
The Semantics of Lazy (And Industrious)
. Evaluation

Robert Cartwright
James Donahue

The Semantics of Lazy (And Industrious)
Evaluation

Robert Cartwright
Mathematical Sciences Department

Rice University

Houston, Texas 77251

James Donahue
Xerox Corporation

Palo Alto Research Center

Palo Alto, California 94304

CSL-83-9 April 1984 [P83-00010]

© Copyright 1982 ACM. All rights reserved. Reprinted with permission.

A bst ract: Lazy evaluation has gained widespread acceptance among language theore­

ticians-particularly among the advocates of "functional programming." The implementation

of lazy evaluation is easy to describe, but its semantic consequences are deceptively complex.

This paper develops a comprehensive semantic theory of lazy evaluation as a change in the

value space over which computation is performed. It also explores several approaches to

formalizing the theory of lazy evaluation within a programming logic.

A version of this paper appeared in the Conference Proceedings of the 1982 ACM Symposium

on Lisp and Functional Programming, pp. 253-264.

CR Categories and Subject Descriptors: F (Theory of Computation), F.1.2 (Modes of

Computation), F.3.1 (Specifying and Verifying and Reasoning about Programs), FA.1

(Mathematical logic), 0.1.1 (Applicative Programming).

Additional Keywords and Phrases: lazy evaluation, formal semantics, programming logics,

algebraic speCification.

XEROX Xerox Corporation

Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto, California 94304

THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 1

1. Introduction

Since the publication of two influential papers on lazy evaluation in 1976 [Hend76, Frie76], the

idea has gained widespread acceptance among language theoreticians-particularly among the

advocates of "functional programming" [HendSO, Back7S]. There are two basic reasons for the

popularity of lazy evaluation. First, by making some of the data constructors in a functional language

non-strict, it supports programs that manipulate "infinite objects" such as recursively enumerable

sequences; this may make some applications easier to program. Second, by delaying evaluation of

arguments until they are actually needed, it may speed up computations involving ordinary finite

objects.

Despite the popularity of lazy evaluation, its semantics are deceptively complex. Although the

implementation of lazy evaluation is easy to describe, its semantic consequences are not. In lazy

domains, the existence of infinite objects nullifies the usual principle of structural induction for

program data. Replacing conventional data constructors by their lazy counterparts profoundly changes

the structure of the data domain. As a result, reasoning about programs defined over lazy spaces is

a subtle, counterintuitive endeavor. Many simple theorems about ordinary data objects do not hold

in the context of lazy evaluation. For example, although the function reverseo reverse is the identity

function on ordinary linear lists, it does not equal the identity function in the context of lazy

evaluation; applying reverse to an infinite list yields the undefined object..1.. In response to these

issues, this paper develops a comprehensive semantic theory of lazy evaluation and explores several

approaches to formalizing that theory within a programming logic. The paper includes four new

interesting results.

First, there are several semantically distinct definitions of lazy evaluation that plausibly capture

the intuitive notion. In contrast to usual implementation-oriented approaches in the literature, we

define lazy evaluation as a change in the value space over which computation is performed. We use

a small collection of domain constructors from denotational semantics [Scot76, ScotSl, ScotS3] to

build abstract value spaces that correspond to the meanings of computations using various lazy

constructors. Our abstract approach to defining lazy domains accommodates several distinct

interpretations of the informal concept of lazy lists developed in the literature [Frie76, Hend76].

Apparently trivial programs produce radically different results under the different interpretations.

Second, non-trivial lazy spaces are similar in structure (under the approximation ordering) to

universal domains (as defined by Scott [Scot76]) such as the Pw model for the untyped lambda

calculus. Specifically, we show that Pw (with the standard primitive operations 0, succ, pred, cond,

K, S, and apply) is isomorphic to the simple lazy space Trivseq = Triv X Trivseq (with corresponding

primitive operations) where Triv is the trivial data domain consisting of two objects {..1., true} and

X denotes the standard cartesian product of two sets. The corresponding primitive operations on

Trivseq are recursively definable (using first order recursion equations) in terms of the constants true

and ..1., the constructor and selector functions for forming and tearing apart objects in Trivseq, and

the logical operations and and por (parallel or) on Triv. Hence, lazy trivial sequences (as defined

XEROX PARC, CSL-83-9, APRIL 1984

2 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION

above) provide an elegant model of the (untyped) lambda calculus that is intuitively familiar to most

computer scientists.

Third, we prove that neither initial algebra specifications [ADJ76,77] nor final algebra

specifications [Kami80] have the power to define lazy spaces. This result, which is surprisingly easy

to prove, establishes a fundamental limitation on the power of equational theories as data type

specifications.

Fourth, although lazy spaces have the same "higher-order" structure as Pw, they nevertheless

have an elegant, natural characterization within first order logic. in this paper, we develop a simple,

yet comprehensive, first order theory of lazy spaces relying on three axiom schemes asserting:

• the principle of structural induction for finite objects;

• the existence of least upper bounds for directed sets; and

• the continuity of functions.

To demonstrate the deductive power of the system, we show that there is a simple, natural translation

of the higher-order logic LCF [Gord77] into our first order system. In addition, we derive a

generalized induction rule (analogous to fixed point induction in LCF) for admissible predicates

called lazy induction that extends conventional structural induction to lazy spaces, greatly simplifying

the proof of many theorems. An instance· of this generalized rule reduces to ordinary fixed point

induction.

The remainder of the paper is divided into eight sections. Section 2 provides a brief overview

of Scott's theory of data domains [Scot76, Scot81, Scot83]. Section 3 develops the specific machinery

required to define the abstract semantics of lazy data domains. Using this machinery, Section 4

presents a taxonomy of lazy lists, demonstrating that there are many semantically distinct data

domains that capture the intuitive notion of lazy evaluation. Section 5 explores various approaches

to formalizing our semantics definition of lazy domains within a logical theory. In Section 6, we

prove that algebraic specification is too weak to accomplish the task and that lazy spaces have the

same rich "higher-order" structure as Pw. In Section 7, we present a simple first order theory for

lazy data domains and demonstrate that it is at least as powerful as the corresponding theory

formulated in the higher-order logic LCF. Section 8 gives some sample program proofs using the

first order theory developed in the preceding section. Finally, Section 9 assesses the intuitive

significance of our results and speculates about promising directions for future research.

2. Background

2.1 Mathe11lJlticai Foundations

The following group of definitions rigorously describes our concept of data domain, which is an

adaptation and distillation of several different expositions by Scott [Scot 76, 81, 83].

XEROX PARC, CSL-83-9, APRIL 1984

THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 3

Definition: A partial order S is a pair <lSI, C) consisting of a set lSI of objects and a binary relation

C over lSI such that:

(i) C is reflexive: 't/ x E lSI x C x.

(ii) C is antisymmetric: V x, y E lSI x C y 1\ y C x ~ x = y.

(iii) C is transitive: Vx, y, z E lSI x C y /\ y C z ~ x C z.

A subset R ~ lSI is consistent iff there exists u E lSI such that 't/ r ERr C u; u is called an upper

bound of R. A subset R ~ lSI is directed iff for every finite subset E ~ R has an upper bound in

R.

Notation: Given a partial order S, we will use the symbol S as an abbreviation for the more

cumbersome notation lSI whenever no confusion is possible. Hence xES and R ~ S abbreviate x

E lSI and R ~ lSI. respectively.

Definition: A (data) space S is a partial order with the following two properties:

(i) Every directed subset RES (including the empty set) has a least upper bound in S

(denoted lubs R). The least upper bound of the empty set is denoted by the special symbol

..Ls (pronounced "bottom").

(ii) S has a countable subset B = {bi E S liE N} called the basis elements of S (the elements

in the enumeration bl, b2, ... are not necessarily distinct; hence, B can be finite), such that:

(a) B is closed under the least upper bound operation on finite consistent subsets.

(b) Every element xES is the least upper bound of the subset of B that approximates

it, i.e.,

V xES x = lubs {y E B I y C x}.

(c) Every basis element x E B is finite: for every directed subset C of B, x Clubs C

implies that 3y E S such that x C y.

Theorem: A data space S has a unique basis; it consists of the finite elements of S.

Proof: By property (c) above, every basis element must be finite. To show that every finite element

must be a basis element, let e be an arbitrary finite element. Let E be the set {b C e I b E B}.

Since e is finite, there exists a finite subset E' ~ E such that lubs E' = e. But lubs E' must be a

basis element, because the basis is closed under least upper bounds on finite sets. 0

Notation: When no confusion is possible, we will frequently omit the subscripts (identifying a space)

on the symbols lub and ..1..

Definition: An element s of a data space S is finitely-founded iff the set {y E Sly C s} is finite.

A data space S is finitely-founded iff the finitely-founded elements of S form a basis for S. A data

XEROX PARC, CSL-83-9, APRIL 1984

4 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION

space S is flat (industrious) iff for every element yES, xCy {:::} (x = y V x = ..L). A finitely-founded

data space S is lazy iff it is not flat.

Although all lazy spaces are finitely-founded, many "higher-order" spaces (such as mappings

from one lazy space to another) are not finitely-founded.

Definition: An ideal over B is a set F such that:

(i) 'V x, y E F lub{x, y} E F, and

(ii) 'V x E F, y E B y C x ~ y E F.

Definition: Two spaces SI, S2 with bases Bl, B2 are isomorphic iff there exists a bijective (one-to-one

and onto) function h:Sl -+ S2 such that:

(ii) For any finite set S ~ SI, S is consistent iff h(S) is consistent.

(iii) For any consistent set S<SI, h(lub S) = lub h(S).

Theorem: A data space S with basis B is isomorphic to the space /(B) consisting of the set of ideals

over B under the partial ordering defined by the subset relation on ideals (which are simply sets of

basis elements).

Proof" The function h:/(B) -+ S defined by b(F) = lubs F maps /(B) onto S and clearly preserves

the approximation ordering on /(B):

Similarly the function h':S -+ /(B) defined by:

h'(x) = {y E B I y Cs x}

maps S into /(B) and preserves the approximation ordering on S. Moreover, it is obvious (from the

definition of a basis) that for all xES h(hrx)) = x.

To complete the proof, we must show that h' maps S onto /(B), i.e., that for each xES, there

is a unique ideal Fx in /(B) such that lubs F x = x. Assume that two distinct ideals F and G have

the same least upper bound in S. Without loss of generality, we can assume that F-G is non-empty.

Let w E F-G. Since w is a basis element, it is finite, implying that G (a directed set approximating

w C x) contains an element v such that w C v. Since G is an ideal, G must contain w, which is

an obvious contradiction.

Remarks: The preceding theorem shows that the structure of space S is completely determined by

the structure of B. In the neighborhood system formulation of domain theory [Scot 81], the elements

of a space are filters rather than ideals because each element of the universe is identified with a filter

of sets (called neighborhoods) that "contain" (~) rather than "approximate" (C) the element.

XEROX PARC, CSL-83-9, APRIL 1984

THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 5

Definition: Let S be an arbitrary data space with basis B. A function f:S#f --. S is approximable iff:

'V Xl, ... , X#f E S f(Xl, ... , X#f) = lub {f(bl' ... , b#f) I bl, ... , b#f E B Al~i~#f bi L Xi }.

An approximable function f:S#f --. S is strict iff the image of every argument list containing .i is

.i, i.e.,

Definition: A space R is a subspace of the space S iff:

(i) IRI ~ lSI, LR ~ LS, and .iR = .is·

(ii) IRI n B forms a basis for R.

(iii) For all directed subsets R' ~ R, lubR R' = lubs R'.

Remark: Some formulations of domain theory use a weaker definition of subspace. In particular,

they omit condition (ii) and replace condition (iii) by a stipulation that the consistency relation in

the subspace R agree with consistency relation in the parent space S. In Section 2.5, we discuss

some of the implications of this alternative.

Definition: Let G be a countable set of symbols. A domain D with signature G is a pair (0, G)

consisting of a space 0 (called the universe) and an interpretation function G mapping each symbol

g E G into an approximable function g (called an operation) over O.

Definition: Two domains Dl, D2 with signature G are isomorphic iff the spaces 01 and 02 are

isomorphic under a function h:Ol --. D2 and for each operation symbol g E G,

where gl and g2 denote the interpretations of g in Dl and D2, respectively.

Definition: A domain E with signature H is a subdomain of the domain D with signature G iff:

(i) E is a subspace of O.

(ii) H ~ G and for each operation symbol h E H, Gn(h) (the interpretation of h in D)

restricted to E is GE(h) (the interpretation of h in E).

The obvious difference between a space and a domain is that a domain identifies a collection of

primitive operations-in addition to a universe of values-that form a set of building blocks for

defining new functions over the universe. In contrast, a space leaves the possible operations on data

unspecified.

Notation: Given a domain D with signature G, we will frequently write G instead of G(G) to denote

the set of functions over D interpreting the operation symbols G.

XEROX PARC, CSL-83-9, APRIL 1984

6 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION

2.2 Sample Spaces

Many common data spaces such as the natural numbers and ordinary (industrious) lists are

degenerate in the sense that they contain no limit points; in these spaces, every element is a basis

element. For example, let Nat be the natural numbers N under the partial ordering C Nat defined

by:

x C Nat Y <=> X = Y V X = .1.

Nat is a space with basis Nat. Similarly, let Bool, the space of Boolean truth values, be defined as

the set:

{.1, true, false}

under the partial ordering CBool defined by:

x C Bool Y <=> x = Y V X = .1.

An example of a more interesting space is Pw, the power set of the natural numbers under the

partial ordering C determined by set inclusion. The finite (basis) elements of Pw are precisely the

finite sets of natural numbers.

2.3 Space Constructions

In specifying data spaces, it is often convenient to construct composite spaces from simpler ones.

There are two fundamental mechanisms for constructing composite spaces: the Cartesian product

construction and the approximable function construction. We will discuss several other constructions

later in the paper, but they are all based on these two mechanisms.

We will define the two constructions without proving that the constructed spaces are well-formed.

The interested reader is encouraged to verify that the constructions actually build legitimate data

spaces.

Definition: Given data spaces Sl, S2 with bases Bl, B2 and approximation orderings C 1, C 2, the

Cartesian product space Sl XS2 is the data space determined by the basis set:

under the relation C defined by:

The bottom element of SlXS2 is (.11, .12) where .11 and .12 denote the least elements of Sl and

S2·

Notation: In informal mathematics, no distinction is typically made between a unary function f

defined on the Cartesian product SXS and the corresponding binary function f over S. Since we

XEROX PARC, CSL-83-9, APRIL 1984

THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 7

will be dealing with spaces S that contain SXS as a subspace, we cannot ignore the difference

between the two. Consequently, we will employ the following conventions. First, unless we explicitly

state otherwise, the expression RXS always denotes the Cartesian product space formed from Rand

S. Second, the "exponentiated" expression Sk denotes the domain of a k-ary function over the

universe S. To avoid unneccesary confusion, we will confine our attention to unary functions when

it is feasible.

The second fundamental space construction is the formation of the space of approximable

mappings from one data space into another. An approximable mapping is a data object that denotes

a function.

Definition: Assume that we are given data spaces SI, S2 with bases Bl, B2. A binary relation I ~
BIXB2 is an approximable mapping Irom SI to S2 iff:

(i) I is consistent: for all x E Bh the set

{ y E B2 I 3x' E Bl [x' C x A x' I y] } is consistent.

(ii) lis directed-closed: for all <x', y') E B1XB2 (3<x, y)E/[x C x' A y' L y] => <x', y')Ej).

Definition: Given an approximable mapping I from SI to S2, the lunction determined by I is the

function f:Sl -4 S2 defined by:

f(x) = lub{ y E B2 I 3x' E Bl [x' L x A x' I y] }.

Observation: If I is an approximable mapping from S to S, then the function f over S determined

by I is approximable.

Definition: Given the spaces SI, S2 with corresponding bases Bl, B2 and approximation orderings

Ll, L2, the space of approximable mappings SI => S2 is the space determined by the basis:

if I 3 finite consistent f ~ Bl X B2 such that I is the directed closure of f}

under the partial ordering L defined by:

The least element of SI =>S2 is the relation {(bl, .1.2) I bl E Bl} which is the directed closure of the

empty relation; it determines the everywhere "undefined" function g defined by AX . .1.2.

Theorem: For any data space S that contains a subspace isomorphic to S=>S, there is an approximable

function Apply over S such that for every approximable mapping I E S=>S and corresponding

function f:S -4 S such that:

'V x E Sl Applyif, x) = f(x).

Prool: Let Apply be defined by the equation Apply(f, x) = lub {b E B I 3 (u, b) E f u L x}. The

theorem follows immediately from the definition of the function f determined by f. 0

XEROX PARC, CSL-83-9, APRIL 1984

8 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION

Although we have only defined the notion of approximable mappings corresponding to unary

functions, there is a standard transformation (usually called currying) that converts a multiple argument

function f:S#f --+ S to an equivalent unary function f: S --+ [S --+ ... --+ [S --+ S] ...] defined by the

lambda expression:

2.4 Computability

In order to formalize the idea of computable mappings (functions) on a data space, we must

identify a concrete representation for the elements of the space.

Definition: An effective presentation of a data space S is an enumeration B = <bi liE N> of the

basis of S (the elements in the enumeration are not necessarily distinct) such that:

(i) The binary relation CON defined by CON(i, j) ~ (3k bi C bk /\ bj C bk) is recursive.

(ii) The ternary relation LUB defined by LUB(i, j, k) ~ (bk = lub{bi, bj}) is recursive.

The enumeration B is called an effective presentation of S.

Theorem: Given effective presentations Bj. B2 for the spaces Sl, S2, we can construct effective

presentations for SlXS2 and Sl~S2.

Proof: Omitted.

A subspace S of an effectively presented space S (with presentation B = <bi liE N» is effective

iff the index set for the basis of S {i I bi E S} is recursively enumerable.

Notation: We will use italicized identifiers A, B, ... to denote effective presentations and the matching

Roman identifiers A, B, ... to denote the corresponding sets of basis elements.

In an abstract implementation of an effectively presented space S, each element x of the universe

is represented by a natural number xR encoding the index set In(x) = {iI, i2, ... } of the set of basis

elements {bil, bi2, ... } approximating x. More precisely, there is a binary total recursive function p
such that for all xES, Ak . P(xR, k) has range In(x). In this context, a computable function f over

S is implemented by a #f-ary partial recursive function tR such that for all Xl, ... , x#f E ·S, the

function: Ak. P(tR(X1 R, ... , x#'), k» has range In(tR(x1, ... , X#f».

Given the preceding motivation, we formalize the notions of computable function and computable

mapping as follows:

Definition: An approximable mapping f is computable iff it is recursively enumerable, using the

indices given in the enumerations Bj. B2 to name elements in B1 and B2. The function f determined

by an approximable mapping f from Sl into S2 is computable iff f is computable.

XEROX PARe, CSL-83-9, APRIL 1984

THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 9

A computable function f: Sl -+ S2 is "computable" in the sense that given an arbitrary element

x E Sl (represented by the code xR), we can enumerate the set of basis elements that approximate

the image element f(x) E S2.

Definition: A data domain D = (D, G> is computable iff there exists an effective presentation B

for D such that every operation g EGis computable. An element d E D is accessible iff the index

set of the ideal of basis elements approximating d is recursively enumerable. An element d E D

is definable in D iff there is a variable-free term Pd constructed from the operation symbols in G

such that denotes d. A function f: Dn -+ D is recursively definable in D iff there is a term T f

composed solely from the free variables Xl, ••• , Xn and the operations G such that f is the least

function (using the approximation ordering on the corresponding mappings in On=> D) satisfying

the equation (called a recursive program for 0:

(*) f(xj, ... , x,J = Tf

The domain D is expressive iff every accessible element of 0 is definable in D. The domain D is

computationally complete iff every computable function f: Dn -+ D (n>O) is recursively definable in

O. 0 is reflexively complete iff the following three properties hold:

(i) D=>O is isomorphic to a subspace MaPO of D.

(ii) Every accessible element of M aPO is definable in O.

(iii) The function Apply: 0 -+ 0 defined in the previous section is recursively definable in

D.

Remarks: By Kleene's recursion theorem, the least function f satisfying the equation (*) must exist

since it is simply the least fixed-point of the approximable function F: [Dn -+ D] -+ [Dn -+ D]

denoted by the lambda expression:

AJ. A [Xl, ••• , x,J. Tf

Observation: If a domain D is reflexively complete, then it is computationally complete. A

particularly appealing property of Scott's theory of data domains is that the set of approximable

mappings between effectively presented spaces is an effectively presentable space in its own right.

Moreover, the set of computable mappings within this space are precisely the accessible elements of

the space. We will discuss this issue in more detail below. In this paper, we will be exclusively

concerned with computable spaces and domains.

2.5 Retractions on the Universal Domain

A fairly rich collection of spaces can be constructed by starting with a few very simple primitive

spaces (such as Nat and Boo1) and constructing more complex spaces by composing the Cartesian

product and approximable mapping space constructions. However, it is easy to devise spaces such

XEROX PARC, CSL-83-9, APRIL 1984

10 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION

as infinite cartesian products of primitive spaces that are beyond the scope of this simple scheme.

Scott has developed a much more comprehensive approach to the problem of constructing spaces

based on the concept of a universal space.

Definition: A universal space U is a computable space with effective presentation B such that every

data space D is isomorphic to a subspace S of U. Moreover, if D is effectively presented, then S

must be an effective subspace of U.

Since every space D has an isomorphic image S within the universal space, the problem of

defining an arbitrary space can be reduced to defining an arbitrary subspace of a particular universal

space. A simple, elegant way to identify an arbitrary (computable) subspace S of a universal space

is to define a (computable) retraction characterizing S.

Definition: A retraction on U is a strict approximable function a: U => U such that aoa = a. A

retraction a is finitary iff the image a(U) is a subspace of U. A retraction is a projection iff it

preserves basis elements and least upper bounds. In other words, a must satisfy the following two

properties:

(i) Vb E B a(b) E B.

(ii) V consistent u, v E B a(lub{u, v}) = lub{a(u), a(v)}.

The range of a (finitary) retraction a is called the (finitary) retract of a.

Remark: A projection is clearly a special form of finitary retraction.

Theorem: For every subspace S of a universal space U, there is a projection a with retract S.

Proof: The projection a is defined by a(x) = {b E Bib E S /\ bex}. It is easy to verify that

a(U)=S. D

Remark: The reader should be aware that we are using a very strong definition of subspace, which

imposes severe restrictions on the structure of a universal space (e.g., it cannot be finitely-founded).

In fact, by our definition of subspace, the well known "universal" space TW is not universal. If we

weaken the definition of subspace as discussed in Section 2.1, then TW is universal and the preceding

theorem no longer holds. In this case, the basis elements of a subspace S ~ U may be infinite in

U (even though they must be finite in S). Moreover, there is no suitable notion of a canonical

retraction (analogous to a projection) characterizing an arbitrary subspace. For this reason, we prefer

the strong definition of subspace.

Definition: A universal domain U is a reflexively complete domain <U, G) such that the universe U

is a universal space.

XEROX PARC, CSL-83-9, APRIL 1984

THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 11

Remark: Given a universal space U, we can construct a universal domain by identifying a finite set

of functions Gover U such that:

(i) the Apply operation is recursively definable in <U, G), and

(ii) every recursively enumerable element of U is denoted by some variable-free term formed

from G.

Moreover, since U => U is isomorphic to a subspace of U and U is reflexively complete, there is a

term Pg (composed from G) for each operation g that is recursively definable in <U, G), such that:

Notation: To simplify the syntax of expressions over a universal domain U, we will adopt the

following conventions. First, since there is an element pf within U corresponding to every recursively

definable operation f, we will use the mapping Pf in place of each operation f other than constants

and the special operation Apply. Hence, instead of the expression f(x, y) we will write Apply(AppIY(Pf,

x), y). Second, we will abbreviate every application of the form Apply(u, v) by (u v). Third, we will

elide parentheses by making application left associative; hence u v w abbreviates «u v) w). Finally,

we will abbreviate applications of the form f (g x) by fo g x. This notation is consistent with the

conventions usually employed in the untyped lambda calculus [Bare??].

Although there are many different possible formulations of the universal domain, the particular

choice is unimportant. Given an arbitrary universal· domain U with basis B, we can recursively

define (in terms of the primitive operations G on the universal domain) the basic set of operations

Olazy that we need to construct lazy spaces. O\azy consists of the projection mappings RBoo\, Rx,

and R~ identifying the subspaces Bool ({true, false, .l}), UXU, and U=>U, and the mappings:

true, false: Bool

~: U => Bool

if-then-else: Bool => (U => (U => U))

and: Bool => (Bool => Boo1)

or: Bool => (Bool => Boo1)

par: Bool => (Bool => Boo1)

not: Bool => Bool

pair: U => (U => U XU))

left: U XU=> U

right: U XU=> U

s: (U=>U) => «U=>U => U=>U))

K: U => (U=> U)

XEROX PARC, CSL-83-9, APRIL 1984

12 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION

satisfying the axioms:

81.=1.
x::;t:1. => (8 x) = true

if then-else true x y = x

if then-else false x y = y

if then-else 1. x y = 1.

and x y = if then-else x y false

or x y = if then-else x true y

x::;t:true /\ y::;t:true => (por x y) = (or x y)

x=true V y=true => (por x y) = true

not x = if then-else x false true
Rx x = x => pair (left x) (right x) = x

left (pair x y) = x

right (pair x y) := y

R~ I = AX. lub{y E B I 3 u E B u c:::: x /\ u f y}

S x y z = x z (y z)

K xy = x.

The notation iS1 =>S2 means that f is a mapping in U=> U such that 'rJ x E S1 I x E S2. The

behavior of I on points outside of the space S1 is not specified.

With the exception of par, S, and K, these mappings are generalizations of familiar operations

from lazy LISP (where left, right, and pair correspond to car, cdr, and cons). The declared domain

for each mapping is its intended domain of usage. Each mapping is actually defined over the entire

universal space U; space declarations are enforced by projecting argument values outside the declared

domain onto the declared domain 0 (using the projection mapping RD).

Since Olazy includes the Apply operation and the Sand K mappings, we can form a variable-free

term that denotes the mapping corresponding to any function that is recursively definable in terms

of the operations Olazy. It is well known [Bare77] that any closed term (no free variables) in the

(untyped) lambda calculus can be expressed as a composition of the operations Sand K. Moreover,

the least fixed point operator Y: (U -+ U) -+ U that maps an approximable function into its least

fixed point is defined by the lambda expression:

AI . (Ax. I (x x)) (Ax. I (x x)).

The corresponding mapping Y is defined by:

Y = S a a

1= S K K

a = (S (S (K S) (S (K K) /)) (S (K S) (K /)) (K /)).

XEROX PARC, CSL-83-9, APRIL 1984

THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 13

Consequently, the mapping corresponding to an arbitrary recursive definition:

is simply:

Y (A * Xl A * X#f. 7'f)

where A * X • ex denotes the term (formed using Sand K) signifying the mapping corresponding to

the function AX . ex.

Notation: As a notational convenience, we will use lambda expressions (without the * exponent) to

denote mappings instead of compositions of Sand K; they are much easier to read. On a formal

level, these lambda expressions simply abbreviate the corresponding compositions of Sand K.

Similarly, we will elide applications of the Yoperator by using the equation:

1= 7'[/)

to abbreviate the recursive definition:

I = Y (AI. 7'[/).

We will also use the standard infix abbreviations for applications of Boolean mappings:

if X then y else Z E if then-else x y Z

x and y E and x y

x or y E or x y

x por y E por x y.

3. The Construction of Lazy Spaces

In constructing a composite space (such as a Cartesian product or discriminated union) from

component spaces, we must decide how to form the bottom element of the composite space, i.e.,

determine which constructed objects are identified with the undefined composite object This decision

implicitly determines whether the composite space corresponds to lazy or industrious computation.

Let D1 and D2 be arbitrary computable subspaces of our universal space U characterized by the

projection mappings R1 and R2 in U=>U. Using the Cartesian mapping pair: U=>(U=>UXU), we

can form a surprisingly wide variety of simple composite space using the following space constructions.

3.1 Ordinary product

XEROX PARC, CSL-83-9, APRIL 1984

14 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION

The corresponding basic mappings are:

Px: 01=>(02=>0IX02) = Ax. Ay. pair x y

fstx: 01 X02=> 01 = Az. left Z

sndx: 0IX02=>02 = Az. right Z

Rx: U=>0IX02 = Ax. Px (RjOfstx x) (R2osndX x).

3.2 Coalesced product

The corresponding basic mappings are:

P®: 01=>(02=>01®02) = AX. Ay. if ~x and ~y then pair x y else 1.

fst®: 01®02=>01 = Az. left Z

snd®: 01®02=>02 = Az. right Z

R®: U=>01®02 = AX. if ~x then P® (Rj°jst® x) (R2osnd® x) else 1..

3.3 Separated product

The corresponding basic mappings are:

PFi!J : 01 =>(02=> 01~02) = Ax. Ay. pair true (pair x y)

fstFi!J : 01~02 => 01 = Az. left° right Z

sn~ : 01~02=>02 = Az. rightoright Z

RFi!J : U=>01~02 = AX. P~ (RjOfst~ x) (R2osnd~ x).

3.4 Coalesced sum

The corresponding basic mappings are:

inL(f): 01 => 01 EB 02 = AX. if 8 x then pair true x else 1.

inR(f): 02=>01EB02 = AX. if ~x then pair false x else 1.

outL(f): 01 EB 02 => 01

outR (f): 01 EB 02 => 02

isL(f): 01 EB 02 => Bool

AZ. right Z

Az. right Z

Az. left Z

isR (f): 01 EB 02 => Bool Az. noto left Z

R(f): U=>01EB02 = AX. if isL(f) x then inL(f)°RjooutL(f) x else inR(f)°R2ooutR(f) x.

3.5 Separated sum

01 + 02 = {<true, x> I x E 01} U {<false, y> lyE 02} U {1.} .

XEROX PARC, CSL-83-9, APRIL 1984

THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION

The corresponding basic mappings are:

inL+: 01 => 01 + 02 = AX. pair true x

inR +: 02=> 01 + 02 = AY .pair false y

outL+: 01 + 02=> 01 = AZ. right Z

outR +: 01 + 02=> 02 = AZ. right Z

isL+: 01 + 02=> Bool = AZ. left Z

isR+: 01 + 02=> Bool = AZ. notoleft Z

R+: U=>01+02 = AX. ifisL+ x then inL+oRJooutL+ x else inR+oR2ooutR+ X.

3. 6 Lifted space

ot = {<true, x> I x E O} U {l.}.

15

Let RD be the projection mapping corresponding to O. The basic mappings corresponding to 0 t
are:

delay: O=> 0 t = AX. pair true x

force: 0 t=>O = AZ. right Z

Rf U=>U = AX. delayoRJoforce x

In constructing products and unions, there are three plausible symmetric ways to handle

composite objects containing an undefined component:

1. A composite object (e.g., an ordered pair) containing an undefined component is identified

with the undefined object in the constructed space. Coalesced products (®) and sums (E9)

obey this convention.

2. A constructed object containing at least one defined component is distinguished from the

bottom element of the composite space. In this case, two such objects are equal only if all of

their corresponding components are equal. Ordinary Cartesian products (X) obey this

convention.

3. A composite object is always distinguished from the bottom element of the constructed

space. In this case, the bottom element is outside the range of the constructor function

corresponding to the composite space. Separated products ([g]), separated sums (+), and

lifted spaces (t) all obey this convention.

Each of these three different approaches to constructing composite data objects corresponds to

a different evaluation protocol (sometimes called a "computation rule" [Manna 74]) for evaluating

applications of constructor functions to argument expressions. The first scheme corresponds to

conventional "call-by-value" computation: evaluate all argument expressions before forming the

composite object. The second scheme corresponds to dovetailing the evaluation of all argument

expressions until one of them converges, and forming a composite lazy object (where the arguments

XEROX PARC, CSL-83-9, APRIL 1984

16 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION

other than the one that converged remain unevaluated as closures [Hend80]). The third scheme

corresponds to forming a composite lazy object without evaluating any of the argument expressions.

In a lazy composite object, un evaluated arguments are evaluated only when the corresponding

selector function (e.g., car and cdr in lazy LISP) is applied to the composite object. If such an

application does not occur in the course of executing a program, the corresponding argument is never

evaluated.

The lifting operator t provides an explicit mechanism for constructing a space of "suspended"

or "unevaluated" elements corresponding to a given space D. Note that the composition of the lifted

space construction with the coalesced product construction is identical to the separated product

construction, i.e.,

Similarly, the separated sum construction can be defined in terms of the appropriate composition of

the lifting operator with the coalesced sum construction:

Consequently, without loss of generality, we can confine our attention (when it is convenient) to the

four space constructors: X (ordinary product), ® (coalesced product), E9 (coalesced sum), and t
(lifting operator).

4. A Taxonomy of Lists

The variety of mechanisms available for constructing lazy spaces suggests that there may be

several different lazy spaces that correspond to an ordinary (industrious) recursive data space (such

as lists)-each with subtly different properties. In fact, the number of semantically distinct possibilities

is surprisingly large. We will illustrate this phenomenon by studying list spaces in detail. In

particular, We are interested in determining and classifying the possible lazy variations on the domain

consisting of the retract List:

(0) List = Atom E9 (List ® List),

and the set of operations 0List:

1.: List

1.At: List

1.Pa: List

t, C, AI, A2, ... : List

cons: List2 ~ List

car: List ~ List

cdr: List ~ List

XEROX PARC, CSL-83-9, APRIL 1984

THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION

cond: List3 -+ List

isAtom: List -+ List

isPair: List -+ List

17

where t, f, AI, A2, ... are constants denoting Lists that are atoms. We presume that Atom is an

unspecified flat, expressive subdomain of U including the elements true and false and a set of objects

Nat isomorphic to the natural numbers.

The space List defined in equation (0) is the retract characterized by the projection mapping:

RList = Au. if isL u then inLffio RAtomooutL(fJ u

else inR(fJ ° P® (Rofst(fJ ooutRffi u) (Rosnd(fJ °outR(fJ u))

where RAtom is the retraction for Atom. In accordance with the conventions we adopted in Section

2.5, we will define the mappings in U determining the operations OList. The elements (mappings)

of U denoting the operations in 0List are defined by:

J.. = J..

J..At = inL(fJ J..

J.. Pa = cons J.. J..

t = inL(fJ true

f = inL(fJ false

Ai = in L(fJ ((Xi)

where (Xi denotes the appropriate element of Atom.

cons = AX. Ay. inR(fJ° P® X y

car = AX. fst®ooutR(fJ x

cdr = AX. snd®ooutR(fJ X

cond = AX. Ay. Az. if isL X then y else Z

isAtom = AX. if isL X then t else f

isPair AX. if isR x then t else f

isPair = AX. isR x.

In the process of classifying lazy variations on the domain List, we will identify which one

corresponds to the implementation-oriented semantics for Lazy LISP presented in the literature

[Hend76, Frie76]. Our investigation will demonstrate that apparently innocuous variations in the

definition of recursive data spaces have profound semantic consequences.

XEROX PARC, CSL-83-9. APRIL 1984

18 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EV ALUA TION

The obvious syntactic variations on the industrious List space defined above replace e by +,
or ® by X or 181. The variant spaces are:

(1) List

(2) List

(3) List

(4) List

(5) List

A tom + (List X List)

Atom + (List ® List),

Atom e (List X List)

Atom e (List 181 List)

Atom + (List 181 List)

In each variant domain, the primitive operations 0List are defined in the obvious way analogous to

their definition in domain (0). For example, in variation (1), the functions cons, car, cdr are

determined by the following mappings:

cons = AX. Ay. inR+ oPx X y

car AX. fstx ° outR + X

cdr = AX. sndxooutR+ X

We will subsequently consider other possible variations that involve the explicit use of the t operator.

As a gross categorization, we can classify list spaces on the basis of whether they accommodate

infinite lists. The ordinary industrious space (0) does not, but all of the lazy variants (1)-(5) do. For

example, the list zeros defined by the equation:

zeros = cons 0 zeros

denotes the undefined element .1 of the industrious space (0) while it denotes a linear list of O's in

each of the other spaces (1)-(5).

Within the class of spaces that support infinite objects, there are significant differences in the

kinds of infinite and undefined objects that can appear within infinite and partial objects. By

applying this form of analysis, we can demonstrate that the first four spaces (1)-(4) have fundamentally

different internal structure. We can also show that space (5) is distinct from the other spaces, but

the difference between it and space (1) is not significant because the two spaces (and corresponding

domains) are isomorphic.

In space (1), lists can contain undefined atoms (the element <true, .1», undefined pairs (the

element <false, .1», and undefined lists (.1). In space (2), lists can contain undefined atoms and

the undefined pair but not undefined lists. In space (3), lists can contain undefined lists but not

undefined atoms and undefined pairs. In space (4), lists can contain undefined lists and undefined

pairs, but not undefined atoms. In space (5), as in space (1), lists can contain undefined atoms,

undefined pairs, and undefined lists. However, space (5) contains a different form of undefined pair

«true, <true, .1») than spaces (1), (2), and (4). By inspecting a few simple examples, we can easily

prove that the first four lazy domains are distinct (non-isomorphic); corresponding computations

yield different answers. In domain (1), we can define:

XEROX PARe, CSL-83-9, APRIL 1984

THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 19

(a) the infinite list containing no atoms;

(b) the infinite sequence containing undefined lists (.L) alternating with zeros; and

(c) the list consisting of undefined atoms

by the expressions:

(a) BigTree = cons BigTree BigTree,

(b) AItSeq = cons .L (cons 0 AltSeq), and

However, in the other three domains (2)-(4), at least one of the corresponding lists does not

exist. In space (2), AltSeq denotes the undefined pair .LPa; lists may not contain undefined lists. In

space (3), both BigTree and .LAt denote the undefined list .L; every defined list must contain a

defined atom. In space (4), .LAt denotes the undefined list .L; lists cannot contain undefined atoms.

Hence, domains (1), (2), (3), and (4) are structurally distinct (nonisomorphic); the set of finite

elements is fundamentally different in each case.

Although each pair (created by a cons operation) in domain (5) contains a redundant level of

lifting, domain (5) is isomorphic to domain (1) under the function h: U -+ U determined by the

mapping:

h = AX. if isL x then x else pair true h(righto right x).

The function h simply strips one level of lifting from the representation of every List pair. The

interested reader should confirm that all of the operations in OUst (restricted to their respective

domains) are preserved by h.

With the aid of the t operator, we can define an even wider class of lazy list domains. First,

we can define three more basic variations on lazy lists (spaces (6), (7), and (8) below) completing an

enumeration of the eight possible ways (spaces (0)-(8) excluding (5» to include or exclude undefined

atoms, undefined pairs, and undefined lists. Second, we can define pairing operators that are lazy

in only one argument (unlike Px, P~). Finally, we can add redundant levels of delayed evaluation

in the formation of either atomic lists or paired lists analogous to the extra level that appears in

paired lists in space (5). Since every domain in the final class (involving redundant levels of lifting)

is isomorphic to a space outside the class, we will not discuss this class any further.

XEROX PARC, CSL-83-9, APRIL 1984

20 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION

To facilitate classifying the extra spaces, we rewrite the definitions of the five basic lazy list

spaces (1)-(5) in terms of the operators X, ®, +, ES, and t:

(1) List A tom t ES (List X List) t

(2) List = Atom t ES (List ® List)t

(3) List Atom ES (List X List)

(4) List = A tom ES (List X List) t

(5) List Atom t ES [(List X List) t]t.

In this standardized form, the close relationship between space (5) and space (1) is evident.

The remaining interesting variations on lazy lists are:

(6) List Atom t ES (List ~ List)

(7) List = Atom ES (List ® List)t

(8) List Atom t ES (List ® List)

(9) List A tom ES (List t ® List)

(10) List -= Atom ES (List ® Listt)

(11) List A tom t ES (List t ® List)

(12) List Atomt ES (List ® Listt).

Variation (6) accommodates undefined atoms and undefined lists, but not undefined pairs. Variation

(7) does exactly the opposite: it accommodates undefined pairs, but not undefined atoms or lists.

Variation (8) is only marginally lazy: within lists it accommodates undefined atoms, but not undefined

lists or undefined pairs. Variations (9), (10), (11), (12) all delay the evaluation of only one argument

of a paired list. As a result, spaces (9) and (11) allow infinitely deep lists but not infinitely long

ones while spaces (10) and (12) do the opposite. Spaces (9) and (10) prohibit undefined atoms while

spaces (11) and (12) accommodate them.

At this point, the question arises: Which denotational definition of lazy lists corresponds to the

standard implementation-oriented definition given in the literature [Frie76]? The answer is (4),

because their space accommodates undefined lists and undefined pairs but not undefined atoms.

The situation is somewhat more complicated in the case of the semantics presented in [Hend76].

Their semantic definition describes a space isomorphic to (1), but the definable data points are

contained within a sub domain isomorphic to (4), because the operations in their domain cannot

generate undefined atoms.

5. Axiomatizing Lazy Data Domains

Since there are significant differences between various formulations of lazy data domains, it is

important to develop clear, comprehensive axiomatic definitions for the alternatives. Naively, we

might attempt to specify a lazy space like:

XEROX PARC, CSL-83-9, APRIL 1984

THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 21

(1) List = Atom + List X List

(given an axiomatization for Atom) by devising a list of equations such as those presented in Section

3 and designating the lazy space as the corresponding initial algebra [ADJ76, 77] (or alternatively the

corresponding final algebra [Kami80]). From our previous discussion, it seems reasonable to

conjecture that this task will be deceptively difficult given the variety of lazy spaces available. In

fact, it is impossible. No recursively enumerable set of equations can specify a non-trivial lazy space

as either the initial or final algebra corresponding to the specification. We will formally prove this

fact after we establish a few important properties of lazy spaces.

Unlike ordinary data domains, lazy spaces have infinite strictly ascending chains of objects do
C d1 C d2 C ... (where C denotes the approximation relation introduced in Section 2) where each

object di is constructed in exactly the same way as di + 1 except that di uses .1. to approximate

substructures of di+1. In ordinary industrious data domains (such as LISP Lists), the undefined

object .1. cannot be embedded inside constructed objects, which precludes the existence of infinite

ascending chains of successively more complete approximations.

This apparently small change in the definition of data constructors (e.g., the LISP cons operation)

profoundly changes the structure of the data domain. Ordinary structural induction, for example,

no longer holds, because lazy spaces contain the limit elements of infinite ascending chains-which

cannot be constructed from primitive constants (e.g., atoms) in a finite number of steps. For example,

in the space of industrious lists, Lis!(o), let the operation leafcount be recursively defined by the

equation:

leafcount(x) = if isAtom(x) then 1 else leafcount(car(x» + leafcount(cdr(x»,

where if a then /3 else y abbreviates cond(a, /3, y) and the addition operation (+) is defined on

integer atoms in the usual way. Then the following theorem is easily proved by structural induction

on x:

'V x x:;t:.1. => leafcount(x)) O.

On the other hand, as soon as we extend the space Lis!(O) to include limit points, the principle

of structural induction fails. In a List space including the object BigTree (such as Lis!(l», the

preceding theorem is clearly false.

Since lazy spaces include limit points, they have a much more complex topological structure

than their industrious counterparts. An important illustration of this phenomenon is the following

observation. Let Triv denote the trivial subspace of U consisting of the objects true and .1.. Although

the industrious space:

TrivseqInd = Triv ® TrivseqInd

is completely degenerate (it contains no elements other than .1.), the corresponding lazy space:

Trivseq = (Triv X Trivseq)

XEROX PARC, CSL-83-9, APRIL 1984

22 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION

is isomorphic to Scott's Pw model for the untyped lambda calculus under the mapping a defined

by:

a(x) = { i I xi=true }

where Xi denotes the ith element of x = (xQ, Xl, ... , xj. ... >.
Pw is the space consisting of all subsets of the natural numbers under the approximation ordering

defined by the subset relation. If we strengthen the definition of a space by adding the requirement

that every space must contain a maximum element T and we weaken the definition of subspace as

discussed in Section 2.1, then Pw is a universal space. Hence, Pw contains a subspace D such that

D is isomorphic to the space Pw~ Pw. Moreover, if we augment the space Pw by a very small set

of operations Opw, the resulting domain Pw is universal. 0pw consists of the constant 0 denoting the

singleton set {OJ, the primitive binary operation Apply: Pw2 -+ Pw (defined exactly as in Section

2.3), and the primitive mappings (which are constant operations):

succ: Pw ~ Pw

pred: Pw ~ Pw

cond: Pw ~ (Pw ~ (Pw ~ Pw»

K: Pw ~ (Pw ~ Pw)

S: Pw ~ (Pw ~ (Pw ~ Pw»

defined by:

o = {OJ

succ X = {e+ 1 leE x)

pred x = {e I e+ 1 E x)

cond x y z = {e leE y /\ 0 E x) U {e leE z /\ 1 E y}

K xy = x

S x y z = (x z) (y z).

Surprisingly, all of these operations are recursively definable in a domain containing the lazy subspaces

Trivseq and Triv together with the obvious "structural" operations:

true, ..L: Triv

por, and: Triv2 -+ Triv

cons: TrivXTrivseq -+ Trivseq

hd: Trivseq -+ Trivseq

tl: Trivseq -+ Trivseq.

Note that the Cartesian product symbol X immediately above does not conform to our normal usage

of the notation: cons is a binary function -not a unary function on pairs. The recursive definitions

of the operations 0Pw in Trivseq (which are a bit tedious) appear in the Appendix.

XEROX PARC, CSL-83-9, APRIL 1984

THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 23

Since Pw together with the binary operation Apply: Pw2 -+ Pw and mapping constants Sand

K forms a model for the (untyped) lambda calculus (excluding 1}-reduction), the lazy space Trivseq

together with the corresponding operations also constitutes a model for the untyped lambda calculus.

Trivseq is a particularly attractive model for computer scientists, because it is based on widely

understood concepts from applicative programming. Lazy spaces are the natural "higher order"

generalization of familiar recursive data structures.

We have now developed sufficient machinery to prove the theorem establishing the inadequacy

of algebraic specification as a formalism for specifying lazy spaces:

Theorem: Neither initial algebra specifications nor final algebra specifications (consisting of a

recursively enumerable set of equations) can define non-trivial lazy spaces.

Proof: We will prove the theorem for the specific lazy space Trivseq, but it is clear that Trivseq can

be implemented within any non-trivial lazy space 0 using an abstraction function (homomorphism)

mapping 0 onto Trivseq.

The initial algebra corresponding to a recursively enumerable set of equations A is the set of

equivalence classes of variable-free terms under the relation MustEqual, where MustEqual(a, b) is

true iff the sentence a= b is derivable from A by first order deduction. Hence the equality relation

on variable-free terms is recursively enumerable. Yet the equality relation for a Trivseq is obviously

not recursively enumerable; otherwise, we could recursively enumerate the set of all pairs of equivalent

programs (using the untyped A-calculus as our programming language)-a set which is obviously not

recursively enumerable.

Similarly, the final algebra corresponding to a set of equations A (assuming the final algebra

exists) is the set of equivalence classes under the complement of the relation CannotEqual where

CannotEqual(a, b) is true iff the sentence a:l:b is derivable from A U {true:l:false} by first order

deduction. Note that if A has no final algebra, then the complement of CannotEqual is not an

equivalence relation. For a final algebra, the inequality relation is obviously recursively enumerable,

but again the inequality relation for Trivseq clearly is not. Otherwise, we could recursively enumerate

the set of all pairs of inequivalent programs (corresponding to unequal partial recursive functions),

a set which is obviously not recursively enumerable. 0

Since lazy spaces are so similar in structure to Pw, an obvious approach to formulating a logic

for lazy spaces is to use a higher order logic based on the lambda calculus (similar to Edinburgh

LCF) that conveniently expresses the properties of Pw. (See [Giles78] for an LCFaxiomatization of

lazy lists.)

However, we would prefer not to abandon first-order logic for two reasons. First, first-order

systems (such as first-order Peano arithmetic) based on structural induction provide a simple, elegant

characterization of ordinary data spaces. The highly successful Boyer-Moore LISP Verifier [Boyer75,

79] is based on such a first-order system. We would like to extend this approach to handle lazy lists

as well. Second, the completeness theorem for first order logic provides an invaluable tool for

analyzing the deductive power of any theory. If a first order theory is too weak to establish a

XEROX PARC, CSL-83-9, APRIL 1984

24 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION

particular theorem, there must be a non-standard model in which that theorem is false. In higher

order logics, on the other hand, a theory may be too weak to prove an important theorem, yet there

may be no model that refutes it.

6. A First-Order Theory of Lazy Domains

The chief obstacle to extending ordinary first-order structural induction theories to lazy domains

is that conventional structural induction is applicable only to well-founded sets, yet lazy spaces under

the (proper) containment (substructure) ordering determined the constructors are not well-founded

because a limit element (e.g., BigTree) can properly contain itself. Let D = (0, G) be a data

domain with signature G such that:

(i) G contains two constants true and false denoting inconsistent finite elements of 0 and the

standard ternary conditional function cond defined as in Section 3.

(ii) G contains a finite set of constructor functions C = {Cl, ... , cn} that generate the basis of

O. In other words, C satisfies the following properties:

(a) For every basis element b E B, there exists a term Pb composed solely from

operations in C such that Pb denotes b.

(b) For all C E C, V Xl, ... , X#c E B C(Xl' ... , X#c) E B.

(c) For all Cj, Cj E C,

V Xl, ... , x#cj, Yl, ... , Y#cj E B [Cj(Xl, ... , X#ci) L Cj (Yl , ... , Y#cj)

=> Cj(Xl, ... , X#ci) = .1 V (i=j 1\ XlLYl 1\ ... 1\ X#ciLY#cj)]

(iii) For each constructor C E C, G contains selector functions Sj, j = 1, ... , #c such that:

and a characteristic function isc: 0 -+ Bool such that:

isc(x) =.1 if x=.l

isc(x) = true if X * .1 1\ C(Sl(X), ... , s#c(X» = X

isc(x) = false otherwise.

The basis B of 0 forms a well-founded set under the substructure ordering (which is not an

approximation ordering) which is the transitive closure of the binary relation:

If D is industrious, then 0 = B, and the substructure ordering C on 0 is the conventional

well-founded ordering used in the structural induction scheme for O. It is a straightforward (but

XEROX PARC, CSL-83-9, APRIL 1984

THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 25

tedious, and error-prone) task to devise a first order axiomatization (comparable in deductive power

to the first order formulation of Peano's axioms) for an industrious domain D consisting of:

(1) implications between equations relating the operations in G (e.g., constructors, selectors,

characteristic functions, if-then-else);

(2) inequations asserting that the Boolean truth values true, false, and the undefined object

..1 are all distinct;

(3) axioms describing the substructure ordering C and the approximation ordering C (which

are both predicates);

(4) the structural induction scheme:

AcE C ['t/ Xl, ... , X#c (A i=l, ... , #c <p(Xi) => <p(c(Xl, ... , X#c)))] => 't/ X <p(X)

or, equivalently,

't/ X ['t/ x' (x'Cx => <p(x') => <p(X)] => 't/z <p(z).

A detailed account of this process appears in [Cart80].

The corresponding problem for lazy domains D is much more subtle. If we construct the

axiomatization described above for a lazy domain D, then the specified space contains only the finite

objects (basis elements) of the lazy space. (Non-standard models may contain "infinite objects", but

their behavior does not resemble that of lazy data objects.) The structural induction scheme (4) has

the effect of banning infinite objects (limit points) from the domain. In fact, if we extend the

axiomatized structure to include the characteristic predicate IsFin for finite objects and augment the

axiomatization by a sentence asserting that constructors map finite objects to finite objects, then we

can prove:

't/ X IsFin(x)=true

by structural induction.

As a result, recursive definitions over the domain may not have least fixed points because

directed sets do not necessarily have least upper bounds. For example, if we consider a domain

consisting the finite objects in Trivseq, the function definition:

f(x) = cons(true, f(x))

is contradictory, because we can prove by structural induction that:

't/ x, y X '* cons(y, x)

including X = ..l!

XEROX PARC, CSL-83-9, APRIL 1984

26 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION

If we replace induction scheme (4) by an induction axiom scheme restricted to finite objects:

(4') V x [IsFin(x) ~ [V x'[x'Cx ~ <p(x')] ~ <p(x)]] ~ [V z IsFin(z) ~ <p(z)],

then the lazy space is a model for our axiomatization, but so is the subspace containing only finite

objects. In such a theory, we could not prove any interesting statements about infinite objects.

7. A Satisfactory Axiomatization

The solution to the problem is to augment the axiomatization consisting of (1), (2), (3), and (4')

above by two additional schemes asserting that:

(5) Every definable directed set has a least upper bound.

(6) Every term t(x) over the domain operations G is continuous in the variable x.

They are formalized as follows. Let <p(u) and t(u) be an arbitrary formula and term respectively in

the language of the data domain and let x, y, z be variables not free in either <p(u) or t(u). Let

Dir{t(u)I<p(u)} abbreviate the formula:

V x, y [<p(x)J\<p(y) ~ 3z(<p(z) J\ x C t(z) J\ y C t(z»]

which asserts that {t(u)I<p(u)} is a directed set. Let lub{t(u)I<p(u)}(v) abbreviate the formula:

V x ([<p(x) ~ t(x) C v] J\ V Z[V x <p(x) ~ t(x) C z] ~ t(x) C v

which asserts that v is the least upper bound of the set {t(u)I<p(u)}. (Note that u is not free in either

Dir{t(u)I<p(u)} or lub{t(u)I<p(u)}(v». Then the two additional schemes are:

(5) (the existence of least upper bounds)

Dir{t(u)I<p(u)} ~ 3v [Iub{t(u)I<p(u)}(v)]

(6) (the continuity of functions)

lub{ul<p(u)}(v) ~ IUb{t(u)I<p(u)}(t(v».

where t(u) and <p(u) are an arbitrary term and formula containing no free variable other than u.

Scheme (5) asserts that if the set {t(u)I<p(u)} is directed, then it has a least upper bound. Scheme

(6) asserts that if the set {ul<p(u)} has a least upper bound v, then the function AU. t(u) is continuous

at v.

Although there are no blatant sources of incompleteness in this axiomatization (consisting of (1),

(2), (3), (4a), (4b), (5), (6», it is not obvious that the system is strong enough to prove all of the

important properties of particular lazy spaces. (For a non-trivial lazy space (e.g., Trivseq) the

axiomatization is obviously not complete by Godel's first incompleteness theorem.) For this reason,

XEROX PARC, CSL-83-9, APRIL 1984

THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 27

it is interesting to compare the power of our first-order system with the corresponding theory in

LCF, a logic specifically designed to accommodate "higher order" spaces like Pw. The LCF theory

looks similar except:

1. It includes the typed lambda calculus in the term syntax for the logic.

2. The induction axiom scheme is fixed point induction on recursively defined functions. This

scheme has the form:

cp(J..) A VJ1cp(f)=>cp(T(f]))) => cp(Y(Af. T[fJ»

where cp(f) is a formula that admits induction on f. Fixed-point induction is applicable only to

admissible formulas, where admissibility is a complex syntactic test (described in [Gord77D that

analyzes the types of terms within the formula.

The closest analog of structural induction in LCF is fixed point induction on a retraction

characterizing the domain of interest. The fixed point induction scheme has the form:

(7) [V f cp(f) => cp(T[fJ)] => cp(Y(Af. T[fJ»

where f is a function of type T, T is a functional mapping functions of type T to functions of type

T, cp(f) is an admissible formula containing no free variables other than f, and Y is the least fixed

point operator.

After studying the two systems, we were surprised to discover that our system subsumes LCF

both in expressiveness and deductive power. In particular, we can systematically translate arbitrary

LCF statements into equivalent statements in our first order system by:

(i) Converting all lambda expressions into equivalent expressions formed using the standard

Sand K combinators.

(ii) Converting all function applications to explicit applications (using the primitive operation

Apply) of corresponding mapping.

Unlike many translations between formal systems, this translation does not mutilate the syntactic

structure of the original formula. In fact, if we use the abbreviated notation for terms described in

Section 2, the first order translation of an LCF formula is identical to the original formula!

Under this translation, all of the LCF proof rules and axioms (expressed in terms of translated

formulas) are derivable in our first-order system. In particular, we can derive the LCF fixed point

induction scheme for admissible formulas. The derivation critically relies on the structural induction

scheme for finite objects (4'), the least upper bound scheme (5), and the continuity scheme (6).

We call the first order analog of fixed-point induction, lazy induction. If we use the abbreviated

notation described in Section 2, then the lazy induction scheme is identical in appearance to the

fixed point scheme (7). The formal derivation of lazy induction within our system is a tedious

induction on the structure of formulas that is beyond the scope of this paper, but the basic idea

underlying the proof is instructive.

XEROX PARC, CSL-83-9, APRIL 1984

28 THE SEMANTICS OF LAZY (ANO INOUSTRIOUS) EVALUATION

The admissibility test in LCF ensures that passing to the limit of a directed set (of lazy data

objects) does not change the meanings of subformulas that determine the truth of the entire formula.

The idea behind the derivation is that the metamathematical justification for fixpoint induction on a

function within a particular admissible formula can be translated into a proof in our first order

system consisting of two parts. The first part utilizes conventional structural induction to establish

that the formula holds for all finite approximations to the function. The second part extends the

result to the entire function (an infinite lazy object) by appealing to the definition of admissibility

and the fact that all functions in the domain are continuous.

Although the admissibility test required for lazy induction is awkward, the rule can be a useful

shortcut in certain situations. A particular important example is lazy induction on the retraction Ro

characterizing the recursive data type D defined by the domain equation:

D=Dnl+ ... +Dnk

where n1, ... , nk are positive integers. For each component Dni of D, let isCj, Cj, and SJ.,} j = 1, ... , nj

denote the recognizer, constructor, and selector functions, respectively, used to identify, build, and

tear apart objects of form DOi within D. Then Ro is defined by the equation:

Ro = AX. if isq X then q (R°SJ.,l x) ... (R°SJ.,n1 x) ...

else if iSCk x then Ck (RoSk,l x) ... (RoSk,nk x) else 1...

When we apply lazy induction to this retraction, the premises of the rule reduce to the premises of

conventional structural induction for the finite objects of the space. Similarly, the conclusion of the

rule reduces to an assertion that the hypothesis holds for all objects in D. Hence, if a formula is

admissible, conventional structural induction establishes the formula holds for all objects in D, not

just finite ones!

8. Sample Program Proofs

Consider the recursive definition:

append(x, y) = if is Atom x then yelse cons(car(x), append(cdr(x), y»

over the data domain List{l). The following formula:

'V x, y, z append(x, append(y, z» = append(append(x, y), z).

is obviously true on the domain of finite objects (including 1..). The proof is a trivial induction on

the structure of x. Does the same theorem hold for all lazy lists? The answer must be yes, because

the formula stating the theorem is admissible! Lazy induction enables us to prove theorems about

lazy spaces using conventional structural induction.

XEROX PARe, CSL-83-9, APRIL 1984

THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 29

On the other hand, lazy induction is not sound if the induction formula is not admissible. For

instance, consider the formula:

(8) V x E List (..L ~ zap(x))

where the function zap and the relation ~ are defined by the formulas:

zap(x) = if isAtom(x) then ..L else cons(car(x), zap(cdr(x)))

x ~ y ~ (x=y) V (x C y).

By induction on x, we can trivially "prove" the formula (8), yet it is clearly false for lazy lists since:

zap(BigTree) = BigTree

where BigTree is defined as in Section 4. In this case, lazy induction fails because the formula (8)

is not admissible.

9. Conclusions and Future Research

Although implementation-oriented definitions of lazy evaluation provide some insight into the

behavior of particular computations, they are inadequate as the basis of a logical theory of lazy

spaces. They also blur subtle but important semantic distinctions between different forms of lazy

evaluation. Our abstract characterization in terms of domain constructors provides a much clearer

picture of the mathematical properties of lazy spaces and directly corresponds to a natural formal

system for reasoning about them.

Since lazy spaces have essentially the same complex structure as Scott's Pw model of the untyped

lambda calculus, they cannot be specified by restrictive specification methods such as algebraic

specification. One approach is to axiomatize lazy spaces within a least fixed point logic such as LCF.

In this paper we have presented a first-order theory of lazy spaces that we prefer to higher order

formalizations because it relies on conventional structural induction rather than fixed point induction

as the fundamental axiom scheme. In our system, the admissibility test for fixed point induction is

simply a sufficient set of conditions for its derivation. Moreover, our system extends conventional

structural induction (as implemented in the Boyer-Moore LISP Verifier [Boyer75, 79]) to the context

of lazy data domains, providing the programmer with a simple intuitive framework for reasoning

about functions that manipulate lazy data objects.

Since computable functions have a natural extensional representation as lazily evaluated graphs

(mappings), our first-order formalization of lazy spaces accommodates function spaces as well. (There

are still multiple "partial" mappings corresponding to the same function, but the only difference

between an arbitrary mapping and the canonical one for the equivalence class is that the canonical

one contains every possible piece of redundant information.) However, we must overcome one major

obstacle to make our treatment of functions intuitively accessible to programmers: our reliance on

XEROX PARe. CSL-83-9, APRIL 1984

30 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION

combinators rather than lambda expressions to denote computable mappings. In response to this

issue, we are currently developing a collection of combinators that closely correspond to conventional

lambda notation.

References

[ADJ76]

Goguen, 1., Thatcher, 1., and Wagner, E. An initial algebra approach to the specification,

correctness and implementation of abstract data types. Yorktown Heights, NY: IBM Thomas

1. Watson Research Center; 1976; Technical Report RC-6478.

[ADJ77]

Goguen, J., Thatcher, 1., Wagner, E., and Wright, 1. Initial algebra semantics and continuous

algebras. Journal of the ACM. 1977 January; 24(1): 68-95.

[Back78]

Backus, 1. Can programming be liberated from the von Neumann style? A functional style and

its algebra of programs. Communications of the ACM. 1978 August; 21(8): 613-64l.

[Bare77]

Barendregt, H. The type free lambda calculus. In: Barwise, 1., ed. Handbook of mathematical

logic. Amsterdam: North-Holland; 1091-1132.

[Boye75]

Boyer, R. S., and Moore, J S. Proving theorems about LISP functions. 'Journal of the ACM.

1975 January; 22(1): 129;.144.

[Boye79]

Boyer, R. S. and Moore, J S. A computational logic. New York: Academic Press; 1979.

[Cart76]

Cartwright, R. User-defined data types as an aid to verifying LISP programs. Proceedings of

the International Conference on Automata, Languages and Programming. Edinburgh Press,

1976.

[Cart80]

Cartwright, R. A. Constructive alternative to axiomatic data type definitions. Proceedings of

the 1980 LISP Conference; Stanford, CA; 1980.

[Ende72]

Enderton, H. B. A mathematical introduction to logic. New York: Academic Press; 1972.

[Frie76]

Friedman, D. and Wise, D. CONS should not evaluate its arguments. Proceedings of the

International Conference on Automata: Languages and Programming. Edinburgh University

Press; 1976; 257-284.

XEROX PARC, CSL-83-9, APRIL 1984

THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 31

[Gile78]

Giles. An LCFaxiomatization of lazy lists. Edinburgh University; Computer Science

Department; CSR -31-78.

[Gord77]

Gordon, M., Milner, R., and Wadsworth, C. Edinburgh LCF. Edinburgh University; Computer

Science Department; CSR -11-77.

[Gutt78]

Guttag, J. and Horning, J. The algebraic specification of abstract data types. Acta Informatica.

1978; 10(1); pp. 27-52.

[Hend80]

Henderson, P. Functional programming: Application and implementation. London: Prentice­

Hall; 1980.

[Hend76]

Henderson, P and Morris, 1., Jr. A lazy evaluator. Proceedings of the Third Symposium on

Principles of Programming Languages; 1976; ACM: 95-103.

[Kami80]

Kamin, S. Final data type specifications: A new data type specification method. Proceedings

of the Seventh Symposium on Principles of Programming Languages; 1980 January 28-30; Las

Vegas, NV. ACM: 131-138.

[Scot76]

Scott, D. Data types as lattices. SIAM Journal of Computing. 1976 September; 5(3): 522-587.

[Scot81]

Scott, D. Lectures on a mathematical theory of computation. Oxford, UK: Oxford University

Computing Laboratory; Technical Monograph PRG-19.

[Scot83]

Scott, D. Domains for denotational semantics. Pittsburgh, PA: Carnegie-Mellon University;

Computer Science Department; Technical Report; 1983.

[Stoy77]

Stoy, J. Denotational semantics: The Scott-Strachey approach to programming language theory.

Cambridge, MA: MIT Press; 1977.

Appendix: Mapping P w Onto the Lazy Space Trivseq

Each data object X in the lazy space Trivseq is an infinite sequence Xo, Xl, ... , Xi, ... in which

each element Xi is either true or..1.. In effect, a member of Trivseq is a potentially infinite

enumeration of natural numbers (the indices of the convergent elements). Consequently, the

abstraction function a: Trivseq --+ Pw defined by:

XEROX PARC, CSL-83-9, APRIL 1984

32 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION

a(X) = { i I Xj=true }

establishes a natural isomorphism between the two spaces.

This appendix contains a recursive program defining the operations OPw' over Trivseq

corresponding to the basic operations 0Pw of Pw. The style of this program is rather unusual because

all computations over Trivseq are infinite enumerations in which the subcomputations determining

individual elements are dovetailed (performed in parallel)-an unfamiliar phenomenon in

conventional applicative languages such as Pure LISP.

For the sake of clarity, each individual recursive function definition in the program obeys the

following syntactic conventions.

l. Each definition has the form:

f(x) == informal-definition = formal-definition

where an informal-definition is a mathematical description of the value of the function and

formal-definition is the actual body of the function definition. I f the formal-definition is

transparent, then the informal-definition may be omitted.

2. The names of Trivseq operations (functions that return values of type Trivseq) are

capitalized; the names of Triv operations (functions that return values of type Triv) are not.

Triv operations are used as subfunctions within the definitions of the functions in OPw'.

3. Variables ranging over Trivseq that are intended to denote arbitrary sets in Pw are

capitalized. Variables ranging over. Trivseq that are intended to denote individual natural

numbers (singleton sets) are not. No variables range over Triv.

4. In every unary function application, the parentheses enclosing the argument are omitted.

Note that this is not the same abbreviation we employed in connection with mappings in the

main body of the paper. In the following program, every application within an expression is

explicitly written down; consequently, a chain of unary applications f g h x associates to the

right [f(g(h(x»)], rather than the left [«(f g) h) x)] .

5. In informal definitions (comments), the following special notation appears.

(a) The symbol Ej denotes the finite set in Pw corresponding to the binary coded

integer i, i.e.,

{j I bit j in the binary representation of i is I}

where bits are numbered from right to left starting with O.

(b) The function symbol p denotes the inverse of the function a, i.e., psis the infinite

sequence denoting the set of natural numbers s.

(c) The bracketed pair (i, j> abbreviates the arithmetic expression [(i + j)*(i + j + 1)]/2

+ i. The binary function Ai, j . (i, j> is a commonly used bijective pairing function.

XEROX PARe. CSL-83-9, APRIL 1984

THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 33

Auxiliary Operations

The following collection of auxiliary operations OAux are used in the definition of the primitive

operations OPw of Pw.

def X == 3i E aX =

hd x por def TI X

Plus(I, J) == {i + j liE aI 1\ j E aJ} =

Cons(hd I and hd J, Cons([hd 11 I and hd J] por [hd I and hd TI J], Plus(TI I, TI J»)

Times(I, J) == {i*j liE aI /\ j E aJ} =

Cons([def I and hd J] or [hd I and def J], Plus(TI I, Times(I, TI J»)

Pair(I, J) == {<i, j> I 3i E a(I) /\ 3j E a(J)} =

Plus(Halve Times(Plus(I, J), Plus (Plus(I, J), Succ 0»), I)

Fst X = {i I 3j <i, j> E aX} =
Fstl(O, X)

Fstl(k, X) == {i-k I 3j <i, j> E aX} =
Cons(anySnd(k, 0, X), Fstl(SUCC k, X»

anySnd(i, k, X) == 3 j ~ k [<i, j> E aX] =

Overlap(Pair(i, k), X) por anySnd(i, Succ k, X)

Snd X == {j I 3i [<i, j> E aX]} =
Sndl(O, X)

Sndl(k, X) == {j-k I 3i [<i, j> E aX]} =

Cons(anyFst(O, k, X), Sndl(SUCC k, X»

anyFst(k, j, X) == 3 i ~ k [<i, j> E aX] =
Overlap(Pair(k, j), X) por anyFst(Succ k, j, X)

Overlap(I, J) == 3i i E [aI /\ i E aJ] =

hd I and hd J por Overlap(TI I, TI J)

Top == {i} =
Cons(true, Top)

odd X == 3i [2*i+l E aX] =
hd TI x por odd TI TI X

Halve X == {i I 2*i E aX} U { j I 2*j + 1 E aX} =

Cons(hd X por hd TI X, Halve TI TI X)

XEROX PARC, CSL-83-9, APRIL 1984

34 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EV ALUA TION

approx(i, X~ == €i ~ aX =

hd i por [([odd i and hd X] por odd TI i) and approx(Halve i, TI X)]

Primitive Operations of P w

Recursive definitions for all the operations in 0Pw' = { 0, Succ, Pred, Cond, K, S, Apply} in

terms of the auxiliary operations OAux appear below.

o == {OJ = Cons(true, ..i)

Succ = GraphSuee 0

GraphSuee k == {(i, j>-k I (i, j> ~ k /\ j E [a Suee P €i]} =

Cons(approx(Snd k, Suee Fst k), GraphSuee Suee k)

Suee I == {i + 1 liE a I} = Cons(..1, I)

Pred == GraphPred 0

GraphPred k == {(i, j>-k I (i, j> > k /\ j E [a Pred P €i]} =
Cons(approx(Snd k, Pred Fst k), GraphPred Suee k)

Pred I == {i I i + 1 E a I} = TI I

Cond = GraphCond 0

GraphCond k == { (i, j>-k I (i, j> > k A j E [a Cond1 P €i]} =

Cons(approx(Snd k, Cond1 Fst k), GraphCond Suee k)

Cond1 X = GraphCond1(X,0)

GraphCond1(X, k) == {(i, j>-k I (i, j> ~ k A j E a Cond2(X, P €i) } =

Cons(approx(Snd k, Cond2(X, Fst k», GraphCond1(X, Suee k»

Cond2(X, Y) == AZ. Cond(X, Y, Z) = GraphCond2(X, Y, 0)

GraphCond2(X, Y, k) == {(i, j>-k I (i, j> > k /\ j E a Cond(X, Y, P €i) } =
Cons(approx(Snd k, Cond(X, Y, Fst k», GraphCond2(X, Y, Suee k»

Cond(l, Y, Z) == {i E aY I 0 E aI} U {j E aY I 3 w w+l E aI} =

Cons([hd I and hd Y] por [def TI I and hd Z], Cond(l, TI Y, TI Z»

K X == {(i, j> I j E aX} = Pair(Top, Filter X)

Filter I == {i I €i ~ aI} = Filter1(I, 0)

Filter1(I, k) == {i-k I i ~ k A €i ~ aX} =

Cons(approx(k, I), Filterl(I, Suee k»

XEROX PARC, CSL-83-9, APRIL 1984

THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION

S = GraphS(O)

GraphS k == {<i, j>-k I <i, j> > k A j E [a Sl P f:j]} =

Cons(approx(Snd k, Sl Fst k), GraphS Succ k)

Sl X == A Y. S2(X, Y) = GraphS1(X, 0)

GraphS1 (X, k) == {<i, j>-k I <i, j> ~ k A j E a Sl(X, P f:j)} =
Cons(approx(Snd k, S2(X, Fst k)), GraphSl(X, Succ k))

S2(X, Y) = AZ. S3(X, Y, Z) = GraphS2(X, Y, 0)

GraphS2(X, Y, k) == {<i, j>-k I <i, j> ~ k A j E a S3(X, Y, P f:j)} =

Cons(approx(Snd k, S3(X, Y, Fst k)), GraphS2(X, Y, Succ k))

S3(X, Y, Z) = Apply(Apply(X, Z), Apply(Y, Z))

Apply(F, X) _ {j I 3i <i, j> E F A f:j ~ X} =

Snd AppIY1(0, F, X)

AppIYl(F, X, k) == { p-k I p > k ApE F A f:Fst p ~ X} =

Cons(test(k, X, F), AppIYl(F, X, Succ k))

test(p, X, F) == p E F A f:Fst p ~ X =

Overlap(p, F) and approx(Fst p, X)

XEROX PARC, CSL-83-9, APRIL 1984

35

