
Inter-Office Memorandum

To Mesa Users

From Ed Satterthwaite

Subject Mesa 3.0 Compiler Update
Mesa Language Changes

XEROX

Filed on: [MAXC]<MESA-DOC>MESACOMPILER30.8RAVO

Date October 17, 1977

Location Palo Alto

Organization CSL

This release of the Mesa compiler introduces several changes of interest or importance to all
Mesa programmers. A number of changes in the language have been made. Some of these
will calise programs acceptable to previolls compilers to be rejected unless those programs
are modified. The reasons for maki ng sllch changes are the following:

To support new ways of describing configurations and binding them together.

To add new facilities to the language.

To prepare for certain language extensions that are now fairly well understood and
for which preliminary designs exist.

Language Changes Related to the Binder

Overview

The following overview might be helpful in understanding the changes related to the new
binder. See the release summary for further references.

The binder produces a configuration, which is a collection of module instances. Each
module instance is represented by a global frame. Resolution of intermodular references is
based upon copying descriptor and pointer values from well-defined interfaces into these
global frames. More precisely, the binder produces configuration descriptions, which must
be "relocated" by the loader to produce an actual configuration.

There are two kinds of modules: DEFINITIONS and PROGRAM. The text of either kind implicitly
defines a type. In the case of a program module X, this is a frame type, denoted by
FRAME[X]. Values of this type are created in the (frame) heap, either by loading or by the
NEW operation. They cannot be embedded within larger aggregates but are referenced
indirectly through pointers. In the case of a DEFINITIONS module, the sequence of declarations
implicitly defines an interface type. There is no explicit name for this type, but it is much
like a record type with a field for each item in the interface. Instances of interface types,
called interface records, can appear only as components of global frames, where they are
anonymous.

A program can export an interface, in which case a (partially) initialized interface record is
created by the compiler. The initializing values represent procedures, signals, etc., declared
within the program. (These values are "relocated" and made instance-specific each time the
program is instantiated.) A program can also import an interface to gain access to externally
defined procedures and the like. In this case, the interface record is left uninitialized by the

Mesa 3.0 Compiler Update 2

compiler. One job of the binder is to merge exported instances of each particular interface
type and to assign the result to imported interfaces of the same type. The binder's
Configuration Description Language is used to specify and control these assignments.

A program also exports itself (as a pointer to its global frame) and can import instances of
other programs (again, with access through frame pointers). In this case, the binder's job is
to locate and assign the required (relocatable) frame pointers.

Note

The preceding discllssion is conceptually accurate but should not be taken literally.
The actual implementation of interfaces is somewhat more complicated and much
more space-efficient than implied here. Exported interface records are part of each
object file but have no existence during execution; furthermore, only those fields of
imported records that are actually referenced occupy space in the global frame.
Since the interface records do not exist as such during execution, they are sometimes
called virtual inter/ace records.

Because the binder is a preprocessor, any code required to compute and assign the values of
initialized variables cannot be run during binding. For uniformity, the language definition
has been changed so that the effect of the NEW operator is limited to creating an instance of
a global frame. The frame must be sTARTed to pass any required parameters and to
initialize any nonconstant variables. The binder and loader perform the equivalent of a NEW
but not a START.

Defining Interfaces

An interface type is defined by a DEFINITIONS module. The form of such a module has not
changed. It contains two sorts of declarations:

(1) Constant definitions (including type definitions)
(2) Interface element definitions (procedures, signals, etc).

By convention, items of the first sort have identical values in all instances of the interface
and can be referenced by specifying just the interface type. The fields of an interface
record contain values of the second sort and correspond to the so-called "externals" found in
previous versions of Mesa.

One new type of interface element is available. The type constructor

ProgramTC ::= PROGRAM ParameterList ReturnsClause

defines a type that can be used to declare a program variable. As part of an interface
record, the value of a program variable is a pointer to a global frame of a like-named
program. The declaration of a program variable specifies only input/output types; it does
not provide access to the internal structure of a particular global frame. Uses of program
variables are discussed below.

Defining Program Modules

A module gains access to another by including the (compiled) definitions file. As before,
the DIRECTORY construct makes the connection between the Mesa identifier denoting the
module and the name of the object file. Note, however, that identifiers introduced in the
DIRECTORY now must match the module identifiers appearing in the original source.

Mesa 3.0 Compiler Update 3

Imported and exported items are "declared" in the heading of a PROGRAM module using the
following syntax (cf. Appendix D, Mesa Language Manual):

ModuleHead ::=
I

ImportList .. -
ExportList .. -
ShareList .. -
ModuleList .. -
Moduleltem .. -

DEFINITIONS ShareList
PROGRAM ParameterList ReturnsClause

ImportList ExportList ShareList
empty I IMPORTS ModuleList
empty I EXPORTS IdList
empty I SHARES IdList
Moduleltem I ModuleList , Moduleltem
identifier I identifier : identifier

The symbol DATA can be used in place of PROGRAM, but there is no longer a
distinction between PROGRAM and DATA modules. Note also that the previous concept
of IMPLEMENTING has been replaced by EXPORTS, and SHARES replaces SHARING.

Exporting Interfaces

The value of each identifier in the EXPORTS list must be an interface type, i.e., a DEFINITIONS
module named in the directory.

Procedures, signals, and errors are exported if they are public, have constant initialization
and are named in some exported interface. In addition, the program itself (in the form of
its global frame) is exported as part of an interface if its identifier appears there with an
appropriate PROGRAM type. (The global frame can also be exported independently of any
interface; see below.) The compiler checks that the type of each exported item is assignment
compatible with the type of the corresponding interface item. An item can be exported
through more than one interface.

It is permissible for a module to both import and export an interface; this is the normal case
when a number of modules cooperate to provide a single interface.

If a module exports Defs and defines a public identifier id, then Defs.id is bound
directly (by the compiler) to the local definition, e.g., local procedure calls are used.

Exporting an interface does not automatically provide access to its private components.
Specifying SHARES (formerly SHARING) allows such access to any module but does not
automatically imply EXPORTS.

Importing Interfaces

After a module has been loaded, its imported interface records contain the linkages to other
modules in the configuration. References to such linkages take the usual forms. The
identifier of an interface item (Item) can be qualified by the name of the interface record
(Defs.ltem[...]); alternatively, an interface record can be oPENed and the corresponding
identifiers used without qualification (Item[...]).

Arbitrary identifiers (preceding It:" in the IMPORTS list) can be associated with imported
interface records so that several instances of the same interface type (perhaps bound
differently) can be distinguished. If the identifier of an imported interface record is
omitted, the name of the interface type is used by default, i.e., id is equivalent to id:id in an
IMPORTS list (see the discussion of DEFINITIONS FROM, however), The identifier following the
colon must be defined in the directory. It can name an interface type, i.e., a DEFINITIONS
module. Alternatively, it can name a PROGRAM module; this case is discussed later.

It is important to distinguish between interface types (declared in the DIRECTORY list) and
interface records (declared in the IMPORTS list). Assume the fonowing program skeleton:

Mesa 3.0 Compiler Update

DIRECTORY Defsl: FROM "defsI", Defs2: FROM "defs2";

Prog: PROGRAM IMPORTS Interfacel: Defsl, Defs2 =
BEGIN •.. END.

4

Within the body of the program, Interfacel refers to an interface record; Defsl, to an
interface type. If t is a type or a constant, both Interfacel.t and Defsl.t are valid, and they
have identical meanings. On the other hanel, if proc is an interface item, Interfacel.proc
names that item, but Defsl.proc is an error. The scope rules are arranged so that identifiers
of the interface records introduced in the IMPOFns list are examined before those of the
interface types introduced in the directory. Within the body of Prog, Defs2 therefore refers
to the interface record. Similar considerations apply to the use of the identifiers Interfacel,
Defsl, and Defs2 with OPEN. Note that the distinction between the interface record and its
type can be ignored unless the imported record is explicitly named.

The DEFINITIONS FROM construct does not mesh very well with IMPORTS and EXPORTS, but it is
a well established feature of Mesa and the following convention has been adopted. Only an
identifier introduced in the directory can appear in the list following DEFINITIONS FROM. If
an interface record of that type is imported but is not given an explicit name in the IMPORTS
list, then the record is opened; otherwise, the type. Thlls the default naming convention
results in record instances being opened. In the example above,

DEFINITIONS FROM Defs I, Defs2;

would open the type Defs1 and the record Defs2. Again, confusion is possible only if the
interface records are explicitly named.

The EXTERNAL attribute provided by previous versions of Mesa has been withdrawn.
Externally defined procedures and signals must now be components of imported interfaces
or be passed into modules as explicit parameters.

Importing and Exporting Program Modules

Each PROGRAM module exports itself, even if its module identifier is not mentioned in any
interface. Any module can include a program module in its directory. A program module
can import another by also mentioning that module in its own IMPORTS list. Since global
frames cannot be embedded within other structures, the imported value in this case is a
pointer to a global frame. The construct

•.• IMPORTS ..• frame: Prog ...

has an effect similar to the declaration

frame: POINTER TO FRAME[Prog] =

where the initializing value is computed and assigned by the binder. The same default
naming convention applies; if frame were omitted, Prog would be used as the identifier of
the pointer variable.

Again, it is important to distinguish between the program constants declared in directory
entries and the frame pointers supplied as imported values. Consider the following example:

DIRECTORY ProgI: mOM "progI", Prog2: FROM "prog2";

Prog: PROGRAM IMPORTS frame1: Progi, Prog2 =
BEGIN •.• END.

Mesa 3.0 Compiler Update 5

Within the body of Prog. Progl names a program constant. The only legitimate uses for
Prog! are to define a frame type (POINTER TO FRAME[Prog!J) and to create new instances of
that type (NEW Progl). The directory entry itself uoes not require the binder or loader to
locate an existing instance of the program module. The appearance of Prog! (and frog2) in
the IMPORTS list does direct the binder to do this, however. Thus the value assigned to
frame! points to a global frame that is already part of the configuration, and frame! can be
used. e.g., to START that frame or to access its variables. By the default naming convention,
the value of Prog2 within the main body is a pointer that can be used only to refer to a
frame, not to a program constant, i.e., the construct POINTER TO FRAME[Prog2] would be
illegal.

Even if I denotes a type or constant, it is no longer possible to use Prog!.t to name
that value; framel.l remains acceptable, however.

By importing a program directly, a module gains access to al1 the public variables in
that particular program. Importing a program as an interface element does not give
such access but also does not couple the importer to a particular exporter. This is
discussed further below.

Module Instantiation

The NEW operator creates new instances of program modules. It can be invoked explicitly; it
is also invoked implicitly by the binder/loader in the course of creating a configuration. In
either case, NEW causes no code within the instantiated module to be executed. Instead,
START is now used to pass any arguments and to start execution of the main body (including
initialization code).

The permissable operands of NEW are discllssed below. NEW no longer permits an argument
list, but the form

NEW id [! ... J

is still available for catching signals associated with instantiation. The value of a NEW
operation is always a pointer to the newly created frame.

Program modules now optionally return values. The allowed control disciplines depend
somewhat upon whether a value is returned. Let frame! and frame2 be pointers to frames
of programs frogl and Prog2 respectively, and assume that frogI returns a value but Prog2
does not.

The main body of Prog I must contain a RETURN statement. The first such RETURN
terminates execution of that body but does not cause deallocation of the global
frame. Thus frame pointers remain valid, procedures declared within instances of
Progl can be called and the like. The body of Progl cannot contain any STOP
statements.

An expression with one of the forms

START frame 1[...]
START framel[... ! ... J

is used to supply arguments to an instance of Prog I and to initiate its execution.
The value of the expression is the value returned by Progl. Execution of Progl
cannot be restarted after return.

Mesa 3.0 Compiler Update 6

The main body of Prog2 cannot contain a RETURN statement, but it can contain any
number of STOP statements. Execution of one of these suspends execution but causes
no deallocation.

A statement with one of the forms

STArn frame2[... J
START frame2[... ! ... J

is used to supply arguments to an instance of Prog2 and to initiate its execution.
Execution of Prog2 can be restarted by one of the statement forms

RESTART frame2
RESTART frame2[... J

Using alternating RESTARTS and STOPS, two cooperating programs can execute as
SIMULA-like coroutines.

III all cases, the parameters of START are now type-checked, and there is no restriction on the
number or size of such parameters.

Any attempt to invoke a procedure prior to starting the enclosing program's initialization
code causes a start trap. If the program requires no parameters and returns no results, the
system will attempt to START the global frame and then retry the procedure call. Thus
explicit STARTS (and the corresponding proliferation of frame pointers) are not required in
many common situations.

All imported interface variables are bound before the first START. On the other
hand, a start trap occurs at most once for any given frame. Some care is therefore
required when procedure calls during initialization can cycle through a set of frames;
another procedure sharing the same global frame can be called before initialization
is complete.

In the following example, assume that a start trap occurs because of an extramodular
call of ProcA2. If ProgramB has not been started either, ProcAI will be executed
before some components of ProgramA's frame (such as w) are initialized.

ProgramA: PROGRAM IMPORTS DefsB EXPORTS DefsA =
BEGIN
v: T +- DefsB.procBI[...];
w: INTEGER +- 0;

ProcAI: PUBLIC PROCEDURE [...] RETURNS [...] =

ProcA2: PUBLIC PROCEDURE [...]

END.

ProgramB: PROGRAM IMPORTS DefsA EXPORTS DefsB =
BEGIN
x: T +- DefsA.ProcAI[...];

ProcBJ: PUBLIC PROCEDURE [...] RETURNS [...] =

END.

Mesa 3.0 Compiler Update 7

The implicit STOP that was previously inserted between a module's initialization code and its
main body (if non-void) has been removed. Such a STOP mllst be specified explicitly.

Program Variables and NEW

Program types have been generalized. Their constructors have the following form:

ProgramTC ::= PROGRAM ParameterList ReturnsCfause

and they can be used anywhere type expressions are legal, e.g., to define named types or to
declare program variables. Values of the latter are pointers to global frames. Such variables
allow type-correct manipulation of frame pointers without requiring commitment to a
particular FRAME type. Both pointers to frames and program variables can be sTARTed.

Imported interfaces can supply values for program variables as discussed above. In addition,
the NEW operator creates sllch values dynamically. The domain of NEW has been extended to
encompass the following two cases:

Program Constants

The identifier of the program module itself or of a directory entry denotes a
program consiant. When NEW is applied to sllch a value, the loader is invoked with a
file name as an argument. The file name is taken from the directory or, in the case
of the program's own identifier, constructed by the compiler. A global frame is
allocated, the frame is connected to the code in the designated file, and imported
interfaces within that frame are filled from the exported interfaces of the running
configuration. This operation involves a directory search, etc., and is relatively
expensive.

In the current implementation, the designated file can contain only one
PROGRAM module. System procedures must be used to instantiate
configurations consisting of several modules (see Mesa 3.0 System Update).

Program Variables and Frame Pointers

The value of a program or pointer variable is a pointer to an existing global frame.
Appl ication of NEW to such a value creates a new copy of that global frame. All
interface records in the new frame are assigned copies of the corresponding records
in the original frame, i.e., all bindings are inherited. Other variables within the
frame are not copied. This operation is relatively inexpensive.

In either case, the new frame is uninitialized, except for embedded interface records, until it
is STARTed (perhaps by a start trap).

Assume the declarations

DIRECTORY Prog: FROM "prog"; -- assumed parameter!ess

Module: PROGRAM IMPORTS p: Prog =
BEGIN
prog I, prog2: PROGRAM;
frame: POINTER TO FRAME[Prog];

END.

Mesa 3.0 Compiler Update

Then the valid assignments are summarized by the following list:

frame ~ p;
frame ~ NEW P;
frame +- NEW Prog;

prog/ +- prog2;
progi +- NEW prog2;
prog / +- NEW frame;
prog/ +- NEW Prog;

copies a pointer
creates a copy of the imported frame
creates and binds a new instance

copies a pointer
creates a copy of the frame
creates a copy of a frame with known type
creates and binds a new instance.

Note that NEW yields a program type or a pointer type as required by context.

8

The assignment frame ~ prog/ is illegal. Although the following assignments are sensible.
the current implementation does not support or allow them:

prog / +- frame;
prog / +- Prog .

Program variables are useful for STARTing or replicating global frames when a client does
not want to be coupled to the internal details of a particular implementation.

Example:

DIRECTORY ProgDefs: FROM "progdefs";
Prog: PROGRAM [n: CARDINAL] EXPORTS ProgDefs =

BEGIN
v: PUBLIC Thing;
Proc: PUBLIC PROCEDURE = ... ,
END.

ProgDefs: DEFINITIONS =
BEGIN
Prog: PROGRAM [CARDINAL];

Proc: PROCEDURE;

END.

A client that declares p: POINTER TO FRAME[Prog] (or. equivalently. imports p: Prog)
receives a pointer to the global frame of the particular implementer Prog. That
client is free to access, e.g., p.v; on the other hand. recompilation of all such clients is
necessary when Prog changes (even trivially). A client that imports ProgDefs cannot
mention ProgDefs.Prog.v, nor can Proc be referenced as ProgDefs.Prog.Proc. The
appropriate value of Proc could be imported from the same interface, as suggested
here. Alternatively, Prog could be changed so that the START of ProgDefs.Prog
returned a value providing access to Proc.

Importing ProgDefs instead of Prog decouples implementer and client. An internal
change in the former does not require recompilation of the latter. Indeed, it is
possible for several quite different and independent implementations all to export
ProgDefs.

Mesa 3.0 Compiler Update 9

Other Language Changes

Packed Arrays

The attribute PACKED has been introduced to specify the packing of arrays. It can be used in
the following type constructors:

ArrayTC .. - PACKED ARRAY IndexType OF TypeSpecification I ...
ArrayDescriptorTC .. - DESCRIPTOR FOR PACKED I\RRI\ Y OF TypeSpecification I ...

The idea is that, for a packed array, the compiler will choose the most compact
representation that it is prepared to support. Currently, bytes and words are the only
supported units of packing. Thus values of types that can be represented in 8 bits or less
(e.g., BOOLEAN as well as CHARACTER) are packed into bytes; all others are packed into words
or integral multiples thereof.

All the usual array operations, such as indexing, construction, assignment and comparison
(for equality and inequality only), apply to packed arrays. Note the following:

LENGTH applied to a packed array (or descriptor thereof) yields the number of
elements, not the number of words.

In the form DESCRIPTOR [array], the PACKED attribute is inherited from array. In
the form DESCRIPTOR [base, n, type], the PACKED attribute is deduced from context.
The second argument n always specifies the number of elements.

Overlaid Variant Records

In the declaration of a variant record type, the word OVERLI\ID can replace COMPUTED.
Overlaid variants behave exactly as computed variants with the following extension: any
field of a particular variant can be accessed without discrimination if the name of that field
is unique with respect to both the common part and all other variants (including any
overlaid variant subparts).

Overlaid records can be used to breach the type system, as can variant records with
computed tags in general.

Example:

R: TYPE = RECORD [
common: INTEGER,

v: R

variant: SELECT OVERLAID Color FROM
red => [b: BOOLEAN, i: [0 .. 10)],
blue => [i: INTEGER, c: CHARACTER],
ENDCASE];

,

Then v.common, v.b, and v.C are all legal expressions. The first is always meaningful,
but the second or third only makes sense if the value of v is a red R or a blue R
respectively. The expression v.i is ambiguous and disallowed.

If an overlaid variant record is oPENed, all uniquely named fields can be used without
further qualification. Identifiers that do not name unique fields are visible but ambiguous;
their use will be flagged, not ignored. On the other hand, opening an overlaid variant record
using the WITH ... SELECT construct or declaring a discriminated variant (e.g., a red R) works
as usual. Independently of uniqueness of naming, fields of the selected variant are
accessible, and fields of other variants are not.

Mesa 3.0 Compiicr Update to

Empty Intervals

Empty intervals are now allowed in type declarations, notably in declarations of the index
types of arrays. In the absence of genuine sequences, this change makes the simulation of
them somewhat less painful. Note that the subrange, although empty, does establish the
origin of the index set, e.g., [0 .. 0) and [1..1) are not equivalent.

Example (see also the declaration of StringBody below):

ThingSequence: TYPE = MACHINE DEPENDENT RECORD [....
length: CARDINAL.
value: ARf=lAY [0 .. 0) OF Thing]; the last field

p: POINTER TO ThingSequence fo Alloc[SIZE[ThingSequence] + n*slzr::[Thing]];
pt +- [... , length: n, value:]; p.value[i] fo ...

The compiler allows @p.value but flags any attempt to use a vacuous value itself, as
in q. value fo p. value. Note that subscript bounds are being breached here, not the
type system.

Predeclared Identifiers

Every Mesa program is compiled in an environment that in effect contains the following
declarations:

BOOLEAN: TYPE = {FALSE, TRUE};
-- make TRUE and FALSE pervasive
TRUE: BOOLEAN = TRUE;
FALSE: BOOLEAN = FALSE;

STRING: TYPE = POINTER TO SlringBody;
StringBody: TYPE = MACHINE DEPENDENT RECORD [

length: CARDINAL,
maxlength: --READONL Y-- CARDINAL.
text: PACKED ARRAY [0 .. 0) OF CHARACTER];

UNWIND: ERROR = CODE;

STRING and BOOLEAN remain reserved words.

BOOLEAN can now be used as the tag type of a variant record (but no new forms of SELECT
are provided). Note that FALSE < TRUE.

The record type String Body is declared in the way suggested above for simulating a
sequence. As before, sri] abbreviates st.text[i], etc.; this abbreviation does not extend to
other "faked" sequences. Subject to the caveats above, the declaration of StringBody
provides a way of embedding string bodies within other data structures; pointers to such
embedded records can be assigned to normal string variables without breaching the type
system.

Note that descriptors for the text portion of a string should be created using the
fOfm DESCRIPTOR [@s.text, s.maxlength], not DESCRIPTOR [s.text] (which will yield
an incorrect length).

Identifier Clashes

Mesa 3.0 Compiler Update 11

It is now an error to declare the same identifier in both the input and output records of a
procedure (program, signal, etc.) type. It is also an error to declare a local variable of a
procedure (or program) by reusing an identifier of an input or output parameter of that
procedure.

Use of Type Expressions

Arbitrary type expressions are now allowed as the arguments of SIZE, FIRST and LAST and as
the final arguments of LOOPHOLE and DESCRIPTOR. Previously, these arguments were required
to be type identifiers.

Examples:

LOOPHOLE[p, POINTER TO R]
LOOPHOLE[jrame, PROGRAM [n: INTEGER]]
SIZE[ARRAY IndexSet OF 1]

Compiler Changes

An assortment of minor bugs have been fixed; as usual, the fixes are documented separately.
The following changes are noteworthy.

Variant Record Layout

The internal layouts of variant records have been changed to eliminate uninitialized gaps
following the common part and to solve some long-standing problems related to tag
alignment in discriminated variants. As a consequence of the latter, some discriminated
variants now occupy more storage. The amount of storage required for a variant record is
governed by the following rules:

If the minimum amount of storage required for every variant is a word or less, each
variant is adjusted to occupy the same number of bits as the longest.

Otherwise, each variant is adjusted to occupy the minimum number of words.

Both of these are changes. Some discriminated variants that fit into a single word now
consume more bits. This can make a difference only when the discriminated variant is itself
embedded within a record.

Examples.

Rl: TYPE = RECORD [
SELECT tag: * FROM

red => [b: BOOLEAN],
blue => [c: CHARACTER],
ENDCASE];

R2: TYPE = RECORD [
SELECT tag: * FROM

null = > NULL,
yellow =) [b: BOOLEAN],
green => [i: INTEGER],
ENDCASE]

The minimum storage required for fields of various types is given by the following
table (changes are noted):

Mesa 3.0 Compiler Update

Rl
red RI
blue RI

R2
null R2
yellow R2
green R2

9
9
9

32
16
16
32

(formerly 2)

(formerly 2)
(formerly 3)

12

Since uniniliaIized gaps have been eliminated, comparison of two fully discriminated
variants is now allowed. The compiler also permits comparison of undiscriminated values if
there is an explicit tag and if all variants have the same length.

Checking fl.tachine Dependent Records

The compiler now checks the declarations of MACHINE DEPENDENT record types. The fields of
such a record must specify a contiguous area of storage. Declarations in which gaps would
appear between fields are flagged as errors. Packing is governed by the following rules:

Fields minimally requiring a word or less cannot cross a word boundary.

Fields requiring more than a word must begin on a word boundary and occupy an
integral number of words.

The first field begins on a word boundary.

Records occupying more than a word mllst occupy an integral number of words. The
lengths of variant MACHINE DEPENDENT records must additionally conform to the rules stated
in the previous section.

Compiler Switches and Options

Users of the compiler now have several options available. Switches that select the options
are embedded (according to FTP's conventions) within the list of files to be compiled. The
following switches are currently provided:

Switch Option Controlled

Qause Pausi ng after errors.

,Y!.arnings Generation of warning messages (see below).

]lref Generation of cross-reference data.

In addition,

£ommand Converts the preceding string to a switch name.

Within a list of files, the form option/c sets the corresponding option for successive files,
and any unambiguous initial substring of the switch name can be used for opt ion. The
form fi 1 e/o sets the options a for a single file only. and any sequence of unambiguous
initial switch characters can be used for o. In either form, a "-" or "~,, inverts the sense of
an switch. Switches can appear in the command line orin responses to the compiler's
prompt "Compile:".

Mesa 3.0 Compiler Update 13

The pause option conditionalIy causes the compiler to halt and request action from the user
before proceeding. A pause occurs only if errors have been detected. This option is useful
when input is taken from the command line; it gives the user a chance to acknowledge errors
and to abort subsequent processing. If it is specified by a global switch (using pause/c),
the conditional pause occurs only at the end of the entire sequence of compilations but is
controlled by errors detected anywhere in that sequence. If this option is specified locally
(using file/p), the compiler will pause if errors are detected in any file processed up to
that point.

The cross-reference information for source file Name. Mesa is written onto the file
Name. XRJ for post-processing as described in separate documentation.

Examples:

Pause if errors are detected in any definitions file; generate a cross reference data
and suppress warn ings for prog2:

defsl defs2 defs3/p progl prog2/x-w prog3

Never pause:

-pause/c

The default switch settings are equivalent to

pause/c warnings/c -xref/c

Warning Messages

The compiler now optionally generates warning mesages when it detects legal but suspicious
usage. Currently, the following situations are reported:

A declared variable (but not a record field, input parameter, or return value) that is
not public and is never referenced within the module containing its declaration. (See
also Identifier Clashes above).

Comparisons such as c < 0, when c is a CARDINAL.

An initializing declaration that assigns the same non-NIL pointer or descriptor value
to two or more variables (in particular, string variables).

Interfaces that are imported but not used.

Declared identifiers that are not public but appear in some exported interface.

Warning messages appear in the error log but do not abort compilation. Generation of these
messages is controlled by the w switch. The default is to print warnings; -w inhibits this.

Source/Object Mapping

The resolution of the tables recording source-object correspondence has been increased to
the level of statement boundaries. Previously, only the intersections of statement and source
line boundaries were recorded. This change allows more precise placement of breakpoints.

Entry Point Limit

Mesa 3.0 Compiler Update 14

Certain internal formats have been changed in a way that limits the number of entry items
within a single program module to 128. This number is the maximum of the number of
procedure (or program) bodies and the number of signal (or error) codes. This limit is also
built into the DO and Dorado hardware.

In addition, the number of interface items declared within a single definitions module
cannot exceed 128. This number is the sum of the number of procedure, program, signal
and error declarations.

Module Compatibility

Module Formats

The format of object modules has been changed to contain the information required by the
new binder. The output of the compiler is a degenerate configuration description which can
be processed by either the binder or the loader. This change requires the recompilation of
all existing Mesa programs. To emphasize this change, the extension used for object file
names has been changed from XM to BCD (.!2inary ,fonfiguration .Qescription).

Interface Versions

All type checking has been moved into the compiler; the binder and loader simply match
interfaces according to interface (file) name and version stamp. It is therefore essential that
consistency of DEFINITIONS modules be maintained within configurations, even when such
modules contain no type declarations.

Distri bution

MesaUsers
MesaGroup

