
Keep counter enabled while in group 2 

WHEN Sl.2 AND NOT ACI.2 THEN GROI 
Disable counter when not accessing range 

Step 5. Run your Program 

ESL commands RUN Run program 

from ES Driver Target Emulation Menu Run 

Step 6. View Time Stamp Data 

ESL commands DRT 

from ES Driver Trace Menu: 

Step 7. Interpret Time Stamp Information 

Display the trace 

Display the trace 

The last column of the trace display gives you the amount of time accumulated whil( 
the program was in the specified range. 

6-18 

IMPORTANT 

You must multiply this number by the time base you selected on the Time 
Stamp Module switch in order to determine the elapsed time in seconds. 

Time Stamp Moduli 



El.APSED TIME: Range M 

The following screen shows the raw trace display, for the above example usil 
range of $1100 to $1110. Since the Time Stamp Module switch was set to posi 
#5 (0.1 uSec), the time spent in this range was 13.2 uSec. 

Figure 6-6: Sample DRT Screen for Measuring Time in Range 

>DRT 
LINE ADDRESS DATA R/W FC IPL ABS TIME 
#20 001012> 4EB8 R OVL SP 0 #0 
#19 001500 <04D7 w OVL SDO #0 
#18 001014> 1100 R OVL SP 0 #0 
#17 001100> 4E71 R OVL SP 0 #0 
#16 001102> 3410 R OVL SP 0 #10 
#15 0016F8 <0000 w OVL SD 0 #23 
#14 0016FA <1016 w OVL SD 0 #36 
#13 001104> D440 R OVL SP 0 #40 
#12 001500> 04D7 R OVL SD 0 #50 
#11 001106> 3082 R OVL SP 0 #64 
#10 001108> 4E75 R OVL SP 0 #77 
#9 001500 <04DC w OVL SD 0 #90 
#8 OOllOA> FFFF R OVL SP 0 #103 
#7 0016F8> 0000 R OVL SD 0 #116 
#6 0016FA> 1016 R OVL SD 0 #129 
#5 001016> 4E71 R OVL SP 0 #132 
#4 001018> 60E6 R OVL SP 0 #132 
#3 00101A> FFFF R OVL SP B 0#132 
#2 001000> 4E71 R OVL SP B 0#132 
#1 001002> 3038 R OVL SP B 0#132 
#0 BREAK 

Time Stamp Module 



Interrupt Latency 

Interrupt Latency 

To measure the amount of time between when an interrupt is detected and when it is 
serviced. you must connect your target interrupt line directly to the TGR or TGR lines 
on the Time Stamp Module. As you can see in Figure 6-7, these lines perform exactly 
the same function as the Event Monitor System TGR signal, but the direct trigger 
bypasses the delays inherent in going through the additional Event Monitor System 
logic. 

Figure 6-7: Trigger Input Logic 

ES 1800 
Time Stamp Module 

Event System TGR 

TGR 
TGR ..__ ___ ...._ ___ "'--~ 

TGR 
Logic 

There are two external TGR inputs: TGR and TGR. The external TGR is used witl: 
Motorola and Zilog processors: when the line is pulled low, the interrupt is asserted 
The external TOR is used with Intel processors: when the line is pulled high, th( 
interrupt is assened. 

Figure 6-8 shows the trigger pattern for the TGR and TGR inputs. 

6-20 Time Stamp Modul' 



Interrupt Latt 

Figure 6-8: Trigger Pattern/or TGR and TGR 

0-4 5-9 A-E F 

TGR 

Step 1. Set LSA Display Type 

SET 9, 1 Set display format to absolute time stamp 

Step 2. Select Time Stamp Module Switch Setting 

Use positions 0-4, depending on your preferred time base. In positions 0-4, 
TGR from the external TGR, external TGR or Event Monitor System TGR n 
the time stamp counter to 0. 

If you 're not sure which time base to use, use position 4 for the slowest. U 
counter overflows, the yellow overflow LED will light. See page 6-9 for a cha 
maximum time periods per setting. 

Step 3. Set up the Trigger Input 

Connect either the TGR or TGR input on the Time Stamp Module to the inte 
line on your target that you want to check. For example, to check the intei 
latency for interrupt INTO on the 80186, use the setup shown in Figure 6-9. 

Time Stamp Module 



Interrupt Latency 

Figure 6-9: Target Setup for Measuring Interrupt La.tency 

Target r connect target Interrupt to TGR Input 

/ I Time Stamp Module 

INTO 

t--~-+-~~~--i TGR 

TGR 

Step 4. Set up the Event Monitor System 

ACl = 'intservice start 
Specify address comparator 1 in group 1 to be the start of the 
interrupt service routine 

WHEN ACl THEN TRC 
Start tracing at the beginning of the interrupt service routine 

Step 5. Run your Program 

ESL commands RUN Run program 

from ES Driver Target Emulation Menu Run 

Step 6. View Time Stamp Data 

ESL commands DRT 

from ES Driver Trace Menu: 

Step 7. lnterpret Time Stamp Information 

Display the trace 

Display the trace 

The Event Monitor System traces the first cycle of the interrupt service routine. Thi 
last column of the the trace display shows the amount of time elapsed between th1 
start of the interrupt service routine and the actual interrupt processing. 

6-22 

IMPORTANT 

You must multiply this number by the time base you selected on the Time 
Stamp Module switch in order to determine the elapsed time in seconds. 

Time Stamp Modul 



COUNTING OCCURRENCES: A 

Counting Occurrences 

The number of occurrences measurement can be used to measure memory and prog 
activity, module linkage activity and program flow activity. Use switch position F (c~ 

TGR pulses) for all counting measurements. 

Conceptually, there are two types of counting occurrences measurements: 

1. Counting the number of times the program transitions from event "A 
event "B" 

used for measuring module linkage activity 

2. Counting the number of accesses to some memory location(s). 

used for measuring memory program activity 

Ato B Mode 

This mode records the number of times the transition from event "A" to event 
occurs. Trace is only recorded on exit from module A. The manual reset button sh 
be pressed prior to performing this measurement. 

Step 1. Set LSA Display Type 

SET 9, 1 Set display format to absolute time stamp 

Step 2. Select Time Stamp Module Switch Setting 

Use position F. For counting occurrences, the time base is irrelevant. In positio 
when the TGR from the Event Monitor System goes high, the time stamp cm 
increments. 

Step 3. Set up the Trigger Input 

To count occurrences, use the Event System Trigger input. 

Step 4. Set up the Event Monitor System 

ACl.1 ='start-a Specify address comparator 1 in group 1 to be the star 
module A 

ACl.2 = 'start-b Specify address comparator 1 in group 2 to be the staI 
module B 

AC2.2 ='end-a Specify address comparator 2 in group 2 to be the em 
module A 

Time Stamp Module 



COUNTING OCCURRENCES: A to B 

WHEN ACl THEN GR02 
Go to group 2 while in module A 

WHEN ACl.2 THEN TGR 
Increment counter when entering module B from module A 

WHEN AC2.2 THEN TRC, GROl 
Exit module A, record count in trace memory 

Step 5. Run your Program 

ESL commands RUN Run program 

from ES Driver Target Emulation Menu Run 

Step 6. View Time Stamp Data 

ESL commands DRT 

from ES Driver Trace Menu: 

Step 7. Interpret Time Stamp Information 

Display the trace 

Display the trace 

The last column gives you the number of times module B was entered from moduli 
A. Note that only the location end-a is traced. In the following screen we see tha 
module Bis called once each time from module A. The total number of calls is 145. 

6-24 Time Stamp M odui 



COUNTING OCCURRENCES: Range M 

Figure 6-10: Sample DRT Screen/or Counting Occurrences 

>ORT 
LINE ADDRESS DATA R/W FC IPL ABS TIME 
#20 001108> 4E75 R OVL SP 0 #126 
#19 001108> 4E75 R OVL SP 0 #127 
#18 001108> 4E75 R OVL SP 0 #128 
#17 001108> 4E75 R OVL SP 0 #129 
#16 001108> 4E75 R OVL SP 0 #130 
#15 001108> 4E75 R OVL SP 0 #131 
#14 001108> 4E75 R OVL SP 0 #132 
#13 001108> 4E75 R OVL SP 0 #133 
#12 001108> 4E75 R OVL SP 0 #134 
#11 001108> 4E75 R OVL SP 0 #135 
#10 001108> 4E75 R OVL SP 0 #136 
#9 001108> 4E75 R OVL SP 0 #137 
#8 001108> 4E75 R OVL SP 0 #138 
#7 001108> 4E75 R OVL SP 0 #139 
#6 001108> 4E75 R OVL SP 0 #140 
#5 001108> 4E75 R OVL SP 0 #141 
#4 001108> 4E75 R OVL SP 0 #142 
#3 001108> 4E75 R OVL SP 0 #143 
#2 001108> 4E75 R OVL SP 0 #144 
#1 001108> 4E75 R OVL SP 0 #145 
#0 BREAK 

Range Mode 

This mode records the number of accesses to some memory location(s). Trace 
always recorded. The last trace cycles recorded show the accumulated access cm: 
The manual reset button should be pressed prior to performing this measurement. 

Step 1. Set LSA Display Type 

SET9, 1 Set display format to absolute time stamp 

Step 2. Select Time Stamp Module Switch Setting 

Use position F. For counting occurrences, the time base is irrelevant. In 
position, when the TGR from the Event Monitor System goes high, the time st 
counter increments. 

Time Stamp Module 



COUNTING OCCURRENCES: Range Mode 

Step 3. Set up the Trigger Input 

To count accesses, use the Event System Trigger input. 

Step 4. Set up the Event Monitor System 

ACl.1 = 'here TO 'there 
Specify the range to be monitored 

WHENACl THENTGR 
Increment counter whenever range is accessed 

Step 5. Run your Program 

ESL commands RUN Run program 

from ES Driver Target Emulation Menu Run 

Step 6. View Time Stamp Data 

ESL commands DRT 

from ES Driver Trace Menu 

Step 7. Interpret Time Stamp Information 

Display the trace 

Display the trace 

The last column of the last line of the trace display gives you the number of time: 
the range was accessed. In the following sample screen, the range is set from $14()( 
to $1500. 

6-26 Time StampModui 



COUNTING OCCURRENCES: Range M 

Figure 6-11: Sample DRT Screen Counting Occurrences in a Range 

>DRT 
LINE ADDRESS DATA R/W FC IPL ABS TIME 
#20 001104> D440 R OVL SP 0 #29668 
#19 001500> 04D7 R OVL SD 0 #29668 
#18 001106> 3082 R OVL SP 0 #29669 
#17 001108> 4E75 R OVL SP 0 #29669 
#16 001500 <04DC w OVL SD 0 #29669 
#15 OOllOA> FFFF R OVL SP 0 #29670 
#14 0016FC> 0000 R OVL SD 0 #29670 
#13 0016FE> 1016 R OVL SD 0 #29670 
#12 001016> 4E71 R OVL SP 0 #29670 
#11 001018> 60E6 R OVL SP 0 #29670 
#10 00101A> FFFF R OVL SP 0 #29670 
#9 001000> 4E71 R OVL SP 0 #29670 
#8 001002> 3038 R OVL SP 0 #29670 
#7 001004> 1400 R OVL SP 0 #29670 
#6 001006> 3200 R OVL SP 0 #29670 
#5 001400> 0005 R OVL SD 0 #29670 
#4 001008> 0641 R OVL SP 0 #29671 
#3 OOlOOA> 04D2 R OVL SP 0 #29671 
#2 OOlOOC> 307C R OVL SP 0 #29671 
#1 OOlOOE> 1500 R OVL SP 0 #29671 
#0 BREAK 

Time Stamp Module ( 



Using Counter as Condition 

Using the Time Stamp Counter Value as a Condition 

The ES 1800 Event Monitor System lets you specify complex program states, using 
WHEN-THEN statements: 

WHEN conditions THEN actions 

You can use the absolute value of the time stamp counter as one condition. 

Conditions are defined as logiCal combinations of address, data and status comparators. 
The comparator LSA reads the value of the time stamp counter. 

Due to the sequencing of the bit information from the Time Stamp Module, the count 
value needs to be converted to the same format used by the ES 1800, using the CTS 
(conven time stamp) command. 

Sample Situation: 

Suppose you want to break 2 seconds after reaching a specified address. If the pod is 
set to the 1 millisecond setting, this is 2000 counts. It would make sense to say 
'LSA=#2000' as the Event Monitor System condition, but as we've explained above, 
this value must be convened. 

Step 1. Set LSA Display Type 

SET9,l Set display format to absolute time stamp 

Step 2. Select Time Stamp Module Switch Setting 

Use position 4 to count every millisecond. In this position, the TOR from the Even1 
Monitor System resets the counter. 

Step 3. Set up the Trigger Input 

To measure elapsed time, use the Event System Trigger input. 

Step 4. Convert Value 

CTS#2000 Conven time stamp value for ES 1800. The ES 1800 responru 
with $0438. This is the value the LSA port actually sees wher 
the pod has counted 2000 times 

Step 5. Set up the Event Monitor System 

A Cl = address to reset counter 
Specify the address at which to reset the counter 

6-28 Time Stamp Modul• 



) 
/ 

Using Counter as Conti 

WHEN ACl THEN TGR,GRO 2 
Reset counter and switch to group 2 when AC 1 is reached 

LSA.2=$0438 Specify the converted time stamp value to break at 

2 WHEN LSA THEN BRK 
Break when counter value is reached. 

IMPORTANT 

The ES 1800 Event Monitor System samples address, data and status 
once every processor bus cycle. If the time base is shorter than the bus 
cycle, then a particular LSA value may be missed by the Event Monitor 
System. 

For most processor systems, a time base of 0.01 mS, 0.1 mS or 1 mS is 
slow enough to prevent this problem. 

Step 6. View Time Stamp Data 

ESL commands DRT 

from ES Driver Trace Menu 

Step 7. Interpret Time Stamp Information 

Display the trace 

Display the trace 

In this setup, you chose to break when a timestamp count limit was reached. At 
point, you could do any of the steps listed in Section 4: Isolating the Problem. 

Time Stamp Module 



Using Counter as Condition 

Sample DRT Screen After Breaking at Time Stamp Counter Value 

>ORT 
LINE ADDRESS DATA R/W FC IPL ABS TIME 
#20 001016> 4E71 R OVL SP 0 #1999 
#19 001018> 60E6 R OVL SP 0 #1999 
us 00101A> FFFF R OVL SP 0 #1999 
#17 001000> 4E71 R OVL SP 0 #1999 
#16 001002> 3038 R OVL SP 0 #1999 
#15 001004> 1400 R OVL SP 0 #1999 
#14 001006> 3200 R OVL SP 0 #1999 
#13 001400> 0005 R OVL SD 0 #1999 
#12 001008> 0641 R OVL SP 0 #1999 
#11 00100A> 0402 R OVL SP 0 #1999 
no OOlOOC> 307C R OVL SP 0 #1999 
#9 00100E> 1500 R OVL SP 0 #1999 
#8 001010> 3081 R OVL SP 0 #1999 
#7 001012> 4EB8 R OVL SP 0 #2000 
#6 001500 <0407 w OVL SD B 0 #2000 
#5 001014> 1100 R OVL SP B 0 #2000 
#4 001100> 4E71 R OVL SP B 0 #2000 
#3 001102> 3410 R OVL SP B 0 #2000 
#2 0016FC <0000 w OVL SD B 0 #2000 
n 0016FE <1016 w OVL SD B 0 #2000 
#0 BREAK 

6-30 Time Stamp Modult 



Section 7 

Table of Contents 

ALPHABETICAL COMMAND REFERENCE 

Introduction .................................................................................................. 7-1 

Alphabetical Command Reference ............................................................. 7-2 
@:Read/Write Memory ................................................. _ ......................... 7-2 
':Symbol and Section Definition ............................................................ 7-4 
/: Repeat Command Line ......................................................................... 7-6 
*: Repeat Command Line ........................................................................ 7-7 
_: Defme/lJse Macros .............................................................................. 7-8 
ASM: Line Assembler ............................................................................. 7-9 
BAS: Set/Display Register Default Base ............................................... 7-12 
BKX: Break On Instruction Execution .................................................. 7-14 
BMO: Block Move ................................................................................ 7-15 
BRK: Break Emulation .......................................................................... 7-17 

BTE: Bus Timeout Enable (80C18X only) ............................................ 7-19 
BUS: Display Status Of Bus Status Lines ............................................. 7-20 
BYM: Set Global Data Length .............................................................. 7-21 

CCT: Computer Pon Control ................................................................. 7-23 

CDH: Clear DMA Halt .......................................................................... 7-24 
CES: Clear When/fhen Statements ....................................................... 7-25 

CK: futernal/Extemal Clock .................................................................. 7-26 
CLK: Read Target System Clock .......................................................... 7-27 
CLM: Clear Memory Map ..................................................................... 7-28 

CLR: Clear CPU Registers .................................................................... 7-29 

CMC: Clear Macros ............................................................................... 7-30 
CNT: Decrement Hardware Counter ..................................................... 7-31 

COM: Communication With Target Programs ...................................... 7-34 

CPY: Copy Data To Both Pons ............................................................. 7-38 

CRC,CRE,CRO: Target Cyclic Redundancy Check ............................. 7-39 

CTS: Convert Time Stamp .................................................................... 7-40 



Table of Contents, continued 

DB: Display Memory Block .................................................................. 7-41 

DEL: Delete A Symbol Or Section ........................................................ 7-43 

DES: Display Event Specifications ....................................................... 7-44 

DFB: Default Base ................................................................................. 7-45 

DIA: Display Character String ............................................................... 7-46 
DIS: Memory Disassembler ................................................................... 7-48 

DM: Display Memory Map ................................................................... 7-49 

DME: Enable Data ................................................................................. 7-50 
DNL: Download File ............................................•................................ 7-51 

DNV: Verify Download Data (80Cl8X only) ....................................... 7-52 

DR: Display/Load Microprocessor Registers ................ ~ ....................... 7-53 
DRT: Display Raw Trace Bus Cycles ................................................... 7-55 

DT: Disassemble Trace Memory ........................................................... 7-5 9 

DTB, DTF: Disassemble Trace Page ..................................................... 7-61 

FIT...: Fill Operator ................................................................................... 7-62 

FIN": Find Pattern In Memory ................................................................ 7-63 

FSI: Force Special Interrupt. .................................................................. 7-64 

FSX: FSI On Instruction Execution ....................................................... 7-66 

GD: General Purpose Data Registers ..................................................... 7-67 

GR: General Purpose Address Registers ............................................... 7-69 

GRO: Change Event Groups .................................................................. 7-70 

IDP: Interrupts During Pause (80C18X only) ....................................... 7-72 

IBE: Ignore Halt Errors (80C18X only) ................................................ 7-74 

IOP: J/O Mode Pointer ........................................................................... 7-75 

LD: Load System Variables From EEPROM ........................................ 7-76 

LD V: Load Reset Vectors ...................................................................... 7-77 

LO V: Load Overlay Memory ................................................................ 7 -78 

M: Enter Memory Mode ........................................................................ 7-79 

MAC: Display Defined Macros ............................. : ............................... 7-81 

MAP: Set Memory Map ........................................................................ 7-82 

MIO: Enter J/0 Mode ............................................................................ 7-85 

MMP: Memory Mode Pointer ............................................................... 7-87 

ON/OFF: Switch Setting ........................................................................ 7-88 

OVE: Overlay Memory Enable ............................................................. 7-92 

OVS: Overlay Memory Speed (80Cl8X only) ...................................... 7-93 

PCB: Display PCB Registers ................................................................. 7-95 



Table of Contents, conti 

PCS: Enable Chip Selects (80C18X only) ............................................. 7-97 

PPf: Trace Peeks and Pokes (80C18X only) ........................................ 7-98 
PRE: DRAM Refresh During Pause (80C18X only) ............................. 7-99 

PUR: Delete All Symbols And Sections .............................................. 7-101 

RBK: Run Target Program .................................................................. 7-102 
RBV: Run Target Program .................................................................. 7-103 

RCS: Read Chip Select ........................................................................ 7-104 

RCT: Reset Hardware Counter ............................................................ 7-105 
ROY: Select Internal or External Ready Signal .................................. 7-106 

RET: Display A Blank Line ................................................................. 7-107 

REV: Display The Software Revision Dates ................. ~ ..................... 7-108 
RN'V: Run Target .Pl"ograIIl .................................................................. 7-109 

RST: Reset ........................................................................................... 7-110 

R'UN: Rm1 Target .PrograIIl .................................................................. 7-111 
SAV: Save System Variables InEEPROM ......................................... 7-112 

SEC: Display Section ........................................................................... 7-113 

SET: Set Up Parameters ....................................................................... 7-114 
SF: Special Functions List ................................................................... 7-119 
SF 0: Simple RAM Test, Single Pass .................................................. 7-120 

SF 1: Complete RAM Test, Single Pass .............................................. 7-122 
SF 2: Simple RAM Test, Looping ....................................................... 7-12~ 

SF 3: Complete RAM Test, Looping ................................................... 7-124 

SF 4: Toggle Data At Address ............................................................. 7-125 

SF 5: Peeks Into The Target System .................................................... 7-127 

SF 6: Pokes Into The Target System ................................................... 7-128 

SF 7: Write Alternate Patterns ............................................................. 7-129 
SF 8: Write Pattern Then Rotate .......................................................... 7-130 

SF 9: Write Data Then Read ................................................................ 7-132 
SF 11: Write Incrementing Value ........................................................ 7-133 
SF 12: Read Data Over An Entire Range ............................................ 7-134 

SF 13: Cyclic Redundancy Check ....................................................... 7-135 

SF 24: Toggle Data At Address ........................................................... 7-136 
SF 25: Peeks Into The Target System .................................................. 7-138 

SF 26: Pokes Into The Target System ................................................. 7-139 

SF 27: Write Alternate Patterns ........................................................... 7-140 

SF 28: Write Pattern Then Rotate ........................................................ 7-141 



Table of Contents, continued 

SF 29: Write Data Then Read .............................................................. 7".'143 

SF 31: Write Incrementing Value ........................................................ 7-144 

SF 32: Read Data Over An Entire Range ............................................ 7-145 

STI: Step Through Interrupts ............................................................... 7-146 

STP: Stop And Step Target System ..................................................... 7-147 

SYM: Display Symbols ....................................................................... 7-148 

TCE: Dynamic Trace Capture Enable ................................................. 7-149 

TCT: Terminal Port Control ................................................................ 7-150 

TE: Timers ........................................................................................... 7-151 
TGR: Send Trigger Signal ................................................................... 7-153 

TOC: Toggle Hardware Counter .................................. : ...................... 7-155 

TOT: Toggle Trace .............................................................................. 7-156 

TRA: Transparent Mode ...................................................................... 7-158 
TRC: Trace Events ............................................................................... 7-159 

TST: Test Register ............................................................................... 7-161 
UPL: Upload Serial Data ..................................................................... 7-162 

UPS: Upload Symbols ......................................................................... 7-164 
VBL: Verify Block Data ...................................................................... 7-165 
VBM: Verify Block Move ................................................................... 7-166 

VFO: Verify Overlay Memory ............................................................ 7-167 

VFY: Verify Serial Data ...................................................................... 7-168 

WAI: Wait Until Emulation Break ...................................................... 7-169 

WDM: Set Global Data Length ........................................................... 7-170 

WHEN: Begin WHEN/THEN Statement ............................................ 7-172 

X: Exit Memory, 1/0 Modes, and Line Assembler .............................. 7-174 



Sec ti 

ALPHABETICAL COMMAND REFEREN 

Introduction 

This section contains all the ESL commands, listed in alphabetical order. 

Commands which begin with non-alphanumeric keys are at the beginning of the sec 
in the following order: 

@ 

I 

* 

' < register > 

The following syntax is used: 

bold type 

italic type 

< angle brackets > 

[ square brackets ] 

Alphabetical Command Reference 

Type the command exactly as printed. 

A substitution is required. 
For example, if you see file, you must spec 
filename. 

These indicate mandatory arguments. 
Do not type the brackets. 

These indicate optional arguments. 
Do not type the square brackets. 



@:Read/Write Memory 

@: Read/Write Memory 

Command 

@<address> 

@ <address>=value 

Result 

Read data from memory at <address>. 

Write value to memory at <address>. No read
after-write verify occurs. 

Comments 

The @ command provides a quick way to read from or write to memory in the target. It 
functions in much the same way as memory mode, but it is a simple command, rather 
than an operating mode. 

Two system parameters affect the operation of the @ command. 

• The default data length determines whether a byte or word access is made. 
(BYM and WDM) 

• The value in the MMS register specifies the memory space accessed. 

The @ command will read from or write to the overlay memory if the specified address 
is mapped. If the address is not mapped, the access will occur in the target system 
memory. 

<address> and <value> may be any valid ESL expression. This means you may use 
registers, symbol names or numeric values as the address or value. 

You may execute this command while in run mode, but if you do, emulation will be 
halted briefly in order to complete the command. You will not be executing in real
time if you enter @ commands while in run mode. 

7-2 Alphabetical Command Reference 



) 

Examples 

>WDM 

>@O 

$00001012 

>@SS:SP 

$00003F01 

> 

@:Read/Write Me 

Set default data length to word. 

Read word of data from address 0. 

The emulator will respond with the 
followed by a new prompt. 

Read word of data pointed to by Ii 

pointer. 

Emulator responds with data. 

Use the @ command to patch program data. 

>@DS:DI=l02F 

>@(DS:DI-2)=44E2 

>@DS:DI;@(DS:DI+2) 

$0000102F 

$000044E2 

> 

Alphabetical Command Reference 

Overwrite the word pointed to by DS:DJ 

Overwrite the next lower word on 
stack 

Verify the data changes (The 
separates multiple commands on 
line) 

aemic 
a s.:l 



':Symbol and Section Definition 

': Symbol and Section Definition 

Command 

'<symbol> 

'<section> 

'<symbol>= <value> 

'<section>= <range> 

Comments 

Result 

Display value of specified symbol. 

Display value of specified section. 

Assign <value> to the symbol. 

Assign <range> to the section . Section range 
values cannot overlap. 

A space indicates the end of the symbol or section name. Names can be up to 64 
characters long. but only 16 character names can be uploaded and downloaded. 

<symbol> 

<value> 

<range> 

Any combination of ASCII characters with 
decimal values in the range 33-126. This range 
includes all of the printable ASCII characters. 

A 32-bit integer value. 

A 32-bit integer range. Ranges can to specified 
as follows: 
start_address LEN length 
start address TO end address - -

Be sure to end a symbol name with a space when assigning a value. If a space is not 
entered as the last character of a symbol name, the characters that follow are 
recognized as a continuation of the symbol. Once you type the single quote, the 
ES 1800 displays what you type in lower case letters, unless you explicitly type upper 
case letters (using the shift key). After you end the symbol name by typing a space 
character, the display reverts to all upper case letters. 

If a symbol name is assigned a value that is a range, it is assumed that you are defining 
a section. 

7-4 Alphabetical Command Reference 



) 

Examples 

>'testing =2000 

>'end_loop •GRO 

': Symbol and Section De/in 

Set symbol to 2000. 

Set symbol to value in general puri 
register 0. 

>'section 3 =10000 TO lFFF 
Define section range using start, 
syntax. 

>'main_loop ='prog_start TO 'RAM START-1 
Define section range using symbols 
start and end addresses 

>'section 4 =1000 LEN 1F Define section range using start/lei 
syntax. 

Alphabetical Command Reference 



I: Repeat Command Line 

/: Repeat Command Line 

Command 

I 

Comments 

Result 

Re-execute the previous command line. No 
<return> is necessary. 

In order to be recognized as the repeat character, the slash ·must be the first character 
on a line. 

Examples 

This causes the system to single step and disassemble the instruction 

just executed.· 

>Si'P;DT 

>I 
>I 
>I 
>I 

Single step and disassemble instruction. 

Repeat previous command. 

" .. 
" 

The next example causes the system to single step and disassemble memory starting 
at the instruction pointer (IP) location. 

>STP;DIS CS:IP LEN 10 

>I 

7-6 

Single step, then disassemble memory 
beginning at CS:IP location. 

Repeat previous command. 

Alphabetical Command Reference 



*:Repeat Commanc. 

*: Repeat Command Line 

Command 

* [n] 

Comments 

Result 

Repeat the last conunand n times. If no num· 
specified, repeat conunand indefinitely. If n 
does not cause the conunand to be rep1 
* must be the first character on a line. 

You cannot use a register, variable or symbol as the repeat argument. The 1 

argument must be entered as a number. The number will be interpreted as a de 
value. Do not enter a base prefix before entering the repeat value. When no 1 

argument is specified, it is assumed to be 4,294,967 ,295(232 - 1). 

Examples 

Jn these three equivalent examples, the STP;DT conunand is repeated five times. 
>*SSTP;DT 

>*5 STP:DT 

>* 5 STP;DT 

To single step and disassemble until a specified address is reached: 
>*STP;DT; TST=CS:J:P-$C324 

Alphabetical Command Reference 



: Define/Use Macros 

: Define/Use Macros 

Command Result 

<0-9>=<com, exp, op> Define the specified macro. 

<0-9> Use the specified macro. 

' Use macro 1. Must be first character on line. 

Use macro 2. Must be first character. 

Comments 

When a macro is defined, there is no display on the screen, the syntax is not checked. 
Macros are expanded when they are executed, not when they are defined. A space 
between the underscore, digit, or equals sign causes an error. 

Examples 

fu this example, four macros are defined. Macros #1 and #2 can be executed 
independently. Macro #3 contains two nested macros (#1 and #2). 

>_l=STP;DT 

> 2=GRl=GRl+l 

>_3=_1;_2 

Set macro 1 to single step and display 
trace. 

Set macro 2 to increment a general 
purpose register. 

Set macro 3 to do macro 1, then macro 2. 

> 1= DB SS:SP LEN 20;RET;DIS CS:IP LEN 12 
Display the first 20H bytes on the stack, 
skip a line for readability and 
disassemble the next instructions that 
will be executed. 

fu the next example, macros one and three arc executed. 

>, Execute macro l. Could also use l 

> 3 Execute macro 3. 

7-8 Alphabetical Command Reference 



ASM: Line Assei 

ASM: Line Assembler 

Command 

ASM 

ASM <arg> 

Comments 

>ASM 

Result 

Begin assembly at the last address disp 
during a previous assembly sessiono At pc 
up the start address is zero. 

**** 8086/88/186/188 LINE ASSEMBLER Vx.xLA ~ 

CSEG = XX:XX 
0000 >X 
> 

Begin assembly at the specified address. 

>ASM <address> 
**** 8086/88/186/188 LINE ASSEMBLER Vx.xLA ; 
CSEG = XXXX 
0000 >END 
> 

Modification of the line assembler address is a two-step process. 

1. To change the segment, use the CSEG directive after entering line ass( 
mode. 

2. To change the offset, enter the assembler using a 16 bit address parar 
or use the ORG directive after entering the assembler. 

All 80186/188 and 80C186/C188 instructions can be entered from line assembly 1 

The instructions are converted to machine code and loaded into memory at the ac 
specified in the prompt. 

The following pages describe the supported assembler directives. 

Alphabetical Command Reference 



ASM: Line Assembler 

Directive 

CSEG 

ORG 

ENDorX 

DB 

DW 

PRE 

7-10 

Result 

Set 64K byte code segment window: 

t/, 
1012 >CSEG'D400H 
1012 > 

Set 64K byte offset into the code segment 
window: 

1012 >ORG 3ACH 
03AC > 

Exit line assembler and return to the command 
level: 

58FD >X 
**** END OF LINE ASSEMBLY **** 
> 

Define constant byte data: 

58FD >DB 1,2,3,4, "TEST", 0 
58FD 01 02 03 04 54 45 53 54 00 
5907 > 

Define constant word data: (Note: odd length text 
strings are padded with nulls) 

58FD>DW 1,2,3,4, "TEST", 0 
58FD 0100 0200 0300 0400 4554 5453 0000 5900 
> 

Toggle to preview mode (causes next instruction 
to be disassembled): 

6590 >PRE 
6590 C6470234 MOV BYTE. PTR 
[BX+2H], 34H 

Alphabetical Command Reference 



EQU 

LO,Ll..L9 

'symbol 

<return> 

$ 

NEAR 

FAR 

ASM: Line Assen 

Toggle out of preview mode: 

6590 C6470234 MOV BYTE PTR [BX+2H],34H 
>PRE 
6590> 

Define/redefine local symbol (L0-L9): 

6590 >L3 EQU 7A44H 
6590 > 

or if symbolic debug hardware is installed: 

6590 > 'Unit EQU OFDEOH 
6590 > 

Print value of local symbol: 

756A >L3 
h 
756A > 

Print value of symbol. This is only val 
symbolic debug hardware is installed: 

756A >'Unit 
756A >'Unit EQU FDEOH 
756A > 

Disassemble one line at current address. 

SDOA > 
SDOA 3306AD78 
PTR 781DH 
SOE > 

XOR AX,WORD 

Current assembler off set address. 

Within current line assembly segment. 

Outside current line assembly segment. 

Alphabetical Command Reference 



BAS: Set/Display Register Default Base 

BAS: Set/Display Register Default Base 

Command 

BAS <register> 

Result 

Display the decimal base of the specified register. 

#0 - default 
#2 - binary 
#8 - octal 
#10 - decimal 
#16 - hexadecimal 

If the register has not been assigned a separate 
display base, the current default base is 
displayed. 

BAS <register>=<base value> Set the display base of the register to the base 
value. 

Comments 

If the base value for a register is set to 0, the 
current default base is used for display. 

Base values may be stored in EEPROM and automatically loaded on power-up or 
manually retrieved using the LD or LD 1 command. 

Be careful when setting private display bases to unusual bases such as 4, 7 or 11. The 
ES 1800 operates correctly, but the results may be confusing. If you set the base value 
to a value other than hexadecimal, decimal, octal, or binary, the ES 1800 displays a 
question mark(?) preceding the base value when asked to display the base in effect. 

Refer to the default base command, DFB to display the system global default base. 

Examples 

7-12 

>BAS FLX 

>#16 

Display default base of FLX register. 

Alphabetical Command Reference 



) 

BAS: Set/Display Register Default 

In the next example, the value of general data register GD3 is displayed iIJ. binary 
you change its display base or power down the ES 1800. 

>GD3 

$0000AA55 

>BAS GD3 = 2 

>BAS GD3 

#2 >GD3 

Display GD3 using default base. 

Set base of GD3 register. 

Display new base of GD3 registers. 

Display register 

%00000000000000001010101001010101 

Alphabetical Command Reference 



BKX: Break On Instruction Execution 

BKX: Break On Instruction Execution 

Command 

ONBKX 

OFFBKX 

Comments 

Result 

The Event Monitor System breaks on the 
execution of the instruction rather than the 
instruction pre-fetch. 

The Event Monitor System breaks whenever an 
address is seen on the bus. 

Default: OFF 

The 80186/88 and 80C186/Cl88 prefctch instructions. Because of this, an address can 
be detected on the address bus before the instruction is actually executed. If you set a 
breakpoint on an address that immediately follows a branch, the ES 1800 may break 
before the instruction is executed (it was prcfetched). Set this switch to force the 
break to occur only on address execution. 

7-14 Alphabetical Command Reference 



BMC: Block Move 

Command 

BMO <range>,<address> 

BMO: Block} 

Result 

Moves <range> to the new <address>. 
current value of MMS specifies the reloc. 
register used during the transfer. 

BMO<range>,<space>,<address> 
Moves <range> to the new <address>. 
<space> argument specifies the memory I 

status to use during the transfer. 

BMO<range>,<address>,<space> 
Moves <range> to the new <address>. 
range is read from the space specified iil 
MMS register. The block is written to <space-; 

BMO<range>,<space>,<address>,<space> 

Comments 

Moves <range> to the new <address>. 
range is read from <space> specified iil 
argument following the range. The bloc 
written to <space> specified in the argu 
following the address. 

This command is valid in pause mode only. 

The following rules of thumb may make the numerous forms of this commanc 
confusing. 

1. If there is no space specified for the source argument, MMS is always used 

2. If no space is specified for the destination address, the source spa 
always used. 

3. A non-overlapping block move can be verified using the VBL command. 

Alphabetical Command Reference 



BMO: Block Move 

Examples 

The examples show two ways to move a range to a new location in data space, and 
moving a range from the stack space to data space. 

or 

7-16 

>MMS=DAT Set the MMS to data space 

>BMO 100 TO 500, 1000 Move a range to the new location. 

>BMO 100 to 500, DAT, 1000 
Same effect as two commands above. 

>BMO SS:SP LEN 20, STA, DX, DAT 
Move 20 bytes from the stack in stack 
space to the value pointed to by the data 
register in data space. 

Alphabetical Command Reference 



BRK: Break Emu. 

BRK: Break Emulation 

Command Result 

WHE <events> THE BRK, <action>, ..• 

Comments 

If all of the conditions specified in the 
portion of the WHEN/THEN clause are sati 
the BRK action stops emulation, returnin. 
system to pause mode. When a break eve 
detected and emulation is broken, the c· 
CS:IP and event group are displayed 01 

terminal. Emulation begins at the 
displayed if the registers are not altered am 
run or step following a break. When en 
emulation, the Event Monitor System a 
begins looking for events specified in group 1. 

Breakpoints stop program execution at specific times. After a break ym 
disassemble the trace memory, look at the LSA bits in the raw trace, check the 
register values, or begin stepping through your code. 

Breakpoint actions may be enabled or disabled by selecting the appropriat 
commands. If you enter emulation with the RBK or RBV run commands, break 
are enabled. If you enter emulation with the RUN or RNV commands, breakpoir 
disabled, even if there are event statements specifying the BRK action. If emula1 
entered with breakpoints disabled, you can enable them while running by enteri:J 
RBK command. If you enter emulation with breakpoints enabled, you can disable 
while running by entering the RUN command. The RNV and RBV commands a 
allowed during emulation. These commands load the reset vectors, which cam 
done during emulation. 

Breaking can also be qualified by a soft switch, BKX. This switch determines if· 
will occur on instruction execution, or on any access to an address. including prefetch 

Alphabetical Command Reference 



BRK: Break Emulation 

Examples 

The first example shows breaking when the instruction at address $3000 is executed. 
>ON BKX 

>AC1=3000 

>WHEN ACl THEN BRK 

>RBK 

R> 

Enable breakpoints on 
execution. 

Set address comparator to 3000. 

Break when ACl is accessed. 

Run til breakpoint. 

Run mode prompt will appear. 

instruction 

The next example shows tracing a limited range of accesses, and breaking after ten 
accesses to the range. Trace only accesses between 1000 ·and 113C; break after ten 
accesses to this address range. 

>ACl=lOOO to 113C 

>CTL=#lO 

>WHEN ACl THEN CNT,TRC 

>WHEN CTL THEN BRK 

>RBV 

R> 

Set up range. 

Set up counter limit. 

Set up WHEN/THEN to trace only accesses 
in range, and begin counting whenever 
range is accessed. 

Break after 10 accesses. 

Load restart vectors and begin emulation. 

Run mode prompt will appear. 

The third example shows breaking when a data value is written to a port. Break when 
55AA is written to I/O port A. 

7-18 

>ACl='PORT A 

>DCl=SSAA 

>Sl=WIO 

Set address comparator to port address. 

Set data comparator to SSAA. 

Set status comparator to Write 'I./O 
Status. 

>WHEN ACl AND DCl AND Sl THEN BRK 

>RBK 

R> 

Set WHEN/THEN statement. 

Run til breakpoint. 

Run mode prompt will appear. 

Alphabetical Command Reference 



) 

BTE: Bus Timeout Enable (80Cl 8X 

BTE: Bus Timeout Enable (80C1 BX only) 

Command 

ONBTE 

OFFBTE 

Comments 

Result 

Enable the bus timeout. Supply RDY af 
second without target RDY. Force emu: 
break if in RUN mode. 

Do not supply RDY, even if target does 
Allows the CPU to wait indefinitely for 1 

RDY. 

Default: OFF 

With BTE set ON, the emulator will automatically time out after waiting for 1 sc 
for the ARDY or SRDY signal to be supplied by the target system, ensuring tru 
emulator will not hang after attempting an invalid memory location access. 

During RUN mode, the emulator will wait one second, then force SRDY to the 
then attempt to break emulation. 

During peeks and pokes, the emulator will just force SRDY to allow the eye 
complete. 

With BTE set to OFF, the emulator will not interfere with target signals. Lack 
target-supplied ARDY or SRDY in this instance will cause the CPU to 
indefinitely. 

Alphabetical Command Reference 



BUS: Display Status Of Bus Status Lines 

BUS: Display Status, Of Bus Status Lines 

Command Result 

BUS Display the bus status. 

Comments 

The status of the following bus lines is displayed: 

NMI 

ARDY 

SRDY 

INTO 

INTl 

INT2/INTAO 

INT3/INTA1 

TEST 

Examples 

>BUS 

Non-maskable interrupt 

Asynchronous ready 

Synchronous ready 

Interrupt 0 

Interrupt 1 

Interrupt 2 or interrupt acknowledge 0 

Interrupt 3 or interrupt acknowledge 1 

Test input 

NMI .ARDY SRDY INTO INTl INT2/INTAO INT3/INTA1 TEST 

0 1 0 0 0 0 0 0 

0 indicates an inactive condition 

1 indicates an active condition 

7-20 Alphabetical Command Reference 



BYM: Set Global Data u 

BVM: Set Global Data Length 

Command Result 

BYM Set the global data length to byte mode. 

WDM Set the global data length to word mode. 

Default: BYM- byte mode 

Comments 

The global data length determines whether memory commands use byte or word 
lengths. 

If byte mode is set and you enter a word value as a command parameter, only the 
significant byte is used as the command parameter. If word mode is set and you e1 
byte parameter, the high byte is padded with a zero. 

You can temporarily override the byte and word address and data display promp 
keying in the dot operators (.B and .W) after a command. For example: DB.Br 
a block of memory is displayed in byte mode. DB.W means a block of mem< 
displayed in word mode. 

The global data length affects the following commands. 

Command 

BMO 
DB 
FIN 
FIL 
LOV 
M 
MIO 
SF 4·9,11,12 
VBL 
VFO 

Commands Affected by Global Data Length 

Description 

block move data in memory 
display block of memory 
find data pattern in memory 
fill memory with data pattern 
load overlay memory from target 
memory mode 
J/Omode 
special functions: scope loops 
verify data pattern in memory 
verify overlay memory with target memory 

Alphabetical Command Reference 



BYM: Set Global Data Length 

Examples 

The following example demonstrates how the global data length affects the FIL and 
DB commands. 

7-22 

>BYM 

>FIL 0 LEN 10,123 

>DB 0 LEN 10 

Set byte mode 

Fill the range with 123 

High byte is truncated 

000000 23 23 23 23 23 23 23 23 - 23 23 23 23 23 23 23 23 23 23 ################ 

> 
>WDM 

>FIL 0 LEN l0,3F 

>DB 0 LEN 10 

Set word mode 

Fill the range with.3F 

Pattern is padded with zero 

000000 

> 
003F 003F 003F 003F - 003F 003F 003F 003F 

Alphabetical Command Reference 



) 
! 

CCT: Computer Port C<.. 

CCT: Computer Port Control 

Command Result 

CCT The computer port becomes the controlling por 

Comments 

This command, along with the TCT command, allows control to be switched bet 
the two serial ports without powering down the ES 1800 ·emulator. This comma 
meant to be executed from the terminal port, and is is essentially a null command 
entered from the computer port. 

The upload and download operations always send/receive data from the computei 
regardless of which port is the designated controller. 

Any output generated by a command is directed to the controlling pon. The copy s 
(ON CPY) directs output to both serial ports. 

If there is a host attached to the computer port and you type a CCT from a ter 
connected to the terminal pon, the host system takes control of the ES 1800. The 
system must be able to handle incoming data at high rates. Both hardware 
software handshakes are supponed (see Section 4: Serial Communications.) 

If you execute CCT in error with no terminal or host system connected to the con 
port, move the terminal cable to the computer port, enter the TCT command and i 

the cable to the terminal port. This process will work in most cases to return cont 
terminal. Ifnot, tum the ES 1800offand then on. 

Alphabetical Command Reference 



CDH: Clear DMA Halt 

CDH: Clear OMA Halt 

Command 

ONCDH 

OFFCDH 

Comments 

Result 

DMA is re-enabled during pause-to-run. 

During pause-to-run, DMA status is unchanged 
from status while paused. 

Default: OFF 

The ES 1800 transitions from run to pause mode by using a non-maskable interrupt 
(NMI). An N.MI has the effect of setting the DHLT bit (bit 15) of the Interrupt Status 
Register. When DHLT is true, the processor disables DMA cycles. 

DMA cycles will be disabled when the emulator enters the run mode unless the CDH 
softswitch is in the "ON" state. 

7-24 Alphabetical Command Reference 



CES: Clear When/Then State" 

CES: Clear When/Then Statements 

Command 

CES 

CES <group number> 

Comments 

Result 

Clear all of the WHEN{THEN stater 
currently active within the event monitor syster 

Clear all of the WHEN{THEN statements fa 
specified group within the event monitor syster 

The comparator values are not affected by the CES command. 

Alphabetical Command Reference 



CK: Internal/External Clock 

CK: Internal/External Clock 

Command 

ONCK 

OFF CK 

Comments 

Result 

The CPU uses an internally generated clock. A 4 
MHz nonadjustable clock is supplied via a divide
by-two network. The CPU runs at 2 MHz. (The 
80C18X CPU clock is set at 12.5 MHz.) 
Unterminated inputs are set inactive. 

The CPU uses the target system clock. 
Appendix C contains information on jumper 
configurations for specific target clock 
configurations. 

Default: OFF 

This command is valid only in pause mode. 

Use an internal clock when debugging code before target hardware is available. 
Download the program to overlay memory. Tum on the internally generated ready 
signal and clock (ON RDY and ON CK) and begin debugging. 

See also the DNL command, the RDY command and Section 4 "Mapping Overlay 
Memory." 

7-26 Alphabetical Command Reference 



CLK: Read Target System ( 

CLK: Read Target System Clock 

Command 

CLK 

Examples 

Result 

Read the target system clock frequency 
display the value in KHz. The value is accun 
plus or minus 2 KHz. 

>CLK Display clock frequency. 

CLOCK FREQUENCY • #2001 KHZ 

> 

Alphabetical Command Reference 



CLM: Clear Memory Map 

CLM: Clear Memory Map 

Command 

CLM 

Comments 

Result 

Assign the entire address range the TGT 
attribute. 

This command clears all addresses from the overlay map. 

This command is valid only in pause mode. 

7-28 Alphabetical Command Reference 



CLR: Clear CPU Reg 

CLR: Clear CPU Registers 

Command 

CLR 

Comments 

Result 

Clear the four CPU data registers; AX, BX 
and DX. 

The CPU registers are automatically copied from ES 1800 overlay memory t 
microprocessor when run mode is entered. When emulation is broken, they are c 
from the processor to ES 1800 overlay memory. 

See DR for more information. 

Alphabetical Command Reference 



CMC: Clear Macros 

CMC: Clear Macros 

Command 

CMC 

<0-9>= 

Examples 

7-30 

Result 

Clear all defined macros. 

Clear the specified macro. 

Clear macro 11. 

Clear all macro•. 

Alphabetical Command Reference 



) 

CNF: Decrement Hardware Co; 

CNT: Decrement Hardware Counter 

Command Result 

WHE <events> THE CNT, <action>, ••• 

Comments 

If all of the conditions specified in the 1 

portion of the WHENmIBN clause are sati: 
the counter is decremented. When the 1 

reaches zero, the CTL event becomes true. 
other conditions specified in the WHEN/I 
clause are satisfied, · the appropriate actic 
taken. 

Events can be defined to selectively count bus cycles. There is one hardware co· 
and four count registers, one register for each group. The hardware count 
automatically loaded with the count limit register for group 1 when entering run mode 

Whenever the reset count, RCT, action is specified, the count comparator value fc 
specified group is loaded into the hardware counter. When switching groups. the a 
value of the hardware counter is passed along as a global count value unless a 
action is specified in the same list of events that causes the group switch. 

The toggle count, TOC. command allows you to tum counting on and off. When a 
event is detected, the count is toggled to the opposite state, either on or off. Yo 
specify an event that starts and stops the counter each time it is detected or SJ 
any number of events that toggle the counter on and off. 

The current value of the counter cannot be read. You can only detect when you 
reached a limit. 

Alphabetical Command Reference 



CNI': Decrement Hardware Counter 

This table describes the count conditions immediately before and after a group change. 

New Group 
Previous 
Group 

No Count Action CNI' TOC 
Specified 

No Count No cycles Count only No count 
specified counted qualified cycles until first TOC 

CNI' No cycles Count only No count 
counted qualified cycles until first TOC 

TOCO FF No cycles Count only No count 
(not counting) counted qualified cycles until first TOC 

TOCON No cycles Count only No count 
(counting) counted qualified cycles until first TOC 

This table describes initial count conditions (always group 1). 

Action Specified Trace Condition 

No count No cycles counted 
CNT Count only qualified CNT events 
TOC Count nothing until TOC event 

7-32 Alphabetical Command Reference 



CNT: Decrement Hardware Co1 

Examples 

This example counts the times that the specified data is written to a specific ad1 
and breaks if the data is written 20 times. 

>CTL-#20 

>Sl=WR 

>AC1•4020; DC1=$XXF3 

Sat count limit to 20. 

Sat atatua comparator to read/write. 

Sat address and data comparators. 

>WHEN ACl AND DCl AND Sl THEN CNT 

>WHEN CTL THEN BR.K 

>RBK 

R> 

Set WHEN/THEN statement to beqin coun 
when conditions are met. 

Whan count limit reached, break. 

Run til breakpoint. 

Run mode prompt will appear. 

The second example looks for a read from a specific 1/0 pon. After it is found J 
group 2, load the group 2 counter register value into the hardware counter, and 
group 2 address comparator to count every bus cycle (all addresses). Break aftei 
bus cycles. 

>ACl•'IOport 

>Sl=RD 

Set address of I/O port. 

Set atatua comparator to look for 
access. 

>WHEN ACl AND Sl THEN GR.O 2, RCT 

>CTL.2=#100 

>ACl.2•0 TO -1 

>2 WHEN ACl THEN CNT 

>2 WHEN CTL THEN BR.K 

>RBK 

R> 

Alphabetical Command Reference 

Whan I/O port is read, qo to group 2 
reset counter 

Set qroup 2 count limit to 100. 

Set addresa comparator to ranqe. 

When range accessed, count. 

When count limit reached, break 

Run til breakpoint. 

Run mode prompt will appear. 



COM: Communication With Target Programs 

COM: Communication With Target Programs 

Command 

COM <address> 

Comments 

Result 

Establish communication with the target program 
through a two-byte pseudo-port at the specified 
address. 

Exit COM mode by entering the two-character 
transparent mode escape sequence 
( <esc><esc> default). . 

COM is only useful during run mode. It affects real time operation. 

In effect, the COM mode establishes a 'transparent mode' between the running target 
program and the controlling port of the ES 1800. Whenever the ES 1800 reads target 
memory during run mode, it actually stops emulation for about 100 microseconds. To 
avoid significant impact on real time operation, the COM routine examines the byte at 
<address> only once every 05 seconds. When the COM routine discovers a new byte 
from the target program, it reads the byte and clears the location. The byte is then sent 
to the controlling port of the ES 1800. The COM routine then immediately returns to 
examine the byte at <address>. A target output routine has approximately 100 
microseconds to place another character in the output location. If this 100 microsecond 
window is missed, the display of the subsequent character is delayed for 0.5 second. 

The COM command requires special target code: two bytes at the specified address. 
The byte at <address> is used for characters sent from the target to the controlling 
port. The byte at <address> + 1 is used for characters being sent to the target 
program. This command makes use of 7-bit ASCII characters, with the eighth bit of 
each byte used for handshaking. 

To transmit a character to the ES 1800, the target program first checks the most 
significant bit (MSB) of the byte at <address>. If this bit is set (1), the ES 1800 has 
not yet collected the previous character. If the bit is cleared, the target program sets the 
MSB of the character to be transmitted and places the result in the byte at <address>. 

To receive a character from the ES 1800, the target examines the byte at 
<address>+ I. If the MSB of this byte is cleared, the ES 1800 has not yet transmitted 
a new character. If the MSB is set, the character is 'new.' If the controlling port of the 

7-34 Alphabetical Command Reference 



COM: Communication With Target Progi 

ES 1800 is a terminal, the target program should echo the character by . immedi: 
copying it into the byte at <address> with the MSB still set. The target then proJ 
masks the MSB off and stores the result back at <address> + 1. This prevents 
target program from re-reading the same character. 

The COM routine does not check the byte at <address>+ 1 to see if the target proJ 
has received it. Generally, the target program will be substantially faster than 
COM routine and will always receive one character before the COM routine 
transmit the next. 

The flow diagram on the next page summarizes the COM process. 

Alphabetical Command Reference 



-----·· -------

COM: Communication With Target Programs 

Figure 7-1: Flow Chart 

Start 

y 

Exit 

2 
y 

Get 1st 

Read byte Set Escape 
escape code 

-cad3less> Flag 

Se~ bit 7 Set bit 7 of 
0 k~ escape code 

CD chara er 

Write byte to 
<address + 1 > 

Write byte to 
<address + 1 > 

Clear byte Delay 100 Delay 100 
<ad9~esS> microseconds microseconds 

Clear bit 7 ® of byte 

Display 
character 
on CAT 

® 

7-36 Alphabetical Command Reference 

------- ·----- --



COM: Communication With Target Pro, 

Examples 

One good use of the COM command is to simulate a serial 1/0 port when debll 
code before target hardware is available. The RUN command downloads the 
program into overlay memory and enters run mode. The address supplied to the 
command is that of a simulated RS232 data pon. Data entered at the terminal is 1 
to the target program, and data output by the program appears on the screen. 

>MAP 0 TO -1 

>DNL 

%cat serial.driver 

>RNV 

R.>COM 'aerial_port 

Map all available overlay memory 

Download program to overlay (• 
transparent mode escape aequ• 
<esc><esc> default) 

R.un program 

Uae aerial data port aa COM addraaa 

A note of caution: if a breakpoint or an error is encountered while running the 
command, the system will appear to hang up. This is because emulation has 
broken, and the target program that receives and transmits characters is no : 
running. Entering the transparent mode escape sequence will terminate COM 
and cause the break or error message to be displayed. 

Alphabetical Command Reference 



CPY: Copy Data To Both Ports 

CPY: Copy Data To Both Ports 

Command 

ONCPY 

OFFCPY 

Comments 

Result 

Sends all data to both the terminal and computer 
ports. Data sent to the controlling port is echoed 
to the other port (noncontrolling pon). 

Only sends data from the ES 1800 to the 
controlling pon. 

Default: OFF 

The CPY soft switch provides a way to make a hard copy of emulation data. It is also 
useful for monitoring computer contr<;>l commands. 

See Section 4, "Serial Communications" for more information on the terminal and 
computer pons. 

7-38 Alphabetical Command Reference 



CRC,CRE,CRO: Target Cyclic Redundancy C 

CRC,CRE,CRO: Target Cyclic Redundancy Checl 

Command 

CRC <range> 

CRE <address range> 

CRO <address range> 

Comments 

Result 

The system calculates a cyclic redundancy c 
on all addresses in <range>. 

Calculates a cyclic redundancy check on 
addresses. 

Calculates a cyclic redundancy check on 
addresses. 

These commands are valid in pause mode only. 

The CRC command generates a cyclic redundancy check value over a user de 
address range. Only the byte mode is used for this test. 

If code is split into two PROMs, with one even and the other one odd, the CRE/ 
operators allow you to do a cyclic redundancy check on each PROM. 

CRC calculations can be used to determine if RAM based data is being corrupted. 
CRC over the data base and save the value. Then run the program and do the 
over the range again. If the values do not match, data is being corrupted. The : 
Monitor System can be set up to catch writes to the data base. 

The CRC algorithm is based on the polynomial xt6 +xis +x2+1. 

Alphabetical Command Reference 



CTS: Convert Time Stamp 

CTS: Convert Time Stamp 

Command 

CTS # <countlimit> 

Comments 

Resu1t 

Convert countlimit to value required by 
ES 1800's Event Monitor System. 

The absolute value of the time stamp counter can be used as one event in an Event 
Monitor System WHENtrHEN statement. The comparator LSA is used for the 
absolute value of the time stamp counter. 

Examples 

> C'!S #2000 Convert desired count lindt to value 
understood by the ES 1800. The ES 1800 
will respond with $0438. '!his is the 
value the LSA port actually sees when the 
pod baa counted 2000 times. 

> ACl•'counter reset address 
Specify address at which to reset 
counter. 

> WHE ACl '!BE '!GR, GRO 2 Reset counter and switch to qroup 2 when 
ACl is reached. 

> LSA.2=$0438 Specify the converted time stamp value as 
the lindt at which to break emulation. 

> 2 WBE LSA '!HE BRR Break when counter value is reached. 

7-40 Alphabetical Command Reference 



) 

DB: Display Memory. 

DB: Display Memory Block 

Command 

DB <address range> 

DB 

DB <address> 

Comments 

Result 

Read and display the specified address range. 

Read and display one page of memory, starti 
the last address displayed by any previou~ 
command. On power-up, this command di£ 
a page of memory from address zero. 

Read and display one page of memory, starti 
the specified address. 

The page length is def"med by the CRT length parameter in the SET menu. · 
displaying a block of data in byte mode, the ASCII representation of each byte t 
displayed. 

The DB command provides an easy way to page through memory. Ente 
DB <address> command to start reading memory at the desired address. Follo· 
display of this page of data with the DB command, and type a slash (/). This I'I 

the DB command to increment the address and scroll through memory. 

If the display is longer than one page, the XON/XOFF characters can be used t< 
and stop scrolling. (<ctrl-s>, <ctrl-q> default) 

DB affects real-time operation when entered in run mode. 

Examples 

>WDM 

>DB DS:DX LEN 20 

>DB @SS:SP 

Set qlobal data lenqth to word. 

Display 20 words pointed to by DS:DX. 

Display a page of values pointed t 
the value on top of the stack. 

(See Section 8: "Expressions" for more information on@ operator). 

Alphabetical Command Reference 



DB: Display Memory Block 

The next example shows displaying a block in byte mode and word mode. 

7-42 

>BYM Set qlobal data lenqtb to byte. 

>DB 0 LEN 20 Display 20 bytes. 

000000 80 48 45 4C 4C 4F 80 80 - 2F OF Fl F9 SE 2F F6 FO .HELID .. / ... "'/,. 

000010 CF 03 FO 40 CIE' OC FO 40 - 07 06 FO 90 OF OC D8 00 ... @ ... @ ....... . 

>WDM Set global data lenqtb to word. 

>DB 0 LEN 2F Display 2F words. 

000000 80 48 45 4C 4C 4F 80 80 - 2F OF Fl F9 SE 2F F6 FO .HELID .. / ... /"'/ .. 

000000 4880 4C45 4F4C 8080 - OF2F F9Fl 2FSE FOF6 

000010 030F 40FO OCOF 40FO - 0607 90FO OCOF OOD8 

000020 OFFF F9FF 1FFF 7FFF - 3FFF BDFF 'lFFF FFFF 

Alphabetical Command Reference 



DEL: Delete A Symbol Or Se1 

DEL: Delete A Symbol Or Section 

Command 

DEL '<symbol> 

DEL '<section> 

Examples 

>SYM 

$00001000 Sym 

$00008000 start 

>DEL 'Sym; SYM 

$00008000 start 

> 

Alphabetical Command Reference 

Result 

Deletes the specified symbol. 

Deletes the specified section. 

Display current symbols. 

Delete symbol "Sym", and show remai 
symbols. 



DES: Display Event Specifications 

DES: Display Event Specifications 

Command 

DES 

DES <group number> 

Examples 

Result 

Display all of the WHEN/fHEN statements 
currently active from all groups. 

Display all of the WHENtrHEN statements and 
the comparator values for the specified group. 

Display the statements and comparators for groups 1 and 2. 

7-44 

>DES l;RET;DES 2 

1 WHEN ACl THEN BRK 

ACl.l • $007632 

AC2.l • $000000 

DCl.l • $0000 

DC2.l • $0000 

Sl .1 • $0000 

S2 .1 • $0000 

LSA.l = $0000 

CTL.l = $0000 

Display information on qroup 1 and 2 
setup, separated by a <return>. 

2 WHEN Sl .AND DCl THEN CNT,TRC 

2 WHEN CTL THEN BRK 

ACl.2 • $000000 

AC2.2 = $000000 

DCl.2 • $40FF DC $00FF 

DC2.2 = $0000 

Sl .2 = $0003 DC $FFFC 

S2 .2 = $0000 

LSA.2 = $0000 

CTL.2 = $0010 

Alphabetical Command Reference 



DFB: Default Base 

Command 

DFB 

DFB=#n 

Comments 

DFB: DefaulJ 

Result 

Display the global default base. On power-u 
default base is hexadecimal unless at 
default base was loaded by the EEPR01 
power-up. 

Set the default base to n (2-binary, 8-octa: 
decimal, or 16-hexadecimal. 

Specific base prefixes can override the default base. Values not preceded by o 
these prefixes are presumed by the ES 1800 to be in the default base. 

Base prefix Description Example 

% Binary %10011100001111 
\ Octal \23417 
# Decimal #9999 
$ Hexadecimal $270F 

For example, if you set the global default base to binary, and you then want to as: 
value to a register in a base other than binary. use a base prefix. 

The ES 1800 works correctly with any base between 2 and 16. However, if you 
uncommon base, such as 5 or 9, the results of assignments and commands m 
confusing. 

If the base is outside the allowable range, an error message is displayed ar 
ES 1800 defaults to the hexadecimal base. 

Alphabetical Command Reference 



DIA: Display Character String 

DIA: Display Character String 

Command 

DIA <address> 

Comments 

Result 

Read and display characters from target memory 
starting at the specified address. The DIA 
routine terminates when it reads $ 0 0 from target 
memory. 

Affects real time operation when entered in run 
mode. 

DIA is commonly used for test pwposes in target systems that have no human
readable 1/0 channels. 

When a test routine detects a problem, it can load a register with the address of a null 
terminated error message. The routine then jumps to an address that causes the 
ES 1800 to break emulation. The DIA command can then be used to display the error 
message. 

DIA can also be used to check the contents of any null terminated string in memory. 

Examples 

7-46 

>BYM Make sure we're in byte mode. 

>M 120 Enter Memory mode at address 120. 

>48,65,6C,6C,6F,O $000120 $00 

$000126 $00 >X 

>DIA 120 

Hello 

> 

Enter a null terminated string and exit 

Disp1ay string starting at 120 

Alphabetical Command Reference 



DIA: Display Character .5 

The next example sets a breakpoint in the target error routine. When the break 
occurs, a message pointed to by the ES :BX register pair is displayed. If the 
register is zero, the process stops. Otherwise, the ES 1800 immediately b 
emulation and waits for another breakpoint and message. 

>ACl • 'Error_stop 

>WHE ACl THE BRK 

Set address comparator at error routic 

Break when ACl ia reached. 

>* RBK;WAI;DIA ES:BX;TST • DX 

Alphabetical Command Reference 

R.un til breakpoint, and wait u 
breakpoint ia reached. Display mea 
pointed to by ES:BX. Then teat to ae 
DX ia 0 . The * at the beginning of 
line repeats the command, ao that if 
TST fails, the whole line ia repeated. 



DIS: Memory Disassembler 

DIS: Memory Disassembler 

Command 

DIS <range> 

DIS <address> 

DIS 

Comments 

Result 

Disassemble and display the data in the specified 
range. 

Disassemble one page of memory beginning at a 
specified address. 

Disassemble and display a page of memory 
beginning at the last address display during 
previous DIS command. At power-up this value 
is zero. 

You should be familiar with 8018X or 80C18X assembly language programming and 
have the appropriate hardware manual: 

iAPX 86/88, 1861188 User's Manual by Intel. 
iAPX C861C88, C186/C188 User's Manual by Intel. 

Page length is defined by the CRT length parameter in the SET menu. 

A disassembly command with an integer argument or no argument enters a special 
disassembly mode. The disassembly can be continued by typing a <space> or 
<return> . Exit disassembly by typing any other character. 

<space> Continue disassembling one line at a time. 

<return> Continue disassembling one page at a time. 

anycharexr::e~ <sp<a> a <Jr!lum> Exit disassembly mode. 

7-48 Alphabetical Command Reference 

-----~" ~----



DM: Display Memory 

DM: Display Memory Map 

Command Result 

DM Display the memory map currently in effect. 

Comments 

'This command is valid only in pause mode. 

ff the memory map scrolls off the screen, you may have a heat related problem 
your emulator. See Section 2, Power-Up Sequence, for details. 

Examples 

>DM Display memory map. 

MEMORY MAP : Thia ia the default map at power-up. 

$000000 TO $li'li'U!FF:TGT 

Alphabetical Command Reference 



DME: Enable Data 

DME: Enable Data 

Command 

ONDI\fE 

OFFDI\fE 

Comments 

Result 

The DMA controllers are active during pause. 
The values in DMAO and DMAl registers are 
not reloaded to the physical PCB during run
pause and pause-run transitions. The following 
also occurs: 

On a run-to-pause transition the IST register is 
copied to the internal RAM table. The DHL T bit 
is then cleared, causing DMA cycles to resume. 
All DMA cycles are directed to the target 
system. 

The DMA controllers are not active during pause 
mode. 

Default: OFF 

All DMA cycles are disabled immediately upon a run-to-pause transition. 

If the target system uses an external dynamic memory controller for refresh, DME must· 
be set to OFF. This prevents memory read signals from going out to the target in 
pause mode. All bus read cycles go to target space during PAUSE mode if Dl\fE is ON. 

Overlay will not respond to DMA during pause. All DMA cycles executed during 
pause will be directed to the target system. 

If internal DMA is used, then DME should be ON. 

7-50 Alphabetical Command Reference 



DNL: Download File 

Command 

DNL 

Comments 

DNL: Download 

Result 

D NL readies the ES 1800 to receive data. 
terminal control mode, the ES 1800 ente 
transparent mode automatically, allowing c 
communication with the host system. Other 
system commands may be executed prior t< 
download operation. 

You can choose the destination of the downloaded file: 

• Target memory 

• Emulator overlay memory 

) If the downloaded data is going to overlay memory, verify that the overlay is mapp 
the appropriate address range. Make sure that the start address of the file i 
address to which you expect to download. 

Verify also that the data format of the host system file matches that being used b 
ES 1800. Refer to SET menu set parameter #26 for verification of ES 1800 formal 
transparent mode (TRA) to verify host system format and the address in the file. 

You can download files with either the computer port or the terminal port in cc 
That is, the downloading of files can be initiated and controlled either by the user 
a host system. There are some differences in procedure depending on which porl 
control of the downloading process. 

See Section 4 "Downloading" for more information. 

Alphabetical Command Ref ere nee 



DNV: Verify Download Data (80C18X only) 

DNV: Verify Download Data (80C18X only) 

Command Result 

ON DNV Data received with the DNL command is verified after being written to 
memory. 

Default: ON 

OFF DNV Data is not verified after being written to memory. 

Comments 

The DNV command allows you to tum on and off the data verification performed by the 
ES 1800 after each byte of data is written. With the DNV switch ON, data is first 
written and then verified as successfully and accurately written. H the data is not 
successfully verified, an error message is displayed. 

With the DNV switch OFF, you can perform write operations to non-readable memory 
space, such as MMU's. With this setting, memory writes are not immediately verified 
with a read operation. 

With DNV OFF, code downloads are significantly faster than with DNV ON. With a 
reliable target, you may want to set this switch to OFF to more quickly download code. 

7-52 Alphabetical Command Reference 



DR: Display/Load Microprocessor Reg1 

DR: Display/Load Microprocessor Registers· 

Command 

DR 

<register name> 

<register name>=<exp> 

CLR 

LDV 

Comments 

Result 

Display values of all microprocessor registers. 

Display the value of the specified microproc 
register in its display base. 

Assign the specified register the value <exp>. 

Clear the four CPU data registers; AX. BX 
and DX. 

Load the reset vectors into the CS, IP and 
registers. The reset vectors can also be l< 
by the RNV and RBV commands. These loa 
vectors and enter run mode. 

On power-up an LDV command is automatically executed. This command sel 
registers to Intel-defined default values. Register values may be saved to and i, 
from EEPROM. 

The CPU registers are automatically copied from ES 1800 overlay memory t 
microprocessor when run mode is entered. When emulation is broken, they are c 
from the processor to ES 1800 overlay memory. 

If a CPU register is loaded with a value during run mode, a warning message 
displayed. This warning informs you that the value you are entering will not be s 
the pod CPU during emulation. The value is stored in the ES 1800's internal me 
but when emulation is broken, the new value of the CPU register overwrites the 
just entered. 

Alphabetical Command Reference 



DR: Display/Load Microprocessor Registers 

The display of the FLX register is different from that of the other CPU registers. The 
flags are more conveniently decoded by using an alpha character to indicate whether the 
flag was set or cleared by a particular instruction cycle. H the flag is clear, you see 
a. as a place holder. H set, the following characters describe the flag. 

N - Nested task S - Sign 

0-0verflow Z-Zero 

D - Direction A - Auxiliary carry 

I - Interrupt P-Parity 

T-Trap C-Carry 

If FLX were assigned the value $FFFF, the DR command would display the FLX 
register as: 

>DR 

CS:IP 

0000:0000 lD>r.rszAPC 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 

Examples 

7-54 

>DS=$A700;DS 

$A700 

> 

Load the data aegment and verify that it 
contains the correct value. 

Alphabetical Command Reference 



DRT: Display Raw Trace Bus C: 

ORT: Display Raw Trace Bus Cycles 

Command 

DRT 

DRT <line number> 

DRT <range> 

Comments 

Result 

Display the last page of bus cycles record< 
trace memory. 

Display a page of the trace buff er starting 
<line number>. 

Display the range of· line numbers. XON 
XOFF may be used to start and stop scrolli 
the range is larger than the console display. 

Note that the range is a range of bus cyclei 
the address recorded in the trace memory. 

SET parameter #13 sets the page length. Refer to SET. 

This command is valid only in pause mode. 

The sequence numbers in DT, DTB, and DTF (instructions) correlate with the 
numbers displayed in the DRT (bus cycles). However, one or more bus cycles i 
DRT display may make up one instruction on the DT, DTB or DTF displays. ' 
displays may have missing sequence numbers indicating that a multiple bus 
instruction has been executed. Also, the sequence number (SEQ #) may be re1 
when two-byte wide instructions were executed from contiguous addresses. 

Alphabetical Command Reference 



DRT: Display Raw Trace Bus Cycles 

Examples 

>DRT #50 

LJ:NE ADDRESS DATA R/W M/IO BCYC SEG QUE LSA - 8 7 - 0 

#69 001000 > OFB9 R OVL M 

#68 001002 > BEOO R OVL M 

#67 001004 > 2000 R OVL M 

#66 001006 > OOBF R OVL M 

#65 001008 > AS22 R OVL M 

#64 OOlOOA > A4F3 R OVL M 

#63 OOlOOC > 8103 R OVL M 

#62 002000 > FF50 R OVL M 

#61 002200 < FF50 W OVL M 

#60 OOlOOE > FFOO R OVL M 

#59 001010 > 02B9 R OVL M 

#58 002002 > 3E R OVL M 

#57 002202 < 3E W OVL M 

#56 002003 > FF R OVL M 

#55 002203 < FF W OVL M 

#54 002004 > 00 R OVL M 

#53 002204 < 00 W OVL M 

#52 002005 > 00 

#51 002205 < 00 

R OVL M 

W OVL M 

#50 002006 > FF R OVL M 

IF 

IF 

IF 

IF 

IF 

IF 

IF 

RM 

WM 

IF 

IF 

RM 

WM 

RM 

WM 

RM 

WM 

RM 

WM 

RM 

C F 0 %11111111 %11111111 

c 
c 
c 
c 
c 
c 
D 

D 

c 
c 
D 

D 

D 

D 

D 

D 

D 

D 

D 

2 %11111111 %11111111 

2 %11111111 %11111111 

l %11111111 %11111111 

2 %11111111 %11111111 

2 %11111111 %11111111 

3 %11111111 %11111111 

4 %11111111 %11111111 

4 %11111111 %11111111 

3 %11111111 %11111111 

l %11111111 %11111111 

l %11111111 %11111111 

l %11111111 %11111111 

l %11111111 %11111111 

l %11111111 %11111111 

l %11111111 %11111111 

l %11111111 %11111111 

l %11111111 %11111111 

l %11111111 %11111111 

l %11111111 %11111111 

UNE Line number 0 in the trace buffer indicates the 
last bus cycle prefetched or executed before the 
ES 1800 went into pause mode. The larger the 
line number, the further back in the history of the 
program you are viewing. You can get a good idea 
of the relationship of bus cycles to instructions by 
matching the bus cycle line numbers in the DRT 
to the SEQ# in the disassembled trace. 

7-56 Alphabetical Command Reference 



ADDRESS DATA 

TARIOVL 

M/10 

BCYC 

SEG 

DRT: Display Raw Trace Bus C 

The address displayed is where the bus 
took place, along with the data written to, or 
from, that address. 

> and < are data direction indicators. 
indicate whether data was read from an ad 
(>) or written to an address ( <). These 
indicators are used in the trace disassembly. 

T AR/OVL indicates whether the access w; 
the target memory area or in the ES 1 
overlay (see DM command to determine 
addresses are mapped).· 

M/10 indicates whether the bus cycle accesi 
a memory access (M) or an 1/0 access 
This is determined by the program. 

BCYC indicates what type of bus cycle wai 
This is determined by your program. 
possibilities are: 

IAK interrupt acknowledge 
RIO read from I/O 
WIO write to I/O 
BLT halt 
IF instruction fetch 
RM read memory 
WM write memory 
NBC no bus cycles 
X87 8087 microprocessor instruction 

SEG indicates what type of segment is 
used by the program for data accesses. 
possibilities are: 

A - Alternate Data 
C - Code 
D - Data 
S - Stack 

Refer to iAPX 86188, 1861188 Users Manzu 
definition of these segment types. 

Alphabetical Command Reference 



DRT: Display Raw Trace Bus Cycles 

QUE QUE indicates how many bytes (up . to 6) are in 
the processor queue or how many were 'flushed' 
(usually caused by a branch). A flush is indicated 
by a Q preceding the queue depth value. 

LSA-8 7-0 LSA-8 7-0 columns display the state of each pin 
of the LSA pod during that bus cycle. 

7-58 

NOTE: 

The same information that is recorded in the trace buffer can be used by 
the Event Monitor System to cause event actions. Therefore, everything 
in the trace buffer such as QUE flushes or WIO oi any combination of 
these traced items can cause event actions such as selective tracing, 
counting, or breaking emulation (ref er to Section 4: "Breaking 
Emulation") 

Alphabetical Command Reference 



DT: Disassemble Trace Mei 

DT: Disassemble Trace Memory 

Command 

DT 

DT <range> 

DT <value> 

Comments 

Result 

Disassemble and display the last instructio 
trace memory. A sequence number is 
included. Overwrites current display line. 

Disassemble a range of bus cycles, startin 
the specified value and proceeding back in time 

Disassemble a page of trace starting at <value> 

This command is valid only in pause mode. 

A page is defined by the CRT length parameter in the SET menu. 

The sequence #0 is always the most recently recorded bus cycle in trace memory. 
argument is specified to the DT command, the values refer to the raw trace seqll 
numbers. 

The sequence number shown is a decimal value. For numbers larger than 9, pre 
with a decimal (#) base sign. 

When using the disassemble trace (DT) and th~ display register (DR) on the : 
line, make sure you enter DT before DR, because DT will overwrite the current lin1 

does this so that the STP;DT command used repeatedly will give a listing similar 
program listing without the STP;DT line between each command. 

The sequence numbers in DT, DTB, and DTF (instructions) correlate with the 
numbers displayed in the DRT (bus cycles). However, one or more bus cycles iJ 
DRT display may make up one instruction on the DT, DTB or DTF displays. 1 
displays may have missing sequence numbers indicating that a multiple bus 1 

instruction has been executed. Also, the sequence number (SEQ #) may be rep 
when two-byte wide instructions were executed from contiguous addresses. 

Alphabetical Command Reference 



DT: Disassemble Trace Memory 

Examples 

>STP;DT 

>DT 0 

SEQ# ADDR OPCODE 

0028 000.A 8B4600 

0027 OOOD 050100 

0024 0010 EBF4 

0020 0006 904600 

0019 0009 90 

0018 000.A 8B4600 

0017 OOOD 050100 

0014 0010 EBF4 

0010 0006 904600 

0009 0009 90 

0008 000.A 8B4600 

0007 OOOD 050100 

> 

SEQ# 

ADDR 

OPCODE 

MNEMONIC 

OPERAND FIELD 

BUS CYCLE DATA 

7-60 

Single step and display trace. 

MNEMO?UC OPERAND FIELDS BUS CYCLE DAT.A 

MOV 

ADD 

JMI? 

MOV 

NOP 

MOV 

ADD 

JMI? 

NOP 

NOP 

MOV 

ADD 

AX, WORD P'l'R. [BP+O] 0800>lOC5 

AX,l 

SHORT 0006 

WORD P'l'R [BP+O] ,AX 0800<10C6 

AX,WORD P'l'R. [BP+O] ,.AX 0800<lOC6 

AX,l 

SHORT 0006 

AX,WORD P'l'R. [BP+O] 0800>lOC7 

AX,l 

Correlates the disassembled instruction to the 
raw trace bus cycle. This is a decimal number and 
must be preceded by a # sign when referenced for 
selective disassembling of the trace. This 
corresponds to the line number in the DRT 
command display. 

The memory address or location where the 
instruction was fetched~ 

The machine-language (hex number) equivalent 
of the following assembly-language instruction. 

The command used to invoke the instruction. 

The assembly-language instruction. 

The bus cycle transaction, if any, that occurred as 
a result of the instruction. This includes any 
information written to, or read from, memory or 
1/0 locations. 

Alphabetical Command Reference 



DTB, DTF: Disassemble Trace 

OTB, DTF: Disassemble Trace Page 

Command 

DTB 

DTF 

Comments 

Result 

Disassemble the previous page of trace me 
from current trace memory pointer. 

Disassemble the following page of trace me 
from the current trace memory pointer. 

This command is valid only in pause mode. 

A page is defined by the CRT length parameter in the SET menu. Three line 
subtracted for header and prompt lines. 

Refer also to the DT, DRT and I commands. 

The sequence numbers in DT, DTB, and DTF (instructions) correlate with th1 
numbers displayed in the DRT (bus cycles). However, one or more bus cycles 
DRT display may make up one instruction on the DT, DTB or DTF displays. 
displays may have missing sequence numbers indicating that a multiple bus 
instruction has been executed. Also, the sequence number (SEQ #) may be re1 
when two-byte wide instructions were executed from contiguous addresses. 

Alphabetical Command Reference 



FIL: Fill Operator 

FIL: Fill Operator 

Command Result 

FIL <range>,<constant> Fill <range> with the <constant> data pattern. 

Comments 

This command is valid in pause mode only. 

<constant> must be an integer. 

The FIL command uses the default data length, regardless of the length of <constant>. 
(See BYM and WDM). 

The Fil. command can be verified using the VBL (Verify Block) command. 

Examples 

>FZL 2000 LEH 50,0 

>FZL 'ram, 'init data 

7-62 

Fill RAM with zero to initialize data 
apace. 

Fill RAM section with initialization 
data. 

Alphabetical Command Reference 



FIN: Find Pattern In Me. 

FIN: Find Pattern In Memory 

Command 

FIN <range>,<data> 

Comments 

Result 

Search <range> for the data pattern. 
occurrences of the pattern are displayed: 

$<address>=$<data> 
> 

If the pattern is not found within the range, ) 
see the error message: 

NOT FOUND 
> 

Data may be either an integer or don't care value. The fmd command uses the de 
data length, regardless of the length of the <data>. (See SET.parameter #21 
default data length in memory commands.) 

Refer also to the 'don't care• description in Section 8: "Numbers." 

Examples 

To find a bit pattern using don't cares, use either of the following forms: 

>WDM Set global data length to word. 

>FXN 1000 TO 2FFF, 60XX Use TO syntax to specify ranqe. 

or 
>FXN 1000 LEN 1000,6000 DC OFF Use LEN syntax to specify ran 

The next examples shows finding the initialization data in the start module sectioi 
finding any NOPs in a range. 

>BYM Set global data length to byte. 

>FXN 'start_module,'init_uart 
Find 'init uart data in 'start_module. 

>FXN 100 TO 1000,90 Find any NOPs in the ranqe. 

Alphabetical Command Reference 



PSI: Force Special Interrupt 

FSI: Force Special Interrupt 

Command Result 

WHE <events> THE FSI, <action>, ••• 

Comments 

H all of the conditions specified in the event 
portion of the WHEN/fHEN clause are satisfied, 
the force special interrupt action, FSI, allows you 
to jump to a specified address when a specific 
event is detected. 

The FSI event can allow you to patch to your code fast. It can also allow you to write 
soft shutdown routines for machinery that cannot be halted using a simple breakpoint. 

The special interrupt address register, SIA, should be set prior to entering the run 
mode if you are using the FSI event. The SIA is a 32 bit integer, and defmes the 
address your program vectors to when the FSI is executed. 

When an FSI event is detected, an FSI ACTIVE message is displayed on the screen. 
You may also see some unusual cycles in the trace memory at the address where the 
FSI occurred. These are internal cycles that are traced as the execution address is 
changed. These internal cycles are not purged from trace memory. 

The FSI routine residing at the SIA address should terminate with an interrupt return 
(IRET) instruction. Execution resumes at the address immediately following the 
instruction that caused the FSI. H this is a soft shutdown, you will probably define a 
breakpoint at the IRET instruction. 

7-64 Alphabetical Command Reference 



Examples 

Make a patch using overlay memory 
>MAP 1000 

>AC1=8F36 

>WHEN ACl THEN FS:I 

>S:IA=lOOO 

>ASM S:IA 

>RON 

R> 

FSI: Force Special Inte 

Set up overlay map. 

Set up address comparator. 

When address reached, jump to ape 
interrupt address. 

Set up special interrupt address. 

Use single line assembler beginning at 

special interrupt address. Patch code 

can be assembled here. 

Begin emulation. 

Run mode prompt will appear. 

Assume the program needs to break at a certain address, but the machine cannc 
turned off until a soft shutdown routine is executed. Set SIA to the address of the 
shutdown routine. Use an FSI action at the break address, then set a breakpoint a 
end of the soft shutdown routine. 

>S:IA='SBOT down 

>AC1...,$7F4E2 

>AC2='SBOT down + 4E 

>WHEN ACl THEN FS:I 

>WHEN AC2 THEN BRR 

>RBK 

R> 

Alphabetical Command Reference 

Set up address of beginning of ape 
shutdown routine. 

Set up addreaa comparator l aa loca 
to break at. 

Set up addreaa comparator 2 to be en• 
special shutdown routine. 

At the first address, jump to ape 
shutdown routine. 

At end of shutdown routine, break. 

Run til breakpoint. 

Run mode prompt will appear. 



FSX: PSI On Instruction Execution 

FSX: FSI On Instruction Execution 

Command 

ONFSX 

OFFFSX 

Comments 

Result 

An Event Monitor System forced special interrupt 
(FSI) occurs when an instruction is executed. 
Refer to the FSI command. 

Forced special interrupt (FSI) occurs when an 
address is seen on the bus. 

Default: ON 

The 80186/88 and 80Cl86/C88 prefetch instructions. Because of this, an address can 
be detected on the address bus before the instruction is actually executed. If you set an 
FSI on an address that immediately follows a branch, the emulator may execute the 
FSI before the instruction is executed (it was prefetched). Set this switch to force an 
FSI to occur only on address execution. 

7-66 Alphabetical Command Reference 



GD: General Purpose Data Reg 

GD: General Purpose Data Registers 

Command 

GD<0-7> 

GD<0-7> = <value> 

Comments 

Result 

Display the value of the specified general pu 
data register. 

Assign a value to one of the eight g( 
purpose data registers. value can be any ir 
or don't care value, but not a range. 

Use the general purpose registers as arguments to commands to save keys1 
when using values repeatedly. They can also be used to save space in i 

definitions. 

These general purpose registers may be used in place of integer or don't care val1 
command statements. 

Examples 

>GD4 = 5000 General purpose data register 4 is l 
with 5000. GD4 can now be used any 
you would use the number 5000. 

The second example shows looking for a specific pattern on the LSA pod lines iI 
than one event group. To save typing, assign a general purpose data register the 
you are looking for. All subsequent LSA assignments can use this register. 

>GD2 = %01100101100 DC % 10011 
Set GD2 to a specific pattern. 

>LSA = GD2; LSA.2 = GD2 Set up LSA registers in two groups. 

>GD3 = 'datpatl DC %FFOO Set up GD3 to look for one byte 

>DCl = GD3 of a specified word 

Alphabetical Command Reference 



GD: General Purpose Data Registers 

General purpose registers can be used to help simplify using mode status mnemonics. 

>GD6 =ALT 

7-68 

>MMS = GD6 

>GDl • OVL+RD+IOA 

>Sl • GDl 

Set MMS to ALT 

Set up a breakpoint on an overlay 

read from I/O apace. 

Alphabetical Command Reference 



) 

GR: General Purpose Address Reg 

GR: General Purpose Address Registers 

Command 

GR<0-7> 

GR<0-7> = <value> 

Comments 

Result 

Display the value of the specified register. 

Assign a value to one of the eight g1 
purpose address registers. <value> can be 
integer or range. 

Use the general purpose registers as arguments to commands to save keys 
when using values repeatedly. They can also be used to save space in 
definitions. 

These general purpose registers may be used in place of integer or range val1 
command statements. 

Examples 

>GR.4 = 5000 General purpose address reqister 
loaded with 5000. GR.4 can now be 
wherever you would use this ir. 
value. 

The next example assigns a register to a commonly used range. Then you can t 

register as a parameter for other commands. 
>GRO ='start code LEN 20 Set up register. 

>DIS GRO 

>DB GRO 

Disassemble range specified in regist 

Display trace beginning at reqiater. 

If you do not know the absolute address in the target hardware, but have downlo 
symbol table containing them, then use the symbol names instead of looking 
hardware specifications. 

>GR2 = 'RAM LEH 'RAM len Initialize GR2 

>SF O,GR2 

>ACl = GR2 

>WHE ACl THE BRK 

Alphabetical Command Reference 

Run a RAM test on your RAM 

Set a breakpoint on any RAM access 



GRO: Change Event Groups 

GRO: Change Event Groups 

Command Result 

WHE <events> THE GRO n, <action>, ••• 

Comments 

If all of the conditions specified in the event 
portion of the WHEN/I'HEN clause are satisfied, 
switch to group n (1-4). 

The four event groups allow you to detect sequential events. When emulation is 
entered, the Event Monitor system always begins in group 1. 

Examples 

The example below describes a common use of the Event Monitor System group 
structure. 

You may want to trace a subroutine after it has been called by Module A or Module B, 
but not if it has been called from Modules C, D, or E. In this case, define the address 
comparators in group 1 to the address ranges of Modules A and B. When either of 
these modules is encountered, switch to group 2 and look for the subroutine. After 
tracing the subroutine, switch back to group 1 

>'Module A =1240 LEN 246 Define module A. 

>'Module B •8750 LEN 408 Define module B. 

>'Sub X =8934 LEN 56 Defina subroutine X. 

>ON BKX Enable breakpoints on instruction 
execution so that prafatchinq 
instructions don't triqqar avant actions. 

>.Ael='Modula A Sat up ad.dress comparators for entire 

>.AC2='Module B range of modules A and B. 

>WBE .Ael OR AC2 TIE~ 2 Sat up WHEN/THEN statement so that any 
time you're in either module, go to group 
2. 

>.Ael.2='Sub X Set up comparator for subroutine X. 

>2 WHEN ACl THE TRC Look for Sub X and start trace. 

>2 WBE NOT ACl TIE~ l At end of subroutine, return to group l. 

7-70 Alphabetical Command Reference 



GRO: Change Event G. 

The TRC{fOT and CNT{fOC actions interact in a specific way when .event g 
are switched. The following state transition tables describe the actions taken 
each of the different event combinations are specified. 

Alphabetical Command Reference 



/DP: Interrupts During Pause (BOCJBX only) . 

IDP: Interrupts During Pause (80C18X only) 

Command Result 

ONIDP Honor enterrupts from the target system during 
pause mode. The associated interrupt routine 
will be executed. 

OFFIDP Ignore interrupts from the target system during 
pause mode. 

Default: OFF 

Comments 

If interrupts are not enabled with this soft-switch, no interrupts during pause mode are 
possible. The following requirements must be met in order to execute .target interrupts 
during pause mode. 

• The ESL variable PIA must be set to the address of a block of 16 bytes of 
unused memory. This block may be located in overlay, but it MUST BE 
UNUSED AND WRTI'ABLE! 

• The interrupt service routine must return execution to the location where the 
interrupt occurred (i.e., a normal return-from-interrupt). 

• The interrupt service routine may not execute a halt (lil.. T) instruction. 

If the above requirements are not met, proper operation of your emulator cannot be 
guaranteed. 

7-72 

NOTE 

1. Enabling the IDP switch will slow the response time to some commands, 
such as memory reads. In order to speed command response time, interrupt 
service routines should not take excessive time because ESL cannot 
communicate with the pod while a target interrupt is being serviced. 

The worst case interrupt latency time in the target will be approximately 100 
clock cycles when IDP is enabled and no ESL commands are being 

Alphabetical Command Reference 



/DP: Interrupts During Pause (BOCJBX i 

executed. However, in ninety percent of the cases, no additional latenc 
all will occur. The vast majority of interrupt services will reflect normal t 
operation. 

2. Interrupt service routines executed while the emulator is in pause mode 
not appear in the trace memory. 

3. If you enter the reset character (default is <ctrl-z>), the IDP switc 
automatically reset to the OFF state. You must enter the ON 
command after resetting the emulator if you wish to honor target inteI'l 
during pause mode. 

Alphabetical Command Reference 



/HE: Ignore Halt Errors (80Cl 8X only) 

IHE: Ignore Halt Errors (80C1 BX only) 

Command 

ONIHE 

OFFIHE 

Comments 

Result 

Ignore halt errors during RUN mode. 

Display the message Processor Halted if a 
IIl.. T instruction has been executed. 

Default: OFF 

With Intel's RMX86 operating system, the processor is frequently halted during normal 
operation between interrupts. The emulator recognizes these halts and reports an error 
message each time. To avoid numerous "Processor Halted" error messages, you can 
tum the emulator's IHE switch ON and ignore halt errors during RUN mode. 

With the mE switch OFF, the emulator properly reports any RUN mode halt errors. 

Examples 

For example, to read a byte of data from a UART (Universal Asynchronous 
Receiver/l'ransmitter) input data buffer: 

>IOB $2004 

$00000046 

> 

Read and display a byte from I/O address 
$2004. 

The next example assumes you have a UART that is communicating at 9600 baud and 
would like to increase the speed to 19,200 baud, but don't want to go through a compile 
and link cycle on your software. You can use the IO command to poke the new data 
into the appropriate registers. 

Below, the default base is set to byte mode (BYM) and the baud rate register and the 
clock divide register are set to the necessary values. 

>BYM Set qlobal data lenqth to byte. 

>IO 'uart_base +6, 'baudl9 2K 
Put new info ,into reqister. 

7-74 Alphabetical Command Reference 



/OP: 110 Mode Po 

IOP: 1/0 Mode Pointer 

Command Result 

IOP Display the current value of the 1/0 mode point, 

IOP= <exp> Assign the value <exp> to the 1/0 mode pointe: 

Comments 

IOP is the last value examined while in 1/0 mode. If you enter 1/0 mode wi 
specifying an address, the IOP value is used as the entry point. 

The default power-up value of the IOP register is zero. This register may be stor1 
EEPROM. 

The 1/0 mode pointer is modified by moving to a new address after entering 1/0 n 
When you exit 1/0 mode, the IOP reflects the last address examined. As witll 
register, the IOP can be used as a parameter for other commands (see Sectic 
"Memory and 1/0 Modes".) 

Examples 

>:IOP=$1100;IOP 

$00001100 

> 

Alphabetical Command Reference 

Set the IOP and verify that it was set 



W: Load System Variables From EEPROM 

LD: Load System Variables From EEPROM 

Command 

LD 

LD <category> 

Comments 

Result 

Copies all system variables stored in EEPROM 
into ES 1800 memory. 

Copies the variables from one of the six 
categories in the EEPROM to the emulator 
RAM. 

This command is valid only in pause mode. 

Executing a LD command reads system variables from the EEPROM and copies them 
to into internal RAM. The EEPROM retains those original variables until replaced by a 
SA V command. 

There is room in the EEPROM to load the system variables for two different users. The 
user is determined by a parameter in the SET menu. 

You may load the following variable categories from EEPROM: 

0 SET menu 
1 Contents of ES 1800 registers 
2 Event Monitor System WHEN/I'HEN statements 
3 Overlay map 
4 Software switch settings 
5 Macros 

Examples 

>LD 3 

>DM 

7-76 

Load the overlay map from EEPROM to 
internal RAM. 

Verify the new map. 

Alphabetical Command Reference 



WV: Load Reset Ve. 

LDV: Load Reset Vectors 

Command Result 

LDV Load the CPU reset vectors. 

Comments 

'This command is valid in pause mode only. 

RNV and RBV also load the reset vectors, then enter run mode. The RST corru 
resets the processor if in run mode and always loads the reset vectors. 

Intel defines the CPU reset vectors as: 

CS=FFFFH 
IP=OH 
FLX=F002H 

To verify that the reset vectors are loaded, execute the DR command or individ 
display the CS, IP and FLX registers. 

Refer also to Section 4 "Setting Up Registers." 

Examples 

>DR 

CS:IP 
Diaplay reqi•t•r• 

~ m a m oo ~ ~ m ~ ~ ~ 

8000:1002 •••• z ... 0100 FFOO 1234 0040 COOO 0000 0000 0000 0000 0::00 0024 

>LDV;CLR;DR 

CS:IP 

Load reset vectors, clear data reqist 
verify chanqea. 

~ m a m oo ~ ~ M ~ ~ ~ 

FEFF: 0000 • • . • • • • • 0000 0000 0000 0000 COOO 0000 DOOO 0000 0000 a::oo 0024 

> 

Alphabetical Command Reference 



LOV: Load Overlay Memory 

LOV: Load Overlay Memory 

Command 

LOV <range> 

Comments 

Result 

Move data from the target system memory to the 
ES 1800 overlay memory in the specified address 
range. 

This command is valid only in pause mode. 

In order to load overlay memory from the target memory, you must have a target 
system interfaced with the ES 1800 emulator and have overlay memory installed and 
mapped. 

In order to load a target memory range into the overlay memory at a different address, 
use the LOV command, then do a block move (BMO) of the data. 

Use the VFO command to verify the memory move. 

Refer also to Section 4 "Mapping Overlay Memory." 

Examples 

7-78 

>LOV 80000 LEN 7FFF 

>LOV 'BOO'!r_RANGE 

Load a aaction of overlay memory. 

Load a aection of overlay memory defined 
by a aection. 

Alphabetical Command Reference 



M: Enter Memory 1 

M: Enter Memory Mode 

Command 

M <address> 

M 

x 

Comments 

Result 

Enters memory mode at <address>. The ad 
and the data at that address are disp: 
preceding the prompt. 

Enters memory mode at the last ad 
examined in a previous memory mode session. 

The last address is stored in the MMP re~ 
(Memory· Mode Pointer). At power-up, this · 
is zero. 

Exit memory mode. 

The M command affects real-time operation when entered in run mode. 

Data displayed in memory mode can be in either byte or word lengths. Set byte 
(BYM) or word mode (WDM) before entering memory mode. If you are in word 
and enter a byte of data, the byte is padded with zeroes and a word is written. I 
are in byte mode and enter a word of data, the value is truncated, and only a b 
written. 

The commands to scroll the infonnation displayed in memory mode are as follows: 

<return> 

LST 

NXT 

Alphabetical Command Reference 

Scrolls through memory addresses either 
byte (8 bits) at a time, or one word (16 bits 
time. 

The <return> key now decrements add.res~ 

memory mode. 

The <return> key now increments (default 1 

addresses in memory mode. 

Increments the address in memory mode. 

Decrements the address in memory mode. 



M: Enter Memory Mode 

The MMP register is modified if you scroll to a new address while in memory mode. 
When you exit memory mode, MMP reflects the last address examined. 

When a <return> is entered as the first character on a line, the address is incremented 
or decremented and the new address and data are displayed. On power-up, the default 
scroll mode is toward increasing memory addresses. To change the scrolling direction 
use the NXT (forward) and LST (backward) commands. These can be entered in 
memory mode. If they are entered in pause mode, the scroll mode is set and memory 
mode is entered at MMP. 

The scroll mode can be overridden by using the period and comma keys. A • increments 
the address and a , decrements the address. · 

To modify data at a memory location, enter the data and press <return> . The data is 
written to the current address and the next address and data are displayed. 

Data can be entered quickly using a list. A list can contain up to nine values separated 
by commas. See the example below. 

Examples 

>WDM; MMP•$FFOOO; NX'l Set global data length to word. Set th• 
Memory Mode Pointer, and use the NX'l 
command to enter memory mode. 

$0FFOOO $1234 

$0FF001 $00FF 

$0FFOOO $1122 

> 

>1122 Change a word of memory. 

>, Verify the change. 

>X Exit memory mode. 

Assume that address lOOOH is the start of a data table and you want to write a short 
program to utilize that data. 

Initialize the data using a list. Then invoke the line assembler using MMP as the start 
address (see ASM command). 

7-80 

>M 1000 Enter memory mode 

$001000 $00 >0,1,2,3,4,5,6,7,8 

$001009 $00 >X 

>ASM MMP 

Initialize data. 

Exit memory mode. 

Start line assembly at MMP. 

**** 8086/88/186/188 LINE ASSEMBLER Vx.xLA **** 
CSEG = 0000 

1009 > Enter your program here. Use "X" or "END" 
to exit the line assembler. 

Alphabetical Command Reference 



MAC: Display Defined Mc 

MAC: Display Defined Macros 

Command Result 

MAC Display all defined macros in order #1-9,0. 

Examples 

> _l=DR; DIS CS: IP LEN 4; RON 
Set up macro l. 

>_2=DB; SS:SP LEN lO;@'Data_;ptr 
Set up macro 2. 

>MAC Di.splay macros. 

_l=DR;DIS CS:IP LEN 4; RON 

_2=DB; SS:SP LEN lO;@'Data_;ptr 

> 

Alphabetical Command Reference 



MAP: Set Memory Map 

MAP: Set Memory Map 

Command 

MAP<range> 

MAP <value> 

MAP <range><attribute> 

MAP <value><attribute> 

Attributes 

RW 

RO 

7-82 

Result 

Map the specified range and assign it the default 
attribute type, RW. 

Map a 2K-byte block surrounding the specified 
value. Assign the block the default attribute type, 
RW. 

Map the specified range and assign it the 
specified attribute type. 

Map a 2K-byte block surrounding the specified 
value. Assign the block the specified attribute. 

Memory mapped as read-write (RW) responds 
like normal overlay memory. The overlay memory 
is high speed and may actually run faster than 
target system memory if that memory normally 
asserts wait states. 

RW is the most common attribute and is 
therefore the default. MAP commands that do not 
specify an attribute default to RW partitions. 

Memory mapped as RO acts like read-only 
memory to the target program. If the program 
attempts to write to this memory, the ES 1800 
aborts run mode and displays the error message, 
MEMORY WRITE VIOL.AT/ON. The contents of 
RO overlay cannot be altered by a running target 
program. 

Alphabetical Command Reference 



ILG 

TGT 

Comments 

MAP: Set Memory 

The same comments about speed given in 
paragraph on RW apply to memory mappe 
RO. You can always modify memory mapp<; 
RO (in pause mode) even though the t 
program (run mode) cannot. 

Memory mapped as illegal can be used to : 
address ranges that should not be accessec 
the target program. Any access to an ad 
range mapped as ILG causes the ES 180 
abon run mode and display the error mes 
MEMORY ACCESS VIOLATION. Me: 
mapped as ILG does not use up available ov 
memory. 

Memory is mapped to the target. Memory ti 
not explicitly mapped is defaulted to TGT. 

) Overlay memory is mapped in segments of 2K bytes. When you specify an addn 
a range to be mapped as RW or RO, the mapping outline allocates the mini 
number of 2K segments that will completely enclose the address(es) of interest 
OME). 

There is a distinction between the overlay map and overlay memory. If your s: 
has any overlay memory installed (it is an option), you have a complete overlay 
and some limited amount of overlay memory. The overlay map covers the 
address space (24 bits). The overlay map is used to logically place segments of o~ 
memory anywhere throughout the address space. 

You can save and restore the contents of the overlay map by using the EEP 
LD/SA V commands. You cannot save the contents of overlay memory in EEPROM. 

Alphabetical Command Reference 



MAP: Set Memory Map 

Examples 

The following command sequence might reflect a common mapping: 

7-84 

>CLM 

>MAP 0 TO -l:ILG 

>LDV 

>MAP CS: IP :RO 

>MAP 'RAM_start LEN 20000 

>MAP 'I/O_atart:TGT 

>MAP 0 LEN 800 

>DM 

MEMORY MAP: 

MAP $000000 TO $0007FF:RW 

Clear map to all TGT. 

Default entire address space to Illegal. 

Set CS:IP to OFFFFO (reaet vector). 

Map ROM for reset vectors. 

Map some overlay memory to work with. 

Have I/O already in target apace • 

.Allocate RAM for interrupt vectors. 

Display what we've done. 

Interrupt vectors. 

MAP $000800 TO $00FFFF:ILG 

MAP $010000 TO $02FFFF:RW 
Working RAM. 

MAP $030000 TO $03FFFF:ILG 

MAP $040000 TO $0407FF:TGT 
I/O space. 

MAP $040800 TO $0FF7FF:ILG 

MAP $0FF800 TO $0J!'Flil!J! :RO 
Reset vectors. 

MAP $100000 TO $J!'J!'J!'J!'FF: ILG > 

Alphabetical Command Reference 



MIO: Enter 1/0 Mode 

Command 

MIO <address> 

MIO 

x 

Comments 

MIO: Enter 110} 

Result 

Enters I/O mode at <address>. The port ad 
is displayed, but no data is read until a <rel 
is entered as the first character on the line. 

Enters I/O mode at the last address examirn 
a previous 1/0 mode session. 

This address is stored in the IOP (1/0 1 
Pointer) register. At power-up, this value is zer1 

Exit 1/0 mode 

Affects real-time operation when entered in run mode. 

The IOP is modified by scrolling to a new address while in 1/0 mode. When you ex 
mode, the IOP reflects the last address examined. (See IOP) 

To read from an 1/0 port, enter 1/0 mode using one of the above commands, and e1 
<return> as the first character following the 1/0 mode prompt. The value of the Cl 

address is displayed. 

To write to the I/O port, enter the value and press <return> . The value is writte1 
the current address redisplayed. 

Data can be entered quickly using a list. A list contains up to nine values separatj 
commas. All of the values in a list are written to the same address. 

Addresses are not automatically incremented or decremented. Scrolling the addr( 
1/0 mode must be done manually, by using the period to increment the address, ari 

comma to decrement the address. 

Alphabetical Command Reference 



MIO: Enter 110 Mode 

Examples 

>Ml:O $2FOO 

I0:$2FOO >$7F 

I0:$2FOO > 

I0:$2FOO $7F >X 

> 

>WDM 

>Ml:O 

I0:$2FOO >. 

I0:$2F01 > 

I0:$2F01 $05A6 

>X 

> 

7-86 

Enter I/O mode at address $2FOO. 

Write to a port. 

Verify write. 

Exit I/O mode. 

Set global data length to word. 

Enter I/O mode at last address. 

Increment address. 

Read the data. 

Exit I/O mode. 

Alphabetical Command Reference 



MMP: Memory Mode Pc, 

MMP: Memory Mode Pointer 

Command 

MMP 

MMP= <exp> 

Comments 

Result 

Display the current value of the memory l 

pointer. 

Assign the value <exp> to the memory 1 

pointer. 

The MMP is the last address examined while in memory mode. If you enter me 
mode without specifying an address, the M1vfi> value is used as the entry point. 

The default power-up value of the MMP register is zero. This register may be sav 
and loaded from EEPROM. 

') The memory mode pointer is automatically modified when you scroll to a new ad 
_,./ after entering memory mode. When you exit memory mode, the MMP reflects th 

address examined. For more information on memory mode, see Section 4 "Me 
Mode." 

Examples 

The first example set the MMP and verifies that it has been set. 
>MMP=$12330;MMP 

$00012330 

> 

Set MMP and verify setting. 

The second example sets an address comparator to the last address examin 
memory mode. 

>M 6000 Enter memory mode. 

(examine memory until you find a location of interest) 

$006013 SA >X Exit memory mode. 

>ACl=MMP 

Alphabetical Command Reference 

Set address comparator to last ad 
examined. 



ON/OFF: Switch Setting 

ON/OFF: Switch Setting 

ON 

OFF 

ON <switch>[ +<switch> ... ] 

OFF <switch>[+<switch> ... ] 

ON-1 

OFF-1 

Comments 

Result 

Display the ON/OFF menu. This menu is 
different for the 80186/188 and 80C188/C188. 

Display the ON/OFF menu. This menu is 
different for the 80186/188 and 80C188/C188. 

Set the specified switch(es) to the ON position. 

Set the specified switch( es) to the OFF position. 

Turn all switches on. 

Turn all switches off. 

Some ON/OFF switches cannot be set during run mode. 

You can save all of the current switch settings in EEPROM for later use by executing a 
SA V (to save all variables and settings) or SA V 4 (to save just switch settings) 
command. 

The saved switches can be loaded automatically at power-up or manually after the 
system is up and running. To load automatically, set the thumbwheel switch (see page 
3-4) before turning on the emulator. To load manually, enter a LD (to load all variables 
and settings) or LD 4 (to load just the switch settings) command. 

If it becomes necessary for you to reset the emulator (<ctrl-Z> by default), remember 
that some switch settings are set to a default state. If you do not want them in their 
default state, you must reset the switches after resetting the emulator. You can 
conveniently do this with a macro or you may wish to save the switch values to 
EEPROM and eX.eeute an LD S · cortnnaild after resettilig the emulator. A typical macro 
example is _3=0N IDP+Dl\IB. 

For more information on any switch, see the alphabetical listing in this section. 

7-88 Alphabetical Command Reference 



\ 
I 

/ 

ON/OFF: Switch Se 

80186/188 Switch Settings Menu 

>ON 
ES SWITCH SETIINGS 

LD/SA V 4: LOAD/SA VE SWITCH SETIINGS IN EEPROM 
EXAMPLES: >ON BKX+CK 

>OFF FSX+CPY 
VALUE NAME DESCRIPTION 

OFF BKX BREAK ON INSTRUCTION EXECUTION i 
PREFETCH) 

ON CK SELECT INTERNAL CLOCK 
OFF CPY COPY DATA TO TERMINAL & COMPl 

PORTS 
ON FSX FSI ON INSTRUCTION EXECUTION l 

PREFETCH) 
ON RDY SELECT lNTERNAL READY " ACCESSING OVERLJ 
ON STI ENABLE STEP THROUGH INTERRUPTS 
OFF DME ENABLE DMA DURING PAUSE 
OFF TEO ENABLE TIMER 0 DURING PAUSE 
OFF TEI ENABLE TIMER 1 DURING PAUSE 
OFF TE2 ENABLE TIMER 2 DURING PAUSE 
OFF RCS ENABLE CHIP SELECT REGISTERS DISPLA 1 
OFF CDH CLEAR DHLT BIT IN IST REGISTER ON p, 

TO RUN 
> 

Alphabetical Command Reference 



ON/OFF: Switch Setting 

80C186/C188 Switch Settings Menu 

>ON 
ES SWITCH SETIINGS 

LD/SAV 4: LOAD/SAVE SWITCH SETIINGS IN EEPROM 
EXAMPLES: >ON BKX+CK 

>OFFFSX+CPY 
VALUE NAME DESCRIPTION 

OFF BKX BREAK ON INS1RUCTION EXECUTION (NOT 
PREFETCH) 

OFF CPY COPY DATA TO TERMINAL & COMPUTER 
PORTS 

ON FSX .FSI ON INS1RUCTION EXECUTION (NOT 
PREFETCH) 

ON TCE ENABLE 1RACE MEMORY DURING RUN 
OFF PPT ENABLE PEEK/POKE 1RACE 
ON RDY SELECT INTERNAL READY WHEN 

ACCESSING OVERLAY 
ON sn ENABLE STEP TIIROUGH INTERRUPTS 
ON BTE BUS(RDY) TIMEOUT ENABLE 
OFF IHE IGNORE HALT ERRORS 
ON CK SELECT INTERNAL CLOCK 
ON IDP ENABLE INTERRUPTS DURING PAUSE 
ON DNV VERIFY DOWNLOAD DATA 
OFF DME ENABLE DMA DURING PAUSE 
OFF TEO ENABLE TIMER 0 DURING PAUSE 
OFF TEl ENABLE TIMER 1 DURING PAUSE 
OFF TE2 ENABLE TIMER 2 DURING PAUSE 
OFF CDH CLEAR DHLT BIT IN IST REGISTER ON PAUSE 

TO RUN 
OFF RCS ENABLE CHIP SELECT REGISTERS DISPLAY 
ON PRE REFRESH ENABLE DURING PAUSE 
OFF PCS ENABLE CHIP SELECTS 

Examnles 

H you want a hard copy of an emulation session, attach a printer to the computer port on 
the back chassis of the ES 1800. Tum on the copy switch so that all data is copied to 
both serial ports. 

>ON CPY 

> 

Set the copy switch to on. 

Assume that you are debugging a program on a new piece of hardware. The program 
has already been debugged using the ES 1800's overlay memory and appears to be 
functioning properly. When you try to run the program in the hardware it does not work 
correctly. In this case you may want to switch back and forth between running from 

7-90 Alphabetical Command Reference 



ON/OFF: Switch S. 

overlay memory and the target. When running out of overlay you want to u: 
internal clock and ready signal. You do this with these two commands: 

>ON RDY+cK 

>OFF RDY+cK 

Set two switches to ON usinq a +. 

Set two switches to OFF usinq a +. 

Here are two alternative methods for doing the same thing using fewer keystrokes. 

The first is to use a general purpose register for the command parameter. Assig 
register the switch names. Then use the register as the parameter for the commands. 

>GRO = RDY+cK 

>ON GRO 

>OFF GRO 

Set qeneral purpose reqister. 

Turn on switches. 

Turn off switches. 

The next way is to use two macros for the commands. Assign macros 1 and 2 · 
ON and OFF commands. Execute these macros by typing a • and , as tlic; 
character on each line. 

> l=ON RDY+cK 

> 2=0FF RDY+CK 

>. 
>, 

Alphabetical Command Reference 

Define macro 1. 

Define macro 2. 

Execute macro 1. 

Execute macro 2. 



OVE: Overlay Memory Enable 

OVE: Overlay Memory Enable 

Command 

OVE=CD+DTA 

OVE=CD 

OVE=DTA 

Comments 

Result 

The overlay memory decodes both code and data 
space. 

Only code status space accesses are decoded by 
overlay memory. 

Only data status space accesses (including ALT, 
DAT and STA space) are decoded by overlay 
memory. 

Overlay memory responds to an access only if a mapped address and the current OVE 
status match the cycle being executed. For more information about the four status 
spaces, see segment description in the raw trace section (Section 4: "Trace Memory") 
and the iAPX 86188, 1861188 Users Manual. 

CD is code space. The processor encodes it as code status. 

DT A is data space. The processor encodes it as data, alternate data or stack status. 

Overlay memory cannot be divided between CD and DTA on the same map. It is either 
all one (CD), or the other (DTA), or all both (CD+DTA). 

To display the value of the current status being used for memory access, use the MMS 
command. 

7-92 Alphabetical Command Reference 



OVS: Overlay Memory Speed (80C18X 

OVS: Overlay Memory Speed (80C18X only)· 

Command 

ovs 

ovs <0-15> 

Comments 

Result 

Display the current value of the overlay me: 
speed register. 

Specify the number of wait states inserted b 
the overlay memory supplies a RDY sign 
terminate the cycle. No wait states are ins 
if OVS is zero. OVS ·is automatically set to 
CLK (clock frequency) is greater than 12 l 
You cannot override this automatic setting. 

Default: OVS = 0 

') The value of OVS determines how many cycles occur before a RDY signal is retl 
by the overlay memory. The wait state generator is only active when the 
softswitch is on (ON RDY). 

Assigning OVS a value of zero indicates that no wait states are inserted anc 
processor runs at full speed. A value of one inserts a single wait state, a value o: 
inserts two wait states, etc. The maximum number of wait states is fifteen. 

The chip select control registers in the Peripheral Control Block allow ye 
automatically insert wait states for memory affected by a given chip select. H RI 
ON, and overlay memory is mapped, the actual number of wait states inserted w 
the greater of the number selected with the 0 VS command and the number selectt 
the PCB chip-select register. 

H the R2 bit is set in the PCB chip select register, however, the CPU will i. 
external RDY signals. In this case, the OVS value will have no effect, and the m 
of wait states inserted will always be as programmed in the chip-select register. 

For overlay to run properly at speeds greater than 125 MHz, at least one wait st 
required. It is therefore necessary to ensure that, if the R2 bit is set, the numt 
wait states programmed for the segment is at least 1 if overlay is to be mapped there. 

Alphabetical Command Reference 



OVS: Overlay Memory Speed (80C18X only) 

16 MHz Overlay Operation 

The overlay memory cannot operate at 16 MHz without wait states. If you are running 
your target system at 16 MHz and you wish to access overlay memory, one of the 
following statements must be true. 

7-94 

OVS is set to a value between one and fifteen, and the RDY switch is turned on. 

- or -

Your target system is running with at least one wait state per memory access. 

NOT.E 

Note that OVS is not used unless RDY is ON, and both OVS and RDY 
apply to overlay memory accesses only. 

Alphabetical Command Reference 



PCB: Display PCB Reg 

PCB: Display PCB Registers 

Command 

PCB 

Comments 

Result 

Display contents of the peripheral control 
registers. 

Since the PCB is different for the 8018X and 80C18X processors, examples of 
screens are shown on the following pages. 

Examples 

8018X PCB Screen Display 

>PCB 
**RELOCATION REGISTER 

** C1IlP SELECT CON1ROL 

** TIMER REGISTERS 

**DMA REGISTERS 

REL=20FF 

UMCS LMCS MMCS MPCS PACS 
FFFB 0000 0000 0000 0000 

TC MA MB MCW 
TIMER 0 0000 0000 0000 0000 
TIMER 1 0000 0000 0000 0000 
TIMER 2 0000 0000 ---- 0000 

USRC SRC UDST DST XC CW 
CHANNEL 0 0000 0000 0000 0000 0000 0000 
CHANNEL 1 0000 0000 0000 0000 0000 0000 

**INTERRUPT CON1ROL REGISTERS 

EOI POL POS MSK PLM ISV IRQ IST 
0000 0000 0000 0000 0000 0000 0000 0000 

TCR DMAO DMAl INTO INTI INT2 INTI 
0000 0000 0000 0000 0000 ()()()() 0000 

> 

Alphabetical Command Reference 

• 



PCB: Display PCB Registers 

7-96 

80Cl 8X PCB Screen Display 

>PCB 

•• RELOCATION REGISTER REL= 20FF 

•• ClllP SELECT CONIROL 

•• TIMER REGISTERS 

••OMA REGISTERS 

UMCS LMCS MMCS MPCS PACS 
FFFB 0000 0000 0000 0000 

TC MA MB MCW 
TIMER O 0000 0000 0000 0000 
TIMER 1 0000 0000 0000 0000 
TIMER 2 0000 0000 ---- 0000 

USRC SRC UDST DST XC CW 
CHANNEL 0 0000 0000 0000 0000 0000 0000 
CHANNEL 1 0000 0000 0000 0000 0000 0000 

••REFRESH/POWER DOWN MOR EDR CDR PDC 
0000 0000 0000 0000 

**INTERRUPT CONIROL REGISTERS 

EOI POL POS MSK PLM ISV IRQ IST 
0000 0000 0000 ()()()() 0000 0000 0000 0000 

TCR DMAO DMAl INTO INTl INT2 INT3 
0000 0000 0000 ()()()() ()()()() ()()()() 0000 

> 

Alphabetical Command Reference 



) 

PCS: Enable Chip Selects (80C18X 

PCS: Enable Chip Selects (80C1 BX only) 

Command 

ON PCS 

OFF PCS 

Comments 

Result 

Chip selects are sent to the target system d 
PAUSE mode. 

Chip selects are not sent to the target s: 
during PAUSE mode. 

Default: OFF 

If PCS is set ON, all PCB chip select lines (UCS, LCS, etc.) will be driven to the 
system during PAUSE mode. 

If PCS is set OFF, all chip selects will be held de-asserted to the target system c 
PAUSE mode, but will be active during RUN mode. You may want to use this s 
to prevent the selection of logic on your target by internal emulator activity. 
activity could corrupt memory, or activate l/0 devices, etc. 

NOTE 

If you are using a target with an attached CPU in ONCE mode and plan 
to perform RESET operations, be sure to keep the PCS softswitch set to 
OFF to avoid driving a grounded chip select line. 

Alphabetical Command Reference 



PPT: Trace f'.eeks and Pokes (80C18X only) 

PPT: Trace Peeks and Pokes {80C1 ax only) 

Command Result 

ONPPT Trace peek and poke cycles. 

OFFPPT Do not trace peek and poke cycles. 

Default: OFF 

Comments 

With PPT ON, peeks and pokes (internal reads and writes) to target and overlay 
memory will be traced (provided that the TCE switch is also ON, of course). Peeks and 
pokes are done by the MM, MIO, DB, DNL, FU., @, UPL, LOV, VFO, and BMO ESL 
commands. 

With this switch ON, proper disassembly of trace cannot be guaranteed due to the 
extra data cycles being traced. 

With PPT OFF, the peek and poke trace cycles will not appear in trace. 

7-98 Alphabetical Command Reference 



PRE: DRAM Refresh During Pause (80Cl8X ( 

PRE: DRAM Refresh During Pause (80C18X only) 

Command 

ON PRE 

OFF PRE 

Comments 

Result 

The DRAM refresh controller is active d1 
pause mode. 

The DRAM refresh controller is not active d1 
pause mode. 

Default: OFF 

When the emulator transitions between pause and run modes, the setting of the : 
switch determines whether the refresh register values are read from or written tc 
physical PCB and whether the refresh controller continues to run while the emulat 

\1 paused. The refresh control registers MDR, CDR and EDR are affected by the s' 
j setting. 

Pause to Run Transition 

When the emulator transitions from pause to run mode, the PRE switch S( 

determines if the values of the MDR, CDR and EDR registers in the emulator's l 
image are loaded to the physical PCB. 

If the PRE switch is OFF, the registers are loaded to the physical PCB. 

If the PRE switch is ON, the registers are not loaded to the physical PCB. 
prevents the currently active register values being overwritten with values fr 
previous run state. 

Run to Pause Transition 

When the emulator transitions from run to pause mode, the current values of the } 
CDR and EDR registers are loaded from the physical PCB to the emulator's : 
image of the CPU registers. 

If the PRE switch is ON, no other action occurs and the refresh cont 
continues to run while the emulator is paused. All read bus cycles go to · 
space during PAUSE mode if PRE is ON. 

Alphabetical Command Reference 



PRE: DRAM Refresh During Pause (80Cl BX only) 

If the PRE switch is OFF, the refresh controller is disabled immediately after the 
transition to pause mode by clearing bit 15 of the EDR register in the physical 
PCB. 

NOTE 

If you enter the reset character (default is <ctrl-z> ), the PRE switch is 
automatically reset to the OFF state. 

You can modify refresh registers while you are in pause mode, and, if 
PRE is off, those values continue to be active when run mode is entered. 
Registers are modified using a <register> = <Value> command. 

The table below summarizes the effect of the refresh switch. · 

Switch 
Setting 

ON 

OFF 

7-100 

Effect of PRE switch on Run/Pause Transitions 

Pause to Run 
Transition 

The emulator's 
RAM image of the 
refresh registers 
are not loaded to the 
physical PCB before 
entering run mode. 

The emulator's 
RAM image of the 
refresh registers are 
loaded to the physical 
PCB just before running 
the target code. 

Run to Pause 
Transition 

The value in the 
refresh registers are 
loaded into the 
emulator's RAM 
image of the CPU 
registers. 

The values in the 
refresh registers are 
loaded into the 
emulator's RAM 
image of the CPU 
registers. The refresh 
controller is then 
disabled by clearing 
bit 15 of the EDR 
register. 

Alphabetical Command Reference 



) 
'_/ 

PUR: Delete All Symbols And Set. 

PUR: Delete All Symbols And Sections 

Command Result 

PUR Purge all symbols and section references. 

Comments 

Be sure to purge before downloading symbols that may already be defined. If ye 
not, an error occurs and the download is aborted. 

>SYM 

00001000 sym 

$00008000 start 

$0000837E end 

View aymbola that are currently set. 

>SEC View sections that are currently set. 

$00001000 TO $0000101F sec 

$00008000 TO $0000837E init_mod 

$00000000 TO $0000FFFF RAM 

>PtJR;SYM;SEC 

> 

Alphabetical Command Reference 

Purqe symbols and sections, and v• 
purge. 



RBK: Run Target Program 

RBK: Run Target Program 

Command 

RBK 

RBV 

RUN 

RNV 

Comments 

Result 

Begin executing the target program at the current 
CS:IP memory location with breakpoints enabled. 

Load the restart vectors and begin executing the 
target program at memory location FFFFFOH 
with breakpoints enabled. 

Begin executing the target program at the current 
CS:IP memory location with breakpoints 
disabled .. 

Load the restart vectors and begin executing the 
target program at memory location FFFFFOH 
with breakpoints disabled. 

RNV and RBV are valid only in pause mode. 

All defmed events are active while RBK and RBV are executing. 

Run commands containing a B indicate that Event System breakpoints are enabled. 
Run commands containing a V indicate that the reset vectors are loaded prior to 
entering run mode. 

Entering RNV is identical to entering LDV;RUN and entering RBV is the same as 
entering LDV ;RBK. 

For more information, see Section 4: "Breaking Emulation." 

7-102 Alphabetical Command Reference 



RBV: Run Target Pro. 

RBV: Run Target Program 

Command 

RBK 

RBV 

RUN 

RNV 

) Comments 

Result 

Begin executing the target program at the c1 
CS:IP memory location with breakpoints enabl1 

Load the restart vectors and begin executin, 
target program at memory location FFFl 
with breakpoints enabled. 

Begin executing the target program at the c1 
CS:IP memory location with breakpoints disab 

Load the restart vectors and begin executin 
target program at memory location FFF 
with breakpoints disabled. 

RNV and RBV are valid only in pause mode. 

All defined events are active while RBK and RBV are executL.91.g. 

Run commands containing a B indicate that Event System breakpoints are en 
Run commands containing a V indicate that the reset vectors are loaded pr 
entering run mode. 

Entering RNV is identical to entering LDV;RUN and entering 

RBV is the same as entering LDV;RBK. 

For more information, see Section 4: "Breaking Emulation." 

Alphabetical Command Reference 



RCS: Read Chip Select 

RCS: Read Chip Select 

Command 

ON RCS 

OFF RCS 

Comments 

Result 

All chip select control registers are read upon run
to-pause. 

The chip select control registers are only read and 
loaded to the internal RAM table if they have 
been set manually with a value during pause 
mode. 

The transition from pause to run mode causes 
only those chip select registers that have been 
modified during pause mode to reload to the 
physical PCB. The displayed values of chip 
select registers do not show what is actually in 
the PCB. 

Default: OFF 

The RCS software switch does not affect the UMCS chip select control register. 

Reading the chip select control registers enables their corresponding outputs. Use the 
RCS software switch only after the chip select control registers are set. 

7-104 Alphabetical Command Reference 



RCT: Reset Hardware Coi 

RCT: Reset Hardware Counter 

Command Result 

WHE <events> THE RCT ,<action>, ••• 

Comments 

If all of the conditions specified in the 1 

ponion of the WHEN{I'HEN clause are sati! 
the RCT action loads the count comparator ' 
for the specified group into the hardware cm 
When switching groups, the current value o 
hardware counter is .passed along as a g 
count value unless a RCT action is specifit 
the same list of events that causes the ! 
switch. 

See the CNT action for a complete description of how the hardware counter works. 

Examples 

Look for a read from a specific 1/0 port. After it is found go to group 2, load the gr1 
counter register value into the hardware counter, and set a group 2 address comp• 
to count every bus cycle (all addresses). Break after 100 bus cycles. 

>ACl='IOport 

>Sl=RD 

Set comparator to I/O port. 

Look for read access only. 

>WHEN ACl .AND Sl THEN GRO 2, RCT 

>CTL.2•#100 

>ACl.2•0 TO -1 

>2 WHEN ACl THEN CNT 

>2 WHEN CTL THEN BRX 

>RBK 

R> 

Alphabetical Command Reference 

Whan I/O port read occurs, go to grc 
and reset counter. 

Set count limit in group 2. 

Set address comparator to match • 
address. 

Increment counter at every address. 

After 100 bus cycles, break. 

Run til breakpoint. 

Run mode prompt will appear. 



RDY: Select Internal or External Ready Signal 

ROY: Select Internal or External Ready Signal 

Command 

ONRDY 

OFFRDY 

Comments 

Result 

Select an internally generated ready signal to 
complete memory accesses. This allows use of 
overlay memory when no target system is being 
used. 

Select the target system's ready signal to 
complete memory accesses. 

Default: OFF (See note below.) 

This command is valid only in pause mode. 

A 'ready signal' denotes the end of a memory cycle. See the Intel iAPX 86188, 1861188 
Users Manual for details. 

If overlay memory is mapped in an area where target memory is nonexistent, the target 
decode logic may not provide a ready signal. An ON RDY provides this signal, 
allowing overlay memory to be used in those areas. 

When the ready switch is on and the target system is also providing a ready signal, the 
first ready signal back to the ES 1800 will be the one used. 

If internal ready is selected and there is a target, there is no synchronization between 
the ready signal and the target hardware. This can cause problems if a ready is 
returned by the ES 1800 before the target hardware is ready. 

NOTE: The default is ON if there is no target clock on power-up and if internal clock 
has been selected. 

7-106 Alphabetical Command Reference 



REI': Display A Blank 

RET: Display A Blank Line 

Command Result 

RET Outputs a <return> • line feed. 

Comments 

This command improves readability when displaying a large amount of data. 

Examples 

Display two blocks of data. separating them with a blank line. 

>DB SS:SP LEN 20;RE~;DB DS:DX LEN 20 

0'7FJ!'76 02 06 - 20 46 40 62 00 00 12 20 •• F@b 

07.n'SO 07 90 90 00 70 20 03 07 - 47 41 63 01 01 21 21 71 •••• p .. CAc •• ! ! q 

07.n'90 01 90 06 21 12 13 ••• !. . 

088060 01 02 03 04 OS 06 07 08 - 00 20 21 22 23 24 25 26 • • • • • • • • ! "#$%5 

088070 30 31 32 33 34 35 36 37 - 55 56 50 49 48 47 30 30 012345670VP:IH600 

Alphabetical Command Reference 



REV: Display _The Software Revision Dates 

REV: Display The Software Revision Dates 

Command Result 

REV Display the software revision dates for ESL and 
the firmware. 

Comments 

This command is valid only in pause mode. 

When you call AMC customer service, they will ask you what software revisions are in 
your machine. This command gives you the necessary information. 

Examples 

>REV Display revision of ESL and firmware. 

7-108 

WED AUG 6 08:50:26 PDT 1986 - ESL 2.2 

WED AUG 6 16:50:26 PDT 1986 - FW 3.12 

> 

AlphabeticalCommand Reference 



RNV: Run Target Pro 

RNV: Run Target Program 

Command 

RBK 

RBV 

RUN 

RNV 

Comments 

Result 

Begin executing the target program at the c1 
CS:IP memory location with breakpoints enabl 

Load the restart vectors and begin executin 
target program at memory location FFF 
with breakpoints enabled. 

Begin executing the target program at the C' 

CS:IP memory location with breakpoints disab 

Load the restart vectors and begin executin 
target program at memory location FFF 
with breakpoints disabled. 

RNV and RBV are valid only in pause mode. 

All defmed events are active while RBK and RBV are executing. 

Run commands containing a B indicate that Event System breakpoints are en 
Run commands containing a V indicate that the reset vectors are loaded pr: 
entering run mode. 

Entering RNV is identical to entering WV ;RUN and entering RBV is the sai 

entering LDV;RBK. 

For more information, see Section 4: "Breaking Emulation." 

Alphabetical Command Reference 



RST: Reset 

RST: Reset 

Command 

RST 

Comments 

Result 

Reset the pod microprocessor and loads the reset 
vectors. 

CS • FFFFB 
IP• 0 
FLX =- F002B 

The RST command can be issued from either run or pause mode. When in pause mode, 
the RST command resets the microprocessor and loads the reset vectors {LD V). 
While in run mode the microprocessor is reset in the target environment and emulation 
continues. This causes the microprocessor to start fetching instructions from the reset 
vector. RST does not affect the target reset signal; therefore no target hardware is 
reset. This may cause problems when the target program tries to interact with 
uninitialized hardware. 

Both <ctrl-z> and the RST command stop emulation in run mode. <ctrl-Z> does not 
initialize the emulator registers. 

Examples 

In the example below, the ES 1800 is in run mode. The microprocessor is reset in the 
target environment and emulation continues. 

R> RST 

R> 

From run mode, enter a microproceaaor 
reset. 

In the next example, the ES 1800 is in pause mode. The microprocessor is reset and 
the reset vectors are loaded into the ES 1800 registers. 

>RST 

> 

7-110 

From pa.uae mode, enter a microprocessor 
reset. 

Alphabetical Command Reference 



RUN: Run Target Pro, 

RUN: Run Target Program 

Command 

RBK 

RBV 

RUN 

RNV 

Comments 

Result 

Begin executing the target program at the ct 
CS:IP memory location with breakpoints enable 

Load the restart vectors and begin executin1 
target program at memory location FFF1 
with breakpoints enabled. 

Begin executing the target program at the ct 
CS:IP memory location with breakpoints disabl 

Load the restart vectors and begin executinJ 
target program at memory location FFFJ 
with breakpoints disabled. 

RNV and RBV are valid only in pause mode. 

All defined events are active while RBK and RBV are executing. 

Run commands containing a B indicate that Event System breakpoints are eru 
Run commands containing a V indicate that the reset vectors are loaded pri 
entering run mode. 

Entering RNV is identical to entering LDV;RUN and entering RBV is the sar 
entering LDV;RBK. 

For more information, see Section 4: "Breaking Emulation." 

Alphabetical Command Reference 



SAV: Save System Variables InEEPROM 

SAV: Save System Variables In EEPROM 

Command Result 

SAV Copies all system variables from ES 1800 
memory into EEPROM. 

SA V <category> Saves one of the six categories of variables from 
ES 1800 RAM to EEPROM. 

Comments 

This command is valid only in pause mode. 

A SA V operation may take up to two minutes. 

DO NOT INTERRUPT THE PROCESS! 

Values saved to EEPROM continue to be valid within the ES 1800. There is room in 
EEPROM to save the system variables for two different users. The user is determined 
by a parameter in the SET menu. When you execute a SA V, the variables are saved to 
the user partition currently defmed in the SET menu. 

This chart shows the categories of information that can be saved in EEPROM. 

0 SET menu 
1 Contents of ES 1800 registers 
2 Event Monitor System 

WHEN/I'HEN statements 
3 Overlay map 
4 Software switch settings 
5 Macros 

Variables are loaded from EEPROM back to the ES 1800 using the LD command. 

When you first use the ES 1800, you should execute a SA V command with no 
parameter. This initializes EEPROM, so that subsequent LD commands will work 
properly with the 8018X or 80C18X ES 1800 board and pod. 

Examples 

>SAV l 

7-112 

Save current value of ES 1800 reqisters 
to EEPROM. 

Alphabetical Command Reference 



) 

SEC: Display St 

SEC: Display Section 

Command 

SEC 

SEC <value> 

'<section> 

'<section>= <range> 

Examples 

>'aac • 1000 LEH :IF 

>'RAM •$0000 TO $FFFF 

>'init mod• 'atart TO 

>SEC 

$00001000 TO $0000101F 

Result 

Display all currently defined sections and 
values. 

Display the section assigned the specified valu 

Display the value of the specified section. 

Assign the <range> to the specified section. 

Dafin• aaction uaing LEH ayntax. 

Defina aaction uaing TO ayntax. 

'end 
Defina aaction uaing TO syntax 
aymbola. 

Display aectiona. 

sec 

$00000000 TO $0000FFFF RAM 

$00008000 TO $0000837E init mod 

Alphabetical Command Reference 



SEI': Set Up Parameters 

SET: Set Up Parameters 

Command 

SET 

Re.suit 

Display the SET menu. The parameters in this 
menu specify the external communication details. 

SET <parameter>,<exp> The value of the specified parameter is changed 
to <exp>. If you assign an illegal value to a 
variable. an error message is displayed, and the 
value is not changed. . 

Comments 

The table below shows the valid values for each SET variable. All arguments preceded 
with a$ indicate that the value entered must be a 7-bit ASCII character. 

The t preceding the SET command arguments below is typed in and designates the 
value entered as decimal. The t is optional for decimal numbers 0-9. 

7-114 

Parameters 

SET#l,#0 
SET#l,#1 

SET#2,$n 

Description 

UserO 
User 1 

Two users may save and load 
values to the EEPROM. This 
parameter indicates which user is 
active when executing the SA V 
and LD commands. 

Reset character 

The reset character resets the 
ES 1800 and the pod CPU. The 
system default is <ctrl-z> ($IA). 

Reset Required 

No 
No 

No 

Alphabetical Command Reference 



Parameters Descriotion 

SET #3,$n,$m XON/XOFF characters 

SET#9,#0 
#1 
#2 

SET#l0,#1 
#2 
#3 
#4 
#5 
#6 
#7 
#8 
#9 

#10 
#11 
#12 
#13 
#14 
#15 

SET#ll,#1 
#2 

SET#U,#0 
#1 
#2 

XON and XOFF control the screen 
scrolling. An XOFF stops a 
scrolling display. XON resumes 
scrolling the display. The system 
defaults are CTRL Q, CTRL S 
($13, $11). 

LSA value shows as 16 bits (default) 
Display absolute time stamp value 
Display relative time stamp value 

75 baud 
110baud 
134.5 baud 
150baud 
300baud 
600baud 
1200baud 
1800baud 
2000baud 
2400baud 
3600baud 
4800baud 
7200baud 
9600 baud (default) 
19200baud 

The terminal pon baud rate 

1 stop bit (default) 
2 stop bits 

The number of stop bits for the 
terminal pon 

No parity (default) 
Even parity 
Odd parity 

The parity for the terminal port 

Alphabetical Command Reference 

SET: Set Up Pararr 

Reset Required 

No 

Yes 

Yes 

Yes 

Yes 



SEI': Set Up Parameters 

7-116 

Parameters 

SET#l3,#n 

Descrigtion 

CRT length (default: 24 lines) 

The maximum number of lines 
displayed for commands that use 
paging 

Reset Reauired 

No 

SET #14,$n,$m Transparent mode escape sequence No 

SET #20,#1 
#2 
#3 
#4 
#5 
#6 
#7 
#8 
#9 

#10 
#11 
#12 
#13 
#14 
#15 

SET#21,#1 
#2 

SET#22,#0 
#1 
#2 

When entered from either pon, 
transparent mode is terminated. 
The default sequence is 
<esc><esc> ($1B,$1B). 

75 baud 
llObaud 
134.5 baud 
150baud 
300baud 
600baud 
1200baud 
1800baud 
2000baud 
2400baud 
3600baud 
4800baud 
7200baud 
9600 baud (default) 
19200baud 

The computer port baud rate 

1 stop bit (default) 
2 stop bits 

The number of stop bits for the 
computer pan 

No parity (default) Yes 
Even parity 
Odd parity 

Parity for the computer pon 

Yes 

Yes 

Alphabetical Command Reference 



SET: Set Up Paran 

Parameters Description Reset Required 

SET #23,$n,$m Transparent mode escape sequence No 

When entered from the computer 
port, transparent mode is exited. 
The default sequence is 
<esc><esc> ($ lB,$1 B). 

SEr #24,.$n,$m$o Command terminator sequence No 

SET#25,#n 

SET#26,#0 
#1 
#2 
#3 
#4 
#S 

SET#27,$n 

Comments 

The default sequence is <return> , 
null, null ($00, $00, $00). 

Upload record length 

The maximum length for an upload 
record. (The default length is 32 
bytes of data.) 

Intel (default) 
MOS 
Motorola 
Signe tics 
Tektronix 
Extended Tekhex 

Upload/download serial data format 

Acknowledge character 

The acknowledge character is sent 
when a valid record is received 
when downloading in computer 
control. The default is $06. 

No 

No 

No 

Some SET parameters require the system to be reset, and prompt for a 
character. If you change a parameter that requires a reset, but do not ente1 
subsequent displays of the SET menu show the new value you have assigne 
variable, even though it is not currently in effect. 

If you change the SET parameters and wish to use the new values at a later datl 
can save them in EEPROM by entering a SA V or SA V 0 command. · 

Alphabetical Command Reference 



SEI': Set Up Parameters 

Saved parameters can be loaded automatically at power-up or manually after the 
system is up and running. To load automatically, set the thumbwheel switch (see page 
3-4) before turning on the ES 1800. To load manually, enter LD (to load all variables 
and settings) or enter the LD 0 command (to load just the SET parameters). 

See Section 4 "Serial Communication" for information on communicating with a host 
computer. 

7-118 Alphabetical Command Reference 



\ 
) 

SF: Special Function. 

SF: Special Functions List 

Command 

SF 

Result 

Display list of all available RAM tests, 
loops and miscellaneous tests. 

Examples 

>SF 

SJ!' 0, <RANGE><CR> 

SF 1,<RANGE><CR> 

SF 2,<RANGE><CR> 

SIMPLE RAM DST, SINGLE P.AS! 

COMPLETE RAM DST, SINGLE PJ 

SIMPLE RAM DST, LOOP:ING 

SF 3, <RANGE><CR> COMPLETE RAM TEST, LOOP :ING 

SCOPE LOOPS: {SELECT NUMBER FOR I/O LOOPS} 

SF 4 {24},<ADDRESS>,<PATTERN><CR> 

SF 5 {25},<ADDRESS><CR> 

SF 6 {26},<ADDRESS>,<DATA><CR> 

SF 7 {27},<ADDRESS>,<PATTERN><CR> 

SF 8 {28},<ADDRESS>,<PATTERN><CR> 

SF 9 {29},<ADDRESS>,<DATA><CR> 

SF 11 {31},<ADDRESS>,<DATA><CR> 

SF 12 {32},<RANGE><CR> 

MISCELLANEOUS: 

SF 13<CR> 

CLK <CR> 

CRC <RANGE><CR> 

CRE/CRO <RANGE><CR> 

> 

Alphabetical Command Reference 

TOGGLE DATA AT ADDRESS 

READ FROM ADDRESS 

WRITE DATA TO ADDRESS 

WR.ID PATTERN, THEN PA~ 

COMPLEMENT 

WR.ID PATTERN, THEN ROTATE 

WR.ID DATA, TBEN READ 

WR.ID :INCREMENTING VALUE 

READ DATA OVER ENTIRE RANGE 

CRC CHECK OF EMULATOR FIRMii 

DISPLAY TARGET CLOCK FREQUl!: 

CALCULATE CRC OF SPEC: 
RANGE 

CALCULATE CRC OF EVEl 
BYTES ONLY 



SF 0: Simple RAM Test, Single Pass 

SF 0: Simple RAM Test, Single Pass 

Command 

SF 0,<range> 

Pattern 
Seguence 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

7-120 

BYM 
00000000 
10000000 
11000000 
11100000 
11110000 
11111000 
11111100 
11111110 
11111111 
01111111 
00111111 
00011111 
00001111 
00000111 
00000011 
00000001 

Result 

Write a test pattern to all locations within the 
specified range, then reads each location to verify 
the data. The following pattern sequence is used: 

WDM 
00000000 00000000 
10000000 00000000 
11000000 00000000 
11100000 00000000 
11110000 00000000 
11111000 00000000 
11111100 00000000 
11111110 00000000 
11111111 00000000 
11111111 10000000 
11111111 11000000 
11111111 11100000 
1111111111110000 
1111111111111000 
1111111111111100 
1111111111111110 
1111111111111111 
0111111111111111 
0011111111111111 
0001111111111111 
0000111111111111 
00000111 11111111 
00000011 11111111 
00000001 11111111 
00000000 11111111 
00000000 01111111 
00000000 00111111 
00000000 00011111 
00000000 00001111 
00000000 00000111 
00000000 00000011 
00000000 00000001 

Alphabetical Command Reference 



l 

SF 0: Simple RAM Test, Single 

Comments 

This command is valid in pause mode only. 

If a location is read that does not match the test pattern. a failure is reported. 

The address, correct data, and faulty data is displayed. 

If no failure is detected. the following prompt is displayed: 

TESTING RAM 

COMPLETE 

This is a single pass test. 

Alphabetical Command Reference 



SF 1: Complete RAM Test, Single Pass 

SF 1: Complete RAM Test, Single Pass 

Command 

SF 1,<range> 

Comments 

Result 

Write, then read, a test pattern to all locations in 
the specified range. Refer to Efficient Algorithms 
for Test Semiconductor Random-Access 
Memories mentioned in the introduction to 
Diagnostic Functions for the test pattern. 

This command is valid in pause mode only. 

If an error is detected, the associated address, correct data. faulty data. and test 
sequence number are displayed. The sequence number specifies which test in the 
complete list of tests caused the failure. 

This is a single pass test. 

Examples 

TEST FAILED AT $20;GOOD DATA-$00, BAD DATA-$01 SEQ#-$02 

An error is detected. 

7-122 Alphabetical Command Reference 



SF 2: Simple RAM Test, Lm 

SF 2: Simple RAM Test, Looping 

Command 

SF 2,<range> 

Comments 

Result 

Write a test pattern to all locations in <rari 
then reads each location to verify the data. 
SF 0 for test pattern. Each time the te 
executed, the pass count is incremented 
displayed on the screen. 

This command is valid in pause mode only. 

If no failure is detected, the pass line is the only line displayed. It is contin 
updated, showing the number of times the test has been executed. 

SF 2, 0 TO 4 

YOO MUST RESET MB TO TERMZNA'l'E THIS FUNCTION 

PASS COUNT • $XXXX 

If a failure is detected, the problem address, correct data, and faulty data are disp 
on the line after the pass number line, and the test continues. 

>SF 2,0 TO 4 

YOO MUST RESET MB TO TERMZNATE THIS FUNCTION 

TEST FAILED AT $02; GOOD DATA - $FE, BAD DATA - $FF 

PASS COUNT = $0000 

TEST FAILED AT $02: GOOD DATA - $FE, BAD DATA - $FF 

PASS COUNT $0001 

until reset 

You must use the reset character to terminate this test ( <ctrl-z> default, cci 
changed with SET). 

Alphabetical Command Reference 



SF 3: Complete RAM Test, Looping 

SF 3: Complete RAM Test, Looping 

Command Result 

SF 3,<range> Write a test pattern to all locations within 
<range>, then read each location to verify the 
data. See SF 1 for test reference information. 

Comments 

nus command is valid in pause mode only. 

During execution, a pass count is maintained and displayed on the screen. 

If no failure is detected, the pass line is the only line. It is continually updated, showing 
the number of times the test has been executed. 

>SF 3, 0 TO 2 

YOO MOST RESET MB. TO TERMINATE TH:IS FONCT:ION 

PASS COONT = $XXXX 

If a failure is detected the associated address, the correct data, faulty data, and test 
sequence number are displayed. 

>SF 3, 0 TO 2 

YOO MOST RESET MB TO TERMINATE THIS FUNCTION 

TEST FAILED AT $02; GOOD DATA - $00, BAD DATA - $01 SEQ # - 02 

PASS COONT $0000 

TEST FAILED AT $02; GOOD DATA - $00, BAD DATA - $01 SEQ # - 02 

PASS COONT $0001 

until reset 

You must use the reset character to terminate this test. (<ctrl-z:> default, can be 
changed with SET). 

7-124 Alphabetical Command Reference 



SF 4: Toggle Data At Ad, 

SF 4: Toggle Data At Address 

Command 

SF 4<address>,<data> 

SF 24,<address>,<data> 

Comments 

Result 

Write <data> to the specified address m 
memory space defined by MMS. 

Write <data> to the specified address in 
space. 

Write the user defined data pattern to <addr, 
alternating with a data pattern of zeros. 

SEQ BYM 
1 00 
2 xx 
3 00 
4 xx 

WDM 
0000 
XXXX (user data) 
0000 
XXXX (user data) 

These commands are valid in pause mode only. 

You must use the reset character to terminate these tests. (<ctrl-z> default, c' 
changed with SET). 

Alphabetical Command Reference 



SF 4: Toggle Data At Address 

Examples 

Assume you are in word mode (WDM). 

>SF 4, 2, $FFFF 

YOO MUST RESET ME TO ~ATE THIS FUNCTION 

The data pattern written to address 2 is: 

0000 

FFFF 

0000 

FFFF 

7-126 Alphabetical Command Reference 



SF 5: Peeks Into The Target S) 

SF 5: Peeks Into The Target System 

Command 

SF S,<address> 

SF 25,<address> 

Comments 

Result 

Consecutively read from the specified mei 
address using MMS as status space register. 

Consecutively read from the specified 
address. 

These commands are valid in pause mode only. 

You must use the reset character to terminate these tests. (<ctrl-z> default. c~ 
changed with SET). 

Examples 

>SF 5, 2 

YOU MUST RESET ME TO TERMINATE THIS FUNCTION 

Alphabetical Command Reference 



SF 6: Pokes Into The Target System 

SF 6: Pokes Into The Target System 

Command 

SF 6,<address>,<data> 

SF 26,<address>,<data> 

Comments 

Result 

Consecutively write the user defined data pattern 
to the specified memory address using MMS as 
status space register. 

Consecutively write the user defined data pattern 
to the specified 1/0 address. 

These commands are valid in pause mode only. 

You must use the reset character to terminate these tests. ( <ctrl-z> default, can be 
changed with SET). 

Examples 

>SF 6, 10,$FFFF 

YOU MUST RESET ME TO TERMINATE THIS FUNCTION 

The data pattern written to address 10 is: 

7-128 

(BYM) (WDM) 

FF 

FF 

FF 

FFFF 

FFFF 

FFFF 

Alphabetical Command Reference 



SF 7: Write Alternate Pat, 

SF 7: Write Alternate Patterns 

Command 

SF 7 ,<address>,<pattern> 

SF 21,<address>,<pattern> 

Comments 

Result 

Consecutively write the user defined data pa 
to the specified memory address using MM 
status space register followed by the comple: 
of that data pattern to the same address. 

Consecutively write the user defined data pa 
to the specified 1/0. address followed by 
complement of that data pattern to the : 
address. 

These commands are valid in pause mode only. 

You must use the reset character to terminate these tests. (<ctrl-z> default, ca 
changed with SET). 

Examples 

>SF 7, 10, 55 

YOU MUST RESET ME TO TERMINATE THIS FUNCTION 

The following data pattern is written to address 10: 
BYM WDM 

55 0055 

AA FFAA 

55 0055 

AA FFAA 

Alphabetical Command Reference 



SF 8: Write Pattern Then Rotate 

SF 8: Write Pattern Then Rotate 

Command 

SF 8,<address>,<pattern> 

SF 28,<address>,<pattern> 

Comments 

Result 

Consecutively write the data pattern to the 
specified memory address using MMS as status 
space register, rotates the pattern 1 bit to the 
left. and writes to the same address. 

Consecutively write the data pattern to the 
specified I/O address, .rotates the pattern 1 bit to 
the left. and write to the same address. 

These commands are valid in pause mode only. 

You must use the reset character to terminate these tests. (<ctrl-Z> default. can be 
changed with SET). 

Examples 

>SF 8,1000,05 

YOO MUST RESET ME TO 'l'ERMINATE THIS FUNCTION 

7-130 Alphabetical Command Reference 



SF 8: Write Pattern Then R. 

The following data pattern is written to address 10: 

BYM WDM 

05 0005 

OA OOOA 

14 0014 

28 0028 

so 0050 

AO OOAO 

41 0140 

82 0280 

0500 

OAOO 

1400 

2800 

5000 

AOOO 

4001 

8002 

Alphabetical Command Reference 



SF 9: Write Data Then Read 

SF 9: Write Data Then Read 

Command 

SF 9,<address>,<data> 

SF 29,<address>,<data> 

Comments 

Result 

Consecutively write the specified data pattern to 
the specified memory address using MMS as 
status space register, then read from that same 
address. 

Consecutively write the specified data pattern to 
the specified 1/0 address, then read from that 
same address. 

These commands are valid in pause mode only. 

You must use the reset character to terminate these tests. (<ctrl-z> default, can be 
changed with SET). , 

Examples 

>SF 9, l00,$FFFF 

YOU MUST RESET ME TO TERMINATE THIS FUNCTION 

7-132 Alphabetical Command Reference 



SF 11: Write Incrementing 

SF 11: Write Incrementing Value 

Command 

SF 11,<address> 

SF 31,<address> 

Comments 

Result 

Consecutively write a constantly increm1 
value to the specified memory address 
MMS as status space register. 

Consecutively write a constantly increm1 
value to the specified J/O address. 

These commands are valid in pause mode only. 

You must use the reset' character to tenninate these tests. ( <ctrl-z> default, c 
changed with SET). 

Examples 

>SF ll, 100 

YOO MUST RESET ME TO TERMmATE THIS FUNCTION 

Alphabetical Command Reference 



SF 12: Read Data Over An Entire Range 

SF 12: Read Data Over An Entire Range 

Command 

SF 12,<range> 

SF 32,<range> 

Comments 

Result 

Consecutively read from the specified memory 
address range using MMS as status space 
register. 

Consecutively read from the specified 1/0 address 
range. 

These commands are valid in pause mode only. 

The ES 1800 performs consecutive reads over the specified address range. The first 
read occurs at the starting address of the range. The address is then incremented for 
each additional read cycle. After the last address in the range has been read. the 
process starts again. 

You must use the reset character to terminate these tests. (<ctrl-z> default, can be 
changed with SET). 

Examples 

>SF 12, 10 TO 20 

YOU MOST RESET ME TO ~ATE THIS FUNCTION 

7-134 Alphabetical Command Reference 



SF 13: Cyclic Redundancy C 

SF 13: Cyclic Redundancy Check 

Command 

SF 13 

Comments 

Result 

A CRC is calculated on the ES 1800 int 
PROM that contains the ES 1800 firmware. 

This command is valid in pause mode only. 

This is an ES 1800 self-test. 

If a failure is detecte<L a CRC error is displayed. 

This is a single pass routine. 

When the text completes without an error, the command prompt (>) is displayed. 

Alphabetical Command Reference 



SF 24: Toggle Data At Address 

SF 24: Toggle Data At Address 

Command 

SF 4<address>,<data> 

SF 24,<address>,<data> 

Comments 

Result 

Write <data> to the specified address in the 
memory space defmed by MMS. 

Write <data> to the specified address in J/O 
space. 

Write the user defined data pattern to <address>, 
alternating with a data pattern of zeros. 

SEQ BDC 
1 00 
2 xx 
3 00 
4 xx 

WDM 
0000 
XXXX (user data) 
0000 
XXXX (user data) 

These commands are valid in pause mode only. 

You must use the reset character to terminate these tests. ( <ctrl-z> default, can be 
changed with SET). 

7-136 Alphabetical Command Reference 



Examples 

Assume you are in word mode (WDM). 

>SF 4, 2, $FFFF 

SF 24: Toggle Data At Ad, 

YOU MUST RESET ME TO TERMINATE THIS FUNCTION 

The data pattern written to address 2 is: 
0000 

FFFF 

0000 

FFFF 

Alphabetical Command Reference 



SF 25: Peeks Into The Target System 

SF 25: Peeks Into The Target System 

Command 

SF S,<address> 

SF 25,<address> 

Comments 

Result 

Consecutively read from the specified memory 
address using MMS as status space register. 

Consecutively read from the specified 1/0 
address. 

These commands are valid in pause mode only .. 

You must use the reset character to tenninate these tests. (<ctrl-z> default, can be 
changed with SET). 

Examples 

>SF 5, 2 

YOU MUST RESET ME TO TERMINATE THIS FUNCTION 

7-138 Alphabetical Command Reference 



SF 26: Pokes Into The Target S) 

SF 26: Pokes Into The Target System 

Command 

SF 6,<address>,<data> 

SF 26,<address>,<data> 

Comments 

Result 

Consecutively write the user defined data p~ 
to the specified memory address using M:M 
status space register. 

Consecutively write the user defined data p: 
to the specified l/O address. 

These commands are valid in pause mode only. 

You must use the reset character to terminate these tests. (<ctrl-z> default, c2 
changed with SET). 

Examples 

>SF 6, 10,$FFFF 

YOO MOST RESET ME TO TERMINATE THIS FUNCTION 

The data pattern written to address 10 is: 
(BYM) (WDM) 

FF FFFF 

FF FFFF 

FF FFFF 

Alphabetical Command Reference 



SF 27: Write Alternate Patterns 

SF 27: Write Alternate Patterns 

Command 

SF 7,<address>,<pattern> 

SF 27,<address>,<pattern> 

Comments 

Result 

Consecutively write the user defined data pattern 
to the specified memory address using MMS as 
status space register followed by the complement 
of that data pattern to the same address. 

Consecutively write the user defined data pattern 
to the specified I/O . address followed by the 
complement of that data pattern to the same 
address. 

These commands are valid in pause mode only. 

You must use the reset character to terminate these tests. (<ctrl-Z> default, can be 
changed with SET). 

Examples 

>SF 7, 10, 55 

YOU MOST RESET ME TO 'l'ERMINA'l'E THIS FUNCTION 

The following data pattern is written to address 10: 

7-140 

BYM 

55 

AA 

55 

AA 

WDM 

0055 

FFAA 

0055 

FFAA 

Alphabetical Command Reference 



SF 28: Write Pattern Then/, 

SF 28: Write Pattern Then Rotate 

Command 

SF 8,<address,<pattern> 

SF 28,,address>,<pattern> 

Comments 

Result 

Consecutively write the data pattern tc 
specified memory address using MMS as 
space register, rotates the pattern 1 bit t' 
left, and writes to the same address. 

Consecutively write the data pattern tc 
specified 1/0 address,- rotates the pattern 1 
the left, and write to the same address. 

These commands are valid in pause mode only. 

You must use the reset character to terminate these tests. (<ctrl-z> default, c 
changed with SET). 

Examples 

>SF 8,1000,05 

YOU MOST RESET ME TO TERMINATE THIS FUNCTION 

Alphabetical Command Reference 



SF 28: Write Pattern Then Rotate 

The following data pattern is written to address 10: 

BYM WDM 

05 0005 

OA OOOA 

14 0014 

28 0028 

so 0050 

AO OOAO 

41 0140 

82 0280 

0500 

OAOO 

1400 

2800 

5000 

AOOO 

4001 

8002 

7-142 Alphabetical Command Referenct. 



SF 29: Write Data Then J 

SF 29: Write Data Then Read 

Command 

SF 9,<address>,<data> 

SF 29,<address>,<data> 

Comments 

Result 

Consecutively write the specified data patter 
the specified memory address using M~ 
status space register, then read from that ~ 

address. 

Consecutively write the specified data patter 
the specified 1/0 address, then read from 
same address. 

These commands are valid in pause mode only. 

You must use the reset character to terminate these tests. (<ctrl-Z> default, ca 
changed with SET). 

Examples 

>SF 9, 100,$FFFF 

YOO MUST RESET ME TO TERMJ:HATE THIS FUNCTION 

Alphabetical Command Reference 



SF 31: Write Incrementing Value 

SF 31: Write Incrementing Value 

Command 

SF 9,<address>,<data> 

SF 29,,address>,<data> 

Comments 

Result 

Consecutively write a constantly incrementing 
value to the specified memory address using 
MMS as status space register. 

Consecutively write a constantly incrementing 
value to the specified I/O address. 

These commands are valid in pause mode only. 

You must use the reset character to terminate these tests. (<ctrl-z> default, can be 
changed with SET). 

Examples 

>SF 11, 100 

YOU MOST RESET ME TO TERMZNATE THIS FUNCTION 

7-144 Alphabetical Command Reference 



SF 32: Read Data Over An Entire R 

SF 32: Read Data Over An Entire Range 

Command 

SF 12,<range> 

SF 32,<range> 

Comments 

Result 

Consecutively read from the specified me 
address range using MMS as status : 
register. 

Consecutively read from the specified I/0 ad 
range. 

These commands are valid in pause mode only. 

The ES 1800 performs consecutive reads over the specified address range. The 
read occurs at the starting address of the range. The address is then incremente 
each additional read cycle. After the last address in the range has been reac 
process starts again. 

You must use the reset character to terminate these tests. (<ctrl-z> default, c~ 
changed with SET). 

Examples 

>SF 12, 10 TO 20 

YOU MUST RESET ME TO TERMJ:NATE THIS FUNCTION 

Alphabetical Command Reference 



ST/: Step Through Interrupts 

STI: Step Through Interrupts 

Command 

ONSTI 

OFFSTI 

Comments 

Result 

The ES 1800 recognizes an interrupt and steps 
through the interrupt service routine. 

The ES 1800 ignores interrupts while stepping 
through a program. 

Default: OFF 

Stepping through code is a common way to locate software bugs. This switch allows 
you to ignore interrupts while debugging higher level routines, or to step through and 
debug the interrupt routine itself. 

See also the Step command (STP). 

7-146 Alphabetical Command Reference 



) 

STP: Stop And Step Target S) 

STP: Stop And Step Target System 

Command 

>STP 

Comments 

Result 

From run mode the STP stops emulation 
returns to pause mode. 

Display the current CS:IP address and the 1 
Monitor System group number. 

From pause mode, the STP command exe 
one instruction. To receive visual feed 
combine this command with a display com 
such as STP;DT. 

R> indicates that the ES 1800 is in run mode. > indicates that the ES 1800 is in 
mode. 

See the switch inf onnation under STI for more information about stepping. 

Do not attempt to STP through an NMI vector fetch. This causes the emulator to 
It is possible to STP through the NMI interrupt routine, but not the NMI vector 
All other vector fetches can be STP'ed through. 

Examples 

>STP;DR 

>STP;DT 

>STP;DIS IP LEN 4 

Alphabetical Command Refereru:e 



SYM: Display Symbols 

SYM: Display Symbols 

Command 

SYM 

SYM <value> 

'<symbol> 

'<symbol>=<value> 

Examples 

7-148 

>'sym = 1000 

>'start= 8000 

>'end= 'start +37E 

>SYM 

$00001000 s:ym 

$00008000 start 

$0000837E end 

Result 

Display all defined symbols. 

Display all symbols assigned the specified value. 

Display the value of the specified symbol. 

Assign the <value> to the specified symbol or 
section. 

Alphabetical Command Reference 



TCE: Dynamic Trace Capture E 

TCE: Dynamic Trace Capture Enable 

Command 

ONTCE 

OFFTCE 

Comments 

Result 

Start trace acqms1uon. With TCE on, the 
DTB, DTF and DRT commands work or. 
pause mode. 

Stop trace acquisition to allow examinati4 
your trace memory. With TCE off, ym; 
observe trace without stopping emulation. 

Default: ON 

This command is only available with the dynamic trace feature. Operation c 
dynamic trace feature requires three steps: 

1. Stop trace acquisition using OFF TCE. 

2. Examine the trace using DT, DRT, DTB or DTF. 

3. Restart trace acquisition using ON TCE. 

While the target system is running, you must freeze the trace buffer before you cai 
trace memory. 

While the OFF TCE command is in effect, the entire Event Monitor System is dis 
If an Event Monitor System condition is reached, the system will not recognizt: 
take the appropriate action. 

You can toggle the TCE switch while in run mode so you can alternate between 
the Event Monitor System and reading trace while running. 

Alphabetical Command Reference 



TCT: Terminal Port Control 

TCT: Terminal Port Control 

Command Result 

TCT The terminal port becomes the controlling port. 

Comments 

This command, along with the CCT command, allows control to be switched between to 
two serial ports without powering down the ES 1800 emulator.· 

Any output generated by a command is directed to the controlling port. The copy switch 
directs output to both serial ports. 

This conunand is essentially a null command when entered from the terminal port. 

Port selection on power-up is controlled by the thumbwheel switch setting. (See page 
3-4) 

7-150 Alphabetical Command Reference 



TE: Timers 

Command 

ON TE<O,l ;2> 

OFF TE <0,1 )> 

Comments 

TE:1 

Result 

The specified PCB timer (0, l or 2) is 
during pause mode. 

The specified PCB timer (0, 1 or 2) is not 1 

during pause mode. 

Default: OFF 

Timers 0 and 1 only apply to the 80186/188. 

When the emulator transitions between pause and run modes, the settings of tl: 
switches determine whether the timer register values are read from or written · 
physical PCB and whether the timer continues to run while the emulator is paused 
mode control word registers (MCWO, MCWl and MCW2) and the timer 
registers (TCO, TC 1 and TC2) are affected by the switch setting. 

Pause to Run Transition 

When the emulator transitions from pause to run mode, the TE switch i 

determines if the values of the MCW and TC registers in the emulator's RAM 
are loaded to the physical PCB. 

If the TE switch is OFF, the registers are loaded to the physical PCB. The 
loaded into the MCW register detennines whether or not the timer be 
active during run mode. 

If the TE switch is ON, the registers are not loaded to the physical PCB 
prevents the timer count register being overwritten by the old count value ( 
undesirable if the timer was counting while the emulator was paused). 

Run to Pause Transition 

When the emulator transitions from run to pause mode, the current value of the 
and TC registers are loaded from the physical PCB to the emulator's RAM image 
CPU registers. 

Alphabetical Command Reference 



TE: Timers 

If the TE switch is ON, no other action occurs and the timer continues to run 
while the emulator is paused. 

If the TE switch is OFF, the timer is disabled immediately after the transition to 
pause mode by clearing bit 15 of the mode control word register in the physical 
PCB. 

You can modify timer registers while you are in pause mode, and, if OFF TE is 
specified, those values continue to be active when run mode is entered. Registers are 
modified using a <register> = <Value> command. 

The position of pod jumper JP4 determines when timers 0 and 1 are enabled for internal 
clocking. 

The table below summari7.es the effect of the timer switches. 

7-152 

Switch 
Setting 

ON 

OFF 

EtTect of TE switches on Run/Pause Transitions 

Pause to Run 
Transition 

The emulator's RAM 
image of the specified 
timer register is not 
loaded to the physical 
PCB before entering run mode. 

The emulator's RAM 
image of the specified 
timer register is loaded 
to the physical PCB just 
before running the target code. 

Run to Pause 
Transition 

The value in the 
specified timer register 
is loaded into the 
emulator's RAM 
image of the CPU 
registers. 

The value in the 
specified timer register 
is loaded into the 
emulator's RAM 
image of the CPU 
registers. The timer is 
then disabled by 
clearing bit 15 of the 
appropriate mode 
control word register. 

Alphabetical Command Reference 



TGR: Send Trigger~ 

TGR: Send Trigger Signal 

Command Result 

WHE <events> THE TGR, <action>, ••• 

Comments 

If all of the conditions specified in the 
portion of the WHEN/fHEN clause are sati 
the trigger signal is asserted, and remains ~ 

the duration of the specified bus cycle. T 
asserted as a TTL-level high signal. If a t 
event is specified for. more than one conse1 
bus cycle, the signal stays high for the durati 
the consecutive bus cycles. 

The trigger signal is an output that is available from the BNC connector labelled 
on the back panel of the ES 1800 chassis and from pin 19 of the optional LSA pod. 

The trigger signal can be used as a pulse output for triggering other diag 
equipment. It can also be used with a counter/timer for timing subroutines. 

Examples 

Trigger a scope when reading data from a UART. 

>ACl='DATA PORT 

>Sl=RIO 

>iiEN ACl AND Sl THEN 'lGR 

Alphabetical Command Reference 

Define location of UART. 

Look for read access. 

When data is read, send trigger. 



TGR: Send Tr.igger Signal 

Determine the duration of a subroutine using the trigger pulse. The trigger pulse can be 
the input to a counter/timer or a scope. The duration of the subroutine can be 
determined from the pulse width displayed on the scope or the counter/timer readout. 

7-154 

>AC1=2500 

>AC1.2=AC1+38E 

>DC1.2=XXXX 

Start of subroutine. 

End of subroutine. 

Detect any data pattern. 

>WHEN ACl THEN TGR, ~ 2 Go to group 2 when subroutine is entered. 

>2 WHEN DCl THEN TGR Trigqer during all cycles while in group 2 

>2 WHEN ACl THEN GRO 1 

>RUN 

R> 

Go back to group 1 when last instruction 
in subroutine is executed. 

Run mode prompt will appear. 

Alphabetical Command Reference 



TOC: Toggle Hardware Cot 

TOC: Toggle Hardware Counter 

Command Result 

WHE <events> THE TOC, <action> , .•. 

Comments 

If all of the conditions specified in the e 
portion of the WHEN/fHEN clause are satis 
the toggle count. TOC, command allows yo 
turn counting on and off. When a TOC eve 
detected. the count is toggled to the opp 
state, either on or off.. You can specify an e 
that starts and stops the counter each time 
detected or specify any number of events 
toggle the counter on and off. 

See the CNT action for a complete description of how the hardware counter works. 

Alphabetical Command Reference 



TOT: Toggle Trace 

TOT: Toggle Trace 

Command Result 

WHE <events> THE TOT , <action> , ••• 

Comments 

If all of the conditions specified in the event 
portion of the WHEN/THEN clause are satisfied, 
the toggle trace, TOT, allows you to turn tracing 
on and off. When a TOT event. is detected, the 
trace is toggled to the opposite state, either on or 
off. You can specify a single event that starts and 
stops trace each time it is detected or specify any 
number of events that toggle trace on and off. 

If there are no event actions that specify TRC or TOT, all bus cycles are traced. If 
there is a TRC event, only qualified bus cycles are traced. If there is a TOT event, 
trace is off until the TOT is detected, then all bus cycles are traced until encountering 
another TOT event. 

7-156 Alphabetical Command Reference 



TOT: Toggle 1 

This table describes the trace conditions immediately before and immediately af 
group change. 

Previous 
Group 

No Trace Action 
Specified 

No Trace Trace all 
specified cycles 

TRC Trace all 
cycles 

TOT OFF Trace all 
(not tracing) cycles 

TOT ON Trace all 
(tracing) cycles 

This table describes initial trace conditions. 

Action Specified 

No trace 
TRC 
TOT 

Alphabetical Command Reference 

New Group 

TRC TOT 

Trace only No trace 
qualified cycles until first TOT 

Trace only No trace 
qualified cycles until first TOT 

Trace only No trace 
qualified cycles until first TOT 

Trace only No trace 
qualified cycles until first TOT 

Trace Condition 

Trace all cycles 
Trace only qualified TRC events 
Trace nothing until TOT event 



TRA: Transparent Mode 

TRA: Transparent Mode 

Command 

TRA 

<eSC><eSC> 

Comments 

Result 

The system enters transparent mode. 

Port control is returned to the previous settings. 
Note that this escape sequence can be changed 
using the SET command. 

Transparent mode can be entered while in terminal (fCT) or computer control (CCT) 
modes. 

In transparent mode the ES 1800 acts only as an interface between the two serial 
ports. The ES 1800 can buffer up to 64 characters for each port and can operate each 
port at independent baud rates. 

There must be devices connected both to the terminal port (such as a terminal) and the 
computer port (host system, line printer) for this command to have any meaning. 

Transparent mode is used to communicate with a host computer or any other peripheral 
you want to attach to a serial port. 

Refer also to Section 4: "Serial Communications." 

Examples 

>TRA 

7-158 

Enter transparent mode. Data entered at 
either port is transmitted directly to 
the other port. 

Alphabetical Command Reference 



TRC: TraceE 

TRC: Trace Events 

Command Result 

WHE <events> THE TRC , <action>, ••• 

Comments 

If all of the conditions specified in the 1 

portion of the WHEN/I'HEN clause are sati: 
the trace action, TRC, causes the specified 
cycle to be recorded into the trace memory. 

If there are no event actions that specify TRC or TOT, all bus cycles are trace 
there is a TRC event, only qualified bus cycles are traced. If there is a TOT € 

trace is off until the TOT is detected, then all bus cycles are traced until encount 
another TOT event. 

This table describes the trace conditions immediately before and immediately a: 
) group change. 

Previous 
New Group 

Group 
No Trace Action TRC TOT 

Specified 

No Trace Trace all Trace only No trace 
specified cycles qualified cycles until first T01 

TRC Trace all Trace only No trace 
cycles qualified cycles until first T01 

TOT OFF Trace all Trace only No trace 
(not tracing) cycles qualified cycles until first T01 

TOT ON Trace all Trace only No trace 
(tracing) cycles qualified cycles until first T01 

Alphabetical Command Reference 



TRC: Trace Events 

This table describes initial trace conditions. 

Action Specified Trace Condition 

Nothing Trace all cycles 

TRC Trace only qualified TRC events 

TOT Trace nothing until TOT event 

Examples 

Trace only a specific subroutine. Break at the end of the routine. 

7-160 

>AC1•'Sub atart 

>AC2='Sub end 

>WHEN AC1 !rHEN !rOT 

>WHEN AC2 !rHEN BRK 

>RBK 

R> 

/ 

Define beginning of aubroutine. 

Define end of subroutine. 

Start tracing at beginning of aubroutine. 

Break at end of aubroutine. 

Run til breakpoint. 

Run mode prompt will appear. 

Alphabetical Command Reference 



TST: Test Register 

Command 

TST 

Comments 

TST: Test Re; 

Result 

Stop a repeating command. The test regis: 
set to an expression in a command line. Wl 
becomes zero. the repeat halts. The 
variable is set to all l's at the stan of a n 
This is necessary so that the register is 
known state at the start of a repeat loop. 

See Section 4: "Repeat Operators: for more detailed information. 

Examples 

To single step and disassemble until a specified address is reached: 
>*STP;DT; TST=CS:IP-$C324 

Alphabetical Command Reference 



UPL: Upload Serial Data 

UPL: Upload Serial Data 

Command Result 

UPL <range. The ES 1800 formats and sends data to the 
computer pon. 

Comments 

Data is transferred from the ES 1800 to a host system or other peripheral interfaced to 
the ES 1800 computer pon. 

When uploading to a file on a host system, enter transparent mode first and open a file 
to store the uploaded data records. (Review Section 4: "Serial Communications.") 

Examples 

For UNIX: 
cat ><filename> 

For VMS: 

COPY TT: <filename> 

or 

TYPE SYS$INPUT / OUTPUT = <filename> 

(Create or EDT are also acceptable.) 

ForCPM: 

PIP A:<filename> = RDR: 

Next, type the transparent mode escape sequence and the upload command. 

After all data has been uploaded and the ES 1800 prompt returns, enter transparent 
mode and close the file by entering the appropriate control character. 

Remember to close the file be/ ore trying to view it. 

If the host system does not respond to XON/XOFF protocol, it may be necessary to 
lower the communicating pon's baud rates so that the host's input buffer is not 
overrun. 

7-162 Alphabetical Command Reference 

~~~--·-~ -----


UPL: Upload Serial

Upload performs no data verification.

A file may be uploaded to a printer, PROM programmer, or other peripheral inste
to a host. In this case, there is no need to enter transparent mode before uploc
Just be sure the peripheral is ready to receive data.

Refer also to Section 4: "Serial Communications."

Alphabetical Command Reference

UPS: Upload. Symbols

UPS: Upload Symbols

Command

UPS

Comments

Result

All currently defined symbols and sections are
sent to the computer pon in Extended Tekhex
format.

Extended Tekhex restricts the number and range of characters that can be used for
symbol names. When formatting symbols for upload, the ES 1800 truncates symbol
names to 16 characters and substitutes % for characters not allowed by Tekhex.

Extended Tekhex serial data format should be set before uploading symbols (see SET
parameter #26)

When uploading to a file on a host system. enter transparent mode first and open a file
to store the uploa~ed data records. (Review Section 4: "Serial Communications.")

Examples

For UNIX: cat ><f ilenama>

For VMS: COPY TT: <filename> or TYPE SYS$DIPUT / OU~UT m <filename>

(Create or EDT are also acceptable.)

ForCPM:

PIP A:<filenama> • RDR:

Next, type the transparent escape sequence and begin uploading.

After all data has been uploaded and the ES 1800 prompt returns, enter transparent
mode and close the file by entering the appropriate control character.

Remember to close the file before trying to view it.

Refer also to Section 4: "Serial Communications," and Section 4: "Symbols."

7-164 Alphabetical Command Reference

VBL: Verify Block

VBL: Verify Block Data

Command Result

VBL <address range>, <data> Verifies that <address range> contains
specified data.

Comments

This command is valid only in pause mode.

The VBL command uses the default data length. regardless of the length of <a
See BYM or WDM for more information on the default data length.

Examples

>VBL 0 TO 2000,3F Verify that a ranqe contain• $3F.

$00000004 - $00, NOT $3F

$00000126 - $76, NOT $3F >

Alphabetical Command Reference

VBM: Verify Block Move

VBM: Verify Block Move

Command

VBM <range>,<address>

Result

Verifies move of <range> to the new <address>.
The current value of MMS specifies the relocation
register used during the transfer.

VBM <range>,<space>,<address>
Verifies move of <range> to the new <address>.
The <space> argument specifies the memory
mode status used during the transfer.

VBM <range>,<address>,<space>
Verifies move of <range> to the new <address>.
The range is read from the space specified in the
MMS register. The block is written to the
<space> specified in the argument following the
address.

VBM <range>,<space>,<address>,<space>

Comments

Verifies move of <range> to the new <address>.
The range is read from <space> specified in the
argument following the range. The block was
written to the <space> specified in the argument
following the address.

This command is valid only in pause mode.

Verifies that a non-overlapping block move was successful.

7-166 Alphabetical Command Reference

)

VFO: Verify Overlay Mei

VFO: Verify Overlay Memory

Command

VFO <range>

Result

Compare the specified range in the target mer
to the same range in the overlay memory.

If there are no differences between the data il
overlay and target. the emulator prompts ym
the next command.

If there are any differences, the address of
difference displays

<ADDRESS> • XX NOT YY

Comments

XX denotes the data present in overlay meD
YY is the data at that location in the t
system memory.

This command is valid only in pause mode.

Refer also to Section 4: "Mapping Overlay Memory."

Examples

>VFO 80000 LEN 7FFF

>VFO 'BOOT RANGE

Alphabetical Command Reference

Verify overlay load usinq hex addresse

Verify overlay load usinq symbols.

VFY: Verify Serial Data

VFV: Verify Serial Data

Command

VFY

Comments

Result

Verifies serial data with data in memory. If the
data in memory does not match the incoming
serial data, this message is displayed:

ADDRESS = XX HOT YY

Address is the address where the data mismatch
occurred. XX denotes the actual data present at
that location. YY is the serial data just sent.

nus command is similar to the download command but no data is written to memory,
and the serial data is not displayed on the screen. The serial data is compared to the
data in target or overlay memory. Mismatches are displayed.

Use this command if you suspect a file you downloaded was corrupted. If downloaded
data is being corrupted by your program, you can detect it by mapping overlay as RO
(read only) (see MAP).

nus command is also useful for determining differences between object files. Follow
instructions for downloading a file in Section 4 "Downloading to Target or Overlay
Memory."

7-168 Alphabetical Command Reference

WAI: Wait Until EmulationE

WAI: Wait Until Emulation Break

Command

WAI

Comments

Result

Delays executing the specified command
emulation is broken.

Usually this command is used to delay executing a display command until an 1

system breakpoint is reached.

An event may never occur to bring the ES 1800 out of run mode. When this hap
use the system reset character to reset the system. (<ctrl-:z> default, can be crui
with SET).

After a reset, the delayed command is lost from the input buffer.

Examples

The ES 1800 disassembles a page of trace after a breakpoint is reached. Ent
RBK;DTB. without the WAI command, results in a CANNOT EXEC
COMMAND WHil...E IN RUN MODE error.

RBK;WAI;DTB Run to breakpoint, wait til emula
atops and disassemble previous pag•
trace.

The ES 1800 runs until an access violation or a write violation is encountered,
displays a message pointed at by the BX register.

RUN;WAI;Dll BX

Alphabetical Command Reference

Run to breakpoint, wait til emulc
stops and display string at address BJ

WDM: Set Global Data Length

WDM: Set Global Data Length

Command Result

BYM Set the global data length to byte mode.

WDM Set the global data length to word mode.

Default: BYM - byte mode

Comments

The global data length determines whether memory commands use byte or word data
lengths.

If byte mode is set and you enter a word value as a command parameter, only the least
significant byte is used as the command parameter. If word mode is set and you enter a
byte parameter, the high byte is padded with a zero.

You can temporarily override the byte and word address and data display prompts by
keying in the dot operators (.Band .W) after a command. For example: DB.B means
a block of memory is displayed in byte mode. DB.W means a block of memory is
displayed in word mode.

The global data length affects the following commands.

Command

BMO
DB
FIN
FU..
LOV
M
MIO
SF 4-9,11,12
VBL
VFO

7-170

Commands Affected by Global Data Length

Description

block move data in memory
display block of memory
find data pattern in memory
fill memory with data pattern
load overlay memory from target
memory mode
l/Omode
special functions: scope loops
verify data pattern in memory
verify overlay memory with target memory

Alphabetical Command Reference

WDM: Set Global Data L

Examples

The following example demonstrates how the global data length affects the Fll
DB commands.

>BYM Set byte mode.

>FIL 0 LEN 10,123 Fill the range with 123.

>DB 0 LEN 10 High byte is truncated.

000000 23 23 23 23 23 23 23 23 - 23 23 23 23 23 23 23 23 23 23 ############1

>

>WDM

>FIL 0 LEN 10,3F

>DB 0 LEN 10

Set word mode.

Fill the ranqe with 3F.

Pattern ia padded with zero.

000000

>

003F 003F 003F 003F - 003F 003F 003F 003F

Alphabetical Command Reference

WHEN: Begin WHEN/THEN Statement

WHEN: Begin WHEN/THEN Statement

Command Result

WHE <events> THE <action>,<action> ••• ,
Perform specified actions when the events are
reached.

Comments

You can define an event to be some combination of address. data, status. count, and
Logic State Analyzer pod conditions. Numerous Event Monitor System control
statements may be entered and in effect simultaneously. Conflicting statements may
cause unpredictable action processing. Parentheses are not allowed in event
specifications.

The NOT operator reverses the sense of the comparator output. NOT has higher
precedence than either of the conjunctives (AND and OR).

WHEN ACl AND NOT DCl THEN BRK

means break whenever any data pattern other than that in DC 1 is written to an address
in ACI.

AND and OR can be used to form more restrictive event definitions. AND terms have
higher precedence than OR terms. For example:

WHEN ACl AND DCl OR DC2 THEN BRK

is the same as
WHEN ACl AND DCl THEN BRK

WHEN DC2 THEN BRK

If you are looking for two different data values at an address, you would use
WHEN ACl AND DCl OR ACl AND DC2 THEN BRK .

7-172 Alphabetical Command Reference

WHEN: Begin WHEN/THEN State

The OR operator is evaluated left to right and is useful for simple comp2
combinations. For complex event specifications, OR combinations can be replaced
separate WHEN/THEN statements for clarity.

WHEN ACl AND Sl OR AC2 AND S2 THEN BRK

is the same as
WHEN ACl AND Sl THEN BRK

WHEN AC2 AND S2 THEN BRK

Alphabetical Command Reference

X: Exit Memory Mode, 110 Mode, and Line Assembler

X: Exit Memory, 1/0 Modes, and Line Assembler

Command Result

x Exit memory or 1/0 mode.

7-174 Alphabetical Command Reference

Section 8

Table of Contents

ES LANGUAGE

Structure of the ES Language ... 8-1

Notes on ESL .. 8-5

Help ... 8-17

Log In Banner .. 8-20

Prompts ... 8-22

Special Modes ... 8-23

\ Special Characters ... 8-25
j

Errors .. 8-26

ES Language Error Messages .. ~ 8-27

ES LANGUA

Structure of the ES Language

The command language used to control the ES 1800 emulator is a formal lang
Once you understand the basic concepts of this language, you can apply thf
debugging power of the ES 1800. An overview of the structure of the ES Ian1
(ESL) is presented in the accompanying table. A more detailed description o
language elements, the help menus, prompts, special . operating modes, anc
language error messages are also included in this section.

Items in angle brackets (< >) are mandatory and must be entered as part <J

command. Items shown in square brackets ([]) are optional. Do not type the arii
square brackets when typing a command.

If the ESL command interpreter detects an illegal statement, it beeps and pla
question mark under the command line at the position the error was detected. En
a ? following an error will cause the appropriate error message to be displayed.

ES Language svntax

Language Element

Command Line

[Repeat] Command Statement [;Cmd Statement] ...
Single Character Instant Command

Repeat

<*> *STP;DT
<*><Repeat limit>

Repeat Limit:
Decimal number only (1 to 232 -1)

Command Statement

Command Mnemonic
Command Mnemonic <Expression>
Command Mnemonic <Expression List>
Assignment Command
Expression
Event Monitor System Control Statement

ES Language

Example

<RETURN>

*9 STP;DT

87651234

DTB
MMCS:IP+4
SET #20,#14
CS= OFA9
2* GR5
WHEACl THEI

Structure of the ES Language

8-2

Language Element

Single Character InstantCommand

</>(repeat previous command line)

Example

<,>(execute macro 1 or decrement scroll in memory mode)
<.>(execute macro 2 or increment scroll in memory mode)
<?>(help)

Command Mnemonic

<1 or more alpha chars.>[1 or more dee. chars.]

Expression

[Unary Operator] I value
Ivalue <Operator> Expression
<@> Expression
<(> Expression <)>
Nvalue <:> Nvalue
Ivalue:

Symbol
Nvalue

Symbol:
<'><1 or more printable chars.><sp or er>

Nvalue:
Number
Register Name

Register Name:
<1 - 3 alpha chars.>[0 - 2 dee. digits]

Number:
[Base]< 1 or more digits>

Base:

Expression List

<%> (binary)
< > (octal)
<#> (decimal)
<$> (hexadecimal)

Expression<,> Expression [,Expr. list] ...

ASM

-2473
2-3F6C90
@240;@@@SS:SP
2 * (-2 + 3)
CS:1234

'main

7FA36
IP

%0101001

l ,CS:IP,2+2,-6

ES Language

Langua[te Element

Assignment Command

Svalue <=>Expression
<@> Expression <=> Expression

Svalue:
Symbol
Register Name

Event Monitor System Control Statement

[Group] <WHE[N]> Event <THE[N]> Action List

Group:
<1>
<2>
<3>
<4>

Event:
[Disjunctive] <Event Comparator>
Event <Conjunctive> <Event>

Disjunctive:
<NOT>

Event Comparator
<ACl>[.Group]
<AC2>[.Group]
<DCl>[.Group]
<DC2>[.Group]
<Sl>[.Group]
<S2>[.Group]
<CTL>[.Group]
<LSA>[.Group]

Conjunctive:
<AND>
<OR>

Action List
<Action>[,Action] ...

ES Language

Structure of the ES Lan~

Example

IP=@OFFFFO
@SS:SP = CS:IP

'Tcst_result
MMP

WHEACl THEB:

2 WHE ACl 1HE B

NOTACl
DC20RNOTAC

ACl.3

CTL.4

TRC,TGR,FSI

Structure of the ES Language

Language Element Example

Action:
<BRK>
<TRC>
<TOT>
<CNT>
<TDC>
<RCT>
<TGR>
<FSI>
<GROGroup> GR03

Unary Operator

<ABS> ABSGD3
<!> !OAA
<-> -3

Operator

Mul.op
Add.op
Shft.op
<&> GD4&0FF
<"> DC2.3 A OFFOO

Mui.Op
<*> 2*3
</> OFAC I %01001
<MOD> GD5MOD7

Add.op
<+> GRO+IP
<-> @(SS:SP-4)

Shft.op
<<<> DCl << 3
<>>>

8-4 ES Language

Notes on ESL

Command Line

Repeat

Command Statement

Notes on

A command line is created by entering one
more characters after any of the ESL pron
One or more command statements can be pl;
on a single command line. Multiple comn
statements must be separated by a semicc
The command line is limited to 76 characters
must be terminated with a return. The only
to extend command lines is by using macros
Macros in Section 4, or_ in Section 7).

Backspace or delete characters may be uset
delete the previous character entered 01

command line. <ctrl-x> deletes the entire
<ctrl-r> redisplays the current line (useful
hardcopy terminals).

If an asterisk (*) is the first character on
command line, the entire command line wil
repeated indefinitely. If the asterisk ·is follc
immediately by a decimal number, the corm:
will be executed that many times. A repe:
command line may also be terminated by se
the TST register to zero within the command
This provides the simple but powerful abili1
repeat something until a condition is met.

There arc several special modes in which
normal command statement rules do not appl)
memory mode entering a <return> on an e:
line causes the next location to be read. Enti
a value followed by <return> will cause
value to be written to memory. I/0 mode
memory disassembler, and the main help men
have special modes which prevent the nc
execution of ESL commands.

Single Character Instant Commands

ES Language

These commands arc processed immedi
when they are the first character entered •

Notes on ESL

Command Mnemonics

Expressions

8-6

command line. The forward slash character (I)
will cause the previously entered command line to
be repeated.

>STP
>I
>I

This example single steps three times.

The comma (,) executes macro 1 and the period
(•) executes macro 2. However, if you are in
memory mode or l/O mode, the period moves you
to the next higher memory address while the
comma moves you to the next lower address.

The question mark (?) also has two uses. It
can be entered after the command interpreter
detects an error and beeps. If you are 'beeped,'
enter a ? and the command processor will give
you an error message describing the problem it
detected.

A ? · entered at any other time (ie. not after an
error), causes a two-page help menu to be
displayed. A <return> moves you from the first
page to the second. Any other character
terminates the help menu.

Command mnemonics are the alpha-numeric
character strings that identify a specific ESL
command. Command mnemonics are formed from
1 to 3 alpha characters followed by 0 to 2 numeric
characters. Extra characters in between are
ignored. For e~ample, WHEN is the same as
WHE and GR12345 is the same as GR45. See
the Appendices for a list of all ES language
mnemonics.

An expression can be an integer value, an
alpha/numeric value or an equation.

ES Language

--

l
/

ES Language

Notes 01

Parentheses may be used to alter. the n1
precedence of operations. The ES 1800 em1
recognizes parentheses just as they are tr
in algebraic equations. You can use as
levels of parentheses as you need. The
limitation is that statements can be no more
76 characters long.

Parentheses are not allowed in WHENtr
clauses.

The expression processor can resolve arbit
complex expressions. ·

@(GOO +3) •IP + #100 * (DX>> 4) +OJ

This example retrieves the value of the
register, shifts it right 4-bit positions (divic
24), multiplies the result by 100 decimal,
OAF34 and the contents of the IP register
writes the result to the location 3 bytes abm
address in GDO.

A more common and useful example might be

.ASM CS:IP

This computes the address CS:IP and stat
the line assembler at that address.
expression:

'interrupt+ 1A6

by itself will add 1A6 to the current value '
symbol interrupt and display the result. I
don't assign the results of an expression
location or register, the result is displayed
32-bit value.

The @operator is an indirection operator. ~
(where Exp is an expression) refers to the
in memory at the address Exp. If the @ E

Notes on ESL

8-8

on the left side of an = then the value from the
right side of the = will be loaded into memory at
the address Exp. At all other times, @ Exp
simply reads a value from memory. @USP is a
simple way to read something from the stack
pointer. It is legal to have multiple indirections,
eg., @@GRO = @@@(USP + 6). Byte mode
and word mode affect the length of data
transferred to or from the target by the @
operator. (See the BYM and WDM commands in
Section 7 for more information on BYT/WRD
modes.)

The : operator mimics the arithmetic combination
of segment and pointer registers in the 80186/88
and 80C186/C188 microprocessors. The value on
the left side of the colon is shifted left 4 bits,
added to the value on the right side and, finally,
the total is masked to 20 bits. The colon operator
is handled at the preprocessor level and thus has
higher precedence than normal math operators.
The colon operator must be used only between
actual numbers or register names; e.g., CS:IP is
fine but CS:(IP+3) is illegal.

All other math or logic operations are evaluated
according to the order given in the following
section on operators. Parentheses may be used
to alter the normal precedence. Unary operations
must be enclosed in parentheses if they occur
within another expression; eg., 2+-1 is illegal, but
2+(-1) and -1+2 are legal.

Certain combinations of expression types and
operators are illegal or have complex results.
See the table "Results of Dyadic Operator
Combinations."

Some commands can accept a variety of argument
types. The display block (DB) command accepts
an integer, a range, or no argument at all. Other
commands require that a certain argument type

ES Language

Symbols

Numbers

ES Language

Notes 01

be used. The upload UPL command requi
range argument. See the discussion on Nur
(below) for types.

H you have the symbolic debug option install
your ES 1800 emulator, you can use syrr
references. Every symbol must begin w
single quote (') . Symbols are composed of
64 printable characters followed by a spac
<return> . Symbols can be used anywh1
register or a number is used, with the exce1
that symbols are not valid with the colon op1
or the repeat (*) operator.

The ES 1800 has a default base register.
assumed that numbers entered without a le
base character are being entered in the d
base. Generally, the default base is hexade
(factory default). See the DFB commar
Section 7 for more information in changin
default base register.

There are three different types of numbers.

1. An integer is a 32-bit signed value.

2. A don't care is a 32-bit value with a :
mask. For each-bit set in the mask
corresponding-bit position in the val1
ignored during Event Monitor compar
Don't cares can be entered in two
1234 DC OFFO is explicit. 1XX4 is equi·
to 1FF4 DC OFFO. Don't cares are usef
setting the Event Monitor System
Comparators (see the Event Monitor S:
in Section 4 for more information.)

3. A range is specified by entering a
address and a length or an end
200 LEN 20 is the same as 200 TCl
Ranges can be either internal (defaul
external. An explicit range type ca
specified by using the prefix IRA or :
0 LEN 100 is the same as IRA 0 LEI'
The ! operator inverts the type of a

Notes on ESL

Base

Expression List

Assignment Command

Registers

8-10

value. !(0 LEN 100) is the same as
XRA 0 LEN 100 which means everything but
addresses 1 to OOFF. The endpoints are
always included in the range. Regardless of
the method of entering (TO, LEN), range
values are always displayed as 'start TO
end.'

Ranges, don't cares, and integers are not
generally interchangeable. Certain registers can
only hold certain data types. All registers can
hold integers. Address type registers cannot be
loaded with don't care values. Status and data
registers cannot be loaded with range values.
See Registers in Section 4 for a list of all
registers and their data types.

To enter a character in any base other than the
default, use a leading base character: % =
binary, \ = octal, # = decimal, and $ =
hexadecimal.

Lists are required by a few commands. They can
also be used for implicit evaluation. For example,
in pause mode, entering the three numbers
%010011010, #128, \77347 causes the emulator
to display their equivalent in the default display
base (usually hexadecimal). Lists are limited to
nine elements. Lists are used in memory and 1/0
modes as well.

Svalues are the names of registers or symbolic
references. The form
@Expression = Expression will cause the left
side expression to be calculated and used as an
address at which to store the value of the right
side expression. Note that since @Expression ·
is itself an expression, commands such as
@SS:SP = 0 are legal and useful.

Registers are grouped into three types: integer
only, don't care, and range. Any register can be
assigned an integer value. Don't care registers
can be loaded with don't care values or integers

ES Language

Indirection Operator

ES Language

Notes 01

but not ranges. Range registers can be l<
with integers or ranges but not don't care v;
See Registers in Section 4 for a list o
registers and their data types.

The indirection operator @ allows expres
to include values transferred to or from the 1
system memory address space. The expre
becomes the address of a target system by
word.

More than one @ operator in an expre
displays a quantity painted to by another qu;
located in the target system memory.
emulator evaluates the expression followinJ
@ operators, considers it an address, and
at the value stored at this address. The va1
this address is also considered to be an ad1
This address is accessed and displayed.

Parentheses may be used to affect the procc:
of the @ operator:

>@ GD4 + 6
>@ (GD4 + 6)

In the first example the indirection opera1
applied to GD4. The command inter
accesses the target system location pointed
GD4, adds six to the value stored there
displays the final results.

In the second example, the ES 1800 displa~
value stored in the sixth location abov1
address pointed to by GD4.

Notes on ESL

The indirection operator can be us.ed to write
values to memory-mapped 1/0 without causing a
read after write. Memory mode always performs
memory reads. This may be unacceptable for
certain hardware configurations. To store values
without entering memory mode, use:

>@ <address> • <data>

This causes the system to load data into the
specified address.

Event Monitor System Control Statement

Group

Event

8-12

Event Monitor System statements describe
combinations of target program conditions and the
corresponding actions to be taken if the
conditions are met; they do not describe
mathematical or logical computations. Be aware
that normal expression operators are illegal when
specifying Event Monitor System statements.
These statements are discussed in detail in
Section 7, Event Monitor System.

The Event Monitor System (EMS) is arranged in
four independent groups. These groups provide a
state-machine capability for debugging difficult
problems. An EMS control statement can only be
associated with one of the four groups. If no group
numbers are mentioned in the EMS control
statement, the statement is assigned to group 1.
There are two ways to override this default
selection of group 1. You can begin the EMS
control statement with a group number, or you
can append a group number to any one of the
event comparator names. For example:
3 WHEN ACl THEN BRK is functionally the
same as WHEN ACl.3 THEN BRK; both use
group 3. You cannot mix group numbers within a
single EMS control statement.

You can define an event to be some combination
of address, data, status, count and logic state
probe conditions. Numerous Event Monitor

ES Language

Disjunctive

Conjunctive

ES Language

Notes 01

System control statements can be . entered
will be in effect simultaneously. Confli
statements may cause unpredictable a
processing. Parentheses are not allowed in 1

specifications.

The NOT operator is used to reverse the sen
the comparator output. NOT has h
precedence than either of the conjunctives, ,
and OR

WHEN ACl AND NOT DCl THEN BRK

This statement means break whenever any
pattern other than that in DC 1 is written tc
address in A Cl.

AND and OR can be used where needed to
more restrictive event definitions. AND
have higher precedence than OR terms.

ACl AND DCl OR DC2

This event is equivalent to ACl AND DCl it
statement and DC2 in another. If you are 104
for two different data values at an address,
would use:

ACl AND DCl OR ACl AND DC2

The OR operator is evaluated left to right a
useful for simple comparator combinations.
complex event specifications, OR combiru
can be replaced with separate EMS c~

statements for clarity.

ACl AND Sl OR AC2 AND S2

This event is the same as ACl AND Sl
AC2 AND S2 in separate statements.

Notes on ESL

Unary Operator

Operator

8-14

All internal computations use 32-bit math.
Values entered with a leading • are converted to
signed numbers; e.g., -1 is stored internally as
$FFFFFFFF. Internal math however, is signed
only for the + , • , * , I operations; -5+3 is
$FFFFFFFE, while -1 >> 1 is reduced to
$7FFFFFFF.

ABS converts a signed number to its absolute
value.

! is a logical NOT operator and complements all
32 bits of a number. If the number is a range, the
range type (internal or external) is inverted.

Unary operators have the highest precedence.
-2+3 is 1.

The operators are listed below in descending
order of precedence. Operators of the same type
are evaluated left to right.

ES Language

Modulo (MOD)

Operator

ABS

@

ES Language

Mul.op:
* Multiply
/Divide
MODModulo
Add.op:
+Add
-Subtract
Shft.op:
>>Riqht shift
<<Left ahift
"Loqical AND
"Loqical OR

Notes on

The result of this operation is the remainder
the value on the left has been divided b)
value on the right.

>29 MOD 4
results = l
>38 MOD 6
result = 2

Results of Single-Argument Operators

Argument Result

Integer Valid
DC Don't care bits are not affected
IRA Complement (IRA becomes XRA)

Integer Valid
DC Don't care bits are not affected
IRA Invalid
XRA Invalid

Integer Valid
DC Don't care bits are not affected
IRA Invalid
XRA Invalid

Integer Valid
DC Invalid
IRA Invalid
XRA Invalid

Notes on ESL

Results of Dyadic Operator Combinations

l&,(J Hand Rig.ht Hand Q{2.c_rator Result
Expression Exoression

Integer Integer */MOD Valid
&A Valid
<<>> Valid
+- Valid

Integer Don't care MOD Illegal
*/ Don't care· bits are passed

to the left hand argument.
&A Don't care bits are passed

to the left hand argument.
<<>> Don't care bits are passed

to the left hand argument.

Integer IRAXRA *!MOD Invalid
&A Invalid
<<>> Invalid
+- The endpoints of the range

will be altered by the value
of the integer expression.

Don't care Don't care */MOD Invalid
&A Invalid
<<>> Invalid
+- Don't care bits are ANDed.

Don't care Integer *!MOD Don't care bits are kept.
&A Valid
<<>> Don't care-bit positions are

shifted.
+- Don't care bits are kept.

IRA,XRA Integer */MOD Invalid
&A Invalid
<<>> Invalid
+- The end points of the range

will be altered by the value
of the integer expressed.

8-16 ES Language

Help

There are two pages of help information available. Enter a ? as the first character
command line to display the first help page. This page gives examples of the
commonly used commands and their meanings. The second page describes the 1
Monitor System registers and commands. Enter a <return> at the end of the first
to move to the second page. The menus are shown on the next two pages.

Information on switch settings, configuration settings, and special functions is avai
without using the? help menus. Other help information is described below.

Software Switches

Communications Set-up

Special Diagnostic Functions

ES Language

Enter either ON or OFF to display the ct
settings and definitions of all software swit
(see ON in Section 7).

Enter SET to display the current configw
settings and possible values (see SET in Sf
7).

Enter SF to display a list of the available SJ
functions (RAM/ROM tests, scope loops,
(see SF in Section 7).

Help

First Page of Help Menu

>?

RUN/EMULAT:ION:

STP-S:INGLE STEP/STOP

RST-RESET TARGET SYSTEM

TRACE B:ISTORY:

DT-DISASSE2oBI.E MOST RECENT LINE

MEMORY-REG:ISTER COMMANDS:

DB X TO Y-D:ISPLAY BLOCK

BMO X TO Y, Z-BLOCK MOVE TO Z

MMS • ALT, COD, DAT, STA

X - EX:IT MEMORY MODE

MEMORY MAPP:ING:

MAP X TO Y :R:> :RN :TGT ::IIG

COMMUN:ICAT:IONS:

DNL-I>C:HnOM> BEX F:ILE FROM BOST

'CPL X TO Y - OPUl1ID BEX TO BOST

SYSTEM:

ON/OFF - VIEW/ALTER SWJ:TCBES

ASM (X) - :IN L:INE ASSEMBLER

RUN/'P:NV - RUN/RUN WITH NEW VECTORS

RBK/RBV-RUN TO :BREARl?OIN'l'/WITH VECTORS

WAIT - WAIT UNTIL EMULATION BREAK

DTB/DTF-DISASSEMBLE PAGE BACK/FORWARD

DRT (X) -DISPLAY PAGE RAW TRACE (FRCM X)

DR-DISPLAY ALL CPU REG:ISTERS

FILL X TO Y, Z - F:ILL BLOCK WITH Z

LOV/VEO X TO Y - LOAD/VER:IFY OVERLAY

DEF:INES STATUS LINES EOR IEMORY ACCESS

M X - VIEW/CHANGE MEMORY AT X

OVE = DC, DAT

DM/CLM - DISPLAY/CLEAR MEMORY MAP

TRA - TRANSPARENT MODE TERM:INAL-BOST

CCT-TRANSFER CONTROL TO COMl?OTER PORT

TCT-TRANSFER CONTROL TO TERM:INAL PORT

SET - VIEW/ALTER SYSTEM PARAMETERS

SF - VIEW/EXECUTE SPEC:IAL FUNCT:IONS

D:IS(X) DISASSEMBLE FROM MEMORY

LD/SAV (X) - LOAD/SAVE O=SET'OP,l-REGS,2-EVENTS,3=MAP,4=SWJ:TCBES,S=MACROS

8-18 ES Language

Second Page of Help Menu

EVENT MONITOR SYSTEM

DES DISPLAY ALL EVENT SPECIFICATIONS

CLEAR ALL EVENT SPECIFICATIONS CES

DES X

CES X

DISPLAY ALL EVENT SPECIFICATIONS FOR GROUP X

CLEAR ALL EVENT SPECIFICATIONS FOR GROUP X

EVENT ACTIONS:

BRK - BREAK

TRC - TRACE EVENT

CNT - COUNT EVENT TGR

RCT - RESET COUNTER FSI

- TTL TRIGGER STROBE

- FORCE SPECIAL lN'.rE:R

TOT - TOGGLE TRACE TOC - TOGGLE COUNT

EVENT DETECTORS - GROUPS l, 2, 3, 4:

GROUP X -_ SWITCH TO GROUP X

AC1,AC2 OR AC1.X,AC2.X - 24-BIT DISCRETE ADORE.SS CR INTERNAL EXTERNAL R

DC1,DC2 OR DC1.X,DC2.X - 16-BIT DATA, MAY INCLUDE DON'T CARE BITS

Sl,S2 OR s1.x,s2.x - STATUS AND CONTROL - BYT/WRD +RD/WR + TAR/

+ MEM/IOA + IAK/RIO/WIO/HLT/IF/RM/WM/NBC

+ ALT/COD/DAT/STA

LSA

CTL

16 LOGIC STATE LINES, MAY INCLUDE DON'T CARE BXTS

COUNT LIMXT, ANY NUMBER l TO 65,535

STEP l - ASSXGN EVENT DETECTORS

STEP 2 - CREATE EVENT SPECIFICATIONS

ACl • $1234;Sl • BYT + RM

ACl.2 = $4576+14*6;DC2.2 = $5600 DC $FF

CTL.2 - 24;AC2.2 = $FOOO LEN $400

ES Language

WHEN AC1 AND Sl THEN GROUP

2 WHEN ACl AND NOT DC2 THE~

WHEN CTL.2 OR AC2.2 THEN Bi

Log In Banner

Log In Banner

After initial power on, the log in banner should appear on your console screen. After a
reset, the first three lines of the banner appear on your screen.

COPYRIGHT 198X

.APPLIED MICROSYSTEMS CORPORATION

SATELLITE EMULATOR 80186/188, 80Cl86/Cl88 VX.XX

USER = SW=

#_K AVAILABLE OVERLAY

Satellite Emulator

vxxx

USER=_SW=

AV All.ABLE OVERLAY

>No Target VCC

The microprocessor type is that of the target
system.

The version number reflects the released version
of the ES language software for the emulator.

The user number and software number (SW)
indicate the positioning of the thumbwheel switch
on the ES 1800 MCB controller board (page 3-4).

The amount of overlay memory indicated depends
on the amount installed in the system. This can
be 128K, 256K, 512K, lM or 2M of memory.

The console screen displays a NO TARGET
VCC (see Appendix A) when you are not
connected to a target system.

A <ctrl-z> clears this display message and
returns the system to the log in banner for reentry
of an input command.

NOTE

Ref er to Section 1 and 4 for using the ES 1800 emulator without a target
system.

Prompt

8-20

The pause mode prompt > indicates that the
ES 1800 is not running, is in a pause mode and is
ready to receive instructions. Make sure that
the > shows before you enter any command.

ES Language

Log In Ba

If the > does not appear after the log in bai
tum off the equipment, check the connections,
then repeat the power-up sequence.

Check for proper connection of the cable bet1
the terminal and the ES 1800.

Check the cable connecting the pod to
ES 1800. ls it completely secured?

Check to see if the pod probe packag
completely plugged into the target system.

If the unit has just been shipped, one or mo:
the boards may have become loose in
ES 1800 chassis. Check for loose boards.

If an error message appears, refer to the given message in Appendix A.

ES Language

Prompts

Prompts

Different prompts are displayed depending on the current operating mode of the
ES 1800.

>

R>

$12345678 $00 >
$12345678 $00 R>
$12345678 $0000 >
$12345678 $0000 R>

The standard. or pause mode prompt from ESL
consists of a space character followed by a right
arrow.

During emulation, the run mode prompt is
displayed., Most ESL commands are still valid.

In memory mode. the prompt includes the memory
address and the data contained there. Depending
on whether byte mode or word mode (BYM,
WDM) has been chosen, the data will be a byte
or a word. The 'run' prompt (R>) may also be
present during memory mode.

**** 8086/88/186/188 LINE ASSEMBLER ****
CSEG=OOOO
0100 > The line assembler displays a 16-bit address

prompt. This prompt contains an R if you are
assembling during emulation.

10:$1200>
10:$1200 $00 >
10:$1200 $0000 >
10:$1200R>
10:$1200 $00 R>
10:$1200 $0000 R>

8-22

In 1/0 mode. the prompt includes the 1/0 address.
The data is included when a <return> is entered
as the only character on the line. The data field is
affected by byte and word mode. If emulating, the
run prompt will also be present.

ES Language

---·~-,.~- ----- -

Special M

Special Modes

There are a few special modes you can enter, some of which must be exited b
using regular ESL commands. These modes can be identified by the prompt displi
or lack thereof.

Byte Model Word Mode

Line Assembler

Memory Disassembler

Memory Mode

IIOMode

Transparent Mode

ES Language

The BYM and WDM commands select byte
word mode operation. The mode sel'
determines whether 8 or 16-bit data is use
displayed. If byte mode is set, most
commands use byte values, and the indire
operator reads a byte from the address g
The same is true of word mode.

You can temporarily override the byte and
address and data display prompts by keyir
the dot operators (.B and .W) after a comn
For example: DB.B means a block of memc
displayed in byte mode. DB.W means a blot
memory is displayed in word mode.

The 80186/188/Cl86/Cl88 line assembler l
single 16-bit address prompt. Exit by enterir
X or the END directive.

If initiated without a range argument, the me
disassembler (DIS) displays a full page of
leaving the cursor at the lower right comer c
screen. A <return> displays the next pa~
disassembled memory. A <space> causes
the next instruction to be disassembled.
other character terminates memory disassembl:

Memory mode has an address and data pr·
Exit by entering an X.

1/0 mode has an address prompt. Exit by en:
anX.

No characters are generated by the ES
Exit by entering the two character e
sequence (default is <esc> <esc>), or
(default <ctrl-z>).

Special Modes

Special Functions

Repeating Command Lines

8-24

Many diagnostic functions are designed to run
continuously. The message from the function will
inform you to enter the reset character (default is
<ctrl·Z>) to terminate the function.

It is easy to inadvertently create an indefinitely
repeating command that does not display
anything. Terminate such commands with the
reset character (default is <ctrl·Z>).

ES Language

Special Chara

Special Characters

These special characters can be changed through the SET menu. See SET in Secti
for information on how to change a special character.

<delete>,<backspace>

<ctrl-x>

<ctrl-r>

<ctrl-z>

<esc><esc>

<ctrl-s>

<ctrl-q>

ES Language

Either character deletes a character just en
on a command line.

Deletes an entire command line. Also stn
command repeated with * without rese
emulator.

Redisplays the current command line
hardcopy terminals).

The default reset character. <ctrl·Z> resets
emulator, stops emulation and/or clears an
condition. It does not clear or update emu
registers. It is also used to terminate ce
diagnostic functions. <ctrl-z> terminates
indefinitely repeating command.

The default transparent mode escape sequ
used to terminate transparent mode.

The XOFF character. When issued from
keyboard, the screen display stops scro
allowing you to view the information.

The XON character. Restarts the screen di
after an XOFF is issued.

Errors

Errors

The ES 1800 software generates two basic types of error messages. ES language
syntax and operational errors in a command line are indicated by a beep (BEL code).
The next line displayed contains a single ? underneath. and usually just after. the
place in your command line that caused the error. At the point the error is detected, the
remainder of the command line is discarded. For example. the DRT command is invalid
during emulation:

>WHE ACl THE BRK; RBK; DRT; DR

<BEL>

R>

?

The RBK command was executed, but the DR command was not. Whenever you see
an error message of this type. you can enter a single ?. The ES 1800 responds with a
text message explaining the error. For the above example:

R>?

ERROR #56 TRACE DATA IS INVALID DURING EMULATION

R>

These error messages are described in this section. The second type of error message
is caused by target hardware problems. There are various conditions that can occur in
the target that prevent the pod processor from operating. If these error messages are
displayed, the problem must be remedied before the ES 1800 can be used. The error
messages are quite explicit, such as

NO TARGET CLOCK or RESET ASSERTED.

Target hardware error messages are explained in Appendix A.

8-26 ES Language

)

ES Language Error Mes

ES Language Error Messages

1,2,3 EXPRESSION HAS NO :MEANINGFUL RELATION TO RES1
COMMAND. Often caused by entering symbols out of context. DJ
BRK are both legal, but when entered together as DR BRK, this
message is generated.

5

6

7

8

9

10

11

UNDEFINED SYMBOL OR INVALID CHARACTER DETEC
Usually caused by improper spelling.

CHECKSUM ERROR IN DOWNLOAD DAT A. The last record rec
was in error. Make sure that the format selected in the system se
the same as the format of the received data. Refer to download corr.
(DNL) for error handling during computer control.

BAD STATUS = ... RETURNED FROM EMULATOR CARD. C
Customer Service.

ARGUMENT IS NOT A SIMPLE INTEGER OR INTERNAL RA
Don't cares are not allowed in this context.

NO MORE OVERLAY MEMORY AVAILABLE. You have not c
the map or you are trying to map in more memory than is all
Contact Applied Microsystems Corporation for optional overlay m
expansion.

MULTIPLE-DEFJNED EVENT GROUP. Only one group IllJ

referenced in any event clause. Error is caused by trying to mix
register groups in an event clause (e.g., 2 WHEN ACl.3 THEN
would cause this error).

ILLEGAL ARGUMENT TYPE FOR EVENT SPECIFICATION.
the 8 event comparators may be used in the event portion
WHEN/THEN statement.

12,13 ARGUMENTS MUST BE A SIMPLE INTEGER. Don't care masl

14,15,16

17

ES Language

ranges not allowed.

OPERATION INVALID FOR THESE ARGU:MENT TYPES. l
caused by attempting arithmetic operations on incompatible vari~

(eg., (4 DC 9) + (mA 500 to 700)). (Same as error 23.)

SHJFT ARGUMENT CANNOT BE NEGATIVE. To shift a value
reverse direction, use the opposite shift operator, (>> or <<),
negative shift value.

ES Language. Error Messages

18 TOO MANY ARGU1\1ENTS IN LIST ... (9 MAX). When entering data
in memory or 1/0 mode, a list of only 9 values can be entered on a single
command line.

19 INVALID GROUP NUMBER ... (NOT IN 1-4). There are only four
event groups (1-4).

20,21,22,23 OPERATION INVALID FOR THESE ARGUMENT TYPES. Often
caused by attempting arithmetic operations on incompatible variables.

24

26

27

BASE ARGUMENT MUST BE A SIMPLE INTEGER. Argument should
be #0 to#16.

RANGE TYPE ARGU1'IBNT NOT ALLOWED AS DATA. Data can
only be expressed as masked values or integers.

ADDRESS ARGU1'IBNT MUST BE A SIMPLE INTEGER. Cannot use
ranges or masked values.

29 ILLEGAL DESTINATION - SOURCE TYPE MIX. Caused by trying to
store don't care data into a range variable or other similar operations.

30,31 RANGE START AND END ARGU1'IBNTS MUST BE SIMPLE
INTEGERS. Cannot use masked values or ranges.

32

33

RANGE END MUST BE GREATER THAN RANGE START. 6 len 1
and 10 to S are examples of invalid ranges.

RANGE START AND END ARGU1'IBNTS MUST BE SIMPLE
INTEGERS. Cannot use masked values or ranges.

34 READ AFTER WRITE-VERIFY ERROR. Data supposedly written to
memory during a download operation was read back as a different value.
The error message contains the locations and results of the comparison.

35 WARNING - DATA WILL BE LOST WHEN EMULATION IS
BROKEN. Caused by assigning values to CPU registers during
emulation. CPU registers are copied into internal RAM only when
emulation is broken. The RAM contents are copied into the processor
only when emulation is begun. The ES 1800 cannot access CPU registers
during emulation. Thus, once emulation has been started the DR
command shows the contents of the CPU registers as they were before
emulation was begun. Changes can be made to these values, but the
data will be rewritten when emulation is broken.

8-28 ES Language

\
)

-- ... J-"

36,37,38

39

40

41

42

43

44

45

ES Language Error M eJ

NO ROOM . . . BREAKPOINT CLAUSES TOO NUMEROU~
COMPLEX. Too many WHEN/fHEN clauses were entered. The m
of sentences cannot exceed the available RAM in ESL. This is dif
for each of the microprocessors supported.

INVALID GROUP NUMBER ... (NOT IN 1-4). There are on1)
groups in the Event Monitor System.

JLLEGAL SELECT VALUE. Variable cannot be assigned
specified. Check manual.

INCORRECT NUMBER OF ARGUMENTS IN LIST. Check com
argument list.

JLLEGAL SETUP SET VALUE. Consult the SET menu for legal'
(see SET in Section 7).

WHEN CLAUSE REDUCED TO NULL FUNCTION. Cause
constructs such as WHEN ACl AND NOT ACl.

INTERNAL ERROR . . . NULL SHIFTER FILE. Contact Cus
Service.

MAP CANNOT BE ACCESSED DURING EMULATION. The
hardware is constantly used by the emulating processor during emu
and cannot be accessed.

46 ARGtThffiNT MUST BE AN INTERNAL RANGE. External range
masked values not allowed.

47 16-BIT RANGE END LESS THAN START. Invalid range.

48 JLLEGAL MODE SELECT VALUE.

49,50 INVALID GROUP NUMBER ... (NOT IN 1-4). Must be 1through4

51 SAVE/LOAD INVALID ARGUMENT VALUE. Valid argu
include 0 through 5.

53 EEPROM WRITE VERIFY ERROR. Data in the EEPROM is v1
during the SA V operation. (The store operation is retried many
before this error is generated.) EEPROMs have a finite write cycl
The EEPROM in your ES 1800 is warrantied for one year. C
Customer Service.

54 ATTEMPT TO SAVE/LOAD DURING EMULATION. These comi
may on1y be used while in the pause mode.

ES Language

ES Language Error Messages

55 EEPROM DATA INVALID DUE TO INTERRUPTED SAVE. Previous
SA V command was interrupted by a reset or power off.

56 TRACE DATA IS INVALID DURING EMULATION. Viewing of the
trace is only allowed during pause mode.

57 (INVALID GROUP NUMBER (NOT 1-4). Must use 1 - 4.

58 IMPROPER NUMBER OF ARGUMENTS. Check command argument
list.

59 ARGUMENT MUST BE AN INTERNAL RANGE. External ranges and
masked values not allowed.

60 ARGUMENT MUST BE A SIMPLE INTEGER. Ranges and don't care
masks not allowed.

61 IMPROPER NUMBER OF ARGUMENTS. Check command argument
list.

62 CANNOT STORE Tills v ARIABLE DURING EMULATION. Must be
in pause mode.

63 ILLEGAL ARGUMENT TYPE.

64 ARGUMENT TOO LARGE. Caused by entering DRT argument that
includes numbers greater than #2045.

65 · ILLEGAL RANGE.

66 STATUS CONSTANTS CANNOT BE ALTERED. System constants
(i.e., BYT, OVL) cannot be assigned values.

67 TOO MANY WHEN CLAUSES. You have tried to enter more
WHEN/THEN clauses than the Event Monitor System can handle.

68

70

INVALID DATA FORMAT FOR SYMBOLS. Must use Extended
Tektronix Hex.

CANNOT INITIALIZE VECTORS DURING EMULATION. LDV,
RNV, and RBV can only be entered in pause mode.

71 UNKNOWN EMULATOR ERROR. Call Applied Microsystems.

72 INCOMPATIBLE EEPROM DATA. Previous data saved to EEPROM
was not from an 8018X or 80Cl8X ES 1800 system.

8-30 ES Language

74

75

76

78,79,80

81

82

83

87

88

ES Language Error Mes~

COMMAND INVALID DURING EMULATION. Must be in I
mode.

INVALID RECORD TYPE. Download routine received invalid n
type code.

NO SYMBOLIC DEBUG. The symbolic debug option is not install1
your system. Cannot assign symbol and section values.

TOO MANY SYMBOLS. Symbols exceeded available RAM. I
symbols before downloading again.

SYMBOL OR SECTION PREVIOUSLY DEFINED. An attempt
made to redefine an existing symbol or section. Section definitions c;
overlap. Symbols should be purged before downloading.

SYMBOL NAME IN USE. Symbol name cannot be used more than
You must delete a section before assigning it a new value.

TYPE CONFLICT WITH DEFINED SYMBOL. Please refe
Extended Tekhex specification, in Appendix B.

SECTION TABLE FULL. Too many symbolic section names have
defined.

INVALID ARGUMENT SIZE. Operand doesn't fit into . destir
register.

89 INVALID ADDRESSING MODE.

90 ARGUMENT OUT OF RANGE. Usually caused by reference
"FAR" location without declaring "FAR."

91 INVALID TRAP VECTOR NUMBER.

93 INVALID CONTROL REGISTER.

94 ARGUMENT NOT SYMBOLIC. Requires a symbolic argument.

255 UNKNOWN ERROR.

ES Language

Appendix A

Table of Contents

ERROR MESSAGES

Target Hardware Error Messages .. A-1

Emulator Hardware Error Messages .. A-4

Target Software Error Messages ~ A-5

Appel1{,

ERROR MESSAG

Error messages are divided into 5 categories:

1. Target hardware

2. Emulator hardware

3. Target software

4. ESL (see Section 8)

5. Software debugger (see appropriate software manual)

Within this section, errors are arranged in alphabetical order by category.

Target Hardware Error Messages

Hold Acknowledge/Bus Granted

No Bus Cycles

Error Messages

This message is displayed when a hold acknowledge has
asserted for longer than 2.2 ms. When the microproc
regains control of the bus, the message is removed.
message is caused by one of two conditions: When a :
(direct memory access) controller takes over the bu
asserting the hold line, or when the microprocessor is runni
a multiprocessor environment. This message is generall
an error message but rather a statement of what the pro<
is doing.

This error message indicates that no ALE's (Address
Enable) were detected for at least .7 microseconds or l<
and no other error conditions are found. If your target I
waits for interrupts for longer than this, you can chang
number of milliseconds by changing the value of the
register.

When no ALE's are detected the controller checks for
fault conditions, including proper target VCC, a functional 1

and whether the processor is halted, waiting, reset or the 1
granted. If any of these other conditions exist ther
appropriate message for that condition is displayed. If no
fault condition is found, the NO BUS CYCLES messa
displayed.

Target Hardware Error Messages

A-2

No Clock 8018X microprocessors must have a clock frequency within the
range of 1.2 MHz to 9 MHz, and 80C18X microprocessors must
be within 0.5 MHz to 16 MHz or the message NO CLOCK is
displayed.

If there is no clock from the target, the user is given the option
of selecting an internal clock when the ES 1800 is powered up
(see CK in section 7).

However after an external clock has been selected and the NO
CLOCK message is displayed, the only way to return to an
internal clock is to reset the system.

Processor Halted A halt (HLT) instruction has ·been executed and the
microprocessor has remained halted for greater than 2.2 ms.
The microprocessor is in a run state and commands can still be
entered at the keyboard.

It is not possible to break on a HL T instruction or status. If
you want to break on the HL T instruction it is necessary to set
a breakpoint at an address one instruction before the HL T.

Normally when a HL T instruction is executed, the
microprocessor waits for a reset or an interrupt to bring it out of
that condition. When single stepping, the emulator uses an
NMI to return to its internal memory space. Therefore when a
HL T instruction is encountered it is executed and the
processor goes on to the next instruction because the
microprocessor was satisfied by the NMI that took it out of the
HL T condition.

Processor Waiting The microprocessor is waiting for a RDY (ready) to be
returned. This message displays only if the microprocessor has
been waiting for greater than 2.2 ms. When the condition has
been corrected the message is removed.

It is necessary to use target RDY when overlaying dynamic
RAM that uses the RDY line to halt microprocessor activity
during refresh cycles. When a refresh cycle occurs on many
systems the RDY line is held in the NOT RDY state until the
refresh is complete. If an internal RDY is used, the
microprocessor will not honor the REFRESH cycles and
dynamic memory will be corrupted. The choice of internal or
external RDY while using overlay memory is made by using the
RDY switch.

Error Messages

Reset Asserted

Error Messages

Target Hardware Error Mes.

When selecting internal or external RDY for areas overl
that particular RDY is selected for all overlay. It is not pm
therefore to overlay both dynamic RAM and nonexistent l
at the same time.

This indicates that a reset from the target has been asserte
greater than 2.2 ms. When the reset is released ther
message is removed. However, if the reset is less than 2.
the message is not displayed. Using an oscilloscope, verif)
the reset line is in fact being held reset. There are
operating systems that may normally hold the microproc
reset until needed. If the reset line is not being held reset '
probe tip, unplug the emulator and .verify the condition il
NULL TARGET mode.

Emulator Hardware Error Messages

Emulator Hardware Error Messages

A-4

Pod CPU Not Initialized
When a reset occurs, (power up, <ctrl-z>, or RST) the
controller and the emulator begin an initialization routine to
establish communication. If this initialization routine fails to
complete, this message is displayed. This is an internal pod,
emulator, controller board problem. Correct the problem by
reseating boards, cycling power, and verifying that the
microprocessor is correctly installed in the pod, or replacing the
microprocessor in the pod.

Pod CPU Not Responding

System Reset Error

Whenever a STP command is executed, or a memory command
is executed during emulation, the ES language software looks to
see if any errors occurred during execution of the command. The
emulator then checks if the command completed. If it did not
complete the emulator checks to see if the microprocessor is
still running or if there is an error condition. If an error condition
exists then the appropriate message is displayed. However, if
the microprocessor is still running and no error conditions exist
then the message POD CPU NOT RESPONDING is
displayed. Correct the problem by resetting the system and
repeating the command.

When a reset (power up, <ctrl-z>, or RST) has been executed
from the emulator controller and the emulator board does not
acknowledge this, then a SYSTEM RESET ERROR message
displays. This situation is an internal pod, emulator, or
controller board problem. Try reseating boards, reseating pod
cables, and cycling power.

Error Messages

Target Software Error Mes~

Target Software Error Messages

Memory Access Violation
The target program has attempted to access an area of t
mapped as illegal (ILG). DM assists in determining v
areas are mapped as illegal. DRT helps determine when
program was making the access.

Memory Write Violation

Error Messages

If the target program attempts to write to the RAM overli
an area that is mapped READ ONLY, this error occurs.
the DM command and the raw trace (DRT) to look for
cycles. DM assists in determining which areas are mappe
illegal. DRT helps determine where the program was rru
the access.

Appendix B

Table of Contents

SERIAL DATA FORMATS

MOS Technology Format ... B-2

Motorola Exorcisor Format ... B-3

Intel Intellec Format ... : B-4

Signetics/ Absolute Object File Format ... B-5

Tektronix Hexadecimal Format .. B-6

Extended Tekhex Format ... B-7
V ariable-1.ength Fields ... B-8

Data and Termination Blocks ... B-8
Symbol Blocks .. B-9

Motorola S-Record Format .. B-14

S-Record Content. ... B-14

S-Record Types•.. B-15

Creation of S-Records ... B-16

Intel Hex Format ... B-19

Symbol Record ... B-19

Segment Base Address Record ... B-19

Data Record .. B-20

Starting Address Record ... B-21

Apperu

SERIAL DATA FORMA

In order to download a program into target memory, the ES 1800 needs some w;
receive this data in an intelligible format. This appendix describes the downlo:
formats which the ES 1800 understands.

Serial Data Formats

MOS Technology Format

MOS Technology Format

Figure B-1: Specifications for MOS Technology Data Files

Copyright 1983, Data I/0 Corporation; reprinted by permission.

INPUT
DATA RECORD END-OF-FILE RECORD

_ ..
.

START CHARACTER
.

START CHARACTER . .
B BC • Byte Count. The hexadecimal number of data B Byte Count BC - 00 1n End of File Record
c bytes 1n the record c
A R
A A.AAA - Address of first data byte 1n record AAAA R Record Count
A 1n hexadecimal notation only R
A R

H c
H HH - One data byte in hexadecimal notation c Checksum
H c
H c . . .

8 . .
OUTPUT

c CCCC • Checksum. Two byte binary summation of NOTES c preceding bytes 1n record (1nclud1ng address. and
c data bytes) 1n hexadecimal notation 1) Number of bytes per record is variable. See Table 3.1 c 2) Each line ends with nonpnnt1ng line feed. carnage return This space can be used for line feed. carnage return or and nulls.

comments

2 He• c"''"'"' - 1 .,.. "\ °"" -'" J . (Beginning of next record)

lr""- """""""""""""""""""""""""""""""""""""''' } BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCC
LEGEND BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCC

• Start Character
BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCC
BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCC

BC - Byte Count (BC> 001n Record. BC - End of File Record) BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCC
A.AAA - Address Field BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCC
cc cc - Checksum of Record BCRRRRCCCC

RRRR • Record Count
HH - Two Hexadecimal D1g1ts (0:9. AD)

B-2 Serial Data Formats

Motorola Exorcisor Fo.

Motorola Exorcisor Format

Figure B-2: Specifications/or Motorola Exorciser/16-BM Data Files/

Copyright 1983. Data JJO Corporation; reprinted by permission.

INPUT
DATA RECORD

--v

s
1

B
c
A
A
A
A

H
H
H
H . . -
c
c

s
1

START CHARACTERS

BC - Byte Count. The number of data bytes plus 311 for
checksum and 2 for address) 1n hexadecimal notation

AAAA • Address of first date byte in record. AAAA in
hexadecimal notation only

HH • One data byte 1n hexadecimal notation

CC• Checksum. One's complement of binary summation
of preceding bytes 1n record (including byte count,
address and data bytes) in hexadecimal notation

This space can be used for line feed, carnage return or
comments

(Beginning of next record)

LEGEND
SO • Optional Record Start Characters
S 1 • Start Characters
BC • Byte Count

[(Date Butes/Record + 3]
AAAA - Address of First Data Byte
HH - Two Hexadecimal D1g1ts (0-9, A-F)
CC - Checksum of Record (one byte)

Serial Data Formats

SIGN ON RECORD OPTIONAL m SO Start characters of sign on record. Except
for start characters SO record has same format as
data record

END OF FILE RECORD

s
9

START CHARACTERS

B
c

Byte Count BC - 03 in End of File Record

A
A Address
A
A

c
C Checksum

OUTPUT
NOTES

1) Number of bytes per record 1s variable. See Table 3.1.
2) Each line ends with nonprinting line feed, carnage return

and nulls
3) Sign on record may precede data

2 Hex characters 1 byte \ Data Record7

S1BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC}
S1BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC
S1BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC
S1BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC
S1BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC
S9BCAAAACC

Intel Jntellec Format

Intel lntellec Format

Figure B-3: Specifications for Intel Intellec/8/MDS Data Files/

INPUT
DATA RECORD END OF FILE RECORD

r---1 r----1
ST ART CHARACTER START CHARACTER . .

B BC - Byte Count. The hexadecimal number of data bytes B Byte Count. BC - 00 1n End of File Record c 1n the record c
A A
A AAAA - Address of first date byte 1n record AAAA in A Address
A hexadecimal notation only A
A A

T
T T TT - Record Type (00)
T TT Record Type (01)

H
H HH - One data byte in hexadecimal notation

.
~ . I' .

CC - Checksum Negation (two's complement) of binary OUTPUT
c summation of preceding bytes 1n record (including byte

NOTES c count. address. and data bytes) 1n hexadecimal notation

;- This space can be used for line feed. carriage return or 1) Number of bytes per record is variable. See Table 3.1.
comments 2) Each line ends with nonprint1ng line feed, carriage return . and nulls .

LEGEND
2 H~ ""'""'" ' by<e "_ °"" ''"~7
BCAAAATTHHHHH~HHHHHHHHHHHHHHHHHHHHHHHHHHCC

BCAAAATTHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC}
- Start Characters BCAAAATTHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC

BC - Byte Count (Date Bytes/Record) BCAAAATT
AAAA - Address Field
TT - Record Type
H • One Hexadecimal Digit (0-9, A-F)
cc - Checksum of Record

B-4 Serial Data Formats

Signetics/Absolute Object File Fo.

Signetics/Absolute Object File Format

Figure B-4: Specifications for Signetics/Absolute Object Data Files

Copyright 1983, Data I/O Corporation; reprinted by permission.

INPUT
DATA RECORD

......... -. .
A
A
A
A

B
c

A
c

H
H .

L-'.....-'

ST ART CHARACTER

AAAA - Address of frrst date byte rn record AAAA in
hexadecrmal notatron only

BC• Byte Count The hexadecimal number of data bytes
in the record

AC • Address Check. Every byte rs exclusive 0 Red with
the previous byte. then rotated left one bit

HH • One data byte in hexadecimal notation

DC • Data Check. Every byte rs exclusive 0 Red with the
previous byte. then rotated left one brt

Thrs space can be used for lrne feed. carnage return or
comments

(Beginning of next record)

LEGEND

- Start Characters
AAAA • Address Freid
BC • Byte Count (Date Bytes/Record)
AC - Address Check Checksum of address and byte count
HH - Two Hexadecimal Drgrts (0-9, A-F)
DC • Data Check. Checksum of data rn record

Serial Data Formats

END OF FILE RECORD

~

ST ART CHARACTER .
A
A Address
A
A

B
c

Byte Count BC • 00 in End of File Record

~

OUTPUT

NOTES

1 ! Number of bytes per record rs variable. See Table 3.1.
2 Each hne ends wrth nonprinting lrne feed. carnage return

and nulls

2 HEX characters 1 byt7 Data Records J
AAAABCACHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC}~
AAAABCACHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC
AAAABCACHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC
AAAABCAC

Tektronix Hexadecimal Format

Tektronix Hexadecimal Format

Figure B-5: Specifications/or Tektronix Hexadecimal Data Files

Copyright 1983, Data l/O Corporation; reprinted by permission.

INPUT
DATA RECORD ABORT RECORD ---- f'-/1

I I - Start Character
I

A
I I I - Two Start Characters

A AAAA • Address of first date byte 1n record x
A (hexadecimal notation) x
A . XX. X - Arbitrary string of ASCII characters

B BC - Byte Count The hexadecimal number of data bytes
c 1n the record x

CC - Checksum. Eight bit sum of the four bit Carriage Return c hexadecimal values of the six digits that make up the
c address and byte counts (hexadecimal notation)

H ~
H HH - One data byte 1n hexadecimal notation --- END OF FILE RECORD

..... -:-_,.. . .
START CHARACTER . .

CC - Checksum. Eight bit sum modula 256. of the four A
c bit hexadecimal values of the d1g1ts that make up the A AAAA Transfer Address
c data bytes A

A
Carnage Return

B Byte Count BC - 00 1n End of File Record
I (Beginning of next record) c

CC - Checksum. Eight bit sum of the four bit
c hexadecimal values of the six d1g1ts that make up
c the transfer address and the byte count

OUTPUT (hexadecimal notation)

NOTES Carnage return

1) Number of bytes per record 1s variable. See Table 3.1.
i.-........J 2) Each lrne ends with nonprrnt1ng line feed. carnage return

and nulls
LEGEND

2 "" '""'ct'" ' ""' \ ""' "~"'7 • Start Characters
AAAA - Address Field

IAAAABCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC } BC - Byte Count (Date Bytes/Record)
IAAAABCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC cc • Checksum of Record
/AAAABCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC HH - Two Hexadecimal D1g1ts (0-9. A-F)
IAAAABCCC~ x • Any ASCII Character

End of File Record

B-6 Serial Data Formats

Extended Tekhex Fe

Extended Tekhex Format

Copyright 1983, Tektronix; reprinted by permission

Extended Tekhex uses three types of message blocks:

1. The data block contains the object code.

2. The symbol block that contains information about a program section ailt
symbols associated with it. This information is only needed for sym
debug.

3. The tennination block contains the transfer address and marks the end o
load module.

NOTE

Extended Tekhex has no specially defined abort block. To abort a
formatted transfer, use a Standard Tekhex abort block.

Each block begins with a six-character header field and ends with an end- oJ
character sequence. A block can be up to 255 characters long, not counting the en
line character. The header field has the format shown in the following table.

Item

%

Block Length

Block Type

Checksum

Serial Data Forma.ts

Number
of ASCII
Characters

1

2

1

2

Description

A percent sign specifies that the block
Extended Tekhex format.

The number of characters in the bl0<
two-digit hex number. This count doe:
include the leading% or the end-of-line.

6 = data block
3 = symbol block
8 = termination block

A two-digit hex number representing
sum, mod · 256, of the values of all
characters in the block, except the le'
%, the The following table gives the v
for all characters that may appea:
Extended Tekhex message blocks.

Extended Tekhex Format

Character Values for Checksum Computation

CHARACTERS VALUES (DECIMAL)

0 .. 9 0 .. 9

A.2 10 . .35

$ 36

% 37

. (period) 38

_(underscore) 39

a .. z 40-65

Variable-Length Fields

In Extended Tekhex, certain fields may vary in length from 2 to 17 characters. This
practice enables you to compress your data by eliminating leading zeros from numbers
and trailing spaces from symbols. The first character of a variable-length field is a
hexadecimal digit that indicates the length of the rest of the field. The digit 0 indicates
a length of 16 characters.

For example, the symbols START, LOOP, and KLUDGESTARTSHERE are
represented as SSTART, 4LOOP, and OKLUDGESTARTSHERE. The values 0,
lOOH, and FFOOOOH are represented as 10, 3100, and 6FFOOOO.

Data and Termination Blocks

If you do not intend to transfer program symbols with your object code, you do not need
symbol blocks. Your load module can consist of one or more data blocks followed by a
termination block. The following table gives the format of a data block and a
termination block.

B-8 Serial Data Formats

Item

Header

Load Address

Object

Header

Transfer

Symbol Blocks

Extended Tekhex Ft.

Extended Tekhex Data Block Format

Number
of ASCII Description
Characters

6 Standard header field
Block Type = 6

2 to 17 The address where the object code is 1

loaded: a variable-length number.

2n n bytes, each represented as two hex digit

Extended Tekhex Termination Block

6

2 to 17

Standard header field
Block type = 8.

The address where program execution
begin: a variable-length number.

A symbol used in symbolic debug has the following attributes:

1. The symbol itself: 1 to 16 letters, digits, dollar signs, periods, a percent
or symbolize a section name. Lower case letters are convened to
case when they are placed in the symbol table.

2. A value: up to 64 bits (16 hexadecimal digits).

3. A type: address or scalar. (A scalar is any number that is not an adc
An address may be further classified as a code address (the address
instruction) or a data address (the address of a data item). As syn
debug does not currently use the code/data distinction, the address/
distinction is sufficient for standard applications of Extended Tekhex.

4. A global/local designation. This designation is of limited use in a
module, and is provided for future development. If the global/local distil
is not important for your purposes, simply call all your symbols global.

5. Section membership. A section may be thought of as a named ar
memory. Each address in your program belongs to exactly one sectio:
scalar belongs to no section.

Serial Data Formats

Extended Tekhex Format

The symbols in your program are conveyed in symbol blocks. Each symbol block
contains the name of a section and a list of the symbols that belong to that section.
(You may include scalars with any section you like.) More than one block may contain
symbols for the same section. For each section. exactly one symbol block should
contain a section definition field, which defines the starting address and length of the
section.

If your object code has been generated by an assembler or compiler that does not deal
with sections, simply define one section called, for example, MEMORY, with a starting
address of 0 and a length greater than the highest address used by your program; and
put all your symbols in that section.

The following table gives the fonnat of a symbol block. Tables that follow give the
formats for section definition fields and symbol definition fields, which are parts of a
symbol block.

B-10

Item

Header

Section Name

Extended Tekhex Svmbol Block Format

Number
o/ASCll
Cbaracters

6

2 to 17

Description

Standard header field
Block Type = 3

The name of the section that contains the
symbols defined in this block: a variable
length symbol.

Section Definition 5 to 35 This field must be present in exactly one
symbol block for each section. This field may
be preceded or followed by any number of
symbol definition fields. The table on the
next page gives the fonnat for this field.

Symbol 5 to35 Zero or more symbol definition fields as
described in the next table.

Serial Data Formats

Item

0

Base

Length

Item

Type

Symbol

Value

Extended Tekhex Fl

Extended Tekhex Symbol Block: Section Definition Field

Number
of ASCII
Characters

1

2 to 17

2 to 17

Description

A zero signals a section definition field.

The starting address of the Ad
section: a variable-length number.

The length of the section: a variable-le
number, computed as 1 + (high ad
base address).

Extended Tekhex Symbol Block: Svmbol Definition Field

Number
of ASCII
Cbaracters

1

2to17

2to17

Description

A hex digit that indicates the globalJ
designation of the symbol, and the tYJ
value the symbol represents:
1 = global address
2 = global scalar
3 = global code address
4 = global data address
5 = local address
6 = local scalar
7 = local code address
8 = local data address

A variable-length symbol.

The value associated with the symb
variable-length number.

The following figures show how the preceding tables of information might be encod
Extended Tekhex. The information for the Extended Tekhex Symbol Block illustl
could be encoded in a single 96-character block. It is divided into two block
purposes of illustration.

Serial Data Formats

Extended Tekhex Format

Figure B-6: Extended Tekhex Data Block

---- Block length: 1 SH = 21

J Checksum: 1 CH = 28 = 1+5+6+3+1 +0+0+0+2+0+2+ ...

Object Code: 6 bytes

i
% ~6R3100020202020201

LJ

L Load address: 1 OOH

----Block type: 6

Header character

Figure B-7: Extended Tekhex Termination Block

~--- Block length: 8

j Checksum: 1 AH = 26 = 0+8+8+2+8+0

n n
%0881A280
~ LJ

l Transfer address: 80H

---- Block type: 8

----- Header character

B-12 Serial Data Formats

)

Extended Tekhex F01

Figure B-8: Extended Tekhex Symbol Block

r----Block length: 37H = 55

'

Checksum: 60H = (3+7+3+8+28+31+12+28+29+ ...)mod 256

Section definition field: ' r- base address= 40H; length• C6H

nn 1 1
%373608SVCSTUFF02402C622CR1D140PEN25014READ25815WRITE260

f°37: C188SVCSTUFF15iCLOSE26814EXIT27029BUFLENGTH28013BUF278

t ... ____ Section name

...__ _______ Block type: 3

..._ _________ Header character

Serial Data Formats

Motorola S-Record Format

Motorola S-Record Format

S-Record Content

When viewed by the user, S-records are essentially character strings made of several
fields which identify the record type, record length, memory address, code/data, and
checksum. Each type of binary data is encoded as a 2-character hexadecimal number:
the first character representing the high-order 4 bits, and the second the low-order 4
bits of the byte.

The 5 fields which comprise an S-record are: type, length, address, code/data and
checksum.

The fields are composed as follows:

Field Printable

type

record length

address

code/data

checksum

Characters

2

2

4, 6, or 8

0-2n

2

Contents

s-record type -- SO, S l, etc.

The count of the character pairs in the
record, excluding the type and record length.

The 2-, 3-, or 4-byte address at or which
the data field is to be loaded into memory.

From 0 to n bytes of executable code,
memory-loadable data, or descriptive
inf ormationFor compatibility with
teletypewriters, some programs may limit
the number of bytes to as few as 28
(56 printable characters in S-record).

The least significant byte of the one's
complement of the sum of the values
represented by the pairs of characters
making up the record length, address, and
the code/data fields.

Each record may be terminated with a CR/LF/NULL. Additionally, an S-record may
have an initial field to accommodate other data such as line numbers generated by some
time-sharing systems.

Accuracy of transmission is ensured by the record length (byte count) and checksum
fields.

B-14 Serial Data Formats

Motorola S-Record Fe

S-Record Types

Eight types of S-records have been defined to accommodate the several needs o
encoding, transportation, and decoding functions. The various Motorola up
download, and other file-creating or debugging programs, utilize only those S-re<
which serve the purpose of the program. For specific information on which S-re1
are supported by a particular program, the user's manual for that program mU!
consulted.

An S-record format module may contain S-records of the following types:

SO The header record for each block of S-records. The code/data field
contain any descriptive information identifying the following block o
records. Under VERSAdos, the resident linker's IDENT commaiic
be used to designate module name, version number, revision nur
and description information which will make up the header record.
address field is normally zeros.

Sl A record containing code/data and the 2-byte address at whicl
code/data is to reside.

S2 A record containing code/data and the 3-byte address at whicl
code/data is to reside.

S3 A record containing code/data and the 4-byte address at whicl
code/data is to reside.

SS A record containing the number of Sl, S2, and S3 records transmitt
a particular block. This count appears in the address field. There
code/data field.

S7 A termination record for a block of S3 records. The address field
optionally contain the 3-byte address of the instruction to which cc
is to be passed. There is no code/data field.

S8 A termination record for a block of S2 records. The address field
optionally contain the 3-byte address of the instruction to which cc
is to be passed. There is no code/data field.

S9 A termination record for a block of S 1 records. The address field
optionally contain the 2-byte address of the instruction to which cc
is to be passed. Under VERSAdos, the resident linker's Er'

Serial Data Formats

Motorola S-Record Format

command can be used to specify this address. If not specified. the first
entry point specification encountered in the object module input will be
used. There is no code/data field.

Only one termination record is used for each block of S-records. S7 and S8 records are
usually used only when control is to be passed to a 3- or 4- byte address. Normally,
only one header record is used, although it is possible for multiple header records to
occur.

Creation of S-Records

S-record-format programs may be produced by several . dump utilities, debuggers,
VERSAdos' resident linkage editor, or several cross assemblers or cross linkers. ON
EXORmacs, the Build Load Module (MBLM) utility allows an executable load module
to be built from S-records; and has a counterpart utility in BUILDS, which allows an S
record file to be created from a load module.

Several programs are available for downloading a file in S-record format from a host
system to an 8-bit microprocessor-based or 16-bit microprocessor-based system.
Programs are also available for uploading an S-record file to or from an EXORmacs
system.

Example

Shown below is a typical S-record-format module, as printed or displayed:
S0060000484421B

Sll30000285F245F2212226A00042429000082337CA

Sll3001000020000800082629001853812341001813

Sll3002041E9000084E42234300182342000824A952

Sl07003000144Ed492

S9030000FC

The module consist of one SO record, four S 1 records, and an S9 record.

B-16 Serial Data Formats

Motorola S-Record Fe

The SO record is comprised of the following character pairs:
so

06

00+

00

48

44+

52

lB

s-record type so, indicating that it
header record.

Hexadecimal 06 (decimal 6), indica
that six character pairs (or ASCII by
follow.

Four-character 2-byte
zeros in this example.

ASCII H, D, and R - "HDR".

!?he checksum.

address fi

The first S 1 record is explained as follows:
Sl

13

00+

00

S-record type Sl, indicating that it
code/data record to be loaded/verifie1
a 2-byte address.

Hexadecimal 13 (decimal 19) , indica
that 19 character pairs, representinc
bytes of binary data, follow.

Four-character 2-byte address fi
hexadecimal address

0000, where the data which follows i
be loaded.

The next 16 character pairs of the first Sl record are the ASCII bytes of the 1

program code/data. In this assembly language example, the hexadecimal opcod
the programs are written in sequence in the code/data fields of the S 1 records:

OPCODE

285F

245F

2212

226A0004

24290008

237C

0

2A

Serial Data Formats

INSTRUCTION

MOVE.L (A7) +,A4

MOVE.L (A7) +,A2

MOVE.L (A2) ,Dl

MOVE.L 4 (A2) ,Al

MOVE.L FUNCTION(Al),D2

MOVE.L #FORCEFUNC,FUNCTION(Al)

(The balance of this code is continue
the code/data fields of the remainin
records, and stored in memory locc
0010, etc.)

The checksum of the first Sl record.

Motorola S-Record Format

The second and third Sl records each also contain $13 (19) character p~s and are
ended with checksums 13 and 52 respectively. The fourth Sl record contains 07
character pairs and has a checksum of 92.

The S9 record is explained as follows:
S9

03

00

FC

S-record type S9, indicating that it is a
termination record.

Hexadecimal 03, indicating that three
character pairs (3 bytes) follow.

The address field, zeros.

The checksum of the S9 record.

Each printable character in an S-record is encoded in hexadecimal (ASCII in this
example) representation of the binary bits which are actually transmitted.

B-18 Serial Data Formats

Intel Hex Fe.

Intel Hex Format

This format consists of symbol table information. data specifications for lo:
memory, a module starting address record (optional) and a terminator record.
format contains no information regarding the initial contents of any registers other
CS and IP: therefore, all other registers (in particular segment registers must be le
explicitly by the programmer).

The records in the file appear in this order:

$$

$$

symbol records - 0 or more

data records and segment base address records - 0 or more,
any order starting address record (optional) terminator record

Symbol Record

As many symbol records as needed may be contained in the object module. A vm
number of symbols per line is generated, depending on the lengths of the sym
records are packed as tight as may be. A module may contain no symbol recor<
sample record is shown below.

APPLE OOOOOH LABELl ODOC3H MEM OFFFFH ZEEK 01947B F:IFTB OOOOSB

Segment Base Address Record

This record defines the segment base address relative to which the load address
subsequent data records are specified. The address in this record is 16 bits, whic
the upper bits of a 20-bit address; the lowest 4 bits are presumed to be zero.
segment base address has nothing to do with any of the Loader segment addrc
base addresses, load addresses, etc. Segment base addresses are generated inte1
by the Loader, are not under the user's control, and are generally of no concern t
user. The segment base address is presumed to be zero before any segment
address records are encountered.

Serial Data Formats

Intel Hex Format

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 0 0 0 0 0 2 address checksum

Column 1 contains":", indicating the start of a record.

Column 2 and 3 contain "02", indicating there are 2 bytes of data in this record (the
address).

Columns 4, 5, 6 and 7 contain "0000".

Columns 8 and 9 contain "02", identifying this record as a segment base address record.

Columns 10, 11, 12 and 13 contain the segment base address. Column 10 is the most
significant digit and column 13 is the least significant.

Columns 14 and 15 contain a checksum, calculated as described below under Data
Record.

Data Record

This record specifies data bytes that are to be loaded into memory.
l 2 3 4 5 6 7 8 9 10 11 .•. 41 42 43

byte load 0 0 data data ... data checksum

count address 1 2 n

Column 1 contains ": ", indicating the start of a record.

Column 2 and 3 contain the count of the number of data bytes contained in this record.
Column 2 is more significant.

Columns 4, 5, 6 and 7 contain the address at which the first data byte is to be loaded.
This address is a 16-bit offset from the current segment base address (see segment
base address record). Column 4 is most significant, and column 7 is least significant.

Columns 8 and 9 contain "00", identifying this record as a data record.

Columns 10 through 41 (or fewer if not 16 data bytes) contain up to 16 bytes of data.
Each byte occupies two columns, the leftmost being the more significant digit. The
leftmost byte is loaded into the address specified by columns 4 through 7 (plus the
segment base address); subsequent bytes are loaded into subsequent (higher)
addresses.

The last two columns contain a checksum. This is the two's complement of the sum
(modulo 256) of all bytes in the record (except the colon and the checksum itself).

B-20 Serial Data Formats

)
•'

Intel Hex Po

Starting Address Record

This record specifies the starting execution address of the object module. It con
startup values for the CS and IP registers.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

: 0 4 0 0 0 0 0 3 cs checksum

Column 1 contains":", indicating the start of a record.

Column 2 and 3 contain "04", indicating there are 2 bytes of data in this record (th1
and JP values).

Columns 4, 5, 6 and 7 contain "0000".

Columns 8 and 9 contain "03", identifying this record as a starting address record.

Columns 10, 11, 12 and 13 contain the 16 bit value to be loaded into CS.

Columns 14, 15, 16 and 17 contain the 16 bit value to be loaded into JP.

Columns 18 and 19 contain a checksum, calculated as described above under
Record.

Serial Data Formats

Appendix C

Table of Contents

POD JUMPER DEFINITIONS

8018X Pod Jumpers .. C-1

Accessing the Jumpers .. C-1

Setting the Jumpers ... C-1

80C18X Pod Jumpers ... C-3

Accessing the Jumpers .. C-3
Setting the Jumpers ... C-3

80C18X Pod Jumper JP3 .. C-4
80C 18X Pod Jumper JP4 .. C-5

AppeM

POD JUMPER DEFINITIOI

There are jumpers in both the 8018X pod and 80C18X pod which can be change
specify choices in clock and chip select circuitry.

8018X Pod Jumpers

The five jumpers in the 8018X pod control whether chip selects are allowed tc
target in pause mode and whether the target clock should bypass the conditic
circuitry in the pod.

Accessing the Jumpers

To access the jumpers, remove the screws which hold the pod cover on, and
remove the pod cover. The jumper and pin numbers are written on the board. Pusl
appropriate jumper to the setting you want.

Setting the Jumpers

There are five jumpers on the 80186 pod.

JPl

JP2

Pod Jumper Definitions

Determines the state of the DT/R- signal being asserted ti
target during pause mode.

JPl 1-2

JPl 2-3

DT/R- asserted low to target d
pause mode.

DT/R- asserted high to target d
pause mode.

Determines whether or not chip selects (UCS, LCS, MC
PCS0-1) are allowed out to the target in pause mode.

JP2 1-2

JP2 2-3

Allows chip selects to go out to taq
pause mode.

Allows chip selects to go out to 1

ONLY in run mode or Peek/Poke eye

8018X Pod Jumpers

JP3

JP4andJPS

Determines whether or not chip selects (PCS2-6) are allowed
out to the target in pause mode.

JP3 1-2

JP3 2-3

Allows chip selects to go out to the
target in pause mode.

Allows chip selects to go out to the
target ONLY in run mode or peek/poke
cycles.

Determines whether or not the target clock bypasses the clock
conditioning circuitry in the pod. The conditioning circuitry may
be bypassed if the target clock is generated by an IC in order to
decrease the "clock-in to clock-out". delay. H the the clock is
generated by a crystal the conditioning circuitry should be used.

JP4 1-2 with JPS 1-2 All of target clock conditioning circuitry
is used.

JP4 1-2 with JPS 2-3 Target clock bypasses part of the clock
circuitry but still uses US7 (74HC04).

JP4 2-3 with JPS 1-2 All of clock conditioning circuitry is
bypassed. Target clock goes through Kl
relay and directly to the pod CPU.

JP4 2-3 with JPS 2-3 Invalid

C-2 Pod Jumper Definitions

80CJ8X PodJw

80C18X Pod Jumpers

The 80Cl8X probe is shipped configured for 3rd harmonic crystal clock generation
the circuit layout described in the Intel manual for the 80Cl86/Cl88. Jumpers JP:
JP2 may be reconfigured to allow slower clocks (}CT AL fundamental) or target s~
generated clock input.

Accessing the Jumpers

To access the jumpers, remove the snap-on pod cover. The jumper numbers are w
on the board. Place the shunt on the appropriate jumper setting.

Setting the Jumpers

JP2

JPl

Use to select external crystal or target system generated clock

Significant only when external crystal is seclected by ~

selects between fundamental and 3rd-overtone c
configurations.

JP2 2-3 Target system generated clock

JP2 1-2 with JPl 2-3 3rd overtone crystal (24 :MHz
above) (default)

JPl 1-2 Fundamental crystal (below 24 :MHzj

Figure C-1 shows the pin positions for these jumpers.

Pod Jumper Definitions

80Cl BX Pod Jumpers

Figure C-1: Jumper 1and2 Pin Positions

3 2 1

External Crystal

External Crystal

Target generated clock

80C1 BX Pod Jumper J P3

3 2

3rd Overtone

Fundamental

(Don't Care)

1

I JPl

With the 80Cl8X processor, the T4 (status inactive) portion of the CPU bus cycle may
be extended longer than the normal one clock cycle via the insertion of "idle" states (Ti
cycles) in the CPU. The state insertion is internal to the CPU and is not user
controllable.

The leading (rising) edge of the ALE signal is specified by Intel as the rising edge of
the CLKOUT signal immediately preceding Tl. Since T4 can be extended internally, the
ES 1800 emulator cannot determine in advance whether the next clock cycle will be a
Tl or a Ti cycle. Therefore, you can shunt pins 1-2 on jumper JP3 to generate the ALE
signal at the first T4 ("early" ALE), or shunt pins 2-3 on jumper JP3 to generate a
"late" ALE signal after the status line goes active (indicating that the subsequent clock
cycle will be a Tl cycle).

Figure C-2 shows the pin positions for the JP3 jumper. Your 80Cl8X pod is shipped
from the factory with pins 1 and 2 of the JP3 jumper shunted together, as shown in the
first drawing.

C-4 Pod Jumper Definitions

80Cl8X Pod Jun

Figure C-2: Jumper 1and2 Pin Positions

3 2 1

JP3 I M
Late ALE

JP3 M I
Early ALE

The latter method (late ALE) results in the leading edge of the ALE signal t
somewhat later than specified by Intel; however, the trailing (falling) edge of the .
signal is unaffected by the jumper position, and is as specified by Intel. With the
jumper shunted for early ALE generation, the ALE signal may be longer than usu
the CPU insens Ti cycles before the next Tl cycle.

80C18X Pod Jumper JP4

With the JP4 jumper, you can enable the external timer inputs TMR IN 0 and TMR
all the time or only during RUN mode. (Timer 2's only trigger source is inter
Figure C-3 shows the pin positions for this jumper.

Normally, this jumper should be left with pins 1 and 2 shunted together, so that t
inputs are always enabled (your 80C18X pod is shipped from the factory this way)
this position, you can control whether timers 0 and 1 are active during PAUSE modi
soft-switches TEO and TE 1.

Shunt pins 2 and 3 together only if pause activity will cause the target to pro
erroneous signals in these inputs. In this position, timers enabled by TEO and TEl
only be triggered internally during PAUSE mode.

Pod Jumper Definitions

80Cl BX Pod Jumpers

Figure C-3: Jumper 1and2 Pin Positions

3 2 1

Always enabled Timer 0 and 1 inputs (TIMO, TIMI)

JP4 M I
Enabled during RUN only

C-6 Pod Jumper Definition.s

Appendix D

Table of Contents

APPLICATION NOTES

List of Application Notes Available ... D-1

Apperu.

APPLICATION .NOT

Applied Microsystems corporation offers a variety of applications notes on ES
emulators which explain in more detail how to use the emulator for specific purposes.

If you would like copies of any of the Application· Notes listed in this index, p
contact your local sales office or representative, or the Applications departme1
Applied Microsystems Corporation.

If you have ideas for additional application notes you wouJd like to see, please 1
know:

Applications Department

800-426-3925 (in Washington, 206-882-2000)

or via electronic mail:

{uw-beaver!tikal I uunet I sun!fluke!tikal I decvax!microsof!tikal) !an:!p.UJ;-feedOO

Number Title Equipment

ES-001 Downloading and Uploading ES 1800
to and from the Host Computer

ES-002 Two New Commands: COM, DIA ES 1800, ESL Version ~

ES-003 Bus Error Display of ADDRESS and STATUS ES 1800/ 68000/1 O

ES-004 How to Simplify Design Integration of uP Based ES 1800
System Using the Event Monitor System

ES-005 Production Test Uses for Emulation EM and ES Series

ES-006 How to Use the Applied Microsystems ES 1800 ES 1800
Emulator to Determine the Duration of a Subroutine

ES-007 Selectively Tracing Using the Breakpoint System ES 1800

ES-008 ES 1800168000/08/10 ITR and PPT ES 1800/68000/08/1 O

ES-009 How to Break on Execution as Opposed to ES 1800168000/08/10/21
Pref etch

ES-010 Use of the ES 1800 "COM" Command ES 1800168000/08/10/21

ES-011 Using the COM Command to Simulate ES 1800/ 68000/08/10
a Terminal 1/0 Device

ES-012 Helpful Things to Know about the ES 1800 ES 1800

ES-013 Operating the ES 1800 68020 at 16.67 MHz ES 1800168020

Application Notes

Number 111k Eauipment

ES-014 GenePak 8087 Emulation Software GenePak

ES-015 How to Assemble Code and Descriptor Tables ES 1800/ 80286
In 80286 Protected Mode

ES-016 Running the 68020 Emulator with a ES 1800168020
Motorola VME-133 Board

ES-018 Pinpointing an Overlay Memory Chip Failure on ES 1800 Overlay Boards:
Boards with 512K Max Overlay 700-11272, 700-11278,

700-11275,900-11277

ES-019 68020A Timing Specifications ES 1800/ 68020A

ES-020 ES 1800 Training Manual ES 1800

ES-021 Pinpointing an Overlay Memory Chip Fallure on ES 1800 Overlay Boards:
High Speed Overlay Boards 700·1160X·XX

ES-022 68010 Timing Specifications ES 1800168010

ES-023 The 80286: Protect Mode Tools ES 1800/ 80286,
VALIDATE/Soft-Scope 286

ES-024 80286 Timing Specifications ES 1800180286

ES-025 Cross Triggering Multiple Emulators ES 1800, EL 800

ES-026 Reducing Memory Usage In MCC68K/DOS MCC68K/DOS

ES-027 GPVS Software Utlllty ES 1800, with GeneProbe
and VALIDA TE/Soft-Scope

ES-028 80186 Timing Specifications ES 1800180186

ES-029 Incremental Linking with LOD68K/DOS LOD68K/DOS:
rev 6.3b and previous

ES-030 Commonly Asked Questions on VALIDATE/XEI VALIDATE/XEI and XRA Y

ES-031 Understanding the 28002 NMI ES 1800/ 28000
Cycle and the Emulator

ES-032 Using the FSI (Force Special ES 1800
Interrupt) Action

ES-033 Using the FSI (Force Special ES 1800
Interrupt) Action

ES-034 68020-25 MHz Timing Specifications ES 1800/68020·25

ES-035 Using Multiple ES 1800's with PCs ES 1800

ES-036 Using Multiple ES 1800'• with Sun Workstations ES 1800

ES-037 Speeding SCSI Downloads ES 1800

D-2 Application Notes

Appendix E

Table of Contents

TIMING SPECIFICATIONS

80186 Timing Specifications ... E-1

\
)

Appen

TIMING SPECIFICATIO

The following tables show the AC timing specifications for the 80186 Emula1
8MHz.

80186 CLKIN Requirement(\

1861188 EMULATOR

SYMBOL DESCRIPTION MIN MAX MIN 1YP MAX. Nt

tckin CLKIN Cycle Period 62.5 250 62.5 250

tckhl CLKIN Fall Time 10 10

tcklh CLKIN Rise Time 10 10

tel ck CLKIN Low Time 25 25

tchck CLKIN High Time 25 25

80186 CLKOUT Timing (20000

1861188 EMULATOR

SYMBOL DESCRIPTION MIN MAX MIN 1YP MAX. N.

tcico CLKIN to CLK.OUT Skew so 35

tclcl CLK. Out Cycle Period 125 500 125 500

tclch CLK.OUT Low Time 55 55
tchcl CLK.OUT High Time 55 55
thlh2 CLKOUT Rise Time 15 15

Tl211 CLKOUT Fall Time 15 15

Timing Specifications

80186 Timing Requirements

1861188 EMULATOR

SYMBOL DESCRIPTION MIN MAX MIN TYP MAX Notes
tdvcl Data in Setup Time 20 30

tcldx Data in Hold Time 10 10

taryhch Asynch Act Ready Setup Time 20 30

tarylcl Asynch Inact Rdy Setup Time 35 45

tcharyx Asynch Ready Hold Time 15 15

tarychl Asynch Ready Inact Hold Time 15 15

tsrycl Synch Rdy Transition Setup 20 33

tclsry Synch Rdy Transition Hold 15 15

thvcl Hold Setup Time 25 35

tinvch INTR,NMI,TST-, Timerin Setup 25 35

tinvcl DRQO,DRQl Setup 25 35

80186 Master Interface Timing Responses

1861188 EMULATOR

SYMBOL DESCRIPTION MIN MAX MIN TYP MAX Notes
tclav Address Valid Delay 5 55 25
tclax Address Hold Time 10 20
tclaz Address Float Delay 10 35 26
tchcz Conunand Lines Float Delay 45 137
tchcv Conunand Lines Valid Delay 55 34

t1hl1 ALE Width 90 100

tchlh ALE Active Delay 35 43
tchll ALE Inactive Delay 35 21

tllax Address Hold to ALE Inactive 30 57
tcldv Data Valid Delay 10 44 20
tcldox Data Hold Time 10 25
twhdx Data Hold after WR 85 124

tcvctv Control Active Delay 1 10 70 21
tchctv Control Active Delay 2 10 55 29

tcvctx Control Inactive Delay 5 55 32
tcvdex DEN-Inactive Delay Non-WR Cy 10 70 38

E-2 Timing Specifications

80186 Master Interface Timing Responses

1861188 EMULATOR

SYMBOL DESCRIPTION MIN MAX MIN TYP MAX Nt

tazrl Address Float to RD-Active 0 22

tclrl RD-Active Delay 10 70 37
tclrh RD-Inactive Delay 10 55 37
trhav RD-Inactive to next address 85 114
tclhav HLDA Valid Delay 5 so 22

trlrh RD-Width 200 250
twlwh WR-Width 210 250
ta val Address Valid to ALE Low 30 65
tchsv Status Active Delay 10 55 27
tclsh Status Inactive Delay 10 65 30
tcltmv Timer Output Delay 60 26
tclro Reset Delay 60
tchqsv Queue Status Delay 35 15
tchdx Status Hold Time 10 85

)
tavch Address Valid to Cock High 10 33
tcllv LOCK-Valid/Invalid Delay 5 65 38

/

80186 Chip-Select Timing Responses

1861188 EMULATOR

SYMBOL DESCRIPTION MIN MAX MIN TYP MAX Ni

tclcsv Chip-Select Active Delay 66 22

tcxcsx Chip-Sel Hid from Com Inact 35 53
tchcsx Chip-Select Inactive Delay 5 35 23

Timing Specifications

-8-

80C 18X specific features
interrupts during pause 7-72
refresh during pause 7-99
targets with attached CPUs 2-5
unique registers 4-23

·A-

Absolute address 7-69
Absolute time 6-2
Absolute value 8-14
Acknowledge char 7-114
Actions 1-11

break 7-17
CNT 7-31
definition 4-29
RCT 7-105
TGR 7-153
TOC 7-155
TOT 7-156
TRC 7-159

Address
branch to 7-64
comparators 4-32
odd 4-32
registers 7-69

Alpha/numeric value 8-6

AND 4-31, 7-172, 8-13
Application notes D-1
ARDY 7-20
ASM 4-50, 7-9
Assemble line 4-50, 4-51
Assembler 7-9

directives 7-9
single step 7-6

-B-

BAS 4-8, 4-45, 4-55, 7-12
Base

IND!

default 4-8, 4-45, 7-12, 7-45
definition symbols 8-10
display 4-4 7
override default 7-45
registers 4-13, 8-9

Baud rate 3-14, 4-4, 7-114
emulator ports 3-3, 4-5

BKX 4-25, 7-14
Block data

verify 7-165
Block move

verify 7-166
BMO 4-50, 7-15
BNC connector 3-5, 7-153
Break emulation 1-11, 4-25, 4-27,

4-38, 6-28, 7-17

ES 1800 Emulator User's Manual for 8018X and 80C18X Microprocessors

Breakpoints 2-10, 4-25
run until 7-102
setup 4-28
on address 4-25
on execution 7-14
on instruction execution 4-25
onNMI 4-37
on odd address 4-32
on pre-fetch 7-14

Bringing up hardware 1-15
BRK 4-25, 4-28, 4-38, 7-17
BIB 7-19
BUS 4-48, 7-20
Bus cycles 7-55
Bus status 5-3, 7-20
BYM 4-50, 7-21, 7-170
Byte mode 7-21, 7-170, 8-23

-C-

Cables 3-7, 3-17
Cards, control 3-2
CCT 4-3, 4-5, 7-23, 7-158
CDH 7-24
CES 4-28, 4-55, 4-63, 7-25
Chassis 3-1
Checksums 4-10
Chip select 2-11, 7-104

circuitry 4-14
jumpers 2-3
registers 4-17

CK 7-26
Clear

command list 4-63
CPU registers 4-45, 4-55, 7-29
DMA halt 7-24
macros 4-55
memory map 4-55, 7-28
symbols and sections 4-54
WHEN(fHEN statements 4-55, 7-25

CLK 7-27

i-2

CLM 4-7,4-55, 7-28
Clock

choosing 7-26
internal 1-10, 2-6
jumpers 2-3
read target 7-27
target clock frequency 5-3

CLR 4-8, 4-45, 4-55, 4-63, 7-29
CMC 4-54, 4-55, 7-30
CNT 4-38
Code space 7-92
Colon operator_ 4-56
COM 4-48, 7-34
Commands

command line 8-5
commonly used 8-18, 8-19
configure system 4-5, 4-23
delay execution 7-169
ESL 8-5
exceptions 8-5
language overview 1-6
memory 4-50
mnemonics 8-6
port dependent 4-5
repeating 4-60, 7-6, 7-161
run mode 4-25
single character 8-5
terminator sequence 7-114

Communications
ES 1800 4-3
establishing 1-9
parameters setup 4-7
SCSI 1-9
serial 1-9
target programs 7-34
with host 4-4
with target program 4-48

Computer control 1-4
Computer port control 4-3, 4-11
Configuration

menus 4-5, 4-23

)

system 1-3
Control characters 8-25
Control statements

definition 4-29
boards 3-2

Copy system variables 7-76
Count bus cycle 4-38
Count limit comparator 4-37
Count occurrences 6-10

A to B 6-23
code access 6-2
memory access 6-1
memory and program activity 6-23
module linkage activity 6-2, 6-23
program flow activity 6-23
range 6-23

Count state
toggle 4-38

Counter overflow 6-9
Counter register 4-54
Counter/timer use 3-5, 7-153
Counting events 7-31

reset 7-105
CPU registers 4-4 7

clear 4-8, 4-55
CPY 4-48, 7-38
CRC 7-39
CRE 7-39
CRO 7-39
CRT length 7-114
CSEG 7-10
CTL 4-37
CTS 7-40
Customer service ii, 2-11
Cyclic redundancy check 5-3, 7-39, 7-135

-D-

Data length 7-21, 7-170
byte 4-50
buffering 4-4

comparator registers 4-33
data space 7-92
download 7-51
enable 7-50
general purpose registers 7-67
requirements 3-15
serial data formats B-1
upload 7-162
word 4-50

DB 4-8, 4-50, 7-41
DB-25 connectors 4-3
Debuggers .

high level 1-18
symbolic 1-17

Debugging mechanical systems 4~
Decoding

memory and 1/0 4-14
Default base 7-45

register 8-9
DEL 4-54, 7-43
Delete

sections 7-43
symbol or section 4-54
symbols 7-43

DES 4-28, 7-44
Desk space, saving 3-8
DFB 7-45
DIA 4-46, 7-46
Diagnostic functions 1-15, 5-1, 7-1

complete RAM test, looping 7-
complete RAM test, single pass
cyclic redundancy check 7-135
read data over entire range 7-1:
read from address 7-127, 7-138
simple RAM test, looping 7-12
simple RAM test, single pass 7
toggle data at address 7-125, 7·
write alternate patterns 7-129, ·
write data then read 7-132
write data to address 7-128, 7-:
write incrementing value 7-13:

ES 1800 Emulator User's Manual for 8018X and 80Cl8X Microprocessors

write pattern then rotate 7-130, 7-141
DIS 4-8, 4-50, 7-48
Disassemble 7-48

memory 4-50
single step 4-60, 7-7, 7-161
trace memory 4-45, 7-59
trace page 7-61

Display
base 4-45, 7-45
bus status 7-20
character string 7-46
commands 4-47
event specifications 7-44
improve readability 7-107
insert blank line 4-46
memory block 4-50, 7-41
PCB registers 4-45
raw trace 4-45
raw trace bus cycles 7-55
registers 4-45
revision datesREV 7-108
symbols 7-148
trace 2-10

DM 4-7, 7-49
DMA

channels 4-14
controllers 2-12, 4-17, 7-50
halt 7-24

DME 4-17, 7-50
DNL 4-5,4-7,4-11,7-51
DNV 7-52
Don't care values 4-13, 4-34, 4-36,

7-67, 8-9
Download 4-7

corruption 7-168
errors 4-12

i-4

files 4-7, 4-10
from COMPUTER Port 4-11
from TERMINAL port 4-10
hex format files 3-14
port control differences 4-11

procedures 7-51
record format 7-117
speed 1-9
symbols 4-13
verify data 4-7

DR 4-8, 4-45, 7-53
DRAM 7-99
DRT 4-45, 7-55
DT 4-45, 7-59
DTB 4-45, 7-61
DTF 4-45, 7-61
Dumb terminal_ setup 1-3
Dyadic operator 8-16
Dynamic memory 7-50
Dynamic RAM refresh 4-14
Dynamic trace 1-13, 4-4 7

capture enable 7-149
TCE 4-45
with Event system 4-29

-E-

EEPROM
groups 4-62
initialize 2-8, 7-112
load from 4-8, 4-45, 4-55
save configuration 4-62, 7-88, 7-112
save to 4-8, 4-45, 4-55

Elapsed time 6-1
A to B 6-14, 6-15
between module time 6-1
code access 6-1
in range 6-14, 6-17
in-module time 6-1
inter-module 6-14
memory access 6-1
memory time 6-14
out-of-module 6-14
program time 6-14
units 6-12

Emulation board 3-2

- ----------------- --

Emulation 1-6, 4-25
break 1-11, 7-17
halting 4-27
resetting 4-27
run mode 4-25
starting 4-25
steps 1-7, 4-1

Emulator
control boards 3-2
hardware error messages A-4
rear panel 3-5
setup 2-2

Emulex IB02 board 3-14
Enable bus timeout 7-19
Enable chip selects 7-97
Enable data 7-50
END 4-50, 7-10
End-of-file record 4-11
Enter program 2-9
Equation 8-6
Error messages 8-26, A-1

emulator hardware A-4
target hardware A-1
target software A-5

Errors
ESL 2-6, 8-26, 8-27
no memory in header 2-6
syntax 8-26

ES Driver control software 1-4, 1-10, 1-17
communication 4-5
with event monitor system 4-43

Escape sequence 7-114
ES language (ESL) 1-6, 6-8, 8-1

basics 2-6
control 1-3
errors 2-6
revisions 6-5
syntax 8-1

Event comparators 4-32
Event Monitor System 1-11, 4-28,

8-12, 8-19

address comparators 4-32
clear 4-28
clear WHENmIEN 7-25
comparator registers 4-30
count events 7-31
data comparators 4-33
define action list 4-37
event group changes 7-70
examples 4-38
groups 4-37, 7-70
interrupts 7-64
LSA comparators 4-33
registers 4-23
reset counter 7-105
setup 4-28, 6-11
speed 6-29
status comparators 4-34
status mnemonics 4-35
structure 4-29
syntax 4-30
toggle counter 7-155
trace events 7-156, 7-159
trigger signal 7-153
WHEN{fHEN 7-172, 8-12
with dynamic trace 4-29
with software debuggers 4-43

Event specifications
display 7-44

Events 1-11
definition 4-29

Execution, break on 7-14
Exit line assembler 4-50
Expression 8-6
Extend command lines 8-5
Extended Tek Hex format B-7
External clock 7-26

h

ES 1800 Emulator User's Manual for 8018X and 80Cl8X Microprocessors

-F-

Fan filter
cleaning 3-17

Features 6-1
FIL 4-50, 7-62
Files

closing 7-162, 7-164
collecting time stamp info 6-13
opening 7-164
viewing 7-162

Fill memory 4-50
Fill operator 7-62
FIN 4-50, 7-63
Find memory pattern 4-50, 7-63
Firmware check 7-135
FLX register 4-13, 7-54
Force special interrupt 4-38
Formats

Extended Tek Hex B-7
Intel Hex B-19
Intel Intellec B-4
MOS B-2
Motorola Exorcisor B-3
Motorola S-record B-14
Signetics B-5
Tek Hex B-6

Front panel 3-2. 3-4
FSl 4-38, 7-64
FSX 7-66
Fuses 2-2, 3-6

GD 7-67
GD0-7 4-55
GeneProbe 1-17

- G-

with event monitor system 4-44
General purpose address registers 7-69
General purpose registers 1-14
Global data length 7-21, 7-170

i-6

GR 7-69
GR0-7 4-55
GRO 4-38
Ground 2-4, 3-1
Groups 4-37, 7-70, 8-12

change 4-38

-H-

Hanging pod 3-8
Hard copy 7-38, 7-90
Heat problems 2-6, 3-1
Help 2-6, 8-17

communications set-up 8-17
menu 8-18
software switches 8-17
special diagnostic functions 8-17

High level debuggers 1-18
Host computer 1-4, 4-3

communication with 4-4
configuration 4-5

Host control 1-4

-I-

1/0 address space
modifying 4-53
viewing 4-53

I/0 mode 4-53, 8-23
enter 4-8, 4-50
entering 7-85
exit 4-50, 7-174
pointer 4-50, 7-75

1/0 overlay 1-10
IDP 7-72
IDX 4-54, 4-60
Ignore halt errors 7-74
IHE 7-74
ILG 7-83
Illegal statement 2-6, 8-1
Indirection 8-7

' }

operator 8-11
Initialize system 2-7
Insert blank line 4-46
Installation 6-4

hardware 6-4
software 6-5

INTO 7-20
INTI 7-20
INT2/INTAO 7-20
INTI/INTAl 7-20
Integer 8-6
Intel Hex format B-19
Intel Intellec format B-4
Internal clock 1-10, 7-26
Interrupt controller 4-14

registers 4-18
Interrupts

during pause 7-72
force special interrupts 7-64
latency 6-7, 6-20
special interrupt register 7-64
step through 4-25, 7-146
switch setting 7-146

IOP 4-50, 7-75
IP 4-13, 4-47
Isolate problem 1-12, 4-45

-J-

JP3 ALE signal jumper C-4
JP4 timer enable jumper C-5
Jumpers

8018X 2-3, C-1
80C18X C-3
chip select (8018X) C-1
pod 2-1
target clock (8018X) C-1
target clock (80C18X) C-3

LCC socket 3-8
Les- lines 2-5

-L-

LD 4-8, 4-45, 4-55, 7-76
LDV 4-8, 4-25, 4-45, 7-77
LIM 4-54, 4-60
Limit register 4-54
Line assembler 4-50, 4-51, 7-9, 8-:

exit 7-174
prompt 8-22

LMCS regist~r 4-17, 4-18
Load from EEPROM 4-8, 4-45
Load overlay memory 4-50
Load setup

from EEPROM 4-55
overlay memory 7-78
registers 4-48
reset vectors 4-25, 4-45, 7-77
variables from EEPROM 7-76

Log in banner 8-20
Logic State Analyzer (LSA) 1-12,

3-5, 3-12, 6-4
LOV 4-7,4-45, 4-46, 4-50, 7-78
Low byte 4-33
LSAport 3-4
LSA timing 3-12

-M-

M 4-50, 7-79
MAC 4-54, 7-81
Macros 1-14, 4-61

clear 4-54, 7-30
define 4-54
define/use 7-8
displaying 7-81
saving 4-61
truncation 4-62
using registers 4-62, 7-67

Mainframe 3-1

ES 1800 Emulator User's Manual for 8018X and 80Cl8X Microprocessors

Maintenance 3-17
MAP 4-7, 4-45, 4-46, 7-82
Map overlay memory 4-45, 7-82
MCB controller board 3-2

switch setting 3-3
Measure elapsed time 6-1
Mechanical systems

debugging 4-40
Memory block

display 4-8
move 4-50

Memory disassembler 4-8, 8-23
Memory map

clear 4-7,4-55
display 4-7
set 4-7

Memory mode 4-52, 8-23
alternate overlay/target 7-91
assembler 7-9

i-8

enter 4-50, 7-79
block display 7-41
block move 7-15
clear overlay map 7-28
commands 4-50
disassembler 7-48
download to overlay 7-51
exit 4-50, 7-174
fill with data 7-62
find data pattern 4-50, 7-63
illegal A-5
load target to overlay 7-78
map overlay 7-82
modifying data 4-52, 7-80
overlay 4-8
overlay speed 7-93
overview 1-13
pointer 4-50
pointer MMP 7-87 -
prompt 8-22
read only A-5
read/write 7-2

scroll through 4-52, 7-41
trace 4-46
verify overlay 7-167
viewing 4-52

Microprocessor registers 4-20, 7-53
MIO 4-8, 4-50, 7-85
MMCS register 4-17
MMP 4-50, 4-52
Modes

memory 4-52
pause 4-2
run 4-2
special ESL 8-23
transparent 4-2, 7-158

Modify
memory 4-49
program 1-13, 4-49

MOS format B-2
Motorola Exocisor format B-3
Motorola S-record format B-14
Move memory block 4-50
MPCS register 4-17
Multiple users 4-63

configuration 4-55
Multiplex lines 4-29

-N-

NMI 4-18, 7-20
NOT 4-31, 7-172, 8-13
Null modem cable 2-4
Null target 1-10
Numbers, ESL 8-9

-0-

Object module format 1-16
Odd address

break on 4-32
jump to 4-33

OFF 7-88

jump to 4-33
OFF-1 4-55
ON 7-88
ON/OFF menu 4-8, 4-45, 7-88

saving 4-23
Operators

ESL 8-7
precedence 8-7,8-14
repeat 4-60

OR 4-31, 7-172, 8-13
ORG 7-10
Oscilloscope use 1-15, 4-39, 5-2, 7-153
OVE 4-7, 7-92
Overflow counter 6-9
Overlay map 4-9, 7-83
Overlay memory 1-9

boards 3-2
enable 4-7
enable overlay 7-92
1/0 1-10
load 4-7, 4-45, 4-50
map 2-8,4-7,4-8,4-45, 7-82
resolution 4-8
run program from 4-46
size options 4-8
speed 4-7,4-9, 7-93
verify 4-7
wait states 7-93

ovs 4-7, 7-93

.p.

PACS register 4-17
Parentheses 4-30, 7-172

ESL 8-7
indirection 8-11
WHEN/fHEN 8-13

Parity 7-114
Parts 3-19
Patch code 7-64
Patch program 7-3

line assembler 4-51
using overlay 4-9

Pause mode 1-6
definition 4-2
interrupts 7-72
refresh 7-99

PCB 4-8, 4-45, 7-95
80C18X only 4-23

1

PCB registers 4-13, 4-14, 4-21, 7-9
common problems 4-16
default location 4-14
display 2-13, 4-8, 4-45
enhanced· mode 4-23
iRMX mode 4-22
initialize 2-11
non-iRMX mode 4-22
pause-to-run 4-15
relocation 4-14
run-to-pause 4-15

PCS 7-97
Peeks 7-127, 7-138

definition 4-2
Performance analysis

collecting data 6-13
required hardware 3-11

Peripheral control registers
initialize 2-11

Peripherals
during pause 4-16

Pin configurations 3-14
PLCC adapter 3-8
Pod 3-7
Pod connection 3-5
Pod jumpers

80186/188 2-1
80C186/C188 2-1

Pokes 7-128, 7-139
definition· 4-2

POL register 4-18
Port parameters 4-3, 4-5
Ports 3-5, 3-14

ES 1800 Emulator User's Manual for 8018X and 80Cl8X Microprocessors

baud rate 3-14
commands 4-5
computer control 7-23
configuration 4-3, 7-114
control 4-5
controlling port 7-23
data to 7-38
download data 7-51
port control 3-14, 7-23, 7-150, 7-158
serial 3-14
SCSI 3-14
terminal control 7-150
upload/download 3-14

POS register 4-18
Power 3-21
Power controller 4-14
Power supply 3-1
Power-up sequence 2-5

no target 2-6
with target 2-5

PPT 7-98
PRE 4-16, 7-99
Prefetch 4-32, 7-14, 7-66
Print session 7-38, 7-90
Probetip 3-7,3-17
Program, entering 2-9
Prompts, ESL 8-22
Prototype hardware 1-15
PUR 4-54, 4-55, 7-101

-Q-

Ques lion mark 2-6

-R-

RAM test 2-9, 5-2
Range, ESL 8-9
Raw trace 7-55

display 4-45
RBK 4-25, 7-102

i-10

RBV 4-25
RBV 7-103
RCS 4-17, 7-104
RCT 4-38
RDY 7-106
Read chip select 7-104
Read/write memory 4-50, 7-2
Readability 7-107
Ready signal 7-106
Real time 1-6
Reducing typing 4-62, 7-69
Reentrant code 4-41
Refresh

controller 4-14
during pause 7-99
dynamic RAM 4-16

Registers 1-13, 4-13
address 4-32
clear 7-29
clear CPU 4-8, 4-55
clear microprocessor 7-53
comparator 4-30
count limit 4-37
CPU 4-47
data 4-33
default base 4-55
display 4-45, 7-53
display base 4-13, 4-47, 7-12
event monitor system 4-23
general ES 1800 4-23
general purpose 4-62
general purpose address 4-55, 7-69
general purpose data 4-55, 7-67
in run mode 4-14
lists 4-19
load 4-48, 7-53
Logic State Analyzer pod 4-33
memory mode pointer MMP 4-52
microprocessor 4-8, 4-20
ON/OFF menu 4-45
overlay memory 4-9

PCB 4-22, 4-23, 7-95
reset status 7-110
save 4-13, 4-48
set/display base 7-12
status 4-34
types 8-10

Relative time 6-2
Relocation

PCB 4-14
Repairs

return authorization number u
Repeat

commands 1-14
command line 4-60, 7-6, 8-5, 8-24
last command line 4-54
operator 4-54
terminate 4-54

Reset button 6-6
Reset character 4-25, 7-114
Reset vectors

count value 4-38
emulator 4-54
load 4-8, 4-25, 4-45
pod microprocessor 4-25, 7-110
run 7-103

RET 4-46, 7-107
Revision dates 7-108
RNV 4-25, 7-109
RO 7-82
RS232 4-3
RST 4-25, 7-110
RU 4-25
RUN 7-111
RUN commands

chart 4-26
halt emulation 4-26

Run mode 1-6
definition 4-2
legal commands 4-51
prompt 8-22

Run program 1-10, 6-12

from overlay 4-46
breakpoints enabled 4-25
mode 4-25
target program 7-102, 7-103,

7-109, 7-111
RW 7-82

-S-

S-records
creation B-16
format B-14
types B-15

. SAV 4-8, 4-45, 4-55, 7-112

b.

Save into EEPROM 4-8, 4-45, 4-55
Saved

parameters 7-118
set menu 4-62
switches 7-88
system variables 7-112
ON/OFF menu 4-24
registers 4-13, 4-48

Saving setups 1.;14
Scope loops 5-2
Scroll

direction 4-52
through memory 7-41
trace buffer 4-47

SCSI board 3-2
SCSI communication 1-9, 2-2, 4-6
SCSI port 3-5, 3-14
SEC 4-54, 7-113
Sections 4-55

define 4-54, 7-4
delete 7-43, 7-101
display 4-54, 7-113

Serial
communication 1-9, 4-3
data formats B-1
ports 3-5

Service 2-7, 2-11

ES 1800 Emulator User's Manual for 8018X and 80Cl8X Microprocessors

SET 4-3, 4-5, 4-7, 4-55, 7-114
Set command 6-8
SET menu 7-114
Setup 7-114

emulator 2-2
port parameters 4-3
save 7-112
system 1-3
target system 2-4

SFO 7-120
SF 1 7-122
SF 11 7-133, 7-144
SF 12 7-134, 7-145
SF 13 7-135
SF2 7-123
SF 24 7-125, 7-136
SF25 7-127, 7-138
SF 26 7-128, 7-139
SF 27 7-129, 7-140
SF 28 7-130, 7-141
SF29 7-132, 7-143
SF 3 7-124
SF 31 7-133
SF 32 7-134, 7-144, 7-145
SF 4 7-125, 7-136
SF 5 7-127, 7-138
SF6 7-128, 7-139
SF7 7-129, 7-140
SF 8 7-130, 7-141
SF 9 7-132, 7-143
Shortcuts 1-14, 4-54
SIA 7-64
Signetics format B-5
Signing, ESL 8-14
Simulate l/0 4-48
Single step 2-9, 4-25, 4-48, 7-147
Single-argument operators 8-15

with event monitor system 4-43
Soft shutdown routine 4-40
Soft switch menu 4-8
Soft-Scope 1-18

i-12

with event monitor system 4-43
Software debuggers

with event monitor system 4-43
Software options 1-16
Special characters 8-25
Special functions 1-15, 5-1, 7-119, 8-24
Special interrupts 4-38, 7-64
Special modes 8-23
Speed

overlay memory 7-93
SRDY 7-20
Stand-alone operation 1-4
Status comparators 4-34
Status mnemonic table 4-35
Status translation table 4-36
Step 2-9

single 4-48
through interrupts 4-25

Step target system 4-25
STI 4-25
Stop and step target system 7-147
Stop bits 7-114
Stop program 2-10, 4-48
STP 4-25
String

display 4-46
Summary

switch settings 6-10
Switch positions 6-10
Switches 7-88

break on instruction execution 7-14
copy data to both ports 7-38
dynamic trace capture enable 7-149
FSI on instruction execution 7-66
internaVexternal clock 7-26
internaVexternal ready signal 7-106
interrupts during pause· 7-72
refresh during pause 7-99
step through interrupts STI 7-146

SYM 4-54, 7-148
Symbolic debuggers 1-14, 1-17

Symbolic references 8-9
Symbols 4-55

define 7-4
delete 7-43, 7-101
display 4-54, 7-148
download 4-13
symbolic debugger 1-14
uploading 7-164
tables 4-56

System
operation 1-6
setup 1-3, 4-23
variables 7-112

T4 state 4-29
Target

clock 7-26

-T-

communication with 7-34
cyclic redundancy check 7-39
definition 4-2
display memory string 7-46
download to 7-51
hardware errors A-1
load into emulator 7-78
null 1-10
peripheral control block registers 4-21
problems 4-46
read clock 7-27
reset 2-5
run program 7-102, 7-109, 7-111
software error messages A-5
stop and step system 7-14 7
system peeks 7-127, 7-138
system pokes 7-128, 7-139
system setup 2-5
vcc 8-20

Target bus cycle
single 4-2

Target environment

setup 4-7
TCE 4-45, 7-149
TCT 4-3, 4-5, 7-150, 7-158
TE 4-1 7, 7-151
Tek Hex format B-6
Temperature 3-21
Terminal control 1-4
TERMINAL port

control 4-3, 4-10
Terminal setup 1-3
Terminal, dumb 4-3
TEST 7-20
Test register· 7-161
Test run of system 2-7
Test variable 4-54
TGR 4-38, 7-153

choose input 6-11
Event Monitor System 6-10
external 6-7, 6-10

TGT 7-83
Thumbwheel switch 2-2, 3-2
Time base 6-9

maximum 6-2, 6-9
Time stamp module 1-15, 3-11

label 6-6
reseet button 6-6
convert value 7-40

Time units 6-12
Timers 2-13, 4-17, 7-151
Timing

LSA 3-12
trigger 3-12

TOC 4-38, 7-155
Toggle data at address 7-136
TOT 4-38, 7-156
TRA 4-3,4-5,4-7, 7-158
Trace and break board 3-2
Trace capture enable 4-45
Trace memory

buffer size 4-46
Trace

1

ES 1800 Emulator User's Manual for 8018X and 80C18X Microprocessors

toggle 4-38
a subroutine 7-70
bus cycle 4-38
disassemble memory 7-59
disassemble page 7-61
display 2-10
display bus cycles 7-55
dynamic 1-13, 4-47
events 7-156, 7-159
memory 1-13, 4-46

Tracing peeks and pokes 7-98
Transparent mode 4-3, 7-158, 8-23

definition 4-2
enter 4-3,4-7
exit 4-4

1RC 4-38, 7-159
Trigger

output 4-38
signal 7-153
timing 3-12

Troubleshooting 3-20
TST 4-54, 7-161

-U-

Unary operator 8-14
Units 6-12
UPL 4-5, 7-162
Upload

data 7-162
record format 7-117
record length 7-117
symbols 7-164

UPS 4-5, 7-164
Users

Specify 0 or 1 7-114

i-14

-v.

VALIDATE software
communication 4-5

VALIDATE/Soft-Scope 1-18
with event monitor system 4-43

V ALIDA1E/XEL
with event monitor system 4-43

VBL 4-50, 7-165
VBM 4-50, 7-166
Vectors

load reset 7-77
Verify

code 4-7
block data 7-165
block move 4-50, 7-166
data after write 7-52
memory 4-50
overlay memory 7-167
serial data 7-168

VFO 4-7, 7-167
VFY 4-7, 7-168
View time stamp information 6-12
Voltage

configuring for 2-2

-W-

WAI. 4-46, 7-169
Wait for break 4-46
Waitstates

overlay memory 7-93
WDM 4-50, 7-21, 7-170
WHEN 4-25, 4-28
WHE/fHE 7-172
WHEN{fHEN statements

1-11, 7-25, 7-172
clear 4-55
conflicting 4-38
enter 4-25, 4-28

Word mode 7-21, 7-170, 8-23

- X-

x 4-50,7-174
XDB debugger 1-19

with event monitor system 4-43
XEL

with event monitor system 4-43
XON/XOFF 3-16, 4-4, 7-41, 7-114, 7-162, 8-25

l

11111m1

Applied
Microsystems
Corporation
Applied Microsystems Corporation maintains a worldwide network of direct sales offices
committed to quality service and support. For information on products, pricing, or
delivery, please call the nearest office listed below. If you are unsure which office to
contact, call 1-800-426-3925 for assistance.

CORPORATE OFFICE
Awlied Micro~stems Corporation
5020148th Avenue Northeast
P.O. Box 97002
Redmond, WA 98073-9702
(206) 882-2000
1-800-426-3925
Customer Support
1-800-ASK-4AMC
TRT TELEX 185196
Fax (206) 883-3049

EUROPE
Applied Microsystems Corporation Ltd
AMC House
South Street
Wendover
Aylesbury, Bucks
HP22 6EP England
44 (0) 296-625462
Telex 265871 REF WOT 004
Fax 44 (0) 296-623460

JAPAN
Applied Microsystems Japan, Ltd.
Nihon Seimei
Nishi-Gotanda Building
7-24-5 Nishi-Gotanda
Shinagawa-Ku
Tokyo T141, Japan
3-493-ono
Fax 3-493-7270

U.S. REGIONAL SALES OFFICES
Western Region
Applied Microsystems
Corporation of Washington
3333 Bowers Avenue
Suite #220
Santa Clara, CA 95054
(408) 727-5433
Fax (408) 727-9011

Applied Microsystems
Corporation of Washington
25909 Pala Place
Suite #280
Mission Viejo, CA 92691
(714) 588-0585
Fax (714) 588-1476

Central Region
Applied Microsystems Corporation
14643 Dallas Parkway
Suite 230, LB-76
Dallas, Texas 75240
(214) 991-6344
Fax (214) 991-4581

Eastern Region
Applied Microsystems
Corporation of Washington
6 Cabot Place
Stoughton, MA 02072
(617) 341-3121
Fax (617) 341-0245

PM 922-Q0003-0!
July198!

