i

Applied
Microsystems
Corporation

XICE Debugger Supplement

for Motorola 68000, 68EC000,
68HC000 and 68302 Processors
and the EL1600 Emulator

May 1993

P/N 922-17320-02

Copyright © 1993 Applied Microsystems Corporation.
All rights reserved.

IBM XT and IBM AT are trademarks of IBM Corporation

Microsoft and MS-DOS™ are trademarks of Microsoft Corporation.
Microtec is a registered trademarks of Microtec Research, Inc.

Sun, Sun-4, NFS, and PC-NFS are trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T.

VALIDATE is a registered trademark of Applied Microsystems Corporation

| Contents

Chapter 1

XICE for 68000/EC000/HC000 and 68302

Chapter 2

OVETVIEW ...ooeeeeeieictieeceteeeeiereeete e e e eeesseneeeerseaeesnseaesnnnees S1-2
CONVENTIONS ..eiuviireeereieeeeieerteeseeaeerteseeetesseee e eseeseeenean S1-3
SUPPOTE SETVICESeevveeeeeiiiereeeeerrnreereeeeernrrereeeressessesneesenens S1-4
XICE SCTEEINS.......ueeecereeeeevtereiaeeeireaeessieeessssseeesinssassnssesessnns S1-4
Command considerations...........cocceveeuereccrerereerirneeeseesseenens S1-7
Register SUppOTtccoveiiivieiiriteeecceeecete e e S1-9
Chip select registers (68302 only).......ccccevvereecrverecvreeeennnn. S1-12
USINE ETACE...ceectiieeeretenrreercrereieteeeeseeeessneesssrsseessssseesssnnses S1-13

Disassembled trace displayccccceeeveeuvieecnneeeccnnnnenn. S1-17
Operations during runcc..cceeceeevceeeeneeeinenecenneeensee e S1-18
Software performance analysis.........cccoeeeeveeceieeeccceeeeenneen, S1-19
File formats and convVerters..........ccceeverereeecreeecerrenrenssrenens S51-19

XICE Command Supplement

ASM — single line assembler..........cccoovevreveineieereerceeennnen. S52-2
BPSPACE— specify breakpoint spacecccceecuuuerereennne. S52-4
BREAKACCESS—sets an access breakpoint................... S2-5
BREAKCOMPLEX — ties a macro to an event break.... S2-10
BREAKINSTRUCTION — sets an instruction break 52-12
BREAKREAD — sets a read breakpointcccccceeuunee. S2-16
BREAKWRITE — Sets a write Breakpoint S2-20

S-ii

BROWSE — display class inheritance information S52-24

BTE — enable or disable emulator bus timeout............... S2-25
BUS — show state of processor bus signals...................... S52-27
BUSTIME — capture bus timing in trace buffer.............. S52-29
CAS — continuous address strobe........ccccceeevveerierenierrveennns 52-30
CRC — calculate a CRC for a range of memory................ S52-31
DBP — disable bus error on peek/poke...............c....o........ 52-33
DIAG 0 — simple target ram test........cccevvveerecerrerinecennnen. S2-34
DIAG 1 — complex target ram testccccceeevvrevvereneenencennne S2-36
DIAG 2 — continuous read from target memory.............. S2-38
DIAG 3 — continuous write to target memory 52-40
DIAG 4 — write alternating pattern to target location.... S2-42
DIAG 5 — write rotated to target memory S52-44
DIAG 6 — write then read target memory........................ 52-46

DIAG 7 — continuous read from target memory range ... S2-48

DIAG 8 — write incremental value to target memory S2-50

DIAG 9 — continuous stream of reset pulses S52-52
DNL — download hex file to targetccceceueveenreeennnnnn. S52-53
DNLFMT — specify download format............ccccuvveeennnnnn. S2-54
DNL_GAP — specify maximum bytes between blocks..... S2-55
DOWN (DOW) — move current SCOPE......ccccveeeeeerreereenennne S52-56
DRT — display raw trace.....cccceeveeeceecveereeersrrerseessseessennns S52-57
DRTMR — enable refresh of memory (68302 only).......... S52-59
DRUN — start dynamic run modeccceeeeueeeeceeeeennnnn. S52-60
DSTOP — stop dynamic run mode........ccccceevveeeveeeneeeeseeenne S52-62
DT — display trace......ccccceeeeeeeecceeeeeeeeeeeeeeeee e S52-63
DTB —display disassembled trace backwards S52-65
DTF — display disassembled trace forward S52-67
DUPDATE —specify polling frequencyc.ccccuveeeuneen. S52-69

XICE Supplement for 68000/68EC000/68HC000 and 68302

Contents

EMUVARS — display emulator variable values S2-70

EV — define an event.......cccoeeveeeeeeiiiienieeciec e S2-71
EVTARM — enable or disable automatic trigger arming S2-76
EVTCLR — clear event Systemccccevveeeveeercenenrveennnes S2-77
EVTGRP — specify event groupcccccceveeeecveeeeecneeneenns S52-78
EVTVARS — display internal debugger variable values S2-80
EXPLAIN — explain error message.......ccccceeeeuveeeeeneeeeennne S2-81
EXVEC — software breakpoint execution trap number.. S2-82
FAST — fast interrupt emulation control......................... S52-84
FRZ — freeze peripheral activity (68302 only)................. S52-86
FTO — fast bus timeout........ccccoeeevrviecceeecrerenieecveecee e S2-87
GROUP — display active event groupccceceeeeeeveennen. 52-88
HWCONFIG — display hardware name and version...... S52-89
MEMVARS — display memory access variable values ... S2-90
MWARN — control address out-of-range warnings......... S52-91
NETERR — specify timeout warning delay...................... S2-92
NETFAIL — specify download abort timeout................... S52-93
NULL_TGT — enable null target modec.ceveunn.... S2-94
OVE — overlay memory Spaces........c.cceeeeveeeeerueeeeecneeennene S52-96
OVS — set emulator overlay speed........ccccceveereeeriicienennns S52-98
PERFACT — enable PA data gathering........................ S52-100
PERFCLR — remove PA dataccccocvevvenrieccrnenennenn. 52-101
PERFDATA — display PA symbol data...........ccceeeu..... S2-102
PERFDEPTH — maximum lines of PA output............ S52-103
PERFDISP — display PA informationcc.ccc........ 52-104
PERFEX — exclude addresses from N S2-106
PERFEXCLR — clear PA exclusionscceceevevvvennnne S52-108
PERFFORMAT — format of PA displayccccceeuueen... S2-109
PERFINT — specify PA time intervalccccocuveennnee S2-111

S-iv

PERFMODE — control PA data display S52-112

PERFTOL — specify symbol search distance S52-113
PPT — peeKk/PoKe traceccoovveeeeeeecreeeeeerecnneneeeennenns S2-114
RAMACCESS — locate a range of RAM memory......... S52-115
RESET — reset processor and target to initial state ... S2-116
RFS — control software refresh.......cccoeeveeeveenieennvnnnnen. S2-117
RFSADR — refresh software addresses.......c...ceeueenneee. S2-119
RFSASP — refresh software address space.................. S$2-120
RFSMSK — refresh software mask...........ccccceereunnnenn. S2-122
RIRR — control 302 register restoration on reset S2-123
ROMACCESS — locate a range of ROM memory S2-124
RUN_POLL — set number of polls during run............. S52-126
RUN_TIME — set maximum run timeccc.eu....... S2-127
SCRATCH — breakpoint scratch area address............ S52-128
SIA — special interrupt vectorccccvvveveveervcneennnnn. S52-129
SIZE — set the size for memory accesses.............c........ S52-130
SLO — slow interrupt emulation control...................... S2-132
SPACE — set the space for memory accesses............... S52-134
STI — enable or disable step-through interrupts......... 52-136
TAD — control tri-state of address bus......................... S52-137
TCEBRK — control tracing of breakpoints................... S52-138
TED — control trace/overlay for external DMA S52-139
TID — control trace/overlay for internal DMA S52-141
TRCCLR — clear trace buffer.........cccccccvveeeeereecnneeenneen. S52-142
TRCFRAME — trace cycle number.............ccccuvuenn..... S52-143
TRCINT — trace interval.......ccccovveveviieniecneesnensennnnen S52-144
TRCMODE — trace mode.........cceevererrresreeervecsensereeenen. S52-145
TRIG — set status trigger......c.cccceveveeeevieeecceieecceeeeenas S52-146
TSRCH — search trace memory for patterns................ S2-151

XICE Supplement for 68000/68EC000/68HC000 and 68302

Chapter 3
XICE Tutorial

Contents

TSTAMP —show timestamp or LSA in trace.............. S52-153

TUNITS —timestamp UNits......cccccoeeeervceeereiveenersisreenenns S2-154
UIR — update internal 302 chip select registers S52-156
UP — move the current scope.......ccccceeeeuveveeecceeeeeceeenn. S2-158
UPL — upload hex data to host.........cccevvveeeerrienennn. S52-159
UPLFMT — specify upload format.............cccvereunrennnnn. S2-160
VERIFY —memory read-after-write verify switch....... S2-161
XICEVARS — display internal variable values S52-162
OVETVIBW ..ocureerriereeereeeseeeseenesseesstesssneesssessssessnseasssesssnesnns S3-1
User-entered commands.........ccccceeeeeinnierniereciceerneeenne S3-1
Tutorial Program..........cccceceeverveeereeseerneeesienseeeneesresnees S3-2
Embedded systems considerations.........ccccoevveerenneerennnenn. S3-3
Preparing code for debugging.......ccccccevvvuriirnnrernnnnnenn. S3-3
Using the XICE debugger user interface..........cccceeueeunnene. S3-9
Environment variablescccccccevrveinrniinrnreencinecnennene S3-9
Debugger configuration file - xice.cfg......ccccceeevuvreueenne S3-9
Debugger invocationcoecveeereuieerceneeersrseeeenneeeecaene S3-11
Include files - introductioncccecveeeerveeeecceernnnneen S53-12
UsSINg Help.....oooeieeeeirieeieeeenneeeeeeeeeeseieceesreeeeesveeeeene S3-15
Additional error message information...........c..c........ S3-17
Navigating XICE windows (Viewports).......ccceeceeeueenens S53-17
Modifying and saving debugger start-up options....... S3-18
Recording a debug session........c.ceeeecvveicecieeenineeeenneen S53-20
Convenience features......cccoceeeeeeerivceeereecrneeeenencneeee S3-20
Using debugger functionscc.cccceevveeerrcnieneceeneneecinen S3-22
Getting oriented with the code.......ccccueeveeiiiccnnennnnenn. S53-22

V)

Chapter 4

Checking the state of the debugger and emulator S3-24

Checking the state of the target.......c...ccceceuvveerieenennnn. S3-27
Controlling the Emulator and CPU S3-28
Memory controlccccvvieiieieiiiiiieeeieeeece et S3-29
Using overlay memorycccecveeeveeeeeecrieeecreeeeeee s S53-31
Basic breakpoints........cccccveeeecevieniiececiie e e, S3-34
Program execution and related commands................. S3-35
Capturing and displaying execution trace history S3-37
Executing XICE commands in dynamic run mode..... S3-41
Logic state and timestamp options.........cccccceevveenne.. S53-42
Debugger macros.......cc.eeeeeveeeeieeeeeeeeeeieeeeeie e S53-42
Using the event system.........ccoecverieeceeeceeeiceeeieeeeeens S3-45
Scope loops and diagnostics.........cceeevveeeveenreecrveenreeenne. S53-49

Using Breakpoints and the Event System

S-vi

OVETVIEWoovieieeeieeesreeseeeteesres e esreeaesaeeessesseesseesaesnssennenes S54-1
Emulator and simulator versions of the debugger..... S54-1
Breakpoint and event system commands.......................... S54-2
Working with basic breakpointscccccceeevevreenvverecrnenen. S54-3
Setting basic breakpointsccceevvvereveeneeeeneeecenennee. S54-3
Displaying breakpoints..........cccceevueevecreeereeeecreeseennnns S4-3
Clearing breakpointsccceevvereveerieerceeeenieenreeenneeennes S4-4
Instruction breakpoints (BI, GO_instruction)............ S4-4
Access breakpoints (BA, BR, BW).....cooeeeivivvivivneennn.. S4-9
Breakpoint latency........cccccveeeeeeeenneieeieeceeee e, S54-13
Working with the event systemcc.ccceeevveeeneeenneennen. S4-14
Event and trigger statement groups............ccveeuvee.... S54-16
EVENES .coiiiiiiiiiiictecectee sttt e S54-18

XICE Supplement for 68000/68EC000/68HC000 and 68302

TTIZEETS ettt e sr e s e S4-20

Event system breaks and trace............cccccoeeenvnenneen. S4-24
Event system limitations..........ccccccooovveeeenrieececeeeeenneen, S4-24
Chapter 5
Using Performance Analysis
Event system Setupc.cccoeceerviieiienninie et S5-3
Sample include file..........ccooevvrveerriiieeeiieeeeceeeeene S5-3
Special considerations..........cccoeueeeeeeveeieeeeeeieeeeeceeenee e S55-5
Limitations of statistical performance analysis......... S5-5
Exclusion of address ranges.........ccceceeeeveeverneecrveennnee. S5-6
Chapter 6
Using the Time Stamp Module
OVETVIEW ...eovviiiiieriiecceectesivesvaesae s steesreseessaeeeeesrsaeensae s S6-2
Possible measurements..........cccceveeeerieenrereeeeennnnnns S6-2
Installationcccceeeevieiciineenneeenee et ere e e e ssee e S6-4
Hardware installationccccccevvvireiieciennieniniecencennnne S6-4
Using the Time Stamp module..........cccoeiiiiiiiininnnnnenn. S6-6
Getting started...........cocoveeeineniieie S6-6
Making a measurement...........ccceeeeecuieeieeeeceecineneeeennnn. S6-8
Collecting time stamp information in a file................ S6-15
Chapter 7
Simulated 1/0
Using simulated character input with XICE. S7-1
Using simulated character output with XICE.................. S7-3
Using simulated character input with XRAY S7-5
Using simulated character output with XRAY................. S7-6

Contents vii

Chapter 1
XICE for 68000/EC000/HC000 and 68302

XICE is Applied Microsystems’ integrated debugger for use
with Applied in-circuit emulators. It is a part of a complete
embedded development toolchain. Other toolchain components
include the XRAY simulator, XRAY monitor, MCC and CCC
cross-compilers, and ASM cross-assembler, linker, and object
module librarian.

¢0E89 pue 0000H

x
(@]
m
<}
S

o
©
S
S
<
m
(@]
o
S
=

This manual provides information that is specific to using
XICE with Applied emulators for the Motorola 68000/
68HC000/68EC000 and 68302 processors. It supplements the
descriptions of core debugger commands found in the
XRAY68K Documentation Set.

Two emulator hardware configurations support the 68000
processor. One consists of an emulation board, probe module
and probe tip; the other consists of an emulation board and
probe tip. The emulation board and probe tip configuration is
also used by the 68HC000 and 68EC000 emulators. See
Chapter 1 of your Hardware Setup and Reference Guide to
identify the configuration of your 68000. The two configura-
tions have minor differences in operation. Unless otherwise
noted, all references to 68000 in this supplement refer to both
versions of 68000 and to 68 HC000 and 68EC000.

This version of XICE is based on the latest version of Microtec
Research XRAY68K. It fully supports the output of the 4.3
MCC 68K compiler and 6.9 ASM68K assembler. Although it
may function properly with earlier versions of MCC and ASM,
Applied Microsystems does not guarantee full backwards
compatibility.

XICE for 68000/EC000/HC000 and 68302 S1-1

Overview

This supplement provides the information you need to use
XICE with an EL 1600 emulator for a Motorola 68000/
68HC000/68EC000 or 68302 microprocessor.

Q

Q

Q

Chapter 1 highlights several key concepts, including register
support, using trace, operations during run, and software
performance analysis. The “Command considerations”
section describes exceptions and any XRAY command that is
not fully supported in XICE.

Chapter 2 provides an alphabetical reference of XICE
commands.

Chapter 3 provides a set of mini-tutorials on code
preparation, emulation, and XICE setup and use.

Chapter 4 covers using the standard breakpoints and the
optional advanced event system.

Chapter 5 explains the performance analysis capabilities of
XICE.

Chapter 6 explains installation and use of the Timestamp
module.

Chapter 7 describes simulated I/O functions.

For detailed information on running under X windows on Sun
workstations see Appendix A of your XRAY68K User’s Guide.

For detailed information on starting the debugger see the
XICE Installation Guide.

$1-2

XICE Supplement for 68000/68HC000/68EC000 and 68302

Conventions

¢0E89 PU® 0000H

=
(@}
m
=)
=]

Iy
&
o
S
(=4
m
Q
S
S
S
1S

This manual uses the following conventions:

Whenyousee This means

bold type The name of a control software
configuration or executable file, a keyword
or command, or a key that you should press.

italics A variable, or a file name. Sometimes italics
are used for emphasis the first time a key
word or concept is introduced.

<F7> Press the F7 function key.

[option] Optional item. You do not have to select the
option. You do not enter the brackets.

{this | that} You must choose either this or that. The
vertical bar means you have a choice. The
curly braces indicate that you may only
choose one item. Do not enter the braces.

{item])... You may select one or more of the items.

run Screen output or example code.

Conventions S1-3

Support services

Applied Microsystems provides a full range of support services.
New software is covered by a 90-day warranty that includes
full applications phone support. Additional support
agreements are available to extend the initial warranty and to
provide additional services.

If you encounter trouble installing or using your software,
consult your manuals to verify that you are using appropriate
procedures. See also the Appendix B, Troubleshooting, in the
XICE Installation Guide. It covers the most frequently
encountered operational problems.

If the problem persists, call Customer Support at
1-800-ASK-4AMC or 1-206-882-2000 (in Washington State).
Customers outside the United States should contact their sales
representative or local Applied Microsystems office.

Have your software serial number available. This number
displays during boot-up and is also included on the label of your
master media.

XICE screens

Figure 1-1 and Figure 1-2 show C-source-level and assembly-
level XICE screens.

S14 XICE Supplement for 68000/68HC000/68EC000 and 68302

@ vxel302

Load Brkinst Step 6o To Print Scope Monitor | |Screen Help

Mode Clear StepOur Go Print ¥%| |Context | |PrevCmd| |Status Start

Data 3

Trace:
4, 00004056 2?7?772NEXIT
3. 000040A4 CDEMON\main
2. 00004200 CDEMON\run
000056D0 COM\wait
0., 00005732*COMN\putcom

OB N+
-

100

extern struct com_port com:

if (écom.urite_data & STATUS) == CLEAR)

com.write_data = (c | READY): /% put data with status = ready %/
return c; /% return success */

else
return 0: /= not clear #/

printcom(p) - Print ascii strings out com port
This function outputs ascii character strings until terminated by
a null character. An initialized pointer to the ascii text should

be passed as a character pointer. The actual characters are output
using putcom() library call.

printcom{p}
char #p;
€

char c:
whll: ((c = =p++) I= "N\O") /% do until null «/
utcom(c))): /% write to EMUALTOR (monitor) «/

68000 MODULE: COM BRERK #: 1 HELP=F5 AMC 6.11

Command 1
> g -utcom%%lo
. =
>
>
>
>
>
> B
i g
Figure 1-1 XICE source-level screen
XICE screens S1-5

¢0€89 pue 0000H

x
(@]
m
=}
<

o2}
o
S
S
<4
m
(@]
o
o
1=

= vxel302
Load BrkInst Step Go To Print Scope Monitor | |Screen Help
Mode Clear StepOvr Go Print %| |Context | |PrevCmd| |Status Start
m
—Data 12 Stack 14—

0000801 0+010=77C385FD
0000800C+00C=FFDAB7FB
00008008+008=FFA7001F
00008004+004=FB694867
00008000+000=CBB240FE
00007FFC+FFC=00004056
00007FFB8+FFB8=000040R4
00007FF4+FF4=00000005
00007FF0+FF0=00000001
00007FEC+FEC=00000000

XX ZF nnig MOVE.L $din7) . DL 00007FE8+FEB8=00000010
101 extern struct com_port com: 00007FE4+FE4=000001F4
102 00007FEQ+FE0=00000005
103 if ({com,write_data & STATUS) == CLERR) 00007FDC+FDC=000042D0
00005736 1033 0000 604C MOVE.B com,DO 00007FD8+FDB=00000000
0000573C 0280 0000 0080 ANDI.L #s80,D0 00007FD4+FD4=00000010
00005742 6612 BNE.B $5756 00007FDO+FD0=0000007C
D> 104 £ SP:00007FCC+FCC=000056D0
>> 105 com.write_data = {(c | READY): /% put data wit]
00005744 1001 MOVE.B D1,DO —Registers 13—
00005746 0000 0080 ORI.B #3$80,D00 DO =0000007C RO =0000604E
0000574R 13C0 0000 604C MOVE.B DO,com D1 =0000007C A1 =00005E4C
D> 106 return c: /% return succefl|D2 =00000056 A2 =00000000
00005750 7000 MOVEQ #s0,D0 D3 =00000004 A3 =00000000
00005752 1001 MOVE.B Di,DO D4 =00000001 A4 =00000000
00005754 6002 BRA.B $5758 D5 =00000005 RS =00000000
>> 107 3 D6 =00000000 A6 =00000000
>> 108 else D7 =00000000 A7 =00007FCC
>> 109 return O: /% not clear *
00005756 7000 MOVEQ #30,D0 TTSM III XNZvC
D> 110 3 SR =00100111 CCR=00000000
00005758 4E75 RTS PC =00005732
D> 111 USP=00000000 SSP=00007FCC
DD 112 /s NENRNUN N RSN nntunnpnnnnnnunxl| SR =2700
D> 113 *x
>> 114 #» printcom{(p) - Print ascii strings out com port
D> 115 »=
Command ~ v 68000 MODULE: COM BREAK #: 1 HELP=F5 AMC 6.11
—Connand 10—
> g putcomXZ10
(Tempr BEreab (FL = wnnb s
>
>
>
>
>
>
> 1

Figure 1-2 XICE assembly-level screen

S1-6 XICE Supplement for 68000/68HC000/68EC000 and 68302

T
o
=3
=]
S
o

=

=%
o2}
©
W
[
o

Command considerations

/00003/00089 40} 3DIX

Chapter 3 of the reference manual in the XRAY Documentation
Set describes the core set of commands for both XRAY and
XICE. The information that follows covers any XICE
exceptions to the information in the reference manual.

Command considerations

BREAKACCESS Cannot be used when event system triggers are
armed. Number limited when BREAKINSTRUC-
TION also used. See “Basic breakpoints” in
Chapter 3 for an overview.

BREAK- Variable EVTMODE in xice.cfg must be ON.

COMPLEX Restricts event system to one armed trigger.
See Chapter 2.

BREAK- Requires assignment of trap vector and scratch

INSTRUCTION space. See EXVEC and SCRATCH in Chapter
2 and “Instruction Breakpoints” in Chapter 4 for
an explanation.

BREAKREAD Cannot be used when event system triggers are
armed. Number limited when BREAKINSTRUC-
TION also used. See “Basic breakpoints” in
Chapter 3 for an overview.

BREAKWRITE Cannot be used when event system triggers are
armed. Number limited when BREAKINSTRUC-
TION also used. See “Basic breakpoints” in
Chapter 3 for an overview.

CLOCK Not supported in XICE.

CPU Not supported in XICE.

HOST Causes erratic behavior on some PCs.

ICE Not supported in XICE.

INPORT Chapter 7 describes the use of INPORT for
simulated I/0.

INTERRUPT Not supported in XICE.

S1-7

NOICE
NOINTERRUPT
NOME

OPTION

OUTPORT

OVERLAY
RAM

RESTORE
ROM

SAVE
SEARCH
SETSTATUS

STATUS

TRACE

$1-8

Not supported in XICE.
Not supported in XICE.

Memory is mapped in blocks of 2K. If you start
or end your mapping request at points that are
not at multiples of 2K, XICE adjusts the request
to meet the 2K requirement.

The options CPU and SPEED are not
supported. The option VPCOLOR is supported
only for IBM-PCs and compatibles.

Chapter 7 describes the use of OUTPORT for
simulated I/0.

Not supported by the 68000 or 68302 emulator.

Memory is mapped in blocks of 2K. If you start
or end your mapping request at points that are
not at multiples of 2K, XICE adjusts the request
to meet the 2K requirement.

Not supported in XICE.

Memory is mapped in blocks of 2K. If you start
or end your mapping request at points that are
not at multiples of 2K, XICE adjusts the request
to meet the 2K requirement.

Not supported in XICE.
Not supported on XICE.

The following identifiers are not supported in
XICE: QUALIFY and TRACE.

The following identifiers are not supported in
XICE: QUALIFY and TRACE.

Not supported in XICE.

XICE Supplement for 68000/68HC000/68EC000 and 68302

Register support

The following are the 68000 and 68302 registers that are
supported by XICE. You can enter them in either upper case or
lower case, but they are displayed in the case shown.

¢0€89 pue 000OH

=
(@]
gl
<)
=}

I
[e0]
S
S
14
m
o]
S
S
S
SJ

Register Name
A0-A7 Address Registers
Do-D7 Data Registers
FP
PC Program Counter
SP
SSP Supervisor Stack Pointer
SR Status Register
uspP User Stack Pointer

The following additional registers, which are related to just the
68302, are also supported by XICE:

Register Name
BAR Base Address Register
BCR Byte Count Register
BRO Base Register 0
BR1 Base Register 1
BR2 Base Register 2
BR3 Base Register 3
CMR Channel Mode Register
CR Command Register

Register support S1-9

Register Name

CSR Channel Status Register
DAPR Destination Address Pointer Register
DSR1 SCC1 Data Sync Register
DSR2 SCC2 Data Sync Register
DSR3 SCC3 Data Sync Register
FCR Function Code Register

GIMR Global Interrupt Mode Register
IMR Interrupt Mask Register

IPR Interrupt Pending Register

ISR Interrupt In-Service Register
ORo Option Register 0

ORt1 Option Register 1

OR2 Option Register 2

OR3 Option Register 3

PACNT Port A Control Register
PADAT Port A Data Register

PADDR Port A Data Direction Register
PBCNT Port B Control Register
PBDAT Port B Data Register

PBDDR Port B Data Direction Register
SAPR Source Address Pointer Register
SCCE1 SCC1 Event Register

SCCE2 SCC2 Event Register

SCCE3 SCC3 Event Register

S1-10 XICE Supplement for 68000/68HC000/68EC000 and 68302

Register support

Register

SCCM1

SCCM2
SCCM3
SCCst
SCCs2
SCCS3
SCM1
SCM2
SCM3
SCONT1
SCON2
SCONS3
SCR
SIMASK
SIMODE
SPMD

TCN1
TCN2
TCRt1
TCR2
TER1
TER2
TMR1

Name
SCC1 Mask Register
SCC2 Mask Register
SCC3 Mask Register
SCC1 Status Register
SCC2 Status Register
SCC3 Status Register
SCC1 Mode Register
SCC2 Mode Register
SCC3 Mode Register
SCC1 Configuration Register
SCC2 Configuration Register
SCC3 Configuration Register
System Control Register
Serial Interface Mask Register
Serial Interface Mode Register

SCP, SMC Mode and Clock Control
Register

Timer Counter Register
Timer Counter Register
Timer Capture Register
Timer Capture Register
Timer Event Register
Timer Event Register

Timer Mode Register

S1-11

¢0E89 pUe 0000H

x
Q
m
=)
=}

I
o]
S
S
m
o
=]
S
154

Register Name

TMR2 Timer Mode Register

TRR1 Timer Reference Register
TRR2 Timer Reference Register
WCN Watchdog Counter

WRR Watchdog Reference Register

Chip select registers (68302 only)

$1-12

You must configure the 68302 chip select registers to match the
target system before starting up XICE. The EL 1600 requires
that the chip select registers be programmed to respond in all
function code spaces to permit target memory operations to
work correctly. Memory operations (also referred to as peeks
and pokes) include actions such as displaying memory,
downloading code and data, loading the reset vectors, and fill
and block moves.

You can configure the chip select registers in the xice.cfg file.
The XICE Installation Guide describes how to preset registers
using xice.cfg. The El 1600 Hardware Setup and Reference
Guide also provides information on setting the chip select
registers.

It is important to set up the chip select registers correctly;
otherwise, it is possible to inadvertently program a DTACK
over the memory location of emulator internal memory. Then,
if the processor supplies a DTACK for emulator internal
memory, an emulator crash can occur.

Once the chip select registers are loaded initially, the switches
RIRR and UIR determine when they are restored or updated.
RIRR set to ON restores the registers after an emulator reset.
UIR set to ON updates the registers after an emulation break
occurs or whenever you make a change to any of the register
values.

XICE Supplement for 68000/68HC000/68EC000 and 68302

Using trace

Using trace

If you do not set RIRR to ON, the emulator will not reload the
register values after a reset.

If you do not leave UIR set to ON, the emulator’s copy of the
internal registers will not be updated until the next RUN to

PAUSE transition.

The XICE trace capability allows you to view either raw bus
cycles or disassembled source code interleaved with the high-

level code.

In addition to the softswitches, the following commands set up

trace:

PPT
TCEBRK
TED

TID

TRCFRAME
TRCINT

TRCMODE

TSTAMP

TUNITS

cantrols the tracing of peeks and pokes
controls the tracing of breakpoints

controls whether external or internal DMA
is traced

controls whether external or internal DMA
is traced

sets the trace cycle numbers

specifies how traced timestamp information
is displayed

sets trace mode (assembly and source,
assembly only, or source only)

controls whether timestamp or LSA is
traced

sets the timestamp units

$1-13

¢0€89 PUE 0000H

x
(@)
m
S
(=]
(=21
@©
o
S
14
m
(@}
o
o
<

The commands to use trace are as follows:

DRT display raw trace

DT display trace, both assembly and
disassembled source level

DTB display trace backwards, both assembly
and disassembled source level

DTF display trace forwards, both assembly and
disassembled source level

TRCCLR clear trace buffer

TRSRCH search for specified pattern in trace

The commands to set up and use trace are described in
Chapter 2 of this supplement. When you use a trace command,
the trace information is displayed in the command viewport.
Raw trace is formatted as shown in Figure 1-3.

1) })))} FLRGS X-break
: MEM R-read [2) 4.] B-bpte MEM T-target B-BERR{]
: RCCESS: W-write BOURDARY: W-word LOCARTIOR: O-overlay M-illegal(l
: mem access
I FPRAME RDDRESS DATR IPL FCn MEM DMA IRC PLRGS --LSR BITS------- q
¥
: 186 0010r8 E548 000 SP Rwo 111113111 111111119
15 0010FR D041 000 SP RWo 111311111 111111119
14 0010Fc ES548 000 SP ERWO 11111111 111131111¢
13 0010FE 207Cc 000 SP RWo 111111311 1111311119
12 001100 0000 000 sp RWo 11111111 1111311119
11 001102 1310 000 sp RWO 31111111 111111119
10 001104 2r30 000 SP RWO 111311111 111111119
] 001106 0000 000 sp Rwo 11111111 1113111119
8 001108 4EBS 000 SP Rwo 1111313111 1131111119
7 001310 0000 000 SD FERWO 11111111 111111119
6 001312 0001 000 sSD RWo 111311111 11313111119
s 00110R 0000 000 sP RWO 11111111 111111119
4 000FE2 0001 000 SD WWO 131111111 111111119
3 000FE0 0000 000 SP WWwo 11111111 13111111319
2 00110c 1188 000 sp Rwo 11111111 111111119
1 BRERKY
Figure 1-3 Raw trace format

S1-14 XICE Supplement for 68000/68HC000/68EC000 and 68302

Raw trace display
The raw trace display columns shown in Figure 1-3 are:

¢0E89 pue 0000H

=
(@}
m
=3
o
(o]
o
S
m
Q
(=3
S
154

FRAME The decimal count of the line in the trace buffer. Line
0 corresponds to the most recently traced cycle.

ADDRESS The hex value of the address bus.

DATA The hex value of the data bus.

IPL This column lists the bustime information if the

BUSTIME is set to ON. If BUSTIME is set to OFF,
this column lists the current interrupt level. The
range for the bustime information is 3 to 9. Raw
trace displays a plus mark (+) if bustime is outside of
this range.

FCn The memory space accessed:
UD user data space
UP user program space
SD supervisor data space
SP supervisor program space
PU CPU space
000 reserved memory space
011 reserved memory space
100 reserved memory space

MEM The memory type -accessed, its boundary, and its
location:

R read B byte T target
W write W word O overlay

For example, WBT indicates a byte wide write to
target memory and RWO means a word wide read
from overlay.

VPA(68000) State of valid peripheral access pins.

Using trace S1-15

DMA (68302)

VMA(68000)
IAC (68302)
FLAGS

LSA BITS

TIMESTAMP

$1-16

A direct memory access. For the 68302, this
information indicates internal DMA cycles if TID is
set to ON, or external DMA cycles if TED is set to
ON. (TED and TID relate to the 68302 only.) If both
TID and TED are set to ON, trace will show the DMA
cycles for both TED and TID but there will be no way
to determine which was a result of internal DMA and
which was a result of external DMA.

State of valid memory access pins.

CPU internal access pin.

Flags set:

X cycles for which the emulator break bit is asserted
B bus error

M illegal memory access

LSA BITS displays the state of each pin of the LSA
during that bus cycle. This column does not appear
if you set TSTAMP to ON but is replaced by
timestamp information.

The timestamp information is recorded as the
interval between successive bus cycles, if TRCINT
is set to INTERVAL, or relative to the bus cycle
number specified by the command TRCFRAME, if
TRCINT is set to OFFSET. This column does not
appear if you set TSTAMP to OFF but is replaced by
LSA information.

XICE Supplement for 68000/68HC000/68EC000 and 68302

Disassembled trace display

Figure 1-4 shows the disassembled trace format. The
information that follows this figure defines the information in
each field.

>> if (putcom(led_portl[il)) i++:
56D0 4E71 NOP
C source 0111 0056D2 588F ADDQ.L ®4,A7

0109 0056D4 4ABO TST.L DO
_—Y 0107 0056D6 671E BEQ.S $0056F6

¢0€89 pue 000OH

x
(@]
m
o
o
g
[o2]
[o 2]
o
o
S
m
(@]
o
o
o
S

Cydenumber >> while (coarse--) /% with above string */
0103 0056F6 2002 MOVE.L D2.D0O
0101 0056F8 5382 SUBQ.L S%.DZ

Address 0099 0056FA 4ABO TST.L
\wssrc 66A6 BNE.S $0056A4
> if (1 >= 0) g& (i < 17))
0093 0056R4 4AB9O00O TST.L i
1

" 1
Object code 5£18 005E£18> 00000000
W4 BLT.S $0056E0
0081 0056AC 1 MOVEQ.L #$11.D0

0079 0056AE BOB9000O CMP.L i.DO

5E18 005E18>00000000
: 0073 0056B4 6F2A BLE.S $0056E0
Instruction >> if (putcom(led_portl[il)) i++;

0056B6 30390000 MOVE.W i+2,D0

5E1AR 005E1R>0000
0061 0056B 0000 MOVE.L #s$0000604E, A0
604E

0053 0056C2 10300000 E.B $0(R0,.DO.W),.D0 00604E>7C
0049 0056C6 4880 EXT.W Do
0046 0056C8 48C0 EXT.L Do
0044 0056CA 2F00 MOVE.L DO,.-(A7) 007FB0K0000007C

0042 0056CC 4EBA0OG4 JSR putcom
0034 putcom; /

Symbols Data movement

Figure 1-4 Disassembled trace format

C source If trcmode is set to BOTH, C source is interleaved
into disassembly.

Cycle An index of the bus cycle in the trace buffer. The

number most recently traced cycle is 1. This number
corresponds to the frame number in the raw trace
display.

Address Address of instruction in memory.

Using trace $1-17

Object code Numeric representation of assembly code.

Instruction Assembly language instruction in text form.

Symbols English text representation of addresses, operands
and data.

Data The data cycles that occurred as a result of the

movements instruction:

» address < data data written to address
» data > address data read from address

Operations during run

$1-18

In normal operating mode, XICE does not permit additional
operations while the emulator is running. The DRUN, DSTOP,
and DUPDATE commands provide this additional
functionality.

The DRUN (dynamic run) command executes the target
program and continues execution until it is stopped by DSTOP,
abreakpoint, an error, or a halt instruction. The purpose of this
mode is to allow you to interact with the emulator and
debugger dynamically, while the emulator is running. In
DRUN you can examine and qualify trace, set and change
events and breakpoints, examine and change memory and
perform most other interactive functions with the emulator.

The DUPDATE command allows you to specify how frequently
the emulator is polled and the viewports updated during
DRUN (dynamic run) mode. However, dynamic commands are
no longer accepted.

Chapter 2 describes each command in detail. Chapter 3
includes a short tutorial.

XICE Supplement for 68000/68HC000/68EC000 and 68302

¢0E89 pue 0000H

Software performance analysis

The performance analysis features of XICE for the EL1600
68000 and 68302 development system allow you to:

=
Q
m
=)
=]

[o2]
o]
=]
S
<
m
Q
o
o
o
4

0 determine which areas of a program use the most CPU time

o identify bottlenecks in time critical applications

0 monitor the effects of programming changes made to
improve throughput.

Using statistical performance analysis, these features sample

instruction fetch bus cycles at regular intervals using the event

system; determine what function was active when a sample

was taken; keep a tally of the number of samples falling within

each function; and report the sample information. The report is

in a user-specifiable format.

Chapter 5 provides an overview of performance analysis.

File formats and converters

Although XICE requires IEEE695 object format to enable
symbolic debugging, support for other formats is built into
XICE, and additional converters are available. See the
descriptions in Chapter 2 for UPL, DNL, UPLFMT, and
DNLFMT for supported non-IEEE695 formats, procedures,
and limitations. Contact your Applied Microsystems
representative for information about additional converters.

Software performance analysis S1-19

Chapter 2
XICE Command Supplement

Core debugger commands are covered in the XRAY Reference
Manual. This chapter lists commands that are specific to XICE
and are not listed in the XRAY Reference Manual or that are
XICE-specific implementations of core XRAY commands.
These commands are entered in the command viewport at the
XICE prompt. Any combination of upper-case and lower-case
letters can be used in commands.

w
=
o
=3
@
E}
[
=3

puewwod 3JIX

XICE Command Supplement S2-1

ASM — single line assembler

Works with

Syntax

Description

Notes

S22

B EL 1600 [JCodeTAP

ASM [address)

The ASM command allows you to enter assembly code. If an
address is included, assembly will begin at that point. If no
address is included assembly will begin at the last assembly
address. A carriage return with no assembly instruction
terminates the assembler.

If loaded, symbols can be used in instructions, for example

call main

The prompt for the single line assembler is the address
followed by a colon, e.g.,

00000000

The line assembler does not accept symbols that are not
already in the symbol table.

In single-line assembler mode, you can change assembly
locations with the ORG command. For example,

org 100

will change the assembly location to 100.

XICE Supplement for 68000/68HC000/68EC000 and 68302

Example

XICE Command Supplement

-ASM 0X100

00000100: move.l (A7), AO
00000102: add.l #6, DO
00000108: move.l #0, (A0)
0000010e:

§2-3

w
| =
e}
=3
[5)
3
@
=2

puewwod 331X

BPSPACE— specify breakpoint space

Works with
B EL 1600 (JCodeTAP

Syntax
BPSPACE [USER|SUPERVISOR|ANY]

Description ,
This command allows you to explicitly specify the space for
breakpoints. The choices are USER, SUPERVISOR, or ANY.
The default is ANY. If no argument is given, the state of the
switch is displayed.

Notes
You can also specify a default for BPSPACE in XICE.CFG with
SW_BPSPACE. '

Example
BPSPACE ANY

Related Commands

XICEVARS

524 XICE Supplement for 68000/68HC000/68EC000 and 68302

BREAKACCESS—sets an access breakpoint

Works with
B EL 1600 (JCodeTAP
. a0 ® x
Abbreviation 3R
e
BA % g
= g
Syntax ~
BREAKACCESS [address | address_range] [;macro_name ()]
Description
address Specifies the address of the
breakpoint.
address_range Specifies the address range for

the breakpoint. A breakpoint
will be set at each statement
within the address range.

macro_name() Specifies a macro to be executed
when the breakpoint is
encountered. Note that the
macro name must include a set
of parentheses: macro1(). When
a macro is executed, the macro
controls whether program
execution stops or continues.

XICE Command Supplement S2-5

52-6

The BREAKACCESS command sets an access breakpoint at
the specified memory location(s). An access breakpoint halts
program execution each time the target program attempts to
read from or write to the specified memory location(s). Memory
locations can contain code or data.

Use an ampersand (&) to reference symbolic addresses rather
than just the symbol names. Using a symbol name alone
returns its value, not the address.

The debugger performs the following functions when an access
breakpoint is encountered:

1. Completes the execution of the instruction at that location.
2. Suspends program execution.

3. Executes a macro (if one was specified when the breakpoint
was set). Depending on the macro, the debugger will do one
of the following:

4. If the macro return value is true (nonzero), the debugger
resumes execution at the instruction immediately after the

break.

5. If the macro return value is false (zero), the debugger
returns to command mode and displays break information.

6. If a macro was not specified, the debugger returns to
command mode and displays break information.

XICE automatically assigns a breakpoint number to each
breakpoint; this number is used to reference or clear the
breakpoint. The Break viewport displays breakpoint numbers,
breakpoint locations, breakpoint types, and breakpoint
command arguments. In high-level mode, the line number and
module name containing the breakpoint are also displayed.
The breakpoint type for the BREAKACCESS command is
ACCESS.

Breakpoints can be removed with the CLEAR command.

If the BREAKACCESS command is specified without
parameters, the debugger displays the Break viewport.

XICE Supplement for 68000/68HC000/68EC000 and 68302

Notes

Access breakpoints are set to break on a read (br), a write (bw),
or a read or write (ba) of the breakpoint address. These
breakpoints are implemented using emulator hardware and
may be set in RAM or ROM.

You cannot set an access breakpoint when any event system
triggers are armed. Disarming the triggers will allow you to set
access breakpoints. Likewise, setting access breakpoints
causes the event system to be disabled. Clearing the access
breakpoints will allow you to arm the event system triggers.

w
| =y
°
=5
©
3
[
3
=

puewwoy 301X

With instruction breakpoints, the break occurs before the
instruction at the specified address is executed. With access
breakpoints, the break begins on the cycle in which the access
occurs but may continue or “skid” several cycles after access of
the breakpoint location.

Cannot be used when event system triggers are armed.
Number limited when BREAKINSTRUCTION also used. See
“Basic breakpoints” in Chapter 3 for an overview.

Examples

Example Meaning

BA @sieve\\flags Sets a breakpoint at the address
of the variable array flags in
the root named @sieve.

BA flags..flags+10 Sets breakpoints starting at the
address of the array flags and
ending 10 bytes after the
address of flags.

BA &flags[0] ' Sets a breakpoint at the address
of the array element flags[0].

XICE Command Supplement S2-7

BA #17;readprime() Sets a breakpoint at line 17 and
executes the macro readprime
when the breakpoint is
encountered.

BA prime Sets a breakpoint at the address
referred to by the value in
variable prime.

This command is correct if
prime is a pointer. The
breakpoint is set at the location
specified by the variable prime.
For example, if the value of
prime is 0x0123, a breakpoint
is set at the address 0x0123.

This command may not be
correct if prime is a scalar,
since the value in prime is
treated as an address and the
breakpoint is set at that address
rather than at the address of the
variable prime.

BA &prime Sets a breakpoint at the address
of the variable prime
regardless of its type.

This command is correct if
prime iS a scalar; it sets a
breakpoint at the address of the
variable prime.

S2-8 XICE Supplement for 68000/68HC000/68EC000 and 68302

If prime is a pointer, the
breakpoint is set at the address
of the pointer rather than at the
address it is pointing to (i.e.,
prime).

BA 20 Sets a breakpoint at address 20.

BA flags..flags+9;when Sets breakpoints starting at the

(*flags == 1) address of the array flags and
ending 9 bytes after the address
of flags, but the predefined
when macro stops debugger
execution when the first
element of flags is equal to 1.

w
IS
K=}
p=A
@
3
)
2

puewwog 33iX

Related Commands

BREAKINSTRUCTION, BREAKREAD, BREAKWRITE,
CLEAR, GO, GOSTEP, STEP, STEPOVER

XICE Command Supplement S2-9

BREAKCOMPLEX — ties a macro to an event system break

Works with

Syntax

Description

S2-10

B EL 1600 [JCodeTAP

BC trig{n}[;macrc_name]

BC is used to associate a macro with an event system
breakpoint. Complex breakpoints are used to halt program
execution and then execute the specified macro. The argument
trig{n} refers to a trigger that you must set using the
command TRIG following setting up the BC command. If a
macro is specified, it is executed each time a break 1is
encountered. Execution continues if the macro returns non-
zero.

BC (with an attached macro) works the same way as the other
breakpoint commands (BREAKACCESS, BREAKREAD,
BREAKWRITE, and BREAKINSTRUCTION).

The debugger performs the following functions when a complex
breakpoint is encountered:

1. Completes the execution of the instruction at that location.
2. Suspends program execution.

3. Executes a macro (if one was specified when the breakpoint
was set). Depending on the macro, the debugger will do one
of the following:

4. If the macro return value is true (non-zero), the debugger
resumes execution at the instruction immediately after the

break.

5. If the macro return value is false (zero), the debugger
returns to command mode and displays break information.

XICE Supplement for 68000/68HC000/68EC000 and 68302

6. If a macro was not specified, the debugger returns to
command mode and displays break information.

All breakpoints are automatically assigned a breakpoint
number by the debugger, which is used to reference or clear the
breakpoint. The break viewport displays breakpoint numbers,
breakpoint locations, breakpoint types, and breakpoint
command arguments. In high-level mode, the line number and
module name containing the breakpoint are also displayed.

w
o
°©
=3
[
3
@
=2

Breakpoints are removed with the CLEAR command.

puewwod 301X

Notes
’ You must set the variable EVTMODE to ON to use BC.

While EVTMODE is set to ON, XICE is restricted to only one
event system breakpoint armed at a time even though STAT
TRIG may display other triggers as armed.

Examples

bc trig{2); done() Executes the macro done each
time trigger 2 is true. Breaks
execution when done returns a
zero.

Related Commands

BREAKACCESS, BREAKINSTRUCTION, BREAKREAD,
BREAKWRITE, CLEAR, EV, EVTMODE, TRIG

XICE Command Supplement - S2-11

BREAKINSTRUCTION — sets an instruction breakpoint

Works with
B EL 1600 (JCodeTAP
Abbreviation
B
Syntax
BREAKINSTRUCTION [address | address_range] [;ma-
cro_name)
Description
address Specifies the address of the
breakpoint.
address_range Specifies the address range for
the breakpoint. If you specify a
range of instruction break-
points, they will be set on the
first byte of each instruction or
(for high-level code) the first
instruction of each line.
macro_name Specifies a macro to be executed

when the breakpoint is
encountered. Note that the
macro name must include a set
of parentheses: macrol(). When
a macro is executed, the macro
controls whether program
execution stops or continues.

S2-12 XICE Supplement for 68000/68HC000/68EC000 and 68302

The BREAKINSTRUCTION command sets an instruction
breakpoint at the specified memory location(s). An instruction
breakpoint halts program execution each time the target
program attempts to execute an instruction at the specified
memory location(s).

The debugger performs the following functions when an
instruction breakpoint is encountered:

1. Suspends program execution before the instruction at the
breakpoint address is executed.

w
c
°
=N
)
3
@©
=2

puewwoy 331X

2. Executes a macro (if one was specified when the breakpoint
was set). Depending on the macro, the debugger will do one
of the following:

3. If the macro return value is true (nonzero), the debugger
resumes execution starting at the instruction where the
break occurred and displays break information.

4. If the macro return value is false (zero), the debugger
returns to command mode without executing the instruction
where the break occurred.

5. If a macro was not specified, the debugger returns to
command mode without executing the instruction where the
breakpoint was encountered.

XICE automatically assigns a breakpoint number to each
breakpoint; this number is used to reference or clear the
breakpoint. The Break viewport displays breakpoint numbers,
breakpoint locations, breakpoint types, and breakpoint
command arguments. In high-level mode, the line number and
module name containing the breakpoint are also displayed.

The breakpoint type for the BREAKINSTRUCTION
command is INST.

Breakpoints can be removed with the CLEAR command.

If the BREAKINSTRUCTION command is specified without
parameters, the debugger displays the Break viewport.

XICE Command Supplement $2-13

Notes

S2-14

See Chapter 4 for more detailed explanation of breakpoint use.

Execution breakpoints consume event system resources and
affect what is possible using other features. In general, the
emulator manages these resources and warns you when it
makes adjustments and presents an error when resources are
exhausted or when you attempt something that creates a
conflict. So you need not concern yourself with more than the
following general guidelines.

Q

If you use them in addition to the event system, note that
instruction breakpoints consume an address and a status
resource in each event group. Limit event system address/
status resource consumption to no more than one address
and one status comparator in each group. Set up the event
and trigger statements, but leave them disarmed until you
are ready to use them.

You can specify an address range. XICE handles ranges by
breaking them into multiple individual single-point
breakpoints. Thus, if you specify that a breakpoint should be
for a range of 20 addresses, you may set only 12 additional
breakpoints.

If you use them with access breakpoints, note the limitations
explained in the BREAKACCESS command description.

When XICE is invoked, it performs a read of the area
designated for SCRATCH if SW_SCRATCH is specified in
xice.cfg. If SCRATCH is set to an area of memory that does
not return a DTACK at the end of the read, it will hang
XICE. In such a case, comment out the default address for
SCRATCH (0x9ff0) in the xice.cfg file. Then specify the
address for SCRATCH before setting any breakpoints by
using the SCRATCH command or preferably in an include
file when you invoke XICE.

XICE Supplement for 68000/68HC000/68EC000 and 68302

Examples

Example Meaning

B #20 Sets a breakpoint at line
number 20.

B 2210h..2216h Sets breakpoints starting at » x
address 2210 and ending at B M
address 2216 (hexadecimal), % g
assembly-level mode only. =3

BREAKI #1..#4 Sets breakpoints starting at line -
number 1 and ending at line
number 4.

B #15..#18;FOO() Sets breakpoints starting at line

number 15 and ending at line
number 18. Executes macro

FOO after each line.

B SIEVE\#28 Sets a breakpoint at line
number 28 in the module
SIEVE.

B #10;when(i==3) Sets a breakpoint at line

number 10 and stops only if
variable i 1s equal to 3.

B 0x93 Sets a breakpoint at address 93
(hexadecimal), assembly-level
mode only.

Related Commands

BREAKACCESS, BREAKREAD, BREAKWRITE, CLEAR,
GO, GOSTEP, STEP, STEPOVER

XICE Command Supplement §2-15

BREAKREAD — sets a read breakpoint

B EL 1600 [JCodeTAP

BREAKREAD [address | address_range) [;macro_name)

Specifies the address of the
breakpoint.

Specifies the address range for
the breakpoint. A breakpoint
will be set at each statement
within the address range.

Specifies a macro to be executed
when the breakpoint is
encountered. Note that the
macro name must include a set
of parentheses: macrol(). When
a macro is executed, the macro
controls whether program
execution stops or continues.

The BREAKREAD command sets a read breakpoint at the
specified memory location(s). A read breakpoint halts program
execution each time the target program attempts to read data
from the specified memory location(s).

Works with
Abbreviation
BR
Syntax
Description
address
address_range
macro_name
S2-16

XICE Supplement for 68000/68HC000/68ECQ00 and 68302

Use an ampersand (&) to reference symbolic addresses rather
than just the symbol names. Using a symbol name alone
returns its value, not the address.

The debugger performs the following functions when a read
breakpoint is encountered:

1. Completes the execution of the instruction at that location.

2. Suspends program execution.

w
| =
=}
=3
@©
3
©
=3

3. Executes a macro (if one was specified when the breakpoint
was set). Depending on the macro, the debugger will do one
of the following:

puewwo)d 301X

4. If the macro return value is true (nonzero), the debugger
resumes execution at the instruction immediately after the
breakpoint.

5. If the macro return value is false (zero), the debugger
returns to command mode and displays breakpoint
information.

6. If a macro was not specified, the debugger returns to
command mode and displays updated breakpoint
information.

XICE automatically assigns a breakpoint number to each
breakpoint; this number is used to reference or clear the
breakpoint. The Break viewport displays breakpoint numbers,
breakpoint locations, breakpoint types, and breakpoint
command arguments. In high-level mode, the line number and
module name containing the breakpoint are also displayed.
The breakpoint type for the BREAKREAD command is
READ.

Breakpoints can be removed with the CLEAR command.
If the BREAKREAD command is specified without
parameters, the debugger displays the Break viewport.

Notes
See BREAKACCESS for restrictions.

XICE Command Supplement S2-17

Examples

Example Meaning

BR 0x300 Sets a breakpoint at address
300 (hexadecimal).

BR @sieve\\flags Sets a breakpoint at the address
of the variable array flags in
the root named @sieve.

BR flags..flags+10 Sets breakpoints starting at the
address of the array f1ags and
ending 10 bytes after the
address of flags.

BR 20h..30h;FOQ() Sets breakpoints from address
20h (hexadecimal) to 30h and
executes the macro FOO on
every breakpoint between these
addresses.

BR &flags[0] Sets a breakpoint at the address
of array element flags[0].

BR prime Sets a breakpoint at the address
referred to by the value in
variable prime.

This command is correct if
prime 1S a pointer. The
breakpoint is set at the location
of the variable prime. For
example, if the value of prime is
0x0123, a breakpoint is set at
the address 0x0123.

S2-18 XICE Supplement for 68000/68HC000/68EC000 and 68302

This command may not be
correct if prime is a scalar,
since the value in prime is
treated as an address and the
breakpoint is set at that address
rather than at the address of the
variable prime.

BR &prime Sets a breakpoint at the address
of the variable prime
regardless of its type.

%2}
| =
K=}
©
@
3
)
=3

puewwod 301X

This command is correct if
prime IS a scalar; it sets a
breakpoint at the address of the
variable prime.

If prime is a pointer, the
breakpoint is set at the address
of the pointer rather than at the
address it is pointing to (i.e.,
prime).

BR &count; when (k<30) Sets a breakpoint at the address
of count and only stops when
the value of k is less than 30.

Related Commands

BREAKACCESS, BREAKINSTRUCTION, BREAKWRITE,
CLEAR, GO, GOSTEP, STEP, STEPOVER

XICE Command Supplement S2-19

BREAKWRITE — Sets a Write Breakpoint

Works with
B EL 1600 (JCodeTAP
Abbreviation
BW
Syntax
BREAKWRITE (address | address_range] [;macro_name]
Description
.address Specifies the address of the
breakpoint.
address_range Specifies the address range for

the breakpoint. A breakpoint
will be set at each statement
within the address range.

macro_name Specifies a macro to be executed
when the breakpoint is
encountered. Note that the
macro name must include a set
of parentheses: macrol(). When
a macro is executed, the macro
controls whether program
execution stops or continues.

The BREAKWRITE command sets a write breakpoint at the
specified memory location(s). A write breakpoint halts program
execution each time the target program attempts to write data
to the specified memory location(s).

S2-20 XICE Supplement for 68000/68HC000/68EC000 and 68302

The debugger performs the functions listed below when a write
breakpoint is encountered:

1. Completes the execution of the instruction at that location.
2. Suspends program execution.

3. Executes a macro if one was specified when the breakpoint
was set. Depending on the macro, the debugger will do one
of the following:

4. If the macro return value is true (nonzero), the debugger
resumes execution at the instruction immediately after the
breakpoint.

5. If the macro return value is false (zero), the debugger
returns to command mode and displays breakpoint
information.

2]
=y
ks
=X
@
3
@
=2

puewwod 301X

6. If a macro was not specified, the debugger returns to
command mode and displays viewport information and
breakpoint information.

XICE automatically assigns a breakpoint number to each
breakpoint; this number is used to reference or clear the
breakpoint. The Break viewport displays breakpoint numbers,
breakpoint locations, breakpoint types, and breakpoint
command arguments. In high-level mode, the line number and
module containing the breakpoint are also displayed. The
breakpoint type for the BREAKWRITE command is WRITE.

Breakpoints can be removed with the CLEAR command.
If the BREAKWRITE command is specified without
parameters, the debugger displays the Break viewport.

Notes
See BREAKACCESS for restrictions.

Related Commands

BREAKACCESS, BREAKINSTRUCTION, BREAKREAD,
CLEAR, GO, GOSTEP, STEP, STEPOVER

XICE Command Supplement S2-21

Examples

Example

BW @sieve\\flags

BW flags..flags+10

BW 0x100;FOO()

BW &flags|[0]

BW prime

S2-22

Meaning

Sets a breakpoint at the address
of the variable array flags in
the root named @sieve.

Sets breakpoints starting at the
address of the array flags and
ending 10 bytes after the
address of flags.

Sets a breakpoint at address
0x100 and executes the macro
Foo on the break.

Sets a breakpoint at the address
of array element flags[0].

Sets a breakpoint at the address
referred to by the value in
variable prime.

This command is correct if
prime is a pointer. The
breakpoint is set at the location
specified by the variable prime.
For example, if the value of
prime is 0x0123, a breakpoint is
set at the address 0x0123.

This command may not be
correct if prime is a scalar, since
the value in prime is treated as
an address and the breakpoint
is set at that address rather
than at the address of the
variable prime.

XICE Supplement for 68000/68HC000/68EC000 and 68302

XICE Command Supplement

BW &prime

BREAKW 100h

Sets a breakpoint at the address
of the variable prime
regardless of its type.

This command is correct if
prime iS a scalar; it sets a
breakpoint at the address of the
variable prime.

If prime is a pointer, the
breakpoint is set at the address
of the pointer rather than at the
address it is pointing to (i.e.,
prime).

Sets a breakpoint at address
100h (hexadecimal).

S2-23

w
o
kel
=3
5}
=
©
p
=2

puewwoy 301X

BROWSE — display class inheritance information

Works with
B EL 1600 [JCodeTAP

Syntax
BROWSE SYMBOL_NAME

Description
This command displays the inheritance relationships of a C++
class. It shows the base classes (parents) and the derived
classes (children) of the given class.
The symbol name that you specify may be the name of a class,
object, or class member.

Notes
Appendix G of the XRAY Reference Manual covers C++
features.

Example

BROWSE COUT

§2-24 XICE Supplement for 68000/68HC000/68EC000 and 68302

BTE — enable or disable emulator bus timeout

Works with

Syntax

Description

Notes

XICE Command Supplement

B EL 1600 [0 CodeTAP

BTE [ON|OFF]

This switch controls the emulator bus timeout. The valid
arguments are ON and OFF.

When set to ON, during RUN mode the EL 1600 will
automatically time out in the length of time specified by the
switch FTO if the target fails to supply a DTACK signal. It
performs the timeout by sending a DTACK signal to the CPU
and then executing a break. This ensures that the emulator
will not hang after an invalid memory location has been
accessed. '

When set to OFF, the EL 1600 waits for the target to supply a
DTACK signal, and may wait indefinitely.

The default for BTE is OFF. If no argument is given, the state
of the switch is displayed.

BTE is only valid during RUN mode.
See FTO for the length of time until the timeout.

You can also enable or disable the emulator bus timeout in
XICE.CFG with SW_BTE.

S2-25

w
c
k=]
=5
@
3
[}
=2

puewwog 391X

Example
BTE OFF

Related Commands
FTO

52-26 XICE Supplement for 68000/68HC000/68EC000 and 68302

BUS — show state of processor bus signals

Works with
B EL 1600 (J CodeTAP

Syntax

BUS

w
<
o
=2
[
3
[}
3
=

puewwoy 331X

Description
This command displays information about the processor, and
the state of the processor’s pins. The signals are displayed as
Oorl.

0 The signal is inactive.

1 The signal is active.

Notes

The information for internal emulator memory (EIM) is
displayed for the 68302 only. See the EL 1600 Hardware Setup
and Reference Manual for further information on EIM.

Example

> bus

PINS:
BERR=0
VCC=1
TRST=0
PRST=0

KICE Command Supplement S2-27

IPLO=0

IPL1=0

IPL2=0

BGT=0

DBF=0

HLT=0

CLK=1

8 Bit Mode= 0

EIM switch= 0xff0000

FSi count: 0

S2-28 XICE Supplement for 68000/68HC000/68EC000 and 68302

BUSTIME — capture bus timing in trace buffer

Works with
B EL 1600 ([J CodeTAP

Syntax

w
| ==t
ke
©
@
=
5}
=2

BUSTIME [ON|OFF]

puewwod 301X

Description

This switch specifies whether bus timing information or
interrupt level information should be recorded in trace. If
BUSTIME is set to ON, bus timing information is recorded in
the trace under the heading IPL. If BUSTIME is set to OFF,
the current interrupt level information is recorded in trace
rather than the bus timing information.

The default for BUSTIME is OFF. If no argument is given, the
state of the switch is displayed.

Notes

You can also set BUSTIME in XICE.CFG with
SW_BUSTIME:ON and SW_BUSTIME:OFF.

Example

BUSTIME ON

XICE Command Supplement S2-29

CAS — continuous address strobe

Works with

Syntax

Description

Notes

Example

$2-30

B EL 1600 (JCodeTAP

CAS [ON|OFF]

This switch specifies whether the target sees address strobes
while the emulator is paused. If CAS is set to ON, the target
sees address strobes while the emulator is paused. If CAS is set
to OFF, the target does not see address strobes when the
emulator is paused.

The default for CAS is OFF. If no argument is given, the state
of the switch is displayed.

You can also set CAS in XICE.CFG with SW_CAS:ON and
SW_CAS:OFF.

CAS OFF

XICE Supplement for 68000/68HC000/68EC000 and 68302

CRC — calculate a CRC for a range of memory

Works with
B EL 1600 (J CodeTAP
v x
Syntax 53
)
CRC address_range |[/address_space] § g
:
Description -
This command performs a CRC over the specified range, where
range is of the form start..end. Address_space specifies the
memory space from which the target reads are to be performed.
If no memory space is specified, it defaults to the memory read
space specified by the command SPACE.
Notes

Memory space is processor-specific. The valid values for 68000
family processors are as follows:

Address Space | Description
SCo Reserved memory space
UD or SC1 User data space
UP or SC2 User program space
SC3 Reserved memory space
SC4 Reserved memory space
SD or SC5 Supervisor data space
SP or SC6 Supervisor program space
CPU or SC7 CPU space

XICE Command Supplement $2-31

Example

CRC 0..0xFFFF /SD Calculates a CRC in supervisor
data space from 0 to 0xFFFF

$2-32 XICE Supplement for 68000/68HC000/68EC000 and 68302

DBP — disable bus error on peek/poke

Works with
B EL 1600 (JCodeTAP
o x
Syntax 33
[Sle)
DBP [ON|OFF] 28
o
Description -
This command controls whether bus errors are reported on
peeks and pokes. If DBP is set to ON, the bus error signals
detected from the target system are displayed. If DBP is set to
OFF, target system bus errors are ignored during peeks and
pokes.
The default for DBP is ON. If no argument is given, the state of
the switch is displayed.
Notes
You can also set DBP in XICE.CFG with SW_DBP:ON and
SW_DBP:OFF.
Example
DBP ON

XICE Command Supplement S2-33

DIAG 0 — simple target ram test

Works with

Syntax

Description

S2-34

B EL 1600 [JCodeTAP

DIAG 0, address_rangel(#count] [; memory_space) [/access_ -
size)

Target diagnostic 0 performs a simple target RAM test on the
range of target memory you specify.

The optional parameter #count indicates the number of passes
to make. The valid choices for #count are #0 and #1. #0 will
cause the test to continue until you enter ctrl-C. #1 will cause
one iteration of the test. If you do not set #count, it defaults to
#1.

The optional parameter ;memory_space specifies the memory
space in which the test is performed. Memory space codes are
the same as for the CRC command. If you do not set
;memory_space, it defaults to the value set with the SPACE
DIAG command.

Memory space is processor-specific. The valid values for 68000
family processors are as follows:

Code Space Description
SCo Reserved memory space
UD or SC1 User data space
UP or SC2 User program space
SC3 Reserved memory space

XICE Supplement for 68000/68HC000/68EC000 and 68302

Code Space Description

SC4 Reserved memory space
SD or SC5 Supervisor data space
SP or SCé Supervisor program space

CPU or SC7 CPU space

w
| =
©
=3
[
3
[}
2

The optional parameter /access_size specifies the size in which
memory is accessed. It may be a /1 (byte), /2 (word),

or /4 (longword). If you do not set /access_size, it defaults to the
value set with the SIZE DIAG command. For access size /4, the
emulator actually uses two word accesses since the 68000 and
68302 processors cannot directly access memory using
longwords.

puewwod 31X

Example

DIAG 0, 0..0xOfff #6

XICE Command Supplement S2-35

DIAG 1 — complex target ram test

Works with

Syntax

Description

$2-36

B EL 1600 [JCodeTAP

DIAG 1,address_range| #count) [;memory_space)|[/access_-
size]

Target diagnostic 1 performs a complex target RAM test on the
range of target memory you specify.

The optional parameter #count indicates the number of passes
to make. The valid choices for #count are #0 and #1. #0 will
cause the test to continue until you enter AC. #1 will cause one
iteration of the test. If you do not set #count, it defaults to 1.

The optional parameter ;memory_space specifies the memory
space in which the test is performed. Memory space codes are
the same as for the CRC command. If you do not set
smemory_space, it defaults to the value set with the SPACE
DIAG command.

Memory space is processor-specific. The valid values for 68000
family processors are as follows:

Code Space Description
SCo Reserved memory space
UD or SC1 User data space
UP or SC2 User program space
SC3 Reserved memory space

XICE Supplement for 68000/68HC000/68EC000 and 68302

Code Space Description

SC4 Reserved memory space
SD or SC5 Supervisor data space
SP or SC6 Supervisor program space

CPU or SC7 CPU space

w
=
e
=5
(03}
3
[0
>
=

The optional parameter /access_size specifies the size in which
memory is accessed. It may be a /1 (byte), /2 (word),

or /4 (longword). If you do not set /access_size, it defaults to the
value set with the SIZE DIAG command. For access size /4, the
emulator actually uses two word accesses since the 68000 and
68302 processors cannot directly access memory using
longwords.

puewwoy 331X

Example
DIAG 1, 0..0xfff #0

XICE Command Supplement $2-37

DIAG 2 — continuous read from target memory

Works with

Syntax

Description

52-38

B EL 1600 (JCodeTAP

DIAG 2,address|;memory_space) [/access_size]

Target diagnostic 2 performs a continuous read from the target
memory address you specify. This test continues until you
enter ctrl-C.

The optional parameter ;memory_space specifies the memory
space in which the test is performed. Memory space codes are
the same as for the CRC command. If you do not set
smemory_space, it defaults to the value set with the SPACE
DIAG command.

Memory space is processor-specific. The valid values for 68000
family processors are as follows:

Code Space Description
SCo Reserved memory space
UD or SC1 User data space
UP or SC2 User program space
SC3 Reserved memory space
SC4 Reserved memory space

XICE Supplement for 68000/68HC000/68EC000 and 68302

Code Space Description

SD or SC5 Supervisor data space

SP or SC6 Supervisor program space

CPU or SC7 CPU space

The optional parameter /access_size specifies the size in which
memory is accessed. It may be a /1 (byte), /2 (word),

or /4 (longword). If you do not set /access_size, it defaults to the
value set with the SIZE DIAG command. For access size /4, the
-emulator actually uses two word accesses since the 68000 and
68302 processors cannot directly access memory using
longwords.

w
IS
=]
=2
©
=
®
=3

puewwo) 331X

Notes

None

Example
DIAG 2, 0x0 /2

XICE Command Supplement $2-39

DIAG 3 — continuous write to target memory

Works with

Syntax

Description

S2-40

B EL 1600 [JCodeTAP

DIAG 3,address=datal;memory_space] [/access_s1ze]

Target diagnostic 3 performs a continuous write of data to the
target memory address you specify. This test continues until

you enter ctrl-C.

The optional parameter ;memory_space specifies the memory
space in which the test is performed. Memory space codes are
the same as for the CRC command. If you do not set
smemory_space, it defaults to the value set with the SPACE

DIAG command.

Memory space is processor-specific. The valid values for 68000
family processors are as follows:

Code Space Description
SCo Reserved memory space
UD or SC1 User data space
UP or SC2 User program space
SC3 Reserved memory space
SC4 Reserved memory space

XICE Supplement for 68000/68HC000/68EC000 and 68302

Code Space Description

SD or SC5 Supervisor data space

SP or SC6 Supervisor program space

CPU or SC7 CPU space

The optional parameter /access_size specifies the size in which
memory is accessed. It may be a /1 (byte), /2 (word), or /4
(longword). If you do not set /access_size, it defaults to the
value set with the SIZE DIAG command. For access size /4, the
emulator actually uses two word accesses since the 68000 and
68302 processors cannot directly access memory using
longwords.

w
c
S
©
©
3
®
=4

puewwoy 301X

Example
DIAG 3, 0x1000 = 0Oxcf2617 /2

XICE Command Supplement S2-41

DIAG 4 — write alternating pattern to target location

Works with

Syntax

Description

$2-42

B EL 1600

(J CodeTAP

DIAG 4, address=datal;memory_space] [/access_size]

Target diagnostic 4 writes an alternating pattern of data to the
target memory address you specify. It uses the data given as
one pattern and the data given, inverted bit-wise, as the
alternate pattern. This test continues until you enter ctrl-C.

The optional parameter ;memory_space specifies the memory
space in which the test is performed. Memory space codes are
the same as for the CRC command. If you do not set
smemory_space, it defaults to the value set with the SPACE

DIAG command.

Memory space is processor-specific. The valid values for 68000
family processors are as follows:

Code Space Description
SCo Reserved memory space
UD or SC1 User data space
UP or SC2 User program space
SC3 Reserved memory space
SC4 Reserved memory space

XICE Supplement for 68000/68HC000/68EC000 and 68302

Code Space Description

SD or SC5 Supervisor data space

SP or SC6 Supervisor program space

CPU or SC7 CPU space

The optional parameter /access_size specifies the size in which
memory is accessed. It may be a /1 (byte), /2 (word),

or /4 (longword). If you do not set /access_size, it defaults to the
value set with the SIZE DIAG command. For access size /4, the
emulator actually uses two word accesses since the 68000 and
68302 processors cannot directly access memory using
longwords.

w
<
ke
=3
@
3
@
=1
=

puewwod 301X

Example

DIAG 4, 0x10 = 0x5555 /2

XICE Command Supplement S2-43

DIAG 5 — write rotated to target memory

Works with

Syntax

Description

S2-44

B EL 1600 [CodeTAP

DIAG 5,address=datal;memory_space] [/access_size)

Target diagnostic 5 performs a continuous write of data to the
target memory address you specify, and after each write the
data value is rotated left by one bit. For example with data=01,
one complete rotation is as follows:

01
02
04
08
10
20
40
80
01

This test continues until you enter ctrl-C.

The optional parameter ;memory_space specifies the memory
space in which the test is performed. Memory space codes are
the same as for the CRC command. If you do not set
smemory_space, it defaults to the value set with the SPACE
DIAG command.

XICE Supplement for 68000/68HC000/68EC000 and 68302

Memory space is processor-specific. The valid values for 68000
family processors are as follows:

Code Space Description
SCo Reserved memory space
UD or SC1 User data space o =
UP or SC2 User program space (;;_ §
SC3 Reserved memory space §, §
SC4 Reserved memory space %"
SD or SC5 Supervisor data space
SP or SC6 Supervisor program space
CPU or SC7 CPU space

The optional parameter /access_size specifies the size in which
memory is accessed. It may be a /1 (byte), /2 (word),

or /4 (longword). If you do not set /access_size, it defaults to the
value set with the SIZE DIAG command. For access size /4, the
emulator actually uses two word accesses since the 68000 and
68302 processors cannot directly access memory using
longwords.

Example
DIAG 5, 0 = 0x1212 ;UD

XICE Command Supplement S2-45

DIAG 6 — write then read target memory

Works with

Syntax

Description

52-46

B EL 1600 [JCodeTAP

DIAG 6,address=datal;memory_space) [/access_size)

Target diagnostic 6 performs a continuous write of data to the
target memory address you specify, and after each write then
reads the same location. This test continues until you enter
ctrl-C.

The optional parameter ;memory_space specifies the memory
space in which the test is performed. Memory space codes are
the same as for the CRC command. If you do not set
smemory_space, it defaults to the value set with the SPACE
DIAG command.

Memory space is processor-specific. The valid values for 68000
family processors are as follows:

Code Space Description
SCo Reserved memory space
UD or SC1 User data space
UP or SC2 User program space
SC3 Reserved memory space
SC4 Reserved memory space

XICE Supplement for 68000/68HC000/68ECQ00 and 68302

Code Space Description

SD or SC5 Supervisor data space

SP or SC6 Supervisor program space

CPU or SC7 CPU space

The optional parameter /access_size specifies the size in which
memory is accessed. It may be a /1 (byte), /2 (word), or

/4 (longword). If you do not set /access_size, it defaults to the
value set with the SIZE DIAG command. For access size /4, the
emulator actually uses two word accesses since the 68000 and
68302 processors cannot directly access memory using
longwords.

(2]
S
ko)
o
[
3
[
2

puewwod 301X

Example
DIAG 6,0x1000 = 0x24 /1

XICE Command Supplement S2-47

DIAG 7 — continuous read from target memory range

Works with

Syntax

Description

S2-48

B EL 1600 [JCodeTAP

DIAG 7,address_rangel;memory_space) [/access_size)

Target diagnostic 7 performs a continuous read from the target
memory range you specify. This test continues until you enter

ctrl-C.

The optional parameter ;memory_space specifies the memory
space in which the test is performed. Memory space codes are
the same as for the CRC command. If you do not set
smemory_space, it defaults to the value set with the SPACE

DIAG command.

Memory space is processor-specific. The valid values for 68000
family processors are as follows:

Code Space Description
Sco Reserved memory space
UD or SC1 User data space
UP or SC2 User program space
SC3 Reserved memory space
SC4 Reserved memory space

XICE Supplement for 68000/68HC000/68EC000 and 68302

Code Space Description

SD or SC5 Supervisor data space

SP or SC6 Supervisor program space

CPU or SC7 CPU space

The optional parameter /access_size specifies the size in which
memory is accessed. It may be a /1 (byte), /2 (word), or /4
(longword). If you do not set /access_size, it defaults to the
value set with the SIZE DIAG command. For access size /4, the
emulator actually uses two word accesses since the 68000 and
68302 processors cannot directly access memory using
longwords.

w
=
S
=3
®
3
[}
=
=

puewwod 331X

Example
DIAG 7, 0..0x1f /2

XICE Command Supplement S2-49

DIAG 8 — write incremental value to target memory

Works with

Syntax

Description

$2-50

B EL 1600 [JCodeTAP

DIAG 8, address|;memory_space) [/access_size]

Target diagnostic 8 writes an incrementing value to the target
memory address you specify. This test continues until you
enter ctrl-C.

The optional parameter ;memory_space specifies the memory
space in which the test is performed. Memory space codes are
the same as for the CRC command. If you do not set
;smemory_space, it defaults to the value set with the SPACE
DIAG command.

Memory space is processor-specific. The valid values for 68000
family processors are as follows:

Code Space Description
SCo Reserved memory space
UD or SC1 User data space
UP or SC2 User program space
SC3 Reserved memory space
SC4 Reserved memory space

XICE Supplement for 68000/68HC000/68EC000 and 68302

Code Space Description

SD or SC5 Supervisor data space

SP or SC6 Supervisor program space

CPU or SC7 CPU space

The optional parameter /access_size specifies the size in which
memory is accessed. It may be a /1 (byte), /2 (word), or /4
(longword). If you do not set

/access_size, it defaults to the value set with the SIZE DIAG
command. For access size /4, the emulator actually uses two
word accesses since the 68000 and 68302 processors cannot
directly access memory using longwords.

w
<
k=]
©
©
3
©
=1

puewwod 390X

Example
DIAG 8, 0x1000 ;SD /1

XICE Command Supplement S2-51

DIAG 9 — continuous stream of reset pulses

Works with
B EL 1600 (JCodeTAP
Syntax
DIAG 9
Description
Target diagnostic 9 sends a continuous stream of reset pulses
to the target CPU. This test continues until you enter ctrl-C.
Example

DIAG 9

S2-52 XICE Supplement for 68000/68HC000/68EC000 and 68302

DNL — download hex file to target

Works with

Syntax

Description

Notes

Example

XICE Command Supplement

B EL 1600 [JCodeTAP

DNL "filename" |[,offset]

DNL allows you to download a hex file from the host to the
target in the format specified by the DNLFMT command.The
contents of the file will be downloaded to the memory locations
specified in the file. If you wish to download the file to memory
locations different from those specified in the file, enter a value
for offset. The offset value will be added to the address of each
record to determine the actual download address. The default
value for offset is 0.

The MAP, OVERLAY, SPACE, and SIZE commands affect how
memory is accessed by DNL. Memory read-after-write
verification is controlled by the setting of the VERIFY switch.

Quotation marks are optional if the file name consists of
alphanumeric characters or a period. File names that contain a
leading slash must be in double quotation marks (e.g., "/root").
File names that contain a leading backslash must be in single
quotation marks (e.g., "\root’).

DNL my.file ,0x1000

§2-53

w
| g
o]
=2
©
E
[}
2

puewwod 391X

DNLFMT — specify download format

Works with
B EL 1600 (JCodeTAP
Syntax
DNL format
Description
DNLFMT is used to specify the format for hex file downloads
using the DNL command. Recognized formats are:

INTEL Intel hex format. Extended segment address
records and extended linear address records
are supported.

SREC Motorola S1, S2, S3-records with Microtec
extensions.

XTEK Extended Tektronics hex format.

The default format of DNLFMT is SREC. The command
XICEVARS displays the status of this variable as well as all
the XICE variables.

Notes
Symbols are not supported for these formats.

Example
DNLFMT SREC

Related Commands

DNL, UPL, UPLFMT

S2-54 XICE Supplement for 68000/68HC000/68EC000 and 68302

DNL_GAP — specify maximum bytes between blocks

Works with
B EL 1600 [JCodeTAP

Syntax

w
o
k<]
=3
[}
3
®
Pl
=

DNL_GAP [1-1024]

puewwod 301X

Description

DNL_GAP specifies the maximum number of bytes allowed
between two cached download blocks before they are
considered discontiguous. Download speed is faster for
contiguous blocks than for discontiguous blocks. Specifying a
larger number will improve download speed, but may cause
some locations to be overwritten if there are discontiguous
blocks that are smaller than the value of DNL_GAP. A lower
value will avoid this. If no argument is given, the current value
is displayed.

The default value of DNL_GAP is 1. The command XICEVARS
displays the status of this variable as well as all the XICE
variables.

Example

DNL_GAP 4

Related commands
DNL, DNLFMT

XICE Command Supplement S2-55

DOWN (DOW) — move current scope

Works with
B EL 1600 (JCodeTAP

Syntax
DOWN [number_of_levels)

Description
The UP and DOWN commands allow you to move the current
scope up or down the runtime stack. This is especially helpful
when debugging recursive functions. It is not a good idea to go
down farther than you have gone up.

Example
DOW 5

Related commands
Uup

S2-56 XICE Supplement for 68000/68HC000/68EC000 and 68302

DRT — display raw trace

Works with
M EL 1600 (JCodeTAP
v x
Syntax 33
DRT [startlstart..end) 3 g
=3
Description -
This command displays raw trace information. If you wish to
limit the display, you may specify a range of bus cycles.
DRT by itself displays the last page of trace. DRT with a range
displays trace for the specified range. DRT with a start number
displays trace from the specified frame forward.
Notes

The columns DMA and IAC relate only to the 68302. See
section 1 of this supplement for a description of the information
in each of the columns in the trace display.

XICE Command Supplement S2-57

Example

drt
FLAGS: X-break
MEM R-read MEM B-byte MEM T-target B-BERR
ACCESS: W-write BOUNDARY: W-word LOCATION: O-overlay M-illegal
mem access
FRAME ADDRESS DATA IPL FCn MEM DMAR IAC FLAGS --LSAR BITS-------
44 005732 22,, 000 SP RBO 11111111 11111111
43 005733 ,.2F 000 SP RBO 11111411 11111111
42 007FA4 00,, 000 SD WBO 11111411 11111114
a1 007FR5 ,,00 000 SD WBO 11111111 11111111
40 007FR6 56,, 000 SD WBO 11111111 11111111
39 O007FR? ,.DO 000 SD WBO 11111111 11111111
38 005734 00., 000 SP RBO 11111111 11111111
37 005735 ..04 000 SP RBO 11111411 11111111
36 005736 10.. 000 SP RBO 11111111 11111111
35 005737 ,.39 000 SP RBO 11111111 11111111
34 O007FRB 00,, 000 SD RBO 11111111 11111111
33 O007FRS ,,00 000 SD RBO 11111111 11111111
32 O007FAR 00., 000 SD RBO 11111111 11111111
31 007FAB ..7C 000 SD RBO 11111111 11111111
30 005738 00,, 000 SP RBO 11111111 11111114
23 005739 ,.00 000 SP RBO 11111111 11111111
28 00573 60,. 000 SP RBO 11111111 11111111
27 00573B ,.4C 000 SP RBO 11111111 11141114
26 00573C 02.. 000 SP RBO 11111111 11111111
25 00573D ,.80 000 SP RBO 11111111 11111111
24 00604C 8D., 000 SD RBO 11111111 11111111
DT, DTB, DTF

S2-58 XICE Supplement for 68000/68HC000/68EC000 and 68302

DRTMR — enable dynamic refresh of memory (68302 only)

Works with
B EL 1600 [J CodeTAP
w x
Syntax 2 a
DRTMR [NONE|TMR1|TMR2 |SCC1]SCC2|SCC3] é §
8
Description -
This switch controls the dynamic refresh of memory. The
following arguments are allowed for DRTMR:
NONE do not allow a DRAM refresh
TMR1 use TMRH1 to trigger a DRAM refresh
TMR2 ‘ use TMR2 to trigger a DRAM refresh
SCC1 use SCC1 to trigger a DRAM refresh
SCC2 use SCC2 to trigger a DRAM refresh
SCC3 use SCC3 to trigger a DRAM refresh
The default for DRTMR is NONE.
Notes
This command is not used by XICE for the 68000.
You can also set DRTMR in XICE.CFG with SW_DRTMR:ON
or SW_DRTMR:OFF.
Example

DRTMR NONE

XICE Command Supplement S2-59

DRUN — start dynamic run mode

Works with

Syntax

Description

$2-60

B EL 1600 [JCodeTAP

DRUN

The DRUN (dynamic run) command executes the target
program and continues execution until it is stopped by DSTOP,
abreakpoint, an error, or a halt instruction. The purpose of this
mode is to allow the user to interact with the emulator and

. debugger dynamically, while the emulator is running. In

DRUN the user can examine and qualify trace, set and change
events and breakpoints, examine and change memory and
perform most other interactive functions with the emulator.

During DRUN the breakpoint and event systems are active but
the emulator is not polled regularly for status. This can result
in the emulator breaking execution with no notification to the
user. Because most commands force polling of the emulator,
unless there is no user interaction, the emulator status will be
made known to XICE. When a break in execution is detected,
the user will be notified and DRUN will be exited. The
DUPDATE command can be used to force regular polling of the
emulator. ’

During DRUN the XICE version number on the XICE status
line is replaced by the word DRUN.

XICE Supplement for 68000/68HC000/68EC000 and 68302

Notes

When trace is requested from the emulator, the trace system is
disabled during the time trace is uploaded to the host. This has
an unavoidable side effect of also disabling the break system
during the same period.

Example o x
DRUN é% ;C'}

g 3

Related Commands 2

DSTOP, DUPDATE

XICE Command Supplement S2-61

DSTOP — stop dynamic run mode

Works with
B EL 1600 (JCodeTAP
Syntax
DETOP
Description
The DSTOP command stops the DRUN (dynamic run)
command and breaks program execution.
Notes
None
Example
DSTOP
Related Commands

DRUN, DUPDATE

S2-62 ’ XICE Supplement for 68000/68HC000/68EC000 and 68302

DT — display trace

Works with
Syntax

Description

Notes

XICE Command Supplement

B EL 1600 [J CodeTAP

DT [startlstart..end)

This command displays disassembled trace (bus cycles),
showing either assembly instructions, source lines or both
depending on the value you set for TRCMODE. You may
specify the start..end range of bus cycles anywhere from 0 to
8K.

TRCMODE values are as follows:

ASM causes an assembly instruction
only display
SRC causes a source line only display

BOTH causes an interleaved high level
source and assembly display

If no argument is given, DT shows the last instruction
executed.

The emulator displays the message UNATTACHED BUS
DATA when there is data on the bus that does not match up to
an instruction. Unattached bus data may be caused by an
external device putting data on the bus or, for CPUs that have
cache, running with cache which allows data movements that
do not match fetched instructions.

S2-63

w
c
ko]
=5
[}
3
©
=1
=

puewwod 391X

The disassemblers require a continuous trace stream to be able
to disassemble correctly. For this reason, if you have PPT set to
ON, or if you use the event system to qualify trace, DT will not
be able to function correctly. Failures will range from incorrect
information being displayed to crashing XICE.

Example

DT 10..50 Disassembles trace cycles
10 to 50.

Related commands
DTB, DTF, TRCMODE

S2-64 XICE Supplement for 68000/68HC000/68EC000 and 68302

DTB —display disassembled trace backwards

Works with

Syntax

Description

Notes

XICE Command Supplement

B EL 1600 [JCodeTAP

DTB

This command displays disassembled trace backwards (away
from cycle 0), one page at a time starting from the most recent
cycle count. It shows either assembly instructions, source lines
or both depending on the value you set for TRCMODE.

TRCMODE values are as follows:

ASM causes an assembly instruction
only display

SRC causes a source line only display

BOTH causes an interleaved high level
source and assembly display

The emulator displays the message UNATTACHED BUS
DATA when there is data on the bus that does not match up to
an instruction. Unattached bus data may be caused by an
external device putting data on the bus or, for CPUs that have
cache, running with cache which allows data movements that
do not match fetched instructions.

The disassembler requires a continuous stream of at least 128
lines of raw trace for a good disassembly. For this reason, if you
have PPT set to ON, if you use the event system to qualify

trace, or if you attempt using DTB with fewer than 128 lines of

$2-65

w
o
=l
=3
@
3
)
=2

puewwod 33X

raw trace you will not be able to accurately disassemble the
trace.The results will range from an error message being
displayed to incorrect information being displayed to XICE

crashing.
Example
e,
. |
D))) WORKING ...)..¢
1T
1T
0048 004050 42B30000 JSR maing
40829
0045 main:q .
>> inital(); /* Initialize variables */q
0045 00408E 4EBA0018 JSR initalf
0041 inital:q
» pattemn = ONE_ON; /* 0 */q
0041 0040ARS 13FCOOFE MOVE.B #SFE,pattemny
00005F44q
> speed = MEDIUM; /* SLOW - MEDIUM - FRST */{
0035 0040B0 23FC0000 MOVE.L #$000001F4, speedy
01F40000SE58Y .
»> direct = left; /* left to right */q
0029 0040BA 7001 MOVEQ.L #$1,D09
0026 0040BC 23c00000 MOVE.L DO, directy
SrcOg
» M
0023 0040c2 4E75 RTSY -
>> inital(); /* Initialize Variables */¢
0017 004092 4E71 NoPq
> step(); /* single step Loop */¢
0016 004094 4EBAOO2E JSR stepy
0014 step:§
(g
0014 0040c4 2r02 MOVE.L D2,-(A)§
»> for (loops = 5; loops != 0; loops--)/* repeat output 5 times */¢
0011 0040c6 7405 MOVEQ.L #$5,p2¢
>> outled (OxXFE); /* 0111 1111 */q
0010 0040c8 487800FE PEBA.L $0000FEYq
0006 0040cc 4EBS0000 JSR outledy
407¢ 007FF2<00FEY
1
Related Commands
DT, DTF, TRCMODE

S2-66 XICE Supplement for 68000/68HC000/68EC000 and 68302

DTF — display disassembled trace forward

Works with

Syntax

Description

Notes

XICE Command Supplement

B EL 1600 [JCodeTAP

DTF

This command displays disassembled trace forward (toward
cycle 0), one page at a time starting from the most recent cycle
count. It shows either assembly instructions, source lines or
both depending on the value you set for TRCMODE.

TRCMODE values are as follows:

ASM causes an assembly instruction
only display

SRC causes a source line only display

BOTH causes an interleaved high level
source and assembly display

The emulator displays the message UNATTACHED BUS
DATA when there is data on the bus that does not match up to
an instruction. Unattached bus data may be caused by an
external device putting data on the bus or, for CPUs that have
cache, running with cache which allows data movements that
do not match fetched instructions.

S2-67

w
c
e
o
12
3
o©
=
=

puewwoy 391X

The disassembler requires a continuous stream of at least 128
lines of raw trace for a good disassembly. For this reason, if you
have PPT set to ON, if you use the event system to qualify
trace, or if you attempt using DTF with fewer than 128 lines of
raw trace you will not be able to accurately disassemble the
trace. The results will range from an error message being
displayed to incorrect information being displayed to XICE
crashing.

Example

0054 START:{

0054 004044 2E7C0000 MOVE.L #$00008000, A7
80009

0051 00404R 2¢7C0000 MOVE.L #500000000, A6Y

Related commands
DT, DTB, TRCMODE

S2-68 XICE Supplement for 68000/68HC000/68EC000 and 68302

DUPDATE —specify polling frequency in dynamic run
mode

Works with
B EL 1600 [JCodeTAP

w
<
o
=N
@
3
©
=

Syntax

puewwoy 33IX

DUPDATE [1...]

Description

The DUPDATE command allows you to specify how frequently
the emulator is polled during DRUN (dynamic run) mode. The
value entered represents the number of polls per minute.
Whenever the emulator is polled the screen viewports are
updated and the user is notified if emulation has broken.

DUPDATE is entered while in DRUN mode; in DUPDATE
mode, commands from the user are no longer accepted. To exit
DUPDATE and return to DRUN, enter Ctrl-C.

If no argument is given, DUPDATE defaults to 20. Above 100
polls per minute, increasing the polling rate will have no
increasing effect.

Notes

None

Example
DUPDATE 30

Related Commands
DRUN, DSTOP

XICE Command Supplement S2-69

EMUVARS — display emulator variable values

Works with
Syntax
Description
Example
BTE OFF
BUSTIME OFF
cas OFF
DBP ON
DRTHMR NONE
EXVEC 15
FAST ON
FRZ OFF
FTO OFF
MWARN ON
OVE 0x66
ovs 1
PPT OFF
RFS OFF
RFSADR 0
RFSASP 5
RFSMSK [}
RIRR ON

SCRATCH OxfffO
o]

B EL 1600 [JCodeTAP

EMUVARS

This command displays the current values and descriptions for
all the emulator softswitch variables.

EMULATOR SOFTSWITCHES

Enable (ON)®* vs, disable (OFF) bus timeout

Capture bus timing (ON) vs, interrupt level (OFF)* in trace
Address strobe active during run (OFF)%* vs., run and pause (ON)
Enable (ON)* vs, disable (OFF) bus error detect on peek/poke
Use TMR1, TMR2, SCC1, SCC2, SCC3, NONE%* to trigger DRAM refresh
Soft breakpoint execution trap number (0-15%)

Enable on emulation (ON)* vs. disable (OFF) fast interrupts
Assert (ON) vs, do not assert (OFF)* FRZ while paused

Enable (ON) vs. disable (OFF)* fast bus timeout

Warn user (ON)* vs, ignore (OFF) out of range memory accesses
Memory spaces overlay will respond to (0-OxFF). Default: Ox66
Overlay speed (0-7), Default: O

Enable (ON) vs. disable (OFF)* tracing of peek’/poke cycles
Enable (ON) vs, disable (OFF)* software refresh

Software refresh address. Default: 0

Address space for software refresh (0-7), Default: 5

Don”t care mask for software refresh. Default: O

Restore (ON)* vs, do not restore (OFF) registers on reset
Start address of breakpoint scratch area. Default: 0

Special interrupt vector address, Default: O

SLO OFF Wait then enable (ON) vs. disable (OFF)* slow interrupts
TAD OFF Tri-state (ON) vs. do not tri-state (OFF)* address bus in pause
TCEBRK OFF Trace (ON) vs. do not trace (OFF)* execution break cycles
TED OFF Enable (ON) vs, disable (OFF)»* trace/overlay for external DMA
TID OFF Enable (ON)> vs. disable (OFF)#* trace/overlay for internal DMA
-UIR ON Enable (ON)* vs, disable (OFF) auto-update of chip select regs
Related commands
BUS, EVTVARS, MEMVARS, XICEVARS
S2-70 XICE Supplement for 68000/68HC000/68EC000 and 68302

EV — define an event

Works with

Syntax

Description

XICE Command Supplement

B EL 1600 (JCodeTAP

EV{n} = [event_definition|CLEAR]

The EV command supports the EL 1600 event system
capability. EV sets up an event definition and TRIG defines the
action(s) to take place, once the trigger is armed, each time the
event definition is met. For example,

trig{5} = ev{1},break Sets trigger 5 to cause a break
when event 1 is true.

trig{5} = arm Arms trigger 5.

An event name is shown as ev{n) where n is the number
identifying this event (the curly braces are required
punctuation). The event number n must be between 1 and 32.

An event definition is the specification of a possible state of the
trace frame (the address, data, and status buses) along with
the state of other event resources such as counters, during that
trace frame’s bus cycle. An event is true when all of the terms
within the event are true at the same time (i.e., the same single
bus cycle).

The following general rules relate to setting up the event
definition:

a The logical operators for equality (==), or inequality (!=) are
used to set the values. E.g., ev{1} = stat==rd

S2-71

w
| =
S
=N
[}
3
[}
=

puewwoy 30X

o Event terms can be used only once in any one event
definition.

o Each testable condition must be separated from the next by
a comma,

E.g.,ev{l} = addr==0x1l, data==0x2, stat==word

o Addresses can be specified as ranges that are denoted by (..).
E.g.,ev{l) = addr==0x0000..0xfff£f. Note, however,
that you cannot have two comparators of the same type in a
single event statement.

Eg.,ev{l}) = addr==0x1, addr==0x2 will not work.

a Don’t care masks can be used to exclude parts of data bus

information.

Eg.,ev{l}) = data==0x0034 &=0x00ff

defines an event that would be valid whenever the 8 least
significant bits of the data bus are 0x34.

0 The counters start at 0 each time you GO. They require
specific values. You may not use ranges or don’t care masks
with the counter.

o LSA bits may be set using don’t care masks.

E.g.,ev({(31) = LSA==0x2&=0x3
The information that follows lists the elements available for
setting up an event definition for the 68000 and 68302.

Condition Definition

ADDRESS The value that appears on the
address bus.

COUNT The counter value.

DATA The value that appears on the
data bus.

STATUS The type of bus activity (e.g.
instruction fetch, read, write,
interrupt acknowledge).

LSA The value of the LSA bits.

S2-72 XICE Supplement for 68000/68HC000/68EC000 and 68302

The information that follows lists the valid 68000 and 68302
STATUS mnemonics that can be used in an event definition
either in their positive form as listed below or in their negative

form by prepending a NOT_.
Mnemonic Definition
BERR Bus error
BRK Break signal asserted. This

BYTE
DMA

IAC
OvVL
RD
TAR
VIO
WORD
WR

XICE Command Supplement

status is useful for determining
the skid, i.e., the number of bus
cycles between the time the
break occurs and emulation
stops.

Byte access

Pod DMA signal state (68302
only)

CPU IAC pin state (68302 only)
Overlay access

CPU read

Target access

Violation error

Word access

CPU write

S2-73

w
I3
o
=3
)
3
@
=2

puewwoyd 3oIX

The information that follows lists additional valid 68000 and
68302 STATUS mnemonics that can be used in an event
definition. However, these mnemonics may only be used as
shown below, in other words, unlike the list of mnemonics
above, they do not have a negative form.

Mnemonic Definition
CPU Access to CPU space
INTRO An interrupt 0 is pending
INTR1 IPO-IP2 is set to 1 (active low)
INTR2 IP0-IP2 is set to 2 (active low)
INTR3 IPO-IP2 is set to 3 (active low)
INTR4 IPO-IP2 is set to 4 (active low)
INTR5 IPO-IP2 is set to 5 (active low)
INTR6 IPO-IP2 is set to 6 (active low)
INTR7 IPO-IP2 is set to 7 (active low)
SD Access to supervisory data space
SP _ Access to supervisory program space
ub Access to user data space
upP Access to user program space
Examples:
ev{l} = addr==0x13400..0x134FF, stat==up|rd

In the example above, the event expression ev{1} is true if
any address in the 256 byte block 0x13400..0x134FF is read in
user fetches.

ev{l} = addr==0x13400, count==4

S2-74 XICE Supplement for 68000/68HC000/68EC000 and 68302

The expression ev{1) is true for all accesses of address
0x13400 when the counter has reached the count of 4.

ev{l} = clear
Clears the event definition for ev{1} for reuse.

Related commands
EVTMODE, EVTGRP, EVTCLR, EVTARM, GROUP, TRIG

w
<
he}
=X
©
3
o
3
=

puewwod 321X

XICE Command Supplement S2-75

EVTARM — enable or disable automatic trigger arming

Works with

Syntax

Description

Notes

Example

Related Commands

§2-76

B EL 1600 (JCodeTAP

EVTARM [ON|OFF]

This switch specifies whether triggers are automatically armed
when they are defined using the TRIG command. If EVTARM
is set to ON, triggers are automatically armed when defined. If
EVTARM is set to OFF, triggers are not automatically armed

when defined.

The default is ON. If no argument is given, the state of the
switch is displayed.

Triggers are only active when they have been armed.

You can also set EVTARM in XICE.CFG with
SW_EVTARM:ON or SW_EVTARM:OFF.

EVTARM ON

EV,EVTMODE, EVTCLR,TRIG, XICEVARS

XICE Supplement for 68000/68HC000/68EC000 and 68302

EVTCLR — clear event system

Works with
B EL 1600 (J CodeTAP
® x
Syntax 53
T O
EVTCLR 2 8
=3
Description -
This command clears all events and triggers set up in the event
system and resets the event state variables to their initial
values.
Example
EVTCLR
Related Commands

EV, EVTMODE, EVTARM, TRIG, XICEVARS

XICE Command Supplement S2-77

EVTGRP — specify event group

Works with
B EL 1600 [JCodeTAP

Syntax

EVTGRP [1121314]

Description

This command specifies the event group for an event when
arming triggers. Whenever a trigger is armed, either
automatically (when EVTARM is set to ON) or explicitly with
a TRIG command, it is armed in a particular event group. This
group is specified by the EVTGRP variable.

Event group 1 is the default. If no argument is given, the state
of the switch is displayed.

The emulator allows four event groups. For any one group
there may not be more than the following comparators:

0 2 address comparators (specifying an address range counts
as a single address comparator)

o 2 data comparators

Q 2 status comparators

@ 1LSA comparator

0 1 counter

Notes

You can also set EVI'GRP in XICE.CFG with SW_EVTGRP:1,
SW_EVTGRP:2, SW_EVTGRP:3, or SW_EVTGRP:4.

Example
EVTGRP 2

S2-78 XICE Supplement for 68000/68HC000/68EC000 and 68302

Related commands
GROUP, EV, EVTCLR, EVTARM, TRIG, EVTVARS

w
[y
=)
=1
[0}
3
@
El

puewwod 391X

XICE Command Supplement S2-79

EVTVARS — display internal debugger variable values

Works with

Syntax

Description

Example

Related Commands

S2-80

B EL 1600 (JCodeTAP

EVTVARS

This command displays the current value and description for
the emulator event state variable GROUP. It indicates the
event group that the emulator is currently in and is a read-only
value. It cannot be changed.

evtvars
WORKING ...

EVENT STATE VARIABLES

.GRDUP 1 Event group that the emulator is currently in. <READ-ONLY>

EMUVARS, MEMVARS, XICEVARS

XICE Supplement for 68000/68HC000/68EC000 and 68302

EXPLAIN — explain error message

Works with
B EL 1600 (JCodeTAP
» x
Syntax g m
S
EXPLAIN 8 3
=3
Description =
This command provides additional information about the last
emulator-related error message reported.
Notes
This command only supports emulator-related error messages.
If no emulator-related error messages have been generated,
EXPLAIN states that the error is not emulator related.
Example

EXPLAIN

XICE Command Supplement S2-81

EXVEC — software breakpoint execution trap number

Works with

Syntax

Description

Notes

S2-82

B EL 1600 [JCodeTAP

EXVEC [number)

The EXVEC switch specifies the software execution breakpoint
trap number, where number may be from 0 to 15. The number
that you enter for EXVEC should be the same as the trap
number in your Vector Table.

The default for EXVEC is 15. If no argument is given, EXVEC
shows the current setting for the switch.

The trap number that you specify for EXVEC must be
dedicated to XICE exclusively. This is because XICE uses that
trap to implement software breakpoints. If your program also
uses that trap, XICE will report a spurious break every time
your program executes that trap.

XICE sets the vector for the specified trap to point to code that
it has placed in the scratch area to handle software break-
points. The target system may not change the vector of the
specified trap once XICE has initialized it, nor may the targst
system modify the code XICE has placed in the scratch area.

To install a software breakpoint, XICE must be able to modify
the opcode at the desired break address. If that address is in
ROM, you will have to map that section of code to emulator

XICE Supplement for 68000/68HC000/68EC000 and 68302

overlay RAM. You may map the overlay in read-only mode,
which prevents the target system from writing into the area

but still allows XICE to modify the opcode.

You can also set EXVEC in XICE.CFG with
SW_EXVEC:number.

Example

EXVEC 15

Jusws|ddng
puewwo) 391X

Related commands
BREAKINSTRUCTION, GOSTEP

XICE Command Supplement $2-83

FAST — fast interrupt emulation control

Works with
B EL 1600 (JCodeTAP

Syntax
FAST [OFF|ON]

Description
The FAST switch controls the fast interrupt enable. When
FAST is set to ON, interrupts are enabled immediately upon
entering RUN mode. When FAST is set to OFF, interrupts are
disabled.
The default is OFF. If no argument is given, FAST shows the
current setting for the switch.

Notes

You can also set FAST in XICE.CFG with SW_FAST:ON or
SW_FAST:OFF.

If you set both FAST and SLO to ON, FAST has precedence
over SLO. The following table shows the results for the possible
switch setting combinations for FAST and SLO. This table
applies to target-generated interrupts passed to the target
processor when the emulator is running.

S2-84 XICE Supplement for 68000/68HC000/68EC000 and 68302

SLO FAST Result While in RUN Mode Result While in PAUSE Mode
ON ON Interrupts immediately Interrupts immediately enabled upon
enabled. return to RUN mode.
ON OFF Interrupts enabled after Interrupts enabled after
approximately 160 clock approximately160 clock cycles after g é
cycles. return to RUN mode. 5
=
OFF ON Interrupts immediately Interrupts immediately enabled upon 3 g
enabled. return to RUN mode. —=
OFF OFF Interrupts generated by the Interrupts generated by the target
target system will be inhibited system will be inhibited from reaching the
from reaching the emulator. emulator.
Example
FAST ON
Related commands
SLO

XICE Command Supplement S2-85

FRZ — freeze peripheral activity (68302 only)

Works with

Syntax

Description

Notes

Example

$2-86

B EL 1600 [JCodeTAP

FRZ [ON|OFF]

The FRZ switch enables or disables peripheral activity during
PAUSE mode. When FRZ is set to ON, the FRZ pin is asserted
in PAUSE mode, which disables any peripheral activity. When
FRZ is set to OFF, peripheral activity is not blocked during
PAUSE.

The default is OFF, which allows peripheral activity during

PAUSE mode. If no argument is given, FRZ shows the current
setting for the switch.

You can also set FRZ in XICE.CFG with SW_FRZ:ON or
SW_FRZ:OFF.

This command is not used by XICE for the 68000.

FRZ ON

XICE Supplement for 68000/68HC000/68EC000 and 68302

FTO — fast bus timeout

Works with
B EL 1600 [J CodeTAP

Syntax

FTO [ON|OFF]

Description

The FTO switch controls the length of time for the bus timeout.
If FTO is set to ON, a bus timeout occurs in 112 clock cycles. If

FTO is set to OFF, a bus timeout requires 28,672 clock cycles,
which is approximately 2 milliseconds.

The default for FTO is OFF. If no argument is given, FTO
shows the current setting for the switch.

Notes

If BTE is set to OFF, this switch has no effect regardless of its
setting.

You can also set FTO in XICE.CFG with SW_FTO:ON or
SW_FTO:OFF.

Example
FTO OFF

Related Commands
BTE

XICE Command Supplement S2-87

%2
c
ne)
O
©
3
@
=}
=4

puewwoy 33X

GROUP — display active event group

Works with

B EL 1600 [JCodeTAP
Syntax

GROUP
Description

This command displays which of the four event groups was

active at the last refresh or break.
Example

>-GROUP

Current setting is 2

Related Commands

EVTGRP, EV, EVTVARS

$2-88 XICE Supplement for 68000/68HC000/68EC000 and 68302

HWCONFIG — display hardware name and version

Works with
B EL 1600 (JCodeTAP
. o =
Syntax 53
[T)
HWCONFIG 39
=23
2
- . Q.
Description
This command displays the name and version of all hardware
and software being used by the emulator.
Example
HWCONFIG
Current emulator configuration is:
EL1600 Ethernet controller, version 1.01
EL1600 1M Overlay, version 0.01
EL1600 Dynamic T & B Board, version 0.01
EL1600 68000 SCSI Shell(00), version 1.02
Related Commands

XICE Command Supplement $2-89

MEMVARS — display memory access variable values

Works with
B EL 1600 (JCodeTAP
Syntax
MEMVARS
Description
This command displays the current values and descriptions for
all the memory access variables.
Notes
The possikle values for SPACE, SIZE, and OVERLAY are
provided in the descriptions of each of these commands.
Example
memvars
MEMORY ACCESS VARIABLES
Operation Space Size
CODE: SP 1
COMP1; SD 1
COMP2: SD 1
COPYFROM; SD 1
COPYTO: SD 1
DIAG: SD 1
FILL: SD 1
READ; SD 1
SEARCH: SD 1
STACK: SD 1
TEST: SD 1
WRITE: SD 2
|
Related commands

EMUVARS, EVTVARS, XICEVARS

S2-90 XICE Supplement for 68000/68HC000/68EC000 and 68302

MWARN — control address out-of-range warnings

Works with

Syntax

Description

Notes

Example

XICE Command Supplement

B EL 1600 [JCodeTAP

MWARN [ON|OFF]

This switch is used to protect your target hardware from
unwanted accesses that may be used by the emulator during
target writes due to the inability of the 68000 and 68302 to
access target memory with byte accesses. For example, if you
request a word write to an odd address such as 0x1, the
emulator will read the word at 0x0, OR in the new data value
for address 0x1 and write it back. Then it will read the word at
0x2, or in the data value at 0x2, and write it back. If you wish
to be informed when these types of accesses occur at the upper
and lower boundaries, set this switch ON.

The default for MWARN is ON. If no argument is given,
MWARN shows the current setting for the switch.

You can also set MWARN in XICE.CFG with SW_MWARN:ON
or SW_MWARN:OFF.

MWARN ON

S2-91

w
c
°
©
@
3
®©
=

puewwoy 30IX

NETERR — specify timeout warning delay

Works with
B EL 1600 (JCodeTAP
Syntax
NETERR [seconds]
Description
NETERR is the approximate amount of time, in seconds, that
XICE waits for a response from the emulator before issuing a
warning message after a code packet has been sent during
download.
Example
NETERR 90 delays 90 seconds before
issuing a warning message.
See also
NETFAIL

$2-92 XICE Supplement for 68000/68HC000/68EC000 and 68302

NETFAIL — specify download abort timeout

Works with
B EL 1600 (JCodeTAP
® x
Syntax 2
e
NETFAIL [seconds] 83
Description
NETFAIL is the approximate amount of time, in seconds, that
XICE waits for a response from the emulator before generating
a timeout error and aborting the download process after a
NETERR warning message has been displayed.
Example
NETFAIL 90 delays 90 seconds before
aborting downloads
See also

NETERR

XICE Command Supplement $2-93

NULL_TGT —enable null target mode (68000/HC000/EC000)

Works with
B EL 1600 ([JCodeTAP

Syntax

NULL_TGT [ON|OFF |AUTO]

Description

This switch enables and disables null target mode. In null
target mode probe tip signals to the target are disconnected
and an internal clock is used. This mode allows you to operate
the emulator without a target. The arguments cause the
following actions:

ON Enables null target mode.
OFF Disables null target mode.

AUTO Null target mode is selected automatically
when emulator detects absence of target
power.

The default for NULL_TGT is AUTO. If no argument is given,
NULL_TGT shows the current setting for the switch.

Notes

Null target mode is available only for 68000/HC000/EC000
emulators which use a probe tip configuration, with no probe
module. It is not available for the 68302 or for 68000’s which
use a probe tip/probe module configuration. See your EL 1600
Hardware Setup and Reference Guide to identify the
configuration of your 68000.

S2-94 XICE Supplement for 68000/68HC000/68EC000 and 68302

If you invoke XICE with no target connected to the emulator
the SW_NULL_TGT switch in the XICE.CFG should be set to
ON or AUTO. XICE invocation will fail if you have no target or
no target power and are not in null target mode.

When running code in null target mode, the overlay memory
board must be set up to return DTACK. Use OVS to specify this

operation.

w x
You can also set NULL_TGT in XICE.CFG with 3R
SW_NULL_TGT:AUTO or SW_NULL_TGT:ON or g 3
SW_NULL_TGT:OFF. ~ 3
Example
NULL_TGT ON
Related Commands

ovSs

XICE Command Supplement S2-95

OVE — overlay memory spaces

Works with

B EL 1600 [JCodeTAP
Syntax

OVE [0..0xFF]
Description

This switch specifies which memory spaces overlay responds
to. Overlay can respond to multiple spaces. To specify multiple
spaces, OR the masks given below to create a number that is
between 0 and 0xFF.

Memory address space is processor-specific. The valid values
for the 68000 and 68302 processors are as follows:

Value Address Space Description
0x01 SCo Reserved memory space
0x02 UD or SC1 User data space
0x04 UP or SC2 User program space
0x08 SC3 Reserved memory space
0x10 SC4 Reserved memory space
0x20 SD or SC5 Supervisor data space
0x40 SP or SC6 Supervisor program space
0x80 CPU or SC7 CPU space

S2-96 XICE Supplement for 68000/68HC000/68EC000 and 68302

The default for OVE is 0x66, which represents the address
spaces for Supervisor Program Space (0x40), Supervisor Data
Space (0x20), User Data Space (0x02), and User Program Space
(0x04) all ORed together (0x66).

If no argument is given, OVE shows the current setting for the

switch.
o x
Notes =l §
You can also set OVE in XICE.CFG with SW_OVE:value. g 5
job
Example

OVE 0x66

XICE Command Supplement S2-97

OVS — set emulator overlay speed

Works with

Syntax

Description

Notes

$2-98

B EL 1600 [JCodeTAP

OVE [number)

This switch specifies the number of wait states (from 0 to 7) to
be inserted before the overlay memory supplies a DTACK
signal to terminate the cycle.

The valid OVS settings are as follows:

0 DTACK supplied by target memory

No delay, address strobe returned to the
processor as DTACK (DSACK)

+1 cycle delay

—

+2 cycles delay
+3 cycles delay
+4 cycles delay
+5 cycles delay

N O Ok W N

+6 cycles delay

The default for OVS is 0. If no argument is given, the state of
the switch is displayed.

The CPU accepts the first DTACK it receives, either from the
target or from the internally generated DTACK using the OVS
setting.

XICE Supplement for 68000/68HC000/68EC000 and 68302

The 68000 and the 68302 may not be able to run out of overlay
memory without wait states since overlay RAM may not
respond as quickly as target RAM. If you observe erratic
overlay operation, set OVS to 2 or more to insert a delay.

The 20 MHz 68302 requires that OVS be set at 2 or greater.
Otherwise, XICE may report illegal switches on initialization.

If you are using the emulator with a null target, you must set
OVS to a non-zero value for proper operation with overlay
memory.

w
o
k=]
=5
@
3
@©
=4

puewwo)d 39X

You can also set the emulator overlay speed in XICE.CFG with
SW_OVS:n, for example SW_OVS:1.

Example
ovs 1

Related Commands
MEMVARS

XICE Command Supplement S2-99

PERFACT — enable performance analysis data gathering

Works with
B EL 1600 (JCodeTAP

Syntax
PERFACT [STATISTICAL|OFF)

Description
PERFACT turns statistical performance analysis data
gathering on and off. If PERFACT is on, the emulator will
periodically upload data during run, and process the data for
display. The interval between data uploads is determined by
the PERFINT switch.

Notes
For more information refer to Chapter 5, Using Performance
Analysis.

Example
PERFACT STATISTICAL

Related Commands

PERFINT

S2-100 XICE Supplement for 68000/68HC000/68EC000 and 68302

PERFCLR — remove performance analysis data

Works with
B EL 1600 [JCodeTAP
w x
Syntax 38
o0
PERFCLR g g
"B
Description =
PERFCLR purges all accumulated performance analysis data
from the system. The event system and address exclusion
setups are not disturbed.
Accumulated performance analysis data is automatically
cleared when a LOAD is executed.
Notes
For more information refer to Chapter 5, Using Performance
Analysis.
Example
PERFCLR
Related Commands

XICE Command Supplement S2-101

PERFDATA — display performance analysis symbol data

Works with

Syntax

Description

Notes

Example

Related Commands

$2-102

B EL 1600 [JCodeTAP

PERFDATA [symbol|string)

PERFDATA displays the address range and number of samples
for symbols which appear in the accumulated performance
analysis data.

Note that the address range is derived from the trace data and
is typically a subrange of the actual addresses for that function
(as shown by PRINTSYMBOL, for example).

For more information refer to Chapter 5, Using Performance
Analysis.

PERFDATA main

main:
Address range: 0x0000566E..0x00005700
Hits: 5789

XICE Supplement for 68000/68HC000/68EC000 and 68302

PERFDEPTH — maximum number of lines of PA output

Works with
B EL 1600 [JCodeTAP

Syntax

w
j oy
=]
=3
)
3
)
=2

PERFDEPTH [0...]

puewwo) 30IX

Description

When running Performance Analysis on a large program, the
high number of symbols encountered can cause the PA display
to exceed the depth of the screen. Quite often, many of the last
symbols displayed are of little interest because they did not
occur often. PERFDEPTH can be used to limit the display to
only the more frequently encountered symbols.

The default is zero; all available lines display. Setting
PERFDEPTH to any non-zero number limits the display to the
specified number of lines.

Notes

You can also set the symbol display line limit in xice.cfg using
the softswitch SW_PERFDEPTH:number.

For more information refer to Chapter 5, Using Performance
Analysis.

Example
PERFDEPTH 20

XICE Command Supplement $2-103

PERFDISP — display performance analysis information

Works with

Syntax

Description

Example

S2-104

B EL 1600 ([JCodeTAP

PERFDISP

PERFDISP displays performance analysis information. The
format of the display is specified by PERFFORMAT. If it is set
to display all data, the display is in the format: symbol:
percentage of samples in function: number of samples in
function: histogram, where symbol is a function or subroutine
in your program. Any of percentage, samples, or histogram
may be left out, although at least one will always be present.
For more information refer to Chapter 5, Using Performance
Analysis.

PERFDISP

Hits used: 40928 (40928 total, 0 excluded)

FUNCTION PERCENT HITS

func9 30.8 (12605) ***kxxkkkkxkk s
funcs 17.1 (6999) *xxxxxxx
main: 16.6 6794) **kkkkkkx
func? 12.4 (5075) **x**xx
funceé: 11.1 (4543) *xxxx*
funcs: 6.2 (2538) **x
func4: 3.1 ¢ 1269) *

func3: 1.6 (655) *

func2: 0.8 (327) *

funcl: 0.3 (123) *

XICE Supplement for 68000/68HC000/68EC000 and 68302

Related commands
PERFMODE, PERFFORMAT

w
I~
ko]
=3
©
3
©
=2

puewwod 301X

XICE Command Supplement S2-105

PERFEX — exclude addresses from performance analysis

Works with

Syntax

Description

Notes

$2-106

B EL 1600 [JCodeTAP

PERFEX [address|address rangelsymbol|#distance]]

PERFEX excludes certain addresses from the performance
analysis data. If an address or address range is specified, those
addresses are excluded. If a symbol name is given, PERFEX
searches forward for the next symbol and excludes up to that
symbol. This can be used to exclude a function. Normally the
limit for this search is given by PERFTOL, but it may be
overridden with #distance. Exclusion ranges are automatically
merged when they overlap or are contiguous.

If no arguments are given, PERFEX displays all exclusions in
effect and the names of symbols within those exclusions.

For recommendations on using PERFEX effectively, see the
chapter on using performance analysis in this supplement.

For more information refer to Chapter 5, Using Performance
Analysis.

XICE Supplement for 68000/68HC000/68EC000 and 68302

Example

Related Commands

XICE Command Supplement

PERFEX 0x5800..0x5900

PERFEX wait
Symbol getcom found at 0x00005704.Excluding from

0x0000566E to 0x00005703.

PERFEX

Current address exclusion ranges are:
0x0000566E..0x00005703 wait
0x00005800..0x00005900 sort, shuffle

PERFEXCLR, PERFTOL

$2-107

w
c
©
=2
©
3
©
=

puewwog 391X

PERFEXCLR — clear performance analysis exclusions

Works with

Syntax

Description

Example

Related Commands

S2-108

B EL 1600 [JCodeTAP

PERFEXCLR [address|address rangelsymbol|[#distance]]

PERFEXCLR clears address range exclusions set with
PERFEX. If an address or address range is specified, any
exclusion of those addresses is cleared. If a symbol name is
given, PERFEXCLR searches forward for the next symbol and
clears any exclusions up to that symbol. This can be used to
clear the exclusion of a function. Normally the limit for this
search is given by PERFTOL, but it may be overridden with
#distance.

If no arguments are given, PERFEXCLR clears all exclusions
in effect. All address range exclusions are automatically
cleared when a LOAD is executed.

For more information refer to Chapter 5, Using Performance
Analysis.

PERFEXCLR 0x5800..0x5900

PERFEXCLR wait
Symbol getcom found at 0x00005704.Clearing from
0x0000566E to 0x00005703.

PERFEX, PERFTOL

XICE Supplement for 68000/68HC000/68EC000 and 68302

PERFFORMAT — format of performance analysis display

Works with
B EL 1600 (JCodeTAP
Syntax £5
PERFFORMAT [ST*ANDARD|PE*RCENT|HI*TS|BA*R|PH|PBI|HB|- % §
PHB |ALL] =8
Description
PERFFORMAT governs the display of performance analysis
data according to the chart below.
percent hits (samples) | histogram
PERCENT]
HITS |
BAR |
PH | |
PB ' L
STANDARD |]
HB u |
PHB]] |
ALL | |]
Notes

For more information refer to Chapter 5, Using Performance
Analysis.

XICE Command Supplement S2-109

Example
PERFFORMAT ALL

Related commands
PERFDISP, SW_PERFFMT_STAT

S2-110 XICE Supplement for 68000/68HC000/68EC000 and 68302

PERFINT — specify performance analysis time interval

Works with
B EL 1600 (JCodeTAP
w x
Syntax £
o)
PERFINT [1 - 120] 23
=23
Description ~
PERFINT controls the time in seconds between uploads of
performance analysis data from the emulator
The default for PERFINT is 3.
Notes
You can also set the performance analysis data gathering time
interval in XICE.CFG with SW_PERFINT:number.
For more information refer to Chapter 5, Using Performance
Analysis.
Example
PERFINT 3

XICE Command Supplement S2-111

PERFMODE — control performance analysis data display

Works with
B EL 1600 (JCodeTAP

Syntax
PERFMODE [A*LWAYS | D*EMAND)

Description
PERFMODE controls whether performance analysis data is
displayed every time it is uploaded from the emulator
(ALWAYS), or stored for display at a later time (DEMAND),
using PERFDISP.
The default for PERFMODE is DEMAND.

Notes
You can also set the performance analysis display mode in
XICE.CFG with SW_PERFMODE:option.
For more information refer to Chapter 5, Using Performance
Analysis.

Example
PERFMODE D

Related Commands
PERFDISP

S2-112 XICE Supplement for 68000/68HC000/68EC000 and 68302

PERFTOL — specify symbol search distance

Works with
B EL 1600 (JCodeTAP

Syntax

PERFTOL [1...]

w
c

el

=2
@©
=
©
=

puewwod 3JIX

Description

Because most addresses do not fall exactly on the beginning of
a symbol, it is necessary to search backward to determine to
which symbol a traced address belongs. PERFTOL specifies the
maximum distance to search before giving up and labelling the
address NO_SYMBOL.

PERFTOL also controls how far forward PERFEX will search
when trying to exclude a symbol.

The default for PERFTOL is 2000. If no argument is given, the
state of the switch is displayed.

Notes

You can also set the symbol search distance in XICE.CFG with
SW_PERFTOL:number.

For more information refer to Chapter 5, Using Performance
Analysis.

Example
PERFTOL 2000

Related Commands
PERFEX

XICE Command Supplement S2-113

PPT — peek/poke trace

Works with

Syntax

Description

Notes

Example

Related Commands

S2-114

B EL 1600 [JCodeTAP

PPT [OFF|ON]

This switch controls the tracing of emulator peek/poke cycles
made while in PAUSE mode. If PPT is set to ON, peek/poke
cycles while in PAUSE are traced. If PPT is set to OFF, peek/
poke cycles while in PAUSE are not traced.

When PPT is ON, XICE may be unable to perform trace
disassembly in certain circumstances. This switch can,

however, be useful for capturing cycles generated during a
DIAG test.

The default for PPT is OFF. If no argument is given, the state
of the switch is displayed.

You can also set PPT in XICE.CFG with SW_PPT:ON or
SW_PPT:OFF.

If this switch is ON, the DT, DTB, and DTF commands could

give erroneous information.

PPT OFF

DTB, DTF

XICE Supplement for 68000/68HC000/68EC000 and 68302

RAMACCESS —

Works with

Syntax

Description

Example

ram 0x1000.

ram 0x2000.

Related Commands

XICE Command Supplement

locate a range of RAM memory

B EL 1600 [JCodeTAP

RAMACCESS [address|address_range]l [{, | =}
{COPY |IMAP | TARGET | UNKNOWN} [=bank_range]

This command specifies a range of memory locations that can
be accessed during execution of the target program. If no
parameters are specified, the memory map is displayed in the
command viewport. The MAP and COPY options map the
specified range to the emulator’s overlay memory. TARGET
and UNKNOWN map memory to target or as unknown.

Mappings have a 2K minimum granularity. If the beginning
and end of an attempted mapping do not fall on 2K boundaries,
the emulator automatically adjusts the start and end addresses
and returns a warning that the mapping has been adjusted.

.0x1fff=target maps the range to target memory

-0x2fff=copy copies contents of the range from target

memory to emulator overlay memory

ROMACCESS

§2-115

w
|

ke

=3
[}
3
©
=4

puewwoy 301X

RESET — reset processor and target to initial state

Works with

Syntax

Description

Notes

Example

Related Commands

S2-116

B EL 1600 [JCodeTAP
RESET

The XICE RESET command asserts both HALT and RESET
simultaneously to the microprocessor in the probe module or on
the probetip. Once in pause mode, the processor executes a
RESET instruction that resets the external target hardware.

If you want to reset the external target hardware without

resetting the processor, you must execute a RESET instruction
in code. Or you can install a reset button on your target for this

purpose.

Since memory is not re-initialized upon use of the RESET
command, variables are not reset to their original values.

None
RESET

RESTART

XICE Supplement for 68000/68HC000/68EC000 and 68302

RFS — control software refresh

Works with

Syntax

Description

Notes

XICE Command Supplement

B EL 1600 [CodeTAP

RFS [ON|OFF]

This switch enables memory refreshes during PAUSE mode. If
RFS is set to ON, memory is refreshed during PAUSE mode. If
RFS is set to OFF, memory is not refreshed during PAUSE
mode.

If you set RF'S to ON, you must also specify the memory area to
be refreshed using the following commands:
RFSADR specifies the memory area to be refreshed

RFSMSK specifies any mask to be applied to the
memory area to be refreshed

RFSASP specifies the memory space to be refreshed
If you change the values for any of the above switches, the
change takes effect immediately.

The default for RFS is OFF. If no argument is given, the state
of the switch is displayed.

The switch PPT specifies tracing peek/poke cycles during
PAUSE mode. Setting both RFS and PPT to ON will result in
incorrect trace information.

S2-117

w
<
k=]
©
©
3
@©
=1
=4

puewwod 39IX

You can also set RFS in XICE.CFG with SW_RFS:ON or
SW_RFS:OFF.

Example

RFS OFF

Related Commands
RFSADR, RFSASP

S2-118 XICE Supplement for 68000/68HC000/68EC000 and 68302

RFSADR — refresh software addresses

Works with
B EL 1600 (JCodeTAP
» x
Syntax 58
[W)
RFSADR [address] g 3
"8
Description -
This switch specifies the address for memory refreshing during
PAUSE mode. It is only active if RFS is set to ON. The related
command RFSASP specifies the address space for memory
refreshes and RFSMSK specifies any masks to be applied.
The default address for RFSADR is 0x0. If no argument is
given, the state of the switch is displayed.
Notes
You can also set RFSADR in XICE.CFG with
SW_RFSADR:address.
Example
RSFADR 0x0
Related Commands

RFSASP, RFSMSK

XICE Command Supplement S2-119

RFSASP — refresh software address space

Works with

B EL 1600 [JCodeTAP
Syntax

RFSASP [space]
Description

This switch specifies the address space for memory refreshing
during PAUSE mode. It is only active if RFS is set to ON. The
related command RFSADR specifies the address for refreshes
and the command RFSMSK specifies any mask on the refresh.

The 68000 and 68302 address spaces are as follows:

Code | Address Space Description
0 SCo Reserved memory space
1 UD or SC1 User data space
2 UP or SC2 User program space
3 SC3 Reserved memory space
4 SC4 Reserved memory space
5 SD or SC5 Supervisor data space
6 SP or SCé Supervisor program space
7 CPU or SC7 CPU space

The default space for RFSASP is 5. If no argument is given, the
state of the switch is displayed.

S2-120 XICE Supplement for 68000/68HC000/68EC000 and 68302

Notes
You can also set RFSASP in XICE.CFG with

SW_RFSASP:[space].

Example

RFSASP 5

w
o
=]
=X
[}
3
©
=3

Related commands

puewwod JOIX

RFSADR, RFSMSK

XICE Command Supplement S2-121

RFSMSK — refresh software mask

Works with

Syntax

Description

Notes

Example

Related Commands

S2-122

B EL 1600 [JCodeTAP

RFSMSK [address_mask]

This switch specifies the address mask for memory refreshing
during PAUSE mode. It is only active if RFS is set to ON. The
related command RFSASP specifies the address space for
refreshes and RFSADR specifies the address for refreshes.

The default mask for RFSMSK is 0. If no argument is given, the
state of the switch is displayed.

You can also set RFSMSK in XICE.CFG with
SW_RFSMSK:address_mask.

RFSMSK 0x0

RFS, RFSADR, RFSASP

XICE Supplement for 68000/68HC000/68EC000 and 68302

RIRR — control register restoration on reset (68302 only)

Works with
B EL 1600 [JCodeTAP

Syntax

w
c
ke]
=3
©
=
[}
=2

RIRR [ON|OFF]

puewwod 3JIX

Description

This switch controls the restoration of the CPU’s chip select
and control registers (SCR, BAR, WRR, BR0, OR0, BR1, OR1,
BR2, OR2, BR3, and OR3). If RIRR is set to ON, the emulator’s
internal copy of the chip select and control registers is written
to the CPU whenever you use the command RESET to reset the
emulator. If RIRR is set to OFF, internal registers are not
restored to the CPU on RESET.

The default for RIRR is ON. If no argument is given, the state
of the switch is displayed.

Notes

Timer and serial communication controller registers may be
saved depending on the setting you use for the switch DRTMR.

You can also set RIRR in XICE.CFG with SW_RIRR:ON or
SW_RIRR:OFF.

This command is not used by XICE for the 68000.

Example

RIRR OFF

Related Commands
DRTMR, UIR

XICE Command Supplement S2-123

ROMACCESS — locate a range of ROM memory

Works with

Syntax

Abbreviation

Description

Example

S2-124

rom 0x1000..

rom 0x2000..

B EL 1600 [JCodeTAP

ROMACCESS [address|address_range]l [{, | =}
{COPY IMAP| TARGET |UNKNOWN} [=bank_range]

ROM

This command specifies a range of memory locations that
cannot be written to during execution of the target program. If
no parameters are specified, the memory map is displayed in
the command viewport. The MAP and COPY options map the
specified range to the emulator’s overlay memory. TARGET
and UNKNOWN map memory to target or as unknown.

Mappings have a 2K minimum granularity. If the beginning
and end of an attempted mapping do not fall on 2K boundaries,
the emulator automatically adjusts the start and end addresses
and returns a warning that the mapping has been adjusted.

Oxlfff=target maps the range to target memory

0x2fff=copy copies contents of the range from target
memory to emulator overlay memory

XICE Supplement for 68000/68HC000/68EC000 and 68302

Related Commands
RAMACCESS

w
<
S
=3
©
3
©
=

puewwod 30IX

XICE Command Supplement S2-125

RUN_POLL — set number of polls per second during run

Works with

Syntax

Description

Notes

Example

Related Commands

S2-126

B EL 1600 [JCodeTAP

RUN_POLL [n]

This command controls how many times per second the
emulator is polled while in RUN mode. Valid values are 1-20.

The default for RUN_POLL is 5. If no arguments are given, the
current value is displayed.

Alower number will slightly reduce response time, but will also
reduce network traffic and CPU load. You can set polls per
second in XICE.CFG with SW_RUN_POLL:num.

rRUN_POLL 10 causes 10 polls per second

XICEVARS

XICE Supplement for 68000/68HC000/68EC000 and 68302

RUN_TIME — set maximum run time

Works with
B EL 1600 [J CodeTAP

Syntax

w
<
B
=5
©
E
@
=2

RUN_TIME [n]

puewwod 301X

Description

This command controls the maximum time (in seconds) the
emulator will be allowed to run before emulation is broken.

The default is 0, which will allow the emulator to stay in run
indefinitely. If no arguments are given, the current value is
displayed.

Notes

RUN_TIME controls the time the emulator is actually running.
When PERFACT is set to STATISTICAL, the emulator is not
always in run due to the overhead associated with performance
analysis. Therefore the elapsed time may be several seconds
longer than the actual run time.

Example

RUN_TIME 3 causes emulator to run for 3
seconds before breaking

XICE Command Supplement S2-127

SCRATCH — breakpoint scratch area address

Works with

Syntax

Description

Notes

Example

S2-128

B EL 1600 [JCodeTAP

SCRATCH [address]

This command specifies the starting address in RAM for the 8
bytes of scratch memory in the supervisor program space
needed for software breakpoints. This area must be specified in
order to use execution breakpoints and it must be an area that
is unused by the program being debugged. If no argument is
given, the current address is displayed.

If you do not have any spare RAM in the target system, you
may set the scratch space in unused memory and map overlay
memory to that area.

When XICE is invoked, it performs a read of the area
designated for SCRATCH if SCRATCH is specified. If
SCRATCH is set to an area of memory that does not return a
DTACK at the end of the read, it will hang XICE. In such a
case, comment out the default address for SCRATCH (0x9ff0)
in the xice.cfg file. Then specify the address for SCRATCH
using this command before setting any breakpoints, or create
an include file or start-up file for invoking XICE.

You can also set SCRATCH in XICE.CFG with SW_SCRATCH.

SCRATCH 0x0

XICE Supplement for 68000/68HC000/68EC000 and 68302

SIA — special interrupt vector

Works with
B EL 1600 [JCodeTAP
® x
Syntax &
0
SIA [address) 2 g
Description .
This command specifies the address of the special interrupt
vector for forced special interrupts, which are one of the actions
that an event system trigger may use.
The default address for SIA is 0. If no argument is given, the
current address is displayed.
Notes
You can also set the special interrupt vector in XICE.CFG with
SW_SIA:address.
Example

SIA OxFFFFO0O0

XICE Command Supplement S2-129

SIZE — set the size for memory accesses

Works with

Syntax

Description

$2-130

B EL 1600 [JCodeTAP

SIZE [-:memory_access_type:-] [11214]

This command allows you to examine and set the size to be
used for memory accesses. The memory access type you specify
must be one of the following:

CODE
COMP1
COMP2
COPYFROM
COPYTO
DIAG
FILL
READ
SEARCH
STACK
TEST
WRITE

All accesses of code, including fetches
Memory for first argument of COMPARE
Memory for second argument of COMPARE
Source memory for a COPY

Destination memory for a COPY

Memory to use with DIAG

Memory for use with FILL

Memory for generic reads (DUMP, CRC, etc.)
Memory for use with SEARCH

Memory accesses for the stack

Memory for use with TEST

Memory for generic writes (SETMEM, etc.)

XICE Supplement for 68000/68HC000/68EC000 and 68302

The code for the sizes are as follows:

1 1 byte
2 2Dbytes (word)
4 4 bytes (long)
If you do not specify a size argument, the current state of SIZE

for the specified memory access type is displayed. If you do not
specify a memory access type, the current state of SIZE for all

memory access types is displayed.

w
=
k=)
©
)
=]
@
=

puewwod JQIX

Notes
You can also set SIZE in XICE.CFG with
SW_SIZE:"[<memory_access_type>] [11214]". For example,
SW_SIZE:"CODE 2" would set the size for all accesses of code,
including fetches, to 2 bytes (word) long. Note that you must
enclose the two arguments in double quotes, e.g.,
SW_SIZE:"CODE 2".

Example
SIZE CODE 4

Related Commands

MEMVARS

XICE Command Supplement S2-131

SLO — slow interrupt emulation control

Works with

Syntax

Description

Notes

$2-132

B EL 1600 [JCodeTAP

SLO [ON|OFF]

This switch enables inserting a delay before allowing an
interrupt when entering RUN mode. If SLO is set of ON, XICE
will insert a 160 clock cycle delay before allowing an interrupt.
If you set both FAST and SLO to ON, FAST takes precedence,
which means that interrupts are enabled immediately upon
entering RUN mode. If SLO is set to OFF, the setting for FAST
determines whether interrupts are enabled.

The default for SLO is OFF. If no argument is given, the
current address is displayed.

You can also set SLO in XICE.CFG with SW_SLO:ON and
SW_SLO_OFF.

If you set both FAST and SLO to ON, FAST has precedence
over SLO. The following table shows the results for the possible
switch setting combinations for FAST and SLO. This table
applies to target-generated interrupts passed to the target
processor when the emulator is running.

XICE Supplement for 68000/68HC000/68EC000 and 68302

SLO FAST Result While in RUN Mode Result While in PAUSE Mode
ON OW- Interrupts immediately Interrupts immediately enabled upon
enabled. return to RUN mode.
ON OFF Interrupts enabled after Interrupts enabled after
approximately 160 clock approximately160 clock cycles after fé’ c>—§
cycles. return to RUN mode. o
3 o
OFF ON Interrupts immediately Interrupts immediately enabled upon 2 3
enabled. return to RUN mode. “g’_
OFF OFF Interrupts generated by Interrupts generated by the target
the target system will be system will be inhibited from reaching the
inhibited from reaching the emulator.
emulator.
Example
SLO ON
Related commands
FAST

XICE Command Supplement $2-133

SPACE — set the space for memory accesses

Works with

Syntax

Description

S2-134

B EL 1600 [JCodeTAP

SPACE [<memory_access_type -] |address_space)

This command allows you to examine and set the space to be
used for memory accesses. The memory access type you specify
must be one of the following:

CODE
COMP1
COMP2
COPYFROM
COPYTO
DIAG

FILL

READ

SEARCH
STACK
TEST
WRITE

All accessés of code, including fetches
Memory for first argument of COMPARE
Memory for second argument of COMPARE
Source memory for a COPY

Destination memory for a COPY

Memory to use with DIAG

Memory for use with FILL

Memory for generic reads (MEMGET, CRC,
etc.)

Memory for use with SEARCH

Memory accesses for the stack

Memory for use with TEST

Memory for generic writes (MEMSET, etc.)

XICE Supplement for 68000/68HC000/68EC000 and 68302

If you do not specify an address space, the current state of
SPACE for the specified memory access type is displayed. If
you do not specify a memory access type, the current state of
SPACE for all memory access types is displayed.

Notes
Memory address space is processor-specific. The valid values o >
for the 68000 and 68302 processors are as follows: 89
o O
s §
Address Space Description =3
o
SCo Reserved memory space
UD or SC1 User data space
UP or SC2 User program space
SC3 Reserved memory space
SC4 Reserved memory space
SD or SC5 Supervisor data space
SP or SC6 Supervisor program space
CPU or SC7 CPU space
You can also set SPACE in XICE.CFG with SW_SPACE:”
[<memory_access_type>] [address_spacel”. For example,
SW_SPACE:"CODE UP” would set the size for all accesses of
code, including fetches, to 2 bytes (word) long. Note that you
must enclose the two arguments in double quotes, e.g.,
SW_SIZE:"CODE SC2”,
Example
SPACE READ UP
Related commands

MEMVARS

XICE Command Supplement S2-135

STl — enable or disable step-through interrupts

Works with

Syntax

Description

Notes

Example

$2-136

B EL 1600 [(JCodeTAP

STI [ON|OFF]

This switch enables or disables step-through interrupts. If STI
is ON, the emulator will recognize an interrupt during a STEP
operation and STEP through the interrupt service routine. If
STI is OFF, the emulator will ignore interrupts during a STEP
operation.

The default for STI is OFF. If no argument is given, the state
of the switch is displayed.

You can also set STI in XICE.CFG with SW_STI:ON or
SW_STI:OFF.

STI OFF

XICE Supplement for 68000/68HC000/68EC000 and 68302

TAD — control tri-state of address bus

Works with
B EL 1600 [JCodeTAP

Syntax

TAD [ON|OFF]

w
<
ko)
=3
©
3
[}
=2

puewwo) 391X

Description

This switch specifies whether the address bus is tri-stated
while in PAUSE mode. If TAD is set to ON, the address bus is
tri-stated while the emulator is PAUSED and during peeks and
pokes. If TAD is set to OFF, addresses generated during
PAUSE mode are output to the target system.

The default for TAD is OFF. If no argument is given, the state
of the switch is displayed.

Notes

You can also set TAD in XICE.CFG with SW_TAD:ON or
SW_TAD:OFF.

Example
TAD ON

XICE Command Supplement $2-137

TCEBRK — control tracing of breakpoints

Works with

Syntax

Description

Notes

Example

S2-138

B EL 1600 [JCodeTAP

TCEBRK [ON|OFF]

This switch controls the capture of software instruction
breakpoint execution in the trace buffer. If TCEBRK is set to
ON, the breakpoint cycles are recorded in the trace and are
marked with an X in the column FLAGS. If TCEBRK is set to
OFF, the breakpoint cycles are not recorded in the trace.

The default for TCEBRK is OFF. If no argument is given, the
state of the switch is displayed.

You can also set TCEBRK in XICE.CFG with
SW_TCEBRK:ON or SW_TCEBRK:OFF.

TCEBRK OFF

XICE Supplement for 68000/68HC000/68EC000 and 68302

TED — control trace/overlay for external DMA (68302 only)

Works with
B EL 1600 [JCodeTAP

Syntax

w
[
ke
=3
@©
3
©
=1

TED [ON|OFF]

puewwod 331X

Description
This switch enables or disables tracing external DMA cycles
(which are generated by the target hardware following the BR,
BGF, or BGACK protocol) and enables or disables external
DMA accesses to overlay. If TED is ON, external DMA cycles
are traced and external DMA can access overlay. If TED is
OFF, external DMA cycles are not traced and external DMA
cannot access overlay. Also, if TED is OFF external DMA cycles
cannot access internal registers or dual-port locations.

The default for TED is OFF. If no argument is given, the state
of the switch is displayed.

Notes

The switch TID enables tracing of internal DMA cycles.
External DMA can run while the emulator is in PAUSE mode;
however, these cycles will not be traced, nor may they access
overlay, regardless of the TED setting.

You can also set TED in XICE.CFG with SW_TED.

Example
TED OFF

XICE Command Supplement $2-139

Related commands
TID

S2-140 XICE Supplement for 68000/68HC000/68EC000 and 68302

TID — control trace/overlay for internal DMA (68302 only)

B EL 1600 [JCodeTAP n

TID [ON|OFF]

Works with

Syntax

w
[y
°
=5
[}
3
[}
3
=

puewwod 30X

Description

This switch enables or disables tracing internal DMA cycles
and enables or disables internal DMA access to overlay. If TID
is ON, internal DMA cycles are traced and internal DMA can
access overlay. If TID is OFF, internal DMA cycles are not
traced and internal DMA cannot access overlay.

The default for TID is OFF. If no argument is given, the state
of the switch is displayed.

Notes
The switch TED enables tracing of internal DMA cycles.

You can also set TID in XICE.CFG with SW_TID:ON or
SW_TID:OFF.

This command is not used by XICE for the 68000.

Example
TID OFF

Related commands
TED

XICE Command Supplement S2-141

TRCCLR — clear trace buffer

Works with
B EL 1600 [JCodeTAP
Syntax
TRCCLR
Description
This command deletes the information in the trace buffer.
Example

TRCCLR

S2-142 XICE Supplement for 68000/68HC000/68EC000 and 68302

TRCFRAME — trace cycle number

Works with
B EL 1600 (JCodeTAP
Syntax
TRCFRAME [cycle_number)
Description
This command specifies the trace cycle number to be the time
0 for offset timestamps in a raw trace display.
The default cycle is cycle 0. If no argument is given, the state of
the switch is displayed.
Notes
You can also set TRCFRAME in XICE.CFG with
SW_TRCFRAME: cycle_number.
Example
TRCFRAME 125 Cycle 125 will be time 0 in the
next raw trace display.
Related commands

XICEVARS

XICE Command Supplement S2-143

w
o
o
=X
)
3
©
=2

puewwoy 391X

TRCINT — trace interval

Works with

Syntax

Description

Notes

Example

Related Commands

S2-144

B EL 1600 [JCodeTAP

TRCINT [INTERVAL|OFFSET]

This command specifies how timestamps are displayed in raw
trace. If TRCINT is set to INTERVAL, timestamps are

displayed as the time interval between successive bus cycles. If
TRCINT is set to OFFSET, timestamps are the time relative to
the bus cycle number specified by the command TRCFRAME.

The default for TRCINT is OFFSET. If no argument is given,
the state of the switch is displayed.

You can also set TRCINT in XICE.CFG with
SW_TRCINT:INTERVAL or SW_TRCINT:OFFSET.

TRCINT INTERVAL

XICEVARS

XIGE Supplement for 68000/68HC000/68EC000 and 68302

TRCMODE — trace mode

Works with
B EL 1600 (JCodeTAP
» x
Syntax £ 9
TRCMODE [ASM|SRC|BOTH] z §
=3
Description =
This command specifies the type of information displayed by
the commands DT, DTB, and DFT. The default is BOTH. The
valid arguments are:
ASM displays assembly instructions only
SRC displays source level instructions only
BOTH displays source and assembly instructions
interleaved together
Notes
You can also set TRCMODE in XICE.CFG with
SW_TRCMODE:ASM, SW_TRCMODE:SRC, or
SW_TRCMODE:BOTH. ‘
Example
TRCMODE ASM
Related Commands

DT, DTB, DTF, XICEVARS

XICE Command Supplement S2-145

TRIG — set status trigger

Works with

Syntax

Description

S2-146

B EL 1600 (JCodeTAP

trig{n} = [event{n},action|CLEAR|ARMIDISARM]

The TRIGGER command defines the action for XICE to take
after an event or a number of events is true. A trigger may be
used to control event system resources (timers, counters, etc.),
tracing, breaking, or other analyzers. A trigger must be armed
for any action to be taken.

The following general rules relate to setting a trigger:

0 A trigger may list up to 8 events separated by vertical bars
(I’s).

Eg, trig{(l) = ev(l} | ev{32}, grp2 sets a trigger

so that any time either event 1 or event 32 is true, XICE will
switch its monitoring to only group 2 events.

o Triggers are active only when they have been armed, either
explicitly by using the command trig {(n} = arm, or
automatically when they are defined if the XICE switch
EVTARM is set to ON.

o If arming a trigger fails (for example, if there are not enough
resources to fulfill the request), the trigger will be defined
but not armed.

0 While armed, you cannot change the definition of the trigger

or the event(s) specified by the trigger.

XICE Supplement for 68000/68HC000/68EC000 and 68302

a In any one event group, you may not arm triggers using
more than the following comparators:
- 2 address comparators (specifying an address range
counts as a single address comparator)
- 2 data comparators
- 2 status comparators
- 1LSA comparator
- 1 counter

0 You cannot arm triggers for an event breakpoint if you are
already using BA breakpoints in your code.

o Agiven trigger trig {n} can be active (armed) in only one
group at a time. However, an event can be used in more than
one trigger and more than one group at a time.

o By not specifying a trigger number for an arm or disarm
command, all defined triggers can be armed or disarmed at
once. E.g., trig = arm will arm all the triggers that have been
set.

0 You cannot use the TRIG command to set up a break
followed by a macro. However, you can set the switch
SW_EVTMODE in XICE.CFG to ON and use the command
BREAKCOMPLEX (BC) to do so. When EVITMODE is ON,
however, you will not be able to use break as an action in
TRIG commands.

To change the group that triggers will be armed in, use the

EVTGRP command. To list the status of one or more triggers,

use the STATUS command. To clear all the triggers at once,

use the EVTCLR command.

w
c
o
==
©
3
®
=2

puewwoy 301X

XICE Command Supplement S2-147

Possible actions that can be specified using the TRIG command
are:

Action Definitions

BREAK Breaks emulation as a result of specified
conditions, or by default if no action is

requested.
CNT Count only qualified cycles.
Fsl Force a special interrupt. FSI provides a way to

jump to a specified address when a specific
event is detected. It can allow you to patch your
code fast and can also allow you to write soft
shutdown routines for machinery that cannot be
halted using a simple breakpoint.

You must set up the SIA (special interrupt
address) switch prior to using an FSI action.
You may also see some unusual cycles in the
trace memory at the address where the FSI
occurred. These are internal cycles that are
traced as the execution address is changed.
These internal cycles are not purged from the
trace memory.

The FSI routine residing at the SIA address
should terminate with a return from exception
(RET) instruction. Execution resumes at the
address immediately following the instruction
that caused the FSI. If this is a soft shutdown,
you will probably define a breakpoint at the
RET instruction.

GRP1 Switch to group 1 events.
GRP2 Switch to group 2 events.
GRP3 Switch to group 3 events.
GRP4 Switch to group 4 events.

S2-148 XICE Supplement for 68000/68HC000/68EC000 and 68302

Action Definitions

RCT Resets the counter.

TGR The trigger signal is an output that is available
from the BNC connector on the back panel of
the emulator chassis and from pin 19 of the
optional LSA pod. When a trigger event is
detected, the trigger signal is asserted and
remains so for the duration of the specified bus
cycle. If a trigger event is specified for more
than one consecutive bus cycle, the signal stays
high for the duration of the consecutive bus
cycles.

w
[
=}
=
o©
3
[0
2

puewwod 301X

You can use the trigger signal as a pulse for
triggering other diagnostic equipment. You can
also use it in conjunction with a counter or
timer for timing subroutines or use it with the
optional timestamp pod for timing subroutines.

See the command TUNITS for further
information on using the optional timestamp

capability.

TOC Toggle the current setting for the counter. No
count until first TOC.

TOT Toggle the current setting for tracing or not

tracing. Trace uses the following rules:
If you do not specify TOT, trace is on.

If you specify TOT, when you change event
groups, trace goes off and when it encounters
the next TOT, it goes ON.If you specify TOT,
every time the emulator goes into RUN, trace is
OFF until the first TOT is encountered.

TRC Trace this bus cycle.

XICE Command Supplement S2-149

Examples

TRIGGER{1l} = ev{4} | ev{5}, TOT
TRIGGER{2} = ev{6}, TOT

The above command for trigger 1 toggles the current setting for
trace when either event (4} or event {5) is true. The
command for trigger 2 toggles the setting for trace when
event {6} occurs.

Related commands
BC, EV, EVTARM, EVTCLR, EVTGRP, EVTMODE, STATUS

S2-150 XICE Supplement for 68000/68HC000/68EC000 and 68302

TSRCH — search trace memory for patterns

Works with
M EL 1600 (JCodeTAP
. .. » x
Abbreviation 3R
TS 3 g
=3
]
Syntax
TSRCH [trace range), [addr=value], [data=
value), [stat=value], [1sa=value]
Description

Lets you search trace memory for a specified pattern. The
syntax is similar to that for the “EV” command, with an
optional starting point, or search range. Output is in “DRT”
format.

The “value” can be a simple value (0x1000), a range
(0x1000..0x2000), or a value with a “care” mask
(0x1000&=0xf000).

For the status comparator, values can also be entered
mnemonically using the mnemonics recognized by the event
system. Mnemonics can be logically combined. See the EV
command description on page 2-71 for valid status mnemonics.

XICE Command Supplement S2-151

Examples

Related Commands

S2-152

ts addr=0x1000

ts 200,addr=0x1000..0x2000,data=0x300

ts 200..300, stat=sd|wr

ts Isa=0x100&=0x300

DRT, EV

Search for all
occurrences of
address 0x1000

Start at cycle 200,
search for cycles with
address range of
1000 to2000, and
data = 0x300

Search traces cycles
200 to 300 for writes to
supervisor data space

Search forbit8 = 1,
bit 9 = 0 in the LSA
field, ignore other bits

XICE Supplement for 68000/68HC000/68EC000 and 68302

TSTAMP —show timestamp or LSA in trace

Works with
B EL 1600 (O CodeTAP

Syntax

TSTAMP [ON|OFF]

[%2
|
ke
©
@
=
@D
3
=

puewwod 301X

Description
This switch controls whether the raw trace display reports
timestamp or LSA data. If you set TSTAMP to ON, the DRT
command shows timestamp information. If you set TSTAMP to
OFF, the DRT command shows LSA information.

If you have a timestamp unit attached to your emulator, you
should set TSTAMP to ON; otherwise, it should be set to OFF.

The default for TSTAMP is OFF. If no argument is given, the
state of the switch is displayed.

Notes

You can also set TSTAMP in XICE.CFG with
SW_TSTAMP:ON or SW_TSTAMP:OFF.

For more information about using time stamp, see Chapter 6.

Example
TSTAMP OFF

Related Commands
DRT, XICEVARS

XICE Command Supplement $2-153

TUNITS —timestamp units

Works with
B EL 1600 (JCodeTAP
Syntax
TUNITS [0X0..0xF]
Description
This switch determines the timestamp units displayed in the
raw trace display. You should set this switch if you have a
timestamp module attached to your emulator and you have set
TSTAMP to ON. Otherwise, you should leave it set to 0.
The valid values for TUNITS are as follows:
Unit | Time Base | Effect of TGR on Timestamp Counter Useful
Measurements
0x0 RN
0x1 1 us Any TGR high causes the timestamp counter to
be reset to 0. No manual reset is required in this Elapsed time
0x2 .01 ms . L .
mode for either absolute or relative timestamping.
0x3 1ms
0x4 1ms
0x5 1us
0x6 | 1 ps While the TGR is held high by the Event Monitor
System, the timestamp counter counts. Manual Elapsed time
0x7 .01 ms . N
reset is required in this mode for absolute
0x8 1ms timestamping, but not for relative timestamping.
0x9 1ms
S2-154 XICE Supplement for 68000/68HC000/68EC000 and 68302

Unit Time Base | Effect of TGR on Timestamp Counter Measurements

Useful

OxA .1us

0xB 1 us

0xC .01 ms

oxD .1ms

OxE 1ms

In this mode, a long TGR signal from the Event
Monitor System resets the counter. After that,
successive short TGR signals turn the counter on Elapsed time
and off. Manual reset stops the counter and sets it
to zero

OxF NA

This setting is used to count occurrences. Each
time the TGR signal goes high, the timestamp Count
counter is incremented. Manual reset is required occurrences

Notes

Example

Related Commands

XICE Command Supplement

The default for TUNITS is 0. If no argument is given, the state
of the switch is displayed.

The setting that you use for TUNITS must match the settings
you use for the physical switches on the timestamp module
itself.

You can also set TUNITS in XICE.CFG with
SW_TUNITS:units.

For more information about using time stamp, see Chapter 6.

TUNITS 0x0

XICEVARS

$2-155

w
c
k=]
=R
[}
3
[
=2

puewwo) 39X

UIR — update internal chip select registers (68302 only)

Works with

Syntax

Description

Notes

S2-156

B EL 1600 [JCodeTAP

UIR [ON|OFF]

This switch controls whether the emulator’s copy of the CPU’s
internal chip select and control registers are automatically
updated. Each time the emulator makes a transition from RUN
to PAUSE mode, the internal registers SCR, WRR, BAR, BRO,
ORO0, BR1, OR1, BR2, OR2, BR3, and OR3 are automatically
updated. IF UIR is set to OFF, the EL 1600’s internal copy of the
chip select registers are not automatically updated.

If you modify the chip select registers while the emulator is
paused, you must have UIR set to ON to have the modifications
update the internal copy of the registers. IF UIR is ON, the
modified version of the internal chip select copy will be loaded
into the 68302 chip select registers after each RESET
command until either they are modified during a RUN, in
which case these modifications will be saved during the RUN
to PAUSE transition, or until you change the setting for UIR to
OFF.

The default for UIR is ON. If no argument is given, the state of
the switch is displayed.

We recommend leaving UIR set to ON.

Timer and serial communication controller registers may be
saved depending on the setting you use for the switch DRTMR.

XICE Supplement for 68000/68HC000/68EC000 and 68302

See also the information in section 1 on configuring the chip
select registers and the command description for RIRR. RIRR
controls resetting the internal chip select registers after a

reset.

You can also set UIR in XICE.CFG with SW_UIR:ON or
SW_UIR:OFF.

This command is not used by XICE for the 68000.

w
[
k=
=2
©
3
@
=2

Example

puewwoy 301X

UIR ON

Related commands
DRTMR, RIRR

XICE Command Supplement S2-157

UP — move the current scope

Works with
B EL 1600 (JCodeTAP

Syntax
UP [number_of_levels]

Description
The UP and DOWN commands allow you to move the current
scope up or down the runtime stack. This is especially helpful
when debugging recursive functions. It is not a good idea to go
down farther than you have gone up.

Example
UP 5

Related commands
DOWN

52-158 XICE Supplement for 68000/68HC000/68EC000 and 68302

UPL — upload hex data to host

Works with

Syntax

Description

Notes

Example

Related Commands

XICE Command Supplement

B EL 1600 [J CodeTAP

UPL " filename",b address_range

UPL is used to upload data from the target to a host file in the
format specified by UPLFMT. The address range is the address
range of the data to be uploaded.

The MAP, OVERLAY, SPACE, and SIZE commands affect how
memory is accessed by UPL.

Quotation marks are optional if the file name consists of
alphanumeric characters or a period. File names that contain a
leading slash must be in double quotation marks (e.g., "/root").
File names that contain a leading backslash must be in single
quotation marks (e.g., *\root’).

UPL my.file ,0x8000..+0x3fff

DNL, DNLFMT, UPLFMT, MAP, OVERLAY, SIZE, SPACE,
VERIFY

§2-159

w
<
ko]
=3
@
=
©
=

puewwoy 39X

UPLFMT — specify upload format

Works with
B EL 1600 (JCodeTAP
Syntax
UPLFMT format
Description
UPLFMT is used to specify the format for hex file uploads
using the UPL command. Recognized formats are:

INTEL Intel hex format. Extended segment address
records and extended linear address records
are supported.

SREC Motorola S3-records with Microtec
extensions.

XTEK Extended Tektronics hex format.

Notes
The default format is SREC. The command XICEVARS
displays the status of UPLFMT and all other XICE variables.
Symbols are not supported for these formats.

Example
UPLFMT AMC

Related Commands

DNL, DNLFMT, UPL

S2-160 XICE Supplement for 68000/68HC000/68EC000 and 68302

VERIFY —memory read-after-write verify switch

Works with
B EL 1600 (J CodeTAP
» x
Syntax 53
o)
VERIFY [ONIOFF] 29
23
Description -
This switch enables or disables memory read-after-write
verification. If VERIFY is set to ON, memory is verified after
being written. If VERIFY is set to OFF, memory is not verified
after being written.
The default for VERIFY is ON. If no argument is given, the
state of the switch is displayed.
Notes
You can also set VERIFY in XICE.CFG with SW_VERIFY:ON
or SW_VERIFY:OFF.
Example
VERIFY ON
Related commands
XICEVARS

XICE Command Supplement S2-161

XICEVARS — display internal debugger variable values

Works with

Syntax

Description

Example

BPSPACE ANY
DNLFMT SREC
DNL_GRP
UPLFMT SREC
EVTARM ON
EVTGRP 1
RUN_POLL 5
RUN_TIME O
TRCFRAME ©
TRCINT OFFSET
TRCMODE BOTH

[y

B EL 1600 [JCodeTAP

XICEVARS

This command displays the current values and descriptions for
all the internal debugger variables.

XICE INTERNAL VARIABLES

Set processor space in which inst, breakpoints will be set
External file format for hex/binary downloads

Number of bytes to allow between cached download blocks
External file format for hex/binary uploads

Arm (ON)* vs, do not arm (OFF) triggers automatically
Event group to use when arming triggers. Default: 1
Frequency of host polling of emulator (1-20), Default: 5
Maximum time to stay running (0: forever?)

Cycle number for time O timestamp alignment, Default: O
Display of raw trace timestamps: (INTERVAL) vs. (OFFSET)#
Trace display is assembly (ASM), source (SRC), or both (BOTH)=

VERIFY ON Memory verification enabled (ON) vs. disabled (OFF)#

PERFACT OFF If ON, P,A data will be collected and processed,

PERFFORMATOFF Format of P.A. data

PERFMODE DEMAND Display P.A, data whenever uploaded or display on demand

PERFDEPTHO How many lines of P.A. output to display

TSTAMP OFF Interpret raw trace field as timestamp (ON) or LSA (OFF)=#
.TUNITS 0 Timestamp units for raw trace display (default of 0)
Related commands

EMUVARS, EVTVARS, MEMVARS

S2-162 XICE Supplement for 68000/68HC000/68ECC00 and 68302

Chapter 3
XICE Tutorial

Overview

This chapter introduces the XICE debugger. It covers the
basics needed to prepare the sample code for an embedded
system application, introduces the new user to the XICE
debugger interface, and demonstrates the use of many
commands commonly used in a debug session.

User-entered commands

Throughout the tutorial, commands that you should enter are
prefaced by a “>” prompt. Examples, headed by For example
only, should not be entered by the user during the tutorial.

=
O
m
—
=3
=]

o

Example of a command for you to enter
=context

XICE allows most commands to be abbreviated. The
abbreviated command is used whenever possible.

An example of the abbreviated form of the
“context (con)” command

>con

All the XICE commands used in the tutorial are covered in
depth in the XICE Supplement or the XRAY Documentation Set
for 68xxx Family.

XICE Tutorial S3-1

Tutorial program

The program cdemon.x (SUN version) or cdemon.abs (PC
version) is used throughout the tutorial. Further references to
the tutorial code will use the SUN version, cdemon.x. If you are
using a PC, substitute cdemon.abs for cdemon.x references.

The cdemon.x program, located in the demo directory, is
compiled and ready to be loaded by the debugger, allowing you
to skip the tools section and go directly to the XICE section if
you wish to do so.

S3-2 XICE Supplement for 68000/68HC000/68EC000 and 68302

Embedded systems considerations

Developing code for the embedded system environment, as
opposed to the native operating system environment, is in some
ways analogous to leaving home for the first time. Many of the
chores that may have been taken care of by parents, like
laundry or dishes, must now be done without such support.
Likewise, in the embedded systems environment, many of the
functions that were performed by the operating system
(locating code in memory, communicating with I/O) must now
be taken care of by the programmer. These, and other,
embedded systems considerations are treated in depth in the
“Embedded Environments” chapter of the MCC compiler
manual and the “Software Development Cycle” section of the
ASM68K manual.

Preparing code for debugging

Environment variables

Before invoking the compiler, assembler, and linker ensure the
path and environment variables have been set up. To check the
path and environment variables you can type env if your are
on a UNIX workstation or type set if you are using a PC. If they
are not set up or you are not sure they are correct, please refer
to the XICE Installation Guide and set them up at this time.

=
(@]
m
—
1=}
=
5

Makefile for cdemon demonstration code

The Sun makefile, named makefile, for cdemon.x is located in
the demo directory. It shows the flags (options) necessary to
produce the symbolic information used by XICE to display
source, evaluate expressions and symbolic references, and to
display type information.

The makefile also generates the linker command file, iecee.cmd,
which includes flags for placing symbolic information in the
object module, designating output file format, and commands
for locating code and data.

Embedded systems considerations S3-3

S34

A batch file performing functions similar to the makefile is
used for the PC version of cdemon.

Makefile line to generate a linker command file line
echo FORMAT IEEE - ieee.cmd

The assembler, compiler, and linker invocations are assigned
the variable names AS, CC, and LD respectively. The variable
names are substituted for the invocations later on in the
makefile, to cut down on typing time and errors and to improve
readability.

Makefile line associating a variable with the compiler
invocation

CC=mcc68k

Makefile line associating a variable with the compiler
options

CCFLG= -g -nOc -nOl -nOR -c -nQ

XICE Supplement for 68000/68HC000/68EC000 and 68302

commands necessary to assemble, compile, and link{

cCc=mcc68ky
AS=asmb8k ¢
LD=1nk68k§
CCFLG= -g -n0c -n0l -nOR -c¢ -nqf

all : cdemon.x{
cdemon.x: alib.o odemon.o clib.o data.o ieee.cmdf

b3 ${(LD) -c ieee.cmd - cdemon.x -m>cdemon.map{

ieee.cmd : makefile(

) echo CHIP) 68000} >ieee. cmdf]

} echo FORMAT} IZEE} >>ieee. cmd(]

} echo RAME) CDEMOR}) d>1eee. cmdf]

} echo LIST) d,s, t,x) >>icee. cmay]

Y echo PUBLIC) STACKTOP=0, 08000h) >rieee. cmdy

) echo ORDER} startup, code, strings, zerovars, vars

>>ieee. cmdf

} echo SECT) MMIO_LO=3000h} >>ieee. cmady]

3 echo SECT) MHMIO_HI=0a000h) >>ieee. cmay]

3 echo SECT) VECTORS=0} >>ieee. cmdy]

) echo SECT) startup=4000h) >>ieee. cmaf >
y echo LORD) alib) >>iece. cmaf] 9
b echo LOAD) cdemon) >>ieee. cmdy —
} echo LOAD) clib) >>ieee. cmaf %
} echo LOAD} com) >>ieee. cmadf 5-
) echo LOARD) data} >>ieee. cmay] -
} echo LORD) mccb8kab. 1idb} >>ieee. cmdy|

main application moduley
cdemon.o : cdemon.cy
} »{cc) $(CCFLG) cdemon.cy

oommon ¢ code application functions modulef]
olib.o : olib.of
} $(cc) $(ccrLe) clib.cq

comport support communications modulef
com.o : com.cq
} ${cc) $(ccrLe) com.cy

simple blackjack cardgame modulef
data.o : data.of
} ${cc) $(ccrLc) data.cf

common assembly code application functions modulef
alib.o : alib.sq
} $(cc) $(ccrLG) alid.s q

Figure 3-1 Cdemon makefile

Embedded systems considerations S35

S3-6

Compiler flags for symbolic debugging

The following MCC68K compiler command line flags produce
linkable object modules containing symbolic information for
the debugger.

mcc68k -g -nOc -n0Ol -nOR -c -nQ
-g (generate line number and tracing info) (not default)

The remaining data options select other functions.

-nOc (disable stack pop optimizations)

-n0l (disables local optimizations such as code hoist-
ing)

-nOR (disablegs use of registers for variablesg)

-c (make object file but don’t link it to make an
executable file)

-nQ (display any informational messages)

Linker command file for cdemon

In our example the linker command file, ieee.cmd, is created by
the makefile lines that “echo” the actual linker commands into
the command file. This takes advantage of UNIX and DOS’s
ability to append (>>) echoed “statements” into a file. The
resulting linker command file is shown below.

PUBLIC STACKTOP=8000h
ORDER startup,code,strings,zerovars,vars
SECT MMIO_LO=3000h
SECT MMIO_HI=0a000h
SECT VECTORS=0

SECT startup=4000h

LOAD alib

LOAD cdemon

LOAD clib

LOAD com

LOAD data

LOAD mcc68kab.lib

Figure 3-2 Linker command file

XICE Supplement for 68000/68HC000/68EC000 and 68302

Embedded systems considerations

Locating target code and data

In embedded systems applications, code and data are usually
located by the linker at compile time instead of by an operating
system loader at run time. The linker command file ieee.cmd is
a good place to examine how this may be accomplished. The
lines of the linker command file pertinent to locating code and
data are presented and explained below.

PUBLIC STACKTOP=8000h (defines value of the external
definition of STACKTOP)

ORDER startup,code, strings, zerovarg,vars (overrides
linker’s default ordering of assigning base addresses
to segments)

SECT MMIO_LO=3000h

SECT MMIO_HI=0a000h

SECT VECTORS=0

SECT startup=4000h

Linker switches for symbolic debugging

The following linker commands and flags produce an output
file that XICE can symbolically debug. The linker is invoked in
the command file mode.

1nk68k -c ieee.cmd -m -o cdemon.x :cdemon.map
-c ieee.cmd (use ieee.cmd as the linker command file)
-m (write a memory/symbol map to standard out)
-cdemon.map (redirect memory/symbol map to file cde-
mon.map)
-0 cdemon.x (name the linker output file cdemon.x)
FORMAT IEEE (produce MRI-extended IEEE-695 output file
format)
LIST d,x,s,t (list of linker flags)
d (external definition symbols in object)
X (external definition symbol table to listing)
s (local symbols in object)
t (local symbol table to listing)
The remaining commands perform other functions.
NAME cdemon (names final output module cdemon when gen-
erating lieee)

S3-7

=
(@]
m
—
=3
=1
5

Additional information
Additional information on subjects covered in this section is
available in the compiler and assembler manuals.

S3-8 XICE Supplement for 68000/68HC000/68EC000 and 68302

Using the XICE debugger user interface

The XICE debugger is a “windowed” user interface. The
windows in XICE are called “viewports”. The DOS version has
scrollable, zoomable viewports and a keyboard command line
interface. The Sun version is similar but offers mouse support
primarily in the form of command buttons, point-and-click
temporary breakpoints and variable evaluation, and “cut and
paste” features. Both versions include on-line help.

Brief information about navigating the user interface,
including function keys, mouse, viewports, line editing, and
control keys, can be found in the on-line help. Detailed
explanations of the features of user interface can be found in
the XRAY User’s Guide. '

Environment variables

Before invoking the debugger ensure the path and
environment variables (XRAY and XRAYLIB) have been set
up. To check the path and environment variables you can type
env if your are on a UNIX workstation or type set if you are
using a PC. If they are not set up or you are not sure they are
correct, please refer to the XICE Installation Guide and set

them up now.

fenoing 301X

Debugger configuration file - xice.cfg

For the tutorial, you need to modify two parameters, called
softswitches, in the debugger’s configuration file, xice.cfg,
before invoking the debugger. The modifications can be made
using an editor like “vi” or “ed”. Appendix A in the XICE
Installation Guide provides a detailed description of the
xice.cfg file.

Using the XICE debugger user interface S3-9

S3-10

Before modifying xice.cfg, you should make a backup copy
using the UNIX “cp xice.cfg xice_bak.cfg’ or the DOS “copy
xice.cfg xice_bak.cfg”’ command.

The tutorial assumes the emulator is plugged into the factory
supplied “null” target, or that NULL_TGT is enabled for 68000/
HCO000/EC000 probe-tip-only configuration emulators. This is
referred to as “null” target mode. The tutorial program will be
loaded into emulator memory configured (or mapped) to
replace (or overlay) the desired address spaces of target
memory. Memory can be mapped by commands in the xice.cfg
file, in an include file, or at the XICE command line level. We
will begin with the default condition of memory already
mapped by the “MAP” command in the xice.cfg file. Modifying
the memory map at the XICE command line is covered later.

Open the xice.cfg file using your text editor

At this time you should open the xice.cfg file using your text
editor.

First xice.cfg modification - “scratch” memory softswitch
/* SW_SCRATCH:0x9ff0 */

The SW_SCRATCH statement sets aside 8 bytes of memory
starting at address 0x9ff0 as instruction breakpoint “scratch”
memory.

The debugger requires 8 bytes of “scratch” RAM located in
supervisor program space to support the TRAP instruction
used for BI's (break instructions), temporary breakpoints, and
high-level single stepping. The address of the “scratch” RAM is
set by the SW_SCRATCH softswitch in the xice.cfg file. If the
SW_SCRATCH line is “commented out” using C language
comment field notation, “/*.. */”, you must uncomment this line
for the tutorial.

XICE Supplement for 68000/68HC000/68EC000 and 68302

Uncomment the SW_SCRATCH line:

/SW_SCRATCH: 0x9ff0 /

The TRAP instruction number is determined by the
SW_EXVEC softswitch in the xice.cfg file. The TRAP
instruction selected is reserved for emulator use and should not
be used in your code. The default setting for SW_EXVEC
selects TRAP 15.

Second xice.cfg modification - bus timeout softswitch

The bus timeout switch, SW_BTE, determines whether or not
emulation breaks and returns control to the debugger if it
enters a hung condition, i.e. waiting for a DTACK signal to be
returned from non-existent memory. The timeout is fixed at 1
second. To enable the timeout set SW_BTE:ON.

The softswitch should be turned on while debugging hardware
or software.

Modify the xice.cfg line for enabling bus timeout

2
(]
m
—
=3
[=}

=.
2

SW_BTE:ON \

Now you should close the xice.cfg file saving the changes.

Close the xice.cfg file using your text editor

Debugger invocation

The tutorial is meant to be run from the bin directory of the
toolchain. If you are not in the bin directory of the toolchain, cd
to there now.

The emulator control software, called shell code, is located in
the file with the extension .shl. When starting a debug session,
you should invoke the debugger using the “force reload of shell
code” option, -e boot. This ensures the emulator control
software is correct for the version of the debugger you are

Using the XICE debugger user interface S3-11

using. If you update the debugger, be sure to install its
corresponding updated shell code file. Using the debugger with
mismatched shell code will have unexpected results.

Invoke the debugger with forced reload of shell code
executable_name -e boot

As the debugger comes up, you will see messages displayed
sequentially on the XICE screen, “Initializing”, “NOTE:
Downloading operating system to emulator, please wait”, and
“Loading file: xxxxx.shl”. Once the debugger is up and running
you may exit the debugger by typing an abbreviated version of
quit followed by yes, “q y”.

Exit the debugger

~qy

Include files - introduction

S3-12

An include file is simply a file containing debugger commands
that will be executed when the file is loaded by the debugger. It
is similar to a UNIX shell script or a DOS batch file. For

example, the supplied include file, cdemon.inc, simply loads the
appropriate cdemon absolute file from the demo subdirectory.

You can invoke the debugger using the “include file” option,
-i filename.inc. Those with UNIX systems may want to
background the program in order to free up a shell or make it
easier to “kill” the program if necessary.

Invoke the debugger with the include file option
executable_name -1 cdemon.inc

As the debugger comes up you will again see the “Initializing”
message. The “Loading file: xxxxx.sh]” message will not appear
since we did not choose to reload the shell code. You will see a
“Reading Absolute File: none” message followed by the two
include file commands being echoed in the debugger command
window.

XICE Supplement for 68000/68HC000/68EC000 and 68302

At this point, the tutorial code, cdemon.x or cdemon.abs, has
been loaded, and the debugger is ready for commands.

Required memory

Although set up for the Applied Microsystems Demonstrator
module, the tutorial can work with the “null” target shipped
with every new system, or with NULL_TGT enabled, or with
your own target system. It requires either overlay or target
RAM at addresses 0x0..0xffff. The default xice.cfg
automatically maps overlay RAM for cdemon. If overlay is not
available, map target RAM as follows (mapping memory is
described on page S3- 32):

Map 0x0 to Oxffff as target RAM:
ram 0x0..0xffff=target

The specific memory map for cdemon.x is as follows:

Section Address range r§
startup 00004000..0000408D =
MMIO_LO 00003000..00003001

MMIO_HI 0000A000..0000A001

VECTORS 00000000..00000013

vars 00004B8C..00004BA5

code 0000408E..000049C5

zerovars 000049FC..00004B8B

strings 000049C6..000049F9

Using the XICE debugger user interface $3-13

S3-14

Include file for 68302 setup

When you emulate while plugged into a 68302 target, it is
extremely important to correctly setup the System Integration
Block (SIB) to match your target’s memory map and DTACK
requirements. An incorrectly programmed SIB can potentially
cause the emulator to hang. The hardware portion of SIB setup
is covered in the EL1600 emulator manual.

The 68302 tutorial depends on the default register settings and
overlay memory mapping specified in the xice.cfg shipped with
the software; these set up the SIB compatible with the default
hardware settings. If you have not changed the default register
setting in xice.cfg, you may proceed with the tutorial.

If you have changed xice.cfg, you may want to create an include

" file that sets up the CPU’s System Integration Block, speeds

the download, suppress memory related warning messages,
loads the program cdemon.x or cdemon.abs, and switches the
debugger into source level display mode.

XICE Supplement for 68000/68HC000/68EC000 and 68302

The following provides an example of such a file:

Note: Comment fields begin with a semi-colon (;). The actual
commands appear here in bold type.

;cdemon.inc

;Set memory access size to word(2); increases speed of the "load"
size write 2

; set "error” to ignore errors and continue include file execution
error=continue

; The following are 68302 specific commands

; Other CPU's should ignore the error messages

;set BAR register to Base Address 0xe00000, CFC=0 to ignore FC's
setreg @BAR=0x0e00

;set ORO to internal 6 wait-state DTACK, R/W, any FC in 64k block
setreg @OR0=0xdfe0

;set BRO enable chip select 0(CS0), any FC, Base Address 0
setreg @BR0=0xc001

; return "error" to its default value of abort include for errors
error=abort

;"mwarn off" suppresses memory warning messages during the "load"
mwarn off

load './demo/cdemon.x’

;Turn "mwarn” back on

mwarn on

;Switch to "source-level" mode

mode high

feuoin] 321X

Figure 3-3 Sample UNIX include file for 68302 registers

Using Help
The on-line help information displayed by the debugger is in
_ the ASCII file with the suffix .hlp.

Help is available in scrollable menu form or may be invoked
with a subject argument.

Using the XICE debugger user interface $3-15

S3-16

Using the help menu

Typing “help” or “h” invokes the help information menu of
XICE topics and commands. The are two levels of help, the top
menu level of alphabetized subjects and the lower level of
actual help information on each subject.

Invoke the help menu
~-help

Scroll up and down through the menu by using the up and
down arrow keys (depicted as “*” and “v” on the bottom of the
help menu). A carriage return selects the subject highlighted
by the cursor and displays the next level of help information.

Scroll down and up using the up/down arrow keys

-V

LA

Scroll down to and select the command "DEFINE"

Y
>Return

At this point you can scroll through the subjects at the “help
information” level. A carriage return or down arrow (CR/v) goes
to either the second page of information on the current subject
or to the next subject if there’s only one page. The up arrow
scrolls back through the previous subjects. Pressing Escape
(Esc) closes the help window and returns you to the Command
viewport.

For example only -Invoking help on the step command
You can also invoke help for a specific command:

h step

XICE Supplement for 68000/68HC000/68EC000 and 68302

Exiting help

An "Esc" exits help and returns you to the XICE command line.
If you want to leave the help information displayed on the
screen while you type in a command use the F7 key to exit help

instead of Esc.

Exit help and return to the command line

~Esc

Additional error message information

If an error message pops up for any reason, you may be
prompted by the debugger to type explain to receive additional

information about the error.

Navigating XICE windows (viewports)

Activating viewports (selecting XICE windows)

An active viewport is indicated by a shaded box surrounding
the viewport. You can activate any XICE viewport in either of
two ways. One way is to use the viewport activate command,
vactive (va), with the viewport’s number as the argument.
The viewport’s number is located in the upper right hand

corner of each viewport.

x
[e)
m
—
=
=]
B

Another way, perhaps faster, is to simply scroll through the
viewports using the F1 function key.

Activate the code viewport

>va 2

Zooming and unzooming viewports

(enlarging and reducing XICE windows)

The zoom (z) command toggles viewports between their
normal and enlarged sizes.

Using the XICE debugger user interface $3-17

A viewport can be enlarged in either of two ways. You can
enlarge and activate a viewport by using the zoom command
similar to the way the vactive command is used. Or, you can
use the F4 function key to enlarge an active viewport.

Zoom or F4 the enlarged window again to return it to normal
size.

Zoom the code viewport
-z 2
Return the code viewport to normal size

~Z 2

Scrolling viewports

You can scroll up and down in an active viewport by using the
up and down arrow keys. For a standard SUN or PC keyboard,
use the Home and PgUp keys to go to the beginning or end of a
viewport.

Modifying and saving debugger start-up options and viewports

53-18

A set of default debugger display and execution options is read
in when XICE is invoked. The options control functions such as
breakpoint alignment, default radix, viewport display and
others. These options can be changed and saved.

In addition to the options, you can also save the size and
position information for all the predefined and user defined
viewports. The viewport information and options are saved to a
file created by the startup command and restored when you
invoke the debugger.

Detailed functional descriptions of all the options are in the
XRAY Documentation Set under the option command.

XICE Supplement for 68000/68HC000/68EC000 and 68302

Displaying debugger options

Use the option (op) command to display the current set of
debugger options. It will zoom the command window to display
the options.

Display the current debugger options and unzoom the
command window

-0p
»F4

Modifying debugger options
Use the option command with an “option name=value”
argument to change an option.

We will not modify any options, but an example is shown below.

For example only - Modifying the debugger default
radix

op radix=hex

=
(@}
m
—_
=3
15)

=,
N

Saving the options and viewports

Use the startup command to save options and viewport
information to the start-up file. You can choose the name of the
start-up file. This allows different users to save personal setups
in their own unique start-up files. The startup command used
with no argument saves the information to a file named
startup.xry.

To use your saved options, use the -s debugger command line
switch with your start-up file name as the argument when you
invoke the debugger.

We will not save any options now. An example of saving the
information to the default start-up file, startup.xry, is shown
below.

For example only - Saving options and viewports to
default file startup.xry

startup

Using the XICE debugger user interface S3-19

Recording a debug session

Convenience features

$3-20

Recording commands

Sometimes it may be useful to record the commands used
during a debug session. The log command opens a file and
saves the command line input into the named file. The "log" file
can be used as an "include" file which can be loaded and
executed by the debugger command include to recreate a
debug session.

Recording commands and their output

The journal command records both the commands and their
output into a file. This will be demonstrated later in the
tutorial where we use the command to save the contents of the
emulator’s “bus cycle trace” memory.

Command history

XICE has a command “history” feature similar to that of the
UNIX C Shell. You can display a list of executed commands or
recall a specific command from the list by using the command
history (hi).

For example only - Using history

hi (display list of executed commands)
hi step<ret> (recall step command if on history list)
hi step<ret><ret> (recall and execute step command)

Another way to re-execute a past command is simply to use the
up/down arrow keys to scroll through past commands until
you reach the desired one, then press <Return> to execute the
command.

Command aliasing

XICE allows you to assign a different name to a debugger
command. Use the alias command to do this. Preferred aliases
can be placed in an “include” file and loaded at the start of your
debug session

XICE Supplement for 68000/68HC000/68EC000 and 68302

For example you may want to rename the load command to
dnl.

For example only - Renaming load to 1d

alias load=1d

Although XICE allows you to define any alias, you cannot
successfully invoke an alias for a command that is itself an
alias. Many XICE commands are aliases of XRAY simulator
commands. To determine whether a command is already an
alias, invoke help for the command. If it is an alias, the help
screen says “alias of SS“ If you create and invoke an alias
for such a command, an “Unknown Command Entered” error is

returned. n

Note

&S

x
(@]
m
——{
=4
S
)

Jsing the XICE debugger user interface S3-21

Using debugger functions

Getting oriented with the code

§$3-22

When starting a debug session you will want to get oriented
with the code, particularly if the code is not your own. The
following commands will help you do this.

Displaying available modules

A quick display of the names of the source modules available
for debugging is a good place to start. Use the printsymbol
(ps) command with the /m flag and * argument to display all
module names. Of course with very large programs containing
many modules, this may be impractical.

The command will zoom the command window and display the
names of cdemon’s seven modules along with "type" and
address information for each module.

Display module names and unzoom the command
window

>ps /m *
>F4

Printsymbol is an important and versatile command with
many other options for displaying symbols and subsets of
symbols.

Current viewing (scope) and execution context

The debugger is capable of viewing a module that is not the
current execution module. The current execution module is the
module that the program counter (PC) is focused on. If you
were to execute a step command the debugger would execute
the source line pointed to by the PC. Use the context (con)
command to display the current “viewing” and “execution”
modules.

XICE Supplement for 68000/68HC000/68EC000 and 68302

Display context (current viewing and execution
modules)

-con

Note the current viewing module line, CDEMON, will have
"(view)" at the end of it, while the current execution module
line, address 4044, will end in "(PC)".

Changing scope

The viewing context can be changed by using the scope (sc)
command. This will cause the source for the module to be
displayed in the CODE viewport. It also allows access to the
module’s symbols and line numbers without having to type the
qualifying module or procedure name, saving a considerable
amount of typing.

The scope command is case sensitive. n

Change the current scope to the module DATA

x
o
m
—
=1
e
o

>sc DATA
Display the current context

-con

You will see the current viewing module is now “DATA”, while
“4044” remains the current execution module address.

Return to scoping the current execution module
CDEMON

>scC

Selecting assembly or high-level debugging mode

You might be debugging a small piece of code that controls
some I/O device and decide you need to work with your code at
the assembly level. Use the mode (m) command to quickly
toggle between high-level and assembly-level debugging
modes.

Using debugger functions S3-23

Change to assembly-level debugging mode
>m

The code viewport now displays assembly-level code and its
corresponding high-level source code, if any.

Return to high-level debugging mode
T-m

Other C source operations

There are other debugger commands that display source
without changing scope (list), evaluate expressions
(cexpression), find the next occurrence of a given string in the
source (next), and display parameters passed to procedures
(expand). These commands are covered in both the on-line
help and the XRAY Documentation Set.

Checking the state of the debugger and emulator

S3-24

When starting a debug session you should take a quick look at
the state of the debugger and emulator. This is particularly
true if someone else has been using the emulator between your
sessions. Also, you should examine the state of the debugger
and emulator any time you get unexpected results from
breakpoints or event system setups.

The following commands will allow you to view and modify the
parameters that control the state of the debugger and
emulator.

Displaying debugger status

Use the status all command to display the debugger’s current
version, directory, log file, journal file, startup file, and loaded
absolute file. Have this information at hand if you ever call for
factory support.

Display debugger status

>stat all

XICE Supplement for 68000/68HC000/68EC000 and 68302

The status information should be displayed in the VIEW(ALL)
viewport located directly above the CODE viewport.

Displaying emulator hardware configuration

Use the hwconfig command to display the emulator’s
hardware configuration and the version of emulator control
(shell) code. Have this information at hand if you ever call for
factory support. The display will vary depending on your
particular configuration.

Display the emulator’s hardware configuration and
shell code versions

~-hwconfig
EL1600 Enhanced SCSI Controller, version 0.01
EL1600 1M Overlay, version 0.01

Three “display variable” commands - emuvars, xicevars, and
memvars - show the state of most of the parameters
controlling debugger and emulator functionality. Display the
remaining parameters with the evtvars and option
commands.

EL1600 Dynamic T & B Board, version 0.01

EL1600 68302 SCSI Shell (00), version 2.00

Softswitches, options, variables, and "double-argument" 5

commands =
5}
E—).

These parameters are referred to as "softswitches" (short for
software switches), options, variables, commands, and "double
argument” commands. To help remember the names of the
commands to display these parameters, you should think of
them collectively as "variables".

The variables can all be modified at the command line or in the
xice.cfg file, with the notable exception of evtmode, which can
only be modified in the xice.cfg file. Also note the state of the
variable evtmode is not accessible at the XICE command line.
You must look in the xice.cfg file for this information.

Using debugger functions S3-25

The xice.cfg file contains a commented list of the variables
along with a brief description of each. This list is a useful
reference when you are modifying the xice.cfg file. You may
want to print a copy of the xice.cfg file to use as a quick
reference guide.

In the tutorial we will only display the variables. Detailed
functional descriptions of the variables can be found in
chapter 2 and in the XICE Installation Guide.

Activate the COMMAND viewport

>va 1

You need to zoom the command viewport to see all the
variables.

Zoom the COMMAND viewport
>z 1

Displaying emulator variables

The emulator softswitches control how the emulator treats
CPU signals and functions like DMA, timers, chip selects,
refresh, and interrupts.

Display the emulator variables

>emuvars

You should see a list of the emulator’s softswitches showing
their state and a brief functional description.

Displaying XICE variables
The XICE variables control tracing and event system
functions.

Display the XICE debugger variables

>Xicevars

You should see a list of XICE’s internal variables showing their
state and a brief functional description.

S3-26 XICE Supplement for 68000/68HC000/68EC000 and 68302

Displaying XICE memory operation variables
The variables controlling memory access operations are called
"double argument” commands in the xice.cfg file.

Display the debugger memory operation variables
mmemvars

You should see a 12x5 matrix showing the twelve memory
operations and how each is configured for the four memory
access variables

The twelve memory operations are code, compl, comp2,
copyfrom, copyto, diag, fill, read, search, stack, test, and write.

The four memory access variables are shown with a brief
description below.

space sp/sd/up/ud/cpu/sc0,3,4 (specify memory space) >
(@]
size 1 (specify access size 1 “byte”, ;—4”
2 “word”, 4 “longword”, g
ANY) =
overlay on/off (specify overlay(on) or
target(off) memory accesses)
address phys/logical (specify physical or logical
addressing)

Checking the state of the target

Checking the CPU bus
Use the bus command to display the state of the CPU’s control

lines as sampled at the probetip.
Display the CPU bus status

~>bus

Using debugger functions $3-27

Return the COMMAND viewport to normal size

~F4

Controlling the Emulator and CPU

S3-28

Changing the contents of a CPU register

While debugging your code, you may find a register holding a
different value than what you expected. The setreg command
allows you to directly modify the contents of a CPU register.
This lets you replace the questionable value with the expected
value and test the results.

Go to assembly mode and change the contents of the PC
register to 0x100

>m
getreg @pc=0x100

Note the PC register value displayed in the REGISTERS
viewport has changed to 0100. (You must zoom (Z 14) the
REGISTERS viewport on the IBM-PC.)

Return the contents of the PC register to 0x4044 and
return to high level mode

»setreg @pc=0x4044
>m

Other 68000 and 68302 register controls

These are the softswitches that control the DMA (ted, tid),
timer (drtmr), interrupt (fast, slo), refresh (drtmr), and chip
select (rirr, uir) registers. These softswitches are covered in
Chapter 2 of this supplement.

XICE Supplement for 68000/68HC000/68EC000 and 68302

Memory control

Displaying memory addresses and variables

The dump (du) command displays the contents of memory at
a given address or range of addresses in both hexadecimal and
ASCII format. ‘

As do most XICE commands, dump also accepts a symbol
name as an address argument. This allows us to dump the
contents of the tutorial’s “memory mapped” output port,
“led_port”, without recalling the port’s numerical address.
(Note: We could have found the address of led_port with the
printsymbol command.)

Dump the contents of "led_port"

~du led_port n

Another way of viewing the contents of “led_port” is to use the
printvalue (p) command. The printvalue command displays
the values of expressions according to their type. The
printsymbol (ps) command will show “led_port” is an array of
signed char, so printvalue will display character values found
at “led_port”.

=
(@}
m
—
=3
<
B

Display symbol information about "led_port"
>ps led_port

Print the value at "led_port"

>p led_port

You may want to keep a continuous display of a variable’s value
on the screen. The monitor (mon) command opens the DATA
viewport and displays the selected variable. The display is
updated during every “run to pause” transition.

Monitor the variable "led_port"

>mon led_port

Using debugger functions $3-29

$3-30

Modifying memory

Modify memory with the setmem command. Setmem has a
switch for byte, word, and longword data arguments. We will
use setmem with the longword switch, /1, to modify the
contents of “led_port”, and then view “led_port” with the dump
and printvalue commands.

Set memory at "led_port", then display the new contents

»getmem/]1 led_port=0x58494345
-du/l led_port
>p led_port

Using the single line assembler

There may be times when you need to make a small change to
an assembly module, perhaps just to try something out. Use the
debugger’s built in line assembler to make your patch and
avoid a time consuming “exit debugger, edit code, assemble and
link, download, and try-it-out” debugging cycle. The line
assembler is invoked with the asm command.

Below we assemble a simple "nop” loop. To exit the assembler
type a carriage return on an empty assembler line.

Assemble a "nop" loop beginning at address 0x9000

asm 0x9000
00009000: nop
00009002: nop
00009004: jmp 9000
0000900a: <Return:-

Using the memory disassembler
The memory disassembler can only be used with XICE in the
“assembly mode”.

Disassemble the "nop" loop at 0x9000. The disassembled
memory is displayed in the CODE viewport.

XICE Supplement for 68000/68HC000/68EC000 and 68302

Go to assembly mode and disassemble memory at 0x9000

-m

~digs 0x9000
00009000 4E71 nop
00009002 4E71 nop

00009004 4EF9 0000 9000 jmp $009000
Return to high level mode
*-m

Other memory operations

There are other memory commands available that fill memory
with a given value (fill), copy the contents of one block of
memory to another (copy), compare the contents of two

memory blocks (compare), and search through memory for a
pattern (search). These commands are covered in the XRAY n

Documentation Set.

Using overlay memory
Overlay memory is emulator memory that can replace target
memory by overlaying it, or be used where target memory
resources do not exist. Assigning overlay memory to address
ranges and access types chosen by the user is called “mapping”
overlay.

=
(@)
m
—
=3
e
=

Overlay has a minimum granularity of 2K. If a mapping does

N nl not begin and end on a 2K boundary, the emulator
ote J automatically adjusts the mapping in both directions to the
next 2Kboundary and issues a warning that it has adjusted the

original mapping.

Displaying the memory map
Use the ramaccess (ram) command with no arguments to
display the current overlay vs. target memory map.

Using debugger functions $3-31

$3-32

Display current overlay vs. target memory map

>ram

You should see a display of the type of memory (ram, rom, or
nomem), who owns it (emulator or target), its address range,
and how much emulator memory remains.

Mapping overlay memory as RAM

Use the ramaccess command with a range argument to map
overlay memory as read/write memory (RAM). Memory
mapped as RAM is fully accessible to the executing program
and to the user.

We will not alter the memory map in the tutorial, so an
example is shown below.

For example only - Mapping overlay from 0x1000 to
0x2000 as RAM

ram 0x1000..0x2000

Mapping overlay memory as ROM
Use the romaccess (rom) command with a range argument to
map overlay memory as read only memory (ROM).

Memory mapped as ROM will cause a “write violation” break if
written to by the executing program. However, the user can
still write to this memory using any debugger memory write
command such as setmem or fill.

An example is shown below.

For example only - Mapping overlay from 0 to 0xfff as
ROM

rom 0x0..0xfff

Mapping memory as illegal access space
Memory can be mapped as illegal or non-existent by the
nomemaccess (nomem) command.

XICE Supplement for 68000/68HC000/68EC000 and 68302

Memory mapped as "'nomem" causes an "illegal access" break
when the executing program tries to access it for any reason.
This is useful when implemented as a built-in bounds checker
for the executing program. If there are areas in the memory
map that nothing should access, map them as nomem.

Memory mapped as "'nomem" is also unavailable to the user,
even through debugger memory commands such as setmem or
fill.

An example is shown below.

For example only - Mapping 0x1000 to 0x2000 as illegal
memory

nomem 0x1000..0x1fff

Mapping overlay memory back to target memory
Use the ramaccess command with the =target argument to
reassign overlayed memory to the target.

An example is shown below.

P
O
m
—
=3
e
E\i:

For example only - Returning overlay memory 0x1000 to
0x2000 to target

ram 0x1000..0x1lfff=target

Copying target memory contents to overlay memory

The ramaccess command, when used with =copy, first maps
overlay memory over the range argument and then copies the
contents of target memory into that range of overlay memory.

Use this command when you need to copy the contents of your
target ROM or PROM into overlay memory for patching, to
avoid having to burn a new ROM.

An example is shown below.

Using debugger functions v $3-33

Basic breakpoints

$3-34

For example only - Copying the contents of target
memory into overlay

ram 0x9000..0x9fff=copy

Basic breakpoints include access and instruction breakpoints.
Simple to set up and use, they let you stop emulation at a
predetermined location in the program.

Setting access breakpoints

Access breakpoints are set to break on a read status (br), a
write status (bw), or don’t-cared for a read or write (ba) of the
breakpoint address. These breakpoints are implemented using
emulator hardware and may be set in RAM or ROM.

You cannot set an access breakpoint when any event system
triggers are armed. Disarming the triggers will allow you to set
access breakpoints. Likewise, setting access breakpoints
causes the event system to be disabled. Clearing the access
breakpoints will allow you to arm the event system triggers.

Macros can be attached to access breakpoints. You may have
multiple ba, br, and, bw breakpoints set, each with its own
macro attached. Macros are illustrated on page S3-42.

Set a write access breakpoint at "led_port"
~bw led_port

Setting instruction breakpoints

Instruction breakpoints (bi) are software implemented
breakpoints. They use the TRAP instruction to temporarily
replace the instruction at the breakpoint address. These
breakpoints can only be set in RAM. There must also be RAM
located at the “scratch” address to accommodate the TRAP
instruction’s interrupt service routine.

XICE Supplement for 68000/68HC000/68EC000 and 68302

Program execution and related commands

Using debugger functions

A bi uses one each of the emulator’s two address and status
comparators. The remaining address and status comparators
are available for access breakpoints. This means if you set a bi
you can additionally set 3 single-address access breakpoints of
the same type (all br’s, for example) or one range access
breakpoint.

Set an instruction breakpoint at outled
-bi outled

Clearing breakpoints

Use the clear (cl) command to clear all breakpoints. Use clear
with a number or range argument to clear a particular
breakpoint or group of breakpoints.

Clear breakpoints 1 and 2

-cl 1..2

The following commands control resetting the CPU, restoring
the program start address, and executing the program in real-
time or in steps at a time.

Resetting the processor
Use the reset (rese) command to restore the processor to its
initial reset state.

Reset the CPU
-rese

Restoring the program start address
Use the restart (rest) command to reset the program counter

to the program’s starting address. For cdemon.x this returns us
to “start:” in the ALIB module, address 0x4044.

Restore the program start address

>rest

$3-35

S3-36

Starting and stopping program execution

Use the go (g) command to start or continue program
execution. The program will execute until a breakpoint is
reached, an error occurs, or the user stops emulation with a

CTRL-C.

Use the go command with an address and a passcount to
execute until the address is seen “passcount” number of times.
The command sets a temporary breakpoint at the address and
counts each occurrence of the breakpoint.

Execute until "outled" is seen four times
»>g outled%?

After a few moments, the emulator will break and display the
PC value at the time execution stopped.

Stepping through the program

Stepping refers to executing code a number of lines at a time.
Single stepping executes either one source line or one assembly
line of code at a time, depending on which mode you are in. To
single step use the step (s) command without a number
argument.

For example only - Executing one line of code and five
lines of code

0n

0]

5

Use the stepover (so) command if you want to single step but
do not want to step through called routines. This command will
execute the entire called routine then stop.

Use the gostep (gos) command if you want to step
continuously until a specific condition is met. The condition is
defined by a macro you attach to the gostep instruction. For
instance, gostep can be used to step until a register holds a
particular value.

XICE Supplement for 68000/68HC000/68EC000 and 68302

For example only - Stepping until a condition defined in
“my_macro” is met

gos my_macro()

Capturing and displaying execution trace history

The trace capture feature lets the user observe exactly how the
code executed. Raw trace consists of CPU bus level information
including address, data, status, and an optional 16 channels of
logic state or timestamp information. Disassembled trace is
displayed as assembly, source, or a mixture of both. Raw and
disassembled trace are both displayed in the COMMAND
viewport.

In high level mode (source mode) the TRACE viewport displays
a trace of the “procedure calling chain”. Don’t confuse this with n
the raw and disassembled trace discussed above. The TRACE

viewport is covered in depth in chapter 2 of the XRAY
Documentation Set.

Clearing trace memory

You may want to clear the trace memory buffer of previous
trace information before running your code. This ensures all
information in the trace buffer will be newly acquired. Use the
trcelr command to clear the trace memory buffer.

x
(@}
m
—
=3
=]
5

Clear the trace memory buffer

>trcclr

Capturing trace in run mode and pause mode

Unless conditionally tracing with the event system, the trace
capture feature is always enabled for run mode. Every time you
use go or step, the bus information generated is captured in
the trace buffer.

An emulator softswitch, ppt, controls the capture of additional
information. With ppt on you can capture bus cycle
information generated by XICE memory read and write
commands such as setmem, fill, copy, diag, and others. This

Using debugger functions $3-37

$3-38

trace information can assist you in diagnosing general memory
problems or memory errors that may have shown up in one of
XICE’s ram diagnostic tests (diag).

Also, with ppt on, cycles generated by XICE memory
commands or by downloading code with the load command are
included in trace memory. The load command cycles can be a
valuable source of troubleshooting information when a
download fails for some reason. You can examine the last cycle
in trace memory and determine if the download went to valid
RAM memory, nonexistent memory, or ROM, for example.

To collect trace information we will restart and then go until
we reach the function “outled”.

Restart, then go to "outled"

-rest
g outled

Displaying raw trace history
Use drt for displaying raw bus cycle information and optional
logic state and timestamp information.

Display the captured raw trace information

>drt

Zoom the COMMAND viewport and examine the raw trace.
You can scroll up and down in the viewport with the up/down
arrow keys to view trace that may have scrolled off the display.

Zoom the COMMAND viewport
>z 1

The FRAME numbers on the far left of the trace are used to
reference when in trace history the information occurred. The
lower line numbers are the last cycles captured prior to a
“break” in emulation. The “break” at trace line 1 occurred when
we reached the function “outled”.

XICE Supplement for 68000/68HC000/68ECC00 and 68302

The other raw trace columns show the address (ADDRESS),
the data (DATA), Interrupt Priority Level (IPL), Function Code
(FCn), type of memory cycle (MEM), flags set (FLAGS), and
logic state information (LSA BITS) when each bus cycle was
captured.

Additionally, trace for the 68302 shows a column of information
on DMA cycles (DMA), and on the CPU internal access pin
(IAC). For the 68000, these columns are replaced by
information on the state of valid peripheral access pins (VPA),
and the state of the memory access pins (VMA).

Searching trace history for a pattern (emulator only)

To search trace memory for patterns, use the tsrch (ts)
command. The command syntax is similar to the ev command.
You may qualify the search with combinations of address, data,
and lsa patterns, and status. You may also specify a starting
line number in trace history.

Search trace history for an occurrence of a write to
address Oxfe

x
o
m
—
=3
(=]
oy

~ta addr=0xfe,stat=wr

Displaying disassembled trace history

Use dtb (display trace backwards) for displaying the trace
buffer information formatted in assembly or high-level mode,
or as an interleaving of both modes. The dtf (display trace
forwards) command performs the same trace display function,
but in a different direction. Use the dt command with a start
address to begin disassembling at a particular line in trace.

The trcmode XICE variable controls the disassembled trace
display mode. The variable’s default (both) causes an
interleaving of assembly and source.

Display the trace information in disassembled format

»~dthb

Using debugger functions $3-39

$3-40

The numbers on the far left of the disassembled trace
correspond directly to the FRAME numbers on the far left of
the raw trace display. They are useful when correlating a line
of disassembled trace to its bus cycle equivalent line in raw
trace.

Observe the call to the function “outled”, JSR outled, and the
source line for the function “outled”, outled(0xFE).

Saving trace to a file

You may need a hardcopy of trace or a copy of trace on disk for
later referencing. Or, you may have a problem that requires
factory support. The Applications department might request a
hardcopy of trace memory to assist in solving the problem.

Earlier we discussed the journal (jou) command, which
records both the commands and their output into a file. You can
use the journal command to save a partial or entire trace
disassembly into a file. The example below shows how to save
a trace memory display to a file.

For example only - Saving part of a raw trace to a file
named ¢race.raw

jou on="trace.raw"
drt 0..42
jou off

jou on="trace.raw” creates a file named trace.raw as the
journal file. drt 0..42 displays raw traces lines 0 through 42.
This display goes to both the COMMAND viewport and the
journal file. jou off causes journaling to cease and closes the
journal file.

Using the /a option with jou allows you reopen and append to
an existing file.

XICE Supplement for 68000/68HC000/68EC000 and 68302

Executing XICE commands in run mode (dynamic run mode-drun)

Using debugger functions

The drun command lets you use XICE commands without
stopping program execution (run mode).

For instance, you may want to examine trace history (drt or
dtb) while executing your program. If you enter run mode
using drun instead of go, you can use the drt command to
display the trace history, gathered up to the point where you
entered the drt command, while the target program continues
to run.

To exit dynamic run mode use the dstop command.

Restart, enter dynamic run mode, then display raw
trace history

»rest

>drun

>drt

Zoom command window, view raw trace, then unzoom

[euoin] 301X

-z 1

~z 1

Use the dupdate command in dynamic run mode to cause the
code, register, stack/trace, and data viewports to be updated at

the interval given in the command’s argument. The default
argument value is 20 polls per minute.

Note that you cannot enter commands while in this mode, and
that real time operation is sacrificed during the command’s
polling process.

Switch to assembly level, enter dupdate mode, and then
observe the stack and register viewports being updated
(60 times per minute)

>m
>dupdate 60

S3-41

Exit dupdate mode (control-c), exit dynamic run mode
(dstop), then switch back to high-level mode

-Control-c
-dstop
m

Logic state and timestamp options

Debugger macros

$3-42

Logic state probe and timestamp probe options are available
from Applied Microsystems. If you have either of these options,
see Chapter 6 of this supplement for information on how to use
the timestamp option and the following XICE variables. These
variables control capturing and displaying logic state and
timestamp information.

XICE variables for logic state and timestamp options

tstamp (display lsa or timestamp info on/off)
trcframe (cycle number for time 0 timestamp in display)
trcint (display interval or offset timestamp)

tunits (timestamp units for raw trace 0x0)

Macros provide an efficient means of executing repetitive tasks
or generalizing a task that originally acted on only a specific
item. XICE uses the same C-like sequence of expressions,
statements, and debugger commands as XRAY to define and
invoke macros. Chapter 4 of the XRAY Reference Manual in the
XRAY Documentation Set is devoted to explaining how to
generate your own macros and to use the predefined macros
that come with XICE. The following section demonstrates
briefly how to create a macro and then save it into an “include”
file that can be executed by the debugger.

Creating a macro

Use the define (def) command to create a macro. This puts
XICE in the macro define mode. Notice the prompt will change
from a greater-than sign (>) to a colon () when you enter this
mode. A period (.) in the first column of the line exits macro
definition mode.

XICE Supplement for 68000/68HC000/68EC000 and 68302

Most of the commands found in this supplement are Applied’s
emulator-specific aliases of “set status (ss)” commands. When
these commands are used in a macro you must precede and
follow the command “$,” preface the command with “ss,” and
usually follow the command with a comma to accommodate the
XICE command line parser. To see whether a command is an
alias of a “set status” command, invoke on-line help for the
command in question. Then press <return>. There will be an
“alias of SS command_name” message in the upper right corner
of the help screen, i.e. for drt you will see “alias of SS DRT".
The macro we will create demonstrates using the aliased
command drt.

Define a macro named dmp_trc

~def dmp_trc()

:

:$

:ss drt,

:$ ><—§
.. m
:; =
:} 5
: =%
Displaying a macro

Use the show command to display a macro.

Display the macro dmp_trc
~»sh dmp_trc

Deleting a macro
Use the delete command to delete a macro. An example
follows.

For example only - deleting a macro

del big_mac

Using debugger functions $3-43

53-44

Saving a macro to a file

After you determine that your macro works, you may want to
save it to a file for later use. The procedure to do this consists
of XICE commands to open a file and assign it a viewport
number (fopen), display the macro (show) into the file, and
close the file (vclose). The resulting file can be used as an
include file that recreates the macro.

Save a macro to a file
»fopen 50, “dmp_trc.inc”

>show dmp_trc, 50
>vclose 50

Fopen should have created a file named dmp_trc.inc in the
current directory. The file contains the commands necessary to
create the macro dmp_trc, placed there by the show
command.

Assigning a macro to a breakpoint

A macro can be assigned to a breakpoint by setting a
breakpoint and following it with ; your_macro()”. The macro is
executed when the breakpoint occurs.

Assign macro “dmp_trc” to a write access breakpoint at
“led_port”

>bw led_port ;dmp_trc()
Restart, then go till the breakpoint is reached

>rest
g

When the breakpoint at “led_port” occurred, emulation stopped
and raw trace information was immediately displayed in the
COMMAND viewport.

Return the COMMAND viewport to normal size

>F4

XICE Supplement for 68000/68HC000/68EC000 and 68302

Access breakpoints and event system breakpoints are mutually
exclusive. We need to clear the write access breakpoint before
continuing on to the event system.

Clear write breakpoint number 1

—-cl 1

Using the event system

Using debugger functions

Sometimes running to a basic breakpoint and examining trace
history does not provide information specific enough to debug
your target’s code or hardware. Also, you may want the
emulator to perform some action other than breaking when the
conditions become true.You may need to trigger an oscilloscope
after a complex set of CPU bus cycle conditions become true, or
to trace only certain types of bus cycle information under
certain conditions. For example, the conditions might be the
fifth write that a specific subroutine makes to a certain I/O
location.

The event system supplies the mechanism to define conditions
and take actions by creating event statements composed of
logically combined conditions and binding these to trigger
statements that perform the actions. This mechanism allows
the emulator to perform various actions based on events of
complexity far surpassing that of simple breakpoints.

This section will help you get started using the event system.
Comprehensive user information and descriptions of all
available conditions and actions are in Chapter 4, “Using
Breakpoints and the Event System.”

General information
The event system is implemented with emulator hardware and
can be used in both RAM and ROM regions.

Setting access breakpoints disables the event system. Clearing
the access breakpoints will allow you to arm event system
triggers.

$3-45

=
o
m
—
=3
=}
5

S3-46

Step 1: Setting up event statements

The first step in setting up an event statement is deciding what
condition(s) you need to include. For most simple address and
status conditions you probably need only an access breakpoint.
We will start out here with those conditions however, to keep

the first event statement simple.

Define an event statement for a write to '"led_port"
~ev{l}=addr==1led_port, stat==wr

ev{l}= begins the definition of event number 1.
addr==led_port defines “led_port” as the address of interest.
stat==wr defines the access to “led_port” as a write.

Displaying event status
Use stat ev to display the event in the VIEW(EV) viewport.

=stat ev

The first line in the VIEW(EV) viewport indicates there were
32 events available. We used one event, leaving 31 currently
available.

The second and third lines display the event we set up, EV{1}.
Notice that the address is displayed in both numerical form
and by its symbolic name, “led_port”.

The remaining lines indicate that no other events are defined.

If we had defined many events you would need to zoom the
viewport to display them. The following demonstrates zooming
and scrolling the VIEW(EV) viewport.

Zoom the VIEW(EV) viewport, scroll around, then
unzoom

=z 24

»><down arrow:-
S up arrow-
-z 24

XICE Supplement for 68000/68HC000/68EC000 and 68302

Using debugger functions

Step 2: Setting up trigger statements (assigning events to
actions)

Next, you choose what action(s) are taken when the conditions
defined in the event statement(s) occur. The event statement is
tied to the action(s) by forming a trigger statement. When the
event becomes true the actions happen.

We'll bind the simple action of stopping emulation to our event
statement by defining trigger statement 1.

Define a trigger binding the break action to ev{l}
~trig{l}=ev{l},break

Arming triggers

Trigger statements must be “armed” before they are considered
active. The easiest way to arm triggers is to leave the “auto-
arm” variable evtarm at its default state of on. With evtarm
on the triggers are automatically armed as soon as they are
defined.

[euoin] 301X

Triggers are armed for a particular "group”. The evtgrp
command determines what group a trigger statement is armed
for when the trigger statement is defined. If you don’t need to
use an additional "group” of triggers leave evtgrp set to 1. In
this tutorial we leave evtgrp at its default value of 1. This
means the trigger we set up is armed for group 1.

Displaying trigger status
Use stat trig to display the trigger statement in the
VIEW(TRIG) viewport.

Display trigger status and zoom the VIEW(TRIG)
viewport

-atat trig
-~z 24

The first line in the VIEW(TRIG) viewport indicates there were
16 triggers available. We used one, leaving 15 currently
available.

S3-47

S3-48

The second line shows trigger statement 1 (TRIG {1}) is
associated with (=) event statement 1 (EV{1}).

The third line indicates trigger 1 is armed for group 1.
The fourth line shows the action to take.
The fifth line shows the actual trigger statement definition.

The remaining lines indicate the other triggers are undefined,
unarmed, and available (CLEAR).

Unzoom the VIEW(TRIG) viewport
>z 24

Step 3: Using the trigger statement

The trigger statement we set up is armed and ready for use. As
soon as we go into "run" mode, the event system will
unobtrusively monitor the executing environment until the
event statement conditions are met. When this happens the
actions in the trigger statement occur.

Restart, then run the program until the event systems
takes over

~rest
>g

The emulator will "break” and display the current PC