
Inter-Office Memorandum 
DRAFT - DRAFT - DRAFT - DRAFT 

To Pilot interest Date Novem ber 7, 1977 

From Paul McJones Location Palo Alto 

Subject Adding new devices to the Channel interface 
Organization SO~/SO 

XEROX XEROX SDD ARCR1VES _ 
I have .roaCt and undo1"::;tood. 

Filed on: [lfs]<McJones>Channel.memo 'f'I es 'fo -,-----rag __ ,_.---
1h~e ___ _ 

Reviewer_-----
Ed. -t1SDQ-.:2 feJ4 # of Pages __ _ 

The problem 

The Channel interface in the second draft of the Pilot Functional Specification has the 
property that adding a new device requires editing and recompiling the Channel DEFINITIONS 
module, and thus all the modules which include it. This is in conflict with the desire not to 
recompile the system except for the semiannual releases (assuming new devices are to be 
added between releases). Thus we propose a revised Channel interface, which, it is claimed, 
solves the recompilation problem. 

The problem with the current interface stems from its dependence on the enumerated type 
Channel.DeviceType, which has a value for each implementation of the interface. Adding a 
new implementation requires adding a new value to DeviceType, and also adding 
corresponding variants to the definitions of the DeviceType-tagged variant record types 
DeviceSelection, PhysicalRecordStatus, DeviceCommand. DeviceStatus, and "Rep" (the 
private record to which a Handle points). (It is worth noting that these variant records 
constitute a nuisance for both client and implementor. Most values crossing the interface 
must be wrapped in a variant record constructor, and then "unwrapped" with a one-armed 
WITH statement essentially doing at runtime what Mesa is meant to do at compile time.) 

A solution 

Half of the operations in the current interface do not depend on DeviceType. and so are 
not a problem: 

Delete 
Suspend 
Restart 
GetPhysicalRecord 
PutPhysicalRecord 

Those which do depend on 

Create 
WaitPhysicalRecord 
CommandDevice 
GetDeviceStatus 
WaitDeviceStatusChange 

DeviceType are: 

(accepts DeviceSelection) 
(retu rns PhysicalRecordStatus) 
(accepts DeviceCommand) 
(returns DeviceStatus) 
(accepts and returns DeviceStatus) 

DRAFT - DRAFT - DRAFT - DRAFT 



Adding new devices to the Channel interface 2 

A simple way to remove this dependency is to remove these operations from the Channel 
interface, and to add device-specific version of each of them into each specific device 
interface. Taking the floppy disk for example we would have: 

FloppyDrive.Create: PROCEDURE[Spindle: CARDINAL ~ FloppyDrive.defaultSpindle] 
RETURNs[ChanneI.Handle]; 

FloppyDrive.defaultSpindle: CARDINAL = LAST[CARDINAL]; 

FloppyDrive.WaitPhysicaIRecord: PROCEDURE[Channel.Handle, Channel.lOEvent] 
RETURNS[ FloppyDrive.CompletionCode]; 

FloppyDrive.CompletionCode: TYPE = RECORD[ ... ]; --as currently 

FloppyDrive.CommandDevice: PROCEDURE[ Channel.Handle, FloppyDrive .Command] 
RETURNS[ Channel.Handle]; 

FloppyDrive.Command: TYPE = RECORD[ ... ]; --as currently 

FloppyDrive.GetDeviceStatus: PROCEDURE[ Channel.Handle ] 
RETURNS[ FloppyDrive.Status]; 

FloppyDrive.Status: TYPE = MACHINE DEPENDENT RECORD[ ... ]; --as currently 

FloppyDrive. WaitDev iceStatusChange: PROCEDURE[ Channel.Handle, FloppyDrive.Status] 
RETURNS[ FloppyDrive.Status]; 

Discussion 

It is interesting to note that in all cases, each variant of the records specified in the Channel 
interface consist of a single field whose type had already been defined in a separate device 
interface; the above device-dependent operations just pass that object directly. The 
argument that forcing all device operations to go through the Channel interface will assure 
uniformity from the diverse community of device interfacers seems weak in this light; 
providing models in the form of actual device interfaces produced here at SD/Palo Alto 
would seem to go a long way towards achieving useful consistency. 

Implementation comments 

Both the current Channel interface and the above variation presuppose a "streamlike" 
implementation in which every Channel.Handle points to a record which has in standard 
positions implementation-specific procedure descriptors for the generic operations Get, Put, 
etc. (Since Create doesn't take a Channel.Handle as parameter in the current interface. it 
would have to dispatch to an appropriate routine using a global table.) In the variation 
proposed above, the "DeviceType dependent" operations would be IMPORTed directly by the 
client from a device interface. To maintain type-checking, each of these operations 
accepting a Channel.Handle parameter should logically check the "device type" of the channel. 
This could be done with a numeric type field and type codes assigned by the Pilot 
maintainers, but a simpler way is available. The procedure descriptors already in the record 
pointed to by the Handle constitute a type code! Thus the floppy disk CommandDevice 
routine might begin with something like 

IF channeI.GetPhysicaIRecord-=FloppyDrive.GetPhysicaIRecord THEN ERROR ... 


