XEROX ==

Mesa Processor Principles of Operation

Version 4.0
May1985

Office Systems Division
2400 Geng Road
Palo Alto, California 94303

Mesa Processor Principles of Operation

Notice

This document is being provided for information only. Xerox makes no warranties or representations of any kind
relative to this document or its use, including implied warranties of merchantability or of fitness for a particular
purpose. Xerox assumes no responsibility or liability for any errors or inaccuracies that may be contained in the
document, and does not guarantee that the use of the information herein will function or perform in an intended

manner.
The information contained herein is subject to change without any obligation of notice on the part of Xerox.

Copyright © 1985 by Xerox Corporation.
All Rights Reserved.

Table of contents

1.1

1.2

1.3

Introduction

Technical Summary

High Level Languages .

1.1.1

1.1.2 Compact Program Representation .
1.1.3 Compact Data Representation .
1.1.4 Read Only Relocatable Code
1.1.5 Stack Machine .

1.1.6 Control Transfers .

1.1.7 Process Mechanism

1.1.8 Virtual Memory

1.1.9 Protection .

Terminology .

1.2.1 Architecture

1.2.2 Processor

1.2.3 Programmer

Conventions . .

1.3.1 Type Checking .

1.3.2 Type Representation

1.3.3 Subrange Types

1.3.4 Enumerated Types .

1.3.5 Pointers

1.3.6 Arrays and Records

1.3.7 Type Conversion

1.3.8 Built-in Routines

1.3.9 Control Flow

1.3.10 Signals and Errors .

1.3.11 [nstruction Descriptions

1-2
1-2
1-2
1-3
1-3
1-3
1-3
1-3
1-4

1-4
1-4
1-4
1-5
1-5
1-6
1-6
1-6
1-6
1-6

1-7
1-7
1-7

1-8

Table of contents

2.1

2.2

2.3

24

3.1

3.2

3.3

4.1
4.2
4.3
4.4
4.5
4.6

il

Data Types

Basic Data Types

21.1 Unspecified

2.1.2 Bit, Nibble, Byte

2.1.3 Basic Operators

Numeric Types

221 Cardinal

2.2.2 Integer .

2.2.3 Real

Long and Pointer Types

2.3.1 Long Types

2.3.2 Pointer Types .

Type Conversion .

2.4.1 Assignment .
2.4.2 Signed/Unsigned Conversions .

243 Short/Long Conversions

244 Pointer Conversions

Memory Organization

Virtual Memory
3.1.1 Virtual Memory Mapping .
3.1.2 Memory Map Instructions .
3.1.3 Virtual Memory Access

314 Virtual Memory Data Structures
Main Data Spaces. .

3.2.1 Main Data Space Access

3.2.2 Main Data Space Data structures
3.2.3 Frame Overhead Access
Processor Memories

3.3.1 Control Registers

3.3.2 Evaluation Stack

3.3.3 Data and Status Registers .
3.34 Register Instructions

Instruction Interpreter

Interpreter
Instruction Formats .
[nstruction Feteh .
Address Calculation .
Instruction Execution.

Exceptions

2-2
2-2
2-2

2-4
2-4
2-4
2-4

- 2-4

2-5

2-6
2-6
2-7

3-1
3-2
3-5
3-6
3-7
3-10
3-11
3-12
3-15
3-16
3-16
3-18
3-20
3-21

4-1
4-2
1.2
43
4-4
4-5

‘Mesa Processor Principles of Operation

4.7

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5

71
7.2

7.3

7.4

7.5

8.1
8.2
8.3
8.4

4.6.1 Traps and Faults

'4.6.2 : Interrupts .

Initial State

- Stack Instructions

Stack Primitives .

Check Instructions

- Unary Operations

Logical Operations
Arithmetic Operations
Comparison Operations
Floating Point Operations

Jump Instructions

Unconditional Jumps .
Equality Jumps
Signed Jumps.
Unsigned Jumps .

Indexed Jumps

Assignment Instructions

Immediate Instructions

Frame Instructions

7.2.1 Local Frame Access

7.2.2 Global Frame Access
Pointer Instructions .

7.3.1 Direct Pointer Instructions.
7.3.2 Indirect Pointer Instructions
String Instructions

7.4.1 Read String

7.4.2 Write String

Field Instructions

7.5.1 Read Field .

7.5.2 “Write Field.

7.5.3 Put Swapped Field .

Block Transfers

Interpreter S

Bit Boundary Block Transfers
Byte Boundary Block Transfers
Bit Boundary Block Transfer .

4-5
4-7
4-7

5-1
5-3

5-5
5-7
5-11
5-11

6-1
6-2
6-5

6-6

7-1

7-3
76
77

7-12
7-14
7-15
7-16
7-16
7-18
7-19
7-21

8-1
8-4

8-7

iii

Table of contents

91

9.2

9.3
9.4

9.5

10

10.1

10.2

iv

8.4.1 . Bit Transfer Utilities
8.4.2 - BitBlock Transfer .
8.4.3 Text Block Transfer

Data Types

Control Links. ..
9.1.1 Frame Control Links
9.1.2 Indirect Control Links .

913 Procedure Descriptors .

Frame Allocation . .

9.2.1 = Frame Allocation Vector

9.2.2 Frame Allocation Primitives
9.2.3 Frame Allocation Instructions .

Control Transfer Primitive
Control Transfer Instructions.
9.4.1 Local Function Calls
9.4.2 External Function Calls
9.4.3 Nested Function Calls .
944 Returns

94.5 Coroutine Transfers
946 Link Instructions
Traps

9.5.1 Trap Routines .
9.5.2 Trap Processing
9.5.3 Trap Handlers .
9.5.4 Breakpoints
9.5.5 Xfer Traps .

Processes

Data Structures .
10.1.1 Process Data Area .
10.1.2 Process State Blocks
10.1.3 Monitor Locks .
10.1.4 Condition Variables
10.1.5 Process Queues.
Process Instructions .

10.2.1 Monitor Entry .
10.2.2 Monitor Exit

10.2.3 Monitor Wait

10.2.4 Monitor Reentry
10.2.5 Notify and Broadcast

8-8
8-8
8-16

9-1
9-2
9-3

9-4
9-4
9-6

9-7
9-10
9-10
9-11
9-13
9-13
9-14
9-18
9-19
9-19
9-21
9-23
9-25
9-26

10-2
10-2
10-4
10-6
10-6
10-6
10-7
10-7
10-9
10-10
10-11
10-12

Mesa Processor Principles of Operation

10.2.6 Requeue .

10.2.7 SetProcessPriority .
103 Queue Management

10.3.1 Queuing Procedures

10.3.2 Cleanup Links .

10.4 Scheduling .

10.4.1 Scheduler .

10.4.2 Process State

10.4.3 Faults .

10.4.4 Interrupts .

10.4.5 Timeouts

Appendices
A Values of Constants

B Opcodes
References .

Indexes

Primary Index.
Mesa Code Index .
Opcode Names

Opcode Mnemonics .

10-13
10-14
10-14
10-14
10-16
10-18
10-18
10-20
10-23
10-24
10-28

R-1

P-1
MC-1
ON-1

OM-1

Table of contents

IMlustrations

2.1 Sixteen Bit Word . .
2.2 - Thirty-two Bit Double Word .
2.3 Double Word in Memory .

3.1 Virtual Memory Mapping.

3.2 Virtual Memory Structure

3.3 Code Segment

34 -Global frame .

3.5 Local frame

3.6 Evaluation Stack .

41 Instruction Formats

6.1 Jump Addressing .

7.1 String Instructions

7.2 Field Specifiers)

8.1 BitBlt Source and Destination

8.2 Source and Destination Functions
8.3 Gray Brick

9.1 Frame Heap . .

9.2 Port to Port Control Transfers

9.3 Port to Procedure Control Transfers .
9.4 Procedure to Port Control Transfers .
10.1 Process Queue Structures.

iv

2-1
2-5

3-3
3-8
3-9
3-13
3-15
3-18
4-2
6-1
7-14
7-17
8-9
8-10
8-13
9-5

" 9-15

9-16
9-17
10-8

Introduction

This document defines the architecture of the Mesa processor. It specifies the processor’s
virtual memory structure, its instruction interpreter, and the Mesa instruction set. (The
organization of the input/output system is described separately.) The Mesa processor is
part of a larger plan for the development and construction of integrated Office Information
Systems.

The Principles of Operation does not discuss the implementation of any particular Mesa
processor, of which there are several models, differing primarily in underlying technology,
configuration, and performance. It does specify the overall design that must be followed to
ensure software compatibility at the instruction set level. The architecture allows
common software systems to be constructed that operate on all versions of the processor; it
also allows reimplementation of the processor when it is technically or economically
advantageous to do so.

The Principles of Operation, often called the PrincOps (pronounced prince ops), is
composed of nine additional chapters, an Appendix, a list of references, and four indices.

DATA TYPES Basic data types: UNSPECIFIED, BIT, NIBBLE, BYTE; basic logical and arithmetic
operators; numeric types: CARDINAL, INTEGER, REAL; long types; pointer types; type
conversion.

MEMORY ORGANIZATION Virtual memory; memory mapping; memory map
instructions; major data structures; main data spaces; control transfer data
structures; local and global frames; processor registers; evaluation stack; register
instructions.

INSTRUCTION INTERPRETER Instruction formats; instruction fetch; address calculation;
instruction execution; opcode dispatch; exceptions: traps, faults, interrupts; initial
state.

STACK INSTRUCTIONS Stack primitives; check instructions; unary operations; logical
operations; arithmetic operations; comparison operations; floating point operations.

JUuMP INSTRUCTIONS Unconditional jumps; equality jumps; signed ineqﬁality jumps;
unsigned inequality jumps; indexed jumps.

1-1

Introduction

ASSIGNMENT INSTRUCTIONS Immediate instructions; frame instructions: local access,
global access; pointer instructions: direct, indirect; string instructions; field
instructions.

BLOCK TRANSFERS Word boundary block transfers, checksum; byte boundary block
transfers; bit boundary block transfers: bit transfer utilities, bit block transfer, text
block transfer.

CONTROL TRANSFERS Control links: frame links, indirect links, procedure descriptors;
frame allocation; control transfer primitive (xFER); control transfer instructions:
local calls, external calls, nested calls, returns, coroutine transfers; traps;
breakpoints; xfer traps.

PROCESSES Process data structures; process instructions; process queue
management; scheduling; faults; interrupts; timeouts.

APPENDIX Values of constants; register indexes; fixed memory locations; fault queue
indexes; system data indexes; opcode assignments.

Section 1.1 lists the major technical characteristics of the processor; §1.2 defines some
frequently used and often confusing terminology; §1.3 explains the coding conventions
used in describing the operation of the processor.

1.1 Technical Summary

1-2

All Mesa processors have the following characteristics that distinguish them from other
computers:

1.1.1 High-Level Languages

The Mesa architecture is designed to efficiently execute high-level languages in the style
of Algol, Mesa, and Pascal. That is, constructs of the programming language such as
modules, procedures, and processes all have concrete representations in the processor and
main memory, and the instruction set includes opcodes to implement these language
constructs efficiently (for example, in procedure call and return). The processor does not
“directly execute” any particular high-level programming language, however.

1.1.2 Compact Program Representation‘

The Mesa instruction set is designed primarily for a compact, dense representation of
programs. Instructions are variable in length. The most frequently used operations and
operands are encoded in a single-byte opcode; less frequently used combinations are
encoded in two bytes, and so on. The instructions themselves are chosen based on their
frequency of use, and this design principle leads to an asymmetrical instruction set. For
example, there are eight different instructions that can be used to store variables into
local frames in memory, but only four that load local variables onto the stack from
memory; this occurs because typical programs perform many more stores than loads. In
some cases, a particular operation is performed so infrequently that it is not provided as
an instruction, and must therefore be programmed in software (for example, a quad word
add). There are other cases in which an instruction is provided for an infrequently used

Mesa.Processor Principles of Operation 1

operation because the function performed is required at the instruction set level for
technical or efficiency reasons (such as for disable interrupts or checksum calculations).

1.1.3 Compact Data Representation

The instruction set of the processor includes a wide variety of operations for accessing
partial and multiword fields of the memory’s basic information unit, the sixteen-bit word.
Except for system data structures defined by the architecture, there are no alignment
restrictions on the allocation of variables, and data structures are generally assumed to be
tightly packed in memory.

1.1.4 Read Only Relocatable Code

The instructions associated with a program are organized separately from the data it
declares in a structure called a code segment. All code segments are entirely read-only.
They are also relocatable without modification, since no information in a code segment
depends on its location in virtual memory.

1.1.5 Stack Machine

The Mesa processor is a stack machine; it has no general-purpose registers. (It does
include special-purpose registers for maintaining processor status and state.) The
evaluation stack is used as the destination for load instructions, the source for store
instructions, and as both the source and the destination for arithmetic instructions. It is
also used for parameter passing. The primary motivation for a stack is not to simplify
code-generation, but to achieve compact program representation. Since the stack is
assumed as the source and destination of one or more operands, specifying operand
locations requires no bits in the instruction - they are implied by the opcode.

1.1.6 Control Transfers

The architecture is designed to support modular programming. It therefore suitably
optimizes the transfers of control between modules. The Mesa processor implements all
transfers with a single primitive called xrFer, which is a generalization of the notion of a
procedure or subroutine call. All of the standard procedure-calling conventions (such as
call by value, call by reference (result), and call by name) and all transfers of control
between contexts (procedure call and return, nested procedure calls, coroutine transfers,
traps, and process switches) are implemented using the XFeER primitive. To support
arbitrary control-transfer disciplines, activation records (called frames) are allocated by
XFER from a heap rather than a stack; this method also allows the heap to be shared by
several processes.

1.1.7 Process Mechanism

The architecture is designed for applications that expect a large amount of concurrent
activity. The Mesa processor provides for the simultaneous execution of up to one
thousand asynchronous, preemptable processes on a single processor. The process
mechanism implements monitors and condition variables to control the synchronization
and mutual exclusion of processes along with the sharing of resources and information
among them. Scheduling is event-driven, rather than time-sliced. Interrupts, timeouts,

1-3

-Introduction

and communication with [/O devices are also supported by the process mechanism.

..~ Support for multiple processors is under development.

1.1.8 Virtual Memory

The Mesa processor provides a single large, uniformly-addressed virtual memory, shared
by all processes. The memory is addressed linearly as an array of 232 sixteen bit words,
and, for mapping purposes, is further organized as an array of 224 pages of 256 words each;
it has no other programmer-visible substructure. Each page can be individually write-
protected, and the processor records the fact that a page has been written into or
referenced.

1.1.9 Protection

The architecture is designed for the execution of cooperating, not competing, processes.
There is no protection mechanism (other than the write-protected page) to. limit the
sharing of resources among processes. There is no “supervisor mode” nor “privileged”
instructions.

1.2 Terminology

In this section, the terms architecture, processor, and programmer are defined. Several
stylistic conventions used throughout the PrincOps are also explained in this and the
following sections.

Note: Paragraphs beginning with the word “Note” contain comments intended for the
reader of this manual. They generally point out or explain an important convention
concerning the document or the code contained within it; they do not describe the Mesa
processor itself.

1.2.1 Architecture

As used in the PrincOps, the term architecture refers to the characteristics of the
processor, as seen by a programmer writing executable instructions for the machine. The
term does not refer to the way the processor is integrated with other hardware and

_software components to form a computer system. Nor does it refer to the way hardware

and firmware components might be integrated to form any specific implementation of the
processor.

Note: Paragraphs beginning with the phrase “Design Note” contain important points
about the design of the processor architecture. They will be of interest both to
implementors and to programmers.

1.2.2 Processor

The term processor actually refers to a particular implementation of the Mesa processor
(or more likely, to all such implementations). A processor is the collection of hardware and
microcode that behaves in a manner consistent with the description contained in this

~Mesa Processor Principles of Operation - 1

manual. Each Mesa processor must achieve the same result as the code appearing here,
although the implementation, and in many cases even the algorithm, may be different.

For example, as mentioned above, every Mesa processor includes an evaluation stack
whose behavior is described in §3.3.2. There are several ways to implement a stack,
varying in such details as where the stack pointer points (to the top element? to the next
available entry?) and how the checks for underflow and overflow are made. The processor
may use any implementation so long as the stack pointer as seen by the programmer
always points to the next available entry on the stack, as described in §3.

Note: Paragraphs beginning with the phrase “Implementation Note” describe
implementation techniques. Generally, these suggest efficiency improvements or point
out restrictions in addition to those contained in the code. They are directed primarily at
the microcoder and the hardware designer who will implement the processor.

1.2.3 Programmer

The term programmer refers to the person writing instructions to be executed by the
processor. Because the Mesa processor is designed for use in conjunction with high-level
languages, the programmers in question are usually authors of compiler code generators
or low-level operating system functions. A “typical” applications programmer sees the
processor not at the instruction set level, but rather at the programming language level.

Note: Paragraphs beginning with the phrase “Programming Note” are intended
primarily for the programmer. Techniques for exploiting a feature of the processor are
described in such paragraphs. Also, they often begin with the phrase “It is the
programmer’s responsibility to ensure that ...” or “It is illegal for a program to ...”. As
discussed above, these notes are often directed to the authors of the compiler or the
operating system, rather than to a “typical” programmer.

Note: The statements contained in programming notes concerning the legality of a
program and the conditions that it (and the programmer) must satisfy all have the same
intention; they mean that if the condition is violated, the program may produce undefined
results, and further, that the results obtained during execution may be different on
different implementations of the processor.

1.3 Conventions

The PrincOps describes the processor using Mesa itself, the data structures and
algorithms are written in the Mesa language. Familiarity with the Mesa Language
Manual [2] is assumed. The term code is used to refer to the Mesa source code in this
document that describes the behavior of the processor; it does not refer to the programs
that execute on the machine. Likewise, the term routine is used to refer to a part of the
code (usually a procedure), whereas program and procedure refer to the instructions being
executed by the processor. These distinctions must constantly be kept in mind.

Coding conventions beyond standard Mesa style are described in this section. The code in
this document makes several assumptions that are not generally known to a Mesa
programmer; these assumptions are outlined below. Certain language features normally
available (notably those involving pointer dereferencing, variant records, coroutines, and

1-5

. Introduction

- processes) are not allowed in PrincOps code, primarily to simplify and clarify the
descriptions.- These omissions are also identified.

1.3.1 Type Checking

One of the primary reasons for describing the Mesa processor in Mesa is to bring type-
checking to bear on the specification; in particular, all of the code contained in this
document has been compiled by the Mesa compiler to verify its syntactic and type
correctness. However, because main memory is inherently typeless, it has not been

_ possible to utilize the language’s type system fully, while keeping the description simple
and short. In particular, all references to main memory yield values of (some variant of)
type UNSPECIFIED, and there are many pointers to UNSPECIFIED in the code. When possible, the
values are assigned to temporary variables to make their types clear, but the temporaries
may not have a concrete realization in the processor.

1.3.2 Type Representation

The code assumes that the underlying representation of the basic types is binary, that
unsigned numeric quantities are represented in true binary notation, and that signed
quantities use two’s-complement representation.

1.3.3 Subrange Types

Except for INTEGER, all subranges used in the code have a lower bound of zero. As a result,
there is no automatic biasing of subranges. Subranges occupy only the number of bits
required to store their range of values when represented as binary numbers. With one
exception (the stack pointer; see §3.3.2), subranges occupy exactly an integral number of
bits; that is, the upper bound of all subranges is one less than a power of two.

1.3.4 Enumerated Types

Enumerated types are represented by assigning (binary) zero to the first value, one to the
second value, two to the third, and so on; all enumerated types in this document are
declared MACHINE DEPENDENT. As with subranges, enumerated types occupy only the
number of bits required to represent all of their values. All enumerations occupy an
integral number of bits (that is, the number of elements in each enumeration is a power of
two).

1.3.5 Pointers

Both virtual- and real-memory addresses are represented by LONG POINTER types; short
POINTERs are converted to long pointers before dereferencing. The dereferencing operator
(1) is used to follow a pointer and obtain the word(s) it addresses in real memory. This
operator is applied only to LONG POINTERs that have been converted from virtual into real
addresses.

Mesa Processor Principles of Operation ‘ 1

1.3.6 Arrays and Records

Arrays and records are used to define the structures used by the processor. Their
semantics are as described in the Mesa Language Manual[l], except that their
components are restricted to the types defined in §2. Two additional conventions are used
in the code.

First, each array element is at least one word long and is always a multiple of the word
size. No additional packing is specified; that is, there are no packed arrays that would lead
to hidden addressing calculations below the level of a word address. In addition, the fields
of a record always account for all of the bits in the words occupied by the structure,
whether or not they are used. No extra bits remain free. All records are declared MACHINE
DEPENDENT so that this will be checked by the compiler.

Second, two distinguished field names are used in defining record structures. The name
reserved, usually accompanied by an initial value, indicates that neither the processor nor
the programmer uses the field. If an initial value is given, the processor may assume that
the field always has that value, and the programmer must ensure its integrity. On the
other hand, the name available indicates that the field may be used by the programmer,
and therefore must be left undisturbed by the processor.

1.3.7 Type Conversion

Conversion between types is modeled using the Mesa operators INTEGER, CARDINAL, and
LONG, together with a number of built-in routines. Details of the conversions between
specific types are contained in §2.4.

1.3.8 Built-in Routines

The code assumes the implementation of a number of basic routines for which a more
detailed description is not given; for example, the And and Or routines are used as
implementations of the standard logical operators, and are not described further. A
complete list of these routines is contained in §2.

1.3.9 Control Flow

Although the code is written as a collection of routines, there are several cases where
procedure calls and returns can be replaced by jumps in the implementation. For example,
simple opcodes are described as single routines, but the calls that invoke them could be
replaced by jumps (or more likely, dispatches) from the main loop of the instruction
interpreter. Their returns could be replaced by jumps back to opcode fetch. Similarly,
certain utility routines are always invoked at the logical end of opcode processing, and
therefore need not actually be called as procedures. A jump to their beginning addresses
could be used instead. These routines could return by jumping back to the location in the
interpreter to which the opcode would have returned, had a true procedure call been used.

1.3.10 Signals and Errors

Signals are used for global transfers of control across one or more procedure calls. There is
only one signal declared in the code: Abort (§4.1). It is used to describe exception

1-7

Introduction

processing. This signal is raised in exactly two places: by the trap and the fault routines.
It is caught by the main loop of the instruction interpreter, and is never restarted.

An unnamed ERROR is used to indicate conditions that must be established by the
programmer but need not be verified by the processor (for example, the Setup routine in
§8.2.2.3).

On some occasions, these two conventions are used together; a few routines catch Abort
and raise ERROR (for example, the SaveProcess and LoadProcess routines in §10.4.2.1). This
combination indicates that it is illegal for the routine to suffer a trap or fault (as when all
the memory it references must be resident).

Implementation Note: None of the statements in the code that contain an unnamed
ERROR need be included in an implementation of the processor. If a program could cause the
code to generate an ERROR, the program is illegal. It may produce undefined results.

1.3.11 Instruction Descriptions

Each instruction is defined as a separate routine. The name of the routine is the same as
the mnemonic for the opcode. Complex instructions are broken down into multiple
routines, which are assumed to be nested in their parent opcode routine unless they are
shared by more than ene instruction. The generic form of an instruction description is
illustrated below.

OPCODE Name
Details not covered in the summary of the instruction class appear here.

OPCODE: PROCEDURE =
BEGIN

END;

Fine points and notes appear here.

1.4 Indices

1-8

There are four indexes in the PrincOps: the Primary Index, Mesa Code Index, which is an
index of the types, constants, and routines contained in the code, and the Opcode Names
Index and Opcode Mnemonics Index, which are indexes of the opcode routines organized
by instruction names and mnemonics. In these indexes, bold face page numbers indicate
where the primary, defining information can be found; plain page numbers designate
further references.

Data Types

This chapter describes the characteristics of the basic data types used by the Mesa
processor. The descriptions contained here give only the essential properties of the types.
The legal operations on each type are explicitly enumerated elsewhere (and are more
restrictive than allowed by the Mesa language).

Note: The routines appearing in this chapter are solely defined for use by the code
contained in subsequént chapters. These routines need not be implemented by the
processor (although several will be), since they are not available directly to the
programmer.

For example, the following routine is useful in describing the processor but is not provided
as an instruction:

Log: PROCEDURE [count: CARDINAL] RETURNS [CARDINAL];

This routine returns the number of bits required to store the number of values given by its
argument, assuming an unsigned, unbiased binary representation.

2.1 Basic Data Types

The primary unit of storage is the sixteen-bit word.

WordSize: CARDINAL = 16;

The most significant bit of a word is numbered zero; the least significant bit is numbered
fifteen:

0 15

Figure 2.1 Sixteen-Bit Word

Variables of most common types occupy a single word.

:Data Types

2.1.1. Unspecified

Unless they have other specific properties (described in the following sections), words are
declared as type UNSPECIFIED, a type that is essentially just a bit string. Only a subset of the
basic operators (§2.1.3) apply to this type; in particular, arithmetic operators are not used
with UNSPECIFIEDS.

BLOCK: TYPE = ARRAY [0..0) OF UNSPECIFIED;

A BLOCK is used as a placeholder to represent a region of storage of indeterminate size.

2.1.2 Bit, Nibble, Byte

The following types, which occupy one, four, and eight bits respectively, are used to
represent the substructure of a word:

BIT: TYPE = [0..2);
NIBBLE: TYPE = [0..16);
BYTE: TYPE = [0..256);

A byte is often interpreted as two adjacent nibbles; likewise, a word can be interpreted as
two adjacent bytes. The structures NibblePair and BytePair reflect these interpretations:

NibblePair: TYPE = MACHINE DEPENDENT RECORD [left(0: 0..3), right (0: 4..7): NIBBLE];

BytePair: TYPE = MACHINE DEPENDENT RECORD [left (0: 0..7), right (0: 8..15): BYTE];

Two routines are used to extract the bytes of a word:

HighByte: PROCEDURE [u: UNSPECIFIED] RETURNS [BYTE] =
BEGIN
pair: BytePair = u;
RETURN[pair.left];
END;

LowByte: PROCEDURE [u: UNSPECIFIED] RETURNS [BYTE] =
BEGIN
pair: BytePair = u;
RETURN[pair.right];
END;

The architecture also defines several double word (thirty-two bit) types; see §2.3.

2.1.3 Basic Operators

Fundamental operators are defined for all types: they are assignment («) and comparison
for equality (=) and inequality (#). In addition, the processor implements the primitive
operations found in most ALUs; these include the logical operations Not, And, Or, Xor,
and Shift, as well as the arithmetic operators negation (-), addition (+), subtraction (-),
and ArithShift. Note that comparison (for other than equality) is not considered a basic
operator, since its result depends on whether the operands are signed or unsigned (§2.2).

. Mesa Processor Principles of Operation 2

- . Such operations can not be performed on UNSPECIFIEDS, which are neither signed nor
unsigned.

2.1.3.1 Basic Logical Operators
The following standard logical operations on bit strings are primitive:

Not: PROCEDURE [UNSPECIFIED] RETURNS [UNSPECIFIED];
Odd: PROCEDURE [UNSPECIFIED] RETURNS [BOOLEAN];

Odd returns TRUE if the least significant bit of its argument is one, and FALSE otherwise.

And: PROCEDURE [UNSPECIFIED, UNSPECIFIED] RETURNS [UNSPECIFIED];
Or: PROCEDURE [UNSPECIFIED, UNSPECIFIED] RETURNS [UNSPECIFIED];
Xor: PROCEDURE [UNSPECIFIED, UNSPECIFIED] RETURNS [UNSPECIFIED];

Shift: PROCEDURE [data: UNSPECIFIED, count: INTEGER] RETURNS [UNSPECIFIED];
Rotate: PROCEDURE [data: UNSPECIFIED, count: INTEGER] RETURNS [UNSPECIFIED];

In Shift, data is shifted the number of bits specified by count; the shift is to the left if count
is positive and to the right if it is negative. If count is zero, the result is the value of data
unchanged; if the absolute value of count is greater than fifteen, the result of the
operation is zero. In all cases, zeros are supplied to vacated bit positions. In Rotate, data
is rotated the number of bits given by count; it is left-rotated if count is positive and right-
rotated if négative. If countis zero, data is returned unchanged.

2.1.3.2 Basic Arithmetic Operators

The basic arithmetic operators, negation, addition, and subtraction, assume a two’s-
complement binary representation. If overflow is ignored, the result can be considered
either signed or unsigned (see also the section on arithmetic types below).

The following shift routine is also used in the code, but is not provided as an instruction:
ArithShift: PROCEDURE [data: INTEGER, count: INTEGER] RETURNS [INTEGER];

This operation is similar to logical shift, except that when shifting right, a copy of bit zero
(the sign bit) is shifted into the left of data; when shifting left, bit zero is undisturbed.

2.2 Numeric Types

The numeric types include signed and unsigned fixed point numbers. There is also a
provision for a floating point representation of real numbers (see §2.2.3). The operations
on numeric types include the fundamental operators (§2.1.3), the basic arithmetic
operators (82.1.3.2), and the comparison operators (<, <=, >=, and >), plus
multiplication (*), division (/), and remainder (M0OD).

—.Data Types

2.2.1 Cardinal

Unsigned numbers are of type CARDINAL and occupy a single word. The values zero through
65,535 are represented using true binary notation. All operations performed on cardinals
produce unsigned results in the range given above.

2.2.2 Integer

Signed numbers are of type INTEGER and occupy a single word. The values -32,768 through
32,767 are represented using two’s-complement binary notation. All operations performed
on INTEGERs produce signed results according to the rules of algebra. For multiplication,
the product is negative if exactly one of the multiplicand or the multiplier is negative and
the other operand is not zero. '

Multiplicand Multiplier Product
positive ~ positive positive
positive negative negative
negative positive negative
negative negative positive

For division and rema@nder, the dividend and the remainder have the same sign; that is,
the results satisfy the following equation: dividend = quotient * divisor + remainder.

Dividend Divisor Quotient Remainder
positive positive positive positive
positive negative negative positive
negative positive negative negative
negative negative positive negative

2.2.3 Real

Except that they occupy two and four words respectively, the formats of REAL and LONG REAL
types are not defined by the architecture.

Design Note: Adoption of the proposed IEEE floating point standard [2] is currently in
progress.

2.3 Long and Pointer Types

2-4

The processor implements several long (double-word) types, as well as both short and long
pointer types. The representations of these types are defined as extensions of the types
described above.

2.3.1 Long Types

The architecture supports double-word configurations of the types UNSPECIFIED, CARDINAL,
INTEGER, and POINTER (see below). These types occupy thirty-two bits, wherein the most
significant bit of a double word is numbered zero, and the least significant bit is numbered
thirty-one.

Mesa Processor Principles of Operation 2

0 16 3

Figure 2.2 Thirty-two Bit Double Word

When these types are stored in memory, the low-order (least significant) sixteen bits
occupy the first memory word (at the lower numbered address), and the high-order (most
significant) sixteen bits occupy the second memory word (at the higher memory address).

16 ' 3{[o 1s]

address n . : . n+1 - n+2

Figure 2.3 Double Word in Memory

Design Note: This inconsistent convention is solely for the convenience and efficiency of -
operations that use the evaluation stack (§3.3.2).

The following constructs are used to extract the subcomponents of an arbitrary long type:

Long: TYPE = MACHINE DEPENDENT RECORD |
low (0), high (1): UNSPECIFIED];

HighHalf: PROCEDURE [u: LONG UNSPECIFIED] RETURNS [UNSPECIFIED] =
BEGIN)
long: Long = LOOPHOLE[u];

RETURN[long.high];
END;

LowHalf: PROCEDURE {u: LONG UNSPECIFIED] RETURNS [UNSPECIFIED] =
BEGIN
long: Long = LOOPHOLE[uU];
RETURN[long.low];
END;

All of the operations applicable to UNSPECIFIED, CARDINAL, and INTEGER types are also valid for
their long counterparts, with the same semantics and restrictions, except for the range of
the results. In addition, shifting operations are defined for long types:

LongShift: PROCEDURE [data: LONG UNSPECIFIED, count: INTEGER]
RETURNS [LONG UNSPECIFIED];

LongArithShift: PROCEDURE [data: LONG INTEGER, count: INTEGER]
RETURNS [LONG INTEGER];

2.3.2 Pointer Types

Values of type POINTER and LONG POINTER are memory addresses occupying single and double
words, respectively. In addition to the fundamental operations, all of the basic logical
operators and the basic arithmetic operators, addition and subtraction, can be applied to
pointers. For arithmetic purposes, pointers are always unsigned.

2-5

Data Types

Design Note: Like all long types, the components of LONG POINTERs appear in memory with
the least significant word occupying the lower-numbered memory address (§2.3.1).

2.4 Type Conversion

This section defines the conversions performed between the types defined above. Exeept
for the operators already defined (HighByte, LowByte, etc.), and for the cases involving the
numeric and pointer types described below, conversions between operands are performed
by the standard assignment operator (&), which means “copy the bits”.

2.4.1 Assignment

In the statement left « right, if either operand is more than sixteen- bits wide, both must
be the same width. Otherwise, if right is shorter than left, sufficient high-order zeros are
supplied. In general, when operands smaller than a word appear in an expression, they
are considered to be embedded in a word by zero extending (not sign extending), just as in
the expression “int + 6”, the constant is assumed to be extended as necessary. If more
than sixteen bits are required, the lengthening of an operand is always made explicit
(using LONG, defined below). Likewise, if bits other than zeros are required, a built-in
operation is used. For example:

SignExtend: PROCEDURE [z: BYTE] RETURNS [INTEGER] =
BEGIN
RETURN(IF Z IN [0..1778B] THEN z ELSE z-4008];
END;

SignExtend defines the conversion of a signed byte to a sixteen-bit integer.
The shortening of an operand is always indicated explicitly by using LowByte, LowHalf, or

some other explicitly coded function (see, for example, the ReadField and WriteField
routines defined in §7.5).

2.4.2 Signed/Unsigned Conversions

Conversions between signed and unsigned numbers of the same length are performed
using the operators CARDINAL and INTEGER. Given i: INTEGER and ¢: CARDINAL, the following
examples illustrate their usage:

i « INTEGER[C]; - check ¢ < = LAST[INTEGER]
¢ &= CARDINAL[I]; -- check i > = FIRST[CARDINAL]

The INTEGER conversion implies a check that the cardinal is less than 32,768 (yielding an
ERROR if it fails); the CARDINAL conversion implies a check that the integer is non-negative.
With appropriate change in range, the same conversions also apply to LONG CARDINAL and
LONG INTEGER.

Mesa Processor Principles of Operation 2

2.4.3 Short/Long Conversions

Conversions from short to long are performed using the LONG operator. Given i: INTEGER, li:
LONG INTEGER, C: CARDINAL, and 1¢: LONG CARDINAL, the following table defines the conversion

rules:
i & LonGli]; - sign extend
li &« LonG[c]; -- supply high-order zeros
lc « LoNGli]; - check non-negative
lc « LONG[c]; -- supply high-order zeros

The LONG operator applied to an UNSPECIFIED always produces a LONG UNSPECIFIED by prefixing
high-order zeros.

Conversions from long to short values are performed using the built-in routines defined
above (for example, LowByte or LowHaif). These operations do not check for loss of
significant bits. If a check is required, it appears explicitly in the code.

2.4.4 Pointer Conversions

Conversions of constants to pointers are performed using a LooPHOLE. The mapping of
virtual to real memory addresses is the subject of §3.1.1; conversions from short to long
pointers involve special addressing considerations described in §3.2.1.

2-7

..-Data Types

2-8

Memory Organization

This chapter describes the memory structures of the Mesa processor. It discusses the
virtual memory, distinguished regions of the virtual memory called Main Data Spaces,
and the programmer-accessible memories of the processor. This chapter also identifies
most of the data structures residing in these memories used by the processor. The
chapters on control transfers (§9) and the process mechanism (§10) define other structures
in detail.

3.1 Virtual Memory

All Mesa processors implement a large virtual address space. Virtual memory is
organized as a single uniform array of words shared by all processes, addressed by thirty-
two bit virtual addresses. A virtual address is mapped into a real address before an actual
fetch or store operation occurs. Virtual addresses are represented by either long or short
pointers.

For mapping purposes, virtual and real memory are further structured as a uniform array
of pages. A page is a contiguous array of 256 words whose address is a multiple of the page
size. (Therefore, it lies on a page boundary.)

PageSize: CARDINAL = 256;
PageNumber: TYPE = LONG CARDINAL; -- [0..224)
Page: TYPE = ARRAY [0..PageSize) OF UNSPECIFIED;

Note: Although a PageNumber is actually a subrange of LONG CARDINAL, the current
version of the Mesa language does not support this feature.

Both virtual and real memory consist of up to 224 pages (232 sixteen-bit words).

RealPageNumber: TYPE = PageNumber;
VirtualPageNumber: Tyre = PageNumber;

A block of 256 pages aligned on a 64K-word boundary is called a bank. Unless otherwise
noted, all memory sizes are stated in units of sixteen-bit words; for example, banks are
64K words.

341

Memory Organization

3-2

A virtual address occupies two words: the smallest virtual address is zero and the largest
is 232-1. The most significant bit of the address is numbered zero. The least significant is
numbered thirty-one. Virtual addresses are represented by values of type LONG POINTER.
As with all LONG data types, when a long pointer is stored in memory, the least significant
word appears at the lower-numbered address (§2.3.1).

Within distinguished regions of the virtual memory, called Main Data Spaces, data can be
referenced using short pointers. These addresses occupy a single word and are represented
by values of type POINTER. §3.2 discusses the structures contained in Main Data Spaces and
the conversion of short to long pointers .

Design Note: Mesa processors may implement virtual and real address spaces smaller
than 232 words (see below). Regardless of the actual size of virtual memory, long pointers
always occupy two words, and the unused bits must be zero.-

3.1.1. Virtual Memory Mapping

Virtual addresses are mapped into real addresses via the mapping mechanism. The
implementation of the mapping operations is processor-dependent, and it is modeled in
this document by the operations ReadMap and WriteMap. Logically, these operations
implement an array of real page numbers indexed by virtual page number, except that the
array can have holes, allowing for an associative or hashed implementation.

The address-translation process is identical for all memory accesses, whether they
originate from the processor or from I/O devices. There is no method for bypassing the
address-translation mechanism and directly referencing a main memory location using a
real address. The virtual-to-real mapping can always be determined using the map
instructions (§3.1.2).

Like virtual memory, real memory is referenced by thirty-two bit addresses in the range
[0..232-1]. However, the real address space is not necessarily contiguous or complete; there
may be gaps where no real memory resides, and some models of the processor may
implement less than 232 words of real memory. The size of a gap in the real address space
must always be a multiple of the page size and begin on a page boundary.

The mapping mechanism identifies the real page that corresponds to a given virtual page
(if any). Each virtual page is mapped individually, and a contiguous region of virtual
memory does not necessarily correspond to a contiguous block of real memory. A thirty-
two bit virtual address is mapped into a thirty-two bit real address, as illustrated in
Figure 3.1.

The mapping mechanism is described by an array, indexed by the virtual page number,
containing the associated real page numbers. It also contains the access flags, some of
which are processor-dependent. The flags have the following format, although some
reserved bits may not be present in all implementations of the processor:

MapFlags: TYPE = MACHINE DEPENDENT RECORD [
reserved (0:0..12): UNSPECIFIED[0..177778],
protected (0: 13..13): BOOLEAN,
dirty (0: 14.14): BOOLEAN,
referenced (0: 15..15): BOOLEAN];

:‘Mesa Processor-Principles of Operation 3

0 7
virtual page number word virtual address
0 23 31
Map
0
2241
0 23
Y 0 Y 7
real page number word real address
0 23 31

Figure 3.1 Virtual Memory Mapping

Deéign Note: The processor returns zero as the value of each unimplemented reserved bit.
Any unimplemented bits supplied by the programmer when writing the map are ignored.

The flags encode access properties of the real page, if one is assigned. These bits can be
read and written both by the processor and by the programmer using the map instructions
defined in §3.1.2. Three of the flags, protected, dirty, and referenced, are defined by the
architecture. Other processor-dependent flags (up to thirteen) may also be defined. The
write-protect bit (protected) is set by the programmer. It prohibits writing into the page,
causing a write-protect fault if a store is attempted. The dirty bit (dirty) is set by the
processor if a store is done into a non-write protected page. The referenced bit (referenced)
is set by the processor on any read or write access of a word within the page.

A distinguished encoding of the flags called vacant signifies that the virtual page is not
present in real memory (that is, it is unmapped). If a read or write operation is performed
on a page with flag bits set to vacant, a page fault occurs.

Vacant: PROCEDURE [flags: MapFlags] RETURNS [BOOLEAN] =
BEGIN
RETURN[flags.protected anD flags.dirty anD ~flags.referenced];
END;

The mapping operation is defined by the following routine, which maps a virtual address
into a real address. Both types of addresses are represented by LONG POINTERS, but the Mesa

3-3

- Memory Organization

3-4

dereferencing operator (1) is applied only to real addresses in the instruction descriptions
that follow. '

Map: PROCEDURE [virtual: LONG POINTER, op: {read, write}] RETURNS [real: LONG POINTER] =

BEGIN

mf: MapFlags;

rp: RealPageNumber;

adrs: LONG CARDINAL = LOOPHOLE[virtual];

vp: VirtualPageNumber = adrs/PageSize;

wa: LONG CARDINAL = adrs MOD PageSize;

[flags: mf, real: rp] « ReadMap(vp];

IF Vacant[mf] THEN PageFault[virtual];

IF Op = write THEN
IF mf.protected THEN WriteProtectFault[virtual]
ELSE mf.dirty « TRUE;

mf.referenced « TRUE;

WriteMaplvirtual: vp, flags: mf, real: rp];

RETURN[LOOPHOLE[rp*PageSize + wal];

END;

Note: The PageFault and WriteProtectFault routines do not return control to Map.
Instead, they raise the Abort signal (§4.1).

Implementation Note: Operations on the map must be atomic with respect to accesses by
other processors and I/O devices. That is, after the ReadMap has taken place, other
accesses must be prohibited until the following WriteMap completes (or a fault occurs).

Design Note: When accessing data structures declared to be resident in real memory, the
processor need not maintain the dirty and referenced flags. The resident structures are
the Process Data Area and the State Vectors that it points to (§10.1.1).

The operations ReadMap and WriteMap are implementation-dependent, and are
described by the following interface:

ReadMap: PROCEDURE [virtual: VirtualPageNumber]
RETURNS [flags: MapFlags, real: RealPageNumber];

WriteMap: PROCEDURE [_
virtual: VirtualPageNumber, flags: MapFlags, real: RealPageNumber];

These operations have the following properties (see also §3.1.2):
It is illegal to attempt to map more than one virtual page to the same real page.
This restriction allows an associative or hashed implementation of the map in

which there is only one map entry for each real memory page.

In the case where ReadMap returns flags indicating vacant, the value of the real
page number returned by the operation is undefined.

In the case where WriteMap is supplied with flags indicating vacant, the value of
the real page number supplied by the caller is ignored.

Mesa Processor Principles of Operation v 3

Implementation Note: Each implementation of the processor may handle out-of-bounds
virtual addresses differently. The hardware may be designed to make ReadMap and
WriteMap return the appropriate flags for this condition. Otherwise, SetMap and
GetMapFlags can be used to do address checking.

Programming Note: The maximum size of virtual memory can be determined by
attempting to map a real page to each possible virtual page and then checking the flags of
its map entry for vacant.

3.1.2 Memory Map Instructions

The map instructions are used to maintain the correspondence between virtual and real
pages. The SetMap instruction replaces an entry in the map. GetMapFlags reads the flags
and real page number from a map entry, given a virtual page number; SetMapFlags reads
an entry and updates it with new flags obtained from the stack, provided the flags do not
indicate vacancy. Note that SetMap and SetMapFlags must atomically update the map,
and that no mapping operations may occur while the map is being updated.

Implementation Note: The atomicity requirements on SetMap and GetMapFlags may be
replaced with a rule allowing only one processor in the system ever to write the map. Such
a rule would imply that the privileged processor must preset the map flags for each
addressing operation performed by the other processors or I/0 controllers.

Programming Note: It is illegal to map more than one virtual page to the same real page,
so the results of such an operation are undefined. A detailed discussion of the properties of
the map can be found in the previous section.

The stack and the Push(Long) and Pop(Long) routines are defined in §3.3.2.

SM Set Map

If the flags specify that the page is vacant, Set Map ignores the real page number, except
to pop it from the stack.

SM: PROCEDURE =
BEGIN
mf: MapFlags = Pop(];
rp: RealPageNumber = PopLongl];
vp: VirtualPageNumber = PoplLong(];
WriteMaplvirtual: vp, flags: mf, real: rp]
END;

GMF Get Map Flags
If the flags returned indicate a vacant map entry, the real page number is undefined.

GMF: PROCEDURE =
BEGIN
mf: MapFlags;
rp: RealPageNumber,
vp: VirtualPageNumber = PoplLong(];
[flags: mf, real: rp] « ReadMap[vp];

3-5

Memeory Organization - -

Push[mf];
PushLong[rp];
END;

SMF Set Map Flags

If the old flags indicate a vacant entry, the real page number is undefined, and the new
flags taken from the stack are ignored. ’

SMF: PROCEDURE =
BEGIN
mf: MapFlags;
rp: RealPageNumber;
newMf: MapFlags = Pop(];
vp: VirtualPageNumber = PoplLong(];
[flags: mf, real: rp] « ReadMaplvp];
Push[mf];
PushLong(rpl;
IF ~Vacant[mf] THEN
WriteMap(virtual: vp, flags: newMf, real: rp];
END;

Programming Note: SetMapFlags cannot change the status of an entry from vacant to
non-vacant, since that would require a new real page number. SetMap must be used for
this purpose.

3.1.3 Virtual Memory Access

In the code that follows, the Fetch and Store routines are used to perform the mapping
operation. They return a LONG POINTER that is the real address produced by Map. This
notation allows the use of the Mesa operator (1) to dereference the pointers. Wherever
this operator appears, a real memory access takes place, and all real memory accesses are
denoted by this operator. There are no virtual address dereferences in this document, and

~ the code does not make use of Mesa’s implicit pointer-dereferencing rules. Notice that
wherever calls on Fetch or Store appear, a page fault or write-protect fault might result (in
the form of an Abort signal; see §10.4.3).

Fetch: PROCEDURE [virtual: LONG POINTER]
RETURNS [real: LONG POINTER] =
BEGIN
RETURN[Map(virtual, read]];
END;

Store: PROCEDURE [virtual: LONG POINTER]
RETURNS [real: LONG POINTER] =
BEGIN
RETURN[Mapl(virtual, write]];
END;

To allow convenient access to double-word structures, the following operation is also
defined, which checks for faults on each word of the data:

Mesa Processor Prineciples of Operation 3

ReadDbl: PROCEDURE [virtual: LONG POINTER]
RETURNS [data: LONG UNSPECIFIED] =
BEGIN
temp: Long;
temp.low « Fetch[virtual] 7 ;
temp.high « Fetch[virtual + 1] 1;
RETURN[LOOPHOLE{temp]];
END;

Design Note: There are currently no requirements to provide a double-word store
operation that is atomic with respect to page faults (see §4.6.1).

3.1.4 Virtual Memory Data Structures

This section summarizes the data structures of the architecture that are global to the
entire virtual memory. Other structures are local to and replicated in each Main Data
Space, and are described in §3.2.2. The overall structure of virtual memory is illustrated
in figure 3.2.

3.1.4.1 Reserved Locations

A contiguous area beginning at page zero of virtual memory is reserved for the booting
process (see §4.7). Page zero normally is not used thereafter. It should not be allocated by
the programmer, so that most uses of zero long pointers will cause faults.

PageZero: LONG POINTER = LOOPHOLE{LONG[0]];

During booting, the initialization process may construct and store in main memory
information about the machine configuration, device and controller identification,
diagnostic information, and error status, in addition to the software necessary for initial
program bootstrap. The format, content, and size of this area is processor-dependent;
however, it is always contained within the first 64K of virtual memory (called bank zero)
beginning at page zero. :

BootArea: LONG POINTER TO BootData = LOOPHOLE{LONG[0]];
BootData: TYPE = BLOCK;

On most processors, one or more pages are reserved for communication between I/O
devices or controllers and the processor. The format, content, size, and location of this area
is processor-dependent; however, it is always contained within the first 64K of virtual
memory.

|OArea: LONG POINTER TO IOData;
|OData: TYPE = BLOCK;

Other reserved virtual memory locations may be assigned by the programmer. Real
memory locations may be reserved for /O devices, but these areas must be mappable to
any virtual memory address by the programmer.

Memory Organization

3-8

Virtual Memory

Main Data Space

Code

Segment

GF

LF

0
MDS
Reserved
Locations
Boot Data
10 Page
Process Data Area
64K
PSBs
- PSB
State
Vectors
Code Segment
~— CB
Prefix
code bytes
-« PC

Allocation Vector 128K A
System Data Table
ESC Trap Table
Main Data
Space

Global Frame
Local Frame

\

2321

Figure 3.2 Virtual Memory Structure

- ..Mesa Processor Principles of Operation ' 3

3.1.4.2 Process Data Structures

The Process Data Area (PDA) contains information recording the state of each process and
a pool of state vectors used to save the state of a preempted process. Substructures of the
PDA support the handling of faults, interrupts, and timeouts.

PDA: LONG POINTER TO ProcessDataArea;

The structure and content of the Process Data Area are described in §10.1.1. The location
of the PDA is defined in Appendix A.

3.1.4.3 Code Segments

An arbitrary number of code segments may be allocated anywhere in virtual memory
other than in the reserved locations. (The BootArea may include code, however.) A code
segment contains read-only instructions and constants for the procedures that comprise a
Mesa program module; it is never modified during the course of normal execution. A code
segment is relocatable without modification; no information in a code segment depends on
its location in virtual memory.

Optional Control Links
CB :
0 317 CBmod4 =0 Prefix
PC >1! byten byten+1
0 15 byten +2 byten+3

Figure 3.3 Code Segment

The beginning of the currently-executing code segment is pointed to by the ¢B register (the
code base, a long pointer). The code segment is quad-word aligned (that is, ¢8 modulo 4 =
0), and no part of a code segment may cross a 64K word boundary. These restrictions must
be enforced by the programmer.

CodeSegment: TYPE = MACHINE DEPENDENT RECORD [
available (0): ARRAY [0..4) OF UNSPECIFIED,
code (4): BLOCK];

Note: The array code is of zero length, and is just a place-holder in the record declaration
for the beginning of the actual code bytes for the code segment.

3-9

Memory Organization

In addition to a small amount of space availiable to the programmer, the code segment
may contain a number of control links located immediately before the word pointed to by
the code base (control links are described in §9.1.). These links are used to call procedures
or reference variables in other program modules. The links must also be contained in the
same 64K bank as the rest of the code segment.

The program counter (PC) points to instruction or operand bytes in the code segment. Itisa
byte offset, relative to the code base. The code bytes are addressed left-to-right within a
word, byte zero being bits zero through seven, byte one being bits eight to fifteen. Since
the program counter is sixteen bits, it can reference up to 64K bytes of code starting at the
code base. (This is the maximum size of a code segment.)

Design Note: It is illegal for a program to unmap the page to which the PC currently
points, to clear the referenced bit, or to modify the dirty bit of that page. It is also illegal to
write into the current code segment pointed to by ¢B.

I;nplementation Note: These restrictions allow the processor to cache a portion of the
current instruction stream and the map entry of the current code page, and to set its map
flags only when the page is first referenced.

Several instructions use the code base in conjunction with a word offset into the code
segment to obtain operands. These instructions call the following routine:

ReadCode: PROCEDURE [offset: CARDINAL]
RETURNS [UNSPECIFIED] =
BEGIN .
RETURN[Fetch[cB + LonG[offset]] T1;
END;

Programming Note: Because code segments do not cross 64K boundaries, the calculation
8 + LONG[offset] can be implemented as a short addition of the offset to the least
significant word of the code base, with no possibility of overflow into the high-order word.

3.2 Main Data Spaces

3-10

A Main Data Space (MDS) is a contiguous region of 64K words of virtual memory. All short
pointers access memory locations within an MDS, and all local and global frames (§3.2.2.2)
are allocated within an MDS. The purpose of Main Data Spaces is to allow the most
commonly used data structures to be referenced by single word rather than long (double-
word) pointers.

MdsHandle: TYPE = LONG POINTER TO MainDataSpace;
MainDataSpace: TYPE = BLOCK;

Main Data Spaces are 64K-word aligned and thus do not cross 64K word boundaries.
Several MDSs can be allocated in virtual memory, but only one is current; its address is
contained in the thirty-two bit MDS register (§3.3.1).

.. Mesa Processor Principles of Operation 3

3.2.1 Main Data Space Access

A short pointer is a sixteen-bit quantity that addresses a location within the current MDS
relative to its base. To construct a thirty-two bit virtual address from a short pointer, it is
simply added to the MDs register. The following routine is used to perform this conversion:

LengthenPointer: PROCEDURE [ptr: POINTER] RETURNS [LONG POINTER] =
BEGIN
offset: CARDINAL = LOOPHOLE[ptr];
RETURN[MDS + LONG[offset]];
END;

Design Note: Because the MDS is 64K-word aligned and short pointers are restricted to a
64K range within the MDS, a concatenation operation can replace the addition that
appears above. All operations on short pointers are performed modulo 216, ignoring
overflow.

Programming Note: A Main Data Space can be less than 64K, but the processor is
ignorant of the size of the current MDS. It is up to the programmer to ensure that short
pointers do not exceed the actual size of the MDs.

The Lengthen Pointer instruction converts a short pointer to a long pointer using
LengthenPointer. Notice that it treats zero (the standard value of NIL) as a special case.

LP Lengthen Pointer

LP: PROCEDURE =
BEGIN
ptr: POINTER = Pop(];
PushLong(
IF ptr = LOOPHOLE[0] THEN LONG(0]
ELSE LengthenPointer{ptrl];
END;

The routines below are defined in terms of Fetch, Store and ReadDbl (§3.1.3) for mapping
short pointers. They use the value of the MDSs register to lengthen the short pointers.

FetchMds: PROCEDURE [ptr: POINTER]
RETURNS [real: LONG POINTER] =
BEGIN
RETURN[Fetch[LengthenPointer{ptr}]];
END;

StoreMds: PROCEDURE [ptr: POINTER]
RETURNS [real: LONG POINTER] =
BEGIN
RETURN[Store[LengthenPointer[ptr]]];
END;

ReadDblMds: PROCEDURE [ptr: POINTER]
RETURNS [data: LONG UNSPECIFIED] =
BEGIN

3-11

Memory Organization

3-12

RETURN[ReadDbl[LengthenPointer[ptrl]];
END;

3.2.2 Main Data Space Data Structures

The following sections summarize the data structures contained in each Main Data Space.
These include page zero, the control-transfer data structures, and local and global frames.
Other structures in the MDS may be allocated by the programmer.

3.2.2.1. Reserved Locations

The data structures given in this section are located at fixed addresées in each Main Data
Space; when not specified here, their locations are defined in Appendix A.

Page zero of each MDS is not normally used (except during the booting process; see §4.7). It
should not be allocated by the programmer, so that most references through zero short
pointers will cause faults.

Each Main Data Space contains an Allocation Vector (AV), a System Data table (SD), and
an esC Trap Table (ETT). These data structures are used by the control-transfer
mechanism described in detail in §9. A brief summary is contained below:

AV: POINTER TO AllocationVector;

The procedure-calling mechanism allocates space for local variables dynamically from a
frame heap, rather than a stack. This method allows for arbitrary control-transfer
disciplines in addition to simple call-return. It also allows several processes to share the
same heap. The Allocation Vector is used to maintain the heap and to simplify the
allocation and deallocation of frames, so that the common cases can be implemented by the
processor. The details of the allocation mechanism are described in §9.2.

SD: POINTER TO SystemData;

The System Data table is used to contain pointers (in the form of control links; see §9.1) to
the trap-handling routines called when the processor determines that execution of the
current instruction cannot be completed. (Details of the trap mechanism are described in
§9.5.) This table is also used to contain pointers (also in the form of control links) to
commonly used runtime facilities (see §9.4.2).

ETT: POINTER TO EscTrapTabile;
The €sc Trap table is used to contain pointers (in the form of control links; see §9.1) to trap

handling routines called when the program executes an ESC or ESCL opcode which is
implemented in software. (Details of the trap mechanism are described in §9.5.)

3.2.2.2 Local and Global Frames

To minimize the amount of addressing information needed to specify the location of an
operand (and to maximize locality of reference), variables declared in Mesa programs and
procedures are stored in frames and referenced relative to the beginning of these
structures. Frames are contiguous linear structures in virtual memory that reside

Mesa Processor Principles of Operation 3

entirely within a Main Data Space. They are referenced relative to the MDs register using
short pointers. ’

Programming Note: Except for the restriction that frames are contained entirely within
a Main Data Space, the maximum size of a frame is not specified by the architecture.

Frames are of two types. Global frames contain the global variables declared in a program
module. They are allocated statically when the module is loaded. Local frames contain
the local variables declared in a procedure. They are allocated dynamically when the
procedure is called, and they are deallocated when it returns. In addition to local and
global variables, frames contain a small amount of overhead information used to record
the size of the frame along with the linkages between procedure calls, between procedures
and their containing modules, and between modules and their corresponding code
segments. The details are described below.

Global Frames

A global frame represents an instance of a program module. It contains the module’s
globally-declared variables, preceded by a few overhead words. The first global variable is
called global zero, the next global one, and so on.

GlobalFrameHandle: TYyre = POINTER TO GlobalVariables;
GlobalVariables: TYPE = BLOCK;

Design Note: Global zero must be quad-word aligned. The overhead words and the first
four global variables must lie in the same page. This alignment simplifies page-faulting.

0 14 15

trapxfers

word codelinks

codebase
b— ptrto CodeSegment mmmmd

GF

\

Figure 3.4 Global frame

The overhead words contain the location of the code segment from which instructions will
be fetched when the module executes (the codebase field). These words also contain the
flag bits trapxfers and codelinks used during control transfers (§9.3). Their remaining
fields are available for use by the software.

GlobalFrameBase: TYPe = POINTER TO GlobalOverhead;

GlobalWord: TYPE = MACHINE DEPENDENT RECORD |
available (0:0..13): [0..377778],

3-13

.. Memory Organization

3-14

trapxfers (0: 14..14): BOOLEAN,
codelinks (0: 15..15): BOOLEAN];

GlobalOverhead: TYPE = MACHINE DEPENDENT RECORD [
available (0): unsPeECIFIED,
word (1): GlobalWord,
codebase (2): LONG POINTER TO CodeSegment,
global (4): GlobalVariables];

Note: The array GlobalVariables is of zero length, It is just a place-holder in the record
declaration for the starting address of the global variables.

The following routine is used to convert a global frame handle to a pointer to its overhead
words:

GlobalBase: PROCEDURE [frame: GlobalFrameHandle]
RETURNS [GlobalFrameBase] =
BEGIN
RETURN{LOOPHOLE[frame-sizE[GlobalOverhead]l];
END;

Design Note: If a program modifies the overhead words of its own global frame, this
modification may have no effect on their values as seen by the processor until the next
control transfer into that module. This feature allows the processor to cache this (read-
only) information in internal registers.

In addition to the overhead words, a number of control links can be located immediately
before the global frame’s overhead words. These links are used to call procedures and to
reference variables in other program modules. Control links and the codelinks bit are
discussed in §9. Also, see the Load Link instruction in §9.4.2.

Local Frames

A local frame represents an instance of a procedure. It contains the procedure’s locally-
declared variables, preceded by a few overhead words. The first local variable is called
local zero, the next local one, and so on.

LocalFrameHandle: TYPe = POINTER TO LocalVariables;
LocalVariables: TYPE = BLOCK;

Design Note: Local zero and the overhead words must be quad-word aligned. The
overhead words and the first four local variables must lie in the same page. This
alignment simplifies page-faulting.

The overhead words contain the byte-relative location in the code segment from which
instructions will be fetched when the procedure executes (the pc field). The globallink
points to the procedure’s global frame. It is used to gain access to the procedure’s global
variables. (It points to global zero, not to the overhead words.) The returnlink is a control
link that normally points to the local frame of the procedure that created the current local
frame (by a transfer of control; see $9.3). The overhead words also contain the frame’s size,
represented by a frame-size index (§9.2). The remaining field is available for use by the
software.

Mesa Processor Principles of Operation 3

0 7 8 15
word fsi
return link ShortControlLink
global link GlobalFrameHandle
pc
LF p=====- >

Figure 3.5 Local frame

LocalFrameBase: TYPE = POINTER TO LocalOverhead;

LocalWord: TYPE = MACHINE DEPENDENT RECORD |
available (0: 0..7): BYTE,
fsi (0: 8..15): FSIndex];

LocalOverhead: TYPE = MACHINE DEPENDENT RECORD [
word (0): LocalWord,
returnlink (1): ShortControllink,
globallink (2): GlobalFrameHandle,
pc (3): CARDINAL,
local (4): LocalVariables];

Note: The array LocalVariables is of zero length. It is just a place-holder in the record
declaration for the starting address of the local variables.

The following routine is used to convert a local frame handle into a pointer to its overhead
words.

LocalBase: PROCEDURE [frame: LocalFrameHandle]
RETURNS [LocalFrameBase] =
BEGIN
RETURN[LOOPHOLE[frame-size[LocalOverheadl]l];
END;

3.2.3 Frame Overhead Access

The overhead instructions are used to access overhead words of local and global frames.
Read Overhead Byte obtains a pointer to a frame from the stack and moves a word from
the overhead of that frame to the stack. Write Overhead Byte obtains a pointer to a frame
from the stack and moves a word from the stack to the overhead of that frame.

Programming Note: Overhead words of frames must be accessed only by the overhead
instructions. This restriction allows implementations to cache overhead words.

Programming Note: The programmer must ensure that the alpha byte (§4.2) in the
overhead instructions is within the interval [1..4].

3-15

- Memory Organization

ROB Read Overhead Byte

ROB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte(];
ptr: POINTER = Popl];
IF alpha ~in [1..4] THEN ERROR;
Push[FetchMds[ptr-alpha] 1 1;
END;

WOB Write Overhead Byte

WOB: PROCEDURE =
BEGIN
alpha: 8BYTe = GetCodeByte[];
ptr: POINTER = Pop(];
IF alpha ~IN [1..4] THEN ERROR;
StoreMds(ptr-alpha] 1 « Pop(l;
END;

3.3 Processor Memories

3-16

This section describes those processor memories (usually called registers) visible to the
programmer. An implementation of the architecture will typically include other internal
registers as well. Several control registers are used to direct the execution of programs.
The evaluation stack, which replaces the general-purpose registers found in most processor
architectures, is also described. The data and status registers available to the
programmer are listed, and the instructions used to access registers are defined.

3.3.1 Control Registers

The registers described below designate the process currently being executed by the
processor, the Main Data Space in which it is executing, the frames to which it has direct
access, and the location of the instructions being interpreted. All of the registers declared
as pointer types contain virtual-memory addresses.

The state of the current process is recorded in a Process State Block (PSB). Its index into a
table of such blocks located in the Process Data Area is contained in the register PS8.

PsB: Psbindex;

The process state block contains, among other things, a pointer to the MDS in which the
process is running. It also contains either a pointer to the process’ local frame or a pointer
to another structure (a State Vector) containing the process’ evaluation stack (§3.3.2) and
frame pointer. Details of the process structures are contained in §10.

The virtual address of the current Main Data Space is contained in the MDs register. The
value of this register normally is changed only by a process switch (see §10). It can also be

read and written using the register instructions (§3.3.4).

MDs: MdsHandle;

. Mesa Processor Principles of Operation 3

Implementation Note: Because the address of the MDS is always a multiple of 64K, MDS
can be implemented using a sixteen-bit register.

Before a program can be run, an execution environment called a context must be
established for it. In addition to a Main Data Space, a context includes:

® a pointer to the program’s code segment,
® a pointer to its current instruction (the program counter), and

® pointers to its local and global data.

This information is stored in the overhead words of the program’s local and global frame
(§3.2.2.2).

The processor includes dedicated registers (described below) that contain pointers to the
current local frame, global frame, and code segment, along with the current program
counter. These registers are updated by the control-transfer instructions described in §9.
Notice that a local frame is sufficient to determine all of the other registers: given a local
frame pointer, the program counter is obtained from its pc field, the global frame pointer
from its globallink field, and the code segment address from the global frame’s codebase
field. For this reason, the terms frame and context are often used interchangeably in the
PrincOps, as are the terms control transfer and context switch.

The address of the local frame of the current context is contained in the sixteen-bit register
LF (a short pointer). Its value is obtained directly from a Process State Block, from a State
Vector, or via a control transfer (§9).

LF: LocalFrameHandle;

To access the overhead words of the current local frame, the procedure LocalBase[LF] is
used. The register LF points to local zero, not to the overhead words. The format of a local
frame is defined in §3.2.2.2.

The address of the global frame of the current context is contained in the sixteen bit
register GF (a short pointer). Its value is obtained using LocalBase[Lr].globallink.

GF: GlobalFrameHandle;

To access the overhead words of the current global frame, the procedure GlobalBase[GF] is
used; the register GF points to global zero, not to the overhead words. The format of a
global frame is defined in §3.2.2.2.

The address of the code segment of the current context is contained in the register ¢B (the
code base, a long pointer). Its value is obtained using GlobalBase[GF].codebase. The
format of a code segment is described in §3.1.4.3.

CB: LONG POINTER TO CodeSegment;

The current offset into the code stream is contained in the register pC (the program
counter). It contains the byte offset, relative to the code base €B of the next byte to be
fetched. It is obtained initially (on a control transfer) using LocalBase{Lf].pc or from an
entry vector.

3-17

Memory Organization

3-18

PC: CARDINAL;

Except during execution of jump instructions and control transfers, the PC is maintained
by the instruction-fetch routine GetCodeByte described in §4.3.

3.3.2 Evaluation Stack

The Evaluation Stack (usually just called the stack) is an array of registers normally
accessed in a last in, first out manner. It is used as the source and destination of most
transfers to and from memory. It is also used to pass parameters and results from one
context to another during control transfers. Most arithmetic and logical operators also
obtain their operands from the stack and return their results to the stack.

EX

0 1 2 cSS-1

Figure 3.6 Evaluation Stack

The stack is represented by an array of StackDepth words and the Push and Pop routines.
The variable sp (the stack pointer) indexes the next word above the top of the stack, so that
the stack is empty when sP=0 and full when sp=StackDepth. The StackCount routine
returns the number of words currently on the stack. The value of css, the stack size, is
givenin Appendix A.

StackDepth: CARDINAL = cSS;
StackPointer: Tyre = [0..StackDepth];

sP: StackPointer;
stack: ARRAY [0..StackDepth) OF UNSPECIFIED;

StackCount: PROCEDURE RETURNS [StackPointer] =
BEGIN
RETURN[SP];
END;

Push (PushLong) adds a word (two words) to the top; Pop (PopLong) removes the top word
(two words) from the stack. If a push or pop would cause the stack pointer to be
incremented or decremented out of range, a trap is generated.

Programming Note: The state of the stack after a stack error is undefined. Such an error

is always fatal: it is illegal to resume a program that has generated a stack error (§4.6.1,
§9.5).

Implementation Note: A stack error must always be detected by the processor, but it
need not be reported during the execution of the instruction that caused it. This allows for

Mesa Processor Principles of Operation 3

pipelining in the arithmetic unit of the processor. A speedy report about the stack error
(by the processor) is helpful for debugging, however. Otherwise, if another process switch
occurs, the wrong process may be indicated as having a problem.

Push: PROCEDURE [data: UNSPECIFIED] =
BEGIN
IF P = StackDepth THEN StackError(];
stack[sP] « data;
SPe&SP+1;
END;

Pop: PROCEDURE RETURNS [UNSPECIFIED] =
BEGIN
IF P = 0 THEN StackError(];
SP & SP-1;
RETURN([stack[sP]];
END;

PushLong: PROCEDURE [data: LONG UNSPECIFIED] =
BEGIN
Push{LowHalf[data]];
Push{HighHalf[data]];
END;

Poplong: PROCEDURE RETURNS [LONG UNSPECIFIED] =
BEGIN
long: Long;
long.high &« Pop(];
long.low « Pop(];
RETURN[LOOPHOLE[loNg]];
END!

Note that double-word quantities are placed on the stack so that the least significant word
is at the lower-numbered stack index (that is, on the bottom).

The stack is the primary source of instruction operands and the primary destination of
results. The load instructions push words from memory onto the stack. The store
instructions pop the stack into memory. The conditional jump instructions test words on
the top of the stack and branch based on the result. The arithmetic instructions (or
operands) pop their operands from the stack and push a result back onto the stack.
Indirect instructions find their pointers on the stack. '

Normally, the stack may contain results of previous computations that are to be combined
with the result of the current instruction by execution of the operations following.
However, a few instructions are minimal stack; that is, they require that the stack be
empty except for their operands. These instructions call the following routine after
popping their operands from the stack:

3-19

~Memory Organization

3-20

MinimalStack: PROCEDURE =
BEGIN
IF SP#0 THEN StackError{];
- END;

Some operations leave results or partial results above the top of the stack, that is, at
stack[sp] and stack[sp + 1]. These results are not normally used, but they can be obtained
using a Recover instruction (§5.1), which increments the stack pointer without disturbing
the stack’s contents. There is a corresponding Discard instruction that discards the top
element of the stack by decrementing the stack pointer. These instructions are
implemented using the following routines:

Recover: PROCEDURE =
BEGIN
IF sP = StackDepth THEN StackError(];
SP &SP+ 1;
END;

Discard: PROCEDURE =
BEGIN
IF SP = 0 THEN StackError(];
SP €« 5$p-1;
END;

The Multiply instruction (§5.5) provides an example of the use of Recover. It leaves the
most significant word of a double-word result above the top of the stack. This allows a
single instruction to function as both a single- and a double-precision operation.

In no cases are more than two words left above the top of the stack, and at most sp +2
elements of the stack need be stored when its contents are saved (see §9.5.3).

Since the stack may not actually be implemented as an array, certain words left above the
top of the stack may be lost. In particular, if more than two Recover instructions are
executed sequentially, the excess Recovers may yield undefined results. In addition,even
if they are not actually destroyed by the instruction, the original stack operands may not
be recovered if the instruction changed the contents of the stack and changed the value of
the stack pointer. (For example, one can not in general recover the original dividend after
a divide, but the operand of a store instruction can always be recovered.) Exceptions to
this rule are those instructions that leave results explicitly above the top of the stack.
These values can always be obtained by Recovers (for example, MutL, and DIV).

Implementation Note: The intention of these restrictions is to allow the top few elements
of the stack to be implemented using fast registers as a cache. The restrictions limit the
cases in which the contents of the cache must be written back to the stack.

3.3.3 Data and Status Registers

The following additional data and status registers are accessible to the programmer using
the register instructions (§3.3.4). In some models of the processor, these actually may be
implemented in main memory or other auxiliary storage.

Mesa Processor Principles of Operation 3

Each processor has a unique identification number guaranteed to be different from all
others. This register is read-only.

PID: READONLY ARRAY [0..4) OF UNSPECIFIED;

Design Note: Currently, only 48 bits are implemented, and the first (high-order) word
must be zero.

Most models of the processor include a maintenance panel for displaying error and status
information to service personnel. This register is optional; if it is present, it is a write-only
register.
MP: CARDINAL;

The interval timer allows high-resolution measurements of program performance and
external events. It is incremented by one, modulo 232, at a constant rate. The units qf the
timer, called pulses, are processor-dependent, but must be in the range 1-100
microseconds. '

IT: LONG CARDINAL,

The wakeup mask register contains a bit mask indicating which interrupt levels are
assigned for internal use by the processor (see §10.4.4). It is read only.

WM: READONLY CARDINAL;

The wakeup pending register records the occurrence of wakeups that will later be
translated into interrupts by the processor (see §10.4.4).

WP: CARDINAL;
The wakeup disable counter is used to control interrupt processing (see §10.4.4).
WDC: CARDINAL;
The process timeout counter is used to time out waiting processes (see §10.4.5).
PTC: CARDINAL;
The xfer trap status is used to control trapping of control transfers (see §9.5.5).
XTS: CARDINAL;
Additional data and status registers may be present in the processor and available to the

programmer. Inclusion of the IEEE standard floating-point instructions may add such
registers. Details of the format and content of these registers are under development.

3.3.4 Register Instructions

The register instructions read and write the contents of the programmer-visible registers
defined in the previous sections.

3-21

Memeory Organization

3-22

RRIT Read Register IT

RRIT: PROCEDURE =

BEGIN
PushLongl(iT];
END;
RRMDS Read Register MDS

RRMDS: PROCEDURE =

BEGIN
Push[HighHalf[mDs]];
END;

RRPSB - Read Register PSB

RRPSB: PROCEDURE =

BEGIN
Push[Handle[rss]];
END;
RRPTC Read Register PTC

RRPTC: PROCEDURE =

BEGIN
Push[ptc];
END;
RRWDC Read Register WDC

RRWDC: PROCEDURE =

BEGIN
Push{woc];
END;
RRWP Read Register WP

RRWP: PROCEDURE =

BEGIN
Push{we];
END;
RRXTS Read Register XTS

RRXTS: PROCEDURE =

BEGIN
Push{xTs];
END;
WRIT Write Register IT

WRIT: PROCEDURE =
BEGIN

Mesa Processor Principles-of Operation

IT < Poplongl];
END;

WRMDS - Write Register MDS

WRMDS: PROCEDURE =
BEGIN
MDs « LongShift[Long[Pop(]], WordSize];
END;

WRMP Write Register MP

WRMP: PROCEDURE =

BEGIN
MP « Popl(];
END;
WRPSB Write Register PSB

WRPSB: PROCEDURE =

BEGIN
PsB « Index[Pop(]];
END;
WRPTC Write Register PTC

WRPTC: PROCEDURE =
BEGIN
PTC « Pop(];
time «IT;
END;

WRWDC Write Register WDC

WRWDC: PROCEDURE =

BEGIN
wDC « Pop(];
END; .

WRWP Write Register WP

WRWP: PROCEDURE =

BEGIN
WP « Pop(];
END;
WRXTS Write Register XTS

WRXTS: PROCEDURE =
BEGIN
XTS « Popl];
END;

3-23

Memory.Organization

3-24

Programming Note: Reading (writing) a write-only (read-only) register yields undefined
results.

Programming Note: Writing the MDs register does not modify the other registers that
define the current context. Matching local and global frames must exist in the new MDS at
the Mps relative locations pointed to by the LF and GF registers.

The following table lists the sections in which each of these registers is defined (if it is not
discussed in detail above). Unless otherwise noted, the register can be both read and
written by the programmer.

PSB Current Process State Block handle (§10.1.1).
MDS Current Main Data Space address.

PID Quad word processor id, read only.

MP Maintenance panel, write only.

IT Double word interval timer.

wMm Wakeup mask register, read only (§10.4.4).
wp Wakeup pending register (§10.4.4.1).

wDC Wakeup disable counter (§10.4.4.3).

PTC Process timeout counter (§10.4.5).

XTS Xfer trap status (§9.5.5).

Programming Note: The current local frame register (LF) and global frame register (GF)
can be read using the LA0 and GA0 instructi?ns (§7.2). They can be written by a control
transfer (§9.4). The current code base (¢B) can be obtained from the global frame.

Instruction Interpreter

This chapter describes the operation of the Mesa instruction interpreter. Only the main
loop is contained here; the individual instructions are covered in other chapters. The
instruction formats, instruction fetch, effective address calculation, and opcode dispatch
are defined in this chapter. A description of exception processing (traps, faults, and
interrupts) is also included. In the last section, the initial state of the processor is defined.

4.1 Interpreter

After initialization, the processor repeatedly interprets instructions as coded in the

Processor routine. This task includes checking for pending interrupts
timeouts before the execution of each instruction.

Abort: ERROR = CODE;

Processor: PROCEDURE =
BEGIN
Initialize[];
DO ENABLE Abort = > LOOP;
interrupt: BOOLEAN « CheckForinterrupts(];
timeout: BOOLEAN « CheckForTimeouts(];
IF interrupt OR timeout
THEN Reschedule[preemption: TRUE]
ELSE IF running THEN Execute(];
ENDLOOP
END;

and possible

The initial state of the processor and its memories is defined in §4.7. The checks for
pending interrupts and timeouts are discussed briefly in §4.6.2 and more throughly in
§10.4. Reschedule and running are also defined there. The Execute routine defines
instruction fetch, instruction decode, and opcode dispatch. (Details are in §4.3 and §4.5.)

In the event of an exception, the trap and fault routines use the signal Abort to return
control to the main loop. In this situation, the processor continues executing instructions
using the machine state established by the trap or fault routine; the intermediate state of
the current opcode routine (and any routines that it has called) is discarded as a result of

4-1

Instruction Interpreter

catching the signal. Abort is the only signal defined in the code. It is raised only by the
trap and fault routines (see §4.6.1), and it is unwound only by the Processor routine.

4.2 Instruction Formats

The Mesa instruction set is composed of variable-length instructions of one, two, or three
bytes in length. The most frequently used operations are encoded in a single byte. The
first byte is always part of the opcode, and since there are more than 256 instructions,
some extended opcodes occupy two or more bytes (the assignment of opcode values is given
in the Appendix). In addition to the opcode, an instruction can contain one or two operand
bytes, called alpha and beta. Additional operands may be present on the evaluation stack.
The following illustration shows the possible instruction formats:

0 7
op ESC op
op alpha ESCL op alpha
op alpha beta ESCL [op op

Figure 4.1 Instruction Formats

Design Note: The maximum size of an instruction is three bytes. Therefore, extended
opcodes of two (or three) bytes can have only one (zero) operand bytes. This restriction
establishes a minimum size for the optional instruction buffer (see §4.3).

Design Note: There are two escape opcodes, one for two-byte instructions (EsC) and one for
three-byte instructions (escL). In both cases, the second byte is an extended opcode. This
feature enables the programmer to determine instruction lengths by examining only the
first instruction byte.

Design Note: The opcode values zero and 255 are reserved for internal use by the
processor implementation. The programmer must ensure that these values will never
appear as opcodes in an instruction stream contained in a code segment.

4.3 Instruction Fetch

4-2

Opcode and operand bytes are fetched from the code segment by the GetCodeByte routine.
It maintains the program counter pC by incrementing it each time a byte is fetched. Thus
the PC always points just beyond the current instruction byte (unless it is explicitly
modified by the instruction, as in a jump). The beginning of the current instruction is
pointed to by the variable savedrc, defined with Execute below (84.5).

GetCodeByte: PROCEDURE RETURNS [UNSPECIFIED[0.377B]] =
BEGIN
even: BOOLEAN = (PCMOD 2) =0;
word: BytePair = ReadCode(rPc/2]; PCe&PC + 1;

Mesa Processor Principles of Operation 4

RETURN([IF even THEN word.left eLsE word.right];
END;

All operations on the pPC are performed modulo 216, ignoring overflow. Backward
jumps are performed by adding large unsigned positive numbers to the pC; this is
equivalent to adding signed, two’s-complement negative numbers, since overflow
is ignored.

The following routine is used to fetch a word from the code segment; note that the bytes
that make up the word may cross a word boundary in the instruction stream.

GetCodeWord: PROCEDURE RETURNS [UNSPECIFIED] =
BEGIN - : S
word: BytePair;
word.left « GetCodeByte(];
word.right « GetCodeByte(];

RETURN[word];
END;

Implementation Note: As written, the GetCodeByte routine fetches a full word from
memory each time it is called. To avoid these extra memory references, and generally to
speed execution, most models of the processor implement an instruction buffer which
holds the next few bytes of the code stream. Take care to ensure that page faults do not
occur until the word containing the requested byte would have been accessed by calls on
the above routines.

4.4 Address Calculation

There are no fixed address fields or addressing modes defined by the instruction format,
since the address computation performed by an instruction is determined entirely by its
opcode. However, there are some common patterns shared by several instructions. In
general, addresses are computed in one of the following ways:

If the operands are on the evaluation stack, the stack pointer is used to address
them (§3.3.2, §5).

If the operands are in the current local or global frame, the registers LF and GF are
combined with an offset taken from the stack, the opcode, or the operand bytes
alpha and beta (§7.2).

Operands elsewhere in memory are referenced using pointers taken from the stack
or from the local or global frame. These pointers are usually combined with offsets
obtained from the stack, the opcode, or the operand bytes alpha and beta (§7.3-5).

Operands located in the code are referenced using an offset from the code base B or
the pC. These offsets are taken from the stack, the opcode, or the operand bytes
alpha and beta (§6, §7.5.1, and §8.1).

Programming Note: The architecture includes provisions for mapping code
segments out of virtual as well as real memory (§9.5.1). Absolute virtual pointers
into the code segment should therefore be used with caution. The processor never

4-3

4 ... Instruction Interpreter

uses such pointers (except for ¢B), and all references to the code are relative to the
code base. Furthermore, interruptible instructions (§4.6.2) must not save the code
base as part of their intermediate state.

A complete definition of address calculation appears in the description of each mstructmn
contained in the chapters that follow.

4.5 Instruction Execution

The following routine defines the initial processing of each opcode. Subsequent actions
appear in separate routines defined for each instruction (or instruction class). If an opcode
other than ESC or ESCL is unimplemented, an OpcodeTrap is generated (§9.5).
Unimplemented ESC or ESCL opcodes generate an EscOpcodeTrap (§9.5). Identifiers
beginning with z represent values of single byte opcodes, identifiers beginning with a
represent values of £SC opcodes, and identifiers beginning with b represent values of ESCL
opcodes. These conventions are fully listed in Appendix A.

break: BYTE;
savedPC: CARDINAL;
savedsr: StackPointer;

Execute: PROCEDURE =
BEGIN .
savedPC «-PC; savedsP «Sp;
Dispatch[GetCodeByte(]];
END;

Dispatch: PROCEDURE [opcode: BYTE] =
BEGIN
SELECT opcode FROM
zLL0 = > LLnfo];
zLtL1 = > Lnf1];

218 = > wsl];

zBRK = > BRK[];
ZESC = >
SELECT opcode « GetCodeByte[] FROM
amw = > mw{];
aMR = > MR[];

ENDCASE = > EscOpcodeTrap[opcode];
ZESCL = >
SELECT opcode « GetCodeByte[] FrOM
bROB = > ROB(];

ENDCASE = > EscOpcodeTrap{opcode];

4-4

Mesa Processor Principles of Operation 4

ENDCASE = > OpcodeTrap[opcodel];
END; :

Execute begins by saving the current values of the program counter and stack pointer
before each instruction is executed (and before its opcode is fetched). This method allows
the trap and fault routines to restore these variables to their original values so that the
aborted instruction can be restarted (see below). Most jump instructions also use savedpc
as the base for relative addressing (§6). The break byte and Dispatch are used by the
breakpoint mechanism (§9.5.4).

4.6 Exceptions

An exception occurs when the processor determines that execution of the current
instruction should be halted (perhaps before it has even begun), and that some other
context or process should be run. There are three types of exceptions: traps, faults, and
interrupts.

4.6.1 Traps and Faults

A trap results when the processor detects some condition that will not allow the current
instruction to complete successfully (for example, a stack error or a zero divisor). An
enumeration of these conditions is contained in §9.5.1. A trap causes the current context

" to be saved by a trap routine, a part of the processor. The trap then invokes a software ¢rap
handler using a transfer of control much like a procedure call (an XxrFER; see §9.3). This
transfer does not change the current process, the Main Data Space, or the evaluation
stack. The xFErR may itself cause a trap (or a fault). Details of the context-switching
mechanism and the trap routines are contained in §9.

An instruction experiences a fault if it causes a page fault (§3.1.1), a write protect fault
(83.1.1), or a frame allocation fault (§9.2). A fault calls a fault routine, which causes a
process switch. This changes not only the current context, including the evaluation stack,
but also the MmDs and PsB registers as well, and makes a software fault handler ready, if it is
not currently ready. (A trap handler, on the other hand, runs in the same process, and
uses the same Main Data Space, as the context that caused the trap.) Details of the
process switching mechanism and the fault routines are contained in §10.4.

Exceptions can occur at any time during the execution of an instruction. Therefore, care
must be taken to define the state of the context when an exception occurs. This precaution
allows the programmer to correct the cause of the problem (if possible) and restart the
instruction that trapped, faulted, or was interrupted. Stated more precisely: if an
exception occurs, the processor state, including the current context, the evaluation stack,
and the other registers (defined in §3.3) must be restored to a state which, when used to
restart the context, can result in the completion of the instruction as though the exception
had not occurred. This is call the Restart rule, and like all good rules, there are exceptions
involving fatal errors from which processing can not be resumed. They are discussed
below.

The restart rule is intended to allow trap and fault handlers themselves to experience
traps and faults. No matter how deeply nested the processor becomes in exception
routines, only the last exception handler actually will get control. This handler will see
the state of a context or a process that was not the original state or context. It only sees

4-5

Instruction Interpreter

4-6

the state or context (which was excepted) of which it got control. When the trap or fault
handler completes exception processing, it restarts the context in which its exception
occurred. Occasionally the restart causes another trap or fault; it can even cause the same
trap again.

The restart rule applies under a wide range of conditions. One extreme includes
recoverable FAULTS, such as page faults, where the entire processor state from the
beginning of the opcode is restored. For some cases of faults, the restart rule is used to
restore only a partial state of the processor. At the other extreme are fatal traps. The
processor is responsible only for leaving as much information as possible for debugging
purposes. The following paragraphs cover these instances in more detail.

Generally, the proeessor adheres to the restart rule by restoring itself to what its state had
been at the beginning of the current instruction. Because Execute saves the initial values
of the stack pointer and program counter, the opcode routines are free to remove operands
from the stack and fetch operand bytes, knowing that the trap and fault routines (§9.5.2,
§10.4.3) will restore the sP and PC in the event of an exception (interrupts are handled
differently; §4.6.2). The opcodes do not, however, push results back onto the stack. That
method would destroy the original operands! They must be preserved until all possibility
of a trap or fault has passed. Instead, the opcode routines use temporary variables to hold
intermediate results until exceptions are no longer possible (for example, see RDO, RDS,
RDLO, and ROLB in §7.3.1.1 and XFER in §9.3).

Another approach to recovering from a fault is to save and restore the processor state at
any point where a fault may occur. This restores only that part of the state that had been
altered. Because of its complexity, this approach is used only for lengthy opcodes such as
those that transfer large blocks of data (see below).

Certain changes in the state of the computation are allowed even if a subsequent trap or
fault could occur. In particular, any operation that is idempotent, and therefore by
definition can be performed any number of times with the same result, can be completed
before a subsequent operation that may cause a trap or fault. Likewise, instructions that
update multiword structures in memory are not required to do so atomically. The restart
rule can be interpreted to mean that the entire instruction is re-executed, without
considering the effects of other processes that may have executed between the time of the
exception and the resumption of the instruction. For example, instructions that store LONG
types are not required to update the double word atomically. They can store the first word,
and if a fault occurs on the second word, establish a state that will cause both words to be
stored (the first for a second time) when the instruction is restarted; the modified locations
need not be restored to their original values when the fault occurs (see SLDO, SLD8, WDBL in
§7).

Programming Note: Multiword structures that must be updated atomically with respect
to page faults should not be allocated across a page boundary. If a data structure requires
synchronized access by several processes, the locking mechanism provided by monitors
(§10) can be used. ‘

For instructions that operate on large multiword structures, efficiency considerations
discourage the strict interpretation of the restart rule. Strict interpretation would imply
that the entire operation be started over. The BLT instruction (§8), which copies a block of
up to 64K words from a source to a destination address, is an example. Each time around
its main loop, it modifies the processor state so that the word transferred is no longer

Mesa Processor.Principles-of Operation : 4

specified by the instruction operands.- If an exception occurs during the next iteration,
resumption results in transfer of the remaining words, without disturbing the data
previously moved. All of the block-transfer instructions use this algorithm. Because of
potentially long execution times, they also check for interrupts in their main loops.

Finally, there is an exception to the restart rule: some traps are considered fatal, so a
context that experiences these traps can never be resumed (correctly). The state of the
context is therefore undefined. Fatal traps have names that end with “Error” (e.g.,
StackError, RescheduleError). Depending on the type of error, either the current context,
the current process, or the entire system may be unresumable (see §9.5).

Implementation Note: Although the state of a context that experiences a fatal trap is
undefined, the processor should make an attempt to establish a context that is meaningful
to the programmer for debugging purposes. Ideally, the program counter should point to
the offending instruction, and the stack and stack pointer should reflect its operands. At a
minimum, the value of the local frame pointer LF should be available, since little
debugging is possible without it.

4.6.2 Interrupts

An interrupt occurs in response to a request for service, called a wakeup, from an external
device or controller. Its effect is to notify a condition variable, which may make a software
interrupt handler ready (if one is waiting). This may in turn cause a process switch
(depending on the handler’s priority; see §10.4).

As mentioned above, interrupts are handled differently with respect to the restart rule.
Wakeups are buffered in the status register wp (wakeups pending), but otherwise ignored
by most instructions (except the block transfers). If the main loop of the Processor routine
detects a non-zero value in this register, execution of the current instruction is not started,
and a possible process switch occurs, the details of which are described in §10.4. Because
the check for interrupts is made before instruction execution begins (in fact, before the
opcode is fetched), most instructions are not concerned with the possibility of an interrupt.
However, the block transfer instructions (§8) are implemented in a fashion that allows
their execution to be suspended and later resumed, as explained above. :

4.7 Initial State

The routine below defines the initial conditions when the processor first starts execution;
it sets up the processor registers and the current context. Initialize presumes that the
memory map has been set to reflect all of the available real memory. Each real memory
page must be entered in exactly one map entry corresponding to some existing virtual
page, but not all mapped virtual memory need be contiguous. The protected flag of these
map entries must be FALSE, but the dirty and referenced flags may be in an undefined state.
The flags of all other map entries not assigned to real pages must be vacant (see §3.1.1).
The reserved locations in the BootArea and the IOArea must be mapped.

Design Note: Not all of the real memory attached to the machine needs to be made
available to the processor at initialization. In particular, so called buffered devices that
require dedicated real memory will normally make this memory known to the software
through the device implementation.

Instruction Interpreter

4-8

Initialization turns off interrupts, clears the process timeout registers, clears the XxFer trap
status register, and sets the running flag (§10). It empties the stack, initializes the MDS to
the first 64K, and clears the break byte (§9.5.4). Initialize then performs an xrerR through a
fixed location in the System Data table. (sBoot is defined in Appendix A.)

Initialize: PROCEDURE =
BEGIN
-- Process registers
WP «0;
WOC « 1;
XTS 0;
time «1IT;
running ¢ TRUE;
-- Contextinitialization
SP «0;
break «o0;
PSB « O;
MDS « LOOPHOLE[LONG[0]];
xFeRr[dst: @sp[sBoot], src: 0, type: call];
END;

Note that a trap or fault during the initial XxFER results in an undefined machine state.
(The call from the main program to Initalize is outside the scope of the Abort catch phrase.)

Programming Note: Except for the execution of the xFER (whose destination is an
indirect control link), initialization does not reference main memory or disturb its
contents.

Stack Instructions

The stack instructions manipulate the evaluation stack; except for the code stream, they
do not reference memory. All of the usual logical and arithmetic operations (including
some comparisons) are described in this chapter, as are primitives for manipulating the
stack pointer and the order of the elements on the stack. Support for range checking and
NIL pointer checking is also included. The basic arithmetic operators and the Not, And, Or,
Xor, Shift, LongNot, LongAnd, LongOr, LongXor, LongShift, and SignExtend routines are
defined in §2. The stack routines Push, Pop, Recover, and Discard are discussed in §3.3.2.

Note: None of the stack instructions operate on a stack element “in place”; they always
remove their operands to check for stack underflow.

5.1 Stack Primitives

The instructions below are used to maintain the stack. Recover obtains the word above
the top of the stack; Recover Two obtains the double word above the top of the stack.
Discard removes the word on top of the stack; Discard Two removes the double word on top
of the stack. Exchange interchanges the order of the top two words of the stack; Double
Exchange interchanges the order of the top two double words of the stack. Duplicate makes
a copy of the top word of the stack; Double Duplicate makes a copy of the top double word
of the stack. Exchange Discard interchanges the order of the top two words on the stack,
then removes the top word.

REC Recover

REC: PROCEDURE =
BEGIN
Recover(];
END;

REQ2 Recover Two

REC2: PROCEDURE =
BEGIN
Recover(];
Recover({]
END;

1

5-1

Stack Instructions

DIS Discard.
DIS: PROCEDURE =
BEGIN
Discardl[];
END;
DIS2 Discard Two
DIS2: PROCEDURE =
BEGIN
Discard(];
Discard(];
END;

There are limitations on how many Recover instructions can

instructions, and on when they may not yield meaningful results.

discussion of these restrictions. ,

EXCH Exchange
EXCH: PROCEDURE =

BEGIN
v: UNSPECIFIED = Popl];
u: UNSPECIFIED = Pop(];
Push{v]; Push(ul;
END;

DEXCH Double Exchange

DEXCH: PROCEDURE =
BEGIN
V: LONG UNSPECIFIED = Poplongl];
U: LONG UNSPECIFIED = PopLong(];
PushLong(v]; PushLong[u];
END;
DuP Duplicate
DUP: PROCEDURE =
BEGIN
U: UNSPECIFIED = Popl];
Push[u]; Push[u];
END;
DDUP Double Duplicate
DDUP: PROCEDURE =
BEGIN
u: LONG UNSPECIFIED = PoplLong(];

PushLong[u]; PushLong{u];
END;

5-2

follow particular
See §3.3.2 for a

Mesa Processor Principles.of Operation o 5

EXDIS Exchange Discard

EXDIS: PROCEDURE
" BEGIN
u: UNSPECIFIED = Popl{];
V: UNSPECIFIED = Popl];
Push[ul;
END;

5.2 Check Instructions

The check instructions are used to implement runtime checks on array indexes,
subranges, and pointers. They restore their first parameter to the stack for use by
subsequent instructions, providing that the check succeeds (or for use by the trap handler,
if the check fails).

BNDCK Bounds Check

BNDCK: PROCEDURE =
BEGIN
range: CARDINAL = Pop(];
index: CARDINAL = Popl];
Push{index];
IFindex > = range THEN BoundsTrapl(];
END;

BNDCKL Bounds Check Long

BNDCKL: PROCEDURE =
BEGIN
range: LONG CARDINAL = Poplong(];
index: LONG CARDINAL = PoplLong(];
PushLong(index];
IFindex > = range THEN BoundsTrap(];
END;

NILCKL Nil Check Long

NILCKL: PROCEDURE =
BEGIN
ptr: LONG POINTER = PoplLong(];
nil: LONG POINTER = LOOPHOLE[LONG[0]];

PushLong[ptr];
If ptr = nil THEN PointerTrap(];
END;

BouhdsTrap and PointerTrap are defined in §9.5.1.

- 5-3

5 Stack Instructions

5.3 Unary Operations

The unary instructions operate on the top single- or double-word element of the stack.
They treat their operands as signed (two’s complement) or unsigned binary numbers.

Programming Note: As long as overflow is ignored and does not occur, these instructions
can be used both for signed and unsigned operations. Mesa does no overflow checking.

NEG Negate

NEG: PROCEDURE =

BEGIN
i INTEGER = Pop(];
Push[-i];
END;
INC Increment

INC: PROCEDURE =

BEGIN
s: CARDINAL = Popl(];
Push(s + 1];
END;
DINC Double Increment

DINC: PROCEDURE =
BEGIN
s: LONG CARDINAL = Poplong(];
PushLong(s +1];
END;

DEC Decrement

DEC: PROCEDURE =
BEGIN
s: CARDINAL = Popl(];
Pushis-1];
END;

ADDSB Add Signed Byte

ADDSB: PROCEDURE =
BEGIN
alpha: 8YTE = GetCodeByte[];
i INTEGER = Popl];
Pushl[i + SignExtend[alphall;
END;

.Mesa Processor Principles of Operation R 5

" DBL Double

. DBL: PROCEDURE =
BEGIN
U: UNSPECIFIED ‘= Pop(];
Push[Shift{u, 1]];
END;

DDBL Double Double

DDBL: PROCEDURE =
BEGIN _
u: LONG UNSPECIFIED = Poplongl];
PushLong[LongShift[u, 1]];
END;

TRPL Triple

TRPL: PROCEDURE =
BEGIN
s: CARDINAL = Popl(];
Push(s * 3];
END;

LINT Lengthen Integer

LINT: PROCEDURE =

BEGIN

i1 INTEGER = Popl];
Pushl[i];

Push[iFi < 0 THEN -1 ELSE 0];
END;

SHIFTSB Shift Signed Byte

SHIFTSB: PROCEDURE =
BEGIN
alpha: 8YTE = GetCodeBytel];
u: UNSPECIFIED = Pop(];
shift: INTEGER = SignExtend[alphal;
IF shift ~IN [-15..15] THEN ERROR;
Push[Shift[u, shift]];
END;

5.4 Logical Operations

The logical instructions perform bitwise logical functions on the top two single- or double-
word elements of the stack. The And instruction and Inclusive und Exclusive Or are defined
in terms of the primitives in §2.1.3.1. The Shift instruction shifts u by Ass{shift] bits, left if
shift is positive, right if shift is negative. Bits shifted off either end of u are lost; zeroes are
shifted into u as necessary. A shift count greater than fifteen always yields a zero result.

5-5

5 - - .Stack Instructions

AND And

AND: PROCEDURE =
‘BEGIN
v: UNSPECIFIED
U: UNSPECIFIED
Push[And[u, v]];
END;

Popl(l;
Popl];

DAND Double And

DAND: PROCEDURE =
BEGIN
VI LONG UNSPECIFIED = Poplong(];
u: LONG UNSPECIFIED = PopLong(];
PushLong[LongAnd(u, v]];
END;

IOR Inclusive Or

IOR: PROCEDURE =
BEGIN

v: UNSPECIFIED = Popl(];
U: UNSPECIFIED = Popl(];
Push[Or{u, vl;

END;
DIOR Double Inclusive Or

DIOR: PROCEDURE =
BEGIN
v: LONG UNSPECIFIED = PoplLong(];
U: LONG UNSPECIFIED = PopLong(];
PushLong[LongOr(uy, v]];
END;

1]

XOR Exclusive Or

XOR: PROCEDURE =
BEGIN
Vi UNSPECIFIED = Popl];
U: UNSPECIFIED = Pop(];
Push{Xor{u, vi];
END;

DXOR Double Exciusive Or

DXOR: PROCEDURE =
BEGIN
V: LONG UNSPECIFIED = PoplLongl];
U: LONG UNSPECIFIED = Poplong(];

5-6

Mesa Processor Principles of Operation ' 53

Pushtong[LongXor[u, v]];
END,

SHIFT Shift

SHIFT: PROCEDURE =
BEGIN
shift: INTEGER = Pop(];
U: UNSPECIFIED = Popl[];
Push([Shift[u, shift]];
END;

DSHIFT Double Shift

DSHIFT: PROCEDURE =
BEGIN
shift: INTEGER = Popl];
U: LONG UNSPECIFIED = Poplongl];
PushLong[LongShift[u, shift]];
END;

ROTATE Rotate

ROTATE: PROCEDURE =
BEGIN
rotate: INTEGER = Pop(];
u: UNSPECIFIED = Pop(];
Push[Rotate([u, rotate]];
END; -

Programming Note: The Not function is obtained by using Xor with one operand set to
ones.

5.5 Arithmetic Operations
The following instructions perform arithmetic functions on the top two single- or double-
word elements of the stack. They treat their operands as signed (two’s complement) or
unsigned binary numbers, and leave their results on the stack.

ADD Add

ADD: PROCEDURE =

BEGIN

t: CARDINAL = Pop(];
s: CARDINAL = Pop(];
Push(s + t];

END;

5 .Stack Instructions

SUB Subtract

SUB: PROCEDURE =
BEGIN
1: CARDINAL = Popl];
s: CARDINAL = Pop(];
Pushls-t];
END;

The Double Add and Double Subtract instructions take thirty-two bit signed or unsigned
operands and push a thirty-two bit result.

DADD Double Add

DADD: PROCEDURE =
BEGIN
t: LONG CARDINAL = PopLong(];
s: LONG CARDINAL = PopLong(];
PushLong(s + t];
END;

DsSuUB Double Subtract

DSUB: PROCEDURE =.
BEGIN
t: LONG CARDINAL = PopLong(];
$: LONG CARDINAL = PopLongl];
PushLong(s-t];
END;

Programming Note: If overflow is ignored, the result of an add or subtract instruction
can be considered to be either signed or unsigned.

The Add Double to Cardinal and Add Cardinal to Double instructions take a thirty-two bit
and a sixteen-bit operand and push a thirty-two bit result. h

ADC Add Double to Cardinal

ADC: PROCEDURE =
BEGIN
t: LONG CARDINAL = PopLong(];
s: CARDINAL = Pop(];
PushLong[LOoNG(s] + t];
END;

ACD Add Cardinal to Double

ACD: PROCEDURE =
BEGIN
t: CARDINAL = Popl];
$: LONG CARDINAL = PopLong(];

5-8

Mesa Processor Principles of Operation » 5

PushLongls + LONG[t]];
END;

The Multiply instruction computes the thirty-two bit product of the top two elements of the
stack. The least significant word of the product is pushed onto the stack; the most

significant word is left above the top of the stack, so it can be obtained using a Recover
instruction.

MUL Multiply

MUL: PROCEDURE =
BEGIN
t: CARDINAL = Pop(];
$: CARDINAL = Popl];
PushLong[LoNG[s]*t];
Discard(];
END;

Programming Note: If the most significant word of the product is not recovered, the
operation can be considered either signed or unsigned if overflow is ignored; otherwise it is

unsigned.

DMUL Double Multiply

MUL: PROCEDURE =
BEGIN

t: LONG CARDINAL = Poplongl];
s: LONG CARDINAL = Poplongl];
PushLong[s*t];

END;

The divide instructions divide a signed (unsigned) sixteen-bit dividend by a signed
(unsigned) sixteen-bit divisor. The quotient is pushed onto the stack, and the remainder is
left above the top of the stack so it can be obtained using a Recover instruction. In soiv, the
signs of the results are computed according to the rules of algebra (§2.2.2). In all divide
instructions, a DivZeroTrap occurs if the divisor is zero (see §9.5.1).

SDIV Signed Divide

SDIV: PROCEDURE =
BEGIN
k: INTEGER = Pop(];
j: INTEGER = Popl[];
IFk = 0 THEN DivZeroTrapl];
Push[j/k];
Push(j mop k];
Discard(];
END;

5-9

- Stack Instructions

5-10

ubiv Unsigned Divide

UDIV: PROCEDURE
BEGIN
t: CARDINAL = Popl];
s: CARDINAL = Pop(];
IFt = 0 THEN DivZeroTrapl(];
Push(s/t];
Push(s mop t];
Discard(];
END;

The Long Unsigned Divide instruction divides an unsigned thirty-two bit dividend by an
unsigned sixteen-bit divisor. The sixteen-bit quotient is pushed onto the stack, and the
remainder is left above the top of the stack so it can be obtained using a Recover
instruction.

Luoiv Long Unsigned Divide

LUDIV: PROCEDURE =
BEGIN
t: CARDINAL = Pop(];
$: LONG CARDINAL = PopLongl];
IFt = 0 THEN DivZeroTrap(];
IF HighHalf[s] > = t THEN DivCheckTrap(];
Push[LowHalf[s/Long[t]]];
Push[LowHalf[s mop LonG[t]]];
Discard(];
END;

A DivCheckTrap (§9.5.1) is generated if the most significant word of the dividend is greater
than the divisor, indicating that the quotient would overflow sixteen bits.

The double divide instructions divide a signed (unsigned) thirty-two bit dividend by a
signed (unsigned) thirty-two bit divisor. The quotient is pushed onto the stack, and the
remainder is left above the top of the stack so it can be obtained using a Recover Two
instruction. In sooiv, the signs of the results are computed according to the rules of

algebra (§2.2.2). In all divide instructions, a DivZeroTrap occurs if the divisor is zero (see
§9.5.1).

SDOIV Signed Double Divide

SDDIV: PROCEDURE =
BEGIN
k: LONG INTEGER = Poplong(];
j: LONGINTEGER = Poplongl];
IFk = 0 THEN DivZeroTrap(];
PushLong(j/k];
PushLongj mop k;
Discard(],

Mesa Processor Pxfincip.les of Operation : o ‘ 5

Discard|(];
END;

ubDDIv Unsigned Double Divide

UDDIV: PROCEDURE =
BEGIN
t: LONG CARDINAL = PoplLongl(];
s: LONG CARDINAL = PopLongl];
IFt = 0 THEN DivZeroTrap(];
PushLong(s/t];
PushLong(s moD t];
Discard(];
Discard(];
END;

5.6 Comparison Operations

The double compare instructions compare two thirty-two bit signed or unsigned operands
and push zero, one, or minus one depending on whether the operands compare equal,
greater, or less.

DCMP Double Compare

DCMP: PROCEDURE =
BEGIN
k: LONG INTEGER = PopLongl];
j: LONGINTEGER = Poplong(];
Push[
SELECT TRUE FROM
j>k=>1,
j <k=>-1,
ENDCASE = > 0];
END;

UDCMP Unsigned Double Compare

UDCMP: PROCEDURE =
BEGIN
t: LONG CARDINAL
5: LONG CARDINAL
Push(

SELECT TRUE FROM
s>t=>1,
s<t=>-1,
ENDCASE = > 0];

END;

PopLongl}];
PopLongl];

i

5.7 Floating Point Operations

The floating point instruction set is currently under development (see §2.2.3).

5-11

5 Stack:Instructions

5-12

Jump Instructions

The jump instructions are of four types: unconditional, conditional, indexed, or absolute.
The conditional jumps test against zero or compare two signed or unsigned operands. The
indexed jumps index tables of displacements found in the current code segment. They are
used to implement case statements.

All jumps are program-counter-relative, and all displacements are measured in bytes,
relative to the first byte of the instruction (recorded in savedpc). The following example
shows the two possible successors of a Jump Less Byte instruction (defined in §6.3):

targetifj > = k ——————— targetifj < k ——
1

0 7 Y Y
JLB 4 L3 2 | un ADD

Figure 6.1 Jump Addressing

Note: Most of the jump opcodes add signed displacements, obtained by sign-extending
alpha, to the unsigned pc. The only unsigned jump displacements are in the Jump Indexed
instructions. All but JIW have their displacement in [-32768, 32767]. Arithmetic on the PC
is always performed modulo 216, and overflow is ignored.

6.1 Unconditional Jumps
These instructions add a small constant, a sign-extended byte, or an INTEGER to the PC.
Jn Jumpn
In: PROCEDURE [n: [2.8]] =
BEGIN

PC «savedPC + n;
END;

6-1

Jump Instructions

JB Jump Byte

JB: PROCEDURE =
BEGIN
disp: BYTE = GetCodeByte(];
PC « savedprcC + SignExtend[disp];
END;

w Jump Word

JW: PROCEDURE =
BEGIN
disp: INTEGER = GetCodeWord[];
PC «savedprC + disp;
END;

The Jump Stack instruction sets the PC to the value popped from the stack:
IS Jump Stack

JS: PROCEDURE =
BEGIN
pC « Popl];
END;

The Catch instruction is used by the software to mark the code and indicate (in alpha) the
catch phrase index. Except for its effects on the p¢, Catch is a no-op.

CATCH Catch

CATCH: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte(];
END;

6.2 Equality Jumps

6-2

The equality jumps compare the top two elements of the stack or the top element and a
constant (alpha or zero) for equality and jump accordingly. The jump pair opcodes compare
the top of the stack with a four-bit field of alpha, and add a second four-bit field of alpha to
the pcif the comparison succeeds.

JZn Jump Zeron

JZn: PROCEDURE [n: [3.4]] =
BEGIN
U: UNSPECIFIED = Popl];
IFu = 0 THEN PC &« savedPC + n;
END;

. Mesa Processor Principles of Operation

JNZn Jump Not Zero n

JNZn: PROCEDURE [n: [3.4]] =
BEGIN
u: UNSPECIFIED = Popl(];
IF U # 0 THEN PC &~ savedPC + n;
END;

JZB Jump Zero Byte

JZB: PROCEDURE =
BEGIN
disp: BYTE = GetCodeBytel];
data: UNSPECIFIED = Popl];

IFdata = 0 THEN PC « savedPC + SignExtend[disp];

END;
JNZB Jump Not Zero Byte

JNZB: PROCEDURE =
BEGIN
disp: 8YTE = GetCodeByte(];
data: UNSPECIFIED = Pop(];

IF data # 0 THEN PC < savedPC + SignExtend([disp];

END;
JEB Jump Equal Byte

JEB: PROCEDURE =
BEGIN
disp: BYTE = GetCodeByte[];
Vi UNSPECIFIED = Pop(];
U: UNSPECIFIED = Pop(];

IFU = vV THEN PC « savedpPC + SignExtend|[disp];

END;
JNEB Jump Not Equal Byte

JNEB: PROCEDURE =
BEGIN
disp: BYTE = GetCodeByte(];
V: UNSPECIFIED = Popl];
U: UNSPECIFIED = Popl(];

IF U # v THEN PC ¢« savedpPC + SignExtend[displ;

END;
JDEB Jump Double Equal Byte

JDEB: PROCEDURE =
BEGIN
disp: BYTE = GetCodeByte[];
Vv: LONG UNSPECIFIED = Poplong(];

6-3

Jump

Instructions

6-4

JDNEB

U: LONG UNSPECIFIED = PopLongl(];
IFU = v THEN PC « savedpC + SignExtend[disp];
END;

Jump Double Not Equal Byte

JONEB: PROCEDURE =

JEP

JNEP

JEBB

JNEBB

BEGIN
disp: BYTE = GetCodeByte(];

v: LONG UNSPECIFIED = PoplLongl];

u: LONG UNSPECIFIED = Poplong(l;

IF U # v THEN PC « savedPC + SignExtend[disp];
END;

Jump Equal Pair

JEP: PROCEDURE =
BEGIN
pair: NibblePair = GetCodeByte[];
data: UNSPECIFIED = Popl];
IF data = pair.left THEN PC «~ savedPC + pair.right + 4;
END;

Jump Not Equal Pair

INEP: PROCEDURE =
BEGIN
pair: NibblePair = GetCodeByte(];
data: UNSPECIFIED = Popl];
IF data # pair.left THEN PC - savedpPC + pair.right + 4;
END;

Jump Equal Byte Byte

JEBB: PROCEDURE =
BEGIN
byte: uNsPECIFIED = GetCodeByte[];
disp: 8YTE = GetCodeByte(];
data: UNsPeCIFIED = Pop(];
IF data = byte THEN PC & savedpC + SignExtend[disp];
END;

Jump Not Equal Byte Byte

JNEBB: PROCEDURE =
BEGIN
byte: UNSPECIFIED = GetCodeBytel];
disp: BYTE = GetCodeByte[];
data: UNSPECIFIED = Pop(];
IF data # byte THEN PC «—savedprC + SignExtend(disp];
END;

Mesa Processor Principles.of Operation 6

6.3 Signed Jumps

The signed jump instructions compare the top two elements of the stack as two’s

complement signed operands and add a sign-extended alpha to the pc if the comparison
succeeds.

JLB Jump Less Byte

JLB: PROCEDURE =
BEGIN
disp: 8YTE = GetCodeByte[];
k: INTEGER = Pop(];
ji INTEGER = Pop(];
IFj < k THEN PC « savedrC + SignExtend[disp];
END;

JLEB Jump Less Equal Byte

JLEB: PROCEDURE =

BEGIN
disp: 8YTE = GetCodeByte[];
k: INTEGER = Popl];

j: INTEGER = Popl]; _ :
IFj <= k THEN PC « savedPc + SignExtend[disp];
END;

JGB Jump Greater Byte

JGB: PROCEDURE =

BEGIN
disp: 8YTE = GetCodeByte(];
k: INTEGER = Pop(];

j: INTEGER = Pop(];
IF j > k THEN PC & savedpC + SignExtend([disp];
END;

JGEB Jump Greater Equal Byte

JGEB: PROCEDURE =
BEGIN
disp: BYTE = GetCodeByte[];
k: INTEGER = Pop(];
j: INTEGER = Popl];
IFj > = k THEN PC « savedpPC + SignExtend[disp];
END;

6.4 Unsigned Jumps

The unsigned jump instructions compare the top two elements of the stack as unsigned
operands and add a sign-extended alpha to the PC if the comparison succeeds.

6-5

Jump Instructions

JULB Jump Unsigned Less Byte

JULB: PROCEDURE =
BEGIN
disp: 8YTE = GetCodeByte(];
v: CARDINAL = Popl];
u: CARDINAL = Popl];
IF u < v THEN PC «savedpc + SignExtend[disp];
END;

JULEB Jump Unsigned Less Equal Byte

JULEB: PROCEDURE =
BEGIN
disp: BYTE = GetCodeByte(];
V: CARDINAL = Pop(];
u: CARDINAL = Popl(];
IFu < = V THEN PC & savedpPC + SignExtend[disp];
END;

JUGB Jump Unsigned Greater Byte

JUGB: PROCEDURE =
BEGIN
disp: 8YTE = GetCodeByte(];
v: CARDINAL = Popl];
u: CARDINAL = Pop(]; '
IF U > v THEN PC «savedprC + SignExtend[disp];
END;

JUGEB Jump Unsigned Greater Equal Byte

JUGEB: PROCEDURE =
BEGIN
disp: 8YTE = GetCodeByte[];
v: CARDINAL = Popl];
u: CARDINAL = Pop(];
IFu > = Vv THEN PC « savedpPC + SignExtend[disp];
END;

6.5 Indexed Jumps

The indexed jumps update the PC from a table of byte displacements located in the code
segment at offset base from the code base ¢B. If index is less than limit, the index added to
base is used to extract a displacement from a table located in the current code segment.
This displacement is then added to the pC. If index is out of range, no jump occurs. Jump
Indexed Byte uses a table of eight bit entries, Jump Indexed Word uses sixteen-bit entries.
The entries in both tables contain displacements measured in bytes. Note that in JIB, the
displacement is not¢ sign-extended.

.Mesa Processor Principles of Operation

JiB Jump Indexed Byte

JIB: PROCEDURE =
BEGIN
disp: BytePair;
base: cARDINAL = GetCodeWord(];
limit: carDINAL = Popl];
index: CARDINAL = Popl];
Ifindex < limit THEN
BEGIN
disp « ReadCode[base + index/2];
PC «savedprC + (
IF (index MoD 2) = 0 THEN disp.left eLSE disp.right);
END;
END;

JIw Jump Indexed Word

JIW: PROCEDURE =
BEGIN
disp: CARDINAL;
base: caRDINAL = GetCodeWord(];
limit: carRDINAL = Popl];
index: CARDINAL = Popl];
IFindex < limit THEN
BEGIN
disp « ReadCode[base + index];
PC « savedprC + disp;
END;
END;

The ReadCode routine is defined in §3.1.4.3.

-3

Jump Instructions

Assignment Instructions

The assignment instructions move words, double words, bytes, and arbitrary fields of
words between the stack and memory. These include the immediate instructions, which
obtain their operands from the code stream, the frame instructions, used to access local
and global variables, and the instructions that dereference pointers (direct and indirect).
The string and field instructions read and write substructures smaller than a word.

Design Note: In instructions that access both the stack and memory, if both a fault error
and a stack error are possible, it is undefined which will occur first.

7.1 Immediate Instructions

The immediate instructions load one- or two-word constants onto the stack. Operands (if
any) are obtained from the code stream.

LIN1 Load Immediate Negative One

LIN1: PROCEDURE =
BEGIN
Push[1777778];
END;

LINI Load Immediate Negative Infinity

LINI: PROCEDURE =
BEGIN
Push([1000008];
END;

LIDO Load Immediate Double Zero

LIDO: PROCEDURE =
BEGIN
PushLong[Long[o]];
END;

7-1

7 - . Assignment Instructions

Lin Load Immediate n

Lin: PROCEDURE [n: [0..10]] =
BEGIN
Push[n];
END;

LiB Load Immediate Byte

LiB: PROCEDURE =
BEGIN
alpha: 8BYTe = GetCod€Byte[];
Push[alphal;
END;

LINB Load Immediate Negative Byte
Note that alpha is not sign-extended.

LINB: PROCEDURE =
BEGIN
alpha: BYTE =.GetCodeByte(];
Push[BytePair[3778, alphal]]l;
END;

LIHB Load Immediate High Byte

LIHB: PROCEDURE =
BEGIN v
alpha: 8YTE = GetCodeByte(];
Push[BytePair[alpha, 0]];
END;

Liw Load Immediate Word

LIW: PROCEDURE =
BEGIN
u: UNSPECIFIED = GetCodeWord(];
Push{u};
END;

7.2 Frame Instructions

The local and global frame instructions move one or two words between the stack and the
frame. The opcodes differ primarily in their addressing modes: for frequently addressed
variables, the offset of the variable in the frame is given by the instruction’s opcode. Less
frequently referenced frame variables are addressed by a one-byte offset obtained from
alpha. Instructions are also provided for generating the address of a local or global
variable.

7-2

Mesa.Processor. Principles.of Operation C : 7

7.2.1 Local Frame Access

The load local, store local, and put local instructions provide access to the local frame
variables of the current context. The local-address instructions each generate a short
pointer to a local variable, given its offset in the frame.

LAn Local Address n

LAn: PROCEDURE [n: [0..3,6,8]] =
BEGIN
Push[LF + n];
END;

LAB Local Address Byte

LAB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte(];
Push{LF + alphal;
END;

LAW Local Address Word

LAW: PROCEDURE =
BEGIN
word: UNSPECIFIED = GetCodeWord(];
Push(LF + word];
END;

Programming Note: Local variables at offsets larger than 255 words from the base of the
frame can be accessed by generating their addresses on the stack and then using the direct
pointer instructions defined in §7.3.1.

7.2.1.1 Load Local
The load local instructions move one or two words onto the stack from the local frame.
LLn Load Local n

LLn: PROCEDURE [n: [0..11]] =
BEGIN
Push[FetchMds[LF + n] 1 ;
END;

LLB Load Local Byte

LLB: PROCEDURE =
BEGIN
alpha: 8YTe = GetCodeByte(];
Push[FetchMds[LF + alpha] 1];
END;

7-3

-Assignment Instructions

LLDn - Load Local Double n

LLDn: PROCEDURE [n: [0..8,10]] =
BEGIN
Push[FetchMds[LF + n] T 1;
Push[FetchMds[LF +n + 1] 1];
END;

LLDB Load Local Double Byte

LLDB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte[];
Push[FetchMds[LF + alpha] T];
Push[FetchMds[LF + alpha + 1] 1];
END;

7.2.1.2 Store Local
The store local instructions move one or two words from the stack to the local frame.
SLn Store Local n

SLn: PROCEDURE [n: [0..10]] =
BEGIN
StoreMds[LF + n] T « Pop(];
END;

SLB Store Local Byte

SLB: PROCEDURE =
BEGIN
alpha: 8YTE = GetCodeByte(];
StoreMds[LF + alpha] T « Pop(];
END;

SLDn Store Local Double n

SLDn: PROCEDURE [n: [0..6,8]] =
BEGIN
StoreMds[LF + n+ 1] T « Popl];
StoreMds[LF + n] T « Pop(];
END;

SLD8 Store Local Double Byte

SLDB: PROCEDURE =
BEGIN
alpha: 8YTe = GetCodeByte(];
StoreMds(LF + alpha + 1] T « Popl[];

Mesa Processor Principles of Operation , ' 7

StoreMds[LF + alpha] 1 « Popl];
END;

7.2.1.3 Put Local - -

- The put local instructions move one or two words from the stack into the local frame,
leaving its operands on the stack.

PLn Put Local n

PLn: PROCEDURE [n: [0.3]] =
BEGIN
stn[n];
Recover(];
END;

PLB Put Local Byte

PLB: PROCEDURE [n: [0.3]] =
BEGIN
sus(];
Recover({];
END;

PLDO Put Local Double Zero

PLDO: PROCEDURE =
BEGIN
sLon[0];
Recover(];
Recover(];
END;

PLDB Put Local Double Byte

PLDB: PROCEDURE =
BEGIN
sLD8(];
Recover(];
Recover(];
END;

7.2.1.4 Add Local

The Add Local Zero to Immediate Byte instruction adds local zero and a small constant
from alpha and pushes the sum on the stack.

ALOIB Add Local Zero to immediate Byte

ALOIB: PROCEDURE =
BEGIN
alpha: 8YTe = GetCodeByte[];

7-5

Assignment Instructions

7-6

Push[FetchMds[LF} T + alpha];
END;

7.2.2 Global Frame Access
The load global and store global instructions provide access to the global frame variables
of the current context. The global address instruction generates a short pointer to a global
variable, given its offset in the frame.

GAn Global Address n

GAn: PROCEDURE [n: [0..1]] =

BEGIN
Push(Gcr + Nn};
END;
GAB Global Address Byte

GAB: PROCEDURE =
BEGIN
alpha: 8YTe = GetCodeByte|];
Push[GF + alpha];
END;

GAW Global Address Word

GAW: PROCEDURE =
BEGIN
word: UNSPECIFIED = GetCodeWord(];
Push[GF + word];
END;

Programming Note: Global variables at offsets larger than 255 words from the base of
the frame can be accessed by generating their addresses on the stack and then using the
direct pointer instructions defined in §7.3.1.

7.2.2.1 Load Global
The load global instructions move one or two words onto the stack from the global frame.
LGn Load Global n

LGn: PROCEDURE [n: [0.2]] =
BEGIN
Push(FetchMds[GF + n] 1 I;
END;

LGB Load Global Byte

LGB: PROCEDURE =
BEGIN
alpha: 8YTE = GetCodeByte(];

~Mesa Processor Principles.of Operation - _ 7

Push[FetchMds[GF + alpha] 1;
END;

LGDn ~ Load Global Double n

LGDn: PROCEDURE [n: [0.2]] =
BEGIN
Push([FetchMds[GF + n] T];
Push[FetchMds[GF +n +1] T];
END;

LGDB Load Global Double Byte

LGDB: PROCEDURE =
BEGIN
alpha: 8YTE = GetCodeByte[];
Push[FetchMds[GF + alpha] 1 1;
Push[FetchMds[Gr + alpha + 1] 1'];
END;

7.2.2.2 Store Global
The store global instructions move one or two words from the stack to the global frame.
SGB Store Global Byte

SGB: PROCEDURE =
BEGIN
alpha: 8YTE = GetCodeBytel[];
StoreMds[GF + alpha] T « Pop(];
END;

SGDB Store Global Double Byte

SGDB: PROCEDURE =
BEGIN
alpha: sBYTe = GetCodeByte[];
StoreMds|[GrF + alpha + 1] 1 « Pop(];
StoreMds([GF + alpha] T « Pop(];
END;

7.3 Pointer Instructions

The pointer instructions are divided into two types: direct and indirect. They move a word
or pair of words between the stack and memory using a pointer obtained from the stack or
from the local or global frame. Most pointer instructions have variants that dereference
either short or long pointers.

Implementation Note: [n the long-pointer variants of these instructions, any addition to

the pointer must be calculated using double-word arithmetic, to account for the case in
which ptr + offset may carry into the most significant word of the pointer.

77

. Assignment.Instructions

7-8

7.3.1 Direct Ppinter Instructions

The direct pointer instructions obtain a pointer from the stack and move a single or double
word stack operand to or from the specified location. The pointer is usually modified by a
small offset contained in the opcode or alpha.

7.3.1.1 Read Direct

The read direct instructions obtain a long or short pointer from the stack, add to it a small
displacement from the opcode or alpha, and perform a single- or double-word push to the
stack from memory.

Rn Read n

Rn: PROCEDURE [n: [0..1]] =
BEGIN
ptr: POINTER = Pop(];
Push[FetchMds[ptr + n] T1;
END;

RB Read Byte

RB: PROCEDURE =
BEGIN
alpha: 8BYTE = GetCodeByte[];
ptr: POINTER = Pop(];
Push[FetchMds[ptr + alpha] 1 |;
END;

RLO Read Long Zero

RLO: PROCEDURE =
BEGIN
ptr: LONG POINTER = PoplLongl];
Push(Fetch(ptr] T],
END;

RLB Read Long Byte

RLB: PROCEDURE =
BEGIN
alpha: 8YTE = GetCodeBytel];
ptr: LONG POINTER = PopLong(];
Push[Fetch(ptr + LONG[alpha]]l T 1;
END;

RDO Read Double Zero

RDO: PROCEDURE =
BEGIN
ptr: POINTER = Pop(];
U: UNSPECIFIED = FetchMds{ptr] 1 ;

. ...Mesa.Processor Principles of Operation _ 7

VI UNSPECIFIED = FetchMds([ptr + 1] 1
Push[u]; Push[v];
END;

RDB Read Double Byte

RDB: PROCEDURE =
BEGIN
alpha: BYTe = GetCodeByte[];
ptr: POINTER = Popl];
U: UNSPECIFIED = FetchMds[ptr + alpha] 1 ;
V: UNSPECIFIED = FetchMds(ptr + alpha +1] T ;
Push{u]; Pushiv];
END; R

RDLO Read Double Long Zero

RDLO: PROCEDURE =
BEGIN
ptr: LONG POINTER = PopLong(];
u: UNSPECIFIED = Fetch[ptr] 1 ;
Vi UNSPECIFIED = Fetch(ptr +1]1;
Push[u]; Pushiv];
END;

RDLB Read Double Long Byte

RDLB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeByte(];
ptr: LONG POINTER = PoplLong(];
u: UNSPECIFIED = Fetch[ptr + LoNG[alpha]]l T ;
V: UNSPECIFIED = Fetch[ptr + LonG[alphal +1] 1;
Push[u]; Push(v];
END;

RC Read Code

RC: PROCEDURE =
BEGIN
alpha: 8YTE = GetCodeByte(];
offset: carRDINAL = Pop(];
Push{ReadCode[offset + alphall;
END;

7.3.1.2 WriteDirect

The write direct instructions obtain a long or short pointer from the stack, add to it a small
displacement from the opcode or alpha, and perform a single- or double-word pop from the
stack to memory.

7-9

7 Assignment Instructions

wWo Write Zero

WO0: PROCEDURE
BEGIN
ptr: POINTER = Popl(];
StoreMds(ptr] 1 « Popl];
END;

WB Write Byte

WB: PROCEDURE
BEGIN
alpha: BYTE = GetCodeBytel];
ptr: POINTER = Popl];
StoreMds[ptr + alpha] 1 « Popl(];
END;

"

WLB Write Long Byte

WLB: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeBytel];
ptr: LONG POINTER = Poplong(];
Store[ptr + LonG[alpha]] 1 « Popl];
END;

wDB Write Double Byte

WDB: PROCEDURE =
BEGIN
alpha: 8YTE = GetCodeByte(];
ptr: POINTER = Popl(];
StoreMds[ptr + alpha + 1] 1 « Popl];
StoreMds[ptr + alpha] 1 « Pop(];
END;

WDLB Write Double Long Byte

WDLB: PROCEDURE =
BEGIN
alpha: 8YTE = GetCodeByte[];
ptr: LONG POINTER = Poplongl];
Store[ptr + LONG[alpha] + 1] T « Popl];
Store[ptr + LonG[alpha]] 1 « Popl];
END;

7.3.1.3 Put Swapped Direct

The put swapped direct instructions obtain a short pointer from the stack, add to it a small
displacement from the opcode or alpha, and perform a single- or double-word store to
memory. They leave the pointer on the stack for use by subsequent instructions.

7-10

Mesa Processor Principles-of Operation , 7

(“Swapped" refers to the order of the address and the data on the stack. The data is given
first (from the TOS down) followed by the address for swapped instructions).

PSB Put Swapped Byte

PSB: PROCEDURE =
BEGIN ,
alpha: BYTE = GetCodeByte[];
u: UNSPECIFIED = Pop(];
ptr: POINTER = Popl];
StoreMds[ptr + alpha] T «u;
Recover(];
END;

PSDO Put Swapped Double Zero

PSDO: PROCEDURE
BEGIN
V: UNSPECIFIED = Popl];
U: UNSPECIFIED = Popl];
ptr: POINTER = Pop(];
StoreMds[ptr + 1] 1 «v;
StoreMds[ptr] 1 «u;
Recover(];
END;

PSDB Put Swapped Double Byte

PSDB: PROCEDURE =
BEGIN
alpha: 8YTE = GetCodeByte(];
Vi UNSPECIFIED = Pop(];
U: UNSPECIFIED = Popl];
ptr: POINTER = Popl];
StoreMds[ptr + alpha + 1] 1 «v;
StoreMds[ptr + alpha] T «u;
Recoverl];
END;

PSLB Put Swapped Long Byte

PSLB: PROCEDURE =
BEGIN
alpha: 8YTE = GetCodeByte[];
u: UNSPECIFIED = Popl];
ptr: LONG POINTER = PopLong(l;
Store[ptr + LonG[alphal] 1 «u;
Recover(];
Recover(];
END;

7-11

7 . Assignment Instructions

PSDLB Put Swapped Double Long Byte

PSDLB: PROCEDURE =
BEGIN =
alpha: BYTE = GetCodeByte(];
Vi UNSPECIFIED = Pop(];
u: UNSPECIFIED = Pop(];
ptr: LONG POINTER = PopLong(];
Store[ptr + LONG[alpha] + 1] T «v;
Store[ptr + LONG[alpha]] T «u;
Recover(];
Recover(];
END;

7.3.2 Indirect Pointer Instructions

The indirect pointer instructions obtain a pointer from the local or global frame or the
stack and move a single-space or double-word stack operand to or from the specified
location. The pointer is modified by a small offset contained in the opcode or alpha.

7.3.2.1 Read Indirect

The read indirect instructions perform a single- or double-word push using a pointer
obtained from the local or global frame. Most of these instructions treat alpha as a pair;

pair.left specifies the offset of the pointer in the frame, and pair.right is added to the
pointer.

RLION Read Local Indirect Zero n

RLIOn: PROCEDURE [n: [0.3]] =
BEGIN
ptr: POINTER = FetchMds(LF] T ;
Push{FetchMds[ptr + n] 1];
END;

RLIP Read Local Indirect Pair

RLIP: PROCEDURE =
BEGIN
pair: NibblePair = GetCodeByte[];
ptr: POINTER = FetchMds([LF + pair.left] 1 ;
Push[FetchMds[ptr + pair.right] 1 ;
END;

RLILP Read Local Indirect Long Pair

RLILP: PROCEDURE =
BEGIN
pair: NibblePair = GetCodeByte(];
ptr: LONG POINTER = ReadDbIMds[LF + pair.left];

7-12

Mesa Processor Principles of Operation

RGIP

Push[Fetch[ptr + LONG[pair.right]] T 1;
END;

Read Global Indirect Pair

RGIP: PROCEDURE =

RGILP

BEGIN
pair: NibblePair = GetCodeBytel];

ptr: POINTER = FetchMds|[Gr + pair.left] T;
Push[FetchMds[ptr + pair.right] 1];

END;

Read Global Indirect Long Pair

RGILP: PROCEDURE =

RLDIOO

BEGIN

pair: NibblePair = GetCodeByte(];

ptr: LONG POINTER = ReadDbIMds[GF + pair.left];
Push[Fetch[ptr + LONG[pair.right]] T |;

END;

Read Local Double Indirect Zero Zero

RLDI0O: PROCEDURE =

RLDIP

BEGIN

ptr: POINTER = FetchMds[LF] T ;

U: UNSPECIFIED = FetchMds[ptr] 1 ;

V: UNSPECIFIED = FetchMds[ptr +1] T ;
Push{u]; Push[v];

END;

Read Local Double Indirect Pair

RLDIP: PROCEDURE =

RLDILP

BEGIN
pair: NibblePair = GetCodeByte(];

ptr: POINTER = FetchMdSs|LF + pair.left] T ;

U: UNSPECIFIED = FetchMds[ptr + pair.right] 1 ;

v: UNSPECIFIED = FetchMds[ptr + pair.right +1] T ;
Push[u]; Push{v];

END;

Read Local Double Indirect Long Pair

RLDILP: PROCEDURE =

BEGIN

pair: NibblePair = GetCodeByte[];

ptr: LONG POINTER = ReadDbiMds[LF + pair.left];

U: UNSPECIFIED = Fetch[ptr + LONG[pair.right]] T ;

v: UNSPECIFIED = Fetch[ptr + LONG[pair.right] + 1] T;
Push[u]; Push(v];

END;

7-13

7 Assignment Instructions

7.3.2.2 Write Indirect

The write indirect instructions perform. a single- or double-word pop to memory using a
pointer obtained from the local frame. They treat alpha as a pair, in which pair.left
specifies the offset of the pointer in the frame, and pair.right is added to the pointer.

WLIP Write Local Indirect Pair

WLIP: PROCEDURE =
BEGIN
pair: NibblePair = GetCodeByte|];
ptr: POINTER = FetchMds(LF + pair.left] 1 ;
StoreMds[ptr + pair.right] T « Pop(];
END;

WLILP Write Local Indirect Long Pair

WLILP: PROCEDURE =
BEGIN
pair: NibblePair = GetCodeBytel];
ptr: LONG POINTER = ReadDbiMds(LF + pair.left];
Store[ptr + LonG[pair.right]] T « Pop(];
END;

WLDILP Write Local Double Indirect Long Pair

WLDILP: PROCEDURE =
BEGIN
pair: NibblePair = GetCodeByte(];
ptr: LONG POINTER = ReadDblMds|LF + pair.left];
Store[ptr + LonG[pair.right] + 1] 1 « Pop(];
Store[ptr + LoNG[pair.right]] T « Pop(];
END;

7.4 String Instructions

The string instructions read or write eight-bit bytes contained in packed arrays. The
address of the word containing the byte is computed as the sum of a short or long pointer
obtained from the stack plus a byte offset divided by two. The offset is the sum of an index
taken from the stack and the instruction’s alpha byte.

{L alpha ‘{ - index ————>l
| [|
} !

ptr target byte

0 15

Figure 7.1 String Indexing

7-14

Mesa Processor Principles of Operation 7

The least significant bit of the offset selects the byte that is read or written; zero specifies
the most significant byte. The data byte is obtained from the stack, ignoring the high-
order byte of the stack word, or written to the stack, clearing the high-order byte.

The following routines are used by the string instructions (and elsewhere) to fetch and
store a byte:

FetchByte: PROCEDURE [ptr: LONG POINTER, offset: LONG CARDINAL]
RETURNS [BYTE] =
BEGIN
word: BytePair = Fetch[ptr + offset/2] 1 ;
RETURN[IF (offset MOD 2) = 0 THEN word.left eLSE word.right];
END;

StoreByte: PROCEDURE [ptr: LONG POINTER, offset: LONG CARDINAL, data: BYTE] =
BEGIN
word: BytePair = Fetch[ptr + offset/2] 1 ;
Store[ptr + offset/2] 1 «IF (offsetmoD 2) = 0
THEN BytePair[data, word.right]
ELSE BytePair[word.left, data];
END;

Implementation Note: In the long-pointer variants of these instructions, the offset must
be calculated using double-word arithmetie, to account for the case in which alpha +
index may carry into the most significant word of the pointer.

7.4.1 Read String

The read string instructions clear the high-order byte of the data word written to the
stack.

RS Read String

RS: PROCEDURE =
BEGIN
alpha: 8YTe = GetCodeBytel];
index: CARDINAL = Pop(];
ptr: POINTER = Popl];
Push[FetchByte[ptr: ptr, offset: alpha + index]];
END;

RLS Read Long String

RLS: PROCEDURE =
BEGIN
alpha: 8YTE = GetCodeByte(];
index: CARDINAL = Popl];
ptr: LONG POINTER = PoplLongl];
Push[FetchByte[ptr: ptr, offset: LonG[alpha] + LonG{index]]];
END;

7-15

Assignment Instructions

7.4.2 Write String

The write string instructions ignore the high-order byte of the data word obtained from
the stack. '

ws Write String

WS: PROCEDURE =
BEGIN
alpha: 8BYTE = GetCodeByte(];
index: CARDINAL = Popl];
ptr: POINTER = Pop(];
data: BYTE = LowByte[Pop(]];
StoreByte[ptr: ptr, offset: alpha + index, data: data];
END;

WLS Write Long String

WLS: PROCEDURE =
BEGIN
alpha: BYTE = GetCodeBytel];
index: cARDINAL = Pop(];
ptr: LONG POINTER = PopLong(];
data: 8YTE = LowByte[Pop(]]; .
StoreByte[ptr: ptr, offset: LONG[alpha] + LONG[index], data: datal;
END;

7.5 Field Instructions

7-16

The field instructions either read or write a field of 2 word in memory. The word is usually
addressed by a short or long pointer found on the stack. The read indirect operations
obtain the required pointer from the local frame.

The field is described by a field specifier or a field descriptor, which is usually found in the
alpha and beta bytes of the instruction. The stack operations take their field descriptors
from the stack. Field specifiers are defined as follows: :

FieldSpec: TYPE = MACHINE DEPENDENT RECORD [
pos {0: 0..3): NIBBLE,
size (0:4..7): NIBBLE];

The pos specifies the most significant bit of the field (the most significant bit of a word is
bit zero), and size is one less than the width of the field in bits (a field never has zero
width). Figure 7.2 illustrates some examples of field specifiers.

Note that fields deseribed by field specifiers do not cross word boundaries.
[n addition to field specifiers, some instructions include an offset, a quantity added to the

pointer to obtain the address of the word containing the field. This offset is included in a
field descriptor.

. Mesa Processor Principles of Operation 7

pos = 0]
size = 0

0 15
pos =5 [I
size = 2

0 5 7 15
pos = 0
size = 15

0 15

Figure 7.2 Field Specifiers

FieldDesc: TYPE = MACHINE DEPENDENT RECORD |
offset (0:0..7): BYTE,
field (0:8..15): FieldSpec];

The following routines are used by the field instructions (and elsewhere) to perform the
basic functions of field extraction and insertion:

MaskTable: ARRAY [0..WordSize) OF UNSPECIFIED = [
1,3,7,178,378,778,1778,3778, 7778, 17778,
37778,77778,177778,377778,777778,1777778];

ReadField: PROCEDURE [source: UNSPECIFIED, spec: FieldSpec]
RETURNS [UNSPECIFIED] =
BEGIN
shift: carDINAL[0..WordSize);
IF Spec.pos + spec.size + 1 > WordSize THEN ERROR;
shift « WordSize-(spec.pos + spec.size + 1);
RETURN[ANd[Shift{source, -shift], MaskTable[spec.size]]];
END;

WeriteField: PROCEDURE [dest: UNSPECIFIED, spec: FieldSpec, data: UNSPECIFIED]
RETURNS [UNSPECIFIED] =
BEGIN
mask® UNSPECIFIED;
shift: caroinaL[0..WordSize);
IF Spec.pos + spec.size + 1 > WordSize THEN ERROR;
shift « WordSize-(spec.pos + spec.size + 1);
mask « Shift[MaskTable[spec.size], shift];
data « And([Shift[data, shift], mask];
RETURN[Or[And[dest, Not[mask]], data]];
END;

Design Note: If an instruction contains a field specifier in which pos + size + 1 >
WordSize, the results are undefined.

7 . Assignment Instructions

7.5.1 Read Field

The read field instructions push a field from a word in memory onto the stack. They right-
justify the word and supply high-order zeros if necessary.

RF Read Field

RF: PROCEDURE =
BEGIN
desc: FieldDesc = GetCodeWord(];
ptr: POINTER = Popl];
Push{ReadField[FetchMds[ptr + desc.offset] 1, desc.field]];
END;

ROF Read Zero Field

ROF: PROCEDURE =
BEGIN
spec: FieldSpec = GetCodeByte(];
ptr: POINTER = Popl]; ’
Push[ReadField[FetchMds[ptr] T, spec]l;
END;

RLF Read Long Field

RFL; PROCEDURE =
BEGIN
desc: FieldDesc = GetCodeWord(];
ptr: LONG POINTER = Poplongl];
Push[ReadField[Fetch[ptr + LONG[desc.offset]] T, desc.field]];
END;

RLOF Read Long Zero Field

~ RLOF: PROCEDURE =
BEGIN
spec: FieldSpec = GetCodeBytel];
ptr: LONG POINTER. = Poplongl];
Push[ReadField[Fetch[ptr] T, spec]];
END;

RLFS Read Long Field Stack

RLFS: PROCEDURE =
BEGIN
desc: FieldDesc = Pop(];
ptr: LONG POINTER = Poplongl];
Push(ReadField[Fetch[ptr + LONG[desc.offset]] T, desc.field]];
END;

7-18

Mesa Processor Principles of Operation 7

RCFS Read Code Field Stack

- -RCFS: PROCEDURE =
BEGIN
desc: FieldDesc = Popl];
- offset: CARDINAL = Popl];
Push[ReadField[ReadCode[offset + desc.offset], desc.field]];
END;

Programming Note: The Read Code Field Stack instruction is used for accessing constant
structures (arrays and records) located in the current code segment when the offset of the
word containing the field is not constant.

RLIPF Read Local Indirect Pair Field

RLIPF: PROCEDURE =
BEGIN
pair: NibblePair = GetCodeByte(];
spec: FieldSpec = GetCodeByte(];
ptr: POINTER = FetchMds([LF + pair.left] 1 ;
Push[ReadField[FetchMds[ptr + pair.right] 1, spec]];
END;

RLILPF Read Local Indirect Long Pair Field

RLILPF: PROCEDURE =
BEGIN
pair: NibblePair = GetCodeByte(];
spec: FieldSpec = GetCodeBytel];
ptr: LONG POINTER = ReadDbiMds[LF + pair.left];
Push[ReadField[Fetch[ptr + LonG[pair.right]] 1, spec]];
END;

7.5.2 Write Field

The write field instructions pop a value from the stack into a field of a word in memory.
The value is right-justified in the field, ignoring leftover significant bits. Write Swapped
Zero Field takes the pointer and the data in the opposite order on the stack, so that the
pointer can be obtained using a Recover instruction.

WF Write Field

WF: PROCEDURE =
BEGIN
desc: FieldDesc = GetCodeWord(];
ptr: POINTER = Pop(];
data: UNSPECIFIED = Popl(];
StoreMds[ptr + desc.offset] T « WriteField
FetchMds[ptr + desc.offset] T, desc.field, data];
END;

7-19

7 Assignment Instructior’s

WOF Write Zero Field

WOF: PROCEDURE =
BEGIN
spec: FieldSpec = GetCodeByte(];
ptr: POINTER = Popl];
data: UNSPECIFIED = Pop(];
StoreMds[ptr] 1 « WriteField[FetchMds(ptr] T, spec, data];
END;

WLF Write Long Field

WLF: PROCEDURE =
BEGIN
desc: FieldDesc = GetCodeWord(];
ptr: LONGPOINTER = PoplLongl];
data: UNSPECIFIED = Pop(];
Store[ptr + LONG[desc.offset]] T « WriteField[
Fetch[ptr + LONG[desc.offset]] T, desc.field, data];
END;

WLOF Write Long Zero Field

WLOF: PROCEDURE =
BEGIN
spec: FieldSpec = GetCodeByte(];
ptr: LONG POINTER = PoplLongl];
data: UNSPECIFIED = Pop(];
Store[ptr] 1 « WriteField[Fetch[ptr] 1, spec, data];
END;

WLFS Write Long Field Stack

WLFS: PROCEDURE =
BEGIN
desc: FieldDesc = Pop(];
ptr: LONG POINTER = PopLong(];
data: UNSPECIFIED = Popl];
Store[ptr + LONG[desc.offset]] 1 « WriteField|
Fetch[ptr + LOonG[desc.offset]] 1, desc.field, data];
END;

WSOF Write Swapped Zero Field

WSOF: PROCEDURE =
BEGIN
spec: FieldSpec = GetCodeByte(];
data: UNSPECIFIED = Popl];
ptr: POINTER = Pop[];
StoreMds[ptr] 1 « WriteField[FetchMds[ptr] 1, spec, datal;
END;

7-20

Mesa Processor Principles of Operation

7.5.3 Put Swapped Field
* The put swapped field instructions leave the pointer on the top of the stack.
PSOF Put Swapped Zero Field

PSOF: PROCEDURE =
BEGIN
WSoF(];
Recover|];
END;

PSF Put Swapped Field

PSF: PROCEDURE =
BEGIN
desc: FieldDesc = GetCodeWord(];
data: UNSPECIFIED = Pop(];
ptr: POINTER = Popl];
StoreMds[ptr + desc.offset] T « WriteField(
FetchMds[ptr + desc.offset] T, desc.field, data];
Recover(];
END;

PSLF Put Swapped Long Field

PSLF: PROCEDURE =
BEGIN
desc: FieldDesc = GetCodeWord(];
data: UNSPECIFIED = Pop(];
ptr: LONG POINTER = PopLong(];
Store[ptr + LONG[desc.offset]] T « WriteField
Fetch[ptr + LONG[desc.offset]] T, desc.field, data];
Recover(];
Recover(];
END;

7 Assignment Instructions

- 7-22

Block Transfers

The block transfer instructions move multiword structures from a source address to a
destination address, or they compare two multiword structures for equality. They include
word block transfers, word block comparisons, byte block transfer, bit block transfer, and
text block transfer. The last two operations are designed specifically for manipulating
rectangles and text on a bitmap display.

Because of potentially long execution times, all of the block transfer instructions check for
pending interrupts (§4.6.2). When a wakeup is detected, they save their intermediate
state on the stack and back up the PC so that, when the instruction is restarted, it will
continue transferring from the point of interruption. The check for interrupts is made

" once per iteration of the main loop (the InterruptPending routine is defined in §10.4.4). An
implementation of the processor may make this check less often, if the frequency is
consistent with the interrupt latency requirements in §10.4.4.1.

8.1 Word Boundary Block Transfers

The word block transfer instructions pop a count along with (short or long) source and
destination pointers from the stack. They move words from the source to the destination.
If the source and destination addresses are the same, there will still be a transfer.

Block Transfer and Block Transfer Long move words from the source to the destination in
the forward direction (from low to high addresses). If the source and destination blocks
overlap and the destination address is greater than the source address, words must be
transferred one at a time from the source into the overlap area. This method causes words
in the non-overlap area to be duplicated throughout the destination block. If the
destination address is less than the source address or there is no overlap, then words do not
have to be transferred one at a time, allowing possible speed improvements.

BLT Block Transfer

BLT: PROCEDURE =
BEGIN
DO
dest: POINTER = Pop(];
count: CARDINAL = Popl(];
source: POINTER = Pop(];

8-1

Block Transfers

8-2

IF count = 0 THEN EXIT;

StoreMds[dest] T « FetchMds[source] 1 ;
Push([source + 1];

Push[count-1];

Push[dest + 1];

IF InterruptPending(] THEN GOTO Suspend;

REPEAT .
Suspend = > pPC « savedPC;
ENDLOOP;
END;
BLTL Block Transfer Long

In Block Transfer Long, the source and destination addresses are long pointers.

BLTL: PROCEDURE =
BEGIN
DO :
dest: LONG POINTER = PoplLong(];
count: CARDINAL = Pop(];
source: LONG POINTER = PopLong(];
IF count = 0 THEN EXIT;
Store[dest] T « Fetch[source] 1 ;
PushLong[source + 1];
Push[count-1];
PushLong[dest + 1];
IF InterruptPending[] THEN GOTO Suspend;
REPEAT
Suspend = > PC « savedrg;
ENDLOOP;
END;

Block Transfer Long Reversed moves words from the source to the destination in the
backward direction (from high to low addresses). If the source and destination blocks
overlap and the destination address is less than the source address, words must be
transferred one at a time from the source into the overlap area, causing words in the non-
overlap area to be duplicated throughout the destination block. As with 8LT and 8LTL, If the
destination address is less than the source address or there is no overlap, then words do not
have to be transferred one at a time.

BLTLR Block Transfer Long Reversed

BLTLR: PROCEDURE =

BEGIN

DO
dest: LONG POINTER = PopLongl];
count: CARDINAL = Pop(];
source: LONG POINTER = Poplong(];
IF COuNt = 0 THEN EXIT;
Store[dest + count] T « Fetch[source + count] 1 ;
PushLong([source];
Push{count-1];

Mesa Processor Principles of Operation 8

PushLong[dest];
IF InterruptPending[] THEN GOTO Suspend;
REPEAT)
Suspend = > pC « savedpC;
ENDLOOP;
END; ~

The Block Transfer Code and Block Transfer Code Long instructions move words from a
source block in the code segment addressed by an offset from the current code base ¢8. In
Block Transfer Code the destination address is a short pointer. In Block Transfer Code
Long the destination address is a long pointer. The ReadCode routine is defined in
§3.1.4.3.

BLTC Block Transfer Code

BLTC: PROCEDURE =

BEGIN

DO
dest: POINTER = Pop(];
count: CARDINAL = Pop(];
source: CARDINAL = Popl(];
IF count = 0 THEN EXIT;
StoreMds{dest] T « ReadCode[source];
Push[source + 1];
Push[count-1];
Push[dest + 1];
IF InterruptPending(] THEN GOTO Suspend;
REPEAT

Suspend = > PC « savedrc;

ENDLOOP;

END;

BLTCL Block Transfer Code Long

BLTCL: PROCEDURE =
BEGIN
DO
dest: LONG POINTER = Poplong(];
count: CARDINAL = Popl(];
source: CARDINAL = Popl[];
IFcount = 0 THEN EXIT;
Store[dest] T « ReadCode([source];
Push[source + 1];
Push[count-1];
PushLong[dest + 1];
IF InterruptPending(] THEN GOTO Suspend;
REPEAT
Suspend = > PC « savedPc;
ENDLOOP;
END;

8-3

8 -Block Transfers

Implementation Note: If an interrupt occurs, the value of the (virtual) code base may be
different when the instruction is resumed; therefore, it should not be part of the
intermediate state saved on the stack.

Implementation Note: Since code segments are read-only, there can be no overlap in the
block transfer code instructions. Therefore words do not have to be transfered one at a
time, nor do they have to be transfered in the forward direction.

CKSUM Checksum

The Checksum instruction incrementally updates a single word checksum based on the
contents of the source block. The updated checksum is returned on the stack.

CKSUM: PROCEDURE =
BEGIN
cksum: CARDINAL;
DO
source: LONG POINTER = PopLong(];
count: CARDINAL = Pop(];
cksum « Popl];
IFcount = 0 THEN EXIT;
Push[Checksum[cksum, Fetch[source] T 11;
Push[count-1];
PushLong[source + 1];
IF InterruptPending(] THEN GOTO Suspend;
REPEAT
Suspend = > pC « savedpc;
RETURN;
ENDLOOP;
IF cksum = 1777778 THEN cksum « Q;
Push[cksum];
END;

The checksum is a ones’ complement add-and-left-cycle as computed by the following
routine.

Checksum: PROCEDURE [chksum: CARDINAL, data: CARDINAL] RETURNS [CARDINAL] =
BEGIN
temp: CARDINAL;
temp « chksum + data;
IF chksum > temp THEN temp «temp + 1;
IF temp > = 1000008 THEN temp « temp*2 + 1 ELSE temp « temp*2;
RETURN[temp];
END;

8.2 Block Comparisons

The block comparison instructions pop a count and pointers from the stack. They compare
two blocks of memory, returning TRUE if they are equal and FALSE otherwise. In Block Equal
Long, the blocks are addressed by long pointers.

8-4

Mesa Processor Principles of Operation 8

BLEL Block Equal Long

BLEL: PROCEDURE =
BEGIN
DO
ptr1: LONG POINTER « PoplLong(];
count: CARDINAL « Popl];
ptr2: LONG POINTER « PoplLong(];
IFcount = 0 THEN
BEGIN Push[TRUE]; €XIT; END;
IF Fetch[ptr1] 1 # Fetch[ptr2] T THEN
BEGIN Push{FALSE]; EXIT; END;
PushLong|ptr2 + 1};
Push[count-1];
PushLong(ptr1 + 1]; .
IF InterruptPending[] THEN GOTO Suspend;
REPEAT
Suspend = > pPC «savedpC;
ENDLOOP;
END;

BLECL Block Equal Code Long

In Block Equal Code Long, one block is addressed by a long pointer and the other is
addressed by an offset from the current code base ¢B. (The ReadCode routine used here is
defined in §3.1.4.3.)

BLECL: PROCEDURE =
BEGIN
DO
ptr: LONG POINTER « PopLong(];
count: CARDINAL « Pop(];
offset: CARDINAL « Pop(];
IF count = 0 THEN
BEGIN Push{[TRUE]; EXIT; END;
IF Fetch[ptr] 7 # ReadCode[offset] 1 THEN
BEGIN Push[FALSE]; EXIT; END;
Push{offset + 1];
Push[count-1];
PushLong[ptr + 1];
IF InterruptPending(] THEN GOTO Suspend;
REPEAT
Suspend = > PC «savedpC;
ENDLOOP;
END;

Implementation Note: If an interrupt occurs, the value of the (virtual) code base may be

different when the instruction is resumed; therefore, it should not be part of the
intermediate state saved on the stack.

8-5

Block Transfers

Implementation Note: In the block comparison instructions, it does not matter whether
words.are fetched in forward or backward order.

8.3 Byte Boundary Block Transfers

8-6

The 7byi>:e block transfer instructions pdp a count, short source and destination offsets, and
long source and destination pointers from the stack. They move bytes from the source to
the destination. If the source and destination addresses are the same, there will still be a
transfer.

Byte Block Transfer moves bytes from the source to the destination in the forward direction
(from low to high addresses). If the source and destination blocks overlap and the
destination address is greater than the source address, bytes must be transferred one at a
time from the source into the overlap area, so bytes in the non-overlap area are duplicated
throughout the destination block. If the destination address is less than the source
address or there is no overlap, then bytes do not have to be transferred one at a time. Some
speed improvements become possible as a result.

The FetchByte and StoreByte routines are defined in §7.4.
BYTBLT Byte Block Transfer

BYTBLT: PROCEDURE =
BEGIN
DO
sourceOffset: CARDINAL < Pop(];
sourceBase: LONG POINTER « PopLong(];
count: CARDINAL « Pop(];
destOffset: CARDINAL « Pop(];
destBase: LONG POINTER « PoplLong(];
IF count = 0 THEN EXIT;
sourceBase < sourceBase + LONG[sourceOffset/2];
sourceOffset « sourceOffset moD 2;
destBase « destBase + LONG[destOffset/2];
destOffset « destOffset moD 2;
StoreByte(
destBase, LONG[destOffset], FetchByte[sourceBase, LONG[sourceOffset]]];
IF sourceOffset = 1 THEN _
BEGIN sourceBase « sourceBase + 1; sourceOffset « 0; eEND
ELSE sourceOffset « 1;
IF destOffset = 1 THEN
BEGIN destBase « destBase + 1; destOffset « 0; END
ELSE destOffset « 1;
PushLong[destBase];
Push[destOffset];
Push[count-1];
PushLong[sourceBase];
Push[sourceOffset];
IF InterruptPending(] THEN GOTO Suspend;
REPEAT
Suspend = > pC « savedrp;

.. Mesa Processor Principles of Operation : 8

ENDLOOP;
END;

Byte Block Transfer Reversed moves bytes from the source to the destination in the
backward direction (from high to low addresses). As with other Block Transfer
instructions, if the source and destination blocks overlap and the destination address is
less than the source address, bytes must be transferred one at a time from the source into
the overlap area. Bytes in the non-overlap area are duplicated throughout the destination
block. However, if the destination address is less than the source address or there is no
overlap, bytes do not have to be transferred one at a time.

BYTBLTR Byte Block Transfer Reversed

BYTBLTR: PROCEDURE =
BEGIN
DO
sourceQffset: CARDINAL « Popl(];
sourceBase: LONG POINTER « PoplLong(];
count: CARDINAL « Pop(];
destOffset: CarRDINAL « Popl];
destBase: LONG POINTER « PoplLong(];
IFcount = 0 THEN EXIT;
sourceBase « sourceBase + LONG[sourceOffset/2];
‘sourceOffset « sourceOffset moD 2;
destBase « destBase + LONG[destOffset/2];
destOffset « destOffset moD 2;
StoreByte|
destBase, LonG[destOffset], FetchByte[sourceBase, LonG([sourceOffset]]];
iF sourceOffset = O THEN
BEGIN sourceBase « sourceBase - 1; sourceOffset « 1; END
ELSE sourceOffset « 0;
IF destOffset = Q THEN
BEGIN destBase « destBase - 1; destOffset « 1; END
ELSE destOffset « O;
Pushtong[destBase];
Push[destOffset];
Push[count-1];
PushLong(sourceBase];
Push[sourceOffset];
IF InterruptPending(] THEN GOTO Suspend;
REPEAT
Suspend = > PC « savedPC;
ENDLOOP;
END;

8.4 Bit Boundary Block Transfers

The bit boundary block transfer instructions include Bit Block Transfer (8iT8LT), for
operating on rectangular arrays of bits in memory, and Text Block Transfer (Tx78LT), for
converting arrays of characters into their bitmap representations.

8-7

8 -.Block Transfers

8.4.1 Bit Transfer Utilities

The transfer instructions described below operate on arbitrary bit boundaries. The
following structure is used to address bits: '

BitAddress: TYPE = MACHINE DEPENDENT RECORD |
word (0): LONG POINTER,
reserved (2:0..11): [0..77778] &0,
bit (2: 12..15): [0..WordSize)];

The Bump routine is used to increment (or decrement) a bit address by a bit offset.

Bump: PROCEDURE [address: BitAddress, offset: LONG INTEGER] RETURNS [BitAddress] =
BEGIN
offset « offset + LONG[address.bit];
RETURN(
BitAddress{

word: address.word + LongArithShift[offset, -Log[WordSize]],

bit: And[LowHalf[offset], WordSize-1]]];
END;

Implementation Note: Because the reserved field of a bit address is guaranteed to be
zero, the extraction address.bit can be replaced by a word access.

The following routines are used to read and write individual bits within a word. The
source (destination) is specified by a base bit address and a bit offset. The ReadField and
WriteField routines are defined in §7.5.

ReadBit: PROCEDURE [address: BitAddress, offset: INTEGER] RETURNS [BIT] =
BEGIN
spec: FieldSpec;
address « Bumpl[address, LonG[offset]];
spec « FieldSpec[pos: address.bit, size: 0];
RETURN[ReadField[Fetch[address.word] 1, spec]];
END;

WriteBit: PROCEDURE [address: BitAddress, offset: INTEGER, bit: 8IT] =
BEGIN
spec: FieldSpec;
word: UNSPECIFIED;
address « Bumpladdress, LonG[offset]];
word « Fetch[address.word] 1 ;
spec « FieldSpec[pos: address.bit, size: 0];
Store[address.word] 1 « WriteField[word, spec, bit];
END;

8.4.2 Bit Block Transfer

The BITBLT instruction manipulates rectangular arrays of bits. It accesses source bits and
destination bits, performs a function on them, and stores the result in the destination bits.

8-8

.-Mesa. Processor Principles of Operation ' 8

Successive bit pairs are obtained by scanning a source bit stream and a destination bit
stream. The instruction operates successively on lines of bits called items; it processes
width bits from a pair of lines, and then moves down to the next item by adding srcBpl (bits
per line) to the source address and dstBpl to the destination address. It continues until it
has processed heightlines. ' '

Figure 8.1 illustrates a possible configuration of source and destination rectangles, which
are always of the same size and dimensions, embedded in separate bitmaps.
Approximately half of the items have been moved to the destination, and the location of
the next item is highlighted in the source bitmap and shown as a dotted line in the
destination bitmap.

Destination Bitmap

Source Bitmap

dst src
L S \1_ width R T Y

item
height '

height . l

_L - |<—-—- width —*|

I dstBpl >

X

}L srcBpl

Figure 8.1 BitBlt Source and Destination

8.4.2.1. BitBlt Arguments

The argument to Bit Block Transfer is a short pointer to a record containing the source and
destination bit addresses and bits per line, the width and height (in bits) of the rectangle
to be operated on, and a word of flags that indicate the operation to be performed. The
width and height of the rectangle are restricted to a maximum of 32,767. The argument
record must be aligned on a sixteen-word boundary.

Note: Review the section on Gray Flag for the relationship between SrcBpl and the gray
flag in BitBltFlags.

BitBItArg: TYPE = MACHINE DEPENDENT RECORD [
dst (0): BitAddress,
dstBpl (3): INTEGER,
src (4): BitAddress,
srcBpl (7): INTEGER,
width (8): CARDINAL,
height (9): CARDINAL,
flags (10): BitBltFlags,
reserved (11): UNSPECIFIED €« 0];

8-9

.. Block Transfers

8-10

The flag bits specify the direction of the operation, the overlap of the operands, whether ‘
the source is interpreted as a gray brick, and-the function to be performed on the source
and destination bits.

BitBItFlags: TYPE = MACHINE DEPENDENT RECORD [-
direction (0: 0..0): Direction,
disjoint (0: 1..1): BOOLEAN,
disjointitems (0: 2..2): BOOLEAN,
gray (0:3.3): BOOLEAN,
srcFunc (0: 4..4): SrcFunc,
dstFunc (0: 5..6): DstFunc,
reserved (0: 7..15): [0..7778] «0];

Source and Destination Functions
The following routine describes the functions available for combining the source and
destination rectangles (arg is the argument record). These functions are also shown in

figure 8.2.

SrcFunc: TYPE = MACHINE DEPENDENT {null, complement};
DstFunc: TYPE = MACHINE DEPENDENT {null, and, or, xor};

Function: PROCEDURE [dst, src: BIT] RETURNS [BIT] =

BEGIN
sr¢ « SELECT arg.flags.srcFunc FROM
null = > sr¢,

complement = > Not[src],
ENDCASE = > ERROR;
dst « SELECT arg.flags.dstFunc FROM
null = > srg,
and = > And[src, dst],
or = > Or[src, dst],
xor = > Xor{src, dst],
ENDCASE = > ERROR;

RETURN[dst];
END;
dst
n a (e} X
src n s s-d s+d s@d
C ~s ~s-d ~s+d ~s@d

Figure 8.2 Source and Destination Functions

..Mesa Processor Principles of Operation 8

The src field has two options; the null selection indicates using the source rectangle “as is”
for the destination function. The complement selection will invert the source bits in the
destination function.

- The dst field determines the function to be used for changing bits in the destination
rectangle. The null selection causes the destination to be “replaced” with the source bits.
There is no boolean operation in this case. Anding the destination bits with the source bits
leaves only those bits in common in the destination. “Painting” the destination requires
oring. This operation will leave the union of the two sets of bits in the destination. The
last function is the xor. It essentially masks out the matching bits leaving the union but
not the intersection of the bits in the destination rectangle.

Direction Flag

The direction flag indicates whether the operation should take place forward (left to right,
from low to high memory addresses) or backward (right to left, from high to low memory
addresses). This allows an unambiguous specification of overlapping BitBlts, as in
scrolling.

Direction: TYPE = MACHINE DEPENDENT {forward, backward};

If the direction is backward, the source and destination addresses point to the beginning of
the last item of the blocks to be processed, and the source and destination bits per line
must be negative. This restricts the width of the bitmaps involved to a maximum of 32,767
bits.

Adjustments of the arguments required by a change in direction are performed by the
ComputeDirection routine which appears after the BITBLT opcode.

Disjoint Flag

If the operation’s source and destination are completely disjoint, the implementation
performs the operation in the most efficient horizontal and vertical directions, given by
the following processor dependent variables:

xPreference, yPreference: Direction;

Both the direction and the disjointitems flags in the argument record are ignored when
disjoint is set.

Disjointitems Flag

If the individual items of the source and destination are disjoint, but the rectangles
otherwise overlap, the disjointitems flag should be set (and the disjoint flag should be
clear). The implementation can then perform the operation so that, within each item, the
bits are processed in the most efficient horizontal direction. The items are processed in the
order indicated by direction.

[f neither disjoint nor disjointitems is set, the implementation processes the items and the
bits within items in the direction indicated by the direction flag.

Programming Note: Correct specification of disjoint and disjointitems is the
responsibility of the programmer. The implementation makes no attempt to verify claims

8-11

lélock Transfers

8-12

about overlapping source and destination arguments. If, in the course of instruction
execution, a bit is used as a destination bit and then subsequently as a source bit, the
results are undefined.

Gray Flag

The gray flag allows repetitive bit patterns to be specified in a condensed format. The
usual application is for generation of various shades of gray on the display, but any
repetitive pattern within the limits stated below may be supplied.

If the gray option is specified, the srcBpl field of the argument record is reinterpreted as
follows:

GrayParm: TYPE = MACHINE DEPENDENT RECORD [
reserved (0:0..3): NIBBLE <0,
yOffset (0: 4..7): NIBBLE,
widthMinusOne (0:8..11): NIBBLE,
heightMinusOne (0: 12..15): NIBBLE];

The fields grayParm.widthMinusOne and grayParm.heightMinusOne define the width
(less one) in words and height (less one) in bits, respectively, of a gray brick located at

arg.src. Note, the term “brick” refers to a rectangular area containing the gray pattern to

be copied. Conceptually, this brick is replicated horizontally and vertically to tile a plane
of dimensions arg.width by arg.height. This plane becomes the source rectangle of the
operation. The brick is a maximum of sixteen words wide and sixteen lines high.
Patterns, therefore, are also limited to a repetition rate of sixteen in each direction. To
guarantee correct repeatability of the pattern in the horizontal direction, the width of the
gray brick (in bits) is usually a multiple of the repetition rate. The height of the gray brick
is usually equal to the vertical repetition rate.

Proper alignment of the gray pattern with the destination bitmap requires the initial x-
and y-offsets into the brick along with its width and height. The initial x-offset is derived
from arg.src as follows: arg.src.word always points to the beginning of the first line to be
transferred (not to the origin of the gray brick). The x-offset of the first bit to be
transffered is supplied by arg.src.bit. This bit is always in the first word of the line. The
initial y-offset is the number of lines down from the origin of the brick. It is specified by
grayParm.yOffset. Subtracting the y-offset times the brick width from arg.src.word gives
the origin of the gray brick.

Design Note: Since the brick is word-aligned and the repetition rate is sixteen or less, the
initial x-offset can never exceed fifteen.

Design Note: The gray case is always forward and completely disjoint (disjointitems is
ignored).

Design Note: Allowing grayParm.widthMinusOne to be greater than zero allows gray
patterns having repetition rates of other than 1, 2, 4, 8, or 16 in the horizontal direction.
Patterns with other repetition rates may be desirable, but are not mandatory. While the
BitBlt code allows values greater than zero for grayParm.widthMinusOne, the initial
implementation is restricted to a value of zero.

Mesa Processor Principles of Operation

Gray Brick

arg.src.word

l |<-— arg.src.bit

yOffset

Y

height

Destination Bitmap

width

|

Figure 8.3 Gray Brick

8.4.2.2. Interruptibility

X

The Bit Block Transfer instruction checks for interrupts after it completes each item. Ifa
pending interrupt is detected, the current state of the BITBLT is saved on the stack. When
the instruction is restarted, the stack count is used to distinguish the restart case. The
actual format of the stack is processor-dependent. The following routines are assumed to

save and restore the intermediate state:

PushState, PopState: PROCEDURE;

Design Note: If any of the values of the arguments (in memory) change between
the time of an interrupt and the subsequent restart of the instruction, the effects of
the instruction are undefined. This allows the original values in the argument

record to be saved as part of the intermediate state.

8.4.2.3. BitBlt Routines
BITBLT Bit Block Transfer

BITBLT: PROCEDURE =
BEGIN
line: CARDINAL;
arg: BitBltArg;
grayParm: GrayParm;
lastGray: [0..15);
‘grayWidth: INTEGER;
grayBump: LONG INTEGER;
xDirection, yDirection: Direction;
IF StackCount(] = 1 THEN Setup(] ELSE PopState(];
MinimalStack(];
WHILE line In [0..arg.height) DO

8-13

8 - . - Block Transfers

BitBltitem[];
arg.src « Bumplarg.src,
IF arg.flags.gray THEN. ‘
IF (line mop grayParm. hesghtMmusOne + 1) IastGray
THEN grayBump
ELSE LONG[grayWidth]
ELSE LONG[arg.srcBpl]l;
arg.dst « Bumplarg.dst, LonGg[arg.dstBpl]];
line «-line + (IF yDirection = forward THEN 1 ELSE -1);
IF InterruptPending[] THEN GO TO Suspend; ‘
REPEAT
Suspend = > {PushState[]; PC « savedrc};
ENDLOOP; ‘
END;

BitBltitem: PROCEDURE =
BEGIN
-offset, pos: INTEGER;
offset « if xDirection = forward THEN 0 ELSE arg.width-1;
THROUGH [0..arg.width) oo
pos « IF arg.flags.gray THEN
((offset + arg.src.bit) moD aBs[grayWidth])-arg.src.bit eLSE offset;
WriteBit[
arg.dst, offset, Function[ReadBit[arg.dst, offset], ReadBit[arg.src, posl]]];
offset « offset + (iF xDirection = forward THEN 1 ELSE -1);
ENDLOOP;
END;

The routines given below are used to set up the BitBIt operation on first entry. They fetch
the argument record, perform error checks on its fields, choose a direction, adjust the
arguments accordingly, and compute the gray brick boundaries.

Setup: PROCEDURE =
BEGIN
ptr: POINTER TO BitBItArg = Pop(];
arg « FetchBitBItArg([ptr];
IFarg.flags.reserved # 0 OR arg.reserved # 0
OR arg.src.reserved # 0 OR arg.dst.reserved #0
OR (~arg.flags.gray AnD arg.srcBpl = 0) OrR arg.dstBpl = 0
OR arg.width > 32767 Or arg.height > 32767
THEN ERROR;
IF arg.flags.gray THEN
BEGIN
grayParm « LOOPHOLE[arg.srcBpl];
IF grayParm.widthMinusOne # o
ORgrayParm.reserved # 0
OR arg.flags.direction # forward
OR ~arg.flags.disjoint OrR arg.dstBpl < 0
THEN ERROR;
grayWidth « INTEGER[(grayParm.widthMinusOne + 1)*WordSize];
grayBump « -grayWidth*grayParm_heightMinusOne;
END

8-14

-Mesa Processor Principles of Operation 8

ELSE ' ,
IF (arg.flags.direction = forward AnD (arg.sr¢Bpl < 0 OR arg.dstBpl < 0))
OR (arg.flags.direction = backward AND (arg.srcBpl > 0 Or arg.dstBpl > 0))
THEN ERROR; : - o '
- ComputeDirection(];
IF arg.flags.gray THEN
lastGray « IF yDirection = forward
THEN grayParm.heightMinusOne-grayParm.yOffset
ELSE grayParm.yOffset;
line « IFyDirection = forward THEN 0 ELSE arg.height-1;
END;

FetchBitBItArg: PROCEDURE [ptr: POINTER TO BitBItArg] RETURNS [BitBItArg] =
BEGIN
Argindex: Tyre = [0..51ZE[BitBitArg]);
temp: ARRAY Arglndex OF UNSPECIFIED;
IF And{ptr, 178] # 0 THEN ERROR;
FORi: Argindex IN Argindex DO
templi] & FetchMds[ptr + i] T;
ENDLOOP;
RETURN[LOOPHOLE[temp]];
END; .

ComputeDirection: PROCEDURE =
BEGIN
yDirection « xDirection « arg.flags.direction;
IF arg.flags.disjoint AND yDirection # yPreference THEN
BEGIN
yDirection « yPreference;
IF arg.flags.gray THEN
BEGIN
arg.sr¢ « Bumplarg.src,
grayWidth*((grayParm.yOffset + arg.height-1)
MOD (grayParm.heightMinusOne + 1)-grayParm.yOffset)];
grayWidth « -grayWidth;
grayBump «-grayBump;
END
ELSE
BEGIN
arg.src « Bumplarg.src, arg.srcBpl*(arg.height-1)];
arg.srcBpl « -arg.srcBpil;
END;
arg.dst « Bumplarg.dst, arg.dstBpl*(arg.height-1)}];
arg.dstBpl «-arg.dstBpl;
END;
IF arg.flags.disjoint OR arg.flags.disjointitems THEN xDirection « xPreference;
END;

Implementation Note: The products computed in Setup and ComputeDirection are
thirty-two bit signed numbers (LONG INTEGERs) produced by multiplying an integer by a

8-15

Block Transfers

8-16

cardinal. Since the cardinal is known to be less than 32,768, a short-integer multiply can
be used. :

Implementation Note: Much of the complexity in ComputeDirection comes from
reversing direction in the gray case. This can be avoided if yPreference is forward, since
all legal gray BitBlts specify a forward direction.

8.4.3 Text Block Transfer

The Text Block Transfer instruction operates on an array of characters. It implements
three functions useful for generating the font representation of the text in a bitmap.

Function: TYPE = MACHINE DEPENDENT {display, format, resolve, unused};

The format function is used to calculate the number of characters that will fit on a line
and the number of spaces that may be added to the line, given its right margin (in micas).
The display function converts characters to their font representation in the destination
bitmap, optionally widening or narrowing pad characters to perform line justification.
The resolve function is used to record the horizontal bit position of the origin of each
character in the bitmap; it also handles justification. This function is used when
determining which character in a text line has been selected with a pointing device.

Note: In the following section, the directional references used refer to the association with
conventional Xerox bitmap displays. The top left of a CRT display is considered the point
of origin for x- and y-coordinates. The x-coordinate increases horizontally from left to
right across the screen. The y-coordinate increases vertically from the top of the screen to
the bottom. So for instance, referring to the bit-position in left-to-right, top-to-bottom
order is only for conceptual purposes.

8.4.3.1 Font Representation

The font determines the height and width (in bits) of the characters and the bit pattern to
be transferred. The font also contains two flag bits for each character: the first specifies
whether the character is a pad character (widenable for justification), and the second
specifies whether the character is a stop character (terminating a TextBlt operation).

The precise format of the font is private to the implementation; the following types and
routines are used in the TXTBLT code to access the font. FontRecord contains the font
information TXTBLT needs. rasters indicates the font’s raster specification. spacingWidths
specifies the width of a character in bits. printerWidths gives the printing width of the
character. The flags consist of pad and stop. pad is set to TRUE if the character is a pad
character; stop is set to TRUE if the character is a stop character. rasterinfos includes the
number of bits to the left or right of the character’s origin and specifies the offset of the
character’s raster. height is the height of the font measured in bits; it is constant for all
characters. To allow for kerned fonts, DisplayWidth returns the width of the entire font
representation of the character, which includes the left and right kerning not included in
the spacingWidth. Bit returns the individual bits of a character’s font representation.

FontHandle points to the font information TextBlt needs. FontRecord is the concrete type
of a Font. FontRecord must be aligned on a sixteen-word boundary.

Mesa Processor Principles of Operation 8

Font: Type; :
FontHandle: TYPE = LONG POINTERTO Font;

fontRecordAlignment: NATURAL = 16; -

FontRecord: TYPE = MACHINE DEPENDENT RECORD [
rasters(0): FontRasters,
spacingWidths(2): SpacingWidths,
printerWidths(4): PrinterWidths,
flags(6): FlagsArray,
rasterinfos(8): Rasterinfos,
height(10): CARDINAL];

The following types make up FontRecord:
FontBitsPtr: TYPE = LONG BASE POINTER TO ARRAY [0..0) OF UNSPECIFIED;
FontRasters: TYPE = LONG BASE POINTER TO < <rasters> > ARRAY [0..0) OF WORD;

The data at FontRasters is a base pointer for the character raster data. For a particular
character, Rasterinfo.offset (defined below) is added to this base to get the address of the
character's raster.The raster format includes the scan lines within the dimensions given
by spacingWidths and height. The scan lines are tightly packed together, so that the last
bit of a scan line is immediately followed by the first bit of the next. The.height of the
raster is constant for all characters. Each raster begins on a word boundary.

The memory order of the bits in the raster correspond to the memory order in which
TextBlt will paint them into the destination bitmap. Said another way, TextBlt paints the
first scan line of the raster into the appropriate place in the first scan line of the
destination bitmap, and so on. Similarly, the first bit of a raster's scan line is painted into
the appropriate first bit of the scan line in the destination bitmap, and so on.

The first scan line in memory corresponds to the top line on the screen (of Xerox
conventional bitmap displays). The first bit of the scan line corresponds to the left pixel of
the line. For this case, the first scan line in the raster will be the topmost row of the
character, and the first pixel (most significant bit) of a scan line will be the leftmost pixel
of its row.

Byte: TYPE = CARDINAL [0..255];

SpacingWidths: TYPE = LONG POINTER TO PACKED ARRAY Byte OF SpacingWidth;
SpacingWidth: TYPe = Byte;

PrinterWidths: TYPE = LONG POINTER TO ARRAY Byt€ OF PrinterWidth;
PrinterWidth: TYPE = CARDINAL;

FlagsArray: TYPE = LONG POINTER TO PACKED ARRAY Byte OF Flags;
Flags: TYPE = MACHINE DEPENDENT RECORD

pad(0:0..0): BOOLEAN,
stop(0:1..1): BOOLEAN];

8-17

Block Transfers

8-18

The pad flag allows the character to have its width increased or decreased (in bits) for line
justification. The stop flag will specify a stop character to terminate a TextBlt operation.

RasterInfos: TYPE = LONG POINTER TO ARRAY.Byte OF Rasterinfo;

Rasterinfo: TYPE = MACHINE DEPENDENT RECORD [
leftKern: BOOLEAN,
rightKern: BOOLEAN,
offset: RasterOffset];

If Rasterinfo.leftKern = TRUE, the character's raster has one column preceeding the char's
origin, and will be written into the destination bitmap with one column preceeding the
current position (bitPos). If Rasterinfo.rightKern = TRUE, the raster extends one column
past the spacing width into the space for the next character; that character’s raster should
begin coincident with the current character’s last column (one column preceeding where it
would normally go). Rasterinfo.offsetis the offset for the address of the character’s raster.

RasterQOffsetDomain: TYPE = CARDINAL [0..377778];
RasterOffset: TYPE = FontRasters RELATIVE POINTER [0..37777B] TO < <raster> > UNSPECIFIED;

RasterQffsetFromDomain: PrROC [domain: RasterOffsetDomain]
RETURNS [RasterOffset] = INLINE {RETURN[LOOPHOLE[dOmMain]]};

RasterDomainFromOffset: prROC [offset: RasterOffset]
RETURNS [RasterOffsetDomain] = INLINE {RETURN[LOOPHOLE[Offset]]};

maxLeftKern: CARDINAL = 1;
maxRightKern: CARDINAL = 1;

MaxLeftKern and maxRightKern support kerning up to one pixel in the respective
direction.

Design Note: Although the architecture permits it, the specification is not intended to
encourage the creation of a different font format for each implementation of the processor.
A new format may be specified only if significant performance improvement can be gained
and is required.

8.4.3.2. TextBlt Arguments and Results

TextBlt’s static arguments are passed via a short pointer to a record. The argument record
must be aligned on a sixteen-word boundary. Arguments updated and returned by
TextBlt are passed (and returned) on the stack (see the opcode description below).

TxtBItArg: TYPE = MACHINE DEPENDENT RECORD [
reserved (0:0..13): [0..377778] «0,
function (0: 14..15): Function,
last (1): CARDINAL,
text (2): LONG POINTER TO ARRAY CARDINAL OF BytePair,
font (4): FontHandle,
dst (6): LONG POINTER,
dstBpl (8): CARDINAL,
margin (9): CARDINAL,

-Mesa Processor Principles of Operation 8

space (10): INTEGER,
coord (11): LONG POINTER TO ARRAY CARDINAL OF CARDINAL];

- TextBlt proceeds through the characters of arg.text from index through arg.last unless a

" stop character is encountered (for example, note that index, shown in the TextBlt Routines
section, is a byte offset). It maintains the bitPos (pestion of the first bit of the character’s
raster) and the printPos (postion of the first bit of the printed character) of the origin of
each character, and increments the count of the number of pad characters processed.
During the format function, the scan is also terminated before the right arg.margin (in
micas) is passed. The display function ors the character’s font bits into the destination
bitmap specified by arg.dst and arg.dstBpl (bits per line). The resolve function saves the
bitPos of the origin of each character in the array arg.coord. :

Programming Note: Because of kerning, the display function may place bits into the
destination bitmap to the left of the bitPos of the leftmost character and to the right of the
right margin. It is the programmer’s responsibility to initialize the bitPos to allow for the
left kerning of the first character, and to supply a bitmap wide enough to allow for the
maximum possible right kerning. (At present this maximum is one bit.)

Justification can be accomplished using the display and resolve functions with
appropriate settings of the arg.space and count values; arg.space is added to the width of
every pad character (it may be negative), and count is incremented each time a pad
character is encountered (it may also be initially negative). Since the amount of white
space to be absorbed by (or squeezed out of) pad characters is rarely an even multiple of the
number of pad characters, pad characters encountered have arg.space+1 added to their
widths as long as count is negative. Thus if sixteen bits need to be added to the width of
the line in order to justify it, but it contains only thirteen pad characters, arg.space would
be set to one, and count would be initialized to negative three. This operation will result in
widening the first three pad characters by two bits each and the remaining ten pad
characters by one bit each.

TextBlt returns, in place of the argument pointer on the stack, an indication of its
completion condition: normal if the last character was processed, margin if the right
margin was reached (format only), and stop if a terminating character was detected.

Result: TYPE = MACHINE DEPENDENT {normal, margin, stop, unused};

The display font (arg.font), character array (arg.text), and destination bitmap (arg.dst)
must not cross 64K boundries. (For bitmaps larger than 64K, the display lines can be
created in a private buffer and transferred to the display bitmap using the Bit Block
Transfer instruction.) As in BITBLT, the maximum value of dstBpl is 32,767. This limitation
also applies to horizontal bit positions. The effects of the instruction are undefined if there
is any overlap in memory among the arguments (arg), display font (arg.font), character
array (arg.text), widths array (arg.coord), or the destination bitmap (arg.dst).

8.4.3.3. Interruptibility

The Text Block Transfer instruction checks for interrupts after it processes each character.
As with all block transfers, the intermediate state of the operation is saved on the stack
when an interrupt is detected. This saving operation consists of pushing the updated

8-19

.Block Transfers

8-20

values of the original arguments.
dependent.

Design Note: If any of the values of the arguments (in memory) change between the time
of an interrupt and the subsequent restart of the instruction, the effects of the instruction
are undefined. The original values in the argument record are thereby allowed to be saved

as part of the intermediate state.

8.4.3.4. TextBlt Routines

TXTBLT

Text Block Transfer

TXTBLT: PROCEDURE =

BEGIN

result: Result;

arg: TxtBltArg;

font: FontRecord;

ptr: POINTER TO TxtBItArg = Popl];
count: INTEGER « Pop(];

printPos: CARDINAL « Pop(];
bitPos: CARDINAL « Popl];

index: CARDINAL « Pop(];
MinimalStack|];

arg « FetchTxtBItArg[ptr];
IFarg.reserved # 0 OR arg.dstBpl > 32767 THEN ERROR;
UNTIL index > arg.last DO

char: BYTE;
IF arg.function = resolve THEN Store[@arg.coord[index]] 1 « bitPos;
char « FetchCharlarg.text, index];
IF font.flags[char].stop THEN GO TO Stop;
IF printPos + font.printerWidths[char] > arg.margin
THEN GOTO Margin; ’
IF arg.function = display THEN DisplayChar[bitPos, char];
bitPos « bitPos + font.spacingWidths(char];
printPos « printPos + font.printerWidths[char];
IF font.flags[char].pad THEN
BEGIN
IF arg.function = (display or format) THEN
BEGIN
bitPos « bitPos + arg.space;
IF count < 0 THEN bitPos « bitPos + 1;
END;
count «-count + 1;
END;
index «index +-1;
IF InterruptPending(] THEN GO TO Suspend;

REPEAT
Suspend = >
BEGIN
PushState[ptr];

PC « savedpr(;

The actual format of the stack can be processor-

Mesa Processor Principles of Operation 8

GO 10 Done;
END;
Stop = > result « stop;
Margin = > result «-margin;
FINISHED = > result « normal;
ENDLOOP;
PushState[result};
EXITS Done = > NULL;
END;

The routines below are used by the TxT8LT code. They fetch the argument record, fetch a
character from the text array, and move a character from the display font into the -
destination bitmap. The type BitAddress and the routines Bump, ReadBit, and WriteBit
are defined in §8.4.1.

FetchTxtBItArg: PROCEDURE [ptr: POINTER TO TxtBItArg] RETURNS [TxtBItArg] =
BEGIN
Argindex: TYPe = [0..51ZE[TxtBItArg]);
temp: ARRAY Arglindex OF UNSPECIFIED;
IF And{ptr, 178] # 0 THEN ERROR;
FORi: Argindex IN Argindex Do
templi] « FetchMds[ptr + i] T;
ENDLOOP;
RETURN[LOOPHOLE[templ]];
END;

FetchChar: PROCEDURE [
ptr: LONG POINTER TO ARRAY CARDINAL OF BytePair, index: CARDINAL]
RETURNS [BYTE] =
BEGIN
data: BytePair = Fetch[@ptr(index/2]] 1;
RETURN[IF (index MOD 2) = 0 THEN data.left eLsE data.right];
END;

DisplayChar: PROCEDURE [p0Os: CARDINAL, char: BYTE] =
BEGIN
count: CARDINAL « 0;
dst: BitAddress « [word: arg.dst, bit: 0];
width: cArRDINAL = DisplayWidth[arg.font, char];
pos « pos - {if font.rasterInfo[char].leftKern THEN 1 ELSE 0};
THROUGH [0..font.height) o
FOR iNC: CARDINAL IN [0..width) DO
bit: 81T « Bit[arg.font, char, count];
offset: INTEGER ¢ INTEGER[pOS + inc];
WriteBit[dst, offset, Or{bit, ReadBit[dst, offset]]];
count «count + 1;
ENDLOOP;
dst «~ Bumpldst, LONG[INTEGER[arg.dstBpl]]];
ENDLOOP;
END;

8-21

Block Transfers

8-22

Bit: PrOC [font: FontHandle, char: Byte, scanlLine, pixel: CARDINAL] RETURNS [BIT] = {
raster: LONG POINTER TO PACKED ARRAY OF BIT =
LoorHOLE[font.raster + font.rasterinfos[char].offset];
bit: CARDINAL = scanLine*displayWidth[font, char] + pixel;
RETURN[raster[bit]]};

[This definition of Bit has been recast above in terms of explicit scanline and pixel.]

DisplayWidth: proC [font: FontHandle, char: Byte] RETURNS [CARDINAL] = {
RETURN[font.spacingWidths[char]
+ (IF font.rasterinfo[char].leftKern THEN 1 ELSE 0)
+ (IF font.rasterinfo{char].rightKern THEN 1 ELSE 0)]};

Programming Note: The programmer should ensure that the calculation pos - {iF
font.rasterinfo[char].leftKern THEN 1 ELSE 0} does not underflow,that is, the pos of the first
character must allow for its left kerning. The programmer must also ensure that the
maximum offset does not exceed 32,767.

Implementation Note: Because the destination bits per line does not exceed 32,767,
conversion of arg.dstBpl to a long integer can be performed by supplying high-order zeros.
Likewise, the conversion of pos + inc to an integer need not be range-checked.

Design Note: For short (or narrow) characters, considerable optimization of the
DisplayChar inner loops is possible by adding information to the font format (the starting
vertical location and the height of each character are examples). Because the character is
ored into the destination, the white space surrounding the character need not actually be
stored in the bitmap. Note, however, that such optimizations may substantially increase
the amount of storage required for the font.

PushState: PROCEDURE [data: UNSPECIFIED] =
BEGIN
Push{index];
Push{bitPos];
Push([printPos];
Push[count];
Push[data];
END;

PushState handles the stack both for the intermediate state (in the case of an interrupt)
and for the final results of the instruction. In the former case the last item pushed is the
pointer to the argument record, in the latter case the last item is the result of the TextBlt.

Control Transfers

Control transfers are a generalization of the notion of a procedure or subroutine call. In
the Mesa architecture, there is a single primitive called xFeErR, which effects a control
transfer from one context to another (§9.3). Variations of this primitive are used to
implement procedure calls, nested procedure calls, returns, coroutine transfers, traps, and
process switches. Included in xFER is a mechanism for the allocation and destruction of
local frames (activation records). This mechanism is described in §9.2.

Contexts are created (and destroyed) by transfers of control, the most common of which isa
procedure call. Instructions that implement various forms of procedure call (local,
external, nested, etc.) and procedure return are described in §9.4. The processor also
implements a general coroutine facility based on ports (§9.4.5). Ports allow contexts to
transfer control without destroying their state. The ports mechanism may be used to
implement, among other things, non-preemptive scheduling of contexts. (Preemptive
scheduling is the subject of §10, which discusses the process mechanism.)

Strictly speaking, the contents of the evaluation stack are also part of the state of a
context, but the stack is not saved or restored by a control transfer. (It is preserved by a
process switch; see §10.4.2.) Instead, the stack is used to pass parameters and return
results from one context to another. Before and after each transfer, the source and
destination contexts must agree on the number and type of the stack elements. Because
traps (§9.5) are also implemented as control transfers, there are cases in which the
configuration of the stack is not known by the destination context. Therefore, certain
instructions save and restore the contents of the evaluation stack and the stack pointer
(§9.5.3). To implement a breakpoint mechanism for debugging, these instructions also
preserve the context’s break byte (§9.5.4).

Furthermore, control transfers do not modify the mps (Main Data Space) or PsB (Process
Status Block) registers. These registers are controlled by the process-switching
mechanism (§10). Transfers of control are limited to contexts residing in the current Main
Data Space.

9.1 Control Links

Contexts are represented by control links, which have one of three formats. The simplest
form is a frame link, which is a pointer to a local frame. It represents a context as described
above. An indirect link is a pointer to a control link, and is used to establish linkages for

9-1

Control Transfers

nested procedures and ports. An indirect link is converted to a context by dereferencing it.
Finally, control links of type procedure descriptor are used to represent contexts that do
not yet exist. They contain all the information necessary to create the context, as well as to
transfer control to it after it has been created.

Control transfers take as an argument a destination control link. The least significant bits
of the control link determine the type of transfer to be performed. They are encoded as
follows:

Controllink: TYPE = LONG UNSPECIFIED;
ShortControlLink: TYPE = UNSPECIFIED;
LinkType: Tyre = {frame, procedure, indirect};

TaggedControllink: TYPE = MACHINE DEPENDENT RECORD [
data (0: 0..13): [0..377778],
tag (0: 14..15): [0..3],
fill (1): UNSPECIFIED];

ControlLinkType: PROCEDURE [link: ControlLink] RETURNS [LinkType] =
BEGIN
¢l: TaggedControlLink = LOOPHOLE[link];
RETURN('
SELECT cl.tag FROM

0 = > frame,

2 = > indirect,

ENDCASE = > procedure];
END;

The internal structure of each of the variants of a control link is described below. The use
of control links during transfers of control is covered in the section on xFeR (§9.3).

9.1.1 Frame Control Links

A frame control link is used to transfer control to an existing context (for example, a return
from a procedure). The link is a pointer to the local frame of the context.

Framelink: TYyPe = LocalFrameHandle;

MakeFramelink: PROCEDURE [link: ControlLink] RETURNS [FrameLink] =
BEGIN
IF ControlLinkType[link] # frame THEN ERROR;
ReTURN[LowHalf[link]];
END;

Note that the frame handle points to the beginning of the frame variables, not to the
overhead words. Frame links always point to local frames, never to global frames.

Programming Note: To ensure that the tag bits of a frame control link have the proper
values, frames must be allocated at addresses that are zero modulo four.

. 9-2

Mesa Processor Principles of Operation A 9

Programming Note: The high-order word of a FrameLink is not used and may be left
uninitialized by the programmer. -

9.1.2 Indirect Control Links
An indirect control link is a short pointer to a control link.
IndirectLink: TYPE = POINTER TO Controllink;

MakelndirectLink: PROCEDURE [link: ControlLink] ReETURNS [IndirectLink] =
BEGIN '
IF ControlLinkType[link] # indirect THEN ERROR;
ReETURN[LowHalf[link]];
END;

Indirect control links <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>