L e o T T e e e AR o s e TR T R e e - e e M ™ e R S e o o T e LR T . R e T T e e

Palo Alto Research Center

Using Property Specifications to Achieve

- Graceful Disconnected Operation in an
Intermittent Mobile Computing
Environment

Michael Tso

XEROX

Using Property Specifications to Achieve Graceful
Disconnected Operation in an Intermittent Mobile
Computing Environment

Michael Tso

CSL-93-8 June 1993 [P93-00018]

© Copyright 1993 Michael Tso. All rights reserved.

CR Categories and Subject Descriptors: D.4.3 [Operating Systems]: File Systems
Management - distibuted file systems, D.4.7 [Operating Systems]: Organization
and Design - interactive systems, H.5.2 [Information Interfaces and Presentation]:
User Interfaces

Additional Keywords and Phrases: caching, disconnected, file system,
hints, portable computer, predictable, property specification,
splitting, wireless computer

General Terms: Design, Human Factors, Performance, Reliability

XEROX Xerox Corporation

Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

USING PROPERTY SPECIFICATIONS TO ACHIEVE
GRACEFUL DISCONNECTED OPERATION IN AN
INTERMITTENT MOBILE COMPUTING ENVIRONMENT

by
MICHAEL MAN-HAK TS0
Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degrees of
MASTER OF SCIENCE in Electrical Engineering and Computer Science
and
BACHELOR OF SCIENCE in Computer Science and Engineering
and
BACHELOR OF SCIENCE in Electrical Science and Engineering
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1993

© Michael M. Tso, 1993. All rights reserved.
The author hereby grants MIT permission to reproduce and to distribute
publicly copies of this thesis document in whole or in part.

Signature of Author

Michael M. Tso
MIT Department of EECS, May 21, 1993

Certified by

Dr. David D. Clark
Senior Research Scientist, MIT Department of EECS

Certified by

Dr. David Goldberg
Research Scientist, Computer Science Laboratory, Xerox Palo Alto Research Center

Accepted by

Professor Campbell L. Searle
Chair, MIT Department of EECS Committee on Graduate Students

USING PROPERTY SPECIFICATIONS TO ACHIEVE
GRACEFUL DISCONNECTED OPERATION IN AN
INTERMITTENT MOBILE COMPUTING ENVIRONMENT
by
MICHAEL MAN-HAK TSO

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 1993 in Partial Fulfillment of the Requirements for the Degrees of
MASTER OF SCIENCE in Electrical Engineering and Computer Science,
BACHELOR OF SCIENCE in Computer Science and Engineering, and
BACHELOR OF SCIENCE in Electrical Science and Engineering

Abstract

This thesis studies the problem of providing autonomy and predictable
performance for computers with an intermittent network, e.g. wireless computers. For
autonomy, we support Coda’s programming model in which applications run on the
portable computer and access data through a caching distributed file system. Although
caching lets applications operate disconnected, it can also cause applications to be
unpredictable. The problem is that caching is transparent in existing file system
interfaces. Since the availability of files is unpredictable, it is impossible for the
application to predict which of its features are (or will be) available. For improving
predictability, we introduce a new system level abstraction, Property Specifications which
enables system services to expose to the application fundamental aspects of the
computing environment in a structured way. The application can become more
predictable by unobtrusively informing the user the effects of changes in the
environment, such as becoming disconnected, through the application’s user interface.
The application changes the user’s expectation about which features are (or will be)
available. In order for applications to efficiently access, monitor, influence and
manipulate the exported properties, Property Specifications provide mechanisms for
Query, Notification and Hinting. Applications learn about the current state of system
properties through Query. Changes in the state of properties are modeled as
Environmental Events. Notification enables applications to monitor changes in the
environment by binding callback procedures to Environmental Events. Hinting lets
applications give optional information to influence and sometimes manipulate the
system's properties. Collectively, Query, Notification and Hinting define a framework
for structured communication and collaboration between applications and system
services.

We designed and implemented Property Specifications for a caching distributed
file system and a network interface which exported properties of the file cache and a
network with variable latency. We added new features to an existing mail tool (xmh) to
improve its predictability and autonomy. In a simulated intermittent environment, our
users found these features to be very effective in making xmh more friendly and usable.
Property Specifications enabled us to implement these features easily and efficiently.

By specifying the properties of the environment and the functions provided by the
implementation in separate interfaces, we give power and flexibility to sophisticated
applications while maintaining transparency for ordinary applications.

Thesis Advisor: Dr. David D. Clark
Title: Senior Research Scientist, MIT Laboratory for Computer Science

Thesis Advisor: Dr. David Goldberg
Title: Research Scientist, Computer Science Laboratory, Xerox PARC

2

Acknowledgments

I thank my advisors David Goldberg and David Clark for their patience and guidance.
Their insight in debugging my half baked ideas amazes me. I feel fortunate to have had
such brilliant and understanding advisors, from whom I have learned a great deal.

I am grateful to Greg Papadopoulos, Jeannette Wing, and Gregor Kiczales. Even though I
was never officially one of their advisees, Greg, Jeannette and Gregor were always
willing to listen and provide encouragement. I deeply respect them as colleagues and as
friends.

Marvin Theimer, Brent Welch, David Nichols and David Goldberg deserve special
thanks for participating in the experimental part of this thesis. Together with Jeannette
Wing, Bill Schilit, and Bob Scheifler, they provided a lot of valuable feedback while my
ideas for this thesis were still in fermentation.

The preparation of this thesis document benefited greatly from Hector Ayala’s Macintosh
wizardry as well as Stephen Wong and Joseph DiMare’s willingness to loan me their
Powerbooks. The Powerbooks were critical in helping me finish this thesis despite my
hectic travel schedule this semester.

Thanks to Bill, Dick, Donger, Fergie, Furball, Gilly-Billy, Hanes, Jerko, Joe, Looney,
Norton, Prashun, Shin, Toast, Van Veen, and Vasik. Your friendship and sense of humor
make me want to repeat the MIT experience again despite all those late nights, mind
boggling problem sets, interminable labs, and harrowing exams.

My education would not have been possible without the help of several very dear people.
I thank my financee, Cecilia Wong, whose love and encouragement always give me the
energy and will to go on. The 10,000 miles that separated us for four years could not
divide our hearts. May Poon and Andrew and Cissy Chung opened their homes and
hearts to me during those trying years of my adolescence. Without their nurturing, I
probably would not have graduated from high school. I owe my inspiration and
determination to my mother. Although her body rests, her spirit lives on. Finally, I thank
God for His immense love. All I had to offer Him was brokenness and pain, but He made
something beautiful of my life.

Table Of Contents

CBAPLET 1 ..ttt et eae st e e sae s st e sae st e saesaes st ansssaesntsseesasseasaessesanensaneasesnsane 6

INrOAUCHION ...ttt sttt a st s s st st sr e as e st sanens 6
LI OULHNE ...ttt et st sae e sars st s cae s sn e 10
CRAPLET 2 ..ottt cicneee et e s es st sras s essaaessnssr e sr e st s e s assanesanesansenseeneesnensesnns 12
Motivation and Related WOIKcooeviiniiiiniiinninininincnciiscnecsessssnesinsaens 12
' 2.1 User Level Features for Graceful Disconnected Operationoccceeeceeeee 12
2.1.1 Availability INdiCatorscccevverrisinrirnniineniniinnninesesresessseesaseneae 13
2.1.2 Delayed Operation and Friendly Errorscccccveeiininincnccnnncnens 15
2.1.3 Smart Availability Managementccccevvininienninnnininnecencnnens 18
2.1.4 Dependable Future Availabilityc.ccccocnvcenncenncninnccninceccennnnes 19
2.1.5 Monitoring and Reacting to Environmental Changesc........ 24
2.1.6 Discussion ettt et et sh s s n e e et sa bt e s e e easesaeaes 25
2.2 Related WOTK.....coceceniererciinneneeninientrnesnesesiesesaessesneesesssssnsssssnssssesnsssassssessanss 27
2.2.1 Disconnected Operation in Coda..........cccccceevienvernuericrccenrnnrensennnes .27
2.2.2 Adaptive APPLHCAtIONSc.viveeruierirntirenienrervssiesensessessnsssessansensessones 29
2.2.3 File System For Mobile Computing..........cccccveneinvenniieeescrsieneene 29
2.2.4 Application Specific Virtual Memory Managementcccccuu.. 30
2.2.5 Exposing Abstractions with MetaObject Protocolscc.c...... 31
Chapter 3 ...t s e st b e b e s e ne s 32
Programming Models for Application Splitting...........ccoceeeevncncvnnniniinininininninincnens 32
3.1 Splitting at the User Interface Levelcocovinceviiiiinninccnninnicneceenencenes 33
3.1.1 XRemote / LBX ..ottt ssninesisaesesnssnesssssesesaes 35
3.1.2 SPLit UL TOOLKILccuruereirurrterenrienesineteneceeeenesacnsssenesssessssssesssesenenes 39
© 3.1.3 EXtensible SEIVErScccciciricniininiinnenieneieentiteenee s sessecessaessssaens 41
3.2 Splitting at the Data Access Levelcoocvniniinniiiininnninicninninnciciennene 43
3.2.1 Remote Evaluationc.ccoceeeeneninnicniinnininicinenncncsescsseessns 44
3.2.2 Splitting at the File System Levelccccoeviviiiiniininncenecicneene 46
3.3 CONCIUSION.....ctiriiriecitrictnttet et e st sa s s esae st s sbbe st sasssasasens 49
3.3.1 The Programming Model for this Thesiscccccevereurreeneneicrenennes 51
Chapter 4 ...ttt sttt eae s st sane s sae e e et s erasenn s sae s st et e ng et st snennnansenes 52
Property SpecifiCationscccceeeecercecerieenernninteneeneeneeessests et secesssrtesessssaeesesnsessssssnseses 52
4.1 MOtIVALIONeieeraesreenerecesineeiseeecenrenteseessnsst e seesseeesteeneesuesnnesanesnsesasenssneenes 53
4.1.1 Separation of Functional and Property Specifications 53

4.1.2 Using Property Specifications to Provide Application
SPECHIC SUPPOTL ...ccouvimriiriiieiiieniinc et sae s st s seessesanens 54
4.1.3 Using Property Specifications to Provide Application

Independent SUPPOTLcccccviniiniiimini s 55
4.2 Property Specifications Mechanismsccccovieniniiiienicienssineenssenee 56
4.3 Designing Property Specifications.........cocecueniiniininiineninncninnneeencesesnanes 58
4.3.1 Property Specification for a Caching Distributed File System 58
4.3.2 Property Specification for a Network Statistics Monitor 61
4 4 Subtleties in the Semantics of Query and Notificationccccvveveeerrercnrncns 62
4.5 Generalizing Property Specifications......c..c.ccvueeciivinininincscncninnessneesennenes 65
4.5.1 The Traditional Virtual Memory Interface...........cccvvnnninnccininncns 65
4.5.2 Property Specifications for a Virtual Memory Interface................ 66
CRAPLET 5 ..ottt sttt s e e st s sa st st e et eme s 69
IMPIEMENtAtioN.......coviieieiiiece et stnre e et st ettt sr st s e e e saenennenens 69
5.1 Implementing Property Specificationscocecceivcniniinineiisninennecsnisicninnes 70

5.1.1 System OVEIVIEWccoccevuireeinreiininsinniisisnesionesiessesscsssssesscssssssnns 70

5.1.2 Implementing NoOtificationceccvveererncneencnnennesncsenscinnsesnnenees 72

5.1.3 Implementing the File System Property Specifications 73

5.1.4 Implementing LinkSimc.ccccovviiviinicninnnnncnninncnnnninnnnnennnn. 75

5.1.5 Implementing the Network Statistics MORDitorcccccevvivcrrueiunens 77

5.2 Using Property Specifications for Application Programmingcc...... 78
5.2.1 Approach and Choice of Application.........c.coceevernurniicninnecreeennns 78

5.2.2 We-xmh: Weakly Connected xmhcccoviivinvinninncninnninecnnnn. 79

5.3 Challenging ASPECLS....c.cecuerreruereerueniernescnssrcessessssessessssnsssssessisessessassaesssones 82
5.4 Ideas for Future Workcoceviiviiniiiinininncncicccie et et sne s 85
5.4.1 Verifiability of Property Specificationscceccviiviisvincsiiinine 85

5.4.2 The “cause/effect” Problemcooievviiniiniiinnninineniiieninniiinns 86

5.4.3 Supporting AtOMICILYc..eveerverieeereriiercsserseenesieesesssessessesanesesnnenes 88

5.4.4 Remote Evaluationccccccceevieiiiininneiinenncnenusinesncsnecsiennnenns 88

545 L00SE RPCooiiiiiiiiiiiiitiiins it ss e snes 89
CRAPLET 6 ...ttt sttt sr e st st sa e et e e sh e R bR b st s b s 90
Experience and EValuationccceccniiniinicniniiininicsicsnieecsns e ssssssessssssssesnsesssnaens 90
6.1 USEr EXPEIIEIICEcocverueeririreineiicetsine sttt snnsssts e ssassssnsessssnssnissssanensenss 90
6.1.1 A Furious USErccceiviiiiiininniiiiinctinnncieieecnac e sancenne 90

6.1.2 Obtrusive User Interface Techniques.........ccccoccevveenvcnnincincniinncnes 91

6.1.3 Voluntary DiSCONNECLION.........ccceruirerruereenrcrnircinsiennecensssernsseesnesaes 92

6.2 Five Conclusions From Our EXperiences...........ccocvveniniiniinienicnciininncnen 93
6.3 Evaluating Property Specificationscccocevcvreecvieenreninninncinennenecnenneenne 95

BiblIOZIapPRYcviiiiiiiiiitiiiict s e s s s b e sa e 97

Chapter 1

Introduction

The premise of this thesis is that autonomy and predictable performance (availability and
response time) were key to the success of PCs and workstations over timesharing
systems. This thesis studies the problem of extending these properties to intermittent
computing, e.g. wireless mobile computing. We assume that wireless computers are
mostly limited by an intermittent network which has low bandwidth, high latency, and
unpredictable availability. Computers using radio or infrared networks can be frequently
and unpredictably disconnected due to interference and coverage limitations. The
proposed solution is a new programming model and system abstraction that support

autonomous, predictable operation.

We choose to use Coda’s [Kistler] [Satya90] programming model in which the
application runs on the portable computer and accesses data through a caching network
file system. We call this the Autonomous programming model. The main advantage
of the Autonomous model is increased autonomy: applications can operate disconnected
using files cached on the portable machine. In addition, by splitting the application at the

file system layer instead of the window system layer such as X [Scheifler], the user

6

interface response time is no longer directly dependent on the network round-trip delay.
Chapter 3 discusses other programming models and how they are affected by different

assumed operating environments.

The main difficulty with using caching to increase availability is that from the
application’s point of view, the content of a transparent cache is inherently unpredictable.
Hence an application whose availability depends on the cache is also unpredictable. A
disconnected application is partially functional when some of its features require the use
of the network or files which are not in the cache. Neither the application and nor the
user knows which features work and which do not because the availability of the files
needed by the application is unpredictable. This can be frustrating for the user. For
example, a user reading NetNews has to try clicking on every article in order to find out
which ones he can read. The goal of this thesis is to achieve predictable performance
through graceful disconnected operation - the ability for partially functional

applications to remain user friendly by providing predictable performance.

One way to achieve predictable performance is to guarantee that the data and resources
the user needs are always available. This is not possible because we have an intermittent
network and we do not have an infinite cache. Our approach is to accept the fact that
applications will be partially functional when disconnected, and achieve predictable
performance by unobtrusively indicating which features work and which do not. The
application's user interface changes as the availability of its features and data changes,
affecting the user's expectations about what works and what does not. For example, a
disconnected‘mail tool can gray out unavailable buttons such as “get new mail”, and
distinguish those messages which are available by italicizing their headers. Similarly, as
the user prepares to disconnect voluntarily, the mail tool can tell him what will be

unavailable by visually dis::nguishing those buttons which will not work. These new

functionalities require the application to have intimate knowledge of its computing
environment, e.g. the current and expected availability of the files and system services
needed by each of its features. Our key innovation is in informing the user of the effects
of fundamental properties of the computing environment, such as disconnections, through

the application's user interface.

Without adequate support, forcing the application to deal with the operating
environment’s dynamic properties will cause significant complexities for programmers.
We introduce Property Specifications, a new abstraction which enables system services
to expose fundamental aspects of the computing environment in a structured way. Most
existing system interfaces specify only the functions and services provided by the
implementation, and wé refer to them as Functional Specifications. In contrast,
Property Specifications define an interface for the application to access the properties of
the computing environment without being exposed to irrelevant details of the
implementation. Properties which affect the performance and availability of applications

may include the availability of files, network latency, and expected battery life.

In addition, we define three basic mechanisms that Property Specifications should
provide for applications to efficiently access, monitor, influence and manipulate the
exported properties. They are Query, Notification and Hinting. Applications learn
about the current state of system properties through Query. Property changes are
modeled as Environmental Events. Notification enables applications to monitor
changes in the environment by binding callback procedures to Environmental Events.
Hinting lets ‘applic.ations give optional information to influence and sometimes
manipulate the system's properties. Collectively, Query, Notification and Hinting define
a framework for structured communication and collabofation between applications and

system services.

The actual semantics for Environmental Events and the above mechanisms depend on the

specific properties of the particular system service. We deSigned and implemented

Property Specifications for a caching distributed file system and a Network Statistics

Monitor. Our file system interface exposes the property that files are moved in or out of

the cache. We export four new procedures:

e FilesAvailable (), which lets an application query the cache manager about the
availability of files;

e MonitorFiles (), which lets an application monitor the availability of one or more
files, and be called back by the cache manager whenever any of these files are moved
in or out of the cache;

e GiveHint (), which allows the application to influence the cache manager’s
replacement policy;

» MakeAvailable (), which is an explicit hint given by the application to the cache

manager requesting some files to be moved into the cache.

Our network interface exposes the property that network operations have associated
latencies which vary over time. We export two procedures:

» GetLatency (), which returns the current expected network latency;

e MonitorLatency (), which lets the application be called back whenever the

network latency moves in or out of its operating range.

We used the above interfaces to implement we-xmh (weakly connected xmh! [Peek]), a
modified version of xmh with new features to enhance usability during disconnected
operation. Users ran wc-xmh in a simulated intermittent environment and found the new

features to be effective and user friendly. Our users reaffirmed our belief that predictable

lxmh is an X mail tool based on the mh message handling system [Peek].

9

performance is vital to usability. Wc-xmh’s adaptive user interface allowed users to
continue working during disconnections. Hinting proved useful for voluntary
disconnections as it allowed users to directly negotiate with the application about what
features and data objects to make available for future use. The user manipulates
application level entities such as folders and features rather than system level entities like
files, and is thus hidden from the internal dependencies of the application. Our
implementation experience helped us understand the system level tools and abstractions
required to reduce the programming complexity needed to obtain application features

similar to those we implemented for wc-xmh.

One of the key contributions of this thesis is in separating Property Specifications from
Functional Specifications. This gives the application programmer the flexibility of
trading programming effort for application robustness. An application which uses only
the Functional interface is easy to program but not very robust, e.g. it may crash if the
network fails. It takes more effort to program an application using both the Property
interface and the Functional interface, but the application would be very robust, e.g. it
grays out some buttons when the network fails. The separation of the two interfaces is of
key importance because the Property interface can support sophisticated applications
which need to look inside black box abstractions without sacrificing any transparency at

the Funcﬁonal interface.

1.1 Outline

In Chapter 2, we use wc-xmh’s features to illustrate what we mean by graceful
disconnected operation, and compare our goal and approach with related work in

distributed file systems and operating systems. In Chapters 3 through 5, we revisit the

10

sequence of ideas which enabled us to implement the features described in Chapter 2.
We choose the Autonomous programming model in Chapter 3 after surveying other
programming models for application partitioning. In Chapter 4 we discuss the motivation
and mechanisms for separating system interfaces into Functional Specifications and
Property Specifications. The Property Specifications for a caching distributed file system,
a network service interface and a virtual i;xemory manager are also presented. Chapter 5
describes the lessons we learned during the design and implementation of our prototype
system and highlight some ideas for future work. Chapter 6 summarizes our users’
experiences with wc-xmh, and conclude by evaluating our ideas in light of our design,

engineering and usage experiences.

11

Chapter 2

Motivation and Related Work

This chapter elaborates on the basic goal of this thesis, to provide new application
featurés for graceful disconnected operation. We draw examples of application features
from wc-xmh, such as availability indicators for individual messages, informative error
messages, managing future availability and monitoring environmental changes. The
general applicability of these features in other applications is also discussed. Section 2.2
describes related work in distributed file systems as well as ideas similar to Property

Specifications found in operating systems and programming language implementations.

2.1 User Level Features for Graceful Disconnected
Operation

We built a prototype system to demonstrate graceful disconnected operation and explore
the design space of Property Specifications. The design of our Property Specifications

was heavily influenced by the user level features we wished to support. In the following

12

sections, we will illustrate some of wc-xmh’s features which motivated our system
design. In Section 5.2, we describe how we implemented these features in wc-xmh using

the tools and abstractions we will describe in the next three chapters.

2.1.1 Availability Indicators

When we-xmbh is disconnected, some of the messages or folders will not be available for
browsing and some of the features in menus and buttons may not work. We make clever
use of wc-xmh's user interface so the user can be unobtrusively informed of what works
and what does not. We annotate the available messages with asterisks and gray out the
unavailable buttons and menus. The network performance is displayed by a
thermometer: the more asterisks, the higher the network latency. This is illustrated by
Figures 2.1a and 2.1b. We note that most of wc-xmh’s features are still available even
when it is disconnected. The user can browse cached messages and folders, delete or

refile any message, commit changes, and compose new messages.

13

menu
buttons

folder
buttons

current

message

cannot

mes,sag,e_ | | 333 %01/15 Lori Lynn Avirett Seminar Announcement for 2330 pm, 1/25/93<<COMPUTATION STRUCTURES GR
ava.llablht) 334 %01/15 Bill Schilit Re: suggestion for Vlog change<<terry.PARCExerox.com writes: > Bill,
335 %01/15 Lori Lynn Avirett Seminar Announcement for 1/13/93<<COMPUTATION STRUCTURES GROUP Tuesd

indicators |

for an available
message, most
wc-xmh features
are also available

new features,
see Section 2.1.4

table of
contents

ose Message
|View Next Hessage
|View Previous

323 01715 Lucy Suctman
324 01/15 Steve Putz
325 01/15 Nancy_Freige.H
326 %01/15 ching,osbu_nor
327 01/15 Paul S, Barth
328 01/15 John lhh
9 . B N - . LA N I
331 ll01/15 terry. PFRCEX e , When uou say "I'm t.ir‘ed of hav
332 #01/15 Lori Lymn Avirett Seminar Announcement for 10330 an, 1/'5/33<(CGPUTMIG~I STRUCTURES G

k Practices<REHINDER, *if you haven’t ified us ye
’91 CD-ROW<<Someone borrowed a NetGems CD-ROM fr
Courtesy<<The CSL Common, rm, 2230, is currently boo
s+ Electronic Color Tocuments md SIGGRAPH 1392<<PARC

incorporate
new mail
or print

network
latency
indicator
(currently
disconnected

;s Fri, 15 Jan 1993 13;18:03 ~0800
Mike_Spreitzer,PARCBxerox,com
Subject: Help give windowing toolkits b:
To: CSL+,PARCExerox,com

(=34 Mike_Spreitzer .PARCExerox.com
Roply-to: Mike_Spreitzor.PNRCBxerox.com

Message-Id; <93Jan15,133337pst,1233%alpha, xerox,com>

In this week’s Dealer, a questioner
vs, Tk/Tcl: the audlence q.ucklu en

ed about the relative merits of Trestle
sed about the idea of a Dealer on the
toolkits, Perhaps in the form of a
would bo implomonted in caoh toolkit,

. ke have advocates for Trestle, Tk/Tcl,
and the two Ledar toolkits (Viewers and Xtk) signed up, Mho will advocate the
others? Significant others include OLIT (the OpenlLock toolkit), the Motif
toolkit, Interviews and/or Fresco, and maybe xview, I don”t know what the
story is in the LISP world,

Figure 2.1a - Availability indicators for a cached message during disconnected operation

14

] inhox 2]

[Folder | [Table of Contents |[Message |[View |[Options |[Enable |{BringOver]
"|Compose Hessage [jnhox

[irenree | [] DRI [Gecil - rrmcsne [P PO [oftuare] [T | Vi8] e e
[hunor-] [1nbox | [inboxSt | [md Delete sis | [dicomp] _

Move
S rons pboxsall
323 01/15 Lucy Suchman Uv;i;r'k Practices(REMINDER, %if you haven’t notified us l_<p
current 324 01/16 Steve Putz |, o\ . k "91 CD-RON<<Sameone borroved a NetGems “S1 CD-ROM fr
325 01/15 Nancy_Freige.H '®~ ' ™ Courtesyd<The (5L Common, ra. 2230, is currently boo
message 326 #0115 ching,osbu_nor : Electronic Color Docukents and SIGGRAPH 1992<<PARC

Jan 93 20'1‘20 *0030 Fron' a“vmdhtl t u-tok

(unavailable) %ﬂw-s% . l,_ -
2294#01/15 Nike_Spreitzer|,. H

p 1ng tnclk-ts bdw-cl"f‘ Deaer-’?/(lnthl ueek s l]ea'er-
331 ®01/15 tewg.mexe .

o for Ylog change<<Bill, When you say "I°m tired of hav
332 w0L/15 Lori Lynn Avirett Seminar gnnouncemert for 10330 an, 1/25/93<<COMPUTATION STRUCTURES G
33 #01/15 Lori Lunn Avirett Semina’fnnouncement for 2330 pm, 1/26/93<<CONMPUTATION STRUCTURES CR
334 »0L/15 Bill Schilit Res suagestion for Yloq change{<terru,FARCExerox.com writes: » Biil,
335 #01/15 Lori Lynn Avirett Seminarf Announcement forr 1/19/93¢<COMPUTATION STRUCTURES GROUP Tuesd

many features .
unavailable T SIS tej@l : =
E conmi e ose =
(buttons are s -
isabled - [1nbox:329 -
dlsa) Network Latkncy :mmmmmlﬁmmmam-mmmmmulmmw-mmmn
Date: Fri, 15 Jan 1993 13:18:03 064
Hike_Spreitzer ,PARCExerox,
Subject: Help give windowing toolkfs bake—off Dealer?
H CSL+,PARCExerox,com
[ate34 Mike_Spreitzer,PARCExergh,com
Reply-to: Mike_Spreitzer.PARC@ferox.com
| Hessage-ﬁd: <{93Jarl5,133337 gt , 12339051 pha. xer ox, con>
netWOI'k : In t{rlijrufdt’}s‘elhier, ah esﬂm;;g m the riat;;e IE;{.S of Trzble
M Blvs, Tk/Tcl: the audienct quickly the idea of a er on tl
disconnected i plous vindowing tooikits, Perhaps in the form of a

Aicompar isor of how some Fixed example would be implemented in each toolkit.
BPerhaps in the form of a panel debate. We have advocates for Trestle, Tk/Tel,
nd the two Cedar toolkits (Yiewers and Xtk) signed up, Who wili advocate the
thers? Significant others include OLIT (the Openiook toclkit), the Motif
oolkit, Interviews andfor Fresco, and naybe xview, I don’t know what the
tory is in the LISP world,

Figure 2.1b - Availability indicators for an uncached message during disconnected
operation

2.1.2 Delayed Operation and Friendly Errors

When we-xmbh is disconnected, the user can still compose and send messages. Outgoing

messages are queued by wc-xmh in a folder named Out, so the user can easily check

15

|Foldar |[Table of menJ Hessage l-mpmns | [Enable | [BringOver |

Ponoros] 6t oot] e P P o]]] o]
some |h\n;”in|:nx”lrb&l[.j_u_uj[ﬂnj[aﬂwx”thsls“:blml o

irboxsall

messages 319 01715 Dawid Nickols Ra; suggestion for Ylog changed<Bo wou propose to rename the urrent
marked 320 01715 Mike_Spreitzer,PA Re: suggestion for Ylog change<<If we named the versions like Emace
" " 321 01/15 Nancy Freige PARC Voicepoint Speakerphone<<iould whoever borrowed CSL’s Voicepoint Spe
delete 322 01215 Lorna_Fear.parcic No-fee for Hike Tso¢avid, please send finne a two-sentence descript
. 323 01/15 Lucy Suchman REMINDER — Mork Practices<<REMINDER, *if you haven’t notified us ye

are unavailable| | =4 0145 Stevs Putz issing NetGens 01 CD ROM((Someons borrowed o NetGems 01 CD ROM fr

01/15 Nancy_Freige,PARC Conference Room Courtesy<<The CSL Common, ra, 2230, is currently boo
327D 01/15 Paul S, Barth {CDatet Fri, 15 Jan 93 20:14:20 +0000 From: arvindéatl.t.u-tokyo,ac,
328 01715 John Unlig inport outage yesterday at 6PHC(ALL, As you may have noticed, /impor
329+%01/15 Hike_Spreitzer.PA Help give windowing toolkits bake-off Dealer?<In this week’s Dealer
334D%01/15 Bill Schilit Re: suggestion for Vlog d\mqe«ter‘m.mm‘,&xemx.om writess > Blll.
335 #01/15 Lori Lunn Avirett Seminar Announcement for 1/13/93<<COMPUTATION STRUCTURES GPOUP Ti

" "
commit Fry—"

user ClleS. on F:-'lr;x:” !’[deleteHnr;e-“com”r-eplgh_:!lmﬂmua-k”faruad”Use as Cowp |

|
P

_Sprgi tzer ,PARCExerox . com
diHthork d Hessage <93JM15,133337pst 1233%%alpha, xerox, com>
sconnecte i s/Doaler, a questioner asked about the relative merits of Trestle
e, Tk/Tcl' the a:dience quickly enthused about the idea of a Dealer on the
relative merits of various windowing toolkits, Perhaps in the form of a
fticomparison of hou some fixed exanple would be implemented in each toolkit.

i Perhaps in the forn of a panel debate, He have advocates for Trestle, Tk/Tcl,
fiflard the two Cedar toulkits (Viewers and Xtk signed up, Who will advocate the
gBlothers? Significant others include OLIT (the Openlook toolkit), the Motif
MRitoolkit, Interviews and/or Fresco, and maybe xview, I don’t know what the
Mistory is in the LISP world,

Figure 2.2a - User chooses to commit changes to unavailable messages during
disconnection

which pending messages have or have not been sent. He can also edit, delete or move
messages in the Out folder just like messages in any other folder. We feel that this
feedback information is very important and is best provided within the context of the
application, i.e. it is more intuitive for the user to manipulate pending outgoing messages

as wc-xmh objects instead of files in the file system.

16

Not all errors can be prevented by disabling buttons. Handling errors at the system layer
simplifies the application but is often too general because there is little information about

the overall context of the error. Without knowing which application feature caused the

"commit" failed
€ITOr message

inbox
[Folder | [Table of Contents |[Message | {Vieu]|Options |[Enable |[BringOver |

CSG
[Anounce | {055] 0¥] [Cecil | [Intern | [#3] MNews | [PBE] [P3F | [Softuare | [Tab] [VI-h] [bfde | [drarts]

[humor | [1nbox][1rboxat | @ [Jebs | [others | [thesis | [ubicoms |

irboxsall

316
317

328

01/15 Cheryl Patton
01/15 Yictor_J Heintz.w
01/15 SJohnson,PARCExer
01/15 David Nichols
01/15 Mike_Spreitzer .PA
0115 Hancy_reige,MARC
01/15 Lorna_Fear,parclx
01715 Lucy Suchman
01/15 Steve Putz

325D 01/15 Nanciy_Freige.PARC
327D 01/15 Paul S, Barth

01/15 Jobn Unlig

329+#01/15 Mike Spreitzer PR
,l 334001715 Bill Schilit

Meeting TODAY |<<SEE YOU THERE .., »#SuperTech Mestingkws Today, Jan
Re: Backup Copilot<<Received: by launchpad.paa.xerox.com (4,1/SHI-4,
eichi/pixell is 982 full<{Please prune what you can from your direct
Re: suggestion for Vlog change<<Do you propose to rename the current
Re: suggestion for Ylog changed<If we named the versions like Emacs
Voicepoint TpsakerphoneC<dould whoever bori-owed CGL"s Voicepoint Spe
No-fee for Mike Tso<<{David, please send Anne a two—sentence descript
REMINDER — Work Practices<{REMINDER, #if wou haven’t notified us ue
missing NetGems 31 CI-ROM<<Someone borrowed a NetGems 91 CD-ROM fr
Conference Room Courtesy<{The CSL Common, rm, 2239, is currently boo
<{CBate: Fri, 15 Jan 93 20:14:20 +0000 From: arvind@mtl,t.u-tokwo,ac.
import outage yesterday at BPMKCALL, As you may have noticed, /impor
Help give windowing toolkits bake-off Dealer?{<In this week’s Dealer
Re: suggestion for ¥Ylog change<<terry,PARCExerox,com writes: > Bi 11,

B notice SREERNESNISNRIERNIRRERNEE 1

»i,‘nmlt: Unable to commit all changes at present

_)\ l fAcknowledged l

|F:rua'1ﬂ[llse as Coan

113

To:
oot

Biiike

te!
Fron:

Fri, 15 Jan 1893 13:18:03 -0800
Nike_Spreitzer .PARCExerox.com
Subject: Help give windowing toolkits bake-off Dealer?

CSL+,PARCRxerox, com

Mike_Spreitzer [PAPCExerox.com
Reply-to; Mike_Spreitzer ,PARCBxerox,com
|Message-1d: <93Jan15,133337pst,12339@alpha, xerox,con>

5| In this week’s Dealer, a questioner asked about the relative merits of Trestle
Bive, Tk/Tels the audience quickly enthused about the idea of a Dealer on the
¥ relative merits of various windowing toolkits,
| comparison of how some fixed example would be implemented in each toolkit.
$iPerhaps in the form of a panel debate.,
il vd the two Cedar toolkits (Yiewsrs and Atk) signed up,
others? Significant others include OLIT {the OpenLook toolkit), the Motif
toolkit, Intervieuws and/or Fresco, and maybe xvieuw.
story is in the LISP world.

Thanks much,

Perhaps in the form of a

Ne have advocates for Trestle, Tk/Tcl,
Who w1ll advocate the

1 don’t know what the

Figure 2.2b - Commit feature exits with a more meaningful error

error, system level error messages are often uninformative. For example, when the user

clicks the “compose” button to create a new mail message, he might get a “file not found:

17

compform” error. The average user would not understand this error: compform is a
template file used to create a new message header, and the user’s command failed
because wc-xmh is disconnected and compform is not in the cache. We believe that in
general, the system layer is much better at detecting errors than handling errors.
Uninformative error messages are intolerable if errors occur frequently. We allow the
application to override the default error handler provided by the system to return more
user friendly error messages based on the application’s semantics. Figures 2.2a and 2.2b
illustrate this idea: we-xmh had to abort the "commit" command? prematurely because it
could not verify the existence of unavailable messages. Instead of the file system timing
out and printing a low level error to the console like "RPC timed out, retrying...", the
error is intercepted by wc-xmh which notifies the user and aborts the “commit™ operation

instead of hanging on retries.

2.1.3 Smart Availability Management

It is no accident that wc-xmh is almost fully functional when it is disconnected.
Maintaining a high level of functionality requires a number of resource files (such as the
context, header summaries and filters) to be available. One of the key features of wc-
xmh is its ability to influence the cache manager so that these critical files remain
available as much as possible. Similarly, wc-xmh influences the cache manager to

always make new mail messages available, as shown in Figures 2.3a and 2.3b.

2 typically, the user marks the changés he wants to make to individual messages, e.g. move or delete, and
then hits the “commit” button tc :ctually make the changes at the file system level, e.g. renaming or
deleting files.

18

[e |

[Felder |[Table of Contents ||Hessage ||Vieu ||Options ||Enable || BringOver |

inbox
[Arnounce | [C56] [cva] [Cecs1 | [Tntarn | [13] [News | [PBE | [PIF | [Softuare | [Tab] [vi-A] [bfde | [drafts |

[hunar ” inbox ”irboxSi I[Jobs ”others I[thesis ”n.blconp |

inboxsall

275
231

01/08 Lori Lynn Avirett
01/11 Jae Roh

01712 Lori Lymn Avarett
0112 Willian _Turner ,pa
01/12 Mike_Spreitzer.PA
01412 George Chen
¥01/13 Hichael Han-Hak T

STENSTROM Seminar, Thurs,, 1/14, 1:45 - 6th floor<(Delivery-Date: Fr
get by with a little help<<Mike, if you have some time early this we
Seninar Announcenent{<#-—@g-—g~—E-—§-—@-—t-—f-—§-—f-—8-—f-
Guest spaaker;Hartin Schmidt, HIT Microfabrication Technologies For

CSL Lab Mtg in Room 1500 Dealers; David Goldberg and Hark Weiser, Ja
KUDOS | {KKudos to the actives lor putting together an excellent editi
PDS - The ParcTab Packet Delivery Switch<<Hi, The ParcTab Packet Del

292 »01/13 weihl@photon.lcs. First 6033 staff meeting<{One of the major issues we will be dealing

user CliCkS 293 w01,/13 William_Turner,pa Foruarding: Guest speaker:Hartin Schmidt, HIT Microfabrication Techn
299 %01/13 terry . PARCxerox, Ubiquitous Computing Architecturs and Applications meetings<{Hark’s
on 303 %)L/13 Michelle Chenq Newsweek: Cannibals of the Red Guard<<Cannibals of the Red Guard Smu
"inC" to 308+¥01/14 Brent Welch experiment de-brief<<Hi - I'm gonna be gone tomorrou, so I°d like to
incorporate -
new mail lnext”pr‘ev”cmmt”delete”move”comuse”replu“pt int | [unmark | [foruard | [Use as Comp |

ron: Brent Wel welch@parc,xerox.com>
(=34 tsoBparc Aerox,con
. Subject: experyfent de-brief
network is Hessage-1ds <#3Jan14,091130pst, 36667Gcorvina, parc, xerox, con>
Dates Thy/ 14 Jan 1993 09311328 -0800
connected

AL - ['m gornna be gone tomorrow, so I1'd like to

wind dnwn my mail raading axperiment. tnday,

Could you stop by at 11:00 or s0? thanks,
Brent

Figure 2.3a - User chooses to get new mail

2.1.4 Dependable Future Availability

When the user plans for voluntary disconnection, wc-xmh lets him check what data and

features will be available when he becomes disconnected. If a feature will not be

19

inbox .
[Folder | [Table of Contents |[Message |[¥1ew][Options | [Enable 1{ Bringlver |

b

inbox
[Prmounce | {56] [ovA] [Cecil | [Tntern] [13] [News | [PBE | [PIF | [Softuare | [Tab | [VI-#] [bfce | [aratts]
[rwanor- | [inbnx] { inbox8t | @de:s ”othu's ”thesjs ”ubicoq:a l
inboxsall

274 01/12 Mike_Spreitzer.Ph
275 01712 George Chen

291 #01/13 Michael Man-Hak T
292 %01/13 weihl@photon,Ics,
293 %01/13 Nilliam_Turner.pa

CSL Lab Mty in Room 1500 Jealers; David Goldberg and Mark Weiser, Ja
KUBOS!<<Kudos to the actives for putting together an excellent editi
PS5 - The ParcTab Packet Delivery Switch{{Hi, The ParcTab Packet Del
First €033 staff meeting<{One of the major issues we will be dealing
Forwarding: Guest speakeriMartin Schmidt, MIT Microfabrication Techn

new mail 200 w01/13 terry,PARCRxerox, Ubiquitous Computing Architecture and Applications mestings<{Hark’s
303 »01/13 Michelle Cheng Newsweeks Cannibalg of the Red Guard<<Cannibale of the Red Guard Smu

messages are 308 %01/14 Brent Welch experiment de—brief<<Hi - I’m gonna be gone tomorrow, so 1°d like to
ade available 309+#01/14 George Robertson REWINDER: PARC Seminar 1/19: Revolutionary Tools For Software Develo
m 0 #*01/14 George Robertson REWINDER (FIXED>: PARC Seminar 1/13: Revolutionary Tools For Softuar
automatically 311 w01/14 D" alfonso,PARCExe ®wk Reminder: Aberdeen Upgrade to 4,1,3 Tonite sew<<This evening, th
312 %01/14 Bruce_Hamilton,LA El Segundo area: Sun Local Users Group<{<{This ic just a reminder that

313 #01/14 Bruce_Hamilton.LR
4 w01/14 Bill Schilit

El Segundo area: Sun Local Users Group<{[fixed tupe: Thursday. not T
suggestion for Ylog change<<I suggest the following change to \-'luga

Ea|thjimv”wmit”delmllm“c:anpcselﬁ'eplg”print”mnaklffmad”lbe as Compl
inbox 308

Network Latency :

rom: Brent Welch {welch@parc,xerox,cow>

[:}4 tsolparc,xerox,com

Subject: experiment de—brief

Message-Id: <93Janid,091130pst ,36867@corvina,parc, xerox, com>
Jate: Thu, 14 Jan 1993 09:11:28 -0800

Hi - I'w gonna be gone tomorrow, so 1°d like to

wind rown my mail reading Axpariment. tnrday,

Could you stop by at 11;00 or so? thanks,
Brent

Figure 2.3b - New mail is automatically made available

available, its entry in the "Enable" menu would not be grayed out, as shown in Figure 2 4.
The user can make a feature available by selecting the appropriate "Enable". He can also
make individual messages or folders available by using the "BringOver" menu, as shown
in Figures 2.5a and 2.5b. Wc-xmh informs the user whether his request was successful.
The key utility of the "Enable" and "BringOver" features is that they allow the user to
establish a level of dependable service across disconnections without having to

understand wc-xmh's internal dependencies.

20

users can

enable IR,
individual [Folder || Table of Contents ||Hessage || View || Options | {Enable | [Bringver |
features in inboq Enatie {ampse -
preparation for |{fnounce (656][] [Cect1 |[Tntern | [5] [Neus] [P2E] ¢ | [VI-A] [bFde | [drafts |
disconnection {humor- | iri:nx”irhuxﬂi”Jnu“,jobs ”othsrs”thesls][wbie tee ae fonp :
Frabie {onent -
inboxs -
247 01708 Lori Lynn Avirett STENSTROM Seminar, 6th floor<Jelivery-Date: Fr
here ﬂ.le menu 255 %01/11 Jae Poh get by with a l1tt1d 2! have soMe time early this we
selections are 260 OL/12 Lori Lynn Avirett Seminar Rnouncement<ci-—@-—#-—@-—-—@-—t4-—@-—4—@-—3-—@-
grayed out to 263 Ol/g William_Turner.pa Guest sped(er;ﬂsl*tin&nidti HIT giuﬁ&?éwtiu;lmnzlgies for
274 01/12 Hike_Spreitzer,PA CSL Lab Mtg in Room Dealers; David Goldberg iser, Ja
Show that all | | e e T FTBs e Pacelob Pechan Jot v urenicns oo Fareye Pasker Do
A % ic n - The ParcTab Packet ivery Switch{{Hi, The ParcTab Packet
featllres Wln 232 %01/13 weihléphoton.lcs, First 6033 staff meeting<<One of the major issues we will be dealing’
be all bl 233 w01/13 William_Turner.pa Forwarding: Guest speakersHartin Schmidt, MIT Hicrofabrication Techn
avauabie 299 %01/13 terry.PARC@xerox., Ubiquitous Computing Architecture and fipplications meetings<<Mark’s

L2

ri;nc“nexﬂlprcu”cwmit ”delete”mua ”ccuq:ose ”replg”pﬂnt ”l.nlwk”f-‘oruerd”Use &S Canp]

303 %01/13 Nichelle Cheng
308+%01/14 Brent Helch

Hewsweek: Cannibals of the Red Guard<<Cannibals of the Red Guard Smu
experiment de-brief{{Hi - I’m gorna be gone tomorrow, so 1°d like to

inbox:308

Netuwork iLatency :

rom: Brent Welch <welchBparc,xerox.com>

Tos tsolparc.xerox.com

Subject: experiment de-brief

|Message-Id: <93Jan14,091130pst , 36867@corvina.parc. xerox ,con>
Date: Thu, 14 Jan 1993 09:11:28 -0800

Hi -~ I"w gonha be gone tomorros, so I°d like to

wind down my mail reading experiment today,

Could you stop by at 11:00 or s0? thanks,
Brent

Figure 2.4 - Enable features for dependable future availability

21

"BringOver"

lets messages | M3
and fOldCI'S to lFolderanbla of Contents HPbssage”V!s« l[lbtions ILnable| Brlngﬂuerl
be made Selected Hessages -
available --r@m:@ Hews 'T’ i [bfde | [crafis]
tl'esi—”ubicoap-l
here user H3zall
SeleCtS 08710 Hike_Spreitzer,PA m3chestinstall problem<<I’m sending this to all of m3chest because I
08710 Mike_Spreitzer,PA TimeParse.i3 added to blob/timefmt<<I solved my earlier problem, I'v
to make all 08718 Marvin Theimer Changes to n3unix and timefmt directories<CHi: 1've (finally) coales
. th 08/18 theiner ,PARCBxero VYiog changes nade{{Hi; I've inplenented the changes Dave Nichols rec
messges 1n the 08/20 David Nichols new n3rpc, m3rpegend<<I‘ve installed a new Modula-3 library and stub
fOIder "M3 n 00/02 theimer ARCExero Res TTAGS Miles For m3chest{dli; The tags,el that I wots & while ba
: " 08/02 Hike_Spreitzer,PA Re: FTAGS files for m3chest{For options (1) - (3}, I suspect the be
available 03702 David Goldberg Ret FTAGS files for m3chest<{(N=2 would work fine for me, It seens th
09,03 theiner PARC@xero Re: FTAGS files For m3chest{(Hi: The change you made tc my tags.zl p
08/03 David Goldberg Re: FTAGS files for m3chest{Right, when you know the module nams. t
10719 Dawid Nichols changes<{{m3cnestinstal] - added —f to FTAGS mv commands to keep them
10/27 Mike_Spreitzer,P installation.doc vs, m3unix/Makefile<</project/m3chest/doc/installat
10731 Michelle Cheng FUI>YNodula2 vs C+4+<{{-—-— Begin Included Message -———- In article <
11,09 David Goldberg new routines in blob{<I added some neu thirgs to the blob; in TextOp
IincIlnext”prev”cmnit”delet.e”nove“oonpouILreplg“print“mﬁ(“Fl\lard“Use as Corp]
Tabs?0 -
none of the

messages in
folder "M3" is
currently
available

fate: Wed, 13 Jan 1993 10:22:59 -0800

‘roms Michael Han-Hak Tso <tsolparc.xercx.com>

Subject; PDS — The ParcTab Packet Delivery Switch

To: tabtean,PARCExerux, com

Message-1D: 493Jan13.102313pst.B9178fernius.parc,xerox, con>

BB The ParcTab Packet Delivery Switch (PDS) provides reliable packet

elivery between applications and ParcTabs, Each ParcTab has an

ssoclated PDS server that exports a locationh transparent RPC
interface to the applxcatmn, The PDS tracks the ParcTab’s movement

The PDS also provides the mechanism for application management:
BB(switching the Tab between multiple active applications, Finally, the
BPDS routes asuynchronous Tab events to the currently selected

|arp] 1cation,

BBl] have installed the implementation into /project/tab/src/pds, In

ii/project/tab/bin, there is a program FDS, you can try running it with
he -tab 0,0,1 -shel! /preject/tab/bin/lestbhell cptions to get a
sbug Shell program running with the FDS.

here is also documentation in /project/tab/doc,

Figure 2.5a - User chooses to make some messages available for voluntary disconnection

Another idea for influencing the user’s expectations is to use tri-state buttons. A tri-state
button has three viéually distinct states: currently available and will be available if
disconnected, currently available and will be unavailable if disconnected, and currently
unavailable. This is illustrated in Figure 2.6. Tri-state buttons let the user easily

anticipate what will not work should a disconnection occur, thus enabling the application

22

to deliver a predictable level of service regardless of whether disconnections are planned

or unplanned.

all messages in
folder "M3" are
now available

& M3 2]
IFalder‘] fTable of Contents | | Hessage] | View “g:tlons“Enable] | BringOver I
"3 -
[Arnounce | [€5G | [€¥A] [Cect1 | [Tntern | (M3] [News] [PBE | [PIF | [Software | [Tab] [V1-A] [bfde] [drafts |
[hunor-}[3nbiox | [irboxSt | [mu] [Jobs | [others] [thesis | [ubiconp]
H3:all -

1 %08/10 Nike_Spreitzer.PA
2 ¥08/10 Nike_Spreitzer.PA
4 ¥08/18 Marvin Theimer
5 %8/18 theiner PARCGxero
6 %08/20 David Nichols
8 %09/02 theimer,PARCBxero
9 »03/02 Nike_Spreitzer.PR
10 #03/02 David Goldberg
11 %0303 theiner . PARCAxero
12 %03/03 David Goldberg
13 *10/19 David Nichols

n3chestinstall problem<<I’m sending this to all of m3chest because I
TikeParse,.13 added to blob/timefmt<<I solved my sarlier problem, I'v
Changes to m3unix and timefnt directories<<Hi: I've (finally) coales
¥log changes made<Hi; I've implemented the changes Dave Nichols rec
new m3rpc, m3rpcgend<I’ve installed a new Modula-3 library and stub
Res FTAGS files for m3chest<<Hi; The tags.el that I wrote a while ba
Re: FTAGS files for m3chest{(For options (1} - (3, [suspect the be
Ret FTAGS files for m3chest<{N=2 would work fine for me, It seems th
Re: FTAGS files For m3chest{(Hi: The change you made toc my tags.zl p
Res FTAGS files for m3chest<<Right, when you know the module name. t
changes<<m3chestinstall - added -f to FTAGS mv commands to keep them

14 #10/27 Mike_Spreitzor.PA installation.doc vs. m3unix/Mokefile<</project/n3chest/doc/installat
15 #10/31 Hichelle Cheng FHD> >Hodula2 ws C++<{(-—~— Begin Included Message ——- In article <
16 %11,/09 David Goldberg new routines in blcb{<I added some neu thirgs to the blob; in Textga
inc] [next | [prev | [conms t] [delete | [nove | [compose | [reply | [erint | [unnark] [forward] [Use as Conp]
wc-xmh notifies Tabi7 =
the user that Network Latency ¢ -
ate: Wed, 13 Jan 1993 10:22:53 -0800
these messages %lrzn: Hichoel, Han-fek Tso <tsolparc.xerox.con>
. . < PDS -
will be available | [Biet 2 - e roreroibd notice EENERERIRSR
even if he Hessage-1D: <93Jani3.1023 Brinsﬁglderﬁver: fill messages in Folder
disconnects will be auaileble
n Acknowledged 1

The ParcTab Packet Delivery Switch (PDS) provides reliable pocket
delivery between applications and ParcTabs, Each Parclab has an
associated PIS server that exports a location transparent RPC
interface to the application, The PDS tracks the ParcTab’s movement
and switches packet delivery betueen infrared gateways (irGateway),
The PDS also provides the mechanism for application management:
owitohing tho Tab botwoon multiple actiwvo oppliocationa, Fimally, the
PDS routes asynchronous Tab events to the currently selected
application,

1 have installed the implementation into /project/tab/src/pds, In
/projootstab/bin, thore 1o a program FDS, you con try running it with
the -tab 0,0,1 -shell /project/tab/bin/TestShell options to get a
debug Shell program running with the PDS,

There is also documentation in /project/tab/dec,

Figure 2.5b - User gets immediate feedback

23

compose

Available Now - Available Now Unavailable
Available also Unavailable
when Disconnected when Disconnected

Figure 2.6 - Using Tri-state Buttons to Manage Future Availability

2.1.5 Monitoring and Reacting to Environmental Changes

The computing environment may be changing continuously: the network connectivity
may fluctuate and files are paged in and out of the cache. Wc-xmh needs to monitor
these changes so the state of its buttons, availability indicators and network thermometer
can be updated in a timely fashion. A naive implementation would poll the cache
manager and the Network Statistics Monitor. Notification allows these features to be
implemented efficiently by invoking callback procedures as soon as changes are detected.
Figures 2.7a and 2.7b illustrate the result of invoking a callback procedure after a file
needed by the “compose” function is paged out. Typically, instead of drawing attention
to the user, wc-xmh’s callback procedure would automatically attempt to make

- “compose” available through Hinting.

24

wc-xmh warns
the user that
"compose" has
become
unavailable

clicking here

usernca‘n also " [Folder”]’able of Cont.ents“ﬁessage”\)iau Hﬁptions ”Enable”fh"ingﬂverl
make .co;npose TrbagEndble Compose =
available by] e]

[Arnounce][5 [CvA] [Ceci] [ntern | [18)] [heus JJPE
Conor ik ” i‘*]E'"]F‘ | m]

thesis [

-

“Mgox:d

o

W@m~NO U & NN

05/29 glimBau-bon-pain,
06/09 swong348athena,ni
06/25 Toigregor

07710 Bill Janssen
08/03 Joe Norton

00,04 RAJLICIIRM1opn2,ds
08/10 andrew scott malo
08/17 andrew scott malo
08,31 Bill Schilit
03/11 Nellnerfeuroparc,
03/16 yeanbouv@atnena,n
09/18 yeahbouy@athena,m
03/21 tcchouBathena.mit
09,29 kahlilQathena,mit

' .
Re: Group meetin: H rewitten wator in Id, I wo
Re: Thanks!<<Hey Mi 11 bing with you? Have you fourd
DLS questions<<Gregor, John, Some questions I didn’t get to ask at t
ATST PDA plans<<From: rewsbytesBclarinet,.com Newsgroups: clari.nb,tr
talk<<Hey Mike, How are you doing? I1'm doing well in Cambridge and a
Re; Tsoing machine?P(<Man liak; we had our rush parties last weekend,
Happy Birthday,KHi, I’m on the right side of the date line,,.. [ca

Forwarded wessage fromn Peter Allend{{----—- Start of forwvarded messa
CACH call for papers<<Please forward this to anyone who you think mi
Re: maild<hey homey! Good to hear from you! I will write back later,
Re: What’s up?{<Hey Mike, Well its Friday and I’m in love with youl

<(<Hey Mike: No, I haven’t TR'ed 5.004 since last Fall: ronetheless 1
Re: what’s up<{<{Greetings Hichael tee-zch, 1’1l try to give you a (ﬂ

@Inext”prw”cmnit”delete] move [wwosﬂlreply”printHmnark]rfmrdHUse as Corp]

Xerox PARC

-

Network Latency ¢

i Warnings

user chooses to
make
"compose"
available

>

 Cowpose will not be available if you becowe disconnected! |
i Enable Compose? ;

Figure 2.7a - Users are notified if an important feature may become unavailable

2.1.6 Discussion

At first glance, it appears that the graying out of buttons and the availability indicators for
messages can be implemented without any special system support. For example, a

disconnected application can find out what does not work by pretending to click on every

25

user can also
check in the
future that
"compose" is
available

|Folder ”Tablﬁ of Contents HHessagﬂ”Viw IIOptims I[Enable || Bringdver |
e =

inhox

[Announce | (€56 | £V] [Cecil | [Intern | [13] [News | [P

Ihmor”irbux“irboxs:ll@lﬁ_] others} thesfs [

| e o]

#hbox:4 B -

user gets
confirmation

WO~ I & NN

05/29 glim@au-bon—pain,
06/09 swong94@athena,mi
06/25 Toigregor

07,10 Bill Janssen
08703 Joe Nerton

08/04 RAJLICHRFlopnZ,ds
03/10 andrew scott malo
08/17 andrew scott malo
08,31 Bill Schilit
03/11 WellnerReuroparc.
03/16 yeanbouy@atnena.m
09/18 yeahbouyBathena,m
09/21 tcchouBathena,mit,
09,29 kahlil@athena,mit

Re: Group et ing<<Y aii i rewritten wator in Id, I wo
Re: Thanks!<<Hey MiK i’ ing with you? Have you fourd
DLS questions<<Gregor, John, Some questions I didn"t get to ask at t
ATET PDA plans<<From; rewsbytes@clarinet,com Newsgroups: clari,nb,tr
talk<<Hey Mike, How are you doing? 1'm doing well in Cambridge and a
Re: Tsoing nachine??(x‘"an Hak; we had our rush parties last weekend,
Happy Birthday,<CHi. I“m on the right side of the date lme.... Ica

Foruarded nessage from Peter Allen<{——--—- Start of forwarded nasa
CACH call for papers<{Please forward this to anyone who you think mi
Ret mail<<hey homey! Good to hear from you! I will urite back later,
Re: bhat’s up?<{Hey Mike, Mell its Friday and I'm in love with you!

{<{Hey Mike: No, [haven’t TR’ed 6.004 since last Fall: nonetheless I
Re: what’s up<<Greetings Hichael tea-zch, 1’11 try to give you a cal

@Inext”mﬂ[wmit]Ldelet;”nove]Iompose“replg”ﬂ_t_“mmark“\‘"mrd]wse as Coml

Xerox PARC

Network Latency 3

notice

Enable Compose: Compose is now available!
fcknowl edged

Figure 2.7b - User gets immediate feedback after choosing to make “compose” available

button or menu and seeing if a network timeout error occurs. There are two problems
with this approach. First, graying out what will become unavailable (and tri-state
buttons) cannot be implemented by the above technique. Second, there may be hundreds
of buttons, menus and messages in wc-xmh and simulating a click on each one

periodically is both inefficient and tedious.

26

Wc-xmbh’s features illustrate some generally applicable ideas for adaptive user interfaces.
The idea of graying out buttons and menus can be used in any application with a
graphical user interface. Availability indicators are generally applicable for programs
which let the user select from a list of possibilities, such as NetNews readers and
directory browsers. “Enable” menus are useful for any application to assist the user in
planning for future disconnections. For portables running on batteries, a thermometer
similar to wc-xmh’s network latency indicator showing the amount of battery power
remaining would be useful. Tri-state buttons can be generalized to have different colors
indicating an estimate of the expected response time if that button is clicked. For
example, the “BringOver Folder” button may be colored red because copying all those
messages over a slow network can take a long time, while buttons for low latency

operations like reading a cached message are colored green.

2.2 Related Work

2.2.1 Disconnected Operation in Coda

Coda [Kistler] [Satya90] also provides disconnected operation using cached data. The
key difference between our approach and Coda is that Coda does not change the file
system interface and provides no special support for unplanned disconnections. Coda
assumes strong connectivity for normal operations. Hoarding allows users to give
explicit hints to the cache manager by prioritizing files. but it is less effective for
unplanned disconnections than voluntary disconnection. We assume an intermittent
network for normal operations and provide full support for both voluntary and
involuntary disconnected operation. Caching is transparent to the application in Coda, so

applications which depend or. the cache for availability cannot predetermine what works

27

and what does not because the content of the cache is unpredictable. For example,
applications using Coda cannot implement features like graying out buttons which are
currently unavailable or will become unavailable. When a Coda user is involuntarily
disconnected, he must click on every button in order to determine what works and what

does not (assuming the application does not hang).

Hoarding in Coda is equivalent to our Hinting mechanism except the cache manager gets
hints from the user rather than the application. The user creates a Hoard Profile
(sometimes with the help of a trace program) which prioritizes all the files he may use.
The main problem with Hoarding is the complexity it places on the user - he must
understand the internal dependencies of the application. It is up to the user to ensure that
the resources he needs for disconnected operation are made available by keeping the
Hoard Profile current and invoking Hoard Walks just before he disconnects. Creating a
Hoard Profile is cumbersome because tracing does not always produce the complete
dependencies of an application's features. The user does not have fine grained control
over what features are made available unless he understands the precise dependencies of
each of the application's features. In our system, the user manipulates application level
entities like messages, appointments and buttons rather than system level entities like
files. The user gets direct feedback from the application about what is available and what
will be available. Callbacks enable applications to notify the user if vital features become
unavailable. Hoarding in Coda can be implemented as an ordinary application in our

system using Hinting.

28

2.2.2 Adaptive Applications

Schilit's current thesis work [Schilit] uses adaptive applications to address the problem of
dynamic system reconfiguration. Although his motivation is similar to ours, his emphasis
is different. This thesis investigates the separation of system interfaces and definition of
new abstractions, while Schilit’s work focuses on mechanisms for communication
between applications and system services. He uses a database, the Environmental
Database, to maintain attribute-value pairs as a general interprocess communication
mechanism. The Localization Manager binds applications' callback requests to persistent
queries in the Environmental Database. Unlike our implementation which provided a
direct channel of communication between each application and its system services,
environmental events in Schilit’s system go through two levels of indirection. For an
application to be notified about an environmental event, the event must first be reported
to the Environmental Database, trigger a query which sends a callback to the Localization
Manager, which then notifies the application. Although our experimental system could
have been implemented with Schilit’s mechanisms, we chose a more direct approach to

avoid the delay and race conditions possibly associated with the extra indirections.

2.2.3 File System For Mobile Computing

Tait's current thesis research [Tait] focuses on the tradeoff between consistency and
performance in distributed file systems for mobile computing. His file system interface
provides two read operations, a strict read which has high synchronization costs and an
inexpensive loose read. He exports no other interface for cache or consistency control,

and provides no support for disconnected operation.

29

2.2.4 Application Specific Virtual Memory Management

Allowing applications to control aspects of virtual memory management, such as pinning
a page in physical memory, has been implemented in many operating systems
[McNamee] [Young87] [Young89] [Cheriton]. The V++ kernel [Harty] support for
application controlled external page-cache management is the most recent attempt at
overcoming the inadequacies of the conventional “transparent” virtual memory model.
Using the abstraction of a page frame cache provided by the kernel, the application can
monitor and control the amount of physical memory it has available for execution, the
exact contents of this memory, and the scheduling and nature of page-in and page-out.
The idea of exposing the virtual memory system to sophisticated applications is similar to
our notion of providing two separate interfaces for cache management. V++ allows the
application to explicitly control most aspects of how its physical memory is managed. By
contrast, our approach is more conservative. We allow the application to influence, but
not control, how the file cache is managed; This is because we are using the same
technique to solve different problems. External page-cache management in V++ caters
for the desire of sophisticated applications whose memory requirements are almost
unbounded, such as large simulations or data base systems, to better mask the cost of
page faults. Our system improves the usability of applications sharing a file cache by
allowing the user to see the consequences of disconnectedness through the context of the
application. We were reluctant to give applications explicit control of the file cache
because we felt that fairness is important since the portable computer’s disk capacity is
still fairly limited. In addition, we designed our interfaces so that the desired features can
be implemented without introducing unnecessary compliéations to the application, such
as requiring applications to explicitly manage their own cache. Although V++ provides a
default memory manager, the application is exposed to the complexity of implementing a

custom memory manager even if the paging policy it needs is just slightly different. This

30

is an important consideration because we expect even ordinary applications such as the

mail reader and calendar manager to utilize the support we are providing.

2.2.5 Exposing Abstractions with MetaObject Protocols

Designing programming languages using metaobject protocols [Kiczales] [Rodriguez] is
based on the notion that limiting a programmer to using pre-existing implementations
(i.e. compilers) as black box abstractions is artificially restrictive; a programmer should
be able to, and sometimes needs to, augment the functionality provided by thesé
implementations, without being exposed to arbitrary or irrelevant implementation details.
Metaobject protocols are interfaces to the language that give users the ability to

incrementally modify the language's behavior and implementation.

At first glance it may appear that Property Specifications bear no relation to metaobject
protocols. In fact, our idea of Property Specifications for system seﬁices was inspired
by the metaobject protocol approach to language design. The power and flexibility of the
metaobject protocol originates from exposing traditional black box abstractions in
structured ways. Property Specifications give applications the power to operate in an
unpredictable computing environment by exposing traditionally sacred black box
abstractions such as caching in structured and controlled ways. The common thread
linking our work to the metaobject protocol is the notion of designing an abstraction for‘
exposing abstractions. Adding Property Specifications to an existing operating system is
like adding windows and knobs to a black box: the application can choose to look into the
windows and turn the knobs when the need arises. Adding windows and knobs is better
than replacing the black box with a glass box because applications are hidden from

irrelevant details of the implementation.

31

Chapter 3

Programming Models for Application
Splitting

The primary motivation for splitting an application is that frontend machines, such as
portable computers and display terminals, are often limited in storage and computational
capabilities. The desire is to distribute some of the application’s computational and data
accessing load to more powerful computers on the backend, i.e. a machine (or machines)
at the other end of the network. There are many existing and proposed programming
models for writing split programs. Broadly speaking, they split the application either at
the user interface level or the data access level. Window systems such as X [Scheifler]
and NeWS [SunNeWS] [Gosling] provide abstraction boundaries which allow an
application to be cleanly split at the user interface level. Similarly, file systems and
database interfaces ﬂlow clean splits at the data access level. This chapter surveys these
programming models and compares their relative merits with respect to the following
operating environment constraints:

e Network Reliability - frequency of voluntary and/or involuntary disconnections;

* Network Bandwidth - how much bandwidth is available and how is it shared?

32

o User Visible Latency - how response timg is affected by network latency and
availability;

* Frontend Capabilities - compute power, memory and disk capacity;

* Programmability - how easy is it to program, debug and tune applications?

» Flexibility and Adaptability - are programs able to leverage off new resources when
they become available? (e.g. improved connectivity);

e Application Migration - can application context be preserved across different
instances of the application the user is running on different machines?

* Cost of Data Synchronization - synchronizing cached data and preserving consistency

across network partitioning.

3.1 Splitting at the User Interface Level

The main motivation for splitting applications at the user interface level is to
accommodate computationally limited frontend machines. The application is partitioned
into a user interface (UI) engine and a data processing engine, running on the frontend
and backend respectively. The data engine is optimized for information access while the
UI engine reduces user visible latency by handling Ul events on the frontend. When the
network is slow, the goal is to split the application in a way which minimizes the

communication between the Ul engine and the data engine.

Window systems such as X [Scheifler] provide good abstractions to split applications
cleanly. X has four software abstractions: the X server, Xlib [Nye90a], Ul Toolkit Xt
and widget set [XtIntrinsics] [Asente]) and the application, as shown in Figure 3.1. The
X server controls the display and directs input events to the appropriate X client. Xlib is

the programming interface to the X wire protocol [Nye90b] and the raw windowing

33

system, but is too primitive as an application programming interface. UI Toolkits such as
Xaw3 [XtIntrinsics], Xm# [Heller92], and XView> [Heller91] address this problem by
providing Ul building blocks (widgets) such as scroll bars and menus, and allows the

application to bind callback procedures to widget activities.

Application

Procedure
Calls

Typically Called UI Toolkit
the "X Client" (Xt and Widget Set)

Procedure
Calls

X Lib

X
Protocol

X Server

Figure 3.1 - The X system architecture

3Athena widget set.
4Motif widget set. Based on the OSF/Motif user interface style guide.
5Openiook widget set. Based on the Sun/AT&T Openlook user interface standard.

34

3.1.1 XRemote / LBX

LBX [Fulton] is an emerging standard for running X over telephone lines and other low
bandwidth channels based on techniques pioneered by NCD’s XRemote™ [Herbert]
[Comnelius]. LBX squeezes the X protocol streams from various applications using
techniques such as caching, delta replacement, and compression prior to transmission.
Backend applications communicate with an LBX “proxy” which appears to be a normal
X server running on the backend network. But instead of controlling a display, the proxy
converts the X protocol stream to an LBX protocol, and sends it over the low bandwidth
link to the real X server (which understands the LBX protocol) on the frontend machine.
The LBX architecture is shown in Figure 3.2. For LBX, splitting occurs at the wire

protocol level.

LBX reduces the bandwidth requirements of X applications in two ways. First,
converting X protocol packets into LBX packets reduces the size of the packets. The
conversion process eliminates inefficiencies in the X protocol, reencodes packets more
efficiently when possible (e.g. images), replaces packets that can be more efficiently
represented as chianges against previous packets with their deltas, and compresses the
result before transmission. Second, the LBX proxy reduces the number of packets
transmitted by caching previous answers to X requests and replying client queries
directly. This technique allows the serial line to be bypassed in many cases when
different X clients request for the same information from the X server, e.g. font metrics
and keysym tables. However, it is worth noting that caching does not reduce the number
of roundtrips required for the X client to respond to user input, such as inverting a button
after it has been clicked. Thus LBX does not significantly improve the user visible

latency for interactive activities.

35

Backend
Application

Procedure
Calls

UI Toolkit

Procedure
Calls

X Lib

X
Protocol

LBX Proxy

LBX Server

T mmemmw -

Frontend

Figure 3.2 - LBX supporting X applications over low bandwidth connections

36

Besides dramatically reducing the bandwidth requirements of X, one of the other
advantages of LBX is its ability to support low end frontend machines such as X
terminals. A related approach, the Split Server approach, supports even less powerful
frontend machines by splitting the program across the X server. The X server runs on a
backend host and sends escape sequences to a frontend graphics terminal which provides
only rastering and input handling. This is illustrated in Figure 3.3. This approach may be
practical for very small computers such as the ParcTab [Adams], allowing them to be
used as mobile I/O devices. But its usefulness is limited because it does not allow for any

X application, not even the window manager, to run on the frontend.

Both LBX and the Split Server approach reduce the bandwidth requirements of X
applications in an application independent way. But they give the application
programmer no flexibility over how the program is split, which is both an advantage and
a disadvantage. On one hand, the application programmer is freed from having to
hardwire the notion of a slow network into his program. On the other hand, the
application programmer cannot improve the performance for those applications which
need special features like local button inverting or rubberbanding of windows. The main
disadvantage for both approaches is that if the network is intermittent, the application will

hang when the network fails because it runs on the backend.

37

Backend
Application

Procedure
Calls

UI Toolkit

v _m__n__n_v___fma_fomn_fo___ o __o

Procedure
Calls

.

X Lib

X
Protocol

X Server

4
RN N N N R R N N N N N N N N R R P E TN

’ o, pon_n_mn___pw,__

>
\

Escape
I Sequences

Nmm—_—_-vw_—.a—_—_—_w-ﬁ- N
.
N

| Graphics Terminal

Frontend

VNN S E N EE KSR S aED®EET R e e e s mw >

s

Figure 3.3 - Split Server approach for supporting X applications over low bandwidth
connections

38

3.1.2 Split UI Toolkit

Another idea is to split the program at the UI Toolkit level such that all or part of the Ul
Toolkit runs on the frontend, as depicted in Figure 3.4. We are unaware of any existing
systems that use this approach. It is based on the observation that after setting up the
widgets, the UI Toolkit and the application code communicates only at a very high level,
i.e. callbacks from widgets or procedure calls to manipulate widgets. Immediate Ul
activities such as inverting buttons, highlighting selections and scrolling are all internal to
the widgets and are done on the frontend. One complication for this approach is that the
application and toolkit run in separate domains. Thus a mechanism for sharing data
between the toolkit and the client is needed since most toolkits invoke client callbacks
with pre-registered pointers to mutable data. The main disadvantage of this approach is
the same as for XRemote and LBX: the application does no useful work when the Ul

Toolkit is disconnected from the backend.

The communication bandwidth is reduced because the Ul engine communicates with the
backend via callbacks only when there is real work to be done, rather than for every I/O
event as in XRemote or LBX. User visible latency is reduced by manipulating widgets
locally on the frontend. The application programmer’s interface is unchanged and there
still is no explicit way to control how the program is split. Another disadvantage of this
approach is that applications are restricted to using a predefined set of widgets.
Supporting customizable widgets introduces complications as it requires the Ul Toolkit to
allow dynamic extensions such as those supported by NeWS [SunNeWS] [Gosling] and

Tcl [Ousterhout]. They are discussed in the following section.

39

- lll-.n_,-\‘

- -

”4__-«,-_,-_.- LSRN S S SN WR_ N WS N8R e

UI Toolkit

Procedure
Calls

X Lib

X
Protocol

X Server

Frontend

Backend
Application
I Remote
I Procedure
I Calls
|

Backend

Application

Procedure
Calls

UI Toolkit Backend

I Remote
Procedure
: Calls

. | UI Toolkit Frontend

Procedure
Calls

X Lib

X
Protocol

™ e e el el e g™ ™

X Server

3 Frontend

R P T T Y .

|

N 4

| Y

Figure 3.4 - Two ways of application splitting at the UI Toolkit level

3.1.3 Extensible Servers

It is difficult for the UI Toolkit or the display server (X or NeWS server) to provide an
interface that is suitable for all applications. NeWS and Tcl are motivated by the desire
to support application specific customizations to the window system server. They
provide mechanisms for the application to download programs into the frontend server to
customize existing widgets, define new widgets, and perform unusual tasks like
"rubberbanding" locally. Both systems are targeted towards dividing a client program
into two sections: one to perform the basic computation executing on the backend, and
one to provide windows or graphics and is interpreted by the server process. Figure 3.5
illustrates their architecture. The mechanisms provided by NeWS and Tcl are flexible
enough to allow the program to be arbitrarily partitioned with the restriction that the
partition is fixed at runtime. This is different from systems supporting dynamic process
migration [Jul] [Douglis] which can change the partition during runtime by moving the
program’s execution context between the frontend and the backend. ‘We do not discuss
dynamic process migration systems in this chapter because their applicability to low

bandwidth or intermittent networks is not well understood.

The flexibility offered by NeWS and Tcl is both a strength and a weakness. On the one
hand, the programmer can partition the program in any way he chooses. On the other
hand, he has no reliable algorithms for deciding what is the best partition. The program
is split explicitly by writing it in two parts, making it difficult for the programmer to
iterate his design and experiment with different splits. In addition, NeWS has the
disadvantage of requiring frontends to be powerful enough to support an elaborate
dynamic environment including an interpreter, light weight process management, a Ul

Toolkit, and automatic memory management.

41

Backend
Application Backend

“----"'

I Byte Stream
I Protocol

Interpreter

Application Frontend

Procedure
Calls

Procedure
Calls

Window System
X Lib/X Server
or
NeWS Server

s
E

g U Toolkit
%

l

Y

Frontend

A}

Figure 3.5 - Client Extensible Window System Servers

42

32 Splitting at the Data Access Level

The primary motivation for us to split the application at the data access level is for
increased autonomy. The application runs on the frontend and can respond to
disconnections in user friendly ways such as graying out buttons. We define the level of
autonomy to be the application’s ability to operate disconnected. At one extreme,
applications for PenPoint [Novobilski], Macintosh [MacOS], MS DOS [Jamsa], MS
Windows [Petzold], and MS Windows for Pen Computing [Ward] operating
environments use local file systems and can operate completely autonomously. But
accessing and sharing large amounts of data are more difficult for these applications. At
| the other extreme, an application using a distributed file system such as NFS [Sandberg]
which does no file caching, is not very useful when disconnected because it has no access
to data. Coda [Kistler] [Satya90] provides all the benefits of a distributed file system as
well as autonomy. Applications in Coda can operate disconnected provided the files they
need are available in the frontend’s file cache. The increased autonomy comes at the

expense of the cost of synchronizing multiple copies of files.

Autonomy also makes application migration difficult. Application migration is where an
application’s context is moved from one machine to another, e.g. the user might bring the
particular configuration of buffers from the Emacs instance running on his office
workstation to his home computer. If the frontend is stateless, migration is easy because
only the user interface needs to be moved. We increase the application’s level of
autonomy by moving part or all of its state and data onto the frontend. Application
migration now requires moving an application’s dynamic state from one machine to

another, a non-trivial task in any network environment.

43

The following two sections describe two ways to split the application at the data access

level.

3.2.1 Remote Evaluation

Remote Evaluation is the ability to evaluate a program expression at a remote computer.
Remote Evaluation is designed to support the construction of distributed applications that
examine significant amounts of data stored at a remote server, but ultimately return a
compact answer to the client. As shown in Figure 3.6, an application can execute entirely
on the mobile frontend and use Remote Evaluation when it needs to access remote
databases or perform heavy computation. For servers which support remote evaluation,
these requests go directly to the servers; otherwise an intermediary proxy is required to
translate the Remote Evaluation expressions into corresponding RPCs to database or file
servers. Examples of systems supporting Remote Evaluation include REV [Stamos],
NCL [Falcdne], and NeFS [SunNeFS]. REV was an experimental system built on top of
an RPC mechanism in a Lisp environment. The Network Command Language (NCL) is
a Lisp like language which enables heterogeneous machines to communicate by
programming one another. NeFS was an experimental distributed file system where
clients can execute PostScript programs on file servers. None of these systems was ever

in wide use.

[N

Backend

Database File
Server Server
Remote Remote
Procedure Procedure
Calls Calls

Remote Evaluation Proxy

PRLE TR i e i o

I Remote
Procedure

| Calls

) A

Remote Evaulation Toolkit
Procedure
Calls
Application
Procedure
Calls
Ul Toolkit
Procedure
Calls

Window System
X Lib/X Server

or
NeWS Server, etc.

T e WSS S Sm_SR_Nm_ NS R_WE_m_ we_WR_WR_wa_EE_e_wm_6n_ S e W

Frontend

Iy

T e e e e e e e e e e et e e e e e el el e el e~
A

1Y
1
| §
1
1
§
1
|
| §
]
]
5
B
L]
|
|
| |
[]
L}
¥
1
|]
5
L}
L]
]
]
L]
]
]
L}
]
|]
L]
1
L}
]
| |
5
]
|
]
]
1
1
[]
|
|}
14

R I R Y . . e

>

Figure 3.6 - Remote Evaluation for Mobile Clients

45

Remote Evaluation reduces the application's bandwidth requirements by processing data
remotely. It reduces user visible latency by performing all UI and basic computation
locally on the frontend. Besides requiring the frontend to be a more powerful computer,
the problem with using Remote Evaluation lies in the difficulty in deciding when it is
more efficient to use Remote Evaluation rather than copying the data to the frontend and
computing locally. For example, a file frequently searched with “grep”® should be copied
to the frontend instead of using Remote Evaluation for every grep, but only if the file is
not too big. A mail program that uses grep to generate a summary of ail the message
headers would be wise to use Remote Evaluation to avoid copying all the messages to the
frontend. But it may choose to copy all the files if the messages are likely to be read

soon.

3.2.2 Splitting at the File System Level

Completely standalone applications using only local file systems do not pose any major
challenges for disconnected operation. They are less interesting because portable
computers are seen as standalone personal computers, rather than entry points to a
distributed information and communication system. Splitting the application across a
non-caching distributed file system provides access to distributed data only when the
frontend is connected. Neither of these models are particularly interesting in our
discussion of graceful disconnected operation because in one there is little to be done
while in the other, very little can be done. We will focus our discussions on Coda’s
programming model because it provides both autonomy and distributed information
access. We call Coda’s programming model the Autonomous model, as illustrated in

Figure 3.7.

6grep - a UNIX command which searches through a list of files for all instances where a matching string or
regular expression occurs.

46

{ Backend

Distributed
File

Procedure
Calls

"_-.-A SRS W NN NN_Em NN

Local File Cache

System
Calls

Application

Procedure
Calls

Ul Toolkit

Procedure
Calls

Window System
X Lib/X Server
or
NeWS Server, etc.

P Y -__-_‘—"-4‘—4‘-J_-__-_’,_-v-“vlﬂ_w.ﬁ_u_.-_‘_ﬁ-,-_.-__-__-__-_.-_-_-_.-_.-_-_—_,-_4-_,-__-__.‘-..-_5

4

N -

. .
e e NS RN AN S_S___we_ wm_w s

-

A I N

Figure 3.7 - The Autonomous programming model

47

In the Autonomous model, the application runs entirely on the frontend device and
accesses data through a caching distributed file system or Remote Evaluation at remote
database servers. The main advantage of Autonomous applications over traditional
client/server models is the ability to operate disconnected using cached data, thus
reducing, but not eliminating, the application's reliance on the network for availability.
The Autonomcis programming model is simple because the program is not explicitly
partitioned. The system can automatically translate data access requests into file

transfers, RPC or Remote Evaluation.

The main disadvantage of the Autonomous programming model is that data consistency
problems are amplified by the intermittent environment. Consistency protocols based on
callbacks [Satya85] depend on strong connectivity for timely notification. Time based
mechanisms such as Leases [Gray] require periodic negotiations between the frontend
and backend file server, and is inadequate if disconnections can be lengthy and
unplanned. Data consistency has not been a major issue in today's distributed file
systems because write sharing of files is uncommon [Satya85] [Kistler] [Nelson88].
Mobile computing is likely to worsen this problem. Each user is likely to use several
machines, such as a palmtop, a notebook, and desktop machines in the office and at
home. The user's working set of files is likely to be cached by all of these machines,
some of which may become disconnected. This is a difficult problem whose solution
may lie in the observation that the common case is when files are write shared by the
same user. In general, addressing the consistency problem requires an understanding of
the trade-off between the level of consistency and the cost of reconnection and
consistency protocols. The desired solution depends on the degree of sharing, the

frequency of disconnections, and whether the disconnections are planned or unplanned.

48

An additional disadvantage of the Autonomous model is that frontends must be powerful
enough to run the applications locally. We do not see this as a major issue based on the
observation that portable computers will continue to be used as personal communicators
and information organizers. Typical applications such as editors, mail/news readers,

file/directory browsers and calendar managers are not compute intensive.

3.3 Conclusion

Table 3.1 summarizes our discussions in this chapter: the programming models are in
rows and the design space is in the columns. It is not intended to be an exhaustive set of
design choices but merely a framework for understanding the tradeoffs which confront
designers of split programs. A "+" under the bandwidth and latency categories means
that the application’s bandwidth requirements and user visible latency are significantly
improved as compared to the X protocol [Nye90b]. For disconnected operation and
application migration, "+" means these features can be supported easily. A "+" under
programmability means application programming is relatively easy, under data
consistency means relatively cheap mechanisms can ensure consistency, and under

frontend capability means frontends do not need to be powerful computers.

There is a pattern is Table 3.1: effective disconnected operation comes at the expense of
application mobility and increased complexity in dealing with data consistency.
~ Similarly, the computational and storage requirement for the frontend machine also
increases. Selecting a programming model involves understanding the tradeoff between
autonomy and consistency in the context of constraints in the operating environment.
For example, for a company which provides dialup database services, it may be

advantageous to split the application at the window system level because telephone lines

49

are relatively reliable. This also allows the company to maintain control over all the
application software. Performance for interactive applications can be enhanced by

putting a UI toolkit on the clients’ machines?.

Bandwidth | Latency | Disconnected | Frontend | Program- Data Application
Operation Capabi- | mability | Consistency| Migration
lity
XRemote / + - - + + + +
LBX
Split UI ++ + - + + + +
Toolkit
Extensible ++ + - - - - + -
Servers
Remote ++ + - - - - + - -
Evaluation
Autonomous ++ + + - - + - - - -

Table 3.1 - Characteristics of Different Split Programming Models in a mobile computing
environment

Our strategy for reducing the application’s network bandwidth requirements and user
visible latency is by reducing the size and number of user interface level packets such as
mouse events. We accomplish this by managing the user interface on the frontend
computer as much as possible. This strategy should work well when we split the
application at the user interface level. But when the application is split at the data access
level, it is unclear whether the network bandwidth the application needs is reduced. The
wireless network can be easily saturated if the file cache thrashes or if a query evaluated
remotely at a database server returns a lot of hits. Improvements in the cache manager
and Remote Evaluation system may reduce the effects of these problems, but these issues

are not considered in this thesis.

Programmability is listed in Table 3.1 because the usefulness of a programming model in

the real world is in part affected to how easy it is to write applications. The tradeoff here

7This example came from discussions the anthor had with FactSet Data Systems Inc., a Connecticut based
company specializing in online financial information systems.

50

is simplicity versus power. Applications are split implicitly at the window system or the
file system level with the XRemote, Split Ul Toolkit and Autonomous models. The
programmer does not have the flexibility to control how an application’s computation is
split, but they are easy to program and debug. Extensible server based systems like
NeWS and systems which support Remote Evaluation allows application specific code to
be executed remotely. Programming such systems is harder because the program is split
explicitly. Experimenting with different splits is difficult because the programmer must

make substantial modifications to the program.

3.3.1 The Programming Model for this Thesis

Given our stated assumption of an intermittent environment and our goal of supporting
graceful disconnected operation, Autonomous is clearly the best programming model.
The main advantage of Autonomous applications is their high availability, remaining at
least partially functional during disconnections. An additional advantage is that Ul
events are handled on the frontend, thus decoupling UI response time from the network
round-trip delay. We feel that the advantages of the Autonomous model outweigh the
problems associated with cache consistency. Although the data consistency and
application migration problems are very real, we chose not to address them within the
scope of this thesis because we believe that graceful disconnected operation is the first

order problem for mobile computing.

51

Chapter 4

Property Specifications

Much of the effort in building systems over the past two decades has been directed at
building system service interfaces which provide a transparent network to the application.
Software is layered such that “irrelevant™ details such as variations in latency are hidden
from the application. The underlying philosophy is that these abstractions reduce
complexity and improve programmability. Property Specifications seems to be at odds
with this philosophy as they allow applications to be actively engaged in preventing and
handling errors. Section 4.1 of this chapter discusses the philosophical justification for
separating system interfaces into Functional Specifications and Property Specifications.
It also discusses how Property Specifications can be used to build both application

specific features and application independent tools for graceful disconnected operation.

Section 4.2 defines and elaborates the mechanisms our new system abstraction should
provide. In Section 4.3, we show how to apply these mechanisms to system services.
The Property Specifications for a caching distributed file system and a network service

interface are presented. Section 4 4 explores some subtle issues in the semantics of the

52

Property Specifications we had designed. In Section 4.5, we generalize Property
Specifications beyond the context of mobile computing, and present a Property

Specification for a virtual memory interface.

4.1 Motivation

4.1.1 Separation of Functional and Property Specifications

There are two problems with rigid, transparent system interfaces. First, abstractions often
hide the power of the underlying system. For example, Birrell and Nelson [Birrell] found
that implementing RPC using the more primitive Unreliable Datagram Packet interface
was twice as efficient as using the Reliable Datagram Protocol. Second, the effort
invested in building existing applications gives old interfaces tremendous inertia against
change, even when the underlying technology they were designed for have changed
dramatically. The mobile computing environment is fundamentally different from
today’s distributed computing environments, where network connectivity is usually
reliable. Unfortunately, to date we have not looked very hard at designing new system
abstractions designed specifically for intermittent computing environments. The desire
for backward compatibility often forces programmers to work with sub-optimal
abstractions. Building systems on top of bad abstractions is like putting in screws with a

hammer: it takes a lot of effort to attain an unsatisfactory outcome.

In the real world, there is one principle more important than “make it clean”: “make it
work.” In practice, real world applications need to monitor and handle errors and
environmental changes regardless of the level of support the system interface provides.

For example, Automatic Teller Machines (ATM) must continue to provide service even

53

when they become disconnected or the central database servers are lost8. System
designers have been faced with the dilemma of having to reveal some details in the
system interface which is irrelevant for some applications but necessary for others. By
- isolating the.unde.rlying properties of the system into a separate interface, we achieve the
best of both principles:‘ “making it clean” with Functional Specifications while “making it
work” with Property Specifications. Another advantage of providing two separate
interfaces is that today’s applications can be ported incrementally, i.e. existing
applications like xmh will still work using only the Functional Interface and extra

programming is only necessary if new features are desired.

4.1.2 Using Property Specifications to Provide Application Specific
Support

Property Specification is a step towards exploring the continuum in system abstractions
from application specific to application independent support. The idea is based on the
observation that collectively, the application and the operating system know precisely
what the user needs to know: will feature M in application A work. This is because the
application knows about the services and resources each of its feature needs while the
operating system knows the availability of thdse services and resources. Hence close
collaboration between the system and the application is required for graceful

disconnected operation.

Property Specification provides a structured way for efficient information exchange

between the application and the system. It fosters a programming model where the

8A recent snow storm destroyed the ATM network’s database servers in New Jersey. Their backup system
in New York City was unavailable because it was already running as a backup system for other servers lost
during the World Trade Center bombing. Although the central information service in New Jersey was not
restored for another 2 weeks, ATM service was not disrupted because the software on individual ATMs
switched to disconnected operations mode. Source: Professor Jerry Saltzer, saltzer@mit.edu.

54

application uses its information about the environment to prevent errors, the system has
the responsibility of detecting errors, and the application has the option of overriding the
system’s default error handlers with application specific ones. We model changes in the
operating environment with environmental events, which an application can elect to
receive. For example, the discovery of a printer in the vicinity of the user might generate
an environmental event for the print spooler®. Our experience with programming event
driven applications gives us confidence that environmental events is a powerful and

elegant abstraction.

4.1.3 Using Property Specifications to Provide Application Independent
Support

Wc-xmh only demonstrates how Property Specifications can be used in application
specific ways. In fact, Property Specifications also enables a new class of tools which
provides application independent support. For example, Coda’s Hoarding can be
implemented as an application which monitors other applications’ file usage patterns and
provides a friendly user interface for the user to directly influence the cache manager’s
decisions. Can we support graceful disconnected operation using only application
independent tools? We believe this is unlikely because features such as those described
in Chapter 2 cannot be implemented without applicétion specific information. The most
we can imagine for an application independent tool is one which intercepts failed system
calls and gives the user the option of retrying later when the network is reconnected
instead of hanging or crashing the application. This level of help is similar to printing
“RPC timed out, retrying...” in the console to give the user the option of either to wait or

kill the offending process, as used in the Sprite file system [Welch]. These methods are

9 The print spooler spools print jobs and puts them in a buffer. When a printer is found nearby, the spooler
sends the print job to the printer, perhaps via a wireless network.

55

much less user friendly than what wc-xmh provides, and are much less desirable because

waiting for retries prevents the user from making further progress during disconnections.

4.2 Property Specifications Mechanisms

Property Specifications are different from Functional Specifications in that they
specify the set of properties a particular system service exports, rather than the
functionalities the system service provides. The state of the system's properties
represents the operating environment, and environmental events reflect dynamic changes
in the system's properties. We define three mechanisms Property Interfaces should
provide for accessing, monitoring, influencing and manipulating the exported properties

efficiently. They are Query, Notification and Hinting.

* Query allows the application to obtain information from system services, for
example, querying the file system to find out whether a file is in the cache. On
startup, an application queries the system and builds a model for its computing
environment. An application can also use Query to update its model or to verify the
effects of its actions, such as giving a hint.

* Notification lets an application bind callback procedures to environmental events of
interest, such as binding a procedure which disables/enables the "get new mail"
button to the "change in connectivity" event. The control flow is best described as the
system service waking a waiting thread in the application domain. Notification
enables the application to monitor and react to envfronmental changes which affect
the availability of its features. The application uses Notification to keep its model of

the environment updated.

56

* Hinting enables applications to pass special requests and optional information to
influence or customize system services. For example, the application can hint to the
cache manager to distinguish resource files from data files so that resource files are

less likely to be purged from the cache.

Query and Notification empower the application to interpret the dynamic properties of the
system services with respect to its own dependencies, and present the results to the user
in user friendly ways. Our experience shows that presenting the state of the operating
environment to the user can be of great utility, but users absolutely cannot tolerate an

application which does not manage its partial functionality effectively.

Applications communicate specific needs and desires to system services by Hinting.
Hinting is like the system providing handles to some of its internal controls so that
applications can influence or even customize its behavior. For example, the application
can customize the consistency requirements of a file it uses (e.g. write through or write
behind.) Hinting in a file system is very useful for voluntary disconnection. A user
requests the applicafion to make a particular feature available, and the application hints to
the file system that the files needed for that functions should be paged into the cache due
to user request. Since the cache is a shared resource, the request is only a hint, but the
application is notified of its effects. This is of great utility because the application can
provide dependable pre-negotiated service to a voluntarily disconnected user. The user
deals with application level entities like folders and features in the context of the
particular application rather than system level entities like files. This is an important
advantage for user friendliness because the user is hidden from the application's internal

dependencies.

57

4.3 Designing Property Specifications

Query, Notification and Hinting are general and powerful mechanisms that can be applied
to a wide range of system services. The actual semantics of these mechanisms depend on
the specific properties of the particular system service. In this section, we share our
experience in the design of Property Specifications for a caching distributed file system
and a network statistics monitor. Since our experience in designing property interfaces is
still limited, we present our experimental designs for the reader to draw insights from

rather than as an algorithm for designing the best interface.

Our design was driven by the need to balance between the user's requirement for
autonomy and predictable performance and the abplication programmer's desire for a
simple and clean system interface. We used a top down process, first creating a list of
desired user level features like those described in Chapter 2, from which we extracted the
key properties of the underlying system we need to include. Based on the nature of the
property, such as how it changes dynamically and whether it should be customizable, we
then designed any appropriate mechanisms to access, monitor, influence and manipulate
the property. Our design was iterative, it evolved as we gained experience through

implementation and use. What we present here is the result of a couple of iterations.

4.3.1 Property Specification for a Caching Distributed File System

The key propérty specified by our interface in Figure 4.1 is that files are either in or out
of the cache. We provide a Query mechanism, FilesAvailable (), which allows the
application to synchronously inquire the availability of a group of files.

MonitorFiles () provides Notification, it lets the application to continuously monitor

58

the paging activities of a group of files with a callback procedure. We define two
environmental events, PagedIn and PagedOut, which encapsulate the property that
files are moved in and out of the cache. When one or more files in the group is paged in
or out, the callback procedure is invoked by the file system in the application's address

space.

GiveHints () and MakeAvailable () are our Hinting mechanisms which allow the
application to influence and customize the cache manager's paging policy. The hint
"UserRequest" is typically used with MakeAvailable () when the files need to be
cached due to direct user request, such as for voluntary disconnection. An application
also uses MakeAvailable () to ensure the availability of the vital resources needed by
its features by using the "AppResource" hint. MakeAvailable () causes the file
system to associate the given set of hints with a group of files, and synchronously return
the files' availability after attempting to cache them. MakeAvailable () needs to be
synchronous because the user needs to know whether his request is satisfied. The
application can also influence the cache manager's future behavior by associating hints
with files using GiveHints () . We define three other Hints: "A110rNothing"
specifies that the given files are inter-dependent and it is of no value to make only a
subset of the files available; "WriteBehind" and "WriteThrough" lets the
application choose the consistency/performance tradeoff for its files. All the hints except
for "WriteThrough'" and "WriteBehind" influence the cache manager's current and
future decisions 50 their precise effects are unspecified. "WriteThrough" and
"WriteBehind" are customizations because they have well defined effects on how the

file system will manage the given files.

59

INTERFACE FileSystemProperty;

TYPE
EnvEvent = {PagedIn, PagedOut}; (*Environmental Event*)

Filename = TEXT;

Hints = {UserRequest, AppResource, AppData,
AllO0rNothing, WriteBehind, WriteThrough}
(* Definitions:
UserRequest - the files are needed due to
user action
AppResource - resource and configuration
files vital for the application's features
AppData - non-critical application data
All0rNothing - files are dependent, caching
any subset is of no value
WriteBehind - weak consistency requirement,
asynchronous paging out OK
WriteThrough - strong consistency
(synchronous writes) required

*)

CallbackProc = PROCEDURE callback(event : EnvEvent;
files : ARRAY OF Filename; callback_arg : REFANY);

(* callback_arg is supplied by the application
when registers the callback procedure *)

PROCEDURE FilesAvailable(files : ARRAY OF Filename)

: ARRAY OF BOOLEAN;
(* Query: the ith boolean is TRUE iff the ith filename in
files is in the cache, and FALSE otherwise *)

PROCEDURE MonitorFiles(files : ARRAY OF Filename;
callback : CallbackProc; callback_arg : REFANY);

(* Notification: invokes callback in the application's
address space if one or more of files is paged in
or out of the cache *)

PROCEDURE GiveHint(files : ARRAY OF Filename;
, hints : SET OF Hints);
(* Hinting: associates hints with all of files *)

PROCEDURE MakeAvailable(files : ARRAY OF Filename;
hints : SET OF Hints) : ARRAY OF BOOLEAN;

(* Hinting: associates hints with all of files, returns the
resulting availability of files in an array of boolean *)

END FileSystemProperty.

Figure 4.1 - The Property Specification for a Caching Distributed File System in Modula-
3 [Nelson90]
60

4.3.2 Property Specification for a Network Statistics Monitor

The packet latency of an intermittent network can vary greatly. The end-to-end latency
depends on the level of congestion for the medium and the availability of the network.
When the user invokes a function, the latency he experiences is often related to the
current network performance, e.g. clicking on a button to read an uncached mail message.
In order to provide predictable performance, the application needs to monitor changes in
the network latency so it can adapt its user interface accordingly. Existing network

interfaces do not provide access to latency information.

Fortunately statistical multiplexing in networks does not result in unpredictable
performance parameters. To a first approximation, the expected latency on the next
packet is close to the average latency of recent packets. We propose a new system
service, the Network Statistics Monitor, which collects performance statistics at the
transport layer. This statistics is used as hints for predicting the current network
performance. The Network Statistics Monitor exports the property that the performance
of the network can vary with time. The Network Property Interface is shown in Figure
4.2. Applications can use GetLatency () to get the predicted latency of the network.
We allow applications to monitor changes in the predicted network latency by binding a
callback procedure to the LatencyChanged environmental event using the
MonitorLatency () call. Applications can register callback procedures for more than

one latency range.

At first glance, our use of a latency range appears to be overkill because most
applications only need to know if they are connected or not. There are two reasons for
using a range instead of a single latency value. First, if a single value is used, the

application could be flooded with callbacks if the average latency oscillates around that

61

value. Second, the definition of connectivity is application specific: the distinction
between a slow network and a disconnected network depends on how slow a network the
application can tolerate. For example, background printing can tolerate network latencies
on the order of minutes but xmh is practically disconnected if the latency is even a few

tens of seconds.

INTERFACE NetworkProperty;
IMPORT Time;

TYPE

EnvEvent = {LatencyChanged}; (* Environmental Event *)
Range = RECORD

low : Time.T;

high : Time.T;

END;
CallbackProc = PROCEDURE callback(event : EnvEvent;
callback_arg : REFANY);

PROCEDURE GetLatency() : Time.T;
(* Query: returns the average network latency in units of
seconds and microseconds *)

PROCEDURE MonitorLatency(threshold : Range;

callback : CallbackProc; callback_arg : REFANY);
(* Notification: invokes callback in the application's
address space when the average network latency exceeds
threshold.high or falls below threshold.low *)

END NetworkProperty.

Figure 4.2 - The Property Specification for a Network Interface

4.4 Subtleties in the Semantics of Query and
Notification

There is a subtlety in the semantics of the interfaces given in Figure 4.1 and 4.2. Since
paging activities are asynchronous and the cache managér may be serving many

applications concurrently, the results from the FilesAvailable () and the events

62

from MonitorFiles () are only hints. Those calls give a snapshot of the state of the
cache at some point in time between the start and completion of the call, but the state of
the cache may well be different by the time the result is returned to the application. This
causes race conditions which are especially complex when the application is

multithreaded10.

Let us first consider a single threaded application. All incoming events are queued and
handled in turn with an event loop. An application starts up, makes a query on file A and
then registers a callback to monitor it, as shown with the pseudo code in Figure 4.3. If A
was in the cache at line 1, the button gets enabled in line 2. Now assume A is paged out
of the cache before we register the callback procedure in line 3. The button will remain

enabled even though A is not available.

1 AisAvailable := FilesAvailable("A");
2 EnableOrDisableButtons (AisAvailable);
3 MonitorFiles ("A", EnableOrDisableButtons);

Figure 4.3 - Potential Race Condition in using the FileSystemProperty Interface.

It appears that the problem might be solved by putting line 3 in Figure 4.3 before line 1,
as illustrated in Figure 44. If A is paged out between lines 2 and 3, the button will be
incorrectly enabled after line 3, but a PagedOut event will invoke the callback to disable
the button later. It seems to work for the single threaded case. Now let's assume the
application is multithreaded, and the callback procedure is invoked before line 3 in a
different thread. We see that the fix in Figure 4.4 does not work either: at line 2, A is still
in the cache; the callback disables the button before line 3; but line 3 enables the button

again using the state of the cache obtained in line 2.

10A multithreaded application has multiple simultaneous points of execution in a shared address space.
Refer to Chapter 4 of [Nelson91] for an introductory discussion to concurrent programming using threads.

63

1 MonitorFiles ("A", EnableOrDisableButtons);
2 AisAvailable := FilesAvailable("a");
3 EnableOrDisableButtons (AisAvailable);

Figure 44 - Fix for Race Condition described in Figure 4.3 for Single Threaded
Applications

The problem in Figure 4 4 can be solved by executing lines 2 and 3 atomically, that is,
disabling callbacks between lines 2 and 3. If the callback is invoked after line 3, it would
leave the button in the correct state. If the callback is invoked before line 2, there is no
~problem because the result of FilesAvailable () inline 2 is up to date. Figure 4.5
shows how the multithreaded application's problem can be fixed using mutual exclusion.
In general, an application should register callbacks for all the files it is interested in
before querying the cache. Similar problems in the Network Monitor Interface can be

solved in the same way.

VAR CallbacksMu : MUTEX; (* lock for mutual exclusion *)

PROCEDURE EnableOrDisableButtons(...) =
BEGIN
LOCK CallbacksMu DO (* acquire MUTEX to proceed *)

.....

END; (* release MUTEX *)
END EnableOrDisableButtons;

BEGIN (* Main Body of Program *)

MonitorFiles ("A", EnableOrDisableButtons);
LOCK CallbacksMu DO ,
AisAvailable := FilesAvailable("aA");
EnableOrDisableButtons (AisAvailable) ;
END;

END.

Figure 4.5 - Disabling Callbacks using Mutual Exclusion

64

A careful reader might notice that our effectiveness in managing partially functional
applications depends on the quality of the hints we get from the Query and Notification
mechanisms. This is only a problem if events are generated faster than we can handle
them, e.g. if file A is paged in and then paged out while we are still in the callback
procedure, the button will incorrectly enabled until we complete next callback for the
Pagedout event. The only time this can happen is if the cache is thrashing or if the
network latency oscillates. One solution is to detect these conditions and suppress
callbacks until the system stabilizes. We ignored this problem in our implementation
because it does not occur frequently enough to justify the additional programming

‘complexity.

4.5 Generalizing Property Specifications

Although we claim that Property Specifications are a generally useful abstraction for
system service interface design, our discussions have focused on Property Specifications
in the context of mobile computing. This section describes how Property Specifications

can be applied to virtual memory (VM) management. Our discussion here is aimed at

VM systems in general, not just in the context of mobile computing.

4.5.1 The Traditional Virtual Memory Interface

Like caching, virtual memory management has traditionally been transparent to

applications. The basic idea is to use primary storage as a cache for secondary storage.

65

The VM manager is essentially a cache manager which moves chunks of data (or pages)

between primary and secondary storage.

For most applications, the transparent VM interface is a feature. Application
programmers are freed from the tedious task of storage management. But for some
applications, the VM interface seems to hide too much. One class of applications that
wants less transparency is applications which need to keep key data structures in primary
storage for performance reasons. For example, both the UNIX Fast File System (FFS)
[McKusick] and the Sprite Log-structured File System (LFS) [Rosenblum] cache
inodes!! in main memory to reduce disk accesses. The problem is that the VM manager
can swap these data structures out to disk without informing or asking for the
applications’ opinion, causing poor performance or even incorrect behavior. Property
Specifications solves this problem without sacrificing the transparency preferred by most

applications.

4.5.2 Property Specifications for a Virtual Memory Interface

For simplicity, we define a memory object to be an arbitrary chunk of storage allocated
by malloc () and deallocated by £ree (). The key property we choose to expose is
that a memory object has two states: either it is entirely in primary storage or otherwise
(part or all in secondary storage). The Property Specification, as shown in Figure 4.6,
exports three procedures. IsInPrimary () lets an application query the location bf a
memory object. The application can monitor the paging activities of a memory object

with MonitorMemoryObj (). We also allow the application to explicitly request to

111 the UNIX file system, every file and directory is represented by an inode. It is a data structure internal
to the file system and contains the file’s attributes (access rights, owner, etc.) and the physical location of
the file on disk.

66

have a memory object “pinned” in primary storage by calling KeepInPrimary ().
KeepInPrimary ()’s semantics is similar to MakeAvailable () of the file system
Property Specification: it is a one time request which the VM manager can accept or
refuse. The VM manager can limit the amount of primary storage each application can

pin down to guard against overly demanding applications.

INTERFACE VMProperty;
FROM VMFunctional IMPORT MEMORY OBJ; (* Import definition *)
TYPE

EnvEvent = {InToPrimary, OutOfPrimary};

MEMORY_OBJ - REF ARRAY OF CHAR;

CallbackProc = PROCEDURE callback(event : EnvEvent;
mem : MEMORY_OBJ; callback_arg : REFANY);
(* callback_arg is supplied by the application

when registers the callback procedure *)

PROCEDURE IsInPrimary (mem : MEMORY_OBJ) : BOOLEAN;
(* Query: Returns TRUE if all of mem is in primary
memory, FALSE otherwise *)

PROCEDURE MonitorMemoryObj (mem : MEMORY_OBJ;
callback : CallbackProc; callback_arg : REFANY);
(* Notification: invokes callback in the
application’s address space if any part of mem is
moved out of primary memory, or if all of mem is
moved into primary memory *)

PROCEDURE KeepInPrimary (mem : MEMORY OBJ) : BOOLEAN;
(* Hinting: RETURNS TRUE if the VM manager can promise
to keep all of mem in primary storage until

mem is freed, FALSE otherwise *)

END VMProperty.

Figure 4.6 - Property Specifications for the Virtual Memory Interface

With the VMProperty interface, it is trivial for LFS and FFS to monitor the paging

activities of their critical da- - structures and to keep them in primary storage if necessary.

67

FFS also caches parts of files in memory, and it can now pin those pages in primary
storage to prevent the VM manager from making another copy of the files on the swap
disk. The VMProperty interface allows us to provide adequate support for sophisticated
applications such as LFS and FFS while maintaining transparency for ordinary

applications.

68

Chapter 5

Implementation

We built a prototype system to clarify, demonstrate and evaluate our ideas. Our rewards
have been threefold. Ffirst, we gained a better understanding of the engineering and
semantic issues in realizing Property Specifications. Second, we experienced first hand
how an application .programmer might use Property Specifications. Third, we verified
the effectiveness of our approach through using wc-xmh. The feedback we got from

users instigated changes and simplifications to our interface design.

This chapter describes the design and implementation of our prototype system. In
Section 5.1, we prqvide the system overview and describe the major design decisions we
faced for each component of the system. In Section 5.2, we explain our decision to
modify xmh and describe how wc-xmh’s features were implemented. We save the trials
and tribulations we experienced during those frustrating debugging sessions for Section

5.3. In Section 5.4, we present some ideas for future research.

69

5.1 Implementing Property Specifications

5.1.1 System Overview

As shown in Figure 5.1, the prototype system consists of a simulator for an intermittent
network (LinkSim), a user level cache manager and file system (file system with Property
Interface or FPI), a Network Statistics Monitor (NSM), and a modified version of xmh
(weakly connected xmh or wc-xmh, as illustrated in Chapter 2.) We implemented FPI
and NSM as specified in Figures 4.1 and 4.2. Any distributed file system would have
been adequate as our underlying file system, but we chose NFS [Sandberg] because it
does not cache files. Since our implementation was for UNIX workstations, it is no
surprise that we chose to test our ideas by redesigning the file system and network
interfaces: both are key components of the UNIX distributed computing environment.
Our decision to simulate a mobile environment was due to the flexibility and control we
needed to bettef explore the design space, e.g. being able to easily change the frequency

and duration of unplanned disconnections.

We chose to implement the NSM, FPI and LinkSim as separate processes because they
are functiohally and logically independent. In a production system, these three entities
will most probably exist separately: the NSM will be part of the transport layer network
interface, the FPI will be part of the file system, and LinkSim will be replaced by the true
characteristics of the network;s link layer. Using RPC as our primary interprocess
communication méchanism forced us to focus on our original goal of designing clean
abstraction boundaries. It would have been harder for us to stay focused had we

implemented the NSM, FPI and LinkSim as a single UNIX process with multiple threads.

70

New
Application
(wc-xmh)

Library

Unix
FIFO or
Remote

Procedure

Calls

- -------------Fk
<

Not

Implemented

Existing
Application
(xmh)

Library

Remote
Procedure

Calls

Application Independent
Tool

emote
Procedure
Calls

Y
System
Network Calls
Statistics Fl\l/)[lag:celf <>
Monitor (NSM) g
Remote
Procedure
Calls
LinkSim
System
Calls

NS D

“--h------------"

Local
File
Cache

Figure 5.1 - Overview of the Prototype System

71

The implementation was done entirely on a UNIX workstation. FPI, NSM and LinkSim
were all written in Modula-3 [Nelson90] with the exception of the application libraries
for FPI and NSM, which were written in C. Wc-xmh added about 1,000 lines of C to
xmh’s 13,000. We chose Modula-3 as our primary implementation language because it
provided lightweight threads, objects oriented programming, modules, garbage collection
and type checking, which all contributed to the shortening of development time. NSM
and FPI are multithreaded so they can handle multiple client applications concurrently,
mimicking concurrency in the kernel. For interprocess communication, we used Sun

RPC [SunRPC], Xerox PARC Modula-3 RPC [ParcRPC] and UNIX FIFO files.

5.1.2 Implementing Notification

Both the FPI and NSM have an application library which is linked into every application.
The actual services are implemented in the FPI and NSM servers. The libraries provide
wrappers which initialize RPC connections and cause the RPC's to the servers to look like
system calls local to the application. The key function of the libraries is in managing
callback procedures. This is necessary because the callback threads need to execute in
the application's address space. Each library maintains a table of callback procedures and
arguments, indexed by environmental events. When an application registers a callback
on a particular event, the library registers with the FPI or NSM server to receive the event
and inserts the given callback procedure into the table entry for that event. An event can
arrive either by RPC or on a UNIX FIFO, at which point the library extracts the
appropriate callback procedure from the table and invokes it. In our implementation for
the Xt!12 toolkit [XtIntrinsics] [Asente], we mounted a UNIX FIFO as an input source for

Xt, and caused Xt to call our table lookup procedure whenever the FIFO is ready for

12Xt is a toolkit for the X window system. Wc-xmh was implemented using Xt and Xaw [XtIntrinsics], the
MIT Athena widget set.

72

reading. The lookup procedure then invokes the application’s callback procedure before

returning control to the Xt event loop.

5.1.3 Implementing the File System Property Specifications

As shown in Figure 5.1, FPI has two components: an application library and a cache
manager. The application library provides wrappers for all the file system calls, similar
to libc.al3, but re-directs those calls to our user level file system instead of the kernel.
We implemented FPI as a user level process instead of modifying the NFS code in the
UNIX kernel. This enabled us to easily experiment with different file system interfaces
and implementations without dealing with the complexity of kernel programming or
affecting other processes running on the workstation. In order to transparently route
system calls away from the kernel, we implemented wrappers for existing file system
calls such as open and close as well as the new calls we added. Applications which use
the FPI must be linked with the FPI library (libfpi.a). The UNIX linker resolves library
calls on a “first come, first served” basis, thus in order to have libfpi.a’s wrappers shadow
those supplied by libc.a, libfpi.a must be linked before libc.a. For example, the open ()
call from an application linked with libfpi.a would go to our user level file system rather
than the kernel open () call, whose wrapper is in libc.a. Although our user level file
system is functionally backward compatible with the existing UNIX and NFS file system
semantics, it is not binary compatible. Existing applications linked with libc.a must be
relinked against libfpi.a even if they only want to use FPI's functional interface. In a
production system where the FPI is implemented in the kernel, the new file system will

be binary compatible.

13jibc.a is the UNIX C library, which includes wrappers for system calls.

73

FPI's cache manager maintains a file cache on the workstation’s local disk. The cache
manager's replacement and write back policies are determined in part by the hints given
by applications. For each file, the cache manager keeps the set union of all the hints
given by different applications. Files marked "UserRequest" are given the highest
priority, followed by "AppResource" and then "AppData". The priority of a file is the
sum of all the hints it is associated with, so an "AppResource" file shared by many
applications may have a higher priority than a file with a single "UserRequest" hint.
Our replacement algorithm also ages all hints so their influence deteriorates with time and
lack of use. The algorithm was kept quite simple because we were not trying to find

optimal use for hints in the cache manager.

ildefts0 ¢
matd for helpr [zet debug 0]

show currparansters
quit

don't zimulate link
zimulate link

o (3] info

Figure 5.2 - A Command Interpreter for FPI

For our user experiments, it was useful for the cache size to be dynamically configurable.
The FPI server has a command interpreter as shown in Figure 5.2. It allows the user to
change the cache size dynamically, and to choose whether or not to simulate the network
with LinkSim. We were able to observe the effects of a thrashing cache on wc-xmh by

reducing the cache size. All network operations in FPI such as file copying were delayed

74

by the latency value supplied by LinkSim. Large files were delayed proportionally more
than small files.

5.1.4 Implementing LinkSim

LinkSim is an event driven simulator for the packet latency of an intermittent network. It
has three states: disconnected, connected and interference. The latency for both
disconnected and interference modes is infinite. Disconnected mode simulates the user
moving out of range of the communication medium or being forced to disconnect for
congestion or cost reasons. Disconnected mode typically lasts from seconds to minutes
whereas interference is temporary, lasting for a few seconds in most cases. Interference
‘mode corresponds to the user moving near a phone, refrigerator orvother sources of
interference for radio and infrared networks. The simulator goes between connected and
disconnected states, spending a random duration in each. A certain percentage
(probinterf) of time in connected mode is spent in interference mode, and the duration of
the interference is also a randomly distributed. We chose to model these durations with
exponential distributions because we did not need to specify the variance. The means of
the exponential distributions and probinterf, the percentage of time spent in interference
mode, can be set dynamically using a command interpreter, as shown in Figure 5.3. The
default means were 10 minutes for connected mode, 5 minutes for disconnected, and 2
seconds for interference. On average, 10% of the connected time is in interference mode.
Increasing the interference percentage has the effect of increasing the frequency of

interference.

75

) fermius @tie/tsy

Enter a command ©F for belpo : =+t =tate dizcon
Erter a command O for be
Current state .) o

of the
simulator

command 5 for he
C cted at i zeconds 10 Ml oEssonds

L— > B
Enter a command 7 for helpy [infody 5

—> ERIRE CRIPTION

'

info

quitk

edduration
duration

ration 2eco
Lonan,,

Figure 5.3 - The LinkSim Command Interpreter

While in connected mode, the latency is randomly distributed but is a function of the base
latency and the number of users sharing the medilim. We modeled the interval between
new users arriving and the duration of each user's stay as exponentially distributed
random numbers. They can also be set using the command interpreter. The user can also
explicitly set the simulation state and latency. This was useful for simulating voluntary
disconnections. Figure 5.4 illustrates the output of a typical run by LinkSim. LinkSim
makes RPCs to FPI and NSM whenever the latency changes, this proved to be much
more efficient than having FPI and NSM polling LinkSim.

76

Infinity

Interference Disconnected
‘@l 12004 A
=] - ;
8
3 L1000 - e geptep e Y Y
Q [
o
;5 800 _-_
g [
2 L
>< 600 A TR
g
g 400 1. N .
2 i -
< [-I
Q I I
é O I 1 T T \I ‘ T ¥ ; T T T l‘) L} L} 1 L
A 12:50 12:52 : 12:56 12:58 13:00 13:02

Time

Connected

but variable
Latency

Figure 5.4 - Typical Variations in Latency as given by LinkSim

5.1.5 Implementing the Network Statistics Monitor
Our implementation for NSM is an event generator which monitors change in the

network latency given by LinkSim and sends LatencyChanged events onto

applications which have registered interest. If the underlying network interface is a real

77

network instead of LinkSim, our NSM will monitor statistics collected by programs
similar to TCP [Postel]. For example, the TCP retransmission mechanism has an
efficient and effective algorithm [Jacobson] for estimating the mean and variance of the
round-trip packet latency. Therefore implementing the NSM in real networks should be

quite trivial.

5.2 Using Property Specifications for Application
Programming

5.2.1 Approach and Choice of Application

Our primary goal was to gain experience in implementing and using new application
features that support mobile computing. We were faced with the following possibilities:
implement a new application from scratch, modify an existing application, or build an
application independent tool as we discussed in 4.1.3 but make no change to existing
applications. We would liked to have tried all three options, but time limitations forced
us to choose only one. Our decision to modify an existing application was mainly due to
our desire to learn about the effectiveness of application specific features as well as the
implementation overhead needed to acquire them. We did not implement the application
independent tool because we believe that the scope of support it can provide is limited
and does not fully exploit the power of Property Specifications. Building an application
from scratch would allow us the freedom of exploring new application features but it

would be difficult for us to gauge the implementation overhead caused by these features.

We chose to modify xmh because it was widely used, had a graphical user interface, used
the file system extensively. and because we had access to the source code. In addition,

email was of particular inte: to us because it was being hailed by industrial sources as

78

the “killer” application for wireless mobile computing [Loudermilk]. Xmh’s popularity
was an advantage because our users were familiar with the user interface and basic
functionalities, allowing them to focus on exploring the effectiveness of our new features.
Some of the other applications we considered were: xrnl4, cm!3, and xeditl6, because we
felt they would be useful applications for mobile computing. We did not choose xrn
because it used NNTP17 to access its articles instead of the file system. Therefore, unlike
the file system, any solution we provided for NNTP would not be applicable to any other
application. We chose xmh over cm and xedit because it was more challenging. Xmh

worked with a much larger data set and had many more interesting features.

5.2.2 Wce-xmh: Weakly Connected xmh

First we partitioned all the files wc-xmh used into two categories: resource and data.
Resource files are needed for xmh's features, e.g. context, .mh_profile, mtstailor, and all
the .xmhcache files. Mail messages are data files. We then had to understand wc-xmh's
internal dependencieés, i.e. the resources needed by each of its features. In designing the
user interface techniques to handle graceful disconnected operation, we tried to be
consistent with original xmh conventions and being as unobtrusive as possible. We were
delighted to find that our users often did not even notice the new features at work until we

pointed out to them.

The majority of the implementation was fairly mechanical. An excerpt from wc-xmh’s
startup sequence is shown in Figure 5.5. Note mutual exclusion is not necessary because

wc-xmbh is single threaded. At startup, we register callback procedures to all the resource

14% News Reader, a NetNews browser with a graphical user interface.

15Calendar Manager from Sun’s SparcStation DeskSet.

16Simple text editor/browser built with the Xt toolkit and Xaw widget set.

17Net News Transfer Protocol, xrn uses it to access news articles stored on a NetNews server.

79

files, and ask the cache to try to make them available. We then query the cache and
enable or disable all the menus and buttons according to the availability of the resource
files. The same callback procedure, EnableProperButtons (), is registered with
both the cache and the NSM. It is invoked whenever a resource file is paged in or out and
when the network connectivity changes. EnableProperButtons () encapsulates all
of xmh's internal dependencies. It enables or disables buttons depending on the state of
the network and the availability of wc-xmh's resource files. Callbacks from NSM
updates the network latency thermometer shown in Figure 2.3 whenever the network
latency changes substantially. Code excerpts from EnableProperButtons () is
shown in Figure 5.6 and Figure 5.7 shows the callback procedure for monitoring the

network latency.

static char *resources[] = {
"replcomps", ".mh profile", "context", "mtstailor",
"forwcomps", "components", "MailAliases" /* etc. */};

struct latency latency_ range; /* the latency range which
. defines what it means to be
connected for xmh */

void InitializeWorld()
{
MonitorFiles (resources, EnableProperButtons(), NULL);
MonitorLatency(latency range, EnableProperButtons(),
NULL) ;

(void) MakeAvailable(resources, AppResources);
EnableProperButtons (FilesAvailable(resources)) ;

Figure 5.5 - wc-xmbh startup sequence

80

The availability indicators described in Section 2.1.1 are implemented by registering
callback procedures for messages, and adding or removing the asterisk next to the
message header when the corresponding file becomes available or unavailable. Since wc-
xmh typically manages thousands of old messages, we only registered callback

procedures for messages in folders which the user had opened.

Boolean CompAvailable()
{ /* Dependencies of the “compose” feature */
return (BareEssentialsCached()

/* resource files required by all features */
&& EssentialFilesMonitor [COMPONENTS] .cached
/* the “Components” template is needed for compose */
&& TocGetScanfileCached (DraftsFolder))
/* .xmhcache file for drafts folder is needed */
| | NetworkGood());)
/* these files are all available if we are connected */

}

void EnableProperButtons ()
{

SendMenuEntryEnableMsg (Message_Menu, “compose”,
CompAvailable());

- s() code excerpts
void NetLatencyCallbackProc(event, latency, client_data)
EnvEvent event;
struct timeval latency;
XtPointer client_data; /* unused */
{
switch (event) {
case LatencyChanged:
NetLatency = latency; /* NetLatency is global */
UpdateNetworkIndicator () ;
EnableProperButtons () ;
if ((PendingJobs > 0) && NetworkGood(latency))
DoPendingJdobs(); /* send any pending mail */
default: break;
}
}

Figure 5.7 - Callback procedure for network latency changes

81

Implementing the Smart Availability Management and Dependable Future Availability
features as described in Sections 2.2.3 and 2.2.4 were relatively simple using Hinting.
Resource files critical to wc-xmh'’s features were distinguished by the “AppResource”
hint, given by the GiveHint () call. Any user request to make files available through
“Enable” or “BringOver” commands translated into MakeAvailable () calls with the
“UserRequest” hint. These calls are answered synchronously, providing the
application and the user with immediate feedback on whether the request was granted or
not. Wc-xmh also registers callback procedures on any files explicitly made available
due to user request, so that if these files later become unavailable, wc-xmh will either try
to make them available or notify the user. This way, after the user has explicitly made
some data and features available, he can continue working without worrying about
unknowingly causing some of those data and features to become unavailable again. Thus
- the user does not have to request his set of data and features just prior to disconnection.
He can request whenever he wants and unless otherwise notified, he can depend on those

features and data to be available when he disconnects.

5.3 Challenging Aspects

Since wc-xmh was written in C, it was not multi-threaded. This made asynchronous
callbacks difficult to implement. Fortunately, wc-xmh used Xt toolkit’s event loop, and
we were able to simulate an X event by writing the event record into a UNIX FIFO file,
and mounting the FIFO as an event source for Xt. However, if wc-xmh is busy, the FIFO
may not be read for a long time. We found that during long running wc-xmh operations
such as generating the header summary for a folder, events were lost because UNIX only
buffers 2 KB of data for each FIFO file. Our solution to this problem was for the NSM

and FPI to each maintain a queue for all the events destined for a particular FIFO, and

82

monitor the FIFO with a background thread. Whenever the FIFO is empty or near empty,

the background thread takes one event record off the queue and writes it to the FIFO.

There are a number of difficulties associated with implementing the user level file system
on top of the kernel file system. First, the user process only gets a maximum of 256 open
descriptors, which must be shared by all of its client applications. This was not a
problem in our prototype system because we rarely ran more than one or two applications
simultaneously as FPI clients. Second, we could not arbitrarily assign “pseudo”
descriptors for the files managed by the FPI because they might conflict with descriptors
the kernel gives to things other than files, e.g. sockets. We generated non-conflicting
“pseudo” descriptors by forcing the kernel to assign a descriptor to “/dev/null” every time
we needed a new descriptor. The third difficulty with our user level file system was
preserving the application library’s state, e.g. our “pseudo” descriptor table, in child
processes created by the exec () system call. The problem exists because our descriptor
table is in the application’s address space which is not inherited by the child process
created by exec (). Our solution was to write the library’s state to the /tmp directory
before the exec () call and reading and restoring the library state in the child process

when the library initializes itself.

Xt, Xaw and the mh library programs consist a large amount of fairly sophisticated code.
Our reluctance to change this body of code had two effects. First, we did not get to test
out our ideas for “tri-state” buttons and “color-coded” buttons we introduced in Section
2.14. Second, some of wc-xmh’s new features were hard to implement because these
library programs did not provide adequate error prevention and handling. For example, if
the Xaw text widget cannot open the file containing the text it needs to display, it calls
Xt’s “quit application” procedure. Thus if we try to read an uncached message and the

network disconnects while Xaw is trying to open the file containing the message, wc-xmh

83

will crash. Similarly, some of the mh library programs exit when they encounter errors
like “network timed out”. It is difficult for wc-xmh, which forks these programs as child

processes, to detect and report such errors in a meaningful way to the user.

Another problem we confronted was the need for atomicity and recoverability. This
problem was amplified by the mh library programs: when they crashed, they often left the
wc-xmh’s file and directory structure in an inconsistent state. There are two
complementary approaches to address this problem. One option is to provide application
independent support, such as a file system level transaction mechanism which allows
groups of operations to be executed atomically or use a programming language which
provides transactions as primitive operations [Liskov87]. These solutions have very nice
semantics but implementing them efficiently for production systems is a major challenge.
Our other option is to always proceed optimistically, detect errors and restore the
application’s external state using application specific methods. We implemented error
recovery for we-xmh’s “pack” feature using this technique. “Pack” uses the mh program
pack () to consolidate the message numbers of all the messages in a folder by renaming
the files containing those messages. If the network disconnects while pack () is
running, pack () immediately stops and returns with an error. But it is impossible for
wc-xmh to know exactly which message caused the error and how much pack () was
able to accomplish. Thus the table of contents for the folder (the .xmhcache file)
becomes out of date, e.g. the header for message 5 may no longer refer to the same
- message. Instead of executing “pack” as an atomic operation to ensure consistency, we
chose to mark the effected folder as “out of date” and use wc-xmh’s built-in feature,
“rescan”, to bring the table of contents up to date once connectivity is restored. “Rescan”
generates new table of content files. This is an example where error recovery is greatly
simplified by using application specific information and tools. We think it may be a good

idea for system services to allow applications to override system level error recovery

84

methods with application specific ones. We believe that support for transactions will still
be necessary for application operations where error recovery is difficult. Transactions
may also be useful for application programmers who do not wish to deal with the

overhead of writing application specific error recovery routines.

We considered letting the cache manager allow applications to “pin” down files in the
cache temporarily. The idea of “pinning” is not new, virtual memory systems [Young92]
[McNamee] [Cheriton] [Harty] often provide this feature. In our file system, pinning
would be useful to prevent errors caused by disconnections: an application can bring all
the files it needs for a particular operation into the cache by calling MakeAvailable(),
and pin them in the cache for the duration of the operation. Of course this only prevents
those errors caused by using unavailable files when disconnected. We did not implement
this feature because wc-xmh did not need it. We also had no desire to complicate the
semantics of FPI or to distract any attention from clearly illustrating the idea of Property

Specifications.

5.4 Ideas for Future Work

5.4.1 Verifiability of Property Specifications

Formal specifications [Wing] allow us to reason about the correctness of programs.
Although formal specifications are a promising area of research in programming
methods, their utility across a wide range of software development projects has yet to be
demonstrated [Liskov90]. But this is likely to change as we build larger and more

complex systems. The use of formal methods is especially important for understanding

85

the behavior of mobile computing environments because they are massively distributed,

highly heterogeneous, dynamically configured, and evolve over time.

There exist languages and tools [Guttag85] [Guttag90] that reason about the correctness
of programs based on their Functional Specifications. While Functional Specifications
describe the behavior of the program, Property Specifications describe the effects of the
computing environment on the program. We believe that it should be possible to reason
ébout Property Specifications just as we reason about Functional Specifications.
Auxiliary specifications are needed to model aspects of the computing environment, such
as network latency and disconnections. Although it appears that modeling the
environment in real time is difficult, e.g. distinguishing sluggish networks from
disconnected ones, the fact that we were able to implement Property Specifications
successfully gives us confidence that we can reason about them. We propose the
verification of Property Specifications and formal specifications of environmental

constraints as future work.

5.4.2 The “cause/effect’’ Problem

One problem in a multiprogramming environment is the “cause/effect” problem: when
something is paged out, how does the user know what caused it to be paged out? When
disk space is limitéd, the user needs a way to tailor the availability of features, which
requires knowledge of the effect of enabling one feature on the availability of others.
This is particularly difficult when the operating system is multitasking: background jobs
may be running and may wake up to run periodically (e.g. cron jobs!®), causing files to be

paged out of the cache.

18Background UNIX tasks which are scheduled to run periodically.

86

We are optimistic that this problem can be solved for two reasons. First, inside the cache
manager, there is definitely sufficient information to know at least which application
caused paging activities. The cache manager may allow some files to be marked “super
critical”, and when they must be paged out, it will lock the cache and notify the
application before proceeding. The application can tell the user the consequences of this
file being paged out as well as the name of the other process which is causing this file to
be paged out. At this point, the user has the option to directly influence the cache

manager’s decision.

The second reason for our optimism is that disk capacity will continue to become less
critical in the future. Portable computers today often have hundreds of megabytes of disk
spacel®. Increased disk capacity means we will not need to deal with application features
and data on as fine a granularity as we did with wc-xmh, where messages and features
were managed individually. Future applications might only allow the user to manipulate
“working sets” consisting of large chunks of features and data, and either all or none of
the features and data in a group are made available. This level of granularity would make
user level negotiations much simpler. Another consequence of the increase in disk
capacity is that applications can afford to keep resources like icons and fonts with the
executable like Macintosh applications, rather than like UNIX applications which
separate application resources and binary. If we assume that the application’s binary and
resources are local on the portable computer, we can achieve a high level of availability
without using the “AppResource” hint, and not have to monitor every feature with

EnableProperButtons ().

19For example, I recently acquire 210 MB Macintosh Powerbook intemal disk for $575.

87

5.4.3 Supporting Atomicity

Another interesting area for future research is in investigating data access interfaces
which would provide better support for data consistency and atomicity. It might be
interesting to try organizing the file system as a database and to think about operations on
files as database transactions rather than as operations on a collection of bytes. This
could make error prevention and recovery easier for the application. More attention
should be paid to understanding the tradeoff between the semantics of the data access
interface and its efficiency, and the role of application specific error recovery in allowing

more optimism but using weaker semantics.

5.4.4 Remote Evaluation

Another interesting area of research is in providing support for remote evaluation.
Remote evaluation would be particularly useful for implementing features like we-xmh’s
“rescan”. “Rescan” generates a table consisting of message headers by examining every
message file belonging to the same folder. “Rescan” is expensive because it causes the
cache manager to page in all the message files which will be used only once. Remote
evaluation can prevent “rescan” from thrashing the cache by executing the code to
generate the message headers on a backend machine. It might be challenging and
expensive to implement general remote evaluation where an application can execute any
| arbitrary program remotely. An alternative approach is to provide a toolkit of popular
remote procedures, such as searching. The toolkit procedures are implemented by a
proxy process running on the backend which communicates with the toolkit on the
frontend via RPC. For example, the toolkit might provide remote-grep () for

searching. “Rescan” would call the remote-grep () wrapper in the toolkit, which

88

sends the arguments to the backend server. The server executes grep () , accessing files
over a high speed network, and returns the result to the toolkit. Then wc-xmh would
complete the “rescan” operation by formatting the headers returned by the toolkit into a

table of contents file.

5.4.5 Loose RPC

We also feel that traditional RPC semantics are too strong for an intermittent
environment. It might be interesting to explore a “loose” RPC mechanism which allows
the application to make a call, disconnect, and then asynchronously reconnect in the
future to collect the result. For example, an application may send a database query to a
backend database server, disconnect, and eventually reconnect to retrieve the results of
the query. On the client side, we need to put calling threads to sleep during the call and
waking them when the result becomes available. On the server side, we need to collect
and buffer results for future retrieval. The key difference between “loose” RPC and
traditional RPC is that the call is not completed by the server returning the result as soon

as it is produced, but rather by the client who eventually reconnects to get the result.

89

Chapter 6

Experience and Evaluation

- We have learned a great deal from building and using our system, even though our
experience is limited to one programmer and five users, four of whom read email with the
prototype in a simulated environment for about a week each, and the other (biased) user
used it for several months. In this chapter, we first highlight some of the interesting
feedback from our users, and then conclude by evaluating the effectiveness of wc-xmh
and Property Specifications in meeting our goal of supporting graceful disconnected

operation in an intermittent environment.

6.1 User Experience‘

6.1.1 A Furious User

One day a furious user walked into my office. He demanded to end the experiment early

because "[he does] not know what is going on with the simulation and wc-xmh is

unusable". "But you had no complaints during the first two days. What specifically do
you want to know?" I asked. He then told me that he had clicked a button to open a
folder and waited for a long time and he was not sure if wc-xmh was hanging, so he
ended up killing the process. He found wc-xmh to be no longer usable because he felt
uncomfortable waiting for any slow operation to complete. After examining the code, I
realized that his problem was caused by a bug in EnableProperButtons () which
overlooked some of the folder buttons. After I fixed the bug and explained to him that
wc-xmh was designed specifically to prevent problems like what he had experienced, he

continued with the experiment.

The user's fury caused by this bug immediately underscores the problem this thesis
addresses: unpredictable failures are intolerable! Although LinkSim produced unplanned
disconnections quite frequently, none of our other users found using wc-xmh to be very
different from using xmh. This is an encouraging sign that wc-xmh was effective in

allowing users get work done despite the intermittent network.

6.1.2 Obtrusive User Interface Techniques

The first user of the we-xmh complained that after he had left we-xmh running overnight,
upon his return, he found his screen covered by about a dozen pop up notices telling him
that various features were no longer available. We learned two lessons from his
experience. First," it is very important for an adaptive user interface to behave
unobtrusively. The user should be warned with pop up notices only when absolutely
necessary. Second, pop up notices about features being unavailable are a lot more useful
if the user can find out what was the cause. This problem raises some subtle issues about

the role of cause and effect as discussed in Section 5.4.2. When some features of

91

application A are paged out, the user needs to know whether they were paged out by
some unimportant background job or by application B when he asked it to make some
features available. If he knew the cause, he could kill the background job or ask B to

make fewer of its features available so he could retain A's features.

6.1.3 Voluntary Disconnection

One user simulated voluntary disconnection by manually switching LinkSim between
connected and disconnected modes, pretending that he was moving in and out of active
areas for his portable computer’s radio. The surprise came when we examined his
activities log. He was connected only a few times each day, and each time for only a few
minutes. Apparently the confidence he has gained in wc-xmh's ability to operate
disconnected allowed him to dramatically lower his connection time. It appears that if
the application does not handle disconnections gracefully, the user would remain
connected for much longer than necessary just in case he might do something which will

hang or crash the application.

We feel that the applications' connectivity requirements can be reduced even further by
generalizing Notification. For an application which is voluntarily disconnected because
of network cost or congestion concerns, it is very useful to have backend services which
will notify the application when something of interest happens. For example, wc-xmh
would like to be notified if new mail arrived in the user's mail box. Another example:
when I am away from my office and another user tries to schedule a meeting with the
calendar manager on my workstation, it should try to confirm the appointment by paging

the palmtop computer I carry with me. Notification is not only useful for managing

92

applications in an intermittent environment, but more importantly, it can reduce the

applications’ connectivity requirements.

6.2 Five Conclusions From Our Experiences

First, intermittent connectivity is a good model for mobile computing environments. For
most mobile computing applications such as mail or news browsers, editors, calendar
managers, and database bfowsers, strong connectivity is not a strong requirement because
we can exploit the locality in their data sets. We believe the predominant mode of
operation will be autonomous applications which occasionally connect to backend
storage or retrieval systems, burst or trickle some data, and then disconnect. Intermittent
connectivity is also cost effective if users are charged for network services, e.g. cellular
modem users are charged based on connection time. Finally, the reliability of wireless
networking will always be constrained by cost and the physical environment. An
intermittent model for connectivity is practical because ordinary radios will always be

cheaper and smaller than radios optimized to work near refrigerators.

Second, Adaptive user interfaces are an effective way for providing fine grained graceful
disconnected operation. By fine grained we mean that we can manage the availability of
a partially functional application at the level of individual features or data objects.
Adaptability is a powerful way of influencing a user's expectations in the capability of his
application and computing environment. The user is hidden from the intricacies and
dependencies in the system and interacts with high level entities like application features
and data objects, e.g. appointments in calendar. Applications which are informed about
their environment and can adapt to changes in it will thrive in mobile computing

environments which are highly heterogeneous and dynamic. -

93

Third, autonomy and predictable performance are key requirements for mobile
computing. Autonomy and predictable performance are the prevailing reasons why we
are willing to tolerate noisy and bulky workstations or personal computers on our desks.
Graceful disconnected operation provides both autonomy and predictable performance.
Caching enables autonomy, and user friendly management of partially functional
applications provides predictable performance. Predictability means there is a close
correlation between user expectation and reality. Our users were highly irritated when
their expectations were not met, e.g. when pressing an enabled button caused the
application to hang. Predictable performance was enough of an incentive for our users to
become a little more knowledgeable about the environment and to cooperate with the
application in managing availability. Adaptive applications are important because they
greatly reduce the amount of knowledge the user needs to have about the computing

environment in order to work effectively.

Fourth, Property Speciﬁcatjons reduce the programming overhead for application
features supporting graceful disconnected operation. As illustrated in Section 5.2.2, well
designed Property Interfaces made most of our modifications to xmh fairly trivial. We
only began to fully appreciate our ideas when we had to implement some new features on
top of these libraries which do not export Property Specifications, such as Xt and Xaw.
For example, Xaw causes the application to exit when it encounters network timeout
errors and we had no clean way to catch those errors and continue without leaving the
toolkit and application in a siightly confused state. We experienced first hand the effect

of programming with the wrong abstractions in producing ad hoc code and frustrated

programmers.

94

Fifth, application specific information can greatly simplify error recovery. Even though
this thesis does not address cache consistency as a research topic, we had to provide
practical consistency mechanisms to entice our users to trust their mail to our system. A
errors occurs in our system when a cached file becomes stale because the original was
modified by a third party, e.g. the xmhcache file changed because the user incorporated
new mail from another instance of xmh while wc-xmh was disconnected. The system
detects the inconsistency, but can do little to rectify it because .xmhcache looks like any
other sequence of bytes in the file system. Traditionally, the system alerts the user who
must then manually sort out the problem. Based on the observation that our attempt to
hide such errors from the application burdened the user, we allowed wc-xmh to override
the system's default error handler on .xmhcache with its method. The error handler
supplied by wc-xmh simply called an mh library routine to regenerate a most up to date
xmbhcache. Resolving the inconsistency was a trivial task for wc-xmh because it

understands the exact semantics of the .xmhcache file.

6.3 Evaluating Property Specifications

The strengths of our approach lies in the effectiveness in supporting both planned and
unplanned disconnected operation. We demonstrated the usefulness of adaptive
applications and how user expectations can be changed while still keeping the user
hidden from the intricacies of the underlying system. Property Specification is a
powerful abstraction for providing system level support for achieving autonomy and
predictable performance. Query and Notification aliow centralized and efficient
monitoring of environmental events, and ensures that applications are notified of
environmental changes in a timely manner. Hinting provides a general way for

applications to influence and customize system level entities without having to deal with

95

unnecessary details of the implementation. Although applications must be modified or
rewritten in order to take advantage of Property Specifications, we take great comfort in
knowing that the new interfaces are backward compatible and existing applications can

be ported incrementally.

Although Property Specifications greatly simplify the implementation of some
application features, one disadvantage is that it requires extra understanding from the
application programmer and the operating system programmer. The application
programmer must understand the internal dependencies of the application, and the
operating system designer must decide which properties and tools to include in the
Property Specification. We believe that there is a lot more to learn about building
systems and applications‘for mobile computing. Wc-xmh is evidence that there is fruitful

research in this area.

Critics may argue against Property Specifications because we give up transparency at
both the system and the user level. We believe that complete transparency at the user
level is impossible in an intermittent environment. The fact is that if the network fails
frequently, then the only choice we have is whether to deal with it in the system, in the
application, or leave it to the user. It is not surprising that traditional system interfaces
are inadequate for supporting mobile computing because they were designed for
stationary workstations connected with network cébles which fail very occasionally; and
when they do fail, we reboot our machines and go tor coffee. Mobile computing
radically changes our assumptions about the computing environment and require new
abstractions ahd tools to be developed. Property Specifications is a step in this direction.
By specifying the properties of the environment and the functions provided by the
implementation in separate interfaces, we give power and flexibility to sophisticated

applications while maintain:~z transparency for ordinary applications.

96

Bibliography

[Adams]
N. Adams, R. Gold, B. Schilit, M. Tso, and R. Want. The ParcTab Mobile
Computing System. Submitted to HICSS-27. 1993.

[Asente]
P.J. Asente and R. R Swick with J. McCormack. X Window System Toolkit, The
Complete Programmer’s Guid and Specification. Digital Press. 1990.

[Birrell]
A. D. Birrell and B. J. Nelson. Implementing Remote Procedure Calls. In ACM
Transactions on Computer Systems, 2(1). February, 1984.

[Cheriton]
D. R. Cheriton. The V Distributed System. Communications of the ACM, 31(3).
March, 1988.

[Cornelius92]
D. Cornelius, XRemote™: A Serial Line Protocol for X. Slxth Annual X
Technical Conference, Boston MA. 1992,

[Douglis]
F. Douglis and J. K. Ousterhout. Transparent Process Migration Design
Alternatives and the Sprite Implementation. Software - Practice & Experience
21(8). August, 1991.

[Dylan]
Apple Computer, Eastern Research and Technology. Dylan: An object oriented
dynamic language. Apple Computer, November 1992.

[Falcone]
J. R. Falcone. A Programmable Interface Language for Heterogeneous
Distributed Systems. In ACM Transactions on Computer Systems, 5(4).
November, 1987.

[Fulton]
J. Fulton and C. K. Kantarjiev. An Update on Low Bandwidth X (LBX), A
Standard for X and Serial Lines. Technical Report P93-00001, Xerox Palo Alto
Research Center. February, 1993.

[Gosling]
J. Gosling, D. S. H. Rosenthal, and M. J. Arden. The NeWS Book. Springer-
Verlag, 1989.

[Gray]
C. G. Gray and D. R. Cheriton. Leases: An Efficient Fault-Tolerant Mechanism
for Distributed File Cache Consistency. In Proceedings of the Twelfth ACM
Symposium on Operating Systems Principles. Litchfield park, Arizona.
December, 1989. '

97

[Guttag85]
J. V. Guttag, J. J. Horning, and J. M. Wing. The Larch family of Specification
Languages. IEEE Software, 2(5). 1985.

[Guttag90]
J. V. Guttag, J. J. Horning, and A. Modet. Report on the Larch Shared Language,
version 2.3. Research Report 58, DEC Systems Research Center. 1990.

[Harty]
K. Harty and D. Cheriton. Application Controlled Physical Memory Using
External Page-Cache Management. Fifth International Conference on
Architectural Support for Programming Languages and Operatmg Systems
(ASPLOS-V) Proceedings. October, 1992.

[Heller91]
D. Heller. XView Programming Manual. O’Reilly & Associates, Inc.
September, 1991.

[Heller92]

D. Heller. Motif Programming Manual For OSF/Motif Version 1.1. O’ Re111y &
Associates, Inc. July, 1992.

[Herbert]
K. P. Herbert. XRemote and Terminal Services. In Proceedings of the Silicon
Valley Networking Conference. April, 1991.

[Jacobson]
Van Jacobson. Congestion Avoidance and Control. In ACM SIGCOMM
Symposium on Communications Architectures & Protocols. August, 1988.

[Jamsa]
K. Jamsa. DOS - The Complete Reference, Fourth Edition. Osborne McGraw-
Hill. 1993.

[Jul]

E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine Grained Mobility in the
Emerald System. ACM Transactions on Computer Systems 6(1). February,
1987.

[Kazar]
M. L. Kazar. Synchronization and Caching issues in the Andrew file system.
Technical Report CMU-ITC-058, Information Technology Center, Carnegie
Mellon University. June, 1987.

[Kiczales]
G. Kiczales, J. des Rivieres, and D. G. Bobrow. The Art of the Metaobject
Protocol. The MIT Press. 1991.

[Kistler]
J. J. Kistler and M. Satyanara anan. Disconnected Operation in the Coda File
System. In Proceedings of the 13th ACM Symposium on Operating Systems.
October, 1992. '

98

[Liskov87]
B. Liskov, D. Curtis, P. Johnson, and R. Scheifler. Implementation of Argus. In
Proceedings of the 11th ACM Symposium on Operating Systems Principles.
November, 1987.

[Liskov90]
B. Liskov and J. V. Guttag. Abstraction and Specification in Program
Development. The MIT Press. 1990.

[Loudermilk]
S. Loudermilk and S. Higgins. E-mail: the ‘killer’ wireless application.
Supplement on Mobile Computing, PC Week, April 1993.

[MacOS]
Apple Computer. Inside Macintosh: Overview. Addison-Wesley. December,

1992.

[McKusick]
M. McKusick, W. Joy, S. Leiffler, R. Fabry. A Fast File System for UNIX.
ACM Transactions on Computer Systems, 2(3). August, 1984.

[McNamee]
D. McNamee and K. Armstrong. Extending the Mach External Pager Interface to
Allow User-Level Page Replacement Policies. Technical Report 90-09-05,
University of Washington. September, 1990.

[Nelson88]
M. M. Nelson, B. B. Welch, and J. K. Ousterhout. Caching in the Sprite Network
File System. In ACM Transaction on Computer Systems. February, 1988.

[Nelson91]
G. Nelson, Editor. Systems Programming with Modula-3. Prentice Hall, 1991.

[Nye90a]
A. Nye, Editor. Xlib Reference Manual for Version 11 of the X Window System.
O’Reilly & Associates, Inc. October, 1990.

[Nye90b]
A. Nye, Editor. X Protocol Reference Manual for Version 11 of the X Window
System. O’Reilly & Associates, Inc. May, 1990.

[Novobilski]
A. Novobilski. Penpoint Programming. Addison-Wesley. August, 1992.

[Ousterhout]
J. K. Ousterhout. TCL: An Embeddable Command Language. In Winter
Conference Proceedings, USENIX Association. 1990.

[ParcRPC]

Xerox PARC Modula-3 RPC. Available via anonymous ftp from
parcftp.parc.xerox.com or gatekeeper.dec.com. 1992.

99

[Peek]
J. D. Peek. MH & xmh: e-mail for users and programmers. O’Reilly &
Associates, Inc. January, 1991.

[Petzold]
C. Petzold. Programming Windows™ 3.1, Third Edition. Microsoft Press. 1992.

[Postel] _
J. Postel, Editor. Transmission Control Protocol Specification. ARPANET
Working Group Requests for Comment, DDN Network Information Center, SRI
International, Menlo Park, CA. September, 1981.

[Rodriguez]
L. H. Rodriguez Jr. Coarse-Grained Parallelism Using Metaobject Protocols.
Technical Report P91-00130, Xerox Palo Alto Research Center. September,
1991.

[Rosenblum]
M. Rosenblum and J. K. Ousterhout. The Design and Implementation of a Log-
Structured File System. Operating Systems Review, 25(5). October, 1991.

[Sandberg]
R. Sandberg, D. Goldberg, S. Cleiman, D. Walsh, and B. Lyon. Design and
Implementation of the Sun Network File System. In Summer Conference
Proceedings, USENIX Association. 1985.

[Satya85]
M. Satyanarayanan, J. H. Howard, D. A. Nichols, R. N. Sidebotham, A. Z.
Spector, and M. J. West. The ITC distributed file system: principles and design.
In Proceedings of the 100th ACM Symposium on Operating System Principles.
Orcas Island, 1985.

[Satya90]
M. Satyanarayanan, J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siefel, and D. C.
Steere. Coda: A Highly Available File System for a Distributed Workstation
Environment. In IEEE Transactions on Computers, 39(4). April, 1990.

[Scheifler])
R. W. Scheifler and J. Gettys. X Window System, Second Edition. Digital Press,
1990.

[Schilit]
B. Schilit. Dynamic Software Customization Supporting Mobile Computing.
Thesis Proposal, Columbia University. February, 1992.

[Stamos]
J. W. Stamos and D. K. Gifford. Implementing Remote Evaluation. IEEE
Transactions on Software Engineering, 16(7). July, 1990.

[SunNeFS]

Sun Microsystems. The Network Extensible File System Protocol Specification.
Unpublished draft, available by email: nfs3@sun.com. February, 1990.

100

[SunNeWS]
Sun Microsystems. NeWS 3.0 Programmer’s Guide, Revision A. Sun
Microsystems document number 800-6736-11. December, 1991.

[SunRPC]
Sun Microsystems. Network Programming, Revision A. Manual document
number 800-3750-10. March, 1990.

[Tait]
C. D. Tait and D. Duchamp. Service Interface and Replica Management
Algorithms for Mobile File System Clients. In IEEE Conference on Parallel and
Distributed Information Systems. December, 1991.

[XtIntrinsics] :
O’Reilly and Associates, Inc. X Toolkit Intrinsics Reference Manual. O’Reilly
and Associates, Inc. January, 1990.

[Welch]
B. B. Welch. Naming, State Management, and User-Level Extensions in the
Sprite Distributed File System. Ph.D. thesis and Technical Report UCB/CSD
90/567, Department of Computer Science, University of California at Berkeley.
April, 1990.

[Wing]
J. M. Wing. A Specifier’s Introduction to Formal Methods. IEEE Computer.
September, 1990.

[Ward]
T. A Ward and S. M. Liffick with Editors B. Holmes and D. Paul. Microsoft
Windows™ for Pen Computing Programmer’s Reference. Microsoft Press.
1992.

[Young87]
Michael W. Young et al. The Duality of Memory and Communication in the
implementation of a Multiprocessor Operating System. In Proceedings of 11th
ACM Symposium on Operating System Principles, Austin, Texas. November,
1987.

[Young89]
Michael W. Young. Exporting a User Interface to Memory Management from a
Communication-Oriented Operating System. Ph.D. thesis and Technical Report
CMU-CS-89-202, Department of Computer Science, Carnegie Mellon University.
November, 1989.

101

Using Property Specifications to Acheive Graceful Disconnected

Operation in an Intermittent Mobile Computing Environment

