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ABSTRACT 

This paper* proposes the use of explicit abstraction levels to organize decision making in 
digital design. These levels partition the concerns that a designer must consider at any time. 
They provide terms and composition rules for the composition of structural descriptions 
within a level. This allows multiple opportunities for mapping behavior into structure. 

A version of this paper will be presented at the Conference on Advanced Research in VLSI, 
Massachusetts Institute of Technology, Cambridge, Massachusetts, January 25-27, 1982. 

*The Stanford University component of this research is funded by the Defense Advanced 
Research Projects Agency contract MDA-903-aO-C-007. 
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Introduction 

The Mead and Conway textbookl presents a 
methodology for designing digital integrated systems 
which exploits the properties of charge-storage devices. 
As in most texts concerning design. the methodology is. 
communicated via examples. It is clear from these 
examples that designers work within multiple design 
spaces ranging from abstract system descriptions to circuit 
layouts. At the layout level. the methodology is 
formalized in an explicit set of rules for composing 
primitive terms. .. colored rectangles" representing 
material on a chip. If users follow these Lambda 
composition rules. their designs are guaranteed to have 
adequate physical spacing on a chip. However. the 
intermediate levels in the design process are not usually 
recorded in a formal notation and are only informally 
shared in the community of designers. 

This paper proposes a number of formalized 
intermediate description levels, each of which allows a 
designer to deal with particular concerns. Each level 
provides a vocabulary of terms and a set of simple 
composition rules. This enables a designer to do 
composition within a description level. The rules make 
possible a principled approach for creating composite 
structures and ultimately digital systems. Designs 
expressed 'at multiple description levels interact through 
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explicit constraints. We are developing transformation 
rules to take designs at one of these levels and express 
them at other levels. 

To aid in testing these ideas, we are developing all 
expert design system. Palladio, which will assist a user to 

design with multiple levels of description. An active part 
of the system will suggest alternative implementations of 
a higher level design as well as possible optimizations. 
Palladio is being built in the knowledge engineering 
paradigm. Knowledge engineering is a branch of research 
in artificial intelligence that is concerned' with the 
creation of knowledge-based expert systems2,3. The 
systems are called knowledge-based because their 
performance is a consequence of symbolic reasoning from 
explicitly represented knowledge, that is, facts and 
heuristics about the task domain. They are called expert 
when they perfonn tasks that· require substantial 
expertise. 

In this paper we provide an overview of our use of 
multiple description levels in a proposed design system. 
We discuss how our approach differs from silicon 
compilers and frpm traditional register transfer (R 1) 

hardware description languages. We argue that our 
approach provides more leverage for systematic 
exploration of possible designs. 
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Getting Leverage from Abstraction 

The principle of divide and conquer is an essential 
part of mastering otherwise overwhelming tasks. As 
Simon and many others have observed: 

To design ... a complex structure, one powerful 
technique is to discover viable ways of 
decomposing it into semi-independent components 
corresponding to its many functional parts. The 
design of each component can then be carried out 
with some degree of independence of the design 
of others ... [page 148]4 

That so many design systems have facilities for 
supporting this kind of hierarchical design suggests that 
the point is widely appreciated. But exploitation of a 
component hierarchy is only one of several opportunities 
for dividing up the design process. Design using 
abstraction levels is a complementary way to do it The 
metaphor in force here is that design is search. Solutions 
exist in a potentially large space of possible designs. 
Design is a process of generating alternatives and testing 
them against requirements and constraints. Abstract 
solutions are descriptions that stand for an equivalence 
class of detailed solutions. 

The design process can be characterized as a 
dialectic between goals and possibilities. Designers 
explore parts of the design space as driven by their 
current goals and they sharpen their goals as they learn 
what is possible. They decide how far the overall design 
should be completed before designs for particular 
subsystems should be developed. When designers work 
bottom-up on particular subsystems, they gain 
information about what is possible in isolated parts of the 
design space. When designers work top-down, they 
decompose designs to reflect subgoals. Sometimes a 
reformulation of subgoals yields a simplification of 
interfaces between subsystems. 

This dialectic reflects the absence of a complete 
synthetic theory of design. Designers must begin without 
knowing exactly what they want or what is possible. In 
each design task the informatidn gained in the search for 
solutions yields an informal theory. which accumulates 
with the experiences of the designers. In our. knowledge 
engineering paradigm. we hope to provide a language by 
which designers can capture this emerging theory in 
Palladio. 

Abstraction levels provide leverage for top-down 
processes by enabling a designer to deal with critical 
issues early and across the breadth of a design. This is a 
step towards a principled approach for dealing with 
critical considerations early in the design process and 
defering others. For example, in the abstraction levels in 
this paper computational issues are considered critical. 
Using these levels designers can work out certain storage 
and communication decisions before worrying about 
power considerations. At each level, designers make 
decisions about· structures for implementing devices with 
the desired behavior. 

Abstract descriptions have fewer specifications than 
complete solutions and are generated more quickly. We 
can explore more territory because we travel faster. 
Familiarity with useful kinds of tradeoff can guide the 
generation process. Following tradeoffs we can move 
from one possible description to another having different 
costs along some design dimension (e.g., communication' 
vs. redundant computation). We explore more effectively 
because we know where to look. Another benefit of 
designing with abstractions is early pruning. For this 
there must be a cost metric that can be applied to prune 
particular descriptions. . Using the metric to eliminate a 
description, we avoid pursuing the members of the 
equivalence class of detailed solutions. 

Abstraction levels and constraints have been used 
before in expert systems, although this may be their first 
application in an expert system for the design of digital 
systems. Multiple levels of abstraction have been used 
for hypothesis generation and evaluation in several expert 
signal' interpretation programs5,6 and constraints have 
been used to represent subproblem interactions in a 
hierarchical planning program 7• 

Examples of Description Levels 

Figure 1 summarizes four experimental description 
levels that we are developing. Each description level has 
a set of terms that are composed to form systems and a 
set of composition rules that define legal combinations of 
the terms. The concerns of each level are characterized 
by specific classes of bugs that can be avoided when the 
composition rules are followed. Each level ~as . a 
behavioral meaning as well as a structural meanmg so 
that descriptions are also runnable. 
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and Logic Register Transfer 
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CRL 2 Phase Transfer Functions Feedback 

Pull-Ups Connection Charge Docked Digital 
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Fig. 1 Description Levels for Palladio 

The layout description level is used in many digital 
design systems. The terms at this level of description are 
regions (e.g., rectangles) of metal, polysilicon, and 
diffusion in nMOS. The composition rules at this level 
are a set of Lambda rules governing the sizes and spacing 
of the regions. The rules are intended to guarantee that 
there will be no spacing errors that would prevent correct 
operation of a fabricated system. 

The following sections give simple examples of 
structural descriptions and rules at each of the more 
abstract levels that we are developing. The first level is 
substantially technology independent. The next two levels 
are specialized for two-phase clocking systems 
implemented in nMOS. These levels are intended to 
cover important design concerns and to admit some early 
decision making in design that is not prematurely 
constraining. Our purpose in discussing these levels is to 
provide concrete examples of multiple-level descriptions; 
the examples below provide a sampling of our current 
thinking. 

The Linked Module Abstraction (LMA) Level 

The linked module abstraction (LMA) level8 is 
concerned with the sequencing of computational events 
in a digital system. It describes the paths along which 
data can flow, the sequential and parallel activation of 
computations, and the distribution of registers. Our 
formulation provides a simple closed covering of ideas 
from many sources including Petri nets9 and the design 
of speed-independent modules10,ll. 

Terms. The basic elements of this level are modules. 
Modules are computational elements that perfonn 
complete operations. Once a module has been started, it 
completes what it is doing before it can be restarted. 
Each module has a number of directional paths: a Go 
and a Done path for synchronizing communication with 
other modules, optional Input and Output data paths, 
and an optional Interrupt path. 'Each module also has a 
set of input buffers corresponding to the input data paths. 
A module is controlled by the absorption and emission of 
tokens on the Go and Done paths. Besides modules 
there are several kinds of forks and joins that determine 
the flow and control of information, calling buffers that 
mediate the use of shared modules, and subsystems which 
combine modules to form entities that are not modules 
(e.g. pipelineS). 

.... .. 
Interrupt 

Input Data Paths 
Go 

1 1 1 1 ~, 

I I I I 1 
Input Buffer 

Done 

~r 11r 11r 

Output Data ~aths 

Fig. 2 A Module 
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Composition Rules. Composition rules at the LMA 
level govern the use of shared structures and provide 
conventions for control of infonnation flow. The 
following are examples of composition rules. 

Fork Rule. If the output data paths of a module 
connect to more than one other module. then its 
Done path must be connected through a Fork to 
the Go paths of all of the other modules. 

Join Rule. If the input data paths of a module are 
connected to more than one other module. then its 
Go path must be connected through a Join to the 
Done paths of all of the other modules. 

Shared Module Rule. Calls to shared modules 
must be buffered. 

The composition rules of the LMA level prevent the use 
of data before it is ready (e.g.. has not settled) and 
prevent deadlock from the use of shared modules in the 
digital system. 

Exampies from the Design of a Stack. A niajor goal 
of the LMA level is to provide an expressive language for 
describing ,digital architecture. We believe that practicing 
designers do not share a common notation and that this 
makes it unnecessarily difficult to understand designs. 
This section argues that the LMA language is expressive 
enough to admit meaningful comparisons and abstract 
enough to provide leverage for exploring design 
alternatives. 

Stacks are familiar devices for providing iast-in-jirst­
out access to stored data. There is a push command for 
adding a datum to the top of a stack, and a pop command 
for retrieving it. An error occurs for a push on a full 
stack or a pop on an empty stack. There are several 
fundamentally different architectures for' implementing 
this simple device. This section considers five of them 
briefly as architectural examples. 

Pointer Stack. This version corresponds to the usual 
software implementation. Information is stored in an 
array of registers. An index register (called the pointer) 
contains the address of the top of the stack. The push 
and pop instructions increment and decrement the 
pointer. The following shows the abbreviated graphical 
notation and linear notation for this version of the stack: 

Fig. 3 Pointer Stack 

Module PointerStack 
inputs [command: action. dataln: item] 
outputs [dataOut: item] 

--These specify typed input and output lines. 
parameters [depth: Integer. item: Type] 

--These are construction parameters. 
components (pointer: Registcr[addressWidth(depth)] 

R: Sel[i. depth. Register[itemm 
--This specifies subcomponents of modules from a library. 
--Sel(i,n,typc) creates a set of n indexable items of type type. 

action [Case command 
(push [if pointcr<depth 

then {selecl[key .. pointer I R[key]"datalnl; 
pointer"pointer+ l}D 

- Select activates an indexed element from a set 
. (pop [ifpointer>l 

then {pointer"pointer-l; 

interrupt [{pointer"l}] 
end Module PointcrStack 

<select key .. pointer; dataOut"R[key] I>}])] 

Roving Marker Stack. This version uses a mark bit 
associated with each storage cell to indicate the top of the 
stack. In a push or pop instruction. all of the cells receive 
the command but only the one with the mark bit set 
performs the operation and then moves the marker bit by 
calling a neighboring cell. 

Fig. 4 Roving Marker Stack 



Ganged Marker Stack. This is similar to the previous 
stack except that all of the marker bits are moved, instead 
of just the top ones. Architecturally, this stack is a 
mixture of the first two. It combines an array of registers 
for data storage with a shift: register for marker storage. 

Fig . 5 Ganged Marker Stack 

Buffered Stages Stack. In the previous versions, the 
cell containing the data at the top of the stack varied 
according to the number of pushes and pops. An 
indicator was used to keep track of which cell was the 
current top of the stack. In this implementation, the top 
of the stack is always the leftmost cell and all the data in 
the stack move simultaneously. Intermediate stages 
buffer the data as it moves been cells. 

Fig. 6 ButTered Stages Stack 

Memory 
Cells 

Ripple Stack. Like the buffered stages architecture, 
this version has a fIXed cell for the top of the stack and 
moves the data on push and pop instructions. In 
contrast, the controller for this architecture needs only to 
be connected to the first and last stack cells. A push 
command from the controller starts at one end of the 
stack; the required movement ripples left to right through 
the stack. It requires half as many registers as the 
previous version of the stack, but requires time 
proportional to the current depth of the stack. 

Left End [1] [N] Right End 

Fig. 7 Ripple Stack 

Module RipplcStact 
inputs [command: Action. dataln: item] 
outputs . [dalaOut: item] 
parameters [depth: Integer. item: Type] 
C01l5lants [moveRight, startMoveLeft, POP. store: Action] 
components [ DC: Set[i. depth. 

DataCell[item: item 

action [Cose command 

LNbr: when i> 1 then DC[i-l]. 
RNbr: wilen i<depth 

then DC[i + Inn 
(push { OC[l](moveRight): DC[l](store. dataIn)}] 
(pop {dataOut .. DC[l](pop): DC[depth] (slartMoveLeft)}] 

interrupt [<& Set[i. depth] {OC[i](store. 0): OC[i](Pop)}) 8c>}] 
end Module RippleStaek 

Module DataCell 
inputs [command: action. dataIn: item] 
outputs [dataOut: item] 
parameters [item: Type. LNbr: DataCell[item]. RNbr: DataCell[itemD 
components [Filled: Bit] 
action [Cose command 

[moveRight 0 +- 0 

[startMoveLeft 

[moveLeft 

{ifFilled=l 
then RNbr(moveRight); 
RNbr(store. dataIn)}] 
{ifFilIed=O 
then LNbr(startMoveLeft) 
else {LNbr(moveLeft);Filled+-OH] 
{if Filled = 1 
then LNbr(moveLeft); 
LNbr(store. dataln)}] 

[store 
(pop 

(dataIn) +- 0 { .. data stored in dataln] 
o +- (dataOut) {dataOut+-dataIn; Filled+-O}D 

end Module DataCell 
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Architectural Comparisons. The stack· specifications 
in the LMA notation are sufficiently descriptive to 
provide a basis for answering questions like the 
following: 

How much storage is needed per element of capaci~y? 

All of the stacks require at least at least one 
register per element. The roving marker stack, 
ganged marker stack, and ripple stack each require 
one additional· bit per element The buffered 
stages stack requires two registers per element 

What fanout of control logic is required? 

The ripple stack requires control conJ).ections only 
to the first and last stack .elements. The other 
versions require connections to every stack cell. 
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What determines the minimum delay between successive 
push commands? 

The ripple stack has a delay which increases as the 
stack is filled. This is because the push command 
must ripple through to the last filled stack cell. 
(We have not worked out the details of a version 
of a ripple stack in which the first few elements 
would not have to wait for the ripple to finish; it 
would allow successive push and pop transactions 
to cancel without extensive rippling.) The time 
complexity of the pointer stack depends on the 
time complexity of the adder and of the random 
access memory. 

LMA notation for distributed computing (i.e:, active 
architectures) is analogous to high level programming 
languages for sequential and parallel algorithms. 
Specification at the LMA level highlights critical 
architectural tradeoffs such as communication versus 
redundant computation, copied structures versus shared 
structures, serial versus parallel computation. We believe 
that LMA programs are amenable to a physical theory of 
computation, perhaps along the lines of the entropy 
model in Mead and Conwayl pages 365-370. This would 
provide an added abstract framework for space-time­
energy complexity analysis beyond that now emerging for 
VLSI circuitsl2. 

The Clocked Registers and Logic (CRL) Level 

The clocked registers and logic (CRL) level is 
concerned with the composition of combinational and 
register logic. We have considered only two-phase 
clocking systems. In the future we will develop an 
abstraction level based on self-timed systems. 

To implement an LMA description at the CRL level 
requires making a number of design decisions. Event 
sequences need to be mapped into event times in ways 
that preserve their partial orderings. Modules need to be 
divided into stages and clocks need to be assigned 
Encodings for symbols need to be chosen. In doing this, 
the performance and implementation constraints for the 
ultimate digital system need to be articulated and taken 
into account. We· believe that· this process is knowledge 
intensive requiring expertise about tradeoffs and the 
combination of constraints. This knowledge could be 
provided by either a human designer or by an expert 
system. One of our goals is to represent subsets of this 
knowledge for Palladio. This paper, however, is 
concerned only with the description levels. 

Terms. The terms at the CRL level are stages. 
Stages are logical devices having both a storage capacity 
and a transfer function. 

Composition Rules. Common design practice is to 
use alternate clocks to load data into successive stages. 
This practice is captured by the following two 
composition rules: 

All of the data inputs to a stage must be valid 
during the high interval of the same clock. 

All of the outputs of a stage must be valid during 
the high interval of the other clock. 

Phil Phi 2 Phil Phi 2 

Sequence of Stages 

Phi 2 

Oocked Feedback Loop 

Fig. 8 Composing CRL Stages 

Figure 8 uses narrow lines to indicate that data are 
valid during the high interval of Phil' and wide lines for 
data. valid during the high interval of Phi2. The 
composition rules prevent the creation of stages with 
distinct input lines holding data valid on different clocks 
(mixed clock bugs) and also the creation of unc10cked 
feedback loops. 

Optimization Rules. The CRL composition rules 
embody worst case assumptions. For example, figure 9 
shows two versions of a circuit for a memory cell. 
Technically, the second version has an unclocked 
feedback violation. The optimization works because the 
two inverters return the original data. The optimization 
requires extra-level information, which is suggestive of 
the idea that global optimizations require passing 
information among abstraction levelS. 



Phi1*Ld 
Straight-forward Version --L 

Optimized Version 

-,-­
Phi 2 

Phil*Ld 

--L 
Clocking 
Gate 
Omitted 

I 

Fig. 9 Two Versions of a Memory Cell 

The Clocked Primitive Switches (CPS) Level 

The CPS level is concerned with the digital behavior 
of a system. This requires that circuits have two reliably 
distinct logical levels. For example, near 5 volts we have 
a band which we interpret as logical I, and near 0 volts 
we have a band which we interpret as logical O. 
Intermediate voltages in a digital system have I\tl 
indeterminate interpretation at sampling times. Such 
intermediate voltages can be caused by improper 
interconnection of circuit elements, improper operating 
regions of devices, and leakage of stored charge. The 
concepts of the CPS level are closely related to switch­
level simulations13• 

Implementation of CRL descriptions at the CPS 
level requires choices about using steering logic versus 
restoring logic, and choices about various regular 
structures such as PLA's and multiplexors. Power and 
performance constraints of the ultimate circuit need to be 
taken into account. Again, we believe that this process 
requires substantial knowledge and we plan to articulate 
and represent a subset of this knowledge in Palladio. 
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Terms. The terms at the CPS level are steering 
logic, clocking logic, and restoring logic. The basic 
element of steering logic is a pass transistor. We label its 
terminals as follows: 

Control 
Input 

--L 
Data Input ~ Steered Output 

Fig. 10 Pass Transistor 

We define a steering logic chain (SLC) as series­
connected pass transistors and define a steered logic 
network (SLN) as the parallel composition of SLCs. An 
SLN can have several outputs. 

CONTROL 

Fig. 11 Steered Logic Network 

Clocking logic is a pass transistor controlled by a 
qualified clock input as shown. 

Qualified Clock Input 

--L 
Data ; r--1 Clocked 
Input ----I I-Output 

Clock =D- Qualified 
Qualifier Clock 

Output 

Fig. 12 Clocking Logic 
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The basic element of restoring logic is a restoring element. 

VDD 
I 

PUE 

Restored 

Output 

Restored Input -
Steered Input - PDN 

Clocked Input -
I 

GND 
Fig. 13 Restoring Element 

A restoring element is made of a pull-up element (PUE) 
and a pull-down network (PDN). A PDN has three kinds 
of input.s restored, steered, or clocked. The three kinds of 
inputs name the type of logic to which they are 
connected. The composition rules in the next section 
exploit the type information to help prevent errors. 

Composition Rules. The composition rules at the CPS 
level specify how the terms can be connected and take 
into account requirements for voltage level restoration 
and charge storage. For example: 

A control input can only be connected to a 
restored output 

A qualified clock input can only be connected to a 
clock output 

Every SLN output must have exactly one on path 
from one SLN input during the period of validity 
of data output 

Steering Clocking * Restoring 
Logic I--- Logic ~ Logic 

Network 1 
Charge Storage Point 

Fig. 14 Charge Sharing 

Because of our rules, clocking logic must always separate 
switching logic from restoring logic. The purpose of this 
is to prevent charge sharing. Charge sharing occurs when 
charge is allowed to leak to or from a charge storage 
point, as illustrated in figure 14. For example, if PTI is 
on, the charge can spread through PTI into the 
capacitance of points further back. Since the amount of 
spreading can depend on the patterns of logical signals to 
the pass transistors, failures can seem intermittent 
depending on rare combinations of signals to a circuit 

Another set of composition rules constrain the 
layouts of pull-downs in terms of their impedances: 

Element ImQedance Constraint 

Pull-up element ZpUE = L/W 
Restored PUE ZpUE = L/W 
Clocked PDE ZpDE = 2L/W 
Steered PDE ZpDE = 2L/W 
Restored PDE ZpDE = L/W 

The impedance of elements connected in series is 
computed as the sum of the individual impedances; the 
impedance of elements connected in parallel is computed 
as the maximum of the individual impedances. For the 
restoring logic to restore voltage levels correctly, the 
impedance ratio ZPU/ZpDN must be approximately 4. 

OQtimization Rules. According to the ratio rules above, 
the impedance for the following network would be 
computed as 8. In making this recommendation, the 
composition rules implicitly make a worst case 
assumption. If we had the information that signals on Al 
and A2 were complementary and Bl and B2 were 
complementary, then we could compute the impedance 
of the network as 6. 

Fig. 15 Impedance Calculation 



Comparison with Other Approaches 

The philosophy behind our approach differs 
significantly from that used in the construction of silicon 
compilers. In a silicon compiler, the desired behavior of 
a system is specified in a language at a single level. The 
compiler converts this behavioral description into a 
structural description in a standard format. This fails to 
exploit many possibilities in the design space. In our use 
of multiple descriptions, each' level specifies both 
behavioral and structural information. User-chosen 
transformations can be made in the design at many 
different levels all the way down. For example, in the 
LMA level, one might find optimizations which yielded 
substantially different structures before deciding whether 
to use two-phased clocking or self-timed circuits. 

Multiple Level System (e.g. Palladio) 

Behavioral Specification Structural Specification 

LMA ~ 

CRL 

CPS 

IAlyout 

Existing Silicon Compilers 

Specification I 
Language 

~~I 
Layout 

Fig. 16 Mapping Behavior to Structure 
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The use of multiple levels for describing hardware 
has been tried many times. For example, there are logic 
descriptions and register transfer descriptions14• We 
believe that the logic descriptions are too isolated and the 
R T descriptions are incomplete and insufficiently 
formalized. For example, it is difficult even to find the 
clocking specifications in a typical R T description. The 
composition of partial RT descriptions does not yield a 
test of correctness for clocking. In essence, those 
descriptions were not designed for synthesis. They 
provide no composition rules, optimization rules, or bug 
characterizations. Our goal is to understand and 
formalize descriptive levels whose utility derives from 
their coverage of critical design concerns. 

Part of the culture of expert system building is the 
explicit representation of entities from problem-solving, 
such as goals, constraints. tradeoffs, and reasons. 
Symbolic expressions for these need to refer to circuit 
descriptions (e.g., modules or pull-down networks) as part 
of the natural bookkeeping of the design process. Such 
symbolic representations are a prerequisite to embodying 
expertise about design in an expert system. Figure 17 
provides a sketch of how our abstraction levels will be 
used in Palladio. 

Closing Remarks 

The utility of these levels of description remains to 
,be tested. Embedding them in Palladio and exercising 
them will. be our reality test. We expect libraries of 
system descriptions at the abstract levels to be useful for 
collaborating designers by allowing some insulation from 
the inevitable tech nology changes that affect layout cell 
descriptions. Our preliminary experiments with hand 
worked examples have been very encouraging. Palladio 
will be a forcing function for articulating. representing, 
and sharing the heuristics and other knowledge about the 
design process. 

We thank Chuck Seitz for pointing out to us the 
behavior-structure cross connection property of our 
multi-level description paradigm. Thanks also to Mary 
Hausladen and Terri Doughty for preparing the 
illustrations. 
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LMA 
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implementations 

Multiple 
Alternatives 

• l'\fl-

Design Task 
Agenda 

Check 
Composition 
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Propagation 
Delay 

Propose 
Design 
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Fig. 17 Snapshot of a Design Process in Palladio 
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