
Pilot: An operating system for a personal 
computer 

by David D. Redell, Yogen K. Dalal, Thomas R. Horsley, Hugh C. Lauer, William C. 
Lynch, Paul R. McJones, Hal G. Murray, and Stephen C. Purcell 

April 30, 1979 

ABSTRACT 

The Pilot operating system provides a single·user, single· language environment for higher 
level software on a powerful personal computer. Its features include virtual memory, a large 
"flat" file system, streams, network communication facilities, and concurrent programming 
support. Pilot thus provides rather more powerful facilities than are normally associated with 
personal computers. The exact fadlities provided display interesting similarities to and 
differences from corresponding facilities provided in large multi· user systems. PiI.ot is 
implemented entirely in Mesa, a high·level system programming language. The modularization 
of the implementation displays some interesting aspects in terms of both the static structure 
and dynamiC interactions of the various components. 

KEY WORDS AND PHRASES 

personal computer, operating system, high level langauge, virtual memory, file, process, 
network, modular programming, system structure. 

XEROX 
SYSTEMS DEVELOPMENT DEPARTMENT 
3408 Hillview Ave I Palo Alto I California 94304 



PILOT: AN OPERATING SYSTEM FOR A PERSONAL COMPUTER 1 

1. Introduction 

As digital hardware becomes less expensive, a very high grade of service" can be provided to 
computer users. One important 'expression of this trend is the personal computer. The dedication of 
a substantial computer to each individual user suggests an operating system design emphasizing 
close user/system cooperation, allowing full exploitation of a resource-rich environment. Such a 
system can also function as its user's representative in a larger community of autonomous personal 
computers and other information resources, but tends to deemphasize the largely ajudicatory role of 
a monolithic timesharing system. 

The Pilot operating system is designed for the personal computing environment. It provides a basic 
set of services within which higher-level programs can more easily serve the user and/or 
communicate with other programs on other machines. Pilot omits certain" functions sometimes 
associated with "complete" operating systems, such as character-string naming or user-command 
interpretation; it is assumed that higher-level software will provide such facilities as needed. On the 
other hand, Pilot provides a higher level of service than that normally associated with the "kernel" 
or "nucleus" of an operating system. Pilot is closely coupled to the Mesa programming language 
(1v1MS) and runs on a rather powerful personal computer. which would have been thought sufficient 
to support a substantial timesharing system of a few years ago, 'lhe primary user interface is a high 
resolution bit-map dispL,y, with a keyboard and a pointing device. Secondary storage generally 
takes the form of a sizable local disk. A local packet network provides a high bandwidth connection 
to other personal computers. and to server systems offering such remote services as printing and 
shared file storage. 

Much of the design of Pilot stems from an initial set of assumptions and goals rather different from 
those underlying most timesharing systems. Pilot is a single-language, single-user system, with only 
limited features for protection and resource allocation. Pilot's protection mechanisms are defensive, 
rather than absolute [La2]. since in a single user system, errors are a more serious problem than 
maliciousness. We have chosen to ignore such problems as "Trojan Horse" programs [Ro]. not 
because they are unimportant, but because our environment allows such threats to be coped with 
adequately from outside the system. Similarly, Pilot's resource allocation features are not oriented 
toward enforcing fair distribution of scarce resources among contending parties. In other systems, 
which support multiple users, most resources tend to be in short supply, and prevention of 
inequitable distribution is a serious problem. In a single-user system like Pilot, shortage of some 
resource must generally be dealt with either through more effective utilization or by adding more of 
the resource. 

The close coupling between Pilot and Mesa is based on mutual interdependence; Pilot is written in 
Mesa, and Mesa depends on Pilot for much of its runtime support. Since other languages are not 
supported. many of the language-independence arguments that tend to maintain distance between 
an operating system and a programming language are not relevant. In a sense, all of Pilot can be 
thought of as a very powerful runtime support package for the Mesa language. Naturally, none of 
these considerations eliminate the need for careful structuring of the combined Pilot/Mesa system to 
avoid accidental circular dependencies. 

Since the Mesa programming language formalizes and emphasizes the distinction between an 
interface and its implementation. it is particularly appropriate to split the description of Pilot along 
these tines. As seen by its client programs, Pilot consists of a set of Mesa interfaces, each defining a 
group of related types, operations, and error signals. Section 2 of this paper enumerates the major 
interfaces of Pilot and describes their semantics, in terms of both the formal interface and the 
intended behaviour of the system as a whole. 

lbe implementation of Pilot contains" a large collection of modules implementing the various 
interfaces. Section 3 describes the interior structure of the Pilot implementation and discusses some 
of the lessons learned in implementing an operating system in Mesa. 



PIlOT: AN OPERATING SYSTEM FOR A PERSONAL COMPUTER . 2 

2. Pi~ot Interfaces 

In Mesa, a large software system is constructed from two kinds 'of modules: program modules 
specify the algorithms and the actual data stmctures comprising the implementation of the system, 
while definitions modules formally specify the illlerfaces between program modules. Generally, a 
given interface, defined in a definitions module, is exported. by one program module (its 
implementor) and imporled by one or more other program modules (it diellls). Both program and 
definitions modules are written in the Mesa source, language, and are compiled to· produce binary 
object modules. The object form of a program module contains the actual code to be executed; the 
object form of a definitions module contains detailed specifications controlling the binding together 
of program modules. Modular programming in Mesa is discussed in more detail" by Lauer and 
Satterthwaite [LSI. . 

Pilot contains two kinds of interfaces: 

Public interfaces defining 'the services provided by Pilot to its clients (i.e. higher level Mesa 
programs) 

Private interfaces, which form the connective tissue binding the implementation together. 

This section describes the major public interfaces of Pilot. Each interface defines some number of 
named items, which are denoted Interface. Item. There are four kinds of items in interfaces: types, 
procedures, constants, and error signals. (for example, the interface File defines the type 
File.Capability, the procedure File.Create, the constant File.maxPagesPerFile, and the error signal 
File.Unknown.) The discussion that follows makes no attempt at complete enumeration of the items 
in each interface, but focuses instead on the overall facility provided, emphasizing the more 
important and unusual features of Pilot 

2.1. Files 

'111e Pilot interfaces File and Volume defme the basic facilities for permanent storage of data. Files 
arc the standard containers for information storage: volumes represent the media on which files are 
stored (e.g. magnetic disks). Higher level software is expected to superimpose further structure on 
tiles and volumes as necessary (e.g an executable subsystem on a file, or a detachable· directory 
subtree on a removable volume.) The emphasis at the Pilot level is on simple but powerful 
primitives for accessing large uodies ·of information. Each Pilot file can contain up to 232 bytes (e.g. 
about a million pages of English text) and each Pilot volume can contain as many as 241 bytes (i.e. 
_1015 bits; more than any currently conceivable storage device). The total number of files and 
volumes that can exist is essentially unbounded (264). The space of files provided is "flat," in the 
sense that files have no recognized relationships among them (e.g. no directory hierarchy). The size 
of a file is adjustable in units of 512-byte pages. As discussed below, the contents of a file are 
accessed. by mapping one or more of its pages into a section of, virtual memory. 

TIle File.Create operation creates a new file and returns a capability for it. Pilot file capabilities arc 
intended for defensive protection against errors [ta2]; they arc mechanically similar to capabilities 
used in other systems for absolute protection, but are not designed to withstand determined attack 
by a malicious programmer. More significant than the protection aspect of capabilities is the fact 
that files and volumes arc named by 64-bit univers<l1 identifiers (uids) which arc guaranteed unique 
in both space and time. This means that distinct files, created anywhere at any time by any 
incarnation of Pilot, will always have distinct uids. This guarantee is crucial, since removable 
volumes arc expected to be a standard method of transporting information from one Pilot system to . 
another. If uid ambiguity were allowed (e.g. different files on the same machine with the same uid) 
Pilot's life would become more difficult, and uids would be much less useful to clients. 

Pilot attaches only a small fixed set of attributes to each fIle, with the expectation that a higher .level 
directory facility will provide an extendible mechanism for associating with a file more general 



PILOT: AN OPERATING SYSTEM FOR A PERSONAL COMPUTER 3 

properties unknown to Pilot (e.g. length in bytes, creation date, etc.). Pilot recognizes only four 
attributes: size, type, immutability, and permanence. 

The size of a file is adjustable from 0 pageS to 223_1 pages: When the sile of a file is increased, 
Pilot attempts to avoid fragmentation of storage on the physical. device so that sequential or 
otherwise clustered accesses can exploit physical contiguity. On the other hand, random probes into 
a file are handled as efficiently as possible, by minimizing file system mapping overhead. 

1be type of a file is a 16 bit tag which is essentially uninterpreted, but is implemented at the Pilot 
level to aid in type-dependent recovery of the file system (e.g. after a system failure). Such 
recovery is discussed further in section 3.4. 

Permallence is an attribute attached to Pilot files that arc intcnded to hold valuablc permanent 
information. The intent is that creation of such a file proceed in four steps: 

1. The file is created using Fi!e.Create. and has temporary status. 
2. A capability for the file is stored in some permanent directory stntcture. 
3. The file is made permanent using the File.MakePermanent operation. 
4. The valuable contents are placed in the file. 

If a system failure occurs before step 3, the file witt bc automatically deleted (by the scavenger; see 
3.4) when the system restarts; if a system failure occurs after step 2, the me is registered in the 
directory structure and is thereby accessil)le. This simple mechanism eliminates the "lost object 
problem" [Wu] in which inaccessible flies take up space but cannot be deleted. Temporary files are 
also useful .as scratch storage which. will be reclaimed automatically in case 9f system failure. 

A Pilot file may be made immutable. 'Ibis means that it is permanently read-only and may never 
be modified again under any circumstances. The intent is that multiple physical copies of an 
immutable file, all sharing the same universal identifier, may be replicated. at many physical sites to 
improve accessibility without danger of ambiguity concerning the contents of the file. For ~xample, 
a higher-level "linkage editor" program might wish to link a pair of object-code files by embedding 
the uid of one in the o tiler. This would be efficient and unambiguous, but would fait if the 
contents were copied into a new pair of files, since they would have different uids. Making the files 
immutable and using a special operation (FiIe.Replicatelmmutable) would allow propagation of 
physical copies to other volumes with the same uids, thus preserving thci direct uid-Ievel binding. 

As with files, Pilot treats volumes in a relatively simple fashion, while at the same lime avoiding 
simplistic assumptions that would render its facilities restrictive to sophisticated client software. The 
simplest notion of a volume would correspond one-to-one with a physical storage- device. This 
appears to be too restrictive, hence the abstraction presented at the Volume interface is actually a 
logical volume; Pilot takes a fairly sophisticated attitude about the correspondence between logical 
volumes and physical volumes (e.g. disk packs. diskettes. etc.). To begin with .. several different sizes 
and types of storage devices are supported as Pilot volumes. (All are varieties of moving-arm disk, 
removable or non-removable; other non-volatile random access storage devices could be supported.) 
In addition, it is possible to have a large logical volume which spans several physical volumes. 
Conversely. it is possible to put several small logical volumes on the same' physical volume. In all 
cases, Pilot recognizes the comings and goings of physical volumes (e.g mounting a disk pack) and 
makes accessible to client programs those logical volumes all of whose pages are on-line. 

Two examples which originally motivated the flexibility of the volume 'machinery were database 
applications, in which a very large database could be cast as a multi-disk-pack volume, and the 
Mesa debugger. which requires its own separate logical volume (see Section 2.S), but must be usable 
on a single disk machine. 



PILOT: AN OPERATING SYSTEM FOR A PERSONAL COMPlITER 4 

2.2. Virtual memory 

The machine architecture on which Pilot runs defines a single linear virtual memory of up to 232 
16-bit words. Pilot structures this homogenous resource into contiguous runs of pages called spaces. 
accessed through the interface Space. While the underlying linear virtual memory is conventional 
and fairly straightforward, the space machinery superimposed by Pilot is somewhat novel in its 
design and rather more powerful than one would expect given the simplicity of the Space interface. 
A space is capable of playing three fundrunental roles: 

Allocation entity: to allocate a region of virtual, memory, a client creates a space of, 
appropriate size. ' . 

Mapping entity: to associate information content and backing store with a region of vitual 
memory, a client maps a space to a region of some file. 

Swapping entity: the transfer of pages between primary memory and backing store is 
performed in units of spaces. 

Any given space may play any or all of these roles. Largely because of their multifunctional nature, 
it is often useful to nest spaces. A new- space is always created as a subspace of some previously 
existing space, so that the set of all spaces forms a tree by containment. the root of which is a 
predefined space covering all of virtual memory. 

Spaces function as allocation entities in two senses: when a space is created, by calling 
Space. Create, it is serving as the unit of allocation: if it is later broken into subspaces, it is serving 
as an allocation subpool within which' smaller units are allocated and freed [Ros}. Such 
suballocation may be nested to several levels; at some level the page granularity of the space 
mechanism generally becomes too coarse, at which point finer-grained allocation must be performed 
by higher-level software. 

Spaces function as mapping entities, when the operation Space. Map is applied to them. lbis 
operation associates the space with a run of pages in a file, thus defining the content of each page 
of the space as the content of its associated file page. At any given time, a page in virtual memory 
may be accessed only if its content is well defined; i.e. if exactly one of the nested spaces containing 
it is mapped. If none of the containing spaces is mapped, the fatal error AddressFault is signalled. 
More than one containing space cannot be mapped. since the Space. Map operation checks that none 
of the ancestors or descendents of the space being mapped are themselves already mapped. 

Spaces function as swapping entities when a page of a mapped space is found to be missing from 
primary memory. The swapping strategy followed is essentially to swap in the lowest-level (Le. 
smallest) space containing the page (see Section 3.2). A client program can thus optimize its 
swapping behaviour by subdividing its mapped spaces into subspaces containing items whose access 
patterns are known to be strongly correlated. In the absence of such subdivision. the entire mapped 
space is swapped in. A further optimization is possible using the Space. Activate operation. This 
operation advises Pilot that a space will be used soon and should be swapped in as soon as possible. 
The inverse operation, Space. Deactivate, advises Pilot that 'a space is no longer needed in primary 
memory. 'The Space. Kill operation advises Pilot that the current contents of a space are of no 
further interest (i.e. will be completely overwritten before next being read) so that useless swapping 
of the data may be suppressed. These forms of optional advice are intended to allow tuning of 
heavy traffic periods by eliminating unnecessary transfers. by scheduling the disk arm efficiently, 
and by insuring that during the visit to a given arm position all of the appropriate transfers take 
place. Such advice-taking is a good example of a feature which has been deemed undesirable by 
most designers of timesharing systems. but which can be very useful in the context of a dedicated 
personal computer. 

'Ibere is an intrinsic close coupling between Pilot's file and virtual memory features: virtual memory 
is the only access path to the contents of files. and files arc the only backing store for virtual 
memory. An alternative would have been to provide a separate backing store for virtual memory 



PILOT: AN OPERATING SYSTEM FOR A PERSONAL COMPUTER . 5 

and r~quire that clients transfer data between virtual memory and files using explicit read/write 
operations. There are several reasons for preferring the mapping approach, including: 

Separating the operations of mapping and swapping decOliples. buffer allocation from disk 
scheduling, as compared with explicit file read/write operations. 

When a space is mapped, the read/write privileges of the file capability can propagate 
automatically to thc· space by setting a simple read/write lock in the hardware mcmory map, 
allowing illegitimate stores to be caught immediately. 

In either approach, there are certain cases that generate extra unnecessary disk transfers; 
ex.tra "advicc-taking" opcrations like Space.Kill can eliminate the extra disk transfers in the 
mapping approach: this does not seem to apply the read/write approach. 

It is relatively easy to simulate a read/write interface given a mapping interf.'lce, and with 
appropriate use of advice, the efficiency can be essentially the same. The converse appears 
to be false. 

TIle Pilot virtual memory also provides an advice-like operation called Space.ForceOut, which is 
designed as an underpinning for client crash-recovery algorithms. (It is advice-like in that its effect 
is invisible in normal operation, but becomes visible if the system crashes.) ForceOut causes a 
space's contents to be written to its backing file, and does not return until the write is completed. 
This means that the contents will survive a subsequent system crash. Since Pilot's page replacement 
algorithm is also free to write the pages to the file at any time (e.g. between ForceOuts). this 
facility by itself does not constitute even a minimal crash recovery mechanism; it is intended only as 
a "toe-hold" for higher level software to use in providing transactional atomicity in the face of 
system crashcs. . 

2.3. Streams and I/O Devices 

A Pilot client can access an I/O device in three different ways: 

Implicitly. via some feature of Pilot (e.g. a Pilot file accessed via virtual memory), 

Directly, via a low-level device driver interface exported from Pilot. or 

Indirectly, via the Pilot stream facility. 

In keeping with the objcctives of Pilot" as an operating system for a personal computer, most I/O 
devices are made directly available to clients through low-level procedural interfaces. These 
interfaces generally do little more than convert device-specific 110 operations into appropriate 
procedure calls. The emphasis is on providing maximum flexibility to client programs; protection is 
not required. The only ex.ception to this policy is for devices accessed implicitly by Pilot itself (e.g. 
disks used for files), since chaos would ensue if clients also tried to access tllem directly. 

For most applications, direct device access via the device driver inter£'lce is rather inconvenient, 
since all the details of the device arc exposed to view. Furthennore. many applications tcnd to 
reference devices in a basically sequential fashion, with only occasional, and usually very stylized, 
control or repositioning operations. For these reasons, the Pilot stream facility is provided, 
comprising: . 

The Stream interface, which defines device independent operations for full-duplex 
sequential access to a source/sink of data. This is very similar in spirit to the 
stream facilitics of other operating systems, such as OS6 [SS) and UNIX {R'!l. 

A standard for stream COI/lpollell{s. which connect streams to various devices and/or 
implement "on-the-fiy''' transformations of the data flowing through them. 

A means for cascading a number of primitive stream components to provide a richer 
facility. 

'lhere are two kinds of stream components defined by Pilot: the transducer and the filter. A 



PILOT: AN OPERA TINO SYSTEM FOR A PERSONAL COMPUTER 6 . 

transducer is a module which imports a device driver interface and exports an instance of the Pilot 
Stream interface. The transducer is thus the implementation of the basic sequential access facility 
for that device. Pilot provides standard transducers for a variety of supported devices. A filler is a 
module which imports one instance of the Pilot standard Stream interface and exports another. Its 
purpose is to transfonn a stream of data "on the fly" (e.g. to do code or fonnat conversion). The 
Stream interface provides for dynamic binding of stream components at run time, so that a 
transducer and a set of filters can be cascaded to provide a pipeline, as shown in Figure 1. 

""on' -1 FII." 1 .~ -- - Filter n r-- Transducer Device 

Figure 1: A pipeline of cascaded stream components 

The transducer occupies the lowest position in the pipeline (Le., nearest the device) while the client 
program accesses the highest position. Each filter accesses the next lower filter (or transducer) via 
the Stream interface, just as if it were a client program, so that no component need be aware of its 
position in the pipeline. or of the nature 0f the device at the' end. This facility resembles the UNTX 
pipe and filter facility, except that it· is implemented at the module level within the Pilot virtual 
memory, rather than as a separate. system task with its own address spac~. 

2.4. Communications 

As discussed in Section 2.5, below,' Mesa supports a sharcd-memory style of interprocess 
communication for tightly coupled processes. Interaction between loosely coupled processes (e.g. 
suitable to reside on different machines). is provided by the Pilot communications facility. 'Ihis 
facility allows client processes to communicate with each other on the same computer or on 
remotcly accessible computers via a family of hierarchically structured packet communic.ation 
protocols. Communication software is an integral part of Pilot, rather than ~n optional addition, 
because Pilot is intended to be a suitable foundation for network-based distributed systems. 

The protocols arc designed to provide communication across multiple interconnected networks. An 
interconnection of networks is referred to as an internet. A Pilot internet typically consists of local, 
high bandwidth Ethernet broadcast networks [MB], and public and private long-distance data 
networks like SRS, TF.LENET, TYMNET, DDS and ACS. Constituent networks arc interconnected by 
illternetwork routers (often referred to as gateways in the literature) which store and forward packets 
to their destination using distributed routing algorithms [Bo, CKi]. 1he constituent networks of an 
internet are used only as a u'ansmission medium. The source, destination and internetwork routcr 
computers are ull Pilot machincs. Pilot provides software drivers for a variety of networks; a given 
machine may connect directly to one or several networks, of the same or different kinds. 

Pilot clients identify one another by means of network addresses when they wish to communicate, 
and need not know anything about the internet toplogy, or each othcr's locations, or even the 
stmcture of a network address. in particular, it is not necessary that the two communicators be on 
different computers. if they arc on the same computer. Pilot will optimize the transmission of data 
between them and will avoid usc of the physical network resources. This implies that an isolated 
computer (i.e., one which is not connected to any network) may still cont.1in the communications 
f.1cilities of Pilot. Pilot clients on the same computer communicate with one another using Pilot's 
commu,nications facilities, as opposed to the tightly-coupled mechanisms of Mesa. if the 
communicators arc loosely coupled subsystems that could some day be reconfigured to cxecut~ on 
different machines on the network. For example, printing and file storage server programs written 



PILOT: AN OPERATING SYSTEM FOR A PERSONAL COMPUTER 7 

to communicate in the loosely-coupled mode. could share the same machine if. the combined load 
were light, yet be easily moved to separate machines if increased load justified the extra cost 

A network address is, in reality, a triple consisting of a 16-bit network number, a 32-bit processor 
ill, and a 16-bit socket number. represented by a system-wide Mesa data type 
System.NetworkAddress. Network addresses are resource assigned to clients by Pilot A socket 
number is unique within a computer, its uniqueness being guaranteed by Pilot It should be 
thought of as a post office box, within Pilot, from which packets are transmitted and at which packet 
are received. Hence, a System.NetworkAddress is an internet-wide post office box. 'l11e fine grain 
structure of a network address is not used by clients. but oy the communications facilities of Pilot . 
and the internetwork routers to deliver a packet to its destination. The administrative procedures 
for the assignment of network numbers and processor lOs to networks and computers, respectively, 
are outside the scope of this paper. as arc the mechanisms by which clients. find out each others' 
network addresses. 

The family of packet protocols by which Pilot provides communication is based on our experiences 
with the Pup Protocols [Bo]. 111e Arpa Internetwork Protocol family [lOP] resemble our protocols 
~~~ . 

Level 0: Every packet must be encapsulated for transmission over a particular 
communication medium, according to the network-specific rules for that communication 
medium. This has been termed level 0 in our protocol hierarchy, since its definition is of 
no concern to the typical Pilot client 

Levell: Level 1 defines the format of the internetwork packet, which specifies among other 
things the source and destination network addresses, a checksum field, the length of the 
entire packet. a transport control field that is used by internetwork routers, and a packet 
type field that indicates the kind of packet defined at level 2. . 

Level 2: A number of level 2' packet formats exist, such as error packct, connection­
oriented sequenced packet, touting table update packet, and so on.. Various level 2 
protocols are defined according to the kinds of level 2 packets they use, and the rules 
governing their interaction. 

The Socket interface defines the mcans by which Pilot clients can create a socket at a (local) 
network address, and can transmit and receive internetwork packets. In terms of the three way 
division of Section 2.3, sockets can be thought of as virtual devices, accessed directly via the Socket 
(virtual driver) interface. The protocol defining the format of the internetwork packet provides, 
end-to-end communication at the packet level. The internet is required only to be able to· transport 
independently addressed packets from source to destination network addresses. As a consequence, 
packets transmitted over socket may be expected to arrive at their destination only with high 
probability, and not necessarily in the order they were transmitted. It is the responsibility of the 
communicating end processes to agree upon higher level protocols that provide the appropriate level 
of reliable communication. The Socket interface. therefore, provides service similar to that 
provided by networks that offer datagram services [Pol. and is most useful for connectlonless 
protocols. 

'The interface NetworkStream defines the principal means by which clients of Pilot clients can 
communicate reliably between any two network addresses. It provides access to thc implementation 
of the sequenced packet protocol -- a level 2 protocol. This protocol provides sequenced, duplicate­
suppressed, error-free. flow-controUed packet communication over arbitrarily interconnected 
communication networks. and is simil<lr in philosophy to the Pup Byte Stream Protocol [Bo]. or the 
Arpa Transmission Control Pl'Otocol [CKa, TCPj. This protocol is implemented as a transducer, 
which bridges the gap between the Stream interface and the device-like Socket interface. 'lhus, all 
data transmission via a network stre~ is invo1<ed by means of the operations defined in the 
interface Stream. 



PILOT: AN OPERATING SYSTEM FOR A PERSONAL COMPUTER . 8 

NetwQrk streams provide reliable communication, in the sense that the data is reliably sent from the 
source transducer's packet buffer to the destination transducer's packet buffer. No guarantees can 
be made as to whether the data was successfully received by the destination client, or that the data 
was appropriately processed. This final degree of reliability must lie with the clients of network 
streams since they alone know the higher-level protocol governing the data transfer. Pilot provides 
communication with varying degrees of reliability, since the communicating clients wilt, in general, 
have differing needs for it. This is in keeping with the design goals of Pilot, much like the 
provision of defensive rather than absolute protection. 

A network stream can be set up between two communicators in many ways. The most typical case, 
in a network-based distributed system, involves a server (a supplier of a service) at one end, and a 
client of the service at the other. Creation of such a network stream is inherently asymmetric. At 
one end is the server which advertises a network address to which clients can connect to obtain its 
services. Clients do this by calling NetworkStream.Create, specifying the address of the server as 
parameter. It is important that concurrent requests from clients not conflict over the server's 
network address; to avoid this, some additional machinery is provided at the server end of the 
connection. When a server is operational. one of its processes listens for requests on its advertised 
network address. l11.is is done by calling NetworkStream. Listen , which automatically creates a new 
network stream each time a request arrives at the specified network address. The newly created 
network stream connects the client to another unique network address on the server machine, 
leaving the server's advertised network address free for the the reception of additional requests. 
The switch-over from one network address to another is transparent to the client, and is part of the 
definition of the sequenced packet protocol. At the server end, the Stream. Handle for the newly 
created stream is typically passed to an agent, a subsidiary process or subsystem which gives its full 
attention to performing the service for that particular client These two then communicate by 
means of the new network stream .set up between them for the duration of the service. 

The mechanisms for establishing and deleting a connection between any two communicators, and 
for guarding against old duplicate packets is a departure from the mechanisms used by the Pup Byte 
Stream Protocol [Bol or the Transmission Control Protocol [SD], although our protocol embodies 
similar principles. A network stream is terminated by calling NetworkStream.Delete. This call 
initiates no network traffic, and simply deletes all the data structures associated with the network 
stream. It is the responsibility of the communicating processes to have decided a priori that they 
wish to terminate the stream. This is in keeping with the decision that the reliabile processing of 
the transmitted data rests with d1e clients of network streams. 

l11e manner in which server addresses are advertis~d by servers and discovered by clients is not 
defined by Pilot; this facility must be provided by the architecture of a particular distributed system 
built on Pilot. Generally, the binding of names of resources to their addresses is accomplished by 
means of a network-based data base referred to as a clearinghouse. The manner in which the 
binding is structured and the way in which clearinghouses are located and accessed are outside the 
scope Of this paper. 

The NetworkStream interface also provides mechanisms for creating connections between arbitrary 
network addresses, where the reultionship between the processes is more general than that of·server 
and client. 

The communication facilities of Pilot provide clients various interfaces, which provide varying 
degrees of service at the internetworking level. In keeping with the overall design of Pilot, the 
communication facility attempts to provide a standard set of features which capture the most 
common needs, white still allowing clients to custom tailor their own solutions to their' 
communications requirements if tllat proves necessary. 



PILOT: AN OPERATING SYSTEM FOR A PERSONAL COMPUTER 9 . 

. 
2.5. Mesa language support 

The Mesa language provides a number of features which require a non-trivial· amount of run-time 
support [MMS). These are primarily involved with the control structures of the language [LR, 
LMS), which allow not only recursive procedure calls, but also corouQl1es, concurrent processes, and 
signals (a specialized form of dynamically bound procedure call used primarily for exception 
handling). The ntntime support facilities are invoked in three ways: 

- Explicitly, via normal Mesa interfaces exported by Pilot (e.g. the Process interface). 

- implicitly. via 

compiler-generated calls on built-in procedures. 

traps, when machine-level op-codes encounter exceptional conditions.· 

Pilot's involvement in client procedure calls is limited to trap handling when the supply of 
activation record storage is exhausted. To support the full generality of the Mesa control structures, 
activation records are allocated from a heap, even when a strict LIFO usage pattern is in force. This 
heap is replenished and maintained by Pilot. 

Coroutine calls also proceed without intervention by Pilot, except during initialization when a trap 
handler is provided to aid in the original setup of the coroutine linkage. 

Pilot's involvement with concurrent processes is somewhat more substantial. Mesa casts process 
creation as a variant of a procedure call, but unlike a normal procedure call, such a FORK statement 
always invokes Pilot to create the new process. Similarly, termination of a proCcss also involves 
substantial participation by Pilot. Mesa provides monitors and condition variables for synchronized 
interprocess communication via shared memory; these facilities are supported directly by the 
machine. with only peripheral involvement of Pilot. 

The Mesa control structure facilities, including concurrent processes, are light-weight enough to be 
used in the fine-scale structuring of normal Mesa programs. A typical Pilot client program consists 
of some number of processes, any of which may at any time invoke Pilot facilities through the 
various public interfaces. It is Pilot's responsibility to maintain the semantic integrity of its 
interfaces in the face of such client-level concurrency (see Section 3.3). Naturally, any higher level 
consistency constraints invented by the client must be guaranteed by client-level synchronization, 
using monitors and condition variables as provided in the Mesa language and supported by Pilot. 

Another important Mesa-support facility which is provided as an integral part of Pilot is a "world­
swap" facility to allow a graceful exit to Mesa's interactive debugger. 'Ine world-swap facility saves 
the contents of memory and the total machine state and then starts the debugger from a "boot-file". 
much as if the machine's bootstrap-load button had been pressed. The original state is saved on a 
second boot-file so that execution can be resumed by doing a second world-swap. '111e state is saved 
with sufficient care that it is virtually always possible to resume execution without any detectable 
perturbation of the program being debugged. The world-swap approach to debugging yields strong 
isolation between the debugger and the program under test Not only the contents of main 
memory, but the version of Pilot. the accessible volume(s), and even the microcode can be different 
in the two worlds. This is especially useful in debugging new releases of Pilot. Needless to say, this 
approach is not directly applicable to conventional multi-user times~aring systems. 



PILOT: AN OPERATING SYSTEM FOR A PERSONAL COMPUTER. 10 

3. Implementation 

The implementation of Pilot consists of a large number of Mesa modules which collectively provide 
the client environment as described above. The modules are grouped into larger components, each 
of which is responsible fur implementing some coherent subset of the overall Pilot functionality. 
lhe relationships among the major components are illustrated in Figure 2. 

. Pilot Cllent(s) 

Meaa Support (Hlgh.level) 

Virtual Memory Manager 

Communication File Manager 

Swapper 

Filar 

Mesa Support (low·leveO 

Machine 

Figure 2: Malor components of Pilot 

Of particular interest is the interlocking structure of the four components of the storage system 
which together implement files and virtual memory. 11tis is an example of what we call the 
manager/kernel pattern, in which a given facility is implemented in two stages: a low·lcvcl kerncl 
provides a basic core of function, which is extended by the higher-level manager. Layers interposed 
between the kernel and the manager can make use of the kernel, and can in turn be used by the 
manager. This tcchnique has been used before in other systems to good effect, as discussed by 
Haberman, Flon and Cooprider [Hfq. 

3.1 Layering of the Storage system implementation 

lhe kernellmanager pattern can be motivated by the following argument. Since the purpose of 
Pilot is to provide a more hospitable environment than the bare machine, it would clearly be more 
pleas<1nt for the code implementing Pilot if it could use the facilities of Pilot in getting its job done. 
In particular, both components of the storage system (thc file and virtual memory implementations) 
maintain internal data bases which arc too large to fit in primary memory. but only parts of which 
arc needed at anyone time. A client-level program would simply place such a database in a file 
and access it via virtual memory, but if Pilot it .. elf did so, the resulting circular dependencies would 
tic the system in knots. making it unreliable and difficult to underst.and. One alternative would be 
the invention of a special separate mechanism for low-level disk access and main memory buffering, 
used only by the storage system to access its internal databases. 1his eliminates the danger of 
circular dependency but introduces more machinery, making the system bulkier and harder to 



PILOT: AN OPERATING SYSTEM FOR A PERSONAL COMPUTER 11 

understand in a different sense. A more attractive alternative is the extraction of a streamlined 
kernci of the storage system functionality, with the properties that: 

a) It can be implemented by a small body of code which' resides permanently in primary 
memory. 

b) It provides a powerful enough storage facility to significantly ease the implementation of 
the remainder of the full-f1cdged storage system. 

c) It can handle the majority of the "fast cases" of client-level use of the" storage system. 

Figure 2 shows the implementation of such a kernel storage facility by the Swapper and the Filer. 
These two subcomponents arc the kernels of the virtual memory and file components, respectively, 
and provide a reasonably powerful environment for the non-resident subcomponents, the Virtual 
Memory Manager, and the File Manager, whose code and data are both swapp able. The kernel 
environment provides somewhat restricted virtual memory access to a small number of special files, 
and to preexisting normal files of fixed size. 

lhe managers implement the more powerful operations, such as file creation and deletion, and the 
more complex virtual memory operations. such as those that traverse subtrees of the hierarchy of 
nested spaces. The most frequent operations, however, are handled by the kernels essentially on 
their own. For example, a page fault is handled by code in the Swapper, which calls the Filer to 
read the appropriate page(s) into memory, adjusts the hardware memory map, and restarts the 
faulting process. 

The resident data structures of the kernels seIVe as caches on the swappable databases maintained 
by the managers. Whenever a kernel finds that it cannot perform an operation using only the data 
in its cache, it conceptually "passes the buck" to its manager. retaining no state infonnation about 
the failed operation. In this way. a circular dependency is avoided, since such failed operations 
become the total responsibility of the manager. The typical response of a manager is such a 
situation is to consult its swappablc database, call the resident subcomponent to update its cache, 
and then retry the failed operation. 

1be intended dynamics of the storage system implementation described above are based on the 
expectation that Pilot will experience three quite different kinds of load: 

A) For short periods of time, client programs will have their essentially static working sets 
in primary memory lnd the storage system will not be needed. 

B) Most of the time, the client working set will be changing slowly, but the description of it 
will fit in the Swappe,r/Filcr caches, so that swapping can take place with little or no extra 
disk activity to access the storage system databases. 

C) Periodically, the client working set will change drastically, requiring extensive reloading 
of the caches as well as heavy swapping. 

It is int~nded that the Pilot storage system be able to respond reasonably to all three situations: In 
case A, it should assume a low-profile by allowing its swappable components (e.g. the managers) to 
swap out. In case n. it should be as efficient as possible, using its caches to avoid causing spuriolls 
disk activity. In case C, it should do the best it can, with the understanding that while continuous 
operation in this mode is probably not viable, short periods of heavy traffic can and must be 
optimized, largely via the advice-taking operations discussed in Section 2.2. 



PILOT: AN OPERATING SYSTEM FOR A PERSONAL COMPUTER 12 . 

3.2 Cached databases 0/ ihe virtulli memory implementation 

The Virtual Memory Manager ititplcments the client visib.le operations on· spaces, and is thus 
primarily concerned ·with checking validity and maintaining the database constituting the 
fundamental representation behind the Space interface. This <4ttabase, called the hierarchy, 
represents the tree of nested spaces dermed in 2.2. For each space, it contains a record whose fields 
hold attributes such as size, base page number, and mapping information. 

lbe Swapper, or virtual memory kernel, manages primary memory and supervises the swapping of 
data between mapped memory and files. For this purpose it needs access to information in the 
hierarchy. Since the hierarchy is swappable and thus off limits to the Swapper. the Swappcr 
maintains a resident space cache which is loaded from the hierarchy in the manner described in 
section 3.1. 

There are several other data structures maintained by ~e Swapper. One is a bit-table describing the 
allocation status of each page of primary memory. Most of the book-keeping performed by the 
Swapper, however, is on the basis of the swap unit, or smallest set of virtual pages transferred 
between primary memory and file backing storage. A swap unit generally corresponds to a "leaf' 
space not containing subspaces; however if a space is only partial1y tiled with subspaces, each 
maximal run of pages not containing any subspaces is also a swap unit The Swapper keeps a swap 
unit cache containing information about swap units such as extent (first page and length), containing 
mapped space, and state (mapped or· not, swapped in ar out, replacement algorithm data). 

The swap unit cache is addressed by page rather than by space; for example it is the data structure 
used by the page fault handler to find the swap unit in which the page fault occurred. . The 
information in a record in this cache could be derived from the hierarchy. but this would in general 
require examining a sequence of hierarchy records and thus potentially incur a sequence of file 
accesses. To avoid this, we have chosen to maintain another database: ~e projection. 'Ibis is a 
second swappable database maintained by the Virtual Memory Manager. containing descriptions of 
all existing swap units, and is used to update the swap unit cache. The existence of the projection 
speeds up page faults which cannot be handled from the swap unit cache; it slows down space 
creation/deletion since then the projection must be updated. We expect this to be a useful 
optimization based on our assumptions about the relative. frequencies and cpu times of these eyents; 
actual experience may prove us wrong. 

An important detail regarding the relationship between the manager and kernel components has 
been ignored up to this point That detail is avoiding "recursive" misses on a kernel cache when 
the kernel is running on behalf of the manager who in tum is attempting to access the code Of data 
necessary to reload that cache. Basically the answer is to pin (make ineligible for replacement) 
certain key records into the cache. 'Ibis· pertains to the Space and Swap Unit caches, and to the 
caches maintained by the Filer as well. . 

3.3 Process implementation 

1be implementation of processes and monitors in Pilot/Mesa is summarized below; more detail can 
be found in [LRJ. 

The task of implementing processes and monitors is split fairly equally among Pilot, the Mesa 
L1nguage, and the machine itself. The basic primitives are defined as language constructs (e.g 
entering a MONITOR. WAITing on a CONDITION variable. FORKing a new PROCESS) and are 
implemented either by machine op-codes (for heavily uscd constnlcts e.g, WAIT) or by calls on Pilot 
(for less heavily used constructs e.g. FORK). The facilities provided by. the bar~ machine are 
sufficient for synchronization among existing processes, allowing Pilot to be implemented as a 
cotlection of monilors, which carefully synchronize the multiple processes executing concurrently 
inside it 'Jbese processes consist of a variable number of client processes (e.g. which have called 



PILOT: AN OPERATING SYSTEM FOR A PERSONAL COMPUTER 13 

into Pilot through some public interface} plus a fix.ed number of dedicated syst~m processes, which 
are created specialty at system initialization time. The machinery for creating and deleting processes 
is a monitor within the High-level Mesa Support component; this places. it above the virtual 
memory implementation and makes it swappable. The process implementation is thus another 
example of the manager/kernel pattern, in which the manager is implemented at a very high level, 
and the kernel is pushed down into the underlying machine. To the Pilot client, the split 
implementation appears as a unified mechanism comprising the Mesa language features and the 
operations defined by the Pilot Process interface. 

3.4. File system robustness 

One of the most important properties of the Pilot file system is robustness. This is achieved 
primarily through the use of reconstructable hints. Many previous systems have demonstrated the 
valu!,; of a file scavenger, a utility program which can repair a damaged file system, often on a more 
or less ad hoc bao:;is. [FR, Lal, LK, ST]. In Pilot, the scavenger is given first-class citizenship, in the 
sense that the file structures were all designed from the beginning with the scavenger in mind. 
Each file page is self-identifying, by virtue of its label, written as a separate .physical record adjacent 
to the one holding the actual page contents. Conceptually, one can think of a file page access 
proceeding by scanning all known volumes, checking the label of each page encountered until the 
desired one is found. Naturally, this process is extensively optimized, but the optimizations are 
carefully arranged to retain the property that damage to a single page docs not compromise data 
outside that page. . 

The primary hint structure is the Volume File Map. a B-tree keyed on <file-uid, page~number> 
which returns the device address of the page. All file storage devices check the label of the page 
and abort the I/O operation in case of a mismatch; this docs not occur in nonnal operation and 
generally indicates the need to scavenge the volume. The Volume File Map uses extensive front­
compression of uids and run-encoding of page-numbers to maximize the out-degree of the internal 
nodes of the B-tree and thus minimize its depth. 

Equally important but much simpler is the Volume Allocation Map, a table which describes the 
allocation status of each page on the disk. Since each free page is a self-identifying member of a 
hypothetical me of free pages, the Volume Allocation Map can also be reconstructed by scanning 
the labels. 

The robustness provided by the scavenger can only guarantee the integrity of files as defined by 
Pilot. If a database defined by client software becomes inconsistent due to a system crash, a 
software bug, or some other unfortunate event, it is little comfort to know that the underlying file 
has been declared healthy by the scavenger. An "escape-hatch" is therefore provided to allow client 
software to be invoked when a file is scavenged. This is the main use of the file-type attribute 
mentioned in Section 2.1. During its traversal of a volume. the scavenger restores the low-level 
integrity of each file and then invokes the client-level scavenging routine (if any) to reestablish- any 
higher-level consistency constraints that may have been violated. 

An interesting example of the first-class status of the scavenger is its routine use in transporting 
volumes between versions of Pilot. The freedom to redesign the complex hint stl1lctures stored on 
volumes represents a crucial opportunity for continuing file system performance improvement, but 
this means that one version of Pilot may find the hints left by another version totally inscrutable. 
Since such incompatibility is just a particular fonn of "damage", however, the scavenger can be 
invoked to reconstruct tile hints in the proper format, after which the corresponding version of Pilot 
will recognize the volume as its own. 



PILOT: AN OPERATING SYSTEM FOR A PERSONAL COMPUTER. 14 

3.5 Communication implementation 

The software that implements the packet communication protocols consists of a set of network­
specific drivers, modules that implement socket<;, network stream transducers, and at the heart of it 
all, a router. The router is a software switch. it routes packets among sockets, sockets and 
networks, and networks themselves. A router is present on every l>i1ot machine. On personal 
machines, the routcr handles only incoming, outgoing, and intramachine packet traffic. On 
internetwork router machines, the router acts as a service to other machines. by transporting 
internetwork packets across netWork boundaries. The router's data structures include a list of all 
active sockets and networks on the local computer. The router is designed so that network drivers 
may easily be added to or removed from new configurations of Pilot; this can even be done 
dynamically during ex.ecution. Sockets come and go as clients create and delete them. Each router 
maintains a routing table indicating. for a given remote network, the best internetwork router to use 
as the next "hop" towards the final destination. Thus, the two kinde; of machines are essentially 
special cases of the same program. An internetwork router is simply a router that spends most of 
its time forwarding packets between networks, and exchanging routing tables with other 
internetwork routers. On personal machines the router updates its routing table by querying 
internetwork routers, or by overhearing their exchanges over broadcast net~orks. 

Pilot has taken the approach of connecting a network much like any other input/output device, so 
that the packet communication protocol software becomes part of the operating system and operates 
in the same personal computer. In particular, Pilot docs not employ a dedicated front-end 
communications processor, connected to the Pilot machine via a secondary interface. 

Network-oriented communication differs from· conventional input/output in that packets arrive at a 
computer unsolicited, implying that the intended recipient is unknown until the packet is examined. 
As a consequence, each incoming packet must be buffered initially in router-supplied storage for 
examination. The router, therefore, maintains a buffer pool shared by all the network drivers .. If a 
packet is undamaged and its destination socket exists. then the packet is copied into a buffer 
as.c;ociated with the socket and provided by the socket's client. 

The architecture of the communication software permits the computer supporting Pilot to behave as 
a user's personal computer, a supplier of information, or as a dedicated internetw~rk router. 

3.6 The implementation exp.:.rience 

111e construction of Pilot was accomplished by a farrly small group of people (averaging about 6) in 
a fairly short period of time (about 18 months). We feel that this is largely due to the use of Mesa. 
Pilot consist') of approximately 24000 lines of Mesa, broken into about 160 modules, yiclding an 
average module size of roughly 150 lines. The use of small modules and minimal inter-module 
connectivity. combined with the strongly typed interface facilities of Mesa, aided in the creation of a 
program which avoided many common kinds of errors. and which is relatively rugged in the face of 
modification. 1bese issues are discussed in more detail in [HLJ and [LS). 



PILOT: AN OPERA TINO SYSTEM FOR A PERSONAL COMPUTER 

4.0 Conclusion 

The context of a large personal computer has motivated us to reevaluate many design decisions 
which characterize systems designed for mOJ:c familiar situations (e.g. large shared machines or small 
personal computers.) This has resulted in a somewhat novel system which, for example, provides 
sophisticated features but only minimal protection. accepts advice from client programs, and even 
bootloads the machine periodically in the normal course of execution. 

Aside from its novel aspects. however, Pilot's real significance is its careful integration, in a single 
relatively compact system~ of a number of good ideas which have previously tended to appear 
individually, often in systems which were demonstration vehicles not intended to support serious 
client programs. The combination of streams, packet communications, a hierarchical virtual memory 
mapped to a large file space, concurrent programming support, and a modular high-level language, 
provides an environment with relatively few artificial limitations on the size and complexity of the 
client programs which can be supported. 

Acknowledgements 

The primary design and implementation of Pilot were done by the authors. Some of the eartiest 
ideas were contributed by David Gifford, Robert Metcalfe, Wendell Shultz, and Dan Stottlemyre. 
More recent contributions have been made by Randy Gobbel. Since the inception of the project, 
we have had continuous fruitful interaction with all the members of the Mesa language group; in 
particular. Richard Johnsson, Jim Sandman and John Wick have provided much of the software 
that stands on the border between Pilot and Mesa. We arc also indebted to Pitts Jarvis and Victor 
Schwartz, who designed and implemented some of the low-level input/output drivers. The success 
of the close' integration of Mesa and Pilot with the machine architecture is largely due to the talent 
and energy of the people who designed and built the hardware and microcode for' our personal 
computer. 

References 

[Bo] Boggs, D.R. et. aT. Pup: an internetwork architecture. to be published in a special issue of 
IEEE Transactions on Communications on Computer Network Protocols. 

[CKa] Cerf, V.G. _ and Kahn, R.E. A protocol for packet network interconnection. IEEE 
Transactions on Communications, COM-22,S, pp 637-641 (May 1974). 

[CKi] Cerf, V.G. and Kirstein, P.T. Issues in packet-network interconnection. Proceedings of 

[FH1 

[HFC] 

[HL] 

[lDP] 

[Lal] 

lLa2l 

the IEEE, 66, 11, pp 1386-1408 (Nov 1978). 

Farber, DJ. and Heinrich, F.R. Thc stntcture of a distributed computer system: the 
distributed tile system. Proc. 1st Inlernalionai Conference on CompuLer Communication, 
1972, pp 364-370. 

Habermann, A.N., Flon. L and Cooprider, L. MOdutarization and hierarchy in a family 
of operating systems. Comm. ACM 19, 5, pp 266-272, (May 1976). 

Horsley, T.R. and Lynch, W.C. Pilot: A software engineering case history. Submitted to 
4th International Conference on Software Engineering, 1979. 

Internet Datagram Protoco/. Version 4. February 1979, prcp<;lred by USC/Information 
Sciences Institute, for the Defense Advanced Research Projects Agency, Information 
Processing Techniques Office. 

Lampson, n.w. An opcn operating system for a single user machine. Revue Francaise 
d'Automatique. Injomlatique et Recherche Operatiolll1elle, 9, B-3, pp 5.-8, (Sept 1975). 

Lampson, B.W. Redundancy and robustness in memory protection. Proc .IFIP i974, 
North Hol1and, Amsterdam. pp 128-132. 



[LMS] 

[LR] 

[LS] 

[LK] 

[MB1 

PILOT: AN OPERATING SYSTEM FOR A PERSONAL COMPUI'ER 16 

Lampson, B.W., Mitchell, J.O. and Satterthwaite, E.H. On the transfer of control between 
contexts. in Lecture Notes in Computer Science 19, Springer-Verlag, New York, pp 181-
203 (1974). 

Lampson, B.W. and 'Redell, D.O. Experience with processes and monitors in Mesa. 
Submitted to ACM 7th Symposium on Operating System Principles, 1979. 

Lauer, H.C. and Satterthwaite, RH. The impact of Mesa on system design. Submitted to 
4th International Conference on Software Engineering, 1979. 

Lockemann, P.C. and Knutsen, W.D. Recovery of disk contents after system failure. 
Comm. ACM 11, 8 (Aug 1968). 

Metcalfe, R.M. and Boggs, D.R. Ethernet: Distributed packet switching for local computer 
networks. ComnL ACM 19, 7, pp 395-404, (July 1976) 

[MMS] Mitchell, 10., Maybury, W. and Sweet, R. Mesa Language ManuaL Xerox Palo Alto 
Research Ccnter Technical Report, 1979. . 

[Po] 

[Ros] 

[Ro] 

[RT] 

[SD] 

[St] 

ISS] 

rrcP] 

Pouzin, L. Virtual circuits vs. datagrams--technical and political problems. Proceedings 
National Computer Conference, AFIPS Press, pp. 483-494, (1976). 

Ross, D.T. The AED free storage package. Comm ACM 10, 8 (Aug 1967). 

Rotenberg, Leo J. Making computers keep secrets. MIT Laboratory for Computer 
Science Technical Report MAC-TR-llS (thesis), 1974. 

Ritchie, n.M. and Thompson, K. The UNIX timesharing system. Comm ACM 17, 7, pp 
365-375, (July 1974). 

Sunshine, C.A. and Dalal, Y.K., Connection management in transport protocol. Computer 
Networks, 2, 6, pp 454-473, (Dcc 1978). 

Stern, J.A. Backup and recovery of on-line information in a computer utility. MIT 
Laboratory for Computer Science Technical Report MAC-TR -116 (thesis), 1974. 

Stoy, lE. and Strachey, C. OS6 - An experimental operating system for a small computer. 
Computer Journal 15, 2 & 3. 

Transmission Control ProtocoL TCP. Version 4, February 1979, prepared by 
USC/Information Sciences Institute, for the Defense Advanced Research Projects 
Agency, Information Processing Techniques Office. 

[Wu] Wulf, W., et. al. HYDRA: The kernel of a multiprocessor operating system. Comm 
ACM 17, 6,. pp 337-345, (June 1974). 


