XEROX Xerox Development Environment

Mesa Language Manual

XDE3.0-3001
Version 3.0
November 1984

PRELIMINARY

Office Systems Division
Xerox Corporation

3450 Hillview Avenue

Palo Alto, California 94304

Xerox Development Environment

Notice

This manual is the current release of the Xerox Development Environment (XDE) and may be revised by Xerox
without notice. No representations or warranties of any kind are made relative to this manual and use thereof,
including implied warranties of merchantability and fitness for a particular purpose or that any utilization
thereof will be free from the proprietary rights of a third party. Xerox does not assume any responsibility or
liability for any errors or inaccuracies that may be contained in the manual or have any liabilities or obligations
for any damages, including but not limited to special, indirect or consequential damages, arising out of or in
connection with the use of this manual or products or programs developed from its use. No part of this manual.
either in whole or part, may be reproduced or transmitted mechanically or electronically without the written
permission of Xerox Corporation.

Copyright © 1984 by Xerox Corporation.
All Rights Reserved.

Table of contents

1.1

2.1

2.2
2.3
2.4

2.5

2.6

Introduction

Syntax notation

Basic data types and expressions

A slice of Mesa code
2.1.1 Basic lexical structure .

Simple declarations . .

The fundamental operations: assignment, equality and inequality
Basic types

2.4.1 The numeric types INTEGER and CARDINAL.

2.4.2 Type BOOLEAN

2.4.3 Type CHARACTER

2.4.4 Escape conventions for literals . e
2.4.5 The numeric types LONG INTEGER and LONG CARDINAL .
2.4.6 TypeReAL

2.4.7 Relations among basic types

2.4.8 Long to short conversion

2.4.9 Predeclared identifiers.

Expressions

2.5.1 Numeric operators .

2.5.2 Relational operators

2.5.3 BOOLEAN operators .

2.5.4 Assignment expressions

2.5.5 Operator precedence

2.5.6 Function-like operators

2.5.7 Function-like operators on types

Initializing variables in declarations .

. 1-2

2-1

2-4
2-4
2-5

2-6
2-7
2-7
2-7
2-8
2-9
2-11
2-12
2-12
2-13
2-16
2-17
2-18
2-19
2-19
2-20
2-20

Table of contents

2.7

3.1

3.2

3.3

3.4

3.5

3.6
3.7
3.8

4.1

42

43

2.6.1 Compile-time constants
More general declarations

Common constructed data types

The element types

3.1.1 Enumerated types .

3.1.2 Subrange types

Arrays

3.2.1 Declaration of arrays

3.2.2 Array constructors.

3.2.3 Keyword array contructors.
Records .

3.3.1 Fieldlists .

3.3.2 Declaration of records .
3.3.3 Qualified references

3.3.4 Record constructors

3.3.5 Default field values

3.3.6 Extractors . -
3.3.7 Machine-dependent records
The types POINTER and LONG POINTER
3.4.1 Constructing pointer types .
3.4.2 Pointer operations .

3.4.3 Long pointers .

3.4.4 Automatic dereferencing
Type determination

3.5.1 Type conversion

3.5.2 Balancing *

3.5.3 Free conformance *
Determination of representation *
Extended defaults

The null valueniL .

Ordinary statements

Assignment statements

4.1.1 Assignment expressions
4.1.2 Restrictions on assignment.
IFstatements .

4.2.1 IF expressions

SELECT statements . .
4.3.1 Forms and options for SELECT

2-21
2-22

3-3
3-4

3-11
3-13
3-15
3-16
3-17
3-18
3-19
3-21
3-22
3-24
3-26
3-28
3-30
3-32
3-33
3-356
3-36
3-37
3-38
3-40
3-41
3-42
3-45
3-47

4-2
4-2
4-3
4-3
4-4
4-5
4-6

Mesa Language Manual

4.4

4.5

5.1

5.2

5.3

5.4

5.5

5.6

6.1

6.2

6.3

6.4

4.3.2 The NuLLstatement.

4.3.3 SELECTexpressions .

Blocks .

4.4.1 GBTO statements

4.4.2 opeN clauses

Loop statements .

4.5.1 Loop control .
4.5.2 GOTOs, LOOPS, EXITs, and loops

Procedures

Procedure types .o .
5.1.1 Procedure values and compatibility *
Procedure calls

5.2.1 Arguments and parameters

5.2.2 Termination and results

Procedure bodies .

5.3.1 RETURNSstatements .

5.3.2 Operations which deal with intact parameter records .
5.3.3 Defaults in argument and result records

A package of procedures .
5.4.1 The example

5.4.2 Invoking procedures in other modules .

Nested procedures
5.5.1 Scopes defined by procedures
Inline procedures *

Other data types and storage management

Strings

6.1.1 String literals and string expressions .

6.1.2 Declaring strings

6.1.3 Long strings

Array descriptors . .
6.2.1 Array descriptor types .
6.2.2 Longdescriptors

Base and relative pointers

6.3.1 Syntax for base and relative pointers
6.3.2 Arelative pointer example .
6.3.3 Relative pointer types .
6.3.4 Relative array descriptors .
Variant records

4-7
4-8
4-8
4-9
4-12
4-14
4-15
4-18

5-3

5-6
5-8

5-9
5-10
5-11
5-12
5-13
5-15
5-16
5-17
5-18
5-18

6-2
6-3
6-4
6-5
6-5
6-6
6-8
6-9
6-9
6-10
6-11
6-12
6-13

Table of contents

6.5

6.6

7.1
7.2

7.3

74

7.5

7.6

6.4.1 Declaring variant records .

6.4.2 Bound variant types

6.4.3 Accessing entire variant parts, and variant constructors
6.4.4 Accessing components of variants .
6.4.5 Defaults and variant records
Sequences .

6.5.1- Defining sequence types

6.5.2 MACHINE DEPENDENT sequences

6.5.3 Allocating sequences

6.5.4 Operations on sequences

6.5.5 StringBodies and TEXT .

Dynamic storage allocation

6.6.1 Zones .

6.6.2 Allocating storage .

6.6.3 Releasingstorage .

6.6.4 Implementing uncounted zones

Modules, programs, and configurations

Interfaces e

The fundamentals of Mesa modules

7.2.1 Including modules: the DIRECTORY clause

7.2.2 Accessing items from an included module .
7.2.3 Scopes for identifiers in a module

7.2.4 Implications of recompiling included modules .
DEFINITIONS modules

7.3.1 READONLY variables .

7.3.2 Default fields in interfaces .

7.3.3 Inline procedures in interfaces .

7.3.4 Usage hints for INLINE procedures in interfaces *.
PROGRAM modules: IMPORTS and EXPORTS

7.4.1 IMPORTS, interface types and interface records .
7.4.2 Importing program modules .
7.4.3 Exporting interfaces and program modules.

7.4.4 IMPORTS in DEFINITIONS modules and implicitly imported interfaces

Access control: PUBLIC and PRIVATE .

7.5.1 Access attributes in declarations

7.5.2 Access attributes in TYPE definitions

7.5.3 Default global access _
7.5.4 Accessing PRIVATE names of other modules *.
Exported (opaque) types

7.6.1 Interface modules .

6-15
6-18
6-18
6-20
6-25
6-25
6-26
6-27
6-28
6-29
6-30
6-30
6-30
6-31
6-32
6-33

7-1
7-4
7-5
7-7

7-10
7-12
7-13
7-14
7-15
7-16
7-17
7-17
7-18
7-20
7-21
7-22
7-23
7-24
7-25
7-25
7-25
7-26

Mesa Language Manual

7.7
7.8

7.9

7.10

8.1

8.2

8.3

9.1

9.2

7.6.2 Client modules.

7.6.3 Implementation modules

Dot notation and interface items .

The Mesa configuration language, an introductory example
7.8.1 Lexicon: a module implementing LexiconDefs .

7.8.2 LexiconClient: a client module .

7.8.3 Binding, loading, and running a configuration: an overview
7.8.4 A configuration description for running LexiconClient .
C/Mesa: syntax and semantics .

7.9.1 IMPORTS, EXPORTS, and DIRECTORY in C/Mesa

7.9.2 Explicit naming, IMPORTS, and EXPORTS *

7.9.3 Default names for interfaces and instances *

7.9.4 Multiple exported interfaces from a single component *
7.9.5 Multiple components implementing a single interface *
7.9.6 Nested (local) configurations

7.9.7 Package creation: EXPORTS ALL

Loading and running modules and configurations

7.10.1 Making copies of modules .

7.10.2 How the loader binds interfaces e
7.10.3 STARTing, STOPping, and RESTARTing module instances
7.10.4 Loading and starting configurations, control modules .

Signaling and signal data types

Declaring and generating SIGNALS and ERRORS .
8.1.1 ERRORin expressions

Control of generated signals
8.2.1 Preparing to catch signals: catch phrases
8.2.2 The scope of variables in catch phrases .
8.2.3 Catchingsignals .

8.2.4 RETRY and CONTINUE in catch phrases

8.2.5 Resuming from a catch phrase: RESUME .
Signals within signals

Processes and concurrency

Concurrent execution, FORK and JOIN
9.1.1 A process example .

9.1.2 Process language constructs
Monitors .

9.2.1 Anoverview of monitors
9.2.2 Monitor locks

7-27
7-27
7-28
7-29
7-30
7-32
7-33
7-33
7-34
7-35
7-36
7-38
7-38
7-40
7-41
7-41
T-42
T-42
7-43
7-43
T-44

8-2
8-3
8-4
8-4
8-5
8-6
8-10
8-11
8-12

9-1
9-1
9-2
9-4
9-4

Table of contents

9.2.3 Declaring monitor modules, ENTRY and INTERNAL procedures .

9.2.4 Interfaces to monitors .
9.2.5 Interactions of processes and monitors .

9.3 Condition variables .
9.3.1 Wait, notify, and broadcast
9.3.2 Condition variable timeouts
9.4 More about monitors .
9.4.1 The LOCKS clause
9.4.2 Monitored records .
9.4.3 Monitors and module instances.
9.4.4 Multi-module monitors
9.4.5 Object monitors .
9.4.6 Explicit declaration of monitor locks
9.4.7 Inline ENTRY procedures.
9.5 Signals
9.5.1 Signalsand processes .
9.5.2 Signals and monitors
9.6 Initialization .
Appendices
A Pronouncing Mesa
B Programming conventions
Bl Names .
B.1.1 Capitalization .
B.1.2 Qualification
B.1.3 Module naming
B.2 Types .
B.3 Exceptions: SIGNALs and ERRORs
B.3.1 General
B.3.2 In DEFINITIONS modules .
B.3.3 In PROGRAM modules
B.4 Module histories . .
B.5 Documentation of definitions modules
B.6 Module organization .
B.7 Layout
B.8 Spaces
B.9 Miscellaneous

9-6

9-7

9-8

9-8

9-8
9-11
9-12
9-12
9-13
9-13
9-14
9-16
9-17
9-17
9-17
9-17
9-17
9-19

A-1

B-1
B-1
B-2
B-3
B-4
B-5
B-5

B-6
B-6

B-7
B-7

B-9

Mesa Language Manual

C1
C.2

D.1

D.2

Index

Mesa machine dependencies

Numeric limits

ASCII character set and ordering of character values .

Binder extensions

Code packing .
D.1.1 Syntax .
D.1.2 Restrictions
External links
D.2.1 Syntax
D.2.2 Restrictions

Mesa reserved words .

Collected grammar

C-1
C-1

D-1
D-1
D-2
D-2

D-3

E-1

F-1

I-1

Introduction

This manual concentrates on the Mesa programming language. Mesa is really a
programming system of which the language is but one part. Other components of the
system are documented separately, as are the details of preparing, compiling, debugging
and running Mesa programs.

Each chapter of this manual discusses some aspect of the language, using examples as
well as descriptions of semantics and syntax. The chapters emphasize different language
features and provide different levels of detail. The complete treatment of some features
requires more than one chapter. Generally, earlier chapters introduce topics, and later
ones supply additional detail. Titles of chapters, sections and subsections indicate the
language issues with which they deal.

In each major section, information is presented at three levels:
(1) Ordinary usage (motivation, forms and semantics), frequently with examples.
(2) Syntax equations (when appropriate).

(3) Fine points (if applicable): restrictions, special cases, references to later
material, precise semantics, etc.

Level (1) is intended to offer a basic understanding of Mesa. Reading only first level
material should be adequate to begin programming in the language. Levels (2) and (3)
supply more detail and provide information about the full power of Mesa.

As a rule, these levels of discourse occur separately and in the indicated order. A section
with a heading followed by an asterisk (*) deals with specialized material that can be
skimmed or skipped entirely on first reading. Occasionally, fine points or syntactic details
are presented within first-level material. The reader will be able to distinguish between
levels by their appearance. Fine points are written in a small font, like this. Syntax equations
and syntactic categories appear in the following font: FontForSyntax.

Any italicized word or phrase is important. If a Mesa technical term is being introduced, it
will be in italics; if a term is used before being defined, it will be italicized to warn the
reader that it should not be taken lightly and that it has a particular meaning in Mesa.
Occurrences of a technical term, once defined, are not distinguished. Lastly, names

1-1

Introduction

appearing in programs are italicized in both the program text itself and the explanations
of that text.

Programming examples are indented relative to the surrounding text.

1.1 Syntax notation

1-2

Mesa’s grammar is described by syntax equations written using a variation of Backus-
Naur Form (or BNF). For those unfamiliar with BNF, an explanation follows. Reading
and understanding that explanation is imperative for full use of this manual; in a first
reading, details of the syntax equations can safely be skipped. Those familiar with BNF
should scan this section to discover the particular variation being used.

An individual syntax equation defines a portion of the Mesa grammar. It specifies a rule
for forming some class of phrases in the language. A phrase class has a name, e.g.,
Program, and is defined by one or more syntax equations. Phrase names are always
printed in the syntax font when their use is meant to be technically accurate. For example,
an OctalDigit, which canbe any of 0, 1, 2, .. ., 7, is defined by the equation:

OctalDigit o= 0[1]2]3]4]5]6|7

Each equation consists of a- phrase name on the left, followed by the operator ::=
(pronounced “is defined to be”), in turn followed by a formation rule for that phrase class.
A formation rule consists of one or more alternatives, separated by the syntactic operator
vertical bar, | (pronounced “or”). The ordering of alternatives is not critical. In the
definition of OctalDigit, “3” is an alternative.

Each alternative is a sequence of symbols, where a symbol is either a phrase name (in the
syntax font) or a syntactic literal. In a syntax equation, a literal symbol stands for itself.
The reserved words of Mesa, such as BEGIN, appear as literals; they are always written
using upper-case characters in the font shown. The digits 0, 1, 2, etc. and special
characters, such as =, + and «, also are used to form literal symbols. Some composite
symbols are formed from more than one special character, e.g., = >. Spaces in syntax
equations are used only to separate the items in the rules and have no special significance.

The phrase name empty is often used as one of the alternatives in a formation rule. It
means that the rule permits an “empty” phrase as one of its alternatives (i.e., an actual
phrase is optional; it may or may not occur in the result of applying the formation rule).

Comments embedded in syntax rules are preceded by a double dash, --, and appear to the
right, e.g.,

Digit ::= OctalDigit| 8|9 -- a decimal digit is an OctalDigit
an8ora9

Often, only part of the total definition of a phrase class is given. To indicate that there are
other ways of forming phrases of that class, an ellipsis (...) is used as an alternative within
the rule. The definition of Statement is distributed throughout much of the manual in this
way. When a certain statement form, such as the AssignmentStmt, is being discussed, the
following partial rule appears:

Mesa Language Manual 1

Statement ;= AssignmentStmt]| ... -- this is just an example

One can read this as, “A Statement is defined to be an AssignmentStmt, among other
things.” ‘

Within a single alternative, the order of symbols is important. The alternative acts as a
“template” for forming an actual phrase; literal names and literal characters are copied,
while substitutions are made for the phrase names. Consider the following example:

ReturnStmt ::= RETURN | RETURN Constructor

("A ReturnStmt is defined to be RETURN or RETURN followed by a Constructor.”) The second
alternative means that RETURN and some actual phrase defined by Constructor occur in
exactly that order.

Syntax equations can indicate recursive substitution; for example:

IdList :: = identifier | identifier, IdList
In a Mesa program, an identifier is basically a name. This equation defines an ldList to be
a list of one or more names, with commas separating them if there is more than a single
name in the list.
Fine points:

This result is explained as follows. The formation rule for IdList consists of two alternative rules:

Rule 1: (First alternative) "An IdList is defined to be an identifier,” i.e., any one name can replace an

IdList.

Rule 2: (Second alternative) “"An ldList is defined to be an identifier followed by a comma followed by
another IdList,” i.e., name, |dList can replace an IdList.

To derive a single name, use Rule 1 as shown below. (Note: The substitutions are emphasized by
writing them in italics.)

IdList 1= name (by Rulel)
To derive two names separated by a comma:

ldList 1= name, ldList (by Rule 2)
name, name (by Rule 1)

Toderive three names separated by commas:

IdList 1= name, ldList (by Rule 2)
name, name, ldList (by Rule 2)
name, name, name (by Rule 1)

To derive n names separated by commas, use Rule 2 n -1 times and then use Rule 1.

The following syntax equation also relies on recursion:

1-3

Introduction

StmtSeries ::= empty | Statement | Statement ; StmtSeries

The equation is read as, “A StmtSeries is defined to be empty, or a single statement, or a
series of statements separated by semicolons; the last statement may be followed by a
semicolon.”

Fine point:
A trailing semicolon is possible because:

1) A StmtSeries may take the form specified by the third alternative, “Statement ;
StmtSeries.”

2) After some number of further substitutions using the third alternative, the recursive
reference to StmtSeries may take the "empty” form, i.e., "... Statement ; empty.”

3) empty is replaced by nothing at all, i.e., "... Statement ;".

Commas and semicolons are used as major separators for a variety of constructs in Mesa.
To distinguish between such constructs, a convention is adopted that the suffix “List” on a
phrase name implies a sequence separated by commas, while “Series” implies a sequence
separated by semicolons. This convention is reflected in the phrase names IdList and
StmtSeries above.

Mesa is a living language that has undergone many changes since its initial
implementations. Extensions and refinements continue to be made. Consequently, the
BNF found in this manual may not be an exact copy of the current Mesa grammar, but it is
a very close approximation. The “official” grammar used by the parser of the Mesa 11.0
compiler has been reproduced in Appendix F.

Basic data types and expressions

This chapter discusses how to declare, initialize and assign values to variables. It also
describes the basic types for numeric, character and boolean data, as well as the operators
used to construct expressions having these types.

The Mesa language is strongly typed. The programmer is given a collection of predefined
types and the ability to construct new ones, and is encouraged to choose or invent suitable
types for each particular application. Every variable and constant in a Mesa program
must be declared to have one of these types; every constant has a type; and every
expression has a type derived from its components and context. All types can be deduced
by static analysis of the program, and the language requires that each value be used in a
way consistent with its type according to rules specified here and in chapter 3. The type of
an object determines its representation and structure as well as the set of applicable
operations. In addition, the type system can be used to partition the universe of objects and
avoid confusion, even among classes of objects that are represented identically.

2.1 Aslice of Mesa code

The example below is an excerpt from a Mesa program. It assigns to gcd the greatest
common divisor (GCD) of a pair of integers, m and n (where m, n and ged are integer
variables in the program from which this excerpt was taken; we assume their values need
not be preserved). The example uses the Euclidean Algorithm for finding the GCD of two
numbers and works as follows:

If both m and n are zero, the GCD is zero (by convention).

Otherwise, repeat the following until n is zero: find the remainder of dividing m by
n; set m to the value of n; then set n to the remainder. The final value of m is the
GCD of the original m and n except that it may be negative; taking its absolute
value gives the GCD.

2-1

Basic data types and expressions

2-2

Example 1. Slice of Mesa Code Using the Euclidean Algorithm

-- Given are integers m and n, which can be altered. (D
IFm=0AND n=0 THEN gcd « 0 -- by convention (2)
ELSE , 3)
BEGIN 4

r: INTEGER; ' (5)
UNTILR = 0 (6)
Do (7

re mmoon, --rgetsremainderofm/n (8)
men; ner, --updatevariables (9)
ENDLOOP; (10

ged « -- in case one of m or n was negative -- ABS [m]; (11)
END; (12)

The example contains twelve lines of source code, including comments. The numbers in
parentheses at the right side are for reference only and are not part of the source code.
Comments begin with the symbol “--” and terminate at line endings. They may also be
completely embedded within lines, in which case they both begin and end with “--”.

Line (2) begins an IF statement that uses the values of m and n to select between two
alternatives. If both values are zero, the assignment statement following THEN is executed;
it assigns the value 0 to gcd (the character "«” is Mesa’s assignment operator). If either is
nonzero, the assignment is skipped and the eompound statement following ELSE (lines (4)
through (12) inclusive) is executed. (Distinguishing the two cases is actually unnecessary,
but doing so illustrates more features of Mesa.)

The second alternative is a block, a series of declarations followed by a series of
statements, all bracketed by “BeGIN” and “eND.” Line (5) declares a variable r of type INTEGER
for use within that block. A semicolon separates the declaration from the statements that
follow it.

The iteration in the algorithm is performed by the loop (UNTIL n=0 DO ...ENDLOOP), which
contains three embedded assignment statements. The loop repeats until n is equal to zero.
If it is zero at the outset, the embedded statements are not executed at all. Statements are
separated by semicolons. A semicolon at the end of a statement series that is embedded in
another statement (such as the series in the loop) is optional; it is permissible to write a
semicolon after every statement in the series.

Within the loop, line (8) assigns to r the value of the expression “m M0D n,” which gives the
remainder of dividing m by n. Line (9) updates m to contain the previous value of n and
then updates n for the next iteration, if any. Control transfers from the end of the loop, line
(10), back to line (6), where the new value of n is tested. If it is not zero, the loop is
repeated; otherwise, execution continues with the first statement after the loop, line (11).

When control reaches the assignment statement in line (11), m either has its original
value (if n was zero) or contains the value n had just before it became zero. The expression
“aBS [m]” has the form used for calling a function And passing it one or more arguments;
square brackets enclose the argument list. Normal parentheses, “(“ and ”),” are used only
for nested expressions, e.g., “a*(b+c/(d—e)*f).” The assignment places the absolute value
of m into gcd; this is the correct result. At this point, the reader is urged to trace through

Mesa Language Manual 2

the example with initial values for m and n of 15 and 12, respectively; the result should be
ged=3.

2.1.1 Basic lexical structure

The names gecd, m, n and r in the example are called identifiers. The general form of an
identifier is given by the following (informal) syntax:

An identifier is a sequence consisting of any mixture of upper-case letters, lower-
case letters or digits, the first of which is a letter. Upper and lower case letters are
different and do distinguish identifiers.

The following, valid identifiers are all distinct:

aBc Abc DiskCommandWord displayVector machl x32y40

Certain identifiers consisting entirely of capital letters are reserved for use by the Mesa
language. Some, such as IF, are punctuation symbols; others name built-in types, such as
INTEGER, or functions, such as ABS. All such words that have special meaning and are not to
be defined by the programmer are called reserved words. It is legal for the programmer to
use fully capitalized identifiers, but he risks a clash with a reserved word (possibly a new
one in some future version of the language). This can be easily avoided by including at
least one digit or lower case letter in any identifier. Appendix E lists the current set of
reserved words. :

Mesa uses the blank (or space) character to separate basic lexical units of the language
(such as reserved words and identifiers). Blanks are significant separators of lexical units.
They may not be embedded in identifiers, composite symbols (such as > =), or numeric
literals (such as 1000). Blanks are meaningful in STRING constants (§ 6.1.1), and there is a
CHARACTER constant for space (§ 2.4.3). As a separator, any sequence of contiguous blanks is
equivalent to a single blank. A TAB character also behaves exactly as a blank when used
as a separator.

A carriage-return character behaves as a blank for separating lexical units also, but it has
one extra function: if the last part of a line is a comment, the carriage return acts as the
terminator of that comment. Multiline comments (those containing carriage returns) may
be inserted into source code by beginning each new line with “--.” Long comments (either
containing carriage returns or not) may be bracketed with matched pairs of double angle
brackets (<< and >>). All characters within the brackets are ignored, with the
exception of nested long comment brackets. Care should be taken to insure that any code
being commented out does not contain any unmatched pairs of angle brackets within
comments initiated by “--.” Line breaks have no significance as statement separators. For
example, the single loop statement in the example extends over a number of lines, and a
semicolon is used to separate two statements in a series.

Semicolons are used for separating declarations, series of declarations from following
statements, and statements in a series from one another. Semicolons act as a separator
between declarations, rather than being required after each declaration. They cannot be
used with abandon, however; care is necessary when writing if statements (§ 4.2.1) or SELECT
statements (§ 4.3.1). Multiple statements can be written on a single line, separated by
semicolons.

2-3

2

Basic data types and expressions

2.2 Simple declarations

The example (Euclidean Algorithm) contains the following declaration:

r: INTEGER;

This declares r to be a variable of type INTEGER (§ 2.4.1), one of Mesa’s built-in types. More
than one variable can be declared at the same time. For instance,

x,y, divisor: INTEGER,;

declares identifiers x, y and divisor as variables of type INTEGER. These examples reflect the
two primary purposes of every declaration:

to designate one or more identifiers as variables, and

to specify their type.
A declaration always begins with a single identifier or a list of identifiers. Conventionally,
“list” is used to denote a single item as well as multiple items separated by commas. An

identifier list (IdList) is defined as follows:

IdList :: = identifier |
identifier, IdList

A declaration begins with an IdList followed by a colon. The colon is followed by a type
specification (INTEGER, for instance, is a type specification).

2.3 The fundamental operations: assignment, equality and inequality

2-4

The example contains the following five assignment statements:

ged «0

r < mmoDn
men

ner
gcd « ABS [m]

An assignment statement has the following syntax:
AssignmentStmt ::= LeftSide « RightSide]...
LeftSide ;= identifier]... -- plus forms for array indexing, etc.
RightSide ::= Expression

The RightSide may be any expression (§ 2.5) provided that its type conforms to that of the
LeftSide. “Conforms” is defined in subsection 2.4.6 and is discussed further in section 3.5;
for now, it can be taken to mean: “is the same as.” The LeftSide may be a simple variable
or a component of an aggregate variable (such as an element of an array). In any event, a
LeftSide denotes a variable, something capable of receiving values. A LeftSide cannot, for
example, be a constant, while a RightSide can.

Mesa Language Manual 2

The assignment operation («), the equality operation (=) and the inequality operation
(#) are called the fundamental operations. They can be applied to values of most types
(including, for instance, entire arrays). The rules governing which pairs of operands may
be used in a fundamental operation are detailed in section 3.5.

2.4 Basic types

The types of variables in a Mesa program fall into two broad classifications, user-defined
types and built-in types. Chapter 3 describes how a programmer can define new data types
using type constructors; this section discusses the basic, built-in types. These include
several numeric types (INTEGER, LONG INTEGER, NATURAL, CARDINAL, LONG CARDINAL and REAL), a
type for logical values (BOOLEAN), and a type for individual character values (CHARACTER).
The built-in type STRING (for sequences of characters) is described in chapter 6.

2.4.1 The numeric types INTEGER, CARDINAL, and NATURAL

Mesa provides two single word numeric types, one with values ranging over the signed
integers; the other, over the unsigned integers. Neither type completely mirrors the
corresponding mathematical abstraction (the integers Z or the natural numbers N,
respectively) because a finite representation is used for values of each type. The range of
the type INTEGER is (approximately) symmetric about zero, and values of type INTEGER are
represented as signed numbers. The range of the type CARDINAL is some finite interval of
the natural numbers that includes zero, and values of type CARDINAL are represented as
unsigned numbers. "Signed” and “unsigned” are not types; rather, they describe the
machine representation of a numeric value. There is an additional type, NATURAL, whose
range of legal values is the intersection of that for INTEGER and CARDINAL.

The programmer must choose an appropriate type for each numeric variable. CARDINALS
offer a somewhat greater positive range than INTEGERs, and this is significant in a few
applications, e.g., those that manipulate addresses that might be the same size as the word
size. More importantly, declaring a variable to have type CARDINAL asserts that its value is
always nonnegative; the compiler can use such assertions to perform more checking and to
generate better code. Programmers are encouraged to declare as much information about
each variable as possible; the ranges of numeric variables can be further constrained by
using subrange types (§ 3.1.2).

‘The types INTEGER and CARDINAL are distinct and not interchangable. They are, however,
closely related. Mesa allows most combinations of these types to occur within assignments
and arithmetic expressions (but not relational expressions). Care is necessary to avoid
ambiguity and failures of representation when values with different representations are
mixed. This is discussed further in subsection 2.4.6 and sub-subsection 2.5.1.1.

The major advantage of NATURAL is that it can be compared to either INTEGER or CARDINAL
(§ 2.5.2). It also requires fewer bits to represent, so a NATURAL and a BOOLEAN can be packed
into a single word inside a record.

2.4.1.1 Numeric literals

A numeric literal is an instance of the phrase class number, defined as follows:

2-5

Basic data types and expressions

2-6

A number is a sequence of digits. The digits may optionally be followed by the letter
B, H or D, which in turn may optionally be followed by another sequence of digits
denoting a scale factor. No spaces are allowed within numeric literals.

If D is specified explicitly, or if neither B, D, nor H appears, the number is treated as
decimal. The letter B means the number is octal (radix 8). A scale factor indicates the
number of zeros to be appended to the first sequence of digits; the scale factor itself is
always a decimal number. The syntax for numeric literals in base 16 notation
(hexadecimal) is one or more hexadecimal digits (0-9, A-F) followed by the character H.
The first character must be a valid decimal digit (0-9) or the literal will scan as a valid
Mesa identifier. Lowercase letters may also be used for a through f and for the suffix. The literals below
all denote the same value:

6400 6400D 64D2 14400B 144B2 1900H 19H2

A numeric literal always denotes a non-negative number (i.e., —5 is considered to be an
expression in which the unary negation operator is applied to the literal 5 to produce an
INTEGER value). To be valid in a context requiring a CARDINAL, the value of the literal must
be a valid CARDINAL number. Similarly, if an INTEGER is required by context, the value must
be a valid (positive) INTEGER. (§ 2.4.5 for more details). Note that literal values of type REAL
have a syntax discussed in subsection 2.4.6.

2.4.2 Type BOOLEAN

A BOOLEAN value can be either TRUE or FALSE; these are the only literals of type BOOLEAN; i.e.,
BooleantLiteral ::= FALSE | TRUE

BOOLEAN expressions are used in conditional statements (following If) and in certain loop
constructs. For instance, the following skeletal form describes the flow of control in
Example 1:

IFm=0ANDNn=0THEN...
ELSE

UNTILNn=0
DO
ENDLOOP;

The expression “n=0" is a BOOLEAN expression,; its value is TRUE if the value of n is zero and
FALSE otherwise. The expression “m=0 AND n=0" is also a BOOLEAN expression; its value is
TRUE just if both relations are. The relational and logical operators discussed in subsections
2.5.2and 2.5.3 all yield BOOLEAN values.

Variables of type BOOLEAN can be assigned values and appear as operands (although not of
arithmetic operators) just as any other Mesa variables. For example, the above program
outline could validly be replaced by the following:

mlsZero, nlsZero: BOOLEAN;

mlsZero «(m=0); nlsZero < n=0; -- compute whether m and n are zero

Mesa Language Manual 2

f misZero AND nlsZero THEN . . .

ELSE
UNTIL nlsZero=TRUE -- equivalent to just nlsZero by itself
00
nlsZero «n=0; -- recompute whether n is zero just
before testing
ENDLOOP;

2.4.3 Type CHARACTER

A value of type CHARACTER represents a single character of text. CHARACTER values are
ordered (according to the order specified in appendix C) and can be compared using the
normal arithmetic relations. CHARACTER values are distinct from numbers, and they cannot
be assigned to variables with numeric types. Limited arithmetic is, however, allowed on
characters (§ 2.5.1.3). See also the functions ORD and VAL (§ 2.5.6).

A characterliteral is written as an apostrophe () immediately followed by a single
character (which can be a blank, carriage-return, semicolon, apostrophe, or any other

character) or as an octal number followed by C. For example:

lowerCaseA «’a;

mark «’ ; -- mark is set to be a blank. Here a blank is significant
endMarker «’; ; -- endMarker is set to be a semicolon
asciiCR « 15C; -- an Ascii Carriage Return character,

2.4.4 Escape conventions for literals

Mesa provides an escape convention to allow non-printing characters in character and
string literals (cf. the escape convention for the language C). The escape character is\, and
the following codes are recognized:

Code Interpretation

\n,\N, \r,\R Ascii.CR

\t,\T Ascii.TAB

\b, \B , Ascii.BS

\f,\F Ascii. FF _

\I,\L Ascii.LF --note that\n isLF in C.

\ddd dddC -- where dis an octal digit, ddd < 377B
\ \

\' L]

\n ”*

2.4.5 The numeric types LONG INTEGER and LONG CARDINAL

For some applications, the ranges of the numeric types introduced in subsection 2.4.1 are
too limited. Mesa provides both a predefined type LONG INTEGER, with signed representation,
and a predefined type LONG CARDINAL, with unsigned representation, for such applications.
These types offer greater ranges, but their values occupy more storage and are generally
more time-consuming to manipulate than those of INTEGER and CARDINAL.

2-7

Basic data types and expressions

In an implementation, values of types INTEGER and CARDINAL are expected to be represented
by single machine words, while values of types LONG INTEGER and LONG CARDINAL are
expected to occupy two words. For this reason, INTEGER and CARDINAL will be referred to as
short numeric types; LONG INTEGER and LONG CARDINAL, as long numeric types. On a machine
using two’s complement arithmetic and a word length of N bits, the following table

indicates the range spanned by each numeric type (“..” replaces the mathematician’s
comma in this interval notation):

INTEGER [—2N-1 2N-1)
NATURAL [0..2N-1)
CARDINAL [0..2N)

LONG INTEGER [—22N-1 22N-1)
LONG CARDINAL ‘ [0..22N)

The actual ranges for these types are given in appendix C, the machine dependencies
appendix.

Long numeric constants are denoted by numeric literals defined by the phrase class
number (§ 2.4.1.1). The allowable type of any decimal or octal literal is determined by its
value, as summarized by the following table (using the conventions introduced in the
preceding paragraph):

Range Allowable Types
[0..2N-1) INTEGER, CARDINAL, NATURAL, LONG INTEGER, LONG CARDINAL
[2N-1 2N) CARDINAL, LONG INTEGER, LONG CARDINAL
[2N .. 22N-1) LONG INTEGER, LONG CARDINAL
[22N-1 22N) LONG CARDINAL

As in the case of short numeric types, the types LONG INTEGER and LONG CARDINAL are distinct
but closely related. Mesa allows most combinations of these types and the types INTEGER
and CARDINAL to occur within assignments, arithmetic expressions and relational
expressions, but care is necessary when this is done (§ 2.4.6 and § 2.5.1.1).

2.4.6 The numeric type REAL

The values of Mesa’s type REAL are approximations of mathematical real numbers. These
approximations are §ometimes called floating-point numbers.

Mesa has adopted the proposed IEEE standard for floating-point arithmetic (see e.g.,
Coonen. "An implementation guide to a proposed standard for floating-point arithmetic,”
Computer, January 1980, pp. 68-79). In support of this, the language provides floating-
point literals and the compiler performs a limited number of operations upon floating-
point constants. A floating-point constant is known as a realLiteral.

Mesa Language Manual 2

Syntax

Primary i:a |realLiteral --(§2.5)
realLiteral ::s unscaledReal

| unscaledReal scaleFactor

| wholeNumber scaleFactor
unscaledReal ::= wholeNumber fraction

| fraction
fraction i:a . wholeNumber
scaleFactor ;= E optSign wholeNumber | e optSign wholeNumber
optSign i:= empty| + |-
wholeNumber. ::a digit| wholeNumber digit

An unscaledReal has its usual interpretation as a decimal number. The scaleFactor, if
present, indicates the power of 10 by which the unscaledReal or wholeNumber is to be
multiplied to obtain the value of the literal.

Mesa represents REAL numbers by 32 bit approximations as defined in the [EEE standard.
The rounding mode used to convert literals is “round-to-nearest.” A literal that overflows
the internal representation is an error; one that underflows is replaced by its so-called
“denormalized” approximation. In Mesa, the value of the unscaledReal in a literal must be
a valid LONG INTEGER when the decimal point is deleted.

No spaces are allowed within a realliteral. Note that such a literal can begin, but not end,
with a decimal point. Thus, the interpretation of [0...1) is unambiguous but perhaps
surprising; use [0.. .1) or [0.0..0.1) instead. (See SubRangeTC in subsection 2.5.2.)

Operations
The compiler performs the following operations involving floating-point constants:

Unary negation (with - 0=0)
ABS
Fixed-to-Float (in “round-to-nearest” mode). .

Other operations are deferred until runtime, even if all their operands are constant, so
that the programmer can control the treatment of rounding and exceptions (see the
proposed standard).

2.4.7 Relations among basic types

If two types are completely interchangable, they are said to be equivalent. A value having
a given type is acceptable in any context requiring a value of any other type equivalent to
it; there is no operational difference between two equivalent types. None of the basic types
discussed in section 2.4 is equivalent to another basic type.

One type is said to conform to another if any value of the first type can be assigned to a
variable of the second type. A type trivially conforms to itself or to any type equivalent to

2-9

Basic data types and expressions

2-10

itself. In more interesting cases, an automatic application of a conversion function may be
required prior to the assignment. Conformance and its implications are discussed further
in section 3.5.

There are nontrivial conformance relations involving the types INTEGER, LONG INTEGER,
NATURAL, CARDINAL, LONG CARDINAL and ReAL. These relations allow certain combinations of
the numeric types to be mixed, not only in assignments but also in arithmetic and
relational operations (§ 2.5.2). They also permit these types to share denotations of
constants (§ 2.4.5). The conformance relations can be summarized as follows:

INTEGER, NATURAL, LONG INTEGER, CARDINAL and LONG CARDINAL conform to INTEGER (note
§2.4.8).

INTEGER, NATURAL, LONG INTEGER, CARDINAL and LONG CARDINAL conform to CARDINAL (note
§2.4.8).

INTEGER, NATURAL, LONG INTEGER, CARDINAL and LONG CARDINAL conform to NATURAL (note
§2.4.8).

INTEGER, NATURAL, LONG INTEGER, CARDINAL and LONG CARDINAL conform to LONG INTEGER.
INTEGER, NATURAL, LONG INTEGER, CARDINAL and LONG CARDINAL conform to LONG CARDINAL.
INTEGER, NATURAL, LONG INTEGER, CARDINAL, LONG CARDINAL and REAL conform to REAL.

Pairs of numeric types not on this list do not conform; e.g., it is not possible to assign a
REAL to a CARDINAL.

Particular care is required when numeric types with different representations are
intermixed. Mathematically, Z D N; however, it is not necessarily true that INTEGER 2
CARDINAL or that LONG INTEGER D LONG CARDINAL. For instance, with the assumptions above,
the intersection of INTEGER and CARDINAL is [0..2N-1), Within this interval, the signed and
unsigned representations agree, and the interpretation of a short numeric value is
unambiguous. If a CARDINAL value lies in this range, it can validly be assigned to an INTEGER
variable, and vice-versa; outside this range, the value represented by a given word depends
upon whether it is viewed as a CARDINAL or as an INTEGER. Similar considerations apply to
LONG CARDINAL and LONG INTEGER.

Example:

With the assumptions above and word length N=16, the unsigned value 177777B
and the signed value —1 are encoded by the same bit pattern.

Assignment of an unsigned value to an INTEGER variable, or of a signed value to a CARDINAL
variable, implicitly invokes a conversion function, which is just an assertion that the
value to be assigned is an element of CARDINAL N INTEGER (i.e., a NATURAL). If bounds
checking is requested of the compiler, code will be inserted before each cross assignment to
insure that the value is within range; otherwise, it is the responsibility of the programmer
to ensure that the conversion is valid. In many cases this is not too difficult, but
programmers are urged to avoid mixing signed and unsigned representations when this is
possible. It almost always is.

Mesa does guarantee that LONG T D T for any type T and that LONG INTEGER D CARDINAL;
thus it is always valid to assign a short numeric value to a LONG INTEGER variable or a short

Mesa Language Manual 2

unsigned value to a LONG CARDINAL variable. The properties of conversion to type REAL are
not specified by the language.

Fine points:

A built in procedure FLOAT is automatically applied to convert a value from type LONG INTEGER to
REAL. Short numeric values are converted first to LONG INTEGER and then to REAL.

Conversion from a short numeric value to a LONG INTEGER (and thus to a REAL) is substantially more
efficient when the value has an unsigned representation.

Neither BOOLEAN nor CHARACTER conforms to any other basic type.

Examples:
i: INTEGER; n: CARDINAL; ii: LONG INTEGER; x: REAL;
(valid) i«0;
il «0;
Xen,
X il
(invalid) iex;
n « TRUE;

2.4.8 Long to short conversion

Mesa provides conversion from types LONG INTEGER and LONG CARDINAL to INTEGER, CARDINAL,
and any subranges thereof. If you request bounds checking, the compiler will insert code to
check that the values are in the proper range, otherwise the values are simply truncated to
fit the destination.

In order to avoid surprises caused by loss of precision, the compiler issues a warning
whenever there is an implicit shortening from a two word quantity to a smaller one. To
avoid a warning, you should use an explicit range assertion (§ 3.1.2.2). For reasons of
backward compatibility, no explicit range assertion is required when storing a single word
quantity into a smaller subrange variable. For example:

i INTEGER; c : CARDINAL; [i: LONG INTEGER; S: TYPE = [0..10);

s:S;

i «li -gets a warning
i «INTEGER[/i]; -- no warning

c «li _ -- getsa warning
¢ < CARDINAL [[i]; - no warning

s « li; -- gets a warning
s «S[li]; -- no warning

s «i; --no warning!

s «S[i]; --nowarning '

2-11

Basic data types and expressions

In all cases, warning or not, the compiler will generate code to check the suitability of the
right hand side value if bounds checking (the /b switch) is requested.

2.4.9 Predeclared identifiers

The following predeclared identifiers may be used to make programs less verbose:

BOOL : TYPE = BOOLEAN;
CHAR : TYPE = CHARACTER;
NAT: TYPE = NATURAL;

INT : TYPE = LONG INTEGER;

2.5 Expressions

2-12

Expressions are constructs describing rules of computation for evaluating variables and
for generating new values by the application of operators. The overall syntactic rule for an
expression is given by

Expression ::= Disjunction|AssignmentExpr|IfExpr | SelectExpr]|...

The Disjunction form, which is discussed in this section, includes all the numeric
operations, relational operations, and BOOLEAN (logical) operations. An AssignmentExpr
allows one to write multiple assignments in a single statement; it is discussed in
subsection 2.5.4. The IfExpr and SelectExpr forms are discussed in chapter 4.

The basic unit from which expressions are built is called a Primary. This syntactic class
includes references to variables, literals, function calls (chapter 5), and any arbitrary

expressions embedded in parentheses:

Primary ::= Variable| Literal | (Expression)| FunctionCall|... | realLiteral

Variable iz LeftSide
Literal ::= number | BooleanLiteral | characterLiteral
FunctionCall ::= BuiltinCall|Call -- defined in chapter 5

Recall that every expression has a well-defined type in Mesa. The general rules for
determining the type of an expression from the types of its constituent parts are given in
section 3.5. This section outlines the types of the basic expression forms (as functions of
the types of their operands). For example, the type of a Primary is the type of the Variable
or Literal involved, or reduces to the type of the Expression within parentheses, or is the
type of the value returned by the BuiltinCall (some of which are defined below) or the Call of
a user-defined procedure (§ 5.1).

Some operators are numeric and some are BOOLEAN. The next sections discuss the numeric
operations, the relational operations, and the operations applicable only to BOOLEAN
values. Considered together, the operators form a single hierarchy with respect to their
precedence, which is described with each operator class and summarized in
subsection 2.5.5.

Mesa Language Manual 2

2.5.1 Numeric operators

The operations on numeric values are addition, subtraction, multiplication, division,
modulus, and arithmetic negation. The syntax for this group of operations is

Factor ::= Primary| —Primary | +Primary

Product ::= Factor | Product MultiplyingOperator Factor
MultiplyingOperator = *|/|moD

Sum ::= Product | Sum AddingOperator Product
AddingOperator = +|;

These operators have their usual mathematical meanings. The division operation on
integers, /, always truncates toward zero; thus —(i/j)= —i/j=i/—j. The MOD operator
yields the remainder of dividing one number by another (MOD is not applicable to ReAL
operands). MOD is defined by the relation (i/j)*j+(iM0ODj) = i, and the sign of the result of
MOD is always the sign of the dividend. (This is the reason that line 11 of Example 1 takes
the absolute value of the computed gcd; if m= —12 and n=38 initially, the gcd would be
—4 if its absolute value were not taken.)

The built-in function MIN computes the minimum value in a list of expressions; similarly,
the max function, the maximum value. The built-in function ABS computes the absolute
value of its argument. The syntax for calls on the built-in functions is

BuiltinCall ::= MIN [ExpressionList]|
Max [ExpressionList]|
ass [Expression]]
. -- other built-in functions later

ExpressionList :: = Expression | ExpressionList , Expression

For the arithmetic operators and built-in functions, the order in which the operands are
evaluated is undefined, but the syntax implies a precedence ordering that controls the
association of operators with their operands. In that ordering, unary negation precedes the
multiplying operators, which in turn precede the adding operators. Sequences of operators
of the same precedence associate from left to right (with the exception of the embedded
assignment operator, § 2.5.4). Thus, an expression such as a+ b* —c does not specify the
order of evaluation of a, b and ¢ but does require that the operations be performed in the
following order: negate c; then multiply the result by b; finally, add that result to the
value of a.

Examples:
i,J, k: INTEGER; m, n: CARDINAL;
Factors: n
15

(i+j+k)
-15

2-13

Basic data types and expressions

2-14

MIN[i,J, &, —15]
3.1416

Products: m*n
i/=-15
n MOD 8
m/n*10 -- same as (m/n)*10 because of left-associativity
—-k*(i+1)/2mop3 --same as (((—=k)*(i+1))/2) moD 3

Sums: i+1
—-i+j
J=i
n-—-nmMoD 8 -- same as n— (n MOD 8) because of precedence
m— min*n --same as m MOD n

2.5.1.1 Domains of the numeric operators *

In principle, each arithmetic operator designates the corresponding mathematical
function. Unfortunately, the hardware underlying any implementation of Mesa does not
provide this function but only a set of related partial functions. For each operator, the
compiler must choose as appropriately as possible from this set. The choice is made by
considering the types of the operands.

Example:

With the usual assumptions, 177777B and —1 are represented by the same bit pattern.
The value of 177777B > 0 is TRUE, but that of —1 > 0 is FALSE.

Mesa provides the operators +, —, *, /, MIN, MAX and ABS for all the numeric types. The
operation MOD is defined for all numeric types except REAL; the operation of unary
negation, for all but CARDINAL and LONG CARDINAL. For each of these operators, the type of
the result is the same as the type of the operands. Additionally, the result of the operation
is considered to have signed representation if all the operands have signed representation,
and to have unsigned representation if all the operands have unsigned representation.
Thus, adding two INTEGER values yields an INTEGER result, and dividing one CARDINAL by
another yields a CARDINAL result.

Fine points:

Division and modulus operations on short numeric values are substantially more efficient if their
operands are unsigned.

Addition, subtraction, and comparison of long numeric values are fast; multiplication and division are
done by software and are relatively slow.

Although the mathematical integers (Z) and real numbers are closed under all these
operations (except division by zero), the subranges defining the types INTEGER, LONG INTEGER,
NATURAL, CARDINAL and LONG CARDINAL generally are not. When the result of an operation
falls outside the range of its assumed type, a representational failure called overflow or
underflow occurs. In the current version of Mesa, it is the programmer’s responsibility to
guard against overflow and underflow conditions.

The implications of Mesa’s conventions for subtraction are worth emphasizing. If both
operands have valid signed representations, the result has a signed representation. If both

Mesa Language Manual 2

have only unsigned representations, the result has an unsigned representation and is
considered to overflow if the first operand is less than the second.

Example:
i: INTEGER; m, n. CARDINAL;
| ie—m-n, -- should be used only if it is known that m > = n
ie—IFm>=nTHEN m—nELSE —(n—m); --asaferform (§ 3.6)

The arithmetic operations are defined for operands that all have the same type, but it is
possible to mix numeric types (and thus representations) within an expression. In this
case, operands are converted as necessary to the “smallest” type to which all the operands
conform, the operation for that type is applied, and the result also has that type. The rule
for expressions involving type REAL is easy to state:

If any operand has type REAL, the REAL operation is used.

The rules governing combination of numeric operands with differing representations
involve some additional concepts and are stated in section 3.6. Again, the programmer
should try to aveid such combinations when possible. (Recall that literals in INTEGER N
CARDINAL have whatever representation is required by context.)

2.5.1.2 The operator LONG *

The built-in function LONG converts any value with a short numeric type to a long numeric
type and provides explicit lengthening of pointer types to long pointer types (§ 3.4.3) or
explicit lengthening of an array descriptor type (§6.2). A value with a signed
representation is converted to LONG INTEGER; one with an unsigned representation, to either
LONG INTEGER or LONG CARDINAL as required. The syntax is as follows:

BuiltinCall = ...|LONG [Expression]

This operation is necessary when the standard conversion rules do not give the desired
result. [t can also be used to emphasize the conversion.

Example:
LONG [m*n] : -- “short"” multiplication, overflow lost
LONG [m]*LONG [n] -- "long " multiplication

Fine points:

Lengthening a single-precision expression is substantially more efficient if that expression has an
unsigned representation.

The Mesa implementation provides standard procedures (not part of the language) for performing certain
multiplication and division operations in which the operands and results do not all have the same length.
These procedures provide less expensive equivalents of, e.g., LONG [m|*LONG [n].

2-15

Basic data types and expressions

2.5.1.3 CHARACTER operators *

Limited CHARACTER arithmetic is possible and is sometimes useful for manipulating the
encodings of CHARACTER values. The following arithmetic operations are defined for

operands of type CHARACTER:

A CHARACTER value plus or minus a short numeric value yields a CHARACTER value.

Subtracting two CHARACTER values yields an INTEGER value.

No other arithmetic operations on characters are allowed. Since the results of character
arithmetic depend upon details of the character encoding, such arithmetic should be used

with discretion.
Examples:
c: CHARACTER; digit: INTEGER,

digit «c -'0;
ce—c+ (A-"a) -- converts lower case to upper

2.5.2 Relational operators

The relational operators include = and # (not equal), <, <= (less than or equal), > =
(greater than or equal), >, and their negatives (e.g., NOT<, ~<, ~> =, etc.). These
operators always yield BOOLEAN results, depending on the truth or non-truth of the relation
expressed. The operators = and # apply to most types; the others, to any ordered type (i.e.,
to any type whose values are considered to be ordered). Ordered types include INTEGER, LONG
INTEGER, NATURAL, CARDINAL, LONG CARDINAL, REAL, BOOLEAN, CHARACTER, enumerated types

(§ 3.1), and subranges of ordered types (§ 3.1).

The relational operators also include the composite operator IN, which takes a numeric
value as its left operand and an interval as its right operand. Its value is TRUE if the left

value lies in the interval and FALSE otherwise. The syntax for relational operators is

Relation ;= Sum |Sum RelationTail
RelationTail ::= RelationalOperator Sum |
Not RelationalOperator Sum |
IN SubRange |
Not IN SubRange
RelationalOperator e <|<=|=|#|>|>=
Not ita ~|NoOT
SubRange ::= SubRangeTC|... - explainedinchapter3
SubRangeTC = Interval|... -- explained in chapter 3-
Interval ::= [Expression .. Expression)|

(Expression .. Expression) |

2-16

Mesa Language Manual 2

(Expression .. Expression] |
[Expression .. Expression]

The extra syntax for SubRange and SubRangeTC is placed here to be consistent with later
uses of the class Interval in chapter 3. The syntax for intervals follows mathematical
notation; a square bracket indicates the inclusion of the respective end point in the
interval, while a parenthesis indicates its exclusion. For example, the following intervals
all designate the range from — 1 to 5inclusive:

(-1..5][-1..6) (=2..6) (-2..5]

In the above examples, — 1 is the lower bound of each interval; the upper bound is 5. The
bounds of an interval are its end points, regardless of whether the interval is written as a
closed, half-open or open one. The bounds are not required to be constants. An interval
with an upper bound less than its lower is said to be empty; no values lie in such an
interval. For example, the following are all empty intervals:

[-1.-2][-1..-D(-2.-1)(-2.. -2]
Intervals may use real numbers as endpoints. Recall from subsection 2.4.6 that a

realLiteral can begin, but not end, with a decimal point. Consequently, [0...1] (three dots) is
unambiguous but is better expressed as (0.0..0.1].

Examples:
Relations: n=15
m#n --orm-~=n
i<=j
i<j)=((<kh -- = with two BOOLEAN operands
niN[1..5) -~-pn>=1landn<5
iNOTIN[—1..5] -- only legal if i is signed (because —1 is)
Fine point:

The relational operators, like the arithmetic operators, denote families of hardware operations when they
have numeric operands. Again, there is one operation for each numeric type. If there is a unique
“smallest” type to which all the operands conform, they are converted to that type as necessary and then
the comparison is performed. There is no unambiguous choice of such a type for numeric operands with
different representations; an attempt to compare two such values is an error. The precise rules appear in
section 3.5.

2.5.3 BOOLEAN operators

The operators NOT (logical negation), AND and OR apply only to BOOLEAN values. The syntax

is
Negation :: = Relation | Not Relation
Conjunction :: = Negation | Conjunction AND Negation
Disjunction :: = Conjunction | Disjunction or Conjunction

2-17

2 Basic data types and expressions

NOT negates the logical value of a BOOLEAN expression. p AND q has the value TRUE if and
only if both p and g are TRUE. p OR q is TRUE if at least one of p or q is TRUE.

When evaluating a BOOLEAN expression, evaluation of primaries is guaranteed to take
place from left to right. In the operation AND or OR, the second operand is evaluated only if
the first operand’s value does not determine the value of the expression.
Fine points:

“x AND y” is equivalent to the ifExpr “IF x THEN y ELSE FALSE";i.e., when x is FALSE, y is not evaluated.

“x OR y” isequivalent to the IfExpr "IF x THEN TRUE ELSE y”; i.e., when x is TRUE, y is not evaluated.

It is therefore safe to have expressions of the form "x AND y,” where y is defined only when x is TRUE, e.g.,
“x#0 ANDc¢/x > 2,"or “p=NIL OR p.f=0."

Examples:
Negations: NOT (=15 --same asNOT(i=15)
~q -- @ must be of type BOOLEAN
~(p ANDQ)

Conjunctions: i<=jANDj <k
D AND ~q
i=5ANDNOTIN[—1..1]

Disjunctions: m>norRm=15
~pOR~q

2.5.4 Assignment expressions

The assignment operation can be embedded in other expression forms. When it is, the
result of the operation has the type of the LeftSide and the value received by the LeftSide
in the assignment. The “«” operator has the lowest precedence of any operator. Its syntax
is the same as that of the AssignmentStmt:

AssignmentExpr ::= LeftSide « RightSide
If this form is used to perform multiple assignments, it is important to note that “«" is

right-associative. Thus, the assignment expression a«b«b+1 first assigns the value of
b+1to b and then assigns b’s new value to a.

Examples:
Assignment Expressions:
me15
mene15
menen+1 --same as m<«(ne(n+1))
ie(je(j+1) MOD n)*2 -- all these parentheses are necessary

Rules governing assignments of numeric values when the types are not identical are
summarized in subsection 2.4.7.

2-18

Mesa Language Manual 2

Fine point:

Because the order of evaluation of the primaries is not defined, expressons such as "(i«) + (j—#&)” have
unpredictable values and should not be used.

2.5.5 Operator precedence

The following table summarizes the precedences of the unary and binary operators
introduced in this section. The order is from highest precedence (tightest binding of
operands) to lowest; operators on the same line have the same precedence.

-+ -- unary negative and positive

+,- -- addition and subtraction
=’#’ <’ <=' >’ >=’|N

~,NOT

AND

OR
-

Parentheses can be used to explicitly control the association of operands with operators.

2.5.6 Function-like operators

There are a number of unary operators whose application looks like a function call, such
as the LONG operator (§ 2.5.1.2).

BuiltinCall 2= ... |PrefixOp [Expression] | vaL [Expression]
PrefixOp 2= ABS | -(§2.5.1)

BASE | -(§6.2)

LENGTH | -(§6.2)

LONG | -(§25.1.2)

ORD |

PRED |

succ

The operators PRED and SUCC operate upon values of any ordered type except ReAL. For
numeric and character types, succ [x] and PRED [x] are equivalent to x+1 and x—1
respectively. For énumerated types (§ 3.1.1), the values are successor and predcessor of x
in the enumeration; a bounds fault occurrs if there is no such element and you requested
bounds checking, otherwise you get undefined results and possibly overflow.

The operator ORD (ordinal) provides a LOOPHOLE-free mechanism (§ 3.5.1.2) for converting a
character or enumerated value into a numeric value. For example, given the standard
ASCII representation for characters, orp ['A] = 101B.

The VAL operator is the inverse of ORD. It must be used in a situation where the compiler
can determine the type of the result from context. For example:

¢: CHARACTER « VAL[101B]; --setsc to‘A

2-19

Basic data types and expressions

All of the PrefixOps can be invoked using “dot notation” as well as using brackets. Thus
x.SUCC may be used instead of succ[x].

2.5.7 Function-like operators on types

There are several function-like operators with arguments of type TYPE.

BuiltinCall = .. |TypeOp [TypeExpression] |
size [TypeExpression, Expression]
TypeOp = SIZE | FIRST | LAST | NIL

The operators FIRST and LAST are applicable to all element types (§ 3.1), including INTEGER,
NATURAL, CARDINAL, and CHARACTER, as well as LONG INTEGER and LONG CARDINAL. When applied
to the numeric types other than ReAL, they may supply information about the range of
values supported by a particular implementation. When applied to an enumerated type
(§ 3.3.1) they yield the least and greatest elements, respectively, of the enumeration.

The operator SiZE is used to find the number of machine words occuppied by an object of any
type. The result is a CARDINAL value. The two parameter form of the operator is used to
determine the number of machine words occuppied by a PACKED ARRAY of elements of the
specified type (§ 3.2 and 3.3).

The operator NIL returns a nil value of a POINTER type (§ 3.4).

If the TypeExpression can be parsed as an Expression, these operators may be written in
“dot notation.” Thus INTEGER.LAST is equivalent to LAST [INTEGER], but LONG INTEGER.LAST or
even (LONG INTEGER).LAST is not allowed. For another example of a situation where this
cannot be done, see the section on variant records (§ 6.4).

2.6 [Initializing variablesin declarations

2-20

A variable may be given an initial value in a declaration. For example, the Boolean
variable delimited could be set initially FALSE by using the declaration:

delimited: BOOLEAN < FALSE;
Variables (of the same type) can be initialized collectively:
n, n0: IN:I‘EGER - =T
This declares two separate integer variables n and n0 and initializes each to —7.

Any expression that could be used as the RightSide of an assignment can be used to
initialize a variable:

i: INTEGER < ABS[n]; -- this will setito 7
iSquared: INTEGER « i*i; -~ iSquared is initialized to 49
J: INTEGER « iSquared—i+1, --jisinitialized to 49 ~T+1 = 43

All initializations shown so far have taken “assignment” (or “«”) form. There is another

e __

form, the “fixed” (or “=") initialization. For example,

Mesa Language Manual 2

octalRadix: INTEGER = 8;

This means that octalRadix is to have a fixed value. It is never valid as the LeftSide of an
assignment. We call octalRadix a constant because its value can never change after it is
initialized (recall that the number 8 is called a literal). Normally, the term “constant” will
include the term “literal”; if the distinction is important, then “literal” will be used.

Initial values for fixed initialization can be arbitrary expressions. Paraphrasing the
earlier example:

i0: INTEGER = ABS[—octalRadix]; i0Squared: INTEGER = i0*i0;
JO: INTEGER = i0Squared—i0+1;

The initializing expression can use values that are not known at compile time. In this
example, if octalRadix did not have fixed initialization, the values of i0, iOSquared, and jO
would be computed and assigned at run-time. Variables are initialized in the order of
appearance in a declaration, and later declarations can use variables initialized earlier, as
shown by the example.

2.6.1 Compile-time constants

Wherever possible, the Mesa compiler evaluates expressions containing only constants. If
a variable is initialized using the fixed form and the expression can be evaluated at
compile time, then that variable has a known value. Since it can never appear as the
LeftSide of an assignment operator, it too becomes a compile-time constant (the variables
i0, i0Squared, and jO in the previous section are all compile-time constants).

Example:

beta: INTEGER = 3;
alpha: INTEGER = beta—1;

In this case, alpha is a compile-time constant (with the value 2), since the expression
beta—1 involves only compile-time constants. Compile-time constants need not occupy
memory at run-time; the compiler can replace references to compile-time constants, such
as alpha and beta, by their known values.

Fine points:

Knowledge of compile-time constant values can also be exploited when analyzing expressions, processing
other declarations, or generating object code.

One side effect of this propagation of constants is that the representation of a numeric constant is known
at compile-time. For instance, alpha above is declared to be an INTEGER, but because its value is 2, it may
also be used as a CARDINAL. However, declaring the type of aipha determines what kind of arithmetic
(signed or unsigned) will be used to compute its value, whether at compile-time or run-time (§ 2.5.1).

In certain contexts, an expression is required to yield a compile-time constant value. A (sub)expression
denotes such a constant if all the operands are compile-time constants and the operation is not one of

those listed below (current restrictions):

Any arithmetic or relational operation with operands of type REAL.

2-21

2 Basic data types and expressions

Application of any function (chapter 5) other than a built-in function or simple INLINE procedures
(but no guarantees are made for INLINE procedures).

The @ operation (§ 3.4), except in some cases where constants have been LOOPHOLEd (§ 3.5.1.2)
to pointer types.

2.7 More general declarations

Preceding sections have introduced all the syntactic components of a declaration. The
general form is defined as follows:

Declaration ::= IdList : TypeSpecification Initialization ; Declaration |
IdList : TypeSpecification Initialization

For the moment, TypeSpecification is defined as one of the built-in types; chapter 3
describes other forms of TypeSpecification.

TypeSpecification ::= PredefinedType]|...
PredefinedType I = INTEGER|CARDINAL | NATURAL

BOOLEAN | CHARACTER|
LONG INTEGER | LONG CARDINAL | REAL |

STRING | -- see chapter 6
WORD | -- see fine point below
UNSPECIFIED |) — see fine point below
MONITORLOCK | -- see chapter 9
CONDITION -- see chapter 9

An Initialization is formally defined as follows:

Initialization 1= empty|
« Expression |
= Expression |
cee --other forms are given later
Fine points:

The predefined type WORD is provided to describe values on which bit-by-bit logical operations are to be
performed. Currently, it is a synonym for CARDINAL.

‘The predefined type UNSPECIFIED is a device for bypassing most type checking. An UNSPECIFIED value is
a single machine word, and it matches the type of any object that occupies at most a single machine word,
including INTEGER, NATURAL, CARDINAL, CHARACTER, BOOLEAN, UNSPECIFIED, STRING, and any user-
defined type (chapter 3) that fits in a single machine word.

For numeric operations, its representation is similarly fluid. If a CARDINAL and an UNSPECIFIED value
are the operands of some arithmetic operation, then the UNSPECIFIED value is considered to be unsigned.
If an UNSPECIFIED is combined with a signed value, it is treated as if it were signed too. If an
UNSPECIFIED is combined with an UNSPECIFIED, they are both treated as signed.

Less type checking is sacrificed by using LOOPHOLE (§ 3.5.1.2) than by declaring variables with type
UNSPECIFIED.

2-22

Common constructed data types

Mesa encourages the programmer to augment the collection of predefined types by
constructing new types. Types can be defined to describe objects that are structured
collections of related values (e.g., a vector of Booleans, a table, or a complex number
consisting of real and imaginary components). Mesa’s type system has other, perhaps less
obvious applications. These include expressing some of the programmer’s knowledge
about a class of variables (e.g., that all take on values restricted to some known interval),
separating variables with different semantics into different classes so that they cannot be
confused (e.g., to avoid “comparing apples and oranges”), hiding implementation details of
abstractions (e.g., to prevent the user of a table-lookup package from depending upon the
internal organization of the table), and facilitating the introduction of synonyms to
provide better description and improved readability. .

Programmer-created types have the same status as Mesa’s built-in types. They can be
used to declare variables and to construct additional new types. In addition, values of most
constructed types can be operands of the fundamental operations («, =, #).

A new type identifier is declared using the following syntax:

TypeDeclaration ::= idList: TYre = TypeSpecification;

Each identifier in the idList is thereby declared to name the type denoted by the
TypeSpecification. If this declaration form is compared to a normal declaration, i.e.,

Declaration ::= IdList: TypeSpecification Initialization ;
it cari be seen that “TYpPe” fills the role of a TypeSpecification, and “= TypeSpecification”
plays the role of Initialization. In fact, the newly declared identifier has type “TYPe” and a

value (which must be constant, hence the “=") that is a TypeSpecification.

There are several predeclared identifiers that may be used to make programs less verbose.

BOOL: TYPE = BOOLEAN;
CHAR: TYPE = CHARACTER;
INT: TYPE = LONGINTEGER;

Common constructed data types

3-2

NAT: TYPE = NATURAL;

Any predefined Mesa type (§ 2.7) is a valid TypeSpeciﬁcatioh; thus the following are valid

_ type declarations: ~

SignedNumber: TYPE = INTEGER;
UnsignedNumber: TYPE = CARDINAL;
TruthValue: TYPE = BOOLEAN;
Char: TYPE = CHARACTER;

These type identifiers are now valid type specifications and can be used to declare
variables:

i,j: SignedNumber;
n: UnsignedNumber,
b: TruthValue;

c: Char;

After this series of declarations, i and j have type SignedNumber, which is equivalent to
INTEGER; n has type UnsignedNumber, which is equivalent to CARDINAL; etc. This is a trivial
way of defining new types. A more interesting way uses a type constructor as the
TypeSpecification and generates a truly new type, not just an additional name for an
existing one. A TypeSpecification can be defined as

TypeSpecification ::= PredefinedType |
Typeldentifier |
TypeConstructor

(tyee itself is not a TypeSpecification; it can be used only to declare types.)

There is an important point worth emphasizing here. A TypeSpecification that is a
PredefinedType or a Typeldentifier denotes an existing type and yields the same type
every time it is used. A declaration such as the one of SignedNumber introduces a
synonym for the name of an existing type. Synonyms can be more descriptive and thus
improve readability, but they do not partition the set of values. The types SignedNumber
and INTEGER are fully equivalent, and values with these types can be used interchangably.
On the other hand, a TypeConstructor constructs a new type. The rules for equivalence
and conformance of constructed types depend upon the forms of their constructors and are
discussed as the constructors are introduced. In some cases, each appearance of a
constructor generates a unique type, i.e., writing the same sequence of symbols twice
generates two distinct, incompatible types. For this reason, programmers usually should
name such a type, using a TypeDeclaration, and thereafter use the type's identifier. Of
course, introducing an identifier for a constructed type can make a program easier to read
and modify in any case.

The PredefinedTypes are described in chapter 2 (except for STRING in chapter 6 and process
related types in chapter 9).

The simplest form of a Typeldentifier is given by

Typeldentifier ::= identifier| -- which is a declared type
-- other forms given in chapters 6 and 7

Mesa Language Manual 3

The rest of this chapter discusses the attributes and uses of some common constructed
types: enumerations, subranges, arrays, records, and pointers. The syntax for

TypeConstructor is
TypeConstructor ::a= EnumerationTC | -- for enumerations

SubrangeTC | -- for subranges
ArrayTC | --forarrays
RecordTC | - forrecords
PointerTC | --forpointers
LongTC | --forlong pointers, etc
ProcedureTC | --seechapter5
ArrayDescriptorTC | --see chapter6
RelativeTC | --seechapter6
SignalTC | --seechapter8
ProcessTC -- see chapter 9

(The suffix “TC” is to be understood as an abbreviation for “TypeConstructor.”)

Enumerations define a set of values by giving a list of identifiers. These identifiers can be
viewed as members of an ordered set.

Subranges define types with values drawn from those of a larger, encompassing type but
restricted to lie in a specified interval. The subrange takes on the characteristics of the
enclosing type; for example, a subrange of INTEGER can be used to declare variables that
behave as INTEGERs but are constrained to take values within some interval.

Arrays are sequences of components that are homogeneous with respect to type and are
accessed by computed indices (“subscripting”). Records are sequences of components that
have potentially different types and are accessed using fixed component names
("selection”). Records and arrays are Mesa’s aggregate data types.

Pointers are scalar values used to access data objects indirectly. A pointer value is
represented by an address. Pointers can be used to build structures such as linked lists and
tree structures. Long pointers are pointers capable of spanning a larger address space
than ordinary pointers.

This chapter concludes with a discussion of type determination, the process by which Mesa

decides whether an expression has an acceptable type for a given operation. This is closely
related to questions of the equivalence and conformance of types.

3.1 The element types

This section describes a class of types called element types. Their common properties are
the following:

(1) They are ordered types; values of an element type can be operands of all the
relational operators (§ 2.5.2).

(2) They are scalar types; a value of an element type does not have any visible or
directly accessible internal structure insofar as the language is concerned.

Common constructed data types

3-4

(3) They can be used to declare subrange types (§ 3.1.2).
(4) They are the only types allowed as index types of arrays (§ 3.2).

The element types are INTEGER, NATURAL, CARDINAL, CHARACTER, BOOLEAN, the types generated
by EnumerationTC, and the types generated by SubrangeTC. Because of (3) above, this
definition is recursive; subranges of subranges are allowed. The definition of the class
ElementType is

ElementType 1= INTEGER| NATURAL |CARDINAL | CHARACTER | BOOLEAN |
EnumerationTC |
SubrangeTC
Fine point:

Note that LONG INTEGER and LONG CARDINAL, although ordered scalar types, are not element types,
i.e., one cannot use long numeric values as array indices. As a notational convenience, it is possible to
declare subranges of these types provided that the resulting subrange is in fact a valid subrange of
INTEGER or CARDINAL.

3.1.1 Enumerated types

Consider the following declarations and a typical assignment:

channelState: INTEGER;
disconnected: INTEGER = 0;
busy: INTEGER = 1;
available: INTEGER = 2;

channelState « busy,
Suppose channelState is a variable that is intended to range over a set of three “states”
named disconnected, busy, and available, which are represented by values 0, 1, and 2.
These values have no real significance; 5, 6, and 7 would serve equally well. Enumerated
types are well suited to such an application (where the underlying values are
unimportant). The above declarations could be replaced by a single declaration of a
variable with an enumerated range:

channelState: {disconnected, busy, available},

channelState « busy;

The effect is the same as before; channelState is a variable with values ranging over the
same “states,” and similar assignment statements can be used.

The enumeration has some advantages over the original declarations:

It is more convenient; the programmer does not have to provide values for
disconnected, busy, and available.

It allows more type checking. In the INTEGER case, one could assign any short
numeric value to channelState.

Mesa Language Manual 3

[t helps documentation; an enumeration shows all of its possible values.

An enumerated type is constructed by specifying a list of identifiers between braces, “{...}”.
These identifiers are not variables, but constants of that enumeration called identifier
constants. They represent nothing more than their own names.

The type constructor EnumerationTC is defined as follows:
EnumerationTC ::= {lIdList}

The IdList supplies all the identifier constants for the enumeration, and duplication of
identifiers is illegal. Separately specified enumerations are distinct. Every appearance of
an EnumerationTC generates a new type that is not equivalent to, and does not conform to,
any other enumeration. Thus the declarations

foreground: {red, orange, yellow, green, blue, violet},
background: {red, orange, yellow, green, blue, violet},

specify two different enumerations. It is illegal to assign background to foreground,
despite the fact that the same identifier list appears in each declaration. Occasionally, the
inability to declare any further variables with the same type can be used to advantage by
the programmer. Otherwise, the best way to avoid such problems is first to declare a type
and then to declare variables using the identifier of that type; for example:

Color: Tvpe = {red, orange, yellow, green, blue, violet},
foreground: Color;
background: Color;

This allows the assignment of background to foreground as well as the declaration of
further variables with the same type (perhaps initialized differently).

The identifier constants in two different enumerated types have no association
whatsoever and do not need to be distinct from one another. To identify unambiguously
the enumeration from which a constant is taken, one can, and sometimes must, qualify the
identifier constant by giving the name of the intended enumerated type. For example,
given the additional declaration

Fruit: TYPe = {orange, lemon};

Color{orange] denotes a color and Fruit{orange] denotes a fruit. More generally, the syntax
used for this form of qualification is

Primary it= ...| Typeldentifier [identifier] |
Typeldentifier.identifier

(This adds a new case to the syntactic definition of Primary, which already allows an
identifier constant.) The “dot” form of qualification is discussed in subsection 3.3.3.

Often qualification is not necessary; for instance, the following is permitted:

hue: Color;
hue « orange, -- the type of hue implies Color{orange]

3-5

Common constructed data types

3-6

In the following situations, an identifier constant need not be qualified, because the
intended enumerated type is established by the context:

as the RightSide of an assignment

as an initializing Expression

as a component in an array or record constructor (§ 3.2.2 and 3.3.4)
as an argument of a procedure (chapter 5)

as an array index (§ 3.2)

as the right operand of a Relation, including that part of a Relation used to label an
arm in a discrimination (§ 4.3)

as the bounds in a SubrangeTC (§ 3.1.2)

The values of an enumeration are ordered. The ordering is given by the order of
appearance in the IdList used to construct the enumerated type. The leftmost identifier has
the smallest value, and values increase from left to right. The following relations all have
the value TRUE:

Color{red] < Color{orange]
Color{red] < violet
hue IN[red .. yellow] -- assuming hue = orange

There are two additional built-in functions that are applicable to enumerations: FIRST
[TypeSpecification] yields the smallest value of the specified enumeration; e.g., FIRST
[Colorl=red. Similarly, LAST [TypeSpecification] produces the greatest value in an
enumeration; e.g., LAST [Color]=violet. It is also possible to iterate over all values of an
enumeration (§ 4.5).

The predefined type BOOLEAN is really an enumerated type, and its definition is
BOOLEAN: TYPE = {FALSE, TRUE};

Thus, FALSE < TRUE, FIRST [BOOLEAN] =FALSE, and LAST [BOOLEAN] = TRUE. The BOOLEAN constants
TRUE and FALSE may always be used without qualification since Mesa contains the
predefined symbols

TRUE : BOOLEAN = TRUE ;
FALSE : BOOLEAN = FALSE ;

The operators ORD and VAL provide a LOOPHOLE-free mechanism for converting between
numbers and enumerated type values.

Color: TYpe = {red, orange, yellow, green, blue, indigo, violet};
¢: Color;

y: Color « yellow;

i: CARDINAL;

Mesa Language Manual 3

ceVAL[3]; -- assigns green
ie«ORrRD[y]; -- assigns 2

i & y.ORD; -- also assigns 2
i « Color.green.oRrp; -- assigns 3

i & green.ORD; --illegal

Notice that the use of the adjective Color is required before the identifier green to
establish the context of the intended enumerated type to which the ORD operator is to be
applied.

The vAL operator must be used in a context where the desired type is known, such as
assignment, parameter passing or any of the other situations described above for which
qualification is not necessary.

Fine point:

“Dot notation” is a form of qualification that was used in Mesa originally to refer unambiguously to a
named component of some record (§ 3.3.3). This notational formalism has been extended to a number of
other situations requiring qualification, including the denotation of an identifier constant of an
enumerated type (also § 6.4.4.1 and § 7.6.5). Thus, Color.red is equivalent to Color(red].

3.1.1.1 Machine dependent enumerations

Sometimes a programmer can enumerate the values of some type but requires control of
the encoding of each value or of the number of bits used to represent the type (usually for
future expansion). Machine-dependent enumerations are provided for such applications.

Syntax
EnumerationTC 12= MachineDependent { ElementList }
MachineDependent := empty|MACHINE DEPENDENT
ElementList == Element | ElementList, Element
Element == identifier|
identifier (Expression) |
(Expression)
Examples

Status: TYPE = MACHINE DEPENDENT {off(0), ready(1), busy(2), finished(4),
broken(7)}

Tint: TYPE = MACHINE DEPENDENT {red, blue, green, (255} -- reserve 8 bits

Each Expression in an EnumerationTC must denote a compile-time constant, the value of
which is a CARDINAL.

In an enumerated type with the MACHINE DEPENDENT attribute, the values used to represent
the enumeration constants are assigned according to the following rules. If a
parenthesized expression follows the element identifier, the value of that expression is
used; otherwise, the representation of an element is one greater than the representation of

3-7

Common constructed data types

3-8

the preceding element. If you specify only a representation, the corresponding element
(normally a place holder) is anonymous. If the representation of the initial element is not
given, the value zero is used.

You cannot explicitly specify the représentation of any element unless the attribute
MACHINE DEPENDENT appears in the type constructor. Two element identifiers cannot be
represented by the same value (either given explicitly or determined implicitly as
described above). The ordering of elements determined by position in the ElementList must
agree with the ordering determined by the (unsigred) arithmetic ordering of the
representations.

Sparse Enumerations

A machine-dependent enumerated type is sparse if there are gaps within the set of values
used to represent the constants of that type or if the smallest such value is not zero. Mesa
currently takes the following position on gaps: they are filled by valid but anonymous
elements of the enumerated type. These elements can be generated only by the operators
FIRST, LAST, SUCC and PRED (or by the iteration forms that implicitly use these operators). For
example, succ [busy] is an anonymous element with the representation 3.

If you use a sparse enumerated type as the index type of an array, the array
itself will have components for all elements of the enumeration, including the
anonymous ones. The latter are awkward to access (except through ALL) and
may cause problems in constructors, comparison operations, etc., as well as
wasted space. (For example, ARRAY T'int OF INTEGER would occupy 256 words.)

3.1.2 Subrange types

In many cases, the values of a variable are inherently range-limited. For instance, a value
for day (of the month) lies in the range [1..31]. In other cases, the range is limited by
design. For instance, a value for year might be limited to the range [1900..1999]. Mesa
permits the user to declare such variables in the following way:

day: CARDINAL[1 .. 31}];
year: CARDINAL [1900 .. 1999];

Since these intervals cover a subrange of CARDINAL, the variables day and year are called
subrange variables. It is useful to think of day and year as having type CARDINAL with the
additional constraint that values are restricted to the specified intervals.

Subrange types have a number of advantages and uses. Subrange declarations
unambiguously document the range of values intended for a variable and thus aid
software maintenance. The compiler is able to optimize storage allocation when dealing
with range-restricted variables (for example, in arranging the fields of a record, § 3.3) and
can take advantage of subrange declarations to generate more efficient object code.

The general form of a SubrangeTC is

SubrangeTC ::= Typeldentifier Interval |
Interval

Mesa Language Manual 3

The Typeldentifier must evaluate to an ElementType. Thus, one can declare types that are
subranges of INTEGER, NATURAL, CARDINAL, CHARACTER, BOOLEAN, enumerated types, and other
subrange types. For example,

SymmetricRange: TYPE = INTEGER [-1..1];

Positivelnteger: TYPE = CARDINAL [1..LAST [INTEGER]];

UpperCaseLetter: TYPE = CHARACTER ['A.."Z];

DegenerateType: TYPE = BOOLEAN [TRUE..TRUE];

CoolColor: Type = Color(yellow..LAST [Color]]; -- excludes red, orange, yellow
AthroughM: TYee = UpperCaseLetter{’A.’M]; -- subrange of a subrange

The base type for a subrange is that type of which it is a subrange and which is not itself a
subrange; e.g., the base type for both UpperCaseLetter and AthroughM is CHARACTER.

The Expressions that define the end points of an interval must have types that conform to
the type denoted by the Typeldentifier (or yield short numeric values if the identifier is
omitted). Also, for the purpose of defining a subrange type, the end points must be compile-
time constants.

Fine point:

It is permissable for the interval defining a subrange type to be empty, e.g.,[0.. 0). It is not legal to use a
variable of such a type, but an empty subrange is sometimes useful for specifying the bounds of an array
ina record declaration (§ 3.2).

A subrange type conforms to its base type, and a base type conforms to any of its subrange
types. By extension, any two subrange types with the same base types are mutually
conforming (even if they do not overlap in any way). A more revealing point of view is that
the value of a subrange variable has the base type as its type, and an assignment of a
value to a subrange variable makes an associated assertion that the value is in the
appropriate interval. A violation of such an assertion is called a range error. It is the
programmer’s responsibility to guard against range errors. However, the compiler has an
option that applies bounds checking to insert run-time tests to detect range errors. As
implied by this viewpoint, appropriate literals of the base type serve as literals of the
subrange type, and any operations defined on the base type automatically extend to the
subrange type (but usually without closure).

Examples:

n: CARDINAL[0..10]; m: INTEGER [-5..5];

m«0; n<0 -- inherited literals
nen+l; -notvalidifn = 10
n<m, --only valid if m N [0..5]

The preceding discussion implies that subrange restrictions can be ignored in answering
many type-related questions; in this sense, subrange types are “weak.” Two subrange
types are equivalent if their base types are equivalent and if the corresponding bounds are
equal. For these types, equivalence is much stronger than conformance. Equivalence
becomes important when subrange types are used in the construction of other types.

3-9

Common constructed data types

3-10

FIRST and LAST are applicable to all subrange types and yield the corresponding bound. For
example, FIRST [CoolColor]=green and LAST [AthroughM]="M. It is also possible to iterate
over all values in a subrange (§ 4.5).

3.1.2.1 Subranges of numeric types *

The description above applies to subranges of both enumerated and numeric types.
Numeric subranges introduce one further complication, which is the question of
representation. Omission of the initial Typeldentifier in a SubrangeTC is permissable if
and only if each bound in the Interval specifies a short numeric value. In that case, INTEGER
or CARDINAL is the base type, and the choice depends upon the representations of the
bounds.

A numeric subrange type has a signed representation if both bounds are elements of
INTEGER and at least one is not an element of INTEGER N CARDINAL. Similarly, it has an
unsigned representation if both bounds are elements of CARDINAL and at least one is not an
element of INTEGER N CARDINAL. [f both bounds are elements of INTEGER N CARDINAL, values of
that subrange type are considered to have both representations. Any other combination of
bounds is illegal.

Examples:
sl:[-10..10]; -- signed representation
52:(100..33000]; -- unsigned representation (if 33000 > LAST [INTEGER])
s3:(0..10); -- both representations

Fine point:

There is currently a shortcoming in the symbol table representation that requires that the lower bound of
a numeric subrange be a valid INTEGER value. Thus CARDINAL [40000..40005) is not a legal subrange

type.

With respect to the choice of signed or unsigned versions of arithmetic and relational
operators, a quantity with both representations is treated flexibly. When combined with
an unsigned value, the quantity is considered to be unsigned; the unsigned operation and
result are chosen. When combined with a signed value, the quantity is considered to be
signed; the operation and result are signed. The rules governing combinations of values
with both representations depend upon the context in which the result is used; the default
is to choose signed representation and INTEGER operations. The precise rules are discussed
in section 3.6.

Examples:
i: INTEGER; n: CARDINAL; -- plus the declarations above
(signed) sl +1
sl + s3
s3-i

Mesa Language Manual 3

(unsigned) s2+1
s2 + s3
s3*n

Fine point:

The representation assumed for a literal also depends upon context. In fact, any short numeric constant ¢
is treated as if its type were [c..c].

3.1.2.2 Range assertions *

Assignment to a subrange variable implies an assertion about the range of the expression
being assigned. The programmer may make such an assertion explicitly, for any
expression, by using a range assertion. If S is an identifier of a subrange type and e is an
expression with a type T conforming to S, the Primary S [e] has the same value as e and is
additionally an assertion that e IN [FIRST [SNT] .. LAST [SNT1]] is TRUE. In addition to user
defined types, the basic types INTEGER, NATURAL and CARDINAL may be used in range
assertions.

A program that violates one of its range assertions is in error. In addition to providing
documentation and (optional) run time checking, a subrange assertion affects the
attributes attached to an expression. For example, an assertion of an INTEGER range (or a
signed subrange) forces the result to be treated as a value with signed representation. This
is useful for controlling the choice of an operation when the intended one cannot correctly
be inferred from the operands (§ 3.6).

Examples:
i: INTEGER; n: CARDINAL; S: Type = [0..10];

CARDINAL [i] -- i is asserted to be nonnegative
Sin] -- asserts nIN[0..10]

3.2 Arrays

Arrays are indexable collections of homogeneous components. The components of a given
array will have the same type, and each component corresponds to one index value in a
range of indices associated with that array. The index range of an array is itself a type
called an index type. The index type and component type together determine the type of the
array.

earningsPerQuarter: ARRAY [1..4] OF INTEGER;

declares a variable with a constructed array type having an index type of [1..4] and a
component type of INTEGER. Thus, earningsPerQuarter is an array of four integer elements:
earningsPerQuarter{1], earningsPerQuarter{2], ... , earningsPerQuarter{4]. earnings-
PerQuarter by itself refers to the entire array variable. (Aggregate variables and
components of aggregates are generally called “variables.” If a distinction is needed, the
term component is used and always means an item contained within an aggregate.)

An index type must be an INTEGER, NATURAL, CARDINAL, CHARACTER, BOOLEAN, EnumerationTC,
or SubrangeTC (the element types). Ordinarily, one only uses subranges of INTEGER or

3-11

3 Common constructed data types

CARDINAL as an index type. A one-to-one correspondence exists between the components of
an array and the values of the index type. This allows array elements to be accessed via
“indexed references.” An indexed reference selects and accesses the component
corresponding to a particular index value. In its simplest form, it consists of the name of -
an array followed by a bracketed Expression with a type conforming to the array’s index

type.
An index type can be specified using a type identifier:

Quarter: TYPe = [1..4];
profit, loss, earnings: ARRAY Quarter OF INTEGER;
thisQuarter: Quarter;

earnings{thisQuarter] « profit{thisQuarter] - loss[thisQuarter],

The arrays profit, loss, and earnings have Quarter as their index types, and thisQuarter is
a subrange variable with type Quarter.

Index types may also be enumerations or subranges thereof. For example,

CallType: 1ype = {longDistance, tieLine, toll, local, inPlant},
nearbyCalls: ARRAY CallType[toll..inPlant] OF CARDINAL,;

nearbyCalls{local] « nearbyCalls(locall+1;

Components may be of any desired type. In particular, the component type may itself be an
array type. This allows an approximation of multidimensional arrays, which are
otherwise absent in Mesa. For example, a two-dimensional data structure can be declared
and used as follows:

Matrix3by4: TYPE = ARRAY [1..3] OF ARRAY [1..4] OF INTEGER;
mxy: Matrix3by4;

mxy(31[4] «0; -- clear last component.

In the assignment statement, mxy is an expression of array type (with index type [1..3]
and component type ARRAY [1..4] OF INTEGER). mxy[3] is an indexed reference to the third
component of mxy. This in turn yields an expression of array type (with index type [1..4]
and component type INTEGER). Thus, mxy[3][4] is an indexed reference to the fourth
component of that subarray. Because of left-associativity, mxy[31[4] is the same as
(mxy[3D[4].

An array constructor (§ 3.2.2) consists of an optional type identifier followed by a list of
values (syntactically, Expressions) enclosed in brackets. The list specifies values for
components of an array in index order. The declaration below uses an array constructor to
initialize an array that can be used as a translation table; i.e., octalChar(n] holds the
character denoting octal digit n:

octalChar: ARRAY [0..7] OF CHARACTER = ['0,'1, 2,3, 4, 5,6, 'T];

Note that the number of values in the list (eight) matches the number of indices in the
index type. This is required for array constructors. A special form using the replicator ALL

3-12

Mesa Language Manual 3

is available for abbreviating array constructors in which all components have the same
value. For example, the following two declarations are equivalent:

dashes: ARRAY [0..7] OF CHARACTER «[’-,’-, - - *- " - ’-];
dashes: ARRAY [0..7] OF CHARACTER « ALL [’-];

Array variables may also be initialized using other array values. Consider the following
example:

freshVector: ARRAY [0..3) OF CARDINAL = ALL[0];
currentVector: ARRAY [0..3) OF CARDINAL « freshVector,

In this case, currentVector is initialized with freshVector's value, i.e., all three of
currentVector’s elements are initially set to zero. Because the declaration of freshVector
uses fixed initialization, assignment either to the entire array or to one of its elements is
illegal.

When the operands of any of the fundamental operations («,=,#) are arrays, the
operation is applied on a component-by-component basis. The initialization of
currentVector above uses assignment in this way. Similarly, the expression “currentVector
= freshVector” yields the result TRUE if and only if all three components of each array are
equal (as they are in the above example).

3.2.1 Declaration of arrays

Arrays are declared using the array type constructor, ArrayTC:

ArrayTC ::= PackingOption ARRAY IndexType oF ComponentType
PackingOption = empty | -- elements word aligned

PACKED -- elements potentially packed within words
IndexType ::= ElementType |

Typeldentifier

ComponentType ::= TypeSpecification

Two array types are equivalent if both their index types and their component types are
equivalent and if they are both packed or both unpacked (see below). An array type
conforms to another if the two types are equivalent. Conforming arrays need not be
declared together (unlike RECORD or enumerated declarations where separately declared
types are unique even if they look the same (§3.2.2)). For example:

IndexType: TtYPe = [0..10)

ArrayTypel : TYPE = ARRAY IndexType OF INTEGER ;

ArrayType2 : TYPE = ARRAY [0 .. 10) OF INTEGER ;

ArrayType3 : TYPE = ARRAY [0 .. 10) OF INTEGER;

Arrayl : ArrayTypel ; Array2: ArrayType2 , Array3: ArrayType3

3-13

Common constructed data types

3-14

Arrays Arrayl, Array2, and Array3 all conform to one another. Thus, it is possible to
assign or compare array variables with separately constructed types if those types are
structurally identical.

Fine point:

In addition, one array type freely conforms to another if the component type of the first freely conforms to
that of the second, the index types are equivalent, and they are both packed or both unpacked (§ 3.5).
Packed array types with non-equivalent component types do not freely conform, as their elements may
well occupy different numbers of bits within a word.

Declarations of initialized array variables take the form
IdList: ArrayTC Initialization

The initializing expression must have an array type that conforms to the one being
declared.

The previous section describes indexed references to array components. A formal
definition follows:

IndexedReference ::= Variable [Expression ||
(Expression) [Expression]

LeftSide ::= ...|IndexedReference

The Variable or parenthesized Expression must be of some array type, and the bracketed
Expression must conform to the index type for that array type. An IndexedReference is
itself part of the definition of a Leftside (and therefore of a Variable, § 2.5).

Fine points:

If you specify the PACKED attribute for an array type, the granularity of packing is 1, 2, 4, 8 or 16n bits
and is determined by the component type of the array. Unless an array is packed, each component is
“aligned,” i.e., begins on a word boundary. Thus a packed array of CHARACTER wastes no space.

Since packed array elements are not necessarily word aligned, one cannot use the @ operator (§ 3.4) to
generate the address of an element.

The value of the construct SIZE [T, n] is the size, in words, of the storage required by a packed array of n
items of type T. ;

The length of an array is the number of its elements. For variables with an array type, the length is fixed
and known at compile-time. (Dynamic arrays are possible in Mesa through the use of array descriptors,
discussed in subsection 6.2.1 or sequences discussed in section 6.5.)

The IndexType of an array may legally be an empty interval. In this case, no storage is allocated for
the array. This is useful when the array appears as the last component of a RECORD (§ 3.3) and the user
will be obtaining storage for each record plus some number of array elements from a free storage
manager. Note that {0..0) is not equivalent to [1..1), since the intervals specify different initial indices for
the array. The use of sequences (§6.5) instead of dummy arrays is strongly encouraged.

Mesa Language Manual : 3

Three function-like operators are relevant to arrays (and more relevant to array descriptors): LENGTH,
BASE, and DESCRIPTOR. These are discussed in section 6.2, but a brief summary is provided below. For
thissummary, arg denotes an expression with some array type.

LENGTH [arg] -- yields the number of array elements.
BASE [arg] -- yields a pointer value for locating the first array element.
DESCRIPTOR (arg] --yields arg’s array descriptor value (consisting of base and length).

3.2.2 Array constructors

In the preceding examples, array constructors are used only for initialization. Actually,
constructors for arrays may be used in any RightSide context. An array constructor is
defined as follows:

Primary ::= Constructor|...

Constructor :: = OptionalTypeld [ComponentList] | ALL [Component]
OptionalTypeld :: = Typeldentifier | empty

ComponentList ::a PositionalComponentList |

-- other forms for record constructors

PositionalComponentList ::= Component |
PositionalComponentList , Component

Component i:= empty| -- elided component
Expression | -- explicit component
NULL -- voided component

The empty components in a constructor are said to be elided, and NULL components are said
to be voided. The values of both elided and voided components are undefined when the
component type does not have a default value (§3.3.5). In the first form of array
constructor, using OptionalTypeld [ComponentList], the number of Expressions plus
elided or voided components must match the length implied by the array type. The type of
each Expression must conform to the array’s component type. The expressions (and elided
or voided components) are taken in order to form a sequence that is the constructed array
value.

Consider the following example:

Triple: TYPE = ARRAY [1..3] OF CARDINAL,
triplet: Triple « Triple[11, 12, 13];

The declaration assigns 11 to ¢triplet{1], 12 to ¢riplet[2] and 13 to ¢riplet{3].

When the array type is implied by context, the Typeldentifier may be omitted. Thus, the
declaration above could be written as

triplet: Triple «[11, 12, 13];

3-15

Common constructed data types

3-16

Taken out of context, the constructor [11, 12, 13] is ambiguous; it could be assigned to any
array of three numeric elements; for example:

trio: ARRAY {Patty, Laverne, Maxine} OF LONG INTEGER «[11,12, 13}];

The second form of constructor, using ALL, is only valid when the array type is implied by
context. The type of the Expression must conform to the array’s component type. The value
of the constructor is an array in which the specified value is replicated a number of times
equal to the length of the array. The expression is evaluated just once. In the case of an
array of arrays, the structure must be mirrored by nesting in the constructor, as shown by
the following example:

allOnes: Matrix3by4 < ALL[ALL[1]];
Fine points:

The value of an elided or voided component of an array constructor is not defined, but it will have some
value. In particular, if the statement

triplet «—(1,,3];

is executed after the previous assignment to triplet, the value of triplet{2] is undefined. If the element type
of the array has a default (§3.7), then the elided element will have that value.

Any array constructor in which all components are compile-time constants is a compile-time constant.
Also, selection from an array that is a compile-time constant using a constant index yields a compile-time
constant.

3.2.3 Keyword array constructors

If the index type of the array is an enumeration or a subrange thereof, one can use a
keyword array constructor where the individual element positions are named. The
acceptable keywords are the constants appearing in the enumeration. In the case of a
subrange, the endpoints must be defined by expressions involving only those constants,
the operators FIRST, LAST, SUCC and PRED, and identifiers equated by declaration to such
expressions. It is possible to specify the same optional default value (§3.7) for each
component of an array by assigning a default value (including NuLL) to the component type
of the array at the time that component type is declared. If this is done, keyword items can
be omitted, the corresponding elements receive the default value. For example,

Element : TYPe = {red, green, blue} ;
BoolFalse : TYPE = BOOLEAN «FALSE ;
Set : TYPE = PACKED ARRAY Element OF BoolFalse ;

s, t:Set;
s «[red : TRUE]; -- equivalent to [TRUE, FALSE, FALSE]
t «[red : TRUE, blue : TRUE] -- equivalent to [TRUE, FALSE, TRUE]

The rules for when components of an array or record constructor may be omitted, elided, or
voided are explained more fully in subsection 3.3.5.

Mesa Language Manual 3

3.3 Records

A record is an aggregate that allows a group of related data items of different types to be
packaged together. In the definition of a record type, the type of each individual
component must be supplied, as in the following example:

MilitaryTime: TYPE = RECORD [hrs: [0..24), mins: [0..60)];
oldTime, newTime: MilitaryTime,

Here, MilitaryTime is a newly defined type, and oldTime and newTime are record
variables of that type. MilitaryTime is a two-component record type, where the first record
component is named hrs and the second mins. Every MilitaryTime record contains both
components, but different record objects have their own values for these components.

A constructor of a record type contains a field list after the word RECORD. Each element in
the list specifies one (or more) components of the record. For MilitaryTime, the field list is
[hrs: [0..24), mins: [0..60)]. The component names, hrs and mins, are called field names.
They are used to refer to components in any MilitaryTime record. For instance, the first
component of oldTime may be selected using the qualified reference, “oldTime.hrs.”

One can construct an entire record value using a record constructor. For instance, the
constructors below yield MilitaryTime values with hrs components that have the value 13
and mins components that have the value of the expression “y+ 1"

MilitaryTime[13, y+1]
MilitaryTimelhrs: 13, mins: y+1]
MilitaryTime[mins: y+1, hrs: 13]

The second constructor is an example of a keyword constructor, since it specifies the name
of the component (e.g., as “hrs:”) with which a value is to be associated. The third example
shows that record components need not be specified in order of field declaration provided
that keywords notation is used in the record constructor.

A default value (§3.3.5) can be specified for any field in the definition of a record type. The
default is used in constructing records of that type when no value is specified in the
constructor. Defaults are useful for suppressing detail and ensuring initialization of fields.
In the following example, the two constructors have the same value:

Datum: TYPE = RECORD

(

value: INTEGER,

nReads: CARDINAL « 0,
nWrites: CARDINAL « 1
|3 ’

Datum[x]
Datumlvalue: x, nReads: 0, nWrites: 1]

The basic operations on (non-variant) record values include the fundamental operations
(=, #, <), qualification, the unambiguous reference to a named component of some
record, and extraction, the expansion of record objects and assignment of their components

3-17

Common constructed data types

3-18

to individual variables in a single statement. Variant records are records of the same type
that do not necessarily contain the same components. They are discussed in chapter 6.

3.3.1 Field lists

There are two kinds of field lists, depending on whether the fields are "named” or
“unnamed.” (Field lists used to construct multi-component record types are almost always
named.)

Syntax equations:
FieldList ::= [UnnamedFieldList]| [NamedFieldList]

UnnamedFieldList ::= TypeSpecification |
TypeSpecification , UnnamedFieldList

NamedFieldList ::= IdList: FieldDescription DefaultOption |
NamedFieldList, IdList : FieldDescription

DefaultOption

FieldDescription ::= TypeSpecification

DefaultOption ::= empty| « DefaultSpecification -- see subsection 3.3.5

Examples:

[i: INTEGER, b: BOOLEAN, c: CHARACTER] -- a named field list

[INTEGER, BOOLEAN, CHARACTER] -- a similar, but unnamed field list

[f1: CHARACTER, f2, f3: INTEGER] -- components listed and declared together

[f1: CHARACTER, f2: INTEGER, f3: INTEGER] -- equivalent to the previous

Note that if one field is named, all must be named. Also, field names must be unique
within a given field list. (The same identifiers may be used as field names in other field
lists, however, or as names of declared variables.)

Field descriptions in a named field list contain a type specification, indicating the type of
the field. Any type may be specified, including an array type or (some other) record type.

Fine points:

A field’s type specification must not imply an infinite nesting of records. For instance, the following is
illegal: '

A: TYPE = RECORD [b: B];
B:TYPE = RECORD [a: A;

Field lists occur in constructors of types other than records, such as PROCEDUREs (chapter 5), SIGNALs
(chapter 8), and in variant record specifications (chapter 6).

Unnamed field lists are normally used when component names would be ignored if they were present.
This is common for functions that return single-component results. Unnamed field lists are sometimes
used in specifying the input parameters for procedure variables that are to be set to one of several actual

Mesa Language Manual 3

procedures. (However, an unnamed field list does not allow Calls using such a procedure variable to refer
to the parameters by name.)

3.3.2 Declaration of records
The type constructor RecordTC is defined as follows:

RecordTC ::= RECORD FieldList|
-- plus variant records (chapter 6)

where FieldList is defined in the previous section. Separately declared record types are
unique, even if they look the same. Every appearance of a record constructor creates a new
type that is not equivalent to, and does not conform to, any other record type. In the
example:

RecTypel: TYPE = RECORD (a,b: INTEGER];
recl: RecTypel;

RecType2: TYPE = RECORD (a,b: INTEGER];
rec2: RecType2;

rec3: RECORD [a,b: INTEGER];
rec4: RECORD [a,b: INTEGER];

the record variables recl, rec2, rec3, and rec4 all have different, non-conforming types.
None of these can be assigned to any of the others (despite the similarity of their
components). It is, of course, legal to assign to a component any value with a conforming
type. For example:

recl.a « rec2.b «rec3.a « 5;
recd.a «—recl.a; rec4.b «recl.b;

Any single-component record type conforms to the type of its single component, but not
vice versa. The automatic conversion in this case requires no computation.

Example:
Bundle: TYPE = RECORD [value: INTEGER];
recVar: Bundle; .

intVar: INTEGER;

intVar « recVar; --means intVar « recVar.value

intVar «recVar+1, -- operand conversion
recVar « Bundle[intVar]; -- a constructor

recVar.value « intVar;

This conversion simplifies dealing with functions that return single-component records
(chapter 5). It also provides a way of partitioning a set of variables that can be checked by
the type system. In the example above, a direct assignment of intVar to recVar is invalid.
Furthermore, no other single-component record type, such as

Prime: TYPE = RECORD [value: INTEGER];

3-19

Common constructed data types

3-20

can be confused with Bundle; assignment of a Bundle value to a Prime, or a Prime to a
Bundle, is illegal. Either a Bundle or a Prime can, however, appear as a numeric operand.
Defining Bundle and Prime as synonyms for INTEGER would not provide this additional
checking.

Because of the uniqueness of constructed record types, record variables are typically
declared in two steps: first the record type, then the record variables. The general form is:

identifier : TYPe = RecordTC; -- define record tvoe.
IdList : identifier Initialization ; -- same identifier as just defined

Record variables can also be declared directly:
IdList : RecordTC Initialization ;

This form is not very useful because the (anonymous) record type is not available for
purposes such as declaring other records of the same type or writing constructors.

The Initialization shown in these general forms applies to the entire record variable, not to
individual components. Any Initialization must have the proper record type. [nitialization
of record variables is shown in the next example.

noon: MilitaryTime = [hrs:12, mins:0];

midnight: MilitaryTime = [hrs:0, mins:0];

time: MilitaryTime < midnight, -- start time at midnight.
Fine points:

The Mesa compiler packs record components into machine words, The components may be arranged inan
order that differs from the left-to-right order of the fields in the type constructor. All records of the same
type have the same component arrangement.

Normally, the user is unconcerned with the actual arrangement of record components. When component
arrangement is important, the user may specify "MACHINE DEPENDENT" records (§ 3.3.6).

Except in MACHINE DEPENDENT records, components are packed for storage efficiency. Some fields may
be aligned (to the beginning of a word boundary) and some may not. Components occupying a full word or
more are always aligned: arrays, INTEGERs and pointers, for example. Subrecords may or may not be
aligned, depending on their size. Packed arrays that don't fit completely within a word are aligned, even
if there would have been space in the preceding word for some of the elements. As an example:

FourBits: TYPE = PACKED ARRAY [0..4) OF BOO‘LEAN;
Record: TYPE = RECORD(a, b, ¢, d: FourBits]; -- fits in a single word

The function-like operator SIZE (§ 2.5.6) is often used to find the number of machine words occupied by a
record of some type.

Mesa Language Manual 3

3.3.3 Qualified references

Qualification is used to refer unambiguously to a named component of some record. The
general form (which extends the definition of a LeftSide) is

QualifiedReference :: = Variable. identifier |
(Expression) . identifier

LeftSide ::= ...|QualifiedReference

The field name is said to be “qualified by” the record value (the Variable or Expression) to
the left of the dot. The operator associates from left-to-right in the case of multiple
qualification. For example:

Latitude: TYPE = RECORD [degs:(0..360), mins, secs:[0..60)];
. Longitude: TYPE = RECORD [degs:[— 90..90], mins, secs:[0..60)];
Position: TYPE = RECORD [latitude: Latitude, longitude: Longitude];

somePosition: Position;

Some of the possible qualified references to components of somePosition are listed below:

Qualified Reference Refers To

somePosition.latitude 1st sub-record
somePosition.longitude 2nd sub-record
somePosition.latitude.degs 1st component of 1st sub-record

somePosition.longitude.secs 3rd component of 2nd sub-record

The association order for qualification means that names must occur in the proper
sequence; e.g., somePosition.mins.longitude is incorrect. Also, a qualified reference must
be complete, i.e., names may not be skipped (as in somePosition.secs, which would be
ambiguous in any event).

Qualified references and indexed references have the same precedence (the highest
possible) and may be intermixed. For example:

recordOfArrays: RECORD [a,b: ARRAY [0..100) OF CARDINAL];
arrayOfRecords:[1..5] OF RECORD [i1,i2,i3: CARDINAL];

arrayOfRecords(5].i3 « recordOfArrays.al0]; -~ ("last" gets "“first")
Fine point:

Qualification briefly opens up a given "name scope.” For instance, in the record qualification, rec.z, the
qualified name, x, must name a field of rec and selects that field. Scope is treated more fully in chapter 7.

3-21

3 Common constructed data types

3.3.4 Record constructors

A record constructor assembles a record value from a set of component values. In the
following example, a constructor is used as a RightSide of an assignment.

MonthName: TYPe = {Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec};
Date: TYPE = RECORD

(

day:[1..31],
month: MonthName,
year: [1900 .. 2000)

k;

birthDay: Date;
now: [1900..2000) « 1984;
birthDay « Date[25, Apr, now—33];

This constructor yields a record value with type Date. The record assigned to birthDay
contains the following component values:

Component Value
day 25
month Apr
year now—33 (which is 1951)

A Constructor is a Primary and may not be used as the LeftSide of an assignment.

Record constructors are of two kinds: keyword constructors and positional constructors.
Within both kinds, the component value for a particular field may either be supplied or be
omitted. If it is omitted, the value of the field is determined by the DefaultOption
appearing in the declaration of the field (§ 3.3.5).

Syntax equations:

Primary 2= ...|Constructor

Constructor ::= OptionaiTypeld [ComponentList]

OptionalTypeld := Typeldentifier | empty

ComponentList ;2= KeywordComponentList |
PositionalComponentList

KeywordComponentList ::= KeywordComponent |
KeywordComponentList , KeywordComponent

PositionalComponentList ::= Component |
PositionalComponentList , Component

KeywordComponent ::= identifier : Component

3-22

Mesa Language Manual i 3

Component ita empty| -- elided component
Expression | -- explicit component
NULL -- voided component

The initial Typeldentifier, if present, must name the type of the record being constructed.

In keyword constructors, the correspondence between constructor components and record
components is strictly “by name.” Keyword names may not be repeated in a constructor, but
the order is irrelevant. For example, the following keyword constructors are equivalent:

Date[day: 25, month: Apr, year: now —33]
Date{month: Apr, day: 25, year: now — 33}

All of these keyword constructors specify values for all the components. In the following
example, the first keyword constructor elides the month component (the place for the
component value is specified, but no value is given); the second voids the month
component (by specifying NULL instead of a value):

Date[day: 25, month: , year: now — 33] --month is elided
Date[day: 25, month: NULL, year: now — 33] -- month is voided

The distinction between an elided and a voided field arises in the treatment of defaults
(8§ 3.3.5). Since the declaration of Date specifies no default value for month, both of these
examples construct records with a second component that has an undefined value.

In a positional constructor, the correspondence between constructor components and
record components is strictly “by position.” The first constructor component corresponds to
the first record component, the second value to the second component, etc. Positional
constructors may be used for both records and arrays (§ 3.2.2). It does not matter whether
or not fields are named in the definition of the record type. The following three
constructors are equivalent:

Datel[day: 25, month: , year: now — 33] -- value of month is undefined (elided)
Date[25, , now—33] -- value of 2nd component is undefined (elided)
Date[25, NULL, now — 33] -- value of 2nd component is undefined (voided)

Positional constructors may elide or void components as shown above, and trailing fields
(only) can be omitted by omitting the final commas. The positional constructor “[]” is
considered to omit, not elide, its first component.

Keyword and positional notations may not be mixed in a single constructor. The order of
evaluation of components is not specified for either kind of constructor.

The initial Typeldentifier in a constructor may be omitted when the constructor is used as:
the RightSide of an assignment (unlegs the LeftSide is an extractor, § 3.3.6)
an expression in an Initialization
a component of an enclosing record or array constructor

an argument of a procedure

3-23

Common constructed data types

3-24

the right operand of a Relation.

In other cases, an initial Typeldentifier must appear. It is never incorrect to supply the
identifier, and sometimes doing so improves readability.

Fine point:

Any record constructor in which all components are compile-time constants is a compile-time constant.
Also, a field selected from a record that is a compile-time constant is itself a compile-time constant.

3.3.5 Default field values

The definition of most types, including those in this chapter, allows a default specification
for the type being defined. The default specification for a type is most useful when that
type is used as a component of a record or as the component type of an array (§3.7).

The definition of a record type is unique in that it may specify a default value for each field
of the record overriding, if necessary, any default specification the particular component
type may have already had. All these default specifications are optional; if present, they
can be used in constructing records and arrays when no values for the corresponding fields
are specified in constructors. However, there are different ways of not specifying a value
for a field in a constructor. An elided field, as discussed in the preceding section, supplies
the field, but supplies no value. An omitted field is simply not present at all. In a keyword
constructor, a field is omitted by omitting the keyword entirely; in a positional
constructor, trailing fields (only) can be omitted by omitting the final commas. The
positional constructor “[]” is considered to omit, not elide, its first component. Fields in an
array constructor, however, can only be omitted if the index type of the array is an
enumeration or a subrange thereof (§3.2.3). A field is voided by specifying the word NuULL or
TRASH as the value of the field (§3.7). A discussion of the semantics of omit, elide, and void
follows the default specification given below.

In the following example, all constructors have the same value.

Interval: TYPE = RECORD

[

range: INTEGER,

origin: INTEGER « 0,
direction: {up, down} « up

l;

Intervallrange: 10, origin: 0, direction: up] -- all fields specified
Intervall{range: 10, origin: , direction:] - origin, direction elided
Interval{range: 10] v -- origin, direction omitted
Intervall10] -- origin, direction omitted
(positional form)

The syntax for specifying defaults in a NamedFieldList or for any type of declaration (§3.7)
follows:

Mesa Language Manual 3

DefaultOption ::= empty | « DefaultSpecification

DefaultSpecification ::= empty|
Expression |
TRASH |
NuLL |
Expression | TRASH |
Expression | NULL

Note: In the final two lines, the vertical bar denotes itself and is embedded within
an alternative.

In a DefaultSpecification, the Expression must have a type that conforms to the type of the
corresponding field. ‘

Suppose that R is a record type with a field v of type T or that v is simply a variable that
has been defined to have type T. The above syntax allows five forms for the DefaultOption
in the declaration of v. No matter which form is used, a constructor of an R may explicitly
specify a value for the field v. The various options control whether the existence of the field
must be made evident in the constructor, whether an explicit value must be supplied and,
if not, what action is taken. The options are interpreted as follows:

1 vT
In a constructor, the value of v can be left undefined, but that must be indicated
explicitly, by eliding or voiding the field. v cannot be omitted. This rule also
applies to an unnamed field.

2) v:Te-
Every constructor must supply an explicit value (not NuLL) for v.

) v:Tee
If a constructor elides or omits v, the value of the expression ¢ is used; voiding the
field is not permitted.

(4) uv: T « TRASH
As in (1) above, except that the constructor may omit v entirely. If the field is
omitted, elided or voided, its value is undefined.

(5) v:T «e|TRASH
As in (3) above, except that a constructor may explicitly void v. If the field is
omitted or elided, the value of e is used; if it is voided, its value is undefined.

If the first or second form is used, the field cannot be omitted from a constructor; these
forms are useful when such omission is likely to indicate a programming error. Omission
is permitted by the other forms, which differ in the default action for an omitted or elided
field. These forms are appropriate when a field has some common and meaningful default
value (the third and fifth cases) or, alternatively, is relevant only in unusual
circumstances (the fourth case). The last three forms are particularly suitable for
extending the definition of a record type; constructors in existing programs need not be
modified.

In the fourth and fifth cases, NULL can be used in place of TRASH with the same results.

3-25

Common constructed data types

3-26

Fine points:

The second form of field declaration guarantees that the field v has a well-defined value. Constructors
cannot void this field, and declaration of a record of this type (or allocation by NEW, § 6.6.2) must include
a constructor that sets this field.

If the Expression form of a default specification is used, that expression is evaluated at the time of
construction but in the context of the declaration of the record, i.e., the expression is treated as a
parameterless procedure invoked by evaluation of the constructor (see chapter 5).

The default value of a field cannot be specified in terms of other fields in the same record. Default values
for fields of record types defined in DEFINITIONS modules (§ 7.3.2) must be compile-time constants.

Examples:

R: TYPE = RECORD
[
vl: CARDINAL,
v2: CARDINAL «,
v3: CARDINAL « 3,
v4: CARDINAL «TRASH,
v5: CARDINAL « 5| NULL
l;
-- the following are valid

RlvI: 1, v2: 2] -means R[v1: 1, v2: 2, v3: 3, v4:TRASH, v5: 5]
Rlvl:, v2:2,v5:] -means Rlvl:,v2: 2, v3: 3, v4: TRASH, v5: 5]
R[vI: 1, v2: 2, v5: NULL] --means R[vl: 1,v2: 2, v3: 3, v4: TRASH, U5: NULL]

-- the fallowing are not valid
R[] . —neithervl orv2 may be omitted
RlvI: 1, v2: NULL, v3: NULL] - neither v2 nor v3 may be voided

3.3.6 Extractors

Extractors are used to “"explode” record objects and assign their components to individual
variables in a single statement. For example, the extractor below assigns the components
of birthDay (defined in subsection 3.3.4) to the variables dd, mm, and yy, in that order:

dd: [1..31]; mm: MonthName; yy:[1900..2000);
[dd, mm, yy]| « birthDay;

This has the same effect as the following three separate assignments, except that birthDay
is evaluated only once:

dd « birthDay.day, mm <« birthDay.month; yy < birthDay.year;

An extractor resembles a constructor in form, but there are some important differences:

The “comporients” of an extractor specify LeftSides, not Expressions.

Extractors always begin with a left bracket, never with a Typeldentifier.

Mesa Language Manual 3

The type of the record value assigned to an extractor must be known to the compiler. This
means that the following (rather useless) statement is invalid because the constructor's
type cannot be determined:

[dd, mm, yy | «[25, Apr, 1943]; -- invalid
The statement should specify the type of the constructed value:
[dd, mm, yy | « Date(25, Apr, 1943]; --valid

Extractors, like constructors, may use keywords. This allows an extractor to be written
without regard to the record’'s component order. For instance, the following statements are
equivalent to the first one in this section:

[day: dd, month: mm, year: yy | « birthDay;
[month: mm, day: dd, year: yy | « birthDay;,

Extractors may elide or omit any item, in which case the corresponding record component
is not assigned. The extractors shown below are equivalent:

[day: dd, month: , year: yy | « birthDay; -- month elided
[day: dd, year: yy | « birthDay; -- month omitted
[dd, ,yy] « birthDay; -- 2nd component elided

A positional extractor may omit trailing components without supplying trailing commas.
The year component of birthDay is omitted below.

[dd, mm] « birthDay;
Syntax equations:
AssignmentStmt ::= ...|Extractor « RightSide
Extractor ::= [KeywordExtractList]|
[PositionalExtractList]
KeywordExtractList = KeywordExtract|
KeywordExtract , KeywordExtractList
KeywordExtract :: = identifier: Extractitem

Extractitem |
Extractlitem , PositionalExtractList

PositionalExtractList

Extractitem 1= empty| -- component is ignored
LeftSide -- component is assigned to LeftSide

The identifiers in a KeywordExtractList must be field names for the record type. Note that
an extraction list can be empty, in which case the effect is to discard a record value.

Fine point:

An Extractitem may itself be an Extractor. This allows extraction from records embedded within
records. In particular, this form is useful in situations where a single-component record is not

3-27

Common constructed data types

automatically converted to its single component, e.g., extraction from a record that is the only component

of a return record.

3.3.7 Machine dependent records

Machine-dependent records are provided for situations in which the exact position of each
field is important. (A first time reader is referred to section 6.4 for a complete discussion of
variant records.) You can explicitly specify word- and bit-positions in the declaration of

the record type.

Syntax
VariantFieldList =
CommonPart =
NamedpFieldList =
NamedField ta
FieldldList =
Fieldid =
Tag S
FieldPosition n=

Examples

CommonPart Fieldld : Access VariantPart |
VariantPart |

NamedFieldList |

UnnamedFieldList|

empty
NamedFieldList, | empty

NamedField | NamedFieldList , NamedField

FieldidList :
Access TypeSpecification DefaultOption

Fieldld | FieldldList, Fieldld
identifier | identifier (FieldPosition)
Fieldld | ...

Expression : Expression .. Expression |
Expression

InterruptWord: TYPE = MACHINE DEPENDENT RECORD [
channel (0: 8..10): [0..nChannels), --nChannels <=8

device (0: 0..7): DeviceNumber,

stopCode (0: 11..15): MACHINE DEPENDENT {finishedOK(0), errorStop(1), powerOffi3)},

command (1: 0..31): ChannelCommand];

Node: TYPE = MACHINE DEPENDENT RECORD [

type (0: 0..15): Typelndex,
rator (1: 0..13): OpName,

rands (1: 14..47): SELECT valence (1: 14..15): * FROM

nonary = > [],

unary = > [left (2): POINTER TO Node],
binary = > [left (2), right (3): POINTER TO Node]

ENDCASE]

An identifter with an explicitly specified FieldPosition can occur only in the declaration of
a field of a record defined to have the MACHINE DEPENDENT attribute. If the position of any

3-28

Mesa Language Manual 3

field of a record is specified, the positions of all must be. Each Expression in a FieldPosition
must denote a compile-time constant, the value of which is an unsigned integer.

The first expression appearing in a FieldPosition specifies the (zero-origin) record-relative
index of the word containing the start of the field; the second and third specify the indices
(zero-origin) of the first and last bits of the field with respect to that word. The second and
third expressions may specify a bit offset greater than the word size if the word offset is
adjusted accordingly. Similarly, the difference between the second and third expressions
may exceed the word size. If the bit positions are not specified, a specification of
0..n*WordSize-1 is assumed, where n is the minimum number of words required by the
type of the field. Note that in the preceeding example, in the field position for left, a single
word quantity could be given equivalently as (1: 16..31) or as (2: 0..15).

Each field must be at least wide enough to store any value of the corresponding type.
Values are stored right-justified within the fields. The current implementation of Mesa
imposes the following additional restrictions on the sizes and alignment of fields:

A field smaller than a word (16 bits) cannot cross a word boundary.

Any field occupying a word or more must begin at bit zero of a word and have a
size that is a multiple of the word size.

A variant part (§ 6.4) may begin at any bit position (as determined by its tag
field); the tag must be the first thing in the variant part.

If the sizes of all variants of a record type are less then a word, those sizes must
be equal; otherwise, the size of each variant of the type must be a multiple of
the word length.

In the definition of a machine-dependent record type, explicitly specified field positions
must not overlap. For a variant record type, this requirement applies to the variant part
(including the tag) considered in conjunction with the fields of the common part; the tag
and fields particular to each variant must lie entirely within the variant part.

The order of fields in a record type declaration need not agree with the order of those fields
in the representation of the record; however, no gaps are permitted. For variant records,
the fields of at least one variant (including the tag field) must fill the position specified for
the variant part.

Fine point:

An earlier, purely positional, form of machine dependent record remains for compatibility. The new form
is encouraged because it provides better documentation and is usually easier to use. An example of the
purely positional form:

InterruptWord: TYPE = MACHINE DEPENDENT RECORD

(

device: DeviceNumber,

channel: [0..7],

stopCode: {finishedOk, errorStop, powerOff},

3-29

Common constructed data types

command: ChannelCommand
I

In this case, the user takes full responsibility for component arrangement. Components are positioned
exactly as given, from left to right in machine words. In general, “fill” components are needed to ensure
that no field crosses a word boundary (unless it starts on one). Components (such as ChannelCommand)
may themselves be aggregates occupying more thanone word

It is also the user's responsibility to “fill out” the record to a full word if the record crosses a word
boundary. (InterruptWord might be correct for a 16-bit machine, but not for a machine having a.larger
word length).

3.4 The types roinTer and LONG POINTER

3-30

POINTERS and LONG POINTERS provide efficient indirect access to objects that reside in virtual
memory. All Mesa processors provide a single large, uniformly addressed virtual memory
organized as an array of words. Virtual addresses occupy two words and are represented
by values of type LONG POINTER.

Within a distinguished region of the virtual memory, called the main data space, data
may be referenced using short pointers; these addresses occupy a single word and are
represented by values of type POINTER. The main data space (MDS) is a contiguous region of
64K words of virtual memory in which system data structures and all local and global
frames of executing processes reside. The purpoese of the main data space is to allow
commonly used data structures to be referenced by single word pointers. The use of the
main data space for general allocation of other data structures is strongly discouraged.

Dynamically allocated data structures typically reside outside the main data space and
are accessed via long pointers. (Short) pointers may be used by programs that indirectly
address local and global variables, although for generality, such accesses are often done by
long pointers as well. (Short) pointers are also used within the operating system. We begin
our discussion of pointer types with (short) pointers for two reasons: long pointer types are
constructed from pointer types using the type constructor LONG, and all the standard
operations that can be applied to pointers can be applied to long pointers as well.

A pointer may refer to only one specific type of item. For instance, the following pointer
provides access only to objects of type INTEGER:

intPtr: POINTER TO INTEGER;
Another pointer might be specified to point only to BOOLEAN objects:
boolPtr: POINTER TO BOOLEAN;

These are different types of pointers since they have different reference types, INTEGER and
BOOLEAN. Furthermore, since INTEGER and BOOLEAN are incompatible types, these pointer
types are also incompatible; i.e., assignment of boolPtr to intPtr, or vice versa, is
disallowed.

A pointer value is represented by the address of some data object, called the pointer's
referent. The postfix operator T may be applied to a pointer value of any type to yield that
value's referent. The process of “following” a pointer to its referent is called dereferencing.

Mesa Language Manual 3

A dereferenced pointer designates a variable. When the pointer is declared as above, the
variable can be used as a LeftSide or as a Primary. Thus intPtr T and boolPtrt are
variables of type INTEGER and BOOLEAN respectively. The statement

boolPtr 1 «(intPtrt = 0);

is executed by following intPtr to obtain a INTEGER value, testing that value, and assigning
the result to the BOOLEAN variable referenced by boolPtr.

Sometimes a pointer is created simply to identify an object or to allow indirect access to a
value that is not to be modified. Mesa provides readonly pointers for such applications. A
value with a readonly pointer type cannot be used to update its referent. For example, the
declaration

ROintPtr: POINTER TO READONLY INTEGER;

declares a readonly pointer. ROintPtr { is a Primary with type INTEGER but not a valid
LeftSide.

Any type specification is permitted as the reference type of a pointer type. The pointers
declared below reference a named record type.

Person: TYPE = RECORD

[

age:[0..200],

sex: {male, female},
party: {Democratic, Republican}
5
candidatel, candidate2: Person,
winner, loser: POINTER TO Person,;

Pointers to record objects may be used to qualify field names. If record candidatel is the
referent of winner, then qualifications such as

winner.age winner.sex winner.party

select the corresponding components of candidatel. However, if candidate2 were the
referent, these same qualifications would select components of candidate2. When applied
to a pointer, the operation of selection implies dereferencing. For example, winner.age
specifies dereferencing winner to obtain a record variable ‘of type Person and then
performing normal field selection on that record. Thus winner.age is an abbreviation of
winner T .age.

It is common to define a record type containing components that are pointers referencing
objects with the same record type. For example, the type declared as follows:

FamilyMember: TYPE = RECORD
[
someone: Person,
mother, father: POINTER TO FamilyMember

IR

3-31

Common constructed data types

3-32

might be used to create a tree of related persons in which the relations are expressed
directly by pointer linkages.

The fundamental operations (=, #, «) applied to pointer values deal with the pointers
themselves, not with their referents. In the examples:

winner « loser;
winner 1 «loser T ;

the first sets winner to point to the same Person as loser; the second assigns the referent of
loser to the referent of winner, and thus has a quite different effect.

The full set of relational operators can be applied to pointers declared to be ordered; for
example:

orderedPtr: ORDERED POINTER TO Person;

The ordering is determined by the memory addresses that represent the pointers, not by
the properties of the referents. Pointers not declared to be ordered can be only be compared
using the operators = and #.

There is one pointer literal, NiL. It conforms to any unordered pointer type and denotes a
pointer value that has no valid referent. For example:

IF intPtr = NIL THEN boolPtr «NIL;
A pointer with value NiL should not be dereferenced; the result is undefined.

Pointer values are most commonly obtained from allocators that provide and manage
storage for a class of objects. The unary prefix operator @ also generates pointers. When
applied to a variable with type T, it yields a pointer to that variable with type PoINTER TO T,
for example:

winner « @candidatel,

Pointer generation should be done with caution; it is possible for the resulting pointer to
outlive the referenced object. A non-NiL pointer value with no valid referent is said to be a
dangling reference. The language does not prevent dereferencing such a pointer, but doing
so produces an undefined result. It is the user's responszbzlzty to avoid dereferencing a
dangling (or uninitialized) reference.

3.4.1 Constructing pointer types

The type constructor for pointers is defined as follows:

PointerTC :: = Ordered Base POINTER TO ReadOnly TypeSpecification |
Ordered Base POINTER Interval To ReadOnly TypeSpecification

Ordered :t= empty | ORDERED

Base ::= empty|BASE

Mesa Language Manual 3

ReadOnly ::= empty | READONLY

The TypeSpecification in a PointerTC specifies the reference type of the pointer type. Two
pointer types are equivalent if their reference types are equivalent and if their attributes
ReadOnly and Ordered are specified identically. Thus equivalent pointer types can be
constructed in separate places, but they must have the same structure. One pointer type
conforms to another if the two reference types are equivalent, if either the ReadOnly
attributes are identical or the second is READONLY and the first is not, and if either the
Ordered attributes are identical or the first is ORDERED and the second is not. The Base
attribute is ignored in determining conformance (base pointers are discussed in section
6.3).

In the following examples, the first type in each pair conforms to the second, but the
second does not conform to the first:

POINTER TO FamilyMember POINTER TO READONLY FamilyMember
ORDERED POINTER TO Person POINTER TO Person
ORDERED POINTER TO Date POINTER TO READONLY Date

Fine points:

If one pointer type conforms to another, it conforms freely (§ 3.5.3). Conformance of pointer types is
extended by the following rule: one pointer type conforms freely to another if the second is READONLY,
the reference type of the first conforms freely to the reference type of the second, and the Ordered
attributes satisfy the restriction above.

The second form of PointerTC constructs a subrange of a pointer type. Subranges of pointers have the
usual properties of subranges; e.g., a pointer subrange type and its base type mutually conform (but not
freely). The values of a subrange pointer are restricted to the given interval (and can potentially be stored
in smaller fields). Subrange pointer types are not recommended for general use. They are intended
primarily for constructing relative pointer types (§ 6.3) which, unlike the subrange types, do not allow

dereferencing without relocation.

The attribute BASE specifies that values with that pointer type are to be used as base values for
relocating relative pointers (§ 6.3). Such values may also be used as ordinary pointers.

3.4.2 Pointer operations
The general form of an indirect reference is:

IndirectReference ::a Variable 1 |
(Expression) 1

LeftSide ::= ...|IndirectReference
The postfix operator T performs explicit dereferencing of the pointer expression it follows.
Its precedence is the same as indexing and qualification (the highest possible), and these

operations can be intermixed. For example:

group: ARRAY [0..10) OF POINTER TO FamilyMemaber;

group(il? .mother T .someone --((((groupli]) 1).mother) 1).someone

3-33

Common constructed data types

3-34

If p is an arbitrary pointer expression, then p T can be read as “p's referent” or “referent of
p.” Application of the T operator produces a variable that may be used as a Primary.
Unless p is a readonly pointer, pT (or any of its components) may also be used as a
LeftSide. The definition of conformance implies that an ordinary pointer can be assigned
to a readonly pointer, but not vice versa. Thus, the referent of a readonly pointer is not
necessarily immutable; i.e., its value might change during the lifetime of the READONLY
pointer. The Mesa language only prevents updates of the object through those pointers to
it that are declared to be readonly.

The syntax used for address generation is
Primary ta ...| @ LeftSide

The prefix operator @ produces the address of its operand. If x is a variable of type T whose
access path does not involve a long pointer, the value of @x is a pointer to x, and its type is
POINTER TO T. Otherwise @x is a long pointer to x, and its type is LONG POINTERTO T. @x can
be read as “address of x.” The operand for @ must be a valid LeftSide (it cannot be a
constant or an arbitrary expression, for instance). The operator's precedence is lower than
thatof T;e.g., @x T isequivalent to @(x 1) (or simply x).

Fine points:

If a variable is declared with fixed form (“=") initialization, its address may be taken with the @
operator if and only if the pointer to which it is assigned has the READONLY attribute.

There are variables that cannot be the referents of pointers and thus cannot be the operands of @. In
addition, a pointer value is represented by a word address. Therefore, a referent must lie on a word
boundary; an object having this property is called aligned. Variables are aligned except in the following
cases:

Elements of packed arrays are not aligned.
Any component of a record that occupies less than a single word is not aligned (but arrays, even if
packed, are always aligned unless they are small enough to fit entirely within a partial word in
the record).
Care must be taken so that a pointer to a declared variable does not exist longer than the variable to
which it points. Consider the following example (which assumes familiarity with procedures, local
variables and global variables):

pointerl, pointer2: POINTER TO INTEGER; -- two.global variables

RiskyProc: PROCEDURE [i: INTEGER| = - iis alocal variable

BEGIN

local: INTEGER; --and so is local

pointerl « @i; - risky: i will disappear upon RETURN
pointer2 « @local; - likewise

- the “risky " pointers are valid up to this point, but
RETURN -- NOT after this statement is executed.
END;

Mesa Language Manual 3

After the RETURN statement is executed, local storage is released for other purposes; thus the pointers
will reference unpredictable data when that storage is reused. One should use pointers with referents
existing at least as long as the pointers.

Another common mistake is to return the address of a local variable as follows:

IncorrectProc: PROCEDURE RETURNS[POINTER TO INTEGER] =
BEGIN
local: INTEGER;

RETURN [@locall; -- WRONG, local is deallocated upon RETURN.

END;
Pointers that are declared to be ORDERED may be used as operands of all the relational
operators (§2.5.2). For this purpose, they behave as unsigned numeric values. The
definition of conformance implies that an ordered pointer can be assigned to an unordered
pointer variable, but not vice versa. NiL is not a valid ordered pointer constant, and the

relation of its value to other pointer values is undefined. Also, the @ operator always
produces an unordered pointer value.

The following fine points cover pointer capabilities that should be used with caution (and avoided when possible).
Some of these capabilities circumvent normal type-checking, and may result in unpredictable results if used.

The type POINTER TO UNSPECIFIED (or simply POINTER) has the following two properties, which are
almost unrelated: It can be dereferenced to yield a value of any type whose size is a single word, and it
conforms to any other pointer type, and conversely.

Limited arithmetic can be performed on pointers, but programmers are encouraged to use BASE and
RELATIVE pointers (chapter 6) if the purpose of the arithmetic is simple relocation. A short numeric value
added to, or subtracted from, a pointer produces another pointer with the same type. Also, the difference
of two pointer values with equivalent types is a CARDINAL.

3.4.3 Long pointers
Long pointer types are constructed as follows:
LongTC 2= LONG TypeSpecification

Long pointers may be created by lengthening (short) pointers as described below. In
particular, NIL is automatically lengthened to provide a null long pointer when required by
context. The standard operations on pointers (dereferencing, assignment, testing equality,
comparing ordered pointers) all extend to long pointers.

Both automatic and explicit lengthening (using the operator LONG) are provided for pointer
types, and the type POINTER TO T conforms to (but is not equivalent to) the type LONG POINTER
70 T. Lengthening an expression with the first of these types produces a value with the
second; i.e., the reference type and the Base, Ordered and ReadOnly attributes are
unchanged.

3-35

Common constructed data types

3-36

The operator @ applied to a variable of type T produces a pointer of type LONG POINTERTO T
if the access path to that variable itself involves a long pointer and of type POINTER TO T
otherwise.

Fine points:
Two conforming pointer types conform freely only if both are long pointersor both are not.

NIL is lengthened in a standard way and has a universal representation. All other pointers are
lengthened in a hardware dependent way.

If either operand in a pointer addition or subtraction is long, all operands are lengthened and the result is
long.

Examples:
R:TYPe = ReCORD[£ T, ...];
D, q: POINTERTO R;
PP, qq: LONG POINTERTO R;
pT:POINTERTO T,
ppT: LONG POINTERTO T,

-- the following are valid.

Pp < qq; pp < NiL; pp < p;

pp = qq, pp = NiL, pp = q; --long comparisons
pT < @p.f, ppT < @pp f,
ppT < @p.f; - pointer lengthened

— the following are not valid.

pp = ppT; -- incompatible types
p<pp; pT <« @pp.f, -- no automatic shortening

3.4.4 Automatic dereferencing

Automatic dereferencing converts a pointer RightSide of type POINTER TO T into one of type
T if that RightSide is followed by dot qualification (§ 3.3.3), a bracketed array index, or a
bracketed argument list (the last two are syntactically identical). For example, in the
following two statements, the LeftSides are equivalent:

winner.party < Democratic;
winner | .party <« Republican,

Automatic multilevel dereferencing is possible. Given the following declarations, the
three final assignment statements have the same effect:

actualArray: ARRAY [0..20) OF INTEGER;

arrayPtr: POINTER TO ARRAY [0..20) OF INTEGER <« @actualArray;
arrayFinger: POINTER TO POINTER TO ARRAY [0..20) OF INTEGER « @arrayPtr;
actualArray[l] « 3;

arrayPtr{1] « 3, -—arrayPtr { [1] « 3
arrayFinger{1] « 3; --arrayFingert 1[1] «3

Mesa Language Manual 3

Fine points:

The pointer attribute BASE inhibits automatic dereferencing in the context of subscript or argument
brackets (§ 6.3).

A pointer expression following OPEN or WITH (§4.4.2 and 6.4.4) will be dereferenced an arbitrary
number of times (not just once) to obtain an expression designating a record.

3.5 Typedetermination

Every expression in a Mesa program has a type that can be deduced by static analysis of
the program text. Such analysis is called type determination. The language imposes
constraints on the type of each expression according to the context in which it is used. A
program that does not violate any of these constraints is type-correct; every valid Mesa
program must be type-correct.

In principle, every variable and every expression has an inherent type derived from its
structure. The inherent type of a variable is established by declaration; the form of a
literal implies its type, and each operator produces a result with a type that is a function of
the types of the operands. Inherent types of some expression forms are listed below:

Expression Inherent Type of Expression

34 (34.34] which has base types INTEGER and CARDINAL (§ 3.1.2.1)
NIL POINTER TO UNSPECIFIED

x<y BOOLEAN

x declared type of x

array(i] type specified for the components of array

@x POINTER TO type of x

(x «e) type of x

The type rules in Mesa take two general forms, which are the following:

The exact type required by the context is known, and a given type must conform to
it. The required type is called the target type.

The exact type required is not implied by context, but a relation that must be
satisfied by a set of types is known. The process of satisfying that relation is called
balancing.

Situations in which the target type is known are simpler and more common; they will be
discussed first.

All assignment-like contexts establish a target type for the expression to be assigned.
These contexts include not only assignment itself (where the target type is the type of the
LeftSide) but also initialization, record construction (where the target type for each
component expression is the declared type of the corresponding field), array construction,
parameter list construction, and the like.

Example:

LType: TYPe = RECORD [c: CTypel;
lVar: LType;

3-37

Common constructed data types

3-38

Var «anyExp; -- target type of anyExp is LType
IVar «LTypelc: someExp]; -- target type of someExp is CType ...
IVar.c «someExp; -- ... which is more obvious here

The following rule applies to assignments:

There is never any automatic dereferencing or type conversion of any kind for the
LeftSide of an assignment, and the inherent type of the LeftSide is the target type of
the right side. (Of course, a LeftSide may contain subexpressions, such as array
subscripts, that are themselves right sides and subject to conversion.)

Certain other contexts imply a target type. For example, the target type for an array
subscript is the index type of the array. Also, the target type of the expression following IF,
WHILE, etc., is BOOLEAN.

If the inherent type of an expression is equivalent to the target type, the use of that
expression is type-correct. If it is not equivalent, it may still be possible to obtain
conformance by applying various ¢ype conversions, which are sometimes called coercions.
In Mesa, there is at most one sequence of conversions that can be applied automatically to
convert a value from one type to another. When implicit conversion from the inherent type
to the target type is impossible, the program is in error; e.g., assigning a BOOLEAN value to
an INTEGER variable is never valid.

Fine points:

When the target type is well defined, certain expression forms may be abbreviated. Identifier constants
need not be qualified, and explicit identification of the type of a constructor is optional. The abbreviated
constructs have no inherent type when viewed out of context, and they cannot be used in situations
requiring implicit conversion. Forexample,

Color: TYpe = {red, orange, yellow, green, blue, violet};
i: CARDINAL «Color.green.OrRD -- qualification of green is required

An Extractor never has an inherent type; the extraction is controlled by the inherent type of the
RightSide, which therefore cannot be abbreviated or converted. For example,

r: RECORD [inner: RECORD[fI, f2: INTEGER]];
[i,j] «r.inner, -- the field selection cannot be omitted

3.5.1 Type conversion

There are four automatic type conversions that can be applied to establish type
conformance. All have been discussed in preceding sections. They are the following:

(1) A value with a subrange type may be converted to a value with its base type, and
vice versa (§ 3.1.2).

(2) A value with a single-component record type may be converted to a value with
the type of that component (§ 3.3.2).

Mesa Language Manual 3

(3) A value with a short numeric, pointer or array descriptor type may be lengthened
to a value with the corresponding long type (§ 2.4.5,2.5.1.2, 3.4.3, 3.2.1 (and 6.2)).

(4) A value with any numeric type may be converted to type ReAL (§ 2.4.6).
The first of these is a somewhat special case; as mentioned in subsection 3.1.2, it is more

accurate to view this as a pair of conversions that are applied unconditionally when
evaluating, and assigning to, a subrange variable.

Examples:

r: RECORD [f: INTEGER];

i: INTEGER;

ii: LONG INTEGER,;

ier; —-ierf

ii «r; - il «LONG[r.f]
Fine points:

A number of the conversions used to achieve conformance require computation and cannot be applied
recursively to the constituents of constructed types. For example, INTEGER conforms to LONG INTEGER,
but ARRAY IndexT'ype OF INTEGER does not conform to ARRAY [ndexType OF LONG INTEGER. subsection
3.5.3 discusses the concept of "free” conformance and the rules governing such cases.

There is one other automatic conversion, dereferencing, that is applied only in certain syntactic contexts
(§ 3.4.4). It is never applied automatically to achieve type conformance in an assignment.

3.5.1.1 i1sType predicate and NARROW operator
Let T be a type and x be a variable. The expression ISTYPE [x,T] has the value TRUE if the
type of x is T and FALSE otherwise. The ISTYPE operator is useful for describing the meaning
of the NARROW operator as explained below. ISTYPE cannot be used with numeric variables to
test for interval membership; use IN instead.

NARROW is used to restrict the type of variable.

NARROW [x,T'] allows a value x to be viewed as a value of type T, and succeeds if and only if
1sTYpe [x,T'] is TRUE. It may be thought of as approximately the following Mesa code:

IFISTYPE [x, T'] THEN LOOPHOLE [x,T] ELSE ERROR Runtime.NarrowFault,

(See chapter 8 for ERROR’s, sub-subsection 3.3.1.2 for LOOPHOLE syntax, and the Pilot
Programmer’s Manual for details of the Runtime interface.)

NARROW, when used with the ISTYPE predicate (e.g.

IFISTYPE [u, T'ypel] THEN {v]: Typel <~ NARROW [u];. .. };
-—-where u is a variant record)

can be used to discriminate a variant record in a situation where only one tag value is
reasonable (§ 6.4.4.1). Such use of NARROW causes the compiler to generate a run-time test

3-39

Common constructed data types

3-40

of the variant tag. Observe that if the type Typel can be determined from context, it need
not be supplied as an explicit parameter to the NARROW.

The NARROW operation can also be applied at compile-time to view a value of some opaque
type T (§ 7.6) to be of the concrete type T". This is particularly useful when the opaque
value is embedded within some larger composite type.

"An expression of the form NARROW [x, T] cannot appear on the left of an assignment

operator. One can usually narrow a suitable pointer and dereference it as a left-hand side.
For example:

x: S; .
NARROW [x,T'] « valueOfTypeT, --.illegal
NARROW [@x, POINTERTO T] T « valueOfTypeT, --okay

3.5.1.2 Unchecked type conversion: the LOOPHOLE operator

Sometimes it is necessary to subvert Mesa's type checking, particularly in programs that
manipulate low-level representations of objects. A Primary with the form

LOOPHOLE [Expression, TypeSpecification]

has the same value as the Expression (viewed as a sequence of bits) and the type denoted
by TypeSpecification. This “conversion” never requires any computation. The only
restriction is that values with the inherent type of Expression must be represented in the
same number of machine words as values of the type TypeSpecification. If Expression is a
valid LeftSide, then LooPHOLE[Expression, TypeSpecification] is also. When the target type
is well-defined, the TypeSpecification may be omitted. For example:

b: BOOLEAN; n: CARDINAL;

n < LOOPHOLE [b, CARDINAL]; -- to discover the representation
n <« LOOPHOLE [b]; -- also acceptable
LOOPHOLE [, BOOLEAN] « b; -- as a LeftSide

Since LOOPHOLE bypasses most checking, its use should be limited as much as possible.

3.5.2 Balancing *

Many of Mesa's operators are generic,; i.e., the operation performed depends upon the types
of the operands. Examples are the fundamental operators = and #, which accept two
operands with arbitrary (but compatible) types and produce a BOOLEAN result. In this case,
neither operand has a defined target type. Instead, it is necessary to find some type to
which the inherent type of each operand conforms: any automatic type conversions are
applied to the operands as necessary to produce values of that type, and the operation is
then performed. The common type is the “least upper bound,” i.e., the one requiring the
fewest conversions.

Examples:
R: TYPE = RECORD[f: INTEGER];

RR: TYPE = RECORD [/f: LONG INTEGER];
i: INTEGER;

Mesa Language Manual 3

ii: LONG INTEGER,;

rl, r2: R,

rr: RR; ‘
i=ii --LONG[i] =i

rl=r2 - -compared as records

rl =i -rlf=1i

rl=rr - LONG[rl.fl=rr.f

Balancing is also applied to IF expressions (§ 4.2.1), SELECT expressions (§ 4.3.3), and the
arithmetic and relational operators.

Fine points:

Many generic operators do not propagate the target type of the expression in which they appear; instead,
the operands are balanced and combined to produce a result that is converted further if necessary. For

example,
li—i+r - ii—LONG (i + rf]
ii—LONG[i] +r; - ii—LONG[i] + LONG[r.f]

The current version of Mesa does not fully implement balancing when lengthening (or conversion to
REAL) isrequired. The restrictions are:

Operands of MIN and MAX and the alternatives of conditional expressions are lengthened to
match the expression's target type, if any, and otherwise to match the type of the first operand.

The endpoints of an interval in the right operand of IN are lengthened to match the type of the
left operand, but the left operand is never lengthened.

The expressions selecting the arms of a selection (§ 4.3) are lengthened to match the type of the
selecting expression, but that expression is never lengthened.

3.5.3 Free conformance *

A number of the conversions used to achieve conformance require computation and cannot
be applied recursively to establish the conformance of types constructed from pairwise
conforming types. For example, INTEGER conforms to REAL, but the conversion from INTEGER
to REAL transforms the representation. Thus a POINTER TO INTEGER and POINTER TO REAL cannot
validly have the same referent, and these types do not conform.

The relation of free conformance is less restrictive than strict type equivalence but is
defined so that it can be computed recursively. Loosely speaking, one type freely conforms
to another if a value of the first can always be used as a value of the second without any
computation or run-time check of validity. The relations of equivalence, free conformance
and conformance are not independent. Equivalence always implies free conformance; if
two types are equivalent, each freely conforms to the other. Also, free conformance implies
conformance; if one type freely conforms to another, the first also conforms to the second.

Of the automatic conversions discussed in subsection 3.5.1, only a restricted form of the
first (subrange conversion) can be applied to establish free conformance. The restriction
(which arises from the representation of subrange values in Mesa) is the following:

3-41

Common constructed data types

The subrange type T [i..j | conforms freely to T if i = FIRST[T]and to T [i..k] ifj <k.

If automatic conversion (1) of subsection3.5.1 must be applied in any other circumstance
or if application of conversion (2), (3) or (4) of that section is required to establish the
conformance of two types, they do not conform freely.

Of the constructed types discussed in this chapter, array and pointer types also have rules
for free conformance less restrictive than equivalence. To summarize:

One array type conforms freely to another if the index types are equivalent and the
"component type of the first freely conforms to the component type of the second
(§3.2.1).

One pointer type freely conforms to another whenever the first pointer type
conforms to the second as defined in subsection 3.4.1.

Free conformance is also important for procedure types (§ 5.1) and variant records (§ 6.4).

In the following pairs of types, the first conforms to the second (but does not freely
conform):

[0..100) [0..10)

(5..10) [0..10)

INTEGER REAL

POINTER TO Person LONG POINTER TO Person

In the following pairs, the first type freely conforms to the second (but is not equivalent):

POINTERTO [0..10) POINTER TO READONLY [0..100)

POINTER TO READONLY [0..10) POINTER TO READONLY [0..100)

ARRAY [0..10) OF[0..10) ARRAY [0..10) OF CARDINAL
Fine point:

Note that POINTER TO [0..10) does not conform to POINTER TO [0..100) so that the following is illegal:
P POINTER TO [0..10); ¢: POINTER TO [0..100);

q<p; qt «99; —~nowp? =99

3.6 Determination of representation *

3-42

This section discusses the rules used by Mesa for choosing between signed and unsigned
versions of the numeric operations. These rules assume that there are conversion
functions (taking the form of range assertions for short numeric types, § 3.1.2.2) that
convert values from CARDINAL to INTEGER (from LONG CARDINAL to LONG INTEGER) and vice versa.
In both directions, the “conversion” amounts to an assertion that the value is an element
of INTEGER N CARDINAL (LONG INTEGER N LONG CARDINAL). Such assertions must be verified by
the programmer.

Mesa Language Manual 3

For any arithmetic expression, the inherent representations of the operands and the target
representation of the result are used to choose between the signed and unsigned versions of
the arithmetic and relational operators.

The target type determines the target representation. The preceding section describes the
derivation of target types; in addition, a range assertion establishes the asserted type as
the target type of its operand. If all valid values of the target type are nonnegative, the
target representation is unsigned; otherwise, it is signed. The arithmetic operators
propagate target representations unchanged to their operands, but the target
representation of an operand of a relational operator is undefined. The target
representation is also undefined in all other cases in which the target type is undefined.
Thus each (sub)expression has at most one target representation.

The inherent representation of a Primary is determined by its type (if a variable, function
call, etc.), by its value (if a compile-time constant), or explicitly (if a range assertion).
Possible inherent representations are signed and unsigned; in addition, a compile-time
constant in INTEGER N CARDINAL or a Primary with an inherent type that is a subrange of
INTEGER N CARDINAL is considered to have both inherent representations. Inherent
representations of operands are propagated to results as described below.

The operation denoted by a generic operator is chosen by considering first the inherent
representations of its operands, next the target representation, and finally a preferred
default. If the operation cannot be disambiguated in any of these ways, the expression is
considered to be in error. The exact rules follow:

If the operands have exactly one common inherent representation, the operation
defined for that representation is selected (and the target representation is
ignored).

If the operands have no common inherent representation but the target
representation is well-defined, the operation yielding that representation is chosen,
and each operand is “converted” to that representation (in the weak sense discussed
above).

If the operands have both inherent representations in common, and if target
representation is well-defined, it selects the operation. If the operands have both
inherent representations in common but the target representation is ill defined, the
signed operation is chosen.

If the operands have no representation in common and the target representation is
ill-defined, the expression is in error.

In all cases, the inherent representation of the result is determined by the selected
operation.

The unary operators require special mention. Unary minus converts its argument
to a signed representation if necessary and produces a signed result.

Example:

If m and n have unsigned representation, both the following are legal and assign
the same bit pattern to i, but the first overflows if m < n.

3-43

3 Common constructed data types

iem-—n;i<IFm>=nTHENm—=nELSE —((n—m);

ABS is a null operation on an operand with an unsigned representation; it always yields a
value with unsigned representation. The target representation for the operand of LONG (or
of an implied lengthening operation) is unsigned.

Examples:
i,J: INTEGER; m, n: CARDINAL; s, ¢: [0..77777B]; b: BOOLEAN

-- the statements on each of the following lines are equivalent.

ie—m+n; | «INTEGER[m + n] -- unsigned addition

iej+n; ien+j;, i «j+INTEGER[n] -- signed addition

ies+¢ | «INTEGER([s]+INTEGER[¢] -- signed (overflow possible)

n «s+t, n « CARDINAL [s]+ CARDINAL[?] -- unsigned (overflow impossible)
§ «—S5—¢, s « CARDINAL [s] — CARDINAL[¢] -- unsigned (overflow possible)
bes—t>0; b« INTEGER[s]|—INTEGER[t] > 0 -- signed (overflow impossible)

i —m; i & —INTEGER[m]

i e—m+n*(j+n); i «INTEGER[m] + (INTEGER[n]*(j+ INTEGER[n]))
nem+n*(j+n);, n < m + (n*(CARDINAL{ j]+ n))

i —=m+n*(s+n); i «INTEGER[m + (n*(CARDINAL [s] + n))]

besiN[t—1. ¢t+1]; b < INTEGER[s] IN[INTEGER[¢— 1] .. INTEGER [t + 1]]
FORsIN[¢—=1..¢+1]...; FORsIN[CARDINAL[t—1].. CARDINAL[t+1]]...

The following statements are incorrect because of representational ambiguities.
be—i>n, bei+niN[s..j]
SELECTi FROMm => ...; ¢ = > ..., ENDCASE

Fine point:

When an INTEGER is lengthened, its inherent type is LONG INTEGER. When a CARDINAL or NATURAL is
lengthened, its inherent type is LONG INTEGER and LONG CARDINAL.

LongCardinal: LONG CARDINAL;
Longlnteger: LONG INTEGER;
“Integer: INTEGER;

Cardinal: CARDINAL;

The following statements are valid:

IF Longlnteger < Integer THEN .. ;
if LongCardinal < Cardinal THEN. . ;
I LongInteger < Cardinal THEN. . ;

The following statement is invalid:

If LongCardinal < Integer THEN .. ;

3-44

Mesa Language Manual 3

3.7 Exfended defaults

v

As previously explained, you can associate a default initial value with a type (not just with
a field of a record). If a type is constructed from other types using one of Mesa's type
operators (e.g., RECORD), the default value for that type is determined by the default values
of the component types and by rules associated with each operator and by any default
specification for the record type itself. When you declare a named type, you have the
option of explicitly specifying a default for that type.

With this extension, you will find that uses of defaults in Mesa generally fall into two
classes. Default values for fields of records and arrays make the corresponding
constructors more corncise and more convenient to use. On the other hand, the usual
reason for associating a default initial value with a type is to ensure that storage allocated
for that type is well-formed, i.e., that any variable of such a type always has a meaningful
value. There is some interaction between these uses; the default value of a record type is
partly determined by any default values specified for its fields, and a record field may
inherit its default value from the type of that field. The details appear below.

The rules for inheritance of defaults are designed to provide the following property
(currently not quite preserved by sequence (§ 6.5) or variant record types (§ 6.4.5)): if a
type T has been given a non-nuLL default value, any type derived from T will have a
defined and non-nuLL default value for any embedded component of type T. Because of the
potential cascading effect implied by this, you should carefully consider the relative costs
and benefits of specifying a default, especially one that does not include NuULL as an
alternative.

Defaults are ignored in determining equivalence and conformance of types. Thus, it is
possible to have two compatible types with different default initializations.

Specification of Default Initialization

None of the built-in types (INTEGER, CARDINAL, NATURAL,BOOLEAN, CHARACTER, STRING and REAL)
has a default initial value. All of the transfer types PROCEDURE, PROGRAM, SIGNAL, ERROR, and
PROCESS have a default initial value of NiL.

The following rules determine the default initial value of a type designated by an
expression involving a type operator:

The default initial value for a type constructed using RECORD (or ARRAY) is defined
field-by-field (or element-by-element). For each field (element), it is the default
value for that field if there is one; otherwise, it is the default initial value for the
type of that field (element) or is undefined if there is no such default.

Types constructed using other operators have no implied default initialization.

The default initial value of a type designated by a declared type identifier T depends upon
the form of the declaration of T, as follows:

T: tvpe = TypeExpr,

T receives all the attributes of TypeExpr including any default.

3-45

Common constructed data types

3-46

T: tYPe = TypeExpr «e;
T receives all the attributes of TypeExpr except that its default initial value is e.

Examples

Flag: TYPE = BOOLEAN « FALSE;

Recl: TYre = RECORD [f: Flag]; -- default value is [f: FALSE]
Rec2: TYPE = RECORD [f: Flag] «[I; -- ditto (the field defaults)
Rec3: 1vype = RECORD [f: Flag] « [TRUE]; -- explicit default

Rec4: TYPe = Rec3; -- default value is [f. TRUE]
Rec5: 1YPe = Rec3 « [f: FALSE]; -- default value is [FALSE]

Any DefaultSpecification is acceptable in a type declaration (§ 3.3.5). A declaration giving
a type T a NuLL default cannot, however, equate T to a type with a default that does not
include NuLL. A default appearing in a type definition within a DEFINITIONS module must be
either NULL or an expression with a compile-time constant value.

Default values associated with types are used

to initialize local variables of procedures and programs, in the absence of explicit
initialization,

to initialize variables that are dynamically allocated using New (§ 6.6.2), in the
absence of explicit initialization (see below),

to construct records (except argument and result records), in the absence of an
explicit value for a field in the constructor and of a default value for that field in the
record declaration,

to construct arrays, in the absence of an explicit value for an element (see below).
Defaulted Array Elements

Elements in an array constructor may be voided or elided. Omission of elements is
permitted in a keyword constructor (see below) but not in a positional constructor. The
empty constructor ([I) is a keyword constructor with all items omitted. An elided or
omitted element receives the default value for the type of the components of the array (if
any); the value of a voided element is undefined.

ALL abbreviates a positional éonstructor of the appropriate length; thus ALL[] elides all’
elements (defaulting if possible) and ALL [NuLL] voids all positions.

Fine point:

The examples below illustrate the generality and complexity that default values may have. In the
example below, the assignment statement assigns 2 to group(1], 4 to group(2], 3 to group(3], 4 to groupl4],
and 3 to group(5].

GradeRange: TYPE = CARDINAL[0..4] «3;
GradeType: TYPE = ARRAY(0..4] OF GradeRange
group : GradeType;,

Mesa Language Manual 3

group +(2,4, 4,1 --two fields elided

A final example:

3.8 The null valuenw

Subrange: TYPE = CARDINAL[0..4] — 2| TRASH;
Array: TYPE = ARRAY [0..4] OF Subrange «[1, 1, , TRASH, 1 || TRASH;
- Record: TYPE = RECORD
(
rl: CARDINAL « TRASH,
r2: Subrange «—4, --overrides previous defaulit specification
r3: Subrange,
r4: Array,
r5: CARDINAL « 77| TRASH
]«{(,,3,00,1,2,3,4], };
Color: TYPE = (red, orange, blue, white} « ;
NestedRec: TYPE = RECORD
(
ni: Color,
n2: Record «[r1:10,r2:, r3: TRASH, r4:(3,3,3,3,3],r5: 2]
I3
Ptr: TYPE = LONG POINTER TO Color «NIL;

vl: Array;

v2: Record;

v3: NestedRec «([red];
v4: Color « red;

-the following are valid

vie—(24,,4,] -- means Array(2,4,2,4,2]
v2 «[r3: TRASH, r5: 4]; -- means Record(rl: TRASH, r2: 4, r3: TRASH,
- r4:[1,1,2,TRASH,1],r5: 4]
v2 «(r3:1,r4:(1,2,3,4,], r5:61; -- means Record(rl: TRASH, r2:4,r3:1,
- r4:(1,2,3,4,2],r5:6]
v2 «(]; --means Record(rl: TRASH, r2:4,r3:2,

- r4:[1,1,2,TRASH,1],r5: 77]
v2 «[r1: TRASH, r4: TRASH, r5:6]; -- means Record(rl: TRASH, r2:4,r3:2,

-- r4: TRASH, r5:6 |
v3 «(nl:red, n2:(r4:[4, 4, ,411}; -- means NestedRec(nl: red,

--n2:(rl: TRASH, r2:4,r3:2,r4:(4,2,4,2,4],r5:77]

In Mesa, null values are available for all address-containing types. An address-containing
type is one constructed using POINTER, DESCRIPTOR, PROCEDURE, PROGRAM, SIGNAL, ERROR,
PROCESS, UNCOUNTED ZONE or a LONG or subrange form of one of the preceding. The built-in
type STRING is address-containing.

3-47

Common constructed data types

3-48

Fine point:
A relative pointer or relative descriptor type is not considered to be address-containing in Mesa .
Null values are denoted as follows:

If T designates any address-containing type, NiL[T] denotes the
corresponding null value.

Whenever T is implied by context, NiL abbreviates niL[T].

If T is not implied by context, NiL means NIL [POINTER TO UNSPECIFIED] and thus
matches any POINTER or LONG POINTER type.

A fault will occur if you attempt either to dereference a null value or to transfer
control through a null value.

Ordinary statements

Statements are the units of action in Mesa; they control the flow of execution and the
updating of variables. This chapter treats ordinary statements: those statements having
wide applicability (such as assignment statements); later chapters cover the remaining
statements. The following syntax lists the phrase names of all the statement forms
covered in this chapter:

Statement :: = AssignmentStmt|IfStmt | SelectStmt | NullStmt |
Block | GotoStmt | LoopStmt | ExitStmt]| ...

Some statements have expression counterparts, with the same general purposes but
slightly different constraints. For instance, assignment can be performed by an expression
as well as a statement. The expression forms covered in this chapter are

Expression :ta .| AssignmentExpr | IfExpr | SelectExpr

In Mesa, certain statement forms such as the IF statement contain other statements. These
statements in turn may contain still other statements, and so forth. Consequently, the
term "statement” should be understood to encompass the large and small alike.

The dynamic successor of a statement embedded within another depends upon the
embedding form. For simplicity, the discussion assumes that most statements occur in the
middle of a hypothetical series of statements. Execution paths within a statement are
described for each form of control statement, and the successor is described in terms of a
postulated “Next-Statement.” Next-Statement represents nothing more than completion of
a given statement; another statement may or may not appear at that point in an actual
program.

Although execution of a statement can be aborted prior to its normal completion, the
discussion of statement sequencing also assumes normal termination of each statement
unless otherwise stated.

In the examples, Stmt-0, Stmt-1, Stmt-2, etc. denote arbitrary statements, the details of
which are irrelevant.

4-1

Ordinary statements

4.1

4-2

Assignment statements
Syntax:

AssignmentStmt ::= LeftSide « RightSide|
Extractor « RightSide

The RightSide must be an expression with a type conforming to the type of the left-hand
side. The left-hand side must be a valid recipient of data such as a declared variable or a
component. For assignment statements, a left-hand side may also be an extractor (§ 3.3.6):

Examples:
ie3 aeb+c;

birthDay.month « Apr; birthTable[Tom].year « 1955;
[mm, dd, yy | « birthDay, -- an extractor as the LeftSide

4.1.1 Assignment expressions

Assignment operations may be carried out by expressions, as well as by assignment
statements. The syntax for an assignment expression is:

AssignmentExpr ::= LeftSide « RightSide |
Extractor « RightSide

Assignment expressions can be used for performing multiple assignments in a single
statement, and for saving the value of an intermediate expression without having to write
a separate statement:

22 «x] «x0 «v; --setx0, x1, and x2 to the value inv
array(j —j+1lex [i]; -- j is changed while changing the array
component

Evaluation of the first statement proceeds as if it were written:
12 « (x1 « (x0 «v))

Note that x2 « (...) is an assignment statement. The assignment expression, x0 « v, yields
the value assigned to x0, this becomes the RightSide value for the other assignment
expression, and so on.

The difference between an assignment expression and an assignment statement is that
the expression yields a value (in addition to performing assignment).

An assignment statement with an Extractor as its left side may be used as an expression.
This allows multiple extractions, among other things. The value of such an assignment is
the value of its right side.

An AssignmentExpr is an Expression. Its type is the type of the LeftSide, and its value is
the value actually assigned (possibly after type conversion) of the RightSide. The
assignment operator has the lowest possible precedence. As a stylistic rule, an assignment
expression embedded in another expression is enclosed in parentheses.

Mesa Language Manual 4

Fine point:
In an expression such as the following:

alk—k+1] + blk |;

the order of evaluation is undefined, and the embedded assignment may be executed either before or after
evaluation of b[k]. Such use of embedded assignments should be avoided.

4.1.2 Restrictions on assignment

The assignment operations defined upon certain types have been restricted so that
variables of those types can be initialized (either explicitly or by default) when they are
created but cannot subsequently be updated. A variable is considered to be created at its
point of declaration or, for dynamically allocated objects, by the corresponding New
operation.

The following types have restricted assignment operations:
MONITORLOCK (§ 9.2)

CONDITION (§9.3)

any type constructed using SEQUENCE (§ 6.5)

any type constructed using ARRAY in which the component type has a restricted
assignment operation.

any type constructed using RECORD in which one of the field types has a restricted
assignment operation.

Note that the restrictions upon assignment for a type do not impose restrictions upon
assignment to component types. Thus selective updating of fields of a variable may be
possible even when the entire variable cannot be updated; e.g., the timeout field of a
CONDITION variable can be updated by ordinary assignment. Also, you may apply the
operator @ to obtain the address of the entire variable in such a situation.

4.2 wrstatements

An IF statement is a control statement that functions as a two-way switch:

IfStmt ::= IF Predicate ThenClause ElseClause
Predicate ::= Expression

ThenClause ::= THEN Statement

ElseClause ::= empty | ELSE Statement

4-3

Ordinary statements

A simple IF statement is shown below.

IFv = 0 THEN WriteString [“Done.”[ELSEv «v~1;
Next-Statement

The BOOLEAN expression (v = 0) is called the Predicate of the IF statement. The Predicate is
evaluated first, and if TRUE, the Statement in the ThenClause is executed (in this case a call
on the procedure WriteString). Upon its completion, execution continues at Next-
Statement. If the Predicate value is FALSE, the Statement in the ElseClause, “v « v—~1", is
executed; if there is no ElseClause control goes directly to Next-Statement.

Other examples:
IF (flag = on) AND { IN[m..n] THEN i « i + iDelta ELSE i « m,;

IF winner ~ = NIL THEN
BEGIN -- this Statement is a block (§ 4.4)
totalAge « totalAge + winner.age;
IF winner.party = Democratic THEN demoScore « demoScore+ 1
ELSE gopScore < gopScore+1;
END; -- end of the ThenClause

Note that a semicolon cannot follow a ThenClause when an ElseClause is present.

If the Statement in a ThenClause is a second IF statement, then the outer If may have an
ElseClause only if the inner one does; i.e., an ElseClause “belongs” to the innermost
possible If. For example:

IFa > = 0 THEN
IFa>0THEN b «1 —-a>0meanssetbtol
ELSE b « 0; —-a = 0meanssetbto0
--noactionifa <0

It is recommended that “IF...THEN IF” combinations be avoided entirely unless the second if
has an ElseClause. Often, a single IF statement is sufficient. For example, let pI and p2 be
arbitrary predicates. Then the following two statements have identical effect:

IF pI AND p2 THEN Stmt; -- recommended form (§ 2.5.3)
IF p1 THEN IF p2 THEN Stmt; -- longer form
Fine point:

Ifthe Predicate isa compile-time constant, the compiler does not produce object code for the text that
would never be executed. This also holds for IF expressions.

4.2.1 Fexpressions

The IF statement has a counterpart that is an expression. Its syntax is similar to that of an
1fStmt:

IfExpr ::= IFPredicate THEN Expression eLSE Expression

There are two differences between an IfExpr and an IfStmt:

Mesa Language Manual 4

The clauses of an IF expression contain expressions, not statements;

An IF expression must have an eLsé-clause.

Examples:
slope «IF y = 0 THEN max ELSE x/y; -- avoid division by zero.
beiFa>=0THEN (IFa > 0 THEN 1 €LSE 0) ELSE —1;

Evaluation of an IF expression begins with evaluation of the Predicate (in the first
example, y =0). If it is TRUE, the expression in the ThenClause (i.e., max) is evaluated, and
its value becomes the value of the IF expression. If the predicate is FALSE, the ElseClause
expression (i.e., x/y) is evaluated, and its value becomes the value of the IF expression. The
second example sets the value of 6 to -1, 0, or +1, depending on whether a is negative,
zero, or positive, respectively.

The ThenClause and ElseClause expressions must conform to some common type (possibly
after type conversion, as outlined in subsection 3.5.1). The type to which they conform is
the IF expression's inherent type.

An IF operator has the same precedence as an assignment operator, i.e., the lowest possible
precedence. IF expressions should be enclosed in parentheses when embedded in other
expressions.

4.3 seLectstatements

The SELECT statement chooses for execution at most one statement from an ordered list of
statements. The choice is based upon the relation between a given expression and
expressions associated with each selectable statement. Thus, this statement form permits
multiway branching, not just the two way branching of an IF statement.

A SELECT statement is shown below. The separator “= > should be read as “chooses.” The
entire statement may be read as follows: “Select, using x's value, from the comparisons
preceding the substatements. First, (x's value) 'equal to zero' chooses Stmt-1. Second, ‘in
subrange m through n' chooses S¢tm¢-2. Third, "less than m' chooses S¢tm¢-3. Otherwise,
choose nothing.”

SELECT x FROM
=0 => Stmt-1,
iN[m..n} => Stmt-2;
<m => Stmt-3,
ENDCASE

The next four sections cover various forms of SELECT, their precise syntax, and the
expression counterpart of the SELECT statement. The term “SELECT,” used by itself, includes
both statement and expression forms.

Ordinary statements

4-6

4.3.1 Forms and options for SELECT

Syntax equations:
SelectStmt i1 = SELECT Leftitem FROM -- (the head)
StmtChoiceSeries -- (the arms)
ENDCASE FinalStmtChoice | -- (the foot)
Leftitem ;= Expression

StmtChoiceSeries ::= empty|
TestList = > Statement |
TestList = > Statement ; StmtChoice Series

FinalStmtChoice ::= empty |
= > Statement

TestList ::= Test|TestList, Test
Test ::= Expression | -- no operator implies an equality test
RelationTail
Example:
i:[0..5];
SELECT { FROM
0 =>iei+1; -i=0
<3 =DBEGINj ¢, ie—i—1END; --i=1lori=2
=5 =>i«(; -i=5
ENDCASE => (& 2; --i=3 ori=4 (none of the above)

Next-Statement

In the execution of a SELECT statement, the Leftitem is evaluated first; a sequence of
comparisons then follows. Each arm of the SELECT statement begins with one or more Tests.
The Expression in each Test is evaluated and compared with the value of the Leftitem. The
evaluation occurs in order, from left to right, and continues until a comparison succeeds or
the TestList for that particular arm is exhausted. If a test succeeds, control passes
immediately to the statement following the TestList in that arm (no further Tests are
evaluated, even in that same list). If all Tests in a given arm fail, the next arm in the
series is tried. After a test succeeds and its associated statement is executed, control passes
to Next-Statement. Thus, at most, one statement can be chosen in a given execution of a
SELECT statement.

When combined with the Leftltem (perhaps with an implied “="), each Test must be a
valid Relation. The type of the Expression in a Test must conform to the type of the
Leftitem. If a Test uses “IN Subrange,” the base type of the subrange must conform to the
type of the Leftitem.

Mesa Language Manual 4

A single SELECT arm may specify more than one test:

SELECT i*j + k FROM
1,IN([7..10] => Stmt-1, --values: 1,7,8,9,10
2,5,>10 => Stm¢-2; --values: 2,5,11,12, ...
ENDCASE;

A final choice may be appended to a SELECT to handle all remaining cases; it follows
ENDCASE. For example:

PriorityState: TYPE = RECORD [i0, i1, i2, i3: BOOLEAN];
oldState, newState: PriorityState;

SELECT TRUE FROM -- picks the first TRUE state
oldState.i0 = > Stmt-0;
oldState.il, newState.i0 = > Stmt-1;
oldState.i2, newState.il = > Stmt-2;
oldState.i3, newState.i2 = > Stm¢-3,;
ENDCASE => Stm¢t-99;

[f this SELECT statement does not choose one of the first four statements, the final statement
(Stmt-99) is executed.

Fine points:
If all SELECT arms (or those in some contiguous subseries) specify constant values in each Test, the
compiler can produce code using a “jump table” for efficient selection (It only does this if the set of
interesting values is sufficiently "dense™.

The other alternatives for SelectStmt apply to variant records and are discussed in chapter 6.

The expressions in the SELECT arms are lengthened as necessary to match the type of the Leftitem, but
the Leftitem is never lengthened.

4.3.2 The NULL statement

The NULL statement, which serves only as a placeholder, is often useful as the statement in
an arm of a SELECT statement:

_ Nullstmt = NULL

For example:

SELECT currentChar fROM

IN['0..'9] => Stm¢-1; -- handle digits.
IN['A..'Z] = > Stmt-2; -- handle capital letters.
iN['a..z] => Stmt-3; -- handle small letters.
SP = > NULL; -- ignare blanks.
ENDCASE = > Stmt-99; -- handle all other chars.

4-7

4 Ordinary statements

4.3.3 SELECT expressions

The SELECT statement has an expression counterpart. There are three differences between
the expression and statement forms of SELECT:

(1) The choices in each arm must be expressions, not statements.
(2) The arms are terminated by commas, not semicolons.
(3) enpcase must be followed by “= >” and a final (expression) choice.

Its syntax is defined by

SelectExpr :i= SELECT Leftitem FROM -- (the head)
ExprChoicelist -- (the arms)
ENDCASE = > Expression -- (the foot)

l...
ExprChoicelist ::= empty]|
TestList = > Expression |
TestList = > Expression, ExprChoiceList

Leftitem and TestList are defined in subsection 4.3.1.

For example:
pt: INTEGER; --pointon aline.
lo, hi: INTEGER « 0; -- bounds for a line segment, initially a null segment

PointPosition: TYPe = {leftMargin, rightMargin, inside, outside, degenerate};
position: PointPosition;

position <« SELECT pt FROM

IN ({lo..hi) => inside,

NOT IN [lo..hi] => outside,

< hi Co= leftMargin, -- =lo but #hi
> lo => rightMargin, -- =hibut #lo
ENDCASE = degenerate, - =loand =hi

A SELECT expression is executed just as a SELECT statement, except that the selected arm
yields a value, which becomes the value of the SELECT expression as a whole. The inherent

type of a SELECT expression is the one to which all the expressions in the arms conform
(§3.5.3).

A SELECT operator has the same precedence as an assignment operator, i.e., the lowest
possible precedence. SELECT expressions should be enclosed in parentheses when embedded
in other expressions.

4.4 Blocks

A block is a way of packaging a series of statements so that they can be used where only a
single statement is permitted syntactically. In its simplest form a block is a pair of
“brackets,” BEGIN and END, with a series of statements (of any form) between them. The
general syntax is:

4-8

Mesa Language Manual 4

Block :i= BEGIN
OpenClause -- optional; subsection 4.4.2
EnableClause -- optional,; subsection 8.2.1
DeclarationSeries -- optional
StatementSeries
ExitsClause -- optional,; subsection 4.4.1
END

StatementSeries = empty|
Statement]|
Statement ; StatementSeries

DeclarationSeries ::= empty | DeclarationSeries Declaration

The bracket pair { } can be used any place the bracket pair BEGIN END can be used (but not
conversely).

Fine point:
A semicolon terminates every declaration and therefore is not mentioned as a separator here.

In the following IF statement, a block takes the place of the single Statement normally
allowed in a ThenClause:

IFlo > hiTHEN
BEGIN -- Exchange lo and hi.
temp: INTEGER « [o;
lo « hi;
hi « temp;
END

A semicolon must separate each statement in the StatementSeries but is optional after the
last statement.

The optional DeclarationSeries in a block introduces new identifiers, such as temp above,
with scope smaller than an entire procedure (or module) body. Scope is discussed further
in subsections 4.4.2 and 5.5.1 and in chapter 7.

Fine point:

During the execution of a Mesa program, frames are allocated at the procedure and module level only
(§5.2). Any storage required by variables declared in an internal BlOck (one used as a Statement) is
allocated in the frame of the smallest enclosing procedure or module. When such internal blocks are
disjoint, the areas of the frame used for their variables overlay one another.

Ordinarily, when a block is executed, every statement in its StatementSeries is executed,

and Next-Statement is the successor of the entire block. It is possible, however, to jump out
of a block, as described in the next section on GOTOs.

4.4.1 GOTO statements

A more general form of a block allows a series of labeled statements to be written
immediately preceding its END. One can jump to any one of these statements from within

4-9

Ordinary statements

4-10

the block only, using a GOTO statement. There are two consequences of this way of
constraining the GOTO:

A GOTO may only jump forward in the program, never backward.
A GOTO may only jump out of a block, never into one.

The syntax for the ExitsClause of a block and for the GOTO statement is the following:

ExitsClause = empty|

EXITS ExitSeries |

exiTs ExitSeries ; -- optional final semicolon
ExitSeries ir= empty|

Labellist = > Statement |
Labellist = > Statement; ExitSeries

LabelList ::= Label | LabellList, Label
Label ;= identifier
GotoStmt ::= GOTO Label | Go 1o Label

A simple example:

IF input.status # open THEN
BEGIN

I input.fileHandle = defaultInput THEN GOTO useDefault,
cee -- processing for non-default file
IF input.fileNumber = ttyNumber THEN GOTO filelsDefault,
If input.length = 0 THEN GOTO newFile;
cen -- compute number of pages in the file
EXITS '
useDefault, filelsDefault = > -- multiple labels are allowed
BEGIN input « ttylnput; pages « maxPages END;
newFile = > pages « 0;
END; --end of the ThenClause and the IF statement
Next-Statement

The Labels in this example are useDefault, fileIsDefault, and newFile (it is helpful to view
the labels as the names of conditions or reasons for which the block is being left). If any
one of the GOTOs is executed, control transfers immediately to the statement labeled with
the identifier used in the GOoT0. The normal successor of any one of the labeled statements
is Next-Statement, which is also the normal successor of the last statement in the main
body of the block (i.e., the one just before ExiTS).

Since one block can appear within the body of another, a GOTO can jump directly out of one
(or more) blocks to the ExitsClause of an enclosing block. For example,

BEGIN-- outer block

BEGIN-- inner block

Mesa Language Manual 4

IF i = iMax THEN GO TO endOfArray; -- jump to end of outer compound
END; --end of inner
le—i+1;
EXITS
endOfArray => i «0;
END; -- end of outer

Next-Statement

If the GOTO statement is executed, control jumps to the exit labeled ¢endOfArray. The
chosen statement (i«0) is executed and control then goes to Next-Statement. The
identifiers used as Labels are only known inside the block in which they appear, and it is
possible to use the same identifier as a label in a number of blocks. If this is done in nested
blocks, a GOTO naming that identifier will always go to the statement with that label in the
smallest enclosing block. Generally, using the same label in nested blocks is a bad idea.

Since Mesa allows declarations in any block, it is possible to declare a procedure (§ 5.5)
within the scope of the Labels of a block. Jumping out of a procedure into a surrounding
block is disallowed. Such a result may be obtained, however, by use of the SIGNAL
machinery (see chapter 8). For example, the following is illegal:

BEGIN

p: PROCEDURE =

BEGIN
GOTO panicExit; -- illegal - . ..
END;
copll s
EXITS
panicExit = > ...
END

The desired result is achieved with the following program (see chapter 8 for a description
of signals and catch phrases):

BEGIN
Panic: SIGNAL = CODE;

p: PROCEDURE
BEGIN
... SIGNAL Panic; ...
END;
... pl! Panic = > GOTO panicExit]; ...
EXITS
panicExit => _;
END

A statement in an ExitsClause may contain a GOTO, but the label in the GOTO can only refer
to labels in surrounding blocks, not to labels in the same ExitsClause as the GoTo. For
example, the following is legal:

4-11

4 Ordinary statements

BEGIN -- outer
BEGIN -- inner
EXITS
endOfFileReached = > BEGIN ... GOTO outOfData END;
END; --end of inner

EXITS
outOfData => . .

END -- end of outer

4.4.2 oPeN clauses

An oreN clause allows more convenient reference to the fields of a record. In the simplest
form, it allows fieldname as an abbreviation for recordname.fieldname. If the name of the
record is complicated (e.g., candidateList{tableOfObjects(il]), this can make programs
much more readable. The programmer should be cautioned, however, that this is merely a
syntactic shorthand; the code generated is actually recordname.fieldname and recordname
is recomputed each time. Thus, in the example above, if i or tableOfObjects is changing
within the scope of the OPEN, each reference to a field can potentially access a different
element of candidateList. Similarly, an OPEN clause may simplify access to an interface
which it opens (§ 7.2.2.2). The syntax for oPeN follows:

OpenClause ::= empty| OPeN OpenList; -- note the terminal semicolon
OpenList U= OpenltemlOpenList,Openltem
Openitem ::= AlternateName : Expression |
Expression
AlternateName ::= identifier

The scope of an OPEN clause (the portion of the program over which the synonym can be
used) is the body of a block or loop, including the optional exiTs clause (§ 4.5). The following
diagram summarizes the scope of the various parts of a Block. The scope of each phrase
extends over others with greater indentation.

BEGIN
OpenClause

EnableClause
DeclarationSeries

ExitsClause
END

StatementSeries

An Openltem using an AlternateName allows a simple identifier to replace an expression
as the designator of some record object. For example, the two blocks below are equivalent:

PersonChain: TYPE = RECORD [p:POINTER TO Person, next: POINTER TO PersonChain |

candidateList: POINTER TO PersonChain;

4-12

-- Person is defined in section 3.4

Mesa Language Manual 4

BEGIN OPEN c: candidateList.p;
If c.party = Republican AND c.age < 30 THEN youngRepublicans «
youngRepublicans + 1,

If c.sex = Female THEN women « women+ 1,

END

BEGIN

If candidateList.p.party = Republican AND candidateList.p.age < 30 THEN

youngRepublicans « youngRepublicans + 1,
IFf candidateList.p.sex = Female THEN women « women+1,

END
The opeN statement does not provide a general renaming capability; it merely allows more
convenient access to the fields of a record. Each Expression in an OpenlList must either
have a record type or be a pointer to a record. When the AlternateName form is used, the

alternate identifier always designates the opened record, even if the Expression is a
pointer to that record.

The form of OpenClause without an AlternateName allows access to the fields of a record
object as though they were simple variables. For example, using this feature in the above

e »”

example allows omission of the “c.”s:

BEGIN OPEN candidateList.p;
If party = Republican AND age < 30 THEN youngRepublicans «
youngRepublicans +1;

IF sex = Female THEN women « women + 1;
END

Note: if the AlternateName form is used, qualification of record fields using the alternate
name is mandatory.

Besides record objects, it is possible to open a module (chapter 7) or an interface to simplify
access to the identifiers available from the module, or items from an interface. However,
the use of the AlternateName form of OpenClause is most strongly encouraged in these
cases because the resulting code is more clear.

If an OpenClause contains multiple Openitems, the opened expressions might refer to
records having some selector names the same. In the example below, x is a selector name
for two records, recVar and recVar.subRecord. An unqualified occurrence of x is taken to
be the x component of the rightmost opened record (recVar.subRecord). To refer to an
earlier opened record, explicit qualification is necessary (the AlternateName form should
be used).

" i,J: INTEGER;
RecordType: TYPE = RECORD
[
a, b, x: INTEGER,
subRecord: RECORD [x, y: INTEGER]
L
recVar: RecordType;

4-13

4 Ordinary statements

BEGIN OPEN r'1: recVar, recVar.subRecord,
ierla+rlb*rlx, je—x-y,;
END;

The above block is equivalent to:

BEGIN
i «recVar.a + recVar.b* recVar.x; j «recVar.subRecord.x—recVar.subRecord.y;
END;

Fine points:

The range of text affected by an Openltem includes any further items in the OpenList. The
OpencClause itself may use implied qualification or alternate names (from earlier Openitems).
Thus, in the above example, one could have said

OPENrl: recVar, rl.subRecord;
rather than

OPENr1: recVar, recVar.subRecord;
Opened expressions are evaluated at each use, whether used implicitly or explicitly under an alternate
name. This is essential for dealing with relocating allocation schemes. To avoid confusion, however, it is
recommended that ordinary pointers be updated before entering the statement sequence headed by an

OpenCla use. In that way, names in the statement sequence will remain consistent, i.e., will apply to
the same objects throughout. Consider an extension of the above example:

a: ARRAY [0 . . 10) Of RecordType;

BEGIN OPEN r: alil; —-assumeiIN [0..9)
r.x «2;
ie=i+1;
jerx; -- reevaluation of OPENed expression with new

- value of i, this r.x is not the one just stored into
END;

p: POINTERTO RecordType;

pe. .. -- p gets a new value
BEGINOPEN:p T;

ry «2;

pe ... -- D gets a new value

jery, -- field of newly pointed to record
END,

4.5 Loop statements

In Mesa, a loop is a statement containing a series of statements that are to be executed
repeatedly. All the ways of controlling how many times a loop should be repeated include
the ability to repeat it zero times: i.e., to bypass it entirely. Example 1 in section 2.1 contains
the following loop statement:

4-14

Mesa Language Manual 4

UNTILR =0
DO
r < mmoo n, -- r gets remainder of m/n
men, ner,
ENDLOOP

“UNTIL n=0" is the loop control for this loop. A variety of loop controls are available in
Mesa: they include control by a Boolean expression, as above, and control by iteration
over a subrange, as in the following example:

FORIIN[0..N)DOali] «ali] + bli]enpDLOOP

This will execute the assignment N times, with i taking the values 0, 1, ..., N—1 on
successive iterations. If N = 0, the assignment is not executed at all.

The formal syntax of loop statements is

LoopStmt ::= LoopControl -- optional; may be empty
Do
OpencClause -- optional (§ 4.4.2)
EnableClause -- optional (§ 8.2.1)

DeclarationSeries

StatementSeries

LoopExitsClause -- optional, may be empty
ENDLOOP

The portion between DO and ENDLOOP is the body of a loop. Subsequent sections discuss the
forms of LoopControl, the LoopExitsClause and GOTOs in loops.

The scopes of identifiers introduced in the various components of a loop are summarized by
the following diagram (cf. Block, § 4.4.2):

LoopControl

Do

OpencClause

EnableClause
Declaration Series
StatementSeries
LoopExitsClause

ENDLOOP

As in the case of a block, any exit labels are visible within the EnableClause, and any catch
phrase (§ 8.2.1) in the EnableClause is not enabled within the LoopExitsClause.

4.5.1 Loop control
The syntax for LoopControl is
LoopControl :: = [terativeControl ConditionTest -- either may be empty
ConditionTest ::= empty | WHILE Expression | UNTIL Expression

If both the IterativeControl and the ConditionTest are missing from a loop, it will repeat
indefinitely (unless terminated by an embedded GoTo or exiT, § 4.5.2).

4-15

Ordinary statements

4-16

If a LoopControl includes a ConditionTest, the boolean expression in the test is
(re)evaluated before each execution of the loop body, including the first. If the
ConditionTest succeeds, the body of the loop is executed; if it fails, the loop is finished
(terminates conditionally) and control continues at Next-Statement (or at a FINISHED clause,
§4.5.2). A WHILE test succeeds if the value of the expression is TRUE. In the following
example, { has the values 1, 2, 3, ..., 9 in successive executions of the body of the loop, and
the value 10 when Next-Statement is reached (assuming that there are no other
assignments to i):

ie1; . -- this statement is not part of the loop
WHILE i < 10
DO ... iei+1; ... ENDLOOP;

Next-Statement

An UNTIL test succeeds if the value of the expression is FALSE: i.e., it is the opposite of WHILE.
The following loop is equivalent to the one above:

ie1; -- this statement is not part of the loop
UNTILI > =10
DO ... iei+1; ... ENDLOOP,

Next-Statement

An IterativeControl provides a way of executing a loop (no more than) a computed number
of times. It may be followed by a ConditionTest. [t optionally updates a specified
ControlVariable prior to each iteration so that, e.g., statements in the body have access to
(a simple function of) the number of iterations. A loop that finishes by satisfying the
implicit test associated with an Iteration or a Repetition is said to terminate normally.

IterativeControl ::= empty | Repetition | Iteration | Assignation
Repetition ::= THROUGH LoopRange
lteration :: = FOR ControlVariable Direction IN LoopRange |

FOR ControlVariable: TypeExpression Direction iN LoopRange

LoopRange 1= SubrangeTC | Typeldentifier |
BOOLEAN | CHARACTER
Direction = empty | DECREASING
Assignation ::= FOR ControlVariable « InitialExpr , NextExpr |

FOR ControlVariable: TypeExpression«InitialExpr, NextExpr

ControlVariable ::= identifier
InitialExpr ::= Expression
NextExpr ::= Expression

In the Repetition form of IterativeControl, a LoopRange specifies how many times the loop
body is to be executed. For example,

THROUGH [1..100] DO . . . ENDLOOP

Mesa Language Manual ‘ 4

executes the body 100 times. A loop range can have any element type (§3.1) or any
subrange of LONG INTEGER or LONG CARDINAL. The bounds of a subrange can be arbitrary
expressions and do not have to be compile-time constants (as they do in a SubrangeTC).

A Repetition and a ConditionTest may be combined in a single loop control. For example,
THROUGH [low..high] WHILE linelsConnected DO . . . ENDLOOP

Normal termination occurs after high-low+1 iterations; conditional termination can
occur sooner if linelsConnected is FALSE prior to some iteration. Note that if low > high, the
interval [low..high] is empty and the loop body is not executed.

lteration and Assignation, the two forms of IterativeControl that include a
ControlVariable, begin with the keyword FOR. If the first option of either Iteration or
Assignation is used, then the control variable must be a variable declared separately in
the program. Its type becomes the target type for the various expressions in the remainder
of the IterativeControl. The forms of Iteration and Assignation with “:TypeExpression”
declare a new control variable. That variable cannot be explicitly updated (except by the
FOR clause itself). Its scope is the entire LoopStmt introduced by the Iteration or
Assignation including any LoopExitsClause. Note, however, that the value of a control
variable used in an Iteration is undefined in the FinishedExit (§ 4.5.2).

An Iteration steps through a subrange much as a Repetition, which is described above. In
addition, it may specify a Direction: whether to begin at the lower bound of the range and
step up (empty) or at the upper bound and step down (DECREASING). In any case, the size of
the step is always one; for (a subrange of) an enumerated type, this really means stepping
from an element to its successor (if the direction is increasing) or to its predecessor (if the
direction is DECREASING). The control variable is assigned the current control value each
time around the loop.

When a loop terminates normally, the final value of the control variable is not defined.
The only way to ensure that the control variable’s final value is well defined is to
terminate the loop conditionally or forcibly (e.g., using EXIT or GOTO, § 4.5.2).

The following examples shift the components of an array vec (indexed from [0..LENGTH[vec]))
left or right one position, leaving one element unchanged:

FOR I IN [1..LENGTH [vec])
Do
vec[i~1] «veclil; - "Left-shift" vec's elements.
ENDLOOP;

FOR [DECREASING IN [1..LENGTH [vec])
DO
vecli] «vecl[i—-1]; -- "Right-shift" vec's elements
ENDLOOP;

In the second case, i is initially set to the value LENGTH [vec] — 1 and decremented by one for
each subsequent iteration. During the last execution of the loop, i has the value 1.

Bounds expressions in a LoopRange are evaluated exactly once, before the first execution
of the loop body. Subsequent alteration of variables used in those expressions does not
affect the number of iterations. When an Iteration is combined with a ConditionTest in a
single loop control, the control variable is updated and tested before the ConditionTest is
evaluated.

4-17

4 Ordinary statements

In an Assignation, the value of the InitialExpr is assigned to the control variable prior to
the first iteration. Before each subsequent iteration, the NextExpr is (re)evaluated and
assigned to that variable. There is no implicit test associated with an Assignation as there
is for an Iteration; thus, the user must either use a GoTo (§ 4.5.2) to terminate the loop or
include a ConditionTest in the LoopControl with the Assignation. As with an Iteration,
the control variable is updated for each iteration before any ConditionTest is evaluated.
This form is useful for scanning a list structure, as in the following example:

NodeLink: TYPe = POINTER TO Node;
node, headOfList: NodeLink;
Node: TYPE = RECORD
[
listValue: SomeType, :
next: NodeLink - either NiL (end of list) or pointer to next element
I3

FOR node <« headOfList, node.next UNTIL node =NiL
DO ... ENDLOOP;

Fine point:

The control variable can be altered within a loop, but this is not recommended. An iterative loop control
updates the variable according to its current value. If the statement sequence assigns a new value to the
control variable, the expected series of values may be disrupted (by omission or duplication). For control
variables declared in the Iteration or Assignation, altering the control variable is not allowed.

4.5.2 GOTOs, LOOPS, EXITs, and loops

A loop may be forcibly terminated by a GOTO (or an exiT, see below). The LoopExitsClause
serves the same purpose as the ExitsClause in a Block; there are just three differences:

(1) The LoopExitsClause is bracketed by REPEAT and ENDLOOP instead of EXITS and END;

(2) The LoopExitsClause may contain a final statement labeled with the keyword
FINISHED; this statement is executed if the loop terminates normally or
conditionally, but not if it is forcibly terminated.

(3) There is a special case of the more general GoTO, called exit, which simply
terminates a loop forcibly without giving control to any statement in the
LoopExitsClause.

There is another kind of GOTO statement, LOOP, which does not terminate the loop but skips
the remainder of the loop body in the current iteration.

Syntax equations:
LoopExitsClause ::= empty|REPEAT LOOpExits
LoopExits ;1= ExitSeries |
ExitSeries ;|
FinishedExit|

ExitSeries ; FinishedExit

4-18

Mesa Language Manual 4

FinishedExit i = FINISHED = > Statement|
FINISHED = > Statement;

LoopCloseStmt 13 LOOP

ExitStmt ia EXIT

The LOOP statement is used when there is nothing more to do in the iteration, and the
programmer wishes to go on to the next repetition, if any. For example,

stuff. ARRAY [0..100) ofF PotentiallylnterestingData;
Interesting: PROCEDURE [PotentiallyInterestingData] RETURNS [BOOLEAN];
i: CARDINAL;

FOR N [0..100) DO
-- some processing for each value of i

IF ~Interesting{stuff[i]] THEN LOOP;
-- process stuffli |

ENDLOOP;

The example used in the previous section to illustrate ConditionTests can be rewritten
using a GOTO and a LoopExitsClause as follows:

ie1;
DO
IFi > = 10 THEN GOTO quit; -- first statement in the body
Liei+l; L.,
REPEAT
quit = > NULL; -- do nothing but exit the loop
ENDLOOP;

Next-Statement

Frequently, forcible loop termination requires no special processing in the
LoopExitsClause. The exiT statement simplifies this case by not requiring a labeled
statement in that clause; in fact, no LoopExitsClause need be present. The above example
can be further rewritten to use exiT, as follows:

ie1;
Do
IFi > = 10 THEN EXIT; -- first statement in the body
llei+1; L
ENDLOOP;
Next-Statement

An ExXiT is less general than a GoTo. For instance, if one has a loop nested within another
and wants to exit from both, EXIT cannot be used because it terminates only the inner loop.
A GOTO can jump to the ExitsClause of any enclosing loop or block. The ExitsClause of
either a block or a loop is considered to be outside of the block or loop. Thus, an eXIT can
appear in any ExitsClause (provided there is an outer loop), and it causes forcible
termination of the smallest surrounding loop.

4-19

Ordinary statements

4-20

The following example shows a typical loop that is terminated only by execution of an exit
statement.

BufIndexType: TYPE = [1..max];
buf: ARRAY BufTndexType OF INTEGER,;
i, x: BufIndexType;

FORi «x, (IFi = max THEN 1 ELSE i+ 1) -~ Starting at point x,
DO
cen : -- do something and then
IF bufli] = O THEN EXIT, --quiton a “clear” entry, or
bufli] «0; -- clear until one is found.
ENDLOOP;

The NextExpr, “IF i = max THEN 1 ELSE i + 1,” makes bufbehave as a ring buffer.

Sometimes one must detect normal (as opposed to forcible) termination of a loop, perhaps
to take some “finishing” action. A final labeled statement with the label FINISHED (which
may not appear as the identifier in a GOTO) provides this facility. For example,

FOR [IN [0..nEntries) DO
IFa(i] = x THEN GO TO found;

REPEAT
found = > old « TRUE;
FINISHED = >
BEGIN

ali « nEntries] «x;
nEntries « nEntries + 1,
old <« FALSE
END;
ENDLOOP;

The FINISHED exit is taken if and only if the loop terminates normally or conditionally (i.e.,
when the loop range is exhausted in the case above). Upon entry to a FINISHED exit, the
value of the ControlVariable is undefined. Note that if an EXIT statement is executed, the
FINISHED statement is not executed.

Procedures

Procedures provide one of the most important abstraction mechanisms in Mesa. The
definition of a procedure assigns a name to a function or action. The computation
performed by a procedure is specified by a series of statements and can be expressed in
terms of parameters of the procedure. In addition, a procedure can produce one or more
-values, called its results. To invoke or call a procedure, the programmer simply names it
and supplies arguments corresponding to the parameters. He need not be concerned with
the internal workings of the procedure and can use its meaningful name to denote the
function or action.

The GCD computation in section 2.1 is of limited use as it stands because it depends upon
(and changes) variables m, n and gcd declared somewhere in its environment. It can
usefully be packaged as a procedure with parameters m and n, as in:

Gced: PROCEDURE [m, n: INTEGER] RETURNS [CARDINAL] =

BEGIN

r: INTEGER;

UNTILn=0
DO
remmobDn;, men; ner,
ENDLOOP;

RETURN [ABS [m]]

END;

The parameters of a procedure constitute the fields of a record, called the parameter record
of the procedure. When calling a procedure, the arguments are evaluated and assembled
into an argument record using a constructor (§ 3.3.4). “Applying” a procedure value to that
argument record invokes the procedure. Consider the procedure call Ged [x+1, y]. This
evaluates x+1 and y, constructs an argument record from these values, and then calls
procedure Ged, passing it the argument record.

Within the procedure, the argument record is assigned to the parameter record, and fields
of the parameter record are accessed as simple variables (i.e., that record is orPeNed). Thus,
the effect of the call above is to assign the value of x+ 1 to m and the value of y to n before
the statements within Ged are executed.

5-1

Procedures

5-2

A procedure may return values to the point of its call. These results constitute a result
record. There can be any number of results, and their types may differ. Within a
procedure, a RETURN statement assembles the results into a record and then returns control
to the caller. The procedure Gcd returns a result record with one component, of type
CARDINAL. Thus, the form Ged[x+1, y | is an expression with a record type. Because of the
automatic conversion from a single-component record to the component (§ 3.5.1), it can
also be used in any context accepting a value of type CARDINAL.

The following assignment has an effect similar to that of the entire example in section 2.1:
ged « Gedlm, n]

Note that arguments are always passed by value in Mesa. The arguments m and n (for
which declarations must exist at the point of call in this case) are completely distinct from
the parameters m and n, and execution of Gecd does not change the values of the former.

A procedure declaration, as illustrated above, defines an actual procedure. It introduces an
identifier, supplies some procedure type for that identifier, and defines the computation to
be performed by specifying a block called the procedure body. Such a declaration uses fixed
form initialization and closely parallels the declaration of an ordinary variable with =
initialization, such as, A

octalRadix: CARDINAL = §;

Other declaration forms may also be used, including procedure variables with values that
can be updated to designate different actual procedures. In Mesa, procedures are full-
fledged data objects.

A procedure type is defined by specifying its parameter and result records. For example,
the type of Ged is

PROCEDURE [m, n: INTEGER] RETURNS [CARDINAL]

Procedure types constructed with different parameter and result records are different.
Thus, the type system helps to ensure that, even when procedure variables are used, a
proper argument record is constructed for each procedure call (i.e., that the number and
types of the arguments are correct), and that the result record is used correctly in the text
surrounding the procedure call.

Since a procedure body is a block, it may contain declarations. These declare local
variables for that procedure. Local variables are created when the procedure is called, may
be directly accessed only from within it, and are destroyed when the procedure returns.
Within a procedure body, the named fields of the parameter and result records are also
considered local variables; they have the same lifetime and can be referenced without
qualification. The local variables of Ged are m, n and r-

Because this local storage is allocated and released dynamically, any Mesa procedure can
be invoked recursively and used in a reentrant fashion. Thus, the following alternative
declaration of Ged, which directly mirrors a recursive definition of the greatest common
divisor, is valid:

Mesa Language Manual 5

Gced: PROCEDURE [m, n: INTEGER| RETURNS [CARDINAL] =

BEGIN
RETURN [IF n = O THEN ABS [m] ELSE Ged[n, m MOD n]]
END;

Fine points:

Although both versions of Ged compute the same function, the recursive one is potentially extravagant in
its use of time and space, especially since an iterative version is so easy to derive. This demonstrates an
advantage of procedural abstraction: the second definition of Ged could be replaced by the first without
effect on any caller of Ged.

The compiler detects cases of simple tail recursion such as that above and converts the procedure to an
iterative one. Examplesin section 5.4 demonstrate more appropriate uses of recursion.

A procedure body may also access variables declared outside the actual procedure. Such
variables are nonlocal to the procedure; they exist longer than any single invocation of the
procedure and must be defined in the enclosing program text.

Mesa also has extensive facilities supporting the separate compilation of packages of
procedures and variables; these packages are called modules (chapter 7). These facilities
allow one module to name and use the procedures in another, but the type-correct usage of
argument and result records is still checked at compile-time.

If a procedure is called from many places, the “"packaging” of code provided by the
procedure body makes a program more compact. Procedure calls and returns, however,
introduce some runtime overhead. If a procedure is called from exactly one place, that

- overhead is unnecessary. If it is called from time-critical code or if the body of the
procedure is very simple, the overhead can be unacceptable. Mesa provides inline
procedures for such applications. The call of an inline procedure is replaced by a modified
copy of its body. This mechanism eliminates most of the overhead, but retains many of the
advantages of procedures, such as introducing structure, improving readability, and
isolating detail.

The foregoing discussion is only an introduction to procedures. The rest of this chapter
provides further detail.

5.1 Procedure types

Procedure types are constructed by the syntactic form ProcedureTC, which is defined as
follows:

ProcedureTC ;1= PROCEDURE ParameterList ReturnsClause

ParameterList ::= empty| FieldList

ReturnsClause ::= empty | RETURNS ResultList
ResultList ;1= FieldList
FieldList = -(§3.3.1)

5-3

Procedures

5-4

The ParameterList and ResultList are FieldLists and define record types. If either is
missing, the corresponding record type is “empty.” A procedure type is fully determined by
its parameter and result record types.

Default specifications are permitted for fields of a ParameterList or a ResultList, even if the
FieldList is an unnamed one.

Fine points:

The form [] is permitted in the declaration of a ParameterList or ReturnsClause (it is equivalent to
omitting the list or clause).

Note that constructors of procedure types require specification of the field lists; it is not possible to use a
separately defined record type to specify an entire parameter or result record.

These records, unlike regular records, are not packed; every component is aligned (begins on a word
boundary) to allow efficient passing of arguments and results.

PROC is acceptable as a short form of PROCEDURE.

A few typical procedure types are shown below:

PROCEDURE -- takes no arguments; returns no results
PROCEDURE [x: INTEGER, flag: BOOLEAN] -- takes two arguments
PROCEDURE RETURNS [i: INTEGER] -- returns a single value

PROCEDURE RETURNS [i: INTEGER, b: BOOLEAN] -- returns two results
PROCEDURE [x: INTEGER] RETURNS [y: INTEGER] -- takes and returns one value

These are all distinct types; none conforms to any of the others.

Values with procedure types are allowed in Mesa; one may have proceduré variables,
arrays of procedures, records with components that have procedure types, and procedures
with procedure parameters or results. The fundamental operations =, # and « may be
applied to procedure values with conforming types.

Constructors of procedure types appear most commonly in the declarations of actual
procedures, but they may occur wherever a TypeSpecification is valid. Thus, a
ProcedureTC can appear in such constructs as:
A variable declaration:
ErrorHandler: PROCEDURE [which: ErrorCodel « DefaultHandler;

A type declaration:

ListProc: TYPE = PROCEDURE [in: List] RETURNS [out: List ;
First, Rest, Last: ListProc;

A field list (notice the parameters lessThan and swap):
Sort: PROCEDURE [

first, last: CARDINAL,
lessThan: PROCEDURE [CARDINAL, CARDINAL] RETURNS [BOOLEAN],

Mesa Language Manual 5

swap: PROCEDURE [CARDINAL, CARDINAL]
I;

An array declaration:

tOps: ARRAY OpNames OF PROCEDURE [T, T | RETURNS [T |;

" 5.1.1 Procedure values and compatibility *

Equivalence and conformance of procedure types are defined in terms of relations between
fields of their ParameterLists and ResultLists. [f the number of parameters or results
differs, one procedure type neither conforms to, nor is equivalent to, another. Otherwise,
corresponding fields, matched according to position, are considered. Two procedure types
are equivalent if, for each pair of fields, the names are identical (or both are unnamed), the
types are equivalent, and both DefaultOptions are empty. One field is compatible with
another if the names are identical or if either is unnamed, and if the types are equivalent.
A procedure type conforms to another if all corresponding fields are compatible. Default
specifications do not affect conformance.

All the assignments in the following example are valid because the types of the procedures
conform:

Handle: TYPE = POINTER TO Person;
SignedNumber: TYPE = INTEGER,;.

Int: TYPE = INTEGER;

ProcA: PROCEDURE [h: Handle, v: SignedNumber |,
ProcB: PROCEDURE [h: Handle, v: [nt |;
ProcC: PROCEDURE [POINTER TO Person, INTEGER];

ProcA « ProcB; ProcA < ProcC;
ProcC «IF flag THEN ProcA ELSE ProcB;

Fine points:

In the current version of Mesa, the name of the component of a single-element parameter or result record
is ignored when comparing two procedure types for conformance.

If one procedure type éonforms to another, it also conforms freely (§ 3.5.3). Free conformance of procedure
types is defined by the following less restrictive rule: One field is compatible with another if the names
are identical or either is unnamed, and if the type of the first freely conforms to the type of the second.
One procedure type freely conforms to another if, for the ParameterList, each field of the second is
compatible with the corresponding field of the first and, for the ResultList, each field of the first is
compatible with the corresponding field of the second.

In the following example, recall that Handle conforms freely to ReadOnlyHandle but not vice versa:
ReadOnlyHandle: TYPE = POINTER TO READONLY Person;

ProcX: PROCEDURE [in: ReadOnlyHandle | RETURNS { out: Handle |;
ProcY: PROCEDURE { in: ReadOnlyHandle | RETURNS [out: ReadOnlyHandle |;
ProcZ: PROCEDURE { in: Handle | RETURNS {out: ReadOnlyHandle |;

5-5

Procedures

-- valid assignments
ProcY < ProcX; ProcZ « ProcY; procZ «;Proc‘i(;

-- invalid assignments
ProcX « ProcY; ProcX « ProcZ; ProcY « ProcZ,

In determining the conformance of two procedure types, default specifications are ignored.
Thus, it is possible to assign a procedure value to a procedure variable with differently
specified defaults. In a procedure call, the type of the variable appearing in the call, not
the declaration of the actual procedure, determines the treatment of defaults. Thus, the
initializing declarations in the following example are valid. Note that the declaration of
Proc2 declares a procedure constant that is indistinguishable from Procl except for the
default value of its argument.

Which: Tvpe = {procl, proc2, proc3},

Procl: PROCEDURE [p: Which « procl | =
BEGIN
END;
Proc2: PROCEDURE [p: Which « proc2 | = Procl,

Proc3: PROCEDURE [p: Which | « Procl,

-- some calls ,

Procl[]; -- equivalent to Proc! [proc! |
Proc2[|; -- equivalent to Procl [proc2]
Proc3([proc3 |, -- note that Proc3 [| is not legal

5.2 Procedure calls

5-6

The syntax for calling a procedure is

Callstmt ::= Variable|Call
Call ::= Variable[ComponentList]]...

where the Variable has some procedure type. Other forms of Call, discussed in chapter 8, specify “catch
phrases” for dealing with signals (or errors) that are generated because of the call.

In a procedure call, the arguments are packaged into a record. Therefore, a procedure call
may use all the syntax for record constructors in passing arguments. Components
(arguments) may be specified using either keyword or positional notation. Arguments not
explicitly specified may be supplied by default. The following calls of Ged are equivalent:

Gedlx+1,y] Gedlm:x+1,n:y] Gedln:y, m: x+1]
Fine point:
The orders of evaluating the items in constructors (including argument lists) and the operands of infix

operators (except AND and OR) are subject to change. In particular, programs that assume a left-to-right
order of procedure calls in these contexts (e.g., Divide[Pop(], Pop(]]) are unlikely to work correctly.

Mesa Language Manual 5

If the ReturnsClause in a ProcedureTC is not empty, then its Resultlist specifies the
number and types of the results returned by a procedure of that type. It may be a named or
an unnamed FieldList (§ 5.3.1 discusses the RETURN statement).

Procedures that return results must be called from within Expressions that use the results
in some way. Such function references are valid Expressions. Procedures that do not return
results are used in call statements. A procedure that does not return results is called by
simply writing a CallStmt as a statement by itself. For example,

group: ARRAY [1..N] OF POINTER TO Person,
Younger: PROCEDURE [first, second: CARDINAL| RETURNS [BOOLEAN]| =
BEGIN RETURN [grouplfirst |.age < grouplsecond |.age|] END;
Exchange: PROCEDURE [first, second: CARDINAL] =
BEGIN
t: POINTERTO Person;
t « grouplfirst |, groupl(first | < group(second |; grouplsecond] «t
END;

Sort{first: 1, last: N, lessThan: Younger, swap: Exchangel,

A call statement is ordinarily used to obtain side effects. Most often, these take the form of
changes to variables that are not local to the invoked procedure, but they may also involve
input or output. A function may also have side effects as well as return results. On -
occasion, only the side effects are important, and the user wishes to ignore the returned
results. An easy way to do this is to assign the result record to an empty extractor:

[]« Flx]; --call F and discard its result record.
A call that supplies no arguments is written with an empty constructor, “[7.
Fine point:

When a procedure call with no arguments is itself a statement, the empty brackets may be omitted. When
such a call is used as an expression, the empty brackets are mandatory; otherwise, the value of the
expression is the value of the procedure variable, not the value of its results. For example, consider the
two procedure variables in the following:

Procl: PROCEDURE RETURNS [INTEGER|;

Proc2: PROCEDURE RETURNS (INTEGER];

.. -- here the program assigns values to the procedure variables
IF Procl =Proc2 THEN . .. -- compare the procedure variables

IF Proc{]1=Proc2(] THEN ... -- compare their results (integers)

At the time a call occurs, a specific activation is executing, the caller’s activation. The
effect of a call is to suspend execution of the caller, to create a new activation of the called
procedure (including new storage for all parameters and local variables), and to begin
execution of that activation. An important consequence of this structuring of procedure
control is that all Mesa procedures are inherently capable of being recursive and reentrant.

Procedures

5.2.1 Arguments and parameters

Arguments are values supplied at call-time; parameters are variables that are local to a
given activation. The association of arguments with their parameters amounts to
assignment, much as if the following were written:

InRec: RecOrD [argl: Typel, arg2: Type2, ... |,

InRec «[argl:vall,arg2: val2, ... |, --in the caller

paraml: Typel,
param?2: TypeZ;
[paraml, param?2, ... | « [nRec; -- in the called procedure

This is not just an idle analogy. The semantics of assignment accurately describe how
arguments are associated with parameters. The following are direct consequences of this:

An argument of a procedure need only conform to its parameter, just as for
assignment.

All arguments are passed by value in Mesa: i.e., the value of an argument, not its
address, is assigned to the parameter. Of course, this value itself can be an address
(for example, if Typel were POINTER TO T'ypeX). '

5.2.2 Termination and results

A procedure terminates by executing a RETURN statement, which constructs a (perhaps
empty) result record. The return operation then terminates execution of the current
procedure activation and restarts the caller from the point at which it was suspended by
the call. As part of the return, storage for the parameters and local variables of the
returning procedure is released.

Since the value of a procedure is its result record, the components of that record can be
assigned to variables using an extractor. Alternatively, any single component (if named)
can be referenced by a field selector. The procedure ReturnExample returns three integer
results and may be used as indicated:

ReturnExample: PROCEDURE [option: [1..4]] RETURNS [a, b, c: INTEGER] =

BEGIN . . . -- body definedin§5.3.1--. . . END;
x,y, 2: INTEGER;
case:(1..4];
x « ReturnExample[casel.q; -- get a component only
[b: y, c: z] « ReturnExamplelcasel, -- extractor a subset of the results

x «(ReturnExample{case].c+ 1) MmOD 10, -- use c component

If a procedure returns an empty result record, the call does not have a value and can only
be used as a statement.

If a procedure returns a single-component result record, extraction and selection are valid.
In addition, the component may be (and usually is) accessed directly because of the
automatic coercion from a single-component record to its single component. In the

Mesa Language Manual 5

following example, the first two calls of Ged are valid and equivalent; the third illustrates
typical use within an expression:

ged « Gedlm, nl; A -- (coercion)
[ged] « Gedlm, n|; -- (explicit extraction)
relPrime « Gced[m, n|=1: -- (coercion)

Fine points:

In the declaration of ReturnExample, (a, b, c: INTEGER| defines a unique type for the result record.
Because of the conformance rule for record types (§ 3.3.2), it is impossible to declare a variable with that
type. If a procedure is to return a record value with a particular type T, it must return a single-component
record where that component is a record of type T.

For similar reasons, the result record of G below is not directly acceptable as the argument record of F'.

F: PROCEDURE [x, y: INTEGER|;
G:PROCEDURE [i: INTEGER| RETURNS (x, y: INTEGER];

With these declarations, the call FIG[j1] is not legal, but see subsection 5.3.2 for syntax (APPLY(F, G(jI}
that allows this operation. [t would also be legal with the following declarations:

T:TYPE = RECORD (x, y: INTEGER|;
F:PROCEDURE [in: T |;
G:PROCEDURE [i: INTEGER| RETURNS [out: T |;

Note, however, that F takes and G returns only a single value now, one of type T.

5.3 Procedure bodies

An actual procedure declaration looks like the declaration of a procedure variable followed
by a special kind of = initialization, a ProcedureBody. The TypeSpecification appearing
in the declaration determines the type of the body as well as that of the procedure
identifier. [t may be any TypeSpecification equivalent to a ProcedureTC. ProcedureBody
is a special form of initialization defined as follows:

Initialization . . .| = ProcedureBody | « ProcedureBody

ProcedureBody InlineOption Block -- see section 4.4 for Block

InlineOption empty | INLINE
If the attribute INLINE appears, the procedure body is an inline one; any call of the procedure
is replaced by a modified copy of the body (§ 5.6).

Only a procedure initialized with = to a ProcedureBody is called an actual procedure; its
meaning cannot change because it cannot be assigned to. If, however, it is initialized to a
ProcedureBody using < initialization, its value can be changed by assignment, and it is
considered a procedure variable. Initialization using <« is not permitted for an inline
procedure.

5-9

Procedures

5-10

In addition to other statement forms, a procedure body can contain RETURN statements
(described in the next section). There is an implicit RETURN at the end of each procedure
body if one does not appear explicitly.

A ProcedureBody defines a scope for declarations. Identifiers declared within it are local
to the procedure and are unknown outside it. There must be no duplicates among the
names in a procedure’s ParameterList, ResultList, and local variables. Names in the
ParameterList can be used to write a keyword constructor (§ 3.3.4) in a call of a procedure.
Similarly, names in the Resultlist can be used in keyword extractors (§3.3.6) and as
qualifiers (§ 3.3.3) to access the results returned by a procedure. Within a procedure, any
named fields of parameter and result records act just as local variables; the former are
initialized with the values of the actual parameters. A Parameterlist for an actual
procedure should be a named field list so that the procedure body can reference the
parameters.

Fine point:
Although the parameters and results act as local variables within the block that is the procedure body,

the scopes are slightly different. The scope of the named parameters and results includes any
OpencClause, EnableClause or ExitsClause of that block; the scope of the local variables does not (§ 4.4.2).

5.3.1 RETURN statements

There are several basic forms of RETURN statements, two of which are discussed in this
section: RETURN and RETURN followed by a constructor. When either form is executed, control
returns to the point from which the procedure was called. In addition, the RETURN can
supply results in the form of a constructor conforming to the type of the procedure’s
ResultList:

ReturnStmt 2= RETURN | RETURN [ComponentList]]|. . .

There may be any number of RETURN statements in a procedure body. The form of a RETURN
statement depends upon the ReturnsClause in the definition of the procedure type. There
are three cases to be considered:

no ReturnsClause (empty result record)
an unnamed field list as the ResultList
a named field list as the ResultList

If there is no ReturnsClause, the ReturnStmt must be just “RETURN.” An explicit RETURN
statement can be omitted at the end of the procedure in this case.

If an unnamed field list is used for the ResultList, each ReturnStmt must include a
positional constructor. That constructor must match the field list exactly, with one
component for every field: omission, elision and voiding are not allowed (unless the
ResultList has defaults). In this case, there is no implied return at the end of the procedure.

If the ResultList is a named field list, either form of ReturnStmt is acceptable. If no explicit
constructor appears, the current values of the named result variables define the value of
the result record. An explicit constructor may use either positional or keyword notation;
again, omission, elision and voiding are disallowed (unless the ResultList has defaults). A
RETURN statement is optional at the end of the procedure; if omitted, an implicit RETURN of
the result variables is provided. Examples follow:

Mesa Language Manual 5

ReturnExamplel: PROCEDURE [option: [1..4 || RETURNS [a, b, c: INTEGER]| =
BEGIN
aebece0;
SELECT option FROM

1 =>RETURN[a: 1, b6:2,c:3]; -- keyword parameter list
2 = > RETURN[1, 2, 3]; -- positional version of option 1
3 = > RETURN; —-a=b=c=0
ENDCASE = > b « 4,
c«9;
END; --implicitreturn:a=0,b=4,c=9

ReturnExample2: PROCEDURE [g: INTEGER| RETURNS [INTEGER «— 3, INTEGER «— 4] =

BEGIN

SELECT g FROM
0 = > RETURN [,2]; -- eflide first result, returns (3, 2]
1 = > RETURN[S,]; -- elide second result; returns (8, 4]
2 = > RETURN [, |; -- elide both results; returns (3, 4]
3 = > RETURN[5]; -- omit second result; returns (5, 4]
5 = > RETURN [|; -- omit both results; returns (3, 4]
ENDCASE ;

END; -- implicit return: (3, 4]

5.3.2 Operations which deal with intact parameter records

Procedures in Mesa logically take and return “records.” These so called parameter and
result records differ from other records in the language in several ways: they are
unpacked, and, as indicated earlier, type equivalence is somewhat more relaxed, they
must be assignable field by field in order to be assignable —fields must have assignable
types and identical names (if there is more than one field and both records have named
fields). The reason for requiring names to match is to disallow exporting Proc: PROCEDURE
[from, to: POINTER] to an interface where the declaration is Proc: PROCEDURE [to, from:
POINTER] (§ 7.4).

Consider the following declarations:

Procl: PROCEDURE [x: CARDINAL| RETURNS [a: T'I, b: T2 =. ..
Proc2: PROCEDURE RETURNS [a: T'1, b: T2] =. ..
Proc3: PROCEDURE [a: T'1, b: T2] =. ..

Note that Procl and Proc2 have compatible return records.
The following statement is legal inside Proc!:

RETURN Proc2[], -call Proc2 and then pass its return record along to my caller.
You can even say something like:

RETURN (IF boolexp THEN Proc2(] ELSE Proc1[x+2]); -- note the tail recursion in
-- the ELSE case.

The return record of a procedure may also be passed along to another procedure as its
argument record. The syntax is as follows:

Procedures

5-12

APPLY [Proc3, Proc2(]]; -- the return record of Proc2 is compatible with
-- Proc3’s parameter record.

Just as the expression after RETURN must have a type compatible with the return record of
the procedure, the second parameter of the ApPLY must have a type compatible with the
argument record of the procedure that is the first parameter to the appLY. In the case of the
RETURN, parentheses may be required for certain complicated expressions.

The APPLY and RETURN constructs also work for the argument and RESUME records of SIGNALs
and ERRORs (§ 8.2.5).

5.3.3 Defaults in argument and result records

You may specify default values for the fields of argument and result records. Such default
values must be constructed from constants or variables that are declared outside of the
procedure type definition. In particular, you cannot use either a value of another field of
the same record or, in the case of a result record, a value from the associated argument
record to define such a default.

You may omit a field in the constructor of an argument or result record only if the
definition of that record specifies an explicit default value for the field. Default initial
values associated with the types of such fields are not inherited. (This protects you from
assigning a value to a return variable and then forgetting to mention it in a RETURN
statement, causing the default for its type to be returned.) On the other hand, protection
against ill-formed storage is inherited; you may not void or elide a field unless the type of
that field allows a NULL initialization.

Defaults that you specify in the declaration of a result record serve two purposes. Since the
fields of such a record can be used as local variables within the procedure body, a default
specification affects the initialization of those variables; in addition, it allows abbreviation
in the constructors of the corresponding return records. The precise rules are:

Upon entry to a procedure, each field of the result record is initialized with the
default value specified for that field, if any; otherwise, it is initialized with the
default initial value for the type of that field, if there is one; otherwise, its initial
value is undefined.

If a ReTURN is followed by an explicit constructor, the default specifications
appearing in the declaration of the result record control the values of any omitted or
elided fields, even if other assignments have been made to the result variables within
the procedure body. If the RETURN either stands by itself, without such a constructor,
or is implicit, the return record is constructed using the current values of the result
variables.

Examples

T: TYPE = INTEGER « 1;
Procl: PROC[i: INTEGER « 0, j: T,

Proc2: PROCRETURNS [m: T, n: INTEGER « 2] = {
--m initialized to 1 (from T), n to 2
Procllj: 3], -- Procl{i:0,j:3];

Mesa Language Manual 5

Proclli: 3, -- illegal (j does not default to 1)

me4; ne5;

. RETURN; --returns (4, 5]
.. RETURN [m, n]; --also returns (4, 5]
. RETURN [m]; -- returns (4, 2|
. RETURN [NULL, n]; -- illegal (declaration of T disallows voiding of m)
.. RETURN [, nJ; -- illegal (m does not default to 1 or 4)
... RETURN[6, 7]; -- returns (6, 7]
.k -- implicitly returns (4, 5]

5.4 A package of procedures

This section contains an example of a simple module, BinaryTree, which is designed to
create and manage a data base structured as a binary tree. It is typical of the ways in
which related procedures are packaged together. The example illustrates many of the
issues discussed in the previous sections and introduces the use of modules and interfaces
in Mesa.

The binary tree implemented by the example is a data structure containing nodes linked
by pointers. Any node points to at most two others (its sons), and a node is pointed to by
exactly one other node (its parent). A special root node exists and is referenced by a pointer
not in the tree. Every node also contains a value, which for simplicity in the example is
just an INTEGER. When the program starts, the tree is empty, and any call to SeekValue will
return a count of zero.

The nodes in this particular binary tree are records with four components:

value -- an integer value (with unspecified interpretation),

count -- the number of duplications of the value in the data base,
left -- pointer to a "left" son node (or NIL), and

right -- pointer to a "right" son node (or NiL).

There are rules of association between the values and the nodes:
The first supplied value is entered into the root node.
A given value exists in only one node; duplications are counted.

If node E points to “left” son L, then all values in the subtree rooted at L are leés
than the value in E. If node E points to “right” son G, then all values in the subtree
rooted at G are greater than the value in E.

When the module is started, the tree is initialized to be empty. Thereafter, the module
itself executes no code, but its procedures can be called to alter the tree that it manages.
For instance, other modules call PutNewValue to insert new values into the tree.

PutNewValue calls another of BinaryTree’s procedures, FindValue, which traverses the
tree seeking a node that already has a given value. FindValue may find such a node, or it
may fail by reaching a higher-valued node with a NiL left son or a lower-valued node with a
NiL right son. If FindValue finds a node with the given value, PutNewValue increments
that node’s count. Otherwise, PutNewValue sets up a new node and attaches it to the node
returned by FindValue.

Procedures

5-14

This strategy is chosen for simplicity, but it can be a poor way to construct a binary tree.
For instance, if the values are entered in strictly decreasing order, the tree becomes a
linear list of left nodes. To find the lowest-valued node, every node must be examined.

The reader should read the explanation following the example in conjunction with the

example itself.

1:
2:
3:
4:
5
6
7

8:
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33: .
34:

35:

36:

37:

38:

Example 2. A Package of Procedures

DIRECTORY

Storage: USING [publicZonel,
OrderedTable: usING [UserProc |;

BinaryTree: PROGRAM IMPORTS Storage EXPORTS OrderedTable =
BEGIN

-- type definitions and compile-time constants
Node: TYPE = LONG POINTER TO BinaryNode;
BinaryNode: TYPE = RECORD [

value: INTEGER, count: CARDINAL, left, right: Node |;

-- a global variable
root: Node;

-- public (exported) procedures:
SeekValue: PUBLIC PROCEDURE [val: INTEGER] RETURNS [count: CARDINAL] =

BEGIN

node: Node;

found: BOOLEAN;

{found, node] «FindValuelvall, --see ifitisin the tree
RETURN [IF found THEN node.count eLSE 0]

END;

PutNewValue: PUBLIC PROCEDURE [val: INTEGER] =

BEGIN

node, nextNode: Node;

alreadyInTree: BOOLEAN;

-- Use FindValue to find where to put val:
[alreadyInTree, node| « FindValue [val],

If alreadyInTree THEN node.count « node.count+ 1

ELSE BEGIN -- name "external” UNCOUNTED zZONE publicZone by qualification

-- allocate and initialize new node
nextNode « Storage.publicZone.New [BinaryNode <« [val, 1,NIL, NIL]],
IF root = NIL THEN root < nextNode

ELSE IF val < node.value THEN node.left « nextNode ELSE node.right « nextNode:

END;
END;

Mesa Language Manual 5

39:

40: EnumerateValues: PUBLICPROCEDURE [userProc: OrderedTable. UserProc] =

41: BEGIN

42: -- 3 local procedure (§ 5.6)

43: Walk: PROCEDURE [node: Node | RETURNS [keepGoing: BOOLEAN | =

44: BEGIN -- walk through the tree in order by increasing value using recursion
45: RETURN [node = NIL -- don't examine empty (sub) trees

46: OR (

47: Wallnode.left | -- enumerate the lesser-valued nodes first
48: AND userProc [node.value, node.count | -- enumerate this node

49: AND Walk (node.right | -- then enumerate the greater-valued nodes
50:)1

51: END; -- of Walk

52: [] « Walk [root]; -- just start enumerating at the root
53: END;

54: -- a procedure that is private to this module
55: FindValue: PROCEDURE [val: INTEGER] RETURNS [inTree: BOOLEAN <« FALSE, node: Node| =

56: BEGIN

57: nextNode: Node « root,; -- always start at the root
58: IF root = NIL THEN RETURN [FALSE, NiL];

59: UNTIL nextNode = NiL

60: DO

61: node < nextNode;

62: nextNode « SELECT val FROM

63: < node.value = > node.left,

64: > node.value = > node.right,

65: ENDCASE = > NIL,;

66: ENDLOOP;

67: RETURN [val = node.value, node |

68: END;

69:

70: -- mainline statements

T1: root « NL, -- make tree initially empty
72: END.

5.4.1 The example

Each line of the source code in Example 2 is numbered for convenient reference; other
than that, the code could be compiled as it stands.

The body of a PROGRAM module resembles a procedure body: BeGIN, followed by declarations,
then some statements, and finally eND. The declarations and statements are both optional,
but it would be unusual to omit the declarations.

In this example, the module BinaryTree declares five actual procedures: SeekValue (lines
17-23), PutNewValue (lines 25-38), EnumerateValues (lines 40-53), Walk (lines 43-51) and
FindValue (lines 55-68). It also declares two types (Node and BinaryNode), and a single
global variable (root). The scope of these declarations is the entire body of the module
(lines 6-72). For example, PutNewValue, EnumerateValues and FindValue all reference
the global variable root.

When a module is created and started (chapter 7), the global variables are created and any
statements in its body are executed. BinaryTree has just one such statement (line 71),
which creates the initial empty tree by assigning NiL to root. Storage for activations of
modules is not released when control reaches the end of the main body. Global variables

5-15

Procedures

5-16

such as root continue to exist and may be used to retain data shared by the actual
procedures in the module.

The procedure EnumerateValues has two major distinguishing features: it takes a
procedure value as a parameter, and it contains the declaration of a nested procedure
(Walk). For each node in the tree, EnumerateValues calls the procedure value userProc
that it received as an argument, passing it the value in that node and its replication count.
If userProc returns TRUE, the enumeration of the values continues; if it returns FALSE,
EnumerateValues terminates and returns to its caller. The values are generated in order
from least to greatest.

The nested procedure Walk is recursive and traverses the tree by first traversing the left
subtree, then visiting the root, and finally traversing the right subtree. This postorder
traversal delivers the values in increasing order (the reader should convince himself that
it does). The expression in lines 47-50 depends upon the definitions of AND and OR (§ 2.5.3)
to terminate the traversal as soon as userProc returns FALSE. The first procedure call occurs
only if node is not NULL; the second only if the first is called and returns TRUE; the third only
if the first and second are called and both return TRUE. Section 5.6 treats local procedures
in more detail.

5.4.2 Invoking procedures in other modules

The DIRECTORY section at the beginning of a module lists the interfaces used in that module.
The identifier Storage, for example, must be the name of a (DEFINITIONS) module. Such -
modules allow the independent development of interface definitions and the sharing of
such definitions. Storage and OrderedTable are said to be included by BinaryTree. The
optional USING clause provides compiler-checked documentation of exactly which
identifiers are used in a module but defined in the associated interface.

The MPORTS list (§ 7.4.1) on line 5 allows BinaryTree to access a variable (publicZone)
defined in the interface Storage, which has the following (skeletal) form:

Storage: DEFINITIONS =
BEGIN

publicZone: UNCOUNTED ZONE;
END.
The example uses explicit qualification (dot notation) to name publicZone (line 34).

The exPORTS list (§ 7.4.3) names the single interface OrderedTable, which is defined as
follows:

OrderedTable: DEFINITIONS =
BEGIN
-- types
UserProc: TYPE = PROCEDURE [val: INTEGER, count: CARDINAL] RETURNS [continue:
BOOLEAN];
-- the interface
SeekValue: PROCEDURE [val: INTEGER] RETURNS [count: CARDINAL];
PutNewValue: PROCEDURE [val: INTEGER];

Mesa Language Manual 5

EnumerateValues: PROCEDURE [userProc: UserProcl;
END.

Other modules access the pusLIC procedures in BinaryTree (SeekValue, PutNewValue and
EnumerateValues) by importing this interface (just as BinaryTree imports Storage); they
have no other access to BinaryTree. For example, FindValue is private to BinaryTree, so it
is only called from within the module (lines 21 and 30). The definition of the type UserProc
is included in the interface so that it is publicly available for defining procedures to be
passed to EnumerateValues. Note that BinaryTree also obtains the definition of this type
from the interface (iine 40).

5.5 Nested procedures

Actual procedures may be declared within procedure bodies. A nested procedure is one
declared within (and local to) some enclosing procedure. Nesting of procedure declarations
restricts the scope of the names of the inner procedures. In addition, the enclosing
procedure establishes an environment for the inner:; this is especially useful when the
inner procedure is passed as a parameter.

The value of a nested procedure (and any activation of that value) is "tied” to the local
variables of the enclosing procedure and, indirectly, to the local variables of the procedure
or module in which the enclosing one is declared. An activation of the nested procedure
references those variables available at its point of declaration. A different activation of the
enclosing procedure declares a nested procedure with a different value, one with its
nonlocal variables tied to that other instance of the enclosing procedure.

The following example uses the interface OrderedTable defined in subsection 5.4.2 and
illustrates a typical application of a nested procedure.

AverageValue: PROCEDURE RETURNS [INTEGER]| =
BEGIN
sum, n: INTEGER;
AddValue: OrderedTable.UserProc = -- a nested procedure
BEGIN
n < n + count; sum «—sum + count*val;
RETURN [continue: TRUE]
END;
sum «n «0;
OrderedTable. EnumerateValues (AddValue]
RETURN [IF .= 0 THEN 0 ELSE (IF sSum <0 THEN sum — (n/2)ELSEsum + (n/2))/n |
END;

The procedure AverageValue computes the average value of the value fields in the binary
tree. [t declares and initializes a pair of local variables (n and sum) that are updated by the
nested procedure AddValue, but must have a greater lifetime than any individual
activation of AddValue. Note that a similar effect could be achieved here by making n and
sum global variables; the suggested solution restricts their scope (and thus, the
opportunity for accidental misuse).

Execution of AverageValue involves a second nested procedure, the procedure Walk within
EnumerateValues. The latter’s parameter userProc serves a purpose similar to that of sum
or n in AverageValue. Since there is nothing to prevent a recursive call of

5-17

5 Procedures

EnumerateValues from some actual procedure corresponding to userProc, making
userProc a global variable in the module BinaryTree could be disastrous.

Fine point:

Because a nested procedure is tied to an activation of the enclosing procedure (even when it references no
nonlocal variables), the value of a nested procedure should not be assigned to a variable with a lifetime
greater than that of the enclosing procedure instance.

In a sense, all procedures are “locai’ procedures. They are either local to some enclosing
procedure or local to some module (recall that static variables are local to the module
declaring them). This nesting can continue to an arbitrary number of levels. (The level is
important only to the extent that it influences name scopes, a topic covered in the next
section.)

5.5.1 Scopes defined by procedures

Each procedure body defines a new scope for names declared in that procedure. Such
names represent variables that are local to the body. The scope for a local variable is such
that:

(1) the local variable is unknown outside of that procedure body, and

(2) a non-local variable is unknown inside the procedure if its name matches some
local variable's name.

Within a procedure body, a block (§ 4.4) can be used to further restrict the scope of a local
variable. In the following example, scopes for the procedures are indicated by comments:

SomeModule: PROGRAM =
BEGIN
var: INTEGER, -- the var of INTEGER type is used here

OuterProc: PROCEDURE
BEGIN
var: BOOLEAN -- the var of BOOLEAN type is used here

LocalProc: PROCEDURE
BEGIN
var: CHARACTER,
e -- the var of CHARACTER type is used here
END;
. -- the var of BOOLEAN type is used here
END;
ce. -- the var of INTEGER type is used here
END.
5.6 Inline procedures *
An actual procedure is said to be inline if the attribute INLINE appears before the body in the
declaration of that procedure. Any call of the procedure is replaced by an inline expansion,

which is a modified copy of the procedure’s body. The code of the procedure and any storage
required for local variables are merged with the code and storage of the calling procedure

5-18

Mesa Language Manual 5

or module. Thus, INLINE procedures can be used to eliminate the overhead of a procedure
call and return (usually at the cost of a longer object program).

The rules for expanding an INLINE ensure that the presence or absence of the INLINE attribute
has no effect upon the meaning of a program. Execution of the expansion must always
produce a result with the same logical behavior as the result of applying the following
operations:

(1) For each argument, create a uniquely named variable local to the caller, and
initialize that variable with the value of the argument.

(2) If there is a result record with named fields, enclose the body of the INLINE
procedure in a block containing a declaration of each such field.

(3) In the resulting block, replace each reference to a field of the parameter list by
the identifier introduced in the first step for the corresponding argument.

Any global variables of the procedure body refer to the corresponding variables accessible
at its point of declaration, not the point of call.

Fine points:

A catch phrase can be attached to the call of an inline procedure (§ 8.2.1). The arguments are evaluated
outside the scope of the catch phrase.

The Mesa compiler attempts to discover many of the common cases in which “call by name” is equivalent
to the “call by value” substitution described above. When it discovers such a case, the argument is
substituted directly for the corresponding parameter.

The attribute INLINE is never mandatory. Deleting INLINE is always valid, but adding it is

not. No inline procedure can be recursive, either directly or indirectly through a chain of
inline procedure calls. Consider a procedure Proc declared as follows:

Proc: PROCEDURE [v: INTEGER] RETURNS [INTEGER] = INLINE
BEGIN
RETURN [v*v + 3*v + 1]
END;

Because of its INLINE attribute, Proc cannot be used in any of the following situations:

When Proc itself is the operand of one of the fundamental operations of assignment
(procVar « Proc, GeneratorProc[Procl, ete.) or comparison (Proc = AnotherProc).

When Proc itself is used as an alternative in a conditional expression, e.g.,
(IF predicate THEN Proc ELSE AnotherProc){x].

When Proc is the operand of FORK (§ 9.1).

When Proc is to be exported to an interface (§ 7.4.3).

5-19

5 Procedures

Fine points:

Since arguments are evaluated before procedures are called, usage such as Proc{Proc(x]] does not make
Proc recursive.

Additional restrictions apply when an inline procedure is declared in a DEFINITIONS module (§ 7.3.3).

5-20

Other data types and storage
management

This chapter introduces a number of new data types: strings, array descriptors, sequences,
and zone types. Relative pointers are also discussed, and the definition of record types is
extended to include variant records.

In Mesa, the type STRING is really "POINTER TO StringBody"; a StringBody contains a packed
array of characters, a maxlength field giving the length of that array, and a length field
indicating how many of the characters are currently significant.

A sequence is an indexable collection of items, all of which have the same type. In this
respect, a sequence resembles an array; however, the maximum length of the sequence is
specified at run-time when the object containing that sequence is allocated, and this
maximum length cannot subsequently be changed. It is the programmer’s responsibility
to keep track of the number of items in the sequence which have been assigned
meaningful values.

An array descriptor describes the location and length of an array. For ordinary arrays,
these are fixed at compile-time. Values of array descriptor type, however, have location
and length items that can vary. These array descriptors may represent arrays that are
dynamic, but they may also represent ordinary arrays. For efficiency, users often pass
array descriptors to procedures instead of passing the entire arrays themselves.

Relative pointers require the addition of a base pointer to obtain an absolute pointer. This
allows data structures with internal references that are independent of memory location.

Variant records contain a set of common fields and a variant portion with a specified set of
different possible interpretations.

Dynamic variables in Mesa are allocated in zones. Zones are not necessarily associated
with fixed areas of storage; rather they are objects characterized by procedures for
allocation and deallocation. There is a standard system zone, but programs that allocate
substantial numbers of similar dynamic variables can often improve performance by
segregating each kind into its own zone. NEW is used to allocate a dynamic variable from a
zone, and FREE to release it.

6-1

6

Other data types and storage management

6.1

6-2

Strings

In Mesa, a STRING represents a finite, possibly empty, sequence of characters. Associated
with a string are the following:

text a PACKED ARRAY of characters.
maxlength the maximum number of characters that tex¢ can hold.
length the number of significant characters in text; may vary from

zero up to maxlength.

STRING is a predefined type in Mesa. Each program contains the following relevant pre-
declarations:

STRING: TYPE = POINTER TO S¢ringBody;
StringBody: TYPE = MACHINE DEPENDENT RECORD [
length: CARDINAL,
maxlength: -- read only-- CARDINAL,
text: PACKED ARRAY [0..0) OF CHARACTER];

Suppose s is a STRING variable. Then s.length and s.maxlength refer to the first two
components of the StringBody currently pointed to by s. The type StringBody is "built
into" the Mesa language so that the ith character of the text array, s.text[i]l, may be
abbreviated s[i]. The index type of text in the declaration is used only to specify a starting
index of 0. It is better to think of a particular STRING as having an index type
[0..s.maxlength).

The value of s.maxlength is assigned when a S¢ringBody is created and is a constant: it
may not appear as a LeftSide in the user's program. However, s.length can be used as a
LeftSide. In fact, the user is responsible for setting and changing the length when
appropriate (i.e., s.length is meant to reflect the "meaningful” length of the character
sequence). Suppose, for instance, that s initially points to a StringBody, having no
significant characters, i.e., s.length=0. Then the user might append characters as follows:

s(s.length] « anotherChar; s.length « s.length+1,

(Actually, characters are seldom appended in this manner. The recommended practice is to
use string-handling procedures provided by the Mesa system. These are documented in the
Mesa Programmer’s Manual and the Pilot Programmer’s Manial.)

Since strings in Mesa are actually pointers to string bodies, several strings may refer to
the same body. Therefore, a change to that structure would manifest itself in all such
strings. Keep the following in mind:

When an item has type STRING, think "pointer to string-body".

Fine point:

While the programmer cannot assign to the maxlength field with an assignment statement, it can be set
(along with the length) in a constructor, e.g.,

Mesa Language Manual 6

AllocateString: PROCEDURE [maxLength: CARDINAL] RETURNS [s:STRING] =
BEGIN
s « AllocateWords [SIZE[StringBody| + (maxLength + 1)/2]
s 1 «StringBody (length: 0, maxlength: maxLength, text: };
END;

This is the way to initialize a StringBody when the space for it comes from some general storage allocator.
Note that the text field cannot be set with the constructor since the ARRAY is of length zero in the
declaration. See also subsection6.5.5.

6.1.1 String literals and string expressions

A string literal is a sequence of characters enclosed in quotation marks, "...". A quotation
mark within a string constant is represented by a pair of quotation marks (""). Here are
some examples of string literals:

"The first example contains
some embedded
carriage-returns."

"") .. ."

"A single quote mark (') isn't a double quotation mark(

”"'
" --an empty string

A string literal is an Expression of type STRING. [ts value is a constant pointer to a constant
StringBody in which:

number of characters given, and
length

length
maxlength

W

The fundamental operations are defined for string Expressions. The fundamental
operations deal with string expressions as pointer values; e.g., « assigns one string pointer
to another string pointer, = compares two strings for the same pointer value, and #
compares two strings for different pointer values.

Fine point:

The StringBody of a string literal is normally allocated in the global frame of the module in which the
literal appears (it is copied there from the code segment when the module is STARTed). Unfortunately,
such strings can consume substantial amounts of space in the (pérmanent and unmovable) global frame
area. The programmer can indicate that the StringBody should be allocated in the global frame by
following the literal by a G (e.g., "abc"G).

If a string literal is followed by L (e.g., "abc"L), the StringBody is allocated in the local frame of the
innermost procedure enclosing the literal; the StringBody is initialized by copying it from the code
segment whenever an instance of that procedure is invoked. As a corollary, the space is freed and the
StringBody disappears when the procedure returns. This allows smaller global frames, but it is
important to insure that pointers to local string literals are not assigned to STRING variables with
lifetimes longer than that of the procedure.

If there is a "global” copy of a string literal, saying "..."L is a no-op. Since it is already in the global frame,
it is not also copied into the local frame.

6-3

Other data types and storage management

6.1.2 Declaring strings

String variables are declared like ordinary variables, but there is one additional form of
initialization (for strings only): '

Initialization i3 ...« [Expression]| = [Expression]

The Expression must be a compile-time constant expression of type CARDINAL. At run-time,
Mesa creates a StringBody with maxlength equal to this Expression’s value, length equal
to zero, and ftext uninitialized. The declared string variable is then set to point to this
StringBody. If an IdList is declared with this form of initialization, all of the listed variables
initially point to the same StringBody .

Some examples:

currentLine, nowLine: STRING « [256];
stringBuffer: STRING « [stringMax + someExtral,

This would allocate two StringBodys in the local frame of the program or procedure
containing the declarations. The strings currentLine and nowLine would point to one
StringBody, with maxlength 256. The string stringBuffer points to the other StringBody.
(Note that stringMax and someExtra must be compile-time constants.) Since the initial-
ization is done with "«", it is legal to assign new pointer values to these string variables.
The space for the string bodies is recovered when the procedure returns; care should be
exercised to avoid assigning such a string pointer to a variable with a longer lifetime.

The following are examples of fixed form string initialization:

whatWasThat: STRING = "Eh?";
goofed: STRING = whatWasThat,

In this case, Mesa would allocate and fill in a StringBody for the string literal "Eh?".
whatWasThat and goofed would be compile-time constants having the same string value:
i.e., they would both point to the same StringBody. In fact, any other references to the
same string literal will point to the same St¢ringBody. For example:

huh: sTRING = "Eh?";
answer: STRING «— "Eh?";

The strings huh and answer would point to the same S¢ringBody as whatWasThat.
Fine point:

Since string literals can be assigned to string variables (pointer assignment), it is possible to modify the
text of a literal. Doing this can lead to significant confusion. For example:

s1: STRING < "abcdefg";
s1[2] «'x;
WriteString{"abcdefg"] -- will write "abxdefg"

String variables can be declared with « initialization or without any initialization:

Mesa Language Manual 6

stdErrorMsg: STRING « "It seems that we have made a mistake."
firstReply, reply: STRING « "Yes";
oldBuffer, newBuffer: STRING;

If quickDialog THEN stdErrorMsg « whatWasThat;

IF reply[0] ="? THEN
IF firstReply(0]1="? THEN HelpaLot(]
eLse HelpaLittle(],
oldBuffer « newBuffer « stringBufferl,
IF stringBuffer1#stringBuffer2 THEN newBuffer « stringBuffer2,
Fine point:
The Mesa system contains procedures you should use when allocating blocks of data. These procedures

are helpful for applications involving an arbitrary number of strings or strings of arbitrary length. The
procedures are documented in the Mesa Programmer’s Manual and Pilot Programmer’s Manual.

6.1.3 Long strings

A STRING is just a pointer, so LONG STRING is also a predefined type:
LONG STRING: TYPE = LONG POINTER TO StringBody;

It is perhaps curious to note that declaring a LONG string says nothing about its actual or
potential maxlength.

As indicated earlier, Mesa has a facility for allocating string bodies in the local frame of a
procedure by saying localString: STRING &« [exp]. You can also say longLocalString: LONG
STRING ¢ [exp] as well (exp must be constant in either case). Note that you need not declare
a local string to be LONG if you are only passing it to other procedures; the compiler will
lengthen the pointer for you.

Most system routines deal with LONG STRINGs since most StringBodys are allocated
dynamically from UNCOUNTED zONEs (§ 6.6.1).

6.2 Array descriptors

A full description of an array contains several items of information. Consider a typical
array declaration:

schedule: ARRAY [0..999] OF Date;
The following things are known about schedule:

base = @schedule[0],
index type = [0..999] (a subrange of INTEGER or CARDINAL),
minlndex = 0,

6-5

Other data types and storage management

6-6

length = 1000,
component type = Date

All of these items except base are compile time constants, and the value of base is the
address of a fixed place in the frame, chosen by the compiler. Mesa provides a mechanism
for dynamic arrays, where the base and length can vary at run-time. The implementation
does not allow for a variable minlndex. Dynamic arrays are implemented by array
descriptors. Array descriptors are present in Mesa mainly for backward compatibility.
When possible, use sequence-containing types for allocation of arrays with dynamically
computed size; use array descriptor types only for parameter passing when necessary.

6.2.1 Array descriptor types

An array descriptor type is constructed much like an array type:

DescriptorTC DESCRIPTOR FOR ReadOnlyOption ArrayTC |
DESCRIPTOR FOR ReadOnlyOption PackingOption ARRAY OF

TypeSpecification

ReadOnlyOption ::= empty|READONLY

PackingOption empty | PACKED

For example,
events: DESCRIPTOR FOR ARRAY [0..999] ofF Date;
If READONLY is specified, the contents of the array cannot be changed via the descriptor.

The value of events is an array descriptor (a record-like object containing items similar to
those described previously for schedule except that the base is not fixed). The next
declaration specifies an array descriptor in which the base and the length are variable:

history: DESCRIPTOR FOR ARRAY OF Date;

Indexing can be used to access components of events and history as if they were actual
arrays instead of array descriptors. Since no index type is specified for history, it has an
indefinite index type starting at zero with no specified upper bound. This is equivalent to
declaring the index type as [0 . . 0).

Two array descriptor types are equivalent if they specify equivalent types for their array
components and if they have equivalent index-sets (or if both index-sets are unspecified).
Note that DESCRIPTOR FOR ARRAY [0..2] OF T and DESCRIPTOR FOR ARRAY [1..3] ofF T are different
types, even though the lengths and element types are the same. Expressions of equivalent
descriptor types may be compared for equality (= or #).

The rules for assignment are somewhat more relaxed. If al has type DESCRIPTOR FOR ARRAY
ofF T, and a2 has type DESCRIPTOR FOR ARRAY [0..10) ofF T, then the assignment al « a2 is
legal, but the assignment a2 « al is not.

In any case, for assignments and comparisons, both operands must be array descriptors,
and it is the descriptors themselves, not the arrays that they describe which are the values

Mesa Language Manual 6

operated on. It would be an error to attempt to assign events to schedule because the first is
a descriptor and the second is an actual array.

There are three function-like operators relevant to array descriptors: DESCRIPTOR, BASE, and
LENGTH. DESCRIPTOR returns an array descriptor result and has three distinct forms which
are treated syntactically as built in functions:

BuiltinCall :: = DESCRIPTOR [Expression]|
DESCRIPTOR [Expression , Expression | |
DESCRIPTOR [Expression , Expression, TypeSpecification ||
BASE [Expression || LENGTH [Expression || . . .

LeftSide ::= Expression.BASE |
Expression.LENGTH]| . ..

The first form takes an argument of some array type, e.g.,
events < DESCRIPTOR [schedule];
The result is an array descriptor for schedule. The second form needs two arguments:

base: POINTER TO UNSPECIFIED -- address of the minlndex component
length: CARDINAL -- number of components

This form is usually assigned to an array descriptor variable which was declared without
an explicit index type.

In those rare situations where the compiler cannot deduce the component type of the
descriptor from context, a form of the DESCRIPTOR construct is provided which takes three
arguments. The third one is a TypeSpecification, the component type.

The following example provides a fresh array of 64 Dates:
Allocate: PROCEDURE [blkSize: CARDINAL] RETURNS [POINTER TO UNSPECIFIED|;
history < DESCRIPTOR [Allocate [64*size[Datell, 64];

The expressions BASE[] and LENGTH[] take one argument (of array descriptor or array
type). BASE yields the base of the described array, and LENGTH yields its length. For
example: .

events < DESCRIPTOR [schedule], -- describe the entire array
events « DESCRIPTOR [BASE [schedule], 5]; -- describe the first 5 elements

One can assign to the individual fields of an array descriptor by using the “dot notation,”
forms of BASE and LENGTH. For example:

events.LENGTH « 4; -- describe only 4 elements

There is no special form for constructing DESCRIPTORs for packed arrays. The Packep
attribute is deduced from context. In the two or three argument form of DESCRIPTOR for

Other data types and storage management

6-8

packed arrays, the second argument (the LENGTH) is the number of elements. At present,
the DESCRIPTOR operator cannot be applied to packed arrays which occupy less than a word.

It is usually more efficient to pass array descriptors as arguments, rather than arrays.
Since arguments are passed by value, an array argument causes a copy of the entire array
to be made twice (once to put it into an argument record, and once to copy it into a local
variable in the called procedure). The next example shows a case in which array
descriptors must be used, since passing by value would not work:

Table: TYPE = DESCRIPTOR FOR ARRAY OF INTEGER;

SortInPlace: PROCEDURE[localTable: Tablel; --sorts in situ
thisArray: ARRAY [0..this) OF INTEGER;

thatArray: ARRAY [0..that) OF INTEGER;

anyTable: Table < DESCRIPTOR[thisArrayl;

SortInPlacelanyTablel; -- sorts thisArray

SortInPlace[DESCRIPTOR [thatArray]]; --sorts thatArray

A StringBody (§ 6.1) contains an array, text, of characters. One must be careful when
constructing a DESCRIPTOR for this array. Recall that the bounds of text are [0..0). This
declaration is used since the actual length of text varies from STRING to STRING. For this
reason, the "one argument" form should not be used to construct a DESCRIPTOR for text.

textarray: DESCRIPTOR FOR PACKED ARRAY OF CHARACTER,;

S: STRING;
textarray < DESCRIPTOR[s.text]; -- LENGTH [textarray] is incorrect
textarray < DESCRIPTOR [BASE [s.text], s.lengthl], -- correct

6.2.2 Long descriptors

The BASE portion of an array descriptor is essentially a pointer. Just as the language allows
the type LONG POINTER, it also allows the type LONG DescrRIPTOR. The syntax is
straightforward:

TypeConstructor ::= ...|LongTC

LongTC

LONG TypeSpecification
TypeSpecification ::= ...|DescriptorTC

All the standard operations on array descriptors (indexing, assignments, testing equality,
LENGTH, etc.) extend to long array descriptors. The type of BASE [desc] is long if the type of
desc is long. The LENGTH of an array descriptor is a CARDINAL, whether the descriptor (i.e. its
BASE) is LONG or short.

Long array descriptors are created by applying DESCRIPTOR [] to an array that is only
accessible through a long pointer, or by applying DESCRIPTOR[,] or DESCRIPTOR[, ,] to
operands the first of which is long. When a short array descriptor is assigned to a long one,
the pointer portion is automatically lengthened. Alternatively, an array descriptor can be
explicitly lengthened by the operator LONG[|. Consider the following examples:

Mesa Language Manual

d: DESCRIPTOR FOR ARRAY OF T,

dd: LONG DESCRIPTOR FOR ARRAY OF T';

i, n: CARDINAL;

DP: LONG POINTER TO ARRAY [0..10) OF T,

dd < DESCRIPTOR [pp 1 |,
dd < DESCRIPTOR [pp, 5];
dd « d,

pp < BASE [dd];

n < LENGTH [dd];

-- descriptor for the entire array
-- descriptor for half of the array
-- gutomatic lengthening

-- BASE of long is long

-- LENGTH /s always a CARDINAL

6.3 Base and relative pointers

Mesa provides relative pointers, i.e., pointers that are relocated by adding some base value
before they are dereferenced. Relocation has the further effect of mapping a value with
some pointer type into a value with a possibly different pointer type. Relative pointers are
expected to be useful in such applications as the following:

Conserving Storage. Relative pointers can adequately identify objects stored within
a zone of storage if the base of that zone is known from context. If the zone is of
known and relatively small maximum size, fewer bits are needed to encode the
relative pointers. Since a relative pointer and the corresponding base value can
have different lengths, relative pointers can be shorter than absolute pointers to the
same objects. Overall storage savings are possible when all the base values can be
contained in a small number of variables shared among many different object
references.

Providing Movable Storage Zones. If all interobject references within a storage zone
are encoded as zone-relative pointers, the zone itself can be organized to contain
only location-independent values. Moving the zone, possibly via external storage,
requires only that a set of base pointers be updated.

Designating Record Extensions. Sometimes it is convenient to extend a record by
appending information (especially variable-length information) to it. Pointers
stored in, and relative to the base of, the extended record provide location
independent and type-safe access to the extensions.

6.3.1 Syntax for base and relative pointers

The syntax for base and relative pointer type constructors is as follows:

PointerTC ;2= ORDERED BaseOption POINTER Optionallnterval
PointerTail

BaseOption ;= empty|BASE

TypeConstructor ::= ...|RelativeTC

RelativeTC = Typeldentifier ReLaTiVE TypeSpecification

In a PointerTC, a nonempty Optionalinterval declares a subrange of a pointer type, the
values of which are restricted to the indicated interval (and can potentially be stored in

6-9

Other data types and storage management

6-10

smaller fields). Normally, such a subrange type should be used only in constructing a
relative pointer type as described below, since its values cannot span all of memory.

A BaseOption of Bast indicates that pointer values of that type can be used to relocate
relative pointers. Such values behave as ordinary pointers in all other respects with one
exception: subscript brackets never force implicit dereferencing. Subscript brackets are
used together with relative pointers to relocate relative pointers (see below). The attribute
BASE is ignored in determining the assignability of pointer types. "

A RelativeTC constructs a relative pointer or relative array descriptor type. The
Typeldentifier must evaluate to some (possibly long) pointer type which is the type of the
base, and the TypeSpecification must evaluate to a (possibly long) pointer or array
descriptor type.

The referent of a relative pointer is specified by using subscript-like notation in which the
type of the "array"” is the base type and that of the "index" is the relative pointer type.
Thus if base is a base pointer and offset is a relative pointer (to T), the form

baseloffset]

denotes an expression of type T, and the value of that expression is (LOOPHOLE
[base] + offset) 1.

6.3.2 A relative pointer example

Consider the BinaryTree example from section 5.4. In this program, an ordered table is
stored as a binary tree. The tree is stored in the following Mesa data structure:

Node: TYPE = POINTER TO BinaryNode;
BinaryNode: TYPE = RECORD [value: INTEGER, count: CARDINAL, left, right: Nodel,

Suppose that the BinaryNodes are allocated from a contiguous region of memory. If the
programmer now wishes to put the current state of the ordered table on secondary storage,
it is not sufficient to simply write out the region of memory containing the BinaryNodess.
This is because the data would make sense only if read back into exactly the same place in
memory, a restriction that is difficult to live with. The difficulty stems from the absolute
pointers used in the nodes. The problem can be solved by changing the definition of Node.
Ifthe BinaryNodes are allocated from a region of type TreeZone, let

TZBase: TYPE = LONG BASE POINTERTO TreeZone;
Node: TYPe = TZBase RELATIVE POINTER TO BinaryNode;

The procedure FindValue would be written as follows:

nullNode: Node = <some value never allocated (§ 6.3.3)>;
tb: TZBase « .. .,
root: Node « nullNode; -- list is initially empty

FindValue: PROCEDURE [val: INTEGER] RETURNS [inT ree: BOOLEAN <« FALSE, node: Node] =
BEGIN '
nextNode: Node « root;

IF root = nullNode THEN RETURN [FALSE, nullNodel;

Mesa Language Manual 6

UNTIL nextNode = nullNode 00
node « nextNode;
nextNode « SELECT val FROM
< tblnodel.value = > tb[nodel.left,
> tblnodel.value = > tb[nodel.right,
ENDCASE = > nullNode,
ENDLOOP;
RETURN [val = tblnode).value, nodel;
END;

The other procedures of BinaryTree can easily be rewritten to use the new definition of
Node. The compiler would aid in the translation, since any unrelocated dereferencing of a
Node would be a compile-time error.

This new implementation of BinaryTree has the feature that the TreeZone could be moved
around in memory, or written and read on secondary storage, and only the base pointer ¢b
need be updated to reflect the new position of the TreeZone.

6.3.3 Relative pointer types

An important topic to consider is the interaction of the relative pointer constructs with the
type machinery of Mesa.

A RelativeTC constructs a relative pointer type whenever both the Typeldentifier and the
TypeSpecification evaluate to pointer types. Let a RelativeTC be

Typeldentifier ReLaTIVE TypeSpecification,
where
Typeldentifier is of type
[LoNG] BASE POINTER [SubRangey] TO [READONLY] T, ,
TypeSpecification is of type
[LonG] [ORDERED] [BASE] POINTER [SubRange,] TO [READONLY] T, ,

and the brackets indicate optional attributes. Relative pointer values must be relocated
before they are dereferenced. If base and offset are base and relative pointers respectively,
offset 1, offset.field, etc. are compile-time errors.

If the TypeSpecification says READONLY, a relocated pointer cannot be a LeftSide.

The base type must be designated by an identifier (rather than a TypeSpecification)
to avoid syntactic ambiguities. Note that the form

LONG Typeldentifier ReLATIVE TypeSpecification -- wrong
does not have the effect of lengthening the base type and furthermore is always in

error, since LONG cannot be applied to a relative type. The type designated by the
TypeSpecification can be lengthened (to give a relative long pointer) using the form

6-11

Other data types and storage management

6-12

Typeldentifier RELATIVE LONG TypeSpecification .

Short relative pointers are never made long automatically. With respect to other
operations (assignment, testing equality, comparison if ordered, etc.), relative pointers
behave like ordinary pointers. In particular, the amount of storage required to store such a
pointer is determined by the TypeSpecification.

Fine points:

In some applications, there is no obvious type for the base pointer, i.e., it might not be possible or
desirable to describe a storage zone using a Mesa type declaration. In such cases, a declaration such as

BaseType: TYPE = BASE POINTER TO RECORD [UNSPECIFIED]
generates a unique type that will not be confused with other base types.

The declaration of a relative pointer does not associate a particular base value with that pointer, only a
basing type. Thus some care is necessary if multiple base values are in use. Note that the final type of the
relocated pointer is largely independent of the type of the base pointer. Sometimes this observation can
be used to help distinguish different classes of base values without producing relocated pointers with
incompatible types. Consider the following declarations:

baseA: BaseA;

baseB: BaseB;

OffsetA: TYPE = BaseA RELATIVE POINTER TO T
OffsetB: TYPE = BaseB RELATIVE POINTERTO T;
offsetA: OffsetA;

offsetB: OffsetB .

If BaseA and BaseB are distinct types (see the preceding point), so are OffsetA and OffsetB. Expressions
such as baseA [offsetB] and offsetA « offsetB are then errors, but baseA [offsetA] and baseB [offsetB] have
the same type (T).

The base type must have the attribute BASE. Conversely, the attribute BASE always takes precedence in
the interpretation of brackets following a pointer expression. Consider the following declarations:

p: POINTER TO ARRAY IndexType OF . . .;
q:BASE POINTER TO ARRAY IndexType OF

The expression ple] will cause implicit dereferencing of p and is equivalent to p t [|. On the other hand,
qle]is taken to specify relocation of a pointer, even if the type of e is IndexType and not an appropriate
relative pointer type. In such cases, the array must (and always can) be accessed by adding sufficient
qualification, e.g., ¢ T [e]; nevertheless, users should exercise caution in using pointers to arrays as base
pointers.

Mesa currently supplies no special mechanisms for constructing relative pointers. It is
expected that such values will be created by user-supplied allocators that pass their
results through a LOOPHOLE or from pointer arithmetic involving LOOPHOLES. FIRST and LAST
may also be used to create relative pointers in certain cases:

Base: TYPE = LONG BASE POINTER TO RECORD[UNSPECIFIED];

IntPtr: 7vee = POINTER [0..200) TO INTEGER;

Node: TYPE = Base RELATIVE [ntPtr;

nullNode: Node = FiRST[Node]; -- Never allocate this value

Mesa Language Manual 6

Note that relative pointers don’t have a built-in NiL like other pointers. It is up to the
programmer to create his own null value like that above. Another popular null value is
LAST[Node]. One can only use FIRST or LAST if the pointer has a subrange specification. A
subrange of [0..CARDINAL.LAST| can be used if the entire word is to be used for the relative
pointer.

For more information about base and relative pointers, read about Pilot memory
management and the system supplied interface Zone in the Pilot Programmers Manual.

6.3.4 Relative array descriptors

A RelativeTC constructs a relative array descriptor type whenever the Typeldentifier
evaluates to a pointer type and the TypeSpecification evaluates to an array descriptor
type. Let a RelativeTC be

Typeldentifier RELATIVE TypeSpecification,
where Typeldentifier is of type

[LONG] BASE POINTER [SubRangey,] TO [READONLY] T, ,
and TypeSpecification is of type

[LONG] DESCRIPTOR FOR [READONLY] ARRAY T'; OF T, ,

and the brackets indicate optional attributes. Relative array descriptor values must be
relocated before they are indexed. The relocation yields an expression with type

ARRAY T; OF T .
Relative array descriptor types are entirely analogous to relative pointer types; indeed,
values of such types can be viewed as array descriptors in which the base components are
relative pointers. If the TypeSpecification says READONLY, the relocated array (or its
elements) cannot be a LeftSide.

In the constructor of a relative array descriptor type, the TypeSpecification must evaluate
to a (possibly long) array descriptor type.

In the notation introduced above, a reference to an element of the described array has the
form

baseloffsetlli]
where i is the index of the eiement.

Currently, relative array descriptor values must be constructed using LOOPHOLES.

6.4 Variantrecords

Section 3.3 discussed “ordinary” record types, where every record object of a single type
has the same number and types of components. Such records are not always adequate for
programming applications. For example, in the symbol table for a compiler, all the records
could have certain components in common: some standard linkage, a string representing
the symbol, and a category field indicating whether the symbol stands for an operator,

6-13

Other data types and storage management

6-14

constant, variable, label, etc. Different categories of symbols would then need further
components that were not the same in all the records.

Variant records are designed for such applications: a variant record consists of an optional
common part followed by a variant part. The common part contains components that are
common to all records of this type. The variant part contains the components of each
variant of the record.

The specification of a variant record type has the appearance of an ordinary record
specification: RECORD [field list]. If the record has any common components, these are
specified first; then the variant part is specified. Subsection 6.4.1 discusses variant record
declaration more completely. ’

The variant part really represents a set of alternative extensions to the common part. The
record type as a whole can be viewed as follows:

Common Part Variant Part

|---- field list for variant 1
|---- field list for variant 2
l_---
|

R field list for vanant n

Field list for the common part ----

Each individual variant is identified by one or more adjectives. Suppose record type
ClassRec is declared to have a set of variants named classl, class2, and class3. Then
variables could be declared as follows:

someClass: ClassRec; -- sometimes one class, sometimes another
firstClass: class1 ClassRec; --strictly a class1 ClassRec
secondClass: class2 ClassRec; -- strictly a class2 ClassRec
thirdClass: class3 ClassRec; -- strictly a class3 ClassRec

Types like class3 ClassRec are bound variant types. ClassRec and class3 ClassRec are both
type specifications, but the latter is bound to a particular variant. A variable which is
declared as a bound variant contains a definite variant; these components can be accessed
as if they were common components. ‘

The field list for any variant may itself have a variant part (and a variant in that part may
have its own variant part, etc.). It is possible to have a type like small class3 ClassRec (i.e.,
the field list for the class3 variant has a variant part which, in turn, has a small variant).

The record, someClass, presents a problem. During the course of execution, someClass
might contain a classl, class2, or class3 variant record. (Mesa allocates enough storage to
hold the largest variant specified for ClassRec type records.) The problem is determining
which variant applies at a given time.

To decide which kind of variant a record object contains, some form of tag is needed. This
tag is normally specified as part of the record, in which case every such record object will
contain an "actual tag" denoting the variant it represents. Instead of storing a simple tag,
it may be possible to "compute" the tag value whenever it is needed (possibly by inspecting
some values in the common part). Such computed tags are much less safe than explicit

Mesa Language Manual 6

ones. For instance, you could refer incorrectly to a "class2" component of someClass when
it held a class1 variant record. The result would be undefined.

It is possible to construct an entire variant for the variant part (§ 6.4.3) by qualifying a
constructor (for that variant) with the variant's name (an adjective, in other words).
Suppose for example that ClassRec has common components ¢l and c2 followed by a
variant part named uvp, and that the classl variant has components x and y. Then the
record constructor below constructs an entire class1 variant:

ClassRec(cl: vall, c2: val2, vp: classl [x: val3, y: val4] |
Components of an unbound variant can be accessed using the record's tag value (whether
actual or computed). A variation of SELECT beginning with the keyword WiTH is used for this

purpose (§ 6.4.4). An example follows (given that ClassRec has a computed tag):

wWiTH someClass SELECT currentTag FROM

classl => Stmt-1; --someClass is a bound class1 variant here
class2 => Stmt-2; -- someClass is a bound class2 variant here
class3 => Stm¢t-3; --someClass is a bound class3 variant here
ENDCASE;

6.4.1 Declaring variant records
Variant records, like ordinary records, are usually declared in two steps:
identifier : TyPe = RecordTC; -- define record type
;él..ist : Typeldentifier Initialization ; -- declare the records

Initialization for variant records (§ 6.4.3) is similar to that for ordinary records. The (now
complete) definition of RecordTC follows. It extends the partial definition given in
subsection 3.3.7 and includes machine-dependent record types:

RecordTC

MachineDependent ReCORD [VariantFieldList |

MachineDependent empty | MACHINE DEPENDENT

VariantFieldList ::= CommonPart Fieldld : Access VariantPart |
VariantPart|
NamedFieldList |
UnnamedFieldList |

CommonPart ::= empty| NamedFieldList,
VariantPart = SELECT Tag FROM VariantList ENDCASE
Access ;1= empty | PUBLIC | PRIVATE -- see section 7.5.
Tag ;2= Fieldld: Access TagType |
COmPUTED TagType |

OVERLAID TagType

6-15

Other data types and storage management

6-16

TagType = TypeSpecification|*
VariantList ::= empty| Variant|
Variant VariantList
Variant :: = FieldldList = > [VariantFieldList |, |

FieldldList = > nuLL,

The TypeSpecification in TagType must be equivalent to some enumeration or
enumerated subrange type. If the CommonPart is not empty, it must be a NamedFieldList.
If there is no CommonPart, the VariantPart itself need not be named.

The following example shows many of the possible variations resulting from the above
syntax definitions. [t is unnecessarily complex for the application, but does show a number
of features. It would be worthwhile to parse the declaration yourself using the definitions
given above. The example might be used to describe the various "accounts"” in a bank;
there would be a table of such entries, one per account.

Service: TYPE = {savings, checking, depositBox};
Account: TYPE = RECORD

[

number: CARDINAL,

specifics: SELECT type: Service FROM

savings = > [term:[30..365], intRate: PerCent, balance: Money],
checking =>
[

balance: Money,
monthlyFee: SELECT COMPUTED {free, notfree} FROM
notfree = > [monthlyFee: Money],
free =>], ‘
ENDCASE
]7
depositBox = > [fee: Money, dueDate: Date, paid: BOOLEAN],
ENDCASE -- no variant can be attached to the ENDCASE
l;

Each arm of a VariantPart specifies a single variant. An arm may be empty (as in the case
of a free checking Account) if that variant needs no components of its own. Although the
syntax above states that all the arms must end with a comma, the one before the ENDCASE s,
in fact, optional.

Fine point:
In the declaration of a variant record, the form NULL may be used instead of [].

The adjectives are identifier constants from some enumeration. Their type can be given
explicitly, or implicitly as an enumeration whose members are the adjectives used in the
1..”

variant part. In any case, the enumerated type is the “tag's” type for a variant part. There
are three possible forms for the tag, and they represent:

Mesa Language Manual 6

an actual tag with an explicit enumerated type (e.g., type in Account),
an actual tag implicitly defined (e.g., easyTag in NoCommon below), or
a computed tag (e.g., the monthlyFee for a checking Account).

If an actual tag is used, it is allocated in the common part of the record and may be
accessed and used like any other common component, but it may not appear as a LeftSide,
since that would compromise the type-safeness of such variant records. The only way an
actual tag with an explicit enumerated type can be set is with a record constructor which
constructs the entire variant part (§6.4.3). Not all possible values from the tag’s
enumeration type have to be used as adjectives preceeding the "=>" in the Variant
declaration, some values may be omitted. However, if one uses an "omitted"” value as a
qualifier for a variant record constructor, a compilation error results (since, of course,
there is no variant for that value).

An asterisk, "*", is used to indicate that the type of an actual tag is being defined
implicitly by the set of adjectives naming the variants in that tag's variant part. For
example, consider the record declaration below:

NoCommon: TYPE = RECORD

[-- no common part

variantPart: SELECT easyTag: * FROM
i => [compl: INTEGER],

Jok => [x,compl: STRING],
ENDCASE];

The implicit type of easyTag is {i, j, k}. Note: you can't declare variables of the same type as
easyTag. Thus, declaring a tag with an explicit enumerated type is often the preferred
method.

Computed tags are always unnamed. In fact, they are not really tags at all: when one
needs to know which variant a record with a computed tag contains, some computation
must be done. Exactly how the variant "tag" is computed is strictly up to the program
using it. For instance, to determine whether a checking Account was free or not, the
program might look at some property of the Account number (such as whether it was odd
or even).

An OVERLAID tag is a special case of a computed tag. The differences occur in the ways in
which fields of the record are accessed (§ 6.4.4).

Fine point:

Special care must be exercised when declaring a MACHINE DEPENDENT variant record. Recall that
MACHINE DEPENDENT records can contain no "holes"” between fields. For variant records, this leads to
the following rules: If the minimum amount of storage required for each variant is a word or less, each
variant must be “padded"” to occupy the same number of bits as the longest. Otherwise, each variant must
occupy an integral number of words.

6-17

Other data types and storage management

6-18

6.4.2 Bound variant types

The declaration of a variant record specifies a type, as usual. This is the type of the whole
record. The variant record type itself defines some other types: one for each variant in the
record. Consider the following example:

StreamType: tyee = {disk, display, keyboardy},
StreamHandle: TYPE = POINTER TO Stream;
Streom: TYPE = RECORD [
Get: PROCEDURE [StreamHandle] RETURNS [[tem],
Put: PROCEDURE [StreamHandle, [tem],
body: SELECT type: StreamType FROM
disk => [
file: FilePointer,
position: Position,
SetPosition: PROCEDURE [POINTER TO disk Stream, Position|,
buffer: SELECT size: * FROM
short = > [b: ShortArrayl,
long = > [b: LongArray],
ENDCASE],

display = > [
first: DisplayControlBlock,
last: DisplayControlBlock,
height: ScreenPosition,
nLines:[0..100] |,

keyboard = > [],

ENDCASE |;

The record type has three main variants: disk, display, and keyboard. Furthermore, the
disk variant has two variants of its own: short and long. The total number of type
variations is therefore six, and they are used in the following declarations:

r: Stream,

rDisk: disk Stream;
rDisplay: display Stream;
rKeyb: keyboard Stream,
rShort: short disk Stream,
rLong: long disk Stream;

The last five types are called bound variant types. The rightmost name must be the type
identifier for a variant record. The other names are Adjectives modifying the type
identified to their right. Thus, disk modifies the type Stream and identifies a new type..
Further, short modifies the type disk Stream and identifies still another type. Names must
occur in order and may not be skipped. For instance, short Stream would be wrong since
short does not identify a Stream variant.

A ragged variant record is a variant record type whose arms do not all occupy the same
number of words. For example

Mesa Language Manual 6

Variant. TYPE = RECORD [SELECT tag: * FROM
short = > [c: CARDINAL],
long = > [lc: LONG CARDINAL],
ENDCASE];

It is illegal to use the “=" or "#” operation to compare two variables whose types are
unbound ragged variant records. The reason is that such a comparison would produce an
incorrect result if gabage bits at the ends of the records were different, but all other bits
were identical. Indeed, if a small variant is allocated to exact size, the trailing bits aren’t
really there, and the comparison might attempt to read from an illegal address.

¢

However, it is legal to use “=" or “#” to compare two bound variants, or to compare a
bound variant with an unbound one.

e

Furthermore, it is illegal to use “=" or "#” on any RECORD or ARRAY type which directly or
indirectly contains an unbound ragged variant record.

The formal definition of Typeldentifier can now be completed (it was only partially defined
in chapter 3):

Typeldentifier 1= ...|Adjective Typeldentifier |
Typeldentifier . Adjective

Adjective ::= identifier

where Adjective is an adjective of the variant part in the type specified by Typeldentifier.
Note that the recursive use of Typeldentifier in the first line allows a sequence of
adjectives. Sub-subsection 6.4.4.1 discusses the use of dot notation with variant records.

6.4.3 Accessing entire variant parts, and variant constructors

Mesa does not allow an entire variant part to occur on the right of an assignment. The only
way to assign to an entire variant part is via a constructor, not by copying the variant part
of an already initialized record.

This section considers accesses to entire variant records (e.g., for initialization) and the
variant part of the record as a whole. The next section covers accesses to individual
components in a variant part.

The actual tag, type, in the body variant part may be accessed by qualification:
IF r.type = keyboard THEN Stm¢-1,

It is also possible to construct values of a variant record type. The syntax of a constructor
for a variant part is the same as that of a normal constructor except that the identifier
preceding the "[" must be present and must be one of the adjectives used in defining the
variant. For example, some of the following declarations use constructors to initialize the
variables:

myDisplay: display Stream <« [myGet, myPut, display(d1,d,h,8]];
yourDisplay: display Stream < myDisplay;

6-19

Other data types and storage management

6-20

currentStream: Stream « myDisplay,
s: Stream « (SysGet, SysPut, disklfp, 0, SysSetPos, longlal]] |;

The keyboard variant of Stream is a NULL variant; so there are no components for that
variant in a keyboard constructor:

rKeyb « Stream([Get: Kget, Put: Kput, body: keyboard| 11,

A side effect of assigning a bound variant value to a variable is that the actual tag of the
record is also changed. This is the only way to change the variant contained in a variable
(except in the case of a COMPUTED tag). Thi