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THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 1 

1. Introduction 

Since the publication of two influential papers on lazy evaluation in 1976 [Hend76, Frie76], the 

idea has gained widespread acceptance among language theoreticians-particularly among the 

advocates of "functional programming" [HendSO, Back7S]. There are two basic reasons for the 

popularity of lazy evaluation. First, by making some of the data constructors in a functional language 

non-strict, it supports programs that manipulate "infinite objects" such as recursively enumerable 

sequences; this may make some applications easier to program. Second, by delaying evaluation of 

arguments until they are actually needed, it may speed up computations involving ordinary finite 

objects. 

Despite the popularity of lazy evaluation, its semantics are deceptively complex. Although the 

implementation of lazy evaluation is easy to describe, its semantic consequences are not. In lazy 

domains, the existence of infinite objects nullifies the usual principle of structural induction for 

program data. Replacing conventional data constructors by their lazy counterparts profoundly changes 

the structure of the data domain. As a result, reasoning about programs defined over lazy spaces is 

a subtle, counterintuitive endeavor. Many simple theorems about ordinary data objects do not hold 

in the context of lazy evaluation. For example, although the function reverseo reverse is the identity 

function on ordinary linear lists, it does not equal the identity function in the context of lazy 

evaluation; applying reverse to an infinite list yields the undefined object..1.. In response to these 

issues, this paper develops a comprehensive semantic theory of lazy evaluation and explores several 

approaches to formalizing that theory within a programming logic. The paper includes four new 

interesting results. 

First, there are several semantically distinct definitions of lazy evaluation that plausibly capture 

the intuitive notion. In contrast to usual implementation-oriented approaches in the literature, we 

define lazy evaluation as a change in the value space over which computation is performed. We use 

a small collection of domain constructors from denotational semantics [Scot76, ScotSl, ScotS3] to 

build abstract value spaces that correspond to the meanings of computations using various lazy 

constructors. Our abstract approach to defining lazy domains accommodates several distinct 

interpretations of the informal concept of lazy lists developed in the literature [Frie76, Hend76]. 

Apparently trivial programs produce radically different results under the different interpretations. 

Second, non-trivial lazy spaces are similar in structure (under the approximation ordering) to 

universal domains (as defined by Scott [Scot76]) such as the Pw model for the untyped lambda 

calculus. Specifically, we show that Pw (with the standard primitive operations 0, succ, pred, cond, 

K, S, and apply) is isomorphic to the simple lazy space Trivseq = Triv X Trivseq (with corresponding 

primitive operations) where Triv is the trivial data domain consisting of two objects {..1., true} and 

X denotes the standard cartesian product of two sets. The corresponding primitive operations on 

Trivseq are recursively definable (using first order recursion equations) in terms of the constants true 

and ..1., the constructor and selector functions for forming and tearing apart objects in Trivseq, and 

the logical operations and and por (parallel or) on Triv. Hence, lazy trivial sequences (as defined 
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2 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 

above) provide an elegant model of the (untyped) lambda calculus that is intuitively familiar to most 

computer scientists. 

Third, we prove that neither initial algebra specifications [ADJ76,77] nor final algebra 

specifications [Kami80] have the power to define lazy spaces. This result, which is surprisingly easy 

to prove, establishes a fundamental limitation on the power of equational theories as data type 

specifications. 

Fourth, although lazy spaces have the same "higher-order" structure as Pw, they nevertheless 

have an elegant, natural characterization within first order logic. in this paper, we develop a simple, 

yet comprehensive, first order theory of lazy spaces relying on three axiom schemes asserting: 

• the principle of structural induction for finite objects; 

• the existence of least upper bounds for directed sets; and 

• the continuity of functions. 

To demonstrate the deductive power of the system, we show that there is a simple, natural translation 

of the higher-order logic LCF [Gord77] into our first order system. In addition, we derive a 

generalized induction rule (analogous to fixed point induction in LCF) for admissible predicates 

called lazy induction that extends conventional structural induction to lazy spaces, greatly simplifying 

the proof of many theorems. An instance· of this generalized rule reduces to ordinary fixed point 

induction. 

The remainder of the paper is divided into eight sections. Section 2 provides a brief overview 

of Scott's theory of data domains [Scot76, Scot81, Scot83]. Section 3 develops the specific machinery 

required to define the abstract semantics of lazy data domains. Using this machinery, Section 4 

presents a taxonomy of lazy lists, demonstrating that there are many semantically distinct data 

domains that capture the intuitive notion of lazy evaluation. Section 5 explores various approaches 

to formalizing our semantics definition of lazy domains within a logical theory. In Section 6, we 

prove that algebraic specification is too weak to accomplish the task and that lazy spaces have the 

same rich "higher-order" structure as Pw. In Section 7, we present a simple first order theory for 

lazy data domains and demonstrate that it is at least as powerful as the corresponding theory 

formulated in the higher-order logic LCF. Section 8 gives some sample program proofs using the 

first order theory developed in the preceding section. Finally, Section 9 assesses the intuitive 

significance of our results and speculates about promising directions for future research. 

2. Background 

2.1 Mathe11lJlticai Foundations 

The following group of definitions rigorously describes our concept of data domain, which is an 

adaptation and distillation of several different expositions by Scott [Scot 76, 81, 83]. 
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THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 3 

Definition: A partial order S is a pair <lSI, C) consisting of a set lSI of objects and a binary relation 

C over lSI such that: 

(i) C is reflexive: 't/ x E lSI x C x. 

(ii) C is antisymmetric: V x, y E lSI x C y 1\ y C x ~ x = y. 

(iii) C is transitive: Vx, y, z E lSI x C y /\ y C z ~ x C z. 

A subset R ~ lSI is consistent iff there exists u E lSI such that 't/ r ERr C u; u is called an upper 

bound of R. A subset R ~ lSI is directed iff for every finite subset E ~ R has an upper bound in 

R. 

Notation: Given a partial order S, we will use the symbol S as an abbreviation for the more 

cumbersome notation lSI whenever no confusion is possible. Hence xES and R ~ S abbreviate x 

E lSI and R ~ lSI. respectively. 

Definition: A (data) space S is a partial order with the following two properties: 

(i) Every directed subset RES (including the empty set) has a least upper bound in S 

(denoted lubs R). The least upper bound of the empty set is denoted by the special symbol 

..Ls (pronounced "bottom"). 

(ii) S has a countable subset B = {bi E S liE N} called the basis elements of S (the elements 

in the enumeration bl, b2, ... are not necessarily distinct; hence, B can be finite), such that: 

(a) B is closed under the least upper bound operation on finite consistent subsets. 

(b) Every element xES is the least upper bound of the subset of B that approximates 

it, i.e., 

V xES x = lubs {y E B I y C x}. 

(c) Every basis element x E B is finite: for every directed subset C of B, x Clubs C 

implies that 3y E S such that x C y. 

Theorem: A data space S has a unique basis; it consists of the finite elements of S. 

Proof: By property (c) above, every basis element must be finite. To show that every finite element 

must be a basis element, let e be an arbitrary finite element. Let E be the set {b C e I b E B}. 

Since e is finite, there exists a finite subset E' ~ E such that lubs E' = e. But lubs E' must be a 

basis element, because the basis is closed under least upper bounds on finite sets. 0 

Notation: When no confusion is possible, we will frequently omit the subscripts (identifying a space) 

on the symbols lub and ..1.. 

Definition: An element s of a data space S is finitely-founded iff the set {y E Sly C s} is finite. 

A data space S is finitely-founded iff the finitely-founded elements of S form a basis for S. A data 
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4 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 

space S is flat (industrious) iff for every element yES, xCy {:::} (x = y V x = ..L). A finitely-founded 

data space S is lazy iff it is not flat. 

Although all lazy spaces are finitely-founded, many "higher-order" spaces (such as mappings 

from one lazy space to another) are not finitely-founded. 

Definition: An ideal over B is a set F such that: 

(i) 'V x, y E F lub{x, y} E F, and 

(ii) 'V x E F, y E B y C x ~ y E F. 

Definition: Two spaces SI, S2 with bases Bl, B2 are isomorphic iff there exists a bijective (one-to-one 

and onto) function h:Sl -+ S2 such that: 

(ii) For any finite set S ~ SI, S is consistent iff h(S) is consistent. 

(iii) For any consistent set S<SI, h(lub S) = lub h(S). 

Theorem: A data space S with basis B is isomorphic to the space /(B) consisting of the set of ideals 

over B under the partial ordering defined by the subset relation on ideals (which are simply sets of 

basis elements). 

Proof" The function h:/(B) -+ S defined by b(F) = lubs F maps /(B) onto S and clearly preserves 

the approximation ordering on /(B): 

Similarly the function h':S -+ /(B) defined by: 

h'(x) = {y E B I y Cs x} 

maps S into /(B) and preserves the approximation ordering on S. Moreover, it is obvious (from the 

definition of a basis) that for all xES h(hrx)) = x. 

To complete the proof, we must show that h' maps S onto /(B), i.e., that for each xES, there 

is a unique ideal Fx in /(B) such that lubs F x = x. Assume that two distinct ideals F and G have 

the same least upper bound in S. Without loss of generality, we can assume that F-G is non-empty. 

Let w E F-G. Since w is a basis element, it is finite, implying that G (a directed set approximating 

w C x) contains an element v such that w C v. Since G is an ideal, G must contain w, which is 

an obvious contradiction. 

Remarks: The preceding theorem shows that the structure of space S is completely determined by 

the structure of B. In the neighborhood system formulation of domain theory [Scot 81], the elements 

of a space are filters rather than ideals because each element of the universe is identified with a filter 

of sets (called neighborhoods) that "contain" (~) rather than "approximate" ( C ) the element. 
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THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 5 

Definition: Let S be an arbitrary data space with basis B. A function f:S#f --. S is approximable iff: 

'V Xl, ... , X#f E S f(Xl, ... , X#f) = lub {f(bl' ... , b#f) I bl, ... , b#f E B Al~i~#f bi L Xi }. 

An approximable function f:S#f --. S is strict iff the image of every argument list containing .i is 

.i, i.e., 

Definition: A space R is a subspace of the space S iff: 

(i) IRI ~ lSI, LR ~ LS, and .iR = .is· 

(ii) IRI n B forms a basis for R. 

(iii) For all directed subsets R' ~ R, lubR R' = lubs R'. 

Remark: Some formulations of domain theory use a weaker definition of subspace. In particular, 

they omit condition (ii) and replace condition (iii) by a stipulation that the consistency relation in 

the subspace R agree with consistency relation in the parent space S. In Section 2.5, we discuss 

some of the implications of this alternative. 

Definition: Let G be a countable set of symbols. A domain D with signature G is a pair (0, G) 

consisting of a space 0 (called the universe) and an interpretation function G mapping each symbol 

g E G into an approximable function g (called an operation) over O. 

Definition: Two domains Dl, D2 with signature G are isomorphic iff the spaces 01 and 02 are 

isomorphic under a function h:Ol --. D2 and for each operation symbol g E G, 

where gl and g2 denote the interpretations of g in Dl and D2, respectively. 

Definition: A domain E with signature H is a subdomain of the domain D with signature G iff: 

(i) E is a subspace of O. 

(ii) H ~ G and for each operation symbol h E H, Gn(h) (the interpretation of h in D) 

restricted to E is GE(h) (the interpretation of h in E). 

The obvious difference between a space and a domain is that a domain identifies a collection of 

primitive operations-in addition to a universe of values-that form a set of building blocks for 

defining new functions over the universe. In contrast, a space leaves the possible operations on data 

unspecified. 

Notation: Given a domain D with signature G, we will frequently write G instead of G(G) to denote 

the set of functions over D interpreting the operation symbols G. 
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6 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 

2.2 Sample Spaces 

Many common data spaces such as the natural numbers and ordinary (industrious) lists are 

degenerate in the sense that they contain no limit points; in these spaces, every element is a basis 

element. For example, let Nat be the natural numbers N under the partial ordering C Nat defined 

by: 

x C Nat Y <=> X = Y V X = .1. 

Nat is a space with basis Nat. Similarly, let Bool, the space of Boolean truth values, be defined as 

the set: 

{.1, true, false} 

under the partial ordering CBool defined by: 

x C Bool Y <=> x = Y V X = .1. 

An example of a more interesting space is Pw, the power set of the natural numbers under the 

partial ordering C determined by set inclusion. The finite (basis) elements of Pw are precisely the 

finite sets of natural numbers. 

2.3 Space Constructions 

In specifying data spaces, it is often convenient to construct composite spaces from simpler ones. 

There are two fundamental mechanisms for constructing composite spaces: the Cartesian product 

construction and the approximable function construction. We will discuss several other constructions 

later in the paper, but they are all based on these two mechanisms. 

We will define the two constructions without proving that the constructed spaces are well-formed. 

The interested reader is encouraged to verify that the constructions actually build legitimate data 

spaces. 

Definition: Given data spaces Sl, S2 with bases Bl, B2 and approximation orderings C 1, C 2, the 

Cartesian product space Sl XS2 is the data space determined by the basis set: 

under the relation C defined by: 

The bottom element of SlXS2 is (.11, .12) where .11 and .12 denote the least elements of Sl and 

S2· 

Notation: In informal mathematics, no distinction is typically made between a unary function f 

defined on the Cartesian product SXS and the corresponding binary function f over S. Since we 

XEROX PARC, CSL-83-9, APRIL 1984 



THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 7 

will be dealing with spaces S that contain SXS as a subspace, we cannot ignore the difference 

between the two. Consequently, we will employ the following conventions. First, unless we explicitly 

state otherwise, the expression RXS always denotes the Cartesian product space formed from Rand 

S. Second, the "exponentiated" expression Sk denotes the domain of a k-ary function over the 

universe S. To avoid unneccesary confusion, we will confine our attention to unary functions when 

it is feasible. 

The second fundamental space construction is the formation of the space of approximable 

mappings from one data space into another. An approximable mapping is a data object that denotes 

a function. 

Definition: Assume that we are given data spaces SI, S2 with bases Bl, B2. A binary relation I ~ 
BIXB2 is an approximable mapping Irom SI to S2 iff: 

(i) I is consistent: for all x E Bh the set 

{ y E B2 I 3x' E Bl [x' C x A x' I y] } is consistent. 

(ii) lis directed-closed: for all <x', y') E B1XB2 (3<x, y)E/[x C x' A y' L y] => <x', y')Ej). 

Definition: Given an approximable mapping I from SI to S2, the lunction determined by I is the 

function f:Sl -4 S2 defined by: 

f(x) = lub{ y E B2 I 3x' E Bl [x' L x A x' I y] }. 

Observation: If I is an approximable mapping from S to S, then the function f over S determined 

by I is approximable. 

Definition: Given the spaces SI, S2 with corresponding bases Bl, B2 and approximation orderings 

Ll, L2, the space of approximable mappings SI => S2 is the space determined by the basis: 

if I 3 finite consistent f ~ Bl X B2 such that I is the directed closure of f} 

under the partial ordering L defined by: 

The least element of SI =>S2 is the relation {(bl, .1.2) I bl E Bl} which is the directed closure of the 

empty relation; it determines the everywhere "undefined" function g defined by AX . .1.2. 

Theorem: For any data space S that contains a subspace isomorphic to S=>S, there is an approximable 

function Apply over S such that for every approximable mapping I E S=>S and corresponding 

function f:S -4 S such that: 

'V x E Sl Applyif, x) = f(x). 

Prool: Let Apply be defined by the equation Apply(f, x) = lub {b E B I 3 (u, b) E f u L x}. The 

theorem follows immediately from the definition of the function f determined by f. 0 
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8 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 

Although we have only defined the notion of approximable mappings corresponding to unary 

functions, there is a standard transformation (usually called currying) that converts a multiple argument 

function f:S#f --+ S to an equivalent unary function f: S --+ [S --+ ... --+ [S --+ S] ... ] defined by the 

lambda expression: 

2.4 Computability 

In order to formalize the idea of computable mappings (functions) on a data space, we must 

identify a concrete representation for the elements of the space. 

Definition: An effective presentation of a data space S is an enumeration B = <bi liE N> of the 

basis of S (the elements in the enumeration are not necessarily distinct) such that: 

(i) The binary relation CON defined by CON(i, j) ~ (3k bi C bk /\ bj C bk) is recursive. 

(ii) The ternary relation LUB defined by LUB(i, j, k) ~ (bk = lub{bi, bj}) is recursive. 

The enumeration B is called an effective presentation of S. 

Theorem: Given effective presentations Bj. B2 for the spaces Sl, S2, we can construct effective 

presentations for SlXS2 and Sl~S2. 

Proof: Omitted. 

A subspace S of an effectively presented space S (with presentation B = <bi liE N» is effective 

iff the index set for the basis of S {i I bi E S} is recursively enumerable. 

Notation: We will use italicized identifiers A, B, ... to denote effective presentations and the matching 

Roman identifiers A, B, ... to denote the corresponding sets of basis elements. 

In an abstract implementation of an effectively presented space S, each element x of the universe 

is represented by a natural number xR encoding the index set In(x) = {iI, i2, ... } of the set of basis 

elements {bil, bi2, ... } approximating x. More precisely, there is a binary total recursive function p 
such that for all xES, Ak . P(xR, k) has range In(x). In this context, a computable function f over 

S is implemented by a #f-ary partial recursive function tR such that for all Xl, ... , x#f E ·S, the 

function: Ak. P(tR(X1 R, ... , x#'), k» has range In(tR(x1, ... , X#f». 

Given the preceding motivation, we formalize the notions of computable function and computable 

mapping as follows: 

Definition: An approximable mapping f is computable iff it is recursively enumerable, using the 

indices given in the enumerations Bj. B2 to name elements in B1 and B2. The function f determined 

by an approximable mapping f from Sl into S2 is computable iff f is computable. 
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THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 9 

A computable function f: Sl -+ S2 is "computable" in the sense that given an arbitrary element 

x E Sl (represented by the code xR), we can enumerate the set of basis elements that approximate 

the image element f(x) E S2. 

Definition: A data domain D = (D, G> is computable iff there exists an effective presentation B 

for D such that every operation g EGis computable. An element d E D is accessible iff the index 

set of the ideal of basis elements approximating d is recursively enumerable. An element d E D 

is definable in D iff there is a variable-free term Pd constructed from the operation symbols in G 

such that denotes d. A function f: Dn -+ D is recursively definable in D iff there is a term T f 

composed solely from the free variables Xl, ••• , Xn and the operations G such that f is the least 

function (using the approximation ordering on the corresponding mappings in On=> D) satisfying 

the equation (called a recursive program for 0: 

(*) f(xj, ... , x,J = Tf 

The domain D is expressive iff every accessible element of 0 is definable in D. The domain D is 

computationally complete iff every computable function f: Dn -+ D (n>O) is recursively definable in 

O. 0 is reflexively complete iff the following three properties hold: 

(i) D=>O is isomorphic to a subspace MaPO of D. 

(ii) Every accessible element of M aPO is definable in O. 

(iii) The function Apply: 0 -+ 0 defined in the previous section is recursively definable in 

D. 

Remarks: By Kleene's recursion theorem, the least function f satisfying the equation (*) must exist 

since it is simply the least fixed-point of the approximable function F: [Dn -+ D] -+ [Dn -+ D] 

denoted by the lambda expression: 

AJ. A [Xl, ••• , x,J. Tf 

Observation: If a domain D is reflexively complete, then it is computationally complete. A 

particularly appealing property of Scott's theory of data domains is that the set of approximable 

mappings between effectively presented spaces is an effectively presentable space in its own right. 

Moreover, the set of computable mappings within this space are precisely the accessible elements of 

the space. We will discuss this issue in more detail below. In this paper, we will be exclusively 

concerned with computable spaces and domains. 

2.5 Retractions on the Universal Domain 

A fairly rich collection of spaces can be constructed by starting with a few very simple primitive 

spaces (such as Nat and Boo1) and constructing more complex spaces by composing the Cartesian 

product and approximable mapping space constructions. However, it is easy to devise spaces such 
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10 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 

as infinite cartesian products of primitive spaces that are beyond the scope of this simple scheme. 

Scott has developed a much more comprehensive approach to the problem of constructing spaces 

based on the concept of a universal space. 

Definition: A universal space U is a computable space with effective presentation B such that every 

data space D is isomorphic to a subspace S of U. Moreover, if D is effectively presented, then S 

must be an effective subspace of U. 

Since every space D has an isomorphic image S within the universal space, the problem of 

defining an arbitrary space can be reduced to defining an arbitrary subspace of a particular universal 

space. A simple, elegant way to identify an arbitrary (computable) subspace S of a universal space 

is to define a (computable) retraction characterizing S. 

Definition: A retraction on U is a strict approximable function a: U => U such that aoa = a. A 

retraction a is finitary iff the image a(U) is a subspace of U. A retraction is a projection iff it 

preserves basis elements and least upper bounds. In other words, a must satisfy the following two 

properties: 

(i) Vb E B a(b) E B. 

(ii) V consistent u, v E B a(lub{u, v}) = lub{a(u), a(v)}. 

The range of a (finitary) retraction a is called the (finitary) retract of a. 

Remark: A projection is clearly a special form of finitary retraction. 

Theorem: For every subspace S of a universal space U, there is a projection a with retract S. 

Proof: The projection a is defined by a(x) = {b E Bib E S /\ bex}. It is easy to verify that 

a(U)=S. D 

Remark: The reader should be aware that we are using a very strong definition of subspace, which 

imposes severe restrictions on the structure of a universal space (e.g., it cannot be finitely-founded). 

In fact, by our definition of subspace, the well known "universal" space TW is not universal. If we 

weaken the definition of subspace as discussed in Section 2.1, then TW is universal and the preceding 

theorem no longer holds. In this case, the basis elements of a subspace S ~ U may be infinite in 

U (even though they must be finite in S). Moreover, there is no suitable notion of a canonical 

retraction (analogous to a projection) characterizing an arbitrary subspace. For this reason, we prefer 

the strong definition of subspace. 

Definition: A universal domain U is a reflexively complete domain <U, G) such that the universe U 

is a universal space. 
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THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 11 

Remark: Given a universal space U, we can construct a universal domain by identifying a finite set 

of functions Gover U such that: 

(i) the Apply operation is recursively definable in <U, G), and 

(ii) every recursively enumerable element of U is denoted by some variable-free term formed 

from G. 

Moreover, since U => U is isomorphic to a subspace of U and U is reflexively complete, there is a 

term Pg (composed from G) for each operation g that is recursively definable in <U, G), such that: 

Notation: To simplify the syntax of expressions over a universal domain U, we will adopt the 

following conventions. First, since there is an element pf within U corresponding to every recursively 

definable operation f, we will use the mapping Pf in place of each operation f other than constants 

and the special operation Apply. Hence, instead of the expression f(x, y) we will write Apply(AppIY(Pf, 

x), y). Second, we will abbreviate every application of the form Apply(u, v) by (u v). Third, we will 

elide parentheses by making application left associative; hence u v w abbreviates «u v) w). Finally, 

we will abbreviate applications of the form f (g x) by fo g x. This notation is consistent with the 

conventions usually employed in the untyped lambda calculus [Bare??]. 

Although there are many different possible formulations of the universal domain, the particular 

choice is unimportant. Given an arbitrary universal· domain U with basis B, we can recursively 

define (in terms of the primitive operations G on the universal domain) the basic set of operations 

Olazy that we need to construct lazy spaces. O\azy consists of the projection mappings RBoo\, Rx, 

and R~ identifying the subspaces Bool ({true, false, .l}), UXU, and U=>U, and the mappings: 

true, false: Bool 

~: U => Bool 

if-then-else: Bool => (U => (U => U)) 

and: Bool => (Bool => Boo1) 

or: Bool => (Bool => Boo1) 

par: Bool => (Bool => Boo1) 

not: Bool => Bool 

pair: U => (U => U XU)) 

left: U XU=> U 

right: U XU=> U 

s: (U=>U) => «U=>U => U=>U)) 

K: U => (U=> U) 
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12 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 

satisfying the axioms: 

81.=1. 
x::;t:1. => (8 x) = true 

if then-else true x y = x 

if then-else false x y = y 

if then-else 1. x y = 1. 

and x y = if then-else x y false 

or x y = if then-else x true y 

x::;t:true /\ y::;t:true => (por x y) = (or x y) 

x=true V y=true => (por x y) = true 

not x = if then-else x false true 
Rx x = x => pair (left x) (right x) = x 

left (pair x y) = x 

right (pair x y) := y 

R~ I = AX. lub{y E B I 3 u E B u c:::: x /\ u f y} 

S x y z = x z (y z) 

K xy = x. 

The notation iS1 =>S2 means that f is a mapping in U=> U such that 'rJ x E S1 I x E S2. The 

behavior of I on points outside of the space S1 is not specified. 

With the exception of par, S, and K, these mappings are generalizations of familiar operations 

from lazy LISP (where left, right, and pair correspond to car, cdr, and cons). The declared domain 

for each mapping is its intended domain of usage. Each mapping is actually defined over the entire 

universal space U; space declarations are enforced by projecting argument values outside the declared 

domain onto the declared domain 0 (using the projection mapping RD). 

Since Olazy includes the Apply operation and the Sand K mappings, we can form a variable-free 

term that denotes the mapping corresponding to any function that is recursively definable in terms 

of the operations Olazy. It is well known [Bare77] that any closed term (no free variables) in the 

(untyped) lambda calculus can be expressed as a composition of the operations Sand K. Moreover, 

the least fixed point operator Y: (U -+ U) -+ U that maps an approximable function into its least 

fixed point is defined by the lambda expression: 

AI . (Ax. I (x x)) (Ax. I (x x)). 

The corresponding mapping Y is defined by: 

Y = S a a 

1= S K K 

a = (S (S (K S) (S (K K) /)) (S (K S) (K /)) (K /)). 
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Consequently, the mapping corresponding to an arbitrary recursive definition: 

is simply: 

Y (A * Xl ..... A * X#f. 7'f) 

where A * X • ex denotes the term (formed using Sand K) signifying the mapping corresponding to 

the function AX . ex. 

Notation: As a notational convenience, we will use lambda expressions (without the * exponent) to 

denote mappings instead of compositions of Sand K; they are much easier to read. On a formal 

level, these lambda expressions simply abbreviate the corresponding compositions of Sand K. 

Similarly, we will elide applications of the Yoperator by using the equation: 

1= 7'[/) 

to abbreviate the recursive definition: 

I = Y (AI. 7'[/). 

We will also use the standard infix abbreviations for applications of Boolean mappings: 

if X then y else Z E if then-else x y Z 

x and y E and x y 

x or y E or x y 

x por y E por x y. 

3. The Construction of Lazy Spaces 

In constructing a composite space (such as a Cartesian product or discriminated union) from 

component spaces, we must decide how to form the bottom element of the composite space, i.e., 

determine which constructed objects are identified with the undefined composite object This decision 

implicitly determines whether the composite space corresponds to lazy or industrious computation. 

Let D1 and D2 be arbitrary computable subspaces of our universal space U characterized by the 

projection mappings R1 and R2 in U=>U. Using the Cartesian mapping pair: U=>(U=>UXU), we 

can form a surprisingly wide variety of simple composite space using the following space constructions. 

3.1 Ordinary product 
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14 THE SEMANTICS OF LAZY (AND INDUSTRIOUS) EVALUATION 

The corresponding basic mappings are: 

Px: 01=>(02=>0IX02) = Ax. Ay. pair x y 

fstx: 01 X02=> 01 = Az. left Z 

sndx: 0IX02=>02 = Az. right Z 

Rx: U=>0IX02 = Ax. Px (RjOfstx x) (R2osndX x). 

3.2 Coalesced product 

The corresponding basic mappings are: 

P®: 01=>(02=>01®02) = AX. Ay. if ~x and ~y then pair x y else 1. 

fst®: 01®02=>01 = Az. left Z 

snd®: 01®02=>02 = Az. right Z 

R®: U=>01®02 = AX. if ~x then P® (Rj°jst® x) (R2osnd® x) else 1.. 

3.3 Separated product 

The corresponding basic mappings are: 

PFi!J : 01 =>(02=> 01~02) = Ax. Ay. pair true (pair x y) 

fstFi!J : 01~02 => 01 = Az. left° right Z 

sn~ : 01~02=>02 = Az. rightoright Z 

RFi!J : U=>01~02 = AX. P~ (RjOfst~ x) (R2osnd~ x). 

3.4 Coalesced sum 

The corresponding basic mappings are: 

inL(f): 01 => 01 EB 02 = AX. if 8 x then pair true x else 1. 

inR(f): 02=>01EB02 = AX. if ~x then pair false x else 1. 

outL(f): 01 EB 02 => 01 

outR (f): 01 EB 02 => 02 

isL(f): 01 EB 02 => Bool 

AZ. right Z 

Az. right Z 

Az. left Z 

isR (f): 01 EB 02 => Bool Az. noto left Z 

R(f): U=>01EB02 = AX. if isL(f) x then inL(f)°RjooutL(f) x else inR(f)°R2ooutR(f) x. 

3.5 Separated sum 

01 + 02 = {<true, x> I x E 01} U {<false, y> lyE 02} U {1.} . 
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The corresponding basic mappings are: 

inL+: 01 => 01 + 02 = AX. pair true x 

inR +: 02=> 01 + 02 = AY .pair false y 

outL+: 01 + 02=> 01 = AZ. right Z 

outR +: 01 + 02=> 02 = AZ. right Z 

isL+: 01 + 02=> Bool = AZ. left Z 

isR+: 01 + 02=> Bool = AZ. notoleft Z 

R+: U=>01+02 = AX. ifisL+ x then inL+oRJooutL+ x else inR+oR2ooutR+ X. 

3. 6 Lifted space 

ot = {<true, x> I x E O} U {l.}. 

15 

Let RD be the projection mapping corresponding to O. The basic mappings corresponding to 0 t 
are: 

delay: O=> 0 t = AX. pair true x 

force: 0 t=>O = AZ. right Z 

Rf U=>U = AX. delayoRJoforce x 

In constructing products and unions, there are three plausible symmetric ways to handle 

composite objects containing an undefined component: 

1. A composite object (e.g., an ordered pair) containing an undefined component is identified 

with the undefined object in the constructed space. Coalesced products (®) and sums (E9) 

obey this convention. 

2. A constructed object containing at least one defined component is distinguished from the 

bottom element of the composite space. In this case, two such objects are equal only if all of 

their corresponding components are equal. Ordinary Cartesian products (X) obey this 

convention. 

3. A composite object is always distinguished from the bottom element of the constructed 

space. In this case, the bottom element is outside the range of the constructor function 

corresponding to the composite space. Separated products ([g]), separated sums (+), and 

lifted spaces (t) all obey this convention. 

Each of these three different approaches to constructing composite data objects corresponds to 

a different evaluation protocol (sometimes called a "computation rule" [Manna 74]) for evaluating 

applications of constructor functions to argument expressions. The first scheme corresponds to 

conventional "call-by-value" computation: evaluate all argument expressions before forming the 

composite object. The second scheme corresponds to dovetailing the evaluation of all argument 

expressions until one of them converges, and forming a composite lazy object (where the arguments 
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other than the one that converged remain unevaluated as closures [Hend80]). The third scheme 

corresponds to forming a composite lazy object without evaluating any of the argument expressions. 

In a lazy composite object, un evaluated arguments are evaluated only when the corresponding 

selector function (e.g., car and cdr in lazy LISP) is applied to the composite object. If such an 

application does not occur in the course of executing a program, the corresponding argument is never 

evaluated. 

The lifting operator t provides an explicit mechanism for constructing a space of "suspended" 

or "unevaluated" elements corresponding to a given space D. Note that the composition of the lifted 

space construction with the coalesced product construction is identical to the separated product 

construction, i.e., 

Similarly, the separated sum construction can be defined in terms of the appropriate composition of 

the lifting operator with the coalesced sum construction: 

Consequently, without loss of generality, we can confine our attention (when it is convenient) to the 

four space constructors: X (ordinary product), ® (coalesced product), E9 (coalesced sum), and t 
(lifting operator). 

4. A Taxonomy of Lists 

The variety of mechanisms available for constructing lazy spaces suggests that there may be 

several different lazy spaces that correspond to an ordinary (industrious) recursive data space (such 

as lists)-each with subtly different properties. In fact, the number of semantically distinct possibilities 

is surprisingly large. We will illustrate this phenomenon by studying list spaces in detail. In 

particular, We are interested in determining and classifying the possible lazy variations on the domain 

consisting of the retract List: 

(0) List = Atom E9 (List ® List), 

and the set of operations 0List: 

1.: List 

1.At: List 

1.Pa: List 

t, C, AI, A2, ... : List 

cons: List2 ~ List 

car: List ~ List 

cdr: List ~ List 
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cond: List3 -+ List 

isAtom: List -+ List 

isPair: List -+ List 

17 

where t, f, AI, A2, ... are constants denoting Lists that are atoms. We presume that Atom is an 

unspecified flat, expressive subdomain of U including the elements true and false and a set of objects 

Nat isomorphic to the natural numbers. 

The space List defined in equation (0) is the retract characterized by the projection mapping: 

RList = Au. if isL u then inLffio RAtomooutL(fJ u 

else inR(fJ ° P® (Rofst(fJ ooutRffi u) (Rosnd(fJ °outR(fJ u)) 

where RAtom is the retraction for Atom. In accordance with the conventions we adopted in Section 

2.5, we will define the mappings in U determining the operations OList. The elements (mappings) 

of U denoting the operations in 0List are defined by: 

J.. = J.. 

J..At = inL(fJ J.. 

J.. Pa = cons J.. J.. 

t = inL(fJ true 

f = inL(fJ false 

Ai = in L(fJ ( (Xi) 

where (Xi denotes the appropriate element of Atom. 

cons = AX. Ay. inR(fJ° P® X y 

car = AX. fst®ooutR(fJ x 

cdr = AX. snd®ooutR(fJ X 

cond = AX. Ay. Az. if isL X then y else Z 

isAtom = AX. if isL X then t else f 

isPair AX. if isR x then t else f 

isPair = AX. isR x. 

In the process of classifying lazy variations on the domain List, we will identify which one 

corresponds to the implementation-oriented semantics for Lazy LISP presented in the literature 

[Hend76, Frie76]. Our investigation will demonstrate that apparently innocuous variations in the 

definition of recursive data spaces have profound semantic consequences. 
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The obvious syntactic variations on the industrious List space defined above replace e by +, 
or ® by X or 181. The variant spaces are: 

(1) List 

(2) List 

(3) List 

(4) List 

(5) List 

A tom + (List X List) 

Atom + (List ® List), 

Atom e (List X List) 

Atom e (List 181 List) 

Atom + (List 181 List) 

In each variant domain, the primitive operations 0List are defined in the obvious way analogous to 

their definition in domain (0). For example, in variation (1), the functions cons, car, cdr are 

determined by the following mappings: 

cons = AX. Ay. inR+ oPx X y 

car AX. fstx ° outR + X 

cdr = AX. sndxooutR+ X 

We will subsequently consider other possible variations that involve the explicit use of the t operator. 

As a gross categorization, we can classify list spaces on the basis of whether they accommodate 

infinite lists. The ordinary industrious space (0) does not, but all of the lazy variants (1)-(5) do. For 

example, the list zeros defined by the equation: 

zeros = cons 0 zeros 

denotes the undefined element .1 of the industrious space (0) while it denotes a linear list of O's in 

each of the other spaces (1)-(5). 

Within the class of spaces that support infinite objects, there are significant differences in the 

kinds of infinite and undefined objects that can appear within infinite and partial objects. By 

applying this form of analysis, we can demonstrate that the first four spaces (1)-(4) have fundamentally 

different internal structure. We can also show that space (5) is distinct from the other spaces, but 

the difference between it and space (1) is not significant because the two spaces (and corresponding 

domains) are isomorphic. 

In space (1), lists can contain undefined atoms (the element <true, .1», undefined pairs (the 

element <false, .1», and undefined lists (.1). In space (2), lists can contain undefined atoms and 

the undefined pair but not undefined lists. In space (3), lists can contain undefined lists but not 

undefined atoms and undefined pairs. In space (4), lists can contain undefined lists and undefined 

pairs, but not undefined atoms. In space (5), as in space (1), lists can contain undefined atoms, 

undefined pairs, and undefined lists. However, space (5) contains a different form of undefined pair 

«true, <true, .1») than spaces (1), (2), and (4). By inspecting a few simple examples, we can easily 

prove that the first four lazy domains are distinct (non-isomorphic); corresponding computations 

yield different answers. In domain (1), we can define: 
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(a) the infinite list containing no atoms; 

(b) the infinite sequence containing undefined lists (.L) alternating with zeros; and 

(c) the list consisting of undefined atoms 

by the expressions: 

(a) BigTree = cons BigTree BigTree, 

(b) AItSeq = cons .L (cons 0 AltSeq), and 

However, in the other three domains (2)-(4), at least one of the corresponding lists does not 

exist. In space (2), AltSeq denotes the undefined pair .LPa; lists may not contain undefined lists. In 

space (3), both BigTree and .LAt denote the undefined list .L; every defined list must contain a 

defined atom. In space (4), .LAt denotes the undefined list .L; lists cannot contain undefined atoms. 

Hence, domains (1), (2), (3), and (4) are structurally distinct (nonisomorphic); the set of finite 

elements is fundamentally different in each case. 

Although each pair (created by a cons operation) in domain (5) contains a redundant level of 

lifting, domain (5) is isomorphic to domain (1) under the function h: U -+ U determined by the 

mapping: 

h = AX. if isL x then x else pair true h(righto right x). 

The function h simply strips one level of lifting from the representation of every List pair. The 

interested reader should confirm that all of the operations in OUst (restricted to their respective 

domains) are preserved by h. 

With the aid of the t operator, we can define an even wider class of lazy list domains. First, 

we can define three more basic variations on lazy lists (spaces (6), (7), and (8) below) completing an 

enumeration of the eight possible ways (spaces (0)-(8) excluding (5» to include or exclude undefined 

atoms, undefined pairs, and undefined lists. Second, we can define pairing operators that are lazy 

in only one argument (unlike Px, P~). Finally, we can add redundant levels of delayed evaluation 

in the formation of either atomic lists or paired lists analogous to the extra level that appears in 

paired lists in space (5). Since every domain in the final class (involving redundant levels of lifting) 

is isomorphic to a space outside the class, we will not discuss this class any further. 
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To facilitate classifying the extra spaces, we rewrite the definitions of the five basic lazy list 

spaces (1)-(5) in terms of the operators X, ®, +, ES, and t: 

(1) List A tom t ES (List X List) t 

(2) List = Atom t ES (List ® List)t 

(3) List Atom ES (List X List) 

(4) List = A tom ES (List X List) t 

(5) List Atom t ES [(List X List) t]t. 

In this standardized form, the close relationship between space (5) and space (1) is evident. 

The remaining interesting variations on lazy lists are: 

(6) List Atom t ES (List ~ List) 

(7) List = Atom ES (List ® List)t 

(8) List Atom t ES (List ® List) 

(9) List A tom ES (List t ® List) 

(10) List -= Atom ES (List ® Listt) 

(11) List A tom t ES (List t ® List) 

(12) List Atomt ES (List ® Listt ). 

Variation (6) accommodates undefined atoms and undefined lists, but not undefined pairs. Variation 

(7) does exactly the opposite: it accommodates undefined pairs, but not undefined atoms or lists. 

Variation (8) is only marginally lazy: within lists it accommodates undefined atoms, but not undefined 

lists or undefined pairs. Variations (9), (10), (11), (12) all delay the evaluation of only one argument 

of a paired list. As a result, spaces (9) and (11) allow infinitely deep lists but not infinitely long 

ones while spaces (10) and (12) do the opposite. Spaces (9) and (10) prohibit undefined atoms while 

spaces (11) and (12) accommodate them. 

At this point, the question arises: Which denotational definition of lazy lists corresponds to the 

standard implementation-oriented definition given in the literature [Frie76]? The answer is (4), 

because their space accommodates undefined lists and undefined pairs but not undefined atoms. 

The situation is somewhat more complicated in the case of the semantics presented in [Hend76]. 

Their semantic definition describes a space isomorphic to (1), but the definable data points are 

contained within a sub domain isomorphic to (4), because the operations in their domain cannot 

generate undefined atoms. 

5. Axiomatizing Lazy Data Domains 

Since there are significant differences between various formulations of lazy data domains, it is 

important to develop clear, comprehensive axiomatic definitions for the alternatives. Naively, we 

might attempt to specify a lazy space like: 
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(1) List = Atom + List X List 

(given an axiomatization for Atom) by devising a list of equations such as those presented in Section 

3 and designating the lazy space as the corresponding initial algebra [ADJ76, 77] (or alternatively the 

corresponding final algebra [Kami80]). From our previous discussion, it seems reasonable to 

conjecture that this task will be deceptively difficult given the variety of lazy spaces available. In 

fact, it is impossible. No recursively enumerable set of equations can specify a non-trivial lazy space 

as either the initial or final algebra corresponding to the specification. We will formally prove this 

fact after we establish a few important properties of lazy spaces. 

Unlike ordinary data domains, lazy spaces have infinite strictly ascending chains of objects do 
C d1 C d2 C ... (where C denotes the approximation relation introduced in Section 2) where each 

object di is constructed in exactly the same way as di + 1 except that di uses .1. to approximate 

substructures of di+1. In ordinary industrious data domains (such as LISP Lists), the undefined 

object .1. cannot be embedded inside constructed objects, which precludes the existence of infinite 

ascending chains of successively more complete approximations. 

This apparently small change in the definition of data constructors (e.g., the LISP cons operation) 

profoundly changes the structure of the data domain. Ordinary structural induction, for example, 

no longer holds, because lazy spaces contain the limit elements of infinite ascending chains-which 

cannot be constructed from primitive constants (e.g., atoms) in a finite number of steps. For example, 

in the space of industrious lists, Lis!(o), let the operation leafcount be recursively defined by the 

equation: 

leafcount(x) = if isAtom(x) then 1 else leafcount(car(x» + leafcount(cdr(x», 

where if a then /3 else y abbreviates cond(a, /3, y) and the addition operation (+) is defined on 

integer atoms in the usual way. Then the following theorem is easily proved by structural induction 

on x: 

'V x x:;t:.1. => leafcount(x) ) O. 

On the other hand, as soon as we extend the space Lis!(O) to include limit points, the principle 

of structural induction fails. In a List space including the object BigTree (such as Lis!(l», the 

preceding theorem is clearly false. 

Since lazy spaces include limit points, they have a much more complex topological structure 

than their industrious counterparts. An important illustration of this phenomenon is the following 

observation. Let Triv denote the trivial subspace of U consisting of the objects true and .1.. Although 

the industrious space: 

TrivseqInd = Triv ® TrivseqInd 

is completely degenerate (it contains no elements other than .1.), the corresponding lazy space: 

Trivseq = (Triv X Trivseq) 
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is isomorphic to Scott's Pw model for the untyped lambda calculus under the mapping a defined 

by: 

a(x) = { i I xi=true } 

where Xi denotes the ith element of x = (xQ, Xl, ... , xj. ... >. 
Pw is the space consisting of all subsets of the natural numbers under the approximation ordering 

defined by the subset relation. If we strengthen the definition of a space by adding the requirement 

that every space must contain a maximum element T and we weaken the definition of subspace as 

discussed in Section 2.1, then Pw is a universal space. Hence, Pw contains a subspace D such that 

D is isomorphic to the space Pw~ Pw. Moreover, if we augment the space Pw by a very small set 

of operations Opw, the resulting domain Pw is universal. 0pw consists of the constant 0 denoting the 

singleton set {OJ, the primitive binary operation Apply: Pw2 -+ Pw (defined exactly as in Section 

2.3), and the primitive mappings (which are constant operations): 

succ: Pw ~ Pw 

pred: Pw ~ Pw 

cond: Pw ~ (Pw ~ (Pw ~ Pw» 

K: Pw ~ (Pw ~ Pw) 

S: Pw ~ (Pw ~ (Pw ~ Pw» 

defined by: 

o = {OJ 

succ X = {e+ 1 leE x) 

pred x = {e I e+ 1 E x) 

cond x y z = {e leE y /\ 0 E x) U {e leE z /\ 1 E y} 

K xy = x 

S x y z = (x z) (y z). 

Surprisingly, all of these operations are recursively definable in a domain containing the lazy subspaces 

Trivseq and Triv together with the obvious "structural" operations: 

true, ..L: Triv 

por, and: Triv2 -+ Triv 

cons: TrivXTrivseq -+ Trivseq 

hd: Trivseq -+ Trivseq 

tl: Trivseq -+ Trivseq. 

Note that the Cartesian product symbol X immediately above does not conform to our normal usage 

of the notation: cons is a binary function -not a unary function on pairs. The recursive definitions 

of the operations 0Pw in Trivseq (which are a bit tedious) appear in the Appendix. 
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Since Pw together with the binary operation Apply: Pw2 -+ Pw and mapping constants Sand 

K forms a model for the (untyped) lambda calculus (excluding 1}-reduction), the lazy space Trivseq 

together with the corresponding operations also constitutes a model for the untyped lambda calculus. 

Trivseq is a particularly attractive model for computer scientists, because it is based on widely 

understood concepts from applicative programming. Lazy spaces are the natural "higher order" 

generalization of familiar recursive data structures. 

We have now developed sufficient machinery to prove the theorem establishing the inadequacy 

of algebraic specification as a formalism for specifying lazy spaces: 

Theorem: Neither initial algebra specifications nor final algebra specifications (consisting of a 

recursively enumerable set of equations) can define non-trivial lazy spaces. 

Proof: We will prove the theorem for the specific lazy space Trivseq, but it is clear that Trivseq can 

be implemented within any non-trivial lazy space 0 using an abstraction function (homomorphism) 

mapping 0 onto Trivseq. 

The initial algebra corresponding to a recursively enumerable set of equations A is the set of 

equivalence classes of variable-free terms under the relation MustEqual, where MustEqual(a, b) is 

true iff the sentence a= b is derivable from A by first order deduction. Hence the equality relation 

on variable-free terms is recursively enumerable. Yet the equality relation for a Trivseq is obviously 

not recursively enumerable; otherwise, we could recursively enumerate the set of all pairs of equivalent 

programs (using the untyped A-calculus as our programming language)-a set which is obviously not 

recursively enumerable. 

Similarly, the final algebra corresponding to a set of equations A (assuming the final algebra 

exists) is the set of equivalence classes under the complement of the relation CannotEqual where 

CannotEqual(a, b) is true iff the sentence a:l:b is derivable from A U {true:l:false} by first order 

deduction. Note that if A has no final algebra, then the complement of CannotEqual is not an 

equivalence relation. For a final algebra, the inequality relation is obviously recursively enumerable, 

but again the inequality relation for Trivseq clearly is not. Otherwise, we could recursively enumerate 

the set of all pairs of inequivalent programs (corresponding to unequal partial recursive functions), 

a set which is obviously not recursively enumerable. 0 

Since lazy spaces are so similar in structure to Pw, an obvious approach to formulating a logic 

for lazy spaces is to use a higher order logic based on the lambda calculus (similar to Edinburgh 

LCF) that conveniently expresses the properties of Pw. (See [Giles78] for an LCFaxiomatization of 

lazy lists.) 

However, we would prefer not to abandon first-order logic for two reasons. First, first-order 

systems (such as first-order Peano arithmetic) based on structural induction provide a simple, elegant 

characterization of ordinary data spaces. The highly successful Boyer-Moore LISP Verifier [Boyer75, 

79] is based on such a first-order system. We would like to extend this approach to handle lazy lists 

as well. Second, the completeness theorem for first order logic provides an invaluable tool for 

analyzing the deductive power of any theory. If a first order theory is too weak to establish a 
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particular theorem, there must be a non-standard model in which that theorem is false. In higher 

order logics, on the other hand, a theory may be too weak to prove an important theorem, yet there 

may be no model that refutes it. 

6. A First-Order Theory of Lazy Domains 

The chief obstacle to extending ordinary first-order structural induction theories to lazy domains 

is that conventional structural induction is applicable only to well-founded sets, yet lazy spaces under 

the (proper) containment (substructure) ordering determined the constructors are not well-founded 

because a limit element (e.g., BigTree) can properly contain itself. Let D = (0, G) be a data 

domain with signature G such that: 

(i) G contains two constants true and false denoting inconsistent finite elements of 0 and the 

standard ternary conditional function cond defined as in Section 3. 

(ii) G contains a finite set of constructor functions C = {Cl, ... , cn} that generate the basis of 

O. In other words, C satisfies the following properties: 

(a) For every basis element b E B, there exists a term Pb composed solely from 

operations in C such that Pb denotes b. 

(b) For all C E C, V Xl, ... , X#c E B C(Xl' ... , X#c) E B. 

(c) For all Cj, Cj E C, 

V Xl, ... , x#cj, Yl, ... , Y#cj E B [Cj(Xl, ... , X#ci) L Cj (Yl , ... , Y#cj) 

=> Cj(Xl, ... , X#ci) = .1 V ( i=j 1\ XlLYl 1\ ... 1\ X#ciLY#cj) ] 

(iii) For each constructor C E C, G contains selector functions Sj, j = 1, ... , #c such that: 

and a characteristic function isc: 0 -+ Bool such that: 

isc(x) =.1 if x=.l 

isc(x) = true if X * .1 1\ C(Sl(X), ... , s#c(X» = X 

isc(x) = false otherwise. 

The basis B of 0 forms a well-founded set under the substructure ordering (which is not an 

approximation ordering) which is the transitive closure of the binary relation: 

If D is industrious, then 0 = B, and the substructure ordering C on 0 is the conventional 

well-founded ordering used in the structural induction scheme for O. It is a straightforward (but 
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tedious, and error-prone) task to devise a first order axiomatization (comparable in deductive power 

to the first order formulation of Peano's axioms) for an industrious domain D consisting of: 

(1) implications between equations relating the operations in G (e.g., constructors, selectors, 

characteristic functions, if-then-else); 

(2) inequations asserting that the Boolean truth values true, false, and the undefined object 

..1 are all distinct; 

(3) axioms describing the substructure ordering C and the approximation ordering C (which 

are both predicates); 

(4) the structural induction scheme: 

AcE C [ 't/ Xl, ... , X#c (A i=l, ... , #c <p(Xi) => <p(c( Xl, ... , X#c))) ] => 't/ X <p(X) 

or, equivalently, 

't/ X ['t/ x' (x'Cx => <p(x') => <p(X)] => 't/z <p(z). 

A detailed account of this process appears in [Cart80]. 

The corresponding problem for lazy domains D is much more subtle. If we construct the 

axiomatization described above for a lazy domain D, then the specified space contains only the finite 

objects (basis elements) of the lazy space. (Non-standard models may contain "infinite objects", but 

their behavior does not resemble that of lazy data objects.) The structural induction scheme (4) has 

the effect of banning infinite objects (limit points) from the domain. In fact, if we extend the 

axiomatized structure to include the characteristic predicate IsFin for finite objects and augment the 

axiomatization by a sentence asserting that constructors map finite objects to finite objects, then we 

can prove: 

't/ X IsFin(x)=true 

by structural induction. 

As a result, recursive definitions over the domain may not have least fixed points because 

directed sets do not necessarily have least upper bounds. For example, if we consider a domain 

consisting the finite objects in Trivseq, the function definition: 

f(x) = cons(true, f(x)) 

is contradictory, because we can prove by structural induction that: 

't/ x, y X '* cons(y, x) 

including X = ..l! 
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If we replace induction scheme (4) by an induction axiom scheme restricted to finite objects: 

(4') V x [IsFin(x) ~ [V x'[x'Cx ~ <p(x')] ~ <p(x)]] ~ [V z IsFin(z) ~ <p(z)], 

then the lazy space is a model for our axiomatization, but so is the subspace containing only finite 

objects. In such a theory, we could not prove any interesting statements about infinite objects. 

7. A Satisfactory Axiomatization 

The solution to the problem is to augment the axiomatization consisting of (1), (2), (3), and (4') 

above by two additional schemes asserting that: 

(5) Every definable directed set has a least upper bound. 

(6) Every term t(x) over the domain operations G is continuous in the variable x. 

They are formalized as follows. Let <p(u) and t(u) be an arbitrary formula and term respectively in 

the language of the data domain and let x, y, z be variables not free in either <p(u) or t(u). Let 

Dir{t(u)I<p(u)} abbreviate the formula: 

V x, y [<p(x)J\<p(y) ~ 3z(<p(z) J\ x C t(z) J\ y C t(z»] 

which asserts that {t(u)I<p(u)} is a directed set. Let lub{t(u)I<p(u)}(v) abbreviate the formula: 

V x ([<p(x) ~ t(x) C v] J\ V Z[V x <p(x) ~ t(x) C z] ~ t(x) C v 

which asserts that v is the least upper bound of the set {t(u)I<p(u)}. (Note that u is not free in either 

Dir{t(u)I<p(u)} or lub{t(u)I<p(u)}(v». Then the two additional schemes are: 

(5) (the existence of least upper bounds) 

Dir{t(u)I<p(u)} ~ 3v [Iub{t(u)I<p(u)}(v)] 

(6) (the continuity of functions) 

lub{ul<p(u)}(v) ~ IUb{t(u)I<p(u)}(t(v». 

where t(u) and <p(u) are an arbitrary term and formula containing no free variable other than u. 

Scheme (5) asserts that if the set {t(u)I<p(u)} is directed, then it has a least upper bound. Scheme 

(6) asserts that if the set {ul<p(u)} has a least upper bound v, then the function AU. t(u) is continuous 

at v. 

Although there are no blatant sources of incompleteness in this axiomatization (consisting of (1), 

(2), (3), (4a), (4b), (5), (6», it is not obvious that the system is strong enough to prove all of the 

important properties of particular lazy spaces. (For a non-trivial lazy space (e.g., Trivseq) the 

axiomatization is obviously not complete by Godel's first incompleteness theorem.) For this reason, 
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it is interesting to compare the power of our first-order system with the corresponding theory in 

LCF, a logic specifically designed to accommodate "higher order" spaces like Pw. The LCF theory 

looks similar except: 

1. It includes the typed lambda calculus in the term syntax for the logic. 

2. The induction axiom scheme is fixed point induction on recursively defined functions. This 

scheme has the form: 

cp(J..) A VJ1cp(f)=>cp( T(f]))) => cp( Y(Af. T[fJ» 

where cp(f) is a formula that admits induction on f. Fixed-point induction is applicable only to 

admissible formulas, where admissibility is a complex syntactic test (described in [Gord77D that 

analyzes the types of terms within the formula. 

The closest analog of structural induction in LCF is fixed point induction on a retraction 

characterizing the domain of interest. The fixed point induction scheme has the form: 

(7) [V f cp(f) => cp( T[fJ)] => cp( Y( Af. T[fJ» 

where f is a function of type T, T is a functional mapping functions of type T to functions of type 

T, cp(f) is an admissible formula containing no free variables other than f, and Y is the least fixed 

point operator. 

After studying the two systems, we were surprised to discover that our system subsumes LCF 

both in expressiveness and deductive power. In particular, we can systematically translate arbitrary 

LCF statements into equivalent statements in our first order system by: 

(i) Converting all lambda expressions into equivalent expressions formed using the standard 

Sand K combinators. 

(ii) Converting all function applications to explicit applications (using the primitive operation 

Apply) of corresponding mapping. 

Unlike many translations between formal systems, this translation does not mutilate the syntactic 

structure of the original formula. In fact, if we use the abbreviated notation for terms described in 

Section 2, the first order translation of an LCF formula is identical to the original formula! 

Under this translation, all of the LCF proof rules and axioms (expressed in terms of translated 

formulas) are derivable in our first-order system. In particular, we can derive the LCF fixed point 

induction scheme for admissible formulas. The derivation critically relies on the structural induction 

scheme for finite objects (4'), the least upper bound scheme (5), and the continuity scheme (6). 

We call the first order analog of fixed-point induction, lazy induction. If we use the abbreviated 

notation described in Section 2, then the lazy induction scheme is identical in appearance to the 

fixed point scheme (7). The formal derivation of lazy induction within our system is a tedious 

induction on the structure of formulas that is beyond the scope of this paper, but the basic idea 

underlying the proof is instructive. 
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The admissibility test in LCF ensures that passing to the limit of a directed set (of lazy data 

objects) does not change the meanings of subformulas that determine the truth of the entire formula. 

The idea behind the derivation is that the metamathematical justification for fixpoint induction on a 

function within a particular admissible formula can be translated into a proof in our first order 

system consisting of two parts. The first part utilizes conventional structural induction to establish 

that the formula holds for all finite approximations to the function. The second part extends the 

result to the entire function (an infinite lazy object) by appealing to the definition of admissibility 

and the fact that all functions in the domain are continuous. 

Although the admissibility test required for lazy induction is awkward, the rule can be a useful 

shortcut in certain situations. A particular important example is lazy induction on the retraction Ro 

characterizing the recursive data type D defined by the domain equation: 

D=Dnl+ ... +Dnk 

where n1, ... , nk are positive integers. For each component Dni of D, let isCj, Cj, and SJ.,} j = 1, ... , nj 

denote the recognizer, constructor, and selector functions, respectively, used to identify, build, and 

tear apart objects of form DOi within D. Then Ro is defined by the equation: 

Ro = AX. if isq X then q (R°SJ.,l x) ... (R°SJ.,n1 x) ... 

else if iSCk x then Ck (RoSk,l x) ... (RoSk,nk x) else 1... 

When we apply lazy induction to this retraction, the premises of the rule reduce to the premises of 

conventional structural induction for the finite objects of the space. Similarly, the conclusion of the 

rule reduces to an assertion that the hypothesis holds for all objects in D. Hence, if a formula is 

admissible, conventional structural induction establishes the formula holds for all objects in D, not 

just finite ones! 

8. Sample Program Proofs 

Consider the recursive definition: 

append(x, y) = if is Atom x then yelse cons(car(x), append(cdr(x), y» 

over the data domain List{l). The following formula: 

'V x, y, z append(x, append(y, z» = append(append(x, y), z). 

is obviously true on the domain of finite objects (including 1..). The proof is a trivial induction on 

the structure of x. Does the same theorem hold for all lazy lists? The answer must be yes, because 

the formula stating the theorem is admissible! Lazy induction enables us to prove theorems about 

lazy spaces using conventional structural induction. 
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On the other hand, lazy induction is not sound if the induction formula is not admissible. For 

instance, consider the formula: 

(8) V x E List (..L ~ zap(x)) 

where the function zap and the relation ~ are defined by the formulas: 

zap(x) = if isAtom(x) then ..L else cons(car(x), zap(cdr(x))) 

x ~ y ~ (x=y) V (x C y). 

By induction on x, we can trivially "prove" the formula (8), yet it is clearly false for lazy lists since: 

zap(BigTree) = BigTree 

where BigTree is defined as in Section 4. In this case, lazy induction fails because the formula (8) 

is not admissible. 

9. Conclusions and Future Research 

Although implementation-oriented definitions of lazy evaluation provide some insight into the 

behavior of particular computations, they are inadequate as the basis of a logical theory of lazy 

spaces. They also blur subtle but important semantic distinctions between different forms of lazy 

evaluation. Our abstract characterization in terms of domain constructors provides a much clearer 

picture of the mathematical properties of lazy spaces and directly corresponds to a natural formal 

system for reasoning about them. 

Since lazy spaces have essentially the same complex structure as Scott's Pw model of the untyped 

lambda calculus, they cannot be specified by restrictive specification methods such as algebraic 

specification. One approach is to axiomatize lazy spaces within a least fixed point logic such as LCF. 

In this paper we have presented a first-order theory of lazy spaces that we prefer to higher order 

formalizations because it relies on conventional structural induction rather than fixed point induction 

as the fundamental axiom scheme. In our system, the admissibility test for fixed point induction is 

simply a sufficient set of conditions for its derivation. Moreover, our system extends conventional 

structural induction (as implemented in the Boyer-Moore LISP Verifier [Boyer75, 79]) to the context 

of lazy data domains, providing the programmer with a simple intuitive framework for reasoning 

about functions that manipulate lazy data objects. 

Since computable functions have a natural extensional representation as lazily evaluated graphs 

(mappings), our first-order formalization of lazy spaces accommodates function spaces as well. (There 

are still multiple "partial" mappings corresponding to the same function, but the only difference 

between an arbitrary mapping and the canonical one for the equivalence class is that the canonical 

one contains every possible piece of redundant information.) However, we must overcome one major 

obstacle to make our treatment of functions intuitively accessible to programmers: our reliance on 
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combinators rather than lambda expressions to denote computable mappings. In response to this 

issue, we are currently developing a collection of combinators that closely correspond to conventional 

lambda notation. 
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Appendix: Mapping P w Onto the Lazy Space Trivseq 

Each data object X in the lazy space Trivseq is an infinite sequence Xo, Xl, ... , Xi, ... in which 

each element Xi is either true or..1.. In effect, a member of Trivseq is a potentially infinite 

enumeration of natural numbers (the indices of the convergent elements). Consequently, the 

abstraction function a: Trivseq --+ Pw defined by: 
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a(X) = { i I Xj=true } 

establishes a natural isomorphism between the two spaces. 

This appendix contains a recursive program defining the operations OPw' over Trivseq 

corresponding to the basic operations 0Pw of Pw. The style of this program is rather unusual because 

all computations over Trivseq are infinite enumerations in which the subcomputations determining 

individual elements are dovetailed (performed in parallel)-an unfamiliar phenomenon in 

conventional applicative languages such as Pure LISP. 

For the sake of clarity, each individual recursive function definition in the program obeys the 

following syntactic conventions. 

l. Each definition has the form: 

f(x) == informal-definition = formal-definition 

where an informal-definition is a mathematical description of the value of the function and 

formal-definition is the actual body of the function definition. I f the formal-definition is 

transparent, then the informal-definition may be omitted. 

2. The names of Trivseq operations (functions that return values of type Trivseq) are 

capitalized; the names of Triv operations (functions that return values of type Triv) are not. 

Triv operations are used as subfunctions within the definitions of the functions in OPw'. 

3. Variables ranging over Trivseq that are intended to denote arbitrary sets in Pw are 

capitalized. Variables ranging over. Trivseq that are intended to denote individual natural 

numbers (singleton sets) are not. No variables range over Triv. 

4. In every unary function application, the parentheses enclosing the argument are omitted. 

Note that this is not the same abbreviation we employed in connection with mappings in the 

main body of the paper. In the following program, every application within an expression is 

explicitly written down; consequently, a chain of unary applications f g h x associates to the 

right [f(g(h(x»)], rather than the left [«(f g) h) x)] . 

5. In informal definitions (comments), the following special notation appears. 

(a) The symbol Ej denotes the finite set in Pw corresponding to the binary coded 

integer i, i.e., 

{j I bit j in the binary representation of i is I} 

where bits are numbered from right to left starting with O. 

(b) The function symbol p denotes the inverse of the function a, i.e., psis the infinite 

sequence denoting the set of natural numbers s. 

(c) The bracketed pair (i, j> abbreviates the arithmetic expression [(i + j)*(i + j + 1)]/2 

+ i. The binary function Ai, j . (i, j> is a commonly used bijective pairing function. 
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Auxiliary Operations 

The following collection of auxiliary operations OAux are used in the definition of the primitive 

operations OPw of Pw. 

def X == 3i E aX = 

hd x por def TI X 

Plus(I, J) == {i + j liE aI 1\ j E aJ} = 

Cons(hd I and hd J, Cons([hd 11 I and hd J] por [hd I and hd TI J], Plus(TI I, TI J») 

Times(I, J) == {i*j liE aI /\ j E aJ} = 

Cons([def I and hd J] or [hd I and def J], Plus(TI I, Times(I, TI J») 

Pair(I, J) == {<i, j> I 3i E a(I) /\ 3j E a(J)} = 

Plus(Halve Times(Plus(I, J), Plus (Plus(I, J), Succ 0»), I) 

Fst X = {i I 3j <i, j> E aX} = 
Fstl(O, X) 

Fstl(k, X) == {i-k I 3j <i, j> E aX} = 
Cons(anySnd(k, 0, X), Fstl(SUCC k, X» 

anySnd(i, k, X) == 3 j ~ k [<i, j> E aX] = 

Overlap(Pair(i, k), X) por anySnd(i, Succ k, X) 

Snd X == {j I 3i [<i, j> E aX]} = 
Sndl(O, X) 

Sndl(k, X) == {j-k I 3i [<i, j> E aX]} = 

Cons(anyFst(O, k, X), Sndl(SUCC k, X» 

anyFst(k, j, X) == 3 i ~ k [<i, j> E aX] = 
Overlap(Pair(k, j), X) por anyFst(Succ k, j, X) 

Overlap(I, J) == 3i i E [aI /\ i E aJ] = 

hd I and hd J por Overlap(TI I, TI J) 

Top == {i} = 
Cons(true, Top) 

odd X == 3i [2*i+l E aX] = 
hd TI x por odd TI TI X 

Halve X == {i I 2*i E aX} U { j I 2*j + 1 E aX} = 

Cons(hd X por hd TI X, Halve TI TI X) 
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approx(i, X~ == €i ~ aX = 

hd i por [([odd i and hd X] por odd TI i) and approx(Halve i, TI X)] 

Primitive Operations of P w 

Recursive definitions for all the operations in 0Pw' = { 0, Succ, Pred, Cond, K, S, Apply} in 

terms of the auxiliary operations OAux appear below. 

o == {OJ = Cons(true, ..i) 

Succ = GraphSuee 0 

GraphSuee k == {(i, j>-k I (i, j> ~ k /\ j E [a Suee P €i]} = 

Cons( approx(Snd k, Suee Fst k), GraphSuee Suee k ) 

Suee I == {i + 1 liE a I} = Cons(..1, I) 

Pred == GraphPred 0 

GraphPred k == {(i, j>-k I (i, j> > k /\ j E [a Pred P €i]} = 
Cons( approx(Snd k, Pred Fst k), GraphPred Suee k ) 

Pred I == {i I i + 1 E a I} = TI I 

Cond = GraphCond 0 

GraphCond k == { (i, j>-k I (i, j> > k A j E [a Cond1 P €i]} = 

Cons( approx(Snd k, Cond1 Fst k), GraphCond Suee k) 

Cond1 X = GraphCond1(X,0) 

GraphCond1(X, k) == {(i, j>-k I (i, j> ~ k A j E a Cond2(X, P €i) } = 

Cons( approx(Snd k, Cond2(X, Fst k», GraphCond1(X, Suee k» 

Cond2(X, Y) == AZ. Cond(X, Y, Z) = GraphCond2(X, Y, 0) 

GraphCond2(X, Y, k) == {(i, j>-k I (i, j> > k /\ j E a Cond(X, Y, P €i) } = 
Cons( approx(Snd k, Cond(X, Y, Fst k», GraphCond2(X, Y, Suee k» 

Cond(l, Y, Z) == {i E aY I 0 E aI} U {j E aY I 3 w w+l E aI} = 

Cons([hd I and hd Y] por [def TI I and hd Z], Cond(l, TI Y, TI Z» 

K X == {(i, j> I j E aX} = Pair(Top, Filter X) 

Filter I == {i I €i ~ aI} = Filter1(I, 0) 

Filter1(I, k) == {i-k I i ~ k A €i ~ aX} = 

Cons(approx(k, I), Filterl(I, Suee k» 
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S = GraphS(O) 

GraphS k == {<i, j>-k I <i, j> > k A j E [a Sl P f:j]} = 

Cons( approx(Snd k, Sl Fst k), GraphS Succ k ) 

Sl X == A Y. S2(X, Y) = GraphS1(X, 0) 

GraphS1 (X, k) == {<i, j>-k I <i, j> ~ k A j E a Sl(X, P f:j)} = 
Cons( approx(Snd k, S2(X, Fst k)), GraphSl(X, Succ k) ) 

S2(X, Y) = AZ. S3(X, Y, Z) = GraphS2(X, Y, 0) 

GraphS2(X, Y, k) == {<i, j>-k I <i, j> ~ k A j E a S3(X, Y, P f:j)} = 

Cons( approx(Snd k, S3(X, Y, Fst k)), GraphS2(X, Y, Succ k)) 

S3(X, Y, Z) = Apply(Apply(X, Z), Apply(Y, Z)) 

Apply(F, X) _ {j I 3i <i, j> E F A f:j ~ X} = 

Snd AppIY1(0, F, X) 

AppIYl(F, X, k) == { p-k I p > k ApE F A f:Fst p ~ X} = 

Cons( test(k, X, F), AppIYl(F, X, Succ k) ) 

test(p, X, F) == p E F A f:Fst p ~ X = 

Overlap(p, F) and approx(Fst p, X) 
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