
Xerox System
Integration Standard

The Remote Procedure Call
Protocol

XEROX Xerox System Integration
Standard

Courier:
The Remote Procedure Call
Protocol

XSIS 038112
December 1981

Xerox Corporation
Stamford, Connecticut 06904

Notice

This Xerox System Integration Standard describes Courier, the Remote Procedure Call
Protocol-the request/reply discipline used by many application protocols in Xerox Network
Systems.

1. This standard includes subject matter relating to patent(s) of Xerox Corporation. No
license under such patent(s) is granted by implication, estoppel, or otherwise, as a result of
publication of this specification.

2. This standard is furnished for informational purposes only. Xerox does not warrant or
represent that this standard or any products made in conformance with it will work in the
intended manner or be compatible with other products in a network system. Xerox does
not assume any responsibility or liability for any errors or inaccuracies that this document
may contain, nor have any liabilities or obligations for any damages, including but not
limited to special, indirect, or consequential damages, arising out of or in connection with
the use of this document in any way.

3. No representations or warranties are made that this specification, or anything made in
accordance with it, is or will be free of any proprietary rights of third parties.

Copyright© Xerox Corporation 1981.
All Rights Reserved.

XEROX@, Xerox Network Systems, and NS
are trademarks of XEROX CORPORATION.

Preface

This document is one of a family of publications that describes the network protocols
underlying Xerox Network Systems.

Xerox Network Systems comprise a variety of digital processors interconnected by means of a
variety of transmission media. System elements communicate both to transmit information
between users and to economically share resources. For system elements to communicate with
one another, certain standard protocols must be observed.

This document defines Version 3 of Courier, the Network Systems Remote Procedure Call
Protocol. It is of interest both to Courier implementors and to designers of Courier-based
application protocols. It introduces the remote procedure call paradigm and describes the
purpose and layered nature of the protocol. It explains how two system elements establish and
terminate connections between them, agree on the version of Courier that will govern their
dialogue, and exchange data via the connection. It presents and gives an example of the
intended use, standard representation, and standard notation for each Courier data type. It
presents and gives an example of the format and use of each Courier message, and specifies
the standard notation for defining a remote program. Appendices describe the procedure for
obtaining remote program numbers, summarize the notation to be used in the documentation
of Courier-based application protocols, present an example of such a protocol, and give
examples of Courier messages and their binary encodings.

Comments and suggestions on this document and its use are encouraged. Please address
communications to:

Xerox Corporation
Office Products Division
Network Systems Administration Office
3333 Coyote Hill Road
Palo Alto, California 94304

iii

iv

Table of contents

1 Introduction

1.1 Purpose . 1
1.2 The model 1
1.3 Protocol layers · 3
1.4 Document organization 3

2 Layer one: Transport

2.1 Introduction . 4
2.2 Establishing a connection . · 5
2.3 Exchanging version numbers . 5
2.4 Transferring data . 6
2.5 Terminating a connection. 6

3 Layer two: Data types

3.1 Introduction . · 8
3.2 Documentation conventions · 9
3.3 Type and constant declarations .10
3.4 Predefined types . .10

3.4.1 Boolean. .10
3.4.2 Cardinal .11
3.4.3 Long cardinal .11
3.4.4 Integer . .12
3.4.5 Long integer · 12
3.4.6 String .13
3.4.7 Unspecified. • 14

3.5 Constructed types .14
3.5.1 Enumeration .14
3.5.2 Array · 15
3.5.3 Sequence .16
3.5.4 Record. .17
3.5.5 Choice. · 18

v

Table of contents

3.5.6 Procedure · 19
3.5.7 Error .20

4 Layerthree: ~essages

4.1 Introduction . .22
4.2 Program declarations . .22
4.3 Message types · 23

4.3.1 Call .24
4.3.2 Reject .25
4.3.3 Return • .26
4.3.4 Abort .26

Appendices

A References .27
B Program number assignment procedures .29
C Standard notation summary .30
D Sample application protocol .32
E Sample protocol exchanges · 33

Figures

1.1 The model 2
1.2 Protocol layers · 3
2.1 The block stream. 4
3.1 The object stream 8
3.2 Graphical notation example · 9
4.1 The message stream . .22

vi

1.1 Purpose

1

Introduction

One of the communication disciplines most frequently used by distributed system builders is
that in which a request for service and its reply are exchanged by two system elements: a
service provider and a service consumer. Courier, the Network System (NS) Remote Procedure
Call Protocol, facilitates the construction of distributed systems by defining a single
request/reply or transaction discipline for an open-ended set of higher-level application
protocols. Courier standardizes the format of request and reply messages and the network
representations for a family of data types from which request and reply parameters can be
constructed.

Not all network communication is transaction-oriented. For example, the exchange of control
information that typically precedes the transfer of a file between system elements might model
naturally as a transaction. However, the transfer of the file's contents is more approptiately
modeled as bulk data transfer.

Not all transaction-oriented communication is best accomplished using Courier. For example,
the interrogation of a directory of network resources to locate a named resource might model
naturally as a transaction. However, satisfying the performance requirements for that operation
might necessitate the use of datagrams, rather than virtual circuits (upon which Courier is
based).

Other NS protocols-for example, the Sequenced Packet Protocol and the Internet Datagram
Protocol [51-support applications for which Courier is inappropriate.

1.2 The model

As depicted in Figure 1.1, Courier specifies the manner in which a workstation or other active
system element invokes operations provided by a server or other passive system element.

1

1

2

Introduction

Active Passive
S~stem System
Eement

CALL procedure, arguments
Element

C Client L -\ Remote'
RETURN results \program J - --or--

ABORT error, arguments

Figure 1.1 The model

Courier uses the subroutine or procedure call as a metaphor for the exchange of a request and
its positive reply. An operation code is modeled as the name of a remote procedure, the
parameters of the request as the arguments of that procedure, and the parameters of the
positive reply as the procedure's results. Courier uses the raising of an exception condition or
error as a metaphor for the return of a negative reply. An error code is modeled as the· name
of a remote e"or and the parameters of the negative reply as the arguments of that error.
Courier uses the module or program as a metaphor for a collection of related operations and
their associated exception conditions. A family of zero or more remote procedures and the zero
or more remote errors those procedures can raise are said to constitute a remote program.

A remote program usually represents a complete service, and its remote procedures the
primitives of that service. One remote program, for example, might provide a file service and
contain remote procedures for opening a file, reading a page of an open file, closing an open
file, etc. Another remote program might provide a mail service and contain remote procedures
for delivering a message to a user, retrieving a user's recent mail, and so forth. A remote
program actually represents a type or class of service (for example, a file service). In particular,
it does not represent an instance of a service (for example, the instance serving a particular
client or executing on a particular system element).

Courier does for distributed system builders some of what a high-level programming language
does for implementors of more conventional, non-distributed systems. Pascal, for example,
allows the system builder to think in terms of procedure calls, rather than in terms of base
registers, save areas, and branch-and-link instructions. So Courier allows the distributed system
builder to think in terms of remote procedure calls, rather than in terms of socket numbers,
network connections, and message transmission. Pascal allows the system builder to think in
terms of integers and strings, rather than in terms of sign bits, length fields, and character
codes. Courier allows the distributed system builder to do the same.

In some respects, remote procedure calling is. a generalization of the protocol design techniques
employed by early Arpanet and Ethernet designers. In other respects, however, it is a departure
from them. The reader is referred to [4] for a careful exposition of the protocol design
experience that led to the remote procedure call model and for a detailed discussion of its
advantages over earlier approaches.

Courier Xerox System Integration Standard

1.3 Protocol layers

Courier is a layered protocol, as suggested by
Figure 1.2. Layer one, the lowest layer, defines a
block stream which can carry blocks of arbitrary
binary data between system elements. Block
streams are defined in terms of the connection
abstraction of the Sequenced Packet Protocol.

Layer two defines an object stream capable of
carrying structured data (for example, booleans
and cardinals) between system elements. Object
streams are defined in terms of the block stream
abstraction of layer one.

Layer One

Layer Two

Layer Three

1

MESSAGE STREAM
(Call, Return. Abort. etc.)

OBJECT STREAM
(Boolean, Cardinal, etc.)

BLOCK STREAM
(Block)

Figure 1.2 Protocol layers

Layer three defines a message stream capable of carrying service requests (that is, call
messages) and replies (for example, return and abort messages) between system elements.
Message streams are defined in terms of the object stream abstraction of layer two.

1.4 Document organization

Section 2 of this document discusses the block stream, defining layer one of the protocol.
Section 3 discusses the object stream, defining layer two. Section 4 discusses the message
stream, defining layer three.

Appendix A lists other documents that supplement this protocol specification. Appendix B
describes the procedure for obtaining remote program numbers. Appendix C summarizes the
notation to be used in the documentation of Courier-based application protocols. Appendix D
offers an example of such a protocol. Appendix E gives some examples of Courier messages
and their binary encodings.

This document is of interest both to Courier implementors and to designers of Courier-based
application protocols. Courier implementors should read the entire document. Application
protocol designers need read only Section 3, Section 4.2, and Appendices B, C, and D.

3

2

Layer one: Transport

2.1 Introduction

4

Courier defines the manner in which one system element communicates with another to effect
a remote procedure call. At layer one, Courier defines a bi-directional block stream, depicted in
Figure 2.1, which transports a series of data blocks in each direction between system elements.
Each data block comprises zero or more-but always a multiple of 16-bits of arbitrary data,
consecutively numbered from zero to, say, n.

1--__ D_a_ta_B�o_ck ___I~--D-a-ta-B,O-c-k---... l .. ·

Figure 2.1 The block stream

The block stream is defined by imposing structure upon the data carried by a connection. A
connection is a reliable, ordered, flow-controlled, bi-directional, logical communication channel
(sometimes called a virtual circuit) between two software ports called sockets. The connection is
an abstraction of the Sequenced Packet Protocol [5].

Connections are used only as a means for the reliable transport of data, and Courier-based
application protocols should associate no state information with them. Applications that require
the concept of a session should use remote procedures to initiate and terminate sessions, rather
than using the establishment and termination of the connection to signal those events. The
remote procedure whose invocation begins a session should return some sort of session handle.
Such a handle can then be supplied as an argument to the other remote procedures that
constitute the application, including, of course, the procedure that ends the session. In any case,
the effect upon the application of a series of remote procedure calls should be independent of
whether the series of calls is made via one connection or several.

This section defines the manner in which two system elements establish and terminate
connections between them, agree on the version of the Courier Protocol that will govern their
dialogue, and deduce the Courier block stream from the packets that traverse the connection.

Courier Xerox System Integration Standard 2

2.2 Establishing a connection

A connection is established through the cooperation of an active user process on one system
element and a passive listening process on another (or the same) system element. A user
process is typically an application program whose lifetime is that of a session. Any number of
user processes may coexist in a single machine. A listening process, on the other hand, is
typically a system program and acts on behalf of an entire system element Exactly one
listening process is resident in each machine that implements Courier.

The listening process monitors well-known socket number 5. When a user process initiates a
connection to that socket, the listening process spawns a server process to attend to the user
process, and then resumes the monitoring of its contact socket. Any number of server processes
may coexist in a single machine, and any number of connections may coexist between a pair of
machines (subject to the resource limitations of each system element).

The details of connection establishment are specified by the Sequenced Packet Protocol [5].

2.3 Exchanging version numbers

Once a connection is established between them, user and server processes must decide which
version of the Courier Protocol will govern their further interaction. This document defines
Version 3 of the Courier Protocol. Occasionally, Courier may be expanded to provide new
capabilities or changed to provide existing capabilities more effectively. In a large installation,
one may be unable to guarantee that all system elements will advance simultaneously to each
new version of the protocol. In fact, some system elements may have to support several
versions of the protocol during transition periods.

User and server processes agree on a version of Courier by exchanging version number ranges.
Each process tells the other the lowest and highest version numbers it supports; if only one
version is supported, the two numbers are the same. If the two ranges overlap, the highest
version number supported by both processes is selected and communication proceeds on that
basis. If the ranges are disjoint, that is, if no version is supported by both processes,
meaningful interaction is presumed impossible and the connection is terminated as described in
Section 2.5.

The user process initiates the version number exchange by spontaneously sending its version
number range to the server process. If the user process indicates support for several versions of
the protocol, it must then wait for the server process to respond with its version number range;
it can send nothing more on the connection without knowing which version of the protocol to
employ. If the user process indicates support for just one version of the protocol, on the other
hand, it can and must send additional data without waiting to hear from the server process; the
server process will either correctly interpret that data in accordance with the protocol version
specified, or terminate the connection.

The server process completes the version number exchange by sending its version number
range to the user process. If the user process indicated support for several versions of the
protocol, or if the server process does not support the one version for which the user process
indicated support, the server process must immediately send its version number range to the
user process. Otherwise, the server process may (but is not required to) continue receiving and
processing data sent by the user process before sending its own version number range.

5

2 Layer one: Transport

Version number ranges are encoded as the first 32 bits of system data sent in each direction on
the connection (see Section 2.4 below). These bits are not considered part of the first data
block. The first 16 bits represent the lowest supported version number, the second 16 bits the
highest. Each version number is encoded as an unsigned binary number whose most and least
significant bits are Bits 0 and 15, respectively. The message and packet that carry the version
number range may, but need not, carry other system data;

The intent is that the version number exchange introduce no roundtrip delay when the user
process supports a single version of the protocol. Conceptually, in this case, each process
simply prefixes its version number range to the block stream.

2.4 Transferring data

The connection whose establishment is described above carries a series of packets, each of
which contains data, datastream type, end-of-message, and other fields, as prescribed by the
Sequenced Packet Protocol [5]. At a slightly higher level of abstraction, the connection carries a
series of messages, each of which consists of one or more packets, the last-and only the
last-of which has end-of-message set to TRUE. Courier requires that all packets of a message
have the same datastream type. (The message abstraction of the Sequenced Packet Protocol,
referred to here, is to be distinguished from the Courier abstraction of the same name, which is
defined in Section 4.)

Apart from the version number exchange described in Section 2.3 above, each message whose
packets are of datastream type zero represents a single Courier data block. Each packet of the
message contributes to the data block the zero or more 8-bit bytes contained in its data field.
Thus a data block is formed, at least conceptually, by simply concatenating the contents of the
data fields of successive packets of a message. Packet boundaries are insignificant, that is, they
carry no information. Using the numbering convention of the Internet Datagram Protocol [5],
bit b of byte B of word w of the data field of each packet is the (16*w+8*B+b+l)th bit
contributed to the data block by that packet.

Although its primary purpose is to carry the system data that constitutes the block stream, the
Courier connection may also be used to carry application data. For example, a file retrieval
primitive implemented as a remote procedure may use the connection to return the contents of
a file. Doing so is generally more sensible than returning the file's contents as a result of the
procedure, and may be more convenient than establishing a separate connection for the
transfer. Apart from the end and end-reply packets mentioned in Section 2.5 below, packets of
datastream type greater than zero are assumed to carry application data. The syntax and
semantics of such data are the province of higher-level application-specific protocol documents.

Fine point: Whenever possible, application protocols should avoid multiplexing system and application data on the
same connection and, instead, use a separate connection for the latter. The presence of large amounts of application
data on the Courier connection may prevent the timely exchange of system data.

2.5 Terminating a connection

6

Both the user and server processes may initiate termination of the connection at any time. The
former should do so as soon as it has no further need of the server process, the latter after the

- -~ --~--~---~ -------~~-~- ------ ---------------

Courier Xerox System Integration Standard 2

connection has been inactive (that is, carried no data) for a period that the server process
deems excessive. In either case, the server process should destroy itself once the connection is
terminated.

The details of connection termination are specified elsewhere. Courier uses the three-way
handshake of end and end-reply packets detailed in the specification of the Sequenced Packet
Protocol [5].

Fine point: Because it is sent in-band, the end packet will be seen and acted upon immediately only if the
destination process is actively reading data from the connection at the time. Therefore, connection termination
cannot be counted upon to cancel an outstanding remote procedure caU.

7

3

Layer two: Data types

3.1 Introduction

8

At layer one, Courier defines a block stream, which carries a series of blocks, each of which is
arbitrary binary data. At layer two, Courier defines a bi-directional object stream, depicted in
Figure 3.1, which transports a series of structured data objects in each direction between system
elements. Each data object is of one of several standard data types (for example, boolean or
cardinal).

___ D_a_ta_Ob_ie_ct ________ D_a_ta_Ob_ie_ct ___ .. I .. ·
Figure 3.1 The object stream

The object stream is defined by imposing structure upon the data carried by the block stream.
Each data object is encoded as a single data block. Some data types (for example, array and
record) combine several data objects to form a larger, composite data object. In such cases, the
entire composite data object is encoded as a single data block. Block boundaries allow data
objects to be read from the connection without knowledge of the corresponding objects' syntax
or semantics.

This section presents and gives examples of the intended use, standard representation, and
standard notation for each of the data types defined by Courier. A type's standard
representation is the detailed encoding that Courier implementations employ when transmitting
objects of that type via the block stream. A type's standard notation is the detailed conventions
that application protocol designers employ to denote either the type itself, or a constant of that
type, in higher-level protocol documents. Thus a type's standard representation and notation
are, respectively, the run- and documentation-time descriptions of a class of data objects
transportable via the object stream.

Although Courier data will occasionally be carried via 9,600 baud telephone lines and other
low-speed media, more frequently it will be transported by 10 megabit-per-second Ethernet
networks [1]. Therefore, the standard representations defined below are designed to minimize
not the amount of communication bandwith required for their transportation, but rather the
amount of computing bandwith required for their preparation and interpretation. Thus, for
example, all standard representations are a multiple of 16 bits in length, even though, in some

--~----- --- -----

Courier Xerox System Integration Standard 3

cases, more compact representations could have been defined (for example, for boolean). An
example of how data representations can be cleverly optimized for space can be found in [2].

Courier's standard representations are untyped at run time. That is, the standard representation
of a data object encodes the value but not the type of that object. Knowledge of an object's
type resides in the software that generates or interprets the representation, rather than in the
representation itself. To properly interpret an incoming data object, the software must have
run-time access to its type declaration (for example, in the form of a table).

Implementation note: Many high-level languages define data types that are semantically equivalent (or similar) to
those defined by Courier. In such environments, it is often useful to define mappings between Courier data types
and those of the host language. A Courier implementation can then provide software that converts a Courier data
object (in its standard representation) to or from a form in which it can be manipulated using normal language or
run-time facilities.

3.2 Documentation conventions

Standard representations are defined throughout this
section using an informal graphical notation. For example,
the standard representation of a data object of type
boolean is a single bit that encodes its value, preceded by
15 zero bits. The value TRUE is encoded as one, the value
FALSE as zero. This structure is depicted graphically as
shown in Figure 3.2.

15 bits 1 bit

~?BITS I ~~61
Figure 3.2 Graphical

notation example

The representation of each data object is decomposed into one or more fields, each of which is
depicted by a rectangle. A field's description and size in bits, n, appear within and above its
rectangle, respectively. Although the bits that constitute a field are not explicitly numbered in
the graphical depictions, Bits 0 and n-l are understood to lie at the left and right edges of the
rectangle, respectively. The abbreviations "MSB" and "LSB" stand for "most significant bit"
and "least significant bit", respectively. Ellipses (" .. ") that break a rectangle's horizontal edges
indicate that the field is not shown to scale.

When two or more fields constitute a representation, their order in the graphical depiction
reflects their order in the data block. Ellipses (" ... ") appearing between rectangles indicate that
the previous field or fields are replicated. In examples, standard representation values are
partitioned into 16-bit units whose contents are specified in both octal and hexadecimal.

Standard notations are defined throughout this document using Backus-Naur Form (BNF) [3].
For example, the standard notation for the boolean type is simply the keyword BOOLEAN, and
for boolean constants either the keyword TRUE or FALSE. These definitions are stated in BNF
as follows:

BooleanType .. - BOOLEAN
BooleanConstant .. - TRUE I FALSE

Symbols rendered in bold are non-terminals; all other symbols are terminals. Non-terminals
whose first character is upper-case are defined in the grammar; all other non-terminals, of
which there are four-identifier, number, string, and empty-are informally defined outside of
the grammar.

3 Layer two: Data types

An identifier is a sequence of upper- and lower-case letters and digits; the first character must
be a letter. Case differences are significant and distinguish one identifier from another. A
number is a sequence of digits and upper-case letters in the range 'A through 'F, optionally
followed by the letter 'D, 'B, or 'H. The suffix 'D, the default, signifies decimal notation (that
is, radix 10). The suffix 'B signifies octal notation (that is, radix 8). The suffix 'H signifies
hexadecimal notation (that is, radix 16). A string is a sequence of NS characters [6] (also, see
Section 3.4.6). A quotation mark C") must be doubled to distinguish it from the one that
always delimits a string in the standard notation. The non-terminal empty denotes the null or
empty string of symbols.

Comments may be embedded in the documentation of higher-level protocols. They are
preceded by the symbol " __ ,, and terminated by either the symbol " __ ,, or the end of a line.

3.3 Type and constant declarations

Data types, as well as values or constants of those types, may be defined or declared in higher­
level protocol documents in the following manner. A declaration assigns a name (identifier) to
a particular type or constant. Such names simplify written and verbal discussion of the
protocol, but have no significance at run time. In particular, they never appear in the block
stream:

TypeDecl .. - identifier: TYPE = Type;
ConstantDecl .. - identifier: Type = Constant;

The data types defined by Courier fall into two broad classes: predefined and constructed. A
predefined type is one that is fully specified by Courier. A constructed type is one defined by
the application protocol designer, in most cases using predefined or other constructed types:

Type .. - PredefinedType I ConstructedType
Constant .. - PredefinedConstant I ConstructedConstant

3.4 Predermed types

10

Courier defines seven predefined data types:

PredefinedType .. - BooleanType I CardinalType I LongCardinalType I
IntegerType I LonglntegerType I StringType I UnspecifiedType

Predefined Constant .. - BooleanConstant I CardinalConstant I LongCardinalConstant I
IntegerConstant I LonglntegerConstant I
StringConstant I UnspecifiedConstant

The boolean type is used to model logical data. The cardinal, long cardinal, integer, and long
integer types are used to model numeric data. The string type is used to model textual data.
The unspecified type is used to model data which need not be interpreted by its recipient.

3.4.1 Boolean

A data object of type boolean represents a logical quantity that can assume either of two
values, called TRUE and FALSE. Switch settings and answers to yes-orono questions are among
the entities that are appropriately modeled as booleans.

Courier Xerox System Integration Standard 3

The standard representation of a boolean is a single bit that encodes its value, preceded by 15
zero bits. The value TRUE is encoded as one, the value FALSE as zero:

15 bits 1 bit

r;;-~.·.B-IT-S--r-"""T~=-1" L.:::: F=O

The standard notation for the boolean type is simply the keyword BOOLEAN, and for boolean
constants either the keyword TRUE or FALSE:

BooleanType .. - BOOLEAN
BooleanConstant .. - TRUE I FALSE

Example:

value
TRUE is encoded as: 0000018

000116

3.4.2 Cardinal

A data object of type cardinal represents an integer in the closed interval [0, 65535]. File
counts and time intervals measured in seconds are among the entities that might be
appropriately modeled as cardinals.

The standard representation of a cardinal is a single 16-bit field that encodes its value as an
unsigned binary number whose MSB and LSB are Bits 0 and 15, respectively:

16 bits
MSB UNSIGNED LSB

BINARY VALUE

The standard notation for the cardinal type is simply the keyword CARDINAL, and for cardinal
constants simply a number:

CardinalType •. - CARDINAL
CardinalConstant .• - number

Example:

value
15D is encoded as: 0000178

000F16

3.4.3 Long cardinal

A data object of type long cardinal represents an integer in the closed interval [0, 4294967295].
File sizes measured in bytes, and dates measured in seconds since the tum of the century, are
among the entities that might be appropriately modeled as long cardinals.

11

3

12

Layer two: Data types

The standard representation of a long cardinal is a single 32-bit field that encodes its value as
an unsigned binary number whose MSB and LSB are Bits 0 and3l, respectively:

32 bits

IMSB UNSIGNED BINARY VALUE

The standard notation for the long cardinal type is simply the keyword LONG CARDINAL, and
for long cardinal constants simply a number:

LongCa rdinalType •. - LONG CARDINAL

LongCardinalConstant .. - number

Example:

value

655510 is encoded as: 000001 0000178
0001 OOOF16

3.4.4 Integer

A data object of type integer represents a signed integer in the closed interval [.32768, 32767].
Personal checking account balances are among the entities that might be appropriately modeled
as integers.

The standard representation of an integer is a single 16-bit field that encodes its value as a
twos complement binary number whose MSB and LSB are Bits 0 and 15, respectively:

16 bits

MSB TWOS COMPL.
BINARY VALUE

The standard, notation for the integer type is simply the keyword INTEGER, and for integer
constants a signed number:

IntegerType •. _ INTEGER

IntegerConstant .. - number I· number

Example:

value

·150 is encoded as: 1777618
FFF116

3.4.5 Long integer

A data object of type long integer represents a signed integer in the closed interval [.
2147483648, 2147483647]. National treasury balances are among the entities that might be
appropriately modeled as long integers.

Courier Xerox System Integration Standard 3

The standard representation of a long integer is a single 32-bit field that encodes its value as a
twos complement binary number whose MSB and LSB are Bits 0 and 31. respectively:

32 bits

IMSB TWOS COMPLEMENT BINARY VALUE Lssl

The standard notation for the long integer type is simply the keyword LONG INTEGER, and for
long integer constants a signed number:

LonglntegerType .. - LONG INTEGER

LonglntegerConstant .. - number I· number

Example:

·65551D is encoded as:

3.4.6 String

value
177776 1777618
FFFE FFF116

A data object of type string represents an ordered collection of NS characters, whose number
need not be specified until run time. The 16-bit NS Character Set [6] supports multinational
applications, including Japanese-language systems. User, directory, file, and mailbox names, as
well as passwords, are among the entities that are often appropriately modeled as strings.

The standard representation of a string is a 16-bit field that encodes n, the number of 8-bit
bytes required to encode the text of the string in accordance with the NS String Format [6],
immediately followed by that encoding, followed in turn by eight zero bits if n is odd. The
number n, whose maximum value is 65,535, is encoded as an unsigned binary number whose
MSB and LSB are Bits 0 and 15, respectively:

16 bits 8 bits 8*(n mod 2) bits

.. M_S_B __ U_N_S_'G_N_E_D __ LS ... B _____ •• • 1 BYTE n 1 ZERO SITS 1
BINARY VALUE n _._

The standard notation for the string type is simply the keyword STRING, and for string
constants a string enclosed in quotation marks ("'):

StringType .. - STRING
StringConstant .. _ "string"

Examples:

count "Wb" "iff lie"

"White" is encoded as: 000005 053550 064564 0624008
0005 5768 6974 650016

count "Su" urn" Greek "k"
"Sum k" is encoded as: 000007 051565 066440 177401 0310008

0007 5375 6D20 FFOl 320016

13

3 Layer two: Data types

3.4.7 Unspecified

A data object of type unspecified represents a 16-bit quantity of unspecified interpretation.
Session and file handles are among the entities that might be appropriately modeled as
unspecifieds.

The standard representation of an unspecified is a single uninterpreted 16-bit field:
16 bits

BINARY VALUE

The standard notation for the unspecified type is simply the keyword UNSPECIFIED. The
standard notation for unspecified constants is a number that, when interpreted as a cardinal
constant, defines the standard representation's 16-bit binary value:

UnspecifiedType .. - UNSPECIFIED

UnspecifiedConstant .. - number

Example:

value
16440B is encoded as: 0164408

1D2016

3.5 Constructed types

14

Courier defines seven constructed data types:

ConstructedType .. - EnumerationType I ArrayType I SequenceType I
RecordType I ChoiceType I ProcedureType I ErrorType

Const ructedConstant .. - EnumerationConstant I A rrayConstant I SequenceConstant I
RecordConstant I ChoiceConstant I ProcedureConstant I
ErrorConstant

Enumeration types are used to model severely restricted numeric data. A"ay and sequence
types are used to model homogeneous collections of data. Record types are used to model
heterogeneous collections of data. Choice types are used to model selections from among
heterogeneous collections of data. Procedure types are used to model remotely performed
operations. E"or types are used to model exception conditions reported by such operations.

3.5.1 Enumeration

A data object of type enumeration represents a quantity that can assume any of a relatively few
named integer values in the closed interval [0, 65535]. File types and error codes are among the
entities that might be appropriately modeled as enumerations.

Courier Xerox System Integration Standard 3

The standard representation of an enumeration is a single 16-bit field that encodes its value as
an unsigned binary number whose MSB and LSB are Bits 0 and 15, respectively:

16 bits
MSB UNSIGNED LSB

BINARY VALUE

Fine point: Whenever possible, designers of higher-level protocols should choose consecutive enumeration values,

beginning with zero.

The standard notation for enumeration types uses braces (' { and '}) to delimit the set of
defined names and their corresponding values. The standard notation for enumeration
constants is simply one of the defined names:

EnumerationType { CorrespondenceList }
EnumerationConstant .. _ identifier

CorrespondenceList

Correspondence

Correspondence I CorrespondenceList , Correspondence

identifier (number)

Example:

3.5.2 Array

Given the declaration:

Mode: TYPE = {readPage(o), writePage(1), readAndOrWritePage(2)}i

writePage is encoded as:
value

0000018
000116

A data object of type array represents an ordered, one-dimensional, homogeneous collection of
data objects, whose type and number n are specified at documentation time. The elements of
an array may be of any type, either predefined or constructed. In particular, the elements may
themselves be arrays. File pages are among the entities that might be appropriately modeled as
arrays.

The standard representation of an array is simply the standard representations of its elements,
one following the other, in proper order. The number of bits required to encode each element
is determined by the elements' type:

per representation for type

ELEMENT 1
REPRESENTATION

I ... , per representation for type

ELEMENTn
REPRESENTATION

15

3

16

Layer two: Data types

The standard notation for array types uses the keyword ARRAY to introduce the number and
type of the array's elements. The standard notation for array constants uses brackets ('[and 'J)
to enclose an ordered (possibly empty) list of element values, separated by commas (' ,):

ArrayType .. _ ARRAYnumberOFType

A rrayConstant .. - [Element List 11 [1

ElementList .. - Constant 1 ElementList , Constant

Example:

Given the declaration:

PageContents: TYPE = ARRAY 256 OF UNSPECIFIED;

elem1 ... e1em256
[0, 7602B, ... 54553B] is encoded as: 000000 ... 0545538

0000 ... 596B16

3.5.3 Sequence

A data object of type sequence represents an ordered, one-dimensional, homogeneous
collection of data- objects, whose type and maximum number m are specified at documentation
time, but whose actual number n need not be specified until run time. (The maximum value of
m is 65,535.) The elements of a sequence may be of any type, either predefined or constructed.
In particular, the elements may themselves be sequences. File access and mail distribution lists
are among the entities that might be appropriately modeled as sequences.

The standard representation of a sequence is a 16-bit field that encodes the actual number of
elements in the sequence, immediately followed by the standard representations of the
elements, one following the other, in proper order. The number of elements in the sequence is
encoded as an unsigned binary number whose MSB and LSB are Bits 0 and 15, respectively.
The number of bits required to encode each element is determined by the elements' type:

~~_...;1_6..;;b.;,;;its;;...._~~....:;,pe;;;.r..;.;re;.:;p;.;.;re;;s~ent~tion for type per representation for pe
MSB UNSIGNED LSB ELEMENT 1 I I ELEMENT n

a.-_B_IN_A_R_Y_V_A_L_U_E_n ____ R_E_PR_E_SEN_T_AT_I_O_N __ __ R_E_P_R_E_SEN_T_AT_I_O_N ___

The standard notation for sequence types uses the keyword SEQUENCE to introduce the
maximum number and type of the sequence's elements. If unspecified, the former defaults to
65535, the largest cardinal. The standard notation for sequence constants uses brackets C[and
'J) to enclose an ordered (possibly empty) list of element values, separated by commas C,):

SequenceType .. - SEQUENCE MaximumNumber OF Type
SequenceConstant .. - [ElementList 11 []

MaximumNumber .. - number 1 empty

ElementList .. - Constant 1 ElementList , Constant

Courier Xerox System Integration Standard

Example:

Given the declaration:

PageContents: TYPE = SEQUENCE 256 OF UNSPECIFIED;

[76028, ... 545538] is encoded as:

3.5.4 Record

count elem1 ... elem255
000377 007602 ... 0545538
OOFF OF82 ... 596B16

3

A data object of type record represents an ordered, possibly heterogeneous collection of data
objects, whose types and number n are specified at documentation time. A record component
may be of any type, either predefined or constructed. In particular, a record component may
itself be a record. Predefined collections of file attributes are among the entities that might be
appropriately modeled as records.

The standard representation of a record is simply the standard representations of its
components, one following the other, in proper order. The number of bits required to encode
each component is determined by the component's type:

per representation for type 1 per representB:~ion for ty e n I COMPONENT 1
REPRESENTATION I COMPONENT n

••• REPRESEN_T_A_TI_O_N __

The standard notation for record types uses the keyword RECORD to introduce the names,
types, and (implicitly) order of the record's components (if any). The standard notation for
record constants uses brackets ('[and 'J) to enclose an ordered (possibly empty) list of
component values, separated by commas (' ,). When a list of component names precedes the
specified type or constant, that type or constant is understood to be assigned to each of the
specified components, which are distinct:

RecordType .. - RECORD [FieldList] I RECORD []
Reco rdConstant .. - [ComponentList] I []

FieldList " - Field I FieldList , Field

Field .. - NameList : Type

Component List .. - Component I ComponentList , Component

Component .. - NameList : Constant

NameList .. - identifier I NameList , identifier

17

3

18

Layer two: Data types

Example:

Given the declaration:

Credentials: TYPE = RECORD [user, password: STRING];

[user: "White". password: "vlw"] is encoded as:

count "Wh" "it" "en count "vi" "w"

000005 053550 064564 062400 000003 073154 0734008
0005 5768 6974 6500 0003 766C 770016

3.5.5 Choice

A data object of type choice represents a data object whose type is chosen at run time from a
set of candidate types specified at documentation time. Candidate types are designated by
named integer values in the closed interval [0, 65535). Each candidate type may be either
predefined or constructed and, in particular, may itself be a choice. Dates that may appear in
either textual or binary form are among the entities that might be appropriately modeled as
choices.

The standard representation of a choice is a 16-bit field that encodes a designator value d as an
unsigned binary number whose MSB and LSB are Bits 0 and 15, respectively, immediately
followed by an object of the designated type in its standard representation. The number of bits
required to encode the designated object is determined by its type:

~!:'::."" __ 1_6_b;.;.it_s __ "":",,!:~ pe:;,;,;.,r~re~p~re;;;;se~ntation for t pe d
MSB UNSIGNED LSB DESIGNATED OBJECT

BINARY VALUE d REPRESENT ATION
~~------~~--~------

Fine point: Whenever possible, designers of higher-level protocols should choose consecutive designator values,
beginning with zero.

As pointed out earlier, Courier's standard representations are untyped at run time. That is, the
standard representation of a data object encodes its value but not its type. Using the choice
type, however, the protocol designer can construct data objects whose representations are
effectively typed at run time by means of the choice designator.

The standard notation for choice types uses the keyword CHOICE to introduce,. and braces (' {
and '}) to delimit, the set of candidate types. Along with each type is specified its designator's
name and value. The standard notation also permits the designator to be separately declared, as
an enumeration type. In such cases, the name of that type appears in the choice specification in
lieu of designator values. The standard notation for choice constants is simply a designator
name, followed by a constant of the corresponding type:

ChoiceType .. - CHOICE Designato rType OF { Cand idateList }
ChoiceConstant .. - identifier Constant

DesignatorType .. - empty I identifier
CandidateList .. - Candidate I CandidateList , Candidate
Candidate .. - DesignatorList = > Type
DesignatorList .. - Designator I DesignatorList , Designator
Designator .. - identifier I identifier (number)

Courier Xerox System Integration Standard

Example:

Given the declaration:

Fileldentifier: TYPE = CHOICE OF {

name(o) = > STRING,

handle(1) = > UNSPECIFIED};

Or the declarations:

FileldentifierType: TYPE = {name(o), handle(1)};
Fileldentifier: TYPE = CHOICE FileldentifierType OF {

name = > STRING,

handle = > UNSPECIFIED};

desig object

handle 7712B is encoded as: 000001 0077128
0001 OFCA16

3.5.6 Procedure

3

A data object of type procedure represents the identifier or code for an operation that one
system element will perfonn at the request of another (or the same) system element. The
operation may require parameters when invoked, return parameters if it succeeds, and report
exception conditions if it fails. The arguments and results of a procedure are data objects whose
types and number are specified at documentation time; each argument and result may be of
any type, either predefined or constructed. The e"ors raised by a procedure are represented by
data objects of type error (see Section 3.5.7 below) whose constant values are specified at
documentation time. Remotely accessible file manipulation primitives are among the entities
that might be appropriately modeled as procedures.

Note: The use of procedure types is severely restricted. Procedures may not be passed as
arguments or results of remote procedures, or as arguments of remote errors; procedure types
may be used only to specify the remote procedures that constitute a remote program, as
described in Section 4.2. More precisely, constants may be of type procedure, but procedure
arguments, procedure results, error arguments, array and sequence elements, record
components, and choice candidates may not.

The standard representation of a procedure is a single 16-bit field that encodes its value-an
integer in the closed interval [0, 65535]-as an unsigned binary number whose MSB and LSB
are Bits 0 and 15, respectively:

16 bits
MSB UNSIGNED LSB

BINARY VALUE

The standard notation for procedure types uses the keyword PROCEDURE to introduce the
names, types, and (implicitly) order of the procedure's arguments; the keyword RETURNS to
introduce the names, types, and (implicitly) order of the procedure's results; and the keyword
REPORTS to introduce the names of the procedure's error constants. When a list of names

19

3

20

Layer two: Data types

precedes the specified type, that type is understood to be assigned to each of the specified
arguments or results, which are distinct. The standard notation for procedure constants is
simply a number:

ProcedureType .. - PROCEDURE ArgumentList ResultList ErrorList

ProcedureConstant .. - number

A rgumentList

ResultList
ErrorList

FieldList

Field

NameList

= empty I [FieldList]
= empty I RETURNS [FieldList]
= empty I REPORTS [NameList]

= Field I FieldList , Field

= NameList: Type

= identifier I NameList , identifie r

Example:

3.5.7 Error

Given the declaration:

OpenFileProcedure: TYPE = PROCEDURE [user, password, filename: STRING]

RETURNS [handle: UNSPECIFIED]

REPORTS [NoSuchUser, IncorreclPassword, NoSuchFile]i

value

o is encoded as: 0000008
000016

A data object of type error represents the identifier or code for an exception condition that one
system element may report to another (or the same) system element in response to a request to
perform an operation. Parameters may accompany the report. The arguments of an error are
data objects whose types and number are specified at documentation time; each argument may
be of any type, either predefined or constructed. Invalid password or nonexistent file are
among the conditions that might be appropriately modeled as errors.

Note: The use of error types is severely restricted. Errors may not be passed as arguments or
results of remote procedures, or as arguments of remote errors; error types may be used only
to specify the remote errors that constitute a remote program, as described in Section 4.2. More
precisely, constants may be of type error, but procedure arguments, procedure results, error
arguments, array and sequence elements, record components, and choice candidates may not.

The standard representation of an error is a single 16-bit field that encodes its value-an
integer in the closed interval [0, 65535]-as an unsigned binary number whose MSB and LSB
are Bits 0 and 15, respectively:

16 bits
MSB UNSIGNED LSB

BINARY VALUE

Courier Xerox System Integration Standard 3

The standard notation for error types uses the keyword ERROR to introduce the names, types,
and (implicitly) order of the error's arguments. When a list of names precedes the specified
type, that type is understood to be assigned to each of the specified arguments, which are
distinct. The standard notation for error constants is simply a number:

ErrorType .. - ERROR ArgumentList
ErrorConstant .. - number

A rgumentList .. - empty I [FieldList]
FieldList .. - Field I FieldList , Field
Field .. - NameList : Type
NameList .. - identifier I NameList, identifier

Example:

Given the declaration:

AccessDeniedError: TYPE = ERROR;

value
3 is encoded as: 0000038

000316

21

4

Layerthree: ~essages

4.1 Introduction

At layer two, Courier defines an object stream, which carries a series of data objects, each of
which is of one of several standard data types. At layer three, Courier defines a bi-directional,
alternating message stream, depicted in Figure 4.1, which transports a series of messages in each
direction between system elements. Each message represents either a request for service or a
positive or negative reply to such a request .

.... ___ M_e_ssa_ge ___ ____ M_essa_ge ___ I ...
Figure 4.1 The message stream

The message stream is defined by imposing additional structure upon the data carried by the
object stream. Each message is encoded as a single data object.

This section presents and gives examples of the format and use of each of the messages
defined by Courier. Because messages are defined as data objects, the conventions employed in
their definition are precisely the standard notation defined in Section 3. For the same reason,
message encodings are the appropriate standard representations. This section also introduces a
small amount of additional standard notation. In particular, conventions are defined below for
declaring a remote program.

4.2 Program declarations

22

Every remote program is assigned a program number, which identifies it· at run time. Program
numbers are unique and unambiguous throughout all space and time. Every remote program is
assigned exactly one number, and no two programs are assigned the same number. Once
assigned, a program's number is never changed. The program number space is centrally
administered; the procedures for obtaining a block of numbers are given in Appendix B.

Every remote program is also assigned a program name. A program's name facilitates written
and verbal discussion of the protocol, but has no significance at run time. In particular, it
never appears in the object stream. Program names are locally assigned by each development

Courier Xerox System Integration Standard 4

organization and, therefore, are not globally unambiguous. Program numbers can always be
used to disambiguate program names, but often it will be clear from context to what program a
name refers.

Every remote program is further characterized by a version number, which distinguishes among
successive versions of the program and helps to ensure at run time that caller and callee are
agreed upon the calling sequences of the program's remote procedures. Each remote program
has its own version number space, which is locally administered by the program's designer. The
first version of a program is always numbered one. Whenever a program's declaration is
changed in any way, its version number must be incremented by one.

A remote program consists of zero or more remote procedures and the zero or more remote
errors they can raise. It is defined or declared in a higher-level protocol document as indicated
below. A program declaration specifies the program's name (identifier) and its program and
version numbers (number). It declares a procedure constant for each of the program's
procedures, and declares an error constant for each of its errors. Within a program, no two
procedures may have the same name or value, and no two errors may have the same name or
value. Additional type and constant declarations may (but need not) be included to simplify or
enhance the documentation:

Program

DependencyList
Refe rencedP rog ramList

ReferencedProgram
DeclarationList
Declaration

.• - identifier: PROGRAM number VERSION number =
BEGIN DependencyList DeclarationList END .

.• - empty I DEPENDS UPON Refe rencedProg ram List ;
•. - ReferencedProgram I

ReferencedProgramList I ReferencedProgram
•• - identifier (number) VERSION number
•• - empty I DeclarationList Declaration
.. - TypeDecl1 ConstantDecl

Appendix C generalizes the standard notation defined throughout this document to permit the
declaration of one remote program to make use of types and constants defined in the
declarations of other remote programs. As indicated above, a program declaration must list the
name, number, and version number of every remote program upon which it depends in this
way.

4.3 Message types

Courier defines four message types:

Message: TYPE = CHOICE OFt

call(O} = > CallMessageBody,
reject(1} = > RejectMessageBody,
return(2} => ReturnMessageBody,
abort(3) = > Abo rtMessageBody};

The call message calls a remote procedure, that is, invokes a remote operation. The reject
message rejects such a call, that is, reports an inability to even attempt a remote operation. The
return message reports a procedure's return, that is, acknowledges the operation's successful
completion. The abort message raises a remote error, that is, reports the operation's failure.

23

4

24

Layerthree: ~essages

Only the user process may send a call message, and only the server process may send a reject,
return, or abort message. A call message is sent whenever the user process desires service from
the server process. A reject, return, or abort message is sent in eventual response to every call
message. The user process is said to have a call outstanding between the time it sends a call
message and the time it receives the acknowledging reject, return, or abort message. The user
process may have at most one call outstanding at any point in time.

4.3.1 Call

The call message invokes, with the arguments supplied, the remote procedure whose program
number, program version number, and procedure value are specified. The call message also
contains a transaction identifier, which should have the value zero. Although not declared a
procedure, the procedure value below is that assigned to the corresponding procedure constant
in the program declaration:

CaliMessageBody: TYPE = RECORD [

transactionlD: UNSPECIFIED,

programNumber: LONG CARDINAL,

versionNumber, procedureValue: CARDINAL,

p roced ureA rg uments: RECORD [procedure-dependent]];

Fine point: The transaction identifier is unused. It is included to facilitate future expansion.

Fine point: Modeling procedure arguments, procedure results, and error arguments as record components requires
the "procedure-dependent" and "error-dependent' departures from the standard notation that appear above and in
following subsections. Strictly speaking, an argument or result list is more correctly modeled as a SEQUENCE OF
UNSPECIFIED. However, so doing would require that implementations be able to determine the length of the
entire list before outputting the first argument or result

Example:

Given the declaration:

FileAccess: PROGRAM 13 VERSION 1 =

BEGIN

Credentials: TYPE = RECORD [user, password: STRING];

Mode: TYPE = {readPage(o), writePageh), readAndOrWritePage(2)};
Open File: PROCEDURE [credentials: Credentials, filename: STRING, mode:

Mode]
RETURNS [handle: UNSPECIFIED, pageCount: CARDINAL]

REPORTS [... NoSuchFile, ...] = OJ
NoSuchFile: ERROR = 2;

END.

Courier Xerox System Integration Standard

4.3.2 Reject

A call to procedure OpenFile with user "White", password "vlw", filename "Data", and
mode readPage is encoded as:

call [
transactionlD: 0,
programNumber: 13, versionNumber: 1, procedureValue: 0,
procedu reA rguments: [

credentials: [user: "White", password: "vlw"],
filename: "Data",
mode: read Page]] ;

4

The reject message rejects a call to a remote procedure, specifying the nature of the problem
encountered. The reject message contains the transaction identifier specified in the rejected call
message:

RejectMessageBody: TYPE = RECORD [

t ransactionl D: UNSPECIFIED,

rejection Details: CHOICE OF {

noSuchProgramNumber(O) = > RECORD [],

noSuchVersionNumber(1) = > ImplementedVersionNumbel"s,
noSuchProcedureValue(2),
invalid A rgument(3),
unspecifiedError(FFFFH) = > RECORD []}];

ImplementedVersionNumbers: TYPE = RECORD [

lowest, highest: CARDINAL];

The rejection code noSuchProgramNumber indicates that either the program number
specified in the call message is invalid (that is, unassigned) or the program to which it is
assigned is unimplemented by the system element.

The rejection code noSuchVersionNumber indicates that either the version number
specified in the call message is invalid (that is, unassigned) or the program version to which it
is assigned is unimplemented by the system element. If this rejection code is specified, the
caller may infer that some version of the specified program, albeit not the one requested, is
supported by the system element. Included in the reject message are the numbers of the lowest
and highest versions of the program implemented by the system element. If only one version is
implemented, the two numbers are the same. The caller may not assume that the system
element implements every version in the specified range, but in practice that will usually be the
case.

The rejection code noSuchProcedureValue indicates that the procedure value specified in
the call message is invalid (that is, unassigned). If this rejection code is specified, the caller may
infer that the specified version of the specified program is implemented by the system element.

The rejection code invalidArgument indicates that one (or more) of the procedure
arguments specified in the call message is of incorrect type or fails to conform to its type's
standard representation. If this rejection code is specified, the caller may infer that the specified
version of the specified program is implemented by the system element.

25

4

26

Layer three: Messages

The rejection code unspecifiedError indicates that the call message was rejected for a reason
other than those described above.

Example:

4.3.3 Return

The response to a call to an unsupported remote program is encoded as:

reject [
transactionlD: 0,
rejection Details: noSuchProgramNumber []];

The return message reports a remote procedure's return and supplies its results. The return
message contains the transaction identifier specified in the call message that invoked the
procedure:

ReturnMessageBody: TYPE = RECORD [

transactionlD: UNSPECIFIED,

procedureResults: RECORD [procedure-dependent]];

Example:

4.3.4 Abort

Given the declaration and call of Section 4.3.1, a return with handle 16440B and page
count 511 is encoded as:

return [
transactionlD: 0,
procedureResults: [
handle: 16440B,
pageCount: 511]];

The abort message raises, with the arguments supplied, the remote error whose error value is
specified. The abort message contains the transaction identifier specified in the call message
that invoked the procedure. Although not declared an error, the error value below is that
assigned to the corresponding error constant in the program declaration:

AbortMessageBody: TYPE = RECORD [

t ransactionl D: UNSPECIFIED,

errorValue: CARDINAL,

errorArguments: RECORD [error-dependent]];

Example:

Given the declaration and call of Section 4.3.1, an abort with error NoSuchFile is encoded as:

abort [
transactionlD: 0,
errorValue: 2,
errorArguments: []];

A

Appendix A
References

The following documents supplement this protocol specification. References [1-4] are
informational; they contain helpful motivational and explanatory material, but Courier can be
understood without them. References [5-6] are mandatory; they describe other protocols upon
which Courier depends.

Reference [1] contains the data link and physical layer specifications for the Ethernet, the
transmission medium for which Courier's standard representations are optimized:

[1] Digital Equipment Corporation; Intel Corporation; Xerox Corporation. The Ethernet, A
Local Area Network: Data Link Layer and Physical Layer Specifications. 1980 September
30; Version 1.0.

Reference [2] provides an example of a data representation that is cleverly optimized to
minimize space, rather than processing overhead:

[2] Haverty, Jack. MSDTP-Message Services Data Transmission Protocol. Arpa Network
Working Group Request for Comments 713, NIC 34739. Laboratory for Computer
Science, Massachusetts Institute of Technology; 1976 April 6.

Reference [3] defines Backus-Naur Form (BNF), the notation used throughout this document
to formally define Courier's standard notation for the documentation of higher-level protocols:

[3] Naur, P., ed. Revised Report on the Algorithmic Language ALGOL 60. Communications
of the ACM. 6(1): 1-17; 1963.

Reference [4] recounts the protocol design experience that led to the remote procedure call
model:

[4] White, James E. A High-Level Framework for Network-Based Resource Sharing. AFIPS
Conference Proceedings, National Computer Conference. 45: 561-570; 1976.

Reference [5] defines the Sequenced Packet Protocol, upon which Courier relies for data
transport:

[5] Xerox Corporation. Internet Transport Protocols. Xerox System Integration Standard.
Stamford, Connecticut; 1981 December; XSIS-028112.

27

A

28

References

Reference [6] defines the NS Character Set and the NS String Fonnat. which provide the basis
for Courier's string data type:

[6] Xerox Corporation. NS Character Set Specification. Version 1.0; in preparation.

B

Appendix B
Program number assignment procedures

As stated in Section 4, every remote program is assigned a number that uniquely identifies it
throughout the distributed system. The program number space is administered by Xerox
Corporation. To obtain a block of program numbers, submit a written request to:

Xerox Corporation
Office Products Division
Network Systems Administration Office
3333 Coyote Hill Road
Palo Alto, California 94304

29

30

c

Appendix C
Standard notation summary

Because the details of parameter encodings and request and reply message formats are defined
by Courier, higher-level application protocols based upon Courier can be specified at a very
high level. The standard notation for the documentation of such protocols is defined in the
body of this document and summarized below in compressed and reorganized form. Courier's
standard notation is commonly referred to as the Courier language.

Two generalizations are introduced in the summary. First, the documentation of one remote
program may reference a type (ReferencedType) or constant (ReferencedConstant) defined in
the documentation of another (or the same) remote program. In such a reference, the name of
the remote program and the name of the type or constant drawn from it are separated by a
period ('.). Second, in most places where a numeric value (NumericValue) is required, either a
number or a declared numeric constant may be supplied.

Program

DependencyList
ReferencedProgramList
ReferencedProgram

Decla ration List
Decla ration

Type

PredefinedType

Const ructedType

Refe rencedType

Co r respondence List
Co rrespondence

MaximumNumber
NumericValue

DesignatorType

.• - identifier: PROGRAM number VERSION number =
BEGIN DependencyList DeclarationList END .

.. - empty 1 DEPENDS UPON ReferencedProgramList;

.• - ReferencedProgram 1 ReferencedProgramList , ReferencedProgram
•. - identifier (number) VERSION number

•. - empty 1 DeclarationList Declaration
•. - identifier: TYPE = Type; 1 identifier: Type = Constant;

•. - PredefinedType 1 ConstructedType 1 ReferencedType

•• - BOOLEAN 1 CARDINAL 1 LONG CARDINAL 1
INTEGER 1 LONG INTEGER 1 STRING 1 UNSPECIFIED

•. - {CorrespondenceList} 1 ARRAY NumericValue OF Type 1
SEQUENCE MaximumNumber OF Type 1 RECORD [FieldList 11 RECORD [11
CHOICE DesignatorType OF {CandidateList} 1
PROCEDURE ArgumentList ResultList ErrorList 1 ERROR ArgumentList

•• - identifier 1 identifier. identifier

.. _ Correspondence 1 CorrespondenceList , Correspondence
•• - identifier (NumericValue)

•. - NumericValue 1 empty
•• - number 1 ReferencedConstant

•• - empty 1 ReferencedType

Courier Xerox System Integration Standard

CandidateList
Candidate
DesignatorList
Designator

ArgumentList
ResultList
ErrorList
FieldList
Field

Constant

PredefinedConstant
ConstructedConstant

Refe rencedConstant

ElementList
ComponentList
Component
NameList

.. - Candidate I CandidateList , Candidate
•. - DesignatorList = > Type
•. - Designator I DesignatorList , Designator
.. - identifier I Correspondence

.. - empty I [FieldList 1

.. - empty I RETURNS [FieldList 1

.. - empty I REPORTS [NameList 1

.. - Field I FieldList , Field
•. - NameList: Type

.. - PredefinedConstant I ConstructedConstant I ReferencedConstant

.. - TRUE I FALSE I number I· number I" string"
•. - identifier I [ElementList 11 [ComponentList 11 [] I identifier Constant I

number
•. - identifier I identifier. identifier

•. - Constant I ElementList , Constant
.. - Component I ComponentList , Component
•. - NameList: Constant
•. - identifier I NameList , identifier

c

31

32

D

AppendixD
Sample application protocol

The standard notation summarized in Appendix C is illustrated below. The simple Courier­
based application protocol defined below enables page-level access to remote files. Four remote
procedures and ten remote errors constitute this particular, hypothetical remote program.

FileAccess: PROGRAM 13 VERSION 1 =

BEGIN
-- types and constants
Credentials: TYPE = RECORD [user, password: STRING];
Mode: TYPE = {readPage(o), writePage(1), readAndOrWritePage(2)};
PageContents: TYPE = ARRAY 256 OF UNSPECIFIED;

-- procedures
Open File: PROCEDURE [credentials: Credentials, filename: STRING, mode: Mode]

RETURNS [handle: UNSPECIFIED, pageCount: CARDINAL] REPORTS [NoSuchUser,
IncorrectPassword, NoSuchFile, AccessDenied, FilelnUse, InvalidMode] = OJ

ReadPage: PROCEDURE [handle: UNSPECIFIED, pageNumber: CARDINAL]
RETURNS [pageContents: PageContents] REPORTS [lnvalidHandle, IncorrectMode,
NoSuchPageNumber] = 1;

WritePage: PROCEDURE [handle: UNSPECIFIED, pageNumber: CARDINAL,
pageContents: PageContents] REPORTS [lnvalidHandle, IncorrectMode,
FileTooLarge] = 2;

CloseFile: PROCEDURE [handle: UNSPECIFIED] REPORTS [lnvalidHandle] =·3;

-- errors
NoSuchUser:
IncorrectPassword:
NoSuchFile:
AccessDenied:
FilelnUse:
InvalidMode:

ERROR = 0; -- user unrecognized by server; user unregistered
ERROR = 1; .- password specified not that oJspecified user
ERROR = 2; .- filename unrecognized by server; file doesn't exist
ERROR = 3; .- user unentitled to access file in specified mode
ERROR [user: STRING] = 4; •• file already open Jar specified user
ERROR = 5; .- invalid mode; not read .. , write ... , or

readAndOrWritePage
InvalidHandle: ERROR = 6; .- invalid handle,· perhaps obsoleted by CloseFile
IncorrectMode: ERROR = 7;
NoSuchPageNumber: ERROR = 8;
FileTooLarge: ERROR = 9;
END.

•• requested operation inconsistent with open mode
_. requested page unreadable; not present infile
:-- requested page un writable; file would be too large

E

Appendix E
Sample protocol exchanges

The standard representation defined in Section 3 is illustrated below. The simple protocol
exchanges shown assume the sample application protocol defined in Appendix D. The
representation of each message is partitioned into 16-bit units whose values are specified in
both octal and hexadecimal. The version number exchange described in Section 2.3 is assumed
to have occurred previously and is not depicted here.

1. Call procedure Open File with user "White", password "vlw", filename "Data", and mode
readPage:

call tid program # ver# proc count "'Wh'" '"it'" '"e'"
000000 000000 000000 000015 000001 000000 000005 053550 064564 0624008
0000 0000 0000 ooOD 0001 0000 0005 5768 6974 650016

count "vI'" '"w'" count "'Da"' "'ta" readPg
000003 073154 073400 000004 042141 072141 0000008
0003 766C 7700 0004 4461 7461 000016

Return with handle 16440B and pageCount 511 :

return tid handle pgCnt
000002 000000 016440 0007778
0002 0000 1D20 01FF 16

2. Call procedure ReadPage with handle 16440B and pageNumber 15:

call tid program # ver# proc handle pgNum
000000 000000 000000 000015 000001 000001 016440 0000178
0000 0000 0000 OOOD 0001 0001 1D20 000F16

Return with pageContents [7602B, .•. 54553B]:

return tid word1 ... word256
000002 000000 007602 ... 0545538
0002 0000 OF82 ... 596B16

33

E

34

Sample protocol exchanges

3. Call procedure CloseFile with handle 164408:

call tid program # ver# proc handle
000000 000000 000000 000015 000001 000003 016440S
0000 0000 0000 0000 0001 0003 102016

Return with no results:

return tid
000002 OOOOOOS
0002 000016

4. Call procedure Close File with handle 164408:

call tid program # ver# proc handle
000000 000000 000000 000015 000001 000003 016440S
0000 0000 0000 0000 0001 0003 ID2016

Abort with error InvalidHandle:

abon tid error
000003 000000 0000068
0003 0000 000616

XEROX Xerox System Integration
Bulletin

OPD B018112
December 1981

NS Character Set Specification (Interim)

This specification is issued to allow users to implement the "Courier" and other Xerox NS
protocols before the final NS Character Set Standard is released. This final document, now in
preparation, will be an extension of this interim specification.

In most cases of interest, the NS Character Set is identical to the 8-bit Teletex character set
defined by C.C.LT.T. [B], except that it places the number sign (' #) and dollar sign ('$) in the
same national use positions (2/3 and 2/4 respectively) assigned to them by ANSI [A], and
leaves the C.C.!'T.T. positions for those characters empty. Consistent with the intent of the
ISO standard [C], upon which the Teletex standard is based, this adjustment ensures that the 7-
bit graphic characters of the NS Character Set are precisely ASCII-standard.

In most cases of interest, the NS String Format encodes a string as a series of zero or more 8-
bit characters.

Together, the NS Character Set and String Format have the important property that the
overwhelming majority of ASCIL ISO, and CC/.T.T. strings are identical to the co"esponding
NS STRINGS.

References:

[A] American National Standards Institute. American National Standard Code for Information
Interchange. New York; 1977 June 9; ANSI X3.4-1977.

[B] Consultative Committee, International Telegraph and Telephone [C.C.!'T.T.].
Recommendation S.6l, Character Repertoire and Coded Character Sets for the International
Teletex Service. Geneva: International Telecommunications Union. v. 7 [yellow book];
1980.

[C] International Organization for Standardization. 7-Bi! Coded Character Set for Information
Processing Interchange. Geneva; 1973 July 1; First' Edition, ISO 646-1973 (E).

Notice

This Xerox System Integration Bulletin describes the interim NS Character Set used by many
application protocols in Xerox Network Systems.

1. This bulletin is furnished for informational purposes only. Xerox does not warrant or
represent that this document or any products made in conformance with it will work in the
intended manner or be compatible with other products in a network system. Xerox does
not assume any responsibility or liability for any errors or inaccuracies that this document
may contain, nor have any liabilities or obligations for any damages, including but not
limited to special; indirect, or consequential damages, arising out of or in connection with
the use of this document in any way.

2. No representations or warranties are made that this document, or anything made in
accordance with it, is or will be free of any proprietary rights of third parties.

Copyright@ 1981 Xerox Corporation
Stamford, Connecticut 06904
All Rights Reserved.

XEROX®, Xerox Network Systems, and NS
are trademarks ofXEROXCORPORATIOK.

Xerox Corporation
Stamford, Connecticut 06904

XEROX ' is a trademark of
XEROX CORPORATION.

Printed in U.S.A.

= to
IJQ ..,
~
Q'

=
CJJ
~
o
Co
II> ..,
Co

N

