
rtiimm
Applied
Microsystems
Corporation

XICE Debugger Supplement
for Motorola 68000, 68ECOOO,
68HCOOO and 68302 Processors
and the EL 1600 Emulator

May 1993
PIN 922-17320-02
Copyright© 1993 Applied Microsystems Corporation.
All rights reserved.

IBM XT and IBM AT are trademarks of IBM Corporation

Microsoft and MS-DOS™ are trademarks of Microsoft Corporation.

Microtec is a registered trademarks of Microtec Research, Inc.

Sun, Sun-4, NFS, and PC-NFS are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T.

VALIDATE is a registered trademark of Applied Microsystems Corporation

I Contents

Chapter 1
XICE for 68000/ECOOO/HCOOO and 68302

Overview... Sl-2

Conventions .. Sl-3

Support services ... Sl-4

XICE screens... Sl-4

Command considerations ... Sl-7

Register support... Sl-9

Chip select registers (68302 only) Sl-12

Using trace .. Sl-13

Disassembled trace display ... Sl-17

Operations during run ... Sl-18

Software performance analysis .. Sl-19

File formats and converters ... Sl-19

Chapter2
XICE Command Supplement

ASM - single line assembler.. S2-2

BP8PACE- specify breakpoint space 82-4

BREAKACCE8S-sets an access breakpoint................... S2-5

BREAKCOMPLEX - ties a macro to an event break 82-10

BREAKINSTRUCTION - sets an instruction break S2-12

BREAKREAD - sets a read breakpoint S2-16

BREAKWRITE - Sets a write Breakpoint S2-20

BROWSE - display class inheritance information S2-24

BTE - enable or disable emulator bus timeout S2-25

BUS - show state of processor bus signals S2-27

BUSTIME - capture bus timing in trace buffer S2-29

CA8 - continuous address strobe 82-30

CRC - calculate a CRC for a range of memory S2-31

DBP - disable bus error on peek/poke S2-33

DIAG 0 - simple target ram test S2-34

DIAG 1 - complex target ram test S2-36

DIAG 2 - continuous read from target memory S2-38

DIAG 3 - continuous write to target memory S2-40

DIAG 4 - write alternating pattern to target location 82-42

DIAG 5 - write rotated to target memory S2-44

DIAG 6 - write then read target memory 82-46

DIAG 7 - continuous read from target memory range ... S2-48

DIAG 8 - write incremental value to target memory S2-50

DIAG 9 - continuous stream of reset pulses 82-52

DNL - download hex file to target 82-53

DNLFMT - specify download format 82-54

DNL_GAP - specify maximum bytes between blocks 82-55

DOWN (DOW) - move current scope S2-56

DRT - display raw trace ... S2-57

DRTMR - enable refresh of memory (68302 only) 82-59

DRUN - start dynamic run mode S2-60

DSTOP - stop dynamic run mode S2-62

DT - display trace ... S2-63

DTB -display disassembled trace backwards S2-65

DTF - display disassembled trace forward S2-67

DUPDATE -specify polling frequency S2-69

S-ii XICE Supplement for 68000/68EC000/68HCOOO and 68302

EMUV AR8 - display emulator variable values 82-70

EV - define an event ... 82-71

EVTARM - enable or disable automatic trigger arming 82-76

EVTCLR - clear event system ... S2-77

EVTGRP- specify event group 82-78

EVTV ARS - display internal debugger variable values 82-80

EXPLAIN - explain error message 82-81

EXVEC - software breakpoint execution trap number .. 82-82

FAST-fast interrupt emulation control.. 82-84

FRZ- freeze peripheral activity (68302 only) 82-86

FTO - fast bus timeout ... 82-87

GROUP - display active event group 82-88

HWCONFIG - display hardware name and version 82-89

MEMV ARS - display memory access variable values ... 82-90

MW ARN - control address out-of-range warnings 82-91

NETERR- specify timeout warning delay 82-92

NETFAIL- specify download abort timeout 82-93

NULL_TGT- enable null target mode 82-94

OVE - overlay memory spaces ... 82-96

OVS - set emulator overlay speed 82-98

PERFACT-enable PA data gathering 82-100

PERFCLR- remove PA data 82-101

PERFDATA-display PA symbol data 82-102

PERFDEPTH -maximum lines of PA output 82-103

PERFDISP-display PA information 82-104

PERFEX- exclude addresses from PA. 82-106

PERFEXCLR- clear PA exclusions 82-108

PERFFORMAT-format of PA display 82-109

PERFINT- specify PA time interval 82-111

Contents iii

S-iv

PERFMODE - control PA data display S2-112

PERFI'OL - specify symbol search distance S2-113

PPT- peek/poke trace .. S2-114

RAMACCESS-locate a range of RAM memory S2-115

RESET- reset processor and target to initial state ... S2-116

RFS - control software refresh S2-117

RFSADR- refresh software addresses........................ S2-119

RFSASP - refresh software address space.................. S2-120

RFSMSK- refresh software mask S2-122

RIRR- control 302 register restoration on reset S2-123

ROMACCESS-locate a range of ROM memory S2-124

RUN_POLL- set number of polls during run S2-126

RUN_TIME - set maximum run time S2-127

SCRATCH - breakpoint scratch area address............ S2-128

SIA- special interrupt vector S2-129

SIZE - set the size for memory accesses S2-130

SLO - slow interrupt emulation control S2-132

SPACE- set the space for memory accesses S2-134

STI - enable or disable step-through interrupts S2-136

TAD - control tri-state of address bus S2-137

TCEBRK- control tracing of breakpoints S2-138

TED - control trace/overlay for external DMA S2-139

TID - control trace/overlay for internal DMA S2-141

TRCCLR - clear trace buffer.. 82-142

TRCFRAME - trace cycle number............................... 82-143

TRCINT- trace interval... .. S2-144

TRCMODE - trace mode .. S2-145

TRIG- set status trigger .. S2-146

T8RCH - search trace memory for patterns 82-151

XICE Supplement for 68000/68EC000/68HCOOO and 68302

Chapter3
XICE Tutorial

Contents

T8TAMP -show timestamp or L8A in trace.............. 82-153

TUNIT8-timestamp units ... 82-154

UIR- update internal 302 chip select registers......... 82-156

UP-move the current scope .. 82-158

UPL - upload hex data to host..................................... 82-159

UPLFMT - specify upload format................................ 82-160

VERIFY -memory read-after-write verify switch 82-161

XICEVAR8-display internal variable values 82-162

Overview ... 83-1

User-entered commands .. 83-1

Tutorial program.. 83-2

Embedded systems considerations.................................... 83-3

Preparing code for debugging...................................... 83-3

Using the XICE debugger user interface.......................... 83-9

Environment variables.. 83-9

Debugger configuration file - xice.cfg.......................... 83-9

Debugger invocation .. 83-11

Include files - introduction .. 83-12

Using Help .. 83-15

Additional error message information 83-17

Navigating XICE windows (viewports) 83-17

Modifying and saving debugger start-up options 83-18

Recording a debug session ... 83-20

Convenience features ... 83-20

Using debugger functions .. 83-22

Getting oriented with the code 83-22

v

Checking the state of the debugger and emulator S3-24

Checking the state of the target S3-27

Controlling the Emulator and CPU S3-28

Memory control .. S3-29

Using overlay memory ... S3-31

Basic breakpoints ... S3-34

Program execution and related commands S3-35

Capturing and displaying execution trace history S3-37

Executing XICE commands in dynamic run mode S3-41

Logic state and times tamp options S3-42

Debugger macros .. S3-42

Using the event system .. S3-45

Scope loops and diagnostics ... S3-49

Chapter4
Using Breakpoints and the Event System

Overview ... S4-l

Emulator and simulator versions of the debugger..... S4-1

Breakpoint and event system commands S4-2

Working with basic breakpoints .. S4-3

Setting basic breakpoints S4-3

Displaying breakpoints.. S4-3

Clearing breakpoints 84-4

Instruction breakpoints (BI, GO_instruction) 84-4

Access breakpoints (BA, BR, BW) 84-9

Breakpoint latency ... S4-13

Working with the event system ... 84-14

Event and trigger statement groups 84-16

Events ... 84-18

S-vi XICE Supplement for 68000/68EC000/68HCOOO and 68302

Triggers .. 84-20

Event system breaks and trace S4-24

Event system limitations ... S4-24

Chapters
Using Performance Analysis

Chapter6

Event system setup S5-3

Sample include file... S5-3

Special considerations.. S5-5

Limitations of statistical performance analysis......... S5-5

Exclusion of address ranges.. S5-6

Using the Time Stamp Module

Chapter7
Simulated 1/0

Contents

Overview S6-2

Possible measurements ... S6-2

Installation S6-4

Hardware installation S6-4

Using the Time Stamp module S6-6

Getting .started... S6-6

Making a measurement... S6-8

Collecting time stamp information in a file S6-15

Using simulated character input with XICE S7-1

Using simulated character output with XICE S7-3

Using simulated character input with XRAY S7-5

Using simulated character output with XRAY S7-6

vii

Chapter 1

XICE for 68000/ECOOO/HCOOO and 68302

Note

XICE is Applied Microsystems' integrated debugger for use
with Applied in-circuit emulators. It is a part of a complete
embedded development toolchain. Other toolchain components
include the XRAY simulator, XRAY monitor, MCC and CCC
cross-compilers, and ASM cross-assembler, linker, and object
module librarian.

This manual provides information that is specific to using
XICE with Applied emulators for the Motorola 68000/
68HC000/68ECOOO and 68302 processors. It supplements the
descriptions of core debugger commands found in the
XRAY68K Documentation Set.

Two emulator hardware configurations support the 68000
processor. One consists of an emulation board, probe module
and probe tip; the other consists of an emulation board and
probe tip. The emulation board and probe tip configuration is
also used by the 68HCOOO and 68ECOOO emulators. See
Chapter 1 of your Hardware Setup and Reference Guide to
identify the configuration of your 68000. The two configura­
tions have minor differences in operation. Unless otherwise
noted, all references to 68000 in this supplement refer to both
versions of 68000 and to 68HCOOO and 68ECOOO.

This version ofXICE is based on the latest version ofMicrotec
Research XRAY68K It fully supports the output of the 4.3
MCC 68K compiler and 6.9 ASM68K assembler. Although it
may function properly with earlier versions of MCC and ASM,
Applied Microsystems does not guarantee full backwards
compatibility.

XICE for 68000/ECOOO/HCOOO and 68302 SH

-

Overview

S1-2

This supplement provides the information you need to use
XICE with an EL 1600 emulator for a Motorola 68000/
68HC000/68ECOOO or 68302 microprocessor.

o Chapter 1 highlights several key concepts, including register
support, using trace, operations during run, and software
performance analysis. The "Command considerations"
section describes exceptions and any XRAY command that is
not fully supported in XICE.

o Chapter 2 provides an alphabetical reference ofXICE
commands.

o Chapter 3 provides a set of mini-tutorials on code
preparation, emulation, and XICE setup and use.

o Chapter 4 covers using the standard breakpoints and the
optional advanced event system.

o Chapter 5 explains the performance analysis capabilities of
XICE.

o Chapter 6 explains installation and use of the Timestamp
module.

o Chapter 7 describes simulated 1/0 functions.

For detailed information on running under X windows on Sun
workstations see Appendix A of your XRAY68K User's Guide.

For detailed information on starting the debugger see the
XICE Installation Guide.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Conventions
This manual uses the following conventions:

When you see This means

bold type The name of a control software
configuration or executable file, a keyword
or command, or a key that you should press.

italics A variable, or a file name. Sometimes italics
are used for emphasis the first time a key
word or concept is introduced.

<F7> Press the F7 function key.

[option] Optional item. You do not have to select the
option. You do not enter the brackets.

{this I that) You must choose either this or that. The
vertical bar means you have a choice. The
curly braces indicate that you may only
choose one item. Do not enter the braces.

{item)... You may select one or more of the items.

run Screen output or example code.

Conventions S1-3

-

Support services

XICE screens

81-4

Applied Microsystems provides a full range of support services.
New software is covered by a 90-day warranty that includes
full applications phone support. Additional support
agreements are available to extend the initial warranty and to
provide additional services.

If you encounter trouble installing or using your software,
consult your manuals to verify that you are using appropriate
procedures. See also the Appendi:x B, Troubleshooting, in the
XICE Installation Guide. It covers the most frequently
encountered operational problems.

If the problem persists, call Customer Support at
1-800-ASK-4AMC or 1-206-882-2000 (in Washington State).
Customers outside the United States should contact their sales
representative or local Applied Microsystems office.

Have your software serial number available. This number
displays during boot-up and is also included on the label of your
master media.

Figure 1-1 and Figure 1-2 show C-source-level and assembly­
level XICE screens.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

-
µ--' 11) vxel302 -i,

~
Bl"klnst

~~
Pr-int Scope Hani tol" SCl"een

~ Cleal" Go Pr-int 'II! Context Pl"evC..d Status ode t

ll
Dal-

]
Tl"ace

4. 00004056:??????,EXIT
3. 000040A4 CDEMOH\main
2. 000042DO CDEMOH,run
1. 000056DO C~ait
o. 00005732•Cct'1'-putcom

~ 101 extern struct com_port com:
102
103 if ((com.wr1te_data & STATUS) == CLEAR>
104 {

105 com.write_data = (c I READYl; /• put data with status = read1=1 •/
106 return c; /• return success •/
107 }

108 else
109 return O; /• not clear •/
110 }

111
112 /••••***
113 "*
114 ** printcom(p) - Print ascii str1n&s out com port
115 **
116 ** This function outputs asci1 character str1nes until terminated b1=1
117 "* a null character. An in1 tialized pointer to the asc1i text should
118 ** be passed as a character pointer. The actual characters are output
119 us1n& putcomO librar1=1 call.
120 •/
121 pr1ntcom(p)
122 char •p;
123 {

124 char c;
125
126 while ((c = *p++) ! = ''O' l /• do until null •/
127 {

128 while (! ~utcom(c))); I• write to EMUALTOR (monitor) •/

Command 68000 MODULE: COM BREAK M! 1 HELP=F5 AMC 6.11
~-

an~ 1....,
... tcom:t.UO "'''"' >
>
>
>
>
>
> I

tL

Figure 1·1 XICE source-level screen

XICE screens $1-5

vxel302

I ~ I Brk!Mt StOP ~ Print Scope Monlt- 1•~ I ~
......... Cler StepDl.'I" ~ ~Pr_i_n_t_!E~ ~Ca_n_te_>e_t~ PrevU.d Status ~

Data----------.121.-----:itack 1

1:
1:

6

00008010+010=77C385FD
0000800C+OOC=FFDAB7FB
00008008+008=FFA7001F
00008004+004=FB694867
00008000+000=CBB240FE
00007FFC+FFC=00004056

'iil 00007FF8+FF8=000040A4 II 00007FF4+FF4=00000005
» 100 (00007FFO+FF0=00000001
putcOfTl:

11111115-:.:: .:::.....::F 1111114 f1u· .. ·E~L t4,H7).[ll
)) 101 extern struct COfTl_port COfTl!
» 102
>> 103 if <<com.write_data & STATUS) == CLEAR>

00005736 1039 0000 604C MOVE.B C01T1,DO
0000573C 0280 0000 0080 ANDI.L MS80,DO
00005742 6612 BNE.B S5756

» 104 (
)) 105 COPl.write_data = (c I READY>; /• put data wit

00005744 1001 MOVE.B Di.DO
00005746 0000 0080 ORI.B ••BO.DO
0000574A 13CO 0000 604C MOVE.B DO.cOPl

>> 106 return c;
00005750 7000
00005752 1001
00005754 6002

» 107)
» 108 else
>> 109 return O;

00005756 7000
» 110)

00005758 4E75
» 111

MOVEIJ 1tsO,DO
MOVE.B Di.DO
BRA.B S5758

MOVEIJ HO,DO

RTS

/* return succe

/* not clear *

>> 112 /**
» 113 **
>> 114 ** printcOPl(p) - Print ascii strinis out cOPl po~t
» 115 **

00007FEC+FEC=OOOOOOOO
00007FE8+FE8=00000010
00007FE4+FE4=000001F4
00007FEO+FE0=00000005
00007FDC+FDC=000042DO
00007FD8+FD8=00000000
00007FD4+FD4=00000010
00007FDO+FD0=0000007C

SP:00007FCC+FCC=000056DO

..... ---lilegistel"S---1
DO =0000007C AO =0000604E
Di =0000007C Al =00005E4C
D2 =00000056 A2 =00000000
D3 =00000004 A3 =00000000
D4 =00000001 A4 =00000000
D5 =00000005 AS =00000000
DG =00000000 AG =00000000
D7 =00000000 A7 =00007FCC

TTSM III
SR =00100111
PC =00005732
USP=OOOOOOOO
SR =2700

XNZVC
CCR=OOOOOOOO

SSP=00007FCC

68000 MODULE: COM BREAK •: 1 HELP=F5 FW-IC 6.11

>seytc01T1XXiO
--=aWQA£1MI
>
>
>
>
>
>
> I

81-6

""''''

Figure 1·2 XICE assembly-level screen

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Command considerations

Command considerations

Chapter 3 of the reference manual in the.KRAY Documentation
Set describes the core set of commands for both XRAY and
XICE. The information that follows covers any XICE
exceptions to the information in the reference manual.

BREAKACCESS

BREAK­
COMPLEX

BREAK­
INSTRUCTION

BREAKREAD

BREAKWRITE

CLOCK

CPU

HOST

ICE

IN PORT

INTERRUPT

Cannot be used when event system triggers are
armed. Number limited when BREAKINSTRUC­
TION also used. See "Basic breakpoints" in
Chapter 3 for an overview.

Variable EVTMODE in xice.cfg must be ON.
Restricts event system to one armed trigger.
See Chapter 2.

Requires assignment of trap vector and scratch
space. See EXVEC and SCRATCH in Chapter
2 and "Instruction Breakpoints" in Chapter 4 for
an explanation.

Cannot be used when event system triggers are
armed. Number limited when BREAKINSTRUC­
TION also used. See "Basic breakpoints" in
Chapter 3 for an overview.

Cannot be used when event system triggers are
armed. Number limited when BREAKINSTRUC­
TION also used. See "Basic breakpoints" in
Chapter 3 for an overview.

Not supported in XICE.

Not supported in XICE.

Causes erratic behavior on some PCs.

Not supported in XICE.

Chapter 7 describes the use of IN PORT for
simulated 1/0.

Not supported in XICE.

$1-7

S1-8

NOICE

NOINTERRUPT

NOME

OPTION

OUTPORT

OVERLAY

RAM

RESTORE

ROM

SAVE

SEARCH

SETSTATUS

STATUS

TRACE

Not supported in XICE.

Not supported in XICE.

Memory is mapped in blocks of 2K. If you start
or end your mapping request at points that are
not at multiples of 2K, XICE adjusts the request
to meet the 2K requirement.

The options CPU and SPEED are not
supported. The option VPCOLOR is supported
only for IBM-PCs and compatibles.

Chapter 7 describes the use of OUTPORT for
simulated 1/0.

Not supported by the 68000 or 68302 emulator.

Memory is mapped in blocks of 2K. If you start
or end your mapping request at points that are
not at multiples of 2K, XICE adjusts the request
to meet the 2K requirement.

Not supported in XICE.

Memory is mapped in blocks of 2K. If you start
or end your mapping request at points that are
not at multiples of 2K, XICE adjusts the request
to meet the 2K requirement.

Not supported in XICE.

Not supported on XICE.

The following identifiers are not supported in
XICE: QUALIFY and TRACE.

The following identifiers are not supported in
XICE: QUALIFY and TRACE.

Not supported in XICE.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Register support

Register support

The following are the 68000 and 68302 registers that are
supported by XICE. You can enter them in either upper case or
lower case, but they are displayed in the case shown.

Register Name

AO-A? Address Registers

00-07 Data Registers

FP

PC Program Counter

SP

SSP Supervisor Stack Pointer

SR Status Register

USP User Stack Pointer

The following additional registers, which are related to just the
68302, are also supported by XICE:

Register Name

BAR Base Address Register

BCR Byte Count Register

BRO Base Register 0

BR1 Base Register 1

BR2 Base Register 2

BR3 Base Register 3

CMR Channel Mode Register

CR Command Register

S1-9

-

Register Name

CSR Channel Status Register

DAPR Destination Address Pointer Register

DSR1 SCC1 Data Sync Register

DSR2 SCC2 Data Sync Register

DSR3 SCC3 Data Sync Register

FCR Function Code Register

GIMR Global Interrupt Mode Register

IMR Interrupt Mask Register

IPR Interrupt Pending Register

ISR Interrupt In-Service Register

ORO Option Register O

OR1 Option Register 1

OR2 Option Register 2

OR3 Option Register 3

PACNT Port A Control Register

PADAT Port A Data Register

PADDR Port A Data Direction Register

PBCNT Port B Control Register

PBDAT Port B Data Register

PBDDR Port B Data Direction Register

SAPR Source Address Pointer Register

SCCE1 SCC1 Event Register

SCCE2 SCC2 Event Register

SCCE3 SCC3 Event Register

81-10 XICE Supplement for 68000/68HC000/68ECOOO and 68302

-
Register Name

SCCM1 SCC1 Mask Register

SCCM2 SCC2 Mask Register

SCCM3 SCC3 Mask Register

SCCS1 SCC1 Status Register

SCCS2 SCC2 Status Register

SCCS3 SCC3 Status Register

SCM1 SCC1 Mode Register

SCM2 SCC2 Mode Register

SCM3 SCC3 Mode Register

SCON1 SCC1 Configuration Register

SCON2 SCC2 Configuration Register

SCON3 SCC3 Configuration Register

SCR System Control Register

SI MASK Serial Interface Mask Register

SI MODE Serial Interface Mode Register

SPMD SCP, SMC Mode and Clock Control
Register

TCN1 Timer Counter Register

TCN2 Timer Counter Register

TCR1 Timer Capture Register

TCR2 Timer Capture Register

TER1 Timer Event Register

TER2 Timer Event Register

TMR1 Timer Mode Register

Register support S1-11

Register Name

TMR2 Timer Mode Register

TRR1 Timer Reference Register

TRR2 Timer Reference Register

WCN Watchdog Counter

WRR Watchdog Reference Register

Chip select registers (68302 only)

81-12

You must configure the 68302 chip select registers to match the
target system before starting up XICE. The EL 1600 requires
that the chip select registers be programmed to respond in all
function code spaces to permit target memory operations to
work correctly. Memory operations (also referred to as peeks
and pokes) include actions such as displaying memory,
downloading code and data, loading the reset vectors, and fill
and block moves.

You can configure the chip select registers in the xice.cfg file.
The XICE Installation Guide describes how to preset registers
using xice.cfg. The El 1600 Hardware Setup and Reference
Guide also provides information on setting the chip select
registers.

It is important to set up the chip select registers correctly;
otherwise, it is possible to inadvertently program a DTACK
over the memory location of emulator internal memory. Then,
if the processor supplies a DT ACK for emulator in tern al
memory, an emulator crash can occur.

Once the chip select registers are loaded initially, the switches
RIRR and UIR determine when they are restored or updated.
RIRR set to ON restores the registers after an emulator reset.
UIR set to ON updates the registers a..tter an emulation break
occurs or whenever you make a change to any of the register
values.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using trace

Using trace

If you do not set RIRR to ON, the emulator will not reload the
register values after a reset.

If you do not leave UIR set to ON, the emulator's copy of the
internal registers will not be updated until the next RUN to
PAUSE transition.

The XICE trace capability allows you to view either raw bus
cycles or disassembled source code interleaved with the high­
level code.

In addition to the softswitches, the following commands set up
trace:

PPT

TCEBRK

TED

TIO

TRCFRAME

TRCINT

TRCMODE

TSTAMP

TU NITS

controls the tracing of peeks and pokes

controls the tracing of breakpoints

controls whether external or internal OMA
is traced

controls whether external or internal OMA
is traced

sets the trace cycle numbers

specifies how traced timestamp information
is displayed

sets trace mode (assembly and source,
assembly only, or source only)

controls whether timestamp or LSA is
traced

sets the timestamp units

$1-13

-

81-14

The commands to use trace are as follows:

ORT

OT

OTB

OTF

TRCCLR

TRSRCH

display raw trace

display trace, both assembly and
disassembled source level

display trace backwards, both assembly
and disassembled source level

display trace forwards, both assembly and
disassembled source level

clear trace buffer

search for specified pattern in trace

The commands to set up and use trace are described in
Chapter 2 of this supplement. When you use a trace command,
the trace information is displayed in the command viewport.
Raw trace is formatted as shown in Figure 1-3.

: > > > PLAGS X-breakV
: l!lZl!l I\-read l!lZl'l 11-byt.e l'lZl'l T-1:.arget 11-llEMV
: ACCESS: w-writ.e llOIJJIDAAY: w-word LO CATI Oii: o-overlay l!l-illega!V

m.em. ac ce.s s
: PMl'lZ ADDl\ZSS DATA IPL PCn l!lZl!l Dl!IA IAC PLAGS --LSA llITS-------V

~
16 00101'8 Z548 000 SP WO 11111111 llllllllV
15 OOlOPA D041 000 SP WO 11111111 llllllllV
14 OOlOPC Z548 000 SP WO 11111111 11111111v
13 OOlOPZ 20?c 000 SP WO 11111111 11111111v
12 001100 0000 000 SP WO 11111111 11111111v
11 001102 1310 000 SP WO 11111111 ll111111v
10 001104 21'30 000 SP WO 11111111 11111111v

9 001106 0000 000 SP WO 11111111 11111111v
8 001108 4Zll9 000 SP WO 11111111 llllllllV
1 001310 0000 000 SD WO 11111111 llllllllV
6 001312 0001 000 SD WO 11111111 llllllllV
5 0011011. 0000 000 SP WO 11111111 llllllllV
4 000JPZ2 0001 000 SD 'llWO 11111111 11111111v
3 OOOJ'ZO 0000 000 SD 'llWO 11111111 11111111v
2 OOllOC 1188 000 SP WO 11111111 11111111v
l 11e.1U<.V

Figure 1-3 Raw trace format

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using trace

Raw trace display
The raw trace display columns shown in Figure 1-3 are:

FRAME

ADDRESS

DATA

IPL

FCn

MEM

VPA(68000)

The decimal count of the line in the trace buffer. Line
O corresponds to the most recently traced cycle.

The hex value of the address bus.

The hex value of the data bus.

This column lists the bustime information if the
BUSTIME is set to ON. If BUSTI ME is set to OFF,
this column lists the current interrupt level. The
range for the bustime information is 3 to 9. Raw
trace displays a plus mark(+) if bustime is outside of
this range.

The memory space accessed:

UD user data space

UP user program space

SD supervisor data space

SP supervisor program space

PU CPU space

000 reserved memory space

011 reserved memory space

100 reserved memory space

The memory type accessed, its boundary, and its
location:

R read B byte T target

W write W word 0 overlay

For example, WBT indicates a byte wide write to
target memory and RWO means a word wide read
from overlay.

State of valid peripheral access pins.

$1-15

-

81-16

OMA (68302)

VMA(68000)

IAC (68302)

FLAGS

LSA BITS

TIM EST AMP

A direct memory access. For the 68302, this
information indicates internal OMA cycles if TIO is
set to ON, or external OMA cycles if TED is set to
ON. (TED and TIO relate to the 68302 only.) If both
TIO and TED are set to ON, trace will show the OMA
cycles for both TED and TIO but there will be no way
to determine which was a result of internal OMA and
which was a result of external OMA.

State of valid memory access pins.

CPU internal access pin.

Flags set:

X cycles for which the emulator break bit is asserted

B bus error

M illegal memory access

LSA BITS displays the state of each pin of the LSA
during that bus cycle. This column does not appear
if you set TSTAMP to ON but is replaced by
timestamp information.

The timestamp information is recorded as the
interval between successive bus cycles, if TRCINT
is set to INTERVAL, or relative to the bus cycle
number specified by the command TRCFRAME, if
TRCINT is set to OFFSET. This column does not
appear if you set TST AMP to OFF but is replaced by
LSA information.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Disassembled trace display
Figure 1-4 shows the disassembled trace format. The
information that follows this figure defines the information in
each field.

» if (putcorn<l!!'d_port[iJ)) i++;
4E71 NOP c source 0111 0056D2 588F ADDQ. L 1+4, A7

0109 0056D4 4A80 TST.L DO
Cycle n mber ~ 0107 oo56D6 671E BEQ.s $0056F6

U >> while (coarse--) /* with above strini */
0103 0056F6 2002 MOVE.L D2.DO
0101 0056FB 5382 SUBQ.L M1,D2

Address ~099 0056FA 4A80 TST. L DO
7 0056FC 66A6 BNE.S •0056A4

» if ((i >= 0) && (i < 17))
Ob. t d 0093 0056R4 4RB90000 TST.L i

jeC CO e~E18 005E18>00000000

Instruction

Using trace

34 BLT.S •0056EO
0081 0056AC 1 MOVEQ.L 1+$11,DO
0079 0056RE BOB90000 CMP.L i,DO

5E18 005E18>00000000
0073 0056B4 6F2R BLE.S •0056EO

>> if (putcom(l!!'d_port[i])) i++;
30390000 MOVE.W i+2,DO
5E1A 005E1A>OOOO

0000 MOVE.L MS0000604E.RO
604E

0053 0056C2 10300000 E.B •O<AO.DO.W>.DO 00604E>7C
0049 0056C6 4880 EXT.W DO
0046 0056CB 48CO EXT.L DO

0034 putcom:

0044 0056CA 2FOO MOVE.L DO,-<A7) 007FBO 0000007C
0042 0056CC 4EBR0064 JSR/ putcom

Symbols Data movement

Figure 1-4 Disassembled trace format

C source If trcmode is set to BOTH, C source is interleaved
into disassembly.

Cycle
number

Address

An index of the bus cycle in the trace buffer. The
most recently traced cycle is 1 . This number
corresponds to the frame number in the raw trace
display.

Address of instruction in memory.

S1-17

-

Object code

Instruction

Symbols

Data
movements

Numeric representation of assembly code.

Assembly language instruction in text form.

English text representation of addresses, operands
and data.

The data cycles that occurred as a result of the
instruction:

• address < data data written to address
• data > address data read from address

Operations during run

S1-18

In normal operating mode, XICE does not permit additional
operations while the emulator is running. The DRUN, DSTOP,
and DUPDATE commands provide this additional
functionality.

The DRUN (dynamic run) command executes the target
program and continues execution until it is stopped by DSTOP,
a breakpoint, an error, or a halt instruction. The purpose of this
mode is to allow you to interact with the emulator and
debugger dynamically, while the emulator is running. In
DRUN you can examine and qualify trace, set and change
events and breakpoints, examine and change memory and
perform most other interactive functions with the emulator.

The DUPDATE command allows you to specify how frequently
the emulator is polled and the viewports updated during
DRUN (dynamic run) mode. However, dynamic commands are
no longer accepted.

Chapter 2 describes each command in detail. Chapter 3
includes a short tutorial.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Software performance analysis
The performance analysis features ofXICE for the EL1600
68000 and 68302 development system allow you to:

o determine which areas of a program use the most CPU time
o identify bottlenecks in time critical applications
o monitor the effects of programming changes made to

improve throughput.
Using statistical performance analysis, these features sample
instruction fetch bus cycles at regular intervals using the event
system; determine what function was active when a sample
was taken; keep a tally of the number of samples falling within
each function; and report the sample information. The report is
in a user-specifiable format.

Chapter 5 provides an overview of performance analysis.

File formats and converters

Software performance analysis

Although XICE requires IEEE695 object format to enable
symbolic debugging, support for other formats is built into
XICE, and additional converters are available. See the
descriptions in Chapter 2 for UPL, DNL, UPLFMT, and
DNLFMT for supported non-IEEE695 formats, procedures,
and limitations. Contact your Applied Microsystems
representative for information about additional converters.

S1-19

I Chapter 2

XICE Command Supplement

XICE Command Supplement

Core debugger commands are covered in the XRAY Reference •
Manual. This chapter lists commands that are specific to XICE
and are not listed in the XRAY Reference Manual or that are
XICE-specific implementations of core XRAY commands.
These commands are entered in the command viewport at the
XICE prompt. Any combination of upper-case and lower-case
letters can be used in commands.

S2-1

ASM - single line assembler

Works with

Syntax

Description

Notes

S2-2

• EL 1600 D CodeTAP

ASM [address]

The ASM command allows you to enter assembly code. If an
address is included, assembly will begin at that point. If no
address is included assembly will begin at the last assembly
address. A carriage return with no assembly instruction
terminates the assembler.

If loaded, symbols can be used in instructions, for example

call main

The prompt for the single line assembler is the address
followed by a colon, e.g.,

00000000:

The line assembler does not accept symbols that are not
already in the symbol table.

In single-line assembler mode, you can change assembly
locations with the ORG command. For example,

org 100

will change the assembly location to 100.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Example

XICE Command Supplement

·ASM OXlOO

00000100: move. l (A7), AO

00000102: add .1 #6, IlO
00000108: move.I #0, (AO)

OOOOOlOe:

82-3

BPSPACE- specify breakpoint space

Works with

Syntax

Description

Notes

Example

Related Commands

S2-4

•EL 1600 D CodeTAP

BPSPACE [USERISUPERVISORIANY]

This command allows you to explicitly specify the space for
breakpoints. The choices are USER, SUPERVISOR, or ANY.

The default is ANY. If no argument is given, the state of the
switch is displayed.

You can also specify a default for BPSPACE in XICE.CFG with
SW _BPSPACE.

BPSPACE ANY

XICEVARS

XICE Supplement for 68000/68HC000/68ECOOO and 68302

BREAKACCESS-sets an access breakpoint

Works with

Abbreviation

Syntax

Description

XICE Command Supplement

•EL 1600 D CodeTAP

BA

BREAKACCESS [address I address_rangeJ [;macro_name () J

address

address _range

macro_name()

Specifies the address of the
breakpoint.

Specifies the address range for
the breakpoint. A breakpoint
will be set at each statement
within the address range.

Specifies a macro to be executed
when the breakpoint is
encountered. Note that the
macro name must include a set
of parentheses: macrol(). When
a macro is executed, the macro
controls whether program
execution stops or continues.

S2-5

..

S2-6

The BREAKACCESS command sets an access breakpoint at
the specified memory location(s). An access breakpoint halts
program execution each time the target program attempts to
read from or write to the specified memory location(s). Memory
locations can contain code or data.

Use an ampersand(&) to reference symbolic addresses rather
than just the symbol names. Using a symbol name alone
returns its value, not the address.

The debugger performs the following functions when an access
breakpoint is encountered:

1. Completes the execution of the instruction at that location.

2. Suspends program execution.

3. Executes a macro (if one was specified when the breakpoint
was set). Depending on the macro, the debugger will do one
of the following:

4. If the macro return value is true (nonzero), the debugger
resumes execution at the instruction immediately after the
break.

5. If the macro return value is false (zero), the debugger
returns to command mode and displays break information.

6. If a macro was not specified, the debugger returns to
command mode and displays break information.

XICE automatically assigns a breakpoint number to each
breakpoint; this number is used to reference or clear the
breakpoint. The Break viewport displays breakpoint numbers,
breakpoint locations, breakpoint types, and breakpoint
command arguments. In high-level mode, the line number and
module name containing the breakpoint are also displayed.
The breakpoint type for the BREAKACCESS command is
ACCESS.

Breakpoints can be removed with the CLEAR command.

If the BREAKACCESS command is specified without
parameters, the debugger displays the Break viewport.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Notes

Examples

XICE Command Supplement

Access breakpoints are set to break on a read (br), a write (bw),
or a read or write (ba) of the breakpoint address. These
breakpoints are implemented using emulator hardware and
may be set in RAM or ROM.

You cannot set an access breakpoint when any event system
triggers are armed. Disarming the triggers will allow you to set
access breakpoints. Likewise, setting access breakpoints
causes the event system to be disabled. Clearing the access
breakpoints will allow you to arm the event system triggers.

With instruction breakpoints, the break occurs before the
instruction at the specified address is executed. With access
breakpoints, the break begins on the cycle in which the access
occurs but may continue or "skid" several cycles after access of
the breakpoint location.

Cannot be used when event system triggers are armed.
Number limited when BREAKINSTRUCTION also used. See
"Basic breakpoints" in Chapter 3 for an overview.

Example

BA@sieve\\flags

BA flags .. flags+ 1 o

BA &flags[O)

Meaning

Sets a breakpoint at the address
of the variable array flags in
the root named @sieve.

Sets breakpoints starting at the
address of the array flags and
ending 1 o bytes after the
address of flags.

Sets a breakpoint at the address
of the array element flags [0].

$2-7

•

BA #17;readprime()

BA prime

BA &prime

S2-8

Sets a breakpoint at line 1 7 and
executes the macro readpr ime
when the breakpoint is
encountered.

Sets a breakpoint at the address
referred to by the value in
variable prime.

This command is correct if
prime is a pointer. The
breakpoint is set at the location
specified by the variable prime.
For example, if the value of
prime is Ox0123, a breakpoint
is set at the address Ox0123.

This command may not be
correct if prime is a scalar,
since the value in prime is
treated as an address and the
breakpoint is set at that address
rather than at the address of the
variable prime.

Sets a breakpoint at the address
of the variable prime
regardless of its type.

This command is correct if
prime is a scalar; it sets a
breakpoint at the address of the
variable prime.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Related Commands

XICE Command Supplement

BA 20

BA flags .. flags+9;when
(*flags == 1)

If prime is a pointer, the
breakpoint is set at the address
of the pointer rather than at the
address it is pointing to (i.e.,
prime).

Sets a breakpoint at address 20.

Sets breakpoints starting at the
address of the array flags and
ending 9 bytes after the address
of flags, but the predefined
when macro stops debugger
execution when the first
element of flags is equal to 1.

BREAKINSTRUCTION, BREAKREAD, BREAKWRITE,
CLEAR,GO,GOSTEP,STEP,STEPOVER

S2-9

..

BREAKCOMPLEX -ties a macro to an event system break

Works with

Syntax

Description

S2-10

• EL 1600 D CodeTAP

BC trig{n} [;macro_name]

BC is used to associate a macro with an event system
breakpoint. Complex breakpoints are used to halt program
execution and then execute the specified macro. The argument
trig{n} refers to a trigger that you must set using the
command TRIG following setting up the BC command. If a
macro is specified, it is executed each time a break is
encountered. Execution continues if the macro returns non­
zero.

BC (with an attached macro) works the same way as the other
breakpoint commands (BREAKACCESS, BREAKREAD,
BREAKWRITE, and BREAKINSTRUCTION).

The debugger performs the following functions when a complex
breakpoint is encountered:

1. Completes the execution of the instruction at that location.

2. Suspends program execution.

3. Executes a macro (if one was specified when the breakpoint
was set). Depending on the macro, the debugger will do one
of the following:

4. If the macro return value is true (non-zero), the debugger
resumes execution at the instruction immediately after the
break.

5. If the macro return value is false (zero), the debugger
returns to command mode and displays break information.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Notes

Examples

Related Commands

XICE Command Supplement

6. If a macro was not specified, the debugger returns to
command mode and displays break information.

All breakpoints are automatically assigned a breakpoint
number by the debugger, which is used to reference or clear the
breakpoint. The break viewport displays breakpoint numbers, ..
breakpoint locations, breakpoint types, and breakpoint
command arguments. In high-level mode, the line number and
module name containing the breakpoint are also displayed.

Breakpoints are removed with the CLEAR command.

You must set the variable EVTMODE to ON to use BC.

While EVTMODE is set to ON, XICE is restricted to only one
event system breakpoint armed at a time even though STAT
TRIG may display other triggers as armed.

be trig(2); done() Executes the macro done each
time trigger 2 is true. Breaks
execution when done returns a
zero.

BREAKACCESS, BREAKINSTRUCTION, BREAKREAD,
BREAKWRITE, CLEAR, EV, EVTMODE, TRIG

$2-11

BREAKINSTRUCTION - sets an instruction breakpoint

Works with

Abbreviation

Syntax

Description

S2-12

• EL 1600 D CodeTAP

B

BREAK INSTRUCT ION [address I address_range l [;ma­
cro_name]

address

address_range

macro_name

Specifies the address of the
breakpoint.

Specifies the address range for
the breakpoint. If you specify a
range of instruction break­
points, they will be set on the
first byte of each instruction or
(for high-level code) the first
instruction of each line.

Specifies a macro to be executed
when the breakpoint is
encountered. Note that the
macro name must include a set
of parentheses: macro!(). When
a macro is executed, the macro
controls whether program
execution stops or continues.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

XICE Command Supplement

The BREA.KINSTRUCTION command sets an instruction
breakpoint at the specified memory location(s). An instruction
breakpoint halts program execution each time the target
program attempts to execute an instruction at the specified
memory location(s).

The debugger performs the following functions when an
instruction breakpoint is encountered:

1. Suspends program execution before the instruction at the
breakpoint address is executed.

2. Executes a macro (if one was specified when the breakpoint
was set). Depending on the macro, the debugger will do one
of the following:

3. If the macro return value is true (nonzero), the debugger
resumes execution starting at the instruction where the
break occurred and displays break information.

4. If the macro return value is false (zero), the debugger
returns to command mode without executing the instruction
where the break occurred.

5. If a macro was not specified, the debugger returns to
command mode without executing the instruction where the
breakpoint was encountered.

XICE automatically assigns a breakpoint number to each
breakpoint; this number is used to reference or clear the
breakpoint. The Break viewport displays breakpoint numbers,
breakpoint locations, breakpoint types, and breakpoint
command arguments. In high-level mode, the line number and
module name containing the breakpoint are also displayed.

The breakpoint type for the BREAKINSTRUCTION
command is INST.

Breakpoints can be removed with the CLEAR command.

If the BREAKINSTRUCTION command is specified without
parameters, the debugger displays the Break viewport.

82-13

•

Notes

82-14

See Chapter 4 for more detailed explanation of breakpoint use.

Execution breakpoints consume event system resources and
affect what is possible using other features. In general, the
emulator manages these resources and warns you when it
makes adjustments and presents an error when resources are
exhausted or when you attempt something that creates a
conflict. So you need not concern yourself with more than the
following general guidelines.

o If you use them in addition to the event system, note that
instruction breakpoints consume an address and a status
resource in each event group. Limit event system address/
status resource consumption to no more than one address
and one status comparator in each group. Set up the event
and trigger statements, but leave them disarmed until you
are ready to use them.

o You can specify an address range. XICE handles ranges by
breaking them into multiple individual single-point
breakpoints. Thus, if you specify that a breakpoint should be
for a range of 20 addresses, you may set only 12 additional
breakpoints.

o If you use them with access breakpoints, note the limitations
explained in the BREAKACCESS command description.

o When XICE is invoked, it performs a read of the area
designated for SCRATCH if SW _SCRATCH is specified in
xice.cfg. If SCRATCH is set to an area of memory that does
not return a DTACK at the end of the read, it will hang
XICE. In such a case, comment out the default address for
SCRATCH (Ox9ff0) in the xU:e.cfg file. Then specify the
address for SCRATCH before setting any breakpoints by
using the SCRATCH command or preferably in an include
file when you invoke XICE.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Examples

Related Commands

XICE Command Supplement

Example

B #20

B 221 Oh .. 2216h

BREAK! #1 .. #4

B #15 .. #18;FOO()

B SIEVE\#28

B #10;when{i=:'=3)

B Ox93

Meaning

Sets a breakpoint at line
number 20.

Sets breakpoints starting at
address 2210 and ending at
address 2216 (hexadecimal),
assembly-level mode only.

Sets breakpoints starting at line
number 1 and ending at line
number4.

Sets breakpoints starting at line
number 15 and ending at line
number 18. Executes macro
FOO after each line.

Sets a breakpoint at line
number 28 in the module
SIEVE.

Sets a breakpoint at line
number 10 and stops only if
variable i is equal to 3.

Sets a breakpoint at address 93
(hexadecimal), assembly-level
mode only.

BREAKACCESS, BREAK.READ, BREAKWRITE, CLEAR,
GO,GOSTEP,STEP,STEPOVER

82-15

BREAKREAD - sets a read breakpoint

Works with

Abbreviation

Syntax

Description

S2-16

• EL 1600 0 CodeTAP

BR

BREAKREAD [address I address_range J [;macro_name J

address

address_range

macro_name

Specifies the address of the
breakpoint.

Specifies the address range for
the breakpoint. A breakpoint
will be set at each statement
within the address range.

Specifies a macro to be executed
when the breakpoint is
encountered. Note that the
macro name must include a set
of parentheses: macro!(). When
a macro is executed, the macro
controls whether program
execution stops or continues.

The BREAKREAD command sets a read breakpoint at the
specified memory location(s). A read breakpoint halts program
execution each time the target program attempts to read data
from the specified memory location(s).

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Notes

XICE Command Supplement

Use an ampersand(&) to reference symbolic addresses rather
than just the symbol names. Using a symbol name alone
returns its value, not the address.

The debugger performs the following functions when a read
breakpoint is encountered:

1. Completes the execution of the instruction at that location.

2. Suspends program execution.

3. Executes a macro (if one was specified when the breakpoint
was set). Depending on the macro, the debugger will do one
of the following:

4. If the macro return value is true (nonzero), the debugger
resumes execution at the instruction immediately after the
breakpoint.

5. If the macro return value is false (zero), the debugger
returns to command mode and displays breakpoint
information.

6. If a macro was not specified, the debugger returns to
command mode and displays updated breakpoint
information.

XICE automatically assigns a breakpoint number to each
breakpoint; this number is used to reference or clear the
breakpoint. The Break viewport displays breakpoint numbers,
breakpoint locations, breakpoint types, and breakpoint
command arguments. In high-level mode, the line number and
module name containing the breakpoint are also displayed.
The breakpoint type for the BREAKREAD command is
READ.

Breakpoints can be removed with the CLEAR command.

If the BREAKREAD command is specified without
parameters, the debugger displays the Break viewport.

See BREAKACCESS for restrictions.

S2-17

..

Examples

Example

BR Ox300

BR @sieve\\flags

BR flags . .flags+ 1 O

BR 20h .. 30h;FOO()

BR &flags[O]

BR prime

S2-18

Meaning

Sets a breakpoint at address
3 O o (hexadecimal).

Sets a breakpoint at the address
of the variable array flags in
the root named @sieve.

Sets breakpoints starting at the
address of the array flags and
ending 1 o bytes after the
address of flags.

Sets breakpoints from address
2 Oh (hexadecimal) to 3 Oh and
executes the macro Foo on
every breakpoint between these
addresses.

Sets a breakpoint at the address
of array element flags [OJ .

Sets a breakpoint at the address
referred to by the value in
variable prime.

This command is correct if
prime is a pointer. The
breakpoint is set at the location
of the variable prime. For
example, if the value of prime is
Ox0123, a breakpoint is set at
the address Ox0123.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Related Commands

XICE Command Supplement

BR &prime

This command may not be
correct if prime is a scalar,
since the value in prime is
treated as an address and the
breakpoint is set at that address
rather than at the address of the
variable prime.

Sets a breakpoint at the address
of the variable prime
regardless of its type.

This command is correct if
prime is a scalar; it sets a
breakpoint at the address of the
variable prime.

If prime is a pointer, the
breakpoint is set at the address
of the pointer rather than at the
address it is pointing to (i.e.,
prime).

BR &count; when (k<30) Sets a breakpoint at the address
of count and only stops when
the value of k is less than 3 o.

BREAKACCESS, BREAKINSTRUCTION, BREAKWRITE,
CLEAR,GO,GOSTEP,STEP,STEPOVER

S2-19

•

BREAKWRITE- Sets a Write Breakpoint

Works with

Abbreviation

Syntax

Description

S2-20

•EL 1600 D CodeTAP

BW

BREAKWRITE [address I address_range] [;macro_nameJ

address

address_range

macro_name

Specifies the address of the
breakpoint.

Specifies the address range for
the breakpoint. A breakpoint
will be set at each statement
within the address range.

Specifies a macro to be executed
when the breakpoint is
encountered. Note that the
macro name must include a set
of parentheses: macrol(). When
a macro is executed, the macro
controls whether program
execution stops or continues.

The BREAKWRITE command sets a write breakpoint at the
specified memory location(s). A write breakpoint halts program
execution each time the target program attempts to write data
to the specified memory location(s).

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Notes

Related Commands

XICE Command Supplement

The debugger performs the functions listed below when a write
breakpoint is encountered:

1. Completes the execution of the instruction at that location.

2. Suspends program execution.

3. Executes a macro if one was specified when the breakpoint ..
was set. Depending on the macro, the debugger will do one
of the following:

4. If the macro return value is true (nonzero), the debugger
resumes execution at the instruction immediately after the
breakpoint.

5. If the macro return value is false (zero), the debugger
returns to command mode and displays breakpoint
information.

6. If a macro was not specified, the debugger returns to
command mode and displays viewport information and
breakpoint information.

XICE automatically assigns a breakpoint number to each
breakpoint; this number is used to reference or clear the
breakpoint. The Break viewport displays breakpoint numbers,
breakpoint locations, breakpoint types, and breakpoint
command arguments. In high-level mode, the line number and
module containing the breakpoint are also displayed. The
breakpoint type for the BREAKWRITE command is WRITE.

Breakpoints can be removed with the CLEAR command.

If the BREAKWRITE command is specified without
parameters, the debugger displays the Break viewport.

See BREAKACCESS for restrictions.

BREAKACCESS, BREAKINSTRUCTION, BREAKREAD,
CLEAR,GO,GOSTEP,STEP,STEPOVER

S2-21

Examples

Example

BW @sieve\\flags

BW flags .. flags+ 10

BW Ox1 OO;FOO()

BW &flags[O]

BWprime

82-22

Meaning

Sets a breakpoint at the address
of the variable array flags in
the root named @sieve.

Sets breakpoints starting at the
address of the array flags and
ending 1 o bytes after the
address of flags.

Sets a breakpoint at address
OxlOO and executes the macro
Foo on the break.

Sets a breakpoint at the address
of array element flags [O].

Sets a breakpoint at the address
referred to by the value in
variable pr irne.

This command is correct if
prime is a pointer. The
breakpoint is set at the location
specified by the variable prime.
For example, ifthe value of
prime is Ox0123, a breakpoint is
set at the address OxO 123.

This command may not be
correct if prime is a scalar, since
the value in prime is treated as
an address and the breakpoint
is set at that address rather
than at the address of the
variable prime.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

BW &prime

BREAKW 100h

XICE Command Supplement

Sets a breakpoint at the address
of the variable prime
regardless of its type.

This command is correct if
prime is a scalar; it sets a
breakpoint at the address of the
variable prime.

If prime is a pointer, the
breakpoint is set at the address
of the pointer rather than at the
address it is pointing to (i.e.,
prime).

Sets a breakpoint at address
1 o Oh (hexadecimal).

S2-23

•

BROWSE - display class inheritance information

Works with

Syntax

Description

Notes

Example

S2-24

• EL 1600 D CodeTAP

BROWSE SYMBOL_NAME

This command displays the inheritance relationships of a C++
class. It shows the base classes (parents) and the derived
classes (children) of the given class.

The symbol name that you specify may be the name of a class,
object, or class member.

Appendix G oftheXRAY Reference Manual covers C++
features.

BROWSE C'OUT

XICE Supplement for 68000/68HC000/68ECOOO and 68302

BTE - enable or disable emulator bus timeout

Works with

Syntax

Description

Notes

XICE Command Supplement

• EL 1600 0 CodeTAP

BTE [ONIOFF]

This switch controls the emulator bus timeout. The valid
arguments are ON and OFF.

When set to ON, during RUN mode the EL 1600 will
automatically time out in the length of time specified by the
switch FTO ifthe target fails to supply a DTACK signal. It
performs the timeout by sending a DTACK signal to the CPU
and then executing a break. This ensures that the emulator
will not hang after an invalid memory location has been
accessed.

When set to OFF, the EL 1600 waits for the target to supply a
DTACK signal, and may wait indefinitely.

The default for BTE is OFF. If no argument is given, the state
of the switch is displayed.

BTE is only valid during RUN mode.

See FTO for the length of time until the timeout.

You can also enable or disable the emulator bus timeout in
XICE.CFG with SW _BTE.

82-25

•

Example
BTE OFF

Related Commands
FI'O

S2-26 XICE Supplement for 68000/68HC000/6BECOOO and 68302

BUS - show state of processor bus signals

Works with

Syntax

Description

Notes

Example

<ICE Command Supplement

• EL 1600 0 CodeTAP

BUS

This command displays information about the processor, and
the state of the processor's pins. The signals are displayed as
0 or 1.

O The signal is inactive.

The signal is active.

The information for internal emulator memory (EIM) is
displayed for the 68302 only. See the EL 1600 Hardware Setup
and Reference Manual for further information on EIM.

>bus

PINS:

SERR= 0

VCC= 1

TRST= o

PRST= 0

S2-27

FSI count: o

82-28

IPLO= 0

IPL1= 0

IPL2= O

BGT=O

DBF=O

HLT= o

CLK= 1

8 Bit Mode= O

EIM switch= OxffOOOO

XICE Supplement tor 68000/68HC000/68ECOOO and 68302

BUSTIME - capture bus timing in trace buffer

Works with

Syntax

Description

Notes

Example

XICE Command Supplement

•EL 1600 0 CodeTAP

BUSTIME [ONIOFF]

This switch specifies whether bus timing information or
interrupt level information should be recorded in trace. If
BUSTIME is set to ON, bus timing information is recorded in
the trace under the heading IPL. If BUSTIME is set to OFF,
the current interrupt level information is recorded in trace
rather than the bus timing information.

The default for BUSTIME is OFF. Ifno argument is given, the
state of the switch is displayed.

You can also set BUSTIME in XICE.CFG with
SW _BUSTIME:ON and SW _BUSTIME:OFF.

BUSTIME ON

S2-29

..

CAS - continuous address strobe

Works with

Syntax

Description

Notes

Example

S2-30

• EL 1600 0 CodeTAP

CAS [ON I OFF]

This switch specifies whether the target sees address strobes
while the emulator is paused. If CAS is set to ON, the target
sees address strobes while the emulator is paused. If CAS is set
to OFF, the target does not see address strobes when the
emulator is paused.

The default for CAS is OFF. If no argument is given, the state
of the switch is displayed.

You can also set CAS in XICE.CFG with SW_CAS:ON and
SW _CAS:OFF.

CAS OFF

XICE Supplement for 68000/68HC000/68ECOOO and 68302

CRC - calculate a CRC for a range of memory

Works with

Syntax

Description

Notes

XICE Command Supplement

•EL 1600 D CodeTAP

CRC adclress_ranQe I /addre.s.s_space]

This command performs a CRC over the specified range, where
range is of the form start .. end. Address_space specifies the
memory space from which the target reads are to be performed.
Ifno memory space is specified, it defaults to the memory read
space specified by the command SPACE.

Memory space is processor-specific. The valid values for 68000
family processors are as follows:

Address Space Description

sco Reserved memory space

UD or SC1 User data space

UP or SC2 User program space

SC3 Reserved memory space

SC4 Reserved memory space

SD or SC5 Supervisor data space

SP or SC6 Supervisor program space

CPU or SC? CPU space

$2-31

•

Example

CRC O .. OxFFFF /SD Calculates a CRC in supervisor
data space from 0 to OxFFFF

S2-32 XICE Supplement for 68000/68HC000/68ECOOO and 68302

DBP - disable bus error on peek/poke

Works with

Syntax

Description

Notes

Example

XICE Command Supplement

• EL 1600 0 CodeTAP

DBP [ONIOFF]

This command controls whether bus errors are reported on
peeks and pokes. IfDBP is set to ON, the bus error signals
detected from the target system are displayed. If DBP is set to
OFF, target system bus errors are ignored during peeks and
pokes.

The default for DBP is ON. If no argument is given, the state of
the switch is displayed.

You can also set DBP in XICE.CFG with SW_DBP:ON and
SW _DBP:OFF.

DBP ON

S2-33

..

DIAG 0 - simple target ram test

Works with

Syntax

Description

52-34

•EL 1600 OCodeTAP

DIAG O,address_range[#count] [;memory_space] [/access_­
size]

Target diagnostic 0 performs a simple target RAM test on the
range of target memory you specify.

The optional parameter #count indicates the number of passes
to make. The valid choices for #count are #0 and #1. #0 will
cause the test to continue until you enter ctrl-C. #1 will cause
one iteration of the test. If you do not set #count, it defaults to
#1.

The optional parameter ;memory _space specifies the memory
space in which the test is performed. Memory space codes are
the same as for the CRC command. If you do not set
;memory_space, it defaults to the value set with the SPACE
DIAG command.

Memory space is processor-specific. The valid values for 68000
family processors are as follows:

Code Space Description

sec Reserved memory space

UD orSC1 User data space

UP orSC2 User program space

SC3 Reserved memory space

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Example

XICE Command Supplement

Code Space Description

SC4 Reserved memory space

SD or SC5 Supervisor data space

SP or SC6 Supervisor program space

CPU or SC? CPU space

The optional parameter I access_size specifies the size in which
memory is accessed. It may be a /1 (byte), /2 (word),
or /4 (longword). If you do not set I access_size, it defaults to the
value set with the SIZE DIAG command. For access size /4, the
emulator actually uses two word accesses since the 68000 and
68302 processors cannot directly access memory using
longwords.

DIAG 0, 0 .. OxOfff #6

S2-35

•

DIAG 1 - complex target ram test

Works with

Syntax

Description

S2-36

• EL 1600 D CodeTAP

DIAG 1, address_range I #count l [; memory_space] I I access_ -
size]

Target diagnostic 1 performs a complex target RAM test on the
range of target memory you specify.

The optional parameter #count indicates the number of passes
to make. The valid choices for #count are #0 and #1. #0 will
cause the test to continue until you enter AC. #1 will cause one
iteration of the test. If you do not set #count, it defaults to 1.

The optional parameter ;memory _space specifies the memory
space in which the test is performed. Memory space codes are
the same as for the CRC command. If you do not set
;memory_space, it defaults to the value set with the SPACE
DIAG command.

Memory space is processor-specific. The valid values for 68000
family processors are as follows:

Code Space Description

sea Reserved memory space

UD orSC1 User data space

UP orSC2 User program space

SC3 Reserved memory space

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Example

XICE Command Supplement

Code Space Description

SC4 Reserved memory space

SD or SCS Supervisor data space

SP or SC6 Supervisor program space

CPU or SC? CPU space

The optional parameter I access_size specifies the size in which
memory is accessed. It may be a /1(byte),12 (word),
or /4 (longword). If you do not set I access_size, it defaults to the
value set with the SIZE DIAG command. For access size /4, the
emulator actually uses two word accesses since the 68000 and
68302 processors cannot directly access memory using
longwords.

DIAG l, 0 .. Oxfff #0

S2-37

..

DIAG 2 - continuous read from target memory

Works with

Syntax

Description

S2-38

• EL 1600 D CodeTAP

DIAG 2, address [; memory_space] [I access_size]

Target diagnostic 2 performs a continuous read from the target
memory address you specify. This test continues until you
enter ctrl-C.

The optional parameter ;memory _space specifies the memory
space in which the test is performed. Memory space codes are
the same as for the CRC command. If you do not set
;memory_space, it defaults to the value set with the SPACE
DIAG command.

Memory space is processor-specific. The valid values for 68000
family processors are as follows:

Code Space Description

sco Reserved memory space

UDor SC1 User data space

UP or SC2 User program space

SC3 Reserved memory space

SC4 Reserved memory space

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Notes

Example

XICE Command Supplement

Code Space Description

SD or SC5 Supervisor data space

SP or SC6 Supervisor program space

CPU or SC? CPU space

The optional parameter I access_size specifies the size in which
memory is accessed. It may be a/1(byte),12 (word),
or /4 (longword). If you do not set I access_size, it defaults to the
value set with the SIZE DIAG command. For access size /4, the

·emulator actually uses two word accesses since the 68000 and
68302 processors cannot directly access memory using
longwords.

None

DIAG 2, OxO /2

S2-39

•

DIAG 3 - continuous write to target memory

Works with

Syntax

Description

S2-40

• EL 1600 D CodeTAP

DIAG 3, address=data [; memory_space] [I access_size]

Target diagnostic 3 performs a continuous write of data to the
target memory address you specify. This test continues until
you enter ctrl-C.

The optional parameter ;memory_space specifies the memory
space in which the test is performed. Memory space codes are
the same as for the CRC command. If you do not set
;memory_space, it defaults to the value set with the SPACE
DIAG command.

Memory space is processor-specific. The valid values for 68000
family processors are as follows:

Code Space Description

sea Reserved memory space

UD or SC1 User data space

UP or SC2 User program space

SC3 Reserved memory space

SC4 Reserved memory space

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Example

XICE Command Supplement

Code Space Description

SD or SC5 Supervisor data space

SP or SCG Supervisor program space

CPU or SC? CPU space

The optional parameter I access_size specifies the size in which
memory is accessed. It may be a /1 (byte), 12 (word), or /4
(longword). If you do not set I access_slze, it defaults to the
value set with the SIZE DIAG command. For access size /4, the
emulator actually uses two word accesses since the 68000 and
68302 processors cannot directly access memory using
longwords.

DIAG 3, OxlOOO Oxcf2617 /2

52-41

-

DIAG 4 - write alternating pattern to target location

Works with

Syntax

Description

82-42

•EL 1600 D CodeTAP

DIAG 4,address=data[;memory_space] [/access_size]

Target diagnostic 4 writes an alternating pattern of data to the
target memory address you specify. It uses the data given as
one pattern and the data given, inverted bit-wise, as the
alternate pattern. This test continues until you enter ctrl-C.

The optional parameter ;memory _space specifies the memory
space in which the test is performed. Memory space codes are
the same as for the CRC command. If you do not set
;memory_space, it defaults to the value set with the SPACE
DIAG command.

Memory space is processor-specific. The valid values for 68000
family processors are as follows:

Code Space Description

sco Reserved memory space

UDorSC1 User data space

UP orSC2 User program space

SC3 Reserved memory space

SC4 Reserved memory space

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Example

XICE Command Supplement

Code Space Description

SD or SC5 Supervisor data space

SP or SC6 Supervisor program space

CPU or SC? CPU space

The optional parameter I access_size specifies the size in which
memory is accessed. It may be a /1(byte),12 (word),
or /4 (longword). If you do not set I access_size, it defaults to the
value set with the SIZE DIAG command. For access size /4, the
emulator actually uses two word accesses since the 68000 and
68302 processors cannot directly access memory using
longwords.

DIAG 4, OxlO Ox5555 /2

S2-43

•

DIAG 5 - write rotated to target memory

Works with

Syntax

Description

S2-44

• EL 1600 D CodeTAP

DIAG 5, address=data [;memory_space] [I access_size]

Target diagnostic 5 performs a continuous write of data to the
target memory address you specify, and after each write the
data value is rotated left by one bit. For example with data=Ol,
one complete rotation is as follows:

01
02
04
08
10
20
40
80
01

This test continues until you enter ctrl-C.

The optional parameter ;memory _space specifies the memory
space in which the test is performed. Memory space codes are
the same as for the CRC command. If you do not set
;memory_space, it defaults to the value set with the SPACE
DIAG command.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Example

XICE Command Supplement

Memory space is processor-specific. The valid values for 68000
family processors are as follows:

Code Space Description

sco Reserved memory space

UD or SC1 User data space

UP or SC2 User program space

SC3 Reserved memory space

SC4 Reserved memory space

SD or SC5 Supervisor data space

SP or SC6 Supervisor program space

CPU or SC? CPU space

The optional parameter I access_size specifies the size in which
memory is accessed. It may be a /1 (byte), /2 (word),
or /4 (longword). If you do not set I access_size, it defaults to the
value set with the SIZE DIAG command. For access size /4, the
emulator actually uses two word accesses since the 68000 and
68302 processors cannot directly access memory using
longwords.

DIAG 5, 0 Ox1212 ;UD

S2-45

•

DIAG 6 - write then read target memory

Works with

Syntax

Description

82-46

• EL 1600 0 CodeTAP

DIAG 6, address=clata [; memory_space] [I access_size]

Target diagnostic 6 performs a continuous write of data to the
target memory address you specify, and after each write then
reads the same location. This test continues until you enter
ctrl-C.

The optional parameter ;memory _space specifies the memory
space in which the test is performed. Memory space codes are
the same as for the CRC command. If you do not set
;memory_space, it defaults to the value set with the SPACE
DIAG command.

Memory space is processor-specific. The valid values for 68000
family processors are as follows:

Code Space Description

sco Reserved memory space

UD or SC1 User data space

UP or SC2 User program space

SC3 Reserved memory space

SC4 Reserved memory space

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Example

XICE Command Supplement

Code Space Description

SD or SC5 Supervisor data space

SP or SC6 Supervisor program space

CPU or SC? CPU space

The optional parameter I access_size specifies the size in which
memory is accessed. It may be a /1 (byte), /2 (word), or
14 (longword). If you do not set I access_size, it defaults to the
value set with the SIZE DIAG command. For access size /4, the
emulator actually uses two word accesses since the 68000 and
68302 processors cannot directly access memory using
longwords.

DIAG 6,0xlOOO Ox24 /1

52-47

Ill

DIAG 7 - continuous read from target memory range

Works with

Syntax

Description

82-48

•EL 1600 D CodeTAP

DIAG 7, address_range [; memory_space] [I access_s;ize]

Target diagnostic 7 performs a continuous read from the target
memory range you specify. This test continues until you enter
ctrl-C.

The optional parameter ;memory _space specifies the memory
space in which the test is performed. Memory space codes are
the same as for the CRC command. If you do not set
;memory_space, it defaults to the value set with the SPACE
DIAG command.

Memory space is processor-specific. The valid values for 68000
family processors are as follows:

Code Space Description

sco Reserved memory space

UDor SC1 User data space

UP or SC2 User program space

SC3 Reserved memory space

SC4 Reserved memory space

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Example

XICE Command Supplement

Code Space Description

SD or SC5 Supervisor data space

SP or SC6 Supervisor program space

CPU or SC? CPU space

The optional parameter I access_size specifies the size in which
memory is accessed. It may be a /1 (byte), /2 (word), or /4
(longword). If you do not set I access_size, it defaults to the
value set with the SIZE DIAG command. For access size /4, the
emulator actually uses two word accesses since the 68000 and
68302 processors cannot directly access memory using
longwords.

DIAG 7, 0 .. Oxlf /2

S2-49

•

DIAG 8 - write incremental value to target memory

Works with

Syntax

Description

S2-50

• EL 1600 0 CodeTAP

DIAG 8, aclclress [; memory_space] [I access_sizeJ

Target diagnostic 8 writes an incrementing value to the target
memory address you specify. This test continues until you
enter ctrl-C.

The optional parameter ;memory _space specifies the memory
space in which the test is performed. Memory space codes are
the same as for the CRC command. If you do not set
;memory_space, it defaults to the value set with the SPACE
DIAG command.

Memory space is processor-specific. The valid values for 68000
family processors are as follows:

Code Space Description

sea Reserved memory space

UD or SC1 User data space

UP or SC2 User program space

SC3 Reserved memory space

SC4 Reserved memory space

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Example

XICE Command Supplement

Code Space Description

SD or SC5 Supervisor data space

SP or SC6 Supervisor program space

CPU or SC? CPU space

The optional parameter I access_size specifies the size in which
memory is accessed. It may be a /1 (byte), /2 (word), or /4
(longword). If you do not set
I access_size, it defaults to the value set with the SIZE DIAG
command. For access size /4, the emulator actually uses two
word accesses since the 68000 and 68302 processors cannot
directly access memory using longwords.

DIAG 8, OxlOOO ;SD /1

$2-51

..

DIAG 9 - continuous stream of reset pulses

Works with

Syntax

Description

Example

S2-52

•EL 1600 D CodeTAP

DIAG 9

Target diagnostic 9 sends a continuous stream ofreset pulses
to the target CPU. This test continues until you enter ctrl-C.

DIAG 9

XICE Supplement for 68000/68HC000/68ECOOO and 68302

DNL - download hex file to target

Works with

Syntax

Description

Notes

Example

XICE Command Supplement

• EL 1600 0 CodeT AP

DNL "filename" [,offset]

DNL allows you to download a hex file from the host to the
target in the format specified by the DNLFMT command.The
contents of the file will be downloaded to the memory locations
specified in the file. If you wish to download the file to memory
locations different from those specified in the file, enter a value
for offset. The offset value will be added to the address of each
record to determine the actual download address. The default
value for offset is 0.

The MAP, OVERLAY, SPACE, and SIZE commands affect how
memory is accessed by DNL. Memory read-after-write
verification is controlled by the setting of the VERIFY switch.

Quotation marks are optional ifthe file name consists of
alphanumeric characters or a period. File names that contain a
leading slash must be in double quotation marks (e.g., "/root").
File names that contain a leading backslash must be in single
quotation marks (e.g., '\root').

DNL my.file ,OxlOOO

$2-53

•

DNLFMT - specify download format

Works with

Syntax

Description

Notes

Example

Related Commands

$2-54

• EL 1600 0 CodeTAP

DNL format

DNLFMT is used to specify the format for hex file downloads
using the DNL command. Recognized formats are:

INTEL

SREC

XTEK

Intel hex format. Extended segment address
records and extended linear address records
are supported.

Motorola S 1, 82, 83-records with Microtec
extensions.

Extended Tektronics hex format.

The default format of DNLFMT is SREC. The command
XICEV ARS displays the status of this variable as well as all
the XICE variables.

Symbols are not supported for these formats.

DNLFMT SREC

DNL, UPL, UPLFMT

XICE Supplement for 68000/68HC000/68ECOOO and 68302

DNL _GAP - specify maximum bytes between blocks

Works with

Syntax

Description

Example

Related commands

XICE Command Supplement

•EL 1600 0 CodeTAP

DNL_GAP [1-1024]

DNL_GAP specifies the maximum number of bytes allowed
between two cached download blocks before they are
considered discontiguous. Download speed is faster for
contiguous blocks than for discontiguous blocks. Specifying a
larger number will improve download speed, but may cause
some locations to be overwritten if there are discontiguous
blocks that are smaller than the value of DNL_GAP. A lower
value will avoid this. Ifno argument is given, the current value
is displayed.

The default value of DNL_ GAP is 1. The command XICEV ARS
displays the status of this variable as well as all the XICE
variables.

DNL_GAP 4

DNL,DNLFMT

$2-55

•

DOWN (DOW) - move current scope

Works with

Syntax

Description

Example

Related commands

$2-56

•EL 1609 D CodeTAP

DOWN [numlier_of_levels]

The UP and DOWN commands allow you to move the current
scope up or down the runtime stack. This is especially helpful
when debugging recursive functions. It is not a good idea to go
down farther than you have gone up.

DOW 5

UP

XICE Supplement for 68000/68HC000/68ECOOO and 68302

ORT - display raw trace

Works with

Syntax

Description

Notes

XICE Command Supplement

•EL1600 DCodeTAP

DRT [start I start .. end]

This command displays raw trace information. If you wish to
limit the display, you may specify a range of bus cycles.

DRT by itself displays the last page of trace. DRT with a range
displays trace for the specified range. DRT with a start number
displays trace from the specified frame forward.

The columns DMA and IAC relate only to the 68302. See
section 1 of this supplement for a description of the information
in each of the columns in the trace display.

S2-57

•

Example
drt

FLAGS: X-bre"k
MEM R-re"d MEM B-b\,lte MEM T-t.,r1:et B-BERR
ACCESS: W-write BOUNDARY: W-word LOCATIOH: 0-overla~ M-ille&"l

mern aCCl!!'SS
FR~E ADDRESS DATA IPL FCn MEM OMA IAC FLAGS --LSA BITS-------

44 005732 22 .. 000 SP RBO 11111111 11111111
43 005733 •• 2F 000 SP RBO 11111111 11111111
42 007FA4 oo •• 000 SD WBO 11111111 11111111
41 007FA5 •• oo 000 SD WBO 11111111 11111111
40 007FA6 56 •• 000 SD WBO 11111111 11111111
39 007FA7 •• DO 000 SD WBO 11111111 11111111
38 005734 oo •• 000 SP RBO 11111111 11111111
37 005735 •• 04 000 SP RBO 11111111 11111111
36 005736 10 •• 000 SP RBO 11111111 11111111
35 005737 •• 39 000 SP RBO 11111111 11111111
34 007FA8 oo •• 000 SD RBO 11111111 11111111
33 007FA9 •• oo 000 SD RBO 11111111 11111111
32 007FAA 00 •• 000 SD RBO 11111111 11111111
31 007FAB •• 7C 000 SD RBO 11111111 11111111
30 005738 00 •• 000 SP RBO 11111111 11111111
29 005739 •• oo 000 SP RBO 11111111 11111111
28 00573A 60 •• 000 SP RBO 11111111 11111111
27 005738 •• 4C 000 SP RBO 11111111 11111111
26 00573C 02 •• 000 SP RBO 11111111 11111111
25 005730 •• so 000 SP RBO 11111111 11111111
24 00604C SD •• 000 SD RBO 11111111 11111111

Related Commands
DT,DTB,DTF

82-58 XICE Supplement for 68000/68HC000/68ECOOO and 68302

DRTMR - enable dynamic refresh of memory (68302 only)

Works with

Syntax

Description

Notes

Example

XICE Command Supplement

•EL 1600 D CodeTAP

DRTMR [NONEITMR11TMR21scc11scc21scc3]

This switch controls the dynamic refresh of memory. The
following arguments are allowed for DRTMR:

NONE

TMR1

TMR2

SCC1

SCC2

SCC3

do not allow a DRAM refresh

use TMR1 to trigger a DRAM refresh

use TMR2 to trigger a DRAM refresh

use SCC1 to trigger a DRAM refresh

use SCC2 to trigger a DRAM refresh

use SCC3 to trigger a DRAM refresh

The default for DRTMR is NONE.

This command is not used by XICE for the 68000.

You can also set DRTMR in XICE.CFG with SW _DRTMR:ON
or SW _DRTMR:OFF.

DRTMR NONE

S2-59

•

DRUN - start dynamic run mode

Works with

Syntax

Description

$2-60

• EL 1600 0 CodeTAP

DRUN

The DRUN (dynamic run) command executes the target
program and continues execution until it is stopped by DSTOP,
a breakpoint, an error, or a halt instruction. The purpose of this
mode is to allow the user to interact with the emulator and
debugger dynamically, while the emulator is running. In
DRUN the user can examine and qualify trace, set and change
events and breakpoints, examine and change memory and
perform most other interactive functions with the emulator.

During DRUN the breakpoint and event systems are active but
the emulator is not polled regularly for status. This can result
in the emulator breaking execution with no notification to the
user. Because most commands force polling of the emulator,
unless there is no user interaction, the emulator status will be
made known to XICE. When a break in execution is detected,
the user will be notified and DRUN will be exited. The
DUPDATE command can be used to force regular polling of the
emulator.

During DRUN the XICE version number on the XICE status
line is replaced by the word DRUN.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Notes

Example

Related Commands

XICE Command Supplement

When trace is requested from the emulator, the trace system is
disabled during the time trace is uploaded to the host. This has
an unavoidable side effect of also disabling the break system
during the same period.

DRUN

DSTOP, DUPDATE

82-61

..

DSTOP - stop dynamic run mode

Works with

Syntax

Description

Notes

Example

Related Commands

S2-62

• EL 1600 0 CodeTAP

DSTOP

The DSTOP command stops the DRUN (dynamic run)
command and breaks program execution.

None

DSTOP

DRUN, DUPDATE

XICE Supplement for 68000/68HC000/68ECOOO and 68302

OT - display trace

Works with

Syntax

Description

Notes

XICE Command Supplement

•EL1600 DCodeTAP

DT [start I start .. end]

This command displays disassembled trace (bus cycles),
showing either assembly instructions, source lines or both
depending on the value you set for TRCMODE. You may
specify the start..end range of bus cycles anywhere from 0 to
SK

TRCMODE values are as follows:

ASM causes an assembly instruction
only display

SRC causes a source line only display

BOTH causes an interleaved high level
source and assembly display

If no argument is given, DT shows the last instruction
executed.

The emulator displays the message UNATTACHED BUS
DATA when there is data on the bus that does not match up to
an instruction. Unattached bus data may be caused by an
external device putting data on the bus or, for CPUs that have
cache, running with cache which allows data movements that
do not match fetched instructions.

S2-63

..

Example

Related commands

S2-64

The disassemblers require a continuous trace stream to be able
to disassemble correctly. For this reason, if you have PPT set to
ON, or if you use the event system to qualify trace, DT will not
be able to function correctly. Failures will range from incorrect
information being displayed to crashing XICE.

OT 10 .. 50

DTB, DTF, TRCMODE

Disassembles trace cycles
10 to 50.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

OTB -display disassembled trace backwards

Works with

Syntax

Description

Notes

XICE Command Supplement

• EL 1600 0 CodeT AP

DTB

This command displays disassembled trace backwards (away
from cycle 0), one page at a time starting from the most recent
cycle count. It shows either assembly instructions, source lines
or both depending on the value you set for TRCMODE.

TRCMODE values are as follows:

ASM causes an assembly instruction
only display

SRC causes a source line only display

BOTH causes an interleaved high level
source and assembly display

The emulator displays the message UNATTACHED BUS
DATA when there is data on the bus that does not match up to
an instruction. Unattached bus data may be caused by an
external device putting data on the bus or, for CPUs that have
cache, running with cache which allows data movements that
do not match fetched instructions.

The disassembler requires a continuous stream of at least 128
lines of raw trace for a good disassembly. For this reason, if you
have PPT set to ON, if you use the event system to qualify
trace, or if you attempt using DTB with fewer than 128 lines of

$2-65

..

Example

Related Commands

52-66

raw trace you will not be able to accurately disassemble the
trace. The results will range from an error message being
displayed to incorrect information being displayed to XICE
crashing.

[m;r············ .. .

: ' :)) WOJUall~ •••) .. f

: '
: ' : 0049 004050 4ZB90000 JSR aainf
: 409Ef
: 0045 a&.in:f

» .inital(); r :i:nitialin vari&hl&S •/f
0045 00409E 4El1Jl0019 JSR .init&lf
0041 .init&l:f

» patt&m • OHE_Oll; /+ 0 ___ +/'I
0041 0040A9 131'C001'E llOVE.B #$l'E,p&tt&m'!

00005744f
» sp&&d. • llEllJ:Ull; /+ 51.0IW - lllEDXWI - PAST +/f
0035 0040BO 231'COOOO llOVE.L #$000001P4, sp&&d.f

01P400005ES9f
>> 4ir&ct • l&ft; r l&ft to right .,,
0029 0040BA 7001 llOVEQ.L #$1,DOf
0026 0040BC 23C00000 llOVE.L D0,4ir&ctf

SPCOf
»}f
0023 0040C2 4E75

» .inital() ;
0017 004092 4E71

» st&p();

:P.TSf

llDPf

0016 004094 4ZBA002E JSR
0014 st&p:f

»{f

st&pf

0014 0040C4 2P02 llOVE.L D2,-(A7)f

r :i:nitialin vari&hl&S •ff

/+ S.ingl& 5t&p Loop +ff

>> for (loops• 5; loops I• O; loops--)/+ r&p&at output 5 t.ia&s •/f
0011 0040C6 7405 llDVBQ.L #$5,D2f

>> outl&4(0xPE);
0010 0040C9 4878007E PEA.L
0006 0040CC 4090000 JSR

407C

'

DT, DTF, TRCMODE

r 0111 1111 .,,
$00007Ef
outl&4f

007Pl'2< 007Ef

XICE Supplement for 68000/68HC000/68ECOOO and 68302

DTF - display disassembled trace forward

Works with

Syntax

Description

Notes

XICE Command Supplement

•EL 1600 D CodeTAP

DTF

This command displays disassembled trace forward (toward
cycle 0), one page at a time starting from the most recent cycle
count. It shows either assembly instructions, source lines or
both depending on the value you set for TRCMODE.

TRCMODE values are as follows:

ASM causes an assembly instruction
only display

SRC causes a source line only display

BOTH causes an interleaved high level
source and assembly display

The emulator displays the message UNATTACHED BUS
DATA when there is data on the bus that does not match up to
an instruction. Unattached bus data may be caused by an
external device putting data on the bus or, for CPUs that have
cache, running with cache which allows data movements that
do not match fetched instructions.

S2-67

..

Example

Related commands

S2-68

The disassembler requires a continuous stream of at least 128
lines of raw trace for a good disassembly. For this reason, if you
have PPT set to ON, if you use the event system to qualify
trace, or if you attempt using DTF with fewer than 128 lines of
raw trace you will not be able to accurately disassemble the
trace. The results will range from an error message being
displayed to incorrect information being displayed to XICE
crashing.

~····dtfl'···

: v : v
:)) WOIUl:IMG ...) .. V
: v
: v
: 0054 ST.ART' V
: 0054 004044 2E?C0000 movE.L #$00008000,A?V
: eooov
: 0051 00404A 2C?c0000 movE. L #$00000000, A6V

DT, DTB, TRCMODE

XICE Supplement for 68000/68HC000/68ECOOO and 68302

DUPDATE -specify polling frequency in dynamic run
mode

Works with

Syntax

Description

Notes

Example

Related Commands

XICE Command Supplement

•EL 1600 D CodeTAP

DUPDATE [1 ...]

The DUPDATE command allows you to specify how frequently
the emulator is polled during DRUN (dynamic run) mode. The
value entered represents the number of polls per minute.
Whenever the emulator is polled the screen viewports are
updated and the user is notified if emulation has broken.

DUPDATE is entered while in DRUN mode; in DUPDATE
mode, commands from the user are no longer accepted. To exit
DUPDATE and return to DRUN, enter Ctrl-C.

If no argument is given, DUPDATE defaults to 20. Above 100
polls per minute, increasing the polling rate will have no
increasing effect.

None

DUPDATE 30

DRUN,DSTOP

S2-69

•

EMUVARS - display emulator variable values

Works with

Syntax

Description

Example

BTE
BUSTI ME
CAS
DBP
DRTMR
EXVEC
FAST
FRZ
FTO
M.JARN
DVE
DVS
PPT
RFS
RFSADR
RFSASP
RFSMSK
RIRR
SCRATCH
SIA
SLO
TAD
TCEBRK
TED
TID
UIR -

OFF
OFF
OFF
ON
NONE
15
ON
OFF
OFF
ON
Ox66
1
OFF
OFF
0
5
0
ON
Oxff fO
0
OFF
OFF
OFF
OFF
OFF
ON

• EL 1600 D CodeTAP

EMUVARS

This command displays the current values and descriptions for
all the emulator softswitch variables.

EMULATOR SOFTSWITCHES

Enable <ON>• vs. disable <OFF> bus timeout
Capture bus timing <ON> vs. interrupt level <OFF>• in trace
Address strobe active durini run <OFF>• vs. run and pause <ON>
Enable <ON>• vs. disable <OFF> bus error detect on peek/poke
Use TMRl. TMR2. SCCl. SCC2. SCC3. NONE• to triiier DRAM refresh
Soft breakpoint execution trap number <0-15•)
Enable on emulation <ON>• vs. disable <OFF> fast interrupts
Assert <ON> vs. do not assert <OFF>• FRZ while paused
Enable CON> vs. disable <OFF>• fast bus timeout
Warn user <ON>• vs. ignore <OFF> out of range memor~ accesses
Memor~ spaces overla~ will respond to (0-0xFF>. Default: Ox66
Overla~ speed <0-7>. Default: 0
Enable <ON> vs. disable (OFF>• tracini of peek/poke c~cles
Enable CON> vs. disable <OFF>* software refresh
Software refresh address. Default: 0
Address space for software refresh (0-7). Default: 5
Don't care mask for software refresh. Default: 0
Restore <ON>• vs. do not restore <OFF> registers on reset
Start address of breakpoint scratch area. Default: 0
Special interrupt vector address. Default: 0
Wait then enable <ON> vs. disable <OFF>• slow interrupts
Tri-state <ON> vs. do not tri-state <OFF>• address bus in pause
Trace <ON) vs. do not trace <OFF>• execution break c~cles
Enable <ON> vs. disable <OFF)• trace/overla~ for external IJ.1A
Enable <ON> vs. disable (OFF>• trace/overla~ for internal IJ.1A
Enable <ON>• vs. disable <OFF> auto-update of chip select regs

Related commands
BUS, EVTV ARS, MEMV ARS, XICEV ARS

$2-70 XICE Supplement for 68000/68HC000/68ECOOO and 68302

EV - define an event

Works with

Syntax

Description

XICE Command Supplement

•EL 1600 D CodeTAP

EV{n} [event_ch-dini ti on I CLEAR]

The EV command supports the EL 1600 event system
capability. EV sets up an event definition and TRIG defines the
action(s) to take place, once the trigger is armed, each time the
event definition is met. For example,

trig{5} = ev{1 },break

trig{5} =arm

Sets trigger 5 to cause a break
when event 1 is true.

Arms trigger 5.

An event name is shown as ev (n} where n is the number
identifying this event (the curly braces are required
punctuation). The event number n must be between 1 and 32.

An event definition is the specification of a possible state of the
trace frame (the address, data, and status buses) along with
the state of other event resources such as counters, during that
trace frame's bus cycle. An event is true when all of the terms
within the event are true at the same time (i.e., the same single
bus cycle).

The following general rules relate to setting up the event
definition:

a The logical operators for equality(==), or inequality C!=) are
used to set the values. E.g., ev(1} = stat==rd

S2-71

..

S2-72

o Event terms can be used only once in any one event
definition.

o Each testable condition must be separated from the next by
a comma.
E.g., ev{ 1} = addr==Oxl, data==Ox2, stat==word

o Addresses can be specified as ranges that are denoted by (..).
E.g., ev{l} = addr==OxOOOO .. Oxffff. Note, however,
that you cannot have two comparators of the same type in a
single event statement.
E.g., ev{ 1} = addr==Oxl, addr==0x2 will not work.

o Don't care masks can be used to exclude parts of data bus
information.
E.~,ev{l} = data==0x0034 &=OxOOff
defines an event that would be valid whenever the 8 least
significant bits of the data bus are Ox34.

o The counters start at 0 each time you GO. They require
specific values. You may not use ranges or don't care masks
with the counter.

o LSA bits may be set using don't care masks.
E.~,ev{31} = LSA==Ox2&=0x3

The information that follows lists the elements available for
setting up an event definition for the 68000 and 68302.

Condition

ADDRESS

COUNT

DATA

STATUS

LSA

Definition

The value that appears on the
address bus.

The counter value.

The value that appears on the
data bus.

The type of bus activity (e.g.
instruction fetch, read, write,
interrupt acknowledge).

The value of the LSA bits.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

XICE Command Supplement

The information that follows lists the valid 68000 and 68302
STATUS mnemonics that can be used in an event definition
either in their positive form as listed below or in their negative
form by prepending a NOT_.

Mnemonic

BEAR

BAK

BYTE

DMA

JAG

OVL

RD

TAR

VIO

WORD

WR

Definition

Bus error

Break signal asserted. This
status is useful for determining
the skid, i.e., the number of bus
cycles between the time the
break occurs and emulation
stops.

Byte access

Pod DMA signal state (68302
only)

CPU IAC pin state (68302 only)

Overlay access

CPU read

Target access

Violation error

Word access

CPU write

S2-73

..

82-74

The information that follows lists additional valid 68000 and
68302 STATUS mnemonics that can be used in an event
definition. However, these mnemonics may only be used as
shown below, in other words, unlike the list of mnemonics
above, they do not have a negative form.

Mnemonic

CPU

INTRO

INTR1

INTR2

INTR3

INTR4

INTR5

INTR6

INTR7

SD

SP

UD

UP

Examples:

Definition

Access to CPU space

An interrupt 0 is pending

IPO-IP2 is set to 1 (active low)

IPO-IP2 is set to 2 (active low)

IPO-IP2 is set to 3 (active low)

IPO-IP2 is set to 4 (active low)

IPO-IP2 is set to 5 (active low)

IPO-IP2 is set to 6 (active low)

IPO-IP2 is set to 7 (active low)

Access to supervisory data space

Access to supervisory program space

Access to user data space

Access to user program space

ev{l) = addr==Dx13400 .. 0x134FF, stat==uplrd

In the example above, the event expression ev{ 1} is true if
any address in the 256 byte block Ox13400 .. 0x134FF is read in
user fetches.

ev{l} = addr==Dx13400, count==4

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Related commands

XICE Command Supplement

The expression ev { 1} is true for all accesses of address
Ox13400 when the counter has reached the count of 4.

ev{l} = clear

Clears the event definition for ev{l} for reuse .

EVTMODE, EVTGRP, EVTCLR, EVTARM, GROUP, TRIG

$2-75

•

EVT ARM - enable or disable automatic trigger arming

Works with

Syntax

Description

Notes

Example

Related Commands

S2-76

• EL 1600 D CodeTAP

EVTARM [ONIOFF]

This switch specifies whether triggers are automatically armed
when they are defined using the TRIG command. If EVTARM
is set to ON, triggers are automatically armed when defined. If
EVTARM is set to OFF, triggers are not automatically armed
when defined.

The default is ON. If no argument is given, the state of the
switch is displayed.

Triggers are only active when they have been armed.

You can also set EVTARM in XICE.CFG with
SW _EVTARM:ON or SW _EVTARM:OFF.

EVTARM ON

EV,EVTMODE, EVTCLR,TRIG, XICEV ARS

XICE Supplement for 68000/68HC000/68ECOOO and 68302

EVTCLR - clear event system

Works with

Syntax

Description

Example

Related Commands

XICE Command Supplement

•EL1600 DCodeTAP

EVTCLR

This command clears all events and triggers set up in the event
system and resets the event state variables to their initial
values.

EVTCLR

EV, EVTMODE, EVTARM, TRIG, XICEVARS

S2-77

..

EVTGRP - specify event group

Works with

Syntax

Description

Notes

Example

52-78

• EL 1600 0 CodeTAP

EVTGRP (1121314]

This command specifies the event group for an event when
arming triggers. Whenever a trigger is armed, either
automatically (when EVTARM is set to ON) or explicitly with
a TRIG command, it is armed in a particular event group. This
group is specified by the EVTGRP variable.

Event group 1 is the default. If no argument is given, the state
of the switch is displayed.

The emulator allows four event groups. For any one group
there may not be more than the following comparators:

CJ 2 address comparators (specifying an address range counts
as a single address comparator)

CJ 2 data comparators
o 2 status comparators
CJ 1 LSA comparator
CJ 1 counter

You can also set EVTGRP in XICE.CFG with SW_EVTGRP:l,
SW _EVTGRP:2, SW _EVTGRP:3, or SW~EVTGRP:4.

EVTGRP 2

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Related commands
GROUP, EV, EVTCLR, EVTARM, TRIG, EVTVARS

..

XICE Command Supplement 52-79

EVTVARS - display internal debugger variable values

Works with

Syntax

Description

Example

Related Commands

$2-80

•EL 1600 D CodeTAP

EVTVARS

This command displays the current value and description for
the emulator event state variable GROUP. It indicates the
event group that the emulator is currently in and is a read-only
value. It cannot be changed.

WORKING •••

EVENT STATE VARIABLES

GROUP [t.'l!'nt crouio that the l!'lllulator is currently tn. <REf:lD-ONL 'T'>

EMUVARS, MEMVARS, X.ICEVARS

XICE Supplement for 68000/68HC000/68ECOOO and 68302

EXPLAIN - explain error message

Works with

Syntax

Description

Notes

Example

XICE Command Supplement

• EL 1600 0 CodeTAP

EXPLAIN

This command provides additional information about the last
emulator-related error message reported.

This command only supports emulator-related error messages.
If no emulator-related error messages have been generated,
EXPLAIN states that the error is not emulator related.

EXPLAIN

S2-81

•

EXVEC - software breakpoint execution trap number

Works with

Syntax

Description

Notes

S2-82

•EL 1600 D CodeTAP

EXVEC [number]

The EXVEC switch specifies the software execution breakpoint
trap number, where number may be from 0 to 15. The number
that you enter for EXVEC should be the same as the trap
number in your Vector Table.

The default for EXVEC is 15. If no argument is given, EXVEC
shows the current setting for the switch.

The trap number that you specify for EXVEC must be
dedicated to XICE exclusively. This is because XICE uses that
trap to implement software breakpoints. If your program also
uses that trap, XICE will report a spurious break every time
your program executes that trap.

XICE sets the vector for the specified trap to point to code that
it has placed in the scratch area to handle software break­
points. The target system may not change the vector of the
specified trap once XICE has initialized it, nor may the target
system modify the code XICE has placed in the scratch area.

To install a software breakpoint, XICE must be able to modify
the opcode at the desired break address. If that address is in
ROM, you will have to map that section of code to emulator

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Example

Related commands

XICE Command Supplement

overlay RAM. You may map the overlay in read-only mode,
which prevents the target system from writing into the area
but still allows XICE to modify the opcode.

You can also set EXVEC in XICE.CFG with
SW _EXVEC:number.

EXVEC 15

BREAKINSTRUCTION, GOSTEP

$2-83

FAST -fast interrupt emulation control

Works with

Syntax

Description

Notes

82-84

•EL 1600 D CodeTAP

FAST [OFFION]

The FAST switch controls the fast interrupt enable. When
FAST is set to ON: interrupts are enabled immediately upon
entering RUN mode. When FAST is set to OFF, interrupts are
disabled.

The default is OFF. Ifno argument is given, FAST shows the
current setting for the switch.

You can also set FAST in XICE.CFG with SW_FAST:ON or
SW_FAST:OFF.

If you set both FAST and SLO to ON, FAST has precedence
over SLO. The following table shows the results for the possible
switch setting combinations for FAST and SLO. This table
applies to target-generated interrupts passed to the target
processor when the emulator is running.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

SLO FAST Result While in RUN Mode Result While In PAUSE Mode

ON ON Interrupts immediately Interrupts immediately enabled upon
enabled. return to RUN mode.

ON OFF Interrupts enabled after Interrupts enabled after
approximately160 clock approximately160 clock cycles after
cycles. return to RUN mode.

OFF ON Interrupts immediately Interrupts immediately enabled upon
enabled. return to RUN mode.

..
I

OFF OFF Interrupts generated by the Interrupts generated by the target
target system will be inhibited system will be inhibited from reaching the
from reaching the emulator. emulator.

Example
FAST ON

Related commands
SLO

XICE Command Supplement S2-85

FRZ - freeze peripheral activity (68302 only)

Works with

Syntax

Description

Notes

Example

S2-86

•EL 1600 DCodeTAP

FRZ [ONIOFF]

The FRZ switch enables or disables peripheral activity during
PAUSE mode. When FRZ is set to ON, the FRZ pin is asserted
in PAUSE mode, which disables any peripheral activity. When
FRZ is set to OFF, peripheral activity is not blocked during
PAUSE.

The default is OFF, which allows peripheral activity during
PAUSE mode. If no argument is given, FRZ shows the current
setting for the switch.

You can also set FRZ in XICE.CFG with SW_FRZ:ON or
SW _FRZ:OFF.

This command is not used by XICE for the 68000.

FRZ ON

XICE Supplement for 68000/68HC000/68ECOOO and 68302

FTC - fast bus timeout

Works with

Syntax

Description

Notes

Example

Related Commands

XICE Command Supplement

• EL 1600 0 CodeT AP

FTO [ONIOFF]

The FTO switch controls the length of time for the bus timeout.
IfFTO is set to ON, a bus timeout occurs in 112 clock cycles. If
FTO is set to OFF, a bus timeout requires 28,672 clock cycles,
which is approximately 2 milliseconds.

The default for FTO is OFF. Ifno argument is given, FTO
shows the current setting for the switch.

If BTE is set to OFF, this switch has no effect regardless of its
setting.

You can also set FTO in XICE.CFG with SW_FTO:ON or
SW _FTO:OFF.

FTO OFF

BTE

S2-87

II

GROUP - display active event group

Works with

Syntax

Description

Example

Related Commands

S2-88

•EL 1600 D CodeTAP

GROUP

This command displays which of the four event groups was
active at the last refresh or break.

:-GROUP
Current setting is 2

EVTGRP,EV,EVTVARS

XICE Supplement for 68000/68HC000/68ECOOO and 68302

HWCONFIG - display hardware name and version

Works with

Syntax

Description

Example

Related Commands

XICE Command Supplement

•EL 1600 0 CodeTAP

HWC'ONFIG

This command displays the name and version of all hardware
and software being used by the emulator.

HWCONFIG
Current emulator configuration is:

BUS

EL1600 Ethernet controller, version 1.01
EL1600 lM Overlay, version 0.01
EL1600 Dynamic T & B Board, version 0.01
EL1600 68000 SCSI Shell(OO), version 1.02

S2-89

..

MEMVARS - display memory access variable values

Works with

Syntax

Description

Notes

Example

Related commands

S2-90

• EL 1600 D CodeTAP

MEMVARS

This command displays the current values and descriptions for
all the memory access variables.

The possible values for SPACE, SIZE, and OVERLAY are
provided in the descriptions of each of these commands.

memvars
MEMORY ACCESS VARIABLES

Operation Space Size

CODE: SP 1
COMP1: SD 1
COMP2: SD 1
COPYFROM: SD 1
COPYTO: SD 1
DIAG: SD 1
FILL: SD 1
READ: SD 1
SEARCH: SD 1
STACK: SD 1
TEST: SD 1
WRITE: SD 2

I

EMUV ARS, EVTV ARS, XICEV ARS

XICE Supplement for 68000/68HC000/68ECOOO and 68302

MW ARN - control address out-of -range warnings

Works with

Syntax

Description

Notes

Example

XICE Command Supplement

•EL 1600 D CodeTAP

MWARN [ONIOFF)

This switch is used to protect your target hardware from
unwanted accesses that may be used by the emulator during
target writes due to the inability of the 68000 and 68302 to
access target memory with byte accesses. For example, if you
request a word write to an odd address such as Oxl, the
emulator will read the word at OxO, OR in the new data value
for address Oxl and write it back. Then it will read the word at
Ox2, or in the data value at Ox2, and write it back. If you wish
to be informed when these types of accesses occur at the upper
and lower boundaries, set this switch ON.

The default for MWARN is ON. If no argument is given,
MWARN shows the current setting for the switch.

You can also setMWARN in XICE.CFG with SW_MWARN:ON
or SW_MWARN:OFF.

MWARN ON

S2-91

•

NETERR - specify timeout warning delay

Works with

Syntax

Description

Example

See also

$2-92

•EL 1600 0 CodeTAP

NETERR [seconds]

NETERR is the approximate amount of time, in seconds, that
XICE waits for a response from the emulator before issuing a
warning message after a code packet has been sent during
download.

NETERR 90

NETFAIL

delays 90 seconds before
issuing a warning message.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

NETFAIL - specify download abort timeout

Works with

Syntax

Description

Example

See also

XICE Command Supplement

•EL 1600 D CodeTAP

NETFAIL [seconds]

NETFAIL is the approximate amount of time, in seconds, that
XICE waits for a response from the emulator before generating
a timeout error and aborting the download process after a
NETERR warning message has been displayed.

NETFAIL 90

NETERR

delays 90 seconds before
aborting downloads

S2-93

•

NULL_ TGT -enable null target mode (68000/HCOOO/ECOOO)

Works with

Syntax

Description

Notes

82-94

•EL 1600 0 CodeTAP

NULL_TGT [ONIOFFIAUTO]

This switch enables and disables null target mode. In null
target mode probe tip signals to the target are disconnected
and an internal clock is used. This mode allows you to operate
the emulator without a target. The arguments cause the
following actions:

ON

OFF

AUTO

Enables null target mode.

Disables null target mode.

Null target mode is selected automatically
when emulator detects absence of target
power.

The default for NULL_TGT is AUTO. If no argument is given,
NULL_TGT shows the current setting for the switch.

Null target mode is available only for 68000/HCOOO/ECOOO
emulators which use a probe tip configuration, with no probe
module. It is not available for the 68302 or for 68000's which
use a probe tip/probe module configuration. See your EL 1600
Hardware Setup and Reference Guide to identify the
configuration of your 68000.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Example

Related Commands

XICE Command Supplement

If you invoke XICE with no target connected to the emulator ·
the SW _NULL_TGT switch in the XICE.CFG should be set to
ON or AUTO. XICE invocation will fail if you have no target or
no target power and are not in null target mode.

When running code in null target mode, the overlay memory •
board must be set up to return DTACK Use OVS to specify this
operation.

You can also set NULL_TGT in XICE.CFG with
SW _NULL_TGT:AUTO or SW _NULL_TGT:ON or
SW _NULL_TGT:OFF.

NULL_TGT ON

ovs

$2-95

OVE - overlay memory spaces

Works with

Syntax

Description

82-96

• EL 1600 0 CodeTAP

OVE [O .. OxFF]

This switch specifies which memory spaces overlay responds
to. Overlay can respond to multiple spaces. To specify multiple
spaces, OR the masks given below to create a number that is
between 0 and OxFF.

Memory address space is processor-specific. The valid values
for the 68000 and 68302 processors are as follows:

Value Address Space Description

Ox01 sco Reserved memory space

Ox02 UD or SC1 User data space

Ox04 UP or SC2 User program space

Ox08 SC3 Reserved memory space

Ox10 SC4 Reserved memory space

Ox20 SD or SC5 Supervisor data space

Ox40 SP or SC6 Supervisor program space

Ox80 CPU or SC? CPU space

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Notes

Example

XICE Command Supplement

The default for OVE is Ox66, which represents the address
spaces for Supervisor Program Space (Ox40), Supervisor Data
Space (Ox.20), User Data Space (Ox02), and User Program Space
(Ox04) all ORed together (Ox66).

If no argument is given, OVE shows the current setting for the ...
switch.

You can also set OVE in XICE.CFG with SW_OVE:value.

OVE Ox66

S2-97

CVS - set emulator overlay speed

Works with

Syntax

Description

Notes

82-98

•EL 1600 OCodeTAP

OVS [number]

This switch specifies the number of wait states (from 0 to 7) to
be inserted before the overlay memory supplies a DTACK
signal to terminate the cycle.

The valid OVS settings are as follows:

0 DTACK supplied by target memory

1 No delay, address strobe returned to the
processor as DTACK (DSACK)

2 + 1 cycle delay

3 +2 cycles delay

4 +3 cycles delay

5 +4 cycles delay

6 +5 cycles delay

7 +6 cycles delay

The default for OVS is 0. If no argument is given, the state of
the switch is displayed.

The CPU accepts the first DTACK it receives, either from the
target or from the internally generated DTACK using the OVS
setting.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Example

Related Commands

XICE Command Supplement

The 68000 and the 68302 may not be able to run out of overlay
memory without wait states since overlay RAM may not
respond as quickly as target RAM. If you observe erratic
overlay operation, set OVS to 2 or more to insert a delay.

The 20 MHz 68302 requires that OVS be set at 2 or greater. ..
Otherwise, XICE may report illegal switches on initialization.

If you are using the emulator with a null target, you must set
OVS to a non-zero value for proper operation with overlay
memory.

You can also set the emulator overlay speed in XICE.CFG with
SW_OVS:n, for example SW_OVS:l.

ovs 1

MEMVARS

S2-99

PERFACT - enable performance analysis data gathering

Works with

Syntax

Description

Notes

Example

Related Commands

52-100

•EL 1600 OCodeTAP

PERFACT [STATISTICALIOFF]

PERF ACT turns statistical performance analysis data
gathering on and off. If PERF ACT is on, the emulator will
periodically upload data during run, and process the data for
display. The interval between data uploads is determined by
the PERFINT switch.

For more information refer to Chapter 5, Using Performance
Analysis.

PERFACT STATISTICAL

PERFINT

XICE Supplement for 68000/68HC000/68ECOOO and 68302

PERFCLR - remove performance analysis data

Works with

Syntax

Description

Notes

Example

Related Commands

XICE Command Supplement

• EL 1600 0 CodeT AP

PERFCLR

PERFCLR purges all accumulated performance analysis data
from the system. The event system and address exclusion
setups are not disturbed.

Accumulated performance analysis data is automatically
cleared when a LOAD is executed.

For more information refer to Chapter 5, Using Performance
Analysis.

PERFCLR

52-101

•

PERFDATA - display performance analysis symbol data

Works with

Syntax

Description

Notes

Example

Related Commands

82-102

•EL 1600 OCodeTAP

PERFDATA [symbollstring]

PERFDATA displays the address range and number of samples
for symbols which appear in the accumulated performance
analysis data.

Note that the address range is derived from the trace data and
is typically a subrange of the actual addresses for that function
(as shown by PRINTSYMBOL, for example).

For more information refer to· Chapter 5, Using Performance
Analysis.

PERFDATA main
main:

Address range: Ox0000566E .. Ox00005700
Hits: 5789

XICE Supplement for 68000/68HC000/68ECOOO and 68302

PERFDEPTH - maximum number of lines of PA output

Works with

Syntax

Description

Notes

Example

XICE Command Supplement

•EL 1600 D CodeTAP

PERFDEPTH [0 ...)

When running Performance Analysis on a large program, the
high number of symbols encountered can cause the PA display
to exceed the depth of the screen. Quite often, many of the last
symbols displayed are of little interest because they did not
occur often. PERFDEPTH can be used to limit the display to
only the more frequently encountered symbols.

The default is zero; all available lines display. Setting
PERFDEPTH to any non-zero number limits the display to the
specified number of lines.

You can also set the symbol display line limit in xice.cfg using
the soft.switch SW_PERFDEPTH:number.

For more information refer to Chapter 5, Using Performance
Analysis.

PERFDEPTH 20

82-103

•

PERFDISP - display performance analysis information

Works with

Syntax

Description

Example

52-104

•EL 1600 D CodeTAP

PERFDISP

PERFDISP displays performance analysis information. The
format of the display is specified by PERFFORMAT. If it is set
to display all data, the display is in the format: symbol:
percentage of samples in function: number of samples in
function: histogram, where symbol is a function or subroutine
in your program. Any of percentage, samples, or histogram
may be left out, although at least one will always be present.
For more information refer to Chapter 5, Using Performance
Analysis.

PERFDISP

Hits used: 40928 (40928 total, 0 excluded)
FUNCTION PERCENT HITS

func9: 30.8 12605) ***************
func8: 17 .1 6999) ********
main: 16.6 6794) ********
func7: 12.4 5075) ******
func6: 11.1 4543) *****
func5: 6.2 2538) ***
func4: 3.1 1269) *
func3: 1. 6 655) *
func2: 0.8 327) *
funcl: 0.3 123) *

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Related commands
PERFMODE, PERFFORMAT

•

XICE Command Supplement $2-105

PERFEX - exclude addresses from performance analysis

Works with

Syntax

Description

Notes

$2-106

•EL 1600 D CodeTAP

PERFEX [addressladdress rangelsymbol[#distance))

PERFEX excludes certain addresses from the performance
analysis data. If an address or address range is specified, those
addresses are excluded. If a symbol name is given, PERFEX
searches forward for the next symbol and excludes up to that
symbol. This can be used to exclude a function. Normally the
limit for this search is given by PERFTOL, but it may be
overridden with #distance. Exclusion ranges are automatically
merged when they overlap or are contiguous.

If no arguments are given, PERFEX displays all exclusions in
effect and the names of symbols within those exclusions.

For recommendations on using PERFEX effectively, see the
chapter on using performance analysis in this supplement.

For more information refer to Chapter 5, Using Performance
Analysis.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Example

Related Commands

XICE Command Supplement

PERFEX Ox5800 .. Ox5900

PERFEX wait
Symbol getcom found at Ox00005704.Excluding from
Ox0000566E to Ox00005703.

PERFEX
Current address exclusion ranges are:

Ox0000566E .. Ox00005703 wait
Ox00005800 .. Ox00005900 sort, shuffle

PERFEXCLR,PERFTOL

•

82-107

PERFEXCLR - clear performance analysis exclusions

Works with

Syntax

Description

Example

Related Commands

$2-108

•EL 1600 OCodeTAP

PERFEXCLR [addresslacJdress rangelsymbol[#distance]]

PERFEXCLR clears address range exclusions set with
PERFEX. If an address or address range is specified, any
exclusion of those addresses is cleared. If a symbol name is
given, PERFEXCLR searches forward for the next symbol and
clears any exclusions up to that symbol. This can be used to
clear the exclusion of a function. Normally the limit for this
search is given by PERFTOL, but it may be overridden with
#distance.

If no arguments are given, PERFEXCLR clears all exclusions
in effect. All address range exclusions are automatically
cleared when a LOAD is executed.

For more information refer to Chapter 5, Using Performance
Analysis.

PERFEXCLR Ox5800 .. Ox5900

PERFEXCLR wait
Symbol getcom found at Ox00005704.Clearing from
Ox0000566E to Ox00005703.

PERFEX, PERFTOL

·x1cE Supplement for 68000/68HC000/68ECOOO and 68302

PERFFORMAT - format of performance analysis display

Works with

Syntax

Description

Notes

XICE Command Supplement

• EL 1600 0 CodeT AP

PERFFORMAT [ST*ANDARDIPE*RCENTIHI*TSIBA*RIPHIPBIHBl­
PHBIALL]

PERFFORMAT governs the display of performance analysis
data according to the chart below.

percent hits (samples) histogram

PERCENT •
HITS •
BAR •
PH • •
PB • •
STANDARD • •
HB • •
PHB • • •
ALL • • •

For more information refer to Chapter 5, Using Performance
Analysis.

82-109

•

Example
PERFFORMAT ALL

Related commands
PERFDISP, SW_PERFFMT_STAT

82-110 XICE Supplement for 68000/68HC000/68ECOOO and 68302

PERFINT - specify performance analysis time interval

Works with

Syntax

Description

Notes

Example

XICE Command Supplement

• EL 1600 0 CodeT AP

PERFINT [1 - 120]

PERFINT controls the time in seconds between uploads of
performance analysis data from the emulator

The default for PERFINT is 3.

You can also set the performance analysis data gathering time
interval in XICE.CFG with SW _PERFINT:number.

For more information refer to Chapter 5, Using Performance
Analysis.

PERFINT 3

82-111

..

PERFMODE - control performance analysis data display

Works with

Syntax

Description

Notes

Example

Related Commands

52·112

•EL 1600 DCodeTAP

PERFMODE [A*LWAYS I D*EMAND)

PERFMODE controls whether performance analysis data is
displayed every time it is uploaded from the emulator
(ALWAYS), or stored for display at a later time (DEMAND),
using PERFDISP.

The default for PERFMODE is DEMAND.

You can also set the performance analysis display mode in
XICE.CFG with SW _PERFMODE:option.

For more information refer to Chapter 5, Using Performance
Analysis.

PERFMODE D

PERFDISP

XICE Supplement for 68000/68HC000/68ECOOO and 68302

PERFTOL - specify symbol search distance

Works with

Syntax

Description

Notes

Example

Related Commands

XICE Command Supplement

•EL 1600 D CodeTAP

PERFTOL [1 ...]

Because most addresses do not fall exactly on the beginning of
a symbol, it is necessary to search backward to determine to
which symbol a traced address belongs. PERFTOL specifies the
maximum distance to search before giving up and labelling the
address NO_SYMBOL.

PERFTOL also controls how far forward PERFEX will search
when trying to exclude a symbol.

The default for PERFTOL is 2000. If no argument is given, the
state of the switch is displayed.

You can also set the symbol search distance in XICE.CFG with
SW _PERFTOL:number.

For more information refer to Chapter 5, Using Performance
Analysis.

PERFTOL 2000

PERFEX

52-113

PPT - peek/poke trace

Works with

Syntax

Description

Notes

Example

Related Commands

S2-114

•EL 1600 D CodeTAP

PPT [OFFION]

This switch controls the tracing of emulator peek/poke cycles
made while in PAUSE mode. If PPT is set to ON, peek/poke
cycles while in PAUSE are traced. If PPT is set to OFF, peek/
poke cycles while in PAUSE are not traced.

When PPT is ON, XICE may be unable to perform trace
disassembly in certain circumstances. This switch can,
however, be useful for capturing cycles generated during a
DIAGtest.

The default for PPT is OFF. If no argument is given, the state
of the switch is displayed.

You can also set PPT in XICE.CFG with SW_PPT:ON or
SW_PPT:OFF.

If this switch is ON, the DT, DTB, and DTF commands could
give erroneous information.

PPT OFF

DTB,DTF

XICE Supplement for 68000/68HC000/68ECOOO and 68302

RAMACCESS- locate a range of RAM memory

Works with

Syntax

Description

Example

•EL 1600 D CodeTAP

RAMACCESS [address I adclress_range J [{ , I =}

{COPYIMAPITARGETIUNKNOWN} [=bank_range]

This command specifies a range of memory locations that can
be accessed during execution of the target program. If no
parameters are specified, the memory map is displayed in the
command viewport. The MAP and COPY options map the
specified range to the emulator's overlay memory. TARGET
and UNKNOWN map memory to target or as unknown.

Mappings have a 2K minimum granularity. If the beginning
and end of an attempted mapping do not fall on 2K boundaries,
the emulator automatically adjusts the start and end addresses
and returns a warning that the mapping has been adjusted.

ram OxlOOO .. Oxlfff=target

ram Ox2000 .. Ox2fff=copy

maps the range to target memory

copies contents of the range from target
memory to emulator overlay memory

Related Commands
ROMACCESS

XICE Command Supplement S2-115

•

RESET - reset processor and target to initial state

Works with

Syntax

Description

Notes

Example

Related Commands

82-116

•EL 1600 DCodeTAP

RESET

The XICE RESET command asserts both HALT and RESET
simultaneously to the microprocessor in the probe module or on
the probetip. Once in pause mode, the processor executes a
RESET instruction that resets the external target hardware.

If you want to reset the external target hardware without
resetting the processor, you must execute a RESET instruction
in code. Or you can install a reset button on your target for this
purpose.

Since memory is not re-initialized upon use of the RESET
command, variables are not reset to their original values.

None

RESET

RESTART

XICE Supplement for 68000/68HC000/68ECOOO and 68302

RFS- control software refresh

Works with

Syntax

Description

Notes

XICE Command Supplement

• EL 1600 0 CodeTAP

RFS [ONIOFF]

This switch enables memory refreshes during PAUSE mode. If
RFS is set to ON, memory is refreshed during PAUSE mode. If
RFS is set to OFF, memory is not refreshed during PAUSE
mode.

If you set RFS to ON, you must also specify the memory area to
be refreshed using the following commands:

RFSADR

RFSMSK

RFSASP

specifies the memory area to be refreshed

specifies any mask to be applied to the
memory area to be refreshed

specifies the memory space to be refreshed

If you change the values for any of the above switches, the
change takes effect immediately.

The default for RFS is OFF. Ifno argument is given, the state
of the switch is displayed.

The switch PPT specifies tracing peek/poke cycles during
PAUSE mode. Setting both RFS and PPT to ON will result in
incorrect trace information.

$2-117

..

Example

Related Commands

S2-118

You can also set RFS in XICE.CFG with SW_RFS:ON or
SW _RFS:OFF.

RFS OFF

RFSADR, RFSASP

XICE Supplement for 68000/68HC000/68ECOOO and 68302

RFSADR - refresh software addresses

Works with

Syntax

Description

Notes

Example

Related Commands

XICE Command Supplement

• EL 1600 0 CodeTAP

RFSADR [address]

This switch specifies the address for memory refreshing during
PAUSE mode. It is only active if RFS is set to ON. The related
command RFSASP specifies the address space for memory
refreshes and RFSMSK specifies any masks to be applied.

The default address for RFSADR is OxO. If no argument is
given, the state of the switch is displayed.

You can also set RFSADR in XICE.CFG with
SW _RFSADR:address.

RSFADR OxO

RFSASP, RFSMSK

S2-119

•

RFSASP - refresh software address space

Works with

Syntax

Description

S2-120

• EL 1600 D CodeTAP

RFSASP [space]

This switch specifies the address space for memory refreshing
during PAUSE mode. It is only active if RFS is set to ON. The
related command RFSADR specifies the address for refreshes
and the command RFSMSK specifies any mask on the refresh.

The 68000 and 68302 address spaces are as follows:

Code Address Space Description

0 sco Reserved memory space

1 UD or SC1 User data space

2 UP or SC2 User program space

3 SC3 Reserved memory space

4 SC4 Reserved memory space

5 SD or SC5 Supervisor data space

6 SP or SC6 Supervisor program space

7 CPU or SC7 CPU space

The default space for RFSASP is 5. Ifno argument is given, the
state of the switch is displayed.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Notes

Example

Related commands

XICE Command Supplement

You can also set RFSASP in XICE.CFG with
SW _RFSASP:[space].

RFSASP 5

RFSADR, RFSMSK

$2-121

RFSMSK - refresh software mask

Works with

Syntax

Description

Notes

Example

Related Commands

$2-122

• EL 1600 D CodeTAP

RFSMSK [address_mask]

This switch specifies the address mask for memory refreshing
during PAUSE mode. It is only active ifRFS is set to ON. The
related command RFSASP specifies the address space for
refreshes and RFSADR specifies the address for refreshes.

The default mask for RFSMSKis 0. Ifno argument is given, the
state of the switch is displayed.

You can also set RFSMSK in XICE.CFG with
SW _RFSMSK:address_mask.

RFSMSK OxO

RFS, RFSADR, RFSASP

XICE Supplement for 68000/68HC000/68ECOOO and 68302

RIRR - control register restoration on reset (68302 only)

Works with

Syntax

Description

Notes

Example

Related Commands

XICE Command Supplement

• EL 1600 0 CodeT AP

RIRR [ON I OFF]

This switch controls the restoration of the CPU's chip select
and control registers (SCR, BAR, WRR, BRO, ORO, BRl, ORl,
BR2, OR2, BR3, and OR3). If RIRR is set to ON, the emulator's
internal copy of the chip select and control registers is written
to the CPU whenever you use the command RESET to reset the
emulator. If RIRR is set to OFF, internal registers are not
restored to the CPU on RESET.

The default for RIRR is ON. lfno argument is given, the state
of the switch is displayed.

Timer and serial communication controller registers may be
saved depending on the setting you use for the switch DRTMR.

You can also set RIRR in XICE.CFG with SW _RIRR:ON or
SW _RIRR:OFF.

This command is not used by XICE for the 68000.

RIRR OFF

DRTMR, UIR

82-123

•

ROMACCESS-locate a range of ROM memory

Works with

Syntax

Abbreviation

Description

Example

•EL 1600 D CodeTAP

ROMACCESS [address I address_range] [{, I = l
{COPYIMAPITARGETIUNKNOWN} [=bank_range]

ROM

This command specifies a range of memory locations that
cannot be written to during execution of the target program. If
no parameters are specified, the memory map is displayed in
the command viewport. The MAP and COPY options map the
specified range to the emulator's overlay memory. TARGET
and UNKNOWN map memory to target or as unknown.

Mappings have a 2K minimum granularity. If the beginning
and end of an attempted mapping do not fall on 2K boundaries,
the emulator automatically adjusts the start and end addresses
and returns a warning that the mapping has been adjusted.

rom OxlOOO .. Oxlfff=target maps the range to target memory

copies contents of the range from target
memory to emulator overlay memory

rom Ox2000 .. Ox2fff=copy

82-124 XICE Supplement for 68000/68HC000/68ECOOO and 68302

Related Commands
RAMACCESS

•

XICE Command Supplement 52-125

RUN_POLL - set number of polls per second during run

Works with

Syntax

Description

Notes

Example

Related Commands

S2-126

•EL 1600 D CodeTAP

RUN_POLL [n]

This command controls how many times per second the
emulator is polled while in RUN mode. Valid values are 1-20.

The default for RUN_POLL is 5. If no arguments are given, the
current value is displayed.

A lower number will slightly reduce response time, but will also
reduce network traffic and CPU load. You can set polls per
second in XICE.CFG with SW_RUN_POLL:num.

RUN_Po11 1 o causes 10 polls per second

XICEVARS

XICE Supplement for 68000/68HC000/68ECOOO and 68302

RUN TIME - set maximum run time

Works with

Syntax

Description

Notes

Example

XICE Command Supplement

•EL 1600 D CodeTAP

RUN_TIME [n]

This command controls the maximum time (in seconds) the
emulator will be allowed to run before emulation is broken.

The default is 0, which will allow the emulator to stay in run
indefinitely. If no arguments are given, the current value is
displayed.

RUN_ TIME controls the time the emulator is actually running.
When PERFACT is set to STATISTICAL, the emulator is not
always in run due to the overhead associated with performance
analysis. Therefore the elapsed time may be several seconds
longer than the actual run time.

RUN_TIME3 causes emulator to run for 3
seconds before breaking

S2-127

..

SCRATCH - breakpoint scratch area address

Works with

Syntax

Description

Notes

Example

S2-128

•EL 1600 0 CodeTAP

SCRATCH [acldress]

This command specifies the starting address in RAM for the 8
bytes of scratch memory in the supervisor program space
needed for software breakpoints. This area must be specified in
order to use execution breakpoints and it must be an area that
is unused by the program being debugged. If no argument is
given, the current address is displayed.

If you do not have any spare RAM in the target system, you
may set the scratch space in unused memory and map overlay
memory to that area.

When XICE is invoked, it performs a read of the area
designated for SCRATCH if SCRATCH is specified. If
SCRATCH is set to an area of memory that does not return a
DTACK at the end of the read, it will hang XICE. In such a
case, comment out the default address for SCRATCH (Ox9ff0)
in the xice.cfg file. Then specify the address for SCRATCH
using this command before setting any breakpoints, or create
an include file or start-up file for invoking XICE.

You can also set SCRATCH in XICE.CFG with SW _SCRATCH.

SCRATCH OxO

XICE Supplement for 68000/68HC000/68ECOOO and 68302

SIA- special interrupt vector

Works with

Syntax

Description

Notes

Example

XICE Command Supplement

•EL 1600 D CodeTAP

SIA [address]

This command specifies the address of the special interrupt
vector for forced special interrupts, which are one of the actions
that an event system trigger may use.

The default address for SIA is 0. If no argument is given, the
current address is displayed.

You can also set the special interrupt vector in XICE.CFG with
SW _SIA:address.

SIA OxFFFFOO

$2-129

SIZE - set the size for memory accesses

Works with

Syntax

Description

• EL 1600 D CodeTAP

SIZE [<memory_access_type:-] [112 14 l

This command allows you to examine and set the size to be
used for memory accesses. The memory access type you specify
must be one of the following:

CODE All accesses of code, including fetches

COMP1 Memory for first argument of COMPARE

COMP2 Memory for second argument of COMP ARE

COPYFROM Source memory for a COPY

COPYTO Destination memory for a COPY

DIAG Memory to use with DIAG

FILL Memory for use with FILL

READ Memory for generic reads (DUMP, CRC, etc.)

SEARCH Memory for use with SEARCH

ST ACK Memory accesses for the stack

TEST Memory for use with TEST

WRITE Memory for generic writes (SETMEM, etc.)

52-130 XICE Supplement for 68000/68HC000/68ECOOO and 68302

Notes

Example

Related Commands

XICE Command Supplement

The code for the sizes are as follows:

1 byte

2 2 bytes (word)

4 4 bytes (long)

If you do not specify a size argument, the current state of SIZE
for the specified memory access type is displayed. If you do not
specify a memory access type, the current state of SIZE for all
memory access types is displayed.

You can also set SIZE in XICE.CFG with
SW_SIZE:"[<memory_access_type>] [11214]". For example,
SW _SIZE:"CODE 2" would set the size for all accesses of code,
including fetches, to 2 bytes (word) long. Note that you must
enclose the two arguments in double quotes, e.g.,
SW _SIZE:"CODE 2".

SIZE CODE 4

MEMVARS

S2-131

..

SLO - slow interrupt emulation control

Works with

Syntax

Description

Notes

52-132

•EL 1600 D CodeTAP

SLO [ONIOFF]

This switch enables inserting a delay before allowing an
interrupt when entering RUN mode. If SLO is set of ON, XICE
will insert a 160 clock cycle delay before allowing an interrupt.
If you set both FAST and SLO to ON, FAST takes precedence,
which means that interrupts are enabled immediately upon
entering RUN mode. If SLO is set to OFF, the setting for FAST
determines whether interrupts are enabled.

The default for SLO is OFF. If no argument is given, the
current address is displayed.

You can also set SLO in XICE.CFG with SW_SLO:ON and
SW_SLO_OFF.

If you set both FAST and SLO to ON, FAST has precedence
over SLO. The following table shows the results for the possible
switch setting combinations for FAST and SLO. This table
applies to target-generated interrupts passed to the target
processor when the emulator is running.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

SLO FAST Result While in RUN Mode Result While in PAUSE Mode

ON ON Interrupts immediately Interrupts immediately enabled upon
enabled. return to RUN mode.

ON OFF Interrupts enabled after Interrupts enabled after
..

approximately160 clock approximately160 clock cycles after
cycles. return to RUN mode.

OFF ON Interrupts immediately Interrupts immediately enabled upon
enabled. return to RUN mode.

OFF OFF Interrupts generated by Interrupts generated by the target
the target system will be system will be inhibited from reaching the
inhibited from reaching the emulator.
emulator.

Example
SLO ON

Related commands
FAST

XICE Command Supplement 82-133

SPACE - set the space for memory accesses

Works with

Syntax

Description

• EL 1600 0 CodeTAP

SPACE [<memory_access_type· -] [address_space]

This command allows you to examine and set the space to be
used for memory accesses. The memory access type you specify
must be one of the following:

CODE All accesses of code, including fetches

COMP1 Memory for first argument of COMPARE

COMP2 Memory for second argument of COMPARE

COPYFROM Source memory for a COPY

COPYTO Destination memory for a COPY

DIAG Memory to use with DIAG

FILL Memory for use with FILL

READ Memory for generic reads (MEMGET, CRC,
etc.)

SEARCH Memory for use with SEARCH

ST ACK Memory accesses for the stack

TEST Memory for use with TEST

WRITE Memory for generic writes (MEMSET, etc.)

52-134 XICE Supplement for 68000/68HC000/68ECOOO and 68302

Notes

Example

Related commands

XICE Command Supplement

If you do not specify an address space, the current state of
SPACE for the specified memory access type is displayed. If
you do not specify a memory access type, the current state of
SPACE for all memory access types is displayed .

Memory address space is processor-specific. The valid values
for the 68000 and 68302 processors are as follows:

Address Space Description

sea Reserved memory space

UD or SC1 User data space

UP or SC2 User program space

SC3 Reserved memory space

SC4 Reserved memory space

SD or SC5 Supervisor data space

SP or SC6 Supervisor program space

CPU or SC? CPU space

You can also set SPACE in XICE.CFG with SW_SPACE:"
[<memory _access_type>] [address_space]". For example,
SW _SPACE:"CODE UP" would set the size for all accesses of
code, including fetches, to 2 bytes (word) long. Note that you
must enclose the two arguments in double quotes, e.g.,
SW _SIZE:"CODE SC2".

SPACE READ UP

MEMVARS

S2-135

..

STI - enable or disable step-through interrupts

Works with

Syntax

Description

Notes

Example

82-136

•EL 1600 D CodeTAP

STI [ONIOFF]

This switch enables or disables step-through interrupts. If STI
is ON, the emulator will recognize an interrupt during a STEP
operation and STEP through the interrupt service routine. If
STI is OFF, the emulator will ignore interrupts during a STEP
operation.

The default for STI is OFF. If no argument is given, the state
of the switch is displayed.

You can also set STI in XICE.CFG with SW_STI:ON or
SW _STl:OFF.

STI OFF

XICE Supplement for 68000/68HC000/68ECOOO and 68302

TAD - control tri-state of address bus

Works with

Syntax

Description

Notes

Example

XICE Command Supplement

• EL 1600 0 CodeTAP

TAD [ONIOFF]

This switch specifies whether the address bus is tri-stated
while in PAUSE mode. If TAD is set to ON, the address bus is
tri-stated while the emulator is PAUSED and during peeks and
pokes. lfTAD is set to OFF, addresses generated during
PAUSE mode are output to the target system.

The default for TAD is OFF. If no argument is given, the state
of the switch is displayed.

You can also set TAD in XICE.CFG with SW_TAD:ON or
SW_TAD:OFF.

TAD ON

82-137

•

TCEBRK - control tracing of breakpoints

Works with

Syntax

Description

Notes

Example

S2-138

• EL 1600 D CodeTAP

TCEBRK [ONIOFF]

This switch controls the capture of software instruction
breakpoint execution in the trace buffer. If TCEBRK is set to
ON, the breakpoint cycles are recorded in the trace and are
marked with an X in the column FLAGS. If TCEBRK is set to
OFF, the breakpoint cycles are not recorded in the trace.

The default for TCEBRK is OFF. If no argument is given, the
state of the switch is displayed.

You can also set TCEBRK in XICE.CFG with
SW _TCEBRK:ON or SW _TCEBRK:OFF.

TCEBRK OFF

XICE Supplement for 68000/68HC000/68ECOOO and 68302

TED - control trace/overlay for external OMA (68302 only)

Works with

Syntax

Description

Notes

Example

XICE Command Supplement

•EL 1600 D CodeTAP

TED [ONIOFF]

This switch enables or disables tracing external DMA cycles
(which are generated by the target hardware following the BR,
BGF, or BGACK protocol) and enables or disables external
DMA accesses to overlay. IfTED is ON, external DMA cycles
are traced and external DMA can access overlay. IfTED is
OFF, external DMA cycles are not traced and external DMA
cannot access overlay. Also, ifTED is OFF external DMA cycles
cannot access internal registers or dual-port locations.

The default for TED is OFF. If no argument is given, the state
of the switch is displayed.

The switch TID enables tracing of internal DMA cycles.
External DMA can run while the emulator is in PAUSE mode;
however, these cycles will not be traced, nor may they access
overlay, regardless of the TED setting.

You can also set TED in XICE.CFG with SW_TED.

TED OFF

S2-139

..

Related commands
TID

82-140 XICE Supplement for 68000/68HC000/68ECOOO and 68302

TIO - control trace/overlay for internal OMA (68302 only)

Works with

Syntax

Description

Notes

Example

Related commands

XICE Command Supplement

•EL 1600 D CodeTAP

TID [ONIOFFJ

This switch enables or disables tracing internal DMA cycles
and enables or disables internal DMA access to overlay. IfTID
is ON, internal DMA cycles are traced and internal DMA can
access overlay. IfTID is OFF, internal DMA cycles are not
traced and internal DMA cannot access overlay.

The default for TID is OFF. If no argument is given, the state
of the switch is displayed.

The switch TED enables tracing of internal DMA cycles.

You can also set TID in XICE.CFG with SW_TID:ON or
SW _TID:OFF.

This command is not used by XICE for the 68000.

TID OFF

TED

$2-141

TRCCLR - clear trace buffer

Works with
• EL 1600 0 CodeTAP

Syntax
TR CC LR

Description
This command deletes the information in the trace buffer.

Example
TRCCLR

82-142 XICE Supplement for 68000/68HC000/68ECOOO and 68302

TRCFRAME - trace cycle number

Works with

Syntax

Description

Notes

Example

Related commands

XICE Command Supplement

• EL 1600 0 CodeT AP

TRCFRAME [cycle_number]

This command specifies the trace cycle number to be the time
0 for offset timestamps in a raw trace display.

The default cycle is cycle 0. Ifno argument is given, the state of
the switch is displayed.

You can also set TRCFRAME in XICE.CFG with
SW _TRCFRAME: cycle_number.

TRCFRAME 125

XICEVARS

Cycle 125 will be time 0 in the
next raw trace display.

S2-143

..

TRCINT - trace interval

Works with

Syntax

Description

Notes

Example

Related Commands

82-144

• EL 1600 0 CodeTAP

TRCINT [INTERVALIOFFSET]

This command specifies how timestamps are displayed in raw
trace. If TRCINT is set to INTERVAL, timestamps are
displayed as the time interval between successive bus cycles. If
TRCINT is set to OFFSET, timestamps are the time relative to
the bus cycle number specified by the command TRCFRAME.

The default for TRCINT is OFFSET. If no argument is given,
the state of the switch is displayed.

You can also set TRCINT in XICE.CFG with
SW_TRCINT:INTERVAL or SW_TRCINT:OFFSET.

TRCINT INTERVAL

XICEVARS

XICE Supplement for 68000/68HC000/68ECOOO and 68302

TRCMODE - trace mode

Works with

Syntax

Description

Notes

Example

Related Commands

XICE Command Supplement

• EL 1600 0 CodeT AP

TRCMODE [ASMISRCIBOTHJ

This command specifies the type of information displayed by
the commands DT, DTB, and DFT. The default is BOTH. The
valid arguments are:

ASM

SRC

BOTH

displays assembly instructions only

displays source level instructions only

displays source and assembly instructions
interleaved together

You can also set TRCMODE in XICE.CFG with
SW _TRCMODE:ASM, SW _TRCMODE:SRC, or
SW _TRCMODE:BOTH.

TRCMODE ASM

DT, DTB, DTF, XICEVARS

S2-145

..

TRIG - set status trigger

Works with

Syntax

Description

$2-146

• EL 1600 D CodeTAP

trig{n} [event{nJ,actionlCLEARIARMIDISARM]

The TRIGGER command defines the action for XICE to take
after an event or a number of events is true. A trigger may be
used to control event system resources (timers, counters, etc.),
tracing, breaking, or other analyzers. A trigger must be armed
for any action to be taken.

The following general rules relate to setting a trigger:

o A trigger may list up to 8 events separated by vertical bars
(1 's).

E.g., trig { 1} = ev{ 1} I ev{ 32}, grp2 sets a trigger

so that any time either event 1 or event 32 is true, XICE will
switch its monitoring to only group 2 events.

o Triggers are active only when they have been armed, either
explicitly by using the command trig { n} = arm, or
automatically when they are defined if the XICE switch
EVTARM is set to ON.

o If arming a trigger fails (for example, ifthere are not enough
resources to fulfill the request), the trigger will be defined
but not armed.

o While armed, you cannot change the definition of the trigger
or the event(s) specified by the trigger.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

XICE Command Supplement

o In any one event group, you may not arm triggers using
more than the following comparators:

2 address comparators (specifying an address range
counts as a single address comparator)
2 data comparators
2 status comparators
1 LSA comparator
1 counter

o You cannot arm triggers for an event breakpoint if you are
already using BA breakpoints in your code.

o A given trigger trig {n} can be active (armed) in only one
group at a time. However, an event can be used in more than
one trigger and more than one group at a time.

o By not specifying a trigger number for an arm or disarm
command, all defined triggers can be armed or disarmed at
once. E.g., trig= arm will arm all the triggers that have been
set.

o You cannot use the TRIG command to set up a break
followed by a macro. However, you can set the switch
SW _EVTMODE in XICE.CFG to ON and use the command
BREAKCOMPLEX (BC) to do so. When EVTMODE is ON,
however, you will not be able to use break as an action in
TRIG commands.

To change the group that triggers will be armed in, use the
EVTGRP command. To list the status of one or more triggers,
use the STATUS command. To clear all the triggers at once,
use the EVTCLR command.

S2-147

•

52-148

Possible actions that can be specified using the TRIG command
are:

Action

BREAK

CNT

FSI

GRP1

GRP2

GRP3

GRP4

Definitions

Breaks emulation as a result of specified
conditions, or by default if no action is
requested.

Count only qualified cycles.

Force a special interrupt. FSI provides a way to
jump to a specified address when a specific
event is detected. It can allow you to patch your
code fast and can also allow you to write soft
shutdown routines for machinery that cannot be
halted using a simple breakpoint.

You must set up the SIA (special interrupt
address) switch prior to using an FSI action.
You may also see some unusual cycles in the
trace memory at the address where the FSI
occurred. These are internal cycles that are
traced as the execution address is changed.
These internal cycles are not purged from the
trace memory.

The FSI routine residing at the SIA address
should terminate with a return from exception
(RET) instruction. Execution resumes at the
address immediately following the instruction
that caused the FSI. If this is a soft shutdown,
you will probably define a breakpoint at the
RET instruction.

Switch to group 1 events.

Switch to group 2 events.

Switch to group 3 events.

Switch to group 4 events.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Action Definitions

ACT Resets the counter.

TGA The trigger signal is an output that is available
from the BNC connector on the back panel of • the emulator chassis and from pin 19 of the
optional LSA pod. When a trigger event is
detected, the trigger signal is asserted and
remains so for the duration of the specified bus
cycle. If a trigger event is specified for more
than one consecutive bus cycle, the signal stays
high for the duration of the consecutive bus
cycles.

You can use the trigger signal as a pulse for
triggering other diagnostic equipment. You can
also use it in conjunction with a counter or
timer for timing subroutines or use it with the
optional timestamp pod for timing subroutines.

See the command TUNITS for further
information on using the optional timestamp
capability.

TOC Toggle the current setting for the counter. No
count until first TOC.

TOT Toggle the current setting for tracing or not
tracing. Trace uses the following rules:
If you do not specify TOT, trace is on.

If you specify TOT, when you change event
groups, trace goes off and when it encounters
the next TOT, it goes ON.lfyou specify TOT,
every time the emulator goes into RUN, trace is
OFF until the first TOT is encountered.

TAC Trace this bus cycle.

XICE Command Supplement S2-149

Examples

Related commands

S2-150

TRIGGER{l} = ev{4} I ev{5}, TOT
TRIGGER{2} = ev{6}, TOT

The above command for trigger 1 toggles the current setting for
trace when either event { 4) or event { 5) is true. The
command for trigger 2 toggles the setting for trace when
event { 6) occurs.

BC, EV, EVTARM, EVTCLR, EVTGRP, EVTMODE, STATUS

XICE Supplement for 68000/68HC000/68ECOOO and 68302

TSRCH - search trace memory for patterns

Works with

Abbreviation

Syntax

Description

XICE Command Supplement

•EL 1600 D CodeTAP

TS

TSRC'H [trace range], [ciclclr=valuP], [data=

v a 1 u e] , [:~tat= v a 1 u Pl , [1 :"a= v a 1 u Pl

Lets you search trace memory for a specified pattern. The
syntax is similar to that for the "EV'' command, with an
optional starting point, or search range. Output is in "DRT"
format.

The "value" can be a simple value (OxlOOO), a range
(Oxl000 .. 0x2000), or a value with a "care" mask
(OxlOOO&=OxfOOO).

For the status comparator, values can also be entered
mnemonically using the mnemonics recognized by the event
system. Mnemonics can be logically combined. See the EV
command description on page 2-71 for valid status mnemonics.

$2-151

-

Examples

Related Commands

$2-152

ts addr=Ox1000

ts 200,addr=OX1 OOO .. Ox2000,data=OX300

ts 200 .. 300,stat=sdlwr

ts lsa=Ox1 00&=0x300

DRT,EV

Search for all
occurrences of
address Ox1000

Start at cycle 200,
search for cycles with
address range of
1000 to2000, and
data= Ox300

Search traces cycles
200 to 300 for writes to
supervisor data space

Search for bit 8 = 1,
bit 9 = 0 in the LSA
field, ignore other bits

XICE Supplement for 68000/68HC000/68ECOOO and 68302

TSTAMP -show timestamp or LSA in trace

Works with

Syntax

Description

Notes

Example

Related Commands

XICE Command Supplement

• EL 1600 D CodeT AP

TSTAMP [ONIOFF]

This switch controls whether the raw trace display reports
timestamp or LSA data. If you set TSTAMP to ON, the DRT
command shows timestamp information. If you set TSTAMP to
OFF, the DRT command shows LSA information.

If you have a timestamp unit attached to your emulator, you
should set TSTAMP to ON; otherwise, it should be set to OFF.

The default for TSTAMP is OFF. If no argument is given, the
state of the switch is displayed.

You can also set TSTAMP in XICE.CFG with
SW _TSTAMP:ON or SW _TSTAMP:OFF.

For more information about using time stamp, see Chapter 6.

TSTAMP OFF

DRT, XICEV ARS

S2-153

•

TUNITS -timestamp units

Works with

Syntax

Description

Unit Time Base

OxO .1 µs

Ox1 1 µs

Ox2 .01 ms

Ox3 .1 ms

Ox4 1 ms

Ox5 .1 µs

Ox6 1 µs

Ox? .01 ms

Ox8 .1 ms

Ox9 1 ms

$2-154

• EL 1600 0 CodeTAP

TUN ITS [UxU .. UxF l

This switch determines the timestamp wiits displayed in the
raw trace display. You should set this switch if you have a
timestamp module attached to your emulator and you have set
TSTAMP to ON. Otherwise, you should leave it set to 0.

The valid values for TUNITS are as follows:

Effect of TGR on Tlmestamp Counter Useful
Measurements

Any TGR high causes the timestamp counter to
be reset to 0. No manual reset is required in. this Elapsed time
mode for either absolute or relative timestamping.

While the TGR is held high by the Event Monitor
System, the timestamp counter counts. Manual Elapsed time
reset is required in this mode for absolute
timestamping, but not for relative timestamping.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Unit Time Base

OxA .1 µs

OxB 1 µs

OxC .01 ms

OxD .1 ms

OxE 1 ms

OxF NA

Notes

Example

Related Commands

XICE Command Supplement

Effect of TGR on Timestamp Counter Useful
Measurements

In this mode, a long TGR signal from the Event
Monitor System resets the counter. After that,
successive short TGR signals turn the counter on Elapsed time
and off. Manual reset stops the counter and sets it
to zero

This setting is used to count occurrences. Each
time the TGR signal goes high, the timestamp Count
counter is incremented. Manual reset is required occurrences

The default for TUNITS is 0. If no argument is given, the state
of the switch is displayed.

The setting that you use for TUNITS must match the settings
you use for the physical switches on the timestamp module
itself.

You can also set TUNITS in XICE.CFG with
SW _TUNITS:units.

For more information about using time stamp, see Chapter 6.

TUNITS OxO

XICEVARS

82-155

..

UIR - update internal chip select registers (68302 only)

Works with

Syntax

Description

Notes

S2-156

• EL 1600 D CodeTAP

UIR [ONIOFF]

This switch controls whether the emulator's copy of the CPU's
internal chip select and control registers are automatically
updated. Each time the emulator makes a transition from RUN
to PAUSE mode, the internal registers SCR, WRR, BAR, BRO,
ORO, BRl, ORl, BR2, OR2, BR3, and OR3 are automatically
updated. lfUIR is set to OFF, the EL 1600's internal copy of the
chip select registers are not automatically updated.

If you modify the chip select registers while the emulator is
paused, you must have UIR set to ON to have the modifications
update the internal copy of the registers. IF UIR is ON, the
modified version of the internal chip select copy will be loaded
into the 68302 chip select registers after each RESET
command until either they are modified during a RUN, in
which case these modifications will be saved during the RUN
to PAUSE transition, or until you change the setting for UIR to
OFF.

The default for UIR is ON. Ifno argument is given, the state of
the switch is displayed.

We recommend leaving UIR set to ON.

Timer and serial communication controller registers may be
saved depending on the setting you use for the switch DRTMR.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Example

Related commands

XICE Command Supplement

See also the information in section 1 on configuring the chip
select registers and the command description for RIRR. RIRR
controls resetting the internal chip select registers after a
reset.

You can also set UIR in XICE.CFG with SW_UIR:ON or
SW _UIR:OFF.

This command is not used by XICE for the 68000.

UIR ON

DRTMR, RIRR

82-157

•

UP - move the current scope

Works with

Syntax

Description

Example

Related commands

52-158

•EL 1600 DCodeTAP

UP [number_of_levels]

The UP and DOWN commands allow you to move the current
scope up or down the runtime stack. This is especially helpful
when debugging recursive functions. It is not a good idea to go
down farther than you have gone up.

UP 5

DOWN

XICE Supplement for 68000/68HC000/68ECOOO and 68302

UPL - upload hex data to host

Works with

Syntax

Description

Notes

Example

Related Commands

XICE Command Supplement

• EL 1600 0 CodeT AP

UPL "filename", address_range

UPL is used to upload data from the target to a host file in the
format specified by UPLFMT. The address range is the address
range of the data to be uploaded.

The MAP, OVERLAY, SPACE, and SIZE commands affect how
memory is accessed by UPL.

Quotation marks are optional ifthe file name consists of
alphanumeric characters or a period. File names that contain a
leading slash must be in double quotation marks (e.g., "/root").
File names that contain a leading backslash must be in single
quotation marks (e.g., '\root').

UPL my.file ,Ox8000 .. +Ox3fff

DNL, DNLFMT, UPLFMT, MAP, OVERLAY, SIZE, SPACE,
VERIFY

$2-159

..

UPLFMT - specify upload format

Works with

Syntax

Description

Notes

Example

Related Commands

$2-160

• EL 1600 0 CodeTAP

UPLFMT format

UPLFMT is used to specify the format for hex file uploads
using the UPL command. Recognized formats are:

INTEL

SREC

XTEK

Intel hex format. Extended segment address
records and extended linear address records
are supported.

Motorola S3-records with Microtec
extensions.

Extended Tektronics hex format.

The default format is SREC. The command XICEV ARS
displays the status ofUPLFMT and all other XICE variables.
Symbols are not supported for these formats.

UPLFMT AMC

DNL, DNLFMT, UPL

XICE Supplement for 68000/68HC000/68ECOOO and 68302

VERIFY -memory read-after-write verify switch

Works with

Syntax

Description

Notes

Example

Related commands

XICE Command Supplement

•EL 1600 D CodeTAP

VERIFY [ON!OFF]

This switch enables or disables memory read-after-write
verification. If VERIFY is set to ON, memory is verified after
being written. If VERIFY is set to OFF, memory is not verified
after being written.

The default for VERIFY is ON. Ifno argument is given, the
state of the switch is displayed.

You can also set VERIFY in XICE.CFG with SW_ VERIFY:ON
or SW_VERIFY:OFF.

VERIFY ON

XICEVARS

82-161

•

XICEVARS - display internal debugger variable values

Works with

Syntax

Description

Example

BPSPACE ANY
DNLFMT SREC
DNL_GAP 1
UPLFMT SREC
EVTARM ON
EVTGRP 1
RUN_pOLL 5
RUILTIME 0
TRCFRAME 0
TRCINT OFFSET
TRCMODE BOTH
VERIFY ON
PERFACT OFF
PERFFORMATOFF
PERFMODE DEMAND
PERFDEPTHO

TSTAMP OFF
TUNITS 0 •

•EL 1600 D CodeTAP

XICEVARS

This command displays the current values and descriptions for
all the internal debugger variables.

XICE INTERNAL VARIABLES

Set processor space in which inst. breakpoints will be set
External file format for hex/binary downloads
Number of bytes to allow between cached download blocks
External file format for hex/binary uploads
Arm <ON>* vs. do not arm <OFF> triggers automatically
Event eroup to use when armin& tri&&ers. Default: 1
Frequency of host polling of emulator <1-20), Default: 5
Maximum time to stay runnin& <O: forever)
Cycle number for time 0 timestamp alignment, Default; 0
Display of raw trace timestamps: <INTERVAL> vs. <OFFSET>•
Trace display is assembly <ASM>. source <SRCl, or both <BOTH>*
Memory verification enabled <ON> vs. disabled <OFF>*
If ON, P.A data will be collected and processed,

Format of P.A. data
Display P,A, data whenever uploaded or display on demand
How many lines of P.A. output to display

Interpret raw trace field as timestamp <ON> or LSA <OFF)•
Timestamp units for raw trace display (default of 0)

Related commands
EMUV ARS, EVTV ARS, MEMV ARS

S2-162 XICE Supplement for 68000/68HC000/68ECOOO and 68302

Chapter3

XICE Tutorial

Overview
This chapter introduces the XICE debugger. It covers the
basics needed to prepare the sample code for an embedded
system application, introduces the new user to the XICE
debugger interface, and demonstrates the use of many
commands commonly used in a debug session.

User-entered commands

XICE Tutorial

Throughout the tutorial, commands that you should enter are
prefaced by a ">" prompt. Examples, headed by For example
only, should not be entered by the user during the tutorial.

Example of a command for you to enter

·-context

XICE allows most commands to be abbreviated. The
abbreviated command is used whenever possible.

An example of the abbreviated form of the
"context (con)" command

>con

All the XICE commands used in the tutorial are covered in
depth in theXJCE Supplement ortheXRAY Documentation Set
for 68xxx Family.

S3-1

•

Tutorial program

S3-2

The program cdemon.x (SUN version) or cdemon.abs (PC
version) is used throughout the tutorial. Further references to
the tutorial code will use the SUN version, cdemon.x. If you are
using a PC, substitute cdemon.abs for cdemon.x references.

The cdemon.x program, located in the demo directory, is
compiled and ready to be loaded by the debugger, allowing you
to skip the tools section and go directly to the XICE section if
you wish to do so.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Embedded systems considerations
Developing code for the embedded system environment, as
opposed to the native operating system environment, is in some
ways analogous to leaving home for the first time. Many of the
chores that may have been taken care of by parents, like
laundry or dishes, must now be done without such support.
Likewise, in the embedded systems environment, many of the
functions that were performed by the operating system
(locating code in memory, communicating with 1/0) must now
be taken care of by the programmer. These, and other,
embedded systems considerations are treated in depth in the
"Embedded Environments" chapter of the MCC compiler
manual and the "Software Development Cycle" section of the
ASM68K manual.

Preparing code for debugging

Embedded systems considerations

Environment variables
Before invoking the compiler, assembler, and linker ensure the
path and environment variables have been set up. To check the
path and environment variables you can type env if your are
on a UNIX workstation or type set if you are using a PC. If they
are not set up or you are not sure they are correct, please refer
to the XICE Installation Gui,de and set them up at this time.

Makefile for cdemon demonstration code
The Sun makefile, named makefile, for cdemon.x is located in
the demo directory. It shows the flags (options) necessary to
produce the symbolic information used by XICE to display
source, evaluate expressions and symbolic references, and to
display type information.

The makefile also generates the linker command file, ieee.cmd,
which includes flags for placing symbolic information in the
object module, designating output file format, and commands
for locating code and data.

S3-3

•

53-4

A batch file performing functions similar to the makefile is
used for the PC version of cdemon.

Makefile line to generate a linker command file line

echo FORMAT IEEE --:- ieee. cmd

The assembler, compiler, and linker invocations are assigned
the variable names AS, CC, and LD respectively. The variable
names are substituted for the invocations later on in the
makefile, to cut down on typing time and errors and to improve
readability.

Makefile line associating a variable with the compiler
invocation

CC=mcc68k

Makefile line associating a variable with the compiler
options

CCFLG= -g -noc -nOl -nOR -c -nQ

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Embedded systems considerations

., ·iiaiie.t".Lie Lo·r:· ·.;iiiiioil · iliiioilsti:aHoil ·i;r:;,g.r:ar.:;r · · · · · · · · · · · · ·
co1M1ancls necessary to asseable, cOApile, and ~11

CC"tlLcc68l:f
AS•um68l: 11
LD=lnl:68l:f
CCl'LG• -g -noc -nol -nOR -c -nQf

a.11 cdeaon.xf
cdeaon.x: a.ljb.o odeaon.o clib.o data.o ie.ee.cnd11
) $(LD) -c .iee.e.cmd - cdemon.x -m>cdenon.raapf

ieee.~d: makefile11
) echo CHIP)
) echo 70:RMAT)

) e.cho >UIME)

68000)
XEEE)

CDEl!ION)

>iue. cmd11
».ieee. crad1f
> > ieee. crad11

> echo UST) d,s,t,x) >>ieee.crad1J
) e.cho PUl!LIC) STAC1UOP•0,08000b) >>ieee.crad1f
) echo O~ER) stu-tup, code, strings, zerovars, vars
»iue. cmd1J
} e.cho SECT) l!ll!IIO_L0•3000b)
> echo SECT) Ml!IIO_HI=OaOOOb)
} e.cho SECT) VECTORS•O)
) echo SE CT) s t.artup =4 0 0 Ob)
) echo LOAD) alib)
) e.cho LOAD) cdenon)
> echo LOAD) c .ljb)
) e.cho LOAD) cola)
) echo LOAD) data)
) echo LOAD) ncc68k~. lib)
na.in application modulef
cdl!kon.o : cdllkon.c1J
) J(CC) $(CC1'LG) cdenon.c1J

001M1on c code application functions module{
clil>.o : olib.c1J
> $(CC) $(CCPLG) clib.c1J

comport support coranunications modv..lef
COii. 0 : COii. c1J
) $(CC) $(CCPLG) COll..cf

simple hla.ckjack cardgaoae raodule1J
data.o : dat.a..o1J
> $(CC) $(CCPLG) data.c1J

» .ieee. crad1f
»ieee. crad1f
» ieee. c11Ld1f
»ieee. c11Ld1f
>>ieee. crad1f
» .ieee. c11Ld1f
»ieee. c11Ld1f
» ieee. c11Ld1f
»ieee. cir.d1J
»ieee. cir.d1J

co1M1on a.ssenhly code applica.tion functions module1J
alil> . o : alib . s1J
> $(CC) $(CCPLG} alil>.s 11

Figure 3-1 Cdemon makefile

-

S3-5

S3-6

Compiler flags for symbolic debugging
The following MCC68K compiler command line flags produce
linkable object modules containing symbolic information for
the debugger.

mcc6Bk -g -noc -nOl -nOR -c -nQ
-g (generate line number and tracing info) (not default)

The remaining data options select other functions.

-noc (disable stack pop optimizations)
-nOl (disables local optimizations such as code hoist-
ing)
-nOR (disables use of registers for variables)
-c (make object file but don't link it to make an
executable file)
-nQ (display any informational messages)

Linker command file for cdemon
In our example the linker command file, ieee.cmd, is created by
the makefile lines that "echo" the actual linker commands into
the command file. This takes advantage of UNIX and DOS's
ability to append (>>) echoed "statements" into a file. The
resulting linker command file is shown below.

PUBLIC ST ACKTOP=8000h
ORDER startup,code,strings,zerovars,vars
SECT MMIO_L0=3000h
SECT MMIO_Hl=OaOOOh
SECT VECTORS=O
SECT startup=4000h
LOAD alib
LOAD cdemon
LOADclib
LOAD com
LOAD data
LOAD mcc68kab.lib

Figure 3-2 Linker command file

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Embedded systems considerations

Locating target code and data

In embedded systems applications, code and data are usually
located by the linker at compile time instead of by an operating
system loader at run time. The linker command file ieee.cmd is
a good place to examine how this may be accomplished. The
lines of the linker command file pertinent to locating code and
data are presented and explained below.

PUBLIC STACKTOP=800Clh (defines value of the external
definition of STACKTOP)
ORDER startup,code,strings,zerovars,vars (overrides
linker's default ordering of assigning base addresses
to segments)
SECT MMIO_L0=30CIOh
SECT MMIO_HI=UaOOOh
SECT VECTORS=U
SECT startup=4000h

Linker switches for symbolic debugging
The following linker commands and flags produce an output
file that XICE can symbolically debug. The linker is invoked in
the command file mode.

lnk68k -c ieee.cmd -m -o cdemon.x >cdemon.map
-c ieee.cmd (use ieee.cmd as the linker command file)
-m (write a memory/symbol map to standard out)
-cdemon. map (redirect memory I symbol map to file cde-

mon. map)
-o cdemon.x (name the linker output file cdemon.x)
FORMAT IEEE (produce MRI-extended IEEE-695 output file
format)
LIST d,x,s,t (list of linker flags)

d (external definition symbols in object)
x (external definition symbol table to listing)
s (local symbols in object)
t (local symbol table to listing)

The remaining commands perform other functions.
NAME cdemon (names final output module cdemon when gen­
erating ieee)

S3-7

•

S3-8

Additional information
Additional information on subjects covered in this section is
available in the compiler and assembler manuals.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using the XICE debugger user interface
The XICE debugger is a "windowed" user interface. The
windows in XICE are called "viewports". The DOS version has
scrollable, zoomable viewports and a keyboard command line
interface. The Sun version is similar but offers mouse support
primarily in the form of command buttons, point-and-click
temporary breakpoints and variable evaluation, and "cut and
paste" features. Both versions include on-line help.

Brief information about navigating the user interface,
including function keys, mouse, viewports, line editing, and
control keys, can be found in the on-line help. Detailed
explanations of the features of user interface can be found in
the XRAY User's Guide.

Environment variables
Before invoking the debugger ensure the path and
environment variables (XRAY and XRAYLIB) have been set
up. To check the path and environment variables you can type
env if your are on a UNIX workstation or type set if you are
using a PC. If they are not set up or you are not sure they are
correct, please refer to the XICE lnstallatian Guide and set
them up now.

Debugger configuration file • xice.cfg
For the tutorial, you need to modify two parameters, called
softswitches, in the debugger's configuration file, xice.cfg,
before invoking the debugger. The modifications can be made
using an editor like "vi" or "ed". Appendix A in the XICE
Installation Guide provides a detailed description of the
xice.cfg file.

Using the XICE debugger user interface S3-9

•

Note

S3-10

Before modifying xice.cfg, you should make a backup copy
using the UNIX "cp xice.cfg xice_bak.cfg' or the DOS "copy
xice.cfg xice_bak.cfg' command.

The tutorial assumes the emulator is plugged into the factory
supplied "null" target, or that NULL_TGT is enabled for 68000/
HCOOO/ECOOO probe-tip-only configuration emulators. This is
referred to as "null" target mode. The tutorial program will be
loaded into emulator memory configured (or mapped) to
replace (or overlay) the desired address spaces of target
memory. Memory can be mapped by commands in the xice.cfg
file, in an include file, or at the XICE command line level. We
will begin with the default condition of memory already
mapped by the "MAP" command in the xice.cfg file. Modifying
the memory map at the XICE command line is covered later.

Open the xice.cfg file using your text editor

At this time you should open the xice.cfg file using your text
editor.

First xice.cfg modification - "scratch" memory softswitch

/* SW_SCRATCH:Ox9ff0 */

The SW _SCRATCH statement sets aside 8 bytes of memory
starting at address Ox9ff0 as instruction breakpoint "scratch"
memory.

The debugger requires 8 bytes of "scratch" RAM located in
supervisor program space to support the TRAP instruction
used for BI's (break instructions), temporary breakpoints, and
high-level single stepping. The address of the "scratch" RAM is
set by the SW _SCRATCH soft.switch in the xice.cfg file. If the
SW _SCRATCH line is "commented out" using C language
comment field notation,"/* .. *r, you must uncomment this line
for the tutorial.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Debugger invocation

Uncomment the SW _SCRATCH line:

/SW_SCRATCH:Ox9ffU I

The TRAP instruction number is determined by the
SW _EXVEC softswitch in the xice.cfg file. The TRAP
instruction selected is reserved for emulator use and should not
be used in your code. The default setting for SW _EXVEC
selects TRAP 15.

Second xice.cfg modification • bus timeout softswitch
The bus timeout switch, SW _BTE, determines whether or not
emulation breaks and returns control to the debugger if it
enters a hung condition, i.e. waiting for a DTACK signal to be
returned from non-existent memory. The timeout is fixed at 1
second. To enable the timeout set SW _BTE:ON. II
The softswitch should be turned on while debugging hardware
or software.

Modify the xice.cfg line for enabling bus timeout

SW_BTE:ON \

Now you should close the xice.cfg file saving the changes.

Close the xice.cfg f'tle using your text editor

The tutorial is meant to be run from the bin directory of the
toolchain. If you are not in the bin directory of the toolchain, cd
to there now.

The emulator control software, called shell code, is located in
the file with the extension .shl. When starting a debug session,
you should invoke the debugger using the "force reload of shell
code" option, -e boot. This ensures the emulator control
software is correct for the version of the debugger you are

Using the XICE debugger user interface $3-11

using. If you update the debugger, be sure to install its
corresponding updated shell code file. Using the debugger with
mismatched shell code will have unexpected results.

Invoke the debugger with forced reload of shell code

executatJle_name -e boot

As the debugger comes up, you will see messages displayed
sequentially on the XICE screen, "Initializing", ''NOTE:
Downloading operating system to emulator, please wait", and
"Loading file: xxxxx.shl". Once the debugger is up and running
you may exit the debugger by typing an abbreviated version of
quit followed by yes, "q y".

Exit the debugger

·q y

Include files • introduction

83-12

An include file is simply a file containing debugger commands
that will be executed when the file is loaded by the debugger. It
is similar to a UNIX shell script or a DOS batch file. For
example, the supplied include file, cdemon.inc, simply loads the
appropriate cdemon absolute file from the demo subdirectory.

You can invoke the debugger using the "include file" option,
-i filename.inc. Those with UNIX systems may want to
background the program in order to free up a shell or make it
easier to ''kill" the program if necessary.

Invoke the debugger with the include file option

executable_name -i cdemon.inc

As the debugger comes up you will again see the "Initializing''
message. The "Loading file: xxxxx.shl" message will not appear
since we did not choose to reload the shell code. You will see a
"Reading Absolute File: none" message followed by the two
include file commands being echoed in the debugger command
window.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

At this point, the tutorial code, cdemon.x or cdemon.abs, has
been loaded, and the debugger is ready for commands.

Required memory
Although set up for the Applied Microsystems Demonstrator
module, the tutorial can work with the "null" target shipped
with every new system, or with NULL_TGT enabled, or with
your own target system. It requires either overlay or target
RAM at addresses OxO .. Oxffif. The default xice.cfg
automatically maps overlay RAM for cdemon. If overlay is not
available, map target RAM as follows (mapping memory is
described on page S3- 32):

Map OxO to Oxffff as target RAM:

ram OxO .. Oxffff=target

The specific memory map for cdemon.x is as follows:

Section Address range

startup 00004000 .. 0000408D

MMIO_LO 00003000 .. 00003001

MMIO_HI OOOOAOOO .. OOOOAOO 1

VECTORS 00000000 .. 00000013

vars 00004B8C .. 00004BA5

code 0000408E .. 000049C5

zerovars 000049FC .. 00004B8B

strings 000049C6 .. 000049F9

Using the XICE debugger user interface S3-13

•

83-14

Include file for 68302 setup
When you emulate while plugged into a 68302 target, it is
extremely important to correctly setup the System Integration
Block (SIB) to match your target's memory map and DTACK
requirements. An incorrectly programmed SIB can potentially
cause the emulator to hang. The hardware portion of SIB setup
is covered in the EL1600 emulator manual.

The 68302 tutorial depends on the default register settings and
overlay memory mapping specified in the xice.cfg shipped with
the software; these set up the SIB compatible with the default
hardware settings. If you have not changed the default register
setting in xice.cfg, you may proceed with the tutorial.

If you have changed xice.cfg, you may want to create an include
·file that sets up the CPU's System Integration Block, speeds
the download, suppress memory related warning messages,
loads the program cdemon.x or cdemon.abs, and switches the
debugger into source level display mode.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using Help

The following provides an example of such a file:

Note: Comment fields begin with a semi-colon(;). The actual
commands appear here in bold type.

;cdemon.inc
;Set memory access size to word{2); increases speed of the "load"
size write 2
; set "error" to ignore errors and continue include file execution
error:continue
; The following are 68302 specific commands
; Other CPU's should ignore the error messages
;set BAR register to Base Address OxeOOOOO, CFC=O to ignore FC's
setreg @BAR:OxOeOO
;set ORO to internal 6 wait-state OT ACK, R/W, any FC in 64k block
setreg @ORO=DxdfeO
;set BRO enable chip select O(CSO), any FC, Base Address 0
setreg @BRO:Oxc001
; return "error" to its default value of abort include for errors
error:abort
;"mwarn off" suppresses memory warning messages during the "load"
mwarn off
load '.Jdemo/cdemon.x'
;Turn "mwarn" back on
mwarn on
;Switch to "source-level" mode
mode high

Figure 3·3 Sample UNIX include file for 68302 registers

The on-line help information displayed by the debugger is in
the ASCII file with the suffix .hlp.

Help is available in scrollable menu form or may be invoked
with a subject argument.

Using the XICE debugger user interface S3-15

•

$3-16

Using the help menu
Typing ''help" or "h" invokes the help information menu of
XICE topics and commands. The are two levels of help, the top
menu level of alphabetized subjects and the lower level of
actual help information on each subject.

Invoke the help menu

-help

Scroll up and down through the menu by using the up and
down arrow keys (depicted as""" and "v" on the bottom of the
help menu). A carriage return selects the subject highlighted
by the cursor and displays the next level of help information.

Scroll down and up using the up/down arrow keys

>V

Scroll down to and select the command "DEFINE''

»V

>Return

At this point you can scroll through the subjects at the "help
information" level. A carriage return or down arrow {CR/v) goes
to either the second page of information on the current subject
or to the next subject if there's only one page. The up arrow
scrolls back through the previous subjects. Pressing Escape
(Esc) closes the help window and returns you to the Command
viewport.

For example only -Invoking help on the step command

You can also invoke help for a specific command:

h step

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Exiting help
An "Esc" exits help and returns you to the XICE command line.
If you want to leave the help information displayed on the
screen while you type in a command use the F7 key to exit help
instead of Esc.

Exit help and return to the command line

·,Esc

Additional error message information
If an error message pops up for any reason, you may be
prompted by the debugger to type explain to receive additional
information about the error.

Navigating XICE windows (viewports)

Activating viewports (selecting XICE windows)
An active viewport is indicated by a shaded box surrounding
the viewport. You can activate any XICE viewport in either of
two ways. One way is to use the viewport activate command,
vactive (va), with the viewport's number as the argument.
The viewport's number is located in the upper right hand
corner of each viewport.

Another way, perhaps faster, is to simply scroll through the
viewports using the Fl function key.

Activate the code viewport

>Va 2

Zooming and unzooming viewports
(enlarging and reducing XICE windows)
The zoom (z) command toggles viewports between their
normal and enlarged sizes.

Using the XICE debugger user interface 83-17

A viewport can be enlarged in either of two ways. You can
enlarge and activate a viewport by using the zoom command
similar to the way the vactive command is used. Or, you can
use the F4 function key to enlarge an active viewport.

Zoom or F4 the enlarged window again to return it to normal
size.

Zoom the code viewport

·Z 2

Return the code viewport to normal size

'·Z 2

Scrolling viewports
You can scroll up and down in an active viewport by using the
up and down arrow keys. For a standard SUN or PC keyboard,
use the Home and PgUp keys to go to the beginning or end of a
viewport.

Modifying and saving debugger start-up options and viewports

$3-18

A set of default debugger display and execution options is read
in when XICE is invoked. The options control functions such as
breakpoint alignment, default radix, viewport display and
others. These options can be changed and saved.

In addition to the options, you can also save the size and
position information for all the predefined and user defined
viewports. The viewport information and options are saved to a
file created by the startup command and restored when you
invoke the debugger.

Detailed functional descriptions of all the options are in the
XRAY Documentation Set under the option command.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Displaying debugger options
Use the option (op) command to display the current set of
debugger options. It will zoom the command window to display
the options.

Display the current debugger options and unzoom the
command window

:-op
>F4

Modifying debugger options
Use the option command with an "option name=value"
argument to change an option.

We will not modify any options, but an example is shown below .

For example only - Modifying the debugger default
radix

op radix=hex

Saving the options and viewports
Use the startup command to save options and viewport
information to the start-up file. You can choose the name of the
start-up file. This allows different users to save personal setups
in their own unique start-up files. The startup command used
with no argument saves the information to a file named
startup.xry.

To use your saved options, use the -s debugger command line
switch with your start-up file name as the argument when you
invoke the debugger.

We will not save any options now. An example of saving the
information to the default start-up file, startup.xry, is shown
below.

For example only - Saving options and viewports to
default file startup.xry

startup

Using the XICE debugger user interface S3-19

•

Recording a debug session

Convenience features

83-20

Recording commands
Sometimes it may be useful to record the commands used
during a debug session. The log command opens a file and
saves the command line input into the named file. The "log" file
can be used as an "include" file which can be loaded and
executed by the debugger command include to recreate a
debug session.

Recording commands and their output
The journal command records both the commands and their
output into a file. This will be demonstrated later in the
tutorial where we use the command to save the contents of the
emulator's ''bus cycle trace" memory.

Command history
XICE has a command "history" feature similar to that of the
UNIX C Shell. You can display a list of executed commands or
recall a specific command from the list by using the command
history (hi).

For example only - Using history

hi (display list of executed commands)
hi step<ret> (recall step command if on history list)
hi step<ret><ret> (recall and execute step command)

Another way to re-execute a past command is simply to use the
up/down arrow keys to scroll through past commands until
you reach the desired one, then press <Return> to execute the
command.

Command aliasing
XICE allows you to assign a different name to a debugger
command. Use the alias command to do this. Preferred aliases
can be placed in an "include" file and loaded at the start of your
debug session

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Note

For example you may want to rename the load command to
dnl.

For example only - Renaming load to Id

alias load=ld

Although XICE allows you to define any alias, you cannot
successfully invoke an alias for a command that is itself an
alias. Many XICE commands are aliases ofXRAY simulator
commands. To determine whether a command is already an
alias, invoke help for the command. If it is an alias, the help
screen says "alias of SS " If you create and invoke an alias
for such a command, an "Unknown Command Entered" error is
returned.

Jsing the XICE debugger user interface $3-21

Using debugger functions

Getting oriented with the code

S3-22

When starting a debug session you will want to get oriented
with the code, particularly if the code is not your own. The
following commands will help you do this.

Displaying available modules
A quick display of the names of the source modules available
for debugging is a good place to start. Use the printsymbol
(ps) command with the /m flag and * argument to display all
module names. Of course with very large programs containing
many modules, this may be impractical.

The command will zoom the command window and display the
names of cdemon's seven modules along with "type" and
address information for each module.

Display module names and unzoom the command
window

>ps /m *
>F4

Printsymbol is an important and versatile command with
many other options for displaying symbols and subsets of
symbols.

Current viewing (scope) and execution context
The debugger is capable of viewing a module that is not the
current execution module. The current execution module is the
module that the program counter (PC) is focused on. If you
were to execute a step command the debugger would execute
the source line pointed to by the PC. Use the context (con)
command to display the current "viewing" and "execution"
modules.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using debugger functions

Display context (current viewing and execution
modules)

-con

Note the current viewing module line, CD EM ON, will have
"(view)" at the end of it, while the current execution module
line, address 4044, will end in "(PC)".

Changing scope
The viewing context can be changed by using the scope (sc)
command. This will cause the source for the module to be
displayed in the CODE viewport. It also allows access to the
module's symbols and line numbers without having to type the
qualifying module or procedure name, saving a considerable
amount of typing.

The scope command is case sensitive.

Change the current scope to the module DATA

'>SC DATA

Display the current context

·-con

You will see the current viewing module is now "DATA", while
"4044" remains the current execution module address.

Return to scoping the current execution module
CD EM ON

'>SC

Selecting assembly or high-level debugging mode
You might be debugging a small piece of code that controls
some 110 device and decide you need to work with your code at
the assembly level. Use the mode (m) command to quickly
toggle between high-level and assembly-level debugging
modes.

S3-23

•

Change to assembly-level debugging mode

>In

The code viewport now displays assembly-level code and its
corresponding high-level source code, if any.

Return to high-level debugging mode

Other C source operations
There are other debugger commands that display source
without changing scope (list), evaluate expressions
(cexpression), find the next occurrence of a given string in the
source (next), and display parameters passed to procedures
(expand). These commands are covered in both the on-line
help and theXRAY Documentation Set.

Checking the state of the debugger and emulator

S3-24

When starting a debug session you should take a quick look at
the state of the debugger and emulator. This is particularly
true if someone else has been using the emulator between your
sessions. Also, you should examine the state of the debugger
and emulator any time you get unexpected results from
breakpoints or event system setups.

The following commands will allow you to view and modify the
parameters that control the state of the debugger and
emulator.

Displaying debugger status
Use the status all command to display the debugger's current
version, directory, log file, journal file, startup file, and loaded
absolute file. Have this information at hand if you ever call for
factory support.

Display debugger status

>stat all

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using debugger functions

The status information should be displayed in the VIEW(ALL)
viewport located directly above the CODE viewport.

Displaying emulator hardware configuration
Use the hwconfig command to display the emulator's
hardware configuration and the version of emulator control
(shell) code. Have this information at hand if you ever call for
factory support. The display will vary depending on your
particular configuration.

Display the emulator's hardware configuration and
shell code versions

-hwconfig
EL1600 Enhanced SCSI Controller, version 0.01
EL1600 lM Overlay, version 0.01
EL1600 Iynamic T & B Board, version 0.01
EL1600 68302 SCSI Shell(OO), version 2.00

Softswitches, options, variables, and "double-argument"
commands
Three "display variable" commands - emuvars, xicevars, and
memvars - show the state of most of the parameters
controlling debugger and emulator functionality. Display the
remaining parameters with the evtvars and option
commands.

These parameters are referred to as "softswitches" (short for
software switches), options, variables, commands, and "double
argument" commands. To help remember the names of the
commands to display these parameters, you shoulq think of
them collectively as "variables".

The variables can all be modified at the command line or in the
xice.cfg file, with the notable exception of evtmode, which can
only be modified in the xke.cfg file. Also note the state of the
variable evtmode is not accessible at the XICE command line.
You must look in the xice.cfg file for this information.

S3-25

•

83-26

The xice.cfg file contains a commented list of the variables
along with a brief description of each. This list is a useful
reference when you are modifying the xice.cfg file. You may
want to print a copy of the xice.cfg file to use as a quick
reference guide.

In the tutorial we will only display the variables. Detailed
functional descriptions of the variables can be found in
chapter 2 and in the XICE Installation Guwe.

Activate the COMMAND viewport

>Va 1

You need to zoom the command viewport to see all the
variables.

Zoom the COMMAND viewport
>Z 1

Displaying emulator variables
The emulator softswitches control how the emulator treats
CPU signals and functions like DMA, timers, chip selects,
refresh, and interrupts.

Display the emulator variables

>emuvars

You should see a list of the emulator's softswitches showing
their state and a brief functional description.

Displaying XICE variables
The XICE variables control tracing and event system
functions.

Display the XICE debugger variables

>xicevars

You should see a list ofXICE's internal variables showing their
state and a brief functional description.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Displaying XICE memory operation variables
The variables controlling memory access operations are called
"double argument" commands in the xice.cfg file.

Display the debugger memory operation variables

'-memvars

You should see a 12x5 matrix showing the twelve memory
operations and how each is configured for the four memory
access variables

The twelve memory operations are code, compl, comp2,
copyfrom, copyto, diag, fill, read, search, stack, test, and write.

The four memory access variables are shown with a brief
description below.

space sp/sd/up/ud/cpu/sc0,3,4 (specify memory space)

size 1 (specify access size 1 ''byte",
2 "word", 4 "longword",
ANY)

overlay on/off (specify overlay(on) or
target(oft) memory accesses)

address phys/logical (specify physical or logical
addressing)

Checking the state of the target

Using debugger functions

Checking the CPU bus
Use the bus command to display the state of the CPU's control
lines as sampled at the probetip.

Display the CPU bus status

'·bus

S3-27

•

Return the COMMAND viewport to normal size

>F4

Controlling the Emulator and CPU

S3-28

Changing the contents of a CPU register
While debugging your code, you may find a register holding a
different value than what you expected. The setreg command
allows you to directly modify the contents of a CPU register.
This lets you replace the questionable value with the expected
value and test the results.

Go to assembly mode and change the contents of the PC
register to Oxl 00

>ID

·-setreg @pc=OxlOO

Note the PC register value displayed in the REGISTERS
viewport has changed to 0100. (You must zoom (Z 14) the
REGISTERS viewport on the IBM-PC.)

Return the contents of the PC register to Ox4044 and
return to high level mode

>setreg @pc=Ox4044
>ID

Other 68000 and 68302 register controls
These are the softswitches that control the DMA (ted, tid),
timer (drtmr), interrupt (fast, slo), refresh (drtmr), and chip
select (rirr, uir) registers. These softswitches are covered in
Chapter 2 of this supplement.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Memory control

Using debugger functions

Displaying memory addresses and variables
The dump (du) command displays the contents of memory at
a given address or range of addresses in both hexadecimal and
ASCII format.

As do most XICE commands, dump also accepts a symbol
name as an address argument. This allows us to dump the
contents of the tutorial's "memory mapped" output port,
"led_port", without recalling the port's numerical address.
(Note: We could have found the address ofled_port with the
printsymbol command.)

Dump the contents of'1ed_port"

,du led_port

Another way of viewing the contents of"led_port" is to use the
printvalue (p) command. The printvalue command displays
the values of expressions according to their type. The
printsymbol (ps) command will show "led_port" is an array of
signed char, so printvalue will display character values found
at "led_port".

Display symbol information about '1ed_port"

~·ps led_port

Print the value at '1ed_port"

>p led_port

You may want to keep a continuous display of a variable's value
on the screen. The monitor (mon) command opens the DATA
viewport and displays the selected variable. The display is
updated during every "run to pause" transition.

Monitor the variable '1ed_port"

>mon led_port

S3-29

83-30

Modifying memory
Modify memory with the setmem command. Setmem has a
switch for byte, word, and longword data arguments. We will
use setmem with the longword switch, /l, to modify the
contents of"led_port", and then view ''led_port" with the dump
and printvalue commands.

Set memory at ''led_port", then display the new contents

>setmem/l led_port=Ox58494345
>du/l led_port
>p led_port

Using the single line assembler
There may be times when you need to make a small change to
an assembly module, perhaps just to try something out. Use the
debugger's built in line assembler to make your patch and
avoid a time consuming"exit debugger, edit code, assemble and
link, download, and try-it-out" debugging cycle. The line
assembler is invoked with the asm command.

Below we assemble a simple "nop" loop. To exit the assembler
type a carriage return on an empty assembler line.

Assemble a "nop" loop beginning at address Ox9000

asm Ox9000
00009000: nop
00009002: nop
00009004: jmp 9000
0000900a: <Return>

Using the memory disassembler
The memory disassembler can only be used with XICE in the
"assembly mode".

Disassemble the "nop" loop at Ox9000. The disassembled
memory is displayed in the CODE viewport.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Go to assembly mode and disassemble memory at O:x:9000

·m
·dis Ox9CIOCI

OOOOCJOCICI 4E71 nop
011009002 4£71 nop
00009004 4EF9 0000 9000 jmp $009000

Return to high level mode

··m

Other memory operations
There are other memory commands available that fill memory
with a given value (fill), copy the contents of one block of
memory to another (copy), compare the contents of two
memory blocks (compare), and search through memory for a ..
pattern (search). These commands are covered in the XRAY
Documentation Set.

Using overlay memory

Note

Using debugger functions

Overlay memory is emulator memory that can replace target
memory by overlaying it, or be used where target memory
resources do not exist. Assigning overlay memory to address
ranges and access types chosen by the user is called "mapping''
overlay.

Overlay has a minimum granularity of 2K If a mapping does
not begin and end on a 2K boundary, the emulator
automatically adjusts the mapping in both directions to the
next 2K boundary and issues a warning that it has adjusted the
original mapping.

Displaying the memory map
Use the ramaccess (ram) command with no arguments to
display the current overlay vs. target memory map.

$3-31

S3-32

Display current overlay vs. target memory map

>ram

You should see a display of the type of memory (ram, rom, or
nomem), who owns it (emulator or target), its address range,
and how much emulator memory remains.

Mapping overlay memory as RAM
Use the ramaccess command with a range argument to map
overlay memory as read/write memory (RAM). Memory
mapped as RAM is fully accessible to the executing program
and to the user.

We will not alter the memory map in the tutorial, so an
example is shown below.

For example only- Mapping overlay from OxlOOO to
Ox2000 as RAM

ram OxlOOO .. Ox2000

Mapping overlay memory as ROM
Use the romaccess (rom) command with a range argument to
map overlay memory as read only memory (ROM).

Memory mapped as ROM will cause a "write violation" break if
written to by the executing program. However, the user can
still write to this memory using any debugger memory write
command such as setmem or f'tll.

An example is shown below.

For example only - Mapping overlay from 0 to Oxfff as
ROM

rom OxO .. Oxfff

Mapping memory as illegal access space
Memory can be mapped as illegal or non-existent by the
nomemaccess (nomem) command.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using debugger functions

Memory mapped as "nomem" causes an "illegal access" break
when the executing program tries to access it for any reason.
This is useful when implemented as a built-in bounds checker
for the executing program. If there are areas in the memory
map that nothing should access, map them as nomem.

Memory mapped as "nomem" is also unavailable to the user,
even through debugger memory commands such as setmem or
fill

An example is shown below.

For example only • Mapping OxlOOO to Ox2000 as illegal
memory

nomem OxlOOO .. Oxlfff

Mapping overlay memory back to target memory II
Use the ramaccess command with the =target argument to
reassign overlayed memory to the target.

An example is shown below.

For example only· Returning overlay memory OxlOOO to
Ox2000 to target

ram OxlOOO .. Oxlfff=target

Copying target memory contents to overlay memory
The ramaccess command, when used with =copy, first maps
overlay memory over the range argument and then copies the
contents of target memory into that range of overlay memory.

Use this command when you need to copy the contents of your
target ROM or PROM into overlay memory for patching, to
avoid having to burn a new ROM.

An example is shown below.

53-33

Basic breakpoints

53-34

For example only • Copying the contents of target
memory into overlay

ram Ox9000 .. 0x9fff=copy

Basic breakpoints include access and instruction breakpoints.
Simple to set up and use, they let you stop emulation at a
predetermined location in the program.

Setting access breakpoints
Access breakpoints are set to break on a read status (br), a
write status (bw), or don't-cared for a read or write (ba) of the
breakpoint address. These breakpoints are implemented using
emulator hardware and may be set in RAM or ROM.

You cannot set an access breakpoint when any event system
triggers are armed. Disarming the triggers will allow you to set
access breakpoints. Likewise, setting access breakpoints
causes the event system to be disabled. Clearing the access
breakpoints will allow you to arm the event system triggers.

Macros can be attached to access breakpoints. You may have
multiple ha, br, and, bw breakpoints set, each with its own
macro attached. Macros are illustrated on page 83-42.

Set a write access breakpoint at '1ed_port"

>bw led_port

Setting instruction breakpoints
Instruction breakpoints (bi) are software implemented
breakpoints. They use the TRAP instruction to temporarily
replace the instruction at the breakpoint address. These
breakpoints can only be set in RAM. There must also be RAM
located at the "scratch" address to accommodate the TRAP
instruction's interrupt service routine.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

A bi uses one each of the emulator's two address and status
comparators. The remaining address and status comparators
are available for access breakpoints. This means if you set a bi
you can additionally set 3 single-address access breakpoints of
the same type (all br's, for example) or one range access
breakpoint.

Set an instruction breakpoint at outled

·-bi out led

Clearing breakpoints
Use the clear (cl) command to clear all breakpoints. Use clear
with a number or range argument to clear a particular
breakpoint or group of breakpoints.

Clear breakpoints 1 and 2

Program execution and related commands

Using debugger functions

The following commands control resetting the CPU, restoring
the program start address, and executing the program in real­
time or in steps at a time.

Resetting the processor
Use the reset (rese) command to restore the processor to its
initial reset state.

Reset the CPU

·-rese

Restoring the program start address
Use the restart (rest) command to reset the program counter
to the program's starting address. Forcdemon.x this returns us
to "start:" in the ALIB module, address Ox4044.

Restore the program start address

>rest

S3-35

•

$3-36

Starting and stopping program execution
Use the go (g) command to start or continue program
execution. The program will execute until a breakpoint is
reached, an error occurs, or the user stops emulation with a
CTRL-C.

Use the go command with an address and a passcount to
execute until the address is seen "passcount" number of times.
The command sets a temporary breakpoint at the address and
counts each occurrence of the breakpoint.

Execute until "outled" is seen four times

>g outled%%4

After a few moments, the emulator will break and display the
PC value at the time execution stopped.

Stepping through the program
Stepping refers to executing code a number of lines at a time.
Single stepping executes either one source line or one assembly
line of code at a time, depending on which mode you are in. To
single step use the step (s) command without a number
argument.

For example only - Executing one line of code and five
lines of code

s
s 5

Use the stepover (so) command if you want to single step but
do not want to step through called routines. This command will
execute the entire called routine then stop.

Use the gostep (gos) command if you want to step
continuously until a specific condition is met. The condition is
defined by a macro you attach to the gostep instruction. For
instance, gostep can be used to step until a register holds a
particular value.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

For example only · Stepping until a condition defined in
"my _macro" is met

gos my_macro ()

Capturing and displaying execution trace history

Using debugger functions

The trace capture feature lets the user observe exactly how the
code executed. Raw trace consists of CPU bus level information
including address, data, status, and an optional 16 channels of
logic state or timestamp information. Disassembled trace is
displayed as assembly, source, or a mixture of both. Raw and
disassembled trace are both displayed in the COMMAND
viewport.

In high level mode (source mode) the TRACE viewport displays
a trace of the "procedure calling chain". Don't confuse this with
the raw and disassembled trace discussed above. The TRACE
viewport is covered in depth in chapter 2 of the XRAY
Documentation Set.

Clearing trace memory
You may want to clear the trace memory buffer of previous
trace information before running your code. This ensures all
information in the trace buffer will be newly acquired. Use the
trcclr command to clear the trace memory buffer.

Clear the trace memory buffer

>trcclr

Capturing trace in run mode and pause mode
Unless conditionally tracing with the event system, the trace
capture feature is always enabled for run mode. Every time you
use go or step, the bus information generated is captured in
the trace buffer.

An emulator softswitch, ppt, controls the capture of additional
information. With ppt on you can capture bus cycle
information generated by XICE memory read and write
commands such as setmem, fill, copy, diag, and others. This

$3-37

83-38

trace information can assist you in diagnosing general memory
problems or memory errors that may have shown up in one of
XICE's ram diagnostic tests (diag).

Also, with ppt on, cycles generated by XICE memory
commands or by downloading code with the load command are
included in trace memory. The load command cycles can be a
valuable source of troubleshooting information when a
download fails for some reason. You can examine the last cycle
in trace memory and determine ifthe download went to valid
RAM memory, nonexistent memory, or ROM, for example.

To collect trace information we will restart and then go until
we reach the function "outled".

Restart, then go to "outled"

~-rest

·.g outled

Displaying raw trace history
Use drt for displaying raw bus cycle information and optional
logic state and timestamp information.

Display the captured raw trace information

>drt

Zoom the COMMAND viewport and examine the raw trace.
You can scroll up and down in the viewport with the up/down
arrow keys to view trace that may have scrolled off the display.

Zoom the COMMAND viewport

The FRAME numbers on the far left of the trace are used to
reference when in trace history the information occurred. The
lower line numbers are the last cycles captured prior to a
"break" in emulation. The "break" at trace line 1 occurred when
we reached the function "outled".

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using debugger functions

The other raw trace columns show the address (ADDRESS),
the data (DATA), Interrupt Priority Level (IPL), Function Code
(FCn), type of memory cycle (MEM), flags set (FLAGS), and
logic state information (LSA BITS) when each bus cycle was
captured.

Additionally, trace for the 68302 shows a column of information
on DMA cycles (DMA), and on the CPU internal access pin
(IAC). For the 68000, these columns are replaced by
information on the state of valid peripheral access pins (VPA),
and the state of the memory access pins (VMA).

Searching trace history for a pattern (emulator only)
To search trace memory for patterns, use the tsrch (ts)
command. The command syntax is similar to the ev command.
You may qualify the search with combinations of address, data, 3 and Isa patterns, and status. You may also specify a starting
line number in trace history.

Search trace history for an occurrence of a write to
address Oxfe

~ts addr=Oxfe,stat=wr

Displaying disassembled trace history
Use dtb (display trace backwards) for displaying the trace
buffer information formatted in assembly or high-level mode,
or as an interleaving of both modes. The dtf (display trace
forwards) command performs the same trace display function,
but in a different direction. Use the dt command with a start
address to begin disassembling at a particular line in trace.

The trcmode XICE variable controls the disassembled trace
display mode. The variable's default (both) causes an
interleaving of assembly and source.

Display the trace information in disassembled format

>dtb

53-39

S3-40

The numbers on the far left of the disassembled trace
correspond directly to the FRAME numbers on the far left of
the raw trace display. They are useful when correlating a line
of disassembled trace to its bus cycle equivalent line in raw
trace.

Observe the call to the function "outled", JSR outled, and the
source line for the function "outled", outled(OxFE).

Saving trace to a file
You may need a hard copy of trace or a copy of trace on disk for
later referencing. Or, you may have a problem that requires
factory support. The Applications department might request a
hardcopy of trace memory to assist in solving the problem.

Earlier we discussed the journal (jou) command, which
records both the commands and their output into a file. You can
use the journal command to save a partial or entire trace
disassembly into a file. The example below shows how to save
a trace memory display to a file.

For example only - Saving part of a raw trace to a file
named trace.raw

jou on="trace.raw•
drt O .. 42
jou off

jou on=''trace.raw'' creates a file named trace.raw as the
journal file. drt 0 .. 42 displays raw traces lines 0 through 42.
This display goes to both the COMMAND viewport and the
journal file. jou off causes journaling to cease and closes the
journal file.

Using the /a option with jou allows you reopen and append to
an existing file.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Executing XICE commands in run mode (dynamic run mode-drun)

Using debugger functions

The drun command lets you use XICE commands without
stopping program execution (run mode).

For instance, you may want to examine trace history (drt or
dtb) while executing your program. If you enter run mode
using drun instead of go, you can use the drt command to
display the trace history, gathered up to the point where you
entered the drt command, while the target program continues
to run.

To exit dynamic run mode use the dstop command.

Restart, enter dynamic run mode, then display raw
trace history

>rest
>drun
>drt
Zoom command window, view raw trace, then unzoom

Use the dupdate command in dynamic run mode to cause the
code, register, stack/trace, and data viewports to be updated at
the interval given in the command's argument. The default
argument value is 20 polls per minute.

Note that you cannot enter commands while in this mode, and
that real time operation is sacrificed during the command's
polling process.

Switch to assembly level, enter dupdate mode, and then
observe the stack and register viewports being updated
(60 times per minute)

>m
>dupdate 60

S3-41

•

Exit dupdate mode (control-c), exit dynamic run mode
(dstop), then switch back to high-level mode

··Control-c
· ·dstop
··m

Logic state and timestamp options

Debugger macros

$3-42

Logic state probe and timestamp probe options are available
from Applied Microsystems. If you have either of these options,
see Chapter 6 of this supplement for information on how to use
the timestamp option and the following XICE variables. These
variables control capturing and displaying logic state and
timestamp information.

XICE variables for logic state and timestamp options
tstamp (display lsa or timestamp info on/off)
trcframe (cycle number for time O timestamp in display)
trcint (display interval or offset timestamp)
tunits (timestamp units for raw trace OxO)

Macros provide an efficient means of executing repetitive tasks
or generalizing a task that originally acted on only a specific
item. XICE uses the same C-like sequence of expressions,
statements, and debugger commands as XRAY to define and
invoke macros. Chapter 4 of theXRAY Reference Manual in the
XRAY Documentation Set is devoted to explaining how to
generate your own macros and to use the predefined macros
that come with XICE. The following section demonstrates
briefly how to create a macro and then save it into an "include"
file that can be executed by the debugger.

Creating a macro
Use the define (def) command to create a macro. This puts
XICE in the macro define mode. Notice the prompt will change
from a greater-than sign (>) to a colon (:) when you enter this
mode. A period(.) in the first column of the line exits macro
definition mode.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using debugger functions

Most of the commands found in this supplement are Applied's
emulator-specific aliases of"set status (ss)" commands. When
these commands are used in a macro you must precede and
follow the command"$," preface the command with "ss," and
usually follow the command with a comma to accommodate the
XICE command line parser. To see whether a command is an
alias of a "set status" command, invoke on-line help for the
command in question. Then press <return>. There will be an
"alias of SS command_name" message in the upper right corner
of the help screen, i.e. for drt you will see "alias of SS DRT".
The macro we will create demonstrates using the aliased
command drt.

Define a macro named dmp_trc

>def dmp_trc ()
: {
• C' . .,,
:ss drt,
. c . .,,

: }

Displaying a macro
Use the show command to display a macro.

Display the macro dmp_trc

•sh dmp_trc

Deleting a macro
Use the delete command to delete a macro. An example
follows.

For example only - deleting a macro

del big_mac

83-43

S3-44

Saving a macro to a file
After you determine that your macro works, you may want to
save it to a file for later use. The procedure to do this consists
of XICE commands to open a file and assign it a viewport
number (fopen), display the macro (show) into the file, and
close the file (vclose). The resulting file can be used as an
include file that recreates the macro.

Save a macro to a file

·>fopen 50, "drnp_trc. inc"
>show drnp_trc,50
>Vclose 50

Fopen should have created a file named dmp_trc.inc in the
current directory. The file contains the commands necessary to
create the macro dmp_trc, placed there by the show
command.

Assigning a macro to a breakpoint
A macro can be assigned to a breakpoint by setting a
breakpoint and following it with"; your_macro()". The macro is
executed when the breakpoint occurs.

Assign macro "dmp_trc" to a write access breakpoint at
"led.,..port"

>bw led_port ;drnp_trc ()

Restart, then go till the breakpoint is reached

>rest

When the breakpoint at "led_port" occurred, emulation stopped
and raw trace information was immediately displayed in the
COMMAND viewport.

Return the COMMAND viewport to normal size

>F4

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Access breakpoints and event system breakpoints are mutually
exclusive. We need to clear the write access breakpoint before
continuing on to the event system.

Clear write breakpoint number 1

-cl 1

Using the event system

Using debugger functions

Sometimes running to a basic breakpoint and examining trace
history does not provide information specific enough to debug
your target's code or hardware. Also, you may want the
emulator to perform some action other than breaking when the
conditions become true.You may need to trigger an oscilloscope
after a complex set of CPU bus cycle conditions become true, or
to trace only certain types of bus cycle information under
certain conditions. For example, the conditions might be the
fifth write that a specific subroutine makes to a certain I/O
location.

The event system supplies the mechanism to define conditions
and take actions by creating event statements composed of
logically combined conditions and binding these to trigger
statements that perform the actions. This mechanism allows
the emulator to perform various actions based on events of
complexity far surpassing that of simple breakpoints.

This section will help you get started using the event system.
Comprehensive user information and descriptions of all
available conditions and actions are in Chapter 4, "Using
Breakpoints and the Event System."

General information
The event system is implemented with emulator hardware and
can be used in both RAM and ROM regions.

Setting access breakpoints disables the event system. Clearing
the access breakpoints will allow you to arm event system
triggers.

53-45

..

83-46

Step 1 : Setting up event statements
The first step in setting up an event statement is deciding what
condition(s) you need to include. For most simple address and
status conditions you probably need only an access breakpoint.
We will start out here with those conditions however, to keep
the first event statement simple.

Define an event statement for a write to ''led_port"

>ev{l}=addr==led_port,stat==Wr

ev{l}= begins the definition of event number 1.
addr==led_port defines "led_port" as the address of interest.
stat==wr defines the access to "led_port" as a write.

Displaying event status
Use stat ev to display the event in the VIEW(EV) viewport.

:>stat ev

The first line in the VIEW(EV) viewport indicates there were
32 events available. We used one event, leaving 31 currently
available.

The second and third lines display the event we set up, EV{l}.
Notice that the address is displayed in both numerical form
and by its symbolic name, "led_port".

The remaining lines indicate that no other events are defined.

If we had defined many events you would need to zoom the
viewport to display them. The following demonstrates zooming
and scrolling the VIEW(EV) viewport.

Zoom the VIEW(EV) viewport, scroll around, then
unzoom

>Z 24
><down arrow>
---~up arrow-~

:-z 24

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using debugger functions

Step 2: Setting up trigger statements (assigning events to
actions)
Next, you choose what action(s) are taken when the conditions
defined in the event statement(s) occur. The event statement is
tied to the action(s) by forming a trigger statement. When the
event becomes true the actions happen.

We'll bind the simple action of stopping emulation to our event
statement by defining trigger statement 1.

Define a trigger binding the break action to ev{l}

:-trig { 1} =ev { 1}, break

Arming triggers
Trigger statements must be "armed" before they are considered
active. The easiest way to arm triggers is to leave the "auto- •
arm" variable evtarm at its default state of on. With evtarm
on the triggers are automatically armed as soon as they are
defined.

Triggers are armed for a particular "group". The evtgrp
command determines what group a trigger statement is armed
for when the trigger statement is defined. If you don't need to
use an additional "group" of triggers leave evtgrp set to 1. In
this tutorial we leave evtgrp at its default value of 1. This
means the trigger we set up is armed for group 1.

Displaying trigger status
Use stat trig to display the trigger statement in the
VIEW(TRIG) viewport.

Display trigger status and zoom the VIEW(TRIG)
viewport

··stat trig
·.z 24

The first line in the VIEW(TRIG) viewport indicates there were
16 triggers available. We used one, leaving 15 currently
available.

83-47

83-48

The second line shows trigger statement 1 (TRIG { 1)) is
associated with(=) event statement 1 (EV{l}).

The third line indicates trigger 1 is armed for group 1.

The fourth line shows the action to take.

The fifth line shows the actual trigger statement definition.

The remaining lines indicate the other triggers are undefined,
unarmed, and available (CLEAR).

Unzoom the VIEW(TRIG) viewport

Step 3: Using the trigger statement
The trigger statement we set up is armed and ready for use. As
soon as we go into "run" mode, the event system will
unobtrusively monitor the executing environment until the
event statement conditions are met. When this happens the
actions in the trigger statement occur.

Restart, then run the program until the event systems
takes over

>rest
>g

The emulator will "break" and display the current PC value. In
the CODE viewport you should see a highlighted source line
indicating where the break occurred. The symbol "led_port"
should also be on this line.

Assigning a macro to an event system "break" action
(breakcomplex)
Use the breakcomplex (be) command to tie a macro to an
event system "break" action. Since it severely limits the event
system when in effect (only one armed trigger allowed), this
command should only be used when you absolutely need to tie
a macro to an event system ''break" action. Use a macro tied to
a basic breakpoint whenever possible.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

To use be the evtmode variable must be on. This variable's
default is off. Unlike most other XICE variables, evtmode can
only be changed by exiting the debugger, modifying the
SW _EVTMODE command in the xice.cfg file, and then re­
invoking the debugger.

You must set up for a be in a carefully prescribed order.

1. Set up the event statement.

2. Tie the macro to the trigger statement and the be.

3. Define the trigger statement with an event statement but no
action. (No action is used in the trigger statement since the
''break" action is built into the be command.)

An example demonstrating the exact order of commands
necessary to tie a macro to an event system "break" trigger
follows. Assume evtmode is on.

For example only - Attaching the macro "dmp_trc" to an
event system trigger

ev{l}=addr==led_port,stat==Wr
be trig(l}; dmp_trc()
trig{l}=ev{l}

Additional event system features
In addition to the simple conditions and actions illustrated
here, the event system possesses many advanced features such
as groups, counters, timers, flags, "soft shutdown", conditional
tracing, trigger generation, and others. These features are
covered in Chapter 4 of this supplement.

Scope loops and diagnostics

Using debugger functions

Built in scope loops and memory diagnostic programs are
included with the debugger in the form of diag commands.
These programs save you from writing your own routines to
test memory or to stimulate memory for "scoping" or logic
analysis.

S3-49

53-50

Another diagnostic, named ere, calculates the CRC-16 (cyclic
redundancy check) over the desired range.

Memory and 10 read/write scope loops
Diagnostic numbers 2 through 8 are used to perform reads and/
or writes of selected memory with patterns chosen by the user.

For example only - scope loop, continuous read of
address Ox4000

diag 2,0x4000

Memory diagnostics, simple and complex
Diagnostic numbers 0 and 1 perform simple and complex
diagnostics on the selected memory.

For example only • complex memory test of address
range Ox2000 to Ox2400

diag O,Ox2000 .. Ox2400

Cyclic Redundancy Check
Use the ere command with a range argument to perform a
CRC-16 of the specified range. The command will return a hex
value for the CRC.

For example only • cyclic redundancy check of address
range Ox2000 to Ox2400

ere Ox2000 .. Ox2400

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Chapter4

Using Breakpoints and the Event System

Overview
This chapter covers the breakpoint and conditional control
features ofXICE when used with the EL 1600 event system.

Basic breakpoints are tools for interrupting emulation or
simulation in order to inspect trace for insight into code
execution. Typically, they take two forms: access breakpoints
and execution breakpoints.

The EL 1600 event system provides XICE with additional
flexibility both in what can cause the emulator to intervene in
code execution and in what actions can occur. These features
provide powerful capabilities for debugging and integration.

Because all break capabilities and event conditionals are
implemented using event system resources, the following
sections explain both in terms of event system resource use.
The initial sections explain the automatic invocation of event
resources to provide basic access and execution breakpoints.
Later sections explore using the full power of the event system
to control emulation using sets of conditionals that you define.

Emulator and simulator versions of the debugger
This chapter deals only with XICE in-circuit debugger
extensions to the XRAY simulated event system. The
commands mentioned here are documented in the alphabetical
command reference, Chapter 2, of this supplement.The XICE
version uses emulator hardware resources to exercise and
respond to actual processor and other target resources. For
information about the XRAY simulator's event system, refer to
the SET STATUS command description in theXRAYReference
Manual.

Using Breakpoints and the Event System S4-1

Breakpoint and event system commands

S4-2

The following XICE commands comprise those for basic
breakpoints and the event system.

Basic Breakpoint Mnemonic Function Command Names

BREAKACCESS BA Set a breakpoint on access to
specified address(es)

BREAKINSTRUCTION BlorB Set a breakpoint on specified
instruction

BREAKREAD BR Set a breakpoint on a read at
specified address

BREAKWRITE BW Set a breakpoint on a write at
specified address

Event System Mnemonic Function Command Names

BREAKCOMPLEX BC Set a breakpoint that calls a
named macro.

EV EV Define event statement

EVTARM EVTARM Enable/disable automatic
trigger arming

EVTCLR EVTCLR Clear event system

EVTGRP EVTGRP Specify event group

EVTVARS EVTVARS Display all event state variables

STATUS EVENT STAT EV Display event statement(s)

STATUS TRIGGER STAT TRIG Display trigger statement(s)

TRIG TRIG Define trigger statement

XICE Supplement for 68000/68EC000/68HCOOO and 68302

Working with basic breakpoints
You use a breakpoint to examine behavior of the target under
certain controlled conditions. Typically you set breakpoints
either on accesses to specific memory locations or on specific
instructions in code. This is very helpful in isolating bugs when
troubleshooting hardware and software in the target
environment.

Setting basic breakpoints
There are two categories of basic breakpoints: access and
instruction breakpoints. You use an access breakpoint (BA) to
break on reads and/or writes to data and program locations. By
specifying the type of access, you can limit the access break to
break exclusively on read (BR) or write (BW) accesses. When you
want to stop program execution on a particular instruction in
your code, you use an instruction breakpoint (BI) or a
temporary "go-until" breakpoint.

You set up basic breakpoints by typing the appropriate
breakpoint command at the prompt. The debugger manages
the event resources, assigns a number to each breakpoint for
reference, and displays them in the breakpoint viewport
(va 25).

Displaying breakpoints

Working w~h basic breakpoints

Breakpoints are displayed in viewport 25. Using the
VACTIVE command (VA 25), you can see the current
breakpoints. This viewport also opens when you set a
breakpoint, issue a breakpoint command without an argument,
or use the command OP'I'ION BREAK ON. (OP'I'ION BREAK
SW AP returns the window to normal mode.)

S4-3

Clearing breakpoints
Breakpoints may be cleared using the CLEAR command. You
can clear an individual breakpoint by giving its number or all
breakpoints by not specifying a number.

Instruction breakpoints (Bl, GO_instruction)
XICE uses a software execution breakpoint mechanism to
provide up to 32 instruction execution breakpoints (Bl), as well
as temporary breakpoints (GO_instruction) and high-level
single stepping. The break occurs immediately before the
instruction actually executes.

Use the following syntax:

Example Meaning

Bl #20 Sets a breakpoint at line number 20.
May require module name.

Bl SIEVE\#28 Sets a breakpoint at line number 28
in the module SIEVE.

Bl Ox221 o .. Ox2216 Sets breakpoints starting at address
2210 and ending at address 2216
(hexadecimal), assembly-level mode
only.

BREAKI #1 .. #4 Sets breakpoints starting at line
number 1 and ending at line
number 4.

Bl #15 .. #18;FOO() Sets breakpoints starting at line
number 15 and ending at line
number 18. Executes macro FOO
after each line.

84-4 XICE Supplement for 68000/68EC000/68HCOOO and 68302

Working w~h basic breakpoints

Bl #1 O;when(i==3)

BIOx93

Bl step

Ranges

Sets a breakpoint at line number 10
and stops only if variable i is equal
to 3.

Sets a breakpoint at address 93
(hexadecimal), assembly-level mode
only.

Sets a breakpoint at the address of
step.

You can specify an address range when defining a basic
breakpoint (BI). XICE handles ranges by breaking them into
multiple individual single-point breakpoints. Thus, if you
specify that a breakpoint should be for a range of20 addresses,
you may set only 12 additional breakpoints.

Setting one-time breakpoints
A temporary or one-time breakpoint is an execution breakpoint
attached to the current XICE GO instruction. Temporary
breakpoints are commonly used to skip over a section of code or
a subroutine. You can either click on an instruction in the code
window (platforms with mouse support only) or enter the
address or line number on which to break as a suffix to the GO
command.

go Ox1234 Tells the emulator to run until it
sees address Ox1234 on the bus

The same software execution breakpoint mechanism is used;
the emulator runs to it and clears the breakpoint after
breaking. If a macro or other operator is attached, it acts just
as it would if attached to permanent breakpoints.

Trace display
When you view disassembled trace after an instruction
breakpoint is reached, the display shows the instruction break
at the point you defined. However, the raw trace display may

S4-5

•

S4-6

show extra pre-fetches that result from filling the CPU
pipeline. The break has occurred at the specified point, as is
shown by the CPU program counter (PC).

Initial setup
The execution breakpoint mechanism replaces the actual
instruction in memory with a TRAP n instruction and sets an
access breakpoint to stop execution on instruction fetches in
the interrupt service routine. Consequently, these breakpoints
will use target or overlay resources and can only be used in
writable memory. So some setup is necessary before the initial
use of execution breakpoints and temporary breakpoints.

In most cases, setup is virtually transparent, even for code that
resides in PROM, if you use overlay memory and the defaults
in xice.cfg:

o Dedicate a TRAP for XICE to use.

The default set in xice.cfg is TRAP 15; if your code makes no
use of this trap, skip to the next bullet.

You must allocate exclusive use of one of the 16 TRAP
vectors to XICE. Use the EXVEC command, or set a default
with the SW_EXVEC softswitch in xice.cfg.

The assigned trap in the vector table must be in writable
memory so that it can be modified to point to the scratch
area. This memory may be target RAM or emulator overlay
ROM or RAM. If your vector table resides in target ROM or
PROM, use the emulator's overlay memory to map the vector
area as ROM; then the vector can be modified by XICE, but
the area is protected from target writes during program ex­
ecution. For example, if the vector table resides at
Ox0000 .. 0x0013 in target PROM, enter the following to map
it to overlay ROM:

rom Ox0000 .. 0x0013

o Define scratch space in writable memory.

XICE Supplement for 68000/68EC000/68HCOOO and 68302

Working w~h basic breakpoints

The default 8-byte scratch space set in xice.cfg starts at
Ox9ff0; if your program never makes use of this area, skip to
the next bullet.

XICE needs 8 bytes of writable memory for its breakpoint
routine. This SCRATCH memory area may be either target
RAM or emulator overlay RAM or ROM. If you do not have
any unused target RAM, pick an area of target memory out­
side the boundaries of your memory map, and map overlay
to that area.

Set the SW _SCRATCH softswitch in xke.cfg to the scratch
area's starting address or allocate scratch space using the
SCRATCH command before using a BI or temporary break­
point. If the area you select does not return DTACK, see the
guidelines in ''Working within the limits" .

IJ Ensure that the breakpoint falls on an instruction boundary.

If you use an instruction's label, XICE always places the
breakpoint in the correct place. If you use a hex address in
assembly mode or a line number in source mode, XICE does
not check for alignment. In some instances, code corruption
can result if you do not place the breakpoint on the start of
the instruction.

a Ensure that the instruction resides in writable memory.

The memory location on which you are placing the instruc-
tion breakpoint must be in writable memory so that the ac- •
tual instruction can be replaced by the trap instruction. ~
This may be either target RAM or emulator overlay memory.
Ifthe code resides in PROM, use the emulator's overlay
memory to map the area as ROM; the code space can then be
modified by XICE, but the area is protected from target
writes during program execution.

For example, to overlay the wait instruction from target
PROM to ROM overlay, enter:

rom wait=copy

54-7

S4-8

For example, this is what takes place if you set an execution
breakpoint on wait in the cdemon program using the defaults
for scratch RAM and exception vectors:

bi wait

1. An address comparator and status comparator are set up to
monitor execution of the code in the SCRATCH memory area
at Ox9ffi'.

2. The wait instruction is replaced by the trap instruction
specified by TRAP 15. The original wait instruction is saved
to be restored immediately following any breakpoint.

3. During program execution, the trap executes.

4. The trap instruction causes an interrupt through the
EXVEC trap vector. Code execution then begins in the
SCRATCH memory area.

5. The event system detects program execution in the
SCRATCH memory area and triggers the breakpoint.

6. The break is reported to XICE, and the wait instruction is
restored in code.

Working within the limits
Execution breakpoints consume event system resources and
affect what is possible using other features. In general, the
emulator manages these resources and warns you when it
makes adjustments and presents an error when resources are
exhausted or when you attempt something that creates a
conflict. So you need not concern yourself with more than the
following general guidelines.

o If you use them in addition to the event system, note that
instruction breakpoints consume an address and a status
resource in each event group. Limit event system address/
status resource consumption to no more than one address
and one status comparator in each group. Set up the event
and trigger statements, but leave them disarmed until you
are ready to use them.

XICE Supplement for 68000/68EC000/68HCOOO and 68302

CJ You can specify an address range. XICE handles ranges by
breaking them into multiple individual single-point
breakpoints. Thus, if you specify that a breakpoint should be
for a range of 20 addresses, you may set only 12 additional
breakpoints.

CJ If you use them with access breakpoints, note the limitations
explained in the "Access breakpoints" section that follows.

CJ When XICE is invoked, it performs a read of the area
designated for SCRATCH if SW_SCRATCH is specified in
xice.cfg. If SCRATCH is set to an area of memory that does
not return a DTACK at the end of the read, it will hang
XICE. In such a case, comment out the default address for
SCRATCH (Ox9ff0) in the xice.cfg file. Then specify the
address for SCRATCH before setting any breakpoints by
using the SCRATCH command or preferably in an include
file when you invoke XICE.

Access breakpoints (BA, BR, BW)

Working w~h basic breakpoints

An access breakpoint sets a read, write, or read/write
breakpoint at the specified memory location or range. An
access breakpoint halts program execution each time the target
program attempts the specified type of access at the specified
location(s).

Use an ampersand(&) to reference symbolic addresses rather •
than just the symbol names. Using a symbol name alone .
returns its value, not the address.

You have up to 6 access breakpoints of the same type (e.g., all
reads) or up to 3 each of two different types. They are set using
the syntax:

[ha I hr I bwJ [address I address_rangeJ [;macro_nameJ

ha for read or write access

hr for read access

hw for write access

S4-9

Example

BR Ox300

BW @sieve\\flags

BA flags . .flags+ 10

BR 20h .. 30h;FOO()

BR &flags(O]

BA prime

S4-10

Meaning

Sets a read access breakpoint at
address 300 (hexadecimal).

Sets a write access breakpoint
at the address of the variable
array flags in the root named
@sieve.

Sets read/write access
breakpoint starting at the
address of the array flags and
ending 10 bytes after the
address of flags.

Sets read access breakpoints
from address 20h (hexadecimal)
to 30h and executes the macro
FOO on every breakpoint
between these addresses.

Sets a read access breakpoint at
the address of array element
flags[OJ.

Sets a read/write access
breakpoint at the address
referred to by the value in
variable prime.

This command is correct if
prime is a pointer. The
breakpoint is set at the location
of the variable prime. For
example, if the value of prime is
Ox0123, a breakpoint is set at
the address Ox0123.

XICE Supplement for 68000/68EC000/68HCOOO and 68302

Working w~h basic breakpoints

BW &prime

This command may not be
correct if prime is a scalar, since
the value in prime is treated as
an address and the breakpoint
is set at that address rather
than at the address of the
variable prime.

Sets a write access breakpoint
at the address of the variable
prime regardless of its type.

This command is correct if
prime is a scalar; it sets a
breakpoint at the address of the
variable prime.

If prime is a pointer, the
breakpoint is set at the address
of the pointer rather than at the
address it is pointing to (i.e.,
prime).

BA &count; when (k<30) Sets a read/write access
breakpoint at the address of
count and only stops when the
value of k is less than 30.

Access breakpoints begin breaking on the cycle in which the
access occurs but may continue or "skid" several cycles after
access to the breakpoint location.

XICE performs the following functions when it encounters an
access breakpoint:

84-11

II

$4-12

1. Completes the execution of the instruction at that location.

2. Suspends program execution.

3. Executes a macro (if one was specified when the breakpoint
was set). Depending on the macro, the debugger will do one
of the following:

If the macro return value is true (nonzero), the debugger re­
sumes execution at the instruction immediately after the
breakpoint.

If the macro return value is false (zero), the debugger re­
turns to command mode and displays breakpoint informa­
tion.

4. If a macro was not specified, XICE returns to command
mode and displays updated breakpoint information.

Working within the limits
Access breakpoints consume event system resources and affect
what is possible using other features. In general, the emulator
manages these resources and warns you when it makes
adjustments and presents an error when resources are
exhausted or when you attempt something that creates a
conflict. So you need not concern yourself with more than the
following general guidelines.

o Up to 6 access breakpoints are possible when you are not
using BI execution breakpoints. You can have 6 breakpoints
of one access type (read/write/either) or two groups of 3 with
different access types.

o Up to 3 access breaks of the same type (ba, br, or bw) are
possible when you do use BI execution breakpoints. The first
BI uses one each of the two available address and status
comparators, leaving one of each for use with access
breakpoints. Each address comparator may have three
address points or one range associated with it; hence the
three possible access breakpoints.

o Currently, an XRAY68K core limitation causes an error
when you attempt to set an access breakpoint of one access
type within a previously defined range of another access
type. For example, if you set a read access break over the

XICE Supplement for 68000/68EC000/68HCOOO and 68302

Breakpoint latency

Working w~h basic breakpoints

range Ox4000 .. 0x47ff, you cannot set a write access break for
an address within that range.

o Setting an access breakpoint disables the event system.
Likewise, arming an event trigger prevents use of access
breakpoints.

Instruction breakpoints have no execution latency associated
with them. The break always occurs immediately prior to the
execution of the instruction in question. Since the execution
break mechanism does not generate any external events, there
is no time-latency either.

The execution delay associated with an access breakpoint is up
to six clock cycles, plus any instructions currently in progress
at the time the request is completed.

S4-13

•

Working with the event system

S4-14

The event system provides emulator, target, and execution
break control, allowing you to monitor any predefined series of
conditions in realtime and then perform emulator actions
based on those conditions.

The event system covered in this chapter is only available in
XICE, the emulator version of the debugger. It monitors target
information at the bus cycle level, including every read or write
cycle that the microprocessor executes. The event system "sees"
every signal that can affect the target system. It can take a
variety of actions based on conditions that you predefine.

You can think of events (conditions) as inputs to the event
system and triggers as statements that tie inputs to outputs.
Figure 4-1 shows the structure of the event system. The
possible events are listed on the left, and the possible triggers
are listed on the right.

Basic concepts are introduced in Figure 4-1 and outlined in
"Working with the Event System." More complete coverage of
each procedure can be found under "Events" and "Triggers"
later in this section. The tutorial in Chapter 3 also provides a
practical exercise in event system use.

XICE Supplement for 68000/68EC000/68HCOOO and 68302

CPU Bus

Address

Data

Status

LSA

Emulator
Inputs Conditions

(input)

Group
1, 2, 3, or 4

Events Triggers

ARM/
DISARM

Figure 4-1 Event system structure

Actions
(output)

Change groups

Break

External
Trigger
Output

Trace control
-trace 1 cycle
-toggle tracing

Counter control
-increment
-toggle
-reset to 0

Force special
interrupt

To use the event system, you first define conditions (event
statements) using the EV command. Then, using the TRIG
command, you define actions (trigger statements) that are to
take place under those conditions. Up to 32 event statements
and 16 trigger statements can be defined. Typically, you will
modify the construction of the event system during the course
of a debugging session. You can employ different events and
triggers from among those defined as you go.

Working w~h the event system 84-15

..

Note

In order to be in effect, an event statement must:

a be defined
a be referred to in an active trigger statement

In order to be active, a trigger statement must:

a contain a reference to one or more event statements that are
in effect

a be armed
a be in the group that is current

If you set EVTARM to ON, triggers are armed by default when
defined. The event system hardware resources may limit the
number of triggers that you can have armed at the same time.
Disarming and rearming triggers with TRIG saves you from
retyping them every time they are armed.

Example

ev{ 1}=data==0X1234

trig{1 }=ev{1 }, break

Event 1 is active when 1234
appears on data bus.

Event 1 triggers trig 1, which is
a break.

Break is the default action. The trigger in the example above
could have been stated: trig { 1} =ev{ 1}

Event and trigger statement groups

S4-16

A group is a set of events and triggers that can be activated and
deactivated all together. There are four groups in the event
system (1, 2, 3, and 4), one of which is current at any given

XICE Supplement for 68000/68EC000/68HCOOO and 68302

Working w~h the event system

time. This gives the event system a state-machine capability
for debugging difficult problems. The emulator always starts in
group 1 each time you enter the command GO.

When setting up events and triggers, you always associate
them with a group. The group a particular event or trigger is
associated with is the one current at the time you set it up.

The GROUP command shows the group that was current
when the emulator last broke, and the EVTGRP command
shows the group to which new event statements will be added.

Example

group displays the number of the
group current at the break.

evtgrp displays the group new events
and triggers will be added to.

evtgrp 2 Makes "group 2" the group new
event or trigger statements will
be added to.

group Response not updated until next
break.

evtgrp Responds "2".

Displaying event system constructs
Event and trigger statements can be displayed using the
STATUS command. By issuing the command STAT EV you
can see the current event statements. By issuing the command
STAT TRIG you can see the current trigger statements.

Clearing event system constructs
Event statements may be cleared using the EV or TRIG "clear"
option. When a trigger is cleared, it is disarmed and cleared
from XICE. When an event is cleared, it is removed from XICE
as long as it is not currently referred to in an armed trigger. If

84-17

•

Events

84-18

it is used by an armed trigger, then it is set in the emulator and
cannot be cleared until all armed triggers that use it are either
disarmed or cleared.

The EVTCLR command is provided to clear the entire event
system. It clears the event and trigger statements in from
XICE and resets the emulator's event hardware.

Logging event system constructs
If you wish to use a set of event and trigger statements for
future debugging, you can use the LOG command to capture
statements as you write them. You can then edit the log file
with a text editor to create an include file that reproduces your
event system setup.

An event statement is constructed of one or more events and
defines a portion of a potential bus cycle. The definition can
include the state of the processor bus (the address, data, and
status busses) and/or the state of other event resources
(counters and LSA). You define an event to be valid when the
portion of interest of the current cycle matches the value
specified in the event statement. Parts of the cycle not defined
in the event statement are ignored. The event system watches
the busses and other event resources for valid events and
matches them with actions specified in armed triggers.

You can define up to 32 event statements in XICE. A defined
event can be used in any or all of the four event system groups.

Examples

ev{l}=addr==0x1234, status!=word

Event 1 is active if0x1234 appears on the address bus and data
is not a word.

XICE Supplement for 68000/68EC000/68HCOOO and 68302

Note

Note

Working w~h the event system

In an event statement, the comma (,) is the AND operator for
the whole statement and the (!=) is the NOT operator for a
whole event within the statement.

ev{l}=status==not_wordlwr

Event 1 is active if this is not a word operation and the data bus
is in write mode.

The string "NOT_" is the NOT operator within the status eyent
definition and the pipe (I) is the AND operator within the
status eyent definition. Not all status conditions accept the
"NOT_" construction. See the SETSTATUS EV description in
Chapter 2.

The description of the EV command in Chapter 2 of this
manual covers all the elements that can be included in an event
definition. The following descriptions give detail about selected
event topics that require more information.

Symbolic references
Symbol table values can be used throughout event system
commands. The correct translations are performed for valid
symbols to get actual symbol addresses, which can be used in
defining events.

Ranges
You can specify an address range when defining a basic
breakpoint (BI) or an event system event (EV). For EV
commands, address ranges use a single address comparator.
For BI commands, XICE handles ranges by breaking them into
multiple individual single-point breakpoints. Thus, if you
specify that a breakpoint should be for a range of20 addresses,
you may set only 12 additional breakpoints.

S4-19

..

Triggers

S4-20

The syntax to specify a range is:

first_value .. last_value

Example

ev (1 l =addr==0x03 fa .. Ox03 ff

Event 1 is active when any address between Ox03FA and
Ox03FF (inclusive) appears on the bus.

Don't-care masks
With the event system, you can also use don't care masks with
data and LSA to further qualify a portion of a potential bus
cycle for an event definition. The mask is a hexadecimal
representation showing which bit positions are relevant and
which are not relevant. You specify the don't care mask value
immediately following the LSA or data. Bits masked with a 0
will be ignored.

The syntax is:

value &=mask_value

Example

ev{l}= data==0x3E13 &=OxFFFE

Event 1 is active when Ox3E13 or Ox3E12 is seen on the data
bus.

A trigger is a list of up to 8 ORed event statement references,
followed by one or more action definitions. If no action is
specified, the default action, break, is assumed.

Triggers are associated with one of the four event system
groups, as determined by which group is current wben the
trie-ger js defined. When the event system encounters

XICE Supplement for 68000/68EC000/68HCOOO and 68302

Working with the event system

conditions specified in an event statement, it initiates the
actions called for in armed triggers for the current group that
refer to that event definition.

Multiple events in a trigger are ORed; the OR operator in this
construction is the pipe (I). Multiple actions are ANDed; the
AND operator is the comma (,). A comma(,) is also used in the
trigger definition to separate the events from the actions.

You may store up to 16 trigger statements at any given time
although the number that may be armed may be smaller
depending on the demand for event resources.

Example

trig {l}=ev{l} lev{32},rct,grp2

When event 1 is valid or event 32 is valid, reset the counter,
and change to group 2.

The description of the TRIG command in Chapter 2 of this
manual covers all the elements that can be included in a
trigger.

Disarming and rearming triggers
Triggers are armed (active) when they are defined ifthe
EVTARM switch is ON (the default) and there are sufficient
event system resources available. The purpose of the ability to •
disarm triggers is to allow you to keep triggers that you are
not using or that would cause the emulator to run out of event
system resources. You can then reuse them without having to
retype them.

You can turn this switch on and off with the EVTARM
command. You can also set EVTARM by including the
statement SW_EVTARM:ON or SW_EVTARM:OFF in your
XICE.CFG file.

At the time you define the trigger, XICE checks the EVTARM
switch. If it is on, XICE attempts to arm the trigger by setting
its events and then the trigger itself in the emulator. If arming
fails-if, for example there are not enough resources

84-21

Note

available-the trigger will be defined but disarmed. See "Event
system limitations" on page 3-24 for a summary of event
system resource limits.

Triggers may be explicitly disarmed and rearmed using TRIG.

Example

trig{lO}=disann

Using groups
Changing groups activates alternate sets of events and
triggers. When setting up triggers, change the current group
manually using the EVTGRP command if your next trigger
statement is to apply to another group.

The GROUP command shows the group that the emulator last
broke in, and the EVTGRP command shows the group that
new event statements will be added to.

As an example of the common use of groups, you may wish to
trace a subroutine after it has been called by module A or
module B, but not if it has been called from modules C, D, or E.
In this case, you would define a set of event statements to the
address ranges of modules A and B. When either of these
modules is encountered, switch to group 2 and look for the
subroutine. After tracing the subroutine, switch back to
group 1.

Event system breaks

84-22

The event system can use either basic or complex breakpoints.
However, you must choose which type to use before invoking
XICE. The switch SW _EVTMODE should be set to ON or OFF
in the XICE.CFG file. The default is OFF.

XICE Supplement for 68000/68EC000/68HCOOO and 68302

Note

Note

Working with the event system

When the SW _EVTMODE switch is OFF in the XICE.CFG file,
you can set as many triggers with BREAK as an action as can
be supported by hardware. However, because the emulator
cannot determine which of these caused an event system break,
macros attached to event system breakpoints will not work.

Attaching macros to event system breakpoints
A BREAK.COMPLEX CBC) breakpoint is an event system
breakpoint that can initiate a macro.

When the SW_EVTMODE variable is ON, only one event
system breakpoint may be armed at a time. In this case you
may use a complex breakpoint (BC) in order to call a macro.
The BC command will bind the trigger specified to the sole
complex breakpoint and will appear in the XICE breakpoint
window. The complex breakpoint is defined using the BC
command to tie the break to a trigger.

It is illegal to specify BREAK directly in a trigger statement
when SW _EVTMODE is ON.

Example

ev{1 }=addr==Oxo

trig{1 }=ev{1}

be trig{1};foo()

Event 1 is valid when 0 shows
up on the address bus.

Trigger 1 is set for event 1.

Breaks and executes the macro
"foo"

SW _EVTMODE must be ON; trigger 1 must be armed.

S4-23

Event system breaks and trace
The event system provides a variety of switches that affect how
the system captures trace. These are listed in table 3-2 and
covered in the alphabetical command reference, Chapter 2.
Each switch can be set in XICE.CFG or read directly from the
command prompt.

Switch Description Manual
Ref.

PPT Enable/Disable tracing of emulator peeks and S2-114
pokes

TED Controls whether external OMA is traced S2-139

TIO Controls whether internal OMA is traced S2-141

TRCBRK Controls the tracing of breakpoints S2-138

TRCFRAME Establish baseline traceframe number S2-143

TRCINT Display timestamps as INTERVAL/OFFSET S2-144

TRCMODE Display disassembled trace as ASM, SAC or S2-145
BOTH

TSTAMP Controls whether timestamp or LSA is traced. S2-153

TUN ITS Sets the timestamp units S2-154

Event system limitations

S4-24

XICE can keep track of up to 32 event statements and up to 16
trigger statements at the same time. Depending on the events
and actions specified, different numbers ofhardware resources
are required by each trigger statement. In general, the
emulator manages these resources and warns you when it
makes adjustments and presents an error when resources are
exhausted or when you attempt something that creates a
conflict. So you need not concern yourself with more than the
following general guidelines.

XICE Supplement for 68000/68EC000/68HCOOO and 68302

Working with the event system

Statement limits
You can mix events (e.g. status, data, count ...) in a single event
statement. However, only one status, address, data, or LSA
definition can be given in a single event statement. When you
write the event statement, you can improve the flexibility by
compounding resource references within the status, address, or
data definition. Multiple status states can be ANDed within a
status definition. Addresses and data can be given as ranges or
qualified with don't care masks, but not both at the same time.

Example

ev{l}=addr==0x1234,data==0x0 &=OxOff,status==bytelrd

Event 1 is valid when the address is Ox1234, and the least
significant 8 bits of the data bus are OxOO, and read is asserted
and access is by byte.

Trigger statement limits
Up to 8 event statements can be referred to in a trigger
statement. (Multiple event statement references are ORed
together.)

For a given XICE session, event system breaks (caused by a
break action in a trigger definition) must be exclusively basic
or exclusively complex. This is specified by the SW_EVTMODE
switch in the XICE.CFG file. Basic breaks cannot be attached •
to macros, but you can specify a larger number of them. A ~
complex break initiates a macro, but you are restricted to only
one being armed at a time.

Hardware resource limits
You can free up event resources by disarming the triggers that
refer to the event statements that employ those resources or by
switching groups.

Events that are used by armed triggers use comparator
hardware in the emulator.

54-25

Note

S4-26

The system keeps track of available resources and prompts you
when you exceed the maximum. So you need not remember the
specific number of event resources you have used. When you
see "Limitation Error" or "Comparator Unavailable," you have
reached the maximum. You may choose to eliminate unneeded
events or use the LOG command to create and save separate
event system setups for use in separate sessions.

For BI, XICE handles ranges by breaking them into multiple
individual single-point breakpoints. Thus, if you specify that
an instruction breakpoint should be for a range of 20 addresses,
you may set only 12 additional execution breakpoints.

Single-stepping emulation
The event system is not active during single-stepping in
assembly-level mode. Trace will accumulate as you single step.

XICE Supplement for 68000/68EC000/68HCOOO and 68302

Chapters

Using Performance Analysis

Using Performance Analysis

The performance analysis features ofXICE for the EL1600
Motorola 68000 and 68302 development system allow you to:

o determine which areas of a program use the most CPU time
o identify bottlenecks in time critical applications
o monitor the effects of programming changes made to

improve throughput.
The performance analysis features are implemented using
statistical performance analysis, which involves: sampling
instruction fetch bus cycles at regular intervals using the event
system; determining what function was active when a sample
was taken; keeping a tally of the number of samples falling
within each function; and reporting the sample information.
The report is in a user-specifiable format. The default format is:

o Function name
o Percentage of samples falling within that function
o A horizontal histogram showing this percentage in relation

to other functions.
A sample report is shown below.

Hits used: 8186 (8186 total, 0 excluded)
FUNCTION PERCENT

func9: 30.8 ***************
func8: 17.1 ********
main: 16.6 ********
func7: 12.4 ******
func6: 11. 1 *****
func5: 6.2 ***
func4: 3.1 *
func3: 1. 6 *
func2: 0.8 *
funcl: 0.3 *

SS-1

-

S5-2

Commands relating to performance analysis are listed in the
table below. These commands are explained in more detail in
Chapter 2 of this supplement.

PER FACT Off: no performance analysis data is
[STATISTICAL I gathered.
OFF] Statistical: trace is uploaded

periodically from the emulator and
processed. This flag is tested while in
run.

PERFCLR Removes all accumulated performance
analysis data.

PERFDATA Displays address range and number of
[symbol I string] hits associated with a symbol in the

performance analysis display.

PERFDEPTH Specifies maximum number oflines of
[0 ...] performance analysis display output.

PERFDISP Displays performance analysis
information.

PERFEX Allows convenient exclusion of address
[address I ranges and functions from performance
address range I analysis data (e.g. delay loops or
symbo~ functions).

PERFEXCLR Clears exclusion(s) set with PERFEX.
[address I
address range I
symbo~

PERFFORMAT Determines display format of
[St*andard I performance analysis information from
Pe*rcent I Hi*ts I the command line.
Ba*r I PH I PB I
HB I PHB I All]

PER Fl NT Time interval in seconds between trace
[1-120] uploads from the emulator.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

PER FM ODE Always: Information is displayed
[A*lways I whenever it is uploaded from the
D*emand] emulator.

Demand: Information is only displayed
on command (PERFDISP).

PERFTOL Specifies maximum distance when
[distance] searching for symbols.

Sw _perffmt_ stat: Determines display format of
[Standard I performance analysis information from
Percent I Hits I Bar XICE.CFG.
JPHJPBJHBJ
PHB I All]

Event system setup

Sample include file

Event system setup

To use performance analysis, you must set up the event system
to wait a number of bus cycles, then capture the next
instruction fetch cycle. An include file to set up the event
system is supplied; it is also shown below. To use it, follow
these steps:

1. Load the program file.

2. Include the file for event system setup (perf.inc in your bin
directory).

3. Give the following commands:

>go

Approximately every three seconds, captured trace will be
uploaded from the emulator, processed and displayed.

Below is an include file suitable to set up the event system for -
performance analysis:

S5-3

$5-4

, , This file can be used to set up the EL-1600 68000
, , or 68302 event
, , system for statistical performance analysis.

;remove any residual event system setup
evtclr

evtgrp 1

ev(l}=stat==Oxffffffff&=Oxffffffff
trig{l}=ev{l},trc

ev{2 }=addr==O .. Oxffffffff
trig{2}=ev{2},cnt

,, This timer value is the number of bus cycles that
,, are allowed to elapse
, , between grabs by the trace system. You will probably
,, want to change it
, , a few times during a P.A. run to assure that the
, , number is not in sync
,, with your program. If the period of this timer
, , matches a periodicity in
,, your program, very inaccurate results might occur.

ev{3}=count==1000
trig{3}=ev{3},rct,grp2

evtgrp 2

ev{4}=stat==proglrd
trig{4}=ev{4),trc,grpl

; Gather P.A. info during run.
perfact statistical

; data collection interval
perfint 3

; display P.A. data every time trace is uploaded.
perfmode always

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Special considerations
XICE must halt the processor when uploading trace data. It
does not take very long, but it could interfere with the
operation of your program if you have timing constraints.

Performance analysis relies on all instruction fetches
appearing on the bus. If you are using the processor's cache,
instructions may be fetched from the cache and performance
analysis reports will be unreliable at best. For example, a tight
loop which consumes 90% of all CPU cycles might appear on
the bus only when it is entered (if it fits entirely in the cache),
which would produce a very misleading performance analysis
report.

Prefetch information is included as bus cycles are captured.
This can add inaccuracies, since prefetch data often goes past
the boundaries of a function.

Performance analysis uses the majority of event system
resources, which means that you cannot do performance
analysis and use a complicated event system setup at the same
time. You might be able to share resources with the
performance analysis setup, but you should check carefully to
ensure that your additions do not interfere with the needs of
the performance analysis setup.

Performance data and address range exclusions are
automatically cleared when a load command is executed.

Limitations of statistical performance analysis

Special considerations

Statistical performance analysis can be inaccurate if the
interval between samples matches a period within the
program. For example, suppose you have the event system set
up to sample every 1000 bus cycles (as in the include file -
above). Further suppose that there is a small routine in your
program which is executed from a loop, and the length of the
loop is roughly 1000 bus cycles. It could easily occur that almost

SS-5

every sample would come from that same small routine, and
hence that routine would appear to consume most of the CPU
cycles even though it actually consumes much less than that.

The uploading of trace offers another opportunity for
inaccuracy. For example, suppose you have XICE set up to
upload trace data every three seconds (as in the include file
above). Further suppose that you have a routine which is
executed roughly every three seconds. That routine might
never be sampled, ifit always is executed in the period between
when the trace buffer fills and when trace is uploaded. While a
routine that is executed only every several seconds is unlikely
to be a performance problem, the picture presented in the
performance analysis reports will still be inaccurate.

For maximum accuracy, you should run performance analysis
on your program several times, with different intervals
between samples and uploads. Note that if you greatly increase
the interval between samples, you may wish to increase the
interval between uploads as well so you get a full trace buffer
each time, although it will not cause problems if you do not. If
you notice a drop in the number of samples collected between
reports, this is what is happening.

Exclusion of address ranges

55-6

The ability to exclude address ranges allows you to discard data
from functions and areas which are not of interest. For
example, if you have a delay function, it may consume the
majority of CPU cycles. This information might be interesting
if your program should not be spending that much time in the
delay function, but if you are interested in the performance of
the rest of the program, it simply gets in the way.

The performance analysis system allows you to exclude
address ranges in two different ways. The exclusion may be
performed on the host or on the emulator. Each has advantages
and disadvantages, and both may be used simultaneously to
solve problems for which each is best suited.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Special considerations

The first way is via the perfex command. Its primary
advantage is that any number of exclusions may be specified,
covering arbitrary address ranges. Its primary disadvantage is
that the exclusion is done on the host. For example, if you use
perfex to exclude a delay function which consumes 90% of the
CPU cycles, then roughly 90% of uploaded trace data will be
discarded. This is highly wasteful. If additional exclusions are
in force, all trace data in a given upload might be discarded.

The second way is by appending an event negating the range to
ev{lO) in the supplied event system setup include file (see
above). The primary advantage of this method is that the
exclusion is done on the emulator and resources are not wasted
uploading trace data which falls within the excluded range.
The primary disadvantage is that only one address range can
be excluded in this manner. Note that if you use this method,
you may wish to increase the interval between trace data
uploads, since if (for example) you are excluding 90% of the
potentially-sampled cycles, then it will take ten times as long
to fill up the trace buffer.

You may use both methods at once. Suppose you have a delay
function which consumes most of the CPU cycles, but wish to
exclude other functions or ranges at the same time. You can use
the event system to exclude the delay function and perfex to
exclude the other functions. This setup means that resources
are not wasted uploading thousands of samples which would be
excluded, but at the same time you can exclude any number of
functions or address ranges.

S5-7

•

Chapter6

Using the Time Stamp Module

Using the Time Stamp Module

This chapter describes the Time Stamp module and how to
install and use it with the XICE debugger and the EL 1600
emulator. Complete examples are provided for using the
module to do each possible type of measurement. The sample
raw trace display screens are for a Motorola 68302 processor;
however, they are directly applicable to Motorola 68000 and
Intel 80C18X family processors.

S6-1

-

Overview
The Time Stamp feature is used for measuring time and for
counting occurrences of events.

Commands Used to Set Up Time Stamp

Command Description

tstamp on/off Choose timestamp or LSA

trcint offset/interval Display the off set or
interval time value

tunits OxO-Oxf Select time base (use same
value as Time Stamp
module switch)

trcframe n Center timestamp display
around trace frame
number n

ev{n} Advanced Event System
event statements

trig{n} Advanced Event System
trigger statements

Possible measurements

S6-2

There are eight distinct measurements that can be made using
the Time Stamp module. They are categorized into the two
general groups shown below:

Elapsed time measurements
o Measure time spent in a module
o Measure time spent between modules
o Measure duration of time when memory is accessed (opcode

OT data)

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Overview

o Measure duration of time when code is accessed (opcode
only)

o Measure interrupt response time directly

Count occurrences
o Count number of times address or range of memory is

accessed (opcode or data)
o Count number of times code is accessed (opcode only)
o Count module linkage activity (the number of times one

module calls another)
Each time measurement is based on one of five scales: .luS,
luS, .OlmS, .lmS or lmS, which you specify. This allows you to
collect your data using the appropriate time scale. The
maximum number of counts for any time base is 65,535 so you
have a maximum period of65 seconds without overflow.

Time can be measured on an offset time frame, or on an
interval time frame. When you use the offset time frame, the
measurement is from the time the counter is reset and is
centered around the raw trace frame selected by the XICE
trace cycle number variable, trcframe.

When you use the interval time frame, the measurement is
from one traced cycle to the next traced cycle. For example, if
you were measuring the elapsed time for entering and exiting
a module, the time displays would show as follows:

Offset Interval

enter Ons 700ns

exit -700ns 700ns

enter Ons 700ns

exit -700ns 700ns

enter Ons 700ns

exit -700ns 700ns

$6-3

-

Installation

Hardware installation

S6-4

The Time Stamp module consists of the module itself and the
cable to connect it to the emulator.

There are three steps to hardware installation:

1. Turn the emulator off.

2. Remove the front cover of the emulator.

3. Connect the module to the 40-pin connector on the trace/
break board, as shown in the following illustration. Note
that you cannot use the Logic State Analysis probe and the
Time Stamp module at the same time.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Installation

Figure 6-1 Connecting the Time Stamp module to the EL 1600

EL 1600
Controller Board

Trace and
Break Board

Before plugging in the cable, turn off power to the EL 1600
emulator to prevent damage to the cable and module. Do not plug
in or unplug the Time Stamp module with emulator power turned
on.

86-5

-

Using the Time Stamp module

Getting started

S6-6

This section defines the labels, buttons, switches and LEDs on
the Time Stamp module, and provides information on how the
unit works.

Trigger Input TGR

Trigger Input TGR

Figure 6·2 Time Stamp module

Figure 6-3 shows the end of your Time Stamp module including
the locations of the trigger inputs, reset button, switch and
overflow indicator LED.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using the Time Stamp module

RST

•
O/F TGR /····· ...

:C);
-----~~~~~----

......... /

Reset button Overflow light

Figure 6-3 End view of Time Stamp module

TGR

TGR

AST

Switch

O/F

The TGR input measures interrupt latency
directly. The TGR input connects directly to
the interrupt line in your target circuit to avoid
any logic delays due to use of the Advanced
Event System. It is designed for processors
that pull lines low for interrupts. (Motorola)
(see page 22)

The TOR input measures interrupt latency
directly. The TGR input connects directly to the
interrupt line in your target circuit to avoid
any logic delays due to use of the Advanced
Event System. It is designed for processors
that pull lines high for interrupts. (Intel
processors) (see page 22)

The reset button resets the time stamp counter
to 0.

The switch determines the time base and
counting type. (see page 10)

The overflow LED indicates when the counter
overflows the 65,535 limit.

86-7

\Varnin~

The examples that follow give information on when to use the
manual reset button, TGR and TGR, and how to use the switch
to choose the time stamp mode and time base.

Do not plug in or unplug the Time Stamp module when power is
turned on to the emulator.

Making a measurement

S6·8

The basic steps to make a measurement are as follows:

1. Set up the XICE variables for time stamp. Set the XICE
variable tstamp on to display timestamp information in
raw trace. Set the XICE trcint and trcframe variables to
the appropriate values for the measurement you want to
make.

2. Choose a switch setting on the Time Stamp module and set
the XICE variable tunits to the same value as the switch.

3. Set up the trigger inputs.

4. Set up the Advanced Event System to trigger the Time
Stamp module at the appropriate program states.

5. Run your program.

6. View the time stamp information.

7. Interpret the time stamp information.

Each step is described in detail below.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using the Time Stamp module

Step 1 : Set up XICE timestamp variables
The XICE variables tstamp, trcint, tunits, and trcframe
control the raw trace display of information coming in on the
LS.A/time stamp port. Settings tstamp on, trcint offset and
interval, tunits, and trcframe are used with the Time Stamp
option. Setting tstamp off is used with the LSA pod.

tstamp off

tstamp on, trcint offset

tstamp on, trcint interval

tunits OxO-Oxf

trcframe n

Default: LSA value shown as 16
bits

Display the offset time value

Display the interval time value

Select timestamp time base (use
same value as switch)

Center timestamp display
around trace frame number n

Offset time values are used when you want to measure the total
amount of time spent or the number of occurrences. Interval
time values are used when you are interested in the time spent
between points A and Bin your code, but are not interested in
how long it takes to get to point A

You may select values by editing the xice.cfg file or by using the
following commands within XICE:

To select timestamp display in raw trace, enter:

:>tstamp on.

To select display mode offset or interval, enter:

-·trcint x (where xis offset or interval)

To select raw trace frame number for centering timestamp
display in interval mode:

- trcframe n (where n is the raw trace frame number)

S6-9

-

Note

86-10

Step 2. Set up Time Stamp module switch
The time base for the timestamp is controlled by setting a
switch on the Time Stamp module and setting the same value
for the XICE timestamp units variable, tunits.

Choose a switch setting on your Time Stamp module based on
your measurement type and preferred time base. We
recommend starting with the slowest time frame: 1 mS. The
table below shows the maximum measurable time period for
each switch setting.

Time Base

0.1 us

1.0 us

.01 ms

0.1 ms

1.0 ms

Maximum Measurable Time Period

6.5 milliseconds

65 milliseconds

.65 second

6.5 seconds

65 seconds

If the counter overflows, the yellow overflow LED will be lit.
Check to see if you are using the correct time base for the
duration of your measurements. When the counter overflows
the 65,355 limit, it starts again at 0.

When the emulator is paused, no TGR is generated by the
Advanced Event System in positions 0-4, so the counter is not
reset and is likely to overflow. This is not a problem.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

For example, the drt display might be as follows.

FRAME ADDRESS DATA IPL FCn MEM TIMESTAMP

#20 001124 4EF8 000 SP

SP

SP

SP

RWO

RWO

RWO

RWO

700ns

#19 001100 4EF8 000 700ns

#18 001124 7548 000

000

700ns

#17 001100 4E71 700ns

Position

0

2

3

4

5

6

7

Using the Time Stamp module

The following table summarizes the switch positions.

The trigger to start and stop the counter in the Time Stamp
module is either the TGR signal from the Advanced Event
System (Step 4), or the TGR or TGR direct input from your
target interrupt line (Step 3).

Time Effect of TGR on Useful
Base Time Stamp Counter Measurements

.1 us Any TGR high causes the time Elapsed time
stamp

1 us counter to be reset to 0. No
manual

.01 mS reset is required in this mode
for either

.1 mS Offset or interval time
stamping.

1 ms

.1 us While the TGR is held high by Elapsed time
the

1 us Advanced Event System, the
time stamp

.01 ms counter counts. Manual reset is
required

86-11

-

8

9

A

B

c

D

E

F

86-12

.1 ms

1 ms

.1 us

1 us

.01 ms

.1 ms

1 ms

n.a.

in this mode for offset time
stamping,

but not for interval time
stamping.

In this mode, a long TGR
signal 1 from

the Advanced Event System
resets the

counter. After that, successive
short TGR

signals turn the counter on and
off. Manual

reset stops the counter and
sets it to zero.

This setting is used to count
occurrences.

Each time the TGR signal goes
high, the time stamp counter is
incremented. Manual reset is
required.

Elapsed time

Count
occurrences

A long TGR is defined as being longer than 1.6 us. This is the only
mode where the length of the TGR matters. The following diagram
shows what happens to the counter depending on the TGR signal.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using the Time Stamp module

1.6uS

Counting Stop Counting Stop
count mg counting

Figure 6-4 Positions A-E: Effects of multiple TGR signals

Step 3. Set up TGR input
The counter in the Time Stamp module can be controlled in one
of three ways:

1. The Advanced Event System TGR action.

2. The TGR input.

3. The TGR input.

The default is the Advanced Event System trigger input. No
additional wires are necessary.

To use the TGR and TGR lines to measure interrupt latency,
you must connect one of these lines to an interrupt line on your
target. Use of the TGR and TGR external inputs is described
fully in the example on page 22.

Step 4. Set up the Advanced Event System
Set up the Advanced Event System to selectively trace the
memory, program activity, or modules you are interested in
time stamping. You can set up the Advanced Event System
through the XICE command line or by using an XICE "include"
command file.

S6-13

-

S6-14

The three steps to set up the Advanced Event System follow:

1. Decide what condition you want to look at, and what actions
to take when that condition is reached.

2. Set up the event statements to isolate that condition.

3. Set up trigger statements using the appropriate events and
actions.

For more information on using the Advanced Event System,
please see Chapter 4 of this manual. The examples beginning
on page 15 provide examples of using the Advanced Event
System to specify conditions appropriate for time stamping.

Step 5. Run your program
Run XICE using the go command.

Step 6. View Time Stamp information
Displaying the time stamp information follows:

First enter XICE command line mode by either:

o stopping emulation with the <Control·c> command
o using the Advanced Event System to break emulation

Then view the trace, using the drt command.

The last column of the raw trace display shows either offset or
interval time stamp, depending on the setting you specified
with the trcint command.

In offset mode, use the trcframe n variable to select a raw
trace frame number to center the timestamp display around.

Step 7. Interpret Time Stamp information
The time stamp information is displayed in either offset mode
or interval mode depending on the setting of the XICE trcint
variable.

In offset mode, timestamps are the time relative to the raw
trace frame number specified by the trcframe command.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

In the interval mode, timestamps are displayed as the time
interval between successive bus cycles.

Collecting time stamp information in a file

Using the Time Stamp module

After setting up your Advanced Event System and Time Stamp
module to provide just the information you need, you can use
the XICE journal command to save the specific drt displays to
an ASCII file. You can use a spreadsheet or data base
management program to analyze the data stored in the file.

Below is an example demonstrating saving 42 frames of raw
trace to a file named trace.raw.

1. jou on="trace.raw"

2. drt 0 . .42

3. jou off

Examples

The two basic measurement modes are "elapsed time" and
"counting occurrences". The examples are organized as follows:

Measuring elapsed time

IJ measure the time it takes to go from event A to event B
IJ measure the time the program is in the specified range
IJ measure the time between an interrupt and interrupt

servicing

Counting occurrences

IJ count the number of times the program transitions from
event A to event B

IJ count the number of accesses to a memory location or range

S6-15

S6-16

Measuring elapsed time
The elapsed time measurement is used to measure in-module
time, out-of-module time, inter-module time, and memory and
program access time. These measurements use switch
positions 0 to E. You must set the XICE variable tunits to be
the same value as selected with the Time Stamp module
switch.

Conceptually, there are three types of elapsed time
measurements:

1. Measuring the time from event A to event B

o used for measuring program time, out-of-module execution
time, and inter-module execution time

2. Measuring the time spent in an address range

o used for measuring memory time and program time
(excluding calls to other modules)

3. Measuring the time between an interrupt and interrupt
servicing

o used for measuring interrupt latency

A to B mode
To measure the time it takes a program to get from event A to
event B, set up the Advanced Event System so only event B
appears in the trace display.

Step 1. Set LSA display type

>trcint offset (Set display format to offset time stamp)

Step 2. Select Time Stamp module switch setting

Use positions 0-4, depending on your preferred time base. In
positions 0-4, the TGR from the Advanced Event System resets
the time stamp counter to 0.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using the Time Stamp module

If you're not sure which time base to use, use position 4 for the
slowest. If the counter overflows, the yellow overflow LED will
light. See "Step 2. Set up Time Stamp module switch" on
page 10 for a chart of maximum time periods per setting.

>tuni ts OxN (Set N to same value as the switchJ

Step 3. Set up the trigger input

To measure elapsed time, use the Event System trigger input.

Step 4. Set up the Advanced Event System

ev{1 }=addr=="A"

ev{2}=addr=="B"

trig{1 }=ev{1 },tgr,trc

trig{2}=ev{2},trc

(Specify event 1 in group 1 to be
event A)

(Specify event 2 in group 1 to be
event B)

(Reset the time stamp counter
to 0 and trace one cycle at event
A)

(Trace event B)

Step 5. Run your program

>QO Run program

Step 6. Stop emulation

<Control-c> Stop emulation

Step 7. View time stamp data

drt Display the trace

S6-17

..

56-18

Step 8. Interpret time stamp information

The last column of the trace display shows the offset time
stamp information. Note that if event A and B are called more
than once, you will get the time between events for each
occurrence.

The following screen shows the raw trace display. The Time
Stamp module switch was set to position #0 (.1 uSec). The time
to go from A to B is shown to be 700 nSec.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

FRAME ADDRESS DATA IPL FCn MEM DMA IAC FLAGS TIMES TAMP

41 001100 4E71 000 SP R\t'O 700ns
4e e01124 4EF8 e0e SP R\t'O ens
39 0e11e0 4E71 000 SP R\t'O 70ens
38 001124 4EF8 000 SP R\t'O 0ns
37 001100 4E71 000 SP R\110 700ns
36 e01124 4EF8 e00 SP R\t'O ens
35 0e11ee 4E71 00e SP R\t'O 70ens
34 001124 4EFB 000 SP R\110 0ns
33 001100 4E71 000 SP R\110 700ns
32 001124 4EFB 000 SP RWO 0ns
31 001100 4E71 000 SP R\110 700ns
30 0e1124 4EF8 e00 SP R\110 0ns
29 0011e0 4E71 e0e SP R\t'O 700ns
28 001124 4EF8 e00 SP R\110 ens
27 001100 4E71 000 SP RWO 700ns
26 001124 4EF8 000 SP RWO 0ns
25 001100 4E71 00e SP R\110 70ens
24 ee1124 4EF8 0ee SP R\t'O ens
23 001100 4E71 e0e SP R\t'O 70ens
22 001124 4EF8 000 SP RWO ens
21 001100 4E71 00e SP R\110 70ens
2e 001124 4EF8 000 SP R\110 ens
19 001100 4E71 000 SP RWO 700ns
18 001124 4EFB 000 SP R\110 0ns
17 001100 4E71 000 SP RWO 700ns
16 001124 4EFB 00e SP R\110 ens
15 0e1100 4E71 00e SP R\110 700ns
14 001124 4EF8 000 SP R\110 ens
13 001100 4E71 00e SP R\110 700ns
12 001124 4EF8 000 SP RWO 0ns
11 0e1100 4E71 00e SP R\110 70ens
1e 0e1124 4EFB e0e SP R\t'O ens

9 001100 4E71 000 SP R\110 700ns
B 001124 4EFB 000 SP R\110 ens
7 001100 4E71 000 SP RWO 700ns
6 001124 4EF8 00e SP R\t'O 0ns
5 0e1100 4E71 000 SP RIKO 700ns
4 001124 4EF8 000 SP R\110 0ns
3 001100 4E71 000 SP R\110 700ns
2 001124 4EF8 000 SP RWO 0ns
1 BREAK

Figure 6·5 Sample DRT screen for measuring time from A to B

Using the Time Stamp module 86-19

S6-20

Range Mode
In range mode, the trace display shows the amount of time the
program is in the specified range.

Press the module's manual reset button prior to performing
this measurement.

Step 1. Set LSA display type

trcint offset Set display format to offset time
stamp

Step 2. Select Time Stamp module switch setting

Use positions 5-9, depending on your preferred time base. In
these positions, the Advanced Event System TGR enables the
counter.

If you're not sure which time base to use, use position 9 for the
slowest. If the counter overflows, the yellow overflow LED will
light. See page 10 for a chart of maximum time periods per
.setting.

tunits OxN Set N to same value as the
switch

Step 3. Set up the trigger input

To measure elapsed time, use the Event System Trigger input.

Step 4. Set up the Advanced Event System

ev{ 1 }=addr=="range"

ev{2}=addrl="range"

,trig{1}=ev{1 }, tgr,grp2

Set event 1 to be the specified
address range

Set event 2 to be outside the
specified address range

When range is accessed, enable
counter and go to group 2

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using the Time Stamp module

evtgrp 2 Begin arming triggers for group
2

trig{2}=ev{1 }jev{2},tgr

trig{3}=ev{2},grp 1

Keep counter enabled while in
group 2

Disable counter when not
accessing range

Step 5. Run your program

go Run program

Step 6. Stop emulation

<Control-c> Stop emulation

Step 7. View time stamp data

drt Display the trace

Step 8. Interpret time stamp information

The last column of the trace display shows the amount of time
accumulated while the program was in the specified range.

The following screen shows the raw trace display, for the above
example using a range of OxllOO to Ox1124. The Time Stamp
module switch was set to position #5 (0.1 uSec). The time spent
in this range was 5.4 uSec.

S6-21

-

FRAME ADDRESS DATA IPL FCn MEM DMA IAC FLAGS TIME ST AMP

34 BEGINNING OF TRACE
33 BREAK
32 00100A 4E71 000 SP RWO -5.400us
31 00100C 4E71 000 SP RWO -5.400us
30 00100E 4EF8 000 SP RWO -5.400us
29 001010 1000 000 SP RWO -5.400US
28 001000 4E71 000 SP RWO -5.400us
27 001002 4E71 000 SP RWO -5.400us
26 001004 4E71 000 SP RWO -5.400us
25 001006 4EF8 000 SP RWO -5.400us
24 001008 1100 000 SP R'WO -5.400us
23 001100 4E71 000 SP R'WO -5.400us
22 001102 4E71 000 SP R'WO -5.300us
21 001104 4E71 000 SP RWO -5.000us
20 001106 4E71 000 SP RWO -4.700us
19 001108 4E71 000 SP R'WO -4.400us
18 00110A 4E71 000 SP RWO -4.100us
17 00110C 4E71 000 SP R'WO -3.800us
16 00110E 4E71 000 SP RWO -3.500us
15 001110 4E71 000 SP R'WO -3.100us
14 001112 4E71 000 SP RWO -2.800US
13 001114 4E71 000 SP RWO -2.500US
12 001116 4E71 000 SP R'WO -2.200us
11 001118 4E71 000 SP RWO -1.900us
10 00111A 4E71 000 SP R'WO -1.600us

9 00111C 4E71 000 SP RWO -1.300US
8 00111E 4E71 000 SP RWO -1.000us
7 001120 4E71 000 SP RWO -600ns
6 001122 4E71 000 SP RWO -300ns
5 001124 4EF8 000 SP R'WO 0ns
4 001126 100A 000 SP R'WO)(300ns
3 00100A 4E71 000 SP R'WO)(700ns
2 00100C 4E71 000 SP RWO x 1.000us
1 BREAK

Figure 6-6 Sample DAT screen for measuring time in range

Interrupt latency
To measure the amount of time between the detection of an
interrupt and when it is serviced, connect your target interrupt
line directly to the TGR or TOR lines on the Time Stamp
module. As shown in Figure 6-7, these lines perform exactly

86-22 XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using the Time Stamp module

the same function as the Advanced Event System TGR signal,
but the direct trigger bypasses the delays inherent in going
through the additional Advanced Event System logic.

EL 1600

Event
System TGR

TGR

Figure 6-7 Trigger input logic

Time stamp module

TGR
Logic

Figure 6-8 shows the trigger pattern for the TGR and TGR
inputs.

S6-23

-

0-4

TGR

86-24

5-9 A-E F

Agure 6-8 Trigger pattern for TGR and TGR

Step 1. Set LSA display type

trci nt offset Set display format to offset time
stamp

Step 2. Select Time Stamp module switch setting

Use positions 0-4, depending on your preferred time base. In
positions 0-4, the TGR from the external TGR, external TGR
or Advanced Event System TGR resets the time stamp counter
to 0.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

If you're not sure which time base to use, use position 4 for the
slowest. If the counter overflows, the yellow overflow LED will
light. See page 10 for a chart of maximum time periods per
setting.

tunits OxN Set N to same value as the
switch

Step 3. Set up the trigger input

Connect either the TGR or TOR input on the Time Stamp
module to the interrupt line on your target that you want to
check. For example, to check the interrupt latency for interrupt
INTO on the 80C186, use the setup shown in Figure 6-9.

Target connect target Interrupt to TGR Input r Time Stamp Module

i--~-+---/~~--1 I TGR

INTO TGR

Figure 6·9 Target setup for measuring interrupt latency

Using the Time Stamp module 86-25

-

SG-26

Step 4. Set up the Advanced Event System

ev{1 }=addr== intservice_start Specify event 1 in group
1 to be the start of the
interrupt service routine

trig{1}=ev{1 },trc Start tracing at the
beginning of the
interrupt service routine

Step 5. Run your program

go Run program

Step 6. Stop emulation

<Control-c> Stop emulation

Step 7. View time stamp data

drt Display the trace

Step 8. Interpret time stamp information

The Advanced Event System traces the first cycle of the
interrupt service routine. The last column of the trace display
shows the amount of time elapsed between the start of the
interrupt service routine and the actual interrupt processing.

Counting occurrences
The number of occurrences measurement is used to measure
memory and program activity, module linkage activity and
program flow activity. Use switch position F (count TGR
pulses) for all counting measurements.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using the Time Stamp module

Two types of counting occurrences measurements follow:

1. Counting the number of times the program transitions from
event A to event B

o used for measuring module linkage activity

2. Counting the number of accesses to some memory
location(s).

o used for measuring memory program activity

A to B Mode
This mode records the number of times the transition from
event A to event B occurs. Trace is only recorded on exit from
module B. Press the module's manual reset button prior to
performing this measurement.

Step 1. Set LSA display type

trcint offset Set display format to offset
timestamp

Step 2. Select Time Stamp module switch setting

Use timestamp module switch position F. For counting
occurrences, the time base is irrelevant. In position F, when the
TGR from the Advanced Event System goes high, the time
stamp counter increments.

tunits Oxf Set timestamp to count
occurrences

Step 3. Set up the trigger input

To count occurrences, use the Event System Trigger input.

S6-27

-

SS-28

Step 4. Set up the Advanced Event System

ev{1 }=addr==Start_a

ev{2}=addr== start_b

ev{3}=addr== end_b

trig{1 }=ev{1 },grp2

evtgrp 2

trig{2}=ev{2}, tgr

trig{3}=ev{3}, trc,grp 1

Specify event 1 in group 1 to be
the start of module A

Specify event 1 in group 2 to be
the start of module B

Specify event 2 in group 2 to be
the end of module B

Go to group 2 when module A is
accessed

Begin arming triggers for group
2

Increment counter when
entering module B from module
A

Exit module B, record count in
trace memory

Step 5. Run your program

go Run program

Step 6. Stop emulation

<Control-c> Stop emulation

Step 7. View time stamp data

trcframe 2048

drt

Set trace frame variable to end
of trace

Display the trace

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using the Time Stamp module

Step 8. Interpret time stamp information

The last column shows the number of times module B was
entered from module A Note that only the locations start_a
(1000) and end_b (1124) are traced. In the following screen we
see that module B is called once each time from module A The
total number of calls is Ox3A31.

SG-29

-

FRAME ADDRESS DATA IPL FCn MEM DMA IAC FLAGS TIME STAMP

41 001124 4EF8 000 SP RWO 3A1E
40 001000 4E71 000 SP RlllO 3A1E
39 001124 4EF8 000 SP R'WO 3A1F
38 001000 4E71 000 SP R'WO 3A1F
37 001124 4EF8 000 SP R'WO 3A20
36 001000 4E71 000 SP R'WO 3A20
35 001124 4EF8 000 SP R'WO 3A21
34 001000 4E71 000 SP R'WO 3A21
33 001124 4EF8 000 SP R'WO 3A22
32 001000 4E71 000 SP R'WO 3A22
31 001124 4EF8 000 SP R'WO 3A23
30 001000 4E71 000 SP R'WO 3A23
29 001124 4EF8 000 SP R'WO 3A24
28 001000 4E71 000 SP R'WO 3A24
27 001124 4EF8 000 SP R'WO 3A25
26 001000 4E71 000 SP R'WO 3A25
25 001124 4EF8 000 SP R'WO 3A26
24 001000 4E71 000 SP R'WO 3A26
23 001124 4EF8 000 SP R'WO 3A27
22 001000 4E71 000 SP R'WO 3A27
21 001124 4Er8 000 SP R'WO 3A2B
20 001000 4E71 000 SP R'WO 3A28
19 001124 4EFB 000 SP R'WO 3A29
18 001000 4E71 000 SP RWO 3A29
17 001124 4EF8 000 SP R'WO 3A2A
16 001000 4E71 000 SP R'WO 3A2A
15 001124 4EF8 000 SP R'WO 3A2B
14 001000 4E71 000 SP R'WO 3A2B
13 001124 4EF8 000 SP R'WO 3A2C
12 001000 4E71 000 SP R'WO 3A2C
11 001124 4EF8 000 SP R'WO 3A2D
10 001000 4E71 000 SP R'WO 3A2D

9 001124 4EF8 000 SP R'WO 3A2E
8 001000 4E71 000 SP RWO 3A2E
7 001124 4EF8 000 SP R'WO 3A2F
6 001000 4E71 000 SP R'WO 3A2F
5 001124 4EF8 000 SP R'WO 3A30
4 001000 4E71 000 SP R'WO 3A30
3 001124 4EF8 000 SP R'WO 3A31
2 001000 4E71 000 SP R'WO 3A31
1 BREAK

Figure 6-10 Sample ORT screen for counting occurrences

86-30 XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using the Time Stamp module

Range Mode
This mode records the number of accesses to some memory
location(s). Trace is always recorded. The last trace cycles
recorded show the accumulated access counts. Press the
module's manual reset button prior to performing this
measurement.

Step 1. Set LSA display type

trcint offset Set display format to off set
timestamp

Step 2. Select Time Stamp module switch setting

Use timestamp module switch position F. For counting
occurrences, the time base is irrelevant. In this position, when
the TGR from the Advanced Event System goes high, the time
stamp counter increments.

tunits Oxf Set timestamp to count
occurrences

Step 3. Set up the trigger input

To count accesses, use the Event System Trigger input.

Step 4. Set up the Advanced Event System

ev{1 }=addr=="range"

trig{1 }-ev{1 },tgr

Specify the range to be
monitored

Increment counter whenever
range is accessed

Step 5. Run your program

go Run program

S6-31

-

86-32

Step 6. Stop emulation

<Control-c> Stop emulation

Step 7. View time stamp data

trcframe 2048

drt

Set trace frame variable to end
of trace

Display the trace

Step 8. Interpret time stamp information

The last column of the last line of the trace display gives you
the number of times the range was accessed. In the following
sample screen, the range is set from OxllOO to Ox1124. The
range was accessed 4 times.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

-
FRAME ADDRESS DATA IPL FCn HEM DHA IAC FLAGS TIMESTAMP

41 001122 4E71 000 SP RlJO 0002
40 001124 4EF8 000 SP RlJO 0002
39 001100 4E71 000 SP RlJO 0003
38 001102 4E71 000 SP Rl.10 0003
37 001104 4E71 000 SP RlJO 0003
36 001106 4E71 000 SP Rl.10 0003
35 001108 4E71 000 SP RlJO 0003
34 00110A 4E71 000 SP Rl.10 0003
33 00110C 4E71 000 SP RlJO 0003
32 00110E 4E71 000 SP RlJO 0003
31 001110 4E71 000 SP Rl.10 0003
30 001112 4E71 000 SP Rl.10 0003
29 001114 4E71 000 SP RlJO 0003
28 001116 4E71 000 SP RlJO 0003
27 001118 4E71 000 SP RlJO 0003
26 0011U 4E71 000 SP RlJO 0003
25 00111C 4E71 000 SP Rl.10 0003
24 00111E 4E71 000 SP RlJO 0003
23 001120 4E71 000 SP R'WO 0003
22 001122 4E71 000 SP Rl.10 0003
21 001124 4EF8 000 SP RlJO 0003
20 001100 4E71 000 SP RI/JO 0004
19 001102 4E71 000 SP RlJO 0004
18 001104 4E71 000 SP Rl.10 0004
17 001106 4E71 000 SP RlJO 0004
16 001108 4E71 000 SP RlJO 0004
15 00110A 4E71 000 SP Rl.10 0004
14 00110C 4E71 000 SP Rl.10 0004
13 00110E 4E71 000 SP RlJO 0004
12 001110 4E71 000 SP RlJO 0004
11 001112 4E71 000 SP Rl.10 0004
10 001114 4E71 000 SP Rl.10 0004

9 001116 4E71 000 SP R't/O 0004
8 001118 4E71 000 SP R't/O 0004
7 00111;, 4E71 000 SP R't/O 0004
6 00111C 4E71 000 SP R't/O 0004
5 00111E 4E71 000 SP RlJO 0004
4 001120 4E71 000 SP R't/O 0004
3 001122 4E71 000 SP RlJO 0004
2 001124 4EF8 000 SP R't/O 0004
1 BREAK

Agure 6-11 Sample DAT screen counting occurrences in a range

Using the Time Stamp module SS-33

Chapter 7

Simulated 110
During the development of a system, it is often desirable to •
simulate input functions with canned input from a file or
interactive input from the keyboard. Likewise, it is useful to be
able to capture output functions and put the results in a file or
display them on a screen.

This chapter explains how to use simulated 1/0 with XICE for
character 1/0. It also covers using simulated 110 with XRAY.

See your XRAY manual for documentation of the INPORT and
OUTPORT commands.

Using simulated character input with XICE

Simulated 1/0

Simulated character input is available for the EL 1600. The
three steps required to do simulated character input are
described below.

1. Start the XICE program. Activate an input trap by setting a
breakpoint:

In low-level mode, set a breakpoint immediately before the
read of the location _simulated_input in the INCHRW
routine inside the inchrw.s or inchrw.src file. The com­
mand to do so is as follows:

bi INCHRW\inchrw;inport(&_simulated_input,l)

S?-1

S7-2

2. Define the stream to be used for input.

You may use the keyboard or set up a file as the input stream
for the simulated input.

The command to set up input from the keyboard is as fol­
lows:

INPORT &_simulated_input,std

The command to set up input from a file is as follows:

INPORT &_simulated_input,f=file_name

You may need to enter other INPORTcommands if you
wish additional input streams.

3. Type go to begin processing your file. XICE petforms the
following tasks as it processes your file:

a XICE instructs the emulator to select a suitable hardware or
software breakpoint type.

a The code emulation begins.
a When the breakinstruction point is reached, the emulator

stops.
a XICE then waits for one byte to be available from the input

channel you specified using the INPORT command.
a Next, XICE internally transfers the byte read to the location

_simulated_input.
a The emulator single-steps over the original program code

word (restored for a software breakpoint, if necessary).
o The code emulation continues.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using simulated character output with XICE
Simulated character output is available for EL 1600. There are
three steps required to do simulated character output which •
are described below.

1. Start the XICE program. Activate an output trap by setting
a breakpoint:

In low-level mode, set a breakpoint immediately after the
write to the location _simulated_output in the OUTCHR
routine inside the outchr.c file. The command to do so is as
follows:

bi OUTCHR_sim_out_brk;outport(&_simulated_output,
1,_simulated_output)

2. Define the stream to be used for output.

You may use a viewport or set up a file as the destination for
the simulated output.

The command to set up output to the standard 110 window
is as follows:

OUTPORT &_simulated_output,std

The command to set up output to a file is as follows:

OUTPORT &_simulated_output,f=file_name

You may need to enter other OUTPORT commands if you
wish additional destinations.

3. Type go to begin processing your file. XICE performs the
following tasks as it processes your file:

o XICE instructs the emulator to select a suitable hardware or
software breakpoint type.

o The code emulation begins.
o When the breakinstruction point is reached

Lsim_out_brk), the emulator stops.

Using simulated character output wnh XICE S7-3

S7-4

o The emulator automatically restores the original program
code word if you used a software breakpoint.

o Next, XICE internally transfers the byte that was written to
_simulated_output to the port assigned via the command
OUTPORT.

o The emulator then single-steps over the original program
code word (restored for a software breakpoint, if necessary).

o The code emulation continues.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

Using simulated character input with XRAV
The two steps required to do simulated character input using
XRAY are described below.

1. Start the XRAY program. Define the stream to be used for
input. You may use either the keyboard or set up a file as the
input stream for the simulated input.

The command to set up input from the keyboard is as
follows:

INPORT &_simulated_input, std

The command to set up input from a file is as follows:

INPORT &_simulated_input, f=file_name

You may need to enter other INPORT commands if you
wish additional streams for the input.

2. Type go to begin processing your file. When the access break
occurs due to a read from the _simulated_input address,
XRAY reads the simulated input from either the keyboard or
from the file you specified, depending upon what you
specified in the INPORT command.

XRAY can interrupt an instruction execution and redirect
accesses in mid-instruction. For example, if the instruction

MOVE.B _simulated_input,00

appears in the in.struction flow, XRAY detects an access to
_simulated_input and replaces it with the data from the
keyboard or file depending on which you specified in the
INPORT command. XRAY then substitutes the byte from the
simulated input into the register DO, and continues to run.

Using simulated character input with XRAY S7-5

•

Using simulated character output with XRA Y

87-6

The two steps required to do simulated character output using
XRAY are described below.

1. Start the XRAYprogram. Define the viewport or file to be
used for output.

You may use any legal XRAY viewport for simulated output.
You may also set up a file as the destination for the simulat­
ed output.

The command to set up a viewport for simulated output is as
follows:

OUTPORT &_simulated_output, std

The command to set up output to a file is as follows:

OUTPORT &_simulated_output, f=file_name

You may need to enter other outport commands if you wish
to direct the simulated output to other places as well.

2. Type go to begin processing your file. When the access break
occurs due to a read from the _simulated_output address,
XRA.Y detects this special instance and writes instead the
simulated output to either the viewport or the file you
specified.

XRA.Y can interrupt an instruction execution and redirect
accesses in mid-instruction. For example, if the instruction

MOVE.B DO, _simulated_output

appears in the instruction flow, XRA.Y detects an access to
_simulated_output and writes the data to the viewport or file
depending on which you specified in the OUTPORT command.
XRA.Y then continues to run.

XICE Supplement for 68000/68HC000/68ECOOO and 68302

The Master Index contains the indexes for the full documentation set related to the Applied toolchain
and page numbering has been set up for this purpose. Numbers beginning with an R refer to reference
manuals. Numbers beginning with a U refer to user guides. Numbers beginning with an I refer to
installation guides. Lettered sections refer to appendices within manuals. For example, RA- refers to
appendix A of a reference manaul. The document set to which the manual belongs appears in paren­
thesis following the page number reference. The following abbreviations are used:

ASM - ASM Documentation Set
MCC - MCC Documentation Set
CCC - CCC Documentation Set
XRA Y - XRA Y Documentation Set
SUP - XICE Supplement for the 68020, 68030, 68EC030 and the EL 3200
FLEX - Flexible License Manager Documentation Set

68000, 68ECOOO, 68HCOOO, 68302
Documentation Set Master Index
- notation R2-12(XRA Y)
- unary operator R3-S(MCC)
- unary operator R3-S(MCC)

Symbols
I operator R4-17(MCC)
! unary operator R3-S(MCC)
I= operator R4-17(MCC)
- command line continuation character

U2-21(ASM)
#line directive R4-1(MCC)
#line_number

column R2-12(XRAY)
#line_number .statement R2-12(XRAY)
#pragma options R6-37(MCC)
$ R2-10(ASM), R2-12(ASM)
% R2-12(ASM)
% (line continuation) R3-5(XRAY)
% line continuation U2-9(XRA V)
% operator R4-17(MCC)
& operator R3-3{MCC), R4-17(MCC)
& unary operator R3-S(MCC)
&& operator R4-17{MCC)

() R13-1(ASM)
(misaligned) U3-11 (XRAY)
* R5-11(ASM), R13-1(ASM), R13-2(ASM)
*operator R4-17(MCC)
* unary operator R3-S(MCC)
+ R7-14(ASM), R13-2(ASM)
+operator R4-17(MCC)
+ unary operator R3-S(MCC)
++ unary operator R3-S(MCC)
+e option, use of R3-1 S(CCC)
+ne option, use of R3-1S(CCC)
, R13-1(ASM)
·operator R4-17(MCC)

. operator R2-17(CCC), R2-19(CCC),
R2-21{CCC), R2-25(CCC)

.*operator R2-1S{CCC), R2-25(CCC)

.login U1-1{FLEX)

.login file
(see UNIX start-up file)

.profile U1-1(FLEX)
(see UNIX start-up file)

.Xdefaults file UA-6{XRAV)
I operator R4-17(MCC)

Master lndex-1

/*and*/ comment tokens R4-7(CCC)
II comment token R4-7(CCC)
/addresses:long option U3-13(MCC)
/addresses:short option U3-13(MCC)
/align option R6-36(MCC)
/align=2 option U3-11(MCC)
/align=4 option U3-11 (MCC)
/align_check option U3-11(MCC)
/align_ check option (VMS) R4-3(MCC)
/ansi option U3-11(MCC)
/ansi option (VMS) R4-3(MCC)
/asm=filename option U3-13(MCC)
/banner option U3-13(MCC)
/cir option U3-13(MCC)
/code_addresses option (VMS) R4-3(MCC)
/code_addresses:absolute option

U3-14(MCC)
/code_addresses:pcrelative option

U3-14(MCC)
/const_addr_as:code option U3-16(MCC)
/const_addr_as:data option U3-16(MCC)
/cpu option U3-16(MCC)
/cpu option (VMS) R4-4(MCC)
/data_addresses option (VMS) R4-3(MCC)
/data_addresses:absolute option

U3-14(MCC)
/data_addresses:anrelative option

U3-14(MCC)
/data_addresses:pcrelative option

U3-14(MCC)
/debug option U3-18{MCC)
/debug option (VMS) R4-3(MCC)
/debug:fullfilename option U3-19(MCC)
/debug:lines option U3-19(MCC)
/debug:multi_stmt option U3-19{MCC)
/debug:nofullfilename option U3-19(MCC)
/debug:nomulti_stmt option U3-19(MCC)
/debug:restricted option U3-20(MCC)
/define option U3-20(MCC)
/dev/console U2-8(FLEX), U3-1(FLEX),

UA-2(FLEX)
/diagnostics_to=stderr option U3-21(MCC)
/diagnostics_to=stdout option U3-21(MCC)
/etc/re.local IC-1(FLEX)

Master lndex-2

/etc/services 13-2(FLEX)
/extra_ checks option U3-23(MCC)
/fpu option U3-23(MCC)
/fpu option (VMS) R4-3(MCC)
/frames option U3-21 (MCC)
/init_locals option U3-22(MCC)
/initvars_addr_as:code option U3-16(MCC)
/initvars_addr_as:data option U3-16(MCC)
/insert_char option U3-12(MCC)
/ipath option U3-23(MCC)
/list option U3-24(MCC)
/I itera I_ addr _ as:code option U3-16(M CC)
/min_push_size=2 option U3-22(MCC)
/min_push_size=4 option U3-22(MCC)
/mri_extensions option U3-24(MCC)
/mri_extensions option (VMS) R4-3(MCC)
/noalign_check option U3-11(MCC)
/noansi option U3-11 (MCC)
/nobanner option U3-13(MCC)
/noclr option U3-13(MCC)
/nodebug option U3-1B(MCC)
/noextra_checks option U3-23(MCC)
/nofpu option U3-23(MCC)
/noframes option U3-21(MCC)
/noinit_locals option U3-22(MCC)
/nofist option U3-24(MCC)
/nomri_extensions option U3-24(MCC)
/nopage option U3-28(MCC)
/nopp option U3-29(MCC)
/noprepend option U3-12(MCC)
/nopreserve_comments option U3-29(MCC)
/noprint_options option U3-30(MCC)
/nosuppress option U3-30(MCC)
/nosyntax_only option U3-33(MCC)
/notrace option U3-33(MCC)
/nounsignedchar option U3-22(MCC)
/nounsignedchar option (VMS) R4-3(MCC)
/optimize:combine _pops option

U3-25(MCC)
/optimize=globalflow option U3-26(MCC)
/optimize:inline option U3-26(MCC)
/optimize:local option U3-26(MCC)
/optimize=nocombine _pops option

U3-25(MCC)

Documentation Set for 68000/ECOOO/HCOOO and 68302

/optimize:noglobalflow option U3-26(MCC)
/optimize:noinline option U3-26(MCC)
/optimize:nolocal option U3-26(MCC)
/optimize:noregister option U3-26(MCC)
/optimize:nostablemem option U3-27(MCC)
/optimize:register option U3-26(MCC)
/optimize:reorder option U3-27(MCC)
/optimize:singleret option U3-27(MCC)
/optimize:size option U3-27(MCC)
/optimize:stablemem option U3-27(MCC)
/optimize:time option U3-28(MCC)
/pagelength option U3-28(MCC)
/pp option U3-29(MCC)
/prepend:dot option U3-12(MCC)
/prepend:underscore option U3-12(MCC)
/preserve_comments option U3-29(MCC)
/print_ options option U3-30(MCC)
/quit option U3-29(MCC)
/rename option U3-30(MCC), U3-31(MCC)
/reserve option U3-14(MCC)
/show:include option U3-28(MCC)
/show:noinclude option U3-28(MCC)
/show:nosource option U3-29(MCC)
/show:source option U3-29(MCC)
/spath option U3-32(MCC)
/ssmultiple option R6-27(MCC), R6-31 (MCC),

R6-35(MCC), U3-11(MCC)
/strings_addr_as:code option U3-16(MCC)
/strings_addr_as:data option U3-16(MCC)
/suppress:error option U3-30(MCC)
/suppress:informational option U3-30(MCC)
/suppress:summary option U3-30(MCC)
/suppress:warning option U3-30(MCC)
/syntax_ only option U3-33(MCC)
/title option U3-29(MCC)
ltmp U2-3(FLEX), UA-2(FLEX)
/trace option U3-33(MCC)
/truncate_identifiers option U3-12(MCC)
/truncate_identifiers option (VMS)

R4-3(MCC)
/undefine option U3-33(MCC)
/unsignedchar option U3-22(MCC)
/unsignedchar option (VMS) R6-10(MCC)
/usr/local/flexlm!licenses/license.dat

(see License file)
/usr/local/licenses.dat IC-1 (FLEX)
/usr/mri 11-10(FLEX), UA-2(FLEX)

(see also install_dir)
/usr/mri/bin U1-1(FLEX)

adding to path 12- l(FLEX)
creating scripts in 12-2(FLEX)

mixed architecture installation
IA-l(FLEXl

/usr/mri/sun3 IA-1 (FLEX)
/usr/mri/sun4 IA-1(FLEX)
/usr/tmp 12-9(FLEX)
/usr/tmp/license.log

(see Log file)
error messages UC-l(FLEX)

/weakextern:common option U3-34(MCC)
/weakextern=initzero option U3-34(MCC)
/weakextern:public option U3-34(MCC)
: macro prompt U2-26(XRA Y)
: macro text prompf R3-46(XRA Y)
: : operator R2-25(CCC)
::*operator R2-18(CCC)
; R13-1(ASM), R13-2(ASM)
<operator R4-17(MCC)
<=operator R4-17(MCC)
<>(macro notation) R6-3(ASM)
==(exists) R6-3(ASM)
==operator R4-17(MCC)
->operator R2-17(CCC), R2-18(CCC), R2-

25(CCC)
>operator R4-17(MCC)
·>*operator R2-18(CCC)
>=operator R4-17(MCC)
- command line continuation character U3-

21 {ASM)
?: operator R4-17(MCC), R2-25(CCC)
?? R2-7(ASM), R7-4(ASM)
#continuation character U2-17(ASM), U3-

17(ASM), R9-11(ASM), R10-49(ASM),
R10-59(ASM)

@ R2-12(ASM)
@ (nesting) R2-23(XRA Y), U3-26(XRA Y), U4-

4(XRA Y)
@(path) U2-3(XRAY), U4-10(XRAY)

Master lndex-3

@(register) R3-158(XRAY)
@ (root) R2-20(XRAY)
@(stack level) R2-2(XRAY), R3-60(XRAY)
@(symbol) R2-7(XRAY)

nesting R2-23(XRAY), U3-26(XRAY), U4-
4(XRAY)

path U2-3(XRAY), U4-10(XRAY)
register R3-158(XRAY)
reserved words R2-9(XRAY)
root R2-20(XRA Y)
stack level R2-2(XRAY), R3-60(XRAY)

@addr pseudo-register RA-1(XRAY), RF-
1(XRAY), RF-4(XRAY)

@as pseudo-register RA-1(XRAY), RF-
1(XRAY)

@chip pseudo-register RA-1 (XRAY), RF-
1(XRAY)

@cycles pseudo-register RA-1(XRAY), RF-
1(XRAY)

@entry pseudo-register RA-1(XRAY), RF-
1(XRAY)

@exc pseudo-register RA-1(XRAY), RF-
2(XRAY)

@file pseudo-register RA-1 (XRAY), RF-
2(XRAY)

@fpf pseudo-register RA-1(XRAY), RF-
2(XRAV)

@fpu pseudo-register RA-1(XRAY),
RF-2(XRA Y), RF-5(XRA Y),
RF-10(XRAY)

@hlpc pseudo-register R2-21(XRAY),
RA-1(XRAY), RF-3(XRAV)

@line_range pseudo-register RA-1(XRAY),
RF-3(XRAY)

@module pseudo-register R2-21 (XRA V),
RA-1(XRAV), RF-3(XRAV)

@pi pseudo-register RA-1(XRAV),
RF-3(XRAV)

@pisize pseudo-register RA-1(XRAV),
RF-3(XRAY)

@port_addr pseudo-register R3-81(XRAY),
R3-111(XRAY), RA-1(XRAY),
RF-3(XRAY)

Master lndex-4

@port_size pseudo-register RA-1(XRAY),
RF-3(XRAY)

@port_value pseudo-register R3-81(XRAY),
R3-111(XRAY), RA-2(XRAY), RF-
4(XRAY)

@procedure pseudo-register R2-21 (XRAY),
RA-2(XRA V), RF-4(XRA Y)

@root pseudo-register R2-20(XRAY),
RA-2(XRAV), RF-4(XRAY)

@wait_state pseudo-register RA-2(XRAY),
RF-4(XRAY)

[] indirect addressing R2-9(XRAY)
\ R6-2(ASM)
\@ R2-8(ASM)
"operator R4-17(MCC)
__ OPTION_AVAIL macro R4-4(MCC)
__ STDC __ preprocessor symbol

U2-43(MCC), U3-36(MCC)
__ STR_CASE_CMP macro R4-5(MCC)
__ STR_CMP macro R4-5(MCC)
__ DATE __ preprocessor symbol

R4-1(MCC)
__ FILE __ preprocessor symbol R4-1(MCC)
__ LINE __ preprocessor symbol R4-1(MCC)
__ STDC __ preprocessor symbol R4-

1(MCC), R4-3(MCC), U2-8(MCC), U2-
16(MCC), U3-11 (MCC), U2-12(CCC)

__ TIME __ preprocessor symbol R4-2(MCC)
_OPTION_utn preprocessor symbol R4-

3(MCC)
_cplusplus R5-2(CCC), RB-2(CCC)
_68000 preprocessor symbol R4-4(MCC)
_68008 preprocessor symbol R4-4(MCC)
_68010 preprocessor symbol R4-4(MCC)
_68020 preprocessor symbol R4-4(MCC)
_68030 preprocessor symbol R4-4(MCC)
_68040 preprocessor symbol R4-4(MCC)
_68302 preprocessor symbol R4-4(MCC)
_68330 preprocessor symbol R4-4(MCC)
_68331 preprocessor symbol R4-4(MCC)
_68332 preprocessor symbol R4-4(MCC)
_68333 preprocessor symbol R4-4(MCC)
_68340 preprocessor symbol R4-4(MCC)
_68ECOOO preprocessor symbol R4-4(MCC)

Documentation Set for 68000/ECOOO/HCOOO and 68302

_68EC020 preprocessor symbol R4-4(MCC)
_68EC030 preprocessor symbol R4-4(MCC)
_68EC040 preprocessor symbol R4-4(MCC)
_68HCOOO preprocessor symbol R4-4(MCC)
_68HC001 preprocessor symbol R4-4(MCC)
_APOLLO preprocessor symbol R4-3(MCC)
_BCS preprocessor symbol R4-3(MCC)
_BIG_ENDIAN preprocessor symbol

R4-2(MCC)
_CHAR_SIGNED preprocessor symbol

R4-3(MCC), U2-27(MCC), U3-
23(MCC), U2-24(CCC)

CHAR UNSIGNED preprocessor
symbol R4-3(MCC), U2-27(MCC),
U3-22(MCC), U2-23(CCC)

_CPU32 preprocessor symbol R4-4(MCC)
_DEBUG preprocessor symbol R4-3(MCC),

U2-22(MCC), U3-18(MCC),
U2-19(CCC)

_DEC_STATION preprocessor symbol
R4-3(MCC)

_exit function R5-48(MCC)
_FPU preprocessor symbol R4-3(MCC)
_HP9000_300 preprocessor symbol

R4-3(MCC)
_HP9000_700 preprocessor symbol

R4-3(MCC)

_HW_DEMANDS_ALIGNMENT preprocessor
symbol R4-3(MCC)

_LITTLE_ENDIAN preprocessor symbol
R4-2(MCC)
_M68 preprocessor symbol R4-3(MCC)
_MCC68K preprocessor symbol R4-2(MCC)
_MRI preprocessor symbol R4-2(MCC)
_MRl_EXTENSIONS preprocessor

symbol R4-3(MCC), U2-39(MCC),
U2-37(CCC)

_MSDOS preprocessor symbol R4-3(MCC)
_PACKED_STRUCTS preprocessor

symbol R4-2(MCC)
_PC preprocessor symbol R4-3(MCC)
_PIC preprocessor symbol R4-3(MCC)
_PIO preprocessor symbol R4-3(MCC)

_PID_REG preprocessor symbol R4-4(MCC)
_RS6000 preprocessor symbol R4-3(MCC)
_sco preprocessor symbol R4-3(MCC)
_simulated_input R3-83(XRAY), U2-

12(XRA Y), U2-23(XRA Y)
_simutated_input variable R9-31(MCC)
_simulated_output R3-112(XRAY),
U2-12(XRAY), U2-23(XRAY)
_simutated_output variable R9-31(MCC)
_SIZEOF _CHAR preprocessor symbol
R4-2(MCC)
_SIZEOF _DOUBLEpreprocessor symbol
R4-2(MCC)
_SIZEOF _FLOAT preprocessor symbol
R4-2(MCC)
_SIZEOF _INT preprocessor symbol
R4-2(MCC)
_SIZEOF _LONG preprocessor symbol
R4-2(MCC)
_SIZEOF _LONG_DOUBLE preprocessor

symbol R4-2(MCC)
_SIZEOF _POINTER preprocessor

symbol R4-2(MCC)
_SIZEOF _SHORT preprocessor symbol
R4-2(MCC)
_SUN3 preprocessor symbol R4-3(MCC)
_SUN4 preprocessor symbol R4-3(MCC)
_tolower function R5-188(MCC)
_toupper function R5-190(MCC)
_UNIX preprocessor symbol R4-3(MCC)
_VERSION preprocessor symbol R4-2(MCC)
_WARNING_xxx_stub_used symbol

unresolved R5-13(MCC), R9-31(MCC)
ftell R5-74(MCC)
lseek R5-108(MCC)
open R5-126(MCC)
unlink R5-192(MCC)

·(escape character) R9-11(ASM)
I operator R4-17{MCC)
II operator R4-17(MCC)
- operator R4-17(MCC)
- unary operator R3-8(MCC)

Master lndex-5

Numerics
16-bit bus R6-29(MCC)
16-bit displacement

(see -Ml option) U2-28(MCC),
U2-25(CCC)

/addresses=short option U3-13(MCC)
16-bit extension on stack

/min_push_size=2 option U3-22(MCC)
-K2 option U2-24(MCC), U2-2l(CCC)

32-bit displacement
/addresses=long option U3-13(MCC)
-Ml option U2-28(MCC), U2-25(CCC)

32-bit extension on stack
/min_push_size=4 option U3-22(MCC)
-K4 option U2-24(MCC), U2-2l(CCC)

68000 S1-1(SUP)
68000/68020 structure alignment

R6-36(MCC)
68030 support RF-9(XRAY)
68040 support RF-10(XRAY)
68881 support RF-11 (XRAY)
68ECOOO S1-1(SUP)
68EC030 support RF-10(XRAY)
68EC040 support RF-11 (XRAY)
68HCOOO S1-1(SUP)
9-track tape

VMS 12-l(XRAY)

A
-A compiler option RB-2(CCC)
-a librarian command line option

U2-21(ASM)
-A option U2-8(MCC), U2-16(MCC),

U2-12(CCC)
-A option (UNIX/DOS) R4-3(MCC)
a.out U2-24(ASM), U3-22(ASM)
A2-A5 relative addressing R3-24(ASM)­

R3-33(ASM)
accessing dynamically allocated

areas R3-27(ASM)
accessing statically allocated areas

R3-25(ASM)
advantages. R3-24(ASM)

Master lndex-6

Abbreviations R3-14(XRA Y)
abort function R5-22(M CC)

relationship to signal R5-155(MCC)
Aborting installation 11-S(FLEX)
abs function R5-23(MCC)

relationship to labs R5-97(MCC)
Absolute addressing R9-25(MCC)

/code_addresses=absolute U3-14(MCC)
/data_addresses=absolute option

U3-14(MCC)
-Mca option U2-27(MCC), U2-24(CCC)
-Mda option U2-27(MCC), U2-24(CCC)

Absolute expression R3-24(ASM)
Absolute expressions R4-8(ASM)
Absolute files, errors U4-11(XRAY)
ABSOLUTE linker command R10-7(ASM)-

R10-8(ASM)
ABSOLUTE linker command line option

U3-13(ASM)
Absolute object file format

IEEE-695 U2-2(XRA Y)
Absolute sections R9-3(ASM)
Absolute symbols R2-9(ASM), R4-7(ASM)
abspcadd assembler command line flag

U2-6(ASM), U3-6(ASM)
Abstract class R3-15(CCC), RC-1(CCC),

UA-1(CCC)
illegal use examples R3-l 7(CCC)
use example R3-15(CCC)

-ace option U2-17(MCC), U2-13(CCC)
Access breakpoints S3-34(SUP)
Access protection R2-2(CCC)
Access, user 13-6(FLEX)
Accessing

data members R3-3(CCC)
data structures

implicit class fields R5-8(CCC)
keywords R4-5(CCC), R4-6(CCC)
specifiers

default R2-3(CCC)
limited R2-3(CCC)
private R2-3(CCC)
protected R2-3(CCC)

structures R2-l 7(CCC)

Documentation Set for 68000/ECOOO/HCOOO and 68302

Accessing memory
NOMEMACCESS command

R3-1 OO(XRA YJ
-acd option U2-17(MCC), U2-13(CCC)
Acessing files in nondefault directories

DOS Il-5(MCC), Il-5(CCC), ll-6(CCC)
UNIX System V/386 l3-2(MCC)
VMS 12-3(MCC)

Acessing the license file through the
daemon 13-7(FLEX)

acos function R5-24(MCC}, U2-39(MCC}, U3-
25(MCC}, U2-37(CCC)

Actions S4-14(SUP)
Activate

screen
VSCREEN command R3-210(XRAYJ

viewport
V ACTIVE command R3-203(XRA Y)

Active procedure (definition) RD-1 (XRAY)
Active symbols, verifying R4-20(XRA Y)
Active viewport U3-33(XRA Y)
ADD command R3-18(XRAY}, U2-26(XRA Y)
Additional documentation IP-2(MCC), UP1(-

MCC}, IP-2(XRAY}, UP-1(CCC}, IP-
1(CCC)

ADDLIB librarian command R13-4(ASM)
ADDMOD librarian command U2-21(ASM},

R13-5(ASM)

ADDMOD librarian command line option
U3-19(ASM)

@addr pseudo-register RA-1(XRAY},
RF-1(XRAY)

Address (definition) R3-3(XRAY)
Address bus S2-137(SUP)
Address modes R3-7(ASM)-R3-24(ASM)

absolute long R3-12(ASM)
absolute short R3-ll(ASM)
address register direct R3-9(ASM)
address register indirect with

displacement R3-24(ASM)

code references
absolute

/code_addresses=absolute
option U3-14(MCC)

-Mca option U2-27(MCC), U2-
24(CCC)

PC-relative
(see also Position-independent

code)
/code_addresses=pcrelative

option U3-14(MCC)
-Mcp option U2-27(MCC), U2-

24(CCC)
canst section

/const_addr_as options U3-16(MCC)
-ac options U2-17(MCC), U2-

13(CCC)
data references

absolute
/data_addresses=absolute

option U3-14(MCC)
-Mda option U2-27(MCC), U2-

24(CCC)
PC-relative

(see also Position-independent
data)

/data_addresses=pcrelative
option U3-14(MCC)

-Mdp option U2-28(MCC), U2-
25(CCC)

register-relative
(see also Position-independent

data)
/data_addresses=anrelative U3-

14(MCC)
-Md options U2-27(MCC), U2-

24(CCC)
data register direct R3-9(ASM)
floating-point R3-14(ASM)
immediate R3-13(ASM)
initialized data section

/initvars_addr _as options U3-
16(MCC)

Master lndex-7

-ai options U2-17(MCC), U2-
13(CCC)

literals section
/literals_addr_as options U3-

16(MCC)
-al options U2-17(MCC), U2-

14(CCC)
memory indirect post-indexed R3-

10(ASM)
memory indirect pre-indexed R3-

ll(ASM)
program counter memory indirect

post-indexed R3-12(ASM)
pre-indexed R3-13(ASM)

program counter relative R3-8(ASM)
program counter with base

displacement and index R3-12(ASM)
program counter with displacement R3-

12(ASM)
register direct R3-9(ASM)
register indirect R3-9(ASM)

8-bit displacement and index R3-
10(ASM)

base displacement and index R3-
10(ASM)

displacement R3-9(ASM)
postincrement R3-9(ASM)
predecrement R3-9(ASM)

selection R3-20(ASM)-R3-22(ASM)
strings section

/strings_addr_as options U3-
16(MCC)

syntax R3-15(ASM)-R3-17(ASM)
user control R3-22(ASM)-R3-24(ASM)
vars section

/initvars_addr_as options U3-
16(MCC)

"address of" operator R3-3(MCC)
Address strobes 52-30(SUP)
Address_range (definition) R3-3(XRAY)
Addresses

byte value R4-14(XRAY)

Master lndex-8

displaying
NOSYMBOLS command R3-

108(XRAY)
indirect R2-9(XRAY)
line numbers R2-10(XRAY)
long value R4-15(XRAY)
ranges R2-10CXRAY)
word value R4-38(XRAY)

Addressing
absolute R9-25(MCC)
changing the default R8-2(MCC)
direct memory R9-9(MCC)
PC-relative R9-27(MCC)
register-relative R9-25(MCC)

Addressing modes
(see Address modes)

Addressing of processors
odd-address restricted R6-23(MCC)
odd-address unrestricted R6-23(MCC)

Administration 13-1 (FLEX)
Administrative commands U3-4{FLEX)
Advanced Event System 53-45(SUP)
Advanced event system 54-14(SUP)

structure S4-14(SUP)
Advanced feature commands

performance analysis
PRINTPROFILE R3-13(XRA Y)
PROFILE R3-13(XRAY)

test coverage
ANALYZE R3-13(XRAY)
PRINT ANALYSIS R3-13(XRA Y)

trace
SETSTATUS EVENT R3-13(XRAY)
SETSTATUS QUALIFY R3-

13(XRAY)
SETSTATUS TRACE R3-13(XRAY)
SETSTATUS TRIGGER R3-

13(XRAY)
STATUS BUFFER R3-13(XRAY)
STATUS EVENT R3-13(XRAY)
STATUS QUALIFY R3-13(XRAY)
STATUS TRACE R3-13(XRAY)
STATUS TRIGGER R3-13(XRAY)
TRACE R3-13(XRAY)

Documentation Set for 68000/ECOOO/HCOOO and 68302

Aggregates R6-26(MCC)
-aic option U2-17(MCC), U2-13(CCC)
-aid option U2-17(MCC), U2-13(CCC)
AIX

host-specific information UE-l(XRAY)
-ale option U2-17(MCC), U2-14(CCC)
-aid option U2-17(MCC), U2-14(CCC)
Algebraic simplification R101(MCC), R5-

6(XRAY)
ALIAS command R3-20(XRA Y)
alias command (Linker) U2-30(MCC), U2-

26(CCC)
ALIAS linker command R10-9(ASM)-R10-

10(ASM)
Aliased references

/optimize=stablemem option U3-
27(MCC)

-Ob option U2-30(MCC), U2-27(CCC)
ALIGN assembler directive R5-4(ASM)
ALIGN linker command R10-11(ASM)-R10·

12(ASM)
Alignment

68000/68020 structures R6-36(MCC)
aggregates R6-26(MCC)
array R6-26(MCC)
bit fields R6-24(MCC), R6-29(MCC)
data types R6-30(MCC)
instructions RF-4(XRA Y)
low-level breakpoints

ALIGN option R3-104(XRAY)
padding bytes R6-31(MCC), R6-34(MCC)
problems

/align_check option U3-ll(MCC)
-KT option U2-26(MCC)

structure members R6-36(MCC)
/align option U3-ll(MCC)
/ssmultiple option U3-ll(MCC)
-Z options U2-40(MCC), U2-37(CCC)

structures R6-26(MCC), R6-29(MCC)
trace R3-171(XRAY), R3-200(XRAY)
trailer bytes R6-31(MCC), R6-34(MCC)
unions R6-26(MCC)
-Zm option U2-40(MCC), U2-38(CCC)

Alignment of struct/union in parameter
area R7-4(MCC)

Alignment, sections R9-5(ASM)
ALIGNMOD linker command R10-13(ASM)
Allocating

data space R5-35(MCC), R5-lll(MCC),
R5-203(MCC)

data types R3-l(MCC), R6-3(MCC)
dynamic storage

keywords R4-4(CCC)
memory space R5-146(MCC)

Alphanumeric character, testing for R5-
83(M CC)

Alternate locations
UNIX

executables U2-4(MCC)
libraries U2-4(MCC)
standard include files U2-4(MCC)
temporary files U2-4(MCC)

VMS
libraries U3-3(MCC)
standard include files U3-3(MCC)
temporary files U3-4(MCC)

AMCTOOLS
DOS 11-l(MCC), 11-l(XRAY), 11-l{CCC)

Anachronism RC-1(CCC), UA-1(CCC)
Anachronistic constructs, forbidden

+p option U2-32(CCC)
ANAL VZE command R3-22(XRA Y)
Analyze test coverage data

PRINTANAL YSIS command
R3-115(XRAY)

ANSIC
contrast with C++ R4-l(CCC)
function declarations R4-12(CCC)

ANSI C syntax RB-1(MCC)
ANSI-compliant mode, setting

/ansi option U3-ll(MCC)
-A option U2-8(MCC), U2-16(MCC), U2-

12(CCC)
Apollo

host-specific information UB-l(XRAY)

Master lndex-9

Apollo installation
DOMAIN/OS version required IB­

l(FLEX)
reading distribution 11-7(FLEX)
TCP/IP IB-l(FLEX)

version required IB-l(FLEX)
Apollo mouse support

(see Mouse support)
_APOLLO preprocessor symbol R4-3(MCC)
Apollo rbak command 11-7(FLEX)
Apollo support

escape key UB-3(XRAY)
Line Del key UB-3(XRA Y)
MOVE TO BOTTOM control key UB-

2(XRAY)
Arc cosine of a number, computing R5-

24(MCC)
Arc sine of a number, computing R5-

26(MCC)
Arc tangent of a number, computing R5-

28(MCC)
Arc tangent of d1/d2, computing R5-

29(MCC)
arch command (Sun) IA-1(FLEX)
Architectures

mixed installation IA-2(FLEX)
Argument

passing R5-3(CCC)
promotion R5-3(CCC)

Argument list, variable
allowing access R5-196(MCC)
returning arguments R5-193(MCC)
terminating access R5-195(MCC)

Arithmetic functions
(see Mathematical functions)

Arithmetic operators R3-10(MCC), RC-
1(XRAY)

Arithmetic plus operation R2-23(CCC)
Arming triggers S2-76(SUP), S2-78(SUP)
Array operator synthesis

optimization R106(MCC)
Arrays R6-4(MCC), R6-15(MCC)

initialization R4-16(CCC)
Arrow(->) operator R2-17(CCC), R2-25(CCC)

Master lndex-1 O

Arrow-star (->*) operator R2-18(CCC)
@as pseudo-register RA-1 (XRAY), RF-

1 (XRAY)
-asc option U2-17(MCC), U2-14(CCC)
ASCII character code RA-1(ASM)-RA-

2(ASM)
ASCII character set RA-1(MCC), UA-1(MCC),

RB-1(XRAY)
ASCII character, testing for R5-85(MCC)
ASCII format

conversion from byte R5-186(MCC)
ASCII string

conversion from floating-point
number R5-75(MCC)

conversion from integer R5-95(MCC)
conversion from long integer R5-

109(MCC)
conversion from unsigned integer to R5-

96(MCC)
conversion from unsigned long

integer R5-11 O(MCC)
conversion to double R5-177(MCC)
conversion to floating-point number R5-

31(MCC)
conversion to integer R5-32(MCC)
conversion to long integer R5-33(MCC),

R5-179(MCC)
asctime function R5-20(MCC), R5-25(MCC)
-asd option U2-17(MCC), U2-14(CCC)
asin function R5-26(MCC), U2-39(MCC), U3-

25(MCC), U2-37(CCC)
ASM (Single line assembler) S2-2(SUP)
ASM command S3-30(SUP)
asm keyword R4-2(CCC)
ASM pseudofunction

(see asm pseudofunction)
asm pseudofunction R9-3(MCC)

· asm pseudofunction, disabling
/nomri_extensions option U3-25(MCC)
-nx option U2-40(MCC), U2-37(CCC)

asm pseudofunction, enabling
/mri_extensions option U3-24(MCC)
-x option U2-39(MCC), U2-36(CCC)

asm support R2-26(CCC)

Documentation Set for 68000/ECOOO/HCOOO and 68302

Assembler
absolute expressions R3-24(ASM), R4-

8(ASM)
addressing modes R3-l(ASM)
asmb_sym assembler symbol files R4-

4(ASM)
assembly time relative addressing R2-

5(ASM)
attributes

common vs. noncommon R4-2(ASM)
section alignment R4-3(ASM)
section type R4-4(ASM)
short vs. long R4-2(ASM)

character set R2-6(ASM)
constants R2-ll(ASM}-R2-15(ASM)

character R2-13(ASM)-R2-15(ASM)
floating-point R2-12(ASM}-R2-

13(ASM)
integer R2-l l(ASM}-R2-12(ASM)

cross-reference table format R8-3(ASM)
description Ul-l(MCC), Ul-l(ASM), Ul­

l(CCC)
directives R5-l(ASM}-R5-74(ASM), R6-

5(ASM}-R6-ll(ASM), R7-
5(ASM}-R7-13(ASM)

error messages RB-l(ASM}-RB-14(ASM)
floating-point R3-6(ASM)
HP 64000 files R4-4(ASM)
instructions R3-l(ASM)
introduction Rl-l(ASM), R2-l(ASM)
invoking U3-45(MCC)
link_sym linker symbol files R4-4(ASM)
listing, sample program R8-4(ASM}-R8-

6(ASM)
macros R6-l(ASM}-R6-l l(ASM)
name demangling RG-2(ASM)
name mangling RG-2(ASM)
object module RS-7(ASM)
operation R8-l(ASM)
options, passing directly

-Wa option U2-38(MCC), U2-
35(CCC)

overview Rl-l(ASM)
program counter R2-10(ASM)

relative addressing R3-24(ASM)-R3-
33(ASM)

relocatable expressions R3-24(ASM), R4-
7(ASM}-R4-8(ASM)

section attributes
assigning R4-5(ASM)

source file
(see Assembler source file)

statement R2-l(ASM}-R2-4(ASM)
field R2-l(ASM}-R2-2(ASM)

comment R2-2(ASM)
label R2-l(ASM)
operand R2-2(ASM)
operation R2-2(ASM)

type R2-2(ASM}-R2-4(ASM)
comment R2-4(ASM)
directive R2-3(ASM)
instruction R2-2(ASM)
macro R2-3(ASM)

structure control directives R7-5(ASM}­
R7-13(ASM)

symbolic addressing R2-4(ASM}-R2-
6(ASM)

symbols R2-7(ASM}-R2-10(ASM)
invalid R2-8(ASM)
relocatable versus absolute R4-

7(ASM)
reserved R2-8(ASM}-R2-9(ASM)
valid R2-8(ASM)

syntax R2-6(ASM)-R2- l 7(ASM)
terminator record RF-4(ASM)
UNIX/DOS U2-2(ASM}-U2-12(ASM)

file name defaults U2-4(ASM)
flags U2-5(ASM}-U2-l l(ASM)

abspcadd U2-6(ASM)
brb U2-6(ASM)
brl U2-6(ASM)
hrs U2-6(ASM)
brw U2-6(ASM)
case U2-7(ASM)
cex U2-7(ASM)
cl U2-7(ASM)
ere U2-7(ASM)
d U2-7(ASM)

Master I ndex-11

e U2-7(ASM)
frl U2-7(ASM)
g U2-7(ASM)
i U2-7(ASM)
lien U2-8(ASM)
me U2-8(ASM)
md U2-8(ASM)
mex U2-8(ASM)
nest U2-8(ASM)
o U2-8(ASM)
old U2-8(ASM)
op U2-8(ASM)
opnop U2-9(ASM)
p U2-9(ASM)
pco U2-9(ASM)
per U2-10(ASM)
pcs U2-10(ASM)
quick U2-10(ASM)
r U2-10(ASM)
rel32 U2-ll(ASM)
s U2-ll(ASM)
t U2-ll(ASM)
w U2-ll(ASM)
x U2-ll(ASM)

invocation examples U2-12(ASM)
invocation syntax U2-2(ASM)
options U2-2(ASM}-U2-4(ASM)

-b U2-2(ASM)
-D U2-2(ASM)
-f U2-3(ASM)
-I U2-3(ASM)
-L U2-3(ASM)
-1 U2-3(ASM)
-o U2-3(ASM)
-V U2-3(ASM)

VAX/VMS U3-2(ASM}-U3-12(ASM)
file name defaults U3-4(ASM)
flags U3-4(ASM}-U3-ll(ASM)

abspcadd U3-6(ASM)
brb U3-6(ASM)
brl U3-6(ASM)
hrs U3-6(ASM)
brw U3-6(ASM)
case U3-7(ASM)

Master lndex-12

cex U3-7(ASM)
cl U3-7(ASM)
ere U3-7(AsM)
d U3-7(ASM)
e U3-7(ASM)
fr! U3-7(ASM)
frs U3-7(ASM)
g U3-7(ASM)
i U3-7(ASM)
lien U3-8(ASM)
me U3-8(ASM)
md U3-8(ASM)
mex U3-8(ASM)
nest U3-8(ASM)
o U3-8(ASM)
old U3-8(ASM)
op U3-8(ASM)
opnop U3-9(ASM)
p U3-9(ASM)
pco U3-9(ASM)
per U3-10(ASM)
pcs U3-10(ASM)
quick U3-10(ASM)
r U3-10(ASM)
rel32 U3-ll(ASM)
s U3-ll(ASM)
t U3-ll(ASM)
w U3-ll(ASM)
x U3-ll(ASM)

invocation examples U3-12(ASM)
invocation syntax U3-2(ASM)
options U3-3(ASM}-U3-4(ASM)

DEFINE U3-3(ASM)
FLAGS U3-3(ASM)
IPATH U3~3(ASM)

LIST U3-3(ASM)
NOLIST U3-3(ASM)
NOOBJECT U3-3(ASM)
OBJECT U3-3(ASM)
VERSION U3-3(ASM)

Assembler directives
(see Directives, assembler)

Assembler in-lining R9-3(MCC), R2-26(CCC)
considerations R9-8(MCC)

Documentation Set for 68000/ECOOO/HCOOO and 68302

Assembler relocation flags R8-2(ASM)
Assembler source file R11-1 (MCC)

#include files expanded
/show=include option U3-28(MCC)
-Fsi option U2-20(MCC)

advantages to producing Rll-l(MCC)
contents Rll-3(MCC)
generating

/asm=filename option U3-13(MCC)
-S option U2-36(MCC), U2-33(CCC)

high-level source code, including as com­
ments

/show=source option U3-29(MCC)
-Fsm option U2-20(MCC), U2-

17(CCC)
line numbers Rll-2(MCC)
naming

-o option U2-33(MCC), U2-30(CCC)
variable names Rll-l(MCC)

Assembly and high-level code
/show=source option U3-29(MCC)
-Fsm option U2-20(MCC), U2-17(CCC)

Assembly code
insertion specification

keywords R4-2(CCC)
Assembly code intermixed with source code

LINES option R3-107CXRAY)
Assembly code, optimizing by hand R11·

1(MCC)
Assembly file

saving
-H option U2-22(MCC), U2-19(CCC)

Assembly language
example of a routine R7-9(MCC)
interface R7-l(MCC), R7-8(MCC)

Assembly-level mode
MODE command R3-92(XRA.Y)

Assembly-level mode debugging U1·
2(XRA Y), U2-20(XRA Y)

CLEAR command U2-20(XRA Y), U2-
24(XRAY)

GO command U2-22(XRAY), U2-
24(XRAY)

MODE command U2-20(XRAY)

PRINTVALUE command U2-22(XRAY)
QUIT command U2-24(XRA Y)
RESTART command U2-20(XRAY)
STEP command U2-22(XRA Y)
tutorial U2-20(XRAY)
VSCREEN command U2-24(XRA Y)

Assembly-level screen S1-6(SUP), U3·
2(XRAY)

assert macro R5-2(MCC), R5-27(MCC)
assert.h include file R5·2(MCC)
Assignments

form of R3-9(MCC)
operators R3-12(MCC)

at sign (@) R2-9(XRA Y)
atan function R5-28(MCC), U2-39(MCC), U3-

25(MCC), U2-37(CCC)
atan2 function R5-29(MCC)
atanh function U2-40(MCC), U3-25(MCC),

U2-37(CCC)
atexit function R5-20(MCC), R5-30(MCC)

relationship to exit R5-4 7(MCC)
atof function RS-31 (MCC)
atoi function R5-32(MCC)
atol function R5-33(MCC)
Auto

keyword R3-5(MCC)
storage class R3-5(MCC)
variables R3-5(MCC)

AUTOEXEC.BAT
DOS Il-3(MCC), Il-3(XRAY), Il-4(CCC)

B
-b assembler command line option U2-

2(ASM)
b.out U2-24(ASM), U3-22(ASM)
Backspace

disable for preprocessor
-Es option U2-19(MCC), U2-16(CCC)
-Ps option U2-33(MCC), U2-30(CCC)

Bandwidth, data bus R6-23(MCC), R6-
29(MCC)

Banner
/banner option U3-13(MCC)

Master lndex-13

-Vb option U2-37(MCC), U2-34(CCC)
Base address R9·6(ASM}, R10-14(ASM)
Base class RC-1(CCC}, UA-1(CCC)

definition R3-l(CCC)
packed R4-4(CCC)
specifier R3-l(CCC)

private R2-3(CCC), R3-l(CCC)
public R2-3(CCC), R3-l(CCC)
virtual R2-3(CCC), R3-l(CCC)

unpacked R4-4(CCC)
BASE linker command R10-14(ASM}-R10·

15(ASM)
Base pointer R5-10(CCC)
Basic breakpoints S3-34(SUP)
Batch commands U4-8(XRAY)
Batch mode

C++ inspector U2-52(CCC)
Batch mode support U4-8(XRAY)
_Bes preprocessor symbol R4·3(MCC)
Before you install 11·2(FLEX)
Beginning of a file, pointing to R5·145(MCC)
BIG_ENDIAN R6·1(MCC)
Binary expressions R3·9(MCC)
Binary search, performing R5-34(MCC)
Bit fields R6-20(MCC)

alignment R6-24(MCC), R6-29(MCC)
packing R6-23(MCC)

Bound pointer RA-6(CCC)
BPSPACE (specify breakpoint space) S2-

4(SUP)
Branch instruction labels

local(??) R7-4(ASM)
Branch tail merging R1011(MCC)
Branch tail optimization R5·12(XRAY)
brb assembler command line flag U2-

6(ASM), U3-6(ASM)
BREAK assembler directive R7-6(ASM)
break button

Sun View support UH-12(XRAY)
break statement R3·19(MCC)
BREAK statement in macros R4-4(XRAY)
Break viewport U3·7(XRAY)

#breakpoint number field U3-7(XRAY)
Address field U3-7(XRAY)

Master lndex-14

assembly-level mode U2-21(XRAY)
Command Argument field U3-8(XRA Y)
description of fields U3-7(XRA Y)
high-level mode U2-18(XRAY)
Line field U3-7(XRAY)
Mod/Fnct field U3-7(XRAY)
OPTION BREAK= ON command U3-

7(XRAY)
OPTION SW AP= ON command U3-

7(XRAY)
Type field U3-8(XRAY)

Break viewport, display of
BREAK option R3-104(XRAY)

BREAKACCESS S1·7(SUP)
BREAKACCESS command S2·5(SUP}, R3·

25(XRA Y}, U4-5(XRAY)
BREAKCOMPLEX S1·7(SUP}, S2-10(SUP)
BREAKCOMPLEX command R3-28(XRAY)
BREAKINSTRUCTION S1-7(SUP)
BREAKINSTRUCTION button

X Window support UA-12(XRAY)
BREAKINSTRUCTION command S2·

12(SUP), R3-30(XRAY), U2-30(XRA Y},
U4-5(XRAY)

high-level mode U2-18(XRAY)
Breakpoint scratch area address S2·

128(SUP)
Breakpoints U4-5(XRAY)

access S3-34(SUP)
associating with macro R4-2(XRAY)
basic S3-34(SUP)
break when expression is true R4-

36(XRA Y), R4-37(XRA Y)
breakcomplex 82-lO(SUP)
clearing S3-35(SUP), U2-20(XRAY)

CLEAR command R3-40(XRAY)
complex S3-48(SUP), S4-23(SUP)
encountering during execution U2-

23(XRAY)
event system S3-46(SUP)
in C++ RG-13(XRAY)
instruction S3-34(SUP), RF-7{XRAY),

U2-17(XRAY), U2-21(XRAY), U2-
30(XRAY)

Documentation Set for 68000/ECOOOIHCOOO and 68302

recursive functions R2-24(XRAY)
setting S3-34(SUP)

access
BREAKACCESS command R3-

25(XRAY)
complex

BREAKCOMPLEX
command R3-
28(XRAY)

instruction
BREAKINSTRUCTION

command S2-12(SUP),
R3-30(XRA Y)

read
BREAKREAD command S2-

16(SUP), R3-32(XRAY)
write

BREAKWRITE command S2-
20(SUP), R3-35(XRAY)

simple S4-3(SUP)
temporary S4-5(SUP), U2-28QL~Y),

U4-6(XRAY)
Breakpoints,trace control S2-138(SUP)
BREAKREAD command S2-16(SUP), R3-

32(XRAY), U4-S(XRAY)
BREAKWRITE S1-7(SUP)
BREAKWRITE command S2-20(SUP), R3-

35(XRAY), U4-S(XRAY), U4-7(XRAY)
Brklnst button

X Window support UA-12(XRAY)
brl assembler command line flag U2-6(ASM),

U3-6(ASM)
BROWSE S2-24(SUP)
BROWSE command (C++) RG-12(XRAY)

. brs assembler command line flag U2-
6(ASM), U3-6(ASM)

brw assembler command line flag U2-
6(ASM), U3-6(ASM)

bsearch function RS-34(MCC)
BTE (emulator bus timeout) S2-25(SUP)
Buffer

altering mode R5-154(MCC)
altering size R5-154(MCC)
association with J/O file R5-150(MCC)

Buffer, trace
SETSTATUS QUALIFY command R3-

167(XRAY)
STATUS BUFFER command R3-

. 183(XRAY)
STATUS QUALIFY command R3-

188(XRAY)
Buffered data

flushing to a file R5-54(MCC)
BUFSIZ R5-14(MCC)
Bus S2-137(SUP), S3-27(SUP)
Bus bandwidth R6-23(MCC), R6-29(MCC)
BUS command S2-27(SUP)
Bus errors S2-33(SUP)
Bus timeout, fast S2-87(SUP)
Bus timing information

in trace S2-29(SUP)
Buttons

arguments for
Sun View support UH-lO(XRAY)
X Window support UA-lO(XRAY)

constructing commands
Sun View support UH-lO(XRAY)
X Window support UA-lO(XRAY)

defining
Sun View support UH-14(XRAY)
X Window support UA-13(XRAY)

standard
Sun View support UH-ll(XRAY)

Sun View UH-9(XRAY)-UH-14(XRAY)
break UH-12(XRAY)
clear UH-12(XRAY)
context UH-12(XRAY)
go UH-12(XRAY)
go to UH-12(XRAY)
help UH-12(XRAY)
load UH-12(XRAY)
mode UH-12(XRAY)
monitor UH-12(XRAY)
prevcmd UH-12(XRAY)
print UH-12(XRAY)
print* UH-13(XRAY)
scope UH-13(XRAY)
screen UH-13(XRAY)

Master lndex-15

status UH-13(XRAY)
step UH-13(XRAY)
stepo UH-13(XRAY)
stop UH-13(XRAY)

user-defined
Sun View support UH-14(XRAY)
X Window support UA-13(XRAY)

XWindow
Brklnst UA-12(XRAY)
Clear UA-12(XRAY)
Context UA-12(XRAY)
Go UA-12(XRAY)
Go To UA-12(XRAY)
Help UA-12(XRAY)
Load UA-12(XRAY)
Mode UA-12(XRAY)
Monitor UA-12(XRAY)
Prevcmd UA-12(XRAY)
Print UA-12(XRAY)
Print* UA-13(XRAY)
Scope UA-13(XRAY)
Screen UA-13(XRAY)
Start UA-13(XRAY)
Status UA-13(XRAY)
Step UA-13(XRAY)
StepOvr UA-13(XRAY)

By-argument qualification RG-9(XRAY)
byte macro R4-14(XRAY)
Bytes

c

clearing memory bytes R5-118(MCC)
conversion to ASCII format R5-

186(MCC)
multibyte character R5-113(MCC)
reading from a file R5-142(MCC)
swapping odd and even bytes R5-

182(MCC)
writing to a file R5-202(MCC)

C calling conventions R7-1(MCC)
C comments, saving in preprocessor output

/preserve_comments option U3-29(MCC)
-C option U2-17(MCC), U2-14(CCC)

Master lndex-16

C compiler
description Ul-l(CCC)

C file, intermediate
-Fe option U2-17(CCC)

C language elements R2-1(MCC)
-Clinker command line option U2-13(ASM)
-clinker command line option U2-13(ASM)
C operators RC-1(XRAY)
-C option U2-17(MCC), U2-14(CCC)
-c option U2-18(MCC), U2-14(CCC)

example use U2-4l(MCC)
C++

implementation issues
+p compiler option RB-3(CCC)
-A compiler option RB-2(CCC)
character constants RB-l(CCC)
floating-point constants RB-2(CCC)
identifiers RB-l(CCC)
keywords RB-l(CCC)
-nA compiler option RB-3(CCC)
nonmember functions RB-2(CCC)
nonstatic data members RB-2(CCC)
nonvirtual base classes RB-2(CCC)
operators RB-2(CCC)
predefined macros RB-2(CCC)

keywords R4-l(CCC)
C++ compiler

command line options U2-6(CCC)
command line syntax U2-l(CCC)
default file name extensions U2-2(CCC)
description Ul-7(XRAY), Ul-l(CCC)
environment variables U2-4(CCC)
file locations U2-3(CCC)

C++ compiler package
assembler Ul-l(CCC)
C compiler Ul-5(XRAY), Ul-l(CCC)
C++ compiler Ul-7(XRAY), Ul-l(CCC)
component descriptions Ul-l(CCC)
data flow Ul-4(CCC)
librarian Ul-2(CCC)
XRAY Debugger Ul-3(CCC)

C++ file suffix
+z option U2-38(CCC)

C++ inspector U2-46(CCC)

Documentation Set for 68000/ECOOO/HCOOO and 68302

batch mode U2-52(CCC)
help command U2-53(CCC)
run command U2-52(CCC)
srun command U2-52(CCC)

command line examples U2-53(CCC)
command line syntax U2-47(CCC)
example files

ASCII file containing mangled
names U2-56(CCC)

C++ source file U2-55(CCC)
interactive mode U2-48(CCC)

Help button U2-51(CCC)
Look button U2-50(CCC)
Quit button U2-52(CCC)
Run button U2-49(CCC)

C++ intermediate file
+i option U2-20(CCC)

C++language
contrast with C R4-l(CCC)
function declarations R4-12(CCC)
grammar rules R4-ll(CCC)
keywords R4-l(CCC)
parentheses R4- l 1(CCC)
wrapper R5-6(CCC)

C++ support RG-1(XRAY)
access protection RG-5CXRAY)
breakpoints RG-13(XRAY)

class RG-14(XRAY)
instance . RG-13(XRA Y)
object RG-13(XRAY)
overloaded RG-15(XRAY)

BROWSE command RG-12(XRAY)
CEXPRESSION command RG-7(XRAY)
class RG-2(XRA Y)
comments RG-16(XRAY)
data members RG-3(XRAY)
disable features RG-l(XRAY)
DISASSEMBLE command RG-7(XRA Y)
inheritance RG-lO(XRAY)

BROWSE command RG-12(XRAY)
member functions RG-3(XRAY)
MONITOR command RG-15(XRAY)
operator functions RG-6(XRAY)
overloaded functions RG-6(XRAY), RG-

7(XRAYl
by-argument qualification RG-

9(XRAY)
one-of qualification RG-7(XRAY),

RG-9(XRAY)
PRINTVALUE command RG-2(XRAY)
reference variables RG-5(XRAY)
run-time libraries RG-l(XRAY)
static members RG-4(XRAY), RG-

15(XRAY)
struct RG-2(XRA Y)
union RG-2(XRAY)
XRAY with C++ RG-l(XRAY)

c_plusplus RB-2(CCC)
c68k U3-3(MCC)
Calendar time

breaking down to local time R5-82(MCC)
conversion to local time R5-104(MCC)
determining current time R5-185(MCC)

Calendar times, computing difference
between R5-44(MCC)

Calling a C function R5-1(CCC)
Calling functions

C from C++ R5-l(CCC)
C++ from C R5-l(CCC), R5-4(CCC)-R5-

8(CCC)
member functions R5-4(CCC)
overloaded functions R5-4(CCC)

member functions R5-4(CCC)
Calling technical support 11-9(FLEX), l1-

10(FLEX)
calloc function R5-20(MCC), R5-35(MCC),

R9-12(MCC)
relationship to free R5-67(MCC)
relationship to realloc R5-143(MCC)

Cancel pending interrupts
NOINTERRUPT command R3-

99(XRAY)
Cartridge tape

VMS 12-l(XRA Y)
CAS (continuous address strobe) S2-

30(SUP)
case assembler command line flag U2-

7(ASM), U3-7(ASM)

Master lndex-17

CASE linker command R10·16(ASM)-R10·
17(ASM)

catch keyword R4·2(CCC), RB-1(CCC)
ccc68ka5.lib U2-42(CCC)
ccc68ka5020.lib U2-42(CCC)
ccc68kab.lib U2·42(CCC)
ccc68kab020.lib U2-42(CCC)
ccc68kpc.lib U2·42(CCC)
ccc68kpC020.lib U2-42(CCC)

. cd command l1-6(FLEX)
ceil function R5-36(MCC)
cex assembler command line flag U2·

7(ASM), U3-7(ASM)
CEXPRESSION command R3-38(XRA Y), U4-

16(XRA Y)
with C++ RG-7(XRA Y)

Change memory contents
SETMEM command R3-156(XRAY)

Changing event groups S4-22(SUP)
Changing flag states S4-22(SUP)
Changing storage size R5-143(MCC)
Char Del.key (Apollo support) UB-3(XRAY)
char type R3·1(MCC), R6-3(MCC), R6·

10(MCC)
Character

alphanumeric, testing for R5-83(MCC)
comparing characters in memory R5-

119(MCC)
converting to lowercase R5-187(MCC),

R5-188(MCC)
converting to uppercase R5-189(MCC),

R5-190(MCC)
copying characters from memory R5-

116(MCC), R5-120(MCC), R5-
121(MCC)

determining bytes in multibyte
character R5-113(MCC)

first occurrence in string R5-163(MCC)
multibyte

conversion to wide character R5-
115(MCC)

reading character from a file R5-
55(MCC)

reading from a file R5-77(MCC)

Master lndex-18

reading from standard input R5-
78(MCC)

returned to file R5-191(MCC)
searches character in memory R5-

117(MCC)
setting value in memory R5-122(MCC)
testing for ASCII character R5-85(MCC)
testing for control character R5-86(MCC)
testing for lower-case character R5-

84(MCC), R5-89(MCC)
testing for upper-case character R5-

84(MCC), R5-93(MCC)
writing to a file R5-64(MCC), R5-

134(MCC)
Character constants R2·13(ASM)-R2-

15(ASM)
Character handling functions R5-3(MCC)

isalnum R5-83(MCC)
isalpha R5-84(MCC)
iscntrl R5-86(MCC)
isdigit R5-87(MCC)
isgraph R5-88(MCC)
islower R5-89(MCC)
isprint R5-90(MCC)
ispunct R5-91(MCC)
isspace R5-92(MCC)
isupper R5-93(MCC)
isxdigit R5-94(MCC)
tolower R5-187(MCC)
toupper R5-189(MCC)

Character set RA·1(MCC)
assembler R2-6(ASM)

Character string constants R2·4(MCC)
Characters

ASCII character set RA-l(MCC), UA-
l(MCC), RB-l(XRAY)

copying from memory R4-25(XRA Y)
nonprintable R2-5(MCC), R2-6(XRAY)
searching for in memory R4-23(XRAY)
searching for in string R4-30(XRAY)
setting value in memory R4-26(XRAY)
strings R2-5(XRA Y)

Checking in licenses U3-3(FLEX), U3-
5(FLEX)

Documentation Set for 68000/ECOOO/HCOOO and 68302

Checking out licenses U1-2(FLEX)
(see also Holding licenses)
after inactive period Ul-2(FLEXl
automatically Ul-2(FLEX), U3-5(FLEX)
determining which are held Ul-4(FLEX),

U3-2(FLEX)
expiration time

(see Expiration of licenses)
failure U2-5(FLEX)
first time Ul-2(FLEX)
flow of operation U2-3(FLEX)
in advance Ul-5(FLEXJ, U3-HFLEXJ

reserving licenses U2-ll(FLEX)
length of time held

(see Expiration of licenses)
license server daemons not running Ul-

2(FLEX), Ul-3(FLEX)
manually U3-l(FLEX)
MCC68K Ul-2(FLEX)
operation flow U2-3(FLEX)
required number of licenses U2-l(FLEX)

Checking syntax only
/syntax_only option U3-33(MCC)
-y option U2-40(MCC), U2-37(CCC)

Checking, extra
/extra_checks option U3-23(MCC)
-v option U2-38(MCC), U2-35(CCC)

CHIP assembler directive R5-5(ASM)-R5-
7(ASM)

Chip control registers, updating S2-
156(SUP)

CHIP linker command R10-18(ASM)-R10-
20(ASM)

@chip pseudo-register RA-1(XRAY), RF-
1(XRAY)

cl assembler command line flag U2-7(ASM),
U3-7(ASM)

Class R2-1(CCC)
access R2-2(CCC)
base RC-l(CCC), UA-l(CCC)
definition RC-l(CCC), UA-l(CCC)
derived RC-2(CCC), UA-2(CCC)
friend RC-2(CCC), UA-2(CCC)

member R2-2(CCC), RC-l(CCC), RC-
2(CCC)

class keyword R4-2(CCC)
Class member UA-1(CCC), UA-2(CCC)
Classes

base R3-l(CCC)
declaring C++ R4-2(CCC), R4-10(CCC)
derived R3-l(CCC)
friends R2-4(CCC)
keyword R4-2(CCC)
nested R4-16(CCC)
operators R2-22(CCC)

Clear button
X Window support UA-12(XRAY)

clear button
Sun View support UH-12(XRAY)

CLEAR command R3-40(XRA Y), U2-
20(XRA Y), U2-24(XRA Y)

Clear event system S2-77(SUP)
CLEAR librarian command R13-6(ASM)
clearerr function R5-12(MCC), R5-37(MCC)
Clearing

breakpoints
CLEAR command R3-40(XRA Y)

memory R4-24(XRAY)
viewports

VCLEAR command R3-204(XRAY)
Clearing memory bytes R5-118(MCC)
Clock

not supported Sl-7(SUP)
Clock frequency S2-27(SUP)
clock function R5-38(MCC)
CLOCKS_PER_SEC macro R5-38(MCC)
close function R5-39(MCC), R9-31(MCC), U2-

52(MCC), U3-43(MCC), U2-44(CCC)
relationship to fclose R5-51(MCC)

Close viewport
VCLOSE command R3-205(XRA Y)

Closing a file R5-39(MCC), R5-51(MCC)
CLR instruction, using

/cir option U3-13(MCC)
-Kc option U2-24(MCC), U2-21(CCC)

cmx68ka5.lib U2-42(CCC)
cmx68ka5020.lib U2-42(CCC)

Master I ndex-19

cmx6Skab.lib U2-42(CCC)
cmx68kab020.lib U2-42(CCC)
cmx6Skpc.lib U2-42(CCC)
cmx68kpc020.lib U2-42(CCC)
Code

position-dependent R9-19(MCC)
position-independent R9-19(MCC)

/code_address option (VMS) R4-3{MCC)
Code and data section names,

specifying U2-28(MCC), U3-
30(MCC), U2-25(CCC)

Code elimination, unreachable R102(MCC)
Code hoisting R1012(MCC), R5-13(XRAY)
/code option (VMS) R9-19(MCC), R9-

20(MCC)
Code organization RS-1(MCC)

compiler-generated sections R8-2(MCC)
Code patching S3-30(SUP)
Code references

absolute
/code_addresses=absolute option U3-

14(MCC)
-Mca option U2-27(MCC), U2-

24(CCC)
PC-relative

/code_addresses=pcrelative U3-
14(MCC)

-Mcp option U2-27(MCC), U2-
24(CCC)

code section RS-4(MCC), U2-16(MCC), U3-
15(MCC), U2-13(CCC)

naming
/rename option U3-30(MCC)
-NT option U2-29(MCC), U2-

26(CCC)
Code viewport U3-1(XRAY), U3-10(XRAY)

assembly-level U3-2(XRAY)
C source code lines in U3-3(XRAY)

high-level U2-16(XRAY)
Code viewport display

HIGHLIGHT option R3-106(XRAY)
Colon-colon{::) operator R2-25(CCC)
Colon-colon-star{::*) operator R2-18(CCC)

Master lndex-20

Color
change display Sl-8(SUP)

Color display, setting
COLOR option R3-105(XRAY)
VPCOLOR option R3-109(XRAY)

Colors, setting UA-3(XRA Y)
Column number debugging information

/debug=multi_stmt option U3-19(MCC)
-Gm option U2-21(MCC)

COMLINE assembler directive R5-S(ASM)
Command

aliasing S3-20(SUP)
history S3-20(SUP)

Command definitions R3-17(XRA Y)
Command file

-clinker option U2-13(ASM)
Command file, passing to linker

-e option U2-19(MCC), U2-16(CCC)
Command files

comments R3-4(XRAY)
processing

INCLUDE command R3-79(XRAY)
Command key commands R3-12(XRAY)
Command keys U1-3{XRA Y), U3-35(XRA Y)

(see also under specific name)
Apollo workstations UB-4(XRA Y)
command line editing keys U2-8(XRAY)
DECstation terminals UC-3(XRAY)
HP support UD-6(XRAY)
IBM RS/6000 UE-3(XRA Y)
Motorola Delta Series workstations UF-

3(XRAY)
MOVE TO BOTTOM U3-36(XRAY)
MOVE TO TOP U3-36(XRAY)
PC/DOS UG-3(XRAY)
Sun Microsystems workstations UH-

4(XRAY)
VT terminals Ul-3(XRA Y)

Command keys {trace mode)
Apollo workstations UB-5(XRA Y)
DECstation terminals UC-5(XRAY)
HP terminals UD-7(XRA Y)
IBM RS/6000 UE-4(XRA Y)

Documentation Set for 68000/ECOOO/HCOOO and 68302

Motorola Delta Series workstations UF-
5(XRAY)

PC/DOS UG-5(XRA Y)
Sun Microsystems workstations UH-

5(XRAY)
VT terminals Ul-5(XRAY)

Command line
syntax U2-l(CCC)

Command line continuation character
linker U3-21(ASM)

Command line flags
assembler

UNIX/DOS U2-5(ASM)-U2-
l l(ASM)

V AXNMS U3-4(ASM)-U3- l l(ASM)
Command line options

DOS U2-l(MCC)
specifying in file

-d option U2-19(MCC), U2-15(CCC)
UNIX U2-l(MCC)
VMS U3-l(MCC)

COMMAND linker command line option U3-
13(ASM)

Command position dependencies,
linker R10-3(ASM)

Command viewport U2-18(XRAY), U3-
1(XRAY), U3-12(XRAY)

assembly-level U3-2(XRAY)
Commands U3-1(FLEX)

administrative U3-4(FLEX)
arch (Sun) IA-l(FLEX)
cd ll-6(FLEX)
export (sh/ksh) ll-15(FLEX), 12-

l(FLEX), Ul-l(FLEX), Ul-
3(FLEX)

hostid 13-2(FLEX), l3-3(FLEX), U3-
4(FLEX)

hostname 13-2(FLEX)
kill 12-S(FLEX)
librarian

(See Librarian commands)
linker

(See Linker commands)
lmdown 12-S(FLEX), U3-4(FLEX)

lmgrd 12-7(FLEX)
lmhostid U3-4(FLEX>
lmremove U3-5(FLEX)
lmreread U3-6(FLEX)
lmstat 12-4(FLEX)

(see lmstat command)
In ll-15(FLEX), IA-l(FLEX)
mcc68k Ul-2(FLEX), Ul-3(FLEX)
mkdir ll-6(FLEX)
mlicense

(see mlicense command)
mricheckin IC-l(FLEX)
mricheckout IC-l(FLEX)
mt ll-19(FLEX)
rbak (Apollos) ll-7(FLEX)
rep U2-ll(FLEX)
rsh 11-S(FLEX), 12-7(FLEX)
set (csh) 12- l(FLEX)
setenv (csh) ll-15(FLEX), 12-l(FLEX),

Ul-l(FLEX), Ul-3(FLEX)
tail 12-4(FLEX)
tar 11-7(FLEX), ll-19(FLEX)
user U3-l(FLEX)

Comment indicators
librarian Rl3-l(ASM)
linker Rl0-2l(ASM)

Comment linker command R10-21 (ASM)
Comment statement R2-4(ASM)
Comments R2-S(MCC)

/*and */tokens R4-7(CCC)
II token R4-7(CCC)
command files R3-4(XRAY)
examples R4-7(CCC)
include files R3-4(XRA Y)
macros R4-3(XRA Y)

Comments, representing R4-7(CCC)
Comments, saving in preprocessor output

/preserve_comments option U3-29(MCC)
-C option U2-l 7(MCC), U2-14(CCC)

COMMON assembler directive R5-9(ASM)-
R5-10(ASM)

COMMON linker command R10-22(ASM}­
R10-23(ASM)

Master lndex-21

Common subexpression optimization R5-
6{XRAY)

Communications timeout S2-92{SUP)
COMPARE command R3-41{XRAY)
Comparing

file contents to memory
SETSTATUS VERIFY command R3-

177(XRAY)
memory

COMPARE command R3-41(XRAY)
strings R4-3 l(XRA Y), R4-33(XRA Y), R4-

35(XRAY)
Comparing characters in memory R5-

119{MCC}
Comparing two strings R5-171(MCC}
Comparing values R5-112{MCC}, R5-

123(MCC}
Compatibility

between Flexible License Manager
versions IC-l(FLEX), IC-
2(FLEX)

with other Highland Software
vendors IC-5(FLEX)

Compatibility between C and C++ R4-1(CCC)
Compatibility with MRI toolchain S1-1{SUP}
Compiler

command line U2-l(MCC), U3-l(MCC)
description Ul-l(MCC)
input file extensions U2-2(MCC), U3-

2(MCC)
invoking U2-l(MCC), U3-l(MCC)
syntax U2-l(MCC), U3-l(MCC)

Compiler constant
_cplusplus R5-2(CCC), RB-2(CCC)
c_plusplus RB-2(CCC)
NULL RB-2(CCC)

Compiler driver U2-1(CCC)
Compiler features R1-1{MCC}, R1-2{CCC}
Compiler options

UNIX/DOS
-A R4-3(MCC)
-e R9-24(MCC)
-f R4-3(MCC)
-g R4-3(MCC)

Master lndex-22

-Kf R1016(MCC)
-Kh R9-34(MCC)
-Kr R9-45(MCC)
-KT R4-3(MCC)
-Ku R4-3(MCC), R6-10(MCC)
-Mcp R4-3(MCC), R9-19(MCC), R9-

20(MCC)
-Md R4-3(MCC), R4-4(MCC)
-Mdn R9-19(MCC), R9-20(MCC)
-Mdp R9-19(MCC), R9-20(MCC)
-nKu R4-3(MCC)
-nOc R1017(MCC)
-p R4-4(MCC)
-utn R4-3(MCC)
-x R4-3(MCC)

VMS
/align_check R4-3(MCC)
/ansi R4-3(MCC)
/code R9-19(MCC), R9-20(MCC)
/code_address R4-3(MCC)
/cpu R4-4(MCC)
/data R9-19(MCC), R9-20(MCC)
/debug R4-3(MCC)
/fpu R4-3(MCC)
/frames R1016(MCC)
/ireturn R9-45(MCC)
/long R9-21(MCC), R9-23(MCC)
/mri_extensions R4-3(MCC)
/nounsignedchar R4-3(MCC)
/optimize R1017(MCC)
/reserve R9-34(MCC)
/truncate_identifiers R4-3(MCC)
/unsigned char R6-10(MCC)
/unsignedchar R4-3(MCC)

Compiler output
assembler source file Rll-l(MCC)
listing Rll-3(MCC)

Compiler-generated literals section U2-
16{MCC), U3-15(MCC), U2-13(CCC)

naming
/rename option U3-31(MCC)
-NL option U2-29(MCC), U2-

25(CCC)
specifying address mode

Documentation Set for 68000/ECOOO/HCOOO and 68302

-al options U2-17(MCC), U2-
14(CCC)

Compiler-generated tag data section U2-
16(MCC), U3-15(MCC), U2-13(CCC)

/trace option U3-33(MCC)
-Kt option U2-26(MCC), U2-23(CCC)

Completeness testing 12-1(FLEX)
Complex breakpoints S2-10(SUP), S4-

23(SUP)
Complex data types R6-4(MCC)
Complex expression R4-8(ASM)
Complex RAM test S2-36(SUP)
Complex relocatable expressions R4-

8(ASM)
Complex straddling R6-24(MCC)
Components of the ASM68K package U1-

1 (ASM)
Compound statement R3-19(MCC)
Concatenating two strings R5-162(MCC),

R5-170(MCC), R4-29(XRAY)
Conditional compilation directives R4-

8(MCC)
#elif R4-7(MCC), R4-13(MCC)
#else R4-7(MCC), R4-14(MCC)
#endif R4-7(MCC), R4-15(MCC)
#if R4-7(MCC), R4-l 7(MCC)
#ifdef R4-7(MCC), R4-19(MCC)
#ifndef R4-7(MCC), R4-20(MCC)

Conditional expressions R3-9(MCC)
Conditions S4-14(SUP)
CON FIG.SYS

DOS Il-3(MCC), Il-3(XRAY), ll-4(CCC)
Configurations, memory R9-15(MCC), R9-

18(MCC), R9-42(MCC), R9-44(MCC)
Conflicting options, specifying U2-10(MCC),

U2-6(CCC)
con st

avoiding confusing declarations R4-
9(CCC)

const member function RC-1(CCC), UA-
1(CCC)

const object AC-1(CCC), UA-1(CCC)

const section R8-4(MCC), U3-15(MCC)
naming

/rename option U3-30(MCC)
-NC option U2-28(MCC), U2-

25(CCC)
specifying address mode

/const_addr_as options U3-16(MCC)
-ac options U2-17(MCC), U2-

13(CCC)
const type R3-17(MCC)
Constant (definition) R3-3(XRAY)
Constant expressions R3-6(MCC), R3-

17(MCC)
Constant folding optimization R109(MCC),

R5-6(XRAY)
Constant literals section

-al options U2-17(MCC), U2-14(CCC)
Constant variables section U3-15(MCC)

naming
/rename option U3-30(MCC)
-NC option U2-28(MCC), U2-

25(CCC)
specifying address mode

-ac options U2-17(MCC), U2-
13(CCC)

Constants R2-1(MCC), R2-3(XRAY)
(see Assembler constants)
character strings R2-5(XRAY)
floating-point R2-4(XRAY)
hexadecimal R2-3(XRAY)
integer R2-3(XRAY)

Constructor R2-11 (CCC), RA-9(CCC), RA-
13(CCC)

definition RC-l(CCC), UA-l(CCC)
Context button

X Window support UA-12(XRA Y)
context button

Sun View support UH-12(XRAY)
CONTEXT command R3-43(XRA Y)

IF option button
X Window support UA-12(XRAY)

Continuation character(#) U2-17(ASM), U3-
17(ASM), R9-11(ASM), R10-49(ASM),
R10-59(ASM)

Master lndex-23

Continuation character (%) R3-5(XRAY), U2-
9(XRAY)

Continuation on command line
minus sign U2-21(ASM), U3-18(ASM)

Continue program execution
GO command R3-69(XRA Y)

continue statement R3-19(MCC)
CONTINUE statement in macros R4-4(XRA Y)
Control character functions U3-36(XRA Y)
Control character, testing for R5-86(MCC)
Conventions, notational IP-2(MCC), RP-

4(MCC), UP2(MCC), IP-2(FLEX), UP-
2(FLEX), UP-4(ASM), RP-4(ASM), IP-
2(XRAY), RP-2(XRAY), UP-4(XRAY),
RP-4(CCC), UP-3(CCC), IP-2(CCC)

Conversion operator() R4-11(CCC)
Conversion programs

IEE2AOUT U2-24(ASM}-U2-28(ASM),
U3-2 l(ASM}-U3-26(ASM)

COPY command R3-44(XRA Y)
Copying

characters from memory R4-25(XRAY)
memory block

COPY command R3-44(XRAY)
strings R4-32(XRA Y)

Copying a string R5-172(MCC)
Copying characters from memory R5-

116(MCC), R5-120(MCC), R5-
121(MCC)

Copying one string to another string R5-
166(MCC)

cos function R5-40(MCC), U2-40(MCC), U3-
25(MCC), U2-37(CCC)

cosh function R5-41(MCC), U2-39(MCC), U3-
25(MCC), U2-37(CCC)

Cosine of a number, computing R5-40(MCC)
Count occurrences S6-26(SUP)
Counted licenses 11-13(FLEX), 13-3(FLEX),

U2-5(FLEX), U2-10(FLEX), UB-
1(FLEX)

checking out Ul-2(FLEX)
errors 12-6(FLEX)
start-up 12-3(FLEX)
testing 12-3(FLEX), 12-5(FLEX)

Master lndex-24

Counter overflow S6-7(SUP), S6-10(SUP)
CPAGE linker command R10-24(ASM)-R10-

25(ASM)
CPU

bus S3-27(SUP)
not supported Sl-7(SUP)

CPU simulation RF-1(XRAY)
68030 support RF-9(XRAY)
68851 instruction support RF-ll(XRAY)
68881 floating-point support RF-

ll(XRAY)
BKPT instruction RF-7(XRAY)
CALLM and RTM instructions RF-

8(XRAY)
CPU space references RF-7(XRAY)
cycle times RF-5(XRAY)

@cycles pseudo-register RF-5(XRAY)
@wait_state pseudo-register RF-

5(XRAY), RF-6(XRAY)
exception handling RF-5(XRAY)

@exc pseudo-register RF-5(XRAY)
instruction alignment RF-4(XRAY)
memory initialization RF-6(XRAY)
trace bits RF -7(XRA Y)

CPU space and coprocessor
communication RF-7(XRAY)

CPU32 support RF-10(XRAY)
CRC (calculate a ere for a range of

memory) S2-31(SUP)
ere assembler command line flag U2-

7(ASM), U3-7(ASM)
creat function R5-42(MCC), U2-52(MCC), U3-

43(MCC), U2-44(CCC)
relationship to close R5-39(MCC)
relationship to read R5-142(MCC)
relationship to write R5-202(MCC)

CREATE librarian command R13-7(ASM)
Create screen

VOPEN command R3-208(XRAY)
Creating

macros
DEFINE command R3-45(XRAY)

symbols
ADD command R3-18(XRAY)

Documentation Set for 68000/ECOOO/HCOOO and 68302

viewports
VOPEN command R3-208(XRAY)

Creating a file R5-42(MCC)
Creating license file 11-9(FLEX)

features, specifying Il-12(FLEX), Il-
14(FLEX)

servers, specifying 11-ll(FLEX), ll-
12(FLEX)

Creating operators R2-19(CCC)
Creating scripts for /usr/mri/bin 12-2(FLEX)
Cross-checking in C++ R5-1 (CCC)
Cross-jump optimization R5-13(XRAY)
Cross-reference option R8-3(ASM)
ctime function R5-20(MCC), R5-43(MCC)
CTRL-L U3-35(XRAY)
ctype.h include file R5-3(MCC)
Current context

CONTEXT command R3-43(XRAY)
Current directory

SETSTATUS DIR command R3-
159(XRAY)

Current module
SCOPE command R3-152(XRAY)

Current procedure (definition) RD-1(XRAY)
Cursor control keys

Apollo workstations UB-2(XRAY)
DECstation terminals UC-3(XRAY)
HP terminals UD-4(XRAY)
IBM RS/6000 UE-l(XRA Y)
Motorola Delta Series workstations UF-

2(XRAY)
PC /DOS UG-2(XRA Y)
Sun Microsystems workstations UH-

2(XRAY)
VT terminals Ul-l(XRAY)

Cursor position in viewport
VSETC command R3-212(XRAY)

@cycles pseudo-register RA-1(XRAY), RF-
1(XRAY)

D
d assembler command line flag U2-7(ASM),

U3-7(ASM)

-D assembler option U2-2(ASM)
-d librarian command line option U2-

21 (ASM)
-D option U2-18(MCC), U2-14(CCC)
+d option U2-15(CCC)
-d option U2-19(MCC), U2-15(CCC)
Daemon U2-3(FLEX)
DAEMON line

(see License file)
Daemon options file l3-3(FLEX), 13-4(FLEX),

13-S(FLEX), UB-1(FLEX)
comment line l3-5(FLEX)
EXCLUDE line 13-6(FLEX)
format l3-5(FLEX)
INCLUDE line 13-6(FLEX)
NOLOG line l3-6(FLEX)
RESERVE line 13-5(FLEX)

Daemons
license manager

(see lmgrd)
license server

(see License server daemons)
mlicense.daemon I2-3(FLEX)
vendor

(see MRI daemon)
Data

C++ structures
defining R5-10(CCC)

formats R6-l(MCC)
initialization R9-39(MCC)
position-dependent R9-19(MCC)
position-independent R9-19(MCC)
system R9-37(MCC)
types R3-l(MCC), R3-2(MCC), R6-

3(MCC)
allocation R3-l(MCC), R6-3(MCC)
double R3-2(MCC)
float R3-2(MCC)
keyword R4-6(CCC)
pointer R3-2(MCC)
ranges R6-3(MCC)

Data bus bandwidth R6-23(MCC), R6-
29(MCC)

Data flow diagram U1-4(MCC)

Master lndex-25

Data flow program diagram U1-3(ASM)
Data member R2·1(CCC), RC-1(CCC), UA-

1(CCC)
/data option (VMS) R9-19(MCC), R9-20(MCC)
Data record

Sl format RF-2(ASM)
Data references

absolute
/data_addresses=absolute option U3-

14(MCC)
-Mda option U2-27(MCC), U2-

24(CCC)
PC-relative

/data_addresses=pcrelative
option U3-14(MCC)

-Mdp option U2-28(MCC), U2-
25(CCC)

register-relative
/data_addresses=anrelative

option U3-14(MCC)
-Md options U2-27(MCC), U2-

24(CCC)
Data space

allocating R5-35(MCC), R5-lll(MCC),
R5-203(MCC)

deallocating R5-67(MCC)
Data type -alignment R6-30(MCC)
Data type conversion R2-17(XRAY)
Data types

(see Symbolic references, data types)
Data viewport U2-1B(XRAY), U3-1(XRAY),

U3-13(XRAY)
·assembly-level U3-2CXRAY)

Date
conversion to string R5-25(MCC), R5-

43(MCC)
__ DATE __ preprocessor symbol R4-

1(MCC)
DC assembler directive R5·11(ASM)-??
DCB assembler directive R5-14(ASM)
Dead (unreachable) code elimination R5-

2(XRAY)
Dead code elimination R102(MCC)
Deallocating

Master lndex-26

data space R5-67(MCC)
dynamic storage R4-2(CCC)

/debug option (VMS) R11-3(MCC)
DEBUG_ SYMBOLS command R10-26(ASM)
Debugger commands

command file comments R3-4CXRAY)
command syntax R3-2(XRAY)

command parameters R3-3(XRAY)
command qualifiers R3-2(XRAY)
size qualifiers R3-3(XRAY)

defining
ALIAS command R3-20(XRA Y)

entering R3-2(XRAY)
saving in file R3-91(XRAY)

Debugger invocation S1-2(SUP)
Debugger macros R4-1(XRAY)

assignment operators RC-2(XRAY)
attached to viewport

VMACRO command R3-206(XRAY)
commands

SHOW R3-179CXRAY)
comments R4-3(XRAY)
conditional statements

BREAK R4-4(XRAY)
CONTINUE R4-4(XRAY)
DO-WHILE R4-4(XRAY)
FOR R4-5(XRAY)
IF R4-6(XRA Y)
IF-ELSE R4-7CXRAY)
RETURN R4-7(XRAY)
WHILE R4-7(XRAY)

displaying
SHOW command R3-179(XRAY)

execution after instruction
GOSTEP command R3-71(XRA Y)

keywords as names R4-10{XRAY)
macro definition R4-8CXRAY)

comments R4-3(XRAY)
file R4-9(XRAY)
INCLUDE command R4-9(XRAY)
interactive R4-8(XRA Y)
local symbols R4-8CXRAY)
macro body R4-3CXRAY)
saving macros R4-9(XRAY)

Documentation Set for 68000/ECOOO/HCOOO and 68302

macro invocation R4-10(XRAY)
predefined macros R4-13(XRAY)

byte R4-14(X.RAY)
dword R4-15(XRAY)
error R4-16(XRAY)
fgetc R4-17(XRAY)
inport R4-18(XRAY)
isalive R4-20(XRAY)
key_get R4-21(XRAY)
key_stat R4-22(XRAY)
memchr R4-23(XRAY)
memclr R4-24(XRAY)
memcpy R4-25(XRA Y)
memset R4-26(XRA Y)
outport R4-27(XRAY)
strcat R4-29(XRAY)
strchr R4-30(XRA Y)
strcmp R4-31(XRAY)
strcpy R4-32(XRAY)
stricmp R4-33(XRA Y)
strlen R4-34(XRA Y)
strncmp R4-35(XRAY)
until R4-36(XRAY)
when R4-37(XRAY)
word R4-38(XRA Y)

properties R4-ll(XRAY)
return values R4-10(XRAY)
saving R4-9(X.RAY)
source patches R4-12(XRAY)
stop execution R4-10(XRAY)
use with breakpoints R4-2(XRAY)
use with viewports R4-2(XRA Y)

Debugger symbols R3-18{XRAY)
Debugger variable values 52-SO{SUP), S2-

162{SUP)
Debugger, XRA Y

description Ul-3(CCC)
Debugging

assembly mode
-- notation R2-12(XRAY)

multiple statements R2-11(XRAY)
Debugging in assembly-level mode U1-

2{XRA V), U2-20{XRA Y)

BREAKINSTRUCTION command U2-
21(XRAY)

CLEAR command U2-20(XRAY), U2-
24(XRAY)

GO command U2-22(XRA Y), U2-
24(XRAY)

MODE command U2-20(XRAY)
OPTION LINES U2-20(XRAY)
PRINTVALUE command U2-22(XRAY)
QUIT command U2-24(XRAY)
RESTART command U2-20(XRAY)
STEP command U2-22(XRAY)
tutorial U2-20(XRAY)
VSCREEN command U2-24(XRA Y)

Debugging in high-level mode U1-3(XRAV),
U1-4{XRAY), U2-12{XRAY)

BREAKINSTRUCTION command U2-
14(XRAY), U2-18(XRAY)

C expressions and statements Ul-
3(XRAY)

GO command U2-18(XRAY)
MONITOR command U2-18(XRAY)
PRINTVALUE command U2-18(XRAY)
screen U2-14(XRAY)
single-stepping U2-17(X.RAY)
STEP command Ul-4(XRAY), U2-

16(XRAY)
STEPOVER command Ul-4(X.RAY), U2-

19(XRAY)
tutorial U2-12(XRAY)

Debugging information
fully qualified path names

/debug=fullfilename option U3-
19(MCC)

-Gf option U2-21(MCC), U2-18(CCC)
generating

/debug option U3-18(MCC)
-g option U2-22(MCC), U2-19(CCC)

line number information
/debug=lines option U3-19(MCC)
-GI option U2-21(MCC), U2-18(CCC)

multiple statements on line
/debug=multi_stmt option U3-

19(MCC)

Master lndex-27

-Gm option U2-21(MCC)
restricted

/debug=restricted option U3-
20(MCC)

-Gr option U2-21(MCC), U2-18(CCC)
XRAY Source Explorer

-Gs option U2-22(MCC), U2-19(CCC)
Debugging multiple modules U2-10(XRAY)
Decimal interpretation

RADIX option R3-107(XRAY)
Decimal representation RA-1(MCC), RB-

1(XRAY)
Declarations R3-16(MCC)

variables R4-8(CCC)
DECstation

host-specific information UC-l(XRAY)
Default command, example use and

description U2-41(MCC)
Default initialization R6-42(MCC)
default keyword R3-23(MCC)
Defaults, specifying in install.sh 11-S(FLEX)
DEFINE assembler command line option U3-

3(ASM)
DEFINE command R3-45(XRA V), U2-

26(XRAY)
#define directive R4-6(MCC), R4-B(MCC), R4-

10(MCC), R9-6(MCC)
defined operator R4-13(MCC), R4-17(MCC)
Defining

debugger commands R3-20(XRA Y)
input port address

INPORT command R3-80(XRA Y)
macros

DEFINE command R3-45(XRAY)
output port address

OUTPORT command R3-110(XRAY)
performance analysis measurement

PROFILE command R3-134(XRAY)
Defining C++ operations R5-13(CCC)
Defining colors UA-3(XRA Y)
Defining macros U2-26(XRA Y)

interactive U2-27(XRAY)

Master lndex-28

Defining macros on command line
/define option U3-20(MCC)
-D option U2-18(MCC), U2-14(CCC)

Defining screens and viewports U3-
32(XRA Y)

FPRINTF command Ul-5(XRAY), U3-
32(XRAY)

VMACRO command U3-32(XRA Y)
VOPEN command U3-32(XRAY), U3-

34(XRAY)
VSCREEN command U3-33(XRAY)
VSCREEN command key U3-33(XRAY)

Definitions
address R3-3(XRAY)
address_range R3-3(XRAY)
constant R3-3(XRA Y)
event R3-161(XRAY)
expression R3-3(XRAY)
expression_range R3-4(XRAY)
expression_string R3-4(XRAY)
frame R3-171(XRAY)
line_number R3-4(XRAY)
qualified bus cycle R3-167(XRAY)
symbol R3-4(XRAY)

Del key (IBM RS/6000 support) UE-2(XRAY)
Del key (Motorola Delta Series support) UF-

2(XRAY)
Del key (PC support) UG-3(XRA Y)
Del key (Sun support) UH-3(XRAY)
Del Line key (HP support) UD-5(XRAY)
Delete Char key (HP support) UD-5(XRA Y)
DELETE command R3-48(XRA Y)
Delete key (Apollo support) UB-3(XRA Y)
delete keyword R4-2(CCC)
DELETE librarian command U2-21(ASM),

U3-19(ASM), R13-B(ASM)
DELETE librarian command line option U3-

19(ASM)
delete operator R2-21(CCC), RC-2(CCC), UA-

1(CCC)
Deleting

symbols
DELETE command R3-48(XRAY)

Documentation Set for 68000/ECOOO/HCOOO and 68302

viewports
VCLOSE command R3-205CXRAY)

Deleting operators R2-21(CCC)
Demand loading

DEMANDLOAD option R3-106(XRAY)
Demangling RG-1(ASM)-RG-4(ASM), RC-

2(CCC), UA-2(CCC)
C++ names U2-46(CCC)

DEMO as host ID l3-3{FLEX)
DEMO licenses 11-1(FLEX), U2-2(FLEX)

host ID 13-3(FLEX)
installing 11-ll(FLEX)

Demonstration licenses U2-2(FLEX)
Denying access to users 13-6(FLEX)
Dereferenced variable R2-22(XRA Y)
Derived class RC-2(CCC), UA-2(CCC)
Derived classes

definition R3-l(CCC)
Description of documentation IP-2(FLEX),

UP-1(FLEX)
Destructor R2-12(CCC)

definition RC-2(CCC), UA-2(CCC)
Device file for install

determining ll-18(FLEX)
incorrect ll-19(FLEX)

DIAG o (simple target ram test) S2-34(SUP)
DIAG 1 (complex target ram test) S2-36(SUP)
DIAG 2 (continuous read from target

memory) S2-3B(SUP)
DIAG 3 (continuous write to target

memory) S2-40(SUP)
DIAG 4 (write alternating pattern to target

location) S2-42(SUP)
DIAG 5 (continuous write to target

memory) S2-44(SUP)
DIAG 6 (continuous write to target

memory) S2-46(SUP)
DIAG 7 (continuous read from target

memory) S2-48(SUP)
DIAG 8 (write increment value to target

memory) S2-50(SUP)
DIAG 9 (continuous stream of reset

pulses) S2-52(SUP)
Diagnostic macros R5-2(MCC)

assert R5-27(MCC)
Diagnostic messages

(see also Messages)
+w option U2-36(CCC)
suppressing

/quit option U3-29(MCC)
-Q option U2-36(MCC), U2-33(CCC)

Differences between the ANSI C language and
the C++ language R4-1(CCC)-R4-
1B(CCC)

difftime function R5-44(MCC)
Digit

testing for a R5-87(MCC)
testing for hexadecimal R5-94(MCC)

DIN command R3-50(XRAY)
Direct memory addressing R9-9(MCC)
direction command key

DECstation trace support UC-6(XRAY)
HP trace support UD-8(XRAY)
IBM RS/6000 trace support UE-5(XRAY)
Motorola Delta Series trace support UF-

5(XRAY)
PC trace support UG-5(XRAY)
Sun trace support UH-5(XRAY)
VT terminal trace support UI-5(XRAY)

direction trace command key
Apollo trace support UB-6(XRAY)

Directive statement R2-3(ASM)
Directives, assembler

ALIGN R5-4(ASM)
CHIP R5-5(ASM)-R5-7(ASM)
COMLINE R5-8(ASM)
COMMON R5-9(ASM)-R5-10(ASM)
DC R5-11(ASM)-??
DCB R5-14(ASM)
DS R5-15(ASM)
ELSEC R5-16(ASM)
END R5-17(ASM)-R5-18(ASM)
ENDC R5-19(ASM)
ENDR R5-20(ASM)
EQU R5-21(ASM)
FAIL R5-22(ASM)-R5-23(ASM)
FEQU R5-24(ASM)-R5-25(ASM)
FOPI' R5-26(ASM)

Master lndex-29

FORMAT R5-27(ASM)
IDNT R5-28(ASM)
IFC R5-29(ASM)-R5-30(ASM)
IFDEF R5-31(ASM)
IFEQ R5-32(ASM)-R5-33(ASM)
IFGE R5-34(ASM)
IFGT R5-35(ASM)
IFLE R5-36(ASM)
IFLT R5-37(ASM)
IFNC R5-38(ASM)-R5-39(ASM)
IFNDEF R5-40(ASM)
IFNE R5-41(ASM)
INCLUDE R5-42(ASM)
IRP R5-43(ASM)-R5-44(ASM)
IRPC R5-45(ASM)-R5-46(ASM)
LIST R5-4 7(ASM)
LLEN R5-48(ASM)
macros

ENDM R6-6(ASM)
LOCAL R6-7(ASM)-R6-8(ASM)
MACRO R6-9(ASM)-R6-1 O(ASM)
MEXIT R6-11(ASM)

MASK2 R5-49(ASM)
NAME R5-50(ASM)
NOFORMAT R5-27(ASM)
NOLIST R5-47(ASM)
NOOBJ R5-51(ASM)
NOPAGE R5-61(ASM)
OFFSET R5-52(ASM)-R5-53(ASM)
OPT R5-54(ASM)-R5-59(ASM)
ORG R5-60(ASM)
PAGE R5-61(ASM)
PLEN R5-62(ASM)
REG R5-63(ASM)
REPT R5-64(ASM)
RESTORE R5-65(ASM)
SA VE R5-66(ASM)
SECT R5-67(ASM)-R5-68(ASM)
SECTION R5-67(ASM)-R5-68(ASM)
SET R5-69(ASM)
SPC R5-70(ASM)
structured control

BREAK R7-6(ASM)

Master lndex-30

FOR ... ENDF R7-7(ASM)-R7-
8(ASM)

IF ... THEN ... ELSE ... ENDI R7-
9(ASM)-R7-10(ASM)

NEXT R7-ll(ASM)
REPEAT ... UNTIL R7-12(ASM)
WHILE ... ENDW R7-13(ASM)

TTL R5-71(ASM)
XCOM R5-72(ASM)
XDEF R5-73(ASM)
XREF R5-7 4(ASM)

Directories
/tmp U2-3(FLEX), UA-2(FLEX)
/usr/mri UA-2(FLEX)

(see /usr/mri)
/usr/mri/bin Ul-l(FLEX)
install_dir

(see install_dir)
order Il-9(FLEX), Il-lO(FLEX)
specifying install directory Il-lO(FLEX)
stage Il-6(FLEX)

files in Il-8(FLEX), Il-9CFLEX)
DIRECTORY librarian command R13-9(ASM)
Directory, current

SETSTATUS DIR command R3-
159(XRAY)

Disable
backspace

-Es option U2-19(MCC), U2-16(CCC)
-Ps option U2-33(MCC), U2-30(CCC)

newline
-Es option U2-19(MCC), U2-16(CCC)
-Ps option U2-33(MCC), U2-30(CCC)

optimizations on global variables
/optimize=stablemem U3-27(MCC)
-Ob option U2-30(MCC), U2-

27(CCC)
stack frame sharing

/frames option U3-21(MCC)
-Kf option U2-25(MCC), U2-22(CCC)

Disable C++ RG-1(XRAY)
DISASSEMBLE S3-30(SUP)

Documentation Set for 68000/ECOOO/HCOOO and 68302

DISASSEMBLE command R3-52(XRAV), U3-
11 (XRAV), U4-2(XRAY)

with C++ RG-7(XRAY)
Disassembled code, displaying U4-2(XRAY)
Disassembled trace display S1-17(SUP)
Disassembled Trace, display forward S2-

67(SUP)
Disassembling memory

DISASSEMBLE command R3-52(XRA Y)
Diskettes

(see Distribution)
Display commands R3-7(XRAY)

DISASSEMBLE R3-7(XRAY), R3-
52(XRAY)

DUMP R3-7(XRAY), R3-57(XRAY)
EXPAND R3-7(XRAY), R3-60(XRAY)
FIND R3-7(XRAY), R3-64(XRAY)
FOPEN R3-7(XRAY), R3-66(XRAY)
FPRINTF R3-7(XRAY), R3-67(XRAY)
LIST R3-7(XRAY), R3-87(XRAY)
MONITOR R3-7(XRAY), R3-93(XRAY)
NEXT R3-8(XRAY), R3-97(XRAY)
NOMONITOR R3-8(XRAY), R3-

102(XRAY)
PRINTF R3-8(XRAY), R3-118(XRAY)
PRINTVALUE R3-8(XRAY), R3-

131(XRAY)
Display device U2-1(FLEX), UB-1(FLEX)

specifying other than host U3- l(FLEX)
Display emulator variable values

command S2-70(SUP)
DISPLAY environment variable UH-2(XRA Y)
Display raw trace S2-57(SUP)
Display time stamp

-Vt option U2-38(MCC), U2-35(CCC)
Display Trace Backwards command S2-

65(SUP)
Display trace backwards command S2-

65(SUP)
Display trace command S2-59(SUP), S2-

60(SUP)

Displaying
addresses

NOSYMBOLS command R3-
108(XRAY)

Break viewport R3-104(XRAY)
input port buffer

DIN command R3-50(XRAY)
local variables

EXPAND command R3-60(XRAY)
macro contents

SHOW command R3-179(XRAY)
memory contents

DUMP command R3-57(XRAY)
output port buffer

DOUT command R3-54(XRAY)
results of performance analysis

PRINTPROFILE command R3-
123(XRAY)

source code
LIST command R3-87(XRAY)

symbols
NOSYMBOLS commands R3-

108(XRAY)
PRINTSYMBOLS command R3-

127(XRAY)
variables

PRINTV ALUE command R3-
131(XRAY)

View viewport R3-108(XRAY)
Distribution

contents of 11-2(FLEX)
reading 11-7(FLEX), 11-8(FLEX), 11-

16(FLEX)
specifying programs not to read 11-

17(FLEX)
serial number 11-3(FLEX), 11-lO(FLEX),

Ul-5(FLEX)
Distribution format

DOS 11-l(CCC)
div function R5-45(MCC)
Division

computing quotient R5-45(MCC), R5-
99(MCC)

Master lndex-31

computing remainder R5-45(MCC), R5-
99(MCC)

OMA
controlling trace/overlay S2-139(SUP),

S2-141(SUP)
DNL(download hex file to target) S2-53(SUP)
DNL_GAP- specify maximum bytes between

blocks S2-55(SUP)
DNLFMT(specify download format) S2-

54(SUP)
Documentation description IP-2(FLEX), UP-

1 (FLEX)
DOMAIN/OS

host-specific information UB-l(XRAY)
mouse support

(see Mouse support)
DOS

(see UNIX/DOS)
accessing files in nondefault

directories ll-5(MCC), ll-
5(CCC), ll-6(CCC)

command line U2-l(MCC)
command line examples U2-4l(MCC)
command line syntax U2-l(CCC)
compiler invocation U2-l(CCC)
compiler syntax U2-l(MCC)
compiler use U2-l(MCC), U2-l(CCC)
compiling a program U2-53(MCC), U2-

45(CCC)
defaults 11-l(MCC), 11-lCXRAY), 11-

l(CCC)
distribution format 11-l(MCC), 11-

l(XR.A.Y), 11-l(CCC)
environment variables U2-3(MCC)
file locations U2-3(MCC), U2-3(CCC)
file name defaults U2-2(MCC)
hard disk 11-l(MCC), 11-l(XR.A.Y), 11-

l(CCC)
host-specific information UG-l(XRAY)
installation diskettes 11-l(CCC)
installation procedure ll-2(MCC), ll-

2(CCC)
invoking compiler U2-l(MCC)
libraries provided U2-50(MCC)

Master lndex-32

memory considerations U2-7(MCC)
option form, positive and negative U2-

10(MCC)
option, command line

descriptions of U2-10(MCC)
DOS installation

installation procedure ll-2(XRAY)
using XRAY ll-6(XRAY)

Dot(.) operator R2-17(CCC), R2-19(CCC),
R2-21(CCC), R2-25(CCC)

Dot-star(.*) operator R2-18(CCC), R2-
25(CCC)

Double
conversion from ASCII string R5-

177(MCC)
double type R3-1(MCC), R6-3(MCC)
Double, computing integer ceiling of R5-

36(MCC)
Double-precision format R6-7(MCC)
DOUT command R3-54(XRAY)
do-while statement R3-20(MCC)
DO-WHILE statement in macros R4-4(XRAY)
DOWN command R3-56(XRAY)
Download S2-53(SUP)

timeout S2-92(SUP), S2-93(SUP)
Download format S2-54(SUP)
Driver U2-1(MCC)
Driver, compilation U2-1(CCC)
ORT command S2-57(SUP)
DRUN(start dynamic run mode) S2-60(SUP)
OS assembler directive R5-15(ASM)
DSTOP(stop dynamic run mode) S2-

62(SUP), S2-69(SUP)
OT S2-59(SUP), S2-60(SUP), S2-65(SUP)
DTACK signal

bus timeout switch S2-25(SUP)
OTB S2-65(SUP)
DTF command S2-67(SUP)
DUMP command R3-57(XRAY)

size qualifiers R3-3(XRAY)
Duplicate function names RS-1 (CCC)
dword macro R4-15(XRAY)
dynamic operations S1-18(SUP)

Documentation Set for 68000/ECOOOIHCOOO and 68302

Dynamic run
drun S2-60(SUP)
dstop S2-62(SUP)

Dynamic storage
allocating

E

keywords R4-4(CCC)
deallocating

keywords R4-2(CCC)

e assembler command line flag U2-7(ASM),
U3-7(ASM)

-e librarian command line option U2·
21(ASM)

+E option U2-16(CCC)
-E option U2-19(MCC), U2-16(CCC)
+e option U2·16(CCC)
-e option U2·19(MCC), U2-16(CCC)
-e option (UNIX/DOS) R9-24(MCC)
+e option, use of R3-18(CCC)
EBCDIC character code RA·1(ASM)-RA·

2(ASM)
ESSIG R5-155(MCC)
Echo include files

INCECHO option U4-12(XRAY)
Echo macros

INCECHO option U4-12(XRAY)
EDOM error macro R5-4(MCC)
EET R3-124(XRA Y)
Effective address syntax R3·14(ASM)
Elapsed time S6·16(SUP)

A to B S6-16(SUP)
in range S6-16(SUP), S6-20(SUP)
inter-module S6-16(SUP)
measurement S6-2(SUP)
out-of-module S6-16(SUP)

Elapsed time measurement S6-16(SUP)
#elif directive R4-7(MCC), R4-13(MCC)
#else directive R4-7(MCC), R4-8(MCC), R4-

14(MCC)
ELSEC assembler directive R5-16(ASM)
Embedded systems

code organization R8-l(MCC)

considerations R9-l(MCC)
user-modified routines R9-29(MCC)

Embedded systems considerations S3-
3(SUP)

Emulator
communication

ICE command R3-77(XRAY)
NOICE command R3-98(XRAY)

passing information to
EMULATOR option R3-106(XRAY)

Emulator variables S2-70(SUP)
EMUVARS S2-70(SUP)
END assembler directive R5-17(ASM)-R5·

18(ASM)
END librarian command R13-10(ASM)
END linker command R10-27(ASM)
ENDC assembler directive R5-19(ASM)
#endif directive R4-7(MCC), R4·8(MCC), R4·

15(MCC)
Ending XRA Y session

QUIT command R3-138(XRAY)
ENDM assembler directive R6·6(ASM)
end-of-line character R4·7(CCC)
ENDA assembler directive R5-20(ASM)
Entering host environment from XRA Y

HOST command R3-75(XRAY)
Entering input to install.sh 11-S(FLEX)
@entry pseudo-register RA-1(XRAY), RF·

1(XRAY)
enum type R3·2(MCC), R6·3(MCC), R6·

S(MCC)
Enumerated data types

(See also enum type)
packing R6-40(MCC)

Enumeration
and scope R4-17(CCC)
declaring within structures R4-17(CCC)
types R4-15(CCC)

reference by value R4-15(CCC)
Enumeration types R6-S(MCC)
Enumerator types, packed

/define option U3-21(MCC)
-D option U2-18(MCC), U2-15(CCC)

Master lndex-33

Environment variables U2-3(MCC), 12-
1(FLEX), 12-2(FLEX), U1-1(FLEX), UA-
1(FLEX), U2-4(CCC)

DISPLAY UH-2(XRAY)
DOS Il-4(MCC), ll-5(XRAY), Il-5(CCC)

MRl_68K_BIN U2-4(MCC), U2-
6(MCC), U2-5(CCC)

MRl_68K_INC U2-4(MCC), U2-
7(MCC), U2-6(CCC)

MRl_68K_LIB U2-4(MCC), U2-
7(MCC), U2-5(CCC)

MRl_68K_TMP U2-4(MCC), U2-
7(MCC), U2-6(CCC)

USR_MRI U2-4(MCC)
GETLICENSE_CONNECT_INTERV AL

U2-3(FLEX), UA-l(FLEX)
GETLICENSE_CONNECT_RETRIES U

2-3(FLEX), UA-l(FLEX)
GETLICENSE_ OUTPUT U2-5(FLEX),

U3-3(FLEX), UA-l(FLEX)
GETLICENSE_ VERBOSE UA-l(FLEX)
HP support

TERM UD-2(XRAY)
LICENSE_LOG_FILE UA-l(FLEX)
LM_LICENSE_FILE Il-15(FLEX), 12-

l(FLEX), 12-6(FLEX), Ul­
l(FLEX), UA-2(FLEX)

multiple vendors IC-5(FLEX)
MLICENSE_DAEMON_ OUTPUT U2-

8(FLEX), U3-l(FLEX), UA-
2(FLEX)

MLICENSE_DAEMON_TMP U2-
3(FLEX), UA-2(FLEX)

MLICENSE_DAEMON_ VERBOSE U2-
8(FLEX), UA-2(FLEX)

MLICENSE_HOURS Ul-3(FLEX), U3-
2(FLEX), UA-2(FLEX)

MRl_68K_BIN U2-4(CCC)
MRl_68K_INC U2-4(CCC)
MRl_68K_LIB U2-15(ASM), U2-4(CCC)
MRl_68K_TMP U2-4(CCC)
OWL U2-46(CCC)
PATH 12-l(FLEX), Ul-l(FLEX)
TERM UC-2(XRAY), UD-3(XRAY)

Master lndex-34

TERMINFO UD-4(XRA Y)
TMP U2-5(ASM), U2-16(ASM)
UNIX

MRl_68K_BIN U2-4(MCC), U2-
6(MCC), U2-5(CCC)

MRl_68K_INC U2-4(MCC), U2-
7(MCC), U2-6(CCC)

MRl_68K_LIB U2-4(MCC), U2-
7(MCC), U2-5(CCC)

MRl_68K_TMP U2-4(MCC), U2-
7(MCC), U2-6(CCC)

USR_MRI U2-4(MCC)
USR_MRI 12-2(FLEX), Ul-l(FLEX), UA-

2(FLEX), R3-l(XRAY), U2-
6(XRAY), U4-ll(XRAY), U2-
4(CCC)

VMS
(see Logical Names) U3-3(MCC)

X Window support
XOR_CHANGE UA-5(XRAY)
XRAY_BG_COLOR UA-3(XRAY)
XRAY_DISPLAY UA-4(XRAY)
XRAY_FG_COLOR UA-3(XRAY)
XRAY_FONT_PATH environment

variable UA-3(XRAY)
XRAY_FONTB UA-l(XRAY)
XRAY_FONTN UA-l(XRAY)

XHS68KLIB U2-5(XRAY)
XOS_OFF RG-l(XRAY)
XRAY R3-l(XRAY), R3-160(XRAY), U2-

3(XRAY), U4-10(XRAY)
XRAY_CUR_COLOR UA-3(XRAY)
XRAY_DISPLAY UH-2(XRAY)
XRAYFONT R3-105(XRAY), U2-

7(XRAY)
XRAYLIB R3-l(XRAY), U2-4(XRAY),

U4-ll(XRAY)
XRAYTMP U2-7(XRAY), U4-ll(XRAY)

EOF R5-14(MCC)
checking for R5-52(MCC)

Epilogue R1016(MCC)
function

generating code for
epilogue R1016(MCC)

Documentation Set for 68000/ECOOO/HCOOO and 68302

Epilogue, function R7-8(MCC), R4-2(CCC)
eprintf function R5-20(MCC), R5-46(MCC)
EQU assembler directive R5-21{ASM)
ERANGE error macro R5-4(MCC)
errno error macro R5-4(MCC)
errno.h include file R5-4(MCC)
ERROR command R3-59(XRA Y)
#error directive R4-16{MCC)

relation to #pragma error R4-25(MCC)
Error handling 12-6{FLEX), UC-1{FLEX)

-15 message I2-3(FLEX)
calling technical support Il-9(FLEX), Il­

lO(FLEX)
cancelling a distribution read Il-

17(FLEX)
cannot find license file message I2-

6(FLEX)
could not connect to mlicense.daemon I2-

3(FLEX)
device drive incorrect Il-19(FLEX)
features incorrect Il-12(FLEX), Il-

14(FLEX)
message in log file I2-4(FLEX), I2-

8(FLEX)
in install.sh Il-5(FLEX)
indefinite delay U2-6(FLEX)
license file

cannot find I2-6(FLEX)
no SERVER lines I2-6(FLEX)
SERVER host name wrong I2-

8(FLEX)
license server daemons not running Ul-

2(FLEX), Ul-3(FLEX)
license server failure Il-14(FLEX), U2-

10(FLEX)
lmgrd missing I2-6(FLEX)
log file, handling errors in 12-4(FLEX),

12-7(FLEX), 12-8(FLEX)
MRI daemon not starting 12-4(FLEX)
no SERVER lines message I2-6(FLEX)
servers incorrect Il-12(FLEX), 12-

4(FLEX), 12-8(FLEX)
trying to connect error I3-2(FLEX)

Error handling for include files
ERROR command R3-59(XRAY)

Error indicator
checking the file I/O R5-53(MCC)
clearing the file I/O R5-37(MCC)

ERROR linker command R10-28{ASM)
error macro R4-16(XRAY)
Error macros R5-4(MCC)

EDOM R5-4(MCC)
ERANGE R5-4(MCC)
errno R5-4(MCC)

Error messages S2-81{SUP), RC-1{MCC),
RE-1(XRAY)

(see also Messages)
abstract class R3-17(CCC)
assembler RB-l(ASM)-RB-14(ASM)
librarian RD-l(ASM}-RD-6(ASM)
linker RC-l(ASM}-RC-ll(ASM)
macros R4-16(XRAY)
pointing to error message R5-168(MCC)
sending to standard error R5-128(MCC)
suppression

/suppress=error option U3-30(MCC)
-Qe option U2-36(MCC), U2-

33(CCC)
Error viewport U3-14(XRAY)

PREV CMD command key U3-14(XRAY)
Errors reading absolute files U4-11 (XRAY)
-Es option U2-19(MCC), U2-16(CCC)
Escape key

Apollo support UB-3(XRAY)
Escape sequences R2-5(MCC)
EV S2-71(SUP)
Event (definition) R3-161(XRAY), RD-

1(XRAY)
Event Group S2-88(SUP)
Event group 52-SS(SUP)
Event groups

changing S4-22(SUP)
Event sequence R3-173(XRAY)

(definition) RD-l(XRAY)
Event System

setup S6-13(SUP)

Master lndex-35

Event system 54-14(5UP)
and performance analysis S4-3(SUP)
change event groups S4-22(SUP)
flags

Event system
groups S4-22(SUP)

Event system tutorial 53-45(5UP)
Event variable values S2-80(SUP)
Event, define an S2-71(5UP)
Events, trace

SETSTATUS EVENT command R3-
161(XRAY)

STATUS EVENT command R3-
187(XRAY)

EVTARM S2-76(5UP)
EVTCLR 52-n(SUP)
EVTGRP S2-78(5UP)
EVTVAR5 52-80(5UP)
Examples

accessing C++ data structures from C R5-
9(CCC)

arrays R4-16(CCC)
calling C functions from C++ R5-2(CCC)­

R5-3(CCC)
calling C++ member functions from C R5-

5(CCC)
comment tokens R4-7(CCC)
conversion operator R4-ll(CCC)
declaring const for C++ R4-9(CCC)
defining C++ data structures R5-

10(CCC)
enumeration types R4-15(CCC)
function declarations R4-12(CCC)
global and local declarations R4-8(CCC)
interrupt keyword R4-3(CCC)-R4-

4(CCC)
overloading function names R5-l(CCC)
packed keyword R4-4(CCC), R4-5(CCC)
processing of enumerators R4-17(CCC)
prototype declarations R4-13(CCC)
unpacked keyword R4-4(CCC)-R4-

5(CCC)
void pointers R4-7(CCC)

Master lndex-36

@axe pseudo-register RA-1 (XRA Y), RF-
2(XRA Y)

Exception handling RF-2(XRAY), RF­
S(XRAY)

keywords R4-2(CCC), R4-6(CCC)
EXCLUDE line 13-6(FLEX)
Excluding users l3-6(FLEX)
Exclusive Execution Time R3-124(XRA Y)
Executable file

suppressing
-c option U2-18(MCC), U2-14(CCC)

Executable program
generation U2-53(MCC), U3-45(MCC),

U2-45(CCC)
running on a target system U2-53(MCC),

U3-46(MCC), U2-45(CCC)
Executables

UNIX
alternate locations U2-4(MCC)

Execute program
GO command R3-69(XRAY)

Executing a program U1-2(FLEX)
Executing install.sh 11-S(FLEX)
Executing multiple commands U4-8(XRAY)
Executing only preprocessor

/pp option U3-29(MCC)
-E option U2-19(MCC), U2-16(CCC)
-P option U2-33(MCC), U2-30(CCC)

Executing program U2-18(XRAY)
(see also Single-stepping, GO command)

Executing test scripts 12-2(FLEX)
Executing XRA Y U2-9(XRA Y)
Execution and breakpoint commands R3-

7(XRAY)
BREAKACCESS S2-5(SUP), R3-

7(XRAY), R3-25(XRAY)
BREAKINSTRUCTION S2-12(SUP), R3-

7(XRA Y), R3-30(XRA Y)
BREAKREAD S2-16(SUP), R3-7(XRAY),

R3-32(XRA Y)
BREAKWRITE S2-20(SUP), R3-

7(XRAY), R3-35(XRAY)
CLEAR R3-7(XRA Y), R3-40(XRA Y)
GO R3-7(XRAY), R3-69(XRAY)

Documentation Set for 68000/ECOOO/HCOOO and 68302

GOSTEP R3-7(XRAY), R3-71(XRAY)
STEP R3-7(XRAY), R3-193(XRAY)
STE PO VER R3-7(XRA Y), R3-195(XRA Y)

Execution breakpoints
software S4-6(SUP)

exists (==) R6-3(ASM)
_exit function R5-48(MCC), U2-52(MCC), U3-

43(MCC), U2-44(CCC)
exit function R5-47(MCC)

relationship to _exit R5-48(MCC)
relationship to signal R5-155(MCC)

EXIT linker command R10-29(ASM)
exp function R5-49(MCC), U2-39(MCC), U3-

25(MCC), U2-37(CCC)
EXPAND command R3-60(XRAY), U3-

26(XRAY), U4-4(XRA Y)
Expand viewport

ZOOM command R3-213(XRAY)
Expiration date of features l3-3(FLEX)
Expiration of licenses U1-3(FLEX), UA-

2(FLEX)
at specific date U2-2(FLEX)
delaying Ul-3(FLEX), U3-2(FLEX)
speeding up U3-3(FLEX)

EXPLAIN command S2-81(SUP)
Explorer, generating code for

-Gs option U2-22(MCC), U2-19(CCC)
Exponent from floating-point number R5-

7D(MCC)
Exponential value, computing R5-49(MCC)
export command (sh/ksh) 11-15(FLEX), 12-

1(FLEX), UM(FLEX), U1-3(FLEX)
Expression (definition) R3-3(XRA Y)
Expression calculation

CEXPRESSION command R3-38(XRA Y)
Expression elements R2-1(XRAY)

addresses R2-9(XRA Y)
address ranges R2-10(XRAY)
indirect address R2-9(XRAY)
line numbers R2-10(XRAY)

constants R2-3(XRAY)
character strings R2-5(XRAY)
floating-point R2-4(XRAY)
integer R2-3(XRAY)

operators R2- l(XRA Y)
C language R2-2(XRA Y), RC­

l(XRAY)
symbols R2-7(XRAY)

debugger R2-8(XRA Y)
keywords R2-9(XRAY)
macro R2-8(XRAY)
program R2-7(XRA Y)
reserved R2-8(XRAY)

Expression string R3-62(XRA Y), R3-
154(XRA Y), R3-156(XRAY), R3-
197(XRAY)

Expression_range (definition) R3-4(XRA Y)
Expression_string

(definition) R3-4(XRAY)
Expressions R3-6(MCC), R2-15(ASM)-R2-

17(ASM)
absolute R3-24(ASM), R4-8(ASM)
assembly language R2-12(XRAY)
complex R4-8(ASM)
expression string R2-13(XRAY)
monitoring

MONITOR command R3-93(XRAY)
NOMONITOR command R3-

102(XRAY)
relocatable R3-24(ASM), R4-7(ASM)-R4-

8(ASM)
complex R4-8(ASM)
simple R4-8(ASM)

source language R2-12(XRAY)
statement R3-19(MCC)
testing program expressions R5-

27(M CC)
Extensions

file name U2-2(MCC), U3-2(MCC)
Microtec Research

(see Microtec Research extensions)
Extensions to C

mri_extensions option U3-24(MCC)
-x option U2-39(MCC), U2-36(CCC)

extern "C" declaration R4-14(CCC), R5-
2(CCC)

extern declaration R4-8(CCC)

Master lndex-37

EXTERN linker command U2-15(ASM), R10-
30{ASM)

Extern storage class R3-4(MCC)
keyword R3-5(MCC)

External OMA S2-139(SUP)
External symbols R4-6{ASM)
External variable names R11-1{MCC)
EXTRACT librarian command U2-21 {ASM),

U3-19(ASM), R13-11{ASM)
EXTRACT librarian command line option U3-

19{ASM)
EXVEC command S2-82(SUP)

F
-f assembler command line option U2-

3{ASM)
-F linker command line option U2-13{ASM)
-f option U2-20{MCC), U2-18{CCC)
-f option {UNIX/DOS) R4-3{MCC)
FO key

Apollo support UB-4CXRAY), UC-
4(XRAY)

Apollo trace support UB-5(XRAY)
F1 key

Apollo support UB-4(XRA Y)
Apollo trace support UB-5(XRAY)
DECstation support UC-3(XRAY)
HP support UD-6(XRA Y)
HP trace support UD-7(XRAY)
IBM RS/6000 support UE-3(XRAY)
IBM RS/6000 trace support UE-4(XRA Y)
Motorola Delta Series support UF-

3(XRAY)
Motorola Delta Series trace support UF-

5(XRAY)
PC support UG-3(XRAY)
PC trace support UG-5(XRAY)
Sun support UH-4(XRAY)
Sun trace support UH-5(XRA Y)

F10 key
DECstation support UC-4(XRAY)
IBM RS/6000 support UE-4(XRAY)
IBM RS/6000 trace support UE-5(XRAY)

Master lndex-38

Motorola Delta Series support UF-
4(XRAY)

Motorola Delta Series trace support UF-
6(XRAY)

PC support UG-4(XRAY)
PC trace support UG-6(XRAY)

F2 key
Apollo support UB-4(XRAY)
Apollo trace support UB-6(XRAY)
DECstation support UC-4(XRAY)
HP support UD-6(XRAY)
HP trace support UD-7(XRA Y)
IBM RS/6000 support UE-3(XRAY)
IBM RS/6000 trace support UE-4(XRAY)
Motorola Delta Series support UF-

3(XRAY)
Motorola Delta Series trace support UF-

5(XRAY)
PC support UG-3(XRAY)
PC trace support UG-5(XRAY)
Sun support UH-4(XRAY)
Sun trace support UH-5(XRAY)

F3 key
Apollo support UB-4(XRAY)
Apollo trace support UB-6(XRAY)
DECstation support UC-4(XRAY)
HP support UD-6(XRAY)
HP trace support UD-8(XRA Y)
IBM RS/6000 support UE-3(XRAY)
IBM RS/6000 trace support UE-5(XRAY)
Motorola Delta Series support UF-

3(XRAY)
Motorola Delta Series trace support UF-

5(XRAY)
PC support UG-3(XRAY)
PC trace support UG-5(XRA Y)
Sun support UH-4(XRAY)
Sun trace support UH-5(XRA Y)

F4key
Apollo support UB-4(XRAY)
Apollo trace support UB-6(XRAY)
DECstation support UC-4(XRAY)
HP support UD-6(XRAY)
HP trace support UD-8(XRA Y)

Documentation Set for 68000/ECOOO/HCOOO and 68302

IBM RS/6000 support UE-3(XRA Y)
IBM RS/6000 trace support UE-5(XRAY)
Motorola Delta Series support UF-

4(XRAY)
Motorola Delta Series trace support UF-

5(XRAY)
PC support UG-4(XRAY}
PC trace support UG-5(XRA Y)
Sun support UH-4(XRAY)
Sun trace support UH-5(XRA.Y}

FS key
Apollo support UB-4(XRAY)
Apollo trace support UB-6(XRAY)
DECstation support UC-4(XRAY)
HP support UD-6(XRAY)
HP trace support UD-8(XRAY)
IBM RS/6000 support UE-3(XRAY)
IBM RS/6000 trace support UE-5(XRAY)
Motorola Delta Series support UF-

4(XRAY)
Motorola Delta Series trace support UF-

5(XRAY)
PC support UG-4(XRAY)
PC trace support UG-5(XRAY)
Sun support UH-4(XRA.Y)
Sun trace support UH-5(XRA.Y)

F6key
Apollo support UB-4(XRAY)
Apollo trace support UB-6(XRAY)
DECstation support UC-4(XRAY)
HP support UD-6(XRAY)
HP trace support UD-8(XRA Y)
IBM RS/6000 support UE-3(XRAY)
IBM RS/6000 trace support UE-5(XRAY)
Motorola Delta Series support UF-

4(XRAY)
Motorola Delta Series trace support UF-

5(XRAY)
PC support UG-4(XRAY)
PC trace support UG-5(XRA Y)
Sun support UH-4(XRA.Y)
Sun trace support UH-5(XRA.Y)

F7key
Apollo support UB-5(XRA.Y)

Apollo trace support UB-6(XRAY)
HP support UD-6(XRA.Y)
HP trace support UD-8(XRA.Y)
IBM RS/6000 support UE-3(XRAY)
IBM RS/6000 trace support UE-5(XRAY)
Motorola Delta Series support UF-

4(XRAY)
Motorola Delta Series trace support UF-

5(XRAY)
PC support UG-4(XRA.Y)
PC trace support UG-5(XRAY)
Sun support UH-4(XRAY)
Sun trace support UH-6(XRAY)

FB key
HP support UD-7(XRAY)
Sun support UH-4(XRA Y)
Sun trace support UH-6(XRAY)

F9 key
Apollo support UB-5(XRAY)
Apollo trace support UB-6(XRAY)
DECstation support UC-4(XRAY)
IBM RS/6000 support UE-4(XRA.Y)
IBM RS/6000 trace support UE-5(XRAY)
Motorola Delta Series support UF-

4(XRA.Y)
Motorola Delta Series trace support UF-

6(XRA. Y)
PC support UG-4(XRAY)
PC trace support UG-6(XRA Y)
Sun support UH-4(XRA Y)
Sun trace support UH-6(XRA.Y)

fabs function R5-50(MCC), U2-39(MCC), U3-
25(MCC), U2-37(CCC)

Factorization optimization R5-3(XRA Y)
FAIL assembler directive R5-22(ASM)-R5-

23(ASM)
FAST command S2-84(SUP)
Fast interrputs S2-84(SUP)
-Fe option U2-17(CCC)
fclose function R5-51(MCC)

relationship to ffiush R5-54(MCC)

Master lndex-39

Feature UB-1{FLEX)
checking out license for

(see Checking out licenses)
names

specifying in mlicense command U3-
3(FLEX)

FEATURE line U2-4{FLEX), U2-9{FLEX)
(see License file)

Features
assembler Rl-l(ASM)-Rl-2(ASM)
expiration date 13-3(FLEX)
features versus programs ll-2(FLEX)
installation script ll-5(FLEX)
librarian R12-l(ASM)
linker R9-2(ASM)
specifying during install ll-12(FLEX),

ll-14(FLEX)
version number 13-3(FLEX)

Features of compiler R1-1{MCC)
Features, XRAY R1-2{XRAY)
-Fee option U2-19{MCC)
-Feo option U2-20{MCC)
feof function R5-12{MCC), R5-52(MCC)
FEQU assembler directive R5-24{ASM)-R5-

25(ASM)
ferror function R5-12{MCC), R5-53(MCC)
fflush function R5-54(MCC)
fgetc function R5-55(MCC)

relationship to getc R5-77(MCC)
relationship to getchar R5-78(MCC)

fgetc macro R4-17{XRAY)
fgetpos function R5-56{MCC)

relationship to fsetpos R5-73(MCC)
fgets function R5-57(MCC)
File

associating stream to a different file R5-
68(MCC)

closure R5-39(MCC), R5-51(MCC)
creation R5-42(MCC)
current location R5-72(MCC), R5-

73(MCC), R5-74(MCC), R5-
108(MCC)

current location in file R5-56(MCC)

Master lndex-40

formatted output R5-63(MCC), R5-
130(MCC), R5-197(MCC), R5-
198(MCC)

formatted read R5-147(MCC)
making file inaccessible R5-144(MCC),

R5-192(MCC)
opening R5-61(MCC), R5-126(MCC)
pointing to beginning R5-145(MCC)
reading R5-71(MCC)
reading a character R5-55(MCC), R5-

77(MCC)
reading a string R5-57(MCC)
reading from a file R5-66(MCC)
receiving a character R5-191(MCC)
unlinking a file name R5-192(MCC)
writing R5-76(MCC)
writing a character R5-134(MCC)
writing a character to a file R5-64(MCC)
writing a string R5-65(MCC)

File contents compared to memory
SETSTATUS VERIFY command R3-

177(XRAY)
File descriptor, getting R5-58(MCC)
File formats

a.out U2-24(ASM), U3-22(ASM)
b.out U2-24(ASM), U3-22(ASM)
S-record U2-13(ASM)

File locations U2-3{CCC)
File name defaults

assembler
UNIX/DOS U2-4(ASM)
VAX/VMS U3-4(ASM)

librarian
UNIX/DOS U2-22(ASM)
VAX/VMS U3-20(ASM)

linker
UNIX/DOS U2-16(ASM)
VAX/VMS U3-16(ASM)

File name size R3-1{XRAY)
__ FILE __ preprocessor symbol R4-1 {MCC),

R4-23{MCC)
@file pseudo-register RA-1 {XRA Y), RF-

2{XRA Y)

Documentation Set for 68000/ECOOO/HCOOO and 68302

File read into memory
SETSTATUS READ command R3-

169(XRAY)
FILE structure type R5-14(MCC)
FILE.LIS

DOS ll-3(MCC), ll-3(XRAY), ll-3(CCC)
FILENAME_MAX R5-15(MCC)
fileno macro R5-58(MCC)
Files

#include
(see #include files)

absolute U4-ll(XRAY)
command R3-4(XRA Y)
format for XRAY R3-90(XRAY)
help U4-ll(XRAY)
include U2-10(XRAY), U2-26(XRAY),

U3-17(XRAY), U4-8(XRAY)
input

extensions U2-2(MCC), U3-2(MCC)
locations U2-3(MCC), U3-3(MCC)

journal U2-10(XRAY), U3-17(XRAY), U4-
7(XRAY), U4-8(XRAY)

linker command U2-19(MCC), U2-
16(CCC)

listing
(see Listing files)

loading U4-12(XRAY)
log U2-10(XRAY), U3-17(XRAY)
output

extensions U2-3(MCC), U3-2(MCC)
locations U2-3(MCC), U3-3(MCC)

source U4-2(XRAY), U4-10(XRAY)
startup.xry U2-10(XRAY)
temporary U4-ll(XRAY)

FILL command R3-62(XRAY), U4-16(XRAY)
size qualifiers R3-3(XRAY)

Fill memory with pattern
FILL command R3-62(XRAY)

FIND command R3-64(XRA Y)
Find specific string

FIND command R3-64(XRAY)
Flags 54-22(SUP)
FLAGS assembler command line option U3-

3(ASM)

Flexible License Manager operation U2-
1 (FLEX)

Flexible Licensing functions, performing U3-
1 (FLEX)

-Fli option U2-20(MCC), U2-17(CCC)
floattype R3-2(MCC), R6-3(MCC), R6-5(MCC)
float.h include file R5-4(MCC)
Floating licenses 11-1(FLEX), U2-1(FLEX),

UB-1(FLEX)
checking out U2-4(FLEX)
mlicense.daemon operation U2-3(FLEX)
restarting daemons Ul-5(FLEX)
specifying in license file l3-4(FLEX)
testing installation of 12-3(FLEX)

Floating-point
addressing modes R3-14(ASM)
constants R2-3(MCC), R2-12(ASM)-R2-

13(ASM)
coprocessor R3-6(ASM)
double-precision R5-12(ASM)
format R6-5(MCC)
number

calculating exponent R5-70(MCC)
calculating mantissa R5-70(MCC)
computing absolute value R5-

50(MCC)
computing product of floating-point

number and power of
two R5-98(MCC)

conversion from ASCII string R5-
3 l(MCC)

conversion to ASCII string R5-
75(MCC)

rounding to nearest integer R5-
59(MCC)

remainder, computing R5-60(MCC)
removing unneeded support R9-33(MCC)
representation R3-2(MCC), R6-4(MCC)
return values R7-4(MCC)
single-precision R5-12(ASM)
type macros R5-4(MCC)

Floating-point coprocessor instructions, gen­
erating

/fpu option U3-23(MCC)

Master lndex-41

-f option U2-20(MCC), U2-18(CCC)
floor function R5-59(MCC)
-Flp option U2-20(MCC), U2-17{CCC)
-FlpO option U2-20(MCC), U2-17{CCC)
-Flt option U2-20(MCC), U2-17{CCC)
Flushing buffered data to a file R5-54{MCC)
fmod function R5-60{MCC)
Font files

fonts.dir UA-3(XRAY)
fonts.dir file UA-3{XRA Y)
FOPEN command R3-66{XRAY), R4-

17{XRAY), U2-33{XRAY)
fopen function R5-61(MCC)
FOPEN_MAX R5-15(MCC)
FOPT assembler directive R5-26{ASM)
FOR ... ENDF loop R7-7{ASM)-R7-8{ASM)
for statement R3-20{MCC)
FOR statement in macros R4-5{XRAY)
Formal parameter R6-2{ASM)
FORMAT assembler directive R5-27{ASM)
Format conversion functions R5-17{MCC)

atof R5-31(MCC)
atoi R5-32(MCC)
atol R5-33(MCC)
mblen R5-113(MCC)
mbstowcs R5-114(MCC)
mbtowc R5-115(MCC)
strtod R5-177(MCC)
strtol R5-179(MCC)
strtoul R5-180(MCC)
wcstombs R5-200(MCC)
wctomb R5-201(MCC)

FORMAT linker command R10·31(ASM)
FORMAT linker command line option U3-

13{ASM)
Format of XRA Y files R3-90(XRAY)
Format, absolute file U2-3{XRAY)
Format, distribution

DOS 11-l(MCC), 11-l{XR.AY), 11-l(CCC)
UNIX System V/386 13-l(MCC)
VMS 12-l(MCC)

Formats
data record (Sl) RF-2(ASM)
header record (SO) RF-2(ASM)

Master lndex-42

Motorola S-record RF-l(ASM}-RF-
7(ASM)

record count record (S5) RF-4(ASM)
symbol record RF-l(ASM)

Formatted 1/0 functions R5-14{MCC)
fprintf R5-63(MCC)
fscanf R5-7l(MCC)
printf R5-130(MCC)
scanf R5-147(MCC)
sprintf R5-158(MCC)
sscanf R5-161(MCC)
vfprintf R5-197(MCC)
vprintf R5-198(MCC)
vsprintf R5-199(MCC)

Formatted output
FPRINTF command R3-67(XRA Y)
PRINTF command R3-118(XRAY)

Formatted output to a file R5-63{MCC), R5-
197{MCC)

Formatted output to standard error R5-
46{MCC)

Formatted output to standard output file R5-
130{MCC), R5-198(MCC)

Formatted read from standard input R5-
147{MCC)

Formatted string conversion R5-161(MCC)
Formatting a string R5-158(MCC), R5-

199{MCC)
Formatting information for numeric

quantities R5-100{MCC)
@fpf pseudo-register RA-1(XRAY), RF-

2{XRAY)
fpos_ttype

fgetpos function R5-56(MCC)
fsetpos function R5-73(MCC)

FPRINTF command R3-67(XRAY), U3-
32(XRAY), U4-16(XRAY)

fprintf function R5-63(MCC)
relationship to vfprintf R5-197(MCC)

_FPU preprocessor symbol U2-20(MCC), U2-
18(CCC)

@fpu pseudo-register RA-1{XRAY), RF-
2(XRAY)

fputc function RS-64{MCC)

Documentation Set for 68000/ECOOO/HCOOO and 68302

relationship to putchar R5-135(MCC)
relationshipt to putc R5-134(MCC)

fputs function R5-65(MCC)
Fractional and integer parts of a number,

determining R5-124(MCC)
Frame (definition) R3-171(XRAY), RD-

1(XRAY)
Frame pointer R7-5(MCC)
/frames option (VMS) R7-6(MCC),

R1016(MCC)
fread function R5-66(MCC)
free function R5-20(MCC), R5-67(MCC), R9-

12(MCC)
freopen function R5-68(MCC)
frexp function R5-70(MCC)
Friend

class R2-4(CCC)
declaring R4-2(CCC)

functions
calling from C R5-4(CCC)
declaring R4-2(CCC)

member function R2-4(CCC)
friend class R2-3(CCC), RC-2(CCC), UA-

2(CCC)
friend function R2-3(CCC), RC-2(CCC), UA-

2(CCC)
friend keyword R4-2(CCC)
Friendship RA-16(CCC)
frl assembler command line flag U2-7(ASM),

U3-7(ASM)
frs assembler command line flag U2-7(ASM),

U3-7(ASM) .
FRZ command S2-86(SUP)
fscanf function R5-71(MCC)
fseek function R5-72(MCC)
fsetpos function R5-73(MCC)
-Fsm option U2-20(MCC), U2-17(CCC)
ftell function R5-74(MCC), U2-52(MCC), U3-

44(MCC), U2-44(CCC)
relationship to fgetpos R5-56(MCC)

FTC command S2-87(SUP)
ftoa function R5-75(MCC)

FULLDIR librarian command U2-21 (ASM),
U3-19(ASM), R13-12(ASM)-R13·
13(ASM)

FULLDIR librarian command option U3-
19(ASM)

Fully qualified names, generating for input
files

/debug=fullfilename option U3-19(MCC)
-Gf option U2-21(MCC), U2-18(CCC)

Function declaration R4-12(CCC)
Function in-lining R101 S(MCC)
Function key commands

HELP R3-12(XRAY), R3-72(XRAY)
MODE R3-12(XRAY), R3-92(XRAY)
PREV CMD R3-12(XRAY)
STEP R3-12(XRAY), R3-193(XRAY)
STEPOVER R3-12(XRAY), R3-

195(XRAY)
VACTIVE+l R3-12(XRAY), R3-

203(XRAY)
VACTIVE-1 R3-12(XRAY), R3-

203(XRAY)
VSCREEN R3-12(XRAY), R3-210(XRAY)
ZOOM R3-12(XRAY), R3-213(XRAY)

Function names, truncating
/truncate_identifiers U3-12(MCC)
-ut option U2-8(MCC) .

Function signature RB-6(CCC), RC-2(CCC),
UA-2(CCC)

Function, friend RC-2(CCC), UA-2(CCC)
Functions R3-24(MCC), R4-12(CCC)

calling at an absolute address R9-
10(MCC)

declaration R4-12(CCC)
duplicate names R5-l(CCC)
epilogue R7-8(MCC), R4-2(CCC)
friend R2-3(CCC), R2-4(CCC)
include libraries R3-29(MCC)
library

(See Library functions)
member R2-4(CCC)
non-reentrant R5-20(MCC)
operator R2-25(CCC)
performing Flexible Licensing U3-

Master lndex-43

l(FLEX)
prologue R7-7(MCC), R4-2(CCC)

local variables in prologue R7-
7(MCC)

prototype arguments R3-25(MCC)
prototype declaration R4-13(CCC)
return values

floating-point R7-4(MCC)
integer R7-4(MCC)
structure R7-4(MCC)
union R7-4(MCC)

returning from
/optimize=singleret option U3-

27(MCC)
-Oe option U2-31(MCC), U2-

28(CCC)
signature R5-l(CCC)
system R9-31(MCC)
tagging entry and exit points

/trace option U3-33(MCC)
-Kt option U2-26(MCC), U2-23(CCC)

truncating names
/truncate_identifiers option U3-

12(MCC)
-ut option U2-37(MCC), U2-34(CCC)

undeclared R4-13(CCC)
virtual R3-12(CCC)

pure R3-14(CCC)
Functions, target R2-14(XRAY)
fwrite function R5-76(MCC)

G
g assembler command line flag U2-7(ASM),

U3-7(ASM)
-g option U2-22(MCC), U2-19(CCC)
-g option (UNIX/DOS) R4-3(MCC)
General optimizations R101(MCC)
General utility functions R5-16(MCC)

abort R5-22(MCC)
abs R5-23(MCC)
atexit R5-30(MCC)
bsearch R5-34(MCC)
calloc R5-35(MCC)

Master lndex-44

div R5-45(MCC)
exit R5-4 7(MCC)
free R5-67(MCC)
labs R5-97(MCC)
ldiv R5-99(MCC)
malloc R5-lll(MCC)
qsort R5-139(MCC)
rand R5-140(MCC)
realloc R5-143(MCC)
srand R5-160(MCC)

Generating floating-point processor instruc­
tions

/fpu option U3-23(MCC)
-f option U2-20(MCC), U2-18(CCC)

get_license 12-3(FLEX), U2-3(FLEX)
connecting to mlicense.daemon U2-

3(FLEX), UA- l(FLEX), UC-
12(FLEX)

continuous error messages UC-17(FLEX)
license server daemons not running Ul-

2(FLEX)
messages written to UA-l(FLEX)
verbose mode toggle UA-l(FLEX)

getc function R5-12(MCC), RS-n(MCC)
relationship to fgetc R5-55(MCC)

getchar fUnction R5-12(MCC), R5-78(MCC)
getl function R5-79(MCC)
GETLICENSE_ CONNECT _INTERVAL U2-

3(FLEX), UA-1(FLEX)
GETLICENSE_CONNECT_RETRIES U2-

3(FLEX), UA-1 (FLEX)
GETLICENSE_ OUTPUT U2-5(FLEX), U3-

3(FLEX), UA-1(FLEX)
GETLICENSE_ VERBOSE UA-1 (FLEX)
gets function R5-80(MCC)
Getting licenses

(see Checking out licenses)
getw fUnction R5-81(MCC)
-Gf option U2-21(MCC), U2-18(CCC)
-GI option U2-21(MCC), U2-18(CCC)
-GI option (UNIX/DOS) R11-3(MCC)
Global

constants R4-9(CCC)
redefinition R4-8(CCC)

Documentation Set for 68000/ECOOO/HCOOO and 68302

Global constant propagation
optimization R104(MCC), R5-
3(XRA Y)

Global copy propagation R105(MCC)
Global copy propagation optimization R5-

3(XRA Y)
Global declarations R3-4(MCC), R4-8(CCC)
Global optimizations R102(MCC)-

. R109(MCC), R5-2(XRAY)
Global value propagation R105(MCC)
Global variable optimization

/optimize=stablemem option U3-
27(MCC)

-Ob option U2-30(MCC), U2-27(CCC)
Global variables, referencing R2-15(XRAY)
Global-flow optimizer

/optimize=globalflow option U3-26(MCC)
-Og option U2-31(MCC), U2-28(CCC)

Glossary UB-1(FLEX), RE-1(ASM}-RE-
2(ASM), RD-1(XRAV), RC-1(CCC),
UA-1(CCC)

-Gm option U2-21 (MCC)
gmtime function RS-21 (MCC), R5-82(MCC)
Go button

X Window support UA-12(XRAY)
go button

Sun View support UH-12(XRAY)
GO command R2-24(XRA Y), R3-69(XRA Y),

U4-4(XRA Y), U4-6(XRA Y)
assembly-level mode U2-22(XRAY), U2-

24(XRAY)
breakpoint setting U2-28(XRAY)
high-level mode U2-18(XRAY)
X Window support UA-12(XRAY)

Go To button
X Window support UA-12(XRAY)

go to button
Sun View support UH-12(XRAY)

GOSTEP command R3-71(XRAY), U4-
6(XRAY)

goto statement R3-21 (MCC)
-Gr option U2-21(MCC), U2-18(CCC)
Granting access to users l3-6(FLEX)
GROUP S2-88(SUP)

Grouping stack adjust instructions
optimization R1017(MCC)

Groups S4-22(SUP)
-Gs option U2-22(MCC), U2-19(CCC)
Guide, description IP-1(CCC)

H
-H option U2-22(MCC), U2-19(CCC)
Halt XRAY session

QUIT command R3-138(XRAY)
temporarily

PAUSE command R3-114(XRAY)
Hardware information display S2-89(SUP)
Header files

defining R5-15(CCC)
Header record (SO) RF-2(ASM)
Help U4-1(XRAY)
Help button U2-51 (CCC)

X Window support UA-12(XRAY)
help button

Sun View support UH-12(XRAY)
HELP command R3-72(XRAY), U2-

14(XRAY), U4-1(XRAY)
help command U2-53(CCC)
HELP command key

Apollo support UB-4(XRAY)
Apollo trace support UB-6(XRAY)
DECstation support UC-4(XRAY)
DECstation trace support UC-6(XRAY)
HP support UD-6(XRAY)
HP trace support UD-8(XRAY)
IBM RS/6000 support UE-3(XRAY)
IBM RS/6000 trace support UE-5(XRAY)
Motorola Delta Series support UF-

4(XRAY)
Motorola Delta Series trace support UF-

5(XRAY)
PC support UG-4(XRAY)
PC trace support UG-5(XRAY)
Sun support UH-4(XRA Y)
Sun trace support UH-5(XRAY)
VT terminal support Ul-3(XRAY)
VT terminal trace support Ul-5(XRAY)

Master lndex-45

Help facility U1-4(XRAY)
Help file U4-11 (XRAY)

location U4-ll(XRAY)
HELP librarian command R13-14(ASM)
Help menu

detailed help topic U3-16(XRAY)
HELP command R3-72(XRAY), U2-

14(XRAY)
HELP command key U2-14(XRAY)

Help messages, printing U2-33(XRAY)
Help viewport U3-15(XRAY)

HELP command Ul-4(XRAY), U3-
15(XRAY)

HELP command key Ul-4(XRAY), U3-
15(XRAY)

Hexadecimal digit, testing for R5-94(MCC)
Hexadecimal interpretation

RADIX option R3-107(XRAY)
Hexadecimal representation RA-1 (MCC),

RB-1(XRAY)
Highland Software 11-1(FLEX), IC-S(FLEX)
High-level and assembly code

/show=source option U3-29(MCC)
high-level and assembly code

-Fsm option U2-20(MCC), U2-17(CCC)
high-level command key

Apollo trace support UB-5(XRAY)
DECstation trace support UC-5(XRAY)
HP trace support UD-8(XRAY)
IBM RS/6000 trace support UE-5(XRA Y)
Motorola Delta Series trace support UF-

6(XRAY)
PC trace support UG-6(XRAY)
Sun trace support UH-6(XRA Y)
VT terminal trace support Ul-5(XRAY)

High-level mode
MODE command R3-92(XRAY)

Master lndex-46

High-level mode debugging U1-3(XRA Y), U1-
4(XRAY), U2-12(XRAY)

BREAKINSTRUCTION command U2-
18(XRAY)

C expressions and statements Ul-
3(XRAY)

GO command U2-18(XRAY)
MONITOR command U2-18(XRAY)
PRINTVALUE command U2-18(XRAY)
screen U2-14(XRAY)
single-stepping U2-17(XRAY)
STEP command Ul-4(XRAY), U2-

16(XRAY)
STEPOVER command Ul-4(XRAY), U2-

19(XRAY)
tutorial U2-12(XRA Y)

High-level screen S1-5(SUP), U3-1(XRAY)
HISTORY command R3-74(XRAY)
@hlpc pseudo-register R2-21 (XRAY), RA-

1 (XRA Y), RF-3(XRA Y)
Holding licenses U1-3(FLEX)

(see also Checking out licenses)
determining which are held Ul-4(FLEX),

U3-2(FLEX)
expiration time

(see Expiration of licenses)
HOST S1-7(SUP)
HOST command R3-75(XRAY)
Host environment

HOST command R3-75(XRAY)
Host ID

alternatives to lmhostid U3-8(FLEX)
displaying U3-4(FLEX)

hostid command 13-2(FLEX), 13-3(FLEX), U3-
4(FLEX)

hostname command 13-2(FLEX)
Hosts

Apollo support R3-105(XRAY)
different file systems U2-ll(FLEX)
DOS support R3-105(XRA Y)
specifying U2-l(FLEX)
valid U2-ll(FLEX)

Hosts, valid IP-1(FLEX), 11-1(FLEX)

Documentation Set tor 68000/ECOOO/HCOOO and 68302

HP
host-specific information UD-l(XRAY)

HP 9000 Series
(see HP support)

HP support
command keys UD-6(XRA Y)
MOVE TO BOTTOM control key UD-

5(XRAY)
MOVE TO TOP control key UB-2(XRAY),

UD-5(XRAY)
TERM environment variable UD-

2(XRAY)
X Window support UD-2(XRAY)

_HP9000_300 preprocessor symbol R4-
3{MCC)

_HP9000_700 preprocessor symbol R4-
3{MCC)

HP-UX
(see HP support)

HP-UX installation
terminal support

configuration parameters UD-
3(XRAY)

HUGE_ VAL macro R5-6(MCC), R5-7(MCC)
HWCONFIG S2-89(SUP)
HWCONFIG command S2-89(SUP)
Hyperbolic cosine of a number,

computing R5-41(MCC)
Hyperbolic sine of a number, computing R5-

157(MCC)
Hyperbolic tangent of a number,

computing R5-184(MCC)

i assembler command line flag U2-7(ASM),
U3-7(ASM)

-I assembler command line option U2-
3(ASM)

-I option U2-22(MCC), U2-19(CCC)
+i option U2-20(CCC)
1/0

simulated 87-l(SUP)

1/0 buffering
buffered R6-3(CCC)
embedded environments R6-3(CCC)
native environments R6-3(CCC)
synchronized 1/0 with stdio buffering R6-

4(CCC)
unbuffered R6-3(CCC)
unit buffered R6-4(CCC)

1/0 device registers U2-31(MCC), U3-
28(MCC), U2-28(CCC)

l/O file
association with buffer R5-150(MCC)

1/0 functions R5-12(MCC)
clearerr R5-37(MCC)
fclose R5-51(MCC)
feof R5-52(MCC)
ferror R5-53(MCC)
fflush R5-54(MCC)
fgetc R5-55(MCC)
fgetpos R5-56(MCC)
fgets R5-57(MCC)
fopen R5-61(MCC)
formatted R5-14(MCC)
fputc R5-64(MCC)
fputs R5-65(MCC)
fread R5-66(MCC)
freopen R5-68(MCC)
fseek R5-72(MCC)
fsetpos R5-73(MCC)
ftell R5-74(MCC)
fwrite R5-76(MCC)
getc R5-77(MCC)
getchar R5-78(MCC)
gets R5-80(MCC)
perror R5-128(MCC)
putc R5-134(MCC)
putchar R5-135(MCC)
puts R5-137(MCC)
remove R5-144(MCC)
rewind R5-145(MCC)
setbuf R5-150(MCC)
setvbuf R5-154(MCC)
ungetc R5-191(MCC)

Master lndex-47

1/0 screen U2-25(XRA Y), U3-4(XRA Y)
1/0 static initialization and termination R7-

6(CCC)
1/0, simulated U4-9(XRAY)
IBM RS/6000

host-specific information UE-l(XRAY)
IBM RS/6000 support

MOVE TO BOTTOM control key UE- •
2(XRAY)

MOVE TO TOP control key UE-2(XRAY)
IBM-PC

(see DOS installation)
(see DOS)
(see PC)

IBM-PC/DOS
(see DOS)

Ice
not supported Sl-7(SUP)

ICE command R3-n(XRAY)
Identifiers R2-1(MCC)

(see Symbols)
IDNT assembler directive R5-28(ASM)
IEE2AOUT conversion utility U2-24(ASM)-­

U2-28(ASM), U3-21 (ASM)-U3-
26(ASM)

IEEE floating-point format R6-4(MCC)
IEEE-695 format U2-2(XRAY), U2-3(XRAY)
IET R3-124(XRAY)
IF ... THEN •.. ELSE ... ENDI assembler

directive R7-9(ASM)-R7-10(ASM)
#if directive R4-7(MCC), R4-17(MCC)
if statement R3-21(MCC)
IF statement in macros R4-6(XRA Y)
IFC assembler directive R5-29(ASM)--R5-

30(ASM)
IFDEF assembler directive R5-31(ASM)
#ifdef directive R4-7(MCC), R4-19(MCC)
if-else statement R3-22(MCC)
IF-ELSE statement in macros R4-7(XRAY)
IFEQ assembler directive R5-32(ASM)--R5-

33(ASM)
IFGE assembler directive R5-34(ASM)
IFGT assembler directive R5-35(ASM)
IFLE assembler directive R5-36(ASM)

Master lndex-48

IFL T assembler directive R5-37(ASM)
IFNC assembler directive R5-38(ASM)-R5-

39(ASM)
IFNDEF assembler directive R5-40(ASM)
#ifndef directive R4-7(MCC), R4-20(MCC)
IFNE assembler directive R5-41(ASM)
Illegal access space S3-32(SUP)
Implicit operand R2-23(CCC)
In-circuit emulator commands R3-12(XRA Y)

BREAKCOMPLEX R3-12(XRAY), R3-
28(XRAY)

ICE R3-12(XRAY), R3-77(XRAY)
NOICE R3-12(XRAY), R3-98(XRAY)

In-circuit emulator communication
ICE command R3-77(XRAY)
NOICE command R3-98(XRAY)

#include R3-6(MCC)
INCLUDE assembler directive R5-42(ASM)
INCLUDE command R3-79(XRAY), U2-

26(XRAY), U3-17(XRAY), U4-8(XRAY)
defining macros R4-9(XRAY)

#include directive R4-6(MCC), R4-21(MCC),
R5-1(MCC)

Include file U2-10(XRAY), U2-26(XRAY), U3-
17(XRAY), U4-8(XRAY)

for performance analysis S4-3(SUP)
Include file commands, displaying

INCECHO option R3-106(XRAY)
Include files

(see #include files)
comments R3-4(XRAY)
error handling

ERROR command R3-59(XRA Y)
INCLUDE command R3-79(XRAY)
no echo

INCECHO option U4-12(XRAY)
UNIX

alternate locations U2-4(MCC)
VMS

alternate locations U3-3(MCC)
#include files R5-1(MCC)

assert.h R5-2(MCC)
ctype.h R5-3(MCC)
errno.h R5-4(MCC)

Documentation Set for 68000/ECOOO/HCOOO and 68302

expanding in assembler source file
-Fsi option U2-20(MCC)
/show=include option U3-28(MCC)

float.h R5-4(MCC)
limits.h R5-4(MCC)
locale.h R5-4(MCC)
math.h R5-5(MCC)
mathf.h R5-6(MCC)
mriext.h R5-7(MCC), R5-8(MCC)
search path, specifying

-I option U2-22(MCC), U2-19(CCC),
U2-22(MCC), U2-19(CCC)

/ipath option U3-23(MCC)
.J option U2-23(MCC), U2-20(CCC),

U2-23(MCC), U2-20(CCC)
/spath option U3-32(MCC)

setjmp.h R5-9(MCC)
signal.h R5-10(MCC)
stdarg.h R5-10(MCC)
stddef.h R5-ll(MCC)
stdio.h R5-2(MCC), R5-12(MCC), R5-

14(MCC), R5-20(MCC), R5-
150(MCC), R5-193(MCC)

stdlib.h R5-2(MCC), R5-16(MCC), R5-
17(MCC)

string.h R5-17(MCC)
time.h R5-2(MCC), R5-19(MCC)

INCLUDE line l3-6(FLEX)
INCLUDE linker command R10-32(ASM)
Inclusive Execution Time R3-124(XRAY)
Incremental linking R9-1(ASM), R9-8(ASM)-

R9-9(ASM)
INDEX linker command R3-25(ASM), R3-

27(ASM), R10-33(ASM)-R10-34(ASM)
Index simplification

optimization R109(MCC), R5-
11(XRAY)

Indexing array optimization R1018(MCC)
Indexing arrays optimization RS-1 S(XRA Y)
Indirect addressing R2-9(XRAY)
Induction variable elimination R109(MCC)
#info directive R4-22(MCC)

relation to #pragma info R4-26(MCC)

Informational messages
(see also Messages)
suppression

/suppress=informational option U3-
30(MCC)

-Qi option U2-36(MCC), U2-33(CCC)
Inheritance R3-1 (CCC)-R3-18(CCC), RC-

2(CCC), UA-2(CCC)
BROWSE command (C++) RG-12CXRAY)
concepts

access protection R3-l(CCC)
derivation R3-l(CCC)

fundamental elements R3-l(CCC)
multiple R3-10(CCC), RC-2(CCC), UA-

2(CCC)
single R3-10(CCC), RC-2(CCC), UA-

2(CCC)
INITDATA linker command R9-40(MCC),

R10-35(ASM)
INITDATA section R10-35(ASM)
initfini section R7-2{CCC), U2-13(CCC)
Initial setup

user Ul-l(FLEX)
Initialization R3·17(MCC), R9-39(MCC)

compile-time R9-39(MCC)
data R9-39(MCC)
default R6-42(MCC)
run-time R9-39(MCC)
static constructor R7-l(CCC)
static destructor R7-l(CCC)
static objects R7-l(CCC)
static variables R6-42(MCC)

Initialize local variables
/init_locals option U3-22(MCC)
-KI option U2-25(MCC), U2-22(CCC)

Initialized data section U2-16(MCC), U3-
15(MCC), U2-13(CCC)

naming
/rename option U3-31(MCC)
-NI option U2-29(MCC), U2-25(CCC)

specifying address mode
/initvars_addr_as options U3-

16(MCC)

Master lndex-49

-ai options U2-17(MCC), U2-
13(CCC)

initvars section
naming

/rename option U3-31(MCC)
In-line assembly R9-2(MCC), R9-3(MCC)
In-line assembly code

changing insert character
/insert_char option U3-12(MCC)
-ui option U2-37(MCC), U2-34(CCC)

enabling
/mri_extensions option U3-24(MCC)
-x option U2-39(MCC), U2-36(CCC)

In-line expansion
+d option U2-15(CCC)

In-line function R2-5(CCC)
specification R4-2(CCC)

inline keyword R4-2(CCC)
In-line library function

expansion R1017(MCC)
In-line member function R2-6(CCC)
In-lining

/optimize=inline option U3-26(MCC)
library function calls, disabling

-nx option U2-40(MCC), U2-37(CCC)
-Oi option U2-31(MCC), U2-28(CCC)

In-lining assembly instructions R2-26(CCC)
INPORT S1-7(SUP), S7-1(SUP)
INPORT command R3-80(XRAY), R4-

18(XRAY}, U2-11 (XRA Y}, U4-9(XRA Y)
size qualifiers R3-3(XRAY)

inport macro R4-18(XRA Y}, U4-9(XRA Y)
lnport ports

reading value from R4-18(XRAY)
Input and output files, location U2-3(CCC)

DOS U2-3(MCC)
UNIX U2-3(MCC)
VMS U3-3(MCC)

Input files
extensions U2-2(MCC), U3-2(MCC)
generating fully qualified names

/debug=fullfilename option U3-
19(MCC)

Master lndex-50

-Gf option U2-21(MCC), U2-18(CCC)
locations U2-3(MCC), U3-3(MCC)

Input files, rewinding
RIN command R3-146(XRAY)

Input for install.sh 11-5(FLEX)
Input port

address
INPORT command R3-80(XRA Y)

buffer
DIN command R3-50(XRA Y)

Input/Output functions
(see I/O functions)

Ins key (IBM RS/6000 support) UE-2(XRAV)
Ins key (Motorola Delta Series support) UF-

2(XRA Y)
Ins key (PC support) UG-3(XRA Y)
Ins key (Sun support) UH-3(XRAY)
Ins Line key (HP support) UD-5(XRAV)
Insert Char key (HP support) UD-5(XRAY)
Insert character, changing

/insert_char option U3-12(MCC)
-ui option U2-37(MCC), U2-34(CCC)

Inspection tool U2-46(CCC)
Install directory

(see install_dir, /usr/mri)
INST ALL program

DOS Il-2(MCC), Il-2(XRAY), Il-3(CCC)
install.sh U2-9(FLEX)

aborting Il-5(FLEX)
architectures mixed IA-l(FLEX)
defaults, specifying Il-5(FLEX)
device to use for installation 11-18(FLEX)
drive to use for installation

incorrect Il-19(FLEX)
error handling Il-5(FLEX)
executing script Il-8(FLEX)
features of Il-5(FLEX)
features, specifying ll-12(FLEX), ll-

14(FLEX)
exiting loop ll-13{FLEX)

license type, specifying ll-14(FLEX)
mixed architectures IA-l(FLEX)
part A ll-9{FLEX)

description Il-5(FLEX)

Documentation Set for 68000/ECOOO/HCOOO and 68302

skipping Il-9(FLEX)
part B ll-16(FLEX)

description Il-5(FLEX)
going directly to ll-9(FLEX)
skipping Il-16(FLEX)

servers, specifying 11-ll(FLEX), 11-
12(FLEX)

exiting loop 11-ll(FLEX)
skipping a part 11-5(FLEX)

install_dir IMO(FLEX)
(see also /usr/mri)
/usr/mri/sun3 IA-l(FLEX)
/usr/mri/sun4 IA-l(FLEX)
default

(see /usr/mri)
nonstandard 11-lO(FLEX), 12-2(FLEX)

install_dir order subdirectory 11·9(FLEX), 11·
10(FLEX)

install_dir/bin, adding to path 12·1(FLEX)
install_ dir/bin/MR I l3·2(FLEX)
Installation

DOS 11-l(XRAY)
time stamp mo.dule S6-4(SUP)
VMS 12-l(XRAY)

Installation diskettes
DOS 11-l(CCC)

Installation procedure
DOS 11-2(MCC), 11-2(CCC)
UNIX System V/386 13-l(MCC)
VMS 12-l(MCC)

Installation script U2-9(FLEX)
(see install.sh)

Installing Flexible License Manager
(see also install.sh)
Apollo

(see Apollo installation)
architecture mixed IA-l(FLEX), IA-

2(FLEX)
defaults, use of 11-5(FLEX)
DEMO licenses

(see DEMO licenses)
directory other than /usr/mri 11-

lO(FLEX), 12-2(FLEX)

license file with nonstandard name 11-
15(FLEX), 12-l(FLEX), 12-
7(FLEX)

license type, specifying 11-14(FLEX)
mixed architectures IA-l(FLEX), IA-

2(FLEX)
node-locked licenses

(see Node-locked licenses)
nonstandard location 11-lO(FLEX)
preinstallation steps 11-2(FLEX)
remote installation Il-8(FLEX)
skipping a part 11-5(FLEX)
steps for installing 11-6(FLEX)
who 11-l(FLEX)

Installing toolkit
(see Toolkit)

Instruction alignment RF·4(XRAY)
Instruction breakpoint

setting
(see BREAKINSTRUCTION

command)
Instruction breakpoints S3-34(SUP)
Instruction operands R3-3(ASM)
Instruction scheduling

/optimize=reorder option U3-27(MCC)
-Or option U2-32(MCC), U2-29(CCC)

Instruction statement R2·2(ASM)
Instruction types, variants R3·2(ASM)
int type R3·2(MCC), R6·3(MCC), R6·12(MCC)
Integer

computing absolute value R5-23(MCC)
conversion from ASCII string R5-

32(MCC)
conversion to ASCII string R5-95(MCC)

Integer constants R2·11 (ASM)-R2·12(ASM)
Integer return values R7-4(MCC)
Intermediate C file saved

-Fe option U2-l 7(CCC)
Intermediate C++ file, saved

+i option U2-20(CCC)
Internal compiler errors RC-15(MCC)
Internal OMA S2·141(SUP)

Master lndex-51

Interrupt
keyword R4-2(CCC)
-Kr command line option R4-3(CCC)
not supported Sl-7(SUP)

INTERRUPT command R3-84(XRAY)
Interrupt handlers, declaring R7-11 (MCC),

R9-45(MCC)
interrupt keyword R7-11(MCC), R9-45(MCC),

R4-2(CCC)
interrupt keyword, disabling

-rue option U2-40(MCC), U2-37(CCC)
Interrupt latency 56-22(SUP)
Interrupt procedures

/ireturn=exception option U3-22(MCC)
/ireturn=subroutine option U3-22(MCC)
-Kr option U2-26(MCC), U2-23(CCC)
return with RTE instruction

/ireturn=exception option U3-
22(MCC)

-nKr option U2-26(MCC), U2-
23(CCC)

return with RTS instruction
/ireturn=subroutine option U3-

22(MCC)
-Kr option U2-26(MCC), U2-23(CCC)

Interrupts 52-129(SUP), 52-132(SUP), 52-
136(SUP)

cancel
NOINTERRUPT command R3-

99(XRAY)
simulation

INTERRUPT command R3-
84(XRAY)

Introduction R1-1(MCC), R1-1(CCC)
assembler Rl-l(ASM), R2-l(ASM)
C++ compiler package Ul-l(CCC)
librarian R12-l(ASM)
linker R9-l(ASM)

Introduction to compiler package U1-1(MCC)
Invocation 51-2(SUP)

assembler U3-45(MCC)
compiler U2-l(MCC), U3-l(MCC), U2-

l(CCC)

Master lndex-52

linker U2-55(MCC), U3-45(MCC), U2-
46(CCC)

Invocation examples
UNIX/DOS

assembler U2-12(ASM)
librarian U2-23(ASM)-U2-24(ASM)

command file U2-23(ASM)-U2-
24(ASM)

command line U2-23(ASM)
interactive U2-23(ASM)

linker U2-17(ASM)-U2-20(ASM)
command file U2-17(ASM)
without command file U2-

19(ASM)-U2-20(ASM)
VAX/VMS

assembler U3-12(ASM)
command line U3-12(ASM)
multiple flags U3-12(ASM)

librarian U3-20(ASM)-U3-21(ASM)
command file U3-21(ASM)
command line U3-20(ASM)

linker U3-16(ASM)-U3-17(ASM)

VMS

command file U3-16(ASM)
command line U3-17(ASM)

linker
command file U3-16(ASM)

Invocation methods, librarian
command file R12-3(ASM)
command line R12-3(ASM)
interactive R12-3(ASM)

Invocation syntax
assembler

UNIX/DOS U2-2(ASM)
VAX/VMS U3-2(ASM)

librarian
UNIX/DOS U2-21(ASM)
VAX/VMS U3-18(ASM)

linker
UNIX/DOS U2-13(ASM)
VAX/VMS U3-13(ASM)

Invoking XRA Y U2-9(XRA Y)
.inc file U2-10(XRAY)
.jou file U2-10(X.RAY)

Documentation Set for 68000/ECOOO/HCOOO and 68302

.log file U2-10(XRAY)
DOS U2-9(XRA Y)
include file U2-10(XRAY)
journal file U2-10(XRAY)
log file U2-10(XRAY)
startup.xry file U2-10(X.RAY)
UNIX U2-9(XRAY)
VMS U2-9(XRAY)

ios68ka5.lib U2-42(CCC)
ios68ka5020.lib U2-42(CCC)
ios68kab.lib U2-42(CCC)
ios68kab020.lib U2-42(CCC)
ios68kpc.lib U2-42(CCC)
ios68kpc020.lib U2-42(CCC)
IPATH assembler command line option U3-

3(ASM)
IRET instruction, using for interrupt proce­

dures
/ireturn=exception U3-22(MCC)

/ireturn option (VMS) R9-45(MCC)
/ireturn:subroutine option (VMS) R7-

11(MCC)
IRP assembler directive R5-43(ASM)-R5-

44(ASM)
IRPC assembler directive R5-45(ASM)-R5-

46(ASM)
isalive macro R4-20(XRAY)
isalnum function R5-83(MCC)
isalpha function R5-84{MCC)
isascii function R5-85(MCC)
iscntrl function R5-86(MCC)
isdigit function R5-87(MCC)
isgraph function R5-88(MCC)
islower function R5-89(MCC)
isprint function R5-90(MCC)
ispunct function R5-91(MCC)
isspace function R5-92(MCC)
isupper function R5-93(MCC)
isxdigit function R5-94(MCC)
itoa function R5-95(MCC)
itostr function R5-96(MCC)

J
-J option U2-23(MCC), U2-20(CCC)
jmp_buf type R5-9(MCC)
JOURNAL command R3-86(XRA Y), U4-

7(XRA Y), U4-8(XRA Y)
Journal file U2-10(XRAY), U3-17(XRAY), U4-

7(XRA Y), U4-8(XRAY)
Journal viewport U3-17(XRAY)

JOURNAL command U3-17(XRAY)
Jump optimizations R1011 (MCC)­

R1015(MCC), R5-12(XRAY)
Jumping stack levels in execution U4-

4(XRA Y)
Jumps outside of a function

Function, jumps outside of a R5-
107(MCC)

K
-K2 option U2-24(MCC), U2-21 (CCC)
-K4 option U2-24(MCC), U2-21(CCC)
Kanji characters R5-16(MCC)
-Kc option U2-24(MCC), U2-21(CCC)

· key_get macro R4-21(XRAY)
key_stat macro R4-22(XRAY)
Keywords R2-6(MCC)

C++ R4-l(CCC)
-Kf option U2-25(MCC), U2-22(CCC)
-Kf option (UNIX/DOS) R7-6(MCC),

R1016(MCC)
-Kh option U2-25(MCC), U2-22(CCC)
-Kh option (UNIX/DOS) R7-5(MCC), R9-

34(MCC)
-Kl option U2-25(MCC), U2-22(CCC)
kill command 12-S(FLEX)
KP , key (VT terminal support) Ul-2(XRA Y)
KP . key (VT terminal support) Ul-2(XRA Y)
KPO key

DECstation trace support UC-5(XRAY)
VT terminal support Ul-3(XRAY)
VT terminal trace support Ul-5(XRAY)

KP1 key
DECstation trace support UC-5(XRAY)
VT terminal support Ul-3(XRAY)

Master lndex-53

VT terminal trace support Ul-5(XRAY)
KP2 key

DECstation trace support UC-5(XRAY)
VT terminal support UI-3(XRAY)

. VT terminal trace support Ul-5(XRAY)
KP3 key

DECstation trace support UC-5(XRAY)
VT terminal support Ul-3(XRAY)
VT terminal trace support Ul-5(XRAY)

KP4 key
DECstation trace support UC-5(XRAY)
VT terminal support Ul-3(XRAY)
VT terminal trace support Ul-5(XRAY)

KPS key
DECstation trace support UC-6(XRAY)
VT terminal support Ul-3(XRAY)
VT terminal trace support Ul-5(XRA Y)

KP6 key
DECstation trace support UC-6(XRAY)
VT terminal support Ul-3(XRA Y)
VT terminal trace support Ul-5(XRAY)

KP7 key
DECstation trace support UC-6(XRAY)
VT terminal support Ul-4(XRAY)
VT terminal trace support Ul-5(XRAY)

KP8 key
DECstation trace support UC-6(XRAY)

KP9 key
VT terminal support Ul-4(XRAY)
VT terminal trace support Ul-6(XRAY)

-Kr command line option R4-3(CCC)
-Kr option U2-26(MCC), U2-23(CCC)
-Kr option (UNIX/DOS) R7-11(MCC), R9-

45(MCC)
-KT option U2-26(MCC)
-Kt option U2-26(MCC}, U2-23(CCC)
-KT option (UNIX/DOS) R4-3(MCC)
-Ku option U2-27(MCC), U2-23(CCC)
-Ku option (UNIX/DOS) R4-3(MCC), R6-

10(MCC)

Master lndex-54

L
-L assembler command line option U2-

3(ASM)
-I assembler command line option U2-

3(ASM)
-I librarian command line option U2-21 (ASM)
-I linker command line option U2-14(ASM)
-I option U2-27(MCC), U2-24(CCC)
L_tmpnam R5-15(MCC)
Labeled statement R3-21(MCC)
Labels for line numbers

/debug=lines option U3-19(MCC)
-GI option U2-21(MCC), U2-18(CCC)

labs function R5-97(MCC)
Latency

access breakpoints S4-13(SUP)
execution breakpoints S4-13(SUP)

lconv structure R5-100(MCC)
ldexp function R5-98(MCC)
ldiv function R5-99(MCC)
Left shift operation R2-24(CCC)
Legal expressions R2-12(XRA Y)

examples R2-13(XRAY)
expression strings R2-13(XRAY)

Length of initial string segment R5-
167(MCC}, R5-175(MCC)

Length of line R3-5(XRA Y)
Length of program identifiers U3-12(MCC)
Length of string R5-169(MCC)
Librarian

command characters
asterisk R13-l(ASM)
blanks R13-2(ASM)
comma R13-l(ASM)
parentheses R13-l(ASM)
plus R13-2(ASM)
semicolon R13-l(ASM)

command file comments R13-2(ASM)
commands R13-l(ASM)

ADDLIB R13-4(ASM)
ADDMOD R13-5(ASM)
CLEAR R13-6(ASM)
CREATE R13-7(ASM)
DELETE R13-8(ASM)

Documentation Set for 68000/ECOOO/HCOOO and 68302

DIRECTORY Rl3-9(ASM)
END R13-10(ASM)
EXTRACT Rl3-ll(ASM)
FULLDIR Rl3-12(ASM)-Rl3-

13(ASM)
HELP Rl3-14(ASM)
OPEN R13-15(ASM)
QUIT R13-10(ASM)
REPLACE R13-16(ASM)
SAVE R13-17(ASM)

demangled name RG-4(ASM)
description Ul-2(ASM), Ul-2(CCC)
error messages RD-l(ASM)-RD-6(ASM)
features R12-l(ASM)
function R12-l(ASM)-R12-6(ASM)
introduction R12-l(ASM)
invocation methods R12-3(ASM)
listing of commands R13-14(ASM)
listings, sample Rl4-l(ASM)-R14-

6(ASM)
mangled name RG-4(ASM)
message severity levels RD-l(ASM)
overview Rl-l(ASM)
return codes R12-6(ASM)
special characters R13-l(ASM)
syntax R13-l(ASM)-R13-2(ASM)
UNIX/DOS U2-21(ASM)-U2-24(ASM)

file name defaults U2-22(ASM)
invocation examples U2-23(ASM)­

U2-24(ASM)
options U2-21(ASM}-U2-22(ASM)

-a U2-21(ASM)
-d U2-21(ASM)
-e U2-21(ASM)
-1 U2-21(ASM)
-r U2-22(ASM)
-V U2-22(ASM)

use of special characters R13-l(ASM)
VAX/VMS U3-18(ASM)-U3-2 l(ASM)

file name defaults U3-20(ASM)
invocation examples U3-20(ASM}­

U3-21(ASM)
invocation syntax U3-18(ASM)
options U3-19(ASM)

ADDMOD U3-19(ASM)
DELETE U3-19(ASM)
EXTRACT U3-19(ASM)
FULLDIR U3-19(ASM)
OPTION U3-19(ASM)
OUTPUT U3-19(ASM)
REPLACE U3-19(ASM)
VERSION U3-19(ASM)

Librarian description U1-2(MCC)
Libraries R9-40(MCC), U2-50(MCC), U2-

39(CCC)
C++ 1/0 levels R6-l(CCC)
C++ library R6-l(CCC)
conditions for use U2-43(CCC)
termination routine (exit) U2-45(CCC)
UNIX

alternate locations U2-4(MCC)
UNIX level-1 functions U2-43(CCC)
UNIX level-1+ elements R6-2(CCC)
use U2-41(CCC)
VMS

alternate locations U3-3(MCC)
Library functions

(see under specific names)
close R9-31(MCC)
!seek R9-31(MCC)
mathematical functions R5-5(MCC)
non-reentrant R5-20(MCC)
open R9-31(MCC)
read R9-31(MCC)
unimplemented R5-2(MCC)
write R9-31(MCC)

Library include files
(see #include files)

LIBRARY linker command line option U3-
14(ASM)

Library macros R5-2(MCC), R5-3(MCC), R5-
4(MCC), R5-6(MCC), R5-7(MCC), R5-
8(MCC), R5-10(MCC), R5-11(MCC),
R5-14(MCC)-R5-15(MCC)

License Authorization Form 11-2(FLEX), 11-
4(FLEX), 11-S(FLEX), 11-11(FLEX), U2-
9(FLEX), UB-1(FLEX)

Master lndex-55

License daemons
(see License server daemons)

License file l1·2(FLEX), U2-9(FLEX), U2-
10(FLEX), UB-2(FLEX)

cannot find message I2-6(FLEX)
creating

(see Creating license file)
DAEMON line 13-2(FLEX), 13-5(FLEX)
editable items I3-2(FLEX)
editing I3-2(FLEX)
example 13-l(FLEX), I3-4(FLEX), U2-

9(FLEX)
FEATURE line Il-14(FLEX), U2-

4(FLEX), U2-9(FLEX)
error in I2-4(FLEX), I2-8(FLEX)
syntax I3-3(FLEX)

floating licenses 13-4(FLEX)
format 13-l(FLEX)
function U2-l(FLEX)
hosts with different file systems U2-

ll(FLEX)
mlicense.daemon accessing U2-4(FLEX)
modifying Il-9(FLEX), Il-lO(FLEX)
multiple vendors IC-5(FLEX)
name Il-14(FLEX), 12-l(FLEX), I2-

7(FLEX)
name nonstandard Ul-l(FLEX), UA-

2(FLEX)
node-locked licenses I3-4(FLEX)
passwords 13-l(FLEX)
rereading U3-6(FLEX)
SERVER line U2-9(FLEX)

error in I2-4(FLEX), 12-S(FLEX)
host name incorrect 12-S(FLEX)
how many U2-10(FLEX)
none I2-6(FLEX)
syntax 13-2(FLEX)

License holder UB-2(FLEX)
(see mlicense.daemon)

License manager UB-2(FLEX)
(see lmgrd)

License manager daemon
(see lmgrd)

License server U2-5(FLEX), U2-10(FLEX),

Master lndex-56

UB-2(FLEX)
architecture U2-10(FLEX)
changing U2-1 l(FLEX)
choosing U2-10(FLEX)
failure U2-10(FLEX)
multiple U2-10(FLEX)
specifying U2-9(FLEX)
status Ul-4(FLEX), U3-7(FLEX)

License server daemons U2-5(FLEX), UB-
2(FLEX)

(see also lmgrd, MRI daemon)
(see also lmgrd, MRI)
shut-down U3-4(FLEX)
start-up I2-2(FLEX), I2-3(FLEX), Ul-

2(FLEX), U2-6(FLEX)
status Ul-4(FLEX), U3-7(FLEX)
status, normal I2-4(FLEX)
version 1 IC-l(FLEX)

License service 12-S(FLEX), l3-2(FLEX)
license.dat

(see License file)
license.dat.new 11-9(FLEX)
license.fil 12-1(FLEX)
license.log 12-4(FLEX)
LICENSE_LOG_FILE UA-1(FLEX)
Licenses

accessing the license file through the
daemon 13-7(FLEX)

administration of 13-l(FLEX)
checking out

(see Checking out licenses)
counted U2-5(FLEX), U2-10(FLEX), UB­

l(FLEX)
(see Counted licenses)
checking out Ul-2(FLEX)

definition U2-l(FLEX), UB-l(FLEX)
DEMO U2-2(FLEX)

(see DEMO licenses)
determining which are held Ul-4(FLEX),

U3-2(FLEX)
expiration date I3-3(FLEX)

(see DEMO licenses)
floating

(see Floating licenses)

Documentation Set for 68000/ECOOOIHCOOO and 68302

holding
(see Holding licenses, Checking out

licenses)
information, obtaining Ul-4(FLEX), U3-

2(FLEX), U3-6(FLEX)
limited number of users

(see Counted licenses)
node-locked

(see Node"locked licenses)
obtaining information Ul-4(FLEX), U3-

2(FLEX), U3-6(FLEX)
particular hosts

(see Node-locked licenses)
reserving U2-ll(FLEX)
reserving for specific users 13-5(FLEX)
restarting daemons Ul-5(FLEX)
status Ul-4(FLEX), U3-2(FLEX), U3-

6(FLEX)
types of 11-l(FLEX), U2-l(FLEX), U2-

2(FLEX)
specifying during install 11-

14(FLEX)
unlimited users

(see node-locked licenses)
(see Node-locked licenses, DEMO

licenses) .
version number l3-3(FLEX)
with expiration date U2-2(FLEX)

Limits macros R5-4(MCC)
limits.h include file R5-4(MCC)
Line

reading from standard input R5-
80(MCC)

Line continuation character(%) R3-5(XRAY),
U2-9(XRAY)

Line Del key
Apollo support UB-3(XRAY)

#line directive R4-6(MCC), R4-23(MCC)
Line length R3-5(XRA Y)
Line number control directive (#line) R4-

6(MCC)
Line number labels, producing

/debug=lines option U3-19(MCC)
-GI option U2-21(MCC), U2-18(CCC)

Line number, variable, and symbol informa­
tion

/debug option U3-18(MCC)
-g option U2-22(MCC), U2-19(CCC)

Line numbers R2-10(XRAY)
Line numbers in assembly language source

file R11·2(MCC)
__ LINE __ preprocessor symbol R4-1 (MCC),

R4-23(MCC)
Line_number (definition) R3-4(XRAY)
@line_range pseudo-register RA-1(XRAY),

RF-3(XRAY)
Linker

absolute output file Rll-9(ASM)
alias command U2-30(MCC), U2-

26(CCC)
command example

HP 64000 system, IEEE R9-
45(MCC)

IEEE R9-41(MCC)
ROM-based system, IEEE R9-

43(MCC)
command file Rll-4(ASM)

(see Linker command file)
command line continuation

character U3-21(ASM)
command position dependencies R10-

3(ASM)
commands

ABSOLUTE R10-7(ASM)-R10-
8(ASM)

ALIAS R10-9(ASM)-R10-10(ASM)
ALIGN R10-ll(ASM}-R10-12(ASM)
ALIGNMOD R10-13(ASM)
BASE R10-14(ASM}-Rl0-15(ASM)
CASE Rl0-16(ASM}-R10-17(ASM)
CHIP R10-18CASM)-R10-20(ASM)
Comment R10-21(ASM)
COMMON R10-22(ASM}-R10-

23(ASM)
CPAGE R10-24(ASM)-R10-25(ASM)
DEBUG_SYMBOLS R10-26(ASM)
END R10-27(ASM)
ERROR R10-28(ASM)

Master lndex-57

EXIT R10-29(ASM)
EXTERN R10-30(ASM)
FORMAT R10-31(ASM)
INCLUDE R10-32(ASM)
INDEX R3-25(ASM), R3-27(ASM),

R10-33(ASM)-R10-34(ASM)
INITDATA R10-35(ASM)
LISTABS R10-37(ASM)
LISTMAP R10-38(ASM)-R10-

39(ASM)
LOAD R10-40(ASM)-R10-41(ASM)
LOAD_SYMBOLS R10-42(ASM)
LOWERCASE R10-43(ASM)-R10-

44(ASM)
MERGE R10-45(ASM)-R10-

46(ASM)
NAME Rl0-4 7(ASM)
NODEBUG_SYMBOLS R10-

26(ASM)
NOERROR R10-28(ASM)
NOPAGE R10-50(ASM)-R10-

51(ASM)
ORDER R10-48(ASM)-R10-

49(ASM)
PAGE R10-50(ASM)-R10-51(ASM)
PUBLIC R10-52(ASM)-R10-

53(ASM)
RESADD R10-54(ASM)
RESMEM R10-55(ASM)
SECT R10-56(ASM)
SECTSIZE Rl0-57(ASM)
SORDER R10-58(ASM)-R10-

59(ASM)
START R10-60(ASM)
SYMTRAN R10-61(ASM)-R10-

62(ASM)
UPPERCASE R10-63(ASM)
WARN R10-64(ASM)

comment indicator R10-21(ASM)
completion status message Rll-3(ASM)
cross-reference table Rll-3(ASM)
data record

Sl format RF-2(ASM)
description Ul-2(MCC), Ul-l(ASM) .

Master lndex-58

error messages RC-l(ASM)-RC-ll(ASM)
features R9-2(ASM)
header record RF-2(ASM)
incremental linking R9-l(ASM), R9-

8(ASM)-R9-9(ASM)
invocation U2-46(CCC)
invoking U2-55(MCC), U3-45(MCC)
listing, sample Rll-l(ASM)-Rll-

18(ASM)
map file Rll-5(ASM)-Rll-8(ASM)
memory space assignment R9-6(ASM)
message severity levels RC-l(ASM)
module record RF-l(ASM)
operation Rll-l(ASM)
overview Rl-l(ASM), R9-l(ASM)
passing options directly

-WI option U2-38(MCC), U2-
35(CCC)

public symbol table Rll-3(ASM)
record count record RF-4(ASM)
relocation types R9-8(ASM)
sections R9-2(ASM)-??

absolute R9-3(ASM)
common R9-4(ASM)
long R9-5(ASM)
noncommon R9-4(ASM)
relocatable R9-3(ASM)
section alignment R9-5(ASM)
short R9-4{ASM)
type R9-5(ASM)-R9-6(ASM)

start address Rll-3(ASM)
suppressing call to U2-18(MCC), U2-

14(CCC)
symbol name size RG-3(ASM)
symbol record RF-l(ASM)
syntax R10-l(ASM)-R10-4(ASM)
UNIX/DOS U2-13(ASM)-U2-20(ASM)

file name defaults U2-16(ASM)
invocation examples U2-17(ASM)­

U2-20(ASM)
options U2-13(ASM)-U2-15(ASM)

-C U2-13(ASM)
-c U2-13(ASM)
-F U2-13(ASM)

Documentation Set for 68000/ECOOO/HCOOO and 68302

-1 U2-14(ASM)
-M U2-14(ASM)
-m U2-14(ASM)
-o U2-14(ASM)
-r U2-14(ASM)
-u U2-15(ASM)
-V U2-15(ASM)

unresolved externals Rll-2(ASM)
use R9-39(MCC)
VAX/VMS U3-12(ASM)-??

file name defaults U3-16(ASM)
invocation examples U3-16(ASM)­

U3-17(ASM)
invocation syntax U3-13(ASM)
options U3-13(ASM}-U3-15(ASM)

ABSOLUTE U3-13(ASM)
COMMAND U3-13(ASM)
FORMAT U3-13(ASM)
LIBRARY U3-14(ASM)
MAP U3-14(ASM)
NOABS U3-13(ASM)
NOMAP U3-14(ASM)
OBJECT U3-14(ASM)
OPTION U3-14(ASM)
REFERENCE U3-14(ASM)
VERSION U3-15(ASM)

Linker command file U3-45(MCC), U2-
45(CCC)

alternate U2-19(MCC), U2-16(CCC)
default U2-19(MCC), U2-16(CCC)
passing

-e option U2-19(MCC), U2-16(CCC)
Linking R4-6(ASM)
LIST assembler command line option U3-

3(ASM)
LIST assembler directive R5-47(ASM)
LIST command R3-87(XRA V), U4-2(XRA Y)
LISTABS linker command R10·37(ASM)
Listing files

format
/show=include option U3-28(MCC)
-Fli option U2-20(MCC), U2-

l 7(CCC)

generating
/list option U3-24(MCC)
-1 option U2-27(MCC), U2-24(CCC)

omitting page header
/nopage option U3-28(MCC)
/pagelength option U3-28(MCC)
-FlpO option U2-20(MCC), U2-

l 7(CCC)
page length, specifying

title

/pagelength option U3-28(MCC)
-Flp option U2-20(MCC), U2-

l 7(CCC)

/title option U3-29(MCC)
-Flt option U2-20(MCC), U2-

l 7(CCC)
Listing source code

LIST command R3-87(XRAY)
LISTMAP linker command R10-38(ASM)­

R10-39(ASM)
literals section R8-4(MCC), U2-16(MCC), U3-

15(MCC), U2·13(CCC)
naming

/rename options U3-31(MCC)
-NL option U2-29(MCC), U2-

25(CCC)
specifying address mode

/literals_addr _as options U3-
16(MCC)

-al options U2-l 7(MCC), U2-
14(CCC)

LITTLE R6·1(MCC)
llen assembler command line flag U2-

8(ASM), U3-8(ASM)
LLEN assembler directive R5-48(ASM)
LM_LICENSE_FILE l1-15(FLEX), 12-1(FLEX),

l2-6(FLEX), 13-7(FLEX), U1-1(FLEX),
UA-2(FLEX)

(see also License file)
multiple vendors IC-5(FLEX)

lmdown command 12-S(FLEX), U3-4(FLEX)
lmgrd U2-9(FLEX), UB-2(FLEX)

(see also License server daemons)
exit immediately I2-6(FLEX)

Master lndex-59

function U2-5(FLEX)
log file messages l2-4(FLEX)
missing 12-6(FLEX)
password computation 13-l(FLEX)
start-up 12-3(FLEX)

manual 12-7(FLEX)
lmgrd command 12-7(FLEX)
lmgrd daemon

loss of licenses when restarting Ul-
5(FLEX)

multiple copies UC-l 7(FLEX)
lmhostid command U3-4(FLEX)
lmhostid utility

working without U3-8(FLEX)
lmremove command U3-5(FLEX)
lmreread command U3-6(FLEX)
lmstat command 12-4(FLEX}, U3-6(FLEX)
In command 11-15(FLEX}, IA-1(FLEX)
Load address R9-6(ASM)
Load button

X Window support UA-12CXRAY)
load button

Sun View support UH-12(XRAY)
LOAD command R3-89(XRA Y)

IA option U4-12(XRAY)
/NS option U4-12(XRAY)

LOAD linker command R10-40(ASM)-R10-
41(ASM)

LOAD_SYMBOLS linker command R10-
42(ASM)

Loading
object module

LOAD command R3-89(XRAY)
program

RELOAD command R3-14l(XRAY)
Loading files U4-12(XRA Y)

application U4-12(XRAY)
ROM support routines U4-12(XRAY)

LOCAL assembler directive R6-7(ASM)-R6-
8(ASM)

Local declarations R3-4(MCC}, R4-8(CCC)
storage classes R4-8(CCC)

Local labels (??) R7-4(ASM)

Master lndex-60

Local optimizations R109(MCC)­
R1011(MCC}, R5-6(XRAY)

/optimize=local option U3-26(MCC)
-01 option U2-32(MCC), U2-29(CCC)

Local symbols
in macro definition R4-8(XRAY)
referencing R2-16(XRA Y)
register R2-16(XRAY)

Local variable initialization
/init_locals option U3-22(MCC)
-KI option U2-25(MCC), U2-22(CCC)

Local variables R6-42(MCC)
displaying

EXPAND command R3-60(XRAY)
Locale functions R5-4(MCC)

localeconv R5-100(MCC)
setlocale R5-152(MCC)

Locale information
querying R5-152(MCC)
setting R5-152(MCC)

locale.h include file R5-4(MCC)
localeconv function R5-100(MCC)
localtime function R5-21(MCC), R5-

104(MCC)
relationship to gmtime R5-82(MCC)

Location
current in a file R5-56(MCC), R5-

72(MCC), R5-73(MCC), R5-
74(MCC), R5-108(MCC)

Locations of input and output files U2-
3(CCC)

DOS U2-3(MCC)
UNIX U2-3(MCC)
VMS U3-3(MCC)

lockMRI 12-9(FLEX)
LOG command R3-91(XRAY}, U3-17(XRAY)
Log file U2-10(XRAY), U3-17(XRAY)

displaying l2-4(FLEX)
errors in 12-4(FLEX), 12-7(FLEX), 12-

S(FLEX)
trimming l3-6(FLEX)

Log file error messages UC-1(FLEX)
log function R5-105(MCC}, U2-40(MCC), U3-

25(MCC), · U2-37(CCC)

Documentation Set for 68000/ECOOO/HCOOO and 68302

Log viewport U3·17(XRAY)
INCLUDE command U3-17(XRAY)
LOG command U3-17(XRAY)

log10 function R5·106(MCC), U2·40(MCC),
U3-25(MCC), U2-37(CCC)

Logarithm of a number, computing
base 10 R5-106(MCC)
natural R5-105(MCC)

Logging commands U4-7(XRAY)
Logic State Analyzer (LSA) S6·4(SUP)
Logical AND operation R2·23(CCC)
Logical names (VMS) U3-3(MCC)
login U1·1(FLEX)
login file

(see UNIX start-up file)
long double type R3-1(MCC), R6-3(MCC)

double-precision format R6-7(MCC)
Long integer

computing absolute value R5-97(MCC)
conversion from ASCII string R5-

33(MCC), R5-179(MCC)
conversion to ASCII string R5-109(MCC)
reading from a stream R5-79(MCC)
writing to stream R5-136(MCC)

/long option (VMS) R9·21(MCC), R9-23(MCC)
long type R3·2(MCC), R6·3(MCC), R6·

14(MCC)
longjmp

establishing a label R5-151(MCC)
longjmp function R5-107(MCC)

relationship to setjmp R5-151(MCC)
relationship to signal R5-155(MCC)

Look button U2-50(CCC)
Loop controls R7-4(ASM)
Loop invariant code optimization RS·

10(XRAY)
Loop optimizations R106(MCC), R5·9(XRAY)
Loop rotation optimization RS-11 (XRA Y)
Lower-case characters

converting to R5-187(MCC), R5-
188(MCC)

testing for R5-89(MCC)
LOWERCASE linker command R10·

43(ASM)-R10-44(ASM)

Low-level mode
MODE command R3-92(XRAY)

Low-level screen S1 -6(SUP)
LSA S2-151(SUP), S2-153(SUP)
LSA port

parameter setting S6-9(SUP)
lseek function R5-108(MCC), R9-31(MCC),

U2-52(MCC), U3-44(MCC), U2·
44(CCC)

relationship to fseek R5-72(MCC)
relationship to fsetpos R5-73(MCC)
relationship to rewind R5-145(MCC)

ltoa function R5-109(MCC)
ltostr function R5·110(MCC)
lvalue R3-S(MCC)

M
-M linker command line option U2-14(ASM)
-m linker command line option U2-14(ASM)
_M68 preprocessor symbol R4-3(MCC)
Machine-dependent

optimizations R1016(MCC)­
R1018(MCC), R5·17(XRAY)

Macro
assigning to a breakpoint S3-44(SUP),

S3-48(SUP)
creating S3-42(SUP)
deleting S3-43(SUP)
displaying S3-43(SUP)
saving to a file S3-43(SUP)

MACRO assembler directive R6-9(ASM)-R6-
10(ASM)

Macro body R6·9(ASM), R3-45(XRAY)
Macro commands R3-11(XRAY)

DEFINE R3-ll(XRAY), R3-45(XRAY)
MACRO R4-10(XRAY)
SHOW R3-ll(XRAY)

Macro definition directives R4-6(MCC)
#define R4-6(MCC), R4-10(MCC)
#undef R4-6(MCC), R4-31(MCC)

MACRO directive R6-1(ASM)
Macro directives

(see Directives, assembler)

Master lndex-61

macro keyword R4-10(XRAY)
Macro statement R2-3(ASM)
Macro terminator R6-6(ASM)
Macro text prompt (:) R3-46(XRA Y)
Macros R6-1(ASM)-R6-11{ASM), U1-

3(XRAV), U2-26(XRAY), U4-6(XRA Y}
(see Debugger macros)
(see Library macros)
body R6-l(ASM)
call R6-2(ASM)-R6-4(ASM)
creating

DEFINE command R3-45(XRAY)
defining on command line

/define option U3-20(MCC)
-D option U2-18(MCC), U2-14(CCC)

formal parameter R6-2(ASM)
heading R6- l(ASM)
inport U4-9(XRAY)
interactive definition of U2-27(XRAY)
no echo

INCECHO option U4-12(XRAY)
number of parameters

NARG R6-4(ASM)
outport U4-9(XRAY)
parameter delimiter (<>) R6-3(ASM)
parameter exists(==) R6-3(ASM)
undefining

/undefine option U3-33(MCC)
-U option U2-36(MCC), U2-33(CCC)

until U4-6(XRAY)
when U4-6(XRAY), U4-7(XRAY)

Mail from restarting script 12-S(FLEX}
Makefile S3-3(SUP}
malloc function RS-21 (MCC}, RS-111 (MCC},

R9-12(MCC}
relationship to free R5-67(MCC)
relationship to realloc R5-143(MCC)
relationship to setbuf R5-150(MCC)

Mangling RG-1(ASM)-RG-4(ASM}, RC-
2(CCC}, UA-2(CCC)

extern "C" and R5-7(CCC)
function names R5-l(CCC)
overloaded functions and R5-4(CCC)

Master lndex-62

preventing for C function names R5-
l(CCC)

Mantissa from floating-point number R5-
70(MCC)

Manual, description RP-1 (ASM)
Manually checking out licenses

(see Checking out licenses)
MAP linker command line option U3-

14(ASM)
Mapping overlay S3-32(SUP}

illegal S3-32(SUP)
RAM S3-32(SUP)
ROM S3-32(SUP)

Mapping RAM 52-11 S(SUP)
Mapping ROM S2-124(SUP}
MASK2 assembler directive R5-49(ASM)
math.h include file RS-S(MCC), R9-12(MCC}
Mathematical functions RS-S(MCC}

acos R5-24(MCC)
acosf R5-6(MCC)
asin R5-26(MCC)
asinf R5-6(MCC)
atan R5-28(MCC)
atan2 R5-29(MCC)
atan2f R5-6(MCC)
atanf R5-6(MCC)
ceil R5-36(MCC)
ceilf R5-6(MCC)
cos R5-40(MCC)
cosf R5-6(MCC)
cosh R5-4l(MCC)
coshf R5-6(MCC)
exp R5-49(MCC)
expf R5-6(MCC)
fabs R5-50(MCC)
fabsf R5-6(MCC)
floor R5-59(MCC)
floorf R5-6(MCC)
fmod R5-60(MCC)
fmodf R5-6(MCC)
frexp R5-70(MCC)
frexpf R5-6(MCC)
ldexp R5-98(MCC)
ldexpf R5-6(MCC)

Documentation Set for 68000/ECOOO/HCOOO and 68302

log R5-105(MCC)
loglO R5-106(MCC)
loglOf R5-6(MCC)
logf R5-6(MCC)
modf R5-124(MCC)
modff R5-7(MCC)
pow R5-129(MCC)
powf R5-7(MCC)
sin R5-156(MCC)
sinf R5-7(MCC)
sinh R5-157(MCC)
sinhf R5-7(MCC)
sqrt R5-159(MCC)
sqrtf R5-7(MCC)
tan R5-183(MCC)
tanf R5-7(MCC)
tanh R5-184(MCC)
tanhf R5-7(MCC)

mathf.h include file RS-6(MCC)
max macro R5-112(MCC)
mblen function R5-113(MCC)
mbstowcs function RS-114(MCC)
mbtowc function RS-11 S(MCC)
me assembler command line flag U2-

8(ASM), U3-8(ASM)
-Mca option U2-27(MCC), U2-24(CCC)
MCC68K U1-2(FLEX)
mcc68k command U1-2(FLEX), U1·3(FLEX)
mcc68ka5.lib U2-51(MCC), U3-42(MCC), U2-

42(CCC)
mcc68ka5020.lib U2·51(MCC), U3-42(MCC),

U2-42(CCC)
mcc68kab.lib U2-51(MCC), U3-42(MCC), U2-

42(CCC)
mcc68kab020.lib U2-51(MCC), U3-42(MCC),

U2-42(CCC)
mcc68kpc.lib U2-51(MCC), U3-42(MCC), U2-

42(CCC)
mcc68kpc020.lib U2-51(MCC), U3-42(MCC),

U2-42(CCC)
_MCC68K preprocessor symbol R4-2(MCC)
-Mcp option U2-27(MCC), U2-24(CCC)
-Mcp option (UNIX/DOS) R4-3(MCC), R9-

19(MCC), R9·20(MCC)

md assembler command line flag U2-
B(ASM), U3-8(ASM)

-Md option U2-27(MCC), U2-24(CCC)
-Md option (UNIX/DOS) R4-3(MCC), R4-

4(MCC)
-Mda option U2-27(MCC), U2-24(CCC)
-Mdn option (UNIX/DOS) R9-19(MCC), R9-

20(MCC)
-Mdp option U2-28(MCC), U2-25(CCC)
-Mdp option (UNIX/DOS) R9-19(MCC), R9-

20(MCC)
Member

function R2-2(CCC), RC-2(CCC)
calling from C R5-4(CCC)
specification R4-2(CCC)

Member function UA-2(CCC)
memccpy function R5-116(MCC)
memchr function R5-117(MCC)
memchr macro R4-23(XRAY)
memclr function R5-118(MCC)
memclr macro R4-24(XRAY)
memcmp function R5-119(MCC)
memcpy function R5-120(MCC)
memcpy macro R4-25(XRA Y)
memmove function R5-121(MCC)
Memory

access
RAMACCESS command R3-

139(XRAY)
addresses, displaying

NOSYMBOLS command R3-
108(XRAY)

clearing R4-24(XRAY)
comparison

COMPARE command R3-41(XRAY)
contents, changing

SETMEM command R3-156(XRAY)
copying

COPY command R3-44(XRAY)
copying characters R4-25{XRAY)
di sass em bling

DISASSEMBLE command R3-
52(XRAY)

Master lndex-63

dump
DUMP command R3-57CXRAY)

examination
TEST command R3-197(XRAY)

filling
FILL command R3-62(XRAY)

initialization RF-6(XRAY)
searching for characters R4-23(XRA Y)
setting values R4-26(XRAY)

Memory access size S2-130(SUP)
Memory access variable values S2-90(SUP)
Memory accesses S2-134(SUP)
Memory commands R3-B(XRA Y)

COMPARE R3-8(XRAY), R3-41(XRAY)
COPY R3-8(XRA Y), R3-44(XRA Y)
FILL R3-8(XRAY), R3-62(XRAY)
NOMEMACCESS R3-8(XRAY), R3-

100(XRAY)
RAMACCESS R3-8(XRA Y), R3-

139(XRAY)
ROMACCESS R3-8(XRA Y), R3-

147(XRAY)
SEARCH R3-8(XRAY), R3-154(XRAY)
SETMEM R3-8(XRAY), R3-156(XRAY)
SETREG R3-8(XRAY), R3-158(XRAY)
TEST R3-8(XRAY), R3-197(XRAY)

Memory configurations R9-15(MCC), R9-
18(MCC), R9-42(MCC), R9-44(MCC)

Memory considerations U2-7(MCC)
avoiding prototypes U2-8(MCC)
preprocessing U2-8(MCC)

Memory contents written to file
SETSTATUS WRITE command R3-

178(XRAY)
Memory control

disassembling S3-30(SUP)
displaying S3-29(SUP)
modifying S3-30(SUP)

Memory functions R5-18(MCC)
memchr R5-117(MCC)
memcmp R5-119(MCC)
memcpy R5-120(MCC)
memmove R5-121(MCC)
memset R5-122(MCC)

Master lndex-64

Memory layout R6-42(MCC)
Memory space

allocating R5-146(MCC)
Memory space assignment R9-6(ASM)-R9-

8(ASM)
Memory spaces S2-96(SUP)
memset function R5-122(MCC)
memset macro R4-26(XRA Y)
MEMVARS S2-90(SUP)
MERGE linker command R10-45(ASM)-R10-

46(ASM)
Message severity levels RC-2(MCC)

librarian RD-l(ASM)
linker RC- l(ASM)

Messages UC-1(FLEX)
check-in and check-out 13-6(FLEX)
error

(see Error handling)
get_license UA-l(FLEX)
log file UC-l(FLEX)
mlicense or other programs UC­

ll(FLEX)
where displayed U3-3(FLEX)

mlicense.daemon U2-8(FLEX), UC­
l(FLEX)

changing where displayed U3-
l(FLEX), UA-2(FLEX)

where displayed Ul-3(FLEX)
specifying not to write to log 13-6(FLEX)

Messages, diagnostic
displaying

/nosuppress option U3-30(MCC)
-nQ option U2-36(MCC), U2-

33(CCC)
suppressing

/quit option U3-29(MCC)
-Q option U2-36(MCC), U2-33(CCC)

writing to stderr
/diagnostics_to=stderr option U3-

21(MCC)
-Fee option U2-19(MCC)

writing to stdout
/diagnostics_to=stdout option U3-

21(MCC)

Documentation Set for 68000/ECOOO/HCOOO and 68302

-Feo option U2-20(MCC)
Messages, error RC-1(MCC)
Messages, help

printing U2-33(XRA Y)
Messenger symbols R9-40(MCC)
mex assembler command line flag U2-

8(ASM), U3-8(ASM)
MEXIT assembler directive R6-11(ASM)
Microprocessor

(see Processor)
Microprocessor references RP-3(XRA Y)
Microprocessor reset

RESET command R3-142(XRAY)
Microprocessor, specifying

CPU option R3-105(XRAY)
Microtec Research extensions U2-39(MCC),

U2-36(CCC)
/mri_extensions option U3-24(MCC)
functions R5-7(MCC)

eprintf R5-46(MCC)
ftoa R5-75(MCC)
getl R5-79(MCC)
getw R5-81(MCC)
isascii R5-85(MCC)
itoa R5-95(MCC)
itostr R5-96(MCC)
ltoa R5-109(MCC)
ltostr R5-110(MCC)
memccpy R5-116(MCC)
memclr R5-118(MCC)
putl R5-136(MCC)
putw R5-138(MCC)
swab R5-182(MCC)
toascii R5-186(MCC)
_tolower R5-188(MCC)
_toupper R5-190(MCC)
zalloc R5-203(MCC)

macros
BLKSIZE R5-8(MCC)
FALSE R5-8(MCC)
fileno R5-58(MCC)
isascii R5-85(MCC)
max R5-112(MCC)
min R5-123(MCC)

NULLPTR R5-8(MCC)
stdaux R5-8(MCC)
stdprn R5-9(MCC)
toascii R5-186(MCC)
_tolower R5-188(MCC)
_toupper R5-190(MCC)
TRUE R5-9(MCC)

-x option U2-39(MCC), U2-36(CCC)
Microtec Research toolkit

(see Toolkit)
assembler Ul-7(XRAY)
compiler Ul-5(XRAY)
linker Ul-7(XRAY)
object module librarian Ul-7(XRAY)

Migrating from version 1 to version 2 IC-
1 (FLEX), IC-2(FLEX)

min macro R5-123(MCC)
misaligned error message U3-11 (XRAY)
Mixed architecture installation IA-2(FLEX)
Mixed operands R3-14(MCC)
mkdir command 11-6(FLEX)
mkfontdir command UA-3(XRA Y)
-Ml option U2-28(MCC), U2-25(CCC)
mlicense command U2-9(FLEX), U3-

1 (FLEX), UB-2(FLEX)
arguments for, specifying U3-3(FLEX)
-C option U2-8(FLEX), U3-l(FLEX)
-d option U3-l(FLEX)
error messages UC-ll(FLEX)
examples U3-3(FLEX)
-f option U3-l(FLEX)

example U3-3(FLEX)
-g option Ul-5(FLEX), U3-l(FLEX)

example U3-3(FLEX)
expiration time U3-2(FLEX)

-h option Ul-5(FLEX), U3-2(FLEX)
example U3-3(FLEX)

-I option U3-2(FLEX)
output sample Ul-4(FLEX)

-i option U3-2(FLEX)
example U3-3(FLEX)
output sample Ul-4(FLEX)

options
specifying in file U3-l(FLEX)

Master lndex-65

-R option U3-2(FLEX), U3-5(FLEX)
-r option U3-2(FLEX), U3-5(FLEX)

example U3-3(FLEX)
return code U3-3(FLEX)
status code U3-3(FLEX)
syntax U3-1CFLEX)
-V option U2-8(FLEX), U3-2(FLEX)
-v option U3-2(FLEX)

example U3-3(FLEX)
verbose mode toggle U3-2(FLEX)

mlicense.daemon 12-3(FLEX), U2-3(FLEX),
UB-2(FLEX)

abort U2-3(FLEX)
checking in licenses manually U3-

5(FLEX)
communication with other processes U2-

3(FLEX), UA-2(FLEX)
connecting to get_license U2-3(FLEX),

UA-l(FLEX), UC-12(FLEX)
holding licenses Ul-3(FLEX)
license file access U2-4(FLEX)
license server daemons start-up U2-

3(FLEX), U2-6(FLEX)
messages U2-8(FLEX), UC-l(FLEX)

changing where displayed U3-
l(FLEX), UA-2(FLEX)

where displayed Ul-3(FLEX)
start-up U2-3(FLEX)
status code U2-8(FLEX)
verbose mode toggle U2-8(FLEX), U3-

2(FLEX), UA-2(FLEX)
MLICENSE_DAEMON_OUTPUT U2·

B(FLEX}, U3-1(FLEX), UA-2(FLEX)
MLICENSE_DAEMON_TMP U2-3(FLEX), UA-

2(FLEX), UC-9(FLEX)
MLICENSE_DAEMON_ VERBOSE U2-

8(FLEX), UA-2(FLEX)
MLICENSE_HOURS U1·3(FLEX), U3-

2(FLEX), UA-2(FLEX)
Mode button

X Window support UA-12(XRAY)
mode button

Sun View support UH-12(XRAY)

Master lndex-66

MODE command R3·92(XRAY), U2-
20(XRA Y), U3-1 (XRA Y)

ASSEMBLYoption U4-2(XRAY)
HIGH option U4-2(XRAY)

MODE command key
Apollo support UB-4(XRAY)
Apollo trace support UB-6(XRAY)
DECstation support UC-4(XRAY)
DECstation trace support UC-5(XRAY)
HP support UD-6(XRAY)
HP trace support UD-8(XRA Y)
IBM RS/6000 support UE-3(XRAY)
IBM RS/6000 trace support UE-5(XRA Y)
Motorola Delta Series support UF-

3(XRAY)
Motorola Delta Series trace support UF-

5(XRAY)
PC support UG-3(XRAY)
PC trace support UG-5(XRA Y)
Sun support UH-4(XRAY)
Sun trace support UH-5(XRA Y)
VT terminal support Ul-3(XRAY)
VT terminal trace support Ul-5(XRAY)

Mode selection for debugging
MODE command R3-92(XRAY)

Modes
address

(see Address modes)
ANSI-compliant

/ansi option U3-11(MCC)
-A option U2-8(MCC), U2-16(MCC),

U2-12(CCC)
processor

/cpu option U3-16(MCC)
-p option U2-34(MCC), U2-30(CCC)

verbose
-V options U2-37(MCC), U2-34(CCC)

modf function R5-124(MCC)
Modifying license file 11·9(FLEX), 11-

10(FLEX)
Module (@module) R2-21(XRAY)
Module (definition) RD-1(XRAY)
@module pseudo-register RA-1(XRAY), RF-

3(XRAY)

Documentation Set for 68000/ECOOO/HCOOO and 68302

Module record RF-1(ASM)
Module, naming

/rename option U3-31(MCC)
-NM option U2-29(MCC), U2-26(CCC)

Monitor button
X Window support UA-12(XRAY)

monitor button
Sun View support UH-12(XRAY)

MONITOR command R3-93(XRAY), U2-
18(XRA Y), U4-15(XRAY)

with C++ RG-15(XRAY)
Monitoring

expressions
MONITOR command R3-93(XRAY)
NOMONITOR command R3-

102(XRAY)
memory location

NOMEMACCESS command R3-
100(XRAY)

Monitoring variables U2-18(XRAY), U2-
22(XRAY)

in Data viewport U2-19(XRAY)
Monochrome displays for PCs

COLOR option R3-105(XRAY)
MORE option U2-22(XRA Y)
Motorola Delta Series

host-specific information UF-l(XRAY)
Motorola Delta Series support

MOVE TO BOTTOM control key UF-
3(XRAY)

MOVE TO TOP control key UF-2(XRAY)
Motorola S-record

(see S-record format)
Mouse support

Apollo
(see DOMAIN/OS)

DOMAIN/OS
menu selections

control strings UB-lO(XRAY)
default settings UB-9(XRA Y)
user-defined settings UB-

12(XRAY)
viewport operations UB-7(XRAY)

COPY key UB-7(XRA Y)

Sun OS

highlighting text UB-7(XRAY)
PASTE key UB-7(XRAY)

scratch area UH-15(XRAY)
display size UH-15(XRAY)
edit operations UH-15(XRAY)

selection buttons UH-9(XRAY)
constructing commands UH­

lO(XRAY)
default settings UH-ll(XRAY)
user-defined settings UH-

14(XRAY)
viewport operations UH-6(XRAY)

activate viewport UH-7(XRAY)
move viewport UH-7(XRAY)
resize viewport UH-7(XRAY)
scroll viewport UH-7(XRAY)
zoom viewport UH-7(XRAY)

XWindow
selection buttons UA-lO(XRAY)

constructing commands UA­
lO(XRAY)

default settings UA-12(XRAY)
user-defined settings UA-

13(XRAY)
viewport operations

activate viewport UA-9(XRAY)
move viewport UA-9(XRAY)
resize viewport UA-9(XRAY)
scroll viewport UA-9(XRAY)
zoom viewport UA-9(XRAY)

MOVE TO BOTTOM command keys U3-
36(XRAY)

MOVE TO BOTTOM control key
Apollo support UB-2(XRAY)
HP support UD-5(XRAY)
IBM RS/6000 support UE-2(XRAY)
Motorola Delta Series support UF-

3(XRAY)
PC support UG-3(XRA Y)
Sun support UH-3(XRA Y)
VT terminal support UI-2(XRAY)

MOVE TO TOP command keys U3-36(XRA Y}
MOVE TO TOP control key

Master lndex-67

HP support UB-2CXRAY), UD-5(XRAY)
IBM RS/6000 support UE-2(XRAY)
Motorola Delta Series support UF-

2(XRAY)
PC support UG-2(XRAY)
Sun support UH-3(XRAY)
VT terminal support Ul-2(XRA Y)

MRI daemon 13-2(FLEX), l3-3(FLEX), U2-
5(FLEX), UB-2(FLEX), UB-3(FLEX)

(see also License server daemons)
log file messages I2-4(FLEX)
loss oflicenses when restarting Ul-

5(FLEX)
not starting I2-4(FLEX)
specifying in license file U2-9(FLEX)
start-up I2-3(FLEX)
status U3-6(FLEX)
status, normal I2-4(FLEX)

_MRl_EXTENSIONS preprocessor
symbol U3-25(MCC)

_MRI preprocessor symbol R4-2(MCC)
MRI toolchain compatibility S1-1(SUP)
MRl_68K_BIN U2-4(MCC), U2-6(MCC), U2-

4(CCC), U2-5(CCC)
DOS Il-4(MCC), Il-4(XRAY), Il-5(CCC)

MRl_68K_INC U2-4(MCC), U2-7(MCC), U2-
23(MCC), U2-4(CCC), U2-6(CCC), U2-
20(CCC)

DOS Il-4(MCC), Il-4(XRAY), Il-5(CCC)
MRl_68K_LIB U2-4(MCC), U2-7(MCC), U2-

4(CCC), U2-5(CCC)
DOS Il-4(MCC), Il-5(CCC)

MRl_68K_LIB environment variable U2-
15(ASM)

MRl_68K_TMP U2-4(MCC), U2-7(MCC), U2-
4(CCC), U2-6(CCC)

DOS Il-4(MCC), Il-5(CCC)
mricheckin command IC-1(FLEX)
mricheckout command IC-1 (FLEX)
mriext.h include file R5-7(MCC), R5-8(MCC)
MS-DOS

(see DOS installation)
(see DOS)

_MSDOS preprocessor symbol R4-3(MCC)

Master lndex-68

mstart_lmgrd 12-3(FLEX), U1-2(FLEX), U1-
3(FLEX)

mt command 11-19(FLEX)
Multiple flags, entering

assembler U2-5(ASM), U3-12(ASM)
Multiple inheritance R3-10(CCC), RC-

2(CCC), UA-2(CCC)
Multiple jump optimization R1013(MCC), R5-

14(XRAY)
Multiple modules, debugging U2-10(XRAY)
Multiple statement debugging R2-11(XRAY)
Multistatement debugging R2-11 (XRAY)

colon qualifier R2-12(XRAY)
dot qualifier R2-12(XRAY)

Multitasking environment (MTE) R9-
12(MCC), R9-34(MCC)

Multi-threaded environments R9-12(MCC)
MWARM command S2-91(SUP), S2-94(SUP)
MWARN S2-91(SUP)

N
-nA compiler option R4-6(CCC), RB-3(CCC)
-nA option U2-16(MCC), U2-12(CCC)
NAME assembler directive RS-SO(ASM)
Name demangling RG-1(ASM}-RG-4(ASM),

RB-6(CCC), RC-3(CCC), U2-46(CCC),
UA-2(CCC)

NAME linker command R10-47(ASM)
Name mangling RG-1(ASM)-RG-4(ASM),

RB-6(CCC), RC-3(CCC), UA-2(CCC)
Names, truncating

/truncate_identifiers U3-12(MCC)
-ut option U2-8(MCC), U2-37(MCC), U2-

34(CCC)
Naming convention for symbols U2-

37(MCC), U3-13(MCC), U2-34(CCC)
Naming modules

/rename option U3-31(MCC)
-NM option U2-29(MCC), U2-26(CCC)

NARG reserved symbol R2-9(ASM), R6-
4(ASM), R8-3(ASM)

-NC option U2-28(MCC), U2-25(CCC)
-nC option U2-17(MCC), U2-14(CCC)

Documentation Set for 68000/ECOOO/HCOOO and 68302

-nc option U2-18(MCC), U2-14(CCC)
+nd option U2-15(CCC)
NDEBUG macro R5-27(MCC)
-nE option U2-19{MCC), U2-16(CCC)
+ne option U2-16(CCC)
+ne option, use of R3-18(CCC)
Negative option prefix U2-10(MCC), U3-

5(MCC)
nest assembler command line flag U2-

8(ASM), U3-8(ASM)
Nested

class R4-16(CCC)
structures R4-16(CCC)

Nested procedure R2-23(XRA Y)
Nesting (@) R2-23(XRAY)
NETERR S2-92(SUP)
NETFAIL S2-93(SUP)
Networks U2-11 (FLEX), UB-2(FLEX)

multiple architectures U2-ll(FLEX)
specifying U2-l(FLEX)

new keyword R4-4(CCC)
new operator R2-19(CCC), R2-21(CCC), RC-

3(CCC), UA-3(CCC)
Newline

disable for preprocessor
-Es option U2-19(MCC), U2-16(CCC)
-Ps option U2-33(MCC), U2-30(CCC)

NEXT assembler directive R7-11(ASM)
NEXT command R3-97(XRA Y)
Next key (HP support) UD-5(XRA Y)
-nf option U2-20(MCC), U2-18(CCC)
-nFee option U2-19(MCC)
-nFeo option U2-20(MCC)
-nFli option U2-20(MCC), U2-17(CCC)
-nFsi option U2-20(MCC)
-nFsm option U2-20(MCC), U2-17(CCC)
-ng option U2-22(MCC), U2-19(CCC)
-nGf option U2-21(MCC), U2-18{CCC)
-nGI option U2-21(MCC), U2-18(CCC)
-nGm option U2-21(MCC)
-nGr option U2-21(MCC), U2-18{CCC)
-nGs option U2-22(MCC), U2-19{CCC)
-nH option U2-22(MCC), U2-19(CCC)
-NI option U2-29(MCC), U2-25(CCC)

+ni option U2-20(CCC)
-nK2 option U2-24(MCC), U2-21 (CCC)
-nK4 option U2-24(MCC), U2-21 (CCC)
-nKc option U2-24(MCC), U2-21(CCC)
-nKf option U2-25(MCC), U2-22(CCC)
-nKI option U2-25(MCC), U2-22(CCC)
-nKr option U2-26(MCC), U2-23(CCC)
-nKT option U2-26(MCC), U2-23(CCC)
-nKt option U2-26(MCC), U2-23(CCC)
-nKu option U2-27(MCC), U2-23(CCC)
-nKu option (UNIX/DOS) R4-3(MCC)
-NL option U2-29(MCC), U2-25(CCC)
-nl option U2-27(MCC), U2-24(CCC)
-NM option U2-29(MCC), U2-26(CCC)
-no option U2-30(MCC), U2-27(CCC)
no option prefix

VMS U3-5(MCC)
NOABS linker command line option U3-

13{ASM)
-nOb option U2-30(MCC), U2-27(CCC)
-nOc option U2-31(MCC), U2-28(CCC)
-nOc option (UNIX/DOS) R7-6(MCC),

R1017(MCC)
NODEBUG_SVMBOLS linker command R10·

26(ASM)
Node-locked licenses 11·1(FLEX), U2-

2(FLEX), U2-3(FLEX), U2-10{FLEX),
UB-2(FLEX)

checking out U2-4(FLEX)
installing only 11-ll(FLEX), 12-6(FLEX)
mlicense.daemon operation U2-3(FLEX)
specifying in license file l3-4(FLEX), U2-

9(FLEX)
Node-locking U2-2(FLEX)
-nee option U2-31(MCC), U2-28(CCC)
NOERROR command R10-28(ASM)
NOFORMAT assembler directive R5-

27(ASM)
-nOg option U2-31(MCC), U2-28(CCC)
-nOi option U2-31(MCC), U2-28(CCC)
Noice

not supported Sl-8(SUP)
NOICE command R3-98(XRA Y)

Master lndex-69

Nointerrupt
not supported Sl-8(SUP)

NOINTERRUPT command R3·99(XRAY)
-nOI option U2-32(MCC), U2-29(CCC)
NOLIST assembler command line option U3-

3(ASM)
NOLIST assembler directive R5-47(ASM)
NOLOG line 13"6(FLEX)
NOMAP linker command line option U3-

14(ASM)
Nomem

not supported Sl-8(SUP)
NOMEMACCESS command R3-100(XRAY),

U2-11 (XRAY)
NOMONITOR command R3·102(XRAY)
Nonlocal jump

functions R5-9(MCC)
longjmp R5-107(MCC)
setjmp R5-151(MCC)

type
jmp_buf R5-9(MCC)

Nonmember function
calling from C R5-4(CCC)

Nonprintable characters R2-5(MCC), R2·
6(XRAY)

Non-reentrant functions R5-20(MCC)
(see also Reentrant functions)

Nonrewinding devices 11-18(FLEX)
NOOBJ assembler directive R5-51(ASM)
NOOBJECT assembler command line

option U3-3(ASM)
NOPAGE assembler directive R5-61(ASM)
NOPAGE linker command R10-50(ASM)-

R10·51(ASM)
-nOR option U2·32(MCC), U2-29(CCC)
-nor option U2-32(MCC), U2-29(CCC)
Normalized form R6-5(MCC)
Notational conventions IP-2(MCC), RP·

4(MCC), UP2(MCC), IP·2(FLEX), UP-
2(FLEX), UP-4(ASM}, RP-4(ASM), IP-
2(XRA Y), RP·2(XRA Y), UP-4(XRA Y),
RP-4(CCC), UP-3(CCC), IP·2(CCC)

-nP option U2-33(MCC), U2-30(CCC)
+np option U2·32(CCC)

Master lndex-70

-nQ option U2-36(MCC), U2-33(CCC)
-nQo option U2-36(MCC), U2-33(CCC)
-NS option U2·29(MCC), U2·26(CCC)
-NT option U2·29(MCC), U2-26(CCC)
NULL macro R5-11(MCC), R5-15(MCC), RS·

17(MCC), RB·2(CCC)
Null target mode 52-94(SUP)
NULL_ TGT (enable null target mode) 52-

94(SUP)
Number generator, pseudorandom RS·

140(MCC)
Numbers, specifying U4-17(XRAY)
Numeric constants R2-1 (MCC)
Numeric interpretation

RADIX option R3-107(X.RAY)
-nV option U2·38(MCC), U2-35(CCC)
-nv option U2-38(MCC), U2-35(CCC)
+nw option U2-36(CCC)
-nx option U2-39(MCC), U2-36(CCC)
-ny option U2-40(MCC), U2-37(CCC)
-NZ option U2·29(MCC), U2-26(CCC)

0
o assembler command line flag U2-8(ASM),

U3-8(ASM)
-o assembler command line option U2·

3(ASM)
-o linker command line option U2-14(ASM)
0 opcode error R7-14(ASM)
-0 option U2-30(MCC), U2-27(CCC)
-o option U2-33(MCC), U2-30(CCC)
·Ob option U2·30(MCC), U2·27(CCC)
OBJECT assembler command line

option U3·3(ASM)
Object file
. -o assembler option U2-3(ASM)
Object files

naming
-o option U2-33(MCC), U2-30(CCC)

producing only
-c option U2-18(MCC), U2-14(CCC)

Object handle
keywords R4-6(CCC)

Documentation Set for 68000/ECOOO/HCOOO and 68302

OBJECT linker command line option U3-
14(ASM)

Object module, loading
LOAD command R3-89(XRAY)

-Oc option U2-31(MCC), U2-28(CCC)
Octal representation RA-1(MCC), RB-

1(XRAY)
Odd-address restricted processors R6-

23(MCC)
Odd-address unrestricted processors R6-

23(MCC)
-Oe option U2-31(MCC), U2-28(CCC)
OFFSET assembler directive R5-52(ASM)­

R5-53(ASM)
Offset of structure member, determining R5-

125(MCC)
offsetof macro R5-125(MCC)
-Og option U2-31(MCC), U2-28(CCC)
-Oi option U2-31(MCC), U2-28(CCC)
-01 option U2-32(MCC), U2-29(CCC)
old assembler command line flag U2-

8(ASM), U3-8(ASM)
One-of qualification RG-7(XRA Y), RG-

9(XRA Y)
On-line help U1-4(XRAY), U2-14(XRAY)
On-line help menu

HELP command R3-72(XRA Y)
op assembler command line flag U2-8(ASM),

U3-8(ASM)
opcode error (0) R7-14(ASM)
Open file for writing

FOPEN command R3-66(XRA Y)
open function R5-126(MCC), R9-31(MCC),

U2-52(MCC), U3-44(M.CC), U2-
44(CCC)

relationship to close R5-39(MCC)
relationship to fopen R5-62(MCC)
relationship to read R5-142(MCC)
relationship to write R5-202(MCC)

OPEN librarian command R13-15(ASM)
Opening a file R5-61(MCC), R5-126(MCC)
OpenWindows operation UA-6(XRAY)
Operand syntax R3-17(ASM)-R3-20(ASM)
Operands

instruction R3-3(ASM)
syntax R3-1 7(ASM)-R3-20(ASM)

Operating system, valid UP-1(FLEX)
Operating systems supported IP-1(MCC),

UP1(MCC), IP-1(XRAY)
Operation of Flexible License Manager U2-

1 (FLEX)
Operations

arithmetic plus R2-23(CCC)
defining C++ R5-13(CCC)
left shift R2-24(CCC)
logical AND R2-23(CCC)
subscript R2-24(CCC)

Operations during run S1-18(SUP)
operator keyword R4-4(CCC)
Operator overloading R2-25(CCC)
Operators R2-6(MCC), R2-1(XRAY), RC-

1(XRAY)
! R4-l 7(MCC)
!= R4-l 7(MCC)
% R4-17(MCC)
& R4-l 7(MCC)
&& R4-17(MCC)
* R4-17(MCC)
+ R4-17(MCC)
- R4-17(MCC)
I R4-17(MCC)
< R4-l 7(MCC)
<= R4-17(MCC)
== R4-17(MCC)
> R4-17(MCC)
>= R4-l 7(MCC)
?: R4-17(MCC)
" R4-17(MCC)
I R4-17(MCC)
I I R4-17(MCC)
- R4-17(MCC)
arithmetic RC-l(XRAY)
assignment RC-2(XRAY)
defined R4-17(MCC)
differences between C and C++ R2-

17(CCC)
functions R2-25(CCC)
order of precedence R2- l(XRA Y)

Master Index-71

overloading R2-25(CCC)
precedence RC-3(XRA Y)
sizeof R5-ll(MCC)

opnop assembler command line flag U2-
9(ASM}, U3-9(ASM)

OPT assembler directive R5-54(ASM}-R5-
59(ASM}

Optimizations R101(MCC}
algebraic simplification RlOl(MCC)
array operator synthesis R106(MCC)
branch tail R5-12(XRAY)
branch tail merging RlOll(MCC)
code for epilogue Rl016(MCC)
code for prologue R1016(MCC)
constant folding R109(MCC), R5-

6(XRAY)
cross-jump R1013(MCC), R5-13(XRAY)
dead code elimination R5-2(XRA Y)
factoring R5-3(XRA Y)
general RlOl(MCC)

algebraic simplification R5-6(XRAY)
redundant code elimination R5-

7(XRAY)
strength reduction R5-5(XRAY)

global R102(MCC)-R109(MCC), R5-
2(XRAY)

global constant propagation R104(MCC),
R5-3(XRAY)

global copy propagation R105(MCC), R5-
3(XRAY)

grouping stack adjust
instructions R1017(MCC)

indexing arrays R1018(MCC), R5-
18(XRAY)

in-line library function
expansion R1017(MCC)

instruction scheduling R1016(MCC)
jump Rl011(MCC)-R1015(MCC), R5-

12(XRAY)
local R109(MCC)-R1011(MCC), R5-

6(XRAY)
loop R106(MCC), R5-9(XRAY)
loop invariant code optimization R5-

10(XRAY)

Master lndex-72

loop rotation R5-ll(XRAY)
machine dependent R1016(MCC)­

R1018(MCC)
machine-dependent R5-17(XRAY)
multiple jump Rl013(MCC), R5-

14(XRAY)
redundant code elimination R102(MCC)
redundant jump

elimination R1014(MCC), R5-
14(XRAY)

redundant load and store elimination R5-
8(XRAY)

register coloring R5-4{XRA Y)
short circuit evaluation R5-8(XRAY)
shortidisplacement R5-15(XRA Y)
shortllong displacement Rl015(MCC)
short-circuit evaluation RlOll(MCC)
strength reduction R102(MCC)
strength reduction and index

simplification R109(MCC), R5-
ll(XRAY)

subexpression elimination R5-6(XRA Y)
time versus size U3-28(MCC)
unreachable code R5-5(XRAY)
unused definition elimination R5-

5(XRAY)
/optimize option (VMS) R1017(MCC)
/optimize:nocombine_pops option

(VMS} R7-6(MCC}
Optimizing code U2-30(MCC), U2-27(CCC}

execution time
/optimize=time option U3-28(MCC)
-Ot option U2-33(MCC), U2-29(CCC)

global-flow optimizer
/optimize=globalflow option U3-

26(MCC)
-Og option U2-31(MCC), U2-

28(CCC)
in-lining

/optimize=inline option U3-26(MCC)
-Oi option U2-31(MCC), U2-28(CCC)

local optimizations
/optimize=local option U3-26(MCC)
-01 option U2-32(MCC), U2-29(CCC)

Documentation Set for 68000/ECOOO/HCOOO and 68302

register coloring
/optimize=register option U3-

26(MCC)

size

-OR option U2-32(MCC), U2-
29(CCC)

/optimize=size option U3-27(MCC)
-Os option U2-32(MCC), U2-29(CCC)

OPTION S1-8(SUP)
OPTION command R3-103(XRAY), U2-

22(XRAY), U4-17(XRAY)
ALIGN option U2-21(XRAY)
BREAK option U3-7(XRA Y)
LINES option U3-3(XRAY), U4-3(XRAY)
SYMBOLS option U4-3(XRAY)

Option descriptions
DOS U2-ll(MCC)
UNIX U2-ll(MCC)
VMS U3-5(MCC)

Option form, positive and negative U2-
6(CCC)

OPTION librarian command line option U3-
19(ASM)

OPTION linker command line option U3-
14(ASM)

_OPTION_utn preprocessor symbol R4-
3(MCC)

Options
command line U2-10(MCC), U3-5(MCC)
conflicting, specifying U2-10(MCC), U3-

5(MCC)
debugger S3-18(SUP)
descriptions U2-10(MCC), U3-5(MCC)
file, specifying

-d option U2-19(MCC), U2-15(CCC)
negative U2-10(MCC), U3-5(MCC)
passing to assembler

-Wa option U2-38(MCC), U2-
35(CCC)

passing to linker
-WI option U2-38(MCC), U2-

35(CCC)
summary U2-ll(MCC), U3-5(MCC), U2-

7(CCC)

VMS
/code_addresses R4-3(MCC)
/data_addresses R4-3(MCC)

Options active lisiting
suppression

/print_options option U3-30(MCC)
-Qo option U2-36(MCC), U2-

33(CCC)
Options for XRA Y saved

STARTUP command R3-180(XRAY)
Options, command line U2-9(XRAY), U2-

6(CCC)
negative form U2-6(CCC)
specifying conflicting U2-6(CCC)

-OR option U2-32(MCC), U2-29(CCC)
-Or option U2-32(MCC), U2-29(CCC)
Order directory l1-9(FLEX), 11-10(FLEX)
ORDER linker command R10-48(ASM)-R10-

49(ASM)
Order number, purpose of entering 11-

9(FLEX), 11-10(FLEX)
Order of evaluation R3-13(MCC)
ORG assembler directive R5-60(ASM)
-Os option U2-32(MCC), U2-29(CCC)
osm68ka5.lib U2-42(CCC)
osm68ka5020.lib U2-42(CCC)
osm68kab.lib U2-42(CCC)
osm68kab020.lib U2-42(CCC)
osm68kpc.lib U2-42(CCC)
osm68kpc020.lib U2-42(CCC)
-Ot option U2-33(MCC), U2-29(CCC)
Out-of-range warnings S2-91(SUP), S2-

94(SUP)
OUTPORT 51-S(SUP), S7-1(SUP)
OUTPORT command R3-110(XRAY), U2-

11 (XRA Y), U4-9(XRA Y)
size qualifiers R3-3(XRAY)

outport macro R4-27(XRA Y), U4-9(XRA Y)
Output

assembler source file Rll-l(MCC)
listing Rll-3(MCC)

Output file
-o assembler option U2-3(ASM)

Master lndex-73

Output files
extensions U2-3(MCC), U3-2(MCC)
locations U2-3(MCC), U3-3(MCCl
naming

-o option U2-33(MCC), U2-30(CCC)
specifying format

/show=include option U3-28(MCC)
-Fli option U2-20(MCC), U2-

17(CCC)
Output files, rewinding

ROUT command R3-149(XRAY)
OUTPUT librarian command line option U3-

19(ASM)
Output port

address
OUTPORT command R3-110(XRAY)

buffer
DOUT command R3-54(XRAY)

Output ports, writing value to R4-27(XRAY)
Output, multipage

MORE option R3-107(XRAY)
OVE S2-96(SUP)
Overflow counter S6-1 O(SUP)
OVERLAY S1-8(SUP)
Overlay

mapping S2-115(SUP), S2-124(SUP)
Overlay memory

copying target to overlay S3-33(SUP)
displaying S3-31(SUP)
mapping S3-32(SUP)

Overlay memory spaces S2-96(SUP)
Overlay speed S2-96(SUP), S2-98(SUP)
Overloaded function RC-3(CCC), UA-3(CCC)
Overloaded operators R2-25(CCC), RC-

3(CCC), UA-3(CCC)
Overloading RA-15(CCC), RA-16(CCC), RC-

3(CCC), UA-3(CCC)
conversion operator R4-ll(CCC)
function

names R5-l(CCC)
operators R2-25(CCC)

delete RA-8(CCC)
keyword R4-4(CCC)
new RA-9(CCC)

Master lndex-74

Overview R1-1 (XRAY)
OVS (overlay speed) S2-98(SUP)
OWL environment variable U2-46(CCC)
owl68k inspection tool

(see C++ inspector)

p
p assembler command line flag U2-9(ASM),

U3-9(ASM)
+p compiler option RB-3(CCC)
-P option U2-33(MCC), U2-30(CCC)
+p option U2-32(CCC)
-p option U2-34(MCC), U2-30(CCC)
-p option (UNIX/DOS) R4-4(MCC)
Packed enumerator type

/define option U3-21(MCC)
-D option U2-18(MCC), U2-15(CCC)

packed keyword R6-27(MCC), R4-4(CCC)
packed keyword, disabling

-nx option U2-40(MCC), U2-37(CCC)
Packed structures R6-27(MCC), R6-29(MCC)

/define option U3-21(MCC)
-D option U2-18(MCC), U2-15(CCC)
tips R6-39(MCC)

packed type R6-38(MCC)
Packing

bit fields R6-23(MCC)
enumerated data types R6-40(MCC)
tips R6-39(MCC)

Padding R6-17(MCC), R6-22(MCC)
bytes R6-31(MCC), R6-34(MCC)
structures R6-29(MCC)

PAGE assembler directive R5-61(ASM)
Page header, specifying for listing file

/nopage option U3-28(MCC)
/pagelength option U3-28(MCC)
-FlpO option U2-20(MCC), U2-17(CCC)

PAGE linker command R10-50(ASM)-R10-
51(ASM)

Parameters
passing R7-l(MCC)
popping R7-5(MCC)
setting R7-l(MCC)

Documentation Set for 68000/ECOOO/HCOOO and 68302

Parentheses
redundant R4-ll(CCC)
usage in C++ R4-ll(CCC)

Part A
(see install.sh)

Part 8
(see install.sh)

Part number 11-9(FLEX), 11-10(FLEX)
Passing options

to assembler
-Wa option U2-38(MCC), U2-

35(CCC)
to linker

-WI option U2-38(MCC), U2-
35(CCC)

Password U2-9(FLEX)
Passwords, encryption of 13-1(FLEX)
Patching code S3-30(SUP)
Patching source R4-12(XRAY)
PATH

DOS ll-4(MCC), 11-4(XRAY)
path (csh variable) 12-1(FLEX), U1-1(FLEX)
PATH (sh variable) 12-1(FLEX), U1-1(FLEX)
Path size R3-1(XRAY)
Path, search

SETSTATUS ENVIRONMENT
command R3-160(XRAY)

Paths
relative Ul-3(FLEX)

PAUSE command R3-114(XRAY)
Pause debugging session

PAUSE command R3-114(XRAY)
PC

host-specific information UG-l(XRAY)
PC monochrome displays

COLOR option R3-105(XRAY)
_PC preprocessor symbol R4-3(MCC)
PC support

MOVE TO BOTTOM control key UG-
3(XRAY)

MOVE TO TOP control key UG-2(XRAY)
PC-DOS

(see DOS installation)
(see DOS)

pco assembler command line flag U2-
9(ASM), U3-9(ASM)

per assembler command line flag U2-
10(ASM), U3-10(ASM)

PC-relative address mode
code references

(see also Position-independent code)
/code_addresses=pcrelative

option U3-14(MCC)
-Mcp option U2-27(MCC), U2-

24(CCC)
data references

(see also Position-independent data)
/data_addresses=pcrelative

option U3-14(MCC)
-Mdp option U2-28(MCC), U2-

25(CCC)
PC-relative addressing R9-27(MCC)
pcs assembler command line flag U2-

10(ASM), U3-10(ASM)
Peek/poke

bus errors S2-33(SUP)
Peek/poke trace S2-114(SUP), S2-116(SUP),

S2-117(SUP), S2-119(SUP), S2-
120(SUP), S2-122(SUP), S2-
123(SUP), S2-126(SUP), S2-
128(SUP), S2-129(SUP), S2-
130(SUP), S2-132(SUP), S2-
134(SUP), S2-136(SUP), S2-
137(SUP), S2-138(SUP), S2-
139(SUP), S2-141(SUP), S2-
142(SUP), S2-143(SUP), S2-
144(SUP), S2-145(SUP), S2-
146(SUP), S2-151(SUP), S2-
153(SUP), S2-154(SUP), S2-
156(SUP}, S2-161 (SUP}, S2-162(SUP)

PERFACT (enable/disable) S2-100(SUP)
PERFCLR (remove data) S2-101(SUP)
PERFDATA (display symbol data) S2-

102(SUP)
PERFDEPTH S2-103(SUP)
PERFDISP (display) S2-104(SUP)
PERFEX (exclude addresses) S2-106(SUP)

Master lndex-75

PERFEXCLR (clear excluded addresses) 52-
108(SUP)

PERFFORMAT (specify format) 52-109(SUP)
PERFINT (specify time interval) 52-111 (SUP)
PERFMOOE (control data display) 52-

112(SUP)
Performance analysis 52-100(5UP), 52-

101(5UP), 52-102(SUP), 52·
104(SUP), 52-106(SUP), 52-
108(SUP), 52-109(SUP), 52-
111(SUP), 52-112(5UP), 52-
113(SUP), 54-1 (SUP)-54-3(SUP), ??-
54-4(SUP)

data collection R6-8(XRAY)
PROFILE R3-135(XRAY), R6-

8(XRAY)
PERFDEPTH S2-103(SUP)
PRINTPROFILE command R3-

123(XRAY)
PROFILE command R3-134(XRAY)
program_unit R3-134(XRAY)
reporting results R6-8(XRA Y)

PRINTPROFILE R6-9(XRA Y)
PRINTPROFILE command R3-

124(XRAY)
tutorial R6-1l(XRAY)

Performance analysis results
PRINTPROFILE command R3-

123(XRAY)
PERFTOL (symbol search distance) 52·

113(SUP)
Peripheral activity, Pause mode 52-86(5UP)
perror function R5-128(MCC)
PF1 key (VT terminal support) Ul-2(XRAY)
PF2 key (VT terminal support) Ul-2(XRAY)
PF3 key (VT terminal support) Ul-2(XRAY)
PF4 key (VT terminal support) Ul-2(XRAY)
Pg On key (PC support) UG-2(XRAY)
Pg On key (RS/6000 support) UE-2(XRA Y)
Pg Up key (PC support) UG-2(XRA Y)
Pg Up key (RS/6000 support) UE-2(XRA Y)
@pi pseudo-register RA·1(XRAY), RF-

3(XRAY)

Master lndex-76

_PIC preprocessor symbol U2-27(MCC), U2-
24(CCC)

_PIO preprocessor symbol U2-27(MCC), U2-
24(CCC)

_PIO_REG preprocessor symbol U2-
27(MCC), U2-24(CCC)

@pisize pseudo-register RA-1(XRAY), RF-
3(XRAY)

pixinit section R7-5(CCC), U2-13(CCC)
PLEN assembler directive R5-62(ASM)
Pointer

base R5-10(CCC)
bound RA-6(CCC)
operators

. R2-17(CCC), R2-25(CCC)

.* R2-18(CCC), R2-25(CCC)
-> R2-17(CCC), R2-18(CCC), R2-

25(CCC)
->* R2-18(CCC)
new R2-21(CCC)

to member R2-18(CCC)
typing R2-18(CCC)

to object R2-7(CCC)
void* R4-7(CCC)

Pointer operators
. R2-17(CCC), R2-19(CCC), R2-21(CCC)
.* R2-18(CCC)
::* R2-18(CCC)
-> R2-17(CCC)
->* R2-18(CCC)
data member R2-19(CCC)
delete R2-21(CCC)
member function R2-19(CCC)
new R2-19(CCC)

Pointer to data member R2-19(CCC)
Pointer to member RC-4(CCC), UA-3(CCC)
Pointer to member function R2-19(CCC)
Pointers R3-2(MCC), R6-8(MCC)

types R3-2(MCC), R6-3(MCC)
Polling the emulator 52-126(5UP)
Popping stack

/optimize=combine_pops option U3-
25(MCC)

-Oc option U2-31(MCC), U2-28(CCC)

Documentation Set for 68000/ECOOO/HCOOO and 68302

Port address
input

INPORT command R3-80(XRAY)
output

OUTPORT command R3-110(XRAY)
Port buffers

displaying input
DIN command R3-50(XRAY)

displaying output
DOUT command R3-54(XRA Y)

Port 1/0 and interrupt commands R3-
9(XRA Y)

DIN R3-9(XRAY), R3-50(XRAY)
DOUT R3-9(XRAY), R3-54(XRAY)
INPORT R3-9(XRAY), R3-80(XRAY)
INTERRUPT R3-9(XRAY), R3-84(XRAY)
NOINTERRUPT R3-9(XRAY), R3-

99(XRAY)
OUTPORT R3-9(XRAY), R3-110(XRAY)
RIN R3-9(XRA Y)
RIN command R3-146(XRAY)
ROUT R3-9(XRAY), R3-149(XRAY)

port@host l3-7(FLEX)
@port_addr pseudo-register R3-81 (XRAY),

R3-111(XRAY), RA-1(XRAY), RF-
3(XRAY)

@port_size pseudo-register RA-1(XRAY),
RF-3(XRAY)

@port_value pseudo-register R3-81(XRAY),
R3-111(XRAY), RA-2(XRAY), RF-
4(XRAY)

Position-dependent
code R9-19(MCC)
data R9-19(MCC)

Position-independent
code R9-19(MCC)
data R9-19(MCC)

Position-independent code
/code_addresses=pcrelative U3-14(MCC)
-Mcp option U2-27(MCC), U2-24(CCC)

Position-independent data
/data_addresses=anrelative option U3-

14(MCC)
/data_addresses=pcrelative option U3-

14(MCC)
-Md options U2-27(MCC), U2-24(CCC)

pow function R5-129(MCC)
PPT S2-96(SUP), S2-114(SUP), S2-116(SUP),

S2-117(SUP), S2-119(SUP), S2-
120(SUP), S2-122(SUP), S2-
123(SUP), S2-126(SUP), S2-
128(SUP), S2-129(SUP), S2-
130(SUP), S2-132(SUP), S2-
134(SUP), S2-136(SUP), S2-
137(SUP), S2-138(SUP), S2-
139(SUP), S2-141(SUP), S2-
142(SUP), S2-143(SUP), S2-
144(SUP), S2-145(SUP), S2-
146(SUP), S2-151(SUP), S2-
153(SUP), S2-154(SUP), S2-
156(SUP), S2-161 (SUP), S2-162(SUP)

#pragma asm directive R4-24(MCC), R9-
7(MCC)

#pragma directives R4-8(MCC)
#pragma endasm directive R4-24(MCC), R9-

8(MCC)
#pragma error directive R4-25(MCC)
#pragma info directive R4-26(MCC)
#pragma list directive R4-27(MCC)
#pragma macro directive R4-28(MCC)
#pragma option directive R4-29(MCC)
#pragma options R6-37(MCC)
#pragma warn directive R4-30(MCC)
Pre-ANSI C

function declarations R4-12(CCC)
Precedence

expressions R3-13(MCC)
Precedence order of operators R2-1 (XRAY)
Predefined symbols R4-1(MCC)

__ DATE __ R4-l(MCC)
__ FILE __ R4-l(MCC)
__ LINE__ R4-l(MCC)
__ STDC __ R4-l(MCC)
__ TIME__ R4-2(MCC)

Master lndex-77

STDC R4-3(MCC)
_68000 R4-4(MCC)
_68008 R4-4(MCC)
_68010 R4-4(MCC)
_68020 R4-4(MCC)
_68030 R4-4(MCC)
_68040 R4-4(MCC)
_68302 R4-4(MCC)
_68330 R4-4(MCC)
_68331 R4-4(MCC)
_68332 R4-4(MCC)
_68333 R4-4(MCC)
68340 R4-4(MCC)

_68ECOOO R4-4(MCC)
_68EC020 R4-4(MCC)
_68EC030 R4-4(MCC)
_68EC040 R4-4(MCC)
_68HCOOO R4-4(MCC)
_68HC001 R4-4(MCC)
_APOLLO R4-3(MCC)
_BCS R4-3(MCC)
_BIG_ENDIAN R4-2(MCC)
_CHAR_SIGNED R4-3(MCC)
_CHAR_UNSIGNED R4-3(MCC)
_CPU32 R4-4(MCC)
_DEBUG R4-3(MCC)
_DEC_STATION R4-3(MCC)
_FPU R4-3(MCC)
_HP9000_300 R4-3(MCC)
_HP9000_700 R4-3(MCC)
_HW _DEMANDS_ALIGNMENT R4-

3(MCC)
_LITTLE_ENDIAN R4-2(MCC)
_M68 R4-3(MCC)
_MCC68K R4-2(MCC)
_MRI R4-2(MCC)
_MRI_EXTENSIONS R4-3(MCC)
_MSDOS R4-3(MCC)
_OPTION_utn R4-3(MCC)
_PACKED_STRUCTS R4-2(MCC)
_PC R4-3(MCC)
_PIC R4-3(MCC)
_PID R4-3(MCC)
_PID_REG R4-4(MCC)

Master lndex-78

_RS6000 R4-3(MCC)
_sco R4-3(MCC)
_SIZEOF _CHAR R4-2(MCC)
_SIZEOF _DOUBLE R4-2(MCC)
_SIZEOF _FLOAT R4-2(MCC)
_SIZEOF _INT R4-2(MCC)
_SIZEOF _LONG R4-2(MCC)
_SIZEOF _LONG_DOUBLE R4-2(MCC)
_SIZEOF _POINTER R4-2(MCC)
_SIZEOF _SHORT R4-2(MCC)
_SUN3 R4-3(MCC)
_SUN4 R4-3(MCC)
_UNIX R4-3(MCC)
_VAX R4-3(MCC)
_VERSION R4-2(MCC)
_VMS R4-3(MCC)

Prefetch (trace) R3-171(XRAY), R3·
200(XRAY)

Preinstallation steps 11 ·2(FLEX)
Preparing programs for debugging U2·

1(XRAY)
command files Ul-3(XR.AY)
compiler debug option U2-l(XRAY)
data types U2-2(XRA Y)
line numbers U2-2(XRAY)
module and procedure U2-2(XRAY)
storage class U2-2(XRAY)

/prepend option (VMS) R9-7(MCC)
Preprocessor R4-1(MCC)

executing only
/pp option U3-29(MCC)
-E option U2-19(MCC), U2-16(CCC)
-P option U2-33(MCC), U2-30(CCC)

macros
defining on command line

/define option U3-20(MCC)
-D option U2-18(MCC), U2-

14(CCC)
undefining

/undefine option U3-33(MCC)
-U option .U2-36(MCC), U2-

33(CCC)

Documentation Set for 68000/ECOOO/HCOOO and 68302

output
saving comments

/preserve_comments option U3-
29(MCC)

-C option U2-17(MCC), U2-
14(CCC)

sending to standard output

symbols

-E option U2-19(MCC), U2-
16(CCC)

(see under specific name)
Preprocessor directives

#define R4-10(MCC)
#elif R4-13(MCC)
#else R4-14(MCC)
#endif R4-15(MCC)
#error R4-16(MCC)
#if R4-l 7(MCC)
#ifdef R4-19(MCC)
#ifndef R4-20(MCC)
#include R4-2l(MCC)
#info R4-22(MCC)
#line R4-23(MCC)
#pragma asm R4-24(MCC)
#pragma endasm R4-24(MCC)
#pragma error R4-25(MCC)
#pragma info R4-26(MCC)
#pragma list R4-27(MCC)
#pragma macro R4-28(MCC)
#pragma option R4-29(MCC)
#pragma warn R4-30(MCC)
#undef R4-31(MCC)
#warning R4-32(MCC)
types R4-6(MCC)

conditional compilation R4-8(MCC)
line number control R4-6(MCC)
macro definition R4-6(MCC)
#pragma R4-8(MCC)
source file include R4-6(MCC)

Preprocessor macros
__ OPI'ION_AVAIL R4-4{MCC)
__ STR_CASE_CMP R4-5(MCC)
__ STR_CMP R4-5(MCC)

Prerequisite software RP-3(XRAY)

PREV CMD command key U2-30(XRA Y), U3-
14(XRA Y)

Apollo support UB-5(XRAY)
HP support UD-7(XRAY)
IBM RS/6000 support UE-3(XRAY)
Motorola Delta Series support UF-

4(XRAY)
PC support UG-4(XRAY)
Sun support UH-4(XRAY)
VT terminal support Ul-4(XRAY)

Prev key (HP support) UD-5(XRAY)
PrevCmd button

X Window support UA-12(XRA Y)
prevcmd button

Sun View support UH-12(XRAY)
Primary expressions R3-7(MCC)
Print * button

X Window support UA-13(XRAY)
print * button

Sun View support UH-13(XRAY)
Print button

X Window support UA-12(XRAY)
print button

Sun View support UH-12(XRAY)
Print formatted output

FPRINTF command R3-67(XRAY)
Printable argument

testing for R5-88(MCC), R5-90(MCC)
PRINTANALYSIS command R3·115(XRAY)
PRINTF command R3·118(XRAY), U4-

16(XRAY)
printf function R5-14(MCC), R5-130(MCC)

relationship to vprintf R5-198(MCC)
removing unneeded 1/0 support R9-

32(MCC)
PRINTPROFILE command R3· 123(XRA Y)
Prints formatted output

to Command viewport
PRINTF command R3-118(XRAY)

PRINTSYMBOLS command R3·127(XRAY),
U4·15(XRAY)

errors U4-14(XRAY)
options U4-13(XRAY)

PRINTTYPE command R3-130(XRAY)

Master lndex-79

PRINTVALUE command R3-131(XRAY), U4-
15(XRAY) ·

assembly-level mode U2-22(XRAY)
high-level mode U2-18(XRAY)
with C++ RG-2(XRAY)

private
keyword R4-5(CCC)

prnhelp program U2-33(XRAY)
Problems

(see Error handling)
Procedure (@procedure) R2-21 (XRA Y)
Procedure (definition) RD-1(XRAY)
@procedure pseudo-register RA-2(XRAY),

RF-4(XRAY)
Procedure, nested R2-23(XRAY)
Processor modes

/cpu option U3-16(MCG)
-p option U2-34(MCC), U2-30(CCC)

Processor signals 52-27(SUP)
Processor, specifying

/cpu option U3-16(MCC)
-p option U2-34(MCC), U2-30(CCC)

profile U1-1(FLEX)
PROFILE command R3-134(XRAY)
profile file

(see UNIX start-up file)
Program counter R2-10(ASM)
Program identifiers R9-10(ASM}-R9-

11(ASM)
Program identifiers, truncating

/truncate_identifiers U3-12(MCC)
-ut option U2-8(MCC), U2-37(MCC), U2-

34(CCC)
Program sections R4-1(ASM)-R4-4(ASM),

R9-2(ASM}-R9-5(ASM)
Program stack references R2-23(XRA Y)
Program symbols R3-18(XRAY)
Program termination R5-22(MCC), R5-

47(MCC), R5-48(MCC)
Program trace R6-19(XRAY)

trace control R6-23(XRA Y)
SETSTATUS QUALIFY R6-

23(XRAY)
SETSTATUS TRACE R6-23(XRAY)

Master lndex-80

SETSTATUS TRIGGER R6-
23(XRAY)

trace display R6-23(XRAY)
STATUS BUFFER R6-23(XRAY)

Programs U2-1(FLEX), UB-2(FLEX)
directory installed in Ul-l(FLEX), UA-

2(FLEX)
specifying in UNIX start-up file Ul-

l(FLEX)
error messages UC-ll(FLEX)
executing Ul-2(FLEX)
expiration date 13-3(FLEX)
features versus programs Il-2(FLEX)
host located on U2-10(FLEX)
hosts, specifying U2-l(FLEX)
installing Il-6(FLEX)
networks, specifying U2-l(FLEX)
testing I2-2(FLEX)
version number l3-3(FLEX)

Prologue R1016(MCC)
function

generating code for
prologue R1016(MCC)

Prologue, function R7-7(MCC), R4-2(CCC)
Promotion R5-3(CCC)
Prompts in install.sh 11-S(FLEX)

with(.) Il-12(FLEX)
Prompts, macro(:) U2-26(XRAY)
protected keyword R4-6(CCC)
Prototyped functions R4-13(CCC}-R4-

14(CCC)
checking R4-14(CCC)
declaration R4-13(CCC)

Prototypes, function
arguments R3-25(MCC)

-Ps option U2-33(MCC), U2-30(CCC)
Pseudo-Ops

(see Directives)
Pseudo-registers RA-1 (XRA Y)

@addr RA-l(XRAY), RF-l(XRAY), RF-
4(XRAY)

@as RA-l(XRAY), RF-l(XRAY)
@chip RA-l(XRAY), RF-l(XRAY)

Documentation Set for 68000/ECOOO/HCOOO and 68302

@cycles RA-l(XRAY), RF-l(XRAY), RF-
5(XRAY)

@entry RA-l(XRAY), RF-l(XRAY)
®exc RA-l(XRAY), RF-2(XRAY), RF-

5(XRAY)
®file RA-l(XRAY), RF-2(XRAY)
®fpf RA-l(XRAY), RF-2(XRAY)
®fpu RA-l(XRAY), RF-2(XRAY), RF-

5(XRAY), RF-lO(XRAY)
@hlpc R2-21(XRAY), RA-l(XRAY), RF-

3(XRAY)
®line_range RA-l(XRAY), RF-3(XRAY)
@module R2-21(XRAY), RA-HXRAY),

RF-3(XRAY)
®pi RA-l(XRAY), RF-3(XRAY)
®pisize RA-l(XRAY), RF-3(XRAY)
@port_addr R3-81(XRAY), R3-

lll(XRAY), RA-l(XRAY), RF-
3(XRAY)

@port_size RA-l(XRAY), RF-3(XRAY)
@port_value R3-81(XRAY), R3-

lll(XRAY), RA-2(XRAY), RF-
4(XRAY)

@procedure R2-21(XRAY), RA-2(XRAY),
RF-4(XRAY)

@root R2-20(XRAY), RA-2(XRAY), RF-
4(XRAY)

®wait_state RA-2(XRA Y), RF -4(XRA Y),
RF-6(XRAY)

Psuedorandom number generator R5-
140{MCC)

ptrdiff_t type R5-11{MCC)
Public

keyword R3-5(MCC)
storage class R3-5(MCC)
variable names Rll-l(MCC)

public
keyword R4-5(CCC)

PUBLIC linker command R10-52(ASM}-R10-
53(ASM)

Publications, related RP-3{CCC), UP-2{CCC)
Punctuation mark, testing for R5-91{MCC)
Pure specifier R3-14{CCC)
Pure virtual function R3-14(CCC), RC-

4{CCC), UA-3(CCC)
putc function R5-12{MCC), R5-134{MCC)

relationship to fputc R5-64(MCC)
putchar function R5-12{MCC), R5-135(MCC)
putl function R5-136{MCC)

relationship to get! R5-79(MCC)
puts function R5-137(MCC)
putw function R5-138(MCC)

relationship to getw R5-81(MCC)

Q
-Q option U2-36{MCC), U2-33{CCC)
-Qe option U2-36(MCC), U2-33(CCC)
-Qi option U2-36{MCC), U2-33{CCC)
-Qo option U2-36{MCC), U2-33{CCC)
-Qs option U2-36{MCC), U2-33{CCC)
qsort function R5-139{MCC)
Qualified bus cycle {definition) R3-

167{XRAY)
Qualified reference R2-15(XRAY), R2-

19{XRAY)
definition RD-l(XRAY)

Qualify trace buffer
STATUS QUALIFY command R3-

188(XRAY)
Qualify trace information

SETSTATUS QUALIFY command R3-
167(XRAY)

Question mark-colon(?:) operator R2-
25(CCC)

Questions and answers
learning to use XRAY U4-l(XRAY)
managing XRAY files U4-10(XRAY)
using XRAY variables U4-13(XRAY)

Queued functions at program
termination R5-30{MCC)

quick assembler command line flag U2-
10(ASM), U3-10(ASM)

Quick sort algorithm R5-139(MCC)
Quit button U2-52(CCC)
QUIT command R3-138(XRAY), U2-

24(XRAY)
QUIT librarian command R13-10(ASM)

Master lndex-81

Quitting XRAY session
QUIT command R3-138(XRAY)

Quotient, computing R5-45(MCC), R5-
99(MCC)

-Ow option U2-36(MCC), U2-33(CCC)

R
r assembler command line flag U2-10(ASM),

U3-10(ASM)
-r librarian command line option U2-22(ASM)
-r linker command line option U2-14(ASM)
R1 key (Sun support) UH-3(XRAY)
R10 key (Sun support) UH-2(XRAY)
R12 key (Sun support) UH-2(XRAY)
R13 key (Sun support) UH-3(XRAY)
R14 key (Sun support) UH-2(XRAY)
R15 key (Sun support) UH-3(XRAY)
R3 key (Sun support) UH-3(XRAY)
R7 key (Sun support) UH-3(XRAY)
RS key (Sun support) UH-2(XRAY)
R9 key (Sun support) UH-3(XRAY)
raise function R5-141(MCC)
Raising d1 to the power d2 R5-129(MCC)
RAM S1-8(SUP), S2-115(SUP)
RAM access

RAMACCESS command R3-139(XRAY)
RAM test S2-34(SUP), S2-36(SUP)
RAMACCESS S2-115(SUP)
RAMACCESS command R3-139(XRAY), U2-

11(XRAY)
rand function R5-21(MCC), R5-140(MCC)
Random number generator

setting the seed R5-160(MCC)
Range, addresses R2-10(XRAY)
Raw trace command S2-57(SUP)
Raw trace display S1-15(SUP)
rbak command (Apollo) 11-7(FLEX)
rep command U2-11(FLEX)
Read file into memory

SETSTATUS READ command R3-
169(XRAY)

Master lndex-82

read function R5-142(MCC), R9-31(MCC),
U2-52(MCC), U3-44(MCC), U2-
44(CCC)

read routine R3-83(XRA Y), U2-23(XRA Y)
Read-after-write verify S2-161(SUP)
Reading a line from standard input R5-

80(MCC)
Reading bytes from a file R5-142(MCC)
Reading distribution tape or disk 11-7(FLEX),

11-S(FLEX), 11-16(FLEX)
Reading from a file R5-66(MCC), R5-71(MCC)
Reading value from input port R4-18(XRA Y)
Read-only memory accesses

ROMACCESS command R3-147(XRAY)
realloc function R5-21(MCC), R5-143(MCC),

R9-12(MCC)
relationship to free R5-67(MCC)

Recall previous command
HISTORY command R3-74(XRAY)

Record count record (SS) RF-4(ASM)
Record debugger commands in a file

LOG command R3-91(XRAY)
Recording a debug session S3-20(SUP)
Recursive functions

setting breakpoints R2-24(XRA Y)
using GO command R2-24(XRAY)

Redirect stderr
+E option U2-16(CCC)

Redraw screen U3-35(XRA Y)
Reduce viewport size

ZOOM command R3-213(XRAY)
Redundant code elimination R102(MCC), R5-

7(XRAY)
Redundant jump optimization R1014(MCC),

R5-14(XRAY)
Redundant load and store optimization R5-

8(XRA Y)
Redundant servers 13-S(FLEX)
Redundant store elimination R1010(MCC)
Reentrant code R3-6(MCC)

generating R9-10(MCC)
Reentrant functions R5-20(MCC), R9-

10(MCC)

Documentation Set for 68000/ECOOO/HCOOO and 68302

Reference R2·22(XRA Y)
qualified R2-19(XRAY)

REFERENCE linker command line
option U3·14(ASM)

Reference type R2·10(CCC)
Refresh software mask S2·122(SUP)
Refreshing software address space S2-

120(SUP)
Refreshing software addresses S2·119(SUP)
REG

Status Line viewport U3-24(XRAY)
REG assembler directive R5-63(ASM)
Register

keyword R3-5(MCC)
reserving a register R9-33(MCC)
reserving for special purposes R9-

38(MCC)
storage class R3-5(MCC)
use R7-5(MCC)

Register (CPU) S3·28(SUP)
Register allocation R5·4(XRAY)
Register coloring

/optimize=register option U3-26(MCC)
-OR option U2-32(MCC), U2-29(CCC)

Register coloring optimization R5-4(XRA Y)
Register contents

SETREG command R3-158(XRAY)
Register names(@) R3-158(XRAY)
Register optimization R5-4(XRAY)
Register restoration S2·123(SUP)
Register storage class R3-4(MCC)
Register support S1·9(SUP)
Register variables R2·16(XRAY)
Register-relative address mode U2·

27(MCC), U2·24(CCC)
(see also Position-independent data)

Register-relative addressing R9·25(MCC)
Registers R3·3(ASM)-R3-6(ASM)

1/0 device U2-31(MCC), U3-28(MCC),
U2-28(CCC)

reserving
/reserve option U3-14(MCC)
-Kh option U2-25(MCC), U2-

22(CCC)

Registers viewport U2-20(XRAY), U3-
2(XRAV), U3·18(XRAY)

rel32 assembler command line flag U2·
11(ASM), U3·11(ASM)

Related publications RP-3(XRAY)
Relative addressing R3·24(ASM)-R3·

33(ASM)
Relative path settings U1·3(FLEX)
RELOAD command R3·141(XRAV)
Reload program code and data

RELOAD command R3-141(XRAYl
Relocatable expressions R3-24(ASM), R4·

7(ASM)-R4-8(ASM)
Relocatable sections R9-3(ASM)
Relocatable symbols R2·9(ASM), R4-7(ASM)
Relocation flags, assembler R8-2(ASM)
Relocation types R9·8(ASM)
Remainder

computing R5-45(MCC), R5-99(MCC)
Remote installation 11·8(FLEX)
remove function R5·144(MCC)
Removing screens and viewports U3·

33(XRAY)
VCLOSE command U3-33(XRAY)

Removing viewport
VCLOSE command R3-205(XRAY)

REPEAT ... UNTIL assembler directive R7·
12(ASM)

REPLACE librarian command U2-22(ASM),
R13·16(ASM)

REPLACE librarian command line option U3·
19(ASM)

REPT assembler directive R5-64(ASM)
RESADD linker command R10·54(ASM)
RESERVE line 13-S(FLEX)
/reserve option (VMS) R7·5(MCC), R9-

34(MCC)
Reserved licenses UB-3(FLEX)
Reserved symbols R2-8(ASM)-R2·9(ASM),

RA·1(XRAY)
NARG R2-9(ASM), R6-4(ASM), R8-

3(ASM)
Reserved words RA·1 (XRA Y)
Reserving a register

Master lndex-83

/reserve option U3-14(MCC)
-Kh option U2-25(MCC), U2-22(CCC)

Reserving licenses U2-11 (FLEX)
Reserving licenses for specific users 13-

S(FLEX)
Reset

restoring registers S2-123(SUP)
RESET command R3-142(XRAY)
Reset pulses S2-52(SUP)
Resetting microprocessor

RESET command R3-142(XRAY)
Resetting start address

RESTART command R3-144(XRAY)
Resize viewport

VOPEN command R3-208(XRAY)
Resizing viewports U2-28(XRA Y), U4-

7(XRA Y)
RESMEM linker command R10-55(ASM)
RESTART command R3-144(XRAY), U2-

20(XRAY)
Restarting script 12-S(FLEX)
Restore

not supported Sl-8(SUP)
RESTORE assembler directive R5-65(ASM)
RESTORE command R3-145(XRAY)
Restore memory and registers

RESTORE command R3-145(XRAY)
Restricted debugging information

/debug=restricted option U3-20(MCC)
-Gr option U2-21(MCC), U2-18(CCC)

RET instruction, using for interrupt proce­
dures

/ireturn=subroutine U3-22(MCC)
-Kr option U2-26(MCC), U2-23(CCC)

Return codes
UNIX/DOS U2-28(ASM)
V AXNMS U3-27(ASM)

return statement R3-22(MCC)
RETURN statement in macros R4-7(XRAY)
Returning a typed value R9-5(MCC)
rewind function R5-145(MCC)
Rewind input files

RIN command R3-146(XRAY)

Master lndex-84

Rewind output files
ROUT command R3-149(XRAY)

RFS command S2-117{SUP)
RFSADR command S2-119(SUP)
RFSASP command S2-120(SUP)
RFSMSK command S2-122(SUP)
RIN command R3-146(XRAY)
RIRR command S2-123(SUP)
ROM S1-8(SUP), S2-124(SUP)
ROMACCESS S2-124(SUP)
ROMACCESS command R3-147(XRAY), U2-

11{XRAY)
ROM-based systems R9-43(MCC)
Root (@) R2-20(XRAY)
Root (definition) RD-1 (XRAY)
Root names R2-20(XRA Y)
@root pseudo-register R2-20(XRAY), RA-

2(XRAY), RF-4(XRAY)
ROUT command R3-149(XRAY)
Router UB-2(FLEX)
Routines, user-modified R9-29(MCC)
_RS6000 preprocessor symbol R4-3(MCC)
rsh command 11-S(FLEX), 12-7(FLEX)
RTE instruction, using for interrupt proce­

dures
-nK.r option U2-26(MCC), U2c23(CCC)

RTS instruction, using for interrupt proce­
dures

-Kr option U2-26(MCC), U2-23(CCC)
Run button U2-49(CCC)
run command U2-52(CCC)
Run poll S2-126(SUP)
RUN_TIME S2-127(SUP)
Running test scripts 12-2(FLEX)
Run-time·organization R8-1(MCC)

s
s assembler command line flag U2-11{ASM),

U3-11(ASM)
-S option U2-36(MCC), U2-33(CCC)
Sample program sieve.c U2-1(XRAY)
Save

not supported Sl-8(SUP)

Documentation Set for 68000/ECOOO/HCOOO and 68302

SAVE assembler directive R5-66(ASM)
SAVE command R3-150(XRAV)
SAVE librarian command R13-17(ASM)
Saving

command and data to a file
JOURNAL command R3-86(XRAY)

debugger commands in a file
LOG command R3-91(XRAY)

macros R4-9(XRA Y)
memory and registers to file

SAVE command R3-150(XRAY)
Saving commands U4-7(XRA V)

JOURNAL command U4-7CXRAY)
LOG command U4-7(XRAY)

sbrk function R5-146(MCC), U2-52(MCC),
U3-44(MCC), U2-44(CCC)

Scalar (definition) RD-1 (XRAV)
Scalar data types R6-4(MCC)
scanf function R5-14(MCC), R5-147(MCC)

relationship to sscanf R5-161(MCC)
Scheduling, instructions

/optimize=reorder option U3-27(MCC)
-Or option U2-32(MCC), U2-29(CCC)

_ SCO preprocessor symbol R4-3(MCC)
Scope S3-22(SUP)
Scope button

X Window support UA-13(XRAY)
scope button

Sun View support UH-13(XRAY)
SCOPE command R3-152(XRAV), U3-

11 (XRAV), U4-2(XRAV), U4-3(XRAV),
U4-12(XRAV), U4-14(XRAV)

Scope Loops S3-49(SUP)
Scoping rules R2-19(XRAV)
Scratch area address S2-128(SUP)
SCRATCH command S2-128(SUP)
scratch.xry file UH-15(XRAV)
Screen (definition) RD-1(XRAV)
Screen button

X Window support UA-13(XRAY)
screen button

Sun View support UH-13(XRAY)
Screen commands U3-34(XRA V)
Screen refresh U3-35(XRA V)

Screen, activating
VSCREEN command R3-210(XRAY)

Screens U1-5(XRAV), U3-1(XRAV)
assembly-level screen U3-2(XRAY)
defining U3-32(XRA Y)
deleting U3-33(XRAY)
high-level U2-14(XRAY), U3-l(XRAY)
l/O U2-25(XRA Y)
removing U3-33(XRA Y)
standard 1/0 screen U3-4(XRA Y)

Scrolling U3-33(XRAV), U4-1 (XRAV)
Scrolling viewports S3-18(SUP)
SEARCH S1-8(SUP)
SEARCH command R3-154(XRAV)

size qualifiers R3-3(XRAY)
Search path, setting

SETSTATUS ENVIRONMENT
command R3-160(XRAY)

Search paths
(see also Environment variables)
nonstandard #include files

/ipath option U3-23(MCC)
-I option U2-22(MCC), U2-19(CCC)

standard #include files
/spath option U3-32(MCC)
-J option U2-23(MCC), U2-20(CCC)

Searching
for character in memory R4-23(XRA Y)
for character in string R4-30(XRA Y)
for next occurrence of string

NEXT command R3-97(XRAY)
for string

FIND command R3-64(XRA Y)
for value

SEARCH command R3-154(XRAY)
Searching for a character in memory R5-

117(MCC)
SECT assembler directive R5-67(ASM)-R5-

68(ASM)
SECT linker command R10-56(ASM)
Section alignment R9-5(ASM)
SECTION assembler directive R5-67(ASM)­

R5-68(ASM)

Master lndex-85

Section names, specifying U2-28(MCC), U2-
25(CCC)

Sections
absolute R3-21(ASM), R9-3(ASM)
common R9-4(ASM)
long R9-5(ASM)
noncommon R9-4(ASM)
program R4-l(ASM)-R4-4(ASM), R9-

2(ASM)-R9-5(ASM)
relocatable R3-22(ASM), R9-3(ASM)
short R9-4(ASM)
type R9-5(ASM)-R9-6(ASM)

SECTSIZE linker command R10-57(ASM)
Seed for random number generator R5-

160(MCC)
SEEK_CUR macro R5-15(MCC), R5-72(MCC)
SEEK_END macro R5-15(MCC), R5-72(MCC)
SEEK_SET macro R5-15(MCC), R5-72(MCC)
Serial number of distribution 11-3(FLEX), 11·

10(FLEX), U1-5(FLEX)
SERVER line U2-9(FLEX)

required number U2-10(FLEX)
Servers

(see License servers)
daemons

(see License server daemons)
failure ll-14(FLEX)
more than one in installation I2-7(FLEX)
specifying during install 11-ll(FLEX),

ll-12(FLEX)
Session control commands R3-6(XRAY)

HOST R3-6(XRAY), R3-75(XRAY)
LOAD R3-6(XRAY), R3-89(XRAY)
QUIT R3-6(XRAY), R3-138(XRAY)
RELOAD R3-6(XRAY), R3-141(XRAY)
RESTORE R3-6(XRAY), R3-145(XRAY)
SAVE R3-6(XRAY), R3-150(XR.AY)

SET assembler directive R5-69(ASM)
Set command S6-9(SUP)
set command (csh) 12-1 (FLEX)
Set cursor position in viewport

VSETC command R3-212(XRAY)
setbuf function R5-150(MCC)
setenv command (csh) 11·15(FLEX), 12-

Master lndex-86

1(FLEX), U1·1(FLEX), U1-3(FLEX)
setjmp function R5-151(MCC)

relationship to longjmp R5-107(MCC)
setjmp.h include file R5-9(MCC)
setlocale function R5-152(MCC)

relationship to localeconv function R5-
103(MCC)

SETMEM command R3-156(XRAY), U4-
16(XRAY)

size qualifiers R3-3(XRAY)
SETREG command R3-158(XRAY)
SETSTATUS S1-8(SUP)
SETSTATUS command UA-13(XRAY)
SETSTATUS DIR command R3-159(XRAY)
SETSTATUS ENVIRONMENT command R3-

160(XRAY)
SETSTATUS EVENT command R3-

161(XRAY)
SETSTATUS QUALIFY command R3-

167(XRAY)
SETSTATUS READ command R3-169(XRAY)
SETSTATUS TRACE command R3-

170(XRAY)
SETSTATUS TRIGGER command R3-

173(XRAY)
SETSTATUS VERIFY command R3-

177(XRAY)
SETSTATUS WRITE command R3-

178(XRAY)
Setting a breakpoint U4-5(XRAY)
Setting breakpoints

(see Breakpoints)
BREAKACCESS command R3-

25(XRAY)
BREAK.COMPLEX command R3-

28(XR.AY)
BREAK.INSTRUCTION command S2-

12(SUP), R3-30(XRAY)
BREAKREAD command S2-16(SUP),

R3-32(XRA Y)
BREAK.WRITE command S2-20(SUP),

R3-35(XRA Y)
Setting colors UA-3(XRA Y)

Documentation Set for 68000/ECOOO/HCOOO and 68302

Setting instruction breakpoint
(see BREAKINSTRUCTION command)

Setting sign of char variables
/unsignedchar option U3-22(MCC)
-Ku option U2-27(MCC), U2-23(CCC)

Setting temporary breakpoints
(see Breakpoints)

Setting the value of characters in
memory R5-122(MCC)

Setting value of characters in memory R4-
26(XRA Y)

Settings, current
saving to file

SAVE command R3-150(XRAY)
Setup

user Ul-l(FLEX)
setvbuf function R5-154{MCC)
Severity of errors RC-2(MCC)
Shared

program R9-35(MCC)
Sharing variables R3-6(MCC)
Shift-Ins key (Apollo support) UB-3(XRAY)
Short circuit optimization R5-8(XRA Y)
Short integer

reading from a stream R5-81(MCC)
writing to stream R5-138(MCC)

Short integers R7-1(MCC)
short type R3-2(MCC), R6-3{MCC), R6-

11 (MCC)
Short/long displacement

optimizations R101 S(MCC), RS-
1 S{XRAY)

Short-circuit evaluation R3-10{MCC)
Short-circuit optimization R1011(MCC)
SHOW command R3-179(XRAY}, U2-

33(XRAY}
SIA command S2-129(SUP}
SIG_DFL R5-155(MCC)
SIG_ERR R5-155(MCC}
SIG_IGN R5-155(MCC)
SIGFPE R5-155(MCC}
signal function R5-155(MCC}
Signal handler, establishing R5-155(MCC}
signal.h include file R5-10(MCC}

Signals R5-10(MCC)
raise R5-141(MCC)
sending R5-141(MCC)
signal R5-155(MCC)

Signed data
keywords R4-6(CCC)

signed keyword R4-6(CCC)
signed types R3-1(MCC)

signed int type R3-2(MCC)
signed long type R3-2(MCC)
signed short type R3-2(MCC)

Simple breakpoints S4-3(SUP)
Simple relocatable expression R4-8(ASM)
Simple straddling R6-24(MCC)
Simulated 1/0 S7-1(SUP), U4-9(XRAY)

character input using XICE S7-l(SUP)
character input using XRAY S7-5(SUP)
character output using XHS S7-6(SUP)
character output using XICE S7-3(SUP)
character output using XRAY S7-6(SUP)

_simulated_input R3-83(XRAY)
_simulated_output R3-112(XRAY)
Simulating an interrupt

INTERRUPT command R3-84(XRAY)
sin function R5-156(MCC), U2-39(MCC), U3-

25(MCC), U2-37(CCC)
Sine of a number, computing R5-156(MCC}
Single inheritance R3-10(CCC), RC-2(CCC},

UA-2{CCC}
Single line assembler S2-2(SUP}, S3-

30{SUP}
Single quotation marks R2-4(MCC)
Single-precision format R6-5(MCC)
Single-stepping U1-4(XRAY}, U2-17(XRAY}

(see also STEP command, STEPOVER
command)

STEP command R3-193(XRAY)
STEPOVER command R3-195(XRAY)

sinh function R5·157(MCC}, U2-39(MCC}, U3-
25(MCC}, U2-37(CCC)

Size
aggregates R6-26(MCC)
data types R6-3(MCC)
unpacked structure R6-31(MCC)

Master lndex-87

SIZE command S2-130(SUP)
Size of file names R3-1 (XRAY)
Size of viewport

ZOOM command R3-213(XRAY)
Size optimization

/optimize=size option U3-27(MCC)
-Os option U2-32(MCC), U2-29(CCC)

size_ttype R5-11(MCC), R5-17(MCC)
bsearch function R5-34(MCC)
calloc function R5-35(MCC)
fread function R5-66(MCC)
fwrite function R5-76(MCC)
malloc function R5-lll(MCC)
mblen function R5-113(MCC)
mbstowcs function R5-114(MCC)
mbtowc function R5-115(MCC)
memccpy function R5-116(MCC)
memchr function R5-ll 7(MCC)
memclr function R5-118(MCC)
memcmp function R5-119(MCC)
memcpy function R5-120(MCC)
memmove function R5-121(MCC)
memset function R5-122(MCC)
offsetof function R5-125(MCC)
qsort function R5-139(MCC)
realloc function R5-143(MCC)
setvbuffunction R5-154(MCC)
strcmp function R5-17l(MCC)
strcspn function R5-167(MCC)
strlen function R5-169(MCC)
strncat function R5-170(MCC)
strncpy function R5-172(MCC)
strspn function R5-175(MCC)
strxfrm function R5-181(MCC)
wcstombs function R5-200(MCC)
zalloc function R5-203(MCC)

_SIZEOF _CHAR preprocessor symbol R4-
2(MCC)

_SIZEOF _DOUBLE preprocessor
symbol R4-2(MCC)

_SIZEOF _FLOAT preprocessor symbol R4-
2(MCC)

_SIZEOF _INT preprocessor symbol R4-
2(MCC)

Master lndex-88

_SIZEOF _LONG_DOUBLE preprocessor
symbol R4-2(MCC)

_SIZEOF _LONG preprocessor symbol R4-
2(MCC)

.SIZEOF. operator R2-19(ASM)
sizeof operator RS-11 (MCC)
_SIZEOF _POINTER preprocessor

symbol R4-2(MCC)
_SIZEOF _SHORT preprocessor symbol R4-

2(MCC)
sizeof unary operator R3-9(MCC)
Skipping part A 11-9(FLEX)
Skipping part B 11-16(FLEX)
SLO command S2-132(SUP)
Software

breakpoints S4-6(SUP)
Software address refresh S2-119(SUP)
Software address space refresh S2-

120(SUP)
Software breakpoint trap number S2-

82(SUP)
Software mask refresh S2-122(SUP)
Software performance analysis S1-19(SUP)
Software refresh control S2-117(SUP)
Solving problems

(see Error handling)
SORDER linker command R10-58(ASM)­

R10-59(ASM)
Sorting table of data R5-139(MCC)
Source code

displaying
LIST command R3-87(XRAY)

intermixed with assembly
LINES option R3-107(XRAY)

Source file
assembly U4-2(XRAY)
high-level U4-2(XRAY)
location U4-10(XRAY)

Source file include directive (#include) R4-
6(MCC)

Source file problems, detecting
/extra_checks U3-23(MCC)
-v option U2-38(MCC), U2-35(CCC)

Source patching R4-12(XRA Y)

Documentation Set for 68000/ECOOO/HCOOO and 68302

Source-level screen S1-5(SUP)
SPACE command S2-134(SUP)
Space, testing for a R5-92(MCC)
SPC assembler directive R5-70(ASM)
Special characters

librarian R13-l(ASM)
linker RlO-l(ASM)

Special interrupt vector S2-129(SUP)
speed S1-8(SUP)
sprintf function R5-20(MCC), R5-158(MCC),

R9-11(MCC)
relationship to vsprintf R5-199(MCC)

sqrt function R5-159(MCC), U2-39(MCC), U3-
25(MCC), U2-37(CCC)

Square root of a number, computing R5-
159(MCC)

srand function R5-21(MCC), R5-160(MCC)
S-record format RF-1(ASM)-RF-7(ASM)

data record (Sl) RF-2(ASM)
header record (SO) RF-2(ASM)
module record RF- l(ASM)
record count record (S5) RF-4(ASM)
symbol record RF-l(ASM)

srun command U2-52(CCC)
sscanf function R5-20(MCC), R5-161(MCC),

R9-11(MCC)
Stack R5-4(XRA Y)

16-bit quantities
/min_push_size=2 option U3-

22(MCC)
-K.2 option U2-24(MCC), U2-

21(CCC)
32-bit quantities

/min_push_size=4 option U3-
22(MCC)

-K4 option U2-24(MCC), U2-
21(CCC)

adjust instructions R5-18(XRAY)
disabling frame sharing

/frames U3-21(MCC)
-Kf option U2-25(MCC), U2-22(CCC)

explicit references to R2-23(XRAY)
frame (definition) RD-2(XRAY)
frames R7-6(MCC)

implicit references to R2-23(XRAY)
level(@} R2-2(XRAY)
moving down levels

DOWN command R3-56(XRA Y)
moving up levels

UP command R3-202(XRA Y)
pointer R7-5(MCC)
popping

/optimize=combine_pops option U3-
25(MCC)

-Oc option U2-31(MCC), U2-28(CCC)
Stack level

@symbol R3-60(XRAY)
Stack levels

displaying U4-4(XRAY)
jumping U4-4(XRAY)

Stack viewport U2-20(XRA Y), U3-2(XRA Y),
U3-21 (XRA Y)

Stage directory 11-6(FLEX)
files in Il-8(FLEX), Il-9(FLEX)

Standard C operators RC-1(XRAY)
Standard definition

macros R5-ll(MCC)
types

ptrdiff_t R5-ll(MCC)
size_t R5-1l(MCC)
wchar_t R5-ll(MCC)

Standard error
(see stderr)
getting error messages R5-128(MCC)

Standard 1/0 screen U3-4(XRA Y)
(see I/O screen)
STD R3-80(XRA Y), R3-11 O(XRA Y)

Standard 1/0 viewport, display
STDIO option R3-108(XRAY)

Standard input
(see stdin)
reading a character R5-78(MCC)

Standard output
(see stdout)
getting a string R5-137(MCC)
writing a character R5-135(MCC)

Start button
X Window support UA-13(XRAY)

Master lndex-89

START linker command R10-60(ASM), R10-
63(ASM)

Start program execution
GO command R3-69(XRAY)

Starting address R9-6(ASM)
linker commands

START Rl0-63(ASM)
RESTART command R3-144(XRAY)

Starting debugger S1-2(SUP)
Starting XICE S1-4(SUP)
.STARTOF. operator R2-18(ASM)
Start-up

license server daemons I2-2(FLEX), I2-
3(FLEX), Ul-2(FLEX), U2-
6(FLEX)

manual 12-7(FLEX)
mlicense.daemon 12-3(FLEX), U2-

3(FLEX)
STARTUP command R3-180(XRAY), U4-

3(XRAY), U4-9(XRAY)
Start-up options saved

STARTUP command R3-180CXRAY)
Start-up routine U2-53(MCC), U3-44(MCC),

U2-45(CCC)
startup.xry file U2-10(XRAY), U4-9(XRAY)
Statement

assembler R2-l(ASM)-R2-4(ASM)
Statement debugging R2-11 (XRA Y)
Statements R3-18(MCC)

break R3-19(MCC)
compound R3-19(MCC)
continue R3-19(MCC)
do-while R3-20(MCC)
expression R3-19(MCC)
for R3-20(MCC)
goto R3-21(MCC)
if R3-21(MCC)
if-else R3-22(MCC)
labeled R3-21(MCC)
return R3-22(MCC)
switch R3-23(MCC)
while R3-24(MCC)

Master lndex-90

Static
keyword R3-5(MCC)
storage class R3-5(MCC)
variables R6-42(MCC)

names Rll-2(MCC)
Static constructor R2-11(CCC)
Static data members RC-4(CCC), UA-4(CCC)
Static destructor R2-12(CCC)
Static member functions RC-4(CCC), UA-

4(CCC)
Static members R2-15(CCC)

class R2-15(CCC)
data R2-15(CCC)

Static variables R2-15(XRA Y)
STATUS S1-8(SUP)
Status

license server Ul-4(FLEX), U3-7(FLEX)
license server daemons Ul-4(FLEX), U3-

7(FLEX)
licenses Ul-4(FLEX), U3-2(FLEX), U3-

6(FLEX)
STATUS BUFFER command R3-183(XRAY)
Status button

X Window support UA-13(XRAY)
status button

Sun View support UH-13(XRAY)
STATUS command R3-182(XRAY), U3-

28(XRAY)
STATUS EVENT command R3-187(XRAY)
Status Line viewport U2-15(XRAY), U3-

1(XRAY), U3-22(XRAY)
assembly-level U3-2(XRAY)
break field (BREAK#) U3-24(XRAY)
CPU field (CPU) U3-24(XRAY)
help field (HELP) U3-24(XRAY)
info field U3-24(XRAY)
module field (MODULE) U3-24(XRAY)
OPTION CPU command U3-24(XRAY)
REG U3-24(XRA Y)
status field (Command) U3-23(XRAY)
status field (Define) U3-23(XRAY)
status field (Execute) U3-23(XRAY)
status field (Include) U3-23(XRAY)
status field (Input) U3-23(XRAY)

Documentation Set for 68000/ECOOO/HCOOO and 68302

status field (Macro) U3-23(XRAY)
status field (Output) U3-23(XRAY)
status field (Reading) U3-23(X.RAY)
status field (View) U3-23(XRAY)
status field (Working) U3-23(XRAY)
version field (MRI) U3-24(XRAY)
VOPEN command U3-22(X.RAY)
WARNING U3-24(XRAY)

Status mnemonics supported S2-72(SUP)
Status of XRA Y or target

STATUS command R3-182(X.RAY)
STATUS QUALIFY command R3-188(XRAY)
STATUS TRACE command R3-189(XRAY)
STATUS TRIGGER command R3-191(XRAY)
STD

standard 1/0 screen R3-80(XRAY), R3-
110(XRAY)

stdarg.h include file R5-10(MCC)
__ STDC __ preprocessor symbol R4-

1 (MCC), U2-43(MCC), U3-36(MCC)
__ STDC __ preprocessor symbol U2-

8(MCC), U2-16(MCC), U3-11(MCC),
U2-12(CCC)

stddef.h include file RS-11 (MCC)
stderr R5-12(MCC), R5-13(MCC), R5-

15(MCC), U3-2(FLEX), U3-3(FLEX),
UA-1(FLEX)

attaching streams to other files R5-
69(MCC)

directing diagnostic messages
/diagnostics_to=stderr option U3-

21(MCC)
-Fee option U2-19(MCC)

redirection
+E option U2-16(CCC)

stdin R5-12(MCC), R5-14(MCC), R5-15(MCC)
attaching streams to other files R5-

69(MCC)
read characters from stdin into buffer R5-

80(MCC)
retrieving next character from R5-

78(M CC)

stdio.h include file R5-2(MCC), R5-12(MCC),
R5-14(MCC), R5-20(MCC), R5-
150(MCC), R5-193(MCC), R9-11{MCC)

stdlib.h include file R5-2(MCC), R5-16(MCC),
R5-17(MCC)

stdout R5-12(MCC), R5-14(MCC), R5-
15(MCC)

attaching streams to other files R5-
69(MCC)

directing diagnostic messages
/diagnostics_to=stdout option U3-

21(MCC)
-Feo option U2-20(MCC)

mlicense messages U3-2(FLEX), U3-
3(FLEX)

mlicense.daemon messages U2-
8(FLEX), U3-l(FLEX), UA-
2(FLEX)

write string to R5-137(MCC)
STEP button

Sun View support UH-13(XRAY)
X Window support UA-13(XRAY)

Step button
X Window support UA-13(XRAY)

step button
Sun View support UH-13(XRAY)

STEP command R3-193(XRA Y), U1-4(XRAY),
U4-3(XRAY)

assembly-level mode U2-22(XRAY)
high-level mode U2-16(XRAY)

STEP command key U2-16(XRAY)
Apollo support UB-5(XRAY)
DECstation support UC-4(XRAY)
HP support UD-6(X.RAY)
IBM RS/6000 support UE-4(X.RAY)
Motorola Delta Series support UF-

4(X.RAY)
PC support UG-4(X.RAY)
Sun support UH-4(X.RAY)
VT terminal support UI-4(X.RAY)

stepo button
Sun View support UH-13(X.RAY)

Master lndex-91

STEPOVER button
Sun View support UH-13(XRAY)
X Window support UA-13(XRAY)

STEPOVER command R3-195(XRAY), U1-
4{XRAY), U2-19(XRAY), U4-3(XRAY)

STEPOVER command key
Apollo support UB-4(XRAY), UC-

4(XRAY)
DECstation support UC-4(XRAY)
HP support UD-7(XRA Y)
IBM RS/6000 support UE-4(XRA Y)
Motorola Delta Series support UF-

4(XRAY)
PC support UG-4(XRAY)
Sun support UH-4(XRAY)
VT terminal support Ul-3(XRAY)

StepOvr button
X Window support UA-13(XRAY)

Stepping U4-3(XRA Y)
(see also Single-stepping, STEP command,

STEPOVER command)
Stepping speed

SPEED option R3-108(XRAY)
Step-through interrupts S2-136(SUP)
STI command· S2-136(SUP)
stop button

Sun View support UH-13(XRAY)
Stop execution U4-6(XRA Y)
Stop monitoring expressions

NOMONITOR command R3-102(XRAY)
Stop XRA Y session

QUIT command R3-138(XRAY)
Storage

allocation of data types R6-3(MCC)
classes R3-4(MCC)

keywords R3-4(MCC)
dynamically allocated

changing the size R5-143(MCC)
layout R6-l(MCC)

Storage classes R2-15(XRAY), R4-S(CCC)
(see also Symbolic references, storage

classes)
Straddling bits R6-23(MCC)
strcat function R5-162(MCC)

Master lndex-92

strcat macro R4-29(XRA Y)
strchr function R5-163(MCC)
strchr macro R4-30(XRA Y)
strcmp function R5-164(MCC)

relationship to strcoll R5-165(MCC)
strcmp macro R4-31(XRAY)
strcoll function R5-165(MCC)

relationship to strxfrm R5-181(MCC)
strcpy function R5-166(MCC)
strcpy macro R4-32(XRA Y)
strcspn function R5-167(MCC)
Stream

association to a file R5-68(MCC)
reading a long integer R5-79(MCC)
reading a short integer R5-81(MCC)
writing a long integer R5-136(MCC)
writing a short integer R5-138(MCC)

Strength reduction R102(MCC)
optimization R109(MCC)

Strength reduction optimization R5-
5(XRAY), RS-11 (XRAY)

strerror function R5-168(MCC)
stricmp macro R4-33(XRA Y)
String R6-16(MCC)

comparing two strings R5-164(MCC), R5-
165(MCC), R5-171(MCC)

concatenating two strings R5-162(MCC),
R5-170(MCC)

conversion to unsigned long integer R5-
180(MCC)

copying one string to another string R5-
166(MCC)

copying string R5-1 72(MCC)
finding first occurrence of same character

from two strings R5-173(MCC)
finding first occurrence of same sequence

of characters from two
strings R5-176(MCC)

finding last occurrence of a character in a
string R5-l 74(MCC)

first occurrence of a character R5-
163(MCC)

formatted string conversion R5-
161(MCC)

Documentation Set tor 68000/ECOOO/HCOOO and 68302

formatting R5-158(MCC), R5-199(MCC)
functions R5-17(MCC}-R5-18(MCC), R5-

162(MCC}-R5-181(MCC)
initial segment length R5-167(MCC), R5-

175(MCC)
length R5-169(MCC)
literals R2-6(MCC)
locating tokens R5-178(MCC)
multibyte

conversion from wide character R5-
201(MCC)

conversion from wide character
string R5-200(MCC)

conversion to wide character
string R5-114(MCC)

reading from a file R5-57(MCC)
transformation R5-181(MCC)
writing a string to a file R5-65(MCC)
writing to standard output R5-137(MCC)

string.h include file R5-17(MCC)
Strings

comparing R4-31(XRAY), R4-33(XRAY),
R4-35(XRAY)

comparison R4-3l(XRAY)
concatenating R4-29(XRA Y)
copying R4-32(XRAY)
expression string R3-62(XRA Y), R3-

154(XRAY), R3-156(XRAY), R3-
197(XRAY)

locating characters R4-30(XRAY)
searching

NEXT command R3-97(XRAY)
strings section R8-4(MCC), U2-16(MCC), U3-

15(MCC), U2-13(CCC)
naming

/rename options U3-31(MCC)
-NS option U2-29(MCC), U2-

26(CCC)
specifying address mode

/strings_addr_as options U3-
16(MCC)

-as options U2-17(MCC), U2-
14(CCC)

strlen function R5-169(MCC)

strlen macro R4-34(XRA Y)
strncat function R5-170(MCC)
strncmp function R5-171(MCC)
strncmp macro R4-35(XRA Y)
strncpy function R5-172(MCC)
strpbrk function R5-173(MCC)
strrchr function R5-174(MCC)
strspn function R5-175(MCC)
strstr function R5-176(MCC)
strtod function R5-177(MCC), R9-12(MCC)
strtok function R5-21(MCC), R5-178(MCC)
strtol function R5-179(MCC), R9-12(MCC)
strtoul function R5-180(MCC), R9-12(MCC)
struct scope R4-16(CCC)
struct type R6-4(MCC)
struct/union in parameter area, alignment

of R7-4(MCC)
Structure

return value R7-4(MCC)
Structure alignment R6-29(MCC)

68000/68020 R6-36(MCC)
Structure member

determining offset R5-125(MCC)
Structure members, aligning

/align option U3-ll(MCC)
/ssmultiple option U3-ll(MCC)
-Z options U2-40(MCC), U2-37(CCC)

Structure padding R6-29(MCC)
Structure size

-Zm option U2-40(MCC), U2-38(CCC)
Structured control directive code(+) R7-

14(ASM)
Structured control directives

(see Directives, assembler)
Structured control expressions R7-1(ASM)­

R7-3(ASM)
Structured directives, nesting R7-14(ASM)
Structures R6-17(MCC)

lconv R5-100(MCC)
packed R6-27(MCC)
packing R6-39(MCC)
size R6-31(MCC)
size, 68000 R6-31(MCC)
tm R5-19(MCC)

Master lndex-93

Structures, packed
/define option U3-21(MCC)
-D option U2-18(MCC), U2-15(CCC)

strxfrm function R5-181(MCC)
Stub RC-4(CCC), UA-4(CCC)
Stubs R3-15(CCC)
Subexpression optimization R5-6(XRA Y)
Subscript operation R2-24(CCC)
Subsection R9-3(ASM)
Suffix, C++ files

+z option U2-38(CCC)
Summary message

suppression
/suppress=summary U3-30(MCC)
-Qs option U2-36(MCC), U2-33(CCC)

Summary of command line options U2-
11(MCC), U3-5(MCC), U2-7(CCC)

Sun
host-specific information UH-l(XRAY)

Sun arch command IA-1(FLEX)
Sun support

MOVE TO BOTTOM control key UH-
3(XRAY)

MOVE TO TOP control key UH-3(XRAY)
_SUN3 preprocessor symbol R4-3(MCC)
Sun-3s and SPARCstations, installing on

both IA-2(FLEX)
_SUN4 preprocessor symbol R4-3(MCC)
Suns

message display Ul-3(FLEX), U2-
8(FLEX), U3- l(FLEX), UA-
2(FLEX)

mixed architectures U2-10(FLEX)
Supported operating systems IP-1(MCC),

UP1(MCC), IP-1(XRAY)
Suppressing executable file

-c option U2-18(MCC), U2-14(CCC)
swab function R5-182(MCC)
Swapping bytes in memory R5-182(MCC)
switch statement R3-23(MCC)

generating code for RlOlO(MCC)
switch statements R5-7(XRA Y)

generating code for R5-7(XRAY)

Master lndex-94

Symbol
name size

linker RG-3(ASM)
Symbol (definition) R3-4(XRAY)
Symbol commands R3-9(XRAY)

ADD R3-9(XRAY), R3-18(XRAY)
CONTEXT R3-9(XRA Y), R3-43(XRA Y)
DELETE R3-9(XRAY), R3-48(XRAY)
PRINTSYMBOLS R3-9(XRAY), R3-

127(XRAY)
PRINTTYPE R3-9(XRAY), R3-

130(XRAY)
SCOPE R3-9(XRAY), R3-152(XRAY)

Symbol names
convention U2-37(MCC), U3-13(MCC),

U2-34(CCC)
prepend dot

/prepend=dot U3-12(MCC)
-upd option U2-37(MCC), U2-

34(CCC)
prepend underscore

/prepend=underscore U3-12(MCC)
-upu option U2-37(MCC), U2-

34(CCC)
suppress prefix

/noprepend option U3-12(MCC)
-us option U2-37(MCC), U2-34(CCC)

Symbol record RF-1(ASM)
Symbolic addressing R2-4(ASM}-R2-6(ASM)
Symbolic references R2-15(XRAY), U4-

14(XRAY)
data types R2-16(XRAY)

type casting R2-18(XRAY)
type conversion R2-17(XRAY)
variable references R2-22(XRAY)

program stack R2-23(XRA Y)
explicit references R2-23(XRAY)
implicit references R2-23(XRAY)

qualified reference R2-19(XRAY)
scoping rules R2-19(XRAY)
storage classes

global R2-15(XRAY)
local R2-16(XRAY)
register R2-16(XRAY)

Documentation Set for 68000/ECOOO/HCOOO and 68302

static R2-15(XRAY)
Symbols R2-7(ASM)-R2-10(ASM), R2-

7(XRAY)
absolute R2-9(ASM), R4-7(ASM)
active R4-20(XRAY)
address R2-9(XRA Y)
address range R2-10(XRAY)
as command parameters R3-4(XRAY)
creating R3-18(XRAY)
debug information U4-13(XRAY)
debugger R2-8(XRAY), R3-18(XRAY)
deleting

DELETE command R3-48(XRA Y)
displaying

PRINTSYMBOLS command R3-
127(XRAY)

SYMBOLS command R3-108(XRAY)
external R4-6(ASM)
invalid R2-8(ASM)
keywords R2-9(XRA Y)
local R2-16(XRAY), R4-8(XRAY)
macro R2-8(XRA Y)
PRINTSYMBOLS cannot find U4-

14(XRAY)
program R2-7(XRAY), R3-18(XRAY)
qualified R3-4(XRAY)
relocatable R2-9(ASM), R4-7(ASM)
reserved R2-8(XRAY), RA-l(XRAY)

NARG R2-9(ASM)
type

PRINTTYPE command R3-
130(XRAY)

valid R2-8(ASM)
XRAY cannot find U4-14(XRAY)

SYMTRAN linker command R10-61(ASM)­
R10-62(ASM)

Syntax
addressing mode R3-15(ASM)-R3-

20(ASM)
assembler R2-6(ASM)-R2-17(ASM)
effective address fields R3-14(ASM)
librarian R13-l(ASM)-R13-2(ASM)
linker R10-l(ASM)-R10-4(ASM)

Syntax checking only
/syntax_only option U3-33(MCC)
-y option U2-40(MCC), U2-37(CCC)

Syntax, ANSI C RB-1(MCC)
Syntax, compiler U2-1(MCC), U3-1(MCC)
sys U3-3(MCC)
SYS$SCRATCH U3-4(MCC), U3-26(ASM)
SYSTARTUP.COM file (VMS) U3-3(MCC)
System data R9-37(MCC)
System functions R5-19(MCC), R9-31(MCC)

close R5-39(MCC), R9-31(MCC)
relationship to fclose R5-51(MCC)

T

creat R5-42(MCC)
relationship to close R5-39(MCC)
relationship to read R5-142(MCC)
relationship to write R5-202(MCC)

_exit R5-48(MCC>
!seek R5-108(MCC), R9-31(MCC)

relationship to fseek R5-72(MCC)
relationship to fsetpos R5-73(MCC)
relationship to rewind R5-145(MCC)

open R5-126(MCC), R9-31(MCC)
relationship to close R5-39(MCC)
relationship to fopen R5-62(MCC)
relationship to read R5-142(MCC)
relationship to write R5-202(MCC)

read R5-142(MCC), R9-31(MCC)
sbrk R5-146(MCC)
unlink R5-192(MCC), R9-31(MCC)

relationship to remove R5-144(MCC)
write R5-202(MCC), R9-31(MCC)

relationship to fflush R5-54(MCC)

t assembler command line flag U2-11(ASM),
U3-11(ASM)

TAD command S2-137(SUP)
Tagging functions

/trace option U3-33(MCC)
-Kt option U2-26(MCC), U2-23(CCC)

tags section R8-6(MCC), U2-16(MCC), U2-
26(MCC), U3-15(MCC), U3-33(MCC),
U2-13(CCC), U2-23(CCC)

Master lndex-95

tail command 12-4(FLEX)
tan function R5-183(MCC), U2-40(MCC), U3-

25(MCC), U2-37(CCC)
Tangent of a number, computing R5-

183(MCC)
tanh function R5-184(MCC), U2-40(MCC),

U3-25(MCC), U2-37(CCC)
Tape

(see also 9-track tape)
(see also Cartridge tape)
(see Distribution)

tar command 11-7(FLEX), 11-19(FLEX)
Target functions R2-14(XRAY), R3-38(XRAY)
Target memory test S2-38(SUP), S2-40(SUP),

S2-42(SUP), S2-44(SUP), S2-46(SUP),
S2-48(SUP)

Target RAM test S2-34(SUP)
TCEBRK command S2-138(SUP)
TCP/IP installation on Apollos 18-1 (FLEX)

version required IB-l(FLEX)
TCP/IP port number l3-2(FLEX)

default I3-2(FLEX)
missing I2-8(FLEX)

TCP/IP protocol U2-11 (FLEX)
TED command S2-139(SUP)
template keyword R4-6(CCC), RB-1(CCC)
Template processing R4-6(CCC)
Temporary breakpoints S4-5(SUP), U4-

6(XRAY)
setting

(see Breakpoints)
Temporary file creation

V AXNMS U3-26(ASM)
Temporary file placement

DOS U2-5(ASM)
Temporary files

UNIX
alternate locations U2-4(MCC)

VMS
alternate locations U3-4(MCC)

Temporary files location U4-11(XRAY)
TERM environment variable UC-2(XRAY),

UD-2(XRAY), UD-3(XRA Y)

Master lndex-96

Terminal change 51-B(SUP)
color Sl-8(SUP)

Terminate XRA Y session
QUIT command R3-138(XRAY)

Termination
abnormal program R5-22(MCC)
normal program R5-47(MCC), R5-

48(MCC)
TERMINFO environment variable UD-

4(XRA Y)
TEST command R3-197(XRA Y)

size qualifiers R3-3(XRAY)
Test coverage

ANALYZE command R3-22(XRAY)
data collection R6-2(XRAY)

ANALYZE R6-2(XRA Y)
PRINTANAL YSIS command R3-

115(XRAY)
program_unit R3-22(XRAY), R3-

115(XRAY), R3-124(XRAY)
reporting results R6-3(XRA Y)

branch coverage R6-3(XRAY)
function coverage R6-3(XRAY)
instruction coverage R6-3(XRAY)
line coverage R6-3(XRAY)
PRINTANALYSIS R6-3(XRAY)

tutorial R6-3(XRAY)
Test scripts, running 12-2(FLEX)
Testing installation 12-1(FLEX)
Tests R5-88(MCC)
TGR S6-13(SUP)

event system S6-ll(SUP)
external S6-ll(SUP)

this keyword R4-6(CCC)
this pointer R2-7(CCC), RC-4(CCC), UA-

4(CCC) .
Threads

definition R9-ll(MCC)
multiple R9-ll(MCC)

throw keyword R4-6(CCC), RB-1 (CCC)
TIO command S2-141(SUP)

Documentation Set for 68000/ECOOO/HCOOO and 68302

Time
conversion to string R5-25(MCC), R5-

43(MCC)
processor time used R5-38(MCC)

Time and date functions R5-19{MCC)
asctime R5-25(MCC)
clock R5-38(MCC)
ctime R5-43(MCC)
difftime R5-44(MCC)
gmtime R5-82(MCC)
localtime R5-104(MCC)
time R5-185(MCC)

Time base
maximum 86-3(8UP)

time function R5-185(MCC)
Time measurement

maximums 86-10(8UP)
Time optimization

/optimize=time option U3-28(MCC)
-Ot option U2-33(MCC), U2-29(CCC)

__ TIME __ preprocessor symbol R4-2(MCC)
Time stamp

compilation
-Vt option U2-38(MCC), U2-35(CCC)

installation 86-4(8UP)
Time stamp information

saving in file 86-15(8UP)
Time Stamp module

count occurences 86-26(8UP)
Time Stamp module S6-1(SUP}-??

absolute time 86-3(8UP)
code accesses 86-3(8UP)
counter overflow 86-7(8UP), S6-10(SUP)
elapsed time S6-2(SUP), S6-16(SUP)
interrupt latency S6-7(8UP)
maximums S6-10(SUP)
module linkage activity S6-3(SUP)
relative time S6-3(SUP)
switches S6-ll(SUP)
time base switch S6-10(SUP)

Time stamp module
counter S6-12(SUP)
using S6-6(SUP)
viewing information S6-14(SUP)

time.h include file R5-2(MCC), R5-19(MCC)
Timeout S2-87(SUP)
Timeout warning S2-93(SUP)
Timestamp S2-151{SUP), S2-153(SUP)
timestamp units S2-154(SUP)
Title for listing file

/title option U3-29(MCC)
-Flt option U2-20(MCC), U2-17(CCC)

tm structure R5-19(MCC)
TMP environment variable U2-5(ASM), U2-

16{ASM)
TMP _MAX macro R5-15(MCC)
tmpfile() VAX function U3-4(MCC), U3-

26(ASM)
toascii function R5-186(MCC)
Tokens

location in string R5-178(MCC)
_tolower function R5-188(MCC)
tolower function R5-3(MCC), R5-S(MCC), R5-

187(MCC)
Toolchain compatibility S1-1{SUP)
Toolkit U2-1{FLEX)

(see also Programs)
access l3-6(FLEX)
definition 11-l(FLEX)
directory installed in Ul-l(FLEX), UA-

2(FLEX)
specifying in UNIX start-up file Ul-

l(FLEX)
error messages UC-ll(FLEX)
executing a program Ul-2(FLEX)
expiration date 13-3(FLEX)
host located on U2-10(FLEX)
hosts, specifying U2-l(FLEX)
installing ll-6(FLEX)
installing subset of Il-2(FLEX)
networks, specifying U2-l(FLEX)
testing 12-2(FLEX)
version number l3-3(FLEX)

Toolkit components U1-1(MCC)
Toolkit, components U1-1(CCC)
_toupper function R5-190(MCC)
toupper function R5-3(MCC}, R5-S(MCC), R5-

189(MCC)

Master lndex-97

TRACE S2·145(SUP)
Trace S2-59(SUP), S2-60(SUP), S2-65(SUP),

S2-138(SUP), S2-151(SUP), 52·
153(SUP)

capturing S3-37(SUP)
clearing S3-37(SUP)
disassembling S3-39(SUP)
displaying S3-38(SUP)
not supported Sl-8(SUP)
recording bus timing information S2-

29(SUP)
saving to a file S3-40(SUP)

Trace a subroutine S4-22(SUP)
Trace buffer

SETSTATUS QUALIFY command R3-
167CXRAY)

Trace buffer, clear S2-142(SUP)
TRACE command R3·199(XRAY)
Trace command key

Apollo trace support UB-6CXRA Y)
DECstation trace support UC-6(XRAY)
HP trace support UD-8(XRA Y)
IBM RS/6000 trace support UE-5(XRAY)
Motorola Delta Series trace support UF-

5(XRAY)
PC trace support UG-5(XRAY)
Sun trace support UH-6(XRA Y)
VT terminal trace support UI-5(XRAY)

Trace Command Mode R6-21(XRAV), R6-
22(XRAY)

Trace commands
STATUS BUFFER R3-183(XRAY)
STATUS EVENT R3-187CXRAY)
STATUS QUALIFY R3-188(XRAY)
STATUS TRACE R3-189(XRAY)
STATUS TRIGGER R3-191CXRAY)

Trace cycle number S2·143(SUP)
Trace events

SETSTATUS EVENT command R3-
16l(XRAY)

Trace interval S2-144(SUP)

Master lndex-98

Trace mode S2-145(SUP), R6-20(XRAY)
alignment R3-l 7l(XRAY), R3-

200(XRAY)
prefetch R3-l 7l(XRAY), R3-200(XRAY)
trigger R3- l 73(XRA Y)

Trace mode (definition) RD·2(XRAY)
Trace mode keys UB-S(XRAV), UC-S(XRA V),

UD-7(XRAV), UE-4(XRAV), UF·
4(XRAV), UG-4(XRAV), UH-S(XRAV),
Ul-4(XRAY)

Trace support
buffer displayed

STATUS BUFFER command R3-
183(XRAY)

command mode R6-2l(XRAY), R6-
22(XRAY)

data collection
TRACE command R3-170(XRAY),

R3-l99(XRAY)
event definition RD-l(XRAY)
event sequence definition RD-l(XRA Y)
events

STATUS EVENT command R3-
187(XRAY)

frame definition RD-l(XRAY)
program flow R6-19(XRAY)
qualifications for trace buffer

STATUS QUALIFY command R3-
188(XRAY)

SETSTATUS EVENT command R3-
16l(XRAY)

SETSTATUS QUALIFY command R3-
167(XRAY)

SETSTATUS TRIGGER command R3-
l 73(XRAY)

setting triggers
SETSTATUS TRIGGER

command R3- l 73(XRA Y)
STATUS BUFFER command R3-

183(XRAY)
STATUS EVENT command R3-

187(XRAY)
STATUS QUALIFY command R3-

188(XRAY)

Documentation Set for 68000/ECOOO/HCOOO and 68302

STATUS TRACE command R3-
189(XRAY)

STATUS TRIGGER command R3-
19l(XRAY)

summary of settings
STATUS TRACE command R3-

189(XRAY)
TRACE command R3-170(XRAY), R3-

199(XRAY)
trace mode definition RD-2(XRAY)
trigger definition RD-2(XRAY)
triggers

STATUS TRIGGER command R3-
. 191(XRAYJ

tutorial R6-24(XRA Y)
Trace viewport U2-15(XRAY), U2-16(XRAY),

U3-25(XRA Y), U4-4(XRA Y)
EXPAND command U3-26(XRAY)

Tracing RF-7(XRAY)
Tracing information

FRAMESTOP option R3-106(XRAY)
track command key

Apollo trace support UB-6(XRAY)
DECstation trace support UC-6(XRAY)
HP trace support UD-8(XRAY)
IBM RS/6000 trace support UE-5(XRAY)
Motorola Delta Series trace support UF-

6(XRAY)
PC trace support UG-6(XRAY)
Sun trace support UH-6(XRAY)
VT terminal trace support UI-6(XRAY)

Trailer bytes R6-31(MCC), R6-34(MCC)
Transcendental functions

(see Mathematical functions)
Trap numbers S2-82(SUP)
TRCCLR command S2-142(SUP)
TRCFRAME command S2-143(SUP)
TRCINT command S2-144(SUP)
TRCMODE command S2-145(SUP)
Trigger (definition) RD-2(XRA Y)
Trigger (trace) R3-173(XRA Y)
Trigger, define a S2-146(SUP)
Triggers

arming S2-76(SUP), S2-78(SUP)

Triggers, trace
SETSTATUS TRIGGER command R3-

173(XRAY)
STATUS TRIGGER command R3-

191(XRAY)
Tri-state of address bus S2-137(SUP)
Truncating identifiers

/truncatejdentifiers U3-12(MCC)
-ut option U2-8(MCC), U2-37(MCC), U2-

34(CCC)
try keyword R4-6(CCC), RB-1(CCC)
TSTAMP command S2-151(SUP), S2-

153(SUP)
TTL assembler directive R5-71(ASM)
TUNITS command S2-154(SUP)
Tutorial

assembly-level mode U2-20(XRAY)
high-level mode U2-12(XRAY)
macros U2-26(XRA Y)
XEL toolchain and XICE debugger S3-

l(SUP)
Type casting R3-9(MCC), R3-15(MCC), R2-

18(XRAY)
Type checking

TYPECHECK option R3-108(XRAY)
Type conversion R3-14(MCC)
Type conversions R2-17(XRAY)
Type of symbol

PRINTTYPE command R3-130(XRAY)
typedef R3-4(MCC), R3-18(MCC)
Typedef declarations R4-10(CCC)
typeof operator R3-13(MCC)
typeof operator, enabling

/mri_extensions option U3-24(MCC)
Types

(see also Data, types)
fpos_t

fgetpos function R5-56(MCC)
fsetpos function R5-73(MCC)

jmp_buf R5-9(MCC)
lconv structure R5-100(MCC)
ptrdiff_t R5-ll(MCC)
returned for functions R9-5(MCC)
size_t R5-ll(MCC), R5-17(MCC)

Master lndex-99

va_list R5-10(MCC)
wchar_t R5-ll(MCC)

mbstowcs function R5-114(MCC)
mbtowc function R5-113(MCC), R5-

115(MCC)
wcstombs function R5-200(MCC)
wctomb function R5-201(MCC)

Types, data R2-16(XRAY)
Type-safe linkage RC-4(CCC), UA-4(CCC)

u
-u linker command line option U2-15(ASM)
-U option U2-36(MCC), U2-33(CCC)
U undefined label error R7-14(ASM)
-ui option U2-37(MCC), U2-34(CCC)
UIR command S2-156(SUP)
Unary expressions R3-8(MCC)
#Undef directive R4-6(MCC), R4-31(MCC)
Undefined label error (U) R7-14(ASM)
Undefining preprocessor macros

/undefine option U3-33(MCC)
-U option U2-36(MCC), U2-33(CCC)

ungetc function R5-191(MCC)
Uninitialized data section U2-16(MCC), U3-

15(MCC), U2-13{CCC)
Uninitialized static data section

naming
/rename option U3-31(MCC)
-NZ option U2-29(MCC), U2-

26(CCC)
Union return value R7-4(MCC)
union type R6-4(MCC)
Unions R6-22(MCC)
UNIX

(see UNIX/DOS)
command line U2-l(MCC)
command line examples U2-41CMCC)
command line syntax U2-l(CCC)
compiler invocation U2-l(CCC)
compiler syntax U2-l(MCC)
compiler use U2-l(MCC), U2-l(CCC)
compiling a program U2-53(MCC), U2-

45(CCC)

Master lndex-100

environment variables U2-3(MCC)
file locations U2-3(MCC)
file name defaults U2-2(MCC)
invoking compiler U2-l(MCC)
libraries provided U2-50(MCC)
option form, positive and negative U2-

10(MCC)
option, command line

descriptions of U2-10(MCC)
system functions U2-52(MCC), U2-

44(CCC)
UNIX file locations U2-3(CCC)
UNIX level-1 functions U2-43(CCC)
UNIX level-1+ elements R6-2(CCC)
_UNIX preprocessor symbol R4-3(MCC)
UNIX start-up file U1-1(FLEX)

specifying license file path in 11-
15(FLEX), 12-l(FLEX), 12-
6(FLEX)

specifying location of toolkit in 12-
l(FLEX)

UNIX System V/386
accessing files in nondefault

directories 13-2(MCC)
distribution format 13-l(MCC)
installation procedure 13-l(MCC)

UNIX/DOS U2-1 (ASM)-U2-28(ASM)
assembler U2-2(ASM)-U2-12(ASM)

command line flags U2-5(ASM)-U2-
1 l(ASM)

abspcadd U2-6(ASM)
brb U2-6(ASM)
brl U2-6(ASM)
hrs U2-6(ASM)
brw U2-6(ASM)
case U2-7(ASM)
cex U2-7(ASM)
cl U2-7(ASM)
ere U2-7(ASM)
d U2-7(ASM)
e U2-7(ASM)
fr! U2-7(ASM)
frs U2-7(ASM)
g U2-7(ASM)

Documentation Set for 68000/ECOOO/HCOOO and 68302

i U2-7(ASM)
lien U2-8(ASM)
me U2-8(ASM)
md U2-8(ASM)
mex U2-8(ASM)
nest U2-8(ASM)
o U2-8(ASM)
old U2-8(ASM)
op U2-8(ASM)
opnop U2-9(ASM)
p U2-9(ASM)
pco U2-9(ASM)
per U2-10(ASM)
pcs U2-10(ASM)
quick U2-10(ASM)
r U2-10(ASM)
rel32 U2-ll(ASM)
s U2-ll(ASM)
t U2-11(ASM)
w U2-11(ASM)
x U2-11(ASM)

command line options U2-2(ASM)-
U2-4(ASM)

-b U2-2(ASM)
-D U2-2(ASM)
-f U2-3(ASM)
-I U2-3(ASM)
-L U2-3(ASM)
-1 U2-3(ASM)
-o U2-3(ASM)
-V U2-3(ASM)

file name defaults U2-4(ASM)
invocation examples U2-12(ASM)
invocation syntax U2-2(ASM)

introduction U2-l{ASM)
librarian U2-21(ASM)-U2-24(ASM)

command line options U2-21(ASM)-
U2-22(ASM)

-a U2-21(ASM)
-d U2-21(ASM)
-e U2-21(ASM)
-1 U2-21(ASM)
-r U2-22(ASM)
-V U2-22(ASM)

file name defaults U2-22(ASM)
invocation examples U2-23(ASM)­

U2-24(ASM)
linker U2-13(ASM)-U2-20(ASM)

command line options U2-13(ASM)-
U2-15(ASM)

-C U2-13(ASM)
-c U2-13(ASM)
-F U2-13(ASM)
-o U2-14(ASM)
-r U2-14(ASM)
-u U2-15(ASM)
-V U2-15(ASM)

file name defaults U2-16(ASM)
illegal option combinations U2-

15(ASM)
invocation examples U2-17(ASM)­

U2-20(ASM)
return codes U2-28(ASM)
utility programs

IEE2AOUT U2-24(ASM)-U2-
28(ASM)

Unknown command 53-21 (SUP)
UNKNOWN TYPE U4-15(XRAY)
unlink function R5-192(MCC), R9-31(MCC),

U2-52(MCC), U3-44(MCC), U2-
44(CCC)

relationship to remove R5-144(MCC)
Unlinking a file name R5-192(MCC)
unpacked keyword R4-4(CCC)
unpacked keyword, disabling

-nx option U2-40(MCC), U2-37(CCC)
unpacked type R6-38(MCC)
Unreachable (dead) code

elimination R102(MCC), R5-
2(XRAY)

Unreachable code, compiler
optimization R5-5(XRA Y)

Unreferenced variable R2-22(XRA Y)
Unsigned char default

/unsignedchar option U3-22(MCC)
-Ku option U2-27(MCC), U2-23(CCC)

Unsigned integer
conversion to ASCII string R5-96(MCC)

Master I ndex-1 01

Unsigned long integer
conversion from string R5-180(MCC)
conversion to ASCII string R5-110(MCC)

unsigned types R3-1(MCC), R6-3(MCC)
unsigned char type R6-10(MCC)
unsigned int type R3-2(MCC), R6-

13(MCC)
unsigned long type R3-2(MCC), R6-

14(MCC)
unsigned short type R3-2(MCC), R6-

ll(MCC)
/unsignedchar option (VMS) R4-3(MCC)
Unsupported commands

clock Sl-7(SUP)
CPU Sl-7(SUP)
Ice Sl-7(SUP)
interrupt Sl-7(SUP)
Noice Sl-8(SUP)
nointerrupt Sl-8(SUP)
nomem Sl-8(SUP)
restore Sl-8(SUP)
save Sl-8(SUP)
trace Sl-8(SUP)

until macro R4-36(XRAY), U4-6(XRAY)
Unused definition optimization R5-5(XRAY)
Unzoom viewport

ZOOM command R3-213(XRAY)
UP S2·158(SUP)
UP command R3-202(XRAY}
-upd option U2-37(MCC}, U2-34(CCC}
Update internal registers S2-156(SUP)
UPL(upload hex data to host} S2-159(SUP)
UPLFMT(specify upload format) S2-

160(SUP)
Upload S2-159(SUP)
Upload format S2-160(SUP)
Upper-case characters

converting to R5-189(MCC), R5-
190(MCC)

testing for R5-93(MCC)
UPPERCASE linker command R10·63(ASM)
-upu option U2-37(MCC), U2-34(CCC)
-us option U2-37(MCC), U2-34(CCC)
User access l3-6(FLEX)

Master lndex-102

User setup U1-1(FLEX)
User-defined types R3-18(MCC)
User-modified routines

for embedded systems R9-29(MCC)
Using debugger commands

DEFINE command U2-26(XRAY)
ZOOM command U2-28(XRAY)

Using debugger macros U1-3(XRAY), U2-
26(XRAY)

ADD command U2-26(XRAY)
FOPEN command U2-33(XRAY)
INCLUDE command U2-26(XRAY)
macro definitions

listprime U2-28(XRAY)
readprime U2-28(XRAY)

SHOW command U2-33(XRAY)
VCLOSE command U2-33(XRAY)

USR_MRI U2-4(MCC), U2-5(MCC), U2-
6(MCC), U2-23(MCC), 12-2(FLEX), U1-
1(FLEX), UA-2(FLEX), U2-4(CCC), U2·
20(CCC), U2-21(CCC)

USR_MRI environment variable R3-1 (XRAY),
U2-6(XRAY), U4-11 (XRAY)

-ut option U2-B(MCC), U2-37(MCC), U2-
34(CCC)

-utO option U2-37(MCC), U2-34(CCC)
Utilities

(see Commands)
Utility commands R3-10(XRAY)

ALIAS R3-10(XRAY), R3-20(XRAY)
CEXPRESSION R3-10(XRAY), R3-

38(XRAY)
DOWN R3-10(XRAY), R3-56(XRAY)
ERROR R3-10(XRAY), R3-59(XRAY)
HELP R3-10(XRAY), R3-72(XRAY)
HISTORY R3-10(XRAY), R3-74(XRAY)
INCLUDE R3-10(XRAY), R3-79(XRAY)
JOURNAL R3-10(XRAY), R3-86(XRAY)
LOG R3-10(XRAY), R3-91(XRAY)
MODE R3-10(XRAY), R3-92(XRAY)
OPTION R3-10(XRAY), R3-103(XRAY)
PAUSE R3-10(XRAY), R3-114(XRAY)
RESET R3-10(XRAY), R3-142(XRAY)
RESTART R3-10(XRAY), R3-144(XRAY)

Documentation Set for 68000/ECOOO/HCOOO and 68302

SETSTATUS DIR R3-10(XRAY), R3-
159(XRAY)

SETSTATUS ENVIRONMENT R3-
10(XRAY), R3-160(XRAY)

SETSTATUS READ R3-10(XRAY), R3-
169(XRAY)

SETSTATUS VERIFY R3-10(XRAY), R3-
177(XRAY)

SETSTATUS WRITE R3-10(XRAY), R3-
178(XRAY)

STARTUP R3-10(XRAY), R3-180(XRAY)
STATUS R3-10(XRAY), R3-182(XRAY)
TRACE R3-199(XRAY)
UP R3-10(XRAY), R3-202(XRAY)

Utility programs
IEE2AOUT U2-24(ASM)-U2-28(ASM),

U3-21(ASM)-U3-26(ASM)
-utn option (UNIX/DOS) R4-3(MCC)

v
-V assembler command line option U2-

3(ASM)
-V linker command line option U2-15(ASM)
-V librarian command line option U2-

22(ASM)
-v option U2-38(MCC), U2-35(CCC)
va_arg macro R5-193(MCC)

relationship to va_start R5-196(MCC)
va_end macro R5-195(MCC)

relationship to va_arg R5-193(MCC)
relationship to va_start R5-196(MCC)
relationship to vfprintf R5-197(MCC)
relationship to vprintf R5-198(MCC)

va_list type R5-10(MCC)
va_start macro R5-196(MCC)

relationship to va_arg R5-193(MCC)
relationship to va_end R5-195(MCC)
relationship to vfprintf R5-197(MCC)
relationship to vprintf R5-198(MCC)

VACTIVE command R3-203(XRAY), U4-
2(XRAY)

VACTIVE+ 1 command key
Apollo support UB-4(XRAY)

Apollo trace support UB-6(XRAY)
DECstation support UC-4(XRAY)
HP support UD-6(XRAY)
HP trace support UD-7(XRAY)
IBM RS/6000 support UE-3(XRAY)
IBM RS/6000 trace support UE-4(XRAY)
Motorola Delta Series support UF-

3(XRAY)
Motorola Delta Series trace support UF-

5(XRAY)
PC support UG-3(XRAY)
PC trace support UG-5(XRAY)
Sun support UH-4(XRAY)
Sun trace support UH-5(XRAY)
VT terminal support Ul-3(XRAY)
VT terminal trace support UI-5(XRAY)

VACTIVE-1 command key
Apollo support UB-4(XRAY)
Apollo trace support UB-5(XRAY)
DECstation support UC-3(XRAY)
DECstation trace support UC-5(XRAY)
HP support UD-6(XRAY)
HP trace support UD-7(XRA Y)
IBM RS/6000 support UE-3(XRAY)
IBM RS/6000 trace support UE-4(XRAY)
Motorola Delta Series support UF-

3(XRAY)
Motorola Delta Series trace support UF-

5(XRAY)
PC support UG-3(XRAY)
PC trace support UG-5(XRAY)
Sun support UH-4(XRAY)
Sun trace support UH-5(XRAY)
VT terminal support UI-3(XRAY)
VT terminal trace support Ul-5(XRAY)

Valid hosts IP-1 (FLEX), 11-1 (FLEX)
Valid operating system UP-1(FLEX)
Value comparison

returning the greater of two values R5-
112(MCC)

returning the lesser of two values R5-
123(MCC)

Variable argument
macros R5-10(MCC)

Master lndex-103

va_arg R5-193(MCC)
va_end R5-195(MCC)
va_start R5-196(MCC)

types
va_list R5-10(MCC)

Variable initialization
/init_locals option U3-22(MCC)
-KI option U2-25(MCC), U2-22(CCC)

Variable names, truncating
/truncate_identifiers U3-12(MCC)
-ut option U2-8(MCC), U2-37(MCC), U2-

34(CCC)
Variable values S2-80(SUP), S2-90(SUP), S2-

162(SUP)
Variables R3-1(MCC)

(see also Symbols)
allocation of variables R6-41(MCC)
assigning value to U4-16(XRAY)
debug information U4-13(XRAY)
declaring R4-8(CCC)
displaying value

PRINTV ALUE command R3-
13 l(XRAY)

FILL command U4-16(XRAY)
format U4-15(XRAY)
initializations R9-39(MCC)
initializing R4-9(CCC)
local R6-42(MCC)

in the function prologue R7-7(MCC)
monitoring U2-18(XRAY), U2-22(XRAY)

continuously U2-19(XRAY)
scalar U4-16(XRAY)

names R7-ll(MCC)
external Rll-l(MCC)
inside asm R9-6(MCC)
public Rll-l(MCC)
static Rll-2(MCC)

referencing
(see also Symbolic references)

register RE-ll(XRAY)
saving initialized variables in ROM R9-

39(MCC)
SETMEM command U4-16(XRAY)
setting breakpoints at access to U4-

Master lndex-104

6(XRAY)
static R5-20(MCC), R6-42(MCC)
structure members, aligning

/align option U3-ll(MCC)
/ssmultiple option U3-1 l(MCC)
-Z options U2-40(MCC), U2-37(CCC)

UNKNOWN TYPE U4-15(XRAY)
vars section R8-5(MCC), U2-16(MCC), U3-

15(MCC), U2-13(CCC)
naming

/rename option U3-31(MCC)
-NI option U2-29(MCC), U2-25(CCC)

specifying address mode
/initvars_addr _as options U3-

16(MCC)

VAX

-ai options U2-17(MCC), U2-
13(CCC)

(see VAX/VMS)
(see VMS installation) 12-l(XRAY)

_VAX preprocessor symbol R4-3(MCC)
VAX/VMS U3-1(ASM)-U3-27(ASM)

assembler U3-2(ASM}-U3-12(ASM)
command line flags U3-4(ASM}-U3-

ll(ASM)
abspcadd U3-6(ASM)
brb U3-6(ASM)
brl U3-6(ASM)
hrs U3-6(ASM)
brw U3-6(ASM)
case U3-7(ASM)
cex U3-7(ASM)
cl U3-7(ASM)
ere U3-7(ASM)
d U3-7(ASM)
e U3-7(ASM)
frl U3-7(ASM)
frs U3-7(ASM)
g U3-7(ASM)
i U3-7(ASM)
lien U3-8(ASM)
me U3-8(ASM)
md U3-8(ASM)
mex U3-8(ASM)

Documentation Set for 68000/ECOOOIHCOOO and 68302

nest U3-8(ASM)
o U3-8(ASM)
old U3-8(ASM)
op U3-8(ASM)
opnop U3-9(ASM)
p U3-9(ASM)
pco U3-9(ASM)
per U3-10(ASM)
pcs U3-10(ASM)
quick U3-10(ASM)
r U3-10(ASM)
rel32 U3-1 l(ASM)
s U3-ll(ASM)
t U3-ll(ASM)
w U3-ll(ASM)
x U3-ll(ASM)

command line options U3-3(ASM)-
U3-4(ASM)

DEFINE U3-3(ASM)
FLAGS U3-3(ASM)
!PATH U3-3(ASM)
LIST U3-3(ASM)
NOLIST U3-3(ASM)
NOOBJECT U3-3(ASM)
OBJECT U3-3(ASM)
VERSION U3-3(ASM)

file name defaults U3-4(ASM)
invocation examples U3-12(ASM)
invocation syntax U3-2(ASM)

introduction U3- l(ASM)
invocation syntax U3-18(ASM)
librarian U3-18(ASM)-U3-21(ASM)

command line options U3-19(ASM)
ADDMOD U3-19(ASM)
DELETE U3-19(ASM)
EXTRACT U3-19(ASM)
FULLDIR U3-19(ASM)
OPTION U3-19(ASM)
OUTPUT U3-19(ASM)
REPLACE U3-19(ASM)
VERSION U3-19(ASM)

file name defaults U3-20(ASM)
invocation examples U3-20(ASM)­

U3-21(ASM)

linker U3-12(ASM)-??
command line options U3-13(ASM)-

U3-15(ASM)
ABSOLUTE U3-13(ASM)
COMMAND U3-13(ASM)
FORMAT U3-13(ASM)
LIBRARY U3-14(ASM)
MAP U3-14(ASM)
NOABS U3-13(ASM)
NOMAP U3-14(ASM)
OBJECT U3-14(ASM)
OPTION U3-14(ASM)
REFERENCE U3-14(ASM)
VERSION U3-15(ASM)

file name defaults U3-16(ASM)
illegal option combinations U3-

15(ASM)
invocation examples U3-16(ASM)­

U3-l 7(ASM)
invocation syntax U3-13(ASM)

return codes U3-27(ASM)
temporary files U3-26(ASM)
utility programs

IEE2AOUT U3-21(ASM)-U3-
26(ASM)

-Vb option U2-37(MCC), U2-34(CCC)
VCLEAR command R3-204(XRA Y)
VCLOSE command R3-205(XRAY), U2-

33(XRA Y), U3-33(XRA Y)
-Vd option U2-37(MCC), U2-34(CCC)
Vendor daemon UB-3(FLEX)

(see MRI daemon)
Vendor daemon line

(see License file)
Verbose mode toggle

get_license UA-l(FLEX)
mlicense U3-2(FLEX)
mlicense.daemon U2-8(FLEX), U3-

2(FLEX), UA-2(FLEX)
Verbose mode, enabling and disabling

-V options U2-37(MCC), U2-34(CCC)
VERIFY command S2-161(SUP)
Verifying installation

(see Testing installation)

Master lndex-105

VERSION assembler command line
option U3-3(ASM)

VERSION librarian command line option U3-
19(ASM)

VERSION linker command line option U3-
15(ASM)

Version number of features 13-3(FLEX)
Versions of Flexible License Manager,

differences IC-1(FLEX), IC-2(FLEX)
vfprintf function R5-197(MCC)
-Vi option U2-38(MCC), U2-35(CCC)
View viewport U3-28(XRA Y)

displaying
VIEW option R3-108(XRAY)

STATUS BUFFER command U3-
29(XRAY)

trace display format U3-29(XRAY)
update Code viewport R6-21(XRAY), U3-

29(XRAY)
Viewing viewports

SCROLL option R3-108(XRAY)
Viewport

attaching macro
VMACRO command R3-206(XRAY)

clearing
VCLEAR command R3-204(XR.AY)

cursor position
VSETC command R3-212(XRAY)

making active
VACTIVE command R3-203(XRAY)

Viewport (definition) RD-2(XRAY)
Viewport commands S3-17(SUP), R3-

11 (XRAY), U3-34(XRAY)
VACTIVE R3-ll(XRAY), R3-203(XRAY)
VCLEAR R3-ll(XRAY), R3-204(XRAY)
VCLOSE R3-ll(XRAY), R3-205(XRAY)
VMACRO R3-ll(XRAY), R3-206(XRAY)
VOPEN R3-ll(XRAY), R3-208(XRAY)
VSCREEN R3-ll(XRAY), R3-210(XRAY)
VSETC R3-ll(XRAY), R3-212(XRAY)
ZOOM R3-ll(XRAY), R3-213(XRAY)

Viewports U3-6(XRAY)
active viewport U3-33(XRAY)

VACTIVE+l command key U3-

Master lndex-106

33(XR.AY)
VACTIVE-1 command key U3-

33(XRAY)
Break viewport U2-18(XRAY), U2-

21(XR.AY), U3-7(XRAY)
Code viewport U2-16(XRAY), U3-

l(XRAY), U3-2(XRAY), U3-
10(XRAY)

Command viewport U2-18(XRAY), U3-
l(XRAY), U3-2(XRAY), U3-
12(XRAY)

Data viewport U2-18(XRAY), U3-
l(XRAY), U3-2(XRAY), U3-
13(XRAY)

defining U3-32(XRAY)
deleting U3-33(XRAY)
Error viewport U3-14(XRAY)
Help viewport U3-15(XRAY)
Journal viewport U3-17(XRAY)
Log viewport U3-17(XRAY)
numbers U3-6(XRAY)
open for writing U3-34(XRAY)
Registers viewport U2-20(XRAY), U3-

2(XRAY), U3-18(XRAY)
removing U3-33(XRAY)
resizing U2-28(XRAY), U4-7(XR.AY)
scrolling a viewport U3-33(XR.AY)

CTRL-F control key U3-34(XRAY)
CTRL-U control key U3-34(XRAY)
MOVE DOWN command key U3-

34(XRAY)
MOVE TO BOTTOM command

key U3-33(XRA Y)
MOVE TO TOP command key U3-

33(XRAY)
MOVE UP command key U3-

34(XRAY)
setting cursor U3-35(XRAY)
Stack viewport U2-20(XRAY), U3-

2(XRAY), U3-21(XRAY)
Status Line viewport U2-15(XRAY), U3-

l(XRAY), U3-2(XRAY), U3-
22(XRAY)

Trace viewport U2-15(XRAY), U2-

Documentation Set for 68000/ECOOOIHCOOO and 68302

16(XRAY), U3-25(XRAY), U4-
4(XRAY)

View viewport U3-28(XRAYJ
zooming a viewport U3-34(XRAY)

ZOOM command U3-34(XRA Y)
ZOOM command key U3-34(XRAY)

Virtual
function R3-12(CCC), R3-14(CCC)

compared to nonvirtual R3-14(CCC)
pure R3-14(CCC), RC-4(CCC)

functions
pure UA-3(CCC)

keyword R4-6(CCC)
member classes R4-6(CCC)
member functions R4-6(CCC)

Virtual derivation R3-2(CCC)
Virtual function RC-4(CCC)
virtual function UA-4(CCC)
virtual keyword R4-6(CCC)
Virtual table definition

+e option R3-18(CCC)
+ne option R3-18(CCC)

Virtual table generation
+e option U2-16(CCC)

VMACRO command R3-206(XRA Y), U3-
32(XRA Y)

VMS
(see VAX/VMS)
accessing files in nondefault

directories l2-3(MCC)
command line U3-l(MCC)
command line examples U3-35(MCC)
compiler syntax U3-l(MCC)
compiler use U3-l(MCC)
compiling a program U3-45(MCC)
distribution format 12-l(MCC)
file locations U3-3(MCC)
file name defaults U3-2(MCC)
installation procedure 12-l(MCC)
invoking compiler U3-l(MCC)
option form, positive and negative U3-

5(MCC)
option, command line

descriptions of, U3-5(MCC)

VMS installation 12-1(XRAY)
distribution format 12-l(XRAY)
installation procedure I2-l(XRAY)
terminal support 12-l(XRAY)

configuration parameters 12-
l(XRAY)

using XRA Y l2-3(XRA Y)
_VMS preprocessor symbol R4-3(MCC)
void type R3-2(MCC), R3-3(MCC)
void* pointer R4-7(CCC)
Volatile

data R4-6(CCC)
generating information

-nA command line option R4-6(CCC)
member functions R4-6(CCC)

volatile keyword R4-6(CCC)
volatile member function RC-4(CCC), UA-

4(CCC)
volatile object RC-4(CCC), UA-4(CCC)
volatile type R3-17(MCC)
volatile variables, disabling optimizations

/stablemem option U3-27(MCC)
-Ob option U2-30(MCC), U2-27(CCC)

VOPEN command R3-208(XRA Y), U3-
22(XRA Y), U3-32(XRA Y), U3-
34(XRA Y), U4-7(XRAY)

vprintf function R5-198(MCC)
VSCREEN command R3-210(XRAY), U2-

24(XRAY), U3-1(XRAY), U3-2(XRAY),
U3-33(XRA Y)

VSCREEN command key
Apollo support UB-4(XRA Y)
DECstation support UC-4(XRAY)
HP support UD-6(XRA Y)
IBM RS/6000 support UE-3(XRAY)
Motorola Delta Series support UF-

4(XRAY)
PC support UG-4(XRAY)
Sun support UH-4(XRAY)
VT terminal support UI-3(XRAY)

VSETC command R3-212(XRAY)
vsprintffunction R5-20(MCC), R5-199(MCC),

R9-11(MCC)
-Vt option U2-38(MCC), U2-35(CCC)

Master lndex-107

VT terminal support
host-specific information UI-l(XRAY)
MOVE TO BOTTOM control key UI-

2(XRAY)
MOVE TO TOP control key UI-2(XRAY)

-Vw option U2-38(MCC), U2-35(CCC)

w
w assembler command line flag U2-11 (ASM),

U3-11(ASM)
+w option U2-36(CCC)
-Wa option U2-38(MCC), U2-35(CCC)
@wait_state pseudo-register RA-2(XRAY),

RF-4(XRAY)
WARN linker command R10-64(ASM)
WARNING

Status Line viewport U3-24(XRA Y)
#Warning directive R4-32(MCC)

relation to #pragma warn R4-30(MCC)
Warning messages RC-1(MCC)

(see also Messages)
enumeration types R4-15(CCC)
suppression

/suppress=warning option U3-
30(MCC)

-Qw option U2-36(MCC), U2-
33(CCC)

WARNING-xxx (stub routine) called R5-
13(MCC), R9-31(MCC)

ftell R5-74(MCC), R5-108(MCC), R5-
126(MCC), R5-192(MCC)

wchar_ttype R5·11(MCC)
mbstowcs function R5-114(MCC)
mbtowc function R5-113(MCC), R5-

115(MCC)
wcstombs function R5-200(MCC)
wctomb function R5-201(MCC)

wcstombs function R5-200(MCC)
wctomb function R5-201(MCC)

relationship to wcstombs R5-200(MCC)
Weak externals

initialize to zero
/weakextern=initzero option U3-

Master lndex-108

34(MCC)
-XO option U2-39(MCC), U2-

36(CCC)
no value

/weakextern=public option U3-
34(MCC)

-Xp option U2-39(MCC), U2-
36(CCC)

uninitialized globals
/weakextern=common option U3-

34(MCC)
-Xe option U2-39(MCC), U2-36(CCC)

when macro R4-37(XRAY), U4-6(XRA Y), U4-
7(XRAY)

WHEN-THEN statements
syntax S4-14(SUP)

WHILE ... ENDW assembler directive R7-
13(ASM)

while statement R3-24(MCC)
WHILE statement in macros R4-7(XRAY)
White space, testing for R5-92(MCC)
Who should install 11·1(FLEX)
Windows U1-5(XRAY)
-WI option U2-38(MCC), U2-35(CCC)
word macro R4-38(XRAY)
Word size R6-23(MCC)
Wrapper, C++ R5-6(CCC)
write function R5-202(MCC), R9-31(MCC),

U2-52(MCC), U3-44(MCC), U2-
44(CCC)

relationship to ffiush R5-54(MCC)
write routine R3-112(XRAY), U2-23(XRA Y)
Writing

memory to file
SETSTATUS WRITE command R3-

178(XRAY)
to a file

FOPEN command R3-66(XRAY)
to ROM

ROMACCESS command R3-
147(XRAY)

Writing a character to standard output RS-
• 135(MCC)
Writing a short integer to a stream RS-

Documentation Set for 68000/ECOOO/HCOOO and 68302

138(MCC)
Writing a string to standard output R5-

137(MCC)
Writing bytes to a file R5-202(MCC)
Writing to a file R5-76(MCC)
Writing value to output port R4-27(XRAY)

X-Y-Z
x assembler command line flag U2-11(ASM),

U3-11(ASM)
-x option U2-39(MCC), U2-36(CCC)
-x option (UNIX/DOS) R4-3(MCC)
X Window U3-1(FLEX)
X Window support

buttons
(see Buttons)

colors, setting UA-3(XRAY)
DECstation terminals UC-l(XRAY), UD­

l(XRAY)
environment variables

color UA-3(XRAY)
display UA-4(XRAY), UA-5(XRAY)
fonts UA-3(XRAY)
XRAY_BG_COLOR UA-3(XRAY)
XRAY_CUR_COLOR UA-3(XRAY)
XRAY_FONT_PATH UA-3(XRAY)
XRAY_FONTB UA-l(XRAY)
XRAY_FONTN UA-l(XRAY)

fonts.dir UA-3(XRA Y)
HP support UD-2CXRA Y)
mkfontdir command UA-3(XRAY)
mouse support

(see Mouse support)
OpenWindows UA-6(XRAY)
setting colors UA-3(XRAY)
Sun UH-2CXRAY)
xhost command UA-5(XRAY)

X windows S1-2(SUP)
-XO option U2-39(MCC), U2-36(CCC)
-Xe option U2-39(MCC), U2-36(CCC)
XCOM assembler directive R5-72(ASM)
XDEF assembler directive R5-73(ASM)
xhost command UA-5(XRA Y)

XHS68K, features of 11-2(FLEX)
XHS68KLIB environment variable U2-

5(XRA Y)
XICEVARS command S2-162(SUP)
XOR_ CHANGE environment variable UA-

5(XRAY)
XOS OFF environment variable RG-

- 1(XRAY)
XOS68K 11·2(FLEX)
-Xp option U2-39(MCC), U2-36(CCC)
XRA Y command line options U2-9(XRA Y)
XRAY commands S1-1(SUP)

unsupported Sl-7(SUP)
XRA Y Debugger

description Ul-2(MCC), Ul-2(ASM), Ul-
3(CCC)

fully qualified path names
/debug=fullfilename option U3-

19(MCC)
-Gf option U2-2l(MCC), U2-18(CCC)

generating debugging information
/debug option U3-18(MCC)
-g option U2-22(MCC), U2-19(CCC)

line number information
/debug=lines option U3-19(MCC)
-GI option U2-2l(MCC), U2-18(CCC)

multiple statements on line
/debug=multi_stmt option U3-

19(MCC)
-Gm option U2-2l(MCC)

restricted information
/debug=restricted option U3-

20(MCC)
-Gr option U2-2l(MCC), U2-18(CCC)

XRA Y environment variable R3-1 (XRA Y), R3-
160(XRA Y), U2-3(XRA Y), U4-
10(XRA Y)

XRA Y file format R3-90(XRA Y), U2-3(XRA Y)
XRAY format

IEEE-695 U2-2(XRA Y)
XRA Y Source Explorer

-Gs option U2-22(MCC), U2-19(CCC)
XRAY with C++ RG-1(XRAY)
XRA Y _BG_ COLOR environment

Master lndex-109

variable UA·3(XRA Y)
XRA Y _CUR_ COLOR environment

variable UA·3(XRAY)
XRAY_DISPLAY environment variable UA·

4(XRAY), UH-2(XRAY)
XRA Y _FG _COLOR environment

variable UA·3(XRA Y)
XRAY_FONTB environment variable UA-

1(XRAY)
XRAY_FONTN environment variable UA-

1(XRAY)
XRA VF ONT environment variable R3-

105(XRA Y), U2-7(XRAY)
XRAYLIB environment variable R3·1 (XRAY),

U2·4(XRAY), U4-11 (XRA Y)
XRA YTMP environment variable U2-

7(XRA Y), U4·11(XRAY)
XREF assembler directive R5-74(ASM)
·Y option U2-40(MCC), U2-37(CCC)
+z option U2-38(CCC)
·Z2 option R6·36(MCC), U2-40(MCC), U2-

37(CCC)
·Z4 option R6-36(MCC), U2-40(MCC), U2·

37(CCC)
zalloc function R5-21(MCC), R5-203(MCC),

R9·12(MCC)
relationship to free R5-67(MCC)
relationship to realloc R5-143(MCC)

Zero initialization
local variables

/init_locals option U3-22(MCC)
-KI option U2-25(MCC), U2-22(CCC)

zerovars section R6·42(MCC), RS-S(MCC),
U2·16(MCC), U3·15(MCC), U2·
13(CCC)

naming
/rename options U3-31(MCC)
-NZ option U2-29(MCC), U2-

26(CCC)
·Zm option R6-27(MCC), R6-31(MCC), R6·

35(MCC), U2-40(MCC), U2-38(CCC)
Zoom (definition) RD·2(XRA Y)
ZOOM command R3-213(XRAY), U2·

28(XRAY), U4-7(XRAY)

Master lndex-110

ZOOM command key
Apollo support UB-4(XRAY)
Apollo trace support UB-6(XRA Y)
DECstation support UC-4(XRAY)
DECstation trace support UC-5(XRAY)
HP support UD-6(XRA Y)
HP trace support UD-8(XRA Y)
IBM RS/6000 support UE-3(XRAY)
IBM RS/6000 trace support UE-5(XRA Y)
Motorola Delta Series support UF-

4(XRAY)
Motorola Delta Series trace support UF-

5(XRAY)
PC support UG-4(XRA Y)
PC trace support UG-5(XRAY)
Sun support UH-4(XRAY)
Sun trace support UH-5(XRAY)
VT terminal support Ul-3(XRAY)
VT terminal trace support UI-5(XRAY)

Zooming a viewport U3-34(XRAY)

Documentation Set for 68000/ECOOO/HCOOO and 68302

rmm:1

Applied
Microsystems
Corporation
Applied Microsystems Corporation maintains a worldwide network of direct sales offices
committed to quality service and support. For information on products, pricing, or
delivery, please call the nearest office listed below. If you are unsure which office to
contact, call 1-800-426-3925 for assistance.

CORPORATE OFFICE
Applied Microsystems Corporation
5020 148th Avenue Northeast
P.O. Box 97002
Redmond, WA 98073-9702
(206) 882-2000
1-800-426-3925
Customer Support
1-800-ASK-4AMC
TRT TELEX 185196
Fax (206) 883-3049

EUROPE
Applied Microsystems Corporation Ltd
AMC House
South Street
Wendover
Aylesbury, Bucks
HP22 6EF England
44 (0) 296-625462
Telex 265871 REF WOT 004
Fax 44 (0) 296-623460

GERMANY
Applied Microsystems GmbH
Dammstrasse 6
W-6453 Seligenstadt
Germany
06182/9203-0
Fax 06182/9203-15

JAPAN
Applied Microsystems Japan, Ltd.
Nihon Seimei
Nishi-Gotanda Building
7-24·5 Nishi-Gotanda
Shinagawa-Ku
Tokyo T141, Japan
3-3493-0770
Fax 3-3493-7270

U.S. SALES OFFICES
Applied Microsystems
Corporation of Washington
3333 Bowers Avenue
Suite#220
Santa Clara, CA 95054
(408) 727-5433
Fax (408) 727-9011

Applied Microsystems
Corporation of Washington
25909 Pala Place
Suite #280
Mission Viejo, CA 92691
(714) 588-0585
Fax (714) 588-1476

Applied Microsystems Corporation
14643 Dallas Parkway
Suite 230, LB-76
Dallas, Texas 75240
(214) 991-6344
Fax (214) 991-4581

Applied Microsystems
919E North Plum Grove Road
Schaumburg, IL 60173
(708) 240-2000
Fax (708) 240-1309

Applied Microsystems
Corporation of Washington
6 Cabot Place
Stoughton, MA 02072
(617) 341-3121
Fax (617) 341-0245

Part No. Revision History Minimum Date
SW Ver.

922-17320-00

922-17320-01

922-17320-02

First release of XICE for 68000 and 68302 on
an EL 1600 emulator

Added support for X-windows, C++,
operations during run

Add 68HC/ECOOO

XICE -PC 5.04
XICE-SUN 5.02

XICE6.10

XICE 6.40

5/92

10/92

5/93

PIN 922-17320-02
May 1993

