
Implementing Long Lived Transactions 
. Using Log Record Forwarding ,. 

Robert B. Hagmann and Hector Garcia-Molina 



Implementing Long Lived Transactions Using Log 
Record Forwarding 

Robert B. Hagmann 
Xerox Palo Alto Research Center 

Hector Garcia - Molina 
Princeton University 

CSL- 91- 2 February 1991 [P91- 00032] 

© Copyright 1991 Xerox Corporation. All rights reserved. 

Abstract: Many database systems use a disk log for fast crash recovery. Over time, the 

log fills up. Old long lived uncommitted transactions must be aborted since some of 

their records in the log are about to be overwritten. This paper proposes a way to 

extend the lifetime of transactions by forwarding a copy of the to - be - overwritten 

records to the end of the log. Crash recovery and transaction abort processing is 

adapted to process log records different than the order in which they were created. 

The normal operation and crash recovery performance for this system are also 

described. Overhead for forwarding during normal operation is shown to be 

negligible, except for degenerate cases. Crash recovery is shown to run faster than 

havi ng a very'long log. 

CR Categories and Subject Descriptors: H.2.2 [Database Management]: Physical Design 

- Recovery and restart; H.2.7 [Database Management]:. Database Administration -

Logging and recovery; 

Additional Keywords and Phrases: Long Lived Transactions 

XEROX Xerox Corporation 

Palo Alto Research Center 

3333 Coyote Hill Road 

Palo Alto, California 94304 





1. Introduction 

1. Introduction 

Most systems that provide transaction support, whether they be database, file or 

operating systems, typically use a disk based log for recording the actions that are 

performed by transactions. One common way to organize the disk log is as a circular 

file. A compromise is reached, implicitly, in the disk log size. Where the log is short, 

recovery is faster but moderately long lived tra'nsactions will have to be aborted (see 

[Lind79]). Only part of the file has valid data. The START position refers to start of 

valid data, and the TAIL position refers to end of valid data. As new log data is written, 

the TAIL position is advanced. If the end of the file is reached, the pointer wraps 

around to the beginning of the file (i.e., modular arithmetic is used for the pointers). 

As the log fills up, the TAIL eventually catches up to the START. At this point, 

START must be advanced, reclaiming old log records that are no longer needed. In 

most cases, the area to be reclaimed will contain no records of active (uncommitted) 

transactions, so START can be safely advanced. However, in some cases there may still 

be active records (of long running transactions) in the area. Something must be done 

in this case, as the system cannot run without available log space. There are two 

possible solutions. The first is to abort the transactions that hold the records that are in 

the way, thus clearing the space. 

A second solution, proposed in this paper, is to use record forwarding. The basic 

idea is quite simple: a copy of active records in the log area to be reclaimed ahead of 

the START position, are appended (forwarded) to the end of the log. The challenge 

here is to perform adequately fast crash recovery and not degrade normal operations. 

In this paper we will argue that the overhead of forwarding (if implemented 

correctly) is acceptable and always less than the overhead of aborti ng transactions. 

Furthermore, in a distributed system there are cases where abortion may be 

unacceptable. For instance, say a transaction T runs at nodes A and B. During the 

commit protocol, nodes A and B become disconnected, and T is blocked at A [Skee82]. 

This means that A does not know the fate of T and cannot comm it or abort it. If the 

failure lasts long enough, the log TAIL will eventually wrap around to where the T 

records are found. Since T cannot be aborted, the only alternative in this case is to use 

forwarding. 

It could be argued that both abortion and forwarding are unnecessary if 

, 'enough" space is allocated to the log. For example, if we expect all transactions to 

commit in at most 3600 seconds (one hour), and we expect the system to generate 

10,000 bytes of log data per second, then we can use a log file of more than 36 

XEROX PARC, CSL- 91 - 2, February 1991 



2 Implementing Long Lived Transactions Using Log Record Forwarding 

megabytes. With such a file, the situation where START cannot advance will' 'never'l 

occur. We offer two counter arguments to this idea. The first is that a well designed 

system should avoid making assumptions about how long transactions will run and 

how much they will log. (We could mention a number of systems designed under the 

assumption" no one will ever need more than X of this" that eventually and painfully 

broke down!) The load of the database, restructuring major relations, massive 

updates, an unusually long transaction, or a failure like the one illustrated above can 

easily violate our assumptions. 

Our second counter argument is that in some applications" large enough" would 

lead to a very high storage cost. For example, some high performance systems write 

their logs to so called RAM disks (devices with disk interfaces that store data in non -

volatile electronic memory). Allocating tens or hundreds of megabytes to the log may 

be unacceptable, especially when there is an inexpensive solution like log forwarding 

that can dramatically reduce the log size. 

A second example is a file system or an objected oriented database system where 

transactions may be very long lived and may generate large volumes of log data. A 

transaction to reorganize a large file or to process a collection of i mages from a 

satellite may take days and may generate megabytes of log. The log would have to 

hold not only the megabytes generated by that transaction, but also the logs of all 

other transactions that run concurrently. Again, we believe that forwarding is a very 

attractive alternative. 

Although the basic idea of log record forwarding is relatively simple, there are at 

least two critical challenges that exist. One is to design an efficient strategy. 

Forwarding causes non - sequential log activity: the disk head must be moved from the 

log tail to where the records to forward are. This can affect logging performance 

during normal operation. Thus, the forwarding overhead must be kept at a minimum. 

Also, forwarding causes records to appear in a different order in the log. A recovery 

procedure that sorts records into their original order could be very expensive and 

should be avoided. 

A second challenge is to design a correct strategy. The logging mechanism must 

concurrently log new records as old ones are being moved. At recovery time, it must 

process log records out of order. If the mechanism is properly designed, the rules for 

this processing can be quite simple. However, showing that the rules are correct is 

non - trivial. 

This paper will outline how recovery can be performed for a particular 

XEROX PARC, CSL- 91 - 2, February 1991 



2. Design Overview 3 

implementation of log record forwarding. Our description must be detailed enough 

so that some of the subtle issues related to forwarding can be explained, yet it should 

contain a minimal number of irrelevant details. To achieve this balance, we have 

selected a relatively simple yet efficient form of logging based on physical logging 

with complete before and after images. We also assume pessimistic locking. 

There is a large variety of logging mechanisms (some even proprietary), and this 

paper cannot show how to use the log record forwarding technique for all of these 

systems. However, we believe that record forwarding will help nearly all disk log 

recovery systems, after it has been adapted to their environment. For example, instead 

of a circular log, one can use a file with multiple extents, where old extents are 

archived to tape. Log forwarding makes it possible to archive extents even before all 

their records are inactive. As another example, forwarding can be used in conjunction 

with log compaction [Hagm86, Kaun84]. In Section 4 we discuss some of the other 

major types of logging and the impact of record forwarding. 

2. Design Overview 

In this section we describe a particular implementation of log record forwarding. 

Our description of record forwarding is accompanied by an Appendix that gives 

pseudo - code for the pri ncipalloggi ng and recovery functions. 

2.1 Normal system operation 

We start by describing how logging would work without forwarding. As 

described in the introduction, the log is implemented as a circular file. Each log record 

must have some marking to make it possible to identify the TAIL after a crash. For 

example, each record could be written with an increasi~g sequence number. The TAIL 

would then be the record with the largest sequence number. (There many other ways 

to mark the records, though.) 

As updates are made, the logger is told the before and after images for the 

updated object. The first time an object is updated by a transaction, both the before 

and after images are logged. On subsequent updates to the same object by the same 

transaction, only the after image is logged. Database objects can either be pages, 

records, or byte ranges (see Section 4). We assume that pessimistic object level locking 

is used. This implies that a before image in the log is the latest committed version of 

the object. 

To make recovery faster, systems periodically force some buffer pages and key 

XEROX PARC, CSL- 91 - 2, February 1991 



4 Implementing Long Lived Transactions Using Log Record Forwarding 

state information to disk. This operation is called a checkpoint. First, a log entry is 

made recording all the active transactions together with a (back) pointerto their latest 

log record. Committed transactions need not be recorded; any of their writes to disk 

that have not been performed will be done by the checkpoint and hence these 

transactions will be fully completed. Next, all dirty database pages in the buffer pool 

are flushed. Finally, a special block CHKPBLOCK is written at a fixed known position. 

This block contains a pointer to the latest checkpoint record, as well as the current 

START record on disk. The checkpoint completes when CHKPBLOCK is written safely. 

Before the CH KPBLOCK is written, crash recovery should start with the previous 

checkpoint. Notice that the state of the database is not consistent at the time of a 

checkpoint. 

After a crash, CHKPBLOCK is read and the latest checkpoint record (C) is found. 

The set of active transaction is read from C. Next, the log TAIL is found, for example, by 

performing a binary search for the record with the largest sequence number. From 

TAIL, the records are read in reverse order until C. If a record is found for a transaction 

not in active list, then that transaction is added to the list. (Such a transaction started 

after the checkpoint.) During the scan, we keep track of the state of each transaction. 

Initially it is assumed that all transactions are to be aborted. When a commit record is 

found, the state of that transaction is changed to committed. (Note that in the 

backward scan, the commit record for a transaction will be found before any action 

records for that transaction.) For each log record found that records an action, the 

action is undone or redone, according to the Application Rule given below. 

Once record C is reached, all committed transactions have been redone (any writes 

made before the checkpoint were propagated to the database by the checkpoint at C). 

However, it is still necessary to undo the actions performed by aborted transactions 

before the checkpoint. Thus, for each aborted transaction, the system follows its chain 

of log records (each record contains a pointer to the previous one), using the 

Application Rule, until the corresponding begin - transaction record is found. All the 

chains are followed together, thereby processing the log in reverse order. 

Application Rule. For each database object 0 we keep a flag done(o). When 

recovery starts, done(o) is set to false for all objects. When the first undo or redo is 

applied to 0, done(o) is set to true. (Note that done can be implemented as a hash 

table. If object 0 is not in the table, then done{o) is false. Initialization is trivial and 

lookup is fast.) The following rule is applied to each action record for transaction Tj 

and object 0 seen in the backward pass: 

XEROX PARC, CSL- 91- 2, February 1991 



2. Design Overview 5 

if Tj is committed and done{o) is false and there is a redo image in the record 

then 

begin apply the redo on 0; set done{o) to true end 

else if Tj is aborted and done{o) is false and there is an undo image in the record 

then 

begin apply the undo on 0; set done{o) to true end 

else skip this action 

Before discussing record forwarding, it is important to understand the Application 

Rule. Consider for instance a particular database object 0 that has been modified by 

some transactions just before a crash. At recovery time the log might look as shown in 

the following figure. 

c ? 

Figure 1 

We only show the log records pertaining to object 0, plus the latest checkpoint C. 

Say we begin the backward scan and find the first record R1. Say the "?" record was a 

commit forT1, the transaction that wrote R1. Since T1 will be in committed state at R1, 

the last image produced by T1 will be placed in the database. After this step, no 

further actions on 0 need be performed. Now suppose that the "?" is not a commit for 

T,. Then we must place in the database the image of 0 that existed when T1 started. 

This will be found in one of the T1 records, but not necessarily in R, (it may only have 

an after image). So we scan further back until we do find the before image in one of 

the records, say R3. (Note that none of the records between R1 and R3, referring to 0, 

can be for a transaction other that T1 because T1 had locked 0 exclusively.) This R3 

image is installed. It represents the latest committed value for 0, so again, no further 

actions on 0 are necessary. 

2.2 Log record forwardi ng 

The basic idea of record forwarding is to copy records from active transactions' 

near the START position to the log tail. Once all useful information has been cleared, 

the START position can be advanced. The START position changes by some DELTA 

number of records, thus creating some free space forthe log. 

XEROX PARC, CSL- 91- 2, February 1991 



6 Implementing Long Lived Transactions Using Log Record Forwarding 

When the START position is advanced, the vast bulk of records skipped are usually 

for short committed or aborted transactions. These transactions have already had their 

"effects done or undone to the disk resident part of the database. They may have 

committed or aborted, or have had their effects superseded by other transactions. 

Dropping these records has no adverse side effects. Typically, only a small portion of 

the records at the end of the log belong to long lived transactions. 

Although DELTA can be any number (that does not get us too close to the tai I), we 

choose to make it such that START + DELTA is the next valid checkpoint in the log. 

This makes it much more efficient to discover active records to forward. Let us 

illustrate this through the following example (details are given in the Appendix.) 

START TAIL 

~ ~ 

Figure 2 

In Figure 2, C2 is the oldest checkpoint record. (C, is the next oldest, but now is an 

invalid checkpoint.) Records R1, R2, R3, and R4 were made by a long lived transaction Tj 

that is still active. The Tj records have backward pointers. In memory, a pointer is kept 

to the most recent log record of Tj, in this case R4. 

Say a new checkpoint (7 is to be made. After the checkpoint record is written and 

the buffer pool is flushed, it is noticed that more free log space is desirable. As part of 

the checkpoint, the oldest checkpoint C2 is read (its position was stored in memory). 

Any transaction like Tj with active records in the area to be reclaimed was recorded in 

C2. The log record chain for Tj is read, starting by the record identified in C2, i.e., R2. 

(As described above, every checkpoint contains the list of active transactions at the 

time, plus a pointer to the most recent log record of each.) All the chains are followed 

together, thereby processing the log in reverse order. This way records R2 and R1 are 

found and copied to free positions at the tail. The copied records are treated as 

standard records, being linked in the normal fashion. They are added to the log 

without force. When forwarding is done, START is advanced to C2, the log is forced, 

and the position of the latest checkpoi nt (7 recorded by writing a new CH KPBLOCK 

XEROX PARC, CSL - 91 - 2, February 1991 



2. Design Overview 7 

block. The situation at this point is illustrated by the next figure. 

START TAIL 

~ ! 

Figure 3 

There are several important things to notice. One is that pointers like the one 

from R3 to the old copy of R2 are now invalid. Thus, a chain of records actually ends 

with a nil or an invalid pointer. Invalid pointers can be detected because they cross the 

START position. In particular, suppose that the log is implemented by a contiguous 

vector of N disk pages, and that R3 and R2 are in pages P3 and P2 respectively. Then the 

pointer from R3 to R2 is invalid if (P3 - P2) mod N > (P3 - START) mod N. (This 

assumes checkpoints and thus START records are always at the beginning of a page.) 

A second thing to observe is that transaction processing is not suspended during 

forwarding. In the example, Tj produced a new log record, Rs, after R2 was copied but 

before R1 was copied. A third observation is that the log records for a transaction can 

be out of order due to forwarding. For example, record R1 will now be the first record 

found in a backward scan, instead of being the last one. In the next section we show 

that crash recovery is still efficient, in spite of this lack of order. 

A fourth observation is that not all active records need to be forwarded. In 

particular, there are three situations where records are not forwarded: 

(1) Begin - transaction records can be ignored. The end of the record chain for a 

transaction is indicated by an invalid pointer, so there is no need to end the chain 

explicitly. 

(2) Redo portions of records can always be dropped: the update in the record must 

have been propagated to disk by the current checkpoint when it flushed the buffer 

pool. 

(3) Records of transactions that commit during forwarding do not have to be 

forwarded at all. In our example, suppose that Tj was uncommitted when the 

checkpoint starts (and record (7 is made). However, it commits soon after, and say 

record Rs is actually its commit record. Record R1 can then be ignored. The reason is as 

follows. Since Tj has committed, the undo information in R1 is useless. As stated above 

in (2), redo portions of records can always be dropped. Thus, the entire record is 

useless. 

XEROX PARe, CSL - 91 - 2, February 1991 



8 Implementing long lived Transactions Using Log Record Forwarding 

It is interesting to notice that optimization (3) not only reduces the amount of data 

to be copied, but also makes recovery very simple. To illustrate, suppose that Rs is a 

commit record but that R1 was forwarded anyway, resulting in the state shown in 

Figure 3. At recovery time, we would then get to R1 first in the backward scan. At this 

point, we would not know whether Tj was to be undone or redone, so the recovery 

action could not be applied immediately. On the other hand, if records like R1 are not 

forwarded, then for committed transactions it is certain that the commit record will be 

the first one found in the backward scan. If an action record is seen without first 

having seen a comm it record, then that transaction can be aborted. If one did not take 

advantage of optimization (2), recovery would also be more complex. 

A final observation is that only a few disk reads may be needed to acquire the 

forwarded records. For long lived transactions, the system can group together their 

log records and write them to the log in bursts. When these bursts are forwarded they 

will also stay together. Thus, we can expect the forwarded records to be found in a 

"few" cylinders. We will return to this issue in Section 3. 

2.3 Crash recovery and abort processing 

As we have seen, forwarding may cause log records to be out of order. 

Surprisingly, howev~r, crash recovery proceeds in exactly the same way as without 

forwarding. That is, a single backwards scan is done, from TAIL to the latest 

checkpoint, using the Application Rule on each undo or redo record found. Then the 

remaining aborted transactions are aborted, again using the Application Rule. 

To see why this restores the database to a correct state, let us consider once agai n 

the fate of a particular object o. Figure 1 showed the actions in the log that involved 0, 

when the log was ordered. Now that we have forwarding, some action, call it Rf, may 

appear ahead of its original position. 

When the log was ordered (no forwarding), there were basically three outcomes 

of the crash recovery phase: an after image was stored into 0, a before image was 

stored, or no action on 0 was performed. Now we will show that forwarding does not 

affect the three outcomes. 

(I) Suppose that if the 10.g were ordered, an after image would be stored into 0 at 

recovery. This occurs when a commit record is found for some transaction Tk and then 

a redo record is found before the latest checkpoint. In Figure 1, say Rl is the undo 

record (and "?" the commit record). There are now two subcases to consider: a 

forwarded record Rf appears ahead of, or behind R1. 

XEROX PARe, CSL- 91 - 2, February 1991 



2. Design Overview 9 

(i) Any record Rf that was forwarded after R1 was written must also belong to Tk. 

(Transaction Tk holds an exclusive lock on 0 at least between R1 and the commit record. 

Since only active transactions forward, the transaction that owns Rf must hold the 

same lock from the latest checkpoint through the point where the record is 

forwarded.) Clearly, Rf cannot appear after the commit record for Tk, so. in this 

subcase, it must be that Rf is between R1 and the commit record. In this region of the 

backward scan, the state of Tk will be committed. Since Rf only has undo information 

(see the fourth observation, part 2 in Section 2.2), it will be ignored (see Application 

Rule). 

(ii) The forwarded record Rf is behind R1. When the redo image R1 is installed, 

done{o) is set to true. Thus, all records behind R1 will be ignored. 

So, for case (I) we see that forwarded records have no effect. The state of 0 is 

restored to its last committed value, just as if the log has been in order. 

(II) Suppose that with the ordered log, an undo image was stored into 0 at 

recovery. Say that Rk was the record-that contained the before image applied to 0 and 

that Tk was the transaction that wrote it. Note that Tk must have been the last 

transaction that modified 0 before the crash occurred. Now let us look at the 

unordered log. Say b is the position in the unordered log where Rk appears (it mayor 

may not be a forwarded record). At time b (i.e., when TAIL was at b), object 0 must 

have been locked by Tk. 

We now proceed by contradiction. Say that when the unordered log is used for 

recovery a different undo record for 0, Rx, is applied. Record Rx must have been made 

by a different transaction Tx because Tk only wrote a single undo record referring to o. 

Record Rx must appear at a position c ahead of b (closer to TAIL), else Rk would still be 

applied. Record Rx must be a forwarded record, else Tk would not have been the last 

transaction to update o. For a similar reason, the original place where Rx was logged .. 

call it a, must be behind b. (Going from START to TAIL, a occurs first, then b, then c.) At 

time a, Tx held a lock on o. The lock must have been released. by time b when Tk holds 

it. Therefore, Tx is no longer active at b. But this means that Rx could not have been 

forwarded at time c. This is a contradiction,- so Rk must be the undo record that is 

applied when recovery is done from the unordered log. 

(III) The last case is when recovery with the ordered log yields no actions on object 

o. This occurs when none of the active transactions at checkpoint time access 0, and 

when there are no 0 records ahead of the checkpoint record. Forwarding cannot 

introduce 0 records ahead of the checkpoint record, because this would imply that 

XEROX PARC, CSL- 91- 2, February 1991 



10 Implementing Long Lived Transactions Using Log Record Forwarding 

some transaction that modified 0 was active at the checkpoint. Thus, with forwarding 

the outcome is the same: no recovery actions are performed on o. 

2.4 Safety and fairness 

Fairness and safety provIsIons must also be incorporated in the log record 

forwarding. The log can fill up with the records of very long lived transactions. A 

single transaction can use a large fraction of the log. As the start pointer is advanced, 

an equal amount of data is logged (the forwarded log records.) The system is just 

wildly copying the log. This should be rare, but the system should protect itself against 

this situation. 

A final observation regards a full log. The system should attempt to ensure that a 

full log never happens by keeping far enough ahead. During normal logging, if a 

transaction finds a full log, then it can wait in hopes that a checkpoint is in progress 

and about to reclaim space. However, if the checkpointer runs into a full log when 

forwarding records, then it cannot wait. The checkpointer must abort any active 

transactions that hold active records in the area to be reclaimed. Only when the area is 

free, can the checkpoint complete and transaction logging resume. 

3. Performance considerations 

There is clearly a performance cost associated with record forwarding. To forward 

a record, it must be read and copied onto the tail of the log. In addition to the cost in 

terms of CPU time and disk bandwidth, there is possibly a penalty for causing non­

sequential activity on the log disk. That is, to read a record that will be forwarded, the 

disk head must move away from the log tail. 

Many systems can piggyback reading and writing of the log on existing 

operations. The forwarding occurs without force, so that it (usually) does not incur an 

10. Recall that the log manager was careful to write the records for long lived 

transactions in clusters. If a tape copy of the' log is written, then forwarding can 

piggyback the reading of the log at this time (see Section 4.1). 

3.1 Comparison with abort 

To be fair, a performance comparison of record forwarding must be made against' 

some alternative. In this case, one alternative (in ~ddition to just not running long 

I ived transactions) is to abort the long transactions when log space runs out. It is not 

hard to see that record forwarding is a clearly superior alternative. Suppose that j 

XEROX PARC, CSL- 91- 2, February 1991 



3. Performance considerations 11 

records belonging to a LLT lie in the log area that is about to be reclaimed. At that 

time, the same LLT has an additional k records in the rest of the log. If forwarding 

takes place,j records will be read and a subset of them copied. If the LLT is aborted, all 

j + k records have to be read to obtain the undo information. After the abort is 

complete, the LLT must be re - run, requiring j + k new log writes just to get us back to 

the same position we would be in with forwarding. 

3.2 10 cost model 

We have argued that the proposed log record forwarding technique is superior to 

aborting long lived transactions. So, given that log forwarding is to be implemented, 

we now try to evaluate its cost. The major cost is the extra 10's that must be performed 

to forward records. 

In order to study this cost, we present a simple model. It is a "strawman" model 

whose goal is to illuminate the major issues, not to predict the performance of an 

actual system. The model parameters are as follows: 

size. 

d: the duration (seconds) of a long lived transaction (LLT). 

tu: the rate (records/second) at which a LLT writes undo records into the log 

tr: the rate (records/second) at which a LLTwrites redo records into the log 

I: the number of concurrent long lived transactions 

n: the number of records in the circular log. Assume that all records are of equal 

m: the number of checkpoint records on disk 

r: the total rate (records/second) at which records (of any type) are written on the 

log. 

i: the maximum number of contiguous log records that we want to read in a single 

10 

Note that the LLT log writes and any forwarding is included in the total rate r. This 

rate is assumed to be constant. During normal processing, the log tail moves along the 

log. The time for each rotation (time until reuse of a .Iog page) is n/r seconds. The time 

between checkpoints is n/{rm). 

Suppose that a checkpoint is to be taken and that a LLT is active'at the time. The 

LLT records in the log area to be reclaimed must be read. The number of redo records 

that will be read (but not forwarded) is (trn)/(rm). If there are I concurrent LLT's, then 

the number of total redo records will be roughly that amount times I. Since undo 

records are forwarded, in computing the number of undo records we must take into 

XEROX PARe, CSL- 91 - 2, February 1991 



12 Implementing Long Lived Transactions Using Log Record Forwarding 

account all the undo records that were written by the LLT during its lifetime. Assuming 

that on the average each LLT is half done, we would expect to see {dtu)/2 of its undo 

records at a given time. Since there are I concurrent LLT, the expected number of undo 

records is {ldtu)/2. In the area to be reclaimed we would expect to see 11m of these 

records. Adding the undo and the redo records, we expect to fi nd a total of 

(Eq. 1) T = (ldtu)/{2m) + (ltrn)/{rm) 

records in the reclaimed area. Assuming that we can pack all these LLT records into a 

continuous run (of size i pages), then the number of la's per checkpoint due to reading 

records off the reclaimed area is TIL (In reality the number might be slightly larger if 

there is not one but two ru ns.) 

We can now argue that under "normal" loads, this quantity will be relatively 

small, and hence the 10 impact of forwarding is negligible. For example, say we expect 

each LLT to write a total of 10,000 undo records (dtu), and that there are 100 

checkpoints (m) and 2 concurrent LLT's. Then we expect to find 100 undo records in 

the area to reclaim. Similarly, suppose that each LLTwrites 10 redo records between a 

pair of checkpoints (this is (trn)/{rm». Then two LLT's will write 20 redo records. If we 

are willing to use runs of 100 records, the we would have 2 la's to perform per 

checkpoint. It is not hard to see from Equation 1 that most realistic sets of parameters 

yield relatively small numbers of la's. And if for some reason the 10 load does become 

larger than what can be tolerated, then the number of concurrent LL T's, I, can be 

reduced. Or as an alternative, the log can be made larger, increasing the number of 

checkpoints m. Yet another alternative is to only have undo records in the linked list 

kept for each transaction (redo records could be kept on a separate linked list, or not 

chained at all). This makes it unnecessary to read redo records, eliminating the second 

term from Equation 1. 

3.3 Esti mation of the number of forwarded records 

In our 10 cost model we did not consider the cost of processing the forwarded 

records in memory and then writing them at the log tail. Since these costs involve no 

disk arm movement (forwarded records are not forced), they will usually be less 

significant than the 10 cost. Yet, it is still important to understand the CPU and disk 

bandwidth costs and to make sure they do indeed stay at reasonable levels. Both the 

CPU overhead and the disk bandwidth consumed will be proportional to the number 

of records that are forwarded, F. We now estimate F. 

As mentioned earlier, the time for one rotation is n/r seconds. During each 

XEROX PARC, CSL- 91 - 2, February 1991 



3. Performance considerations 13 

rotation, the LLTwil1 produce E new undo records, where 

(Eq.2) E = (n/r) tu . 

During the lifetime of the LLT, the tail will make 

(Eq.3) R = d I (n/r) 

rotations. For simplicity, let us assume that R is an integer. (If it is not, our following 

equations will be approximately correct but not exact.) During the first rotation of the 

LLT, E new undo records are made but none are forwarded. During the second 

rotation, the first E records have to be forwarded, and E new opes are made. During 

the third rotation, the 2E records of the first two rotations must be forwarded; in the 

fourth rotation 3E must be forwarded, and so on. The total number of forwarded 

reco rds is then 

R 

(Eq.4) F = I:E(i-1) = tI:R{R - 1) 

i=O 

Th is equation can be rewritten as 

(Eq.5) F = (dtu I 2) [dr/n - 1] 

There are two important observations that can be made from this equation. The 

first one is that the forwardi ng overhead is proportional to the square of the LLT 

duration. An LLT that takes twice as long as another one will have to forward four 

times as many log records. (Of course, if the shorter LLT makes only one revolution, 

then the ratio is E to zero forwarded records.) Clearly, if d becomes too large we can 

have a serious problem. 

The key to avoiding this problem is to choose a sufficiently large log that reduces 

the number of revolutions of an LLT. A "rule ofthumb'f that may be useful forthis can 

be derived from Equation 5 (this constitutes our second observation). 

During the lifetime of a LLT, a total of dr log records are written by all transactions 

combined. Suppose that we choose the log size so that it can hold 11k of these records 

(i.e., the log will undergo k rotations during the lifetime of the LLT). Thus, n can be 

exp ressed as 

(Eq.6) n = dr/k 

where k is some small integer we choose. Substituting into Equation 5 we see that the 

number of forwarded records is {k - 1)/2 times the number of original undo records 

made by the LLT (i.e., d tu). For example, if the log can hold a third of the total records, 

then on the average each undo record written by the LLT will be forwarded one time. 

If the log holds a fifth, then we expect each record will be forwarded twice. One can 

XEROX PARC, CSl- 91- 2, February 1991 



14 Implementing Long Lived Transactions Using Log Record Forwarding 

also use the formula in reverse fashion. Say that for each record logged by the LLT, we 

are only willing to forward it two times. Then the log must at least hold a fifth of the 

log records that the system will produce during the lifetime of the LLT. 

Another option for coping with high bandwidth requirements for the log to to use 

disk striping, Le., writing in parallel to multiple disk drives. This technique is discussed 

in [Kim86, Sale86]. 

3.4 Long transaction abort 

An LLT can be aborted during normal operation voluntarily or because of 

deadlocks. Such an abort should take about the same time as an abort of a same sized 

transaction in a system without forwarding. In either case the same number of records 

must be randomly fetched from the log. Random I/O is the dominating cost in this 

process because back chaining is used to find the next record and buffering is not of 

much help. Since the same number of records must be fetched, roughly the same 

number of I/Ols will occur. 

However, since transactions now can live longer, they can also get bigger. Hence, 

an individual transaction abort can take longer using log record forwarding. However, 

this is simply because the transaction is larger and is doing more work. 

3.5 Performance during recovery 

This section discusses the impact of record forwarding on recovery time. To 

illustrate, the system is assumed to have the following characteristics: 

Five percent of the log is used for long lived transactions. 

The system can do disk scheduling. The disks have 19 tracks, seek to adjacent 

cylinders in 5 milliseconds, and can read a track in 16 milliseconds. 

The buffer pool is cleaned via a checkpoint whenever the log enters a new 

cylinder. 

During recovery, the only difference from normal recovery is the forwarded 

records. For the records after the last checkpoi nt, there is negligible difference in how 

recovery works. Before the last checkpoint, on the average there is one cluster per 

cyl i nder of records, either forwarded or not, that must be read for LL T's. The records 

are clustered together and are about a track (about 5% of the cylinder). Since the 

records are clustered, they can usually be read using a single read. This takes an 

adjacent cylinder seek, a latency, and a transfer (5 + 8 + 14 = 27 milliseconds). Normal 

log reading for a cylinder takes a adjacent cylinder seek and 19 revolutions (5 + 19 * 16 

XEROX PARC, CSL- 91 - 2, February 1991 



4. Other Logging Strategies. 15 

= 309 milliseconds}. Hence the forwarded log can be read about eleven times faster 

than a scan of a normal log . 

. -4. Other Logging Strategies 

To describe record forwarding we have assumed that full before and after images 

are logged, and that pessimistic locking is used. In this section we discuss some other 

types of logging and the impact on forwarding. 

4.1 Tape copy of the log 

If a tape copy of the log is kept, then the copying of the log to tape is often 

delayed to allow for compaction [Kaun84]. The forwarded records can be extracted 

during the copy operation at little cost and no additional head motion. Thus, reading 

records for forward i ng is basically free. 

4.2 Different flush policies 

Our simple checkpoint algorithm flushes all dirty pages at checkpoi"nt. Hence, we 

only have to scan backwards during recovery to the first checkpoint. If a different flush 

policy is used, then more backwards scan for redo will be needed. All that we can say 

here is that the backwards scan for redo must be far enough to see all the redos 

needed. Exactly how far is dependent on the checkpoint buffer pool invariant. 

Forwarding is not significantly affected. 

4.3 Redo only logging 

Redo only logging for LLT's writes into the log the new value of pages modified by 

a transaction. The buffer pool of modified pages is not written to the database until 

commit. Modified pages that are not in the buffer pool are read from the log. 

Forwarding now forwards redo object images. It does not forward redo images 

that have been remodified. There may be many redo images for an object in the log 

for a transaction, but the last one is guaranteed to be the committed value for a 

transaction, if it commits. 

4.4 Record or Page Logging 

In our algo"rithm we have not specified what an "object" actually is. The solution 

works regardless of whether an object is a page, a record, or a byte range within a 

page. Of course, if an object is smaller than a page, an undo or redo cannot be applied 

without first reading into memory the image of the entire page. However, as long as· 

full before and after images are logged, forwarding proceeds as we have described. 

4.5 When Record Order is Important 

Our mechanism is not affected by the order of forwarded records in the log. 

XEROX PARC, CSL - 91 - 2, February 1991 



16 Implementing Long Lived Tr~nsactions Using Log Record Forwarding 

However, under some circumstances order is important. This includes logical operation 

logging and locking with non - pessimistic locking. Because of space limitations we 

cannot explain how recovery and forwarding operate in these cases. All we can do is 

sketch out a common solution that can be used. 

The basic idea is to include a log sequence number (LSN) in each log record. Each 

time an action is logged, a counter in memory is incremented and its value stored as 

the LSN of the log record. When a record is forwarded, its LSN is preserved unchanged. 

At recovery time, the necessary log records can be read into memory and the 

correct ordering can be reconstructed from the LSN's. In practice, it is not necessary to 

read in the entire log, sort it, and then apply it. Various optimizations can be used, 

depending on the particulars of the logging used, to start applying recovery actions 

early. 

The main observation to make is that even with more complex logging strategies, 

the overhead of forwarding during normal operation is still minimal. Recovery may be 

more complex, but the overhead still very low. 

5. Conclusions 

This paper proposes a method to do log compression in the normal database log. 

The proposal is a way to extend the lifetime of transactions by forwarding a copy of 

the to - be - overwritten records to the end of the log. The compressed log is 

interspersed with current log data. 

Crash recovery and transaction abort processing has been adapted to process log 

records different than the order in which they were created. Overhead for normal 

operation was shown to be negligible, except for degenerate cases. Crash recovery 

performance for this system was shown to be superior to recovery with a very long log. 

XEROX PARC, CSL- 91- 2, February 1991 



References 17 

References 

[Gray79] J. Gray, "Notes on Data Base Operating Systems," in Operating Systems, An 

Advanced Course. Edited by R. Bayer, R. M Graham and G. Seegmuller, Springer­

Verlag 1979. 

[Hagm86] R. Hagmann. "A Crash Recovery Scheme for a Memory Resident Database 

System," IEEE Transactions on Computer Systems, Vol. 11, No.1, pp. 839 - 843, 

March, 1986. 

[Kaun84] J. Kaunitz and L. Van Ekert. "Audit Trail Compa~tion for Database 

Recovery," Communications of the ACM, Vol. 27, No.7, pp. 678 - 683, July, 1984. 

[Kim86] M. Kim. "Synchronized Disk Interleaving," IEEE Transactions on Computers, 

Vol. 35, No. 11, pp. 978 - 988, Nov., 1986. 

[Lind79] B. G. Lindsay, et al. Notes on Distributed Databases, IBM Research Report 

RJ2571, 1979. 

[Sale86] K. Salem and H. Garcia - Molina, Disk Striping. Princeton Department of EE & 

CS Technical Report 332, Dec. 1984.' 

[Skee82] D. Skeen, Crash Recovery in a Distributed Database Management System. 

University of California at Berkeley Technical Report UCB/ERL M82/45, 1982. 

XEROX PARC, CSL- 91 - 2, February 1991 



18 Implementing Long Lived Transactions Using Log Record Forwarding 

Appendix: Pseudo Code for Logging with Record Forwarding 

In this Appendix we describe in more detail the proposed log forwarding 

mechanism. We use informal pseudo code to describe the various steps, relying on 

English to describe some of the minor operations. Our goal is to, in a very limited 

space, give enough details so that an experienced programmer could convert this 

description to actual code. 

For simplicity we assume that all records are written on a separate disk page. This 

avoids havihg to describe here how records are packaged into pages. Records are 

identified by an integer between 0 and N - 1, where N is the number of the page that 

holds it. Extending the algorithm to multiple records within a page and to variable 

size records is straight forward. 

Data Structures in Memory 

N: the number of records in the circular log on disk. 

AST: The set of active transactions. For each T in ASTwe have 

T.tid = the transaction id 

T.lle = the position in the log of the most recent log record for this transaction. 

T.state = committed, aborted (only used at recovery ti me) 

CHKPLlST: a list of checkpoint records. CHKPLlST.old points to the oldest valid 

checkpoint log record. CHKPLlST.new points to the newest element of the list. Each 

record R in the list contains: 

R.position: the position of the corresponding checkpoint record in the log . . 
R.next = a pointer to the record in memory that represents the next checkpoint 

that occurred. 

START: identifies start of valid log. START + 1 is first valid record. 

TAIL: the latest valid record in the log. Note that START = TAIL when the system is 

started. 

The system uses two semaphores: 

logsem = ensures that only one process at a time logs 

forsem = ensures that at most one process is checkpointing 

Format of Log Records 

Every log record L has the following two fields: 

L.mark = a mark used to identify the TAIL quickly. We do not discuss this 

fu rther here. 

XEROX PARC, CSL- 91 - 2, February 1991 



Appendix: Pseudo Code for Logging with Record Forwarding 19 

L.type = the type of record; can be checkpoint, tbegin, taction, ortcommit. 

Alog record of type checkpoint in addition contains a set L.ast of active transaction at 

the time of the checkpoint. Note that all of these transactions are uncommitted (at 

checkpoint time all buffers are flushed, so any committed transaction is all done and 

can be forgotten). For each T in L.ast we have the following fields: 

T.tid = the transaction id 

T.lle = the position in the log of the most recent log record for this transaction. 

A log record L of type tbegin, taction, or tcommit in addition contains the following 

fields: 

L.tid = the transaction id 

L.lle = the location in the log of the previous log record for this transaction. If 

this is a tbegin record, then L.lle is null (e.g., - 1). 

A log record of type taction in addition contains the undo/redo information. We 

assume that full before/after images are used for each object. The three additional 

fields are: 

L.object = the id of the object 

L.undo = the before image 

L.redo = the after image 

Format of Checkpoint Block 

The checkpoint block CHKPBLOCK is a disk block stored at a known fixed position. It is 

used at recovery time to discover the log position of the most recent log checkpoint 

record. The block has the following fields: 

CH KPBLOCK.start = the start record of the log 

CHKPBLOCK.tail = the position of the most recent checkpoint record. 

Logging Actions 

The following describes what a transaction does when it logs an action. Let T be 

the element in AST forthe transaction performing this action. 

P(logsem) 

wait until {(TAIL + 1) mod N not= START} (wait is outside logsem critical section) 

TAIL (TAIL + 1) mod N 

Allocate a new buffer for constructi ng log record L 

L.type _ taction; L.tid _ T.tid; L.lle _ T.lle; T.lle _TAIL; 

XEROX PARe, CSl- 91 - 2, February 1991 



20 Implementing Long Lived Transactions Using Log Record Forwarding 

L.redo _ after image; L.object _ object id 

if this is first update to object by T then L.undo _ before image 

write buffer to position TAIL on disk (not forced) 

V(logsem) 

Logging a transaction begin or commit is similar and is not described here. Note 

that when a transaction aborts, no II abort ll record is written. After a transaction 

aborts or commits, it is removed from AST. 

Checkpoi nting 

The checkpointer is called every DELTAT seconds, orwhenever (START - TAIL - 1) 

mod N < DELTAs. DELTAT and DELTAs are administrator defined constants. 

P{forsem) 

P{logsem) 

if (TAIL + 1) mod N = START then abort - some - transaction (log is full) 

TAIL (TAIL + 1) mod N 

Allocate a new buffer for constructing log record L 

L.type _ checkpoint 

For each T in AST do begin 

if T.state = aborted or comm itted then delete T from AST else 

add T (with corresponding T.tid and T.lle) to l.ast 

write buffer to position TAIL on disk (not forced) 

Save_ TAIL; 

V(logsem) 

Allocate new memory cell for checkpoint cell. Call it R. 

R.position _ Save; R.next _ null 

if CHKPLlST.new = null then CHKPLlST.new CHKPLlST.old R 

else begin CHKPLlST.new.next _ R; CHKPLlST.new _ Rend 

Flush all data buffer pages to disk 

If (START - TAIL - 1) mod N < DELTAs then begin {start forwarding} 

Let C be the checkpoint record at CHKPLlST.old.position 

CH KPlIST.old CH KPLlST.old.next 

for each Tin C.ast, ifT.lle is invalid then T.lle _ null {T.lle is invalid if (C - T.lle) 

mod N > (C - START» 

While {there is a Tin C.ast with T.lle not null} do begin 

XEROX PARC, CSl- 91- 2, February 1991 



Appendix: Pseudo Code for Logging with Record Forwarding 

select T from C.ast such that T.lle is not null and (C - T.lle) mod N is the 

smallest 

Let E _ T.lle, the record to be forwarded 

if E.type = taction and E.undo exists then begin {not necessary to forward 

t,begin or redo entries} 

P(logsem) 

if {T is in ASTwith state not = committed} then begin 

if (TAIL + 1) mod N = START, then abort - some - transaction. 

TAIL (TAIL + 1) mod N 

Allocate a new buffer for constructing log record L 

L.type _ taction; L.tid _ E.tid; L.lle _ AST.T.lle; AST.T.lle _TAIL; 

L.redo _ null; L.object _ E.object 

L.undo _ E.undo; 

if E.lle is invalid, set T.lle (in C.ast) _ null, else set T.lle _'E.lle (E.lle is 

invalid if (E - E.lle) mod N > (E- START) mod N) 

write buffer to position TAIL on disk (not forced) 

end 

V{logsem) " 

end {not necessary to forward} 

end {While T} 

START < - C 

end {end of f.orwarding} 

Flush log, ensuring pages through TAIL: 1 are actually written 

21 

Update checkpointing block on disk (atomically) so that new checkpoint is in effect: 

CHKPBLOCK.start START 

CHKPBLOCK.tail Save 

V(forsem) 

Crash Recovery, 

During crash recovery, we keep a hash table called done(o) that indicates whether 

a recovery action hasbeen performed on object o. 

This is the procedure to be executed after a crash: 

START _ CHKPBLOCK.start; TAIL_ CHKPBLOCK.tail 

Let C be the log record identified by CHKPBLOCK.tail 

XEROX PARC, CSl- 91 - 2, February 1991 



22 Implementing Long Lived Transactions Using Log Record Forwarding 

Copy C.ast into AST 

For each Tin AST set T.state abort 

Let TAIL be the last valid log record (found using L.mark in log records) 

Scan the log backwards from TAIL to C, in order. For each record Y do begin 

let T be the transaction in ASTwith id Y.tid. (If it does not exist, make a record 

with T.tid _ Y.tid, T.lle _ null, and T.state _ abort). 

if Y.type = tcommit then T.state _ commit {next, use Application Rule, Sec 2.1} 

ifT.state = commit and done{Y.object) is false 

and Y.redo is not null then 

begin apply the redo on Y.object; done{Y.object) _ true end 

else if T.state = aborted and done(Y.object) is false 

and Y.undo is not null then 

begin apply the undo on Y.object; done{Y.object) _ true end 

end {of back scan to last checkpoint C} 

Delete all ASTtransactions with committed sta{e 

for each T in AST, if T.lle is invalid then T.lle _ null {T.lle is invalid if (C - T.lle) mod 

N > (C - START» 

While {there is a Tin ASTwith T.lle not null} do begin {abort remaining 

transactions} 

select T from AST such that T.lle is not null and (C - T.lle) mod N is the smallest 

Let E _ T.lle, the record to be undone 

ifdone{Y.object) isfalse and Y.undo is not null then 

begin apply the undo on Y.object; done{Y.object) _ true end 

if E.lle is invalid, set T.lle _ null, else set T.lle _ E.lle {E.lle is invalid if (E - E.lle) 

mod N > (E - START) mod N) 

end {abort pending transactions} 

Delete all transactions from AST; 

START_TAIL; 

CHKPLlST.new _ null; initialize log buffer in memory 

Do a checkpoint 

Resume transaction processing 

XEROX PARC, CSl- 91- 2, February 1991 




