
The Partitioning of Concerns
in Digital System Design

by Mark Stefik, Daniel Bobrow, Alan Bell,
Harold Brown, Lynn Conway, and Christopher Tong

The Partitioning of Concerns
in Digital System Design

by Mark Stefik, Daniel Bobrow, Alan Bell,

Harold Brown, Lynn Conway, and Christopher Tong

VLSI System Design Area, Xerox PARC, and

Heuristic Programming Project, Stanford University

VLSI·81·3 December 1981

Copyright @) 1981, M. Stefik, D. Bobrow, A. Bell,

H. Brown, L. Conway, and C. Tong. All Rights Reserved.

XEROX
PALO ALTO RESEARCH CENTERS
3333 Coyote Hill Road/Palo Alto/California 94304

ABSTRACT

This paper* proposes the use of explicit abstraction levels to organize decision making in
digital design. These levels partition the concerns that a designer must consider at any time.
They provide terms and composition rules for the composition of structural descriptions
within a level. This allows multiple opportunities for mapping behavior into structure.

A version of this paper will be presented at the Conference on Advanced Research in VLSI,
Massachusetts Institute of Technology, Cambridge, Massachusetts, January 25-27, 1982.

*The Stanford University component of this research is funded by the Defense Advanced
Research Projects Agency contract MDA-903-aO-C-007.

CONTENTS

Introduction 1

Getting Leverage from Abstraction 2

Examples of Description Levels 2

The Linked Module Abstraction (LMA) Level 3

The Clocked Registers and Logic (CRL) Level 6

The Clocked Primitive Switches (CPS) Level 7

Comparisons with Other Approaches 9

Closing Remarks 9

References 10

Introduction

The Mead and Conway textbookl presents a
methodology for designing digital integrated systems
which exploits the properties of charge-storage devices.
As in most texts concerning design. the methodology is.
communicated via examples. It is clear from these
examples that designers work within multiple design
spaces ranging from abstract system descriptions to circuit
layouts. At the layout level. the methodology is
formalized in an explicit set of rules for composing
primitive terms. .. colored rectangles" representing
material on a chip. If users follow these Lambda
composition rules. their designs are guaranteed to have
adequate physical spacing on a chip. However. the
intermediate levels in the design process are not usually
recorded in a formal notation and are only informally
shared in the community of designers.

This paper proposes a number of formalized
intermediate description levels, each of which allows a
designer to deal with particular concerns. Each level
provides a vocabulary of terms and a set of simple
composition rules. This enables a designer to do
composition within a description level. The rules make
possible a principled approach for creating composite
structures and ultimately digital systems. Designs
expressed 'at multiple description levels interact through

I

explicit constraints. We are developing transformation
rules to take designs at one of these levels and express
them at other levels.

To aid in testing these ideas, we are developing all
expert design system. Palladio, which will assist a user to

design with multiple levels of description. An active part
of the system will suggest alternative implementations of
a higher level design as well as possible optimizations.
Palladio is being built in the knowledge engineering
paradigm. Knowledge engineering is a branch of research
in artificial intelligence that is concerned' with the
creation of knowledge-based expert systems2,3. The
systems are called knowledge-based because their
performance is a consequence of symbolic reasoning from
explicitly represented knowledge, that is, facts and
heuristics about the task domain. They are called expert
when they perfonn tasks that· require substantial
expertise.

In this paper we provide an overview of our use of
multiple description levels in a proposed design system.
We discuss how our approach differs from silicon
compilers and frpm traditional register transfer (R 1)

hardware description languages. We argue that our
approach provides more leverage for systematic
exploration of possible designs.

2

Getting Leverage from Abstraction

The principle of divide and conquer is an essential
part of mastering otherwise overwhelming tasks. As
Simon and many others have observed:

To design ... a complex structure, one powerful
technique is to discover viable ways of
decomposing it into semi-independent components
corresponding to its many functional parts. The
design of each component can then be carried out
with some degree of independence of the design
of others ... [page 148]4

That so many design systems have facilities for
supporting this kind of hierarchical design suggests that
the point is widely appreciated. But exploitation of a
component hierarchy is only one of several opportunities
for dividing up the design process. Design using
abstraction levels is a complementary way to do it The
metaphor in force here is that design is search. Solutions
exist in a potentially large space of possible designs.
Design is a process of generating alternatives and testing
them against requirements and constraints. Abstract
solutions are descriptions that stand for an equivalence
class of detailed solutions.

The design process can be characterized as a
dialectic between goals and possibilities. Designers
explore parts of the design space as driven by their
current goals and they sharpen their goals as they learn
what is possible. They decide how far the overall design
should be completed before designs for particular
subsystems should be developed. When designers work
bottom-up on particular subsystems, they gain
information about what is possible in isolated parts of the
design space. When designers work top-down, they
decompose designs to reflect subgoals. Sometimes a
reformulation of subgoals yields a simplification of
interfaces between subsystems.

This dialectic reflects the absence of a complete
synthetic theory of design. Designers must begin without
knowing exactly what they want or what is possible. In
each design task the informatidn gained in the search for
solutions yields an informal theory. which accumulates
with the experiences of the designers. In our. knowledge
engineering paradigm. we hope to provide a language by
which designers can capture this emerging theory in
Palladio.

Abstraction levels provide leverage for top-down
processes by enabling a designer to deal with critical
issues early and across the breadth of a design. This is a
step towards a principled approach for dealing with
critical considerations early in the design process and
defering others. For example, in the abstraction levels in
this paper computational issues are considered critical.
Using these levels designers can work out certain storage
and communication decisions before worrying about
power considerations. At each level, designers make
decisions about· structures for implementing devices with
the desired behavior.

Abstract descriptions have fewer specifications than
complete solutions and are generated more quickly. We
can explore more territory because we travel faster.
Familiarity with useful kinds of tradeoff can guide the
generation process. Following tradeoffs we can move
from one possible description to another having different
costs along some design dimension (e.g., communication'
vs. redundant computation). We explore more effectively
because we know where to look. Another benefit of
designing with abstractions is early pruning. For this
there must be a cost metric that can be applied to prune
particular descriptions. . Using the metric to eliminate a
description, we avoid pursuing the members of the
equivalence class of detailed solutions.

Abstraction levels and constraints have been used
before in expert systems, although this may be their first
application in an expert system for the design of digital
systems. Multiple levels of abstraction have been used
for hypothesis generation and evaluation in several expert
signal' interpretation programs5,6 and constraints have
been used to represent subproblem interactions in a
hierarchical planning program 7•

Examples of Description Levels

Figure 1 summarizes four experimental description
levels that we are developing. Each description level has
a set of terms that are composed to form systems and a
set of composition rules that define legal combinations of
the terms. The concerns of each level are characterized
by specific classes of bugs that can be avoided when the
composition rules are followed. Each level ~as . a
behavioral meaning as well as a structural meanmg so
that descriptions are also runnable.

Description
Level

Linked
Module
Abstraction

LMA

Docked
Registers

Concerns Terms

Event
Modules

Sequencing
Forks
Joins
Buffers

Clocking Stages

Composition
Rules

Token
Conservation

ForklJoin Rules

Connection

Bup
Avoided

Deadlock

Data not
Ready

Mixed Dock
Bugs

3

and Logic Register Transfer
of Stages

Unclocked
CRL 2 Phase Transfer Functions Feedback

Pull-Ups Connection Charge Docked Digital
Primitive Behavior

Pull-downs of switch Sharing
Pass networks Switching Switches

CPS
Transistors Ratio Rules Levels

Physical Colored Lambda Spacing
Layout Dimensions Rectangles Rules Errors

Fig. 1 Description Levels for Palladio

The layout description level is used in many digital
design systems. The terms at this level of description are
regions (e.g., rectangles) of metal, polysilicon, and
diffusion in nMOS. The composition rules at this level
are a set of Lambda rules governing the sizes and spacing
of the regions. The rules are intended to guarantee that
there will be no spacing errors that would prevent correct
operation of a fabricated system.

The following sections give simple examples of
structural descriptions and rules at each of the more
abstract levels that we are developing. The first level is
substantially technology independent. The next two levels
are specialized for two-phase clocking systems
implemented in nMOS. These levels are intended to
cover important design concerns and to admit some early
decision making in design that is not prematurely
constraining. Our purpose in discussing these levels is to
provide concrete examples of multiple-level descriptions;
the examples below provide a sampling of our current
thinking.

The Linked Module Abstraction (LMA) Level

The linked module abstraction (LMA) level8 is
concerned with the sequencing of computational events
in a digital system. It describes the paths along which
data can flow, the sequential and parallel activation of
computations, and the distribution of registers. Our
formulation provides a simple closed covering of ideas
from many sources including Petri nets9 and the design
of speed-independent modules10,ll.

Terms. The basic elements of this level are modules.
Modules are computational elements that perfonn
complete operations. Once a module has been started, it
completes what it is doing before it can be restarted.
Each module has a number of directional paths: a Go
and a Done path for synchronizing communication with
other modules, optional Input and Output data paths,
and an optional Interrupt path. 'Each module also has a
set of input buffers corresponding to the input data paths.
A module is controlled by the absorption and emission of
tokens on the Go and Done paths. Besides modules
there are several kinds of forks and joins that determine
the flow and control of information, calling buffers that
mediate the use of shared modules, and subsystems which
combine modules to form entities that are not modules
(e.g. pipelineS).

.... ..
Interrupt

Input Data Paths
Go

1 1 1 1 ~,

I I I I 1
Input Buffer

Done

~r 11r 11r

Output Data ~aths

Fig. 2 A Module

4

Composition Rules. Composition rules at the LMA
level govern the use of shared structures and provide
conventions for control of infonnation flow. The
following are examples of composition rules.

Fork Rule. If the output data paths of a module
connect to more than one other module. then its
Done path must be connected through a Fork to
the Go paths of all of the other modules.

Join Rule. If the input data paths of a module are
connected to more than one other module. then its
Go path must be connected through a Join to the
Done paths of all of the other modules.

Shared Module Rule. Calls to shared modules
must be buffered.

The composition rules of the LMA level prevent the use
of data before it is ready (e.g.. has not settled) and
prevent deadlock from the use of shared modules in the
digital system.

Exampies from the Design of a Stack. A niajor goal
of the LMA level is to provide an expressive language for
describing ,digital architecture. We believe that practicing
designers do not share a common notation and that this
makes it unnecessarily difficult to understand designs.
This section argues that the LMA language is expressive
enough to admit meaningful comparisons and abstract
enough to provide leverage for exploring design
alternatives.

Stacks are familiar devices for providing iast-in-jirst­
out access to stored data. There is a push command for
adding a datum to the top of a stack, and a pop command
for retrieving it. An error occurs for a push on a full
stack or a pop on an empty stack. There are several
fundamentally different architectures for' implementing
this simple device. This section considers five of them
briefly as architectural examples.

Pointer Stack. This version corresponds to the usual
software implementation. Information is stored in an
array of registers. An index register (called the pointer)
contains the address of the top of the stack. The push
and pop instructions increment and decrement the
pointer. The following shows the abbreviated graphical
notation and linear notation for this version of the stack:

Fig. 3 Pointer Stack

Module PointerStack
inputs [command: action. dataln: item]
outputs [dataOut: item]

--These specify typed input and output lines.
parameters [depth: Integer. item: Type]

--These are construction parameters.
components (pointer: Registcr[addressWidth(depth)]

R: Sel[i. depth. Register[itemm
--This specifies subcomponents of modules from a library.
--Sel(i,n,typc) creates a set of n indexable items of type type.

action [Case command
(push [if pointcr<depth

then {selecl[key .. pointer I R[key]"datalnl;
pointer"pointer+ l}D

- Select activates an indexed element from a set
. (pop [ifpointer>l

then {pointer"pointer-l;

interrupt [{pointer"l}]
end Module PointcrStack

<select key .. pointer; dataOut"R[key] I>}])]

Roving Marker Stack. This version uses a mark bit
associated with each storage cell to indicate the top of the
stack. In a push or pop instruction. all of the cells receive
the command but only the one with the mark bit set
performs the operation and then moves the marker bit by
calling a neighboring cell.

Fig. 4 Roving Marker Stack

Ganged Marker Stack. This is similar to the previous
stack except that all of the marker bits are moved, instead
of just the top ones. Architecturally, this stack is a
mixture of the first two. It combines an array of registers
for data storage with a shift: register for marker storage.

Fig . 5 Ganged Marker Stack

Buffered Stages Stack. In the previous versions, the
cell containing the data at the top of the stack varied
according to the number of pushes and pops. An
indicator was used to keep track of which cell was the
current top of the stack. In this implementation, the top
of the stack is always the leftmost cell and all the data in
the stack move simultaneously. Intermediate stages
buffer the data as it moves been cells.

Fig. 6 ButTered Stages Stack

Memory
Cells

Ripple Stack. Like the buffered stages architecture,
this version has a fIXed cell for the top of the stack and
moves the data on push and pop instructions. In
contrast, the controller for this architecture needs only to
be connected to the first and last stack cells. A push
command from the controller starts at one end of the
stack; the required movement ripples left to right through
the stack. It requires half as many registers as the
previous version of the stack, but requires time
proportional to the current depth of the stack.

Left End [1] [N] Right End

Fig. 7 Ripple Stack

Module RipplcStact
inputs [command: Action. dataln: item]
outputs . [dalaOut: item]
parameters [depth: Integer. item: Type]
C01l5lants [moveRight, startMoveLeft, POP. store: Action]
components [DC: Set[i. depth.

DataCell[item: item

action [Cose command

LNbr: when i> 1 then DC[i-l].
RNbr: wilen i<depth

then DC[i + Inn
(push { OC[l](moveRight): DC[l](store. dataIn)}]
(pop {dataOut .. DC[l](pop): DC[depth] (slartMoveLeft)}]

interrupt [<& Set[i. depth] {OC[i](store. 0): OC[i](Pop)}) 8c>}]
end Module RippleStaek

Module DataCell
inputs [command: action. dataIn: item]
outputs [dataOut: item]
parameters [item: Type. LNbr: DataCell[item]. RNbr: DataCell[itemD
components [Filled: Bit]
action [Cose command

[moveRight 0 +- 0

[startMoveLeft

[moveLeft

{ifFilled=l
then RNbr(moveRight);
RNbr(store. dataIn)}]
{ifFilIed=O
then LNbr(startMoveLeft)
else {LNbr(moveLeft);Filled+-OH]
{if Filled = 1
then LNbr(moveLeft);
LNbr(store. dataln)}]

[store
(pop

(dataIn) +- 0 { .. data stored in dataln]
o +- (dataOut) {dataOut+-dataIn; Filled+-O}D

end Module DataCell

5

Architectural Comparisons. The stack· specifications
in the LMA notation are sufficiently descriptive to
provide a basis for answering questions like the
following:

How much storage is needed per element of capaci~y?

All of the stacks require at least at least one
register per element. The roving marker stack,
ganged marker stack, and ripple stack each require
one additional· bit per element The buffered
stages stack requires two registers per element

What fanout of control logic is required?

The ripple stack requires control conJ).ections only
to the first and last stack .elements. The other
versions require connections to every stack cell.

6

What determines the minimum delay between successive
push commands?

The ripple stack has a delay which increases as the
stack is filled. This is because the push command
must ripple through to the last filled stack cell.
(We have not worked out the details of a version
of a ripple stack in which the first few elements
would not have to wait for the ripple to finish; it
would allow successive push and pop transactions
to cancel without extensive rippling.) The time
complexity of the pointer stack depends on the
time complexity of the adder and of the random
access memory.

LMA notation for distributed computing (i.e:, active
architectures) is analogous to high level programming
languages for sequential and parallel algorithms.
Specification at the LMA level highlights critical
architectural tradeoffs such as communication versus
redundant computation, copied structures versus shared
structures, serial versus parallel computation. We believe
that LMA programs are amenable to a physical theory of
computation, perhaps along the lines of the entropy
model in Mead and Conwayl pages 365-370. This would
provide an added abstract framework for space-time­
energy complexity analysis beyond that now emerging for
VLSI circuitsl2.

The Clocked Registers and Logic (CRL) Level

The clocked registers and logic (CRL) level is
concerned with the composition of combinational and
register logic. We have considered only two-phase
clocking systems. In the future we will develop an
abstraction level based on self-timed systems.

To implement an LMA description at the CRL level
requires making a number of design decisions. Event
sequences need to be mapped into event times in ways
that preserve their partial orderings. Modules need to be
divided into stages and clocks need to be assigned
Encodings for symbols need to be chosen. In doing this,
the performance and implementation constraints for the
ultimate digital system need to be articulated and taken
into account. We· believe that· this process is knowledge
intensive requiring expertise about tradeoffs and the
combination of constraints. This knowledge could be
provided by either a human designer or by an expert
system. One of our goals is to represent subsets of this
knowledge for Palladio. This paper, however, is
concerned only with the description levels.

Terms. The terms at the CRL level are stages.
Stages are logical devices having both a storage capacity
and a transfer function.

Composition Rules. Common design practice is to
use alternate clocks to load data into successive stages.
This practice is captured by the following two
composition rules:

All of the data inputs to a stage must be valid
during the high interval of the same clock.

All of the outputs of a stage must be valid during
the high interval of the other clock.

Phil Phi 2 Phil Phi 2

Sequence of Stages

Phi 2

Oocked Feedback Loop

Fig. 8 Composing CRL Stages

Figure 8 uses narrow lines to indicate that data are
valid during the high interval of Phil' and wide lines for
data. valid during the high interval of Phi2. The
composition rules prevent the creation of stages with
distinct input lines holding data valid on different clocks
(mixed clock bugs) and also the creation of unc10cked
feedback loops.

Optimization Rules. The CRL composition rules
embody worst case assumptions. For example, figure 9
shows two versions of a circuit for a memory cell.
Technically, the second version has an unclocked
feedback violation. The optimization works because the
two inverters return the original data. The optimization
requires extra-level information, which is suggestive of
the idea that global optimizations require passing
information among abstraction levelS.

Phi1*Ld
Straight-forward Version --L

Optimized Version

-,-­
Phi 2

Phil*Ld

--L
Clocking
Gate
Omitted

I

Fig. 9 Two Versions of a Memory Cell

The Clocked Primitive Switches (CPS) Level

The CPS level is concerned with the digital behavior
of a system. This requires that circuits have two reliably
distinct logical levels. For example, near 5 volts we have
a band which we interpret as logical I, and near 0 volts
we have a band which we interpret as logical O.
Intermediate voltages in a digital system have I\tl
indeterminate interpretation at sampling times. Such
intermediate voltages can be caused by improper
interconnection of circuit elements, improper operating
regions of devices, and leakage of stored charge. The
concepts of the CPS level are closely related to switch­
level simulations13•

Implementation of CRL descriptions at the CPS
level requires choices about using steering logic versus
restoring logic, and choices about various regular
structures such as PLA's and multiplexors. Power and
performance constraints of the ultimate circuit need to be
taken into account. Again, we believe that this process
requires substantial knowledge and we plan to articulate
and represent a subset of this knowledge in Palladio.

7

Terms. The terms at the CPS level are steering
logic, clocking logic, and restoring logic. The basic
element of steering logic is a pass transistor. We label its
terminals as follows:

Control
Input

--L
Data Input ~ Steered Output

Fig. 10 Pass Transistor

We define a steering logic chain (SLC) as series­
connected pass transistors and define a steered logic
network (SLN) as the parallel composition of SLCs. An
SLN can have several outputs.

CONTROL

Fig. 11 Steered Logic Network

Clocking logic is a pass transistor controlled by a
qualified clock input as shown.

Qualified Clock Input

--L
Data ; r--1 Clocked
Input ----I I-Output

Clock =D- Qualified
Qualifier Clock

Output

Fig. 12 Clocking Logic

8

The basic element of restoring logic is a restoring element.

VDD
I

PUE

Restored

Output

Restored Input -
Steered Input - PDN

Clocked Input -
I

GND
Fig. 13 Restoring Element

A restoring element is made of a pull-up element (PUE)
and a pull-down network (PDN). A PDN has three kinds
of input.s restored, steered, or clocked. The three kinds of
inputs name the type of logic to which they are
connected. The composition rules in the next section
exploit the type information to help prevent errors.

Composition Rules. The composition rules at the CPS
level specify how the terms can be connected and take
into account requirements for voltage level restoration
and charge storage. For example:

A control input can only be connected to a
restored output

A qualified clock input can only be connected to a
clock output

Every SLN output must have exactly one on path
from one SLN input during the period of validity
of data output

Steering Clocking * Restoring
Logic I--- Logic ~ Logic

Network 1
Charge Storage Point

Fig. 14 Charge Sharing

Because of our rules, clocking logic must always separate
switching logic from restoring logic. The purpose of this
is to prevent charge sharing. Charge sharing occurs when
charge is allowed to leak to or from a charge storage
point, as illustrated in figure 14. For example, if PTI is
on, the charge can spread through PTI into the
capacitance of points further back. Since the amount of
spreading can depend on the patterns of logical signals to
the pass transistors, failures can seem intermittent
depending on rare combinations of signals to a circuit

Another set of composition rules constrain the
layouts of pull-downs in terms of their impedances:

Element ImQedance Constraint

Pull-up element ZpUE = L/W
Restored PUE ZpUE = L/W
Clocked PDE ZpDE = 2L/W
Steered PDE ZpDE = 2L/W
Restored PDE ZpDE = L/W

The impedance of elements connected in series is
computed as the sum of the individual impedances; the
impedance of elements connected in parallel is computed
as the maximum of the individual impedances. For the
restoring logic to restore voltage levels correctly, the
impedance ratio ZPU/ZpDN must be approximately 4.

OQtimization Rules. According to the ratio rules above,
the impedance for the following network would be
computed as 8. In making this recommendation, the
composition rules implicitly make a worst case
assumption. If we had the information that signals on Al
and A2 were complementary and Bl and B2 were
complementary, then we could compute the impedance
of the network as 6.

Fig. 15 Impedance Calculation

Comparison with Other Approaches

The philosophy behind our approach differs
significantly from that used in the construction of silicon
compilers. In a silicon compiler, the desired behavior of
a system is specified in a language at a single level. The
compiler converts this behavioral description into a
structural description in a standard format. This fails to
exploit many possibilities in the design space. In our use
of multiple descriptions, each' level specifies both
behavioral and structural information. User-chosen
transformations can be made in the design at many
different levels all the way down. For example, in the
LMA level, one might find optimizations which yielded
substantially different structures before deciding whether
to use two-phased clocking or self-timed circuits.

Multiple Level System (e.g. Palladio)

Behavioral Specification Structural Specification

LMA ~

CRL

CPS

IAlyout

Existing Silicon Compilers

Specification I
Language

~~I
Layout

Fig. 16 Mapping Behavior to Structure

9

The use of multiple levels for describing hardware
has been tried many times. For example, there are logic
descriptions and register transfer descriptions14• We
believe that the logic descriptions are too isolated and the
R T descriptions are incomplete and insufficiently
formalized. For example, it is difficult even to find the
clocking specifications in a typical R T description. The
composition of partial RT descriptions does not yield a
test of correctness for clocking. In essence, those
descriptions were not designed for synthesis. They
provide no composition rules, optimization rules, or bug
characterizations. Our goal is to understand and
formalize descriptive levels whose utility derives from
their coverage of critical design concerns.

Part of the culture of expert system building is the
explicit representation of entities from problem-solving,
such as goals, constraints. tradeoffs, and reasons.
Symbolic expressions for these need to refer to circuit
descriptions (e.g., modules or pull-down networks) as part
of the natural bookkeeping of the design process. Such
symbolic representations are a prerequisite to embodying
expertise about design in an expert system. Figure 17
provides a sketch of how our abstraction levels will be
used in Palladio.

Closing Remarks

The utility of these levels of description remains to
,be tested. Embedding them in Palladio and exercising
them will. be our reality test. We expect libraries of
system descriptions at the abstract levels to be useful for
collaborating designers by allowing some insulation from
the inevitable tech nology changes that affect layout cell
descriptions. Our preliminary experiments with hand
worked examples have been very encouraging. Palladio
will be a forcing function for articulating. representing,
and sharing the heuristics and other knowledge about the
design process.

We thank Chuck Seitz for pointing out to us the
behavior-structure cross connection property of our
multi-level description paradigm. Thanks also to Mary
Hausladen and Terri Doughty for preparing the
illustrations.

10

LMA

Constraints
implementations

Multiple
Alternatives

• l'\fl-

Design Task
Agenda

Check
Composition
Rules

Estimate
Propagation
Delay

Propose
Design
Alternatives

Fig. 17 Snapshot of a Design Process in Palladio

References

l. Mead, C., and Conway, L. Introduction to VLSI
Systems. Addison-Wesley Publishing Company, 1980.

2. Feigenbaum. E. A. The art of artificial intelligence:
themes and case studies of knowledge engineering.
Proceedings of the National Computer Conference, AFIPS
1978, pp. 227-240.

3. Stefik, M., Aikins, 1., Balzer, R., Benoit, 1., Birnbaum,
L., Hayes-Roth, F., Sacerdoti, E.· The organization of
expelt systems: a tutorial. Artificial Intelligence (in press),
1982.

4. Simon, H. A. The Sciences o/the Artificial. Cambridge,
Massachusetts: The MIT Press, (second edition) 1981.

5. Erman, L. D., Hayes-Roth, F., Lesser, V. R., Reddy, D.
R. The Hearsay-II speech-understanding system:
integrating knowledge to resolve uncertainty. ACM
Computing Surveys 12:2, June 1980, pp. 213-253.

6. Nii, H. P. and Feigenbaum, E. A. Rule-based
understanding of signals. in Waterman, D.A. and Hayes­
Roth, F., Eds., Pattern-Directed Inference Systems.
Academic Press, New York, 1978, pp. 483-501.

7. Stefik, M. Planning with constraints (Molgen: part 1).
Artificial Intelligence 16:2, May 1981. Dp. 111-140.

8. Stefik, M. & Bobrow, D. G. Linked module
abstraction: A methodology for designing the
architectures of digital systems. (working paper),
Knowledge-Based VLSI Design Group KB-VLSI-81-9,
1981.

9. Peterson, 1. L. Petri nets. Computing Surveys, 9:3,
September 1977, pp. 223-252.

10. Clark, W. A. Macromodular computer systems.
Spring Joint Computer Conference. 1967.

11. Ketler, R. M. Towards a theory of universal speed­
independent modules. IEEE Transactions on Computers,
C-23:1, January 1974.

12. Thompson, C. D. Area-time complexity for VLSI.
11 th Annual ACM Symposium on Theory of Computing,
1979, pp. 81-88.

13. Bryant, R. E. A switch-level simulation model for
integrated circuits. PhD thesis, Laboratory for Computer
Science, Massachusetts Institute of Technology
MIT ILCS/TR -259 (March 1981).

14. vanCleemput, W. M. Computer-Aided DeSign Tools
for Digital Systems. IEEE Catalog No. EHO 132-1
(second edition) 1979.

The Partitioning of Concerns

in Digital System Design

by Mark Stefik, Daniel Bobrow,

Alan Bell, Harold Brown, Lynn Conway,

and Christopher Tong

