
z c :=

Computer Science and
Office Information Systems

By Clarence A. Ellis and Gary J. Nutt

Computer Science
and

Office Information Systems
BY Clarence A. Ellis and Gary J. Nutt

June 1979

ABSTRACT

Automated office systems are emerging as an interdisciplinary research area with a
strong computer science component. In this paper we define office information systems
as entities which perform document storage, retrieval, manipulation and control within a
distributed environment. Some state of the art implementations are described. We relate
the research to different areas of computer science and provide several detailed
examples.

KEY \AJORDS AND PHRASES

Office automation, distributed systems, office information systems, office modeling.

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

TABLE OF CONTENTS

INTRODUCTION

WHAT IS AN OFFICE INFORMATION SYSTEM

Officetalk Zero: A Prototype OIS

Goals of Officetalk Zero

Capabilities and Functions

Some Implementation Issues in Officetalk

Lim i tations

SCOOP: Another Prototype OIS

The Approach

TIle SCOOP Implementation

TECHNICAL OIS RESEARCH PROBLEMS

Programming Languages

BDL: A Very High Level Business Language

BOL Capabilities and Limitations

Software Engineering

Information Control Nets

An ICN Example

Operating Systems and Databases

Office Systems Consistency

Consistency Within the ICN Model

Computer Architecture

Measurement and Evaluation

OIS Simulation

Distributed Simulation

Communications

Artificial Intelligence

Sociological Issues

Informal Communications in the Office

FUTURE TRENDS IN OIS RESEARCH
ACKNOWLEDGEMENTS
REFERENCES

1

INTRODUCfION

The automated office of the future is quickly becoming the topic of much significant computer

science research. The office machine industry, lead by Burroughs, Eastman Kodak, Exxon, IBM,

3M, and Xerox, is actively working on automating the information processing that takes place in

an office [Creative Strategies, 1978]; most of these corporations are also investing significant sums

of money into research programs for the office of the future. Active programs incorporating

computer science also exist in universities, e.g. at M.I.T. in L.C.S [Hewitt, 1979] and the Sloan

School [Hammer and Zisman, 1979], University of Pennsylvania's Wharton School [Ness, 1976-78;

Morgan, 1976, 1979; Zisman, 1977], the University of Toronto [fsichritzis, 1979] and the Harvard

Business School [BucL.lnan, 1979]. The focus of most of this attention is not traditional business

data processing, nor is it management information systems, but rather systems and facilities to aid

the office worker in the more basic aspects of his/her job. Word processors address the problem

of document preparation, but the worker must also organize, file, copy, transform, analyze and

transmit that information effectively. The automated office should mechanize all these functions as

well, thus allowing the worker to accomplish less routine work.

The need for the automated office creates a new area for applying results, techniques and

methodologies of classic computer science research. However, solutions to a large number of

difficult problems must be obtained before such systems can become a reality. Many such
. -

problems are a result of three more general problems: the complexities of distributed systems that

implement the automated office, the necessity for simple, yet complete human interfaces, and the

need for knowledge-based systems to aid the user.

We recognize that it is difficult to address the entire audience of computer science researchers at a

level which will excite each investigator into an active interest in automated office research. We

have chosen, instead, to mention as many of the appropriate topics as possible, while providing a

more complete discussion of only a few of them. Ibese detailed discussions tend to reflect the

areas of research with which we are most comfortable; one should not necessarily draw the

conclusion that these are "the most important" areas of research in office automation. For more

breadth into related topics of management science, see other Computing Surveys articles [Aron,

1969; Taggart and Tharp, 1977]. We encourage other computer science specialists to provide more

complete discussions of those topics which we have not treated in detail.

The paper deals with three major topics: some example implementations of office information

systems, a discussion of some problems from the standpoint of traditional computer science, and

2

future trends in research. The organization has been designed to allow the reader to obtain an

overview from the introduction of each major section. Additional insight is provided in each

subsection introduction, and finally, several subsections are refined to contain detailed discussions.

3

WHAT IS AN OFFICE INFOR]\tlATION SYSTElVl

The office is that part of a business that handles the information dealing with operation,

accounting, payroll, billing, etc. In particular, office work consists of activities such as document

preparation, filing, performing simple computations, checking information, intraoffice

communication and external communication. Such processing within the office is usually

stimulated by the arrival of a request for service such as an order, a bill, a complaint, a message to

order more materials, or the date changing to Friday. The office, then, can be viewed as a

mechanism that maintains the state of the business, by means of a series of activities that cause

change in state.

The computer scientist can use a number of different models to describe office activity, such as:

e A set of activities resulting from requests for service, each with a specific precedence. Each

activity requires a supporting file system.

e/\ set of people "executing their procedures" ("carrying out tasks"), communicating with and

referencing a supporting file system.

e A set of communication media with thei:- corresponding communications, such as a filled-in

fonn, a phone call, a copy of an order, or a file system query for organizing and processing

information.

e A gigantic database with users accessing and manipulating data.

An automated office information system (0 IS) attempts to perform the functions of the ordinary

office by means of a computer system. Automation in the office particl~larly aids the office worker

in document preparation, information management and decision making. Such systems may be as

modest as a group of independent word processors, or as complex as a distributed set of large,

communicating computers. Within in this spectrum is a central computer with several interactive

terminals, or a set of small interconnected computers. In either system the office worker would

use a work station to perform his work, and that work station would be capable of electronically

communicating with other work stations.

In this paper we distinguish office information systems from data processing systems both by the

autonomy of the system's parts, and by function. A data processing system is used to implement

alogotithms with a single locus of control in which there are ordinarily not collections of

4

autonomous parts; the algorithm ordinarily procedes without the need for human interaction.

Typical data processing systems compute payrolls, implement accounting systems, manage

inventories, etc. An OIS is made up of a collection of highly interactive autonomous tasks that

execute in parallel; the OIS tasks include document preparation, document management,

communication, and aids in decision making.

The terms "office of the future", "automated office", "office information system" and "integrated

office system" have been frequently applied even to small business computer or timesharing

systems. So in order to describe our view of an OIS luore exactly we will present two examples of

what we consider to be state-of-the-art office information systems.

Officetalk-Zero: A Prototype OIS

Officetalk-Zero is a prototype "first generation" office infonnation system, designed and

implemented by William Newman, Tim Mott and others from the Office Research Group at Xerox

PARC, [Newman, 1977]. The Officetalk-Zero effort began in late 1976 as a study of languages for

expressing office procedures, and subsequently evolved into an OIS emphasizing the user interface.

The prototype--operational by June, 1977--was introduced into a naive user environment within the

following year.

Goals of Oificetalk-Zero

Officetalk-Zero, or Officetalk for short, is implemented in an environment of a network of

minicomputers interconnected by a high speed communication network [Metcalfe and Boggs, 197~].

Each minicomputer, a Xerox Alto, is a 128K (16 bit) word minicomputer with a 2.5 megabyte

disk and a sophisticated CRT display [Alto, 1978]. Areas on the screen are pointed to by a cursor

under the control of an x -y coordinate input device called a mouse. The mouse is operated by a

button which is depressed, held down, then released; software can determine the state of the

button as well as the x-y coordinate addressed by the mouse. Even though the PARC

environment encourages the network approach, it is clear that many future automated office

systems will be designed around a similar physical environment [Creative Strategies, 1978].

The Officetalk designers took the position that the new OIS should be based on the data objects of

single page forms and files of forms; intercommunication is accomplished by electronically passing

forms among the work stations. The user's model of the system is that Omcetalk is merely an

electronic aid for carrying out his normal tasks. A primary difference in the user's model (as

opposed to his pre-OIS model) is the lack of real paper at the user's work station. (After all, one

5

goal of office automation is to reduce the use of paper.} Each work station provides a graphical

window onto a worker's desk, allowing the worker to manipulate electronic forms by employing

the pointing device.

Officetalk is not a decision support tool nor is it a management information system; it is intended

to be used by office workers to aid in document management, preparation and communication.

Part of the reason for restricting interest to clerical work was the desire to investigate office

procedure specification and interpretation; the designers recognized that the procedural

specification of "routine clerical work" was an unsolved problem, and that a solution to that

problem would be a step toward the solution of the more general problem.

Many of the individual facilities needed to implement the OIS described above already exist as

separate programs on several computer systems. The user must have a text editor, a graphics

package, electronic mail, a filing facility and a forms data entry capability. However, an OIS must

offer all of these facilities to the user via a simple, uniform interface. Officetalk combines all of

these facilities, plus a few others, into a single, integrated system which is currently being used by

clerical workers.

Capabilities and functions

Officetalk is_a distributed program that executes on at least one minicomputer in conjunction with

the communication network and a central file. server. Ordinarily there will be several

minicomputers, each acting as a work station for an individual user of Officetalk. The central file

server maintains a database describing all pending electronic transactions, e.g., electronic mail,

information about each authenticated user of the system, or a set of tailored blank forms to be

used in the particular applic~tion. 0 fficetalk is designed to save the majority of the user's

i...'1formation state in the central server and as little as possible in the local minicomputer.

To implement Officetalk, a set of blank forms for the application must be designed and entered

into the database. Officetalk provides a forms editor which allows one to design the artwork of a

fonn and to specify the style of each field on the form. The forms editor requires that the newly

designed forms satisfy certain rules, such as no overlapping fields; it also permits certain fields to

be designated as signature fields. (Legal signature field entries can only be filled in with the image

of the current user's signature.)

Upon. logging into o ffice talk , the user· is shown an image of a desktop containing parts of forms.

The user employs the mouse to manipulate the forms on the desktop. Each form is displayed in a

6

rectangular window on the CRT device. The form may be larger than the window; hence, the user

is allowed to enlarge (shrink) the window or to scroll the form within the window by pointing the

mouse to appropriate parts of the window frame. The user can also move the window around on

the display screen by "picking up" the window with the mouse and then moving the mouse. If

the new window position overlaps another window already on the screen, Officetalk treats the two

windows as pieces of paper. The last window that is "laid down" is wholly visible, while

intersecting windows are at least partially "covered up". Each window includes a menu of

Officeta1k commands which can be applied to the form that is visible in the window. The

particular menu that is used is a function of the type of the form showing in the window. The

mouse is used to point at commands in order to invoke them.

A newly-initialized Officetalk desktop contains four forms called file indexes:

-The in-basket, an index of incoming mai1.

-The out-basket, an index of mail to be sent and mail that has been recently sent.

-The file index, forms that the user has saved.

-The blank stock index, the set of avdlable forms.

Each file index entry contains several fields: One field names the file, an action field specifies a

command which can be applied to that file entry, while other fields list other information about

the file. A file index form is special in the sense that it contains a field on the form itself which

allows command invocation; ordinary forms do not contain an action field. (Instead, all commands

are invoked by the window menu.)

When the user wishes to generate a document, he selects a blank form frOln the blank stock index

by pointing at the action field of the appropriate entry; the form is drawn in a new, fully visible

window. The user may then enter information into the form by pointing at a field and typing a

character string (or causing a signature to be entered). The editor restricts the data types to match

the form's field definitions, e.g., a signature field can contain only a signature. Officetalk also

allows the user to draw freehand on a form; the mouse is used as a "brush" which can take on

several different styles. Freehand illustrations can later be removed without harming the form's

layout or previously typed information. This capability is particularly useful to those who have an

aversion to typing. Once a document has been prepared, it can be filed in the user's personal file,

in which case it will have an entry in the personal file index mentioned above. Or perhaps it may

7

be copied, and the original filed and the copy placed in the out-basket for mailing. The contents

of the out-basket are actually mailed (placed on the central file server) when the user points to a

transmit selection in the menu of the out-basket.

The user can work on an existing document by retrieving a previously-filed form from any file

index, including the in-basket. Electronic mail is routed from the sender to a mailbox on the

central file server; the mail is moved to the local in-basket by pointing to a menu selection. Forms

that have been mailed can be traced by the user. When the trace option is chosen, Officetalk

opens a window on the electronic desk and then describes the current location of the form and an

audit trail describing its route to that location.

Some Implementation Issues in Officetalk

Officetalk integrates a number of facilities that exist in many different systems into a single

interface. The interface takes full advantage of the interactive graphics capability of the Alto. For

example, the user can shuffle paper, read mail, or read previously filed documents without

touching the keyboard. There are several other interesting aspects to the Officetalk design which

are not discussed here: the memory management among the central file server, a work station's

local disk, and the work station's primary memory is complex; the primary memory can be used

more effectively if parts of a form are "demand paged" in from the local disk. Similarly, in form

storage there are tradeoffs of network traffic versus local disk space utilization. The network

communication mechanism has been the subject of careful study: for example, the tradeoff

between reliability and program size in choice of protocol level. The production of hardcopy

documents from graphical images requires more than brute force algorithms. (Several of these

parts of the Officetalk implementation were adapted from OIS-independent packages that already

existed at PARC.)

The basic software under the graphics package implements some portions of the Level 4 of the

Core System developed by the ACM SIGGRAPH Graphics Standard Committee, [ACM

Computing Surveys, 1978]. The Alto environment provides low level implementation of the pick,

locator and keyboard input devices. The viewing trans/annation is defined by a bitmap for a 606 x

808 point screen; in order to place an image on the screen, it is necessary only to set the

appropriate bits in the bitmap. Officetalk designers implemented the two-dimensional notions of

windows and view ports, so that clipping, scrolling and moving windows could be handled

efficiently. The techniques used in the display maintenance are described in Newman and

Sproull's second edition [1979].

8

Each window in the user's domain has a descriptor indicating the current size and location of that

window, as well as other infOlmation about the window's content. Windows are placed in a list in

the order in which they should appear on the screen. TI1US, window movement amounts to placing

the window on the front of the window list and then updating the bitmap by first clearing the area

in which the top window appears, then placing window content in the bitmap, and, then drawing

(with clipping) next window descriptor in the list. When the Inouse points to a window, the

program searches the list for the first window to contain the x-y coordinate input. The menu

selection is determined by both the identity of the window and the location within the window.

(The location within the window specifies the function to be performed.)

Intelligent forms editing requires some thought. There are tt·~ usual low level interface problems:

for example, how to select and replace text. Additionally, field types must be checked for proper

values. While some fields may be unalterable after they have once been written into (e.g., the

"amount" field of a pay voucher), other forms are copies and thus cannot be written upon. (One

important problem that arose here was how to visually identify a copy from the original! The

approach taken was to provide a different set of capabilities for manipulating a copy rather than

manipulating an original; the menus for the two types of forms differ.)

Limitations

Officetalk i~a prototype office information system that integrates a set of common facilities into a

single system with a simple user interface. It does not include any decision support facility, a

desirable feature of a production OIS. Decision support can perhaps best be incorporated by

providing a means for defining procedural specifications of office activities. Although this was a

goal of the Officetalk-Zero study, the user interface turned out to be a hard enough problem to

absorb the full energies of its Jesigners. In order to increase the reliability of a distributed OIS,

production systems are likely to incorporate more sophisticated database systems than that used. in

Officetalk. The designers chose to use an existing facility which does not allow a distributed

database, which supports no query system, and which uses overly simplistic forms of locks for data

consistency.

Even with these limitations, Officetalk-Zero is a unique prototype that illustrates the power and

utility of the integration of a set of information Inanipulation facilities into a single office

information system.

9

SCOOP: Another Prototype OIS

While Officetalk-zero emphasized the user interface, Michael Zisman's SCOOP (System for

Computerization of Office Processing) emphasized the specification, representation and automation

of office procedures [Zisman, 1977]. Zisman developed a system based upon Petri nets augmented

by production nlles for modeling offices as asynchronous concurrent processes. This model, called

the Internal Representation, was a conceptualization of how the machine represented the problem to

itself. In addition, an External Representation described office procedures as activities and

documents in a non-procedural programming language for the office analyst. A prototype system

for computerization of office procedures was implemented at the University of Pennsylvania's

Wharton School. The system, driven by an internal representation as input, tracks instances of

procedures and automatically executes portions of them. Throughout his thesis, Zisman focussed on

automating office procedures rather than simply automating devices in the office.

The Approach

The augmented Petri nets Zisman used to describe office procedures can also be used to represent

asynchronous processes in general. The notation specifies a process representation as a Petri net

[peterson, 1977] and a knowledge representation as sets of productions [Newell and Simon, 1972]

associated with the Petri net transitions. For any given situation it is necessary to consider only

those productions associated with the Petri net transitions that are enabled at the time. Thus, the

model partitions the total knowledge set into useful, not necessarily disjoint, subsets. We will next

consider a model of an order entry process in an office as an e'<ample of the model.

For the purposes of this paper, the office which performs the order processing function consists of a

receptionist who records the arrival of each customer request for goods in a log book, types the

required information onto an 0rder form, and then sends it to the order administrator. Upon

receipt of the order form, the order administrator processes the order using the customer file. He

or she next uses information from the billing file to validate that this customer is not delinquent in

previous payments. Then a decision is made about whether the goods should be shipped C.O.D. or

the customer should simply be billed for later payment. In the case of C.O.D., a single form, fJ, is

filled out, but in the bill later case, two forms, fl and fl, are filled out. This fragment of an office

10

procedure , although simplified, will serve as a pedagogical aid for explaining various ideas

throughout this paper.

One Petri net must be constructed for each agent, who is frequently but not always human. Thus,

the receptionist agent is described by the Petri net of Figure la, and the order administrator agent is

described by the Petri net of Figure lb. The semantics of the actions that occur at the nodes of the

net are presented as sets of productions in Tables la and lb, respectively.

Let us consider within the model what happens when a customer's request for a product arrives.

Customer request arri'.'als are modeled by a token arriving on the place PI of the Petri net

presented in Figure lao Note that PI is the initial place specified for this net. This token appearing

on place PI enables transition al. SOlne unspecified time after this enabling, the action specified by

transition al will actually occur; that is, the transaction will fire. Note that we do not know exactly

when this activity will take place, because the receptionist may be busy doing something else or may

not even be working at the time of arrival. This nondetelministic timing notion is captured nicely

within the Petri net fOlmalism, because Petri net transitions are defined to fire at some finite but

indefinite time after the transition is enabled. One variation from the standard Petri net definition

that occurs in this model is that transition firing is not instantaneous. This instantaneity could be

accomplished by associating transitions with the termination of transactions, but there are

advantages to associating times with transactions in order to separate execution time from wait time

and to perform analysis. Because a Petri net is an uninterpreted model, to find out what is really

happening within any transition, we must look at the associated productions. Table la implies that

transition al results in the writing of an entry into the log book. This action enables the next step

in the Petri net (transition a2): the keying of a customer request into the system. Transition a2 also

has the side effect of enabling an instance of the order administrator agent to begin by placing a

token on the initial place P5 of the Petri net in Figure lb.

Methods for modeling decision making (location PIO) and parallel processing (trausition aID') are

illustrated in Figure lb. Note that a single token on place PIO can cause either transition aID or

transition aID' to fire and remove the token from place PIO, but both transitions cannot fire since

removal of tlle token by one transition disables the other. Firing of a transition also depends upon

the production rules associated with the transition. If the condition portion of all associated

11

productions is 'true', then the transition can fire (cf. PatH's [1970] coordination sets). In this case it

depends upon the value of the variable "shipping-mode", which was set by the previous transition

a7. When transition alO' fires, it places tokens onto both P6 and P9, thus enabling transitions a6

and a9. Again these enabled transitions cannot fire until their associated production predicates are

true. In this case as in many cases of parallel asynchronous processing, productions associated with

different independent transitions are in the active production rule set. In the SCOOP system

implementation, each production consists of a list of predicates followed by a list of actions to be

performed if all predicates are true. In Table lb, after transition a7 has fired, if "shipping-mode"

equals "C.O.D.", then alO can fire; if "shipping-mode" equals "pay later", then alO' can fire. The

dashed lines to and from the new transition a6' in Figure Ib have been added to illustrate the

mechanism for modeling timeouts on a transition such as a6 in this example. If the activity a6 is

not completed within the time limit specified, then (and not before then) transition a6' will fire and

cause some reminder to be generated. The enabled a6' predicate performs this tJiggering function

(Table lb).

The rule associated with t.ransaction a6' states that if this transaction has been enabled for five or

more days, then a document entitled "reminder" should be sent to the order administrator. Then

the timer is [eset and transitions a6 and a6' are re-enabled. One generalization of the augmented

Petri net formalism that is not present in this example is the ability for one net to cause a variable

number of initiations of another net. This notion of spawning a variable number of child processes

is useful.

The scaa P Implementation

SCOOP stands for System for Computerization of Office Processes. The system implementation

contains an execution monitor which is driven by the internal representation of a set of augmented

Petri nets; as a transition T fires, the execution monitor removes the productions associated with T

from the active productions rule set and enters productions of any transitions which are enabled by

the firing of T. The execution monitor starts up some processes which can be implemented as

automatic procedures and other processes which are interactive cooperative ventures between man

and machine. At a lower level, special purpose hardware and software systems exist to carry out

various office tasks which receive messages from SCOOP. rThe special purpose systems which are

12

used by SCOOP are document generators; electronic mail senders and receivers; file services, and

media schedulers.

Although the complexity and number of the special purpose systems may grow large as the office

automation area grows, the monitor (or office operating system supervisor) can remain relatively

constant. Zisman provides guidelines and frameworks for a high level non-procedural specifications

language, and that contains a document definition section for declaring all documents needed, an

activity initiation section for describing when each activity can be performed and an activity detail

section. The activity detail section describes the detail tasks to be done when the activity is initiated

by a few basic operations, wen-known to an office analyst. Procedure descriptions in this language

could then be translated into an augmented Petri net and run using the execution monitor, SCOOP.

By considering the specification language, the internal representation, and the design of a prototype

system using one unified model, Zisman has been able to study the office as a system rather than

simply as a collection of isolated tasks and pieces of equipment. Although Zisman suggests the

language and the model need refinement, his basic notions will probably have great impact on the

office of the future.

13

TECHNICAL OIS RESEARCH PROBLEMS

In this section we describe a number of problems in the fidd of computer science that relate

directly to OIS research, in some cases discussing a particular topic in detail, in order to give the

reader a bctter understanding of the nature of that problem. A special attempt has been made to

emphasize two kinds of problems: Those which might reveal new and/or interesting facets due to

the context of OIS research; and those which may yield to specialized techniques within a

subdiscipline. The exposition of this section proccdcs from languages and systems through

architecture, communications, artificial intelligence to some important sociological issues in office

information systems.

Programming Languages

Because of the potential need for very high level programming languages that can be used by the

ordinary clerical worker, research in programming languages is an important area of OIS research.

The implementation of OISs on distri.buted systems will also affect programming languages, since a

large OIS will likely require the ability to recompile parts of the system dynamically while other

parts are nmning. Design of programming languages will be influenced both by the need to

support the-naive user and by the need for handling parallelism. Aftcr mentioning a variety of

such problems, this section presents a more lengthy discussion of IBM's Business Definition

Language developed for naive users to implement data processing algorithms.

Because of the dynamic nature of office procedures, the clerk will likely find it necessary to write

and modify programs that execute at his work station but that may be applied globally. In the

past, the end user of a batch system could be given an English description of the input to a

program and some instluctions about interpreting the output. The user model of the system

became more complex when he or she was expected to use an interactive terminal, although that

too could be explained by a more complicated set of instructions describing the effects of different

keystrokes, the "state of the computer" when it prompted, etc. However, because of the new need

to create and alter procedures, the description of the OIS that is prescnted to the naive

programmer/user will have to depart significantly from the machine models to which he or she has

grown accustomed. rnlC average clerical worker will not be willing to learn very sophisticated

notations to understand the operation of the OIS; neithcr will he be willing to learn drastically

different approaches to the solutions of his own problems.

14

In order to use a programming language, the user must understand the notions of compile time,

load time and run time. A simpler metaphor is used to describe an interpreter: encode an

algorithm into symbolic fOlm, then "run" the program. The question is whether this is the proper

way for the c1erical worker to think of programming an OIS work station, or whether the worker

should be given a skeletal program which can be filled in with appropriate parameters (as in

various query by example systems [Zloof, 1975]) or perhaps only be allowed to write syntactically

correct programs by parsing the program as it is entered into the work station. Various other

aspects of the user model may profit from new abstract machines; e.g., should the user be

unconcerned with 110 devices other than, perhaps, a mailbox, keyboard, and display? (The clerk

could ignore the existence of hierarchical file systems if file access messages could be sent to a file

server.) A natural question that arises from this area relates to the computational completeness of

OIS programming languages. Is it necessary to be able to encode any algorithm into the user's

language? If the language is restricted, can one (more easily) test for certain consistency features

such as decidability of a program, correctness, deadlock, etc? What should be the nature of such

"restrictions" to the language; should there be unorthodox control structures (e.g., no explicit

loops), or very limited data structures?

So we see that future OIS languages may reduce the amount of information needed to program

the system. It may also be necessary to expand the abstract machine model over conventional

languages. t. model of a distributed OIS might not disguise the network aspect of the system, but

rather emphasize it. For example, the model may be that of a communication network with server

nodes; each work station's view of the system being that there will be requests for service, and that

services can be requested from other nodes in the network by sending a request to the appropriate

server. Work on such a communal system is accomplished by cooperation among a set of servers

in the network. An extensiop. to this idea is that of sending procedures to other work stations

rather than sending messages, (allowing procedures to run in different physical domains). Other

features that are not ordinarily in a programming language model may have to be added in order

to simplify the human interface. How can a distributed OIS be updated by multiple clerical

workers in a systematic manner? Can any work station dynamically recompile its own procedures

(or those passed into it from another work station) without sOtne global form of communication?

Should there be a central compiler/consistency-checker which each work station must use if it

wishes to recompile a procedure? Since it has been shown that there is a significant amount of

parallelism in an office, [Ellis, 1979], should OIS procedural specifications explicitly denote

parallelism or should it be detected by a compiler?

15

BDL: A Very High Level Business Language

BOL, a Business Definition Language developed at IBM's Thomas J. Watson Research Center, is a

very high level programming language constnlcted for the naive user. Although the specific

application area of the BDL work is business data processing, the work corresponds closely to that

of programming language development for naive OIS users. DOL has been designed to simplify

the translation of concepts and algorithms of business data processing into instructions which

implement those ideas on a computer. Quite generally, the approach has been

" ... to apply the design philosophy of structured programming and very high level languages

to a particular application area, namely business data processing" [Hammer, et aI, 1977, 833].

There has been no claim that DOL is a general purpose language; the tradeoff between generality

and simplicity of use has purposely been biased toward simplicity. This does not mean that DOL

is simply a parameterized program, nor is it even built on an existing programming language

foundation. IlOL is a new approach that incorporates a number of assumptions from business data

processing such as the kinds of problems that will be encountered and the common methods for

solving those problems. The language is intended to be sufficiently expressive that it can also

serve as formal documentation of the applicatbn. One result of the bias toward simplicity in BOL

has been the decision to build as much structure as possible into the language. The result is that

the language does not provide alternative ways to accomplish a given function; instead, only one

method per function is provided. DOL syntactic program segments have a common style and

structure; each program is constructed from the common schema.

The extensive usc of stnlctured programming concepts in the DOL design becomes apparent in the

expression of control flow and information transformation. nDL recognizes documents, steps, paths

and files as objects for describing a business data processing algorithm. A document, the

fundamental data item in BDL, can be thought of as an organized set of primitive values. Each

step can read documents, perform some computations and then produce a new document.

Composite steps can be hierarchically decomposed into more primitive steps. Irreducible steps

define the derivation of output documents from input documents; they can be defined only in

terms of a program segment. A path connects steps together, indicating the flow of documents in

the program; it defines an output document for one step and an input document for another step.

(Several paths may enter and exit any step.) Documents can be saved for distinct program

activations by placing them in files in one activiation, then retrieving them in the later activation.

16

A BOL program is defined by three distinct components: A Form Definition Component (FDC)

defines the forms which will contain documents. The Document Flow Component (OFC)

represents graphically steps, paths and files. The Document Translation Component (OTC)

specifies the procedural interpretation of the irreducible steps.

A BDL form, a template for documents, is comparable to the notion of an Officetalk blank fOlm

in that the form definition includes a physical graphic image specification similar to a traditional

paper form as well as other information. The electronic form tends to be more "intelligent" than

paper since it can be made to respond to varying conditions; for example, fields in BDL forms can

align themselves depending on the content of the document. The FDC is implemented at an

interactive graphics terminal which allows the forms specialist to define the form by drawing

rectangles and filling in sample field contents. The physical layout of the form is first described by

specifying its size, its preprinted information, fields, field headings, etc. Detailed form information

is also defined by using the FDC to specify field names, data types, data formats, names for

groups of fields, key fields for sorting groups of fields, as well as explicit instructions for handling

certain errors.

The Document Flow Component describes the data flow by means of a directed graph; the

components of the graph are steps and files (nodes) interconnected by path segments (edges). The

DFC is similar to a number of other methods for specifying the hierarchical design of computer

programs and systems; the reader of BDL literature will recognize ideas and constructs similar to

those used in the TELL system [Hebalkar and Zilles, 1979], LOGOS [Rose, 1972], the ICNs

discussed in a later section of the paper, and many others.

The node set in a DFC graph is made up of rectangles representing steps and of circles

representing files. The edge set is made up of solid directed edges interconnecting steps and. of

dashed directed edges interconnecting steps and files. Each edge is labelled to define the

document type that flows over the corresponding path (a file is assumed to contain only one kind

of document). A document is said to be an output (input) do.cument of step a if the path from (to)

step a is labelled with the document's name.

A OFC graph is derived as a set of hierarchical graphs in which each intermediate level in the

hierarchy is made up of one or more composite nodes. A BDL program is stepwise defined by

first specifying a graph made up of composite steps, paths and files, all of which illustrate the

organizational units of the business and the flow of documents among those units. Topdown

17

refinements are made by decomposing steps into more constituent steps until each step is

irreducible. Once a computer step has been refined into an irreducible step, then the function of

the step can be defined by the DTC. If the irreducible step is complex unit of computation, its

interpretation reflects that complexity. An executable BDL program is defined by a DFC graph

over a set of irreducible steps and a set of functional definitions for each step.

At run time a step in a BDL program can be executed whenever there is a document on each

input path of the step. The step is assumed to execute instantaneously, destroying each input

document and creating new output documents on each output path (cf. Petri net tokens [Peterson,

1977]). For information to be passed from an input document to an output document, the step

definition must explicitly copy that information from the input document(s) to that output

document(s} (cf. E-net tokens [Nutt, 1972]). The BDL run time support system provides an

implicit queue of documents on each edge of the DFC graph. BDL also allows a step definition

to process a group of documents from the input path set and to create a group of documents for

the output set (cf. parallel program schemata [Karp and Miller, 1969]).

The Document Transformation Component could, in principle, be any arbitrary programming

language. Each DTC procedure is invoked when the DFC execution enables a step with input

documents. The DFC run time system could merely provide a mechanism for calling the

correspondiHg step procedure and for passing it the arguments that exist as input documents in the

DFC graph. In BDL, DTC is a very high level language directed toward business data processing

of aggregates of data. The DTC language contains a common algorithmic framework built into

each step. The DTC programmer uses this framework to define the particular transformations of

information from the input document onto the output document. (Although the innate algorithm

framework handles single inpl'l-single output steps, multiple inputs/outputs are handled by using

the document grouping feature of the DFC.) The step interpretation must specify an expression

for each value field on the output document. The expressions are made up of ordinary arithmetic

operators, conditional expressions over logical and relational operators, and aggregate operators to

handle groups of data.

BDL Capabilities and Limitations

This discussion of the Business Definition Language and the previous discussions of the Officetalk­

Zero. and SCOOP systems have introduced the notion of expressing information flow in the

business application by casting information into modules -- documents and forms. The need for

18

sophisticated mechanisms for creating templates for the data structures is apparent from the effort

spent in developing forms editors; all of these efforts appear to be leading to the intelligent fonn.

The notions of a trace facility in Officetalk and form error handling mechanism in BOL can both

be thought of as procedures to be executed in the context of the form rather than the context of a

work station or OTC procedure. Although there are many similarities between Officetalk and

BDL, the emphasis in the Officetalk-Zero work is on the graphical interface to system facilities,

while the BOL effort is aimed at creating a programming environment for the naive user.

One facet of the BDL approach is that it does not explicitly differentiate between control flow and

data flow. The whole question of conditions under whieh a model should represent control and/or

data flow, and to what extent they should be separated is still open; the data flow representation

in the business data processing environment may be exactly right. Only experience with BOL and

other data flow languages can resolve this debate.

However the distibuted office system environment is different from the data processing

environment of BDL. BDL models explicitly orient the description around the flow of documents

through various steps which might be executed on arbitrary processors, ignoring the assignment of

steps to processors. For example, the document flow through five steps implemented at two

different locations could require as little as one and as many as four communications over a

network, depending on the assignment of steps to processors; a document-oriented model may not

distinguish between these two cases. One alternative representation is to orient the model around

processors, i.e., work stations and people. In this case, network internode communication may be

apparent, but the path of the document may be difficult to discern. Document oriented

descriptions of information processing tend to be useful for ascertaining information about the data

flow, e.g., the temporal ordering of processing that takes place on tIle information. Processor

oriented models of the computation often tend to be easier to use for analyzing resources in the

system.

One criticism that can be leve:~d at the BDL's application as an OIS programming language is the

stance of the designers on the problem of informal communication. Although some applications

do not make use of forms for communication, DOL assumes that communications are

accomplished only by forms: "For example, it is possible to represent a telephone call as a stylized

document carrying certain information." [HalllL.cr et aI, 1977, page 833]. As will be discussed in a

later part of this paper, capturing the information content of infonnal conversation is neither trivial

nor well-understood.

19

The DTC language is intentionally constraining when compared with general purpose

programming languages or other structured programming systems; however, it is definitely a

programming language and not a parameterization of a previously written program. The nDL

effort is one of the few published works that adequately addresses the problem of programming

languages for naive business users. But it is only through these and similar efforts that

programming languages will be made available that can be utilized by the clerical worker in the

automated office.

20

Software Engineering

In this section we discuss various topics of software engineering, and also present an office

modeling scheme (InfOlmation Control Nets) that has been used both to describe offices to

managers and to analyze the office for consistency and performance. The scheme can also be

extended into a simulation model or a requirements specification for the OIS design.

At the heart of many software engineering methodologies lies a model of the design, e.g., see

DREAM [Riddle et at, 1978], SADT [Ross, 1977], SARA [Campos and Estrin, 1978], and TELL

[Hebalkar and Zilles, 1979]. The goals of these methodolog:'~s are usually as general as possible

within the scope of software development. The methodologies are intended to specify

requirements before implementation, to check the correctness of a design, and/or to be used as a

design system. The model itself is molded to reflect the pmticular part of the methodology that is

important to that system.

In considering the development of office information systems there are compelling arguments in

favor of analytic modeling: (1) the technology of the systems is still in the formative stage; (2)

these systems are quite dynamic (changes to office procedures, office personnel or office

requirements'are frequent) and, (3), there is no comprehensive theory of office information systems.

Indeed, there is strong reason to believe that the office of the future will need to lean heavily on

modeling and theoretical analysis. And since the office can be viewed as a network of highly

interactive parallel processes, models and analyses used in studies of computer systems are highly

applicable.

Information Control Nets

We next present one particular model developed over the past few years by researchers in the

Analysis Research Group and the Office Research Group at Xerox P ARC to describe and analyze

information flow within offices. A model with similar goals has been developed at the University of

Toronto [fsichritzis, 1979]. This model, called an Information Control Net, has been used within

existing and hypothetical automated offices to yield a comprehensive description of activities, to test

the underlying office description for certain flaws and inconsistencies, to quantify certain aspects of

office .information flow, and to suggest possible office restructuring permutations. Examples of

office analyses that can be performed via this model include detection of deadlock, analysis of data

21

synchronization, and detection of communication bottlenecks. Restructuring permutations that can

be performed via this model include parallelism transfOtmations, streamlining and automation.

Thus, one requirement for the model is mathematical tractability; another is simplicity so that naive

office workers can comprehend and manipulate the model. A third requirement is extensibility so

that one model is equally applicable to theoretical analysis, simulation and implementation.

The Information Control Net model [Ellis, 1979] defines an office as a set of related procedures.

Each procedure consists of a set of activities connected by temporal orderings called precedence

constraints. In order for an activity to be accomplished it may need information from repositories,

such as files and forms. An information control net (or ICN) captures the above notions of

procedures, activities, precedence and repositories in graphical form. ICN diagrams in their simplest

form use circles to denote activities and squares to denote repositories as in Figure 2. A solid line

from activity A to another activity, n, is a precedence arc and denotes that activity A must be

completed before activity B can begin. Dashed lines to and from repositories denote respectively

the storing of information into and the reading of information out of repositories.

An ICN describes the activities or tasks which make up an office procedure. This section presents a

formal definition of a basic ICN as a set of activities, a set of repositories and various functional

mappings between these elements. One set of :nappings, ~, describes precedence constraints among

activities, and another, -y, describes repository input-output requirements of activities. A great deal

of information can be attached to a basic ICN: information concerning, for example, (1) concerning

the particular data items transferred to or from repositories, (2) who performs the activity, (3) the

amount of time the activity takes, and (4) the amount of data transferred by an activity.

Definition: A basic ICN is a 4-tuple r = (~,"Y,I,O) over a set A of activities and a set R of

repositories, where

(1) I is a finite set of initial input repositories, assumed to be loaded with information by some

external process before execution of the ICN

(2) 0 is a finite set of final output repositories, perhaps containing information used by some

external process after execution of the ICN

(3) ~=~iU~o

where

~o: A-. P(A) is a multivalued mapping of an activity to its sets of (immediate) successors,

~i: A-. P(A) is a multivalued mapping of an activity to its sets of (immediate) predecessors.

(For any given set S, P(S) denotes the power set of S)

•

(4) Y=YiUyo

where

22

Yo: A -+ peR) is a single valued mapping (function) of an activity to its set of output repositories,

Yi: A -+ P(R) is a single valued mapping (function) of an activity to its set of input repositories.

In mapping leN diagrams into fonnal definitions, solid lines into an activity node correspond to the

eS i function, and solid lines out of a node correspond to eS o. Similarly, dashed lines into an activity

node correspond to the Yi function, and dashed lines out correspond to Yo.

As an example, the fonnal definition corresponding to Figure 2 is shown in Table 2. Given a

fonnal definition, the execution of an leN can be interpreted as follows. Pick any activity a, in

general:

means that after completion of activity a a transition occurs which simultaneously initiates all of the

activities f3il through f3i,m(i). Only one value of i (1 <i<n) is selected as the result of a decision

made within activity a. (Note that if n = 1, then no decision is needed and a is not a decision

node.) In general, if m(i) = 1 for all i, then no parallel processing is initiated by completion of a.

One complication to the above discussion is that eS i(a) must also be taken into account for each a

because synchronization is frequently needed within offices.

For example;--if a or f3 will execute, and one or the other must finish before 11 can begin, then one

way to model this is by utilizing a hollow dot with two arcs coming into it from a and f3 and one

arc going out of the hollow dot to 11. If a and f3 execute in parallel, and both must finish, then the

black dot with two incoming arcs can be used. Our fonnalism using eS i and eSo handles the

\lescription of all of these cases unambiguously.

The execution of an leN commences by a single X transition. We always aSSUlTIe without loss of

generality that there is a single starting node:

3! alEA 3 {{X}}EeSi(al).

At the commencement, it is assumed that all repositories in the set IkR have been initialized with

data by the external system. The execution is terminated by anyone X output transition. The

single input node assumption allows any complex procedure to be viewed as a single node. If there

are many X output nodes, the procedure shrunk to a single node is a decision activity. If this

decision-making at a detailed modeling level is superfluous at a higher modeling level, then a

hollow dot can be used to join output arcs to a single terminal node within this procedure. This

implies that data arcs show information repositories that may be used rather than those that must be

23

used. The set of output repositories are data holders that may be used after termination by the

ex ternal system.

All leN Example

Figure 2 shows the order processing example, introduced earlier in the paper, in terms of the ICN

diagram. For clarity, triangles are used instead of rectangles to denote those repositories which are

temporary (analogous to local variables within procedural programming languages). At the top of

the figure attached to the arc into al is a comment "customer request arrival." The initial incoming

arc is labeled by a comment to specify startup semantics. Order processing then proceeds by

logging the customers request into the log book (activity al), typing the order and sending the order

(activities a2 and a3), and then receiving the order (activity a4). Decision nodes, or choice nodes

(drawn as small, hollow circles), are activities with multiple immediate successors. When a decision

node terminates, one of the successors is selected to be activated next. The decision node a7 is

labeled first by information indicating the semantics of the decision, i.e., a decision is made to send

the goods via C.O.D. or to bill later. In the case of a bill later decision our diagram shows by

dashed lines that two forms, fl and f2, are filled out in the activities a8 and a9, respectively. In the

case of C.O.D., only one form, D, is filled out. The arcs emanating from a7 are labeled by

numbers to indicate the probability that any given transaction will next be processed by a8 or a9.

In the example, 90% of the transactions result in C.O.D billing. This important branching

probability implies that a mapping should be added to our basic definition. Unlabeled branches in

this mapping would have a probability of 1 associated with them. Another mapping which could be

added to our basic information is a mapping from each activity to a person (or people) who

perform that activity (cf. Zisman's agents).

Each activity in a diagram such as Figure 2 can be a macro activity described by an ICN diagram.

Similarly it is possible to envision that the order processing procedure specified in Figure 2 may be

one node in a diagram at a higher level. For example, one could have a diagram showing order

processing node followed by credit department processing node followed by accounting node

followed by billing and shipping in parallel. Figure 3 shows this same order processing example

after some standard automated ICN transformations for office restnlcturing have been applied to it.

In Figure 3 the activities send order and receive order do not appear because in an automated system

the typing-in activity would automatically cause the information to appear on the screen or be

available to all of the people involved in the process. Activity aI, logging, and activity a2, typing,

24

can be freely switched, and so are termed abelian activities; such activities form the basis for a

number of parallelism transformations [Barth, 1978]. In Figure 3 we notice that the typing activity

precedes the logging activity. Once the typing activity is done, and the information is available to

all the workers involved in this process, then it is possible to do activities in parallel. Thus, after

activity a2 is completed, both the logging activity (al) and the order processing activity (as) can

begin. This is shown in the ICN diagram by small, filled-in dots with lines pointing to the activities

a1 and as. The omission of a3 and a4 is an automation transformation; the perfOimance of activies

in a different order or in parallel is a reorganization transformation.

In this example there is a streamlining of procedure in that activity a7 no longer requires access

customer file C; instead this infOlmation is available locally in temporary repository U. lbis is an

example of a transformation called data roll-back in which case data is accessed at an earlier time in

the process, thereby rendering other future accesses unnecessary. Data roll-forward is exemplified in

Figure 3 as well: note how activity a6, which accesses the billing file, has now been "rolled

forward" so that it is done after activity a7. Thus, access to the billing file is limited to those cases

in which it is really necessary (when customer will be billed later). Also in this case parallelism is

now obtained between the order processing activity a6 and the fOlms fill out activity a9 although it

is not possible for the activity a8 to be done before activity a6 has completed. Notice that in

general these transformations involve what can be described as probabilistic parallelism and are

predicated upon branching probabilities associated with decision nodes. If all the activities in this

procedure have reasonably similar execution times, then these transformations will speed up the

average processing time by approximately fifty percent

Operating Systems and Databases

A common definition of the office information system is "a distributed operating system with a

highly refined user interface and database facility." As such, there is a number of issues regarding

operating systems that present challenging problems: distribution versus centralization, functionality,

reliability. distribution of operating systems kernel, security, parallelism and consistency, to name a

few. For example, one of the areas of high concern to office managers is security of sensitive data

(data which may now be displayed on CRT screens at multiple locations within an office).

Similarly, they are very concerned about reliability and the ability to continue processing

transactions in the face of component failures.

25

Other problems are involved in the servicing, organization and management of an office. In the

typical office there exists a conglomeration of unstructured tasks [Ellis,et.al.,1978]. How to group.

couple and uncouple these tasks is a very important question. Dynamic links, such as those

incorporated into the DEMOS Operating System [Baskett, 1977] are a possible solution to this

problem; the concept of the intelligent form, a process that may travel from one work station

process to another in order to fulfill its goals, is another possible solution.

Distributed synchronization in the form of efficient distributed implementations of network

synchronization primitives is yet another problem in the design of an OIS. Possible solutions might

include distributed imp!ementation of eventcounts or some other type of distributed monitor system

[Reed and Kanodia, 1977], and primitive serializers [Hewitt, 1979].

These problems and their solutions are relevant even if the OIS is viewed as a database system.

The design and implementation of effective office information systems requires solution of a

number of additional research problems on the database, involving personal filing systems, office

database schema organization, specialized l~nguages for office databases, duplicate database update

algorithms, distributed query processing and other issues regarding organization of distributed

databases.

In the office, information is highly diffuse and dispersed; there are strong implications that the

redundant storage of data at multiple sites is desirable. If at each site, its frequently accessed data .is

local, then reading that data requires no overhead from network transmission. A yet unsolved OIS

research problem is the minimization of the cost of updating this information at all nodes that

possess it. If users at several sites attempt to update simultaneously, the result could be inconsistent

copies, and so yet more research has been centered around efficient maintenance of multiple copy

databases. Possible solutions might include a centralized controller scheme [Garcia, 1979] in which

all nodes must ask pennission from the primary controller, although thl~ scheme generally tends to

create performance bottlenecks at the primary site. A variant of this scheme employs one or more

centralized controllers for various segments of the database with distributed crash recovery

[Menasce, et al.,1979]. Algorithms allowing totally distributed control include a ring stnlctured

scheme [Ellis, 1977] in which messages circulate around all relevant nodes in a prescribed order and

return to the sender afterwards as pennission to update; this latter technique, however, tends to be

26

slow because of low utilization of parallelism. It is also possible to implement a "primary update

token" that moves around the network and symbolizes control. A node that holds the token, can

freely update the databasc. A less cumbcrsome scheme employing distributed control is the voting

algorithm [Thomas, 1976]; if a node wants to update, it can do so by asking its ncighbors to

perform local consistency checks and to vote "yes" or "no" to the update. These neighbors in turn

ask their neighbors to vote, etc. After getting a positive vote from a majority of the nodes, the node

may update. In fact, the update may be performed even before voting is complete if transaction

restart or rollback is available. This scheme allows the system to continue gracefully even if a

minority of the nodes are not functioning. The complexity of this algorithm and others indicate the

strong need for formal proofs that they work correctly [Ellis, 1977]. Also, experience is yet needed

with implementations; at the Computer Corporation of America, an ambitious project is being

considered that will implement a duplicated database facility for the Arpanet community that

utilizes different update protocols for different classes of update transactions [Bernstein,et aI, 1977].

Some of the objectives of all these schemes include efficiency, consistency, robustness in the face of

partial failures, and formal correctness. Some additional techniques that might be used include:

timestamps, which are attached to transactions so that such problems as out-of-order updates can be

avoided..; node IDs and transaction IDs, which break deadlocks in an unbiased fashion; locking of

records or pages of a database, which can ensure that several users will not access the same data at

the same time; two phase commit protocol, which locks multiple resources in a safe (Le., robust)

manner; and timeouts, which detect transmission problems and malfunctioning nodes. These

techniques are all directly relevant to the design and implementation of office information systems.

Office Systems Consistency

Suppose that in the previously explained order processing example (Figure 2), a count must be

maintained of the number of custonlcrs per week, but that a count at activity aID yields 90

customers (the number leaving the system), whereas a count at a2 yields 100 customers (number

entering). This type of inconsistency can be detected automatically using formal models such as

ICNs. Such automatic detection can alert the office administrator of an error (that, in this case, he

forgot to count those customers who exit via path a6). In a typical large office with many paths of

communication such inconsistencies can readily be detected and corrected by the DIS. Consistency

27

takes on an even more important role within the automated office. Naive users' interaction with the

automated system, the frequency of change within the office, and highly complex communications

and control all necessitate rigorous verification of consistency.

Within this paper we define consistency broadly to mean that "a collection of specifications or rules

are not contradictory." Internal consistency is distinguished from external consistency in that

internal consistency is defined as the impossibility of generating contradictory theorems, given a set

of axioms and inference rules, whereas external consistency is defined as the absence of

discrepancies between two sets of specifications of a system, between a system and assertions about

that system, or between two "equivalent" systems.

Some classes of consistency, if breeched, leave the system in an illegal or undesirable state. This

occurs in the four classes of consistency listed next.

1. Security violation. For example sensitive private information displayed on a CRT in a

public area.

2. Improper responsibility delegation. Although it may be feasible and nice for an automated

syst~m to take over assigned mundane tasks at a work station while that clerk is out of the

room or on vacation, some person or process should have responsibility for each

transaction which enters the system. So, if too few (or too many) parties have

responsibility, this may be detectable as an undesirable state.

3. Contradictory Information State. If an order form indicates that one hundred widgets were

ordered today, but the log book says no orders were placed today, then we have anoth'er

example of inconsistency. lbis type of inconsistency frequently occurs with respect to

monetary figures. In some cases if the discrepancy is small, then the office may ignore it;

if the discrepancy is large then it becomes a undesirable state.

4. ContradiCtory Database State. For example, if an office manager, after finishing business

for the day and finishing the processing of all transactions for the day, discovers that two

copies of the primary database (which are automatically maintained by the OIS) have

different values, then this is a case of inconsistency, as exhibited by a bad database state.

28

Violation of the following classes of consistency, however, cannot always be so readily detected:

5. Message transmission semantics. Inconsistencies could occur when: A sends, B never

receives; or A sends form F, B does not understand F; or A sends to a nonexistent

receiver; or B waits on a receive, but A never sends.

6. Data semantics. Consistency can be demanded in terms of field types (no letters of the

alphabet in a salary field please, field value for the number of customers during this

month should not be a negative value, etc).

7. Procedure semantics. (correctness of programs). If specifications or assertions are provided

in addition to the system documentation, then correctness of implementation with respect

to the specifications can be checked. One would like to have version consistency over

dynamic recalculation, i.e., although the system is constantly changing and it is not

possible to stop the system in the sense of restarting all transactions, it is nevertheless

desired to maintain consistency with respect to which version of each subsystem everybody

is using.

8. SYNchronization. Deadlock, starvation, and time erratic service are examples of violation

of inter-process consistency. These proble'ms occur because multiple processes need to

synchronize.

Having previously given a definition of ICNs, it is possible to build upon this mathematical

framework to formally carry out external consistency analyses. For this purpose, it is useful to

distinguish between ICNs, (Table 2), and ICN diagrams, (Figure 2). Completeness and consistency

of ICNs can then be defined with respect to ICN diagrams. Intuitively, these answer the following

two questions:

Completeness. Does the mathematical notation suffice to describe all office procedures?

The working meaning of office procedure would be any office procedure describable by an

ICN diagram. To insure completeness, we insist that any two black dots (AND nodes) in a

diagram be separated by at least one activity node.

29

Consistency. Given one of our Inathematical descriptions, does it always describe an office

procedure? The working meaning of this is that the mathematical description has some

ICN diagram that corresponds to it. If the mathematical description says that activity a is

a predecessor of activity !3 but !3 is not a successor of a, then the consistency constraint is

violated. Thus, we impose the following criterion.

'VaEA, V{!31,!32,. .. ,!3n}E8k(a), 3T3 aETE n 8k'(!Ji)

where k can take on the value i or 0 implying respectively that k' = 0 or i. This criterion

states that if {Pl,P2""'Pn} is one of my possible successor set of a, then all Pi must agree

that a is in a common predecessor set of theirs.

Questions of uniqueness of the above correspondence can be rigorously investigated by defining

structural and functional equivalence among models (see the paper "On The Equivalence of Office

Models" [Nutt and Ellis, 1979]). These notions of equivalence imply that any reorganization

transfOlmations performed on a model ought to yield an alternative office structure that meets

certain consistency constraints with respect to the original structure.

Consistency within the ICN Model

To illustrate internal consistency analysis, suppose that in the order processing example, activity a1

outputs information to a new repository, R, and as inputs information from R. After reorganizing

the office (Figure 3), these two activities are asynchronous, so it is impossible to know whether a1

or as occurs first. If as occurs L~fore aI, then as will obtain obsolete and possible inconsistent data.

Several activities thus accessing the same repository can lead to inconsistencies; it is even possible

that several activities operating concurrently could result in some wild mixture of operations in the

repository. For ICNs containing no loops or branches, the following definitions and theorems

describe undesirable conditions and relevant properties (see [Ellis, 1979; Karp and Miller, 1969] for

ex tension of these definitions and theorems to nets with loops and branches):

DEFINITION: If a directed path in the precedence graph from node a to node P exists, then we

say that a is less than !3 and !3 is greater than a. This can be described mathematically as:

30

a<f3 iff 3(n1,n2 ,nk) 3 njEUjE8i(nj+1)' l~j<k, n1 =a, nk=f3.

Thus, our graph specifies the order in which operators can execute because operator instances a and

13 satisfying a less than 13 imply that activity a must complete prior to the beginning of activity 13.

If a and 13 are unordered, that is, neither a less than 13 nor 13 less than a, then they may operate

concurrently or in either order.

DEFINITION: Two distinct activities a and 13 are in conflict at repository r if

1) a is not less than 13 and

2) 13 is not less than a and

3) either r is an input repository of one of the operators and an output repository of the other

or r is an output repository of both. Mathematically this condition is defined as:

af!i!Jf3 iff .(a<f3) A .(a>f3) A rE (on(a)nYo(f3»U(Yo(a)nYi(f3»U(yo(a)nYo(f3))

An leN is conflict free if no two distinct activities are in conflict at any repository.

DEFINITION: An leN is functional if the final values in the output repositories are functions

(only) of the initial values in the input repositories.

THEOREM: Every conflict free leN is functional.

JUSTIFICATION: It can be intuitively argued that since there are no conflicts the net can be

directly mapped to one or more sequential execution sequences which all produce the correct values

in output repositories. Since these output values are independent of the exact sequence of

operations, they can be expressed as functions of the initial values in input repositories. Incidentally

the converse of this is false since a net may contain conflicts which do not affect the output

repositories.

DEFINITION: An leN is detenninate if the sequence of loadings of each repository is a function

(only) of the initial values of the repositories.

31

THEOREM: Every determinate ICN is functional.

JUSTIFICATION: Determinacy requires that given an arbitrary repository r, the sequence of

values stored into r during the execution of the net must be a function of the initial values. In

particular the last value stored into r must be a function of initial values. Since this property must

hold for all repositories r, it must hold for all output repositories. Thus, determinacy is a stronger

condition than functionality. The converse of this theorem is false since the sequence of loadings of

a repository may be altered by time dependencies while the final value loaded can be independent

of the temporal ordering of conflicting activities.

THEOREM: Every conflict free ICN is determinate.

JUSTIFICATION: The proof of this theorem is based upon the observation that if a net is not

determinate, some repository can be found whose sequence of loadings depends upon the order in

which asynchronous activities are executed. This state of affairs can in turn be shown to imply that

the net has a conflict; thus we may prove the theorem by contradiction. If a system has indivisible

activities which cannot be mixed by simultaneous operation, then it is possible for these activities to

have conflict but to lead to a determinate net. Within a computer memory, for example, one and

only one of a set of competing asynchronous processes can write into a memory cell at a time. If

the processes are all trying to store the same function value into memory, then the underlying net

may have conflict but be determinate (also cf "determinacy" in [Coffman and Denning, 1973]).

32

Computer Architecture

Hardware technology has developed much further than software technology; software system

designers, painfully aware of the problem, have increasingly relied on computer architects to

incorporate more traditional software functionality into specialized hardware designs. Computer

architecture and integrated circuit design have made the concept of the intelligent work station a

reality through the development of such devices as word processors, small business computers and

intelligent tenninals. Recent work in computer architecture has included novel designs for office

systems as well as more well known· architectures for integration of software functions into

finn ware or hardware, [ACM Conference on Nonnumeric Processing, 1979].

Fixed instruction set and bit slice microprocessors have both contributed to the current trend

towards preference for local networks of small computers. Intelligent terminals and

communicating word processors frequently employ byte-oriented microprocessors as small

computational units that can execute complex programs in reasonable times. The declining costs

of such machines have made them especially suitable as work station in an OIS network. Bit slice

microprocessors are chip sets which can be composed to fonn machines of extended word width.

They have been used in small microprogrammed machines for wider word sizes; such machines are

inexpensive enough to serve as common nodes in a network.

The increa3ing density of integrated circuit design is also drastically influencing computer

architecture. The most obvious impact has come from the chip connection restrictions which are

pushing designers into bit serial designs, resulting in new ways of thinking about machines. One

trend has been toward data flow machines with many processors, [Schaffner, 1978; Dennis, 1974;

Wilner, 1978]. An example is Wilner's Recursive Machine [Wilner, 1978], which rejects the basic

notions of the von Neumann machine in favor of an architecture composed of logically regular

elements each of which can store, process and transmit infonnation. The basic idea behind such a

design is that such a collection of regular elements can take on the same interface specifications as

the individual elements; the design is perfect for VLSI technology. The elements can be logically

structured to represent a recursively-defined hierarchy of variable-length cells, allowing the

prepresentation of hierarchical data structures. As a result of this generality of logical

interconnection, and of the ability of the architecture to mold itself to represent the logical

interconnection, Wilner argues that his machine is especially well adapted to handling ". . .a

growing, adaptive set of flexible structures ... "; in particular, he claims that "Office procedures are

a growing, adaptive set of loosely interconnected, event-driven activities. . ." for which the

Recursive Machine is especially well-suited.

33

Measurement and Evaluation

Computer system measurement and evaluation might easily be included under a different topic

heading such as software engineering or operating systems. It appears as a separate topic primarily

because the measurement and evaluation subjects include human users as well as computer

systems. Perfonnance tools, such as queueing models, operational analysis models, simulation

models and perfonnance monitors, all are used to test an OIS, measure its perfonnance, or predict

its perfonnance from specifications. Many of these same tools can be used to measure the user of

the system as well as the system itself. After briefly surveying the area, a more complete

discussion is included of a facility that was used to test Officetalk during its final stages of

development.

Many of the more pragmatic motivations for so measuring and/or predicting the perfonnance of

an OIS are the same as those in any computer system: the need to choose between alternative

systems or approaches, to project perfonnance in order to evaluate the power of a system or

configuration, or to make better use of existing facilities through tuning [Lucas, 1971]. Because of

the complexity of interactive loads placed on an OIS, 'it has also become important to better

characterize the user of such systems. It is also useful to measure the user in order to design

better user interfaces. Such user performance measures may be based either on the time a user

takes to respond to a command, or the time a user takes to correct a line of text

Tuning studies in the OIS include traditional matters such as locating files in some part of the

system such that access time is proportional to the amount of traffic between the file and the user.

Tuning a work station for a particular user requires more flexibility, since each user will wish to

tailor his station to his own needs on any given day. For example, the user may wish to configure

his station such that it always presents a standard login display; or he 11lay wish to have the login

display be the same one that existed when he last logged off of the system.

OIS Simulation

Simulation in the study of an office information system helps both to predict the perfonnance and

to test the operation of the OIS. Simulation is also useful in OIS testing in that it can establish a

controlled environment in which a segment of a distributed system can be exercised. Simulation in

the network environment of the office system also naturally leads to notions of distributed

simulation, particularly when a detailed simulator needs to execute at real time as in the controlled

environment casco

34

Testing a distributed 0 IS requires that one simulate the various possible interactions that may take

place in a network of work stations. Ordinarily, these nodes have relative autonomy, and are not

directly controlled by their neighbors. Whenever a system is subjected to testing it is important to

establish causal relationships between the observed performance of the system and the stimulus (in

this case, work load) that is applied to the system, in order that one might determine the events

causing unusual behavior. In traditional computer systems, much is known about controlling the

wnrkload during periods of observation. A benchmark program is used to drive a system with a

well-known. fixed amount of work; the synthetic program is useful for establishing a benchmark

that can be systematically increased [Ferrari, 1972]. Similarly in timesharing systems, scripts have

been used to provide a well-defined fixed load on a system (see [Holdsworth et aI, 1973]). For the

OIS, however, it is more difficult to apply a well-understood workload, since requests for service

that are directed to a work station may be interactive. For example, clerk A may request that clerk

B prepare a bill from a shipping list, but if the shipping list is incomplete, B will return it to A,

requesting more information or clarification.

The Backtalk facility was designed to provide just such a controlled environment for testing

Officetalk-Zero [Nutt and Ellis, 1979]. Establishing this controlled environment for the system

makes it possible to:

Repeat a sequence of events in an experiment so that system errors can be studied more

carefully,

Determine a standard, or canonical, load for a distributed system so that relative

performances of two versions of the system can be compared, and

Increase the load on the distributed system in a controlled manner so that system

bottlenecks can be observed.

Within this controlled environment a subset of the nodes can also be used as a personnel training

tool; each work station in the subset interacts with a model of the complementary subset of nodes

rather than the remaining real nodes. Even a single work station can be used within this

environment to measure the performance of the individual human user.

Each instance of Officetalk executes at a node in a local network; other nodes of the network

implement other Officetalk instances, as well as a filing system. Several diverse facilities can be

used by making appropriate requests at the network interface; if results are to be returned, they will

arrive at the network interface. Thus, the system environment of any single node corresponds to

35

the information sent and received at the network interface. Hence, in order to provide a controlled

environment for one node, it is necessary to Inodel the network and all other nodes attached to the

network by generating the information input to the node and by acting upon the information

exiting the node. The fonnat of the information passed into the work station must be consistent

with that work station's facilities; e.g., if the station is expecting a complex description of a CRT

image of a form with certain fields filled in, then the environment must provide information in

exactly that format. In simulating an interactive conversation, the environment becomes even more

complex. As information is received from the subject node, the environment model must absorb

that infonnation and respond accordingly. More complex interactions can be modeled by

constructing procedural definitions of the facilities provided to the subject node. The controlled

environment facility then simply replaces the network and all other nodes. TIluS, a controlled

environment for the single node can be derived by using procedures to model the activity of all

other work stations and servers. The accuracy of the model of the environment is determined by its

ability to simulate the interacting work stations by procedural definitions.

A simulation of the environment in a distributed system will always be dependent upon the

particular function of that system; i.e., the algorithmic description of the tasks performed at a work

station is unique to that organization and work station type. Therefore, a specific facility to model

users and their function is necessary. The primitive operations provided by this facility should

correspond to_the set of functions made available to the user of the work station. For example, if a

user has the ability to create a new report, fill in certain fields, and send the report to another

user/work station, then the simulation facility ought to incorporate these capabilities as primitive

operators. Hence, the user interface portion of Officetalk is replaced by Backtalk, which appears as

a series of procedures to the user of Backtalk/Officetalk and appears as a user to the remainder of

Officetalk. It is still necessary to implement a model of the human user hitnself; if procedures

have not been defined to automate the user's functions, then appropriate models of those functions

must be constructed to interact with Officetalk through Backtalk.

The Backtalk facility allows implementation of real time models of work stations at various nodes

by using Officetalk facilities driven by models of the human user. In this manner, one can specify a

sporadic load on some work stations by modeling the corresponding interacting work stations with

Backtalk. The level of detail in the Backtalk models is detennined for the purpose of controlling

the network environment of a particular (set of) Officetalk work station(s). 'This facility allows the

designers of Officetalk to set the load 9n experimental versions systematically in order to compare

differellt versions, increase the load to determine location of bottlenecks, and repeat any tests if

36

necessary.

Distributed Simulation

Simulation models have frequently been used to investigate concurrent systems. Building models

that are exercised on a single processor is relatively straightforward, since the distributed aspects of

the system are modeled rather than implemented; for example, a simulation of a network of

machines can cause the machines to execute in quasi-parallel while the entire internode

communication is simulated. A more interesting problem arises if the simulation is actually to

execute in real time, which would be required if it were necessary to simulate SOlne of the nodes in

a network, but not all of them (e.g., train employees on a new ~IS). It is clear that for certain high

level (low detail) models, a single node in the network could simulate the input/output behavior of

several nodes. However, as the required detail increases, the real time constraints on the simulator

become more difficult to meet, and at some point it would become necessary to distribute the

simulator itself over two or more nodes of the network.

An individual work station could be used to model the activity of different work stations

simultaneously. The limiting factors to' the implementation of virtual work stations on a single work

station are: real time response of human users, complexity of the model of their activity, and

computational power of the work station. Carefully designed models of virtual work stations will

not be depentlent upon the mapping of virtual work stations to real work stations. Instead, a single

module of the model will completely implement the "mapping, obscuring it from all other parts of

the model. Whenever a simulation model of multiple virtual work stations is implemented on more

than one real work station, then the model is termed a distributed simulator. Although other forms

of distributed simulations have been used (see McRoss [fhomas and Henderson, 1972]), this form of

distributed simulation provides a new area of research for the computt-(scientist. Distinguishing

between virtual and real work stations, in particular those driven by Backtalk, makes it possible to

distribute the controlled environment model. Logically, the system may contain N distinct work

stations, whereas physically the configuration may contain one real work station per user, and some

undetermined number of virtu":! Backtalk work stations per real work station. If the number of

virtual Backtalk work stations is the same as the number of real Backtalk work stations, then control

is implemented by" the operating system for the distributed system itself. If the number of virtual

Backtalk work stations exceeds the number of real Backtalk work stations, then the distributed

simulation must perform the mapping into real machines. A better modularization of the

simulation model might be realized by simulating N different work stations on M different nodes,

where M varies from experiment to experiment (or perhaps even from moment to moment). In

37

order to implement such a simulator, it is necessary to construct a careful mapping of virtual work

stations to real work stations and to build some good synchronization mechanisms into the simulator

itself.

Distributed systems force the designer to deal with added complexity in the implementation and

testing of his system; therefore, the user may face more complex training in order to use the system.

Each node in the distributed system takes on the complexity of a traditional computer system, yet

the designer must still cope with interactions among the set of nodes. The techniques implemented

and described above are some initial attempts at providing a set of tools to aid the distributed

system designer by controlling the environment in which individual components of the overall

system are tested. A properly designed controlled environment subsystem should be flexible

enough to allow one to model various kinds of user loads, yet specific enough to make those loads

applicable to a particular situation. The Backtalk approach is to incorporate basic commands of the

office information system into the basic subsystem so that specific modeling procedures can be

constructed from these facilities.

Communications

The area of communications encompasses many diverse technical topics of both direct and indirect

interest to the office researcher/computer scientist. This spectrum covers such topics as optical

communication, telecommunication, packet radio techniques, satellite communications, digital signal

processing, etc. In addition, there is an entire discipline concerned with regulation of

communication facilities (e.g., see Lewin, 1979). The aspect of communication that has

traditionally been studied most heavily by the computer science community is computer

communication networks [Kimbleton and Schneider, 1975]. There has been a recent emphasis on

the same area with respect to local conlputer networks (see the annotated bibliography by Shoch,

[1979]). Much of this work has been directed at improving the perfonnance, reliability and

flexibility of communication over a data network. In the process of investigating ways to

accomplish these improvements, researchers have concentrated on network structures and network

protocols. For example, researchers have considered structures ranging from fully interconnected

nodes as might be found in a multiprocessor system, to central switching facilities which rely on a

switching center to pass information among the nodes. In between these extremes are partially

connected systems, star organizations, ring organizations, etc. In the area of transmission protocols,

investigators have concentrated on mechanisms to increase reliability (e.g., "store-and-forward

protocols"), communication unit sizes (i.e., bits, bytes. packets, or messages), and protocols offered

to the end-user of the communication facility (Le., whether the user sends/receives byte streams,

38

messages or packets}. Designs for communication networks has led to the idea of value-added

networks which may incorporate various useful features into the mechanism which implements the

basic protocol; for example, the network may provide teleconferencing, electronic mail, node

management, or accounting as basic utilities. For office infonnation systems, it is clear that many

communications issues are important, but the availability of inexpensive, reliable electronic mail is

paramount

Although the idea of electronic mail is now well established in network environments, further

developments are likely to take place with respect to designs. For example, the Arpanet mail

service uses a scheme by which anyone can establish a mailbox at an IMP, allowing any other user

of the net to deposit mail into that mailbox. It is easy to con~truct facilities which then effectively

broadcast information as well as direct a copy to a given mailbox. Some variations on this scheme,

especially for local networks, might provide "intelligent mail boxes" which filter incoming mail,

prepare stock answers, maintain a calendar, systematically query infonnation repositories, etc.

We can see that the area of network communications, in all of its technical and political breadth, is

critical to the development of the OIS discipline. With limited communication facilities the

otherwise well designed distributed system is likely doomed to failure.

Artificial Intelligence

Designers of the automated office can profit from many solutions to pending AI problems. In

particular, the research areas of natural language understanding, speech understanding, knowledge

representation and description, and knowledge-based systems can all provide useful results to the

OIS researchers. Natural language understanding is a powerful aid to clerical workers and

managers in directing their m?.'~hines to perfonn work. This area begins to overlap the study of

programming languages for naive users, although the philosophical underpinnings of Ule two

groups are different. Speech understanding, even isolated utterance recognition, can drastically

improve the acceptance of automated equipment in the office. Managers have traditionally

avoided keyboards, and they may also tend to avoid other mechanical input devices such as a

joystick or mouse. If an OIS can recognize even a limited fonn of speech, the probability of its

acceptance in the traditional office will increase. Knowledge representation and knowledge-based

systems can be used in a number of ways to aid the office worker. An intelligent "Help" system

can greatly aid the user during the initial stages of use of the OIS; it can also be useful after the

system has been used for a while if the worker uses certain facilities infrequently. Forms

manipulation can be improved by applying learning techniques, e.g., by having a blank form

39

"learn" that the originator field of a blank form, filled out at a given clerk's work station, should

always be filled in with the clerk's name. Knowledge engineering has been successfully applied to

a number of other application areas such as chemistry [Buchanan, 1969] and geology [Duda et al.,

1978]. Although it seems clear that one cannot immediately derive similar systems for an entire

office, portions of the office may be amenable to such techniques.

Sociological Issues

Sociological issues of the introduction of automation into the office are complex. In the office of

the future, it is likely that the office worker's physical and logical environment will change

drastically. New equipment may be marketed that which will allow an office with a fixed load to

operate with a relatively small number of people. Although this feature may be attractive to

managers of an office, it is less likely to be so to the workers themselves. Automated offices will

also change the rate at which certain facets of transaction processing take place. A consequence of

this feature is that the office will perform more efficiently, if it is reorganized, and this

consequence produces both a training problem and a problem of overcoming the existing inertia of

the office. Since technology is producing more and more compact work stations, the physical

organization of the office may soon decentralize to the point that workers will perform some of

their duties in their own homes. The possible impact of such a radical strategy is yet unknown,

but such disturbance of the logical and physical organization of the office will likely have a great

effect on o@ce procedures owing to the absence of informal communication. We will now treat

this problem in more detail.

In/onnal Communications in the Office

An office is an information processing and transforming mechanism. Within the office people

communicate through gestures and informal communications, as weli as through more formal

channels. The formal communications are usually well formulated and can often be

algorithmically specified; the informal communication are ordinarily not well enough understood

to specify their effect by an algorithm. As a consequence, automation of an office is likely to

upset the informal communi~ation mechanisms, causing the office information system to fail

[Ouchi, 1978].

It is well known that many offices function in an informal atmosphere in which the office workers

exchange banter and often couch their business in light-hearted talk. The first observation that

might be made about such office environments is that they merely reflect the personalities of the

workers or their managers. One might also assume that it is necessary to allow such an informal

40

atmosphere to exist in order to keep the morale of the workers at a level at which the workers will

be productive. Studies have shown that informal communication is much more important than

any of these theories might suggest. Browner et al point out that the office is full of structural

dependencies in which groups of people depend on one another in order to accomplish their own

work [Browner et aI, 1978]. For exalnple, salesmen need to maintain a good relationship with the

accountant in order to be promptly reimbursed for expenses; conversely, the accountant needs to

have complete information from the salesmen in order to keep accurate books. As a result, each

makes some effort to create a friendly atmosphere through informal communication, thus

optimizing his own situation.

Wynn has made an eh~ensive study of the nature of informal communication in offices in an effort

to aid the computer scientist in confronting some human factors of office system designs [Wynn,

1979]. She has concluded that not only is the conversation useful in maintaining a cooperative

atmosphere among co-workers, but such conversation is necessary in order to implement the

normal distributed problem-solving that takes place in the day-to-day activity of many offices.

Typically, the normal function of the office is defined by an informal, intuitive specification of the

tasks rather than by a formal document that specifics the exact procedures to be followed in the

office. As a result, the actual office procedures frequently do not exist in a manual or in anyone

person's knowledge; they are distributed over the set of people that work in the office. A simple

example of these interactive conversations might be the explanations of the experienced worker to

the novice. Typically, the capable experienced worker corrects and guides the novice in the guise

of informal conversation, frequently casting the information in the form of a joke or parenthetical

remark of social comment. Workers of the same experience level will also make use of informal

conversations to cooperatively solve a problem in the office. For example, two customer service

workers may enter into informal negotiations in order to decide which of the two has more of the

information required to handle a customer's particular problem; such negotiations are frequen~ly

not explicit but are embedded in social conversation. One result of this communal approach to

problem solving is that the group of workers maintains approach a constant conversational

framework for interpreting remarks and transmitting and transforming infOlmation. It is this

complex social environment that provides a medium for exchange of information that would be

absent in a formal, rigorous specification of processing. The environment is conducive to carrying

out distributed work, implementing error handling and implementing the constant education of the

office workers.

The problem of maintaining social contact of office workers is yet unsolved; the trend toward

41

automation works against the goal of retaining a social structure. If the communication medium is

implemented completely as electronic documents, there is the danger that the informal

conversation will be destroyed. A reasonable solution might be to encourage the u~e of a mail

system for informal as well as formal cOlnmunication, as is the case in the Arpanet mail system.

An appropriate physical design of the office can also help prevent isolation of workers.

With the possible exception of some word processing centers, most current automated office

facilities have not developed to a point that they have endangered channels of social conversation.

However the next steps in such automation will likely require more effort in maintaining infolmal

communication channels.

42

FUTURE TRENDS IN OIS RESEARCH

A number of research topics in computer science have been introduced in the new interdisciplinary

field of office information systems. We have in this paper articulated several problems that must

be solved in order for office infonnation systems to be successful in the modern business world.

In some cases we have also speculated on solut.ions to these problems, while in others we have

simply described the problem. We believe that the research areas which we have described, even

those for which we discussed some approaches, are open for research.

The ideas behind the state-of-the-art in office information systems seems to roughly correspond to

the union of ideas of Officetalk Zero, BDL and Zisman's system, (although there are probably

unpublished, advanced systems being developed within the various corporations). Each of these

approaches to OIS work has addressed a subset of the problems mentioned in this article, yet none

of them have provided a universal OIS: Officetalk emphasizes the user interface, BDL emphasizes

the structured programming environment for the naive user and Zisman concentrates on the

automation of office procedures.

Future research in the area of computer science and office automation will probably fall into two

distinct sub fields. The first sub field includes the set of familiar technical problems, concentrated in

this article, that computer scientists can immediately begin to work on; the latter subfield includes

problems that are less familiar and more dependent on future research. For the sake of the

solution of such problems, we advocate modeling and analysis.

One second-domain problem is the need for integration to take place on at least three fronts:

functional integration, system integration, and interdisciplinary integration. Functional integration

refers to the need for the user's model of a system to be complete and ~onsistent; the clerical user

must be able to work in an environment that provides all of the facilities he or she will need in

order to perform his or her work without having to learn several different command languages or

subsystem models. System integration refers to the need for operating systems, progrrunming

languages, architecture, databases and artificial intelligence systems that converge into a single,

uniform environment; for example, researchers at PARe have experimented with the Smalltalk

environment as an integration of operating system, programming language, debugger and text

editor [Kay, 1977]. Interdisciplinary integration refers to the need for researchers in computer

science to interact with workers in management science, political science, psychology, sociology and

perhaps law; Wynn's work [1979] is a good example of such interdisciplinary integration.

43

Although we have directed much of our discussion toward office inf01mation systems for clerical

workers, future OIS work must also address the problem of designing systems for management

[Rulifson, 1978]. For example, an OIS might support succeedingly higher levels of management by

offering:

1. The office manager the ability to change the structure of individual clerks' tasks,

2. The administrative vice president the ability to change the structure of the entire system,

3. The chief executive officer the ability to control and audit corporate resources.

Such systems will neeJ to have the ability to control and audit corporate information rather than

manipulate characters. Interdisciplinary work between. computer scientists and management

scientists is especially evident in the design of management systems.

As a result of particular cOI1straints on OIS application, we will likely see several new and radical

system designs emerge. For example, local networks of minicOlnputers provide a physical medium

for the design of exotic systems of work stations that share compilers, consistency-checkers and

databases, while autonomously performing other tasks with private facilities. The notion of the

intelligent form, as mentioned in the Officetalk and BDL discussions, could be extended to allow a

forms proce~s to guide itself through various work stations and measure its own progress, utilizing

the facilities of particular work stations within their own domains.

Research on office information systems intersects with research in many other disciplines,

particularly in computer science. Many unsolved problems of OIS research can be addressed

wholly within computer science; many others invite the computer scientist to extend himself into

other disciplines. We encourage our computer science colleagues to look further into this

promising research area.

44

ACKNOWLEDGEMENTS

We wish to thank the computer scientists, designers, and implementers at Xerox PARe for the

years of labor that form the foundation of this paper. We especially thank our colleagues in the

Office and Analysis Research Groups for their work, which provided direction and motivation for

this paper. To Jeff Rulifson, head of the Office Research Group, and to Bert Sutherland, head of

the Systems Science Lab, we extend appreciation for encouraging and maintaining an environment

of flexibility and enthusiasm.

45

REFERENCES

ACM Computing Surveys, "Special Issue: Graphics Standards", ACM Computing Surveys, Vol. 10,

No.4, (December, 1978), pp. 363-502.

ACM Conference on Nonnumeric Processing, to be held in 1979.

Alto, "ALTO: A Personal Computer System Hardware Manual", Xerox PARC report, February,

1978.

Aron, 1. D., "Information Systcrns in ·Perspective", ACM Computing Surveys, Vol. 1, No.4,

(December, 1969), pp. 213-236.

Barth, 1., C. A. Ellis, P. Wadler, "Parallelism in the Office", Xerox PARC ORG report, August

1978.

Baskett, F., 1. H. Howard and 1. T. Montague, "Task Communication in DEMOS", Proceedings of

the Sixth Symposium on Operating Systems Principles, (1977), pp 23-31.

Bernstein, P. A., D. W. Shipman, 1. B.' Rothnie and N. Goodman, "The Concurrent Control

Mechanism of SDD-1: A System for Distributed Databases (The General Case)", Computer

Corporation.., of America, Technical Report CCA-77-09, December, 1977.

Browner, C., M. Chibnik, C. Crawley, K. Newman and A. Sonafrank, "Report on a Summer

Research Project: A Behaviorial View of Office Work", Xerox PARC ORO report, January, 1978.

Buchanan, B., G. Sutherland and E. A. Feigenbaum, "HEURISTIC DENDRAL: A Program for

Generating Explanatory Hypotheses in Organic Chemistry", in Machbte Intelligence 4, ed. by B.

Meltzer, D. Michie and M. Swann, American Elsevier, New York, 1969, pp 209-254.

Buchanan, J. R., "Office Scheduling and the Production of Documents", M.I.T.-I.A.P Course on

Electronic Office 0/ the Future, January, 1979.

Campos, I. M. and G. Estrin, "Concurrent Software System Design Supported by SARA at the

Age of One", Proceedings of the Third International Conference on Software Engineering, (1978),

pp. 230-242.

Coffman, E. G., Jr. and P. 1. Denning, Operating Systems Theory, Prentice-Hall, Inc., Englewood

Cliffs, New Jersey, 1973.

46

Creative Strategies International, "Office Automation", Creative Strategies International, Report

No. 27804, July, 1978.

Dennis, 1. B. and D. P. Misunas, "A Computer Architecture for Highly Parallel Signal Processing",

Proceedings of the ACM Annual Conference, San Diego, California, November, 1974, pp. 402-409.

Duda, R. 0., P. E. Hart, P. Barrett, J. G. Gaschnig, K. Konolige, R. Reboh and 1. Slocum,

"Developlnent of the Prospector Consultation System for Mineral Exploration", SRI International,

Project Nos. 5821 and 6414, October, 1978.

Ellis, C. A., "Consistency and Correctness of Duplicate Database Systems", Proceedings of the

Sixth Symposium on Operating Systems Principles, (1977), pp 67-84.

Ellis, C. A., "Information Control Nets: A Mathematical Model of Office Informantion Flow", to

appear in the ACM Proceedings of the Conference on Simulation, Modeling and Measurement of

Computer Systems, August, 1979.

Ellis, C. A., P. Morris and S. Smith, "The Santa Clara Billing Office Study", Analysis Research

Group, Xerox Palo Alto Research· Center, ARG Technical Report No. 78-2, June, 1978.

Ferrari, D., "Workload Characterization and Selection in Computer Performance Measurement",

IEEE Computer, Vol. 5, No.4, (July-August, 1972), pp. 18-24.

Garcia, H., Perfonnance of Update Algorithms for Replicated Data in a Distributed Database Ph.D.

dissertation, Department of Computer Science, Stanford University, 1979.

Hammer, M., W. G. Howe, V. 1. Kruskal and I. Wladawsky, "A Very High Level Programming

Language for Data Processing Applications", Communications of the ACM, Vol. 20, No. 11,

(November, 1977), pp 832-840.

Hammer, M. and M. D. Zisman, "A Research Program in Office Automation", lvl.I.T.-I.A.P

Course on Electronic Office of the Future, January, 1979.

Hebalkar, P. G. and S. N. ZilIes, "TELL: A Systetn for Graphically Representing Software

Designs", Proceedings of the IEEE Spring CompCon79, (1979), San Francisco, California, pp. 244-

249.

Hewitt, C., "Behavioral Characteristics of Office Systems", M.I.T.-I.A.P Course on Electronic Office

47

of the Future, January, 1979.

Holdsworth, D., G. W. Robinson and M. Wells, "A Multi-Terminal Benchmark", Software -­

Practice and Experience, Vol. 3, No.1, (Jan.-Mar., 1973), pp. 43-59.

lAP, M.I. T.-I.A.P Course on Electronic Office of the Future, organized by Carl Hewitt, January,

1979.

Karp, R. M and R. E. Miller, "Parallel Program Schemata", Journal of Computer and System

Science, Vol. 3, (1969), pp. 147-195 ..

Kay, A. C., "Microelectronics and the Personal Computer", .1cientific American, Vol. 237, No.3,

(September, 1977), pp. 231-244.

Kimbleton, S. R. and G. M. Schneider, "Computer Communications Networks: Approaches,

Objectives, and Performance Considerations", ACM Computing Surveys, Vol. 7, No.3, (September,

1975), pp. 129-173.

Lewin, L. (editor), Telecommunications: An Interdisciplinary Survey, ARTECH House, Inc.

Dedham, Massachusetts, 1979.

Lucas, H. C~, Jr., "Performance Evaluation and Monitoring", ACM Computing Surveys, Vol. 3, No.

3, (September, 1971), pp. 79-91.

Menasce, D. A., G. J. Popek, and R. R. Muntz "A Locking Protocol for Resource Coordination in

Distributed Databases" to appear in ACM Transactions on Database Systems, 1979.

Metcalfe, R. M. and D. R. Buggs, "Ethernet: Distributed Packet Switching for Local Computer

Networks", Communications of the ACM, Vol. 19, No.7, (July, 1976), pp. 395-404.

Morgan, H. L., "Office Automation Project: A Research Perspective", AFIPS Proceedings of the

NCC, Vol. 45, (1976), pp. 605-610.

Morgan, H. L., "Database Alerting and Corporate Memory", M.I.T.-I.A.P Course on Electronic

Office of the Future, January, 1979.

Ness, D., Office Automation Project, Decision Sciences working papers, Wharton School,

University of Pennsylvania, 1976-1978.

48

Newell, A. and H. Simon, Human Problem Solving. Prentice-Hall, Inc., Englewood Cliffs, New

Jersey, 1972.

Newman, W. M., "Officetalk-Zero", Xerox PARC videotape, April, 1977.

Newman, W. M. and R. F. Sproull, Principles of Interactive Computer Graphics, McGraw-Hill

Book Company, New York, second edition, 1979.

Nutt, G. J., "Evaluation Nets for Computer System Performance Analysis", AFIPS Proceedings of

the FlCC, Vol. 41, Part I, (1972), pp.279-286.

Nutt, G. J. and C. A. Ellis, "Backtalk: An Office Environment Simulator", Proceedings of the 1979

ICC, Vol. 2 (June, 1979), pp. 22.3.1 - 22.3.5.

Nutt, G. 1. and C. A. Ellis, "On the Equivalence of Office Models", in preparation, 1979.

Ouchi, W., "Behavioral Implications of Office Information Systems", Xerox PARC ORG report,

January, 1978.

PatH S. S., Coordination of Asynchronous Events, Ph.D. dissertation, Department of Electrical

Engineering, Project MAC, Massachusetts Institute of Technology, 1970.

Peterson, J. L., "Petri Nets", ACM Computing Surveys, Vol. 9, No.3, (September, 1977), pp. 223-

252.

Reed, D. P. and R. J. Kanodia, "Synchronization with Eventcounts and Sequencers",

Communications of the AClvl, Vol. 22, No.2, (November, 1977), pp 115-122.

Riddle, W E., J. C. Wileden, 1. H. Sayler, A. R. Segal and A. M. Stavely, "Behavior Modeling

During Software Design", IEEE Transactions on Software Engineering, Vol SE-4, No.4, (July,

1978), pp. 283-292.

Rose, C. W., "LOGOS and the Software Engineer"~ AFIPS Proceedings of the FlCC, Vol. 41, Part

I, (1972), pp.311-323.

Ross, D. T., "Structured Analysis (SA): A Language for Communicating Ideas", IEEE

Transactions on Software Engineering, Vol. SE-3, No.1, (January, 1977), pp. 16-34.

49

Rulifson, 1., "Office Information Systems: A Framework for Long Range Planning", Xerox Palo

Alto Research Center Computing Forum, August, 1978.

Schaffner, M. R., "Processing by Data and Program Blocks", IEEE Transactions on Computers,

Vol. C-27, No. 11, (November, 1978), pp. 1015-1028.

Shoch, J. F., "An Annotated Bibliography on Local Computer Networks (preliminary edition)",

Xerox Palo Alto Research Center, Report SSL-79-5, May, 1979.

Taggart, W. M., Jr. and M. O. Tharp, "A Survey of Information Requirements Analysis

Techniques", ACM Computing Surveys, Vol. 9, No.4, (December, 1977), pp. 273-290.

Thomas, R. H., "A Majority Consensus Approach to Concurrency Control for Multiple Copy

Databases", ACM Transactions on Database Systems (June, 1979).

Thomas, R. H. and D. A. Henderson, Jr., "McRoss -- A Multi-computer Programming System",

AFIPS Proceedings of the SlCC, Vol. 40, (1972), pp. 281-293.

Tsichritzis, D., "Form Flow Models", working paper, (1979).

Tsichritzis, D., "A Form Manipulation System", presented at NYU Symposium on Automated

Office Syst~ms, Graduate School of Business, May, 1979.

Wilner, W. T., "Recursive Machines", LSI Group Report, Xerox Palo Alto Research Center,

August, 1978.

Wynn, E., Office Conversation as an Information llfedium, Ph.D. dissertation, Department of

Anthropology, University of California, Berkeley, 1979.

Zisman, M. D., Representation, Specification and Automation of Office Procedures, Ph.D.

dissertation, Wharton School, University of Pennsylvania, 1977.

Zloor, M. M., "Query by Example", AFIPS Proceedings of the NCe, Vol. 44, (1975), pp. 431-437.

RECEPTIONIST AGENT

Figure la

ORDER ADMINISTRATOR AGENT

a 10 __

r­
• I
I
I ,
I

I /

_~ _____ a 6 1

a 7_~~_

alD' --............ -

_ ___ a 6

a 8._ _

Figure Ib

a 9 ____ __

ORDER PROCESSING

Log Request

Type Order

Send Order

Receive Order

Brocess
I ~Ord;r
I
J
I
I

• :1.\
1 ~ord;r

Customer
Request
Arrival

lL

~
---~

-"" /
I
I
r
• r
J /.
I
I

A
/ I

"

Order
Form

'" I

+0
I , Cus tamer
J j Fi le

~I I

/~D
II Billing File I

I
I
J
I
J
I
I
I
I
I
I

'9C'O'D'~
I

/

I ,

lOut "

1\:;;1 tJ . ~
lOut \. I ~
t Form '- --- ----/--""
',---- ... _------_ .. _-..,.-'

F.igure 2

ORDER PROCESSING RESTRUCTURED

71

d

G
d

,

Customer
Request
Arrival

Figure 3

./
./

~
---~',
./

./

~
/

/
/

I
I

I
I

PRODUCTIONS FOR ORDER ADl\llNISTRATOR AGENT

INITIAL MARKING: (P5)

TRANSITION a5-
Conditions:
[exists customer-tile]
Actions:
[tikm read customer-file this-order]
[assign u activity-output]

TRANSITION a6-
Conditions:
[ex ists billing-file]
Actions:
[tilcm read billing-tile this-order]
[assign v activity-output]

TRANSITION a6'­
Conditions:
[enablcdsince 6' 5]
Actions:
[doc reminder order-administrator]

TRANSITION a7-
Conditions:
[exists cllstomer-tile]
Actions:
[assign shipping-mode cust-type]

TRA NSITION as­
Conditions:
Actions:
[assign fl v]

TRANSITION a9-
Conditions:
Actions:
[assign f2 u]

TRA NSITION alO­
Conditions:
[compeq shipping-mode cod]
Actions:
[assign f3 u]

TRANSITION a10'­
Conditions:
[compeq shipping-mode bill-later]
Actions:

Table 1 b

2

PRODUCTIONS FOR RECEPTIONIST AGENT

INITIAL MARKING: (PI)

TRANSITION al­
Conditions:
[exists log-book]
Actions:
[fi1cm write log-entry this-order]

TRANSITION a2-
Conditions:
Actions:
[tikm write sys-scratch this-order]
[install tiatc ordcr-adminisl rator this-order]

Table 1 a

ORDER PROCESSING - FORMAL ICN SPECIFICATION

8i(a1) = «A», 80(a1) = «a2»;
8 j(a2) = «a1», 80(a2) = «(a3»;
8i(a3) = «a2», 80(a3) = «a4»;
8i(a4) = «a3», 80(a4) = «a5»;
8i(a5) = «a4», DO(a5) = «a6»;
8i(a6) = «a5», 80(a6) = «a7»;
8i(a7) = «a6», 80(a7) = «a8»;
Di(a8) = «a7», DO(a8) = «a9»;
8i(a9) = «a8», DO(a9) = «A»;
Di(a10) = «a7», DO(a10) = «A»;

Yi(al) = (A), Yo(a1) = (log)

"Yi(a2) = (A), 10(a2) = (order fonn, 0)
Yi(a3) = (0), yo(a3) = (A)
Yi(a4) = (0), yo(a4) = (A)
Yi(a5) = (C,0). yo(a5) = (U)
Yi(a6) = (B.0); yo(a6) = (V)
Yi(a7) = (C), 10(a7) = (A)

Yi(a8) = (V). 10(a8) = (fl)
Yi(a9) = (U), 10(a9) = (fl)
Yi(a10) = (U), yo(a10) = (0)

Table 2

