
Controlling Large Software Development
. In a Distributed Environment

Eric Emerson Schmidt

Controlling Large Software Development in a
Dist ri buted Envi ronment

Eric Emerson Schmidt

CSL-82-7 December 1982 [P82-00039]

© Copyright Eric Emerson Schmidt 1982. All rights reserved.

XEROX Xerox Corporation
Palo Alto Research Centers
3333 Coyote Hill Road
Palo Alto, California 94304

Controlling Large Software Development in a Distributed Environment

Report number CSL-82-7.

This report reproduces a dissertation submitted to the University of California. Berkeley in partial
fulfillment of the degree requirements for the Doctor of Philosophy in Computer Science.

The research in this dissertation was supported by Xerox Corporation.

Abstract

Breaking a program up into modules is an important technique for managing the complexity

of large systems. As the number of modules increases, the modules themselves need to be

managed. Changing even a single module can be difficult. Compilation and loading are

complicated. Saving the state of a program for others to build on is quite error-prone. The

development of a large program as part of a multi-person project is even worse. This thesis

presents solutions to these problems. We use new languages to describe the modules that

comprise a system and tools that automate software development.

The first solution developed is a version control system of modest goals that has been used to

maintain up to 450,000 lines of code over the past year. Users of this system list versions of files

in description files (OF files) that are automatically maintained for the user. OF files may refer to

other OF files when one software package depends on another. A working set of software that is

saved in a safe location is called a release. The need for a release process was identified and an

iterative algorithm that uses OF files to perform releases has been developed.

Based on experience with the OF system and the desire to automate the entire compile-edit­

debug-release cycle, a second solution was developed in which the development cycle is controlled

by the System M odeller. The modeller automatically manages the compilation, loading. and

saving of new modules as they are produced. The user describes his software in a system model

that lists the versions of files used. the information needed to compile the system. and the

interconnections between the various modules. The modeller is connected to the editor and is

notified when files are edited and new versions are created. To provide fast response. the

modeller behaves like an incremental compiler: only those modules that change are analyzed and

recompiled.

CR categories: 0.1.1 [Programming Techniques]: Applicative (Functional)

Programming; 0.2.2 [Software Engineering]: Tools and Techniques - Modules and

Interfaces; 0.2.7 [Software Engineering]: Distribution and Maintenance - Version

Control; 0.2.9 [Software Engineering]: Management - Software Configuration

Management; 0.3.2 [Programming Languages]: Language Classifications - Applicative

Languages.

Key words and ph rases: Version control, release process, Cedar, Mesa, software

management, automatic compilation, applicative language, modules, OF files, system

models.

TABLE OF CONTENTS

Chapter 1 Page 1

Chapter 2 Page 15
Chapter 3 Page 49
Chapter 4 Page 75
Chapter 5 Page 103

References Page 107

Appendix A Page III
Appendix B Page 115
Appendix C Page 125

Appendix D Page 129

Appendix E Page 135

Acknowledgments

I would like to thank my committee, Robert S. Fabry and Richard J. Fateman of the

Computer Science Department of V.C. Berkeley, James A. Reeds of the Statistics Department of

Berkeley, and Butler W. Lampson of Xerox PARe's Computer Science Laboratory (esL) for their

comments on this thesis. Fabry was my principal research adviser throughout my years at

Berkeley; his encouragement and support were constant.

Lampson is the intellectual father of the research described in this thesis. He coined the

term "System Modelling" and designed the Cedar Kernel language, on which the SML language is

based. Monthly meetings with him over the past three years gave me insight and encouragement

in this research. Every idea in this thesis has been affected by his critical approach and incisive

suggestions. Parts of section 3.4 are based on an internal memo by Lampson on the Cedar

Kernel language.

Roy Levin of eSL had a strong influence on this research. He proposed the use of OF files

as part of the Cedar release process, served as Release Master for almost all Cedar releases, and

participated in the design of the Release Tool. His thorough approach is responsible for the

success of the release process. He has contributed several ideas to the design. presented here. of a

release process based on system models.

James H. Morris of eSL brought me into Xerox as a research intern five years ago. He

remained my official sponsor at Xerox through another summer and later made me a member of

the Cedar project. which he headed until this year. His strong personal influence through those

years kept me directed toward a Ph.D.: he is both my friend and mentor.

System Modelling has been strongly influenced by Edwin H. Satterthwaite of eSL, who has

used the system modeller heavily and has played a major role in providing fast turnaround

through module replacement. Satterthwaite has given me advice on the design of the SM

language and its implementation, and has allowed me to reproduce the system model that he

developed for the Cedar compiler as an appendix to the thesis.

I would like to thank these fearless readers of earlier versions of my thesis: Mark Brown.

Jim Donahue and Jim Horning of esL, Brian Lewis of Xerox SOD. David Elliott of SRI

International, William N. Joy of Sun Microsystems, Inc. and Dan Halbert of V.C. Berkeley. Each

made valuable structural and syntactic improvements to this thesis. Lewis took the OF software

described in Chapter 2. converted it to run in SOD'S programming environment. and served as

Release Master for their first release. Halbert carried many versions of this thesis between Palo

Alto and Berkeley: his door-to-door service was invaluable.

Every member of the Cedar project has used some of the software described here. I thank

them all for their patience in helping to debug these programs, and for their many suggestions

that helped turn the programs into a usable system. Thanks also go to Paul Rovner and Warren

Teitelman of eSL for allowing me to reproduce some of their OF files in the appendices to the

thesis. This research and the Cedar project would not have been possible without the support of

CSL and particularly of its manager, Robert W. Taylor.

The text of this thesis was prepared using the Bravo editor, and the figures were done using

the SIL illustrator. Both of these programs were run on a Dorado. These three tools made

preparation of this thesis much easier.

I would like to thank my wife, Wendy, for editing this thesis as it was prepared and for

supporting me through the good and bad times.

This thesis is dedicated to the memory of my father, Dr. Wilson Schmidt, Professor of

Economics, who died while this thesis was being prepared. His emphasis on the importance of

graduate education and the personal value of a Ph.D. was the inspiration for my pursuit of a

Ph.D.

CHAPTER 1: INTRODUCTION 1

1. Introduction

1.1 Introduction

This dissertation presents a solution for problems occurring when large numbers of

components of a software system are developed and maintained by many different programmers.

Tools and languages are described that automate production of new versions of the system and

the integration of packages into a stable system. The solution is developed in the context of a

project to build Cedar, a new programming environment at Xerox's Palo Alto Research Center.

The Cedar project [Deutsch-Taft. 1980] is an attempt to take the Mesa language and build

around it a programming environment based on ideas from Interlisp and Smalltalk, while

retaining the strong type-checking properties of Mesa. Cedar makes it easy for programmers to

share packages and collaborate on software development. Cedar programmers work in a

distributed computing environment and have to be able to share each other's programs in various

stages of development. In this setting, control of versions and file management is difficult

because of the large number of files in Cedar and the requirement that versions of files must

agree.

The first solution developed manages versions of files based on description files (OF files)

that have information about versions of files needed and their locations. OF files that describe

packages of software are input to a release process. The release process checks the submitted OF

files to see if the programs they describe are made from compatible versions of software, and. if

so, copies the files to a safe location. The Release Tool performs these checks and copies the

files; an interactive algorithm is used that can be repeated after errors in OF files are found and

fixed. Use of the Release Tool allows the person making the release, who is called the Release

Master. to release software with which he ·is not familiar.

The OF system automates version control for the programmer. Based on experience with it.

a second solution was developed that is a complete program management system. The user

describes his software· in system models. which are complete descriptions of a software system.

Similar to a blueprint or schematic, a model combines in one place 1) information about the

versions of files needed and hints about their locations, 2) additional information needed to

compile the system, and 3) information about interconnections between modules, such as which

procedures are used and where they are defined.

System models are manipulated by the System M odeller, a program that automates

development of software in the Cedar programming environment. The system modeller· is notified

of new versions of files as they are created by the editor, and automatically recompiles and loads

new versions of software. The modeller allows the user to maintain all three kinds of

information, stored in system models that describe particular versions of a system. The system

modeller is a complete software development system that will replace use of description files as

the primary method of producing software in Cedar.

2 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT

1.2 The Problem

Programs consisting of a large number of modules need to be managed. When the number

of modules making up a system exceeds some small, manageable set, a programmer cannot be

sure that every new version of each module in his program will be handled correctly. After each

version is created, it must be compiled and loaded. The programmer may have to save it

somewhere so others may use it. Without some automatic tool to help, the programmer cannot

be sure that versions of software being transferred to another programmer are the ones intended.

A programmer unfamiliar with the composition of. the program is more likely to make

mistakes when a simple change is made! Giving this new programmer a list of the files involved

is not sufficient, since he needs to know where they are stored and which versions are needed. A

tool to verify a list of files, locations and versions is correct would help to allow the program to

be built correctly. A program can be so large that simply verifying a description is not sufficient,

since the description of the program is so large that it is impractical to maintain it by hand. An

ideal support system would note new versions of modules and automatically manage the

compilation, loading, and saving of new modules as they are produced.

The confusion of a single programmer becomes much worse, and the cost of mistakes much

higher, when many programmers collaborate on a software project. In multi-person projects.

changes to one part of a software system can have far-reaching effects. There is often confusion

about the number of modules affected and how to rebuild affected pieces. For example, user­

visible changes to heavily-used parts of an operating system are made very seldom and only at

great cost, since other programs that depend on the old version of the operating system have to

be changed to use the newer version. To change these programs, the "correct" versions of each

have to be found, each has to be modified, tested, and the new versions installed with the new

operating system. Changes of this type often have to made quickly because the new system may

be useless until all components have been converted.· Members of large software projects are

unlikely to make such changes without some automatic support.

The software management problems faced by the Cedar programmer when he is developing

software are made worse by the size of Cedar software, the number of references to modules that

must agree in version, and the need for explicit file movement between computers. The Cedar

system now has 447,000 lines of Cedar code, and approximately 2000 source and 2000 object files.

Almost all object files refer to other object files by explicit version stamp. A program will not

run until all references to an object file refer to the same version of that file. Cedar is too large

to store all Cedar software on the file system of each programmer's machine, so each Cedar

programmer has to explicitly retrieve the versions he needs to run his system.

This thesis deals with problems that fall into the realm of Programming-in-the-Large. where

the unit of discourse is the module, instead of Programming-in-the-Small. where units include

scalar variables, statements, expressions, and the like [DeRemer-Kron. 1976].

CHAPTER 1: INTRODUCTION 3

1.3 The Approach

To provide solutions to the above problems, we take the following approach:

1) Languages are provided in which the user can describe his system.

2) Tools are provided for the individual programmer that automate management of versions of

his programs. These tools are used to acquire the desired versions of files, automatically

recompile and load a program, save new versions of software for others to use, and provide

useful information for other program analysis tools such as cross-reference programs.

3) In a large programming project, software is grouped together as a release when the versions

are all compatible and the programs in the release run correctly. The languages and tools for

the individual programmer are extended to include information about cross-package

dependencies. The release process is designed so production of releases does not lower the

productivity of programmers while the release is occurring.

To accomplish 1-3, we must identify the kinds of information that must be maintained to

describe the software systems being developed. The information needed can be broken down

into three categories:

l. File Information: For each version of a system, the versions of each file in the system must

be specified. There must be a way of locating a copy of each version in a distributed

environment. Because the software is always changing, the file information must be

changeable to reflect new versions as they are created.

2. Compilation Information: All files needed to compile the system must be identified. It must

be possible to compute which files need to be translated or compiled or loaded and which are

already in machine runnable format. (This is called "Dependency Analysis.") The

compilation information must also include other parameters of compilation such as compiler

switches or flags that affect the operation of the compiler when it is run.

3. Interface Information: In languages that require explicit delineation of interconnections

between modules (e.g .. Mesa. Ada), we must be able to express these interconnections.

1.4 Solutions

The research for this thesis was done in two steps. The first system. based on OF files, gave

important experience with the release process. A second system that included all the functionality

of OF software plus an automatic program development system was then developed.

DF Software and the Release Process

A system with modest goals and low overhead was developed and has been in use for more

than a year. Each programmer lists files that are part of his system in a description file (called a

DF file). Each entry in a OF file consists of a file name, its location. and the version desired.

4 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT

The programmer can use tools to retrieve files listed in a OF file and to save new versions of files

in the location specified in the OF file. Because recompiling the files in his system can involve

use of other systems, OF files can refer also to other OF files. The programmer can verify that,

for each file in the OF file, the files it depends on are also listed in the OF file.

OF files are input to a release process that verifies that the cross-package references in OF

files are valid. The dependencies of each file, on other files are checked to make sure all files

needed are also part of the release. The release process copies all files to a place where they

cannot be erroneously destroyed or modified.'

The information about file location and file versions in OF files is used by programs running

in the Xerox environment. Each programmer has a personal computer on which he develops

software. Each personal computer has its own disk and file system. Machines are connected to

other machines using an Ethernet. Files can be transferred by explicit request from the file

system on one machine to another machine. Often transfers are between a personal machine and

a file server, which is a machine dedicated to servicing file requests.

The major research contributions of the OF system are 1) a language that. for each package

or system described, differentiates between files that are part of the package or system and files

needed from other packages or systems, and 2) a release process that does not place too high a

burden on programmers and that pulls together packages being released. A release is complete if

and only if every object file needed to compile every source file is among the files being released.

A release is consistent if and only if only one version of each package is being released and every

other package depends on the version being released. The release process is controlled by a

person acting as a Release Master, who spends a few days per monthly release running programs

that verify that the release is consistent and complete. Errors in OF files. such as reference.S to

non-existent files or references to the wrong versions of files, are detected by a program called the

Release Tool. After errors are detected, the Release Master contacts the implementor and has

him fix the OF file.

Releases can be frequent since performing each release imposes a low cost on the Release

Master and on Cedar programmers. The Release Master does not need to know details about the

packages being released, which is important when the software of the system becomes too large to

be understood by anyone programmer. Indeed, no single programmer has ever known how to

,rebuild the entire Cedar system. The implementor of each package can continue to make changes

to his package until the release occurs. secure in the knowledge that his package will be verified

before the release completes. Many programmers make such changes at the last minute before

the release. The release process supports a high degree of parallel activity by programmers

engaged in software development.

The OF system does not offer all that is needed to automate software development. OF files

have only that information needed to control versions of files. Interconnections between Cedar

modules that are loaded must be specified in another language called C/Mesa. No support for

automatic recompilation of changed software modules is provided in the OF system; the only tool

provided is a consistency checker that verifies that an existing system does not need to ,be

CHAPTER 1: INTRODUCTION 5

recompiled. OF files cannot be used as replacements for C/Mesa descriptions and cannot be

used as input to a recompilation tool; there is not enough information in OF files to do this.

Complete Solution: System Modelling

A complete software system for Cedar has been built. It provides automatic support for the

edit-compile-debug-release cycle. Its design is based in part on experience gained from the OF

system and the release process.

This software management system uses information stored in system models, which contain

the three kinds of information that must be managed. System models replace OF files and

C/Mesa descriptions. The SML language, in which system models are written, allows complete

descriptions of all interconnections between Cedar modules. Since these interconnections can be

very complicated, the language includes defaulting rules that simplify system models in common

cases.

The Cedar programmer uses the System Modeller to manipulate systems describe~ by the

system models. The system modeller 1) manipulates the versions of files listed in models, 2)

tracks changes made by the programmer to files listed in the models, 3) automatically rt..:ompiles

and loads the system, and 4) provides complete support for the release process. The modeller is

connected to the Cedar editor and is notified when files are edited and new versions are created.

The modeller recompiles new versions of modules and any modules that depend on them. To

provide fast response, the modeller behaves like an incremental compiler: only those modules that

change are analyzed and recompiled.

The main research contributions are 1) an extremely powerful module interconnection

language that expresses interconnections as complicated as those found in Cedar, 2) a user

interface that allows interactive use of the modeller while maintaining an accurate description of

the system, and 3) the data structures and algorithms developed to maintain caches that enable

fast analysis of modules by the modeller.

The tools that utilize the information above must 1) be usable by programmers working

alone and as part of large projects; and 2) be suitable for a distributed environment. To achieve

these goals, we have solved problems in a number of areas.

First, the software management tools presented here are easy to use and perform their

functions quickly. The tools described are designed to run while the programmer is developing

his software and automatically update system descriptions whenever possible. It is important that

the tools be used while the programmer is developing software so he can get the most benefit

from them. When components are changed, the descriptions are adjusted to refer to the changed

components. Manual updates of descriptions by the programmer would slow his software

development and proper voluntary use of the system seems unlikely. These tools function like an

incremental compiler: only those pieces of the system that change are recompiled, loaded, and

saved.

6 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT

Second, the tools described here run in Xerox PARe's computing environment. At Xerox,

each programmer has his own personal computer, which is connected to other computers over an

Ethernet. This environment introduces two types of delays in access to versions of software

stored in files: 1) if the file is on a remote machine, it has to be found, and 2) once found, it has

to be retrieved. Since retrieval time is determined by the speed of file transfer across the

network, we try to avoid retrieving files when the information we want about a file can be

computed once and stored irf a database. For example, the size of data needed to compute

recompilation information about a module is small compared to the size of the module's object

file. Recompilation information can be saved in a database stored in a file on the local disk for

fast access. In cases where the file must be retrieved, determining which machine and directory

has a copy of the version desired can be very time-consuming. The file servers can deliver

information about versions of files in a directory at a rate of up to six versions per second. Since

directories can have many hundreds of versions of files, it is not practical to enumerate the

contents of a file server while looking for a particular version of a file. The solution presented

here depends on the construction of databases for each software package or system that contains

information about file locations.

(Other distributed computing environments many be organized to provide a uniform file

system (UFS). Such a file system hides the fact that files may be stored on separate file systems

and provides the illusion of one large name space. One might expect that future file systems will

be UFS'S and thus that we are partly solving problems that are artifacts of the current Xerox

environment. On the contrary, we believe that there will always be cases where a UFS cannot be

adopted. For example, a UFS needs to have available a high speed network to provide file access

at speeds close to those of a file system on a disk attached directly to the local machine. Also,

differences between the policies under which computers are managed may prevent the unification

of file systems into a UFS.)

Third, since Cedar modules have a complicated interconnection structure, the system

modeller includes a description language that can express the interconnection structure between

Cedar modules. These interconnection structures are maintained automatically for the

programmer. When new interconnections between modules are added by the programmer, the

modeller updates the model to add the interconnection when possible. This means the user has

to maintain these interconnections very seldom. The modeller checks interconnections listed in

models for accuracy by checking the parameterization of modules. This checking of large

numbers of modules is very time-consuming in the distributed environment discussed earlier, so

the solutions adopted also involve use of local databases with such information.

CHAPTER 1: INTRODUCTION 7

1.5 Organization of this Thesis

The research described in this thesis is divided into three somewhat independent parts. Each

part is given a· chapter. The rest of this first chapter contains descriptions of other systems that

deal with software management and version control. Subsequent chapters also contain references

to these systems.

Chapter 2 describes the (now largely complete) system that uses DF files for managing

versions of software that has been used in the Cedar project for about thirteen months. After a

discussion of the Cedar environment, the programs run by individual programmers to manage

versions of their own software are presented. The need for Cedar releases is explained, and the

duties of the Release Master in charge of making the release are described. A list of the steps

required for a release is followed by information about experience in the Cedar project with the

release process. One appendix at the end of the thesis gives information on the size and

frequency of Cedar releases during the past year. Another appendix gives examples of versions

of software submitted to a recent Cedar release.

The principles underlying the SML language are presented in Chapter 3. This language is

unusual because it is polymorphic (types are full-fledged values) and applicative (the language has

no variables). The chapter reveals the fundamental structure of SML and documents the way

systems of Cedar modules are described in SML. Issues of implementation are discussed along

with plans for unification of SML and the Cedar language.

Chapter 4 describes the system modeller and shows how it uses system models as the

description of a system to be compiled, loaded, run, and saved on a central file server. The

connection between the Cedar editor and Modeller, which enables the modeller to track changes

made by the programmer and automatically re-compile and load his system, is described. The

basic edit-compile-debug-release cycle is presented, followed by details on implementation. The

complexity of processing information about large systems is reduced by the use of specialized

tables indexed by unique-ids. A mechanism for making Cedar releases is presented, followed by

information on the existing implementation of the system modeller. One appendix contains the

interface between the system modeller and the debugger, another shows a small model currently

in use, and the last appendix is a copy of the largest model in use.

Chapter 5 consists of a conclusion and some suggestions for future research. References are

at the end of Chapter 5.

1.6 Previous Work

There has been little research in version control and automatic software management. Of

that. almost none has built on other research in the field. Despite good reasons for it (the many

differences between program environments, and the fact that programming environments usually

emphasize one or two. programming languages, so the management systems available are often

closely related to those programming languages), this fact reinforces the singularity of this

8 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT

research. I, too, must build from first principles by virtue of two elements: 1) the description

mechanism needed to describe Cedar module interconnections is more complex than that

supported by other systems, and 2) no other research in this area has focused on the problems

that occur when software development is done on separate computers without a common file

system. Nevertheless, it is well worth reviewing previous work in this area.

Make

The Make program uses a system description called the Makefile, which lists an acyclic

dependency graph (explicitly given by the programmer). For each node in the dependency

graph, the Makefile contains a make rule, which is to be executed to produce a new version of

the parent node if any of the son nodes change [Feldman. 1979].

For example, the dependency graph in Figure 1.1 shows that x1.o depends on xI.c, and the

file a.out depends on x1.o and x2.o.

Figure 1.1

The Makefile that represents this graph is shown in Figure 1.2.

a.out: x1.o x2.o

cc x1.o x2.o

x1.o: x1.c

cc -c x1.c

x2.o: x2.c

cc -c x2.c

Figure 1.2

Figure 1.2 gives "cc -c x1.c" as the command to execute to produce a new version of x1.o

when x1.c is changed. Make decides to execute the make rule (i.e., compile x1.c) if the file

modification time of x1.c is newer than that of x1.o.

The description mechanism shown in Figure 1.2 is intuitively easy to use and explain. The

simple notion of dependency (e.g., a file x1.o that depends on x1.c must be recompiled if x1.c is

newer) works correctly virtually all the time. The Makefile can also be used as a place to keep

useful commands the programmer might want to execute, e.g.,

CHAPTER 1: INTRODUCTION 9

print:

pr x1.c x2.c

defines a name "print" that depends on no other files (names). The command "make print" will

print the source files x1.c and x2.c. There is usually only one Makefile per directory and, by

convention, the software in that directory is described by the Makefile. This makes it easy to

examine unfamiliar directories simply by reading the Makefile.

Make is an extremely fast and versatile tool that has become very popular among UNIX users.

Unfortunately, Make uses modification times from the file system to tell which files need to be

re-made. These times are easily changed by accident and are a very crude way of establishing

consistency. Often the programmer omits some of the dependencies in the dependency graph,

sometimes by choice. Thus, even if Make used a better algorithm to determine the consistency of

a system, the Makefile could still omit many important files of a system.

sees

The Source Code Control System (sees) manages versions of C source programs, enforcing a

check-in and check-out regimen, controlling access to versions of programs being changed [Glasser.

1978]. [Ivie. 1977]. and [Rochkind. 1975].

A programmer who wants to change a file under sees control does so by 1) gaining exclusive

access to the file by issuing a "get" command, 2) making his changes, and 3) saving his changed

version as part of 'the sees-controlled file by issuing a "delta" command. His changes are called

a "delta" and are identified by a release and level number (e.g., "2.3"). Subsequent users of this

file can obtain a version with or without the changes made as part of delta 2.3. While the

programmer has "checked-out" the file, no other programmers may store new deltas. Other

programmers may obtain copies of the file for reading, however. sees requires that there be

only one modification of a file at a time. There is much evidence this is a useful restrictIon in

multi-person projects [Glasser. 1978].

sees stores all versions of a file in a special file that has a name prefixed by "5.". This "s."

file represents these deltas as insertions, modifications, and deletions of lines in the file. Their

representation allows the "get" command to be very fast.

SMF

Make and sees were unified in special tools for a development project at Bell Labs called

the Software Manufacturing Facility (SMF) [eristofar. et af.. 1980]. The SMF used Make and sees

augmented by· special files called slists. which list desired versions· of files by their sees version

number.

An slist may refer to other slists as well as files. In the SMF. a system consists of a master

slist and references to a set of slists that describe subsystems. Each subsystem may in turn

describe other subsystems or files that are part of the system. The SMF introduces the notion of a

10 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT

consistent software system: only one version of a file can be present in all slists that are part of

the system. Part of the process of building a system is checking this consistency.

SMF also requires that each slist refer to at least one Makefile. Building a system involves 1)

obtaining the sees versions of each file, as described in each slist, 2) performing the consistency

check, 3) running the Make program on the version of the Makefile listed in the slist, and 4)

moving files from this slist to an appropriate directory. Figure l.3 shows an example of a

hierarchy of slists, where ab.sl is the master slist.

ab.sl

ab.sl 3.5

a.sl 4.7

b.sl 2.3

Makefile 4.9

J I

a.sl t b.sl t
a.sl 4.7 b.sl 2.3

x1.o 1.2 x2.o 1.3

x1.c 3.5 x2.c 1.4

Makefile 3.5 Makefile4.5

Figure 1.3

SMF includes a database of standard versions for common files such as the system library.

Use of SMF solves the problem created when more than one programmer is making changes to

the software of a system and no one knows exactly which files are included in the currently

executing systems.

PIE

The PIE project is an extension to Smalltalk, implementing a network database of Small talk

objects (i.e., data and procedures) and more powerful display and usage primitives. [See all of the

Goldstein-Bobrow papers]. PIE allows users to categorize different versions of a Smalltalk object into

layers, which are typically numbered starting at O. A list of these layers, most-preferred layer

first, is called a context. A context is a search path of layers, applied dynamically whenever an

object in the network database is referenced. Among objects of the same name, the one with the

layer number that occurs first in the context is picked for execution. Whenever the user wants to

switch versions, he arranges his context so the desired layer occurs before any other layers that

might apply to his object. The user's context is used whenever any object is referenced.

The distinction of PIE's solution to the version control problem is the ease with which it

handles the display of and control over versions. PIE inserts objects (PIE procedures) into a

network that corresponds to a traditional hierarchy plus the threads of layers through the network.

The links of the network can be traversed in any order. As a result, sophisticated analysis tools

can examine the logically-related procedures that are grouped together in what is called a

CHAPTER 1: INTRODUCTION 11

Smalltalk "class." More often, a PIE browser is used to move through the network. The browser

displays the "categories" (a grouping of classes) in one corner of a window. Selection of a

category displays a list of classes associated with that category, and so on until a list of procedures

is displayed. By changing the value of a field labeled "Contexts:," the user can see a complete

picture of the system as viewed from each context. This interactive browsing feature makes

comparison of different versions of software very convenient.

Gandalf

The Gandalf project at CMU is implementing parts of an integrated software development

environment for the GC language, an extension of the C language [Habermann. et al.. 1982].

Included are a syntax-directed editor, a configuration database, and a language for describing

what they call system compositions [Habermann-Perry. 1980] and [Habermann. 1979a]. Various Ph.D.

theses have explored their language· for system composition [Cooprider. 1979] and [Tichy. 1980].

Recent work on a System Version Control Environment (SVCE) combines Gandalfs system

composition language with version control over multiple versions of the same component [Kaiser­

Habermann. 1982]. Parallel versions, which are different implementations of the same specification,

can be specified using the name of the specific version. There may be serial versions of each

component, which are organized in a time-dependent manner. One of the serial versions (called a

revision) may be referenced using an explicit time stamp. One of these revisions is designated as

the "standard" version that is used when no version is specified.

Descriptions in the System Version Control Language (SVCL) specify which module versions

and revisions to use. A collection of logically-related software modules is described by a box that

names the versions and revisions of modules available. Boxes can include other boxes or

modules. A module lists each parallel version and revision available. Other boxes or modules

may refer to each version using postfix qualifiers on module names. For example, "M" denotes

the standard version of the module whose name is "M," and "M.Vl" denotes parallel version VI.

Each serial revision can be specified with an "@," e.g., "M.Vl@2" for revision 2.

Each of these expressions, called path names, identifies a specific parallel version and

revision. Pathnames behave like those in the UNIX system: a path name that begins, for

example, I AlBIC refers to box C contained in box B contained in A. Pathnames without a

leading "I" are relative to the current module. Implementations can be used to specify the

modules of a system, and compositions can be used to group implementations together and to

specify which module to use when several modules provide the same facilities. These ways of

specifying and grouping versions and revisions allow virtually any level of binding: the user may

choose standard versions or, if it is important, he can be very specific about versions desired. The

resulting system can be modified by use of components that specialize versions for any particular

application. (See Figure 1.4).

12 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT

Other modules and boxes

Other modules and boxes

Other modules

Figure 1.4

SVCE also contains facilities for "System Generation." The Gandalf environment provides a

command to make a new instantiation, or executable system, from an implementation or

composition. This command compiles, links, and loads the constituent modules. The Gandalf

editor is used to edit modules and edit SVCL implementations directly, and the command to build

a new instantiation is given while using the Gandalf editor. Since the editor has built-in

templates for valid SVCL constructs, entering new implementations and compositions is very easy.

SVCE combines system descriptions with version control, coordinated with a database of

programs. Of the existing systems, this system comes closest to fulfilling our three requirements

described earlier: Their file information is in the database, their recompilation information is

represented as links in the database between programs, and their interface information is

represented by system compositions.

I ntermetrics Approach

A system used to maintain a program of over one million lines of Pascal code is described in

[A vakian. et aL. 1982]. The program is composed of 1500 separately-compiled components developed

by over 200 technical people on an IBM 370 system. Separately-compiled Pascal modules

communicate through a database (called a compool) of common symbols and their absolute

addresses. Because of its large size (90 megabytes, 42,000 names), a com pool is stored as a base

tree of objects plus some incremental revisions. A simple consistency check can be applied by a

link editor to determine that two modules were compiled with mutually-inconsistent com pools,

since references to code are stamped with the time after which the object file had to be

recompiled.

CHAPTER 1: INTRODUCTION 13

Management of a project this size poses huge problems. Many of their problems were

caused by the lack of facilities for separate compilation in standard Pascal, such as interface­

implementation distinctions. (Better facilities are available in Mesa.) The compool includes all

symbols (procedures and variables) that are referenced by modules other than the module in

which they are declared. This giant interface between modules severely restricts changes that

affect more than one separately-compiled module. Such a solution is only suitable in projects

that are tightly managed. Their use of differential-updates to the compool and creation times to

check consistency makes independent changes by programmers on different machines possible,

since conflicts will ultimately be discovered by the link editor.

Mesa. C/Mesa, and Cedar

Because the research described in this thesis is implemented in Cedar, the reader has to be

familiar with the existing Cedar/Mesa environment. The description below is repeated with

different emphasis in Chapters 2 and 3.

Mesa programs can be one of two kinds: interfaces (or definitions) and implementations

[Mitchell. et al.. 1979]. The code of a program is in the implementation, and the interface describes

the procedures and types (as in Pascal) that are available to client programs. These clients

reference the procedures in the implementation file by naming the interface and the procedure

name, exactly like record or structure qualification (e.g., RunTime.GetMemoryD refers to the

procedure GetMemory in the interface RunTime). The Mesa compiler checks the types of both

the parameters and results of procedure calls so that the procedures in the interfaces are as

strongly type-checked as local, private procedures appearing in a single module.

The interconnections are implemented using records of pointers to procedure bodies, called

interface records. Each client is passed a pointer to an interface record and accesses the

procedures in it by dereferencing once to get the procedure descriptors, which are an encoded

representation sufficient to call the procedure bodies.

A connection must be made between implementations (or exporters) and clients (or

importers) of interfaces. In Mesa this is done by writing programs in C/Mesa, a language that

was designed to allow users to express the interconnection between modules, specifying which

interfaces are exported to which importers. With sufficient analysis, C/Mesa can provide much of

the information needed to recompile the system. However, C/Mesa gives no help with version

control since no version information can appear in C/Mesa configurations.

Using this configuration language, users may express complex interconnections, which may

possibly involve interfaces that have been renamed to achieve information hiding and flexibility

of implementation. In practice, very few configuration descriptions are anything more than a list

of implementation and client modules, whose interconnections are resolved using defaulting rules.

A program called the Mesa Binder takes object files and configuration descriptions and

produces a single object file suitable for execution [Lauer-Satterthwaite. 1979]. Since specific versions

of files cannot be listed in C/Mesa descriptions, the Binder tries to match the implementations

14 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT

listed in the description with files of similar names on the invoker's disk. Each object file is given

a 48-bit unique version stamp, and the imported interfaces of each module must agree in version

stamp. If there is a version conflict (different versions of an interface), the Binder simply gives

an error message and stops binding. Most users have elaborate command files to retrieve what

they believe are suitable versions of files to their local disk.

A Librarian [Horsley-Lynch. 1979] is available to help control changes to software in multi-person

projects. Files in a system under its control can be checked out by a programmer. While a' file is

checked out by one programmer, no one else is allowed to check it out until it has been checked

in. While it is checked out, others may read it, but no one else may change it.

In one very large Mesa-language project [Harslem-Nelson, 1982], programmers submit modules to

an integration service that recompiles all modules in a system quite frequently. A newly-compiled

system is stored on a file system and testing begins. A team of programmers, whose only duty is

to perform integrations of other programmer's software, fix incompatibilities between modules

when possible. The major disadvantage of this approach is the amount of time between a change

made by the programmer and when the change is tested.

The central problem with this environment is that even experienced programmers have

trouble managing versions of Mesa or Cedar modules. The lack of a uniform file system, lack of

tools to move version-consistent sets of modules between machines, and lack of complete

descriptions of their systems contribute to the problem. This thesis addresses all these issues.

CHAPTER 2: A SIMPLE VERSION CONTROL SYSTEM 15

2. A Simple Version Control System

2.1 Introduction

We describe a system for efficient management of versions of software and its

documentation. It is a system of modest goals and low overhead. This system is used to

maintain the software of the Cedar project [Deutsch-Taft, 1980] in Xerox's Computer Science

Laboratory. Cedar is a project to develop a prototype system that involves about 20 full-time

implementors for about 20 users that consists of more than 4500 software files written in a high­

level programming language.

Goals

The Cedar system changes frequently, both to introduce new function and also to fix bugs.

Radical changes are possible and may involve recompilation of the entire system.

1. Our system must manage these frequent changes and must give us guarantees about the

location and consistency of each set of files.

2. We want to call each consistent set of Cedar software a "Cedar Release," which must be a set

of Cedar modules carefully packaged into a system that can be loaded and run on the

programmer's personal machine. These releases must be carefully stored in one place,

documented and easily accessible.

3. We want to be able to make Cedar releases as often as once a week, since frequent releases

make available in a systematic way new features and bug fixes. The number of Cedar users is

small enough that releases do not need to be bug-free since (in general) our users are tolerant

of bugs in new components in the system. When bugs do occur, it must be clear who is

responsible for the software in which the bug occurs.

4. Our scheme must minimize inconvenience to implementors and cannot require much effort

from the person in charge of constructing the release. The scheme must not require a

separate person whose sole job is control and maintenance of the system.

5. The system must be added on top of existing program development facilities, since we are

unable to change key properties of our environment. In particular, we do not have a database

system in which we can store information about versions of the system, and because of time

constraints, we cannot alter the existing Cedar/Mesa programming environment in any

significant ways. (Research for Cedar on databases, file systems, and program management

described in Chapter 3 and 4 was in progress, but not ready, at the time this system was

implemented.)

16 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT

Non-Goals

We did not try to solve a number of common problems:

1. Because the system is undergoing rapid change, we are not concerned with long-term retention

of versions of Cedar software, and plan to remove an old version as soon as a newer version is

stable.

2. We assume each programmer submitting a package to a new release can adequately test his

submission before the release. perhaps by running test programs or by making changes while

running the previous release on his machine. If releases are easily made, fatal flaws are easily

corrected by another release, e.g., the following day. We have not adopted a formal software

testing strategy.

3. In our environment, each package has been implemented and is being maintained by one

person, so we do not cope with multiple modifiers of the same component. See [Glasser, 1978],

[Rochkind, 1975], [Horsley-Lynch. 1979], [Tichy, 1982] for descriptions of source code control, librarian

checkin/checkout, and other schemes to handle this problem. Nor do we provide the

branching or forking of versions of logically-related software available in sees.
4. In our system, new versions of files are complete copies of old versions. We do not need to

store successive versions of a particular file in differential format (we view this as strictly a

disk space - programmer time tradeoff.) We do not need to include and exclude groups of

changes to get a particular version (in [Rochkind, 1975], they are called Deltas.)

In what follows, we describe the features of our environment that affected our approach, then

describe our version control system as perceived by the individual user and programmer. and

develop a working example. Then we describe how individual components are put together into

a Cedar release. This is followed by sections on pragmatics and experience using this system.

2.2 Version Control in our Environment

Although we have developed a general system for management of files. we obtain additional

consistency checking by using a limited understanding of the dependency relationships in the

Cedar software systems. This dependency relationship is quite general, but to understand the

specifics of our system we must give an overview of Cedar modules and dependencies.

The Notion of Dependency

A module A depends on another module B when a change to B may require a change to A.

Throughout this paper we are concerned with the dependency of one module on another. since

the system we describe manipulates versions of files. Nothing prevents adaptation of this scheme

to dependency at a finer level.

If module A depends on module B. and B changes. then a system that contains the changed

version of B and an unchanged version of A could be inconsistent. Depending on the severity of

CHAPTER 2: A SIMPLE VERSION CONTROL SYSTEM 17

the change to B, the resulting system may not work at all, or may work while being tested but fail

after being distributed to users. Cedar requires inter-module version checking between A and B

that is very similar to Pascal type-checking for variables and procedures. As in Pascal, Cedar's

module version checking is designed to detect inconsistency as soon as possible at compile time so

that the resulting system is more likely to run successfully after development is completed.

Dependency in Cedar

Each Cedar module is represented as a source file (whose name ends in ".Mesa"). The

Cedar compiler produces an object file (whose name ends in ".Bcd"). Each object file can be

uniquely-identified by a 48-bit version stamp so no two object files have the same version stamp.

Cedar modules depend on other modules (details given below) by listing in each object file the

names and 48-bit version stamps of object files they depend on. Cedar requires that a collection

of modules that depend on each other agree exactly in 48-bit version stamps. If module A

depends on version 35268AADB3E4 (hexadecimal) of module B, but B has been changed and is

now version 31258F AFBFE4, then the system is inconsistent.

The version stamp of a compiled module is a function of the source file and the version

stamps of the object files on which it depends on. If module A depends on module B which in

turn depends on module C, and C is changed and compiled, then when B and A are compiled

their version stamps will change because of the change to C.

Types Of Dependency

There are three kinds of modules in Cedar (interface, implementation, and configuration) and

two programs (the Cedar compiler and binder) that produce object files.

Executing code for a Cedar system is contained in an implementation module. Each

implementation module can contain procedures, global variables, and local variables that are

scoped using Pascal scoping rules. To call a procedure defined in another implementation

module, the caller (client) module must IMPORT a interface module that defines the procedure's

type (the types of the procedure's argument and result values). This interface module must be

EXPoRTed by the implementation module that defines it (called the implementor).

Both the client and implementor modules depend on the interface module. If the interface is

recompiled, both client and implementor must be recompiled. The client and implementor

modules do not depend on each other, so if either is compiled the other does not need to be.

Thus, Cedar uses the interface-implementor module distinction to provide type safety with

minimal recompilation cost. This dependency is shown in Figure 2.1.

18 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT

Client: PROGRAM IMPORTS Sqrtlnt = { Implementor: PROGRAM EXPORTS Sqrtlnt = {

r +- Sqrtlnt.Sqrt[3.0];

}.

I

Sqrt: PUBLIC PROC(s: REAL] RETURNS[REAL] = {
.. code to compute sqrt of a number

};

}.

Sqrtlnt: DEFINITIONS = {

Sqrt: PROC(REAL] RETURNS[REAL];

}.

Figure 2.1 Importers and Exporters

I

A compiler-produced object file depends on 1) the source module that was compiled and 2)

the object files of any interfaces that this module IMPORTS or EXPORTS. This dependency is

shown in Figure 2.2. These interface modules are compiled separately from the implementations

they describe, and interface object files contain explicit dependency information. In this respect,

Cedar differs from most other languages with interface or header files (like C [Kernighan-Ritchie,

1978]). We will exploit this Cedar feature by analyzing the object files for interfaces produced by

the Cedar compiler and use this to maintain our dependency information.

rr~m~ron'~:i~
Source file Object files for Interfaces

Figure 2.2

Another level of dependency is introduced by CONFIGURATION modules, which contain

implementation modules or other configuration modules. The programmer describes a set of

modules to be packaged together as a system by writing a description of those modules and the

interconnections among them in a language called C/Mesa. A C/Mesa description is called a

CONFIGURATION module. The source file for a configuration is input to the Cedar Binder which

then produces an object file that contains all the implementation module object files. The Binder

ensures the object file is composed of a logically-related set of modules whose imports and

exports all agree in version. Large systems of modules are often made from a set of

configurations (called sub-configurations). A configuration object file depends on 1) its source

file and 2) the sub-configurations and implementation object files that are used to bind the

configuration. These object files can be run by loading them with the Cedar loader which will

resolve any IMPORTS not bound by the Binder.

CHAPTER 2: A SIMPLE VERSION CONTROL SYSTEM 19

In general, a Cedar system has a dependency graph that looks like Figure 2.3:

~onftgUration ~C4

Source File
iPlem~rn or Files l

Source file Object files for Interfaces

Figure 2.3

Version And Size Problems

Each Cedar programmer has his own personal computer, which is connected to other

computers by an Ethernet. Most files comprising a system are· stored on central file servers

(machines dedicated to servicing file requests) and are copied from the central file server(s) to the

personal machine by an explicit command (similar to the Arpanet "ftp" command). Figure 2.4 at

the end of this chapter shows a typical environment. The owner of the machine must first install

a boot file that is given control after the machine is powered on. Cedar users install the Cedar

boot file that contains the Pilot operating system [Redell. et al .. 1979] and (possibly) pre-loaded

programs.

Since the Binder and Loader ensure that the version stamps of Cedar modules all agree, all

Cedar modules could be bound together and distributed to all users for use as the Cedar boot

file. However, users who wanted to make changes would have to re-bind and load the system

every time they changed a module to test their changes. The resulting boot file would be very

large and difficult to transfer and store on the disks of the personal machines. To avoid these

problems, Cedar users install this boot file on their machine (which contains a basic system to

load and execute Cedar programs, a file system, and a pre-loaded editor) and then retrieve copies

of programs they want to run that are not already in the boot file. These programs are loaded as

they are needed.

Changes to these programs are possible as long as the versions of interfaces pre-loaded in the

Cedar boot file agree with the versions IMPORTed by the program being loaded. Since the boot

file EXPORTS more than 100 interfaces, the programmer can quickly become confused by version

error messages for each of the interfaces he uses. This problem could be solved simply by

disallowing changes to the Cedar interfaces (except, say, once a year). However. we want to be

able to adjust interfaces frequently to reflect new features and refinements as they are understood.

20 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT

Single vs. Shared File Systems

The problem of determining which version of a module to use can occur on both single-user

systems (as described previously) and also in conventional time-sharing systems with file systems

shared among many users.

In a shared file system, different versions of files are usually stored in different sub­

directories of the file system. The user must know which sub-directory to use when running his

system. The most common error is a reference to a directory that is thought to contain a certain

version of software, when in fact it contains a different version. Simply asserting that a directory

contains a consistent, working version of software is not a sufficient guarantee of integrity,

particularly when more than one programmer is involved and the normal file-system protections

cannot distinguish among members of a privileged class of users. For example, the source

programs for the UNIX kernel are often writeable by a user who has become a "super-user" by

use of a magic password. Information about changes made by one super-user can be lost over

time, which may lead to disastrous bugs in a system built from the resulting files. Use of sees to

control changes helps as long as all modifiers obey the rules that require them to check out files

before modifying them. The modifiers must not circumvent the normal sees procedures.

However, even if each change is carefully recorded, there is no guarantee this version works with

the rest of the system.

The use of a personal computer with its own file system in the Xerox environment has all

the problems of timesharing systems and adds three extra problems:

1. The name space is flattened. Files from many directories and file servers are copied to the

programmer's disk. This corresponds to copying all files that might be referenced on a shared

file system into a single directory, which would be quite large. In fact, some Cedar users keep

more than 1000 files on their personal machines!

2. The files used must be retrieved explicitly. Aside from the time required to transfer a large

number of files, users can forget to copy every file and be left with a disk on which some of

the files are consistent with one Cedar boot file and some are consistent with another.

3. Users generally develop software on their personal machines and then save copies on central

file servers. When working on a large set of files, it is very easy to save some but not all of

the files, leading to an inconsistent set of files on the central file servers. Should the contents

of the local disk be destroyed, those unsaved versions would be lost. Other programmers,

when told about software on the central file server, could retrieve an inconsistent system.

Each of these problems is addressed by a new Cedar File System under development. This file

system was not available when the DF system was designed.

Value of Type Checking

It is appropriate for us to pause and give some justifications for the strict type-checking rules

in Cedar, especially those between modules.

CHAPTER 2: A SIMPLE VERSION CONTROL SYSTEM 21

Control of software in module interconnection languages is analogous to control over types in

conventional programming languages, such as Pascal. Still opposed by some, strong type-checking

in a language can be viewed as a conservative approach to programming, where extra rules (in the

fonn of type equivalence) are imposed on the program. Proponents claim these rules lead to the

discovery of many programming errors while the program is being compiled, rather than after it

has started execution. Morris has said that having strong-type checking in a language is like using

a "Neanderthal program verifier." [Morris. 1982]

Like strong type-checking of variables, type-checking in a language like Cedar with the

explicit notion of an interface module can be perfonned at the module level so that

incompatibilities between modules can be resolved when they are being collected together rather

than when they are executing. As in the strong type-checking case, proponents claim this

promotes the discovery of errors sooner in the development of programs.

Of course, incompatible versions of modules, like incompatible types in a programming

language, must be corrected by the programmers involved. Many times, complex and subtle

interdependencies exist between modules, especially when more than a few programmers are

involved and the lines of communication between them are frayed or partially broken. In the

Xerox environment, where each module is a separate file and development occurs on different

personal machines, module-level type-checking is more important than type-checking of variables

in conventional programming languages. This is because maintaining inter-module type

consistency is by definition spread over different files, possibly on different computers by more

than one programmer, while maintaining type-consistency of variables is usually localized in one

file by one programmer on one machine.

2.3 A Single Component

In this section we describe procedures and programs used by an individual programmer to

maintain his own software. The next section describes how these procedures are extended to

manage Cedar releases.

We ask users to group logically-related files, such as the source and object files for a program

they are developing, into a package. Each software package is described by a description file

(called a DF file) that is a simple text file with little inherent structure that is editable by the

programmer or user. The OF file lists all the files grouped together by the implementor as a

package. For each file, the OF file gives a path name (or location) where the file can be found

and infonnation about which version is needed.

In Cedar, files are stored on file servers with names like "Ivy" and have path names

(directory names) like "<Levin)BTrees)". A file like "BTreeOefs.Mesa" would be referenced as

"[Ivy]<Levin)BTrees)BTreeOefs.Mesa". In addition, when created, each file is assigned a creation

time. Therefore "BTreeOefs.Mesa Of May 13, 1982 2:30 PM" on "[Ivy]<Levin)BTrees)" defines

a particular version.

22 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT

A DF file is a list of such files. For syntactic grouping, we allow the user to list files

grouped under common directories. The implementor of a B-tree package might write in his DF

file, called BTrees.DF:

Directory [Ivy]<Levin> BTrees>
BTreeDefs.Mesa 2-0ct-81 15:43:09

to refer to the file [Ivy]<Levin>BTrees>BTreeDefs.Mesa created at 2-0ct-81 15:43:09.

If, for example, the BTree package included an object file for BTreeDefs.Mesa, and an

implementation of a B-tree package, it could be described in BTrees.OF as

Directory [I vy]<Levin> BTrees>
BTreeOefs.Mesa
BTreeDefs.Bcd
BTreeImpl.M esa
BTreeImpl.Bcd

2-0ct-81 15:43:09
2-0ct-81 16:00:28
2-0ct-81 15:28:54
2-0ct-81 16:44:31

Two different OF files could refer to different versions of the same file by using references

to files with different create dates.

There are cases where the programmer wants the newest version of a file. If a ">" appears

in place of a create time, the OF file refers to the newest version of a file on the directory listed

in the DF file. For example,

Directory [Ivy]<Pilot>Oefs>
Space.Bcd >

refers to the newest version of Space.Bcd on the directory [Ivy]<Pilot>Defs>. This is used mostly

when the file is maintained by someone other than the programmer and he is content to accept

the latest version of it.

BringOver and StoreBack

We encourage our users and implementors to think of the local disk on their personal

machine as a cache of files whose "true" locations are the remote servers. We provide a

command (called BringOver) that assures the versions listed in a OF file are on the local disk.

Since OF files are editable, the programmer who edits, for example, BTreeOefs.Mesa could,

when ready to put a new copy on Ivy, store it manually and edit the DF file to insert the new

create time for the new version.

For large numbers of files, this would always be error prone, so we provide a StoreBack

command that provides automatic backup of changed versions (1) by storing files that are listed

in the OF file but whose create date differs from the one listed in the OF (on the assumption

that the file has been edited) and (2) by updating the OF file to list the new create dates. We

also want the DF file to be saved on the file server, so we allow for a OF self-reference that

indicates where the OF file is stored. For example, in BTrees.DF

CHAPTER 2: A SIMPLE VERSION CONTROL SYSTEM

Directory [Ivy]<Levin> BTrees>
BTrees.DF
BTreeDefs.M esa
BTreeDefs.Bcd
BTreelmpl.M esa
BTreelmpl.Bcd

20-0ct-81 9:35:09
2-0ct-81 15:43:09
2-0ct-81 16:00:28
2-0ct-81 15:28:54
2-0ct-81 16:44:31

23

the first file listed is a self-reference. Store Back arranges that the new version of BTrees.DF will

have the current time as its create date.

DF Imports

The Cedar system itself is a set of implementation modules that export common system

interfaces such as interfaces to the file system, memory allocator, and graphics packages. Assume

the B-tree package uses an interface from the allocator. We require that users make this

dependency explicit in their DF file. The BTree package will then IMPORT the interface "Space",

which is stored in object form in the file "Space.Bcd".

The BTree DF package will reflect this dependency by "importing" Space.Bcd from a DF

file "PilotInterfaces.DF" that lists all such interfaces. BTrees.DF will have an entry

Imports [lndigo]<Cedar>Top>PilotInterfaces.DF Of 2-0ct-81 15:43:09
U sing[Space.Bcd]

The "Imports" in a DF file is analogous to the IMPORTS in a Cedar program. As in Cedar

modules, BTrees.DF depends on Pilot.DF. Should "Space.Bcd" and its containing DF file

"Pilot.DF" change, then BTrees.DF may have to change also.

The programmer may want to list special programs, such as a compiler-compiler or other

preprocessors, that are needed to make changes to his system. This is accomplished using the

same technique of Importing the program's DF file.

For the individual programmer, there are two direct benefits from making dependency

information explicit in his DF file. 1} BringOver will ensure that the correct version of any

imported DF files are on the local disk, so programmers can move from one personal machine to

another and guarantee they will have the correct version of any interfaces they reference. 2}

Listing dependency information in the DF file puts in one place information that is otherwise

scattered across modules in the system.

VerifyDF

How does the programmer know which files to list in his DF file? For large systems, under

constant development, the list of files is long and changes frequently. (Some packages depend on

more than fifty other interfaces.) The programmer can run a program VerifyDF that analyzes the

files listed in the DF file and warns about files that are omitted. VerifyDF analyzes the

dependency graph described in section 2.2 and analyzes the versions of (I) the source file that

was compiled to produce this object file and (2) all object files that this object file depends on.

VerifyDF analyzes the modules listed in the DF file and constructs a dependency graph.

24 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT

VerifyDF stops its analysis when it reaches a module defined in another package that is

referenced by Imports in the DF. Any modules defined in other packages are checked for

version-stamp equality, but no modules they depend on are analyzed, and their sources do not

need to be listed in the package's DF file.

VerifyDF understands the file format of object files and uses it to discover the dependency

graph, but otherwise it is quitt:r general. For example, it does not differentiate between interface

and implementation files. VerifyDF could be modified to understand object files produced by

other language compilers as long as they record all dependencies in the object file with a unique

version stamp. For each new such language, VerifyDF needs 1) a procedure that returns the

object version stamp, source file name and source create time, and 2) a procedure that returns a

list of object file names and object version stamps that a particular object file depends on.

If the programmer lists all such package and files he depends on, then some other

programmer on another machine will be able to retrieve (using BringOver) all the files he needs

to make a change to the program and then run Store Back to store new versions and produce a

new DF file.

Using these tools (BringOver, StoreBack, VerifyDF) the programmer can be sure he has a

DF file that lists all the files that are needed to compile the package (completeness) and that the

object files were produced from the source files listed in the DF file, and there are no version

stamp discrepancies (consistency). The programmer can be sure the files are stored on central file

servers and can tum responsibility for a package over to another programmer by simply giving

the name of the DF file.

The reader may ask: given that a DF file describes a list of files that comprise a package or

subsystem, why not use a subdirectory of a conventional tree-structured file system instead of a

DF file? For a single programmer, DF files do not offer much of an advantage over such a tree­

structured file system. The programmer could store all logically-related files in a common

directory, and there would be a program analogous to VerifyDF that analyzes all files in a

particular directory, rather than a DF file, for inconsistency. DF files offer more than directories

offer when they are used for describing systems composed of specific versions (such as those in a

directory) and also composed of references to other DF files without version information, such as

"Imports" without specific versions. This is shown in the next section.

2.4 Releases

The previous section described how an individual programmer uses DF files to organize his

software. We now describe how, with a few extensions, these same DF files can be used to

describe releases of software. Releases are made by following a set of Release Procedures. which

are essentially managerial functions by a Release Master and requirements placed on

implementors. A crucial element of these Release Procedures is a program called the Release

Tool, which is used to verify that the release is consistent and complete, and is used to move the

CHAPTER 2: A SIMPLE VERSION CONTROL SYSTEM 25

files being released to a common directory.

What is a Release?

If the packages a programmer depends on change very seldom, then use of the tools outlined

in the previous section is sufficient to manage versions of software. However, at this stage in the

Cedar project, packages that almost everyone depends on may be changed. A release must

consist of packages that, for example, all use the same versions of interfaces supplied by others.

If version mismatches are present, modules that IMPORT and EXPORT different versions of the

same interface will not be connected properly by the loader. In addition to the need for

consistency and completeness across an entire release (just as consistency and completeness were

needed by individual packages), the component files of a particular release must be carefully

saved somewhere where they are readily available and will not be changed or deleted by mistake,

until an entire release is no longer needed.

The Release Process

We organize the administration of Cedar releases around an implementor who is appointed

Release Master. In addition to running the programs that produce a release, he is expected to

have a general understanding of the system, to make decisions about when to try to make a

release, and to compose a message describing the major changes to components of the release.

Once he decides to begin the release process (after conferring with other implementors and

users), the Release Master sends a "call for submissions" message through the electronic mail

system to a distribution list of programmers who have been or are planning to contribute

packages to the release. Over a period of a few days, implementors are expected to wait until

new versions of any packages they depend on are announced, produce a new version on some file

server and directory of their choosing, and then announce the availability of their own packages.

One message is sent per package, containing, for example, "New Version of Pkg can be

found on [Ivy]<SchmidOPkg.DF, that fixes the bug ... ". Programmers who depend on Pkg.DF

are expected to edit their DF files (they would refer to Pkg.DF by an Imports clause) by

changing them to refer to the new version. Since often it is the newest version, clients of Pkg.DF

usually replace an explicit date by the ")" (greater than) symbol. They might refer to Pkg.DF by

inserting

Imports [Ivy]<SchmidOPkg.DF Of)
Using[Filel.Bcd, File2.Bcd]

in their DF file.

If their package is not changing, they are expected to send a message to that effect. These

submissions do not appear in lock step since changes by one implementor may affect packages

that are "above" them in the dependency graph.

26 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT

This pre-release integration period is a parallel exploration of the dependency graph of Cedar

software by its implementors. If an implementor is unsure whether he will have to make changes

as a result of lower level bug fixes. for instance. he is expected to contact the implementor of the

lower package and coordinate with him. Circular OF-dependencies may occur, where two or

more packages use interfaces exported by each other. In circular cases, the OF files in the cycle

have to be announced at the same· time or one of the OF files has to be split into two parts: a

bottom half that the other OF file depends on and a top half that depends on the other OF file.

The Release Master simply monitors this integration process and when the final packages are

ready, begins the release.

The Release Tool

Once all packages that will be submitted to the release are ready, the Release Master

prepares a top-level OF file that lists all the OF files that are part of the release. Packages that

are not changing (e.g., from a previous release) are also listed in this OF file. OF files are

described using a construct similar to "Imports" discussed earlier. The contents of each OF file

are referenced by an Include statement, e.g.,

Include [Ivy]<Levin>BTrees>BTrees.DF Of >

refers to the newest version of the BTree package stored on Levin's working directory

<Levin>BTrees>. Include is treated as macro-substitution. where the entire contents of BTrees.DF

are analyzed by the Release Tool as if they were listed directly in the top-level OF.

Phases One and Two

The Release Master uses the top-level OF as input to phase one (out of three) of the Release

Tool. Phase one reads all the Included OF files of the release and performs a system-wide

consistency check. A warning message is given if there are files that are part of the release with

the same name and different creation times (e.g., BTreeDefs.Mesa of 20-May-82 15:58:23 and also

another version of 17-Apr-82 12:68:33). Such conflicts may indicate that two programmers are

using different versions of the same interface in a way that would not otherwise be detected until

both programs were loaded on the same machine. These warnings may be ignored in cases where

the Release Master is convinced that no harm will come from the mismatch. (For example, there

is more than one version of Queue.Mesa in the Cedar release since more than one package has a

queue implementation, but each version is carefully separated and the versions do not conflict.)

Phase one also checks for common blunders, such as a OF file that does not refer to newest

versions of OF files it depends on, or a OF file that refers to Cedar files that do not exist where

the OF file indicates they can be found. The Release Master makes a list, package by package,

of such blunders and calls each person and notifies them they must fix their OF files.

Phase one is usually repeated once or twice until all such problems are fixed and any other

warnings are judged benign. Phase two guarantees system wide completeness of a release by

running VerifyDF on each component of the release. VerifyDF will warn of files that should

CHAPTER 2: A SIMPLE VERSION CONTROL SYSTEM 27

have been listed in the DF file but were omitted. Implementors are expected to run VerifyDF

themselves, but during every release, someone forgets. Any omissions must be fixed by the

implementor.

Once phases one and two are completed successfully, the Release Master is fairly certain

there are no outstanding version or system composition problems, and he can proceed to phase

three.

Phase Three

To have control over the deletion of old releases, phase three moves all files that are part of

a release to a directory that is mutable only by the Release Master. Moving files that are part of

the release also helps users by centralizing the files in one place. The DF files produced by

implementors, however, refer to the files on their working directories. We therefore require that

every file mentioned in the DF files that are being released have an additional phrase "ReleaseAs

releasePlace". Our BTrees.DF example would look like

Directory [Ivy]<Levin>BTrees>
ReleaseAs [Indigo]<Cedar>Top>

BTrees.DF 20-0ct-81 9:35:09

Directory [Ivy]<Levin> BTrees>
ReleaseAs [Indigo]<Cedar>BTrees>

BTreeDefs.Mesa 2-0ct-81 15:43:09
BTreeDefs.Bcd 2-0ct-81 16:00:28
BTreeImpl.Mesa 2-0ct-81 15:28:54
BTreeImpl.Bcd 2-0ct-81 16:44:31

which indicates a working directory as before and a place to put the stable, released versions. By

convention, all such files must be released onto subdirectories of [Indigo]<Cedar>. To make

searching for released DF files on the <Cedar> directory easier, each DF file's self-reference must

release the DF file to the special subdirectory <Cedar>Top>. When the third phase is run, each

file is copied to the release directory (e.g., B-tree files are copied to <Cedar>BTrees» and new

DF files are written that describe these files in their release positions, e.g.,

Directory [lndigo]<Cedar>Top>
CameFrom [Ivy]<Levin>BTrees>

BTrees.DF 9-Nov-81 10:32:45

Directory [Indigo]<Cedar> BTrees>
CameFrom [Ivy]<Levin>BTrees>

BTree De fs. Mesa 2-0ct-81 15:43:09
BTreeDefs.Bcd 2-0ct-81 16:00:28
BTreeImpl.Mesa 2-0ct-81 15:28:54
BTreeImpl.Bcd 2-0ct-81 16:44:31

The additional phrase "CameFrom" is inserted as a comment saying where the file(s) were copied

28 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT

from.

The other major function of phase three is to convert references using the "newest version"

notation (.. > ..) to be explicit dates, since "newest version" will change for every release. Phase

three arranges that a reference like

Imports [I vy]<Levin>BTrees>BTrees.DF Of >
Using[BTreeDefs.Bcd]

becomes

Imports [Indigo]<Cedar>BTrees>BTrees.DF Of date
CameFrom [Ivy]<Levin>BTrees>

U sing[BTreeDefs. Bcd]

where date is approximately the time phase three is run.

Appendix B has more information, including an example of a DF file that was submitted to

a release.

Figure 2.5 shows the steps taken to make a release.

Users make changes while running on released software

Release Master sends call for submissions

DF files in boot file are all announced as ready

Remaining DF files are all announced as ready

Users make changes to their software in response
to errors reported by Phases One and Two

Figure 2.5 Steps to Make a Release

CHAPTER 2: A SIMPLE VERSION CONTROL SYSTEM 29

Merits of This Approach

The notion of a "Cedar Release" has many advantages. In addition to a strong guarantee

that the software will work as documented, it has an important psychological benefit to users and

implementors alike as a firewall against disasters, since programmers are free to make major

changes that may not work at all, and are secure in the knowledge the last release is still available

to fall back on. Since users can convert back and forth between releases, users have more control

over which versions they use. There is nothing wrong with more than one such release being in

use at one time by different programmers, since each programmer has his own personal machine.

Users are allowed to convert to new Cedar releases at their own pace.

Our approach to performing releases fulfilled our initial goals:

1. All files in the release have been moved to the release directory. These files are mutually

consistent versions of software. All OF files refer to files known to be on the release

directory.

2. As described in section 2.2. we cannot make a configuration module that contains all the

modules in a release. Cedar releases are composed of a) a boot file and b) programs that are

mutually consistent and can be run on a personal machine with the boot file being released.

Phase two runs VerifyOF on all the components to guarantee that the versions of source and

object files listed in the OF file are the ones actually used, to build the component and

guarantees that all files needed to build the component are listed in the OF file, so no files

that conflict in version can be omitted.

3. The release process is automatic enough that frequent releases are possible. Bugs in frequent

releases are easily reported since the concept of ownership is very strongly enforced by our

approach: The programmer who provides new versions of software is the recipient of bug

reports of his software. Programmers who are out of town are expected to hand responsibility

for their packages to another Cedar implementor while they are away.

4. The Release Master is required to a) decide when to make a release, b) send a call-for­

submissions message, c) make a top-level OF file and run the Release Tool, and d) send a

message announcing the release's completion. Because Cedar releases are expected, over time,

to include more and more Cedar programs, it is important that the Release Master not need to

compile packages other than any packages he may be contributing to the release. Indeed, no

single person has ever known how to compile the entire Cedar system by himself.

Since the implementors use OF files for maintaining their own software as well as for

submitting components to the release. there is little additional burden on the implementors

when doing a release. If the burden·· were too high. the implementors would delay releases

and overall progress would be slowed as the feedback from users to implementors suffered.

5. We do not need a general database system to describe the dependency hierarchy of packages

when we are producing systems. (In fact, in the first nine months of use, we did not have a

complete list of dependencies in an easily accessible form.) For example, we use the message

system. rather than a database of information that the programmers can query, to notify

30 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT

implementors that packages they may depend on are ready. Each implementor is expected to

understand the effect of his changes on his clients (i.e., the packages that depend on him).

It is possible to put an explicit date on the Include statement. Normally the newest version is

wanted, but in situations where the implementor cannot wait until the release is complete, use of

the explicit date guarantees the version intended by the programmer is the one used in the release

and not a newer one. This would enable the parallel integrations defined in [Harslem-Nelson, 1982]

where programmers submit their changes to an integration service and then continue to make

more changes to their software while waiting to test their previously-submitted changes.

2.5 Pragmatics of Releases

In building this system we had to deal with several practical problems. Here are some of

these problems and the pragmatic solutions we adopted.

Includes and the Spanning Tree

Programmers frequently agree to share a common package of files but are not sure who

"owns" the package. We allow a OF file to "Include" another OF file when both OF files are

being developed by the same programmer and are logically part of the same package. Phase one

checks to make sure that, for each OF file, either 1) it is Included by the top-level OF file, or 2)

it is indirectly Included by another OF file that is Included by the top-level OF file. This insures

every OF file appears as an Include at least once. Phase one also checks that each OF file

appears, at most, once and that this inclusion relationship is a spanning tree of OF files.

Release Envelope and Exception List

Some modules of Cedar were written by another division within Xerox and have not been

changed by Cedar implementors. (Examples include the Pilot Operating System on which Cedar

runs, and low-level disk utilities.) Programmers occasionally have to refer to these modules, but

they are not being released or maintained. We consider these files to be outside the "release

envelope," which contains the files we want to save as part of the release. Files that do not

change and do not need to be under control of the release process are entered into an exception

list. When phase one checks to make sure every file mentioned in the OF files, i.e., by Imports,

is part of a package that is being released, files that appear in the exception list are not listed. A

warning is given for all files that are not being released onto [Indigo]<Cedar), since those files

might be deleted or changed. No warning is given for files on the exception list.

Deletion of Old Releases

We have never needed more than two releases on the <Cedar) directory, so we run a

program to delete an old release after a new release is safely stored on <Cedar). This program is

/

CHAPTER 2: A SIMPLE VERSION CONTROL SYSTEM 31

given a list of top-level DF files for releases being kept and reads their contents, following the

Include constraints to build a list of every file in the release(s) and then deletes any file on the

<Cedar> directory that is not on the list of files being kept.

Copying Files To The Release Directory

The Release Tool runs on a personal machine and copies files from remote directory to

remote directory, without making a copy of each file on the personal machine. This allows the

Release Master to use the currently released version of Cedar to make a release of a new,

incompatible version of Cedar. If the files being released were copied to the local disk, they

would overwrite the older versions.

Non-Program Files

We require that every package include references to its documentation and command files to

recompile the software. By convention, the documentation is always released to the

<Cedar>Documentation> directory, making browsing of system documentation easy and

guaranteeing the automatic deletion of old documentation along with old released software.

Quality of Consistency Check

Our check for the consistency of a release is based on creation times of files and 48-bit

version stamps of Cedar interfaces. Programs or packages may not work together even if their

mutual version stamps agree. The Release Tool's checks are not substitutes for testing of program

changes prior to a release. Also, no checking is done on files that are part of the release but are

not Cedar source and object files. For example, the wrong version of documentation files and

command files to compile packages may be mentioned in DF files being released and we will not

be able to check this. (This is discussed "in more depth in Chapter 4.)

Create Times as Unique IDs

Unfortunately the create time listed in the DF file is not a unique-id since two programmers

working on different computers could create a file with the same name at the same second. In

practice this has never been a problem. Since the create time is only changed when the file is

edited (Le., when the contents change) this create time is preserved even when a file is copied or

renamed. Phase one of the Release Tool confirms that all the files being released are consistent

by comparing create times instead of version stamps, since the create times of a file can be found

faster that its version stamp. In our experience, the create time is as good an indicator of

consistency as the version stamp.

32 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT

Components Being Re-Released

When preparing for a new release, we ask that implementors edit the DF files that are on the

release directory instead of using the copy of the DF file they submitted to the last release.

Although this means they have to switch the CameFrom statements back to ReleaseAs statements

(we provide a tool to do this), it avoids the common problem of new release submissions

Importing DF files that were released from working directories in the last release but are not

being released in the next one.

StoreBack and Files Missing

A DF file may be submitted to the release that refers to a file not actually present on the

working directory. This error can occur since Store Back decides to store new versions of files on

a working directory only if the version listed in the DF file is different. If the create time of the

file on the local disk agrees with the create time of the entry in the DF file, no checking is

normally done to see if the file is actually present on the working directory, since the check takes

too long in normal development. To avoid this error, we now require that implementors run

StoreBack with a special option that forces it to check that the file exists on the remote server

even if the create time listed in the DF file and that of the file on the local disk agree.

The Bootstrapping Problem

Some changes, e.g., redesign of the garbage collector in Cedar or a new version of the Cedar

instruction set emulated in microcode, present the most difficult integration problems. Inherent

in these problems is the need for a cross-development system that allows editing and compiling of

programs in an existing, working world to produce the new world to test. In small systems, one

programmer can manage these changes by doing all cross-development himself and staging the

changes to various levels of the software as they are debugged. Cedar is large enough that this is

now impractical, and concurrent cross-development must be possible. For example, consider

changes to the storage allocator and also to the window manager/editor of Cedar. The storage

allocator must be tested with a program that uses the terminal for output, and the changes to the

window manager must be tested using the storage allocator.

To permit concurrent development, each must use stable versions of the other's software, but

such development usually requires interface changes that, at the very least. force recompilation of

the other package and may involve more extensive edits to use the new interfaces. DF files

ericourage such concurrent development by simplifying the file movement that is part of the

development of a new system and by allowing changes needed in order to let the other person to

test his changes. For example. when the implementor of the storage manager needs to test his

changes. he asks the implementor of the window manager 1) to save his new version of the

window manager. 2) BringOver the released (stable) version of the window manager. 3) make

changes to allow the storage changes to be tested. 4) run StoreBack to save those somewhere. and

5) BringOver the version saved in step (1) an-ci continue his development. DF files do not

CHAPTER 2: A SIMPLE VERSION CONTROL SYSTEM 33

automate the bootstrap cycle itself since the two programmers must agree to the scheduling of

this development, but they do allow the rapid movement between multiple versions of software in

development.

2.6 Experience

We have had thirteen Cedar releases in eight months. Eleven of the releases have been

"major releases" where many of the components of the release are changing, or, at the very least,

are being recompiled. The other two were "mini releases" that were done a day after a major

release to fix one or more catastrophic bugs that were in the major release.

There have been approximately four weeks between major releases. We can divide this

period into three distinct time periods: development. integration, and release. The development

phase is about three weeks long and is a time of unconstrained program development. New

function is added and bugs in the previous release are fixed by the implementor during this time.

A three to four day period of integration follows during which implementors who must coexist in

the running system work out any bugs that surface when more than one package has changed.

Finally, the phases of the release tool are run over a period of one or two days. Bugs in

programs are less likely at this point. More often trivial OF file errors (wrong directory for an

Imported DF file. etc.) are discovered.

We designed the release procedures so we could perform a Cedar release once a week. We

have settled into a monthly cycle for two reasons: 1) user resistance to too-frequent changes and

2) the use of releases as planning targets by the project management.

1. Although we have a small user community, many users do not have the time to convert

programs (and the system running on their. personal computers) to new releases every week.

In addition, each new release has to be coherently documented, and our users have to read the

documentation. We have decided it is easier to deliver a well-debugged system once a month

than a less well-debugged system once a week.

2. The Cedar project is managed using targets for the next and subsequent releases. These targets

are informal and include plans to have certain new facilities in the next release. Since

extensive changes take more than a week to design and implement. the project management

cannot know whether a major change will be ready within a few weeks. Work proceeds on

the assumption it will be ready. Concurrently, other implementors have made their changes

and want· to see them released. If the changes take longer than expected. a decision can then

be made to proceed without the' new component. As a result, monthly cycles have occurred

naturally. This scenario occurred recently when· the Cedar screen management facilities were

going to replace those we had been using for' a year. This change' was so significant' we

planned to call it Cedar version 3.0 rather than increment the least significant digit of Cedar

2.5. Progress on the change slowed and bugs in the parts of the 2.5 release had to be fixed.

We did a release of a version of Cedar called 2.6. with far fewer changes than were expected

34 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT

in the release following 2.5 and then released Cedar 3.0 successfully five weeks later.

Is a weekly Cedar release attainable? We believe ·the answer is yes, since more frequent releases

would allow less development time and thus fewer components would change per release,

lowering integration and release time substantially. We imagine devoting four days of

development, a morning of integration and afternoon to do a release. Such frequent releases

would certainly involve many fewer people than our current monthly releases, and implementors

who are not submitting new versions to a release will be able to continue development while the

release is performed. However, the need for more frequent releases of Cedar has not been

demonstrated so far.

2.7 Performance and Evolution

Cedar

The first automated Cedar release (Cedar 2.0 of October 1981) consisted of 1800 files and

used 12 megabytes of disk storage. The size of Cedar releases has grown in a linear fashion to

the largest (Cedar 3.5.2 of December 1982) of 4843 files, 63.5 megabytes, and 457,000 lines of

Cedar source code. This growth is due to improvements to components that are re-released every

release and also to the addition of packages developed independently and now ready for more

extensive use. An example of the latter is the Cedar database package that has been in use for a

number of years but is now being integrated into many tools in the Cedar environment.

The 3.5.2 version of Cedar was composed of 160 DF files, which were used to describe 79

release components. There is normally a one-to-one relationship between DF files and packages.

Some components, however, are so large they are internally broken into five to ten DF files that

are "Included" by an "umbrella" DF file.

The time to run the phases of the release varies greatly depending on how many and whose

components are changing, and how many files have to be transferred. In a typical major release

50% of the components will be changing (for the 3.0 release it was 75%). Out of those

components that do change, roughly 20% of the files in those components have not changed. The

Release Tool does not analyze components that are not changing and does not store multiple

copies of the same file. For a major release, phases one and two of the Release Tool are run for

about an hour each, and phase three (which transfers the files) takes between three and six hours.

These times are completely determined by the speed of and load on our central file servers. which

are Xerox Alto personal computers that transfer files comparatively slowly. [Thacker. et at.. 1982]

Appendix A has more details about the releases.

We anticipate Cedar will grow more slowly in the future sin~e most of its planned

functionality is in place or under active development. It may grow another 50% in the next year.

A major release could then take 50% longer for each phase, although the number of components

that change is related to the number of programmer-days between releases and the number of

CHAPTER 2: A SIMPLE VERSION CONTROL SYSTEM 35

implementors is expected to remain relatively constant over the next year.

DF Software

The need for automated Cedar releases was not anticipated in the early planning for Cedar.

BringOver and StoreBack were designed for other reasons. Cedar runs on the Dorado, a high­

speed personal computer [Dorado. 1981]. At one time, most users of the Dorado had to share

machines without easily removable disk packs (unlike the Xerox Alto). BringOver and StoreBack

were developed so programmers could move files from one Dorado to another.

Before the release process was designed, DF files were used to distribute a new version of

Cedar. During that period, someone would delete all files from a Dorado and try to find

compatible versions of new software from various remote file servers. If successful, he would

copy (by hand) all the files to a single directory and (by hand) edit a DF file that described these

files. Users could then run BringOver on this DF file. This scheme quickly became

unmanageable as the number of components increased. We are certain it would be impossible to

do this for Cedar in its current size.

During the four months after the initial Cedar release, the speed of DF software was tuned

to take better advantage of protocols to our file servers and to omit unnecessary analysis. The

times quoted above for phases one, two, and three leave little room for future improvement,

unless we improve the speed of our file servers.

Release Procedures

As the size of Cedar releases and the number of programmers responsible for release

components has increased, programmers have complained about two design decisions.

1. There is often uncertainty whether a DF file is changing in the next release. Implementors

frequently delay sending a message announcing a new component until its changes are

completely finished.

2. Implementors who "Import" other DF files are not sure where the working DF files are

stored. Although their locations are listed in messages sent announcing new versions, clients

often forget to note a change of location. One of the most common errors in DF files

submitted to the release is a reference to the wrong version of a DF file.

We have addressed these problems by making some managerial changes and minor changes to

StoreBack:

a. We have added a third directory <PreCedar> that is used solely for integration of the next

release. We require that all files submitted to the release must be stored on <PreCedar>. All

DF files that are changing must be stored on <PreCedar>Top>. All files on the <PreCedar>

directory are deleted immediately after they are moved to the <Cedar> directory.

b. We have divided the announcement of a new version of a component into two separate steps

for components that are heavily used. Early in the release process the Release Master

36 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT

determines whether these components will be changing and sends a message listing those that

will and those that will not change. The implementors can then announce the final versions

as they are ready.

c. Users may take released software, make changes to it, and store their new version on the

<PreCedar> directory so it can be released. Those users who want to keep their development

versions of files on other directories are free to do so. (They might do that because they want

to make incompatible changes to their software after they have submitted it to the release but

before the release is finished, or they may not like to copy their software from <Cedar> back

to <PreCedar> after all files on <PreCedar) are deleted.} To help them move their files, we

provide an option to StoreBack that takes a collection of working DF files and copies them to

<PreCedar> as follows: If the working DF file describes working versions using

Directory working

ReleaseAs [Indigo]<Cedar)BTree>

then Store Back will store a version of this DF file on <PreCedar> with entries like

Directory [Indigo]<PreCedar> BTree>

ReleaseAs [Indigo]<Cedar>BTree>

and copy all files in the working directory to the BTree> subdirectory of <PreCedar>.

These changes solve problems (1) and (2) since new versions of DF files can only be stored on

<PreCedar>Top>. If a DF file is not there then it is either not changing or is not ready. Since

<PreCedar> is erased after each release there cannot be any old versions of DF software on

<PreCedar>. The addition of a special option to Store Back performs the movement of files to

<PreCedar> without requiring any editing of DF files by the implementor. The use of

<PreCedar> is shown in Figure 6.

~~~~ ~~Th~ ~ <Working Directories> --""'=.:....;;;='"'""---1,... ... <PreCedar)'r--;....;..;.;;;.;;..;:;....;.=----tp~ <Cedar> 

Figure. 2.6 

<PreCedar> stores all files submitted to a release, not just DF files, which increases disk 

space needs substantially. If only the DF file were stored on <PreCedar>, then programmers who 

made changes to software stored in their working directories before the release occurred might 

delete "old" versions that had been changed but were referenced by the DF files on <PreCedar>. 

We are also considering changing Phase Three of the Release Tool to rename rather than 

copy the files from <PreCedar> to <Cedar>. The Release Tool can copy about 12 megabytes an 

hour, so complete releases of 70 megabytes can take six hours to copy all the files. Renaming 

those files would be much faster. We could not consider renaming files as long as the files were 

stored on private working directories and the user depended on their presence. 



CHAPTER 2: A SIMPLE VERSION CONTROL SYSTEM 37· 

The complexity of making releases continues to increase. We recently distributed a memo 

describing the release process and guidelines for submissions to the release, and no longer fix 

errors in OF files that are covered by the guidelines, since that was taking more and more time. 

Peer pressure to conform to the guidelines and the two stages of OF messages (#1 above) should 

guarantee continued manageability of Cedar releases up to their expected size. 

Above a certain level of complexity, however, these solutions would not be sufficient and a 

more automated integration phase would be necessary. For example, dependency graph and 

change information in a database could be used to stage the integration phase in a more formal 

and organized sequence. 

Complete Cedar Bootstraps 

Many aspects of bootstrapping Cedar are simplified when interfaces to the lowest and most 

heavily used parts of the boot file are not changed. Some major releases use the same versions of 

interfaces to the Cedar object allocator and fundamental string manipulation primitives. Most 

major releases use the same versions of interfaces to the underlying Pilot system such as the file 

system and process machinery. The implementations of these very stable parts of the system may 

be changed in ways that do not require interface changes. 

The two Cedar releases that have included changes to the interfaces of the Pilot operating 

system forced us to change our style of integration for those releases. Since the released loader 

cannot load modules that refer to the new versions of Pilot interfaces, the software of Cedar that 

is pre-loaded in the boot file must all be recompiled before any changes can be tested. Highest 

priority is given to producing a boot file in which these changes can be tested. 

If the OF files describing Cedar were layered in hierarchical order, with Pilot at the bottom, 

this boot file could be built by producing new versions of the software in each OF file in OF­

dependency order. Figure 2.7 (at the end of the chapter) shows the dependency graph for OF 

files in the boot file, where an arrow from one OF file (e.g., Rigging.OF) to another (e.g., 

CedarReals.OF) indicates Rigging.OF Imports some file(s) from CedarReals.OF. Some arrows 

have been omitted in this figure. For example, Rigging.OF also depends on 

Compatibility Package. OF, but the dependency by CedarReals.OF on CompatibilityPackage.OF 

ensures a new version of Rigging.OF will be· made after both lower OF files. The 

Pilotinterfaces.OF file is at the bottom and must be changed before any other OF files. 

This dependency graph is not acyclic, however. The most extreme cycle is in the box with 

six OF files in it, which is expanded in Figure 2.8 (at the end of the chapter). Each OF file is in 

a cycle with at least one other OF file, so each OF file depends on the other (possibly indirectly) 

and no OF file can be announced "first". There is an ordering in which these components can 

be built: If the interfaces listed in each of the OF files are compiled and (partial) OF files· 

containing those interfaces are stored on <PreCedar>, each programmer can then compile the 

implementation modules in this component and then store the remaining files on <PreCedar>. 

The dependency graph for interfaces is shown in Figure 2.9 (at the end of the chapter). This 

graph indicates that the interfaces of CIFS, VersionMap, Runtime, WorldVM, ListsAndAtoms. and 



38 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

10 could be compiled in that order. This. interface dependency graph had cycles in it in the 

Cedar 3.3 release that have since been eliminated. Appendix B has copies of some of these OF 

files before and after the release. 
Recompilation of all the interfaces in the boot file (approximately 600 interfaces in Cedar. 

3.3) requires that at least nine Cedar programmers participate. Since the boot file cannot be 

produced until all interfaces and implementation modules in the OF files of Figure 2.7 are 

compiled. we encourage interface changes be made as soon as possible after a successful release 

and only once per release. Once the programmers have .made their interface changes and a boot 

file using the new interfaces is built. the normal period of testing can occur and new changes to 

implementation modules can be made relatively painlessly. 

Components being released that are outside the boot file have a much simpler dependency 

structure. shown in Figure 2.10 (at the end of the chapter). The majority of these components 

are application programs that use Cedar facilities already loaded in the boot file. 

DF Files as a Description Mechanism 

We are beginning to take advantage of the information in the OF files of a release to study 

and plan the development of the Cedar system. The ability to scan. or query. the interconnection 

information gives us a complete view of the use of software by other programs in the system. 

For. example. we can mechanically scan the OF files of an entire release and build a dependency 

graph describing the interfaces used in Cedar and which implementors depend on these 

interfaces. Since VerifyOF ensures all interfaces needed by a component are described in its OF 

file. we can be sure we have an accurate database of information. We can use this information to 

evaluate the magnitude of changes and anticipate which components will be affected. We can 

also determine which interfaces are no longer used. and plan to eliminate the implementation of 

those interfaces. This happens often in a system as .large as Cedar while it is under active 

development. 

The Problem of Multiple Modifiers 

The Cedar release/OF approach assumes only one person is changing a OF file at a time. 

How would we cope with more than one modifier of a package? If the package is easily divided. 

as with the Cedar window manager and editor. two or more DF files can be Included by an 

"umbrella" OF file that is released. One" of the implementors must "own" the umbrella OF file 

and must make sure that the versions Included are consistent (by running VerifyOF on the 

umbrella.) If the package is not easily divided. then either a check in/check out facility must be 

used on the OF file and its contents to guarantee only one person is making changes at a time. or 

a merge facility (as in [Rochkind. 1975]) would be needed to incorporate mutually exclusive changes. 

Should more than one programmer change the same module. this merge facility would have to 

ask for advice on which of the new versions. if any. to include in the OF file. 



CHAPTER 2: A SIMPLE VERSION CONTROL SYSTEM 39 

Integration with Version Maps 

The Cedar Runtime system may need to read the symbol table(s) of file(s) when it is asked 

for details of the structures of Cedar types. The Compiler stamps the reference to these symbol 

tables with the 48-bit version stamp it computes for each object file. Since the symbol tables are 

large, they are not normally kept in the released boot file. When a symbol table is needed, the 

Cedar runtime uses the 48-bit version stamp as an index into a version map that gives a file name, 

including host and directory information. The file containing the symbol table is then retrieved 

to the local disk. The file name cannot be saved in place of the 48-bit version stamp since, when 

it is computed, the comp,ler does not know where the object file containing the symbol table will 

be stored and whether! or not it has been released. 

Each boot file automatically retrieves this version map, which is computed by reading the 

released OF files and computing a map from 48-bit version maps of object files to files stored on 

the release directory. The construction of this version map is done immediately after all the files 

are moved to the release directory in phase three of the release. There are two problems with 

this approach: 1) During the integration phase, the version map must be constructed periodically 

and distributed to personal machines that are running the pre-release boot file. This information 

is often out of date. 2) Packages under development and not part of the release do not have 

entries in the version map. 

We intend to solve these problems by changing the way these version maps are constructed: 

1. VerifyOF will compute a version map for working versions of software described by OF files. 

There will be an entry for the version map in each OF file. 

2. The Release Tool will read in these version maps and make copies of them in the release 

directory. These copies will have the file names of the copy of each file in the release 

directory instead of in the integration directory. 

3. When the user runs BringOver on one of the working or released OF files. the version map in 

the OF file is retrieved and added to a list of version maps to be searched when the Runtime 

wants to lookup a version stamp. 

Associating the version maps with OF files generalizes their use to pre-release files and files that 

are not in the release. 

Use on other Software Systems 

The algorithms and software described above could be used on other medium- to large-scale 

software projects. For example. the U.C. Berkeley distribution of UNIX software (4.1 BSO) 

consists of 450.000 lines of C language code. 2500 files, and takes 10.64 megabytes to store [Joy. 

1981]. Another example is the software for the Xerox Star [Harslem-Nelson. 1982], which consists of 

255,000 lines of Mesa code. 401 interface. 440 implementation, and 88 configuration modules 

(these numbers do not include the Pilot operating system.) Compare these numbers to the 

425,000 lines and 4500 files of recent Cedar releases. 



40 CONTROLLING LARGE SOFfWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

The Mesa Group of the System Development Division of Xerox is using this software for 

their internal software development. They have an arrangement of boot files and object files that 

is similar to that of the Cedar project. Figure 2.11 at the end of this chapter shows the 

dependency graph for the boot file of their first release. Figure 2.12 is the part of the graph that 

lies outside their boot file. These figures are analogous to figures 2.7 and 2.10. Their first release 

consisted of 3490 files, 325,000 lines of Mesa code, and 127 OF files. See Appendix A for 

statistics on their release. 

2.8 Conclusions 

We have built and demonstrated a system that controls Cedar software in a way that puts a 

small burden on implementor, user, and Release Master alike, without resorting to specialized 

skills or dedicating an implementor to the task of organizing and distributing large numbers of 

files. With approximately five man-months of programming, we have shown that a small amount 

of automation goes a long way. Doubtless other projects will have other needs and cannot adopt 

our scheme without modifications. We believe those modifications are not impossible. 

In addition to meeting our original goal, that of frequent releases without loss of integrity, we 

have discovered the benefits of project organization around a machine readable, centnilly 

maintained set of packages. 

Releases and Of files are being used to automate one part, of the software development cycle 

in Cedar. OF files are not a replacement for tools to automatically recompile a set of source 

programs (such as Make [Feldman, 1979]) or other tools to provide fast turnaround for small 

program changes. Tools for these and other programmer aids are an area for further research. 

Cedar work in this area is described in Chapters 3 and 4. 



41 

D 
I- ... I I- ... I 

- - -
Personal Server ~ 

Storage - Storage 

Computer Computer Disk Disk 
-

" 
,,. 

Ethernet 

JI'. ..4~ ..4~ 

D D I- ... I 
Gateway 

1 I 1 I r--- Computer r--

I- ... I . I- ... I 
Personal Personal To other networks 

Computer - Computer r-- ,,. 

Figure 2.4 Xerox Environment 



42 
Cedar 3.3 DF Files Dependencies (Boot File) 

August 29, 1982 

FileTool.DF 

tr---_---'U~~~~BBr 

TTYT"DF BU~BanL=e.Dr 
t r vi-rogr t t 

PriorityQueue.DF 

~~rge~~lIne~~~ortDF ~ 
MesaScanner.DF Inscript.DF Graphics.DF Rig ingMaker.DF ,,---JedarControl.DF 

R~RUntime.DF 

?ineU~rDF 

Riggi~.DF 

Pine.DF BTrees.DF CedarReals.OF FTP.DF BasicHeads·.DF 

r 
om.DF 

!s: 

Files in tail DF file depend on files in head DF file. 

Double-headed arrows indicate mutual dependency. 

eompatlbi'ityfCkage.DF 

Pup.DF 

t 
Communication· .DF 

tt 
Pilotlnterfaces.DF 

SpecialBringOver .DF 

CedarSnapshot.DF 

LOlor.DF 

Bcd.DF CWF.DF 

Figure 2.7 

BasicHeads· .DF stands for BasicHeadsDorado.DF, BasicHeadsDO.DF, BasicHeadsCommon.DF. 

Communication· .DF stands for CommunicationPublic.DF, CommunicationFriends.DF, and RS232Interfaces.DF. 

'ompatibilityPackage.DF includes MesaBasics.df. 

DateAndTime.DF 

TerminalMultip ex.DF 



Cedar 3.3 DF Dependencies (Detail in Boot File) 
43 

August 29. 1982 

I Runtime.DF. IO.DF, WorldVM.DF, VersionMap.DF, ListsAndAtoms.DF, CIFS.DF I 

stands for 

ClrF ~DF 

UstsAfo ..... m_S_.D_F ____ ...... 

'---__ R-JunHmfF .. ~ WoddVMDF 

VersionMap.DF 

Notes: 

Double-headed arrows indicate mutual dependency. 

Figure 2.8 



44 Cedar 3.3 Definitions-DF Dependencies 
August 29,1982 

TII~ f FlleT_O_I._DF ______ B ....... ra...
F 

___________ -. 

VieweMOOc. 

co,orpaCkag1e.DF TIP.DL--( ------.t ~~x~L· 

'iI" ~ 
Graphics.DF .t ... ------...... t BugBane.DF 

Plne.DF ListAndAtoms.DF 

Inscript.DF 

RPCRuntimeDF 

GrapevineUser.DF 

I SpecialBrin Over.DF 

J.DF Bcd.DF CedarControWF 

MesaScanner.DF 

VersionMap.DF 

CIFS.DF 
t Loader.DF 

'------_. ~ ! ~--------J 1 IFDF eompatibilTCkageDF PriorityQueue.DF 
TerminalMultiplex.DF 

DateAndTrL._e_._D_F __ C_ed_a_r_RjISDF irrJ~D~ BTri_s_.D_F ___ C_ed_a_rS __ na_f_s_h_o_t._D_F ___ B_as_i_CH ....... rS.DF 

Pilotlnterfaces.DF I 

Notes: 

Interfaces in tail DF file depend on files in head DF file. 

Communication- .DF stands for CommunicationPublic.DF, CommunicationFriends.DF, and RS232Clnterfaces.DF. 

BasicHeads· .DF stands for BasicHeadsDorado.DF, BasicHeadsDO.DF, and BasicHeadsCommon.DF. 

CompatibilityPackage.DF includes MesaBasics.DF. 

Figure 2.9 



Cedar 3.3 DF Files (Outside Boot File) 
45 

J 

"""" 

.J 
~ 

Boot J 

"""" File oJ 

"""" 

..J .... 
J 

"""" 
..J 

""""" 
..J 

""""" 
..J 

"""" 
..J 

""""" 
..J 

"""" 
..J 

"""" 
J 

"""" 
J 

"""" 
J 

"""" 
J 

~ 

..J 
~ 

oJ 
~ 

oJ 

"""" 
..J .... 
..J 

"""" 
..J 

""""" 
..J 

"""" 
J 

August29,1982 

Chat.OF 

UECP.OF --...... ..-- CIFSCommands.OF 

r OFFiles.OF ...... __ --VersionMapBuilder.OF 

~~-------------~-, 

Sequin.OF ...... _--- IFSFile.OF ~MOdeller.OF 
comPiler.OF§ Binder.O .. F 

Lister. OF 

Packager. OF 

PGS.OF 

PressPackage.OF + Print.OF 

PerfStats.OF ...... ---- CedarOB.OF 

CoFork.OF .......... ~-- PlotPackage.OF 

Spy.DF ......... ---- Lupine.OF 

SirPress.OF ...... _-- PressScreen.df 

BravoToTioga.OF 

CedarRealTest.OF 

I ncludeChecker.OF 

Maintain.OF 

MakeBoot.OF 

MCroSS.OF 

Othello·.OF 

PupWatch.OF 

RedBlackTreeRef.OF 

Set. OF 

STPServer .OF 

T JamGraphics.OF 

Unique.OF 

WalnutSend.OF 

"""" 
WaterLily.OF 

RedBlaCkTree.o~ 

Notes: 

Files in tail OF file depend on files in head OF file. 

Othello· .OF stands for OthelloOorado.OF, OthelloOO.OF, and SubOthello.OF. 

Figure 2.10 



46 
MG Release 1 .0 DF Files Dependencies (Boot File) 

September 10,1982 

SimpleTajo.DF 

CoPilot.DF , 

t I. 

~--~------------~ r--________ ~Tt·DF 

SubTajo.DF 

r;::==::::::!.J t . 
WiskSupport.DF 

t 
Wisk,DF 

~~' T t 

t 
CP.DF 

t t t 
CPE1ternal.DF CPlnterrret.DF CPSymrOISDF 

t ~ f 
CPlnteriace.DF 

~ __ ...... ' W 

f ' CoPilotFriends,DF CoPilotPrivate.DF 

. I COPiIO!UbliC.DF 

C t. 
~r-B-a-si-cs-.-D-F_..:6omp"e, ~ 

t 
Ta·oLibrarian.DF TajoTools,DFTajoSWs.DF TajoBasics.D BuiltlnTobls.DF FTP.DF Fllesys,ec __ symbOls.DF 

STPDF 

File 

OISCP.DF 

STPPublicDF 

Figure 2.11 



MG Release 1.0 DF Files (Outside Boot File) 

.J 

"'" 

..J 
~ 

..J 
~ 

~ 

Boot ~ 

.J 

""'" File 
~ 

~ 

~ 

""'I( 

~ 

""'I( 

~ 

""'I( 

~ 

~ 

~ 

~ 

--J 

~ 

.J 

~ 

...J 

"'" 
~ 

"'" 
~ 

"'" 
~ 

"'" 
~ 

"'" 
~ 

"'" 
...J 

"" 
...J 

"'" 
.J 

~ 

--J 

~ 

--J 

~ 

.J 

~ 

Notes: 

September 10, 1982 

GSort.DF-~---

BTrees.DF 
TopoGiggio.DF 

CWF.DF-....... I--..J 

~--- Wiliard.DF 

DebugHeap.DF ~ r Unique.DF 
Editor.DF ....... ~ __ ..J. 

Mail.DF prilt.DF ~ Castilleja.DF 

MailParser.DF ,. [ Hardy.DF ~ Formatter.DF 

GrapeVineuser.DF~ 
Maintain.DF 

Binder.DF ---. ............ 1----- Packager.DF 

Brownie.DF ~"'I----- IncludeChecker.DF 

Chat.DF 

Compare.DF 

Find.DF 

Install.DF 

Li brarian. DF 

MakeA.DF 

MakeBoot.DF 

OctalReadTool.DF 

PGSAndTableCompiler.DF 

Poseidon.DF 

Release Tools. DF 

TestBed.DF 

TipTester.DF 

Scavengers.DF 

Files in tail DF file depend on files in head DF file. 

Figure 2.12 



48 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 



CHAPTER 3: PRACTICAL USE OF A POLYMORPHIC ApPLICATIVE LANGUAGE 49 

3. Practical Use of a Polymorphic Applicative Language 

3.1 Introduction 

This chapter deals with the module interconnection language SML used in a program 

development system being built as part of the Cedar project [Deutsch-Taft, 1980] of Xerox PARe. 

SML is a polymorphic and applicative language that is used to describe packages of Cedar 

modules. The Cedar programmer writes SML programs, which are called system models, to specify 

the modules in his system and the interconnections between them. These system models are 

analyzed by a program called the system modeller that automates the compile-edit-debug cycle by 

tracking changes to modules and performs the compilation and loading of systems. 

We take the view that the software of a system is completely described by a single unit of 

text An appropriate analogy is the sort of card deck that was used in the 1950s to boot load and 

run a bare computer. Note that everything is said explicitly in such a system description: there is 

no operator intervention (to supply compiler switches or loader options) after the "go" button is 

pressed. In such a description there is no issue of "compilation order", and "version control" is 

handled by distributing copies of the deck with a version number written on the top of each 

copy. 

The text of such a system naturally will have internal structure appropriate to the machine on 

which it runs as well as to the software system itself. Given that in 1982 our system is composed 

of modules that are stored as text in files, we choose to describe our system in terms of these 

modules or objects. In Cedar, these objects are Cedar modules or Cedar system models. This 

representation is convenient for users to manipulate; it allows sharing of identical objects, and 

facilitates the separate compilation of objects. But it is important to appreciate that there is 

nothing essential in such a representation; in principle, a system can always be expressed as a 

single text unit. 

Whatever representation is chosen for the objects used to describe a system, we require that 

objects be immutable. By this we mean that 1) each object has a unique name (unique-id), and 2) 

the contents of an object never change once the object is created. Objects are immutable but 

they can be destroyed by deletion. 

System models refer to the objects of a system. Since objects are immutable. we use the 

unique name of the object in place of its contents. Information in databases is i':ldexed by these 

unique-ids. Use of models with unique-ids for these destroyed objects will give errors. but no 

confusion will result 

A system model is a stable, unambiguous representation for a system. It is easily transferred 

among programmers and file systems. It has a readable text representation that can be edited by 

a user at any time. Finally. it is usable by other program utilities such as cross-reference 

programs, debuggers, and optimizers that analyze inter-module relationships. 



50 CONTROLLING ;LARGE SOFfWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

In this chapter we focus on thesML language constructs and what they mean. Chapter 4 

describes the use of SML as part of the System Modeller. The SML language and the modeller are 

presented separately since the modeller may handle (in the future) descriptions of software 

systems written in other programming languages. Cedar has one of the most complicated and 

powerful module interconnection systems; the language to describe most other language's module 

interconnections would be much simpler. We will see that SML can express a very rich set of 

interconnections. Note that. it is not necessary to understand all of Chapter 3 to understand 

Chapter 4, or vice versa. Readers primarily interested in one chapter need only read the first few 

sections of the other. 

The specification of module interconnection facilities of Cedar requires use of polymorphism, 

where the specification can compute a value that is later used as the type for another value. This 

kind of polymorphism is explained in detail later. The desire to have a crisp specification of the 

language and its use of polymorphism led us to base SML on the Cedar Kernel language, which is 

used ' to describe the semantics of Cedar programs. 

The. semantics of the SML language have to be unambiguous so every syntactically-valid 

system model has clear meaning. The Cedar Kernel language has a small set of principles and is 

easily implemented. The .clear semantics of Kernel language descriptions give a concise 

specification of the SML language and give good support, to the needs of the module 

interconnection specification. SML could have been designed without reference to the Kernel 

language. However, without the Kernel language as a base, there would be less confidence that 

all language forms had clear meaning. 

SML is an app/icative language, since it has no assignment statement., Names (or identifiers) 

in SML are given values· once, when the names are declared, and the value of a name may not be 

changed later unless the name is declared in some inner scope. SML is easier to implement 

because it is applicative and function invocation has no side effects. 

This chapter describes the existing module interconnection structures of the Cedar language 

and justifies the need for a new language to describe Cedar systems. The fundamental concepts 

of SML are presented, followed by a description of SML's treatment of files. The Cedar Kernel 

language, which serves as a basis for SML, is described, followed by a section on the syntax and 

semantics of sMLexpressions. This chapter concludes with notes on implementation, a discussion 

of problems and experience we have gained, and a section of extended examples. 

3.2 Existing Module Interconnection Facilities 

Cedar is based on the Mesa language [Mitchell. et al.. 1979]. [Lauer-Satterthwaite. 1979]. Cedar 

contains. features for automatic storage management (garbag~ collection) and allows binding of 

types at runtime (pointers to objects whose types are known only at runtime). Cedar inh~rited 

from Mesa a rich module interconnection structure that provides information hiding and strong 

type checking at the module level, rather than at the procedure level. In order to understand the 

motivation for SML, it is important to know about the existing module interconnection facilities in 



CHAPTER 3: PRACTICAL USE OF A POLYMORPHIC ApPLICATIVE LANGUAGE 51 

Cedar. 

A Cedar system consists of a set of modules, each of which is stored in a separate file. A 

module can be one of two types: an implementation (PROGRAM) module, or an interface 

(DEFINITIONS) module. Interface modules contain constants found in other Pascal-like languages: 

procedure declarations, type declarations~ and other variables. A module that wishes to call a 

procedure declared in another module must do so by IMPoRTing an interface module that 

declares this procedure. This interface module must be EXPoRTed by a PROGRAM module. For 

example, a procedure USortList declared in a module SortImpl would also be declared in an 

interface Sort, and SortImpl would EXPORT Sort. A PROGRAM that wants to call the procedure 

USortList does so by IMPoRTing Sort. We call the importer of Sort the "client" module and say 

SortImpl (the exporter) "implements" Sort. Of course, SortImpl may IMPORT interfaces to use 

that are defined elsewhere. 

These interconnections are shown in Figure 3.1, which shows filenames for each module in 

the upper left corner. The interface Sort defines an object composed of a pair of x,y coordinates. 

The exporter, SortImpl.Mesa, declares a procedure that takes a list of these objects and sorts 

them, eliminating duplicates. (LIST in Cedar is a built-in type with a structure similar to a Lisp 

list.) Clientlmpl.Mesa defines a procedure that calls USortList to sort a list of such objects. 

(Details about the CompareProc have been omitted.) 

Clientlmpl.Mesa 

DIRECTORY 

Sort; 

Clientlmpl: PROGRAM IMPORTS Sort = { 

TestThem: PROC[I: LIST OF Object] = { 
-- call USortList with this list 

I +- Sort.USortList[I, CompareObject); 

}; 

CompareObject: PROC[a, b: Object] 

RETURNS[Comparison] = { 
-- compares the two objects 
-- returns less, equal, or greater 

}; 

}. 

I 

Sortlmpl.Mesa 

DIRECTORY 

Sort; 

Sortlmpl: PROGRAM EXPORTS Sort = { 

USortList: PUBLIC PROC[l: LIST OF Object, 

compareProc: CompareProc] 

RETURNS[newl: LIST OF Object] = { 

}. 

-- code to sort the list I, eliminating duplicates 

}; 

Sort. Mesa 

Sort: DEFINITIONS = { 
Object; TYPE = RECORD[ 

x,y: INT 

]; 

USortList: PROC[L1ST OF Object, CompareProc] 

RETURNS[L1ST OF Object]; 

}. 

Figure 3.1 



52 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

Interface Type Parameterization 

Most collections of modules in Cedar use the same version 9f interfaces. e.g .• there is usually 

only one version of the interface for the BTree package in a given system. Situations arise wh~n 

more than one version is used in a system, For example. there could be two versions of an 

interface to a list manipulation system. each one manipulClting a different type of object. 

SortCoord . Mesa 

Sort: DEFINITIONS = { 

Object: TYPE = RECORD[ 

x,y: INT 

]; 

USortList: PROC[LlST OF Object, CompareProc] 

RETURNS[LlST OF Object]; 

}. 

Figure 3.2 

SortNames.Mesa ' 

Sort: DEFINITIONS = { 

Object: TYPE = RECORD[ 

X: STRING 

]; 

USortList: PROC[LlST OF Object, CompareProc] 

RETURNS[LlST OF Object]; 

}. 

Figure 3.2 shows. on the left. the module from Figure 3.1, and. on the right. a similar 

module that defines an "Object" to be a string instead of coordinates. A module that refers. to, 

the Sort interface would have to be compiled with one of the two versions of the Sort interface, 

since the compiler checks types of the objects being assembled for the sort. We call this interface 

type parameterization. since the types of items from the interface used by a client 

(Clientlmpl.Mesa) are determined by the specific version of the interface (SortCoord.Mesa or 

SortNames.Mesa). 

Interface Record Parameterization 

A different kind of parameterization may occur when two different implementations for the 

same interface are used. For example. a package that uses the left version of the Sort interface in 

Figure 3.2 above might . use two different versions of the module that EXPORTS Sort, one of which 

uses the QuickSort algorithm and the other uses the HeapSort algorithm to perform the sort. 

Such a package includes both implementors of Sort and must specify which sort routine the . 

clients (IMPORTers) use when they call SortUSortList[]. In Cedar and Mesa it is possible for a 

client module to IMPORT both versions, as shown in Figure 3.3. 



CHAPTER 3: PRACTICAL USE OF A POLYMORPHIC ApPLlCATIVE LANGUAGE 

SortQuicklmpl.Mesa 

DIRECTORY 

Sort; 

SortQuicklmpl: PROGRAM EXPORTS Sort = { 

USortList: PUBLIC PROC[I: LIST OF Object. 

compareProc: CompareProc) 

RETURNS[newl: LIST OF Object) = { 

}. 

.. code to sort the list I. eliminating duplicates 

.. use QuickSort 

}; 

Clientlmpl.Mesa 

DIRECTORY 

Sort: 

SortHeaplmpl.Mesa 

DIRECTORY 

Sort; 

SortHeaplmpl: PROGRAM EXPORTS Sort = { 

USortList: PUBLIC PROC[I: LIST OF Object. 

compareProc: CompareProc) 

RETURNS[newl: LIST OF Object] = { 

}. 

.. code to sort the list I. eliminating duplicates 

.. use HeapSort 

}; 

Clientlmpl: IMPORTS SortQuicklnst Sort. SortHeaplnst: Sort = 

TestThem: PROC[I: LIST OF Object) = { 
.. call USortList with this list. try QuickSort 

newl +- SortQuicklnst.USortList[1. CompareObject): 

... now try HeapSort 

newl +- SortHeaplnst.USortList[1. CompareObject): 

}: 

CompareObjectPROC[a. b: Object) 

RETURNS[Comparison] = { 
.. compares the two objects 
.. returns less, equal. or greater 

}; 

}. 

Figure 3.3 

53 

In Figure 3.3. SortQuickImpl and SortHeapImpl both EXPORT different procedures for the 

Sort interface. One procedure (SortQuickImpJ) uses QuickSort to sort the list. The other uses 

HeapSort to sort the Jist. The importer. CJientlmpJ. imports each version under a different name 

(SortQuickInst and SortHeapInst are caJled interface records, since they are represented as records 

containing pointers to procedures). 

specifying the name of the 

SortQuickI nst. USortList(]). 

The client procedure "TestThem" calls each in turn by. 

interface and the name of the . procedure (e.g .. 

One step remains: how are the two interface records that are exported by SortQuickImpl 

and SortHeapImpl connected to the two interface records (SortQuicklnst and SortHeapInst) 

required by CJientimpl? A program called the Mesa Binder makes these connections by reading 

a specification written in a subset of Mesa caJled C/Mesa. C/Mesa source files. called 

CONFIGURATIONS. name the implementation modules involved and specify the interconnections. 

Figure 3.4 shows the configuration that makes the connection in our example: 



54 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

ClientConfig: CONFIGURATION = { 
SQI: Sort .... SortQuicklmplD; 

SHI: Sort .... SortHeaplmplD; 

Clientlmpl[SortQuicklnst: SQI, SortHeaplnst: SHI]; 

}. 

Figure 3.4 

, Two variables are declared (SQI and SHI) that correspond to the interface records exported 

by the two modules. The client module is named, followed by the two interfaces given in 

keyword parameter notation. 

This is called inter/ace record parameterization, since the behavior of the client module is a 

function of which interfaces SortQuicklnst and SortHeaplnst refer to when they are called in 

Clientlmpl. 

Why a New Module Interconnection Language? 

C/Mesa, as currently defined, cannot express interface type parameterization at all. The 

semantics of some C/Mesa specifications are ambiguous. In addition, our program development 

system uses version management and file location information in system descriptions. We chose 

to replace the use of C/Mesa in Cedar by the use of SML. 

SML programs give the programmer the ability to express both kinds of parameterization. It 

is possible to think of SML as an extension of C/Mesa, although their underlying principles are 

very different. Before explaining SML. we give an example of modules that use both interface 

type and interface record parameterization and show how this can be expressed in SML. 

3.3 Example of SML Program 

The essential features' of SML are illustrated by the following simple model and are discussed 

in the next section on SML's treatment of files. A complete description of the SML language is in 

section 3.7. 

Consider two versions of the Sort interface (from Figure 3.2), and two EXPORTers of Sort 

(from Figure 3.3). Since the exporters do not depend on the kind of object (coordinates or 

names), the exporters can each be constructed with a different type of object. ' Assume the client 

module wants to call USortList with all four combinations of object type and sort algorithm: 

(coordinates + quicksort, coordinates + heapsort. names + quicksort. names + heapsort). Figure 3.5 

shows a version of Clientlmpl that uses all four. 



CHAPTER 3: PRACTICAL USE OF A POLYMORPHIC ApPLICA TIVE LANGUAGE 

Clientimpl.Mesa 

DIRECTORY 

SortCoord: INTERFACE Sort, 

Sort Names: INTERFACE Sort; 

Clientlmpl: PROGRAM IMPORTS SortQuickCoordlnst: SortCoord, 

SortQuickNameslnst: SortNames, SortHeapCoordlnst: SortCoord, 

SortHeapNameslnst: SortNames ::: ( 

}. 

TestThem: PROC[11: LIST OF SortCoord.Object, 12: LIST OF SortNames.Object) ::: ( 

newl ... SortQuickCoordlnst.USortList[11, CompareCoordinateObjects); 

newl ... $ortHeapCoordlnst.USortList[11, CompareCoordinateObjects); 

newl ... SortQuickNameslnst.USortList[12, CompareNameObjects); 

newl ... SortHeapNameslnst.USortList[12, CompareNameObjects); 

}; 

CompareCoordinateObjects: PROC[a, b: SortCoord.Object) RETURNS[Comparison) = { 

.. compares a and b, returns less, equal, or greater 

}; 

CompareNameObjects: PROC(a, b: SortNames.Object) RETURNS[Comparison) = { 

.. compares a and b, returns less, equal, or greater 

}; 

Figure 3.5 

In SML. a model to express this is shown in Figure 3.6. 

ClientModel .... [ 

-- interface types 

SortCoord: INTERFACE"" @SortCoord.Mesa[]: 

SortNames: INTERFACE - @SortNames.Mesa[]; 
-- interface records 

SQCI: SortCoord - @SortQuickImpl.Mesa[SortCoord]: 
SQNI: SortNames .... @SortQuickImpl.Mesa[SortNames]; 

SHCI: SortCoord .... @SortHeapImpl.Mesa[SortCoord]: 

SHNI: SortNames - @SortHeapImpl.Mesa[SortNames): 

-- give all to client 

Client: CONTROL - @ClientImpl.Mesa[SortCoord. SortNames. SQCI. 
SQNI, SHCI. SHNI] 

Figure 3.6 

55 

SML allows names to given types and bound to values. After the header. two names 



56 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

SortCoord and SortNames are given values that stand for the two versions of the Sort interface. 

Each has the same type, since both are versions of the Sort interface. (Their type is "INTERFACE 

Sort", where "INTERFACE" is a reserved word in SML and "Sort" is the interface name.) The next 

four lines bind four names to interface records that correspond to the different sort 

implementations. SQCI is a name of type "SortCoord" and has as value the interface record with 

a procedure that uses QuickSort on objects with coordinates. Similarly, SQNI has as value an 

interface record with a procedure for QuickSort on objects with strings, etc. Note that each of 

the four implementations is parameterized by the correct interface, indicating which type to use 

when the module is compiled. 

The last line specifies a name "Client" of reserved type "CONTROL" and gives it as value the 

source file for ClientImpl, parameterized by all the previously defined names. The first two, 

SortCoord and SortNames, are values to use for the names "SortCoord: INTERFACE Sort" and 

"SortNames: INTERFACE Sort" in the DIRECTORY clause of ClientImpl. The last four, in order, 

give interface records for each of the four imports. 

There are a number of nearly-equal names in the example. If all related names were 

uniform (e.g., SortQuickCoordImpl instead of SQHI and SortQuickCoordInst, and 

SortHeapCoordImpl instead of SQHI and SortHeapCoordInst) then the parameter lists in the 

example could be omitted. 

The evaluator computes the values and binds them in a linear fashion in example 3.6 above. 

The kinds of values in SML follow naturally from the objects being represented: the value of 

"@SortCoord.Mesa[]" is the object file for the interface module SortCoord.Mesa when it is 

compiled. The value of "@SortQuickImpI.Mesa[]" is an interface record produced when the 

object file for SortQuickImpl.Mesa is loaded. Note there are two versions of the object file for 

SortQuickImpl.Mesa: one has been compiled with SortCoord as the interface it exports, and the 

other has been compiled with SortNames as the interface it exports. 

It is helpful to differentiate the two types of parameterization by the difference in uses: 

Interface type parameterization is applied when a module is compiled and the types of the 

various objects and procedures are checked for equality. Interface record parameterization is 

applied when a module is loaded and the imports of other modules are resolved. The interface 

records by which a module is parameterized (either in C/Mesa or SML) are used to satisfy these 

inter-module references. 

This is a contrived example~ the need for this amount of interface parameterization has not 

arisen and, if it had, the existing Cedar Binder cannot process the analogous C/Mesa description. 

Each of interface type and interface record parameterization occur quite often (separately), 

however. 



CHAPTER 3: PRACTICAL USE OF A POLYMORPHIC ApPLICATIVE LANGUAGE 57 

3.4 Fundamentals of SML 

The SML language is built around four concepts: 

1. Application: The basic method of computing. 

2. Values: Everything is a value, including types (polymorphism) and functions. 

3. Binding: Correspondence between names and values is made by binding. 

4. Groups: Objects can be grouped together. 

Application 

The basic method of computation in the SML language is by applying a function to argument 

values. A function is a mapping from argument values to result values. 

A function is implemented either by a primitive supplied by the language (whose inner 

workings are not open to inspection) or by a closure, which is the value of a A-expression whose 

body, in turn, consists of applications of functions to arguments. In SML, A -expressions have the 

form 

A [ free-variable-list ] ~ [ returns-list ] IN [ body-expression ] 

For example, a A -expression could look like 

A [x: STRING, y: STRING] ~ [a: STRING] IN [ exp ] 

where "x" and "y" are the free variables in the A-expression, "a" is the name of the value 

returned when this A-expression is invoked, and exp is any SML expression that computes a value 

for name "a". "IN" is like "." in standard A-notation. It is helpful to think of a closure as a 

program fragment that includes all values necessary for execution except the A's parameters, 

hence the term closure. Every A -expression must return values, since the language has no side 

effects. Application is denoted in programs by expressions of the form j[arg, arg, ... J. 

Values 

An SML program manipulates values. Anything that can be denoted by a name or expression 

in the program is a value. Thus strings, functions, interfaces, and types are all values. In the SML 

language, all values are treated uniformly. in the sense that any can be 

passed as an argument, 

bound to a name, or 

returned as a result. 

These operations must work on all values so that application can be used as the basis for 

computation and A -expressions as the basis for program structure. In addition, each particular 

kind or type of value has its own primitive functions. Some of these (like equality) are defined 

for most types. Others (like subscripting) exist only for specific types (like groups). None of 

these operations, however, is fundamental to the language. 



58 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

Groups 

There is a basic mechanism for making a composite value out of several simpler ones. Such 

a composite value is called a group, and the simpler ones are its components or elements. Thus [3, 

x + 1, "Hello"] denotes a group, with components 3, x + 1, and "Hello". The main use of groups 

is for passing arguments to functions without naming them (these are sometimes called positional 

arguments; bindings are used to pass named or keyword arguments, see the next section). 

Groups are similar to other language's "structures" or "records": ordered, typed sequences of 

values. 

Binding, Scope, and Declaration 

A binding is an ordered set of [name, type, value] triples, often denoted by a constructor like 

this: [x: STRING ,." "s", y: STRING ,." "t"], or simply [x ,." "s", y ,." "t"]. Individual components . 

can be selected from a binding using the "." operation, similar to Pascal record selection: 

binding. element yields the value of the component named " element" in binding. 

A scope is a region of the program in which the value bound to a name does not change. 

For each scope there is a binding that determines these values. A new scope is introduced by a 

[ ... ] constructor for a declaration or binding, or a LET statement (see below). 

A declaration is an ordered set of [name, type] pairs, often denoted [x: STRING, y: STRING]. 

A declaration can be instantiated (e.g. on block entry) to produce a binding in which each name 

is .bound to a name. of the proper type. Ifd is a declaration, a binding b has type d if it has the 

same names, and for each name n the value b.n has the type dn. 

In addition to the scopes defined by nested bindings, a binding can be added to the scope 

using a LET statement 

LET binding IN expr 

that makes the names in binding accessible in expr without qualification. 

Role of Types 

Every name has a type, either because the name is in a binding or the name is in a 

declaration. Names are given values using bindings. If a name is given an explicit type in the 

binding, the resulting value must have that type. For example, 

n: t ,." v 

the type of "v" must be "t". Similarly, if "p" is a A-expression with "a" as a Jree variable of type 

"STRING", then 

p[b] 

type-checks if "b" has type "STRING". There are no restrictions on use of types as values in SML. 

For example, 



CHAPTER 3: PRACTICAL USE OF A POLYMORPHIC ApPLICATIVE LANGUAGE 59 

[nI: t ,.., vI, 

n2: nI ,.., v2] 

declares a name "nI" with a type t and a value v!, and then declares a name "n2" with type "nI" 

and value "v2". Although each such value can in turn be used as the type of another name, the 

Modeller implementation does not attach semantics to all such combinations. 

3.5 Treatment of Values in SML 

Strings 

Strings are useful in a module interconnection language for compiler options and as 

components of file names. SML contains facilities to declare strings. For example, the binding 

[x: STRING ,.., "lit", 

y: STRING ,.., x] 

gives x and y the string literal value "lit" . 

Files 

SML describes software by specifying a file containing data. This file is named in SML by a 

filename preceded by an @. SML defines @ as source-file inclusion: The semantics of an @­

expression are identical to those of an SML program that replaced the @ expression by its 

contents. For example, if the file inner.sm contained 

"lit" 

which is a valid SML expression, the binding 

[x: STRING ,.., @inner.sm, 
y: STRING ,.., x] 

is identical in value to the previous example. Since SML is applicative. such inclusion is also 

equivalent to 

and 

[x: STRING ,.., @inner.sm, 
y: STRING ,.., @inner.sm] 

[x: STRING ,.., "lit". 
y: STRING ,.., "lit"] 

The @ expression is used in SML to refer to source modules. Although we cannot substitute the 

@-expression by the contents of the source file since it is written in Cedar. we treat the Cedar 

source file as a value in the language with a type. This type is (almost always) a procedure type. 



60 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

The values in SML that describe module interconnection are all obtained by invoking one of the 

procedure values defined by an @-expression. 

Module In/ormation 

When compiling a Cedar module, all interfaces it depends on (or references) must be 

compiled first and the compiler must be given unambiguous references to those files. In order to 

load a module, all imports must be satisfied by filling in indirect pointers used by the microcode 

with references to procedure descriptors exported by other modules. We describe both kinds of 

information in SML by requiring that the user declare objects corresponding to an interface file 

(for compilation) or an interface record with procedure descriptors (for loading), and then 

parameterize module objects in SML as appropriate. 

Compilation Parameterization 

Consider an interface that depends on no other interfaces, i.e., it can be compiled without 

reference to any files. SML treats the file containing the interface as a function whose closure is 

stored in the file. The procedure type of this interface is for, a procedure that takes no 

parameters and returns one result, e.g., 

[] -+ [INTERFACE Sort] 

where "Sort" is the name of the interface, as in Figure 3.1. ' The application of this A -expression 

(with no arguments) will result in an object of type "INTERFACE Mod". 

Id: INTERFACE Sort IV @Sort.Mesa[] 

declares a variable "Id" that can be used for subsequent dependencies in other files. An interface 

"BTree" defined in the file "BTree.Mesa" that depends on an interface named "Sort" would have 

a procedure type like 

[INTERFACE Sort] -+ [INTERFACE BTree] 

The parameters and results are normally given the same name as the interface type they are 

declared with, so the procedure type would be 

[Sort: INTERFACE Sort] -+ [BTree: INTERFACE BTree] 

In order to express this in his model, the user would apply the file object to an argument list 

Sort: INTERFACE Sort IV @Sort.Mesa[]; 
BTree: INTERFACE BTree ~ @BTree.Mesa[Sort]; 

These interfaces can be used to reflect other compilation dependencies. 



CHAPTER 3: PRACTICAL USE OF A POLYMORPHIC ApPLICATIVE LANGUAGE 61 

Interface Record Parameterization 

An interface that is EXPoRTed is represented as an interface record that contains procedure 

descriptors, etc. These procedures are declared both in the interface being exported and in the 

exporting PROGRAM module. We can think of the interface record as an instance of a record 

declared by the interface module. Consider the implementation module Sortlmpl.Mesa in Figure 

3.1. Sortlmpl exports an interface record for the Sort interface and calls no procedures in other 

modules (Le., has no IMPORTS). This file would have as procedure type 

[Sort: INTERFACE Sort] -+ [Sortlnst: Sort] 

and would be used as follows: 

Sort: INTERFACE Sort ...., @Sort.Mesa[]; 
Sortlnst: Sort ...., @Sortlmpl.Mesa[Sort]; 

which declares an identifier "Sortlnst" of type "Sort", whose value is the interface record 

exported by Sortlmpl.Mesa. If Sortlmpl.Mesa imported an interface record for "BTree," then the 

procedure type would be 

[Sort: INTERFACE Sort, BTree: INTERFACE BTree, BTreelnst: BTree] -+ [Sortlnst: Sort] 

and the exported record would be computed by 

Sortlnst: Sort ...., @Sortlmpl.Mesa[Sort, BTree, BTreelnst]; 

where [Sort, BTree, BTreelnst] is a group that is matched to parameters of the procedure by 

position. Keyword matching of actuals to formals can be accomplished through a binding 

described in section 3.7. 

Scopes and LET Statements 

LET statements are useful for including definitions from other SML files. A set of standard 

Cedar interfaces could be defined in the file CedarDefs.Model: 

Rope: INTERFACE Rope ...., @Rope.Mesa. 

10: INTERFACE 10 ...., @IO.Mesa. 

Space: INTERFACE Space ...., @Space.Mesa 

Then a LET statement like 

LET @CedarDefs.Model IN [ expression 

is equal to 

LET 



62 CONTROLLING LARGE SOFfW ARE DEVEWPMENT IN A DISTRIBUTED ENVIRONMENT 

Rope: INTERFACE Rope .... @Rope.Mesa, 

10: INTERFACE 10 .... @IO.Mesa, 

Space: INTERFACE Space .... @Space.Mesa 

IN [ expression ] 

and makes the identifiers "Rope", "10", and "Scope" available within [ expression ]. 

3.6 Complete SML Description 

Syntax 

SML is described by the BNF grammar below. Whenever "x, ... " appears, it refers to 0 or 

more occurrences of x separated by commas. "I" separates different productions for the same 

non-terminal. Words in which all letters are capitalized are reserved keywords. Words that are 
all lower case are non-terminals, except for 

id, which stands for an identifier, 

string, which stands for a string literal in quotes, and 

filename, which stands for a string of characters that are legal in a file name, not surrounded 

by quotes. 

Subscripts are used to identify specific non-terminals, so they can be referenced without 
ambiguity in the accompanying explanation. 

exp :.: = A[ dedI ] ~ [ ded2 ] IN eXPI 
LET [ binding ] IN eXPI 

-+ 
eXPI eXP2 
eXPI [ eXP2 ] 
eXPI . id 
[ exp, ... ] 
[ ded ] 
[ binding 
id 
string 
INTERFACE id 
STRING 
@ filename 

ded :: = id : exp, 
binding :: = bindelem, 
bindelem :: = [ ded ] #OJ eXPI 

I id : eXPI .... eXP2 
I id .... eXPI 



CHAPTER 3: PRACTICAL USE OF A POLYMORPHIC ApPLICATIVE LANGUAGE 63 

Semantics 

A model is evaluated by running a Lisp-style evaluator on it. This evaluator analyzes each 

construct and reduces it to a minimal form, where all applications of closures to known values 

have been replaced by the result of the applications (using p-reduction). The evaluator saves 

partial values to make subsequent compilation and loading easier. The evaluator returns a single 

value, which is the value of the model (usually a binding). 

The semantics for the productions are: 

exp :: = A [ decl l 1 => [ decl2 1 IN eXPI 

The expression is a value consisting of the parameters and returned names, and the closure 

consisting of the expression eXPI and the bindings that are accessible statically from expo 

The type is "decll -+ decl2". The value of this expression is similar to a procedure variable 

in conventional languages, which can be given to other procedures that call it within their 

own contexts. The closure is included with the value of this expression so that, when the A­

expression is invoked, the body (exPI) will be evaluated in the correct environm~nt or 

context. 

exp :: = LET [ binding 1 IN eXPI 

The current environment of eXPI is modified by adding the names in the binding to the 

scope of eXPI' The type and value of this expression are the type and value of eXPI' 

exp :: = eXPI -+ eXP2 

The value of exp is a function type that takes values of type eXPI and returns values of type 

eXP2' 

exp ::= eXPI [ eXP2 1 

The value of eXPI' which must be a closure, is applied to the argument list eXP2 as follows. 

A binding is made for the values of the free variables in the A-expression. If eXP2 is a 

group, then the componeOnts of the group are matched by type to the formals of the A­

expression. (The group's components must have unique types for this option.) If eXP2 is a 

binding then the parameters are given values using the normal binding rules to bind f ,... 

eXP2 where eXP2 is a binding and f is the decl of the A-expression. 

There are two cases to consider: 

l. The A -expression has a closure composed of SML expressions. This is treated like a nested 

function. The evaluation is done by substitution or p-reduction: All occurrences of the 

parameters are replaced by their values. The resulting closure is then evaluated to 

produce a result binding. The A -expression returns clause is used to form a binding on 

only those values listed in the A -expression returns list, and that binding is the value of 

the function call. 



64 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

2. If the function being applied is a Cedar source or object file, the evaluator constructs 

interface types or interface records that correspond to the interface module or to the 

implementation module's exported interfaces, as appropriate. After the function is 

evaluated, the evaluator constructs a binding between the returned types in its procedure 

type and the values of the function call. 

exp .. - eXPl. id 

The eXPl is evaluated and must be a binding. The component with name "id' is extracted 

and its value returned. This is ordinary Pascal record element selection., 

exp :: = [exp, 

exp 

decl 

A group of the values of the component exp's is made and returned as a value. 

.. - [ decl ] 

id : exp, 

Adds names "id' to the current scope with type equal to value of expo A list of decls is a 

fundamental object. 

exp :: = [binding] 
binding :: = bindelem, 
bindelem :: = [ decl ] ,... eXPl 

I id : eXPl ,... eXP2 

I id ,... eXPl 

A bindelem binds the names in decl to the value of eXPl. If an id is given instead of a decl, 

the type of id is inferred from that of eXPl. The binding between the names in decl and the 

values in eXPl follows the same rules as those for binding arguments to parameters of 

functions. 

exp ::= id 

id stands for an identifier in some binding .(i.e:, in an. enclosing scope). The value of id is its 

current binding. 

exp : : = string 

A string literal like "abc" is a fundamental value in the language. 

exp :: = INTERFACE id 

This fundamental type can be used as the type of any module with module name id Note id 

is used as a literal, not an identifier, and its current binding is irrelevant. The. value of this 

expression is the atom that represents "INTERFACE id'. 

exp :: = STRING' 



CHAPTER 3: PRACTICAL USE OF A POLYMORPHIC ApPLICA TIVE LANGUAGE 65 

A fundamental type in the language. The value of "STRING" is the atom that represents 

string types. 

exp :: = @ filename 

This expression denotes an object whose value is stored in file filename. If the file is another 

model, then the string @filename can be replaced by the contents of the file. If it is another 

file, such as a source or object file, it stands for a fundamental object for which the evaluator 

must be able to compute a procedure type. 

3.7 Parameters, Defaults, and Projections 

Function calls in SML are made by applying a closure to 1) a group or 2) a binding. If the 

argument is a group, the parameters of the closure are matched to the components by type, which 

must be unique. If the argument is a binding, the parameters of the closure are matched by 

name with the free variables. For example, if p is bound to 

p - A[X: STRING, y: INTERFACE Y] => [Z: INTERFACE Z] IN [ ... ] 

then p takes two parameters, which may be specified as a group 

defs: INTERFACE Y ,.., @Defs.MesaU, 
z: INTERFACE Z ,.., p["lit", Defs] 

where the arguments are matched by type to the parameters of the closure. (The order of "lit" 

and Defs in the example above does not matter.) The function may also be called with a binding 

as follows: 

defs: INTERFACE Y ,.., @Defs.MesaU, 
Z: INTERFACE Z ,.., p[x ,.., "lit", y ,.., Defs] 

1 

which corresponds to keyword notation in other languages. (The order of x and y in the call of p 

do not matter in this example.) 

Since the parameter lists for Cedar modules are quite long, the SML language includes 

defaulting rules that allow the programmer to omit many parameters. When a parameter list 

(either a group or a binding) has too few elements, the given parameters are matched to the 

formal parameters and any formals not matched are given default values. The value for each 

defaulted formal parameter is the value of a variable defined in some scope enclosing the call 

with the same name and type as the formal. Therefore, the binding for Z in 



66 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

x: STRING ,.., "lit", 
y: INTERFACE Y ,.... @Defs.MesaO, 
Z: INTERFACE Z ,.... pO 

is equivalent to "p[x, y]" by the equal-name defaulting rule. 

SML also allows projections of closures into new closures with parameters. For example, 

[ 
Y: INTERFACE Y ,.... @Defs.MesaO, 
pI: [Y: INTERFACE Y] -+ [Z: INTERFACE Z] ,.... p["lit"], 
Z: INTERFACE Z ,.... pI[Y] 
] 

sets Z to the same value as before but does it in one extra step by creating a procedure value 

with one fewer free variable, and then applies the procedure value to a value for the remaining 

free variable. The defaulting rules allow parameters to be omitted when mixed with projections: 

[ 
X: STRING "" "lit", 
Y: INTERFACE Y ,.... @Defs.MesaO, 
pI: [Y: INTERFACE Y] -+ [Z: INTERFACE Z] .... pO, 
Z: INTERFACE Z ..... pIO 
] 

Enough parameters are defaulted to produce a value with the same type as the target type of 

the binding (the type on the left side of the ",... "). When the type on the left side is omitted, the 

semantics of SML guarantee that all parameters are defaulted in order to produce result values 

rather than a projection. Thus 

Z ,... pI[] 

in the preceding examples declares a value Z of type INTERFACE Z and not a projection whose 

value is a A -expression. 

These rules are stated more concisely below: 

If the number of components is less than those required to evaluate the function body a 

coercion is applied to produce either 1) the complete argument list, so the function body may be 

evaluated, or 2) a projection of the original A -expression into a new A -expression with fewer free 

variables. If the type of the result of "exPI[exP2]" is supplied. one of 1) or 2) will be performed. 

When the target type is not given, e.g., 

x ,.... proc[Y] 

case 1) is assumed and all parameters of proc are assumed defaulted. For example, the expression 



CHAPTER 3: PRACTICAL USE OF A POLYMORPHIC ApPLICA TIVE LANGUAGE 67 

proc: [V: STRING, Z: STRING] -+ [r: R], 
x: T #V proc[Y] 

binds the result of applying proc to Y to x of type T. If T is a simple type (e.g., "STRING"), then 

the proc[Y] expression is coerced into proc[y, Z], where Z is the name of the omitted formal in 

the A-expression and R must equal T. If Z is undefined (has no binding) an error has occurred 

and the result of the expression is undefined. If T is a function type (e.g., [Z: STRING] -+ [r: R)), 

then a new closure is replaced by the value of Y. This closure may be subsequently applied to a 

value of Z and the result value can be computed. The type of Z must agree with the parameters 

of the target function type. 

3.8 Pragmatics 

Some extensions to SML have been made to accommodate various "special" uses of Cedar 

module interconnection facilities. 

Program Transformation Programs 

Cedar programmers may use a number of programs that analyze a source program and 

produce new source programs. For example, an LALR(l) parser generator preprocessor takes a 

grammar as input and produces a) a source file that must be compiled and b) a Cedar object file 

with parsing data, that must be subsequently loaded. Another example is a remote procedure call 

stub generator [Nelson. 1981] that takes the source for a Cedar interface and produces four source 

files that must all be compiled. In each of these cases the output files depend on the input file. 

and if the input file were modified, the preprocessor would have to be run again. Preprocessor 

dependencies like this are expressed in the modelling language as built-in functions that take 

objects as arguments and return objects as results. These objects correspond to full file names 

with version stamps. For example, use of PGS (the parser generator system) would look like 

[NewSource: (X:INTERFACE -+ XImpl: X), NewParseBcd: (0 -+ NewParseBcd:INTERFACE)] #v 

PGS[@[Indigo]<Cedar)Grammar.Mesa!H] 

defines a name NewSource that can be used to refer to the name of the new source file and 

defines NewParseBcd as the name of the file containing parsing data. NewSource names an 

object that takes an interface type and produces an interface record. NewSource corresponds to a 

new Cedar source file produced by PGS. NewParseBcd takes no parameters and returns an 

interface type. This corresponds to the module containing parse tables produced by PGS. 

These files are subsequently referred to by using the objects, e.g., 

NewSource[X, Y] 

as an expression in the model. 



68 CONTROLLING LARGE SOFfWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

Compiler Options 

Certain aspects of the Cedar compiler's execution can be controlled by specification of 

compiler options. These are normally given as command line "switches" or "flags" consisting of 

a single letter. For example, "j" instructs the compiler to perform a cross-jumping optimization 

on the code it generates, "b" instructs it to check for array indices that are out of range (called 

bounds faults), and "n" instructs it to check for dereferencing of pointers that are NIt-valued. 

Since the behavior of a system depends in part on these options, they are treated as any other 

parameter. Each Cedar source file has a procedure type, as described in Section 3.5. These 

include a STRING parameter that can be specified as in 

SortQuickCoordlmpl: SortCoord ,.,. @SortQuicklmpl.Mesa["j", SortCoord] 

If the strings are not given, there is a built-in default of "" for this parameter. The options string 

is used to modify the compiler's default options. 

Multiple Exports 

We have described systems where there is one exporter of an interface and (possibly more 

than) one importer. It is possible to have more than one exporter of the same version of an 

interface and merge the interface records together. This often arises when the single exporter 

module becomes very large and is split by the programmer, with some procedures exported to the 

interface by one module and the other procedures defined in the other exporting module. Two 

operators on interface record values are available: PLUS and THEN (which are from C/Mesa). A 

composite interface record can be produced by such an operator: 

BTreelmplA: BTree ,.,. @BTreelmpIA.MesaD, 

BTreelmplB: BTree ,.,. @BTreelmpIB.MesaD, 

BTreelmpl: BTree ,.,. BTreelmplA PLUS BTreelmplB 

The PLUS operator produces a new value with both procedure pointers from BTreelmplA and 

from BTreelmplB. It is an error if the same procedure is defined in both interface records. If 

PLUS is replaced by THEN, then duplicate exports of a procedure are allowed and, in that case, a 

procedure pointer defined in the left operand is used instead of the procedure pointer defined in 

the right operand. 

Starting Modules 

After the modules described in a model are loaded, and all inter-module references are 

resolved, a process begins execution of the new modules. This is called starting the module. The 

program may specify which modules need to be started by adding the binding of a name with 

type "CONTROL" to each module's binding in the model. For example, 

[Abc: CONTROL. Sortlmpl: Sort] ,.,. @Sortlmpl.MesaD 



CHAPTER 3: PRACTICAL USE OF A POLYMORPHIC ApPLICATIVE LANGUAGE 69 

defines a name "Abc" (which does not matter, except that it must not conflict with other names), 

of built-in type CONTROL. Modules that export no interfaces are always bound to such names. 

3.9 Implementation Comments 

The SML evaluator is embedded in a program management system that separates the 

functions of file retrieval, compilation, and loading of modules. Each of these functions is 

implemented by analyzing the partial values of the evaluated SML expression. For example, the 

application of a file to arguments is analyzed to see whether compilation or loading is required. 

For each of these phases, the evaluator could be invoked on the initial SML expression, but this 

would be inefficient Since the SML language has no iteration constructs and no recursively­

defined functions, the evaluator can substitute indirect references to SML expressions through @­

expressions by the file's contents and can expand each function by its defining expression with 

formals replaced by actuals. 

This process of substitution must be applied recursively, as the expansion of a A-expression 

may involve expansion of inner A -expressions. The evaluator does this expansion by copying the 

body of the A -expression, and then evaluating it using the scope in which the A -expression was 

defined after adding the actual parameters (as a binding) for the function to the scope. 

The scope is maintained as a tree of bindings in which each level corresponds to a level of 

binding, a binding added by a LET statement, or a binding for parameters to a A -expression. 

Bindings are represented as lists of triples of (name, type, value). A closure is represented as 

a quadruple (list of formals, list of returns, body of function, scope pointer) where the scope 

pointer is used to establish the naming environment for variables inside the body that are not 

formal parameters. The @-expression is represented by an object that contains a pointer to the 

disk file named. A variable declared as INTERFACE mod (i.e., an interface type variable), is 

represented as a (module name, pointer to module file) pair, and a variable given as type and 

interface type variable (i.e., an interface record variable) is represented as a (pointer to procedure 

descriptors, pointer to loaded module). 

The substitution property of Russell [Demers-Donahue. 1980] guarantees that variable-free 

expressions can be replaced by their values without altering the semantics of Russell programs. 

Since SML programs have no variables and allow no recursion, the substitution property holds for 

SML programs as well. This implies that the type-equivalence algorithm for SML programs always 

terminates, since the value of each type can always be determined statically. 



70 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

3.10 Experience 

The SML language, in a slightly different form, has been in use by about five programmers 

for the past year. The implementation of the language, as then specified, uncovered a number of 

fundamental problems with the abstract machine on which SML was based. Work on "de­

sugaring" the Cedar language has refined the abstract machine specification into the Kernel 

language over the last three months. The evaluator for the language is being re-written to take 

advantage of the new SML fundamentals. The largest improvement has been in the treatment of 

declarations and bindings. Bindings are now separated from declarations and are treated like any 

other value. 

3.11 Relationship to Kernel Language 

In 1979. seven years after Mesa development started. members of the Cedar project began 

work on a formal technique for specifying the semantics of Cedar statements. This technique 

relied upon the notion of an abstract machine that, for every valid statement and expression in 

Cedar, given an existing environment of variables and their values, would describe the state of 

this abstract machine in terms of new variables and values after the execution of that statement or 

expression. The abstract machine was an attempt at discovering denotational semantics for Cedar 

that could be used, for example, to prove that a Cedar program would not cause the garbage 

collector to break when the program was run. 

The development of the abstract machine has produced 1) a Kernel language that is small, 

precisely defined and intuitively simple, and 2) a set of rules for "de-sugaring" the existing Cedar 

syntax into an equivalent set of Cedar Kernel statements. The Kernel language is polymorphic 

and non-applicative. The section "Fundamentals on SML" describes the applicative subset of the 

Kernel language. The SML language is composed of this applicative subset and objects that can 

be used to describe Cedar systems. The eventual goal of the Kernel language effort is to change 

existing Cedar (or to replace Cedar) so that programmers will write their programs in a language 

based on the Kernel language. This language will have objects appropriate to Cedar 

programming (such as numbers and arrays) and syntactic "sugar" for built-in functions (such as 

IF-THEN and FOR). After this is accomplished, Cedar programmers will write programs and 

describe systems in the same underlying language. 

3.12 Extended Example 

Example 1 

The B-tree package consists of an implementation module in the file "BTreeImpI.Mesa" and 

an interface "BTree.Mesa" that BTreeImpl exports. (There is no client of BTree, so this model 

returns a value for the interface type and record for BTree. Some other model contains a 



CHAPTER 3: PRACTICAL USE OF A POLYMORPHIC ApPLICATIVE LANGUAGE 71 

reference to this model and a client for that interface.) The BTree interface uses some constants 

found in "Ascii. Mesa", which contains names for the ASCII character set. The BTreelmpl module 

depends on the BTree interface (since it exports it) and makes use of three standard Cedar 

interfaces. "Rope" defines procedures to operate on immutable, garbage collected strings. "10" 

is an interface that defines procedures to read and write formatted data to a stream, often the 

user's terminal. "Space" defines procedures to allocate Cedar virtual memory for large objects, in 

this case the B-tree pages. 

-- Exl.Model 
LET [ 

Rope: INTERFACE Rope - @Rope.Bcd, 
10: INTERFACE 10 '" @IO.Bcd, 
Space: INTERFACE Space '" @Space.Bcd, 
] IN 

BTreeProc '" 
A [Ropelnst: Rope, 10lnst: 10, Spacelnst: Space] 
~ [BTree: INTERFACE BTree. BTreelnst: BTree] 

IN [ 
Ascii: INTERFACE Ascii '" @Ascii.Mesa, 
BTree: INTERFACE BTree '" @BTree[Ascii]. 
BTreelnst: BTree - @BTreelmpI.Mesa[BTree. Rope.· 10. Space. Ropelnst. 

10lns1. Spacelnst] 

This (simple) model stored in the file "Exl.Model" describes a BTree system composed of an 

interface "BTree" and an implementation for it. The first three lines declare three names used 

later. Since they are given values that are object (.bcd) files, they take no parameters. This 

model assumes those files have already been compiled. Note they could appear as 

Rope '" @Rope.Bcd. 
10 - @IO.Bcd. 
Space '" @Space.Bcd 

since the types of the three identifiers can be determined from their values. The seventh line 

binds an identifier "BTreeProc" to a A-expression with three interface records as parameters. If 

those are supplied. the function will return 1) an interface type for the BTree system. and 2) an 

interface record that has that type. Within the body of the A-expression (its closure) there are 

bindings for the identifiers "Ascii". "BTree". and "BTreelnst". In all cases. the type could be 

omitted as well. 

The file "Exl.Model" can be evaluated. Its value will be a binding of BTreeProc to a 

procedure value. The value is a A-expression that must be applied to an argument list to yield its 

return values. Another model might refer to the BTree package by 

[BTree. BTreelnst] '" (@Exl.Model).BTreeProc[Ropelnst. 10Inst. Spacelnst] 



72 CONTROLLING LARGE SOFlW ARE DEVELOPMENT IN A DISTRIBUTEo' ENVIRONMENT 

Example 2 

CedarDefs.Model 
[ 

Rope: INTERFACE Rope - @Rope.Bcd, 
10: INTERFACE 10 - @IO.Bcd, 
Space: ' INTERFACE Space - @Space.Bcd 
] 

-- BTree.Model 
LET @CedarDefs.Model IN [ 

BTreeProc -
A [Ropelnst: Rope, 101nst: 10, Spacelnst: Space] 

=* [BTree: INTERFACE BTree, BTreelnst: BTree] 
IN [ 

Ascii: INTERFACE Ascii .... @Ascii.Mesa, 
BTree: INTERFACE BTree .... @BTree[Ascii], 
BTreelnst: BTree .... @BTreelmpl.Mesa[BTree, Rope, 10, Space, Ropelnst, 

101nst, Spacelnst] 

The prefix part is split into a separate file. The BTree.Model file contains 1) a binding that 

gives a name to the binding in CedarDefs.Model,' and 2) a LET statement that makes the values in 

CedarDefs.Model accessible in the A -expression of BTree.Model. Dividing Example 1 into two 

models like this allows 'us to establish standard naming environments, such as a model that names 

the commonly-used Cedar interfaces. Programmers are free to redefine these names with their 

models if they want to. Appendices D and E have examples of models that use models that 

define standard Cedar and Pilot interfaces. 

3.13 Summary 

) 

SML is used to describe a module interconnection scheme in which polymorphism occur~ 

naturally. SML consists of the applicative subset of the Cedar Kernel language and values that 

correspond to interfaces. implementations, and other objects ma~ipulated in the Cedar module' 

structure. The union of the Kernel language and the module interconnection language used by 

Cedar programs is the first step toward the ultimate goal of making the Cedar language 

polymorphic. ' 

The System Modelling language extends the existing facilities of the C/Mesa configuration 

language by recognizing a form of polymorphism in Cedar and providing for it in the language. 

The System Modelling view is that each interface defines a single INTERFACE in the modelling 

language. The interconnections between modules are expressed in the modelling language by 

giving each interface record a type that depends on the interface they implement We can 



CHAPTER 3: PRACTICAL USE OF A POLYMORPHIC ApPLICATIVE LANGUAGE 73 

describe the fundamental interconnections between modules in terms of interface types and 

interface records of those types. 

The language is Algol-like with its normal name scoping and definition. The most common 

unit of value is a Cedar module, expressed as a filename followed by a numerical unique-id, and 

then a list of parameters to the module. The filename is used as a hint since the unique-id 

identifies the file. 

The parameters to a module include the interface types and interface records involved in the 

compilation and execution of the modules, and also whatever other parameters the module may 

need, such as character strings to specify the compiler options. 

An object file is a source file that has been compiled with interface types filled in. Thus, we 

need recompile a module only when one of its interface types changes. 



74 CONTROLLING LARGE SOFfwARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 



CHAPTER 4: SML LANGUAGE IMPLEMENTATION: A PROGRAM MANAGEMENT TOOL 75 

4. SML Language Implementation: A Program Management Tool 

4.1 Introduction 

This chapter describes a program management system, called the System M odeller. that 

automates the edit-com pile-debug cycle of programmers. The System Modeller is driven from 

system models written in the SML language. Chapter 3 described the SML language in terms of 

the facilities it offers to describe Cedar software. This chapter describes the tool that operates on 

these models. 

An instance of the System Modeller (there can be more than one) running on the 

programmer's machine maintains a system model and tracks changes the programmer makes to 

his software. As he makes changes, the modeller re-compiles and re-loads the new version of the 

system. Notification of his changes is carried out automatically through a connection between the 

Cedar editor and all instances of Modellers. 

System models will also be used in the Cedar release process, as described in Chapter 2. As 

a result, system models will become all-encompassing descriptions of Cedar systems, used by the 

individual programmer and also used to describe the Cedar system itself. To make this work in 

real-time, several databases are maintained as tables with information used to speed analysis of 

models in the system. These tables are also used and transformed by the release process when 

applied to models. 

Chapter 2 presented a system for version management in the Cedar project. The System 

Modeller provides the facilities described in Chapter 2 in a more general context. System models 

have more information than OF files about the software they describe. As a result, the System 

Modeller can manage the files of a system as they are changing. by providing a user interface that 

is used by the programmer to edit, compile. load and debug his changes interactively. The price 

of this extra functionality is increased complexity of description of Cedar systems, as seen in 

Chapter 3, and increased complexity in algorithms to cache information about the system being 

worked on. 

This chapter will first justify the approach taken with system models, especially the 

requirement that system models refer to files that are immutable. We then present the user 

interface using an example, showing how a change to a module is fielded by the modeller and the 

system is re-compiled and loaded. We then present the algorithm to maintain the tables used by 

the modeller, and then the release process as applied to models. This chapter concludes with a 

discussion of extensions of this approach. 



76 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

4.2 Treatment Of Objects 

System models refer to other models or files. The approach taken here depends very 

strongly on the notion of a model or Cedar module as an immutable object that is referenced by 

system models. Chapter 3 gave motivation for our emphasis on objects. The Cedar system 

modeller treats files as objects that are considered immutable. If a new version of a source file is 

created, its creation time changes. Models use the creation times to identify specific versions of 

objects. Once the creation time changes, the modeller views the new version of the source file as 

a different object. 

Role Of Objects 

When invoked, the modeller uses the objects in a model to determine which modules need to 

be recompiled. The modeller will get any files it needs and try to put the system together. Since 

it has unique-ids for all the needed sources, it can check to see if they are nearby. If not, it can 

take the path name in the model as a hint and, if the file is there, it can be retrieved. The 

modeller may. have difficulty retrieving files, but it will never make a mistake and retrieve the 

wrong version. Having retrieved as many files as possible, it will compile any source files if 

necessary, load the resulting binary files, and run the program. 

A model normally refers to source files rather than the less-flexible binary files (or object 

files) produced by the compiler, whose interface types are already bound. The system modeller 

takes the view that these binary files are just accelerators, since every binary file can be compiled 

using the right source files and parameters. The model has no entry for a binary file when the 

source file it was compiled from is listed. Such an entry is unnecessary since the binary file can 

always be reconstructed from the source. Of course, wholesale recompilation is time-consuming 

so various databases are used to avoid unnecessary recompilation. 

The Modeller takes a very conservative approach, so the users and distributors can be sure 

there is no confusion over which versions have been tested and are out in the field. 

There will be users who will resist the requirements that System Modelling enforces. Many 

Cedar programmers do not know or care which versions of the system they are using. These 

users can use "looser binding" to versions by omitting version information. However, use of this 

looser binding will not be recommended, since the version information helps detect version 

inconsistencies before a system is run. The experience with strong type-checking suggests some of 

our users will resist the extra discipline required by this approach. 

References To Files 

The environment in which the System Modeller runs was described in Chapter 2. The 

reader is referred to "Version and Size Problems" and "Single vs. Shared File Systems" in 

Chapter 2. There is one important difference between the environment in which the software 

that processes DF files was built and the environment in which the Modeller runs: The software 

described in this chapter makes use of the Cedar File System, which was not available when the 



CHAPTER 4: SML LANGUAGE IMPLEMENTATION: A PROGRAM MANAGEMENT TOOL 77 

OF software was built. Use of the Cedar File System allows the System Modeller to manipulate 

files on remote servers when given file names that include host and directory information. Thus, 

the "BringOver" step of retrieving files to the local disk is not necessary. File names without a 

host or directory are assumed to be within a working directory. If a file is edited using the Cedar 

editor, the file system does not automatically store the new version on the same directory that 

contained the old version. The modeller will move such files when appropriate. 

File References in Models 

Models refer to files using an @-sign followed by a host, directory, and file name, optionally 

followed by version information. In a model, the expression 

@[Indigo]<Cedar)X.Mesa!(July 25, 1982 16:10:09) 

refers to the version of X.Mesa created on July 25, 1982 16:10:09 that is stored on 

[Indigo]<Cedar). The !( ... ) is not part of the filename but is used to specify explicitly which 

version. The expression 

@[Indigo]<Cedar)X.Bcd!(lAB3FBB462BO) 

refers to the version of X.Bcd on [Indigo]<Cedar) X.Bcd that has a 48-bit version stamp 

"lAB3FBB462BO" (hexadecimal). For cases when the user wants the most recently-saved version 

of X.Mesa or X.Bcd, 

@[Indigo]<Cedar)X.Mesa!H 

refers to the most-recently stored version of X.Mesa on [Indigo]<Cedar). This" !H" is a form of 

implicit parameterization. If a model containing such a reference is submitted as part of a Cedar 

release, this reference to the highest version is changed into a reference to a specific version. 

4.3 User Interface 

An interactive interface is provided for the modeller. When used interactively, the role of 

the Modeller is similar to that of an incremental compiler. The modeller tries to do as little work 

as it can as quickly as possible in order to produce a runnable system. To do this well, it works 

in parallel with the user, keeping track incrementally of as much information as possible about 

the objects under its control. 

For example, consider the following scenario. Assume a model already exists and the user 

wants to change one module to fix a bug. Earlier, he has started the modeller with his working 

model as input He uses the Cedar editor to make a change to a module. When the user finishes 

editing the module and creates a new version, the editor then notifies the modeller, indicating 

that a new version of the edited file now exists. If the source file being edited is referenced by 

the model, the modeller notices there is a new version and updates its description of the system 



78 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

to refer to the new version. The user may edit and change more files. When he wants to make a 

version of his system, he issues another command to the modeller, which then compiles 

everything in correct order and (if there are no errors) produces an object file. 

Another example would be when two programmers take a model and make their own 

versions. they may want to make a new version combining their changes. The modeller can 

provide help for this common case as follows: If one programmer has added, deleted, or changed 

some object (such as a module) in the model not changed by the other programmer. the modeller 

will add, delete, or change that object If both programmers have changed the same object in 

different ways, the modeller cannot know which version to prefer and will ask the user for help. 

At all points, a model is maintained describing the "current" system. When the user decides 

to release his system, he does so with an accurate description of the system in his model, thus 

minimizing software distribution errors. Since the models are simply text-files, the user always 

has the option of editing the model as he sees fit, so the modeller does not have to deal with 

obscure special cases that may arise. 

An Example 

The user begins by creating an "instance" of a modeller. An instance of the system modeller 

provides a window on the Cedar user's screen, as shown in Figure 4.1 at the end of this chapter. 

In this section we will give an overview of its use, suggested by the contents of Figure 4.l. 

The modeller window is divided into four regions, which are. from top to bottom, 1) a set of 

buttons to control it, 2) a region containing fields where names may be typed. 3) a feedback area 

for compiler progress messages, and 4) a feedback area for modeller messages. 

To help explain modeller operation, let us use a simple example and follow the steps the user 

performs to use the modeller. 

Step 1. Assume that the modeller instance has just been created. The user decides to make 

changes to the modules in Example.Model. He enters the name of the model he is going to start 

with following the "ModeIName:" field and pushes the "StartModel" button. From this point on 

the modeller is bound to Example.Model. and "StopModel" must be pushed before using the 

modeller on another model. "StartModel" initializes data structures in this instance of the 

modeller. "StopModel" frees the data. 

Step 2. The user makes changes to files on his personal machine. The Cedar Editor has been 

modified to call the modeller to send a Notice operation to tell the modeller that a new version of 

a file exists. If the file being edited is in the model. the modeller updates its data structures to 

reflect the new version. If. for example. the user has added or deleted parameters. the modeller 

uses standard defaulting rules to modify the parameter list of the file in the model. 

Step 3. Once he has made the intended edits. the user pushes "Begin." which a) recompiles 

modules as necessary. b) loads their object files into memory. and c) forks a process that starts the 

module executing. Modules will need to be recompiled if their corresponding source file has 

been edited or if any modules they depend on have been compiled. (Should a) or b) encounter 



CHAPTER 4: SML LANGUAGE IMPLEMENTATION: A PROGRAM MANAGEMENT TOOL 79 

errors, the modeller does not proceed to c).) 

Step 4. After testing his programs, the user may want to make changes simple enough that the 

old module may be replaced by the new module without re-Ioading and starting the system. If 

so, after editing modules, the user pushes "Continue," which tries to replace modules in the 

already-loaded system. If this succeeds, he can go on testing his program and the new code will 

be used. If the module is not replaceable, he must push "Begin," which will unload all the old 

modules in this model and load the new modules. 

Step 5. After completing his changes, the user can push "StoreBack" to store copies of his files 

on remote file servers, and then push "Unload" to unload the modules previously loaded, and 

"StopModel" to free modeller data structures. 

These steps are illustrated in Figure 4.2: 

Fails 

User Edits Files J 
±uce Ope,a';oo 

~_~ser ests Program 

l U1 Edits Files J 
Notice Operation 

Succeeds 

Figure 4.2 User Sequence 
A program interface to take these steps is available and is described in Appendix C. 



80 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

Details 

StartModelling: The modeller begins by reading in the source text of a model and building an 

internal tree structure (described later) that is traversed by subsequent phases. These phases will 

use this tree to determine which modules must be compiled and loaded and in what order. Since 

parameters to files may have been defaulted, the modeller uses a database of information about 

the file to check its parameterization in the model and supply defaults, if necessary. If the 

database does not have an entry for the version of the file listed in the model, the modellerwill 

read the ·file and analyze it, adding the parameterization information to the database for future 

reference. This database is described. in Section 4.5. 

Notice Operation: The Cedar editor notifies all modeller(s) running on the machine when a new 

version of a file is created. Each modeller searches its internal data structure for a reference to an 

earlier version of the file. If one is found, the modeller changes the internal data structure to 

refer to the new version. 

While making edits to modules, users often alter the parameterization of modules (Le., the 

interface types and IMPORTed interface records). Since editing the model whenever this happens 

is time-consuming, the modeller automatically adjusts the parameterization, whenever possible, by 

using the defaulting rules of the modelling language: If a parameter is added and there is a 

variable with the same name and type as the new parameter, that variable is used for the actual 

parameter. If a parameter is removed, then the corresponding actual is removed. The modeller 

re-Parses the header of a "noticed" module to determine the parameters it takes. 

Some changes made by the user cannot be handled using these rules. For example, if the 

user changes a module so that it imports an interface record, and there is no interface record in 

the model with that name, the modeller cannot know which interface record was intended. 

Similarly, if the user changes the module to export a new interface record, the modeller cannot 

know what name to give the exported record in the model. In these situations, the user must edit 

the model by hand to add this information and start the modeller again on the new version of the 

model. 

Compilation and Loading: After the user pushes "Begin," the modeller uses the internal data 

structure as a description of a system the user wants to run. on his machine. To run the system, 

each module must have been compiled, then loaded and initialized for execution. The modeller 

examines each module using the dependency graph implied by the internal data structure. Each 

module is compiled in correct compilation order if no suitable object file is available. Modules 

that take no parameters are examined first, then modules that depend on modules already 

analyzed are examined for possible recompilation, and so on, until, if necessary, all modules are 

compiled. Modules are only recompiled if 1) the modules they depend on have been recompiled, 

or 2) they were compiled with a different version of the compiler or different compiler switches 

than those specified in the model. If there are no errors, the modeller loads the modules by 

allocating memory for the global variables of each module and setting up links between modules 

by filling in the interface records declared in the module. When loading is completed, execution 



CHAPTER 4: SML LANGUAGE IMPLEMENTATION: A PROGRAM MANAGEMENT TOOL 81 

begins. 

StoreBack: Models refer to files stored on central file servers. The user types a file name 

without file server or directory information to the Cedar editor, such as "BTreeImp1.Mesa," and 

the editor uses information supplied by the modeller to add location information (file server and 

directory) for the files. (If the file name without location information is ambiguous, the user must 

give the entire file name to the editor.) To avoid filling file servers with excess versions, the 

modeller does not store a new version of a source file on a file server after the source file is 

edited. Instead, the new versions are saved on the local disk. When the user pushes "StoreBack" 

all source files that have been edited are saved on remote directories. A new version of the 

model is written to its remote directory, with references to the new versions of source files it 

mentions. 

The compiler may have produced new versions of object files for source files listed in the 

model. Each object file so produced is stored on the same directory as its corresponding source 

file. 

Multiple Instances of Modellers: More than one modeller may be in use on the same machine. 

The user can push the "NewModeller" button to create another window with the four 

subwindows described earlier. It is used in the same way as the modeller window described 

earlier. Two instances of a modeller can even model two versions of the same system model. 

Since file names without locations are likely to be ambiguous in this case, the user will have to 

type file names and locations to the editor and do the same for the "ModeIName:" field in the 

modeller window. 

4.4 Pragmatic Considerations in Implementation 

The modeller must be able to analyze large collections of modules quickly, and must provide 

facilities normally associated with the loader, debugger, and other programs. 

Model Accelerators 

Some models are shared among many users, who refer to them in their own models by using 

the @-notation and then using returned values from these shared models. An example is the 

model "BasicCedar.Model," which returns a large number of commonly-used interfaces (interface 

types) that a Cedar user might use. Although it is always possible to analyze all sub-models such 

as BasicCedar.Model. retrieving the files needed for analysis is very time consuming. 

When the user pushes "MakeModeIBcd," the modeller makes an object file for a model. 

much as a compiler makes an object file for a source file. This model object file (called a 

.modelBcd file) is produced so that all parameters except interface records are given values, so it is 

a projection of the source file for the model and all non-interface record parameters. (This is 

analogous to the object files produced by the compiler, which are projections of the Cedar source 



82 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

file and all the interface types, leaving the interface records as parameters.) The .modelBcd file 

acts as an accelerator, since it is always possible to work from the sources to derive the same 

result as is encoded in the .modeIBcd. Its contents are described in section 4.6. 

Binding Functions 

The loading ability of the modeller gives the user the ability to load the object files of any 

valid model. This speed of loading is proportional to the size of the system being loaded and the 

inter-module references. As the system gets larger, it takes more time to load. However, the 

Cedar Binder has the ability to take the instructions and symbol table stored in each object file, 

merge these pieces of object, and produce an object file that contains all the information of the 

constituent modules while combining some tables used at runtime. This transformation resolves 

references from one module to another in the model, which reduces the time required to load the 

system and also saves space, both in the object file and when the modules are loaded. To speed 

loading of large systems, this feature has been preserved in the modeller. If "Bind" is pushed 

after "StartModel" and "Compile" or "Begin" are pushed, an object file with instructions and 

symbol tables merged is produced. 

The programmer may choose to produce a bound object file for a model instead of a 
.modelBcd file when 1) the model is very large and loading takes too long or the compression 

described above is effective in reducing the size of the file or 2) the object file will be input to 

the program that makes the boot file for Cedar. 

The use of bound object files is limited to a subset of all models because of restrictions 

imposed by the desire for compatibility with old object file formats, so its use is not encouraged if 

distributing a .modelBcd file is sufficient. Since this is how Cedar programs have been loaded in 

the past, the ability to bind code and symbols has eased our users conversion to the modeller. 

Module Replacement 

The ability to replace a· module in an already loaded system can provide faster turnaround 

for small program changes. Module replacement in Cedar is possible if the following conditions 

are met: 

1. The existing global data of the module being replaced may change in very restricted ways. 

Variables in the old global data must not change in position relative to other variables in the 

same file. New variables can only be added after the existing data. If the order changed, 

outstanding·· pointers to that data saved by other modules might be invalidated. 

2. Any procedures that were EXPORTed by the old version of the module must also be EXPORTed 

by the new version, since the address of these objects could have been passed to other 

modules, e.g., a procedure that is passed as a parameter. 

3. There are a number of architectural restrictions (such as the number of indices in· certain 

tables) that must be obeyed. 



CHAPTER 4: SML LANGUAGE IMPLEMENTATION: A PROGRAM MANAGEMENT TOOL 83 

4. No procedures from the affected module can be executing (or stopped as a breakpoint) the 

short period of time the replacement is occurring. 

The modeller can easily provide module replacement since it loaded the modules initially and 

invokes the compiler on modules that have been changed. When the user pushes "Continue," 

the modeller tries to speed the compile-load-debug cycle by replacing modules in the system, if 

possible. Successful module replacement preserves the state of the system in which the 

replacement is performed. 

The modeller calls the compiler through a procedural interface that returns a boolean true if 

rules 1 and 2 are obeyed; the modeller will also check that rules 3 and 4 are obeyed. If all four 

checks succeed, the modeller will change the runtime structures to use a new pointer to the 

instructions in the new module, which in effect replaces the old instructions by the new ones. 

Some changes are substantial enough to violate rules 1-4, so after edits to a set of modules, 

some modules are replaceable and others are not When this happens, the modules that are 

replaceable are replaced by new versions. The modules for which replacement failed are left 

undisturbed, with the old instructions still loaded. If desired, the user may try to debug those 

changes that were made to modules that were replaceable. If not, the user can push the "Begin" 

button to unload the current version and reload the system. Since no extra compilations are 

required by this approach, the user will always try module replacement if there is a possibility it 

will succeed and he wants to preserve the current state of the program. There is no time penalty 

if module replacement fails. 

Debugger Interface 

When the Cedar debugger examines a stopped system (e.g., at a breakpoint) the debugger 

can follow the procedure call stack and find the global variables for the module in which the 

procedure is declared (these global variables are stored in the global frame). The modeller can 

provide the debugger with module-level information about the model in which this module 

appears, and provide file location and version information. This is particularly useful when the 

debugger wants to inspect the symbol table for a module, and the symbol table is stored in 

another file that is not on the local disk. 

The programmer deals with the model naturally while debugging his system. The modeller 

provides an interface (called RTModel, described in Appendix C) called by the debugger as it 

needs module-level information. 

Since more than one modeller can be in use on a machine, the modeller(s) call procedures in 

an independent runtime loader to add each model to a list of models maintained for the entire 

running system. When the modules of a model are loaded or unloaded, this list is updated, as 

appropriate. To simplify the design, the list of models is represented by the internal data 

structures used by the modeller to describe a model. This model has no formal parameters and 

no file where it is stored in text form, but it can be printed. This allows the debugger to use a 

simple notion of scope: a local frame is contained in the global frame of a module. This module 

is listed in a model, which may be part of another model that invokes it, and so on, until this 



84 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

top-most model is encountered. The debugger can easily enumerate the siblings in this 

containment tree. It can enumerate the procedures in a module. or all the other modules in this 

model. as appropriate. This type of enumeration occurs when the debugger tries to match the 

name of a module typed by the user against the set of modules that are loaded (e.g.. to set the 

naming environment for expressions typed to the debugger). 

4.5 Data Structures and Tables Used 

The procedures of the modeller can be categorized into these functional groups: 

1. Procedures to parse model source files and build an internal parse tree. 

2. Procedures to parse Cedar source and object files to determine needed parameterization. 

3. Procedures that maintain a table (called the projection table) that expresses relationships 

between object files and source files. as described below. 

4. Procedures that maintain a table (called the file type table) that gives information about files 

described in models. This includes information about the parameters needed by the file (e.g .. 

interface types) and information about its location on the file system. 

5. Procedures that load modules and maintain the top-level model used by the debugger. 

6. Procedures used to call the compiler. connect the modeller to the editor. and other utility 

procedures. 

7. Procedures to maintain version maps. 

The sections below discuss essential internal data structures used in these groups. which are 

shown in Figure 4.3. 

Internal Parse Tree 

The model is read in from a text file and must be processed. The modeller parses the source 

text and builds an internal parse tree. This parse tree has leaves reserved for information that 

may be computed by the modeller when compiling or loading information. When a Notice 

operation is given to the modeller. it alters the internal data structures to refer to new versions of 

files. Since new models are derived from old models when Notice operations occur. the modeller 

must be able to write a new copy of the model it is working on. When a source file for the new 

model is written out, the information in the internal parse tree is used. in a pretty-printed form. 

There is one parse tree per source model file. The links between model files that are 

"called" by other model files are represented as pointers from one model's internal data structure 

to another in virtual memory. (Procedures that traverse these internal data structures for one 

model mayor may not follow these pointers to other models.) 

The internal data structure represents the dependency graph used to compile modules in 

correct compilation order by threading pointers from one file name to another in the parse tree. 



CHAPTER 4: SML LANGUAGE IMPLEMENTATION: A PROGRAM MANAGEMENT TOOL 85 

Model-Independent Tables 

Three tables are maintained independently from instances of the modeller on a machine. 

These tables serve as accelerators for the modeller and are stored as files on the local disk. 

The information can be automatically reconstructed whenever it is not present; as a result, 

the information is never purged. When the file containing the table becomes too large the user 

simply deletes it from his local disk, and the information is reconstructed (as described at the end 

of the next section). 

File Type Table: This table contains a list of files that are referenced by models and have been 

analyzed. The modeller abstracts essential properties of the files in models and stores the 

information in this table. For example, a Cedar source file is listed along with the implied 

procedure type used by the modeller to compile and load it. The file type table also contains 

information that records whether a file has been edited, and if so, whether it has been saved on a 

remote file server. 

Projection Table: This table keeps a list of entries that describe the results of running the 

compiler (or other programs) that take a file and parameters the file needs (such as interfaces) 

and produce object files. Before invoking, for example, the compiler on a source file to produce 

an object file, the modeller consults this table to see if such a file is already available. If an entry 

is not in the table, there may be an object file on the disk made by the compiler that predates the 

information in the projection table. If not, the compiler is invoked to produce the object file. In 

either case a new entry is added to the table for later use. The projection table does not include 

the location of object files. Version maps, described. below, are used for this. 

Version Maps: The central file servers used by the system modeller can store more than one 

version of a source file in a directory. Each version is given a version number, which ranges from 

1 to 32767 and is typically less than 100. Obtaining the creation time (of a source file) or the 48-

bit version stamp (of Cedar object files) from a central file server takes between 1/4- and 1-

second. For directories with many versions of a file.· searching for the create time (or version 

stamp) can take a few seconds per. file. 

Since the modeller must determine the explicit version number of the file that is referenced 

in the model, this slow search for large numbers of files referenced by models is prohibitively 

expensive. To avoid this excessive searching when it is running, the modeller uses an index 

between create times (or version stamps) and full path names that include explicit version 

numbers for files. Since the version numbers used by the file servers are not unique and may be 

re.:-used, the modeller uses this index as a cache of hints that are checked when data in the file is 

actually used. If there is no entry for a file in the cache, or if it is no longer valid, the versions 

of a file are searched and an entry is added or updated if already present. Commonly-referenced 

files of the Cedar system are inserted in a version map maintained on each machine. 

These tables are illustrated in Figure 4.3 at the end of this chapter. 



86 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

In summary. the File Type table speeds the analysis of files. the Projection table speeds the 

translation of objects into derived objects. and Version Maps are used to avoid extensive directory 

searches. 

4.6 Interaction Between Tables and .modelBcd files 

Contents of .mode/Bcd Files 

A .modelBcd file can be produced for a ·model that has been analyzed by pushing the 

"MakeModeIBcd" button. The .modelBcd file contains the same information described in the 

previous tables. Only information relevant to the model being is analyzed is stored. The 

.modelBcd contains a) a representation of the internal parse tree that results from reading and 

parsing the source file for the model. b) a file type table for source files referenced by the model, 

c) a projection table describing the object files that are produced, for example, by the compiler, 

and d) a version map that describes, for each source and object file in b) and c), a file location 

including a version number. 

A model may refer to other models in the same way it refers to other Cedar source files. 

The projection table includes references to .modelBcd files for these inner models. 

Use of this Information 

The information stored in the model-independent tables or present in .modelBcd files is used 

in four different ways: three ways when the modeller is used, and once by the release process 

(described in the next section). 

StartModelling Analysis: Each application of a source file to a parameter list in the model is 

checked for accuracy and to see if any parameters have been defaulted. The version information 

(create time) following the source file name is used to look up the parameters needed by the file 

in the file type table. If no entry is present, the source file must be parsed to get its parameters. 

The version map is used to obtain an explicit file on a file server. If there is no entry for the 

create time of this file in a version map, all versions of the source file on the directory listed in 

the model are examined to see if they have the right create time. If so, an entry for that version 

is added to the version map and the file is read and its type is added to the file type table. If no 

such version can be found by enumeration, an error is reported. 

If the version of the source file is given as "!H", meaning the highest version on that 

directory, the directory is probed for the create time of the highest version, and that create time is 

used as if it were·· given instead of "!H". 

Figure 4.4 shows how a reference to "[Ivy]<Schmidt>X.Mesa" of July 25, 1982 14:03:02 is 

treated by the StartModelling analysis. 



CHAPTER 4: SML LANGUAGE IMPLEMENTATION: A PROGRAM MANAGEMENT TOOL 87 

@[lvy]<Schmidt)X.Mesa!( July 25, 1982 14:03:02) 

Found Not found 

Found Not found 

,tori 

Figure 4.4 StartModelling Analysis 

Compilation Analysis: After the user pushes "Begin" or "Compile", the modeller constructs 

object· files for each source file in the model. Each source file and its parameters is looked up in 

the projection table. If not present, the modeller constructs the 48-bit version stamp· that an 

object file would have if it had been compiled from the source and parameters given. The 

version map is used to search for an object file with this 48-bit version stamp. If not found in 

the version map, the modeller searches for an ·object file in the directory where the source file is 

stored. If found, an entry is added to the version map and to the projection table. 

The modeller does not search for object files compiled from source files that have just been 

edited since it knows these have to be compiled. 

If the modeller must compile a source file because it cannot find an object file previously 

compiled, the source file is read using the version map entry for the source and an object file 

produced on the local disk. Information about this object file is added to the model-independent 

tables and version maps. The object file is stored on a file server later when "StoreBack" is 

pushed. (See figure 4.5) 



88 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

found not found 

Figure 4.5 Compilation Analysis 

Loader Analysis: Each object file must be read to copy the object instructions into memory. The 

modeller loader looks up the 48-bit version stamp in the version map to find the explicit version 

of the file to read. (See figure 4.6) 

found not found 

found not found 

Itorl 

Figure 4.6 Loading Analysis 

Since the version maps are hints, the presence of an entry for a file in a version map does 

not guarantee that the file is actually present on the file server, therefore, each successful probe to 



CHAPTER 4: SML LANGUAGE IMPLEMENTATION: A PROGRAM MANAGEMENT TOOL 89 

the version map delays the discovery of a missing file. For example, the fact that a source file 

does not exist may not be discovered until the compilation phase, when the modeller tries to 

compile it. This means the modeller has to be robust in the face of such errors. For released 

software (see below), we guarantee the files are present. 

Retention of Information in Tables 

When the modeller stores file type, projection, and version map information in .modelBcd 

files, it stores only information relevant to the model in use. When the modeller reads .modelBcd 

files, it takes the information from the .modelBcd and adds it to tables maintained on each 

personal computer. When a module is compiled for the first time, this information is added to 

the tables managed centrally on each computer. This information can, over time, become 

obsolete and require large amounts of disk space, since these tables are stored in files on the local 

disk. If these files are deleted from the local disk, the modeller will reconstruct the information 

as it uses it. Some of the information is also stored in .modelBcd files, so, in many cases, little 

extra work is required to reconstruct this information. 

4.7 Releases of Cedar using the Modeller 

Use of the modeller will eventually replace use of OF files in Cedar. As described in detail 

in Chapter 2, Cedar releases are currently done using OF files. This section describes how 

releases will work when they involve models instead of OF files. The last subsection in this 

section compares the current approach using OF files with the one detailed below. 

Some aspects of the release process will not change. We anticipate the same frequency of 

releases when they are model-based. The pre-release activities of the Release Master described in 

Chapter 2 will not change. 

The Working Position Model 

The Release Master maintains a model that is a list of model objects. This list (called the 

working position model) defines, for every model named in the list, a file server and directory 

where it can be found. While a release is being developed, this model refers to objects on their 

working directories: for example, the working position model might contain 

Top"" [ 
BTreeModel ,.., @[Indigo]<Int>BTree.Model!H -:- ReleaseAs [Indigo]<Cedar>--. 
RuntimeModel ,.., @[Indigo]<Int>Runtime.Model!H -- ReleaseAs [Indigo]<Cedar>-­
] 

The working position model is used during the development phase as a description of models 

that will be in the release. and gives file locations of these files while they are being developed. 

The working position model provides the list of models that will be released. Models not 

mentioned in the working position model will not be released. Note that two versions of the 



90 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

same model can be released as long as they have different names in the working position model. 

Release Mechanics - User 

Every model being released is expected to have a LET statement at the beginning that uses 

the working position model to define the objects declared in the model. The model is expected 

to use the defined objects to refer to other models. 

LET @[Indigo]<Int>WorkingPositions.Model!H IN 

[RTTypes: INTERFACE] .... RuntimeModel[], 

Users are not allowed to refer to models by @-reference since there is no way to tell if those 

models are being released. They may only refer to models listed in the working position model. 

Release Mechanics - Implementor 

Models being released must also have a comment that contains the object name in the 

working position model (e.g., IfBTreeModel lf
) and the working directory that has a copy of the 

model, e.g., 

-- ReleaseName BTreeModel 
WorkingModelOn [Indigo]<Int>BTree.Model 

The model must declare the release position of each file by appending the release position of 

the file as a comment after the filename in the model, e.g., 

@[Ivy]<Work>XImpl.Mesa!H (-- ReleaseAs [Indigo]<Cedar>XPack>--)[ 

A default ReleaseAs comment can define the release position of files in the model (which 

may differ from the release position of the model), for example, if the model contains a comment 

-- DefaultReleaseAs [Indigo]<Cedar>BTrees> 

then the user may omit the If __ ReleaseAs [Indigo]<Cedar>BTrees> __ If clauses. 

N on-Program Files 

We encourage users to add relevant non-program files (such as files contammg 

documentation) to models. Models refer to such files the same way they refer to program files. 

Each such expression has type 

([] -+ [STRING]) 

and returns the file's name as a string. The Release Tool moves these files to their release 

position as it moves any other file. For example, 



CHAPTER 4: SML LANGUAGE IMPLEMENTATION: A PROGRAM MANAGEMENT TOOL 91 

dontCare: STRING - @[Ivy]<Schmidt>Doc.Tioga!H (-- ReleaseAs [Indigo]<Cedar>Docn>--)[ ] 

in a model ensures that the file "Doc.Tioga" will be stored on the Cedar documentation directory. 

The name "dontCare" is bound to the resulting string, which can be ignored. 

The Model Release Tool 

After all models that will be released have been prepared, the Release Master runs the 

Release Tool, which makes three passes over the models being released. 

Phase One: Check 

The check phase of the Release Tool checks the working models for problems that might 

prevent a successful release. This phase checks that all objects referred to by the working model 

exist. It also checks that derived objects (such as .Bcd files) exist. This guards against 

compilation errors in the source files. 

Each model is parsed and all files listed in the model are checked. Phase one ensures that 

the versions listed in the models exist and checks that their parameterization is correct. The 

directory containing each source file is checked to make sure it contains a valid object file. 

Common blunders, such as. a reference to a model that is not in the working position model, are 

caught. The Release Master contacts implementors and asks them to fix any errors caught in this 

phase. 

The checking of parameterization and object existence is all we can do to test the release 

automatically. Since the check phase always finds a few mistakes the first time it is run, phase 

one can be repeated a few times until these errors are eliminated. 

Phase Two: Move 

The move phase moves the files of the release onto the release directory and makes new 

versions of the models that refer to files on the release directory instead of the working directory. 

For each model listed in the release position list, the move phase 

l. reads in the model from the working directory, 

2. moves all files explicitly mentioned in the model to their release posItIOn, and 

3. writes a new version of the source file for the model in the release directory. 

This release version of the model is like the working version except that a) all working directory 

paths have been replaced by paths on the release directory, b) a comment is added recording the 

working directory that contained the working version of the model, and c) the LET statement 

referring to the release position list is switched to refer to the one on the release directory. The 

model may look like this: 



92 CONTROLLING LARGE SOFfWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

ReleaseName BTreeModel 
CameFromModelOn [Indigo]<Int>BTree.Model 
DefaultCameFrom [Indigo]<Int>BTrees) 

LET @[ivy]<Rel)ReleasePosition.Model IN [ 

RITypes: INTERFACE ,.. @[Indigo]<Cedar)XPack)file.bcd!l234 
CameFrom [Indigo]<Int> XPack)--, 

Any references to highest version ("!H") are changed to be explicit create times as the model 

is written. 

At the end of phase two, the working position model is automatically converted to a release 

position model that defines the same variables as the working position model, but sets those 

variables to refer to the model stored on the release directory. A release position model might be 

Position ,.. [ 
BTreeModel ,.. @[Indigo]<Cedar)BTree.Model!2344, 
RuntimeModel ,.. @[Indigo]<Cedar)Runtime.Model!2345] 
] 

Note that the LET switch is a deviation from explicit parameterization that allows us to 

change the nature of each model from being a development version to being a released version. 

The LET switch could be avoided if every model took a parameter that controlled whether its LET 

statement should refer to the working position model or the release position model. The SML 

language could be augmented with a type "BOOLEAN" and an IF-THEN-ELSE expression to 

accomplish this. Because the Release Tool has to rewrite models anyway to eliminate "!H" 

references, we chose to provide the LET switch automatically. 

Phase two also constructs a directed graph (that must be acyclic) of models in reverse 

dependency order that will be used in phase three. In this dependency graph, if model A refers 

to model B, then B has an edge to A. 

Figure 4.7 shows the movement of files by this phase. 

Release Tool: Phase Move 

[lvy]<Schmidt> X.Mesa!4 [Indigo ]<Cedar> X.Mesa!2 

[lvy]<Schmidt> Xlmpl.Mesa!6 

~ 
[Indigo ]<Cedar> Xlmpl.Mesa!3 

[lvy]<Schmidt> Y.Mesa!43 [Indigo ]<Cedar> Y .Mesa! 1 

[lvy]<Schmidt> YlmpI.Mesa!34 [lndigo]<Cedar> Ylmpl.Mesa!2 

Figure 4.7 



CHAPTER 4: SML LANGUAGE IMPLEMENTATION: A PROGRAM MANAGEMENT TOOL 93 

Phase Three: Build 

The build phase takes the dependency graph computed during the move ph~e and uses it to 

traverse all the models in the release. For each model: 

1. All models on incoming edges must have been examined. 

2. For every source file in the model, its object file is moved to the release directory from the 

working directory. 

3. A .modelBcd file is made for the version of the model on the release directory. 

4. If a special comment in the model is given, a fully-bound object file is produced for the model 

(usually to use as' a boot file). 

After this is done for every model, a version map of the entire release is stored on the release 

directory. 

Figure 4.8 shows the movement of files by this phase. 

Release Tool: Phase Build 

[lvy]<Schmidt) X.Bcd!23 [lndigo]<Cedar) X.Bcd!2 

[lvy]<Schmidt) Xlmpl.Bcd!22 

r+ 
[lndigo]<Cedar) Xlmpl.Bcd!1 

[lvy]<Schmidt) Y.Bcd!16 [lndigo]<Cedar)Y.Bcd!1 

[lvy]<Schmidt) Ylmpl.Bcd!12 [Indigo]<Cedar) Ylmpl.Bcd!2 

Figure 4.8 

At the conclusion of phases check, move, and build, we have. established that 

1. (Check) All reachable objects exist,. and derived objects for all but the top object have been 

computed. This means the files input to the release are statically correct. 

2. (Move) All objects are on the release directory. All references to files in these models are by 

explicit create time (for source files) or version stamps (for object files). 

3. (Build) The system has been built and is ready for execution. All desired accelerators are 

made (.modeIBcd files and a version map for the entire release). 

Phase Implementation Details 

Phase Check. In order to know the parameterization of files referenced in the model. some part 

of each Cedar file must be read and parsed. Because of the large number of files involved. phase 

one maintains file type and projection tables and a version map for all the files on their working 

directories. These tables are filled by extracting the tables stored in the .modelBcd files for the 

models being submitted to the release. Any models without .modelBcd accelerators are read last 

in phase one and the result of analyzing each file is entered into the database. The version map 

information about object file location(s) and projection table are used later in phase three. 



94 CONTROLLING LARGE SOFTWARE DEVEWPMENT IN A DISTRIBUTED ENVIRONMENT 

Because files can be deleted by mistake after the .modelBcd file is made and before phase 

one is run, the Release Tool checks that every version of every file in the release is present on the 

file server by verifying the file location hints from the .modeIBcd files. This is the most time­

consuming part of the check phase.' 

Phases Move and Build. The move and build phases could have been combined into a single 

phase. Separating them encourages the view that the build phase is not logically necessary, since 

any programmer can build a running Cedar system using the source models and Cedar source 

files that are mo~ed to the release directory during the move phase. The build pJiase makes a 

runnable system once' for all users and stores the object files' on-the release directory. 

The build phase could be done incrementally, as each model is used for the first time after a 

release; This would be useful when a release included models that have parameters that are 

unbound, which requires the user to build the model when the model is used and its parameter' 

are given values. 

The check phase file type and projection tables and version map are used to make 

production of the .modelBcd files faster. The projection table is used to compute the version 

stamps of object files ne~ded, -and the version map is used to get the filename of the object file. 

This object file is then copied to the release directory. 'The file type entry, projection entry and 

new release position of source and object files are recorded in the .modelBcd being built for the 

released model. 

The build phase has enough information to compile source files if no -suitable object files 

exist (in step 2 of phase three). To speed up releases, we require that the programmer make valid 

object files before we run phases two and three. If such an object file is not on the same 

directory as the source file, we notify the programmer of his error and ask him to prepare one. If 

the Release Master ran the compiler, he would most likely compile a file that the programmer 

had forgotten to recompile" and this file might have- compilation errors in it. The a~ility to 

automatically compile every _ file during a release is, useful in extensive bootstraps, however. For 

example, a conversion to a new instruction set, where every module in the release must be 

compiled .. is easily completed usin~ a cross-compiler during phase three. 

The build phase p~oduces the version map of the release by recording the create time or 

version stamp of every file stored by the Release Tool on the release -directory, along with file 

server, directory. and version number for the file. The version maps supplied by the .modeIBcd, 

files that were submitted to the release cannot be used, since they refer to files on their 

development directories and not the release directories. This released version map is'distributed 

to every personal machine. Although the .modelBcd files also have this information, it is 

convenient to have it all in one map. 

Figure 4.9 has an example of this version map. 



CHAPTER 4: SML LANGUAGE IMPLEMENTATION: A PROGRAM MANAGEMENT TOOL 95 

Version Map After Release 

Index File Location 

X.Mesa of July 25,198214:03:02 [lndigo]<Cedar> X.Mesa!2 

Xlmpl.Mesa of July 25, 1982 14:05:06 [lndigo]<Cedar> Xlmpl.Mesa!3 

Y.Mesa of July 25, 198215:05:08 [lndigo]<Cedar> Y.Mesa!1 

Ylmpl.Mesa of July 25, 1982 15:07:03 [lndigo]<Cedar> Ylmpl.Mesa!2 

X.Bcd of 1 ABCD2346DED [lndigo]<Cedar> X.Bcd!2 

Xlmpl.Bcd of 2ADFE345EDCA [lndigo]<Cedar> Xlmpl.Bcd!1 

Y.Bcd of 3421 ABD4235A [Indigo ]<Cedar> Y.Bcd! 1 

Ylmpl.Bcd of 23455BBDC63B [lndigo]<Cedar> Ylmpl,Bcd!1 

Figure 4.9 

Multiple Levels Of Models 

The working position model may list other nested working position models. The objects 

defined in the nested working position model are named by qualifying the name of the outer 

object. For example, if Top contained 

Top"" [ 

NestedSet .... @[Indigo]<InONestedWPM.Model!H -- ReleaseAs [Indigo]<Cedar> 

Then, the elements of the nested working position model can be referred to using .... 

notation, e.g., Top.NestedSet.Element. The ReleaseAs clause in Top indicates the directory in 

which the analogous release position model is written. The same algorithm is used to translate 

the working model into a release model. 

Release Comparison 

We have had extensive experience making releases based on OF files as input. There are a 

few differences between the release procedures and algorithms used for OF files and those 

proposed here for models. 

The Working Position Model-Release Position Model. The OF Release Tool works from a OF 

file that serves the same function as the working and release position models. OF files, however, 

have no provision for parameterization, so the Release Tool changes all references to OF files that 

are on working directories to references to newer versions in their release directories. However, 

the implementor must be told the name of the working directory for the OF file, which may 

change between releases. The use of one model that defines where the models are, and that is 

used to control which modules are being released, allows the programmer to use an object value 



96 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DlSTRIBUTED ENVIRONMENT 

that may change without concern about new or different versions. The DF software depends on 

the fact there is only one version of each DF file being released each time. The use of the 

Working Position Model forces the models to refer explicitly to the objects of the models they 

want. This allows the Working Position Model to refer to two different versions of a model by 

using different names for their objects. 

VerifyDF is Eliminated. VerifyDF analyzes object files to determine the module interconnection 

structure and to verify that consistent versions were used to make the object files listed in the DF 

file. Models are used in a more "active" way: the interconnection structure is explicit in models, 

which are statements of what is desired. If object files are inconsistent, the modeller has enough 

information to recreate them. VerifyDF also checks for omissions of files needed by a DF file to 

describe a package. In models, this corresponds to an undefined variable or parameter that is 

caught when the model is parsed. 

Difference in Phases. There are three phases in each release algorithm, but they are used 

differently. Phases one and two of the DF Release Tool perform consistency and completeness 

checking, performed in the check phase of the Model Release Tool. Phase three of the DF 

Release Tool moves all files, including both source and object files. The move and build phases 

of the Model Release Tool move source and object files to the release directory, respectively. 

Model Approach is More Powerful. DF files do not have enough information to build systems 

automatically. When there is a problem with the input to the DF release process, the Release 

Master must wait for the implementors to make changes. The Model Release Tool has the ability 

to run the compiler, although we plan to use this facility sparingly. It is essential for bootstraps 

of the entire system where all modules need to be compiled in correct dependency order. 

4.8 Extensions To This Approach 

Sharing of Models 

During the development of Cedar, most packages of logically-related software have been 

maintained by one person. Whenever two people have had to maintain separate versions, each 

has made a copy of the model describing the package and has stored it in a personal directory. 

When the versions were merged back into a new, common version of the model, the 

programmers have edited the model by hand. 

The Cedar project is small enough that this solution is sufficient for our needs. In larger 

projects, especially those where the programmers do not work near each other, more formal 

"forked" development facilities are required. Since models are text files. information could be 

added to models to uniquely identify a common ancestor at the time versions are forked. (This is 

essentially the technique used in sees [Glasser. 1978], except all versions are stored in one file and 

this approach makes separate copies.) When two versions are merged, an automatic tool could 



CHAPTER 4: SML LANGUAGE IMPLEMENTATION: A PROGRAM MANAGEMENT TOOL 97 

merge them according to the following rule: (see also figure 4.10) 

Consider a common ancestor model A and two descendents Sl and S2 that were derived 

from A, some time ago. A new A' is to be derived by merging Sl and S2. For each object 

defined in Sl and S2: if there is a new version of the object in Sl and it is unchanged in 

S2, add the new version to A'. If there is a new version of the object in S2 and it is 

unchanged in Sl, add the new version from S2 to A'. . If the object was not changed in either 

Sl or S2, use the version described in A. If the object was changed in both Sl and S2, then 

the merge facility cannot decide which of the two versions to choose and asks the 

programmer(s) wh~ch version to use in A. If the object is a model, the procedure recurses 

and tries to produce a new A' for the object. 

Ob'ectX 

1--.... Add new version from 81 

........ ---.. Add new version from 82 

t---...... Ask user for hel 

If X is a model a I al orithm recursivel on X 

Figure 4.10 Merge Algorithm 

Although the algorithm above is not foolproof, it is probably the best automatic way to 

handle merging of versions since, in the most common cases, the newer version is the one 

intended. If there are two newer versions, there is no way to automatically choose without some 

other information from the user. 

Use of a Database 

The information maintained in tables on the local disk, in version maps, and in .modelBcd 

files could be stored in a database of program information that is centrally-maintained and 

accessible by each personal machine over the network. Since this database would contain 

information about many different models and modules being developed, it would store 

information in one place that, in a system without a database, would be expensive to compute. 

Query facilities that might be available in the database system could easily be used to answer 

questions about the programs under development that require specialized analysis programs if no 

database is used, such as "who depends on module X?" 



98 CONTROLLING LARGE SOFIW ARE DEVEWPMENT IN A DISTRIBUTED ENVIRONMENT 

If the database were used to replace" the .modelBcd file and tables maintained by the 

modeller, the database would have to handle concurrent queries and updates to its information, 

generated by modellers that are running. It would also have to answer 'queries quickly enough 

that the time required to answer the query and transmit the information 'would not, be much 

greater than the time to search specialized tables on the local machines. If this is not feasible, a 

central database could be used as a cache of information duplicated- in .modelBcd files and in the 

tables on the' local disk. Instances of modellers that are running could periodically update the 

database so that queries from other programs or queries made by users worked from a database 

of current information. However, with any centrally-managed database of programs, there is a 

problem of deleting old information. Our current approach stores the infOrniation in files that 

must periodically be deleted as versions of the Cedar system become obsolete. 

It would be possible to store models directly in a database, using links to represent 

dependency or interconnection information now expressed as programming language statements 

stored in a text file for the model. The direct representation of models in a database would allow 

more flexibility in version references than is available using models, since changes to the database 

would not be rigidly hierarchical, as they are with models: if a file in a model is changed, a new 

version of that model is created. If another model refers to the old version of this model, a new 

version of this outer model must also be created, etc. 

We believe use of explicit version references promotes better organization on the part of 

programmers working in a large system. In our scheme, programmers are forced to view any 

change to a module in terms of the change to the package(s) that contain it No change can go 

unnoticed when all files and all models that contain them are referenced with explicit unique-ids. 

System models are similar enough to Cedar programs that their use is familiar to implementors. 

A more flexible representation offers uncertainty that we must constrain in a multi-person project, 

especially when the components submitted to a release' are not completely constrained by version 

as they are when the system refers to models. 

Future plans include integration of the System Modelling databases with the Cedar database 

system. Databases will almost certainly be used to store both Cedar modules and system models 

in the future. (This is discussed in the "Future Research" section' of Chapter - 5.) 

4.9 Current Status 

Conversion To Full Use 

At present, the system described above is not completely integrated into the Cedar system. It 

is expected to be completed over the next year. Although some users are using the modeller to 

compile their systems, most use manual techniques. The existing modeller has been, usedby,five 

or six programmers over the last year. Two programmers have used it heavily. All the functional 

groups listed in section 4.5 (except Version Maps) have been implemented and have been heavily 



CHAPTER 4: SML LANGUAGE IMPLEMENTATION: A PROGRAM MANAGEMENT TOOL 99 

tested. In particular, the user interface, module analysis, module replacement, and module 

loading code has been extensively tested. The language parsed by the modeller differs slightly 

from the one in Chapter 3; the modeller is being converted to the newer syntax. The existing 

file system code is being replaced by code that calls the Cedar File System, now that it is ready. 

Code to produce .modelBcd files, the debugger interface, and the Model Release Tool are not 

implemented yet. 

At present, all Cedar programmers use OF files [see Chapter 2] to describe the files that are 

part of this system. Since each OF file lists the files needed to compile modules in a package or 

program, OF files provide the file information part of the information system modelling manages. 

We envision two stages in the integration of the modeller in the system and replacement of the 

OF software in Cedar. 

Stage One. Remaining functionality will be provided, and all users will be encouraged to use the 

modeller. This involves implementing the code needed to produce .modelBcd files, code to 

produce fully-bound models (for the "Bind" button), integration with the debugger, and code to 

call software to make and use version maps. We anticipate a long period of performance tuning 

and maintenance while users begin to use the modeller. Users will still use OF files to describe 

release submissions. We may implement a program that produces a OF file from a model, if there 

is sufficient interest. Since the file information is present in the model, this will be easy. 

Stage Two. At some point, most users will have converted to use of the modeller and we will 

perform a release driven by models, instead of by OF files. Based on experience building the OF 

Release Tool, the first releases using models will be difficult to make, and users will experience 

some delays while we are fixing problems. The Cedar system is now very large and we estimate 

that one or two working days will be required to run phases check, move, and build of the 

modeller release tool. To run without failure for many hours, the release tool must be able to 

recover gracefully from temporary resource limits, such as file servers being down or too busy for 

additional use, and directories that are full. 

Because OF files do not contain as much information as models, we cannot make a release 

where some components are described by OF files and others are described by models. 

4.10 Conclusion 

We have described a program development tool that automates part of the compile-edit­

debug cycle. This tool, called the System Modeller, uses system models as descriptions of 

software systems. System models combine, in one place, the three kinds of information that must 

be managed: file version information, compilation information, and interconnection information. 

To achieve acceptable real-time performance, this tool uses specialized databases that have 

information about the files that are part of the system being analyzed. 



100 .CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

A proposal has been made for extensions to the syntax of models that will allow automated 

releases of consistent Cedar systems. These releases will have the highest degree of consistency of 

software because the version stamps of interfaces used will be rigorously checked. 



CHAPTER 4: SML LANGUAGE IMPLEMENTATION: A PROGRAM MANAGEMENT TOOL 101 

StartModel Be gin Con tin ue StoreBack Unload StopModel 
MakeModelBcd Bind NewModeller 
Compile Load Start 

ModelName: Example.Model 

Compiling: ExamplelmplA.Mesa 
Compiling: ExamplelmplB.Mesa ... 

StartModel Example .Model 
Parsing Example .Model 
Analyzin gParameters 

no errors. 

Noticed new version of ExamplelmplA.Mesa 

Noticed new version of ExamplelmplB.Mesa 

Begin Example.Model 
Try for compilation: 

ExamplelmpIA.Mesa: Confirm Compilation ? Yes 
Compilation completed, no errors. 

ExamplelmpIB.Mesa: Confirm Compilation? Yes 

Figure 4.1 



102 

Example 

.. DefaultReleaseAs [lndigo]<Cedar) 

[X: TYPE X- @[Ivy]<Schmidt)X.Mesa!(July25, 198214:03:02)[], 

Xlmpl: X - @[lvy]<Schmidt)Xlmpl.Mesa!(July25, 198214:05:06)[X], 

Y: TYPE Y - @[lvy]<Schmidt)Y.Mesa!(July25, 198215:05:08)[], 

Ylmpl: Y - @[lvy]<Schmidt)YlmpI.Mesa!(July25, 198215:07:03)[X, Y, Xlmpl] 

File Type Table 

Source Object Type 

X.Mesa of July 25,198214:03:02 [] .) [TYPE X] 

Xlmpl.Mesa of July 25,198214:05:06 [X: TYPE X]·) [Xlmpl: X] 

Y.Mesa of July 25, 1982 15:05:08 [] .) [TYPE Y] 

Ylmpl.Mesa of July 25,198215:07:03 [X: TYPE X, Y: TYPE Y, Xlmpl:X] .) [Ylmpl: Y] 

Projection Table 

Source Object Parameter Values Result Object 

X.Mesa of July 25,198214:03:02 [] X.Bcd of 1 ABCD2346DED 

Xlmpl.Mesa of July 25,198214:05:06 [X. Bcd of 1 ABCD2346DED] Xlmpl.Bcd of 2ADFE345EDCA 

Y.Mesa of July 25,198215:05:08 [] Y.Bcd of3421ABD4235A 

Ylmpl.Mesa of July 25,198215:07:03 [ X.Bcd of 1 ABCD2346DEQ Y.Bcd of3421 ABD4235A, Ylmpl.Bcd of 23455BBDC63B 

Y.Bcd of3421 ABD4235A ] 

Version Map 

Index File Location 

X.Mesa of July 25,198214:03:02 [lvy]<Schmidt) X.Mesa!4 

Xlmpl.Mesa of July 25, 1982 14:05:06 [lvy]<Schmidt) Xlmpl.Mesa!6 

Y.Mesa of July 25,198215:05:08 [lvy]<Schmidt) Y.Mesa!43 

Ylmpl.Mesa of July 25,198215:07:03 [lvy]<Schmidt) YlmpI.Mesa!34 

X.Bcd of 1 ABCD2346DED [lvy]<Schmidt) X.Bcd!23 

Xlmpl.Bcd of 2ADFE345EDCA [lvy]<Schmidt> Xlmpl.Bcd!22 

Y.Bcd of 3421ABD4235A [lvy]<Schmidt) Y.Bcd!16 

Ylmpl.Bcd of 23455BBDC63B [lvy]<Schmidt~ Ylmpl.Bcd!12 

Figure 4.3 Tables 



CHAPTER 5: CONCLUSION 103 

5. Conclusion 

In Chapter 1, we introduced the three kinds of information that must be managed: file 

information, compilation information, and version information. This thesis has shown that these 

kinds of information can be managed by a combination of 1) new description mechanisms, such 

as OF files and system models, 2) tools to automate the production of software, such as the 

Modeller, BringOver, etc., and 3) managerial techniques, such as the release process. This thesis 

has shown that there are solutions suitable for small and large systems being developed in a 

distributed environment. These program development tools are fast enough to be used by 

programmers in normal software development. 

The OF software and Release Process have solved the version control problem encountered 

while building the Cedar system. The OF system has proved popular for both implementors of 

Cedar and individual programmers using Cedar. Beginning users of Cedar now learn to use OF 

files as soon as they have begun building their first Cedar program. Our extensive experience 

(fifteen releases) with (at present) 4700 files and 447,000 lines of code shows that this is a 

"production-level" system that has stood the test of real use (see Appendix A). The OF software 

handles a OF file as large as Runtime.OF in Appendix B, without complaint. As noted in 

Chapter 3, the OF system is now being used in another division of Xerox, as well. We conclude 

that a system devoted to managing versions in our environment with a simple language (OF files) 

to describe systems can handle a large software system without placing undue burdens on the 

programmers or the Release Master. 

We have less experience with system models and the system modeller. The prototype 

modeller works as described in Chapter 4 but has had many performance problems. The use of 

caches of data makes the modeller possible.. Without them, the time required to process 

information about Cedar systems is too great. The automatic recompilation and module 

replacement facilities of the modeller have been very popular, as expected. The underlying 

complexities of Cedar's module interconnection facilities can make system models very hard to 

understand, and the size of Cedar systems makes the algorithms. that manipulate this information 

more complex. 

We conclude that system models have all the information needed by a program management 

tool like the system modeller to manipulate Cedar systems. We believe the added complexity of 

the system modelling approach justifies the extra work required to build it and replace OF files. 

The success of OF files and the release process has demonstrated the need for automatic tools to 

manipulate versions and to integrate software that is developed by project members. The 

replacement of OF files by the Modeller will preserve the facilities provided by OF files and 

offer more complete facilities for automatic software development. 

Although this thesis has dealt exclusively with Cedar and Mesa software management, the 

approaches described here can be applied to other systems. For example, the module 

interconnection structure of the C language is much simpler than that of Cedar, so the language 



104 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

needed to describe a collection of C language files is correspondingly simpler than SM. There is 

a simple notion of dependency in C (an object file depends on one or more source files), 

however, and members of a project who want guarantees of completeness and consistency about 

versions of software could use DF files to describe their system. [Cristofor. et al.. 1980] contains a 

system similar to DF files that does not deal with problems of distributed computing. 

The concept of a system modeller, or a tool to track changes to software, and to compile and 

load programs, is easily applied to other language systems. The Make program [Feldman. 1979] is a 

partial example of such a tool. 

5.2 Future Research 

System models are complete descriptions of Cedar systems. Their basic function will not 

change. Extensions of this research fall in the areas of 1) making better use of the information 

present in system models, and 2) making system models easier to use. 

Extensions into Databases 

Databases are naturally suited to storing modules and dependency relationships between 

modules. When the research in this thesis was started, there was no database system in Cedar 

that could handle the amount of data required. When such a database is available, I envision 

many programs that process data about modules in systems, such as sophisticated browsers and 

cross-reference tools. 

An obvious and effective use of information in system models is as part of an editor or 

browser like Interlisp's MasterScope [Tietelman-Masinter. 1981] or PIE'S Browser [Goldstein-Bobrow. 1980]. 

Such a tool would help the programmer by giving him information about the effect of his 

changes on other parts of the system. For example, models describe exactly where EXPoRTed 

interfaces are used. Often the Cedar programmer wants to know whether procedures and 

variables in exported interfaces are used by any other modules. With a database of exporters and 

importers, a browser tool could easily display all clients of an interface. Similarly, a programmer 

who wants to see examples of other clients of an interface he is IMPORTing could be shown some 

by a browser. 

Both examples are instances of the use of cross-reference information about a system that is 

too large to search through by hand. A system to maintain this kind of information was built 

using the Cedar database system [Brown. et al.. 1981] but was abandoned since the database was too 

large to be handled by the then-available transaction-based file server. A solution to this is being 

worked on as part of another research project at Xerox. Achieving acceptable performance from 

a centralized database in a distributed environment for Cedar system models remains a goal of 

database research at Xerox. 



CHAPTER 5: CONCLUSION 105 

A database can also be used to store an evolutionary history of the system models in a 

project. The database could include "derivation" history about the kind of operation (a Notice or 

hand-editing) that produced a new version of a model. 

By adoption of system models, we have an unambiguous description of Cedar software. 

Information about the system can be inserted by the Modeller Release Tool as it rewrites the 

models. 

Simplifying Common Use of Models 

Models written in the SML language appear to be very complicated because they express, in 

full detail, the relationships between Cedar modules. Models used in real-life are very large, 

although various defaulting rules are available that shorten the models considerably. Work will 

continue on the introduction of defaulting and other schemes to make the size of models smaller. 

We intend to make the most common use of the module interconnection facilities of Cedar as 

simple as possible. For example, in cases where there is only one version of each interface and 

only one EXPORTer of each interface, the list of interfaces and implementations could omit most 

information about interfaces since that can be derived by examining the implementation modules. 

Relaxation of Version Bindings 

The systems described here require that a reference to an object be either by an explicit 

version stamp (using a creation time or unique-id) or by no version, in which case, the newest 

version is used (,,)" in OF files, "!H" in models). Other systems (e.g., [Kaiser-Habermann, 1982] and 

[Horsley-Lynch, 1979]) allow more general version references such as "any version after June 12." 

There is a natural tension, however, between these types of "loose bindings" and the use of 

unique-ids. Loose bindings can hide important changes that affect programs, such as interface 

changes or changes to a package that alter its behavior. Loose bindings do not prevent new 

incompatible versions of software from being introduced into a system. Once the bindings are 

made "firm," there can be no question about the intended version. 

Integration with Source Code Control 

As noted in Section 2.1, the ability to control modification of modules by more than one 

programmer at a time was not a goal of this research. Systems like sccs and the Pilot Librarian 

[Horsley-Lynch, 1979] control simultaneous updates to shared software files and are useful in other 

environments. These could be integrated into the systems presented in this thesis. 



106 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 



REFERENCES 107 

References 

[Avakian, et aI., 1982] 
Arra Avakian, Sam Haradhvala, Julian Horn and Bruce Knobe, "The Design of an Integrated 
Support Software System," Proceedings of the SIGPLAN '82 Symposium on Compiler 
Construction, pp. 308-317, June 23-25, 1982. 

[Brown, et aI., 1981] 
Mark R. Brown, Roderic G. G. Cattell, and Norihisa Suzuki, "The Cedar DBMS: A 
Preliminary Report," Proceedings of the SIGMOD Conference on Databases, Ann Arbor, 
Michigan, May 1981. 

[Cooprider, 1979] 
Lee W. Cooprider, The Representation of Families of Software Systems, Ph.D Thesis, CMU 
Computer Science Department, CMU-CS-79-116, April 14, 1979. 

[Cristofor, et al., 1980] 
Eugene Cristofor, T.A. Wendt, and B.C. Wonsiewicz, "Source Control + Tools = Stable 
Systems," Proceedings of the Fourth Computer Software and Applications Conference, pp. 527-
532, October 29-31, 1980. 

[Demers-Donahue, 1980] 
A. Demers and J. Donahue, "Data Types, Parameters, and Type Checking," Proceedings of 
the Seventh Symposium on Principles of Programming Languages, Las Vegas, Nevada, pp. 12-
23, 1980. 

[DeRemer-Kron, 1976] 
Frank DeRemer and H. Kron, "Programming-in-the-Large Versus Programming-in-the­
Small," IEEE Transactions on Software Engineering, vol. 2, no. 2, pp. 80-86, June 1976. 

[Deutsch-Taft, 1980] 
L. Peter Deutsch and Edward A. Taft, "Requirements for an Experimental Programming 
Environment," Xerox PARC technical report CSL-80-10, June 1980. 

[Dorado, 1981] 
D. W. Clark, B. W. Lampson, G. A. McDaniel, S. M. Ornstein, and K. A. Pier, "The 
Dorado: A High Performance Personal Computer- Three Papers," Xerox PARC technical 
report CSL-81-1, January 1981. 

[Feldman, 1979] 
Stuart I. Feldman, "Make - A Program for Maintaining Computer Programs," Software 
Practice and Experience, vol. 9 no. 4, April 1979. 

[Glasser, 1978] 
Alan L. Glasser, "The Evolution of a Source Code Control System," Proc. Software Quality 
and Assurance Workshop, Software Engineering Notes, vol. 3 no. 5, pp. 122-125, November 
1978. 

[Goldstein-Bobrow, 1980] 
Ira P. Goldstein and Daniel G. Bobrow, "A Layered Approach to Software Design," Xerox 
PARC technical report CSL-80-5, December 1980. 



108 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

[Goldstein -Bobrow, 1980] 
Ira P. Goldstein and Daniel G. Bobrow, "Descriptions for a Programming Environment," 
Proceedings of the First Annual Conference of the National Association of Artificial 
Intelligence, Stanford, California, August 1980. 

[Goldstein-Bobrow, 1980] 
Ira P. Goldstein and Daniel G. Bobrow, "Representing Design Alternatives," Proceedings of 
the Artificial Intelligence and Simulation of Behavior Conference, Amsterdam, July 1980. 

[Habermann, 1979a] 
A. Nico Habermann, "Tools for Software System Construction," Proceedings of the Software 
Tools Workshop, Boulder, Colorado, May 1979. 

[Habermann, et al., 1982] 
A. Nico Habermann, Robert Ellison, Raul Medina-Mora, Peter Feiler, David S. Notkin, Gail 
E. Kaiser, David B. Garlan and Steven Popovich, "The Second Compendium of Gandalf 
Documentation," CMU Department of Computer Science, May 24, 1982. 

[Habermann-Perry, 1980] 
A. Nico Habermann and Dewayne E. Perry, "System Compositions and Version Control for 
Ada," CMU Computer Science Department, May 1980. 

[Harslem -Nelson, 1982] 
Eric Harslem and LeRoy E. Nelson, "A Retrospective on the Development of Star," 
Proceedings of the 6th International Conference on Software Engineering, Tokyo, Japan, 
September 1982. 

[Horsley-Lynch, 1979] 
Thomas R. Horsley and William C. Lynch, "Pilot: A Software Engineering Case Study," 
Proceedings of the 4th International Conference on Software Engineering, pp. 94-99, 1979. 

[Ivie, 1977] 
Evan L. Ivie, "The Programmer's Workbench- A Machine for Software Development," 
Communications of the ACM, vol. 20 no. 10, pp. 746-753, October 1977. 

[Joy, 1981] 
William N. Joy, Measurements of 4.1 BSD, personal communication, May 1981. 

[Kaiser-Habermann, 1982] 
Gail E. Kaiser and A. Nico Habermann, "An Environment for System Version Control," in 
"The Second Compendium of Gandalf Documentation," CMU Department of Computer 
Science, February 4, 1982. 

[Kernighan-Ritchie, 1978] 
Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language. Prentice-Hall, . 
Englewood Cliffs, New Jersey, 1978. 

[Lauer-Satterthwaite, 1979] 
Hugh C. Lauer and Edwin H. Satterthwaite, "The Impact of Mesa on System Design," 
Proceedings of the 4th International Conference on Software Engineering, pp. 174-182, 1979. 

[Mitchell, et al., 1979] 
James G. Mitchell, William Maybury, and Richard Sweet, "Mesa Language Manual, version 
5.0," Xerox PARC technical report CSL-79-3, April 1979. 



REFERENCES 109 

[Morris, 1982] 
James H. MOrris, personal communication, 1982. 

[Nelson, 1981] 
Bruce J. Nelson, "Remote Procedure Call," Xerox PARC technical report CSL-81-9, May 
1981. 

[Redell, et al., 1979] 
D. Redell, Y. Dalal, T. Horsley, H. Lauer, W. Lynch, P. McJones, H. Murray, and S. Purcell, 
"Pilot: an Operating System for a Personal Computer," Proceedings of the Seventh 
Symposium on Operating System Principles, December 1979. 

[Rochkind, 1975] 
Marc 1. Rochkind, "The Source Code Control System," IEEE Transactions on Software 
Engineering, Vol. I, No.4, pp. 364-370, December 1975. 

[Teitelman-Masinter, 1981] 
Warren Teitelman and Larry Masinter, "The Interlisp Programming Environment," 
Computer, vol. 14 no. 4, pp. 25-34, April 1981. 

[Thacker, et al., 1982] 
C. P. Thacker, E. M. McCreight, B. W. Lampson, R. F. Sproull and D. R. Boggs, "Alto: A 
Personal Computer" in Computer Structure: Principles and Examples, D. Siewiorek, D. G. 
Bell arid A. Newell, editors, McGraw-Hill, 1982. 

[Tichy, 1980] 
Walter F. Tichy, Software Development Control Based on System Structure Description, Ph.D. 
Thesis, CMU Computer Science Department, CMU-CS-80-120, January 1980. 

[Tichy, 1982] 
W. F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System," 
Proceedings of the 6th International Conference on Software Engineering, Tokyo, Japan, 
September 1982. 



110 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 



ApPENDIX A III 

Appendix A: Statistics about Cedar Releases 

Figure A.1 is a table of all automated Cedar releases. It shows the name of the release, the 

date the release was announced (which is usually the day phase three was run), and has statistics 

about components in each release. A component is a DFfile or collection of DF files that are 

thought of as a package. The announcement of a new release includes an entry for each 

component with information about any changes. Notable in this figure is the 3.2 release, which 

took 8 weeks of development, twice the normal time, due to some mistakes and summer 

vacations. 

Release Date Time after previous # Components # New # Changed # Withdrawn 

2.0 October 10,1981 .. 22 22 0 0 

2.1 November 8 4 weeks 24 2 9 0 

2.2 December 17 5 weeks 26 2 14 0 

2.3 January 22 5 weeks 32 6 6 0 

2.4 February 24 4 weeks 2 days 40 8 25 1 

2.4.1 February 26 2 days 40 0 2 0 

2.5 March 15 3 weeks 48 8 26 0 

2.5.1 March 19 4 days 48 0 2 
0 

2.6 April 1 2 weeks 50 2 17 1 

3.0 May 7 5 weeks 62 18 36 4 

3.1 May 21 2 weeks 63 1 4 0 

3.2 July 23 8 weeks 79 17 61 4 

3.3 August 20 4 weeks 78 0 78 1 

3.4 October 7 7 weeks 87 9 78 0 

3.4.1 October 14 1 week 87 0 5 0 

3.5 December 1 6 weeks 3 days 95 11 65 3 

3.5.1 December 14 2 weeks 96 1 18 1 

3.5.2 December 17 3 days 96 0 2 0 

Release Summary 

Figure A.1 

Figure A.2 shows the corresponding table for the first internal release made by the Mesa 

Group of the Systems Development Division of Xerox. 

Release Date Time after previous # Components # New # Changed # Withdrawn 

1.0 September 5, 1982 .. 89 89 0 0 

Release Summary 

Figure A.2 



112 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

Figure A.3 is a table describing the release from the standpoint of the amount of work done 

by the Release Tool. Since some files do not change between releases, the Release Tool only 

stores those that do not change. The number of files and megabytes actually stored are smaller 

than the number of files and megabytes for the entire release. The number of DF files. stored 

refers to the DFfiles rewritten by phase three of the Release 1'001. The running. times colu~ns 

for phases one through three include a number of estimates because of a number of technical 

problems. Notable is the 6 hours required to copy the 3.2 release, due to the large number of file 

changes and an overloaded file server. This table shows that, if the two emergency releases are 

excluded, Cedar has normally followed a major release with many changes, by a minor release 

with considerably fewer changes. 

# files actually # bytes actually # DF files stored 
Runnin ~ Times (Hours:Minsl 

Release stored copied Phase 1 Phase 2 Phase 3 

2.0 610 12mb 34 :27 ? :58 

2.1 303 7.8mb 21 :34 ? :53 

2.2 808 15.4mb 57 :50 :49 1 :15 

2.3 200 5.1mb 30 :54 ? 1:0 

2.4 1747 32mb 72 ? :46 2:03 

2.4.1 64 5.5mb 8 :20 -- :12 

2.5 1411 25.1mb 67 ? :50 1:57 

2.5.1 18 3.9mb 8 :03 -- :07 

2.6 498 16.2mb 62 ? :30 1:07 

3.0 ? (large) ? (large) 102 1:15 1 :11 3:0 

3.1 ?(small) 11.6mb 25 :20 ? 1:0 

3.2 3217 59.3mb 138 1:30 1:0 6:0 

3.3 2477 42.5mb 144 1:15 1:0 3:30 

3.4 3229 60.0mb 163 1:01 1:30 6:15 

3.4.1 179 10.5mb 30 :15 :30 :40 

3.5 1871 20489pgs 120 :44 1:20 2:58 

3.5.1 358 9270pgs 58 :28 1:03 1,,11 

3.5.2 13 2796 13 :04 -- :11 

Differential Release File Movement 

FigureA.3 



ApPENDIX A 113 

Figure AA shows the corresponding tables for the release of the Mesa group. Because of 

machine differences, the times to make releases are not comparable. 

# files actually # bytes actually # DF files stored 
Runnin J Times (Hours:Mins) 

Release stored copied Phase 1 Phase 2 Phase 3 

1.0 2578 40.8mb 127 1:57 2:0 4:30 

Differential Release File Movement 

Figure A.4 

Figure A.S is a table of statistics on the release from the standpoint of a user. Some of the 

files, etc., counted in one release are also counted in subsequent releases. Releases before 2.6 

were not measured for this table. The table includes subsections for object and source files. In 

the earlier releases there are more object files, in the later releases there are more source files. 

The surplus of object files is due to the use of files that are outside the release envelope, which 

were eliminated in later releases. The surplus of some files in later releases is due to test 

programs whose sources are saved but whose object files are not needed. Also, note the size of 

Cedar decreased between 3.2 and 3.3 because a large program (a debugger) was eliminated from 

the release. 

Release Object Files Source Files Total 

Files Defs Impls Configs Mbytes Files Defs Impls Configs Lines Mbytes Files Mbytes 

2.6 1724 776 832 116 24.4 1527 655 765 107 320,354 11.5 3674 44.6 

3.0 1981 903 942 138 26.5 1801 779 892 130 373,477 13.5 4219 SO.3 

3.1 2000 909 954 137 26.7 1817 783 903 131 377,081 13.6 4247 SO.7 

3.2 2098 923 1033 142 26.8 2029 857 1026 146 432,284 15.9 4670 56.9 

3.3 1983 857 994 132 24.2 2005 856 1010 139 424,248 15.7 4511 53.7 

3.4 2051 865 1050 136 26.6 2084 874 1067 143 447,310 17.2 4731 61.4 

3.4.1 2051 865 1049 137 26.6 2083 874 1066 143 447,270 17.2 4730 61.5 

3.5 2100 888 1072 140 25.1 2133 897 1091 145 457,259 17.9 4843 63.5 

3.5.1 2107 893 1073 141 27.5 2139 901 1092 146 457,248 18.0 4859 63.7 

3.5.2 2107 893 1073 141 27.5 2139 901 1092 146 457,274 18.0 4863 63.7 

Complete Release Totals 

Figure A.S 

DFfile~ 

129 

144 

145 

153 

153 

170 

170 

162 

162 

162 



114 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

Figure A.6 is a table that shows the corresponding table for the first release of the Mesa 

group. 

Release Object Files Source Files Total 

Files Oefs Impls Configs Mbytes Files Oefs Impls Configs Lines Mbytes Files Mbytes 

1.0 1542 17.9 1495 624 754 117 325,683 11.7 3490 41.6 

Complete Release Totals 

Figure A.6 

OF files 

127 



ApPENDIXB 115 

Appendix B: Example DF Files 

The DF file below was submitted to the Cedar 3.4 release. It describes a component named 

10 that is implemented by a configuration named IOPackage. The public interfaces are named 

in the second section named "Exports." The implementation consists of a number of modules 

that end in "Imp 1 . " 10 imports many other components after the list of implementors. 

Notations like {n} refer to numbered points in the "Notes" section below. 

II 10.df 
II Last Modified On September 17, 1982 3:01 pm By Warren Teitelman {9} 

Exports [lndigo]<PreCedar)Top> 

10.Of 

-- Interfaces 
Exports [lndigo]<PreCedar>IO) 

10.mesa!6 {10} 
ReadMacros.mesa!1 
FileI0.mesa!3 
XPrivateI0.Mesa!3 
FileIOPrivate.mesa!2 
PrintTV.mesa!1 
Juniper.mesa!2 
UserProfile.mesa!4 

10.bcd!7 
ReadMacros.bcd!6 
FileI0.bcd!6 
XPrivateI0.bcd!6 
FileIOPrivate.bcd!6 
PrintTV.bcd!1 
Juniper.bcd!6 
UserProfile.bcd!6 

10.comments!2 
PF.comments!1 
io.changes!9 

-- Documentation 
Directory [Indigo]<PreCedar)IO) 

10.press!2 
FileI0.press!1 

-- implementation 
Directory [lndigo]<PreCedar)IO) 

+IOPackage.bcd!34 
IOPackage.config!7 

10Impl.mesa!3 
Inputlmpl.mesa!1 
Outputlmpl.mesa!8 
SomeStreamslmpl.mesa!4 
IOPFlmpl.mesa!3 
TVStreamlmpl.mesa!7 
PrintTVlmpl.mesa!17 
PrintTypelmpl.mesa!7 

ReleaseAs [lndigo]<Cedar)Top) {1} 

6-0ct-82 21:07:47 PDT 

ReleaseAs [lndigo]<Cedar>IO> {2} 

8-Sep-82 22:26:35 PDT 
9-Jun-82 21:07:57 PDT 
1-Sep-82 15:42:46 PDT 

21-Sep-82 21:05:54 PDT 
30-Aug-82 14:03:19 PDT 

1-Sep-82 20:33:38 PDT 
26-Aug-82 15:09:50 PDT 

1-Sep-82 22:27:26 PDT 

8-Sep-82 23:41:58 PDT 
8-Sep-82 23: 42: 11 PDT 
8-Sep-82 23:42:21 PDT 

21-Sep-82 21:06:10 PDT 
8-Sep-82 23:42:24 PDT 
1-Sep-82 20:33:58 PDT 
8-Sep-82 23:42:15 PDT 
8"Sep-82 23:42:17 PDT 

1-0ct-82 13:08:00 PDT 
23-Jun-82 13:06:35 PDT 
29-Sep-82 12:51:23 PDT 

ReleaseAs [lndigo]<Cedar)Oocumentation) 

17-Sep-82 14:48:36 PDT 
17-Sep-82 14:47:17 PDT 

ReleaseAs [lndigo]<Cedar)IO) {4} 

6-0ct-82 20:18:00 PDT {3} 
. 28-Sep-82 14:09:30 PDT 

1-0ct-82 13:12:26 PDT 
5-Aug-82 13:48:40 PDT 

21-Sep-82 21:05:32 PDT 
4-0ct-82 21:01:02 PDT 
8-Sep-82 23:54:04 PDT 

29-Sep-82 15:44:23 PDT 
6-0ct-82 20:15:27 PDT 

23-Sep-82 13:30:40 PDT 

{6} 



116 CONTROLLING LARGE SOFIW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

FileIOCommonImpl.mesa!3 1-Sep-82 21: 37:.49 PDT 
FileIOJuniperImpl.mesa!4 22-Sep-82 17:24:30 PDT 
FileIOPilotImpl.mesa!6 5-0et-82 13:20:17 PDT 
UserProfileImpl.mesa!7 27-Sep-82 16:10:15 PDT 
CoPilotIO.mesal? 1.,.Sep-82 22:35:18 PDT 

IOImpl.bed!8 5-0ct-82 1-1:51:29 PDT 
InputImpl.bed!7 5-0et-82 11: 52: 08 PDT 
OutputImpl.bed!8 21-Sep-82 21:07:07 PDT 
SomeStreamsImpl.bedl8 5-0et-82 11: 52: 42 PDT 
IOPFImpl.bedl6 5-0et-82 11:54:23 PDT 
TVStreamImpl.bed!7 29-Sep-82 15:44:58 PDT 
PrintTVImpl.bed!19 6-0et-82 20:16:24 PDT 
PrintTypeImpl.bed!9 23-Sep-82 14:08:35 PDT 
FileIOCommonImpl.bed!5 10-Sep-,.82 13:25:51 PDT 
FileIOJuniperImpl.bed!5 22-Sep-82 17:24:58 PDT 
FileIOPilotImpl.bed!8 5-0et-82 13:22:25 PDT 
UserProfileImpl.bed!8 27-Sep-82 16:14:02 PDT 
CoPilotIO.bedl6 10-Sep-82 13:26:48 PDT 

eompileio.em!6 8-Sep-82 23:34:19 PDT 

-- test program (maybe belong in another df file) 

FileIOTestImpl.mesa!1 
FileIOTest.eonfig!1 

25-Jun-82 15:29:55 PDT 
25-Jun-82 15:34:40 PDT 

Imports [Indigo]<PreCedar>Top>ListsAndAtoms.Df Of > 
Using [Atom. bcd, List.bed] {7}, {8} 

Imports [Indigo]<PreCedar>Top>Rigging.Df Of > 

{5} 

Using [Convert.bed, Convertunsafe.bed, RefText.bed, Rope.bed, RopeInline.bed] 

Imports [Indigo]<PreCedar>Top>Runtime.df Of > 
Using [RTBasie.bed, RTTypesBasie.bed, RTTBridge.bed, RTTRemoteBridge.bed, 

RTTypes.bed, RTTypesExtras.bed, SafeStorage.bed] 

Imports [Indigo]<PreCedar>TeleDebug>WorldVM.df Of > 
Using [WorldVM.bed] 

Imports [Indigo]<PreCedar>Top>CedarReals.df Of > 
Using [Real.bed, RealOps.bed, Ieee.bed] 

Imports [Indigo]<PreCedar>Top>PilotInterfaees.df Of 20-Aug-82 15:29:Q5 PDT 
Using [ByteBlt.bed, Environment.bed, File.bed, Heap.bed, Inline.bed, 

PageFault.bed, Pilotswitehes.bed. PrineOps.bed, Proeess.bed, 
Runtime.bed, RuntimeInternal.bed, Spaee.bed, System.bed,TemporaryBooting.bcd, 
Transaction.bed, UserTerminal.bcd, WriteFault.bed] 

Exports Imports [Indigo]<PreCedar>Top>CompatibilityPackage.df Of > 
Using [Aseii.bcd, DCSFileTypes.bcd, Directory.bed, FileStream.bcd, 

PropertyTypes.bed, String.bcd, Time.b~d] 

Exports Imports [Indigo]<PreCedar>Top>UserCredentials.df Of > 
Using [UserCred~ntials.bed] 

Imports [Indigo]<PreCedar>Top>Pine.df Of > 
Using [CommonPineDefs.bed, UserPineDefs.bcd] 

Imports [Indigo]<PreCedar>Top>CIFS.df Of > 
Using [CIFS.bed] 

Imports [Indigo]<PreCedar>Top>CedarSnapshot.df Of > 
Using [CedarSnapshot.bed] 



ApPENDIXB 117 

Notes 

1) The OF file has a self-reference. Because of it, IO.OF will be released to a special 

directory <Cedar>Top>. 

2) The interface files are put on <Cedar>IO>. "Exports" gives an indication that clients may 

want to Import these files. 

3) An object file is preceded by a "+ It, indicating to VerifyOF that this is a root of the 

dependency graph. 

4) The implementation files are put on <Cedar>IO>. 

5) We encourage implementors add to their OF files command files that compile and bind 

their software. 

6) Documentation is released onto <Cedar>Documentation>. 

7) Interfaces needed to compile the sources are Imported from appropriate OF files. 

8) Interfaces are Imported from a OF file that is on a working directory, referring to the 

newest version. 

9) The ,, __ It at the beginning of a line signifies a comment 

10) Filenames like "IO.Mesa!6" refer to file named "IO.Mesa", version number 6 on the file 

server. PARe's file servers can store multiple versions of a file on a directory. which are 

numbered starting at 1. The version number "!6" is entirely optional, since the create time 

identifies the version of "IO.Mesa" desired. If present, a version number is used as a hint 

After the Release 

The OF file is rewritten by Phase Three of the Release Tool as follows. 

II IO.df 
II Last Modified On September 17, 1982 3:01 pm By Warren Teitelman 

Exports [Indigo]<Cedar>Top> 

10.Of 

-- Interfaces 
Exports [Indigo]<Cedar>IO> 

IO.mesa!2 
ReadMacros.mesa!1 
FileIO.mesa!2 
XPrivateIO.Mesa!1 
FileIOPrivate.mesa!2 

CameFrom [Indigo]<PreCedar>Top> 

7-0ct-82 11:51:45 PDT 

CameFrom [Indigo]<PreCedar>IO> 

8-Sep-82 22:26:35 PDT 
9-Jun-82 21:07:57 PDT 
I-Sep-82 15:42:46 PDT 

21-Sep-82 21:05:54 PDT 
30-Aug-82 14:03:19 PDT 



118 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

PrintTV.mesal1 
Juniper.mesal2 
UserProfile.mesal2 

IO.bcd!3 
ReadMacros.bcdl3 
FileIO.bcdl3 
XPrivaieIO.bcd11 
FileIOPrivate.bcd!3 
PrintTV.bcdl1 
Juniper.bcdl3 
UserProfile!bcd!3 

IO.commentsl2 
PF.comments!1 
io.changesl2 

-- Documentation 
Directory ~Indigo]<Cedar>Documentation> 

10.pressl1 
FileIO.pressl1 

-- implementation 
Di rectory [Indigo]<Cedar>IO> CameFrom 

+IOpackage.bcdla 
IOPackage.configl2 

IOImpl.mesa!2 
InputImpl.mesal2 
OutputImpl.mesal2 
SomeStreamsImpl.mesal2 
IOPFImpl.mesal2 
TVStreamImpl.mesa!2 
PrintTVImpl.mesa!1 
PrintTypeIm~l:mesa!l 
FileIO,CommonImpl.mesaI2 
FileIOJuniperImpl.me~a!2 

FileIOPilotImpl.mesa!2 
Us,erProfileImpl.mesa!2 
CoPilotIO.mesa!1 

IOImpl.bcd!3 
InputImpl.bcd!3 
OutputImpl.bcd!3 
SomeStreamsImpl.bcd!~ 

IOPFImpl.bcd!3 
TVStreamImpl.bcd!3 
PrintTVImpl.bcd!1 
PrintTypeImpl.bcd!1 
FileIOCommonImpl.bcd!3 
FileIOJuniperImpl.bcd!3 
FileIOPilotImpl.bcd!3 
UserProfileImpl.bcd!~ 

CoPilotIO.bcd!1 

compileio.cml2 

1-Sep-82 20:33:38 PDT 
26-Aug-82 15:09:50 PDT 

1-Sep-82 22:27:26 PDT 

8-Sep-82 23:41:58 PDT 
8-Sep-82 23:42:11 PDT 
8-Sep-82 23:42:21 PDT 

21-Sep-82 21:06:10 PDT 
8-Sep-82 23:42:24 PDT 
1-Sep-82 20:33:58 PDT 
8-Sep-82 23:42:15 PDT 

, 8-Sep-82 23:42:17 PDT 

1-0ct-82 13:08:00 PDT 
23-Jun-82 13:06:35 PDT 
29-Sep-82 12:51:23 PDT 

CameFrom [Indigo]<PreCedar>IO> 

17-Sep-82 14:48:36 PDT 
17-Sep-82 14:47:17 PDT 

[Indigo]<PreCedar>IO> 

6-0ct-82 '2rr:18:00 PDT 
28-Sep-82 14:09:30 PDT 

1-0ct-82 13:12:26 PDT 
5-Aug-82 13:48:40 PDT 

21-Sep-82 21:05:32 PDT 
4-0ct-82 21:01:02 PDT 
8-Sep-82 23:54:04 PDT 

29-Sep-82 15:44:23 PDT 
6-0ct-82 20:15:27 PDT 

23-Sep-82 13 :'30: 40 PDT 
1-Sep-.82 21:37:49 PDT 

22-Sep-82 17:24:30 PDT 
5-0ct-82 13:20:17 PDT 

27-Sep-82 16:10:15 PDT 
1-Sep-82 22:35:18 'PDT 

5-0ct-82 11:51:29 PDT 
5-0ct-82 11:52:08 PDT 

21-Sep-82 21:07:07 PDT 
5-0ct-82 11:52:42 ,PDT 
5-0ct-82 11:54:23 PDT 

29-Sep-82 15:44:58 PDT 
6-0ct-82 20:16:24 PDT 

23-Sep-82 14:08:35 PDT 
10-Sep-82 13:25:51 PDT 
22-Sep-82 17:24:58 PDT 
5-0tt-82 13:22:25 pin 

27-Sep-82 16:14:02 PDT 
10-Sep-82 13:26:48 PDT 

8-Sep-82 23:34:19 PDT 

-- test program (maybe belong in ,another df file) 

FileIOTestImpl.mesa!l 
FileIOTest.config!1 

25-Jun-82 15:29:55 PDT 
25-Jun-82 15:34:40 PDT 

Imports [Indigo]<Cedar>T~p>ListsA~dAtoms.Df Of 7-0ct-82 11:51:50 PDT 



CameFrom [Indigo]<PreCedar>Top> 
Using [Atom.bed, List.bed] 

ApPENDIXB 

Imports [Indigo]<Cedar>Top>Rigging.Df Of 7-0et-82 11:52:30 PDT 
CameFrom [Indigo]<PreCedar>Top> 
Using [Convert.bed, Convertunsafe.bed, RefText.bed, Rope.bed, RopeInline.bed] 

Imports [Indigo]<Cedar>Top>Runtime.df Of 7-0et-82 11:52:35 PDT 
CameFrom [Indigo]<PreCedar>Top> 
Using [RTBasie.bed, RTTypesBasie.bed, RTTBridge.bcd, RTTRemoteBridge.bed, 

RTTypes.bed, RTTypesExtras.bed, SafeStorage.bed] 

Imports [Indigo]<Cedar>TeleDebug>WorldVM.df Of 7-0et-82 11:53:22 PDT 
CameFrom [Indigo]<PreCedar>TeleDebug> 
Using [WorldVM.bed] 

Imports [Indigo]<Cedar>Top>CedarReals.df Of 7-0et-82 11:51:04 PDT 
CameFrom [Indigo]<PreCedar>Top> 
Using [Real.bed, RealOps.bed, Ieee.bed] 

Imports [Indigo]<Cedar>Top>PilotInterfaees.df Of 20-Aug-82 15:29:55 PDT 
Using [ByteBlt.bed, Environment.bed, File.bed, Heap.bed, Inline.bed, 

PageFault.bed, Pilotswitehes.bed, PrineOps.bed, Proeess.bed, 
Runtime.bed, RuntimeInternal.bed, Spaee.bed, System.bed, TemporaryBooting.bed, 
Transaetion.bed, UserTerminal.bed, WriteFault.bed] 

Exports Imports [Indigo]<Cedar>Top>CompatibilityPaekage.df Of 7-0et-82 11:51:15 PDT 
CameFrom [Indigo]<PreCedar>Top> 
Using [Aseii.bed, DCSFileTypes.bed, Direetory.bed, FileStream.bed, 

PropertyTypes.bed, String.bed, Time.bed] 

Exports Imports [Indigo]<Cedar>Top>UserCredentials.df Of 7-0et-82 11:53:04 PDT 
CameFrom [Indigo]<PreCedar>Top> 
Using [UserCredentials.bed] 

Imports [Indigo]<Cedar>Top>Pine.df Of 7-0et-82 11:52:17 PDT 
CameFrom [Indigo]<PreCedar)Top> 
Using [CommonPineDefs.bed, UserPineDefs.bed] 

Imports [Indigo]<Cedar>Top>CIFS.df Of 7-0et-82 11:51:07 PDT 
CameFrom [Indigo]<PreCedar)Top> 
Using [CIFS.bed] 

Imports [Indigo]<Cedar>Top>CedarSnapshot.df Of 7-0et-82 11:51:05 PDT 
CameFrom [Indigo]<PreCedar)Top) 
Using [CedarSnapshot.bed] 

119 

Notice the "ReleaseAs" phrases have been replaced with "CameFrom" phrases for most of 

the entries, and the .. ) .. dates have been replaced by the date of the new version of each OF file 
on (Cedar)Top). 

The following pages contain a copy of Runt ime. OF that was submitted to the Cedar 3.4 

release. Run time. 0 F is one of the larger OF files in the release and is shown in Figure 2.8 at 

the end of Chapter 2, in a dependency cycle with IO.OF. It is included here to show the size of 

file that is handled by the OF system. 

Runtime.df 
A model file fOT the Cedar runtime system 
Last Modified On October 4, 1982 1:59 pm By Paul Rovner 



120 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

Exports [Indigo]<PreCedar>Top> ReleaseAs [Indigo]<Cedar>Top> 

Runtime.df 4-0ct-82 11:02:46 PDT 

Exports [Indigo]<PreCedar>Runtime> ReleaseAs [Indigo]<Cedar>Runtime> 

AtomsPrivate.bcdl1 
AtomsPrivate.mesal1 
RTBasic.bcdl1 
RTBasic.mesa!1 
RTLoader.bcdl1 
RTLoader.mesal1 
RTMiniModel.bcdl1 
RTMiniModel.mesal1 
RTModel.bcdl1 
RTModel.mesal1 
RTOS.bcd!1 
RTOS.mesa11 
RTProcess.bcd!1 
RTProcess.mesal1 
RTRefCounts.bcd!1 
RTRefCounts.mesal1 
RTStart.bcd!1 
RTStart.mesa!1 
RTStorageOps.bcdl1 
RTStorageOps.mesa!1 
RTTypesBasic.bcdl1 
RTTypesBasic.mesal1 
RTTypesBasicPrivate.bcdl1 
RTTypesBasicPrivate.mesa!1 
RTZones.bcdl1 
RTZones.mesa!1 
SafeStorage.bcd!1 
SafeStorage.mesa!1 
UnsafeStorage.bcdl1 
UnsafeStorage.mesal1 

Directory [Indigo]<PreCedar>Runtime> 

RTTypes.tiogal1 
RTTypes.press!1 
Runtime.tioga!1 
Runtime.pressl1 

Directory [Indigo]<PreCedar>Runtime> 

+RT.bcdI1 
RT.configl1 
Processes.mesa!1 
CompileRuntime.cml1 
I-RT.cm!1 
L-RT.cmI1 
MC-RT.cmI1 
CountPinnedPages.mesal1 
CreateCedarVM.mesa!1 
PrintlnUseFileNames.mesa!1 
PTestQ.bcdl1 
PTestQ.mesa!1 

, Test. config! 1 
+Test.bcdI1 
ttt.mesal1 
ttt.bcd!1 
GCTableFaultRecorder.mesa!1 
GCTableFaultRecorder.bcd!1 
RTBases.bcd!1 
RTBases.mesal1 

1-Sep-82 17:32:54 PDT 
20-May-82 10:34:46 PDT 
5-Aug-82 14:14:07 PDT 

25-May-82 14:30:13 PDT 
1-Sep-82 17:32:53 PDT 

19-May-82 19:18:06 PDT 
1-Sep-82 17:34:20 PDT 

27-May-82 12:51:09 PDT 
4-0ct-82 12:09:04 PDT 
4-0ct-82 11:49:56 PDT 
9-Sep-82 10:33:24 PDT 
9-Sep-82 10:32:09 PDT 
9-Sep-82 10:33:26 PDT 
9-Sep-82 9:34:32 PDT 
1-Sep-82 17:33:28 PDT 

20-May-82 10:46:59 PDT 
6-Aug-82 9:59:55 PDT 
4-Jun-81 11:06:10 PDT 
1-Sep-82 17:32:58 PDT 

20-May-82 13:56:33 PDT 
5-Aug-82 14:55:10 PDT 

27-May-82 12:51:05 PDT 
1-Sep-82 17:33:13 PDT 

25-May-82 15:24:41 PDT 
1-Sep-82 17:33:21 PDT 

20-May-82 10:43:53 PDT 
5-Aug-82 14:14:09 PDT 

27-May-82 12:51:36 PDT 
6-Aug-82 10:00:04 PDT 

20-May-82 10:06:51 PDT 
ReleaseAs [Indigo]<Cedar>Oocumentation> 

3-Aug-82 11:24:48 PDT 
3-Aug-82 11:38:07 PDT 
3-Aug-82 11: 27: 54 PDT 
3-Aug-82 11:28:54 PDT 

ReleaseAs [Indigo]<Cedar>Runtime> 

23-Sep-82 10:59:19 PDT 
23-Sep-82 10:44:50 PDT 
26-Aug-82 11:24:15 PDT 
4-0ct-82 11:59:42 PDT 
4-0ct-82 12:00:15 PDT 
4-0ct-82 12:01:57 PDT 
4-0ct-82 12:01:19 PDT 

30-Apr-81 19:00:22 PDT 
2-0ec-81 1:14:39 PST 

21-Jun-82 14:57:11 PDT 
28-Sep-82 16:21:53 PDT 
27-Sep-82 15:46:44 PDT 
27-Sep-82 14:34:52 PDT 

28-Sep-82 16:56:40 PDT 
2-0ct-82 16:23:18 PDT 
4-0ct-82 12:30:42 PDT 
6-Aug-82 10:20:11 PDT 
6-Aug-82 10:20:39 PDT 
1-Sep-82 17:32:57 PDT 

20-May-82 10:10:27 PDT 



ApPENDIXB 121 

RTCommon.bcdl1 1-Sep-82 17:33:05 PDT 
RTCommon.mesal1 20-May-82 10:15:20 PDT 
RTFlags.bcdl1 6-Aug-82 10:00:02 PDT 
RTFl ags. mesa 11 5-Feb-82 10:46:08 PST 
RTMicrocode.bcdl1 1-Sep-82 17:33:34 PDT 
RTMicrocode.mesal1 20-May-82 10:18:43 PDT 
RTProcessPrivate.bcd!1 9-Sep-82 10:33:30 PDT 
RTProcessPrivate.mesal1 9-Sep-82 10:33:08 PDT 
RTQuanta.bcdl1 1-Sep-82 17:32:43 PDT 
RTQuanta.mesal1 20-May-82 10:22:11 PDT 
RTQueue.bcdl1 6-Aug-82 10:00:01 PDT 
RTQueue.mesal1 3-Jun-81 15:19:10 PDT 
RTSponge.bcdl1 1-Sep-82 17:32:36 PDT 
RTSponge.mesal1 5-Mar-82 9:23:36 PST 
RTStorageAccounting.bcdl1 23-Sep-82 10:43:01 PDT 
RTStorageAccounting.mesal1 23-Sep-82 10:38:02 PDT 
Runs.bcdl1 6-Aug-82 9:59:56 PDT 
Runs.mesal1 27-Mar-81 11:01:36 PST 
AtomsPrivateImpl.bcdl1 7-Sep-82 14:13:44 PDT 
AtomsPrivateImpl.mesal1 8-Mar-82 10:35:47 PST 
RCMapWalkerImpl.bcd!1 7-Sep-82 14:14:09 PDT 
RCMapWalkerImpl.mesa!1 8-Mar-82 10:51:20 PST 
RTAllocatorImpl.bcdl1 23-Sep-82 10:43:28 PDT 
RTAllocatorImpl.mesa!1 23-Sep-82 10:40:09 PDT 
RTBasesImpl.bcdl1 9-Sep-82 10:34:29 PDT 
RTBasesImpl.mesa!1 27-May-82 16:11:40 PDT 
RTLoaderlmpl.bcd!1 9-Sep-82 10:35:12 PDT 
RTLoaderImpl.mesa!1 20-May-82 10:54:44 PDT 
RTOSImpl.bcd!1 9-Sep-82 10:35:29 PDT 
RTOSlmpl.mesa!1 9-Sep-82 8:31:18 PDT 
RTPageFaultlmpl.bcd!1 9-Sep-82 10:35:39 PDT 
RTPageFaultlmpl.mesa!1 16-Mar-82 11:09:07 PST 
RTPrefAlloclmpl.bcdl1 23-Sep-82 10:44:58 PDT 
RTPrefAlloclmpl.mesa!1 23-Sep-82 10:39:25 PDT 
RTProcessImpl.bcd!1 9-Sep-82 10:35:56 PDT 
RTProcessImpl.mesal1 9-Sep-82 9:34:45 PDT 
RTProcessPrivateImpl.bcdl1 9-Sep-82 10:40:32 PDT 
RTProcessPrivateImpl.mesal1 9-Sep-82 10:38:55 PDT 
RTQueueImpl.bcd!1 6-Aug-82 10:13:36 PDT 
RTQueueImpl.mesa!1 3-Sep-81 13:23:41 PDT 
RTReclaimerImpl.bcd!1 9-Sep-82 10:36:13 PDT 
RTReclaimerImpl.mesa!1 20-May-82 13:17:02 PDT 
RTRefAccounting.bcdl1 7-Sep-82 14:16:44 PDT 
RTRefAccounting.mesa!1 8-Feb-82 11:47:57 PST 
RTRefCountsImpl.bcd!1 23-Sep-82 10:45:22 PDT 
RTRefCountsImpl.mesal1 7-Sep-82 16:31:13 PDT 
RTSpongeImpl.bcd!1 9-Sep-82 10:36:45 PDT 
RTSpongeImpl.mesal1 5-Mar-82 9:23:53 PST 
RTStartImpl.bcd!1 9-Sep-82 10:42:56 PDT 
RTStartlmpl.mesa!1 9-Sep-82 10:42:27 PDT 
RTStopProcessImpl.bcd!1 9-Sep-82 10:36:54 PDT 
RTStopProcessImpl.mesal1 9-Sep-82 7:49:15 PDT 
RTStorageAccountingImpl.bcd!1 23-Sep-82 10:45:39 PDT 
RTStorageAccountingImpl.mesa!1 27-May-82 16:18:03 PDT 
RTSymbolAccessImpl.bcdll 9-Sep-82 10:37:02 PDT 
RTSymbolAccessImpl.mesa!1 6-Aug-82 10:15:03 PDT 
RTTraceAndSweepImpl.bcd!1 9-Sep-82 10:43:43 PDT 
RTTraceAndSweepImpl.mesa!1 9-Sep-82 10:42:04 PDT 
RTTypesBasicExtensionImpl.bcd!l 7-Sep-82 14:19:13 PDT 
RTTypesBasicExtensionlmpl.mesa!1 27-May-82 16:29:22 PDT 
RTTypesBa~icImpl.bcdI1 9-Sep-82 10:37:50 PDT 
RTTypesBasicImpl.mesal1 7-Sep-82 16:58:55 PDT 
RTZonesImpl.bcd!1 9-Sep-82 10:38:01 PDT 
RTZonesImpl.mesa!1 7-Sep-82 16:11:59 PDT 
RunsImpl.bcd!1 9-Sep-82 10:38:13 PDT 



122 CONTROLLING LARGE SOFIW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

RunsImpl.mesal1 26-Mar-82 18:14:34 PST 
ZoneCleanupImpl.bcdl1 7-Sep-82 14:21:00 PDT 
ZoneCleanuplmpl.mesa!1 27-May-82 16:41:15 PDT 
ZoneIndicesImpl.bcdl1 9-Sep-82 10:38:16 PDT 
ZoneIndicesImpl.mesa!1 20-May-82 13:05:35 PDT 

Exports [Indigo]<PreCedar)RuntimeTypes> ReleaseAs [Indigo]<Cedar>RuntimeTypes> 

RTFiles.bcdl1 7-Sep-82 14:13:29 PDT 
RTFiles.mesa!1 29-Jun-82 12:03:29 PDT 
RTModelPrivate.bcdl1 4-0ct-82 16:46:05 PDT 
RTModelPrivate.mesal1 4-0ct-82 16:43:35 PDT 
RTSymbols.bcdl1 23-Sep-82 10:43:07 PDT 
RTSymbols.mesal1 23-Sep-82 9:43:13 PDT 
RTSymbolsPrivate.bcdll 1-Sep-82 17:33:58 PDT 
RTSymbolsPrivate.mesal1 5-Aug-82 10:45:14 PDT 
RTTBridge.bcdl1 9-Sep-82 7:50:08 PDT 
RTTBridge.mesall 8-Sep-82 11:52:52 PDT 
RTTCache.bcdl1 1-Sep-82 17:32:46 PDT 
RTTCache.mesa!1 24-Jun-82 17:29:49 PDT 
RTTRemoteBridge.bcdl1 10-Sep-82 11 :24:04 PDT 
RTTRemoteBridge.mesall 10-Sep-82 10:43:02 PDT 
RTTypes.bcdl1 9-Sep-82 7:49:57 PDT 
RTTypes.mesal1 9-Sep-82 7:37:31 PDT 
RTTypesExtras.mesa!1 15-Sep-82 17:46:37 PDT 
RTTypesExtras.bcd!1 15-Sep-82 17:49:02 PDT 

Directory [Indigo]<PreCedar)RuntimeTypes> ReleaseAs [Indigo]<Cedar>RuntimeTypes> 

+RTT.bcdI3 6-0ct-82 19:04:36 PDT 
RTT.configl1 4 .. 0ct-82 11: 58: 54 PDT 
RemoteRope.mesa!1 10-Sep-82 14:30:37 PDT 
RemoteRope.bcdl1 10-Sep-82 15:34:18 PDT 
RemoteRopeImpl.mesal1 10-Sep-82 14:42:05 PDT 
RemoteRopeImpl.bcd!1 10-Sep-82 15:34:24 PDT 
RTGetSymbolsImpl.bcdll 29-Sep-82 16:44:25 PDT 
RTGetSymbolsImpl.mesa!1 29-Sep-82 16:43:23 PDT 
RTMiniModelImpl.Mesa!1 24-Sep-82 10:41:18 PDT 
RTMiniModelImpl.bcd!1 4-0ct-82 16:46:17 PDT 
RTModelSourceImpl.mesall 4-0ct-82 14:49:52 PDT 
RTModelSourceImpl.bcd!1 4-0ct·-82 16:47:43 PDT 
RTModelSectionImpl.mesa!1 4-0ct-82 16:50:33 PDT 
RTModelSectionImpl.bcdl1 4-0ct-82 16:51:04 PDT 
RTModelContextImpl.mesa!1 5-0ct-82 17:52:27 PDT 
RTModelContextImpl.bcdl1 5-0ct-82 17:53:57 PDT 
RTModelPrivateImpl.mesall 4-0ct-82 12:14:02 PDT 
RTModelPrivateImpl.bcdll 4-0ct-82 16:47:30 PDT 
RTWalkSymbolsImpl.bcd!1 23-Sep-82 10:49:40 PDT 
RTWalkSymbolsImpl.mesa!1 27-Apr-82 11:52:22 PDT 
RTTDefaultImpl.Mesa!1 1-0ct-82 13:55:28 PDT 
RTTDefaultImpl.bcd!1 1-0ct-82 13:55:53 PDT 
RTTGFNameImpl.Mesa!1 12-Aug-82 15:27:32 PDT 
RTTGFNameImpl.bcdl1 17-Sep-82 12:15:43 PDT 
RTTSupportImpl.bcd!2 11-0ct-82 14:06:44 PDT 
RTTSupportImpl.mesa!2 11-0ct-82 14:06:04 PDT 
RTTypesPrivate.bcd!1 17-Sep-82 12:14:42 PDT 
RTTypesPrivate.mesal1 17-Sep-82 11:49:35 PDT 
RTTypesRemotePrivate.bcdl1 10-Sep-82 15:36:53 PDT 
RTTypesRemotePrivate.mesal1 10-Sep-82 15:24:50 PDT 
RTTCacheImpl.bcdl1 7-Sep-82 14:17:29 PDT 
RTTCacheImpl.mesal1 28-Jun-82 13:34:47 POT 
RTTypesImpl.bcd!2 11-0ct-82 14:10:20 PDT 
RTTypesImpl.mesal2 11-0ct-82 14:09:45 PDT 
RTTypesBridgeImpl.bcdll 1-0ct-82 11:22:25 PDT 
RTTypesBridgeImpl.mesal1 1-0ct-82 11: 21: 43 PDT 
RTTypedVariablesImpl.bcdl1 6-0ct-82 16:27:41 PDT 



ApPENDIXB 

RTTypedVariableslmpl.mesall 
RTTypedFrameslmpl.bed!l 
RTTypedFrameslmpl.mesa!l 
RTTypesRemotelmpl.bed!l 
RTTypesRemotelmpl.mesa!l 
RTTypesRemotePrivatelmpl.bed!l 
RTTypesRemotePrivatelmpl.mesa!l 

6-0et-82 16:25:51 POT 
6-0et-82 18:12:09 POT 
6-0et-82 18:10:25 POT 

17-Sep-82 12:17:53 POT 
15-Sep-82 17:22:26 POT 
4-0et-82 16:48:05 POT 
4-0et-82 16:42:21 PDT 

Imports [Indigo]<Cedar>Top>ListsAndAtoms.df Of > 
Using [Atom.bed, List.bed] 

Imports [Indigo]<PreCedar>TeleDebug>WorldVM.df Of > 
Using [WorldVM.bed, WorldVM.Mesa, WVM.bed] 

Imports [Indigo]<Cedar>Top>IO.df Of > 
Using [IO.bed, IO.Mesa] 

Imports [Indigo]<Cedar>Top>TTYIO.df Of > 
Using [TTYIO.bed, TTYIO.Mesa] 

Imports [Indigo]<Cedar>Top>CedarSnapshot.df Of > 
Using [CedarSnapshot.bed, CedarSnapshot.Mesa] 

Imports [Indigo]<Cedar>Top>CIFS.df Of > 
Using [CIFS.bed, CIFS.Mesa] 

Imports [Indigo]<Cedar>Top>CompatibilityPaekage.df Of > 
Using [Aseii.bed, Direetory.bed, LongString.bed, TTY.bed] 

Imports [Indigo]<Cedar>Pilot>MesaRuntime.df Of > 
Using [Proeesses.bed] 

Imports [Indigo]<Cedar>Top>Pilotlnterfaees.df Of > 
Using [TrapSupport.bed, DevieeCleanup.bed, Frame.bed, PrineOpsRuntime.bed, 

ProeessOperations.bed, PSB.bed, TimeStamp.bed, SpeeialSpaee.bed, 
CPSwapDefs.bed, Environment.bed, File.bed, Heap.bed, Inline.bed, 
MiseAlpha.bed, Mopeodes.bed, PrineOps.bed, Proeess.bed, Runtime.bed, 
SODefs.bed, Spaee.bed, Transaetion.bed, Volume.bed, CaehedSpaee.bed, 
Proeesslnternal.bed, ProeessPriorities.bed, RuntimeInternal.bed, 
System. bed] 

Imports [Indigo]<Cedar>Top>Random.df Of > 
Using [Randomlnt.bed, Randomlntlmpl.bed] 

Imports [Indigo]<Cedar>Top>Rigging.df Of > 
Using [ShowTime.bed, Convert.bed, ConvertUnsafe.bed, Rope.bed, 

Ropelnline.bed] 

Imports [Indigo]<Cedar>Top>BCD.df Of > 
Using [BedDefs.bed, BedOps.bed, FileSegment.bed, Literals.bed, 

RCMap.bed, RCMapOps.Bed, RCMapBuilderlmpl.Bed, RTBed.bed, 
SymbolCaehe.bed, SymbolPaek.bed, Symbols.bed, SymbolSegment.bed, 
SymbolTable.bed, Table.bed, Tree.bed, TypeStrings.bed, TypeStringsImpl.bed, 
RTSO.bed, Strings.bed] 

Imports [Indigo]<Cedar>Top)Loader.df Of > 
Using [PilotLoadStateOps.bed, PilotLoadStateOps.Mesa, PilotLoadStateFormat.bed, 

PilotLoadStateFormat.Mesa, Loader.bed, Loader.Mesa, PilotLoadStatePrivate.bed, 
PilotLoadStatePrivate.Mesa] 

Imports [Indigo]<Cedar>Top>VersionMap.df Of > 
Using [VersionMap.bed, VersionMap.Mesa] 

123 



124 CONTROLLING LARGE SOFTWARE DEVELOP'MENT IN A DISTRIBUTED ENVIRONMENT 



ApPENDIXC 125 

Appendix C . Modeller Interfaces 

Modeller Interface 

Chapter 4 presented the interface to the modeller as seen by the user. That interface is 

implemented using the following interface. Some non-essential details have been omitted. "--" at 

the beginning of a ·line begins a comment line. 

ModellerInterface: DEFINITIONS = { 
Object: TYPE = REF OpaqueObject; -- opaque to the user 

-- returns an object that must be passed to other call s 
StartMode 11 i ng: I PROC[model Name: STRING] RETURNS[Obj ect]; 

-- updates model if fileName is mentioned and has changed 
Notice: PROC[obj: Object, fileName: STRING]; 

-- compile any files mentioned in the model that need it 
-- if modules have been loaded, and UnloadModelBcds 
-- has not been called, tries to compile for module replacement 
CompileModelSrcs: PROC[obj: Object]; 

-- load object files for modules listed in model 
-- if modules are already loaded, tries to use module replacement 
loadModelBcds: PROC[obj~ Object]; 

- - sta rt execut i on of modul es jus t loaded 
-- must be preceded by a loadModelBcds 
StartModelBcds: PROC[obj: Object]; 

-- unload the object files loaded by loadModelBcds 
-- does nothing if no files are loaded 
UnloadModelBcds: PROC[obj: Object]; 

-- make a .modelBcd file for this model 
MakeModelBcds: PROC[obj: Object]; 

equivalent to 
UnloadModelBcds[obj]; CompileModelSrcs[obj]; 
loadModelBcds[obj]; StartModelBcds[obj]; 

but pauses if there are errors 
because it calls UnloadModelBcds, will not try module replacement 

Begin: PROC[obj: Object]; 

equivalent to 
CompileModelSrcs[obj]; loadModelBcds[obj]; 

but pauses if there are errors 
because there is no call to Unload, wi 11 try modul e repl acement 

Continue: PROC[obj: Object]; 

-- store any changed files on remote file servers 
StoreBack: PROC[obj: Object]; 

-- must be paired with StartModelling 
StopModelling: PROC[obj: Object]; 

} . 

RTModel Interface 

The RTModel interface is used by the debugger to obtain information about the program 

being debugged. Its design shows the power of combining inter- and intra-module relationships 

in one set of terminology and one set of data structures. 



126 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

Terminology 

A section is a machine-oriented representation of an object such as a procedure, program. or 

model. A section is composed of pointers to: 

1. the source for this program (or procedure or model), 

2. the parameters with which it was called, in cases where they are constant, (This includes 

INTERFACE parameters in the modelling language.) 

3. the object code (may be NIL), 

4. the types of the parameters to th,e program (or procedure or model). , 

5. the type of parameters returned, 

6. ,the sections of 'the components that are contained within this section, and 

7. the sections of the statically enclosing program unit. 

An object file from the compiler or a .modelBcd file produced by the Modeller is an 

example of a section. 

A context is an abstract object that changes when control is transferred from one section to 

another. A stack frame for the local variables of a procedure call (local frame) is a context. 

Calling one procedure from another changes contexts. The record that contains global data per 

module (global frame) is a context, established when the module is loaded and initialization is 

performed. The local variables in an SML procedure are also a context. 

A closure is a list of contexts that describe a naming environment. The closure follows static 

links in the local frames and is used to handle variables at runtime. 

A tree is a parse tree for a procedure, a module, or a model. The tree is connected to trees 

for contained objects, for example. the tree for a, model is connected to the trees of the 

procedures declared in the module. 

These are shown in Figure C.l. 



ApPENDIXC 

Context: Local Frame 

i 
Context: 

Global Frame for 
loaded X.Bcd 

• 
Section For Model • 

conmin~ ~r ______________ C--Jrtext' Ltal Frame 

Source File X.Mesa Object file X.Bcd 
in Tree Form on local disk 

-- RTModel.Mesa 

RTModel: DEFINITIONS = { 

-- declarations of types 

Tree: TYPE = REF TreeObj; 

TreeObj: TYPE; 

Section: TYPE = REF SectionObj; 

SectionObj: TYPE; 

Context: TYPE = REF ContextObj; 

ContextObj: TYPE; 

Parameters Section 
was called with 

FigureC.1 

-- gives the tree is which this tree appeared 

EnclosingTree: PRoc[Tree] RETuRNs[Tree]; 

-- examine each of the subtrees this tree contains 

EnumSubTrees: PRoc[Tree. PRoc[Tree]]; 

-- examine each of the copies of the tree that are loaded 

EnumSections: PRoc[Tree, PRoc[Section]]; 

SectionToTree: PRoc[Section] RETuRNs[Tree]; 

-- return the parameters to this section 

SectionParams: PRoc[Section] RETURNS[REF ANY]; 

-- return the section that loaded this section 

Context: Ltal Frame 

Execution naming 
Environment 

127 



128 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

EnclosingSection: PRoc[Section] RETURNs[Section]; 

-- examine the sections that loading this section caused to be loaded 

EnumSubSections: PRoc[Section, PRoc[Section]]; 

-- examine currently executing instances of this section 

EnumContexts: PRoc[Section, PRoc[Context]]; 

ContextToSection: PRoc[Context] RETuRNs[Section]; 

-- return arguments that this was called with 

ContextArgs: PRoc[Context] RETURNS[REF ANY]; 

-- context that is statically outside this one 

Encloser: PRoc[Context] RETURNs[Context]; 

-- context that called this one 

Invoker: PRoc[Context] RETURNs[Context]; 

-- the contexts that this context has called 

EnumInvokees: PRoc[Context, PRoc[Context]]; 

-- the contexts statically nested in this one that are still running 

EnumEnclosees: PRoc[Context, PRoc[Context]]; 

}. 



APPENDIXD 129 

Appendix D: . Example Model 

An Example (Defaults) 

This model describes the BringOver program. First, we present the model with defaults, 
which reduces the complexity of the model to that of a simple CONFIGURATION module, and then 
expand· the various defaulting rules to show the entire dependency information. 

There are seven implementation modules within this model (CWFlmpl, ComParselmpl, 
Subrlmpl, STPSubrlmpl, DFSubrlmpl, DFParserlmpl, BringOverlmpl). All the rest are interface 
files. 

Consider two models, Pi loti nterfaces. Model and BringOver.Model: 

-- File: Pilotlnterfaces.Modell123, last edit September 7, 1982 
[ 

Ascii - @Ascii.Bcd; 
CIFS - @CIFS.Bcd; 
Conve rtUnsafe - @ConvertUnsafe. Bcd; 
Date - @Date. Bcd; 
DCSFileTypes - @DCSFileTypes.Bcd; 
Di rectory - @Di rectory. Bcd; 
Envi ronment - @Envi ronment. Bcd; 
Exec - @Exec. Bcd; 
File -. @File.Bcd; 
FileStream - @FileStream.Bcd; 
Heap - @Heap. Bcd: 
Inline - @Inline.Bcd; 
Kernel Fi 1 e - @Kernel Fi 1 e. Bcd; 
LongString - @LongString.Bcd: 
NameAndPasswo rdOps - @NameAndPasswordOps. Bcd; 
Process - @Process.Bcd; 
Rope - @Rope. Bcd; 
Ropelnline - @Ropelnline.Bcd: 
Runt ime - @Runt ime. Bcd: 
Segments - @Segments. Bcd: 
Space - @Space. Bcd; 
Storage - @Storage.Bcd: 
STP - @STP. Bcd; 
STPOps - @STPOps. Bcd; 
St ream - @Stream. Bcd; 
String - @String.Bcd; 
System - @System.Bcd; 
Systemlnternal - @Systemlnternal.Bcd; 
Time - @Time. Bcd; 
Transaction - @Transaction.Bcd; 
TTY - @TTY.Bcd; 
UserTerminal - @UserTerminal.Bcd; 

] ; 

-- File: BringOver.Model, last edit January 15, 1981 
LET @PilotInterfaces.DF IN [ 

BringOver: [CIFSlmpl: CIFS, 
ConvertUnsafeImpl: ConvertUnsafe, 
Datelmpl: Date, 
Di rectoryImpl: Di rectory, 
ExecImpl: Exec. 
File I mp 1: File, 
FileStreamlmpl: FileStream, 
Heaplmpl: Heap, 
InlineImpl: Inline, 
KernelFileImpl: KernelFile, 
LongStringImpl: LongString, 
NameAndPasswordOpsImpl: NameAndPasswordOps, 
Processlmpl: Process, 
RopeImpl: Rope, 
RopeInlinelmpl: RopeInline, 



130 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

] 

Runt imeImp 1: Runt ime, 
Segments Imp 1: Segments, 
SpaceImpl: Space, 
StorageImpl: Storage, 
STPImp 1: STP, 
STPOpsImpl: STPOps, 
StreamImpl; Stream, 
StringImpl: String, 
TimeImpl: . Time, 
Tr'ansact ionImpl: Transaction, 
TTY Imp 1: TTY, 
Use rTe rmi na 1 Iinp 1: Use rTe rmi na 1 ] 

-) [BringOverInterface:INTERFACE, BringOverCall: INTERFACE, BringOverCallImpl: 
BringOve~Call, . 
BringOverInterfaceImpl: BringOverInterface] - [ 

CWF - @CWF. Bcd; 
CWFImp 1 - @CWFImp 1 . Bcd; 
ComParse - @ComParse; 
ComParseImpl - @ComParseImpl; 
Subr - @Subr; 
SubrImpl - @SubrImpl; 
STPSub r - @STPSubr; 
STPSub rImp 1 - @STPSubrImpl; 
DFSubr - @DFSubr; 
DFUser - @DFUser; 
DFSub rImp 1 A - @DFSubrImpl; 
DFSubrImplB - @DFParserImpl; 
DFSubrImpl - (DFSubrImplA) PLUS (DFSubrImplB); 
BringOverInterface - @BringOverInterface; 
BringOverCall - @BringOverCall; 
[BringOverImpl: CONTROL, BringOverCallImpl: BringOverCall, 

BringOverInterfaceImpl: BringOverInterface] - @BringOverImpl 
] 

The top group of names are Pilot System definitions files, stored in a model called 
PilotInterfaces.Model. Each name, e.g., "Ascii", is given an interface as its value. The type of the 
name, e.g., ": INTERFACE Ascii", can be omitted since the modeller can look at the type of the 
value "@Ascii.Bcd" and determine it is an interface named "Ascii". 

The second model is called BringOver.Model and begins "LET". The LET clause forces the 
contents of a list of names to be visible "without qualification". This way, the standard versions 
of the Pilot definitions files in PilotInterfaces.Model are represented compactly in a separate file. 
After the LET is a list of parameters to the model, which must be passed in (in this case, by the 
Pilot Loader). In this case, those parameters are simply instances of interfaces of the required 
INTERFACE. The body of the model lists, one per line, either definitions files local to the model 
(i.e., definitions files from the programmer) or implementations of these definitions files. The 
host and directory information and create date information has been omitted in this example, but 
must be present for the modeller to· retrieve and store files. Also notice one implementor 
(BringOverImpl) exports an interface "CONTROL"; by convention, such an implementor' is a 
module the modeller will START on command. 

By comparison, the C/Mesa configuration module looks like: 



ApPENDIX D 

-- BringOver.Config, last edit August 16, 1982 4:55 pm 
-- the configuration for the BringOver program 

BringOver: CONFIGURATION 
IMPORTS CIFS, ConvertUnsafe, Date, Directory, Exec, 

File, FileStream, Heap, KernelFile, LongString, 
NameAndPasswordOps, Process, Rope, RopeInline, Runtime, 
Segments, Space, STP, STPOps, Storage, Stream, 
String, Time, Transaction, TTY, UserTerminal 

EXPORTS BringOverInterface, BringOverCall 
CONTROL BringOverImpl = { 

CWFImpl; 
ComParseImpl; 
SubrImpl; 
STPSubrImpl; 
DFSubrImpl; 
DFParserImpl; 
BringOverImpl; 

} . 

Why is the C/Mesa description shorter? There are two reasons: 

131 

1. In its body, the model mentions all user-owned modules, both interfaces and implementations. 

The configuration body mentions only the user's implementations. 

2. The parameter list of the model (,,[CIFSlmpl: CIFS, ... ") has some duplicate information that 

could be eliminated by a coercion in the SML language that mapped all interfaces in 

Pilotlnterfaces.Model into similarly named interface records. The parameter list would then 

be replaced by: 

BringOver: [Inst: @PilotInterfaces.Model] - [ 
LET Inst IN [ 

body 
] 

] 

which defines Inst to be a group of interface records with types that are the values defined in 
Pilotlnterfaces.Model. 

An Example (No Information Defaulted) 

In the previous version, we omitted all the argument lists following @-signs, since the 
modeller can supply for each parameter an actual with the same name. (We could not default 
the parameters if a module imported more than one instance of an interface.) We also omitted 
the type of the object when it could be inferred from the object on the right side of the " .... ". 
Here is a version that stores the entire description in one file and uses no defaults. 

Asci i: INTERFACE - @Asci i. Bcd; 
CIFS: INTERFACE - @CIFS. Bcd; 
ConvertUnsafe: INTERFACE - @ConvertUnsafe.Bcd; 
Date: INTERFACE - @Date. Bcd; 
DCSF il eTypes: INTERFACE - @DCSFileTypes.Bcd; 
Di rectory: INTERFACE - @Di rectory. Bcd; 
Env ironment: INTERFACE - @Envi ronment. Bcd; 
Exec: INTERFACE - @Exec. Bcd; 
File: INTERFACE - @File.Bcd; 
FileStream: INTERFACE - @FileStream.Bcd; 
Heap: INTERFACE - @Heap. Bcd; 
Inline: INTERFACE - @Inline.Bcd; 
KernelFile: INTERFACE - @KernelFile.Bcd; 



132 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

LongStri ng: INTERFACE - @LongString. Bcd; 
NameAndPasswordOps: INTERFACE - @NameAndPasswordOps.Bcd; 
Process: INTERFACE - @Process.Bcd; 
Rope: INTERFACE - @Rope. Bcd; 
RopeInl i ne: INTERFACE - @RopeInl i ne. Bcd; 
Runt ime: INTERFACE - @Runt ime. Bcd; 
Segments: INTERFACE - @Segments. Bcd; 
Space: INTERFACE - @Space. Bcd; 
Storage: INTERFACE - @Storage. Bcd; 
STP: INTERFACE - @STP. Bcd; 
STPOps: INTERFACE - @STPOps. Bcd; 
Stream: INTERFACE - @Stream. Bcd; 
String: INTERFACE - @String.Bcd; 
System: INTERFACE - @System. Bcd; 
SystemInternal: INTERFACE - @SystemInternal.Bcd; 
Time: INTERFACE - @Time. Bcd; 
Transaction: INTERFACE - @Transaction.Bcd; 
TTY: INTERFACE - @TTY. Bcd; 
UserTerminal: INTERFACE - @UserTerminal.Bcd; 
BringOver: [CIFSImpl: CIFS, 

ConvertUnsafeImpl: ConvertUnsafe, 
DateImp 1: Date, 
DirectoryImpl: Di rectory, 
ExecImp 1: Exec, 
FileImpl: File, 
FileStreamImpl: FileStream, 
Heap Imp 1: Heap, 
In 1 i n e Imp 1: In 1 i n e , 
Ker~elFileImpl: KernelFile, 
LongStri ngImp l:! LongStri ng, 
NameAndPasswordOpsImpl: NameAndPasswordOps, 
ProcessImpl: Process, 
RopeImp 1: Rope, 
RopeInlineImpl: RopeInline, 
Runt imeImp 1: Runt ime, 
SegmentsImpl: Segments, 
Space Imp 1: Space, 
StorageImpl: Storage, 
STPImp 1: STP, 
STPOpsImpl: STPOps, 
StreamImpl: Stream, 
StringImpl: String, 
TimeImpl: Time, 
TransactionImpl: Transaction, 
TTY Imp 1: TTY, 
UserTerminalImpl: UserTerminal] 

-) [BringOverInterface: INTERFACE, BringOverCall: INTERFACE, BringOverCallImpl: 
BringOverCall, 
BringOverInterfaceImpl: BringOverInterface] - [ 

CWF: INTERFACE - @CWF. Bcd; 
CWFImpl: CWF - @CWFImpl.Bcd[HeapImpl, InlineImpl, LongStringImpl, TimeImpl]; 
ComParse: INTERFACE - @ComParse.Mesa; 
ComParseImpl: ComParse - @tomParseImpl .Mesa[Asci i, ComParse, 

. Exec, Storage, String, TTY, ExecImpl, StorageImpl, 
StringImpl, TTYImpl]; 

Subr: INTERFACE - @Subr:.Mesa[File, . Space, Stream, TTY]; 
SubrImp 1: Sub r - @SubrImpl.Mesa[Asci i, CWf, DCSF il eTypes, 

Directory, Environment, Exec,· File, FileStream, 
Heap, Inline, LongString, NameAndPasswordOps, Runtime, 
Segments, Space, Stream, Subr, System, TTY, CWFImpl, 
Di rectoryImpl, ExecImpl, FileImpl, FileStreamImpl, 
HeapImpl, Inl ineImpl, LongStringImpl, 
NameAndPasswordOpsImpl, RuntimeImpl, SegmentsImpl, 
SpaceImpl, StreamImpl, TTYImpl]; 

STPSubr: INTERFACE - @STPSubr.Mesa[File, STP, Stream, System, TTY]; 
STPSubrImpl: STPSubr - @STPSubrImpl.Mesa[ 

CIFS, ConvertUnsafe, CWF, Date, DCSFileTypes, Directory, 
Environment, Exec, File, FileStream, Inline, LongString, 
NameAndPasswordOps, Process, Space, Storage, STP, STPOps, 
STPSubr, STPSubrExtras, Stream, String, Subr, TTY, UserTerminal, 
CIFSImpl, ConvertUnsafeImpl, CWFImpl, DateImpl, Di rectoryImpl, 
ExecImpl, FileImpl, FileStreamImpl, Inl ineImpl, LongStringImpl, 



] 

ApPENDIXD 

NameAndPasswordOpsImpl, ProcessImpl, SpaceImpl, STPImpl, 
STPOpsImpl, StorageImpl, StreamImpl, StringImpl, SubrImpl, 
UserTerminalImpl]: 

DFSubr: INTERFACE - @DFSubr.Mesa[File, Stream, TTY]: 
DFUser: INTERFACE - @DFUser.Mesa[DFSubr, TTY]: 
DFSubrImplA: DFSubr - @DFSubrImpl.Mesa[CWF, DFSubr, 

DFUser, Directory, Environment, Exec, Heap, Inline, 
LongStri ng, Space, STPSubr, Stream, St ri ng, Subr, 
SystemInternal, TTY, .. CWFImpl, DFSubrImpl, Di rectoryImpl, 
ExecImpl, HeapImpl, Inl ineImpl, LongStringImpl, 
SpaceImpl, STPSubrImpl, StreamImpl, StringImpl, 
SubrImpl, TTYImpl]: 

DFSubrImp 1 B: DFSubr - @DFParserImpl. Mesa[CWF, Date, DFSub r, 
Exec, LongString, Stream, String, Subr, Time, CWFImpl, 
DateImpl, DFSubrImpl, ExecImpl, LongStringImpl, 
StreamImpl, StringImpl, SubrImpl, TimeImpl]: 

DFSubrImpl: DFSubr - (DFSubrImplA) PLUS (DFSubrImplB): 
Bri ngOverInterface: INTERFACE - @BringOverInterface.Mesa: 
BringOverCall: INTERFACE - @BringOverCall.Mesa[Rope, TTY]: 
[BringOverImpl: CONTROL, BringOverCallImpl: BringOverCall, 
BringOverlnterfacelmpl: BringOverInterface] - @BringOverImpl.Mesa[ 

BringOverCall, BringOverlnterface, CIFS, ComParse, CWF, 
Date, DFSubr, Directory, Exec, File, FileStream, KernelFile, 
LongString, Rope, Ropelnline, Runtime, Space, Storage, 
STP, STPSubr, STPSubrExtras, Stream, String, Subr, Time, 
TTY, CIFSlmpl, ComParselmpl, CWFImpl, Datelmpl, DFSubrlmpl, 
DirectoryImpl, ExecImpl, FileStreamImpl, KernelFileImpl, 
LongStringlmpl, RuntimeImpl, Ropelmpl, Ropelnl inelmpl, 
Spacelmpl, Storagelmpl, STPlmpl, STPSubrImpJ, STPSubrExtrasImpl, 
Streamlmpl. Stringlmpl. SubrImpl. TimeImpl. TTYImpl] 

133 



134 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 



ApPENDIX E 135 

Appendix E: The Compiler Model 

The Cedar Compiler is one of the largest programs in the Cedar system. There are 84 
implementation modules and roughly 45,000 lines of Cedar code in the compiler. The two 
models below are being used to develop the Cedar compiler. The host and directory information 
and create times have been omitted. 

The C/Mesa configuration for the Compiler at the end of this section is followed by a 
version of the compiler with no defaults. These models are included to show the size of models 
the System Modeller can handle. The only difference between these and the models in Appendix 
o is size. 

Compiler Model (with Defaults) 

-- BasicPilot.Model, September 7, 1982 
[ 

Ascii - @Ascii.bcd; 
DCSFileTypes - @DCSFileTypes.bcd; 
Directory - @Directory.bcd; 
Environment - @Environment.bcd; 
Exec - @Exec.bcd; 
ExecOps - @ExecOps.bcd; 
Feedback - @Feedback.bcd; 
File - @File.bcd; 
FileStream - @FileStream.bcd; 
FileTypes - @FileTypes.bcd; 
Format - @Format.bcd; 
Heap - @Heap.bcd; 
Inline - @Inline.bcd; 
KernelFile - @KernelFile.bcd; 
LongString - @LongString.bcd; 
MiscAlpha - @MiscAlpha.bcd; 
PrincOps - @PrincOps.bcd; 
Process - @Process.bcd; 
ProcessorFace - @ProcessorFace.bcd; 
Runtime - @Runtime.bcd; 
SDDefs - @SDDefs.bcd; 
Space - @Space.bcd; 
Stream - @Stream.bcd; 
String - @String.bcd; 
Strings - @Strings.bcd; 
System - @System.bcd; 
TemporarySpecialExecOps - @TemporarySpecialExecOps.bcd; 
Time - @Time.bcd; 
TimeStamp - @TimeStamp.bcd; 
Transaction - @Transaction.bcd; 
TTY - @TTY.bcd; 
UserTerminal - @UserTerminal.bcd; 
Volume - @Volume.bcd 
] 

-- Compiler.Model, 12-Aug-82 14:36:41 PDT 
LET @BasicPilot.model IN [ 

Compiler: [Directorylmpl: Directory, 
ExecImpl: Exec, 
ExecOpsImpl1: ExecOps, 
FileImpl: File, 
FileStreamlmpl: FileStream, 
Heaplmpl: Heap, 
Inlinelmpl: Inline, 
KernelFilelmpl: KernelFile, 
LongStringlmpl: LongString, 
ProcessorFacelmpl: ProcessorFace, 
RuntimeImpl: Runtime, 
SpaceImpl: Space, 
StreamImpl: Stream, 
StringImpl: String, 
StringsImpl: Strings, 
TimeImpl: Time, 
TransactionImpl: Transaction, 



136 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

UserTerminallmpl: UserTerminal, 
Volumelmpl: Volume] 

-) [TemporarySpecialExecOpslmpl, ExecOpslmpl] - [ 
-- interfaces and symbol tables 
RTSD - @RTSD[]; 
Mopcodes ~ @Mopcodes.bcd; 
CommandUtil - @CommandUtil[]; 
Table - @Table.mesa; 
Alloc - @Alloc.mesa; 
BcdDefs - @BcdDefs[]; 

. BcdOps ~ @BcdOps[]; 
Symbols - @Symbols[]; 
Literals - @Literals[]; 
Tree - @Tree[]; 
SymbolSegment - @SymbolSegment[]; 
SymbolOps - @SymbolOps[]; 
SymbolTable - @SymbolTable[]; 
RCMap - @RCMap.mesa; 
RTBcd - @RTBcd[]; 
FileSegment - @FileSegment[]; 
FileParms - @FileParms[]; 
LiteralOps - @LiteralOps[]; 
TreeOps - @TreeOps[]; 
SymLiteralOps - @SymLiteralOps[]; 
Log - @Log[]; 
Types - @Types[]; 
Copier - @Copier[]; 
CompilerOps - @CompilerOps[]; 
CBinary - @CBinary.mesa; 
CompilerUtil - @CompilerUtil[]; 
OSMiscOps - @OSMiscOps[]; 
OSMiscOpslmpl: OSMiscOps - @OSMiscOpslmpl[]; 
CharlO - @CharIO[]; 
CharIOlmpl: CharlO - @CharIOlmpl[]; 
Real - @IeeeFloat.mesa; 
Reallmpl: Real - @IeeePack[]; 
Alloclmpl: Alloc - @Alloclmpl[]; 
[SymbolPack: INTERFACE, SymbolPacklmpl: SymbolPack, SymbolOpslmpll: 
SymbolOps] - @SymbolPack.mesa[]; 
SymbolOpslmp12: SymbolOps - @SymbolPackExt.mesa[]; 
SymbolOpslmpl: SymbolOps - (SymbolOpslmpll) PLUS (SymbolOpslmp12); 
[SymbolPackB Symbol Pack, SymbolPacklmplB: SymbolPackB, 
SymbolOpslmplIgnore: SymbolOps] - @SymbolPack.mesa[]; 
SymbolTablelmpl: SymbolTable - @SymbolCache.mesa[SymbolPackB, 
SymbolPacklmplB]; 
TreeOpslmpl: TreeOps - @TreePack.mesa[]; 
LiteralOpslmpl: LiteralOps - @LiteralPack[]; 
Typeslmpl: Types - @TypePack[]; 
Copierlmpll: Copier - @SymbolCopier.mesa[]; 
Copierlmp12: Copier - @FilePack.mesa[]; 
Copierlmpl: Copier - (Copierlmpll) PLUS (Copierlmp12); 
SymLiteralOpslmpl: SymLiteralOps - @SymLiteralPack.mesa[]; 
TypeStrings - @TypeStrings[]; 
TypeStringslmpl: TypeStrings - @TypeStringslmpl[]; 
RCMapOps - @RCMapOps[]; 
RCMapOpslmpl: RCMapOps - @RCMapBuilderlmpl[]; 
CompilerUtillmp16: CompilerUtil - @ObjectOut[]; 

-- pass 1 
ParseTable - @ParseTable.mesa; 
Pl - @Pl[]; 
CBinarylmpll: CBinary - @MesaTab.bcd; 
[CompilerUtillmpll: CompilerUtil, P1Impll: Pl] - @Passl[]; 
P1Imp13: Pl - @Scanner[]; 
P1Imp14: Pl - @Parser[]; 
P1Imp12: Pl - @PasslT[]; 
P1Impl: Pl - (P1Impll) PLUS (P1Imp12) PLUS (P1Imp13) PLUS (P1Imp14); 

-- pass 2 
CompilerUtillmp12: CompilerUtil - @Pass2[]; 

-- pass3 



ApPENDIX E 

P3 - @P3[]; 
P3S - @P3S[]; 
[Pass3: INTERFACE, Pass3Impl: Pass3, CompilerUtilImp13: CompilerUtil] -
@Pass3[]; 
P3Impll: P3 - @Pass3B[]; 
P3Imp12: P3 - @Pass3T[]; 
P3Imp13: P3 - @Pass3D[]; 
P3Imp14: P3 - @Pass3I[]; 
P3Imp15: P3 - @Pass3M[]; 
[P3Imp16: P3, P3SImpll: P3S] - @Pass3S[]; 
P3Imp17: P3 - @Pass3V[]; 
[P3Imp18: P3, P3SImp12: P3S] - @Pass3Xa[]; 
[P3Imp19: P3, P3SImp13: P3S] - @Pass3Xb[]; 
P3Impll0: P3 - @Pass3Xc[]; 
P3Impl: P3 - (P3Impll) PLUS (P3Imp12) PLUS (P3Imp13) PLUS (P3Imp14) PLUS 

(P3Imp15) PLUS (P3Imp16) PLUS (P3Imp17) PLUS (P3Imp18) PLUS 
(P3Imp19) PLUS (P3Impll0); 

P3SImpl: P3S - (P3SImpll) PLUS (P3SImp12) PLUS (P3SImp13); 
CompilerUtilImp17: CompilerUtil - @Pass3P[]; 

-- pass 4 
P4 - @P4[]; 
[Pass4: INTERFACE, Pass4Impl: Pass4, CompilerUtilImp14: CompilerUtil] -
@Pass4[]; 
P4Impll: P4 - @Pass4B[]; 
P4Imp12: P4 - @Pass4D[]; 
P4Imp13: P4 - @Pass4L[]; 
P4Imp14: P4 - @Pass4S[]; 
P4Imp15: P4 - @Pass40ps[]; 
P4Imp16: P4 - @Pass4Xa[]; 
P4Imp17: P4 - @Pass4Xb[]; 
P4Imp18: P4 - @Pass4Xc[]; 
ReplOps - @ReplOps[]; 
ReplOpsImpl: ReplOps - @ReplPack[]; 
P4Impl: P4 - (P4Impll) PLUS (P4Imp12) PLUS (P4Imp13) PLUS (P4Imp14) PLUS 

(P4Imp15) PLUS (P4Imp16) PLUS (P4Imp17) PLUS (P4Imp18); 

-- pass 5 and 6 
P5 - @P5[]; 
CodeDefs - @CodeDefs[]; 
P5F - @P5F[]; 
P5L - @P5L[]; 
P5S - @P5S[]; 
P5U - @P5U[]; 
PeepholeDefs - @PeepholeDefs[]~ 
Stack - @Stack[]; 

137 

Counting - @Counting[]; 
FOpCodes - @FOpCodes.mesa; 
OpCodeParams - @OpCodeParams[]; 
OpTableDefs - @OpTableDefs[]; 
[Code: INTERFACE, CodeImpl: Code, CompilerUtilImp15: CompilerUtil] - @Code[]; 
P5UImpl: P5U - @CgenUtil[]; 
[CodeDefsImp12: CodeDefs, P5Impll: P5] - @Temp[]; 
[P5LImpll: P5L, CodeDefsImp13: CodeDefs] - @VarUtils[]; 
[P5LImp12: P5L, CodeDefsImp14: CodeDefs] - @VarBasics[]; 
[P5LImp13: P5L, CodeDefsImp15: CodeDefs] - @VarMove[]; 
[P5Imp12: P5, P5SImpll: P5S] - @Driver[]; 
OpTableDefsImpl: OpTableDefs - @OpTable[]; 
P5Imp13: P5 - @FOpTable[]; 
[CodeDefsImp17: CodeDefs, P5SImp12: P5S] - @Address[]; 
StackImpl: Stack - @StackImpl[]; 
[CodeDefsImp19: CodeDefs, P5Imp14: P5, P5SImp13: P5S] - @Flow[]; 
[CodeDefsImpll0: CodeDefs, P5Imp15: P5, P5SImp14: P5S] - @Calls[]; 
[CodeDefsImplll: CodeDefs, P5Imp16: P5, P5SImp15: P5S] - @Store[]; 
[CountingImpl: Counting, CodeDefsImpl12: CodeDefs] - @CountingImpl[]; 
[CodeDefsImpl13: CodeDefs, P5Imp17: P5] - @Constructor[]; 
[CodeDefsImpl14: CodeDefs, P5Imp18: P5] - @Expression[]; 
[CodeDefsImpl15: CodeDefs, P5Imp19: P5] - @FlowExpression[]; 
[CodeDefsImpl16: CodeDefs, P5Impll0: P5] - @Statement[]; 
[CodeDefsImpl17: CodeDefs, P5Implll: P5] - @Selection[]; 
[CodeDefsImpl18: CodeDefs, P5Impl12: P5] - @OutCode[]; 
[CodeDefsImpl19: CodeDefs, P5Impl13: P5, PeepholeDefsImpll: PeepholeDefs] -



138 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

@PeepholeQ[]; 
[P5Impl14: P5, PeepholeDefsImp12: PeepholeDefs] - @PeepholeU[]; 
PeepholeDefsImp13: PeepholeDefs - @PeepholeZ[]; 
[CodeDefsImp120: CodeDefs, P5FImpll: P5F] - @DJumps[]; 
[CodeDefsImp121: CodeDefs, P5FImp12: P5F] - @CrossJump[]; 
[CodeDefsImp122: CodeDefs, P5Impl15: P5, P5FImp13: P5F] - @Final[]; 
CodeDefsImpl: CodeDefs - (CodeDefsImp12) PLUS (CodeDefsImp13) PLUS 

(CodeDefsImp14) PLUS (CodeDefsImp15) PLUS (CodeDefsImp17) PLUS 
(CodeDefsImp19) PLUS (CodeDefsImpllO) PLUS (CodeDefsImplll) PLUS 
(CodeDefsImpl12) PLUS (CodeDefsImpl13) PLUS (CodeDefsImpl14) PLUS 
(CodeDefsImpl15) PLUS (CodeDefsImpl16) PLUS (CodeDefsImpl17) PLUS 
(CodeDefsImpllS) PLUS (CodeDefsImpl19) PLUS (CodeDefsImp120) PLUS 
(CodeDefsImp121) PLUS (CodeDefsImp122); 

P5Impl: P5 - (P5Impll) PLUS (P5Imp12) PLUS (P5Imp13) PLUS (P5Imp14) PLUS 
(P5Imp15) PLUS (P5Imp16) PLUS (P5Imp17) PLUS (P5ImplS) PLUS 
(P5Imp19) PLUS (P5ImpllO) PLUS (P5Implll) PLUS (P5Impl12) PLUS 
(P5Impl13) PLUS (P5Impl14) PLUS (P5Impl15); 

P5FImpl: P5F - (P5FImpll) PLUS (P5FImp12) PLUS (P5FImp13); 
P5LImpl: P5L - (P5LImpll) PLUS (P5LImp12) PLUS (P5LImp13); 
P5SImpl: P5S - (P5SImpll) PLUS (P5SImp12) PLUS (P5SImp13) PLUS 

(P5SImp14) PLUS (P5SImp15); 
PeepholeDefsImpl: PeepholeDefs - (PeepholeDefsImpll) PLUS 
(PeepholeDefsImp12) PLUS (PeepholeDefsImp13); 
PackageSymbols - @PackageSymbols[]; 
-- compiler control 
[CompilerOpsImpl: CompilerOps, CompilerUtilImplS: CompilerUtil] -
@Sequencer[]; 
[ComData: INTERFACE, ComDataImpl: ComData] - @ComData[]; 
ErrorTable - @ErrorTable[]; 
LogImpl: Log - @LogPack[]; 
CBinaryImp12: CBinary - @ErrorTab.bcd; 
DebugTable - @DebugTable[]; 
CompilerUtillmp19: CompilerUtil - @Debug[]; 
CBinaryImp13: CBinary - @DebugTab.bcd; 
CBinaryImpl: CBinary - (CBinaryImpll) PLUS (CBinaryImp12) PLUS 

(CBinaryImp13) ; 
CompilerUtilImpl: CompilerUtil - (CompilerUtilImpll) PLUS 

(CompilerUtilImp12) PLUS 
(CompilerUtilImp13) PLUS (CompilerUtilImp14) PLUS (CompilerUtilImp15) 

PLUS 
(CompilerUtilImp16) PLUS (CompilerUtilImp17) PLUS (CompilerUtilImplS) 

PLUS 
(CompilerUtilImp19); 

FileParmOps - @FileParmOps[]; 
FileParmOpsImpl: FileParmOps - @FileParmPack[]; 
[ExecOpsImp12: ExecOps, TemporarySpecialExecOpsImpl: TemporarySpecialExecOps] 
- @Interface[]; 
ExecOpsImpl: ExecOps - (ExecOpsImp12) THEN (ExecOpsImpll); 
CommandUtilImpl: CommandUtil - @CommandPack[]; 
TestC: CONTROL - @TestCompilerImpl[] 
] 

Configuration for Compiler 

The C/Mesa configuration for the Compiler uses defaulting rules similar to the defaults in the 
modelling language. 

-- Compiler.config, Compiler configuration 
Compiler: CONFIG LINKS: CODE 

IMPORTS 
Directory, ExecOps, File, FileStream, Heap, Inline, KernelFile, 
LongString, ProcessorFace, Runtime, Space, String, Time, 
Transaction, Volume 

EXPORTS ExecOps, TemporarySpecialExecOps, CompilerOps 
CONTROL Interface = { 

SymCache: CONFIG 
IMPORTS File, Heap, LongString, Space, Strings J Transaction 
EXPORTS SymbolTable 



CONTROL SymbolCaehe { 
Symbol Pack; 
SymbolCaehe}; 

P1: CONFIG 
IMPORTS 

ApPENDIX E 

Alloe, ComData, CompilerUtil, CharlO, FileStream, LiteralOps, 
LongString, Real, Strings, SymbolOps, TreeOps 

EXPORTS CompilerUtil 
CONTROL Pass1 = { 

Pass1; 
Pass1T; 
Scanner; 
Parser} ; 

P3: CONFIG 
IMPORTS 

Alloe, ComData, Copier, Log, LiteralOps, OSMiseOps, 
SymbolOps, SymbolPaek, SymLiteralOps, TreeOps, Types 

EXPORTS CompilerUtil, Copier 
CONTROL Pass3 = { 

Pass3; 
SymbolCopier; 
Pass3B; 
Pass3T; 
Pass3D; 
Pass3I; 
Pass3M; 
Pass3S; 
Pass3V; 
Pass3Xa; 
Pass3Xb; 
Pass3Xe}; 

P4: CONFIG 
IMPORTS 

139 

Alloe, ComData, CompilerUtil, Copier, Heap, Log, LongString, LiteralOps, 
Real, Strings, SymbolOps, SymLiteralOps, TreeOps, Types 

EXPORTS CompilerUtil 
CONTROL Pass4 = { 

Pass4; 
ReplPaek; 
Pass4B; 
Pass4D; 
Pass4L; 
Pass4S; 
Pass40ps; 
Pass4Xa; 
Pass4Xb; 
Pass4Xe}; 

P5: CONFIG 
IMPORTS 

Alloe, ComData, CompilerUtil, Counting, FileStream, Log, LiteralOps, 
OSMiseOps, Real, SymbolOps, SymLiteralOps, TreeOps 

EXPORTS CompilerUtil 
CONTROL Code = { 

Code; 
CgenUtil; 
Temp; 
VarUtils; 
VarBasies; 
VarMove; 
Dri ver; 
OpTable; 
FOpTable; 
Address; 
Staeklmpl; 
Flow; 
Calls 
Store 
Count nglmpl; 



140 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

Constructor; 
Expression; 
FlowExpression; 
Statement; 
Selection; 
OutCode; 
PeepholeQ; 
PeepholeU; 
PeepholeZ; 
DJumps; 
CrossJump; 
Final}; 

BcdOutput: CONFIG 
IMPORTS 

Alloc, ComData, FileStream, Heap, Inline, LiteralOps, LongString, 

OSMiscOps, SymbolOps, 
EXPORTS Comp il e rUt il 

ObjectOut; 
TypeStringsImpl; 
RCMapBuilderImpl}; 

SymLiteralOps, TreeOps 
{ 

-- Compiler specific system code 
OSMiscOpsImpl; 
CharIOImpl; 
IeeePack; 
AllocImpl; 

-- Compiler util ities 
Symbol Pack; 
SymbolPackExt; 
SymCache; 
TreePack; 
LiteralPack; 
SymLiteralPack; 
TypePack; 
F il ePack; 
BcdOutput; 
MesaTab LINKS: FRAME; 

- - C omp i 1 e r pas s e s 
PI; 
Pass2; 
P3; 
Pass3P; 
P4; 
P5; 

-- Compiler control 
Sequencer; 
ComData; 
LogPack; 
E rrorTab LINKS: FRAME; 
Debug; 
DebugTab LINKS: FRAME; 
FileParmPack; 
Interface; 
CommandPack; 

} . 

Compiler Model (with No Defaults) 

-- BasicPilot.Model, September 7, 1982 
[ 

Ascii: INTERFACE - @Ascii.bcd; 
DCSFileTypes: INTERFACE - @DCSFileTypes.bcd; 
Directory: INTERFACE - @Directory.bcd; 
Environment: INTERFACE - @Environment.bcd; 



ApPENDIX E 

Exec: INTERFACE - @Exec.bcd; 
ExecOps: INTERFACE - @ExecOps.bcd; 
Feedback: INTERFACE - @Feedback.bcd; 
File: INTERFACE - @File.bcd; 
FileStream: INTERFACE - @FileStream.bcd; 
FileTypes: INTERFACE - @FileTypes.bcd; 
Format: INTERFACE - @Format.bcd; 
Heap: INTERFACE - @Heap.bcd; 
Inline: INTERFACE - @Inline.bcd; 
KernelFile: INTERFACE - @KernelFile.bcd; 
LongString: INTERFACE - @LongString.bcd; 
MiscAlpha: INTERFACE - @MiscAlpha.bcd; 
PrincOps: INTERFACE - @PrincOps.bcd; 
Process: INTERFACE - @Process.bcd; 
ProcessorFace: INTERFACE - @ProcessorFace.bcd; 
Runtime: INTERFACE - @Runtime.bcd; 
SDDefs: INTERFACE - @SDDefs.bcd; 
Space: INTERFACE - @Space.bcd; 
Stream: INTERFACE - @Stream.bcd; 
String: INTERFACE - @String.bcd; 
Strings: INTERFACE - @Strings.bcd; 
System: INTERFACE - @System.bcd; 
TemporarySpecialExecOps: INTERFACE - @TemporarySpecialExecOps.bcd; 
Time: INTERFACE - @Time.bcd; 
TimeStamp: INTERFACE - @TimeStamp.bcd; 
Transaction: INTERFACE - @Transaction.bcd; 
TTY: INTERFACE - @TTY.bcd; 
UserTerminal: INTERFACE - @UserTerminal.bcd; 
Volume: INTERFACE - @Volume.bcd 
] 

-- Compiler.Model, 12-Aug-8214:36:41 PDT 
LET @BasicPilot.model IN [ 

Compiler: [DirectoryImpl: Directory, 
ExecImpl: Exec, 
ExecOpsImpll: ExecOps, 
FileImpl: File, 
FileStreamImpl: FileStream, 
HeapImpl: Heap, 
InlineImpl: Inline, 
KernelFileImpl: KernelFile, 
LongStringImpl: LongString, 
ProcessorFaceImpl: ProcessorFace, 
RuntimeImpl: Runtime, 
SpaceImpl: Space, 
StreamImpl: Stream, 
StringImpl: String, 
StringsImpl: Strings, 
TimeImpl: Time, 
TransactionImpl: Transaction, 
UserTerminalImpl: UserTerminal, 
VolumeImpl: Volume] 

-) [TemporarySpecialExecOpsImpl, ExecOpsImpl] - [ 
RTSD: INTERFACE - @RTSD.mesa[SDDefs]; 
Mopcodes: INTERFACE - @Mopcodes.bcd; 
CommandUtil: INTERFACE - @CommandUtil.mesa[ExecOps, Stream, Strings]: 
Table: INTERFACE - @Table.mesa; 
Alloc: INTERFACE - @Alloc.mesa; 
BcdDefs: INTERFACE - @BcdDefs.mesa[PrincOpsi Table, TimeStamp]; 
BcdOps: INTERFACE - @BcdOps.mesa[BcdDefs]; 
Symbols: INTERFACE - @Symbols.mesa[PrincOps, Table, TimeStamp]; 
Literals: INTERFACE - @Literals.mesa[Symbols, Table]; 
Tree: INTERFACE - @Tree.mesa[Table, Literals, Symbols]; 
SymbolSegment: INTERFACE - @SymbolSegment.mesa[Literals, 

Symbols, Table, TimeStamp, Tree]; 
SymbolOps: INTERFACE - @SymbolOps.mesa[Alloc, Strings, 

Symbols, TimeStamp, Tree]; 
SymbolTable: INTERFACE - @SymbolTable.mesa[FileSegment, SymbolPack]; 
RCMap: INTERFACE - @RCMap.mesa; 
RTBcd: INTERFACE - @RTBcd.mesa[BcdDefs, RCMap. Symbols]; 
FileSegment: INTERFACE - @FileSegment.mesa[File]; 

141 



142 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

FileParms: INTERFACE - @FileParms.mesa[FileSegment, Strings, TimeStamp]; 
LiteralOps: INTERFACE - @LiteralOps.mesa[Alloc, 'Literals, Strings, Symbols]; 
TreeOps: INTERFACE - @TreeOps.mesa[Alloc, Literals, Symbols, Tree]; 
SymLiteralOps: INTERFACE - @SymLiteralOps.mesa[Alloc, Literals, RTBcd, 
Symbols, 

Tree] ; 
Log: INTERFACE - @Log.mesa[Strings, Symbols, Tree]; 
Types: INTERFACE - @Types.mesa[SymbolTable,Symbols]; 
Copier: INTERFACE - @Copier.mesa[Alloc, FileParms, Strings, 

Symbols, SymbolTable, TimeStamp]; 
CompilerOps: INTERFACE - @CompilerOps.mesa[File, FileParms, 

S-tream, Strings, TimeStamp]; 
CBinary: INTERFACE - @CBinary.mesa; 
CompilerUtil: INTERFACE - @CompilerUtil.mesa[Alloc, CompilerOps, 

FileStream, Stream, Strings, Tree]; 
OSMiscOps: INTERFACE - @OSMiscOps.mesa[Environment, File, 

Strings, TimeStamp]; 
OSMiscOpsImpl: OSMiscOps - @OSMiscOpsImpl.mesa[DCSFileTypes, 

Directory, File, Inline, KernelFile, OSMiscOps, 
ProcessorFace, Runtime, Space, Time, TimeStamp, 
"-a-b-cj-ns", DirectoryImpl, InlineImpl, KernelFileImpl, 
ProcessorFaceImpl, RuntimeImpl, SpaceImpl, TimeImpl]; 

CharlO: INTERFACE - @CharIO.mesa[Format, Stream, Strings]; 
CharIOImpl: CharlO - @CharIOImpl.mesa[CharIO, Stream, 

Strings, "-a-b-cj-ns", StringsImpl, StreamImpl]: 
Real: INTERFACE - @IeeeFloat.mesa; 
RealImpl: Real - @IeeePack.mesa[Inline, Real, "-a-b-cj-ns", InlineImpl]; 
AllocImpl: Alloc - @AllocImpl.mesa[Alloc, Environment, 

File, FileTypes, Heap, Inline, Runtime, Space, Volume, 
"-a-b-cj-ns", FileImpl, HeapImpl, Inl ineImpl, RuntimeImpl, 
SpaceImpl, VolumeImpl]; 

[Symbol Pack: INTERFACE, SymbolPackImplA: SymbolPack, SymbolOpsImpll: 
SymbolOps] - @SymbolPack.mesa[ 

Inline, Literals, Strings, Symbols, SymbolOps, SymbolSegment, 
TimeStamp, Tree, "-a-b-cj-ns", InlineImpl, StringsImpl]; 

SymbolOpsImp12: SymbolOps - @SymbolPackExt.mesa[ 
Alloc, Strings, Symbols, SymbolOps, SymbolPack, 
SymbolSegment, Tree, TreeOps, "-a-b-cj-ns", AllocImpl, 
StringsImpl, SymbolOpsImpl, TreeOpsImpl, SymbolPackImplA]; 

SymbolOpsImpl: SymbolOps - (SymbolOpsImpll) PLUS (SymbolOpsImp12); 
[SymbolPackB: INTERFACE SymbolPack, SymbolPackImplB: SymbolPackB, 
SymbolOpsImplIgnore: SymbolOps] - @SymbolPack.mesa[ 

Inline. Literals, Strings, Symbols, SymbolOps, SymbolSegment, 
TimeStamp, Tree, "-a-b-cj-ns", InlineImpl, StringsImpl]; 

SymbolTableImpl: SymbolTable - @SymbolCache.mesa[ 
Environment, File, FileSegment, Heap, Space, Symbols, 
SymbolPackB, SymbolSegment, SymbolTable, "-a-b-cj-ns", 
SymbolPackImplB, FileImpl, HeapImpl. SpaceImpl]; 

TreeOpsImpl: TreeOps - @TreePack.mesa[Alloc, Literals, 
Symbols, Tree, TreeOps, "-a-b-cj-ns", AllocImpl]; 

LiteralOpsImpl: LiteralOps - @LiteralPack.mesa[Alloc, 
Literals, LiteralOps. Strings, Symbols, "-a-b-cj-ns", 
AllocImpl, StringsImpl]; 

TypesImpl: Types - @TypePack.mesa[Strings, SymbolTable, 
Symbols, Types, "-a-b-cj-ns", StringsImpl]; 

CopierImpll: Copier - @SymbolCopier.mesa[Alloc, 
Copier. Inline, LiteralOps, OSMiscOps, Strings, 
SymbolTable, Symbols, SymbolOps, SymbolPack, Tree, 
TreeOps, "-a-b-cj-ns", AllocImpl, CopierImpl, InlineImpl, 
LiteralOpsImpl~ OSMiscOpsImpl, TreeOpsImpl, SymbolPackImplA, 
SymbolOpsImpl]; 

CopierImp12: Copier - @FilePack.mesa[Alloc, Copier, 
FileParms, Strings, Symbol Table, Symbols, SymbolOps, 
SymbolPack. SymbolSegment, TimeStamp, "-a-b-cj-ns", 
AllocImpl, SymbolTableImpl, SymbolOpsImpl, SymbolPackImplA]; 

CopierImpl: Copier - (CopierImpll) PLUS (CopierImp12); 
SymLiteralOpsImpl: SymLiteralOps - @SymLiteralPack.mesa[ 

Alloc, ComData, Literals, LiteralOps, RTBcd, Strings, 
Symbols, SymbolOps, SymbolSegment, SymLiteralOps, 
Table, Tree. TreeOps. Types, "-a-b-cj-ns", AllocImpl, 
LiteralOpsImpl. SymbolOpsImpl, TreeOpsImpl, Typeslmpl, 
ComDataImpl]; 



ApPENDIX E 

TypeStrings: INTERFACE~ @TypeStrings.mesa[Symbols, SymbolTable]; 
TypeStringslmpl: TypeStrings ~ @TypeStringslmpl.mesa[ 

Inline, Strings, Symbols, SymbolTable, TypeStrings, 
"-a-b-cj-ns", Inlinelmpl, Stringslmpl]; 

RCMapOps: INTERFACE ~ @RCMapOps.mesa[RCMap, SymbolTable, 
Symbols]; 

RCMapOpslmpl: RCMapOps ~ @RCMapBuilderlmpl.mesa[ 
Inline, Table, Symbols, SymbolTable, Environment, 
RCMap, RCMapOps, "-a-b-cj-ns", Inlinelmpl]; 

CompilerUtillmp16: CompilerUtil ~ @ObjectOut.mesa[ 
Alloc, BcdDefs, ComData, CompilerUtil, Environment, 
FileStream, Heap, Inline, Literals, LiteralOps, 
OSMiscOps, PackageSymbols, RCMap, RCMapOps, RTBcd, 
Stream, Strings, Symbols, SymbolSegment, SymbolOps, 
SymLiteralOps, Table, Tree, TreeOps, TypeStrings, 
"-a-b-cj-ns", Alloclmpl, FileStreamlmpl, Heaplmpl, 
Inlinelmpl, OSMiscOpslmpl, LiteralOpslmpl, RCMapOpslmpl, 
Streamlmpl, Stringslmpl, SymbolOpslmpl, SymLiteralOpslmpl, 
TreeOpslmpl, TypeStringslmpl, ComDatalmpl]; 

ParseTable: INTERFACE ~ @ParseTable.mesa; 
Pl: INTERFACE ~ @Pl.mesa[ParseTable, Stream, Strings, Symbols]; 
CBinarylmpll: CBinary ~ @MesaTab.bcd; 
[CompilerUtillmpll: CompilerUtil, Pllmpll: Pl] ~ @Passl.mesa[ 

Alloc, BcdDefs, ComData, CompilerUtil, LiteralOps, Pl, 
Strings, Symbols, SymbolOps, Tree, "-a-b-cj-ns", Alloclmpl, 
LiteralOpslmpl, Pllmpl, SymbolOpslmpl, ComDatalmpl]; 

Pllmp13: Pl ~ @Scanner.mesa[Ascii, CharlO, CompilerUtil, 
Environment, FileStream, LiteralOps, Pl, ParseTable, 
Real, Stream, Strings, SymbolOps, "-a-b-cj-ns", 
CharIOlmpl, CompilerUtillmpl, FileStreamlmpl, LiteralOpslmpl, 
Reallmpl, Streamlmpl, Stringslmpl, SymbolOpslmpl]; 

Pllmp14: Pl ~ @Parser.mesa[CharIO, CompilerUtil, 
Pl, ParseTable, Stream, Strings, "-a-b-cj-ns", CharIOlmpl, 
CompilerUtillmpl, Pllmpl]; 

Pllmp12: Pl ~ @PasslT.mesa[ComData, ParseTable, 
Pl, Symbols, Tree, TreeOps, "-a-b-cj-ns", Pllmpl, 
TreeOpslmpl, ComDatalmpl]; 

Pllmpl: Pl ~ (Pllmpll) PLUS (Pllmp12) PLUS (Pllmp13) PLUS (Pllmp14); 
CompilerUtillmp12: CompilerUtil ~ @Pass2.mesa[Alloc, 

ComData, CompilerUtil, Log, Symbols, SymbolOps, 
Tree, TreeOps, "-a-b-cj-ns", Alloclmpl, Loglmpl, 
SymbolOpslmpl, TreeOpslmpl, ComDatalmpl]; 

P3: INTERFACE ~ @P3.mesa[Alloc, Copier, Inline, Symbols, Tree]; 
P3S: INTERFACE ~ @P3S.mesa[P3, .Symbols, Tree]; 
[Pass3: INTERFACE, Pass3lmpl: Pass3, CompilerUtillmp13: CompilerUtil] ~ 
@Pass3.mesa[ 

Alloc, ComData, CompilerUtil, Copier, Log, P3, SymLiteralOps, 
Symbols, Tree, TreeOps, "-a-b-cj-ns", Alloclmpl, Copierlmpl, 
Loglmpl, P3lmpl, SymLiteralOpslmpl, TreeOpslmpl, ComDatalmpl]; 

P3lmpll: P3 ~ @Pass3B.mesa[Alloc, ComData, Copier, 
LiteralOps, Log, OSMiscOps, P3, Strings, Symbols, 
SymbolOps, Tree, TreeOps, "-a-b-cj-ns", Alloclmpl, 
Copierlmpl, LiteralOpslmpl, Loglmpl, OSMiscOpslmpl, 
P3lmpl, SymbolOpslmpl, TreeOpslmpl, ComDatalmpl]; 

P3lmp12: P3 ~ @Pass3T.mesa[Alloc, ComData, P3, Symbols, 
SymbolOps, Tree, TreeOps, Types, "-a-b-cj-ns", P3lmpl, 
SymbolOpslmpl, TreeOpslmpl, Typeslmpl, ComDatalmpl]; 

P3lmp13: P3 ~ @Pass3D.mesa[Alloc, ComData, Inline, 
Log, P3, Symbols, SymbolOps, Tree, TreeOps, "-a-b-cj-ns", 
Inlinelmpl, Loglmpl, P3lmpl, SymbolOpslmpl, TreeOpslmpl, 
ComDatalmpl]; 

P3Imp14: P3 ~ @Pass3I.mesa[Alloc, ComData, Copier, 
Log, P3, P3S, Symbols, SymbolOps, SymLiteralOps, 
Tree, TreeOps, "-a-b-cj-ns", AllocImpl, CopierImpl, 
LogImpl, P3Impl, P3Slmpl, SymLiteralOpsImpl, SymbolOpsImpl, 
TreeOpsImpl, ComDataImpl]; 

P3Imp15: P3 ~ @Pass3M.mesa[Alloc, ComData, Log, 
Pass3, P3, P3S, Strings, Symbols, SymbolOps, Tree, 
TreeOps, Types, "-a-b-cj-ns", AllocImpl, LogImpl, 
P3Impl, P3SImpl, SymbolOpsImpl, TreeOpsImpl, TypesImpl, 
ComDataImpl, Pass3Impl]; 

[P3Imp16: P3, P3SImpll: P3S] ~ @Pass3S.mesa[ 

143 



144 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

Alloe, ComData, Log, Pass3, P3, P3S, SymLiteralOps, Symbols, 
SymbolOps, Tree, TreeOps, "-a-b-ej-ns", LogImpl, P3Impl, 
P3SImpl, SymLiteralOpsImpl, SymbolOpsImpl, TreeOpsImpl, 
ComDataImpl, Pass3Impl]; 

P3Imp17: P3 - @Pass3V.mesa[Alloe, ComData, Copier, 
Log, P3, P3S, Symbols, SymbolOps, Tree, TreeOps, 
"-a-b-ej-ns", CopierImpl, LogImpl, P3Impl, P3SImpl, 
SymbolOpsImpl, TreeOpsImpl, ComDataImpl]; 

[P3Imp18: P3, P3SImp12: P3S] - @Pass3Xa.mesa[ 
Alloe, ComData, Copier, Log, P3, P3S, Symbols, SymbolOps, 
Tree, TreeOps, Types, "-a-b-ej-ns", CopierImpl, LogImpl, 
P3Impl, P3SImpl, SymbolOpsImpl, TreeOpsImpl, TypesImpl, 
ComDataImpl]; 

[P3Imp19: P3, P3SImp13: P3S] - @Pass3Xb.mesa[ 
Alloe, ComData, LiteralOps, Log, P3, P3S, SymLiteralOps, 
Symbols, SymbolOps, Tree, TreeOps, Types, "-a-b-ej-ns", 
LiteralOpsImpl, LogImpl, P3Impl, P3SImpl, SymLiteralOpsImpl, 
SymbolOpsImpl, TreeOpsImpl, TypesImpl, ComDataImpl]; 

P3ImpllO: P3 - @Pass3Xe.mesa[Alloe, ComData, Copier, 
Log, P3, P3S, Symbols, SymbolOps, Tree, TreeOps, 
"-a-b-cj-ns", CopierImpl, LogImpl, P3Impl, P3SImpl, 
SymbolOpsImpl, TreeOpsImpl, ComDataImpl]; 

P3Impl: P3 - (P3Impll) PLUS (P3Imp12) PLUS (P3Imp13) PLUS (P3Imp14) PLUS 
(P3Imp15) PLUS (P3Imp16) PLUS (P3Imp17) PLUS (P3Imp18) PLUS 
(P3Imp19) PLUS (P3ImpllO); 

P3SImpl: P3S - (P3SImpll) PLUS (P3SImp12) PLUS (P3SImp13); 
CompilerUtilImp17: CompilerUtil - @Pass3P.mesa[Alloc, 

ComData, CompilerUtil, Log, Symbols, SymbolOps, 
Tree, TreeOps, "-a-b-cj-ns", AlloeImpl, LogImpl, 
SymbolOpsImpl, TreeOpsImpl, ComDataImpl]; 

P4: INTERFACE - @P4.mesa[Alloc, BcdDefs, Inline, LiteralOps, 
Literals, Symbols, Tree]; 

[Pass4: INTERFACE, Pass4Impl: Pass4, CompilerUtilImp14: CompilerUtil] -
@Pass4.mesa[ 

Alloe, ComData, CompilerUtil, P4, Symbols, Tree, TreeOps, 
"-a-b-cj-ns", AlloeImpl, TreeOpsImpl, P4Impl, ComDataImpl]; 

P4Impll: P4 - @Pass4B.mesa[Alloc, BcdDefs, BcdOps, 
ComOata, CompilerUtil, Copier, Environment, Heap, 
Log, P4, Pass4, PrincOps, ReplOps, Strings, Symbols, 
SymbolOps, SymbolTable, SymLiteralOps, Tree, TreeOps, 
Types, "-a-b-cj-ns", AllocImpl, CompilerUtilImpl, 
CopierImpl, HeapImpl, LogImpl, P4Impl, ReplOpsImpl, 
StringsImpl, SymbolOpsImpl, SymLiteralOpsImpl, TreeOpsImpl, 
TypesImpl, ComDataImpl, Pass4Impl]; 

P4Imp12: P4 - @Pass4D.mesa[Alloc, ComData, PrineOps, 
Log, P4, Symbols, SymbolOps, Tree, TreeOps, "-a-b-cj-ns", 
LogImpl, P4Impl, SymbolOpsImpl, TreeOpsImpl, ComDataImpl]; 

P4Imp13: P4 - @Pass4L.mesa[Alloe, ComData, CompilerUtil, 
Log, P4, PrincOps, Symbols, SymbolOps, Tree, TreeOps, 
"-a-b-cj-ns", CompilerUtilImpl, LogImpl, SymbolOpsImpl, 
TreeOpsImpl, ComDataImpl]; 

P4Imp14: P4 - @Pass4S.mesa[Alloc, ComData, Log, 
LiteralOps, P4, Pass4, PrincOps, Symbols, SymbolOps, 
SymLiteralOps, Tree, TreeOps, "-a-b-ej-ns", LogImpl, 
LiteralOpsImpl, P4Impl, SymbolOpsImpl, SymLiteralOpsImpl, 
TreeOpsImpl, ComDataImpl, Pass4Impl]; 

P4Imp15: P4 - @Pass40ps.mesa[Alloc, Literals, LiteralOps, 
~og, P4, Pass4, Real, Symbols, Tree, TreeOps, "-a-b-ej-ns", 
LiteralOpsImpl, LogImpl, P4Impl, RealImpl, TreeOpsImpl, 
Pass4Impl]; 

P4Imp16: P4 - @Pass4Xa.mesa[Alloc, ComData, Environment, 
Heap, Inline, Literals, LiteralOps, Log, P4, Pass4, 
Symbols, SymbolOps, Tree, TreeOps, Types, "-a-b-cj-ns", 
HeapImpl, InlineImpl, LogImpl, LiteralOpsImpl, P4Impl, 
SymbolOpsImpl, TreeOpsImpl, TypesImpl, ComDataImpl, 
Pass4Impl]; 

P4Imp17: P4 - @Pass4Xb.mesa[Alloc, ComData, Heap, 
LiteralOps, Log, P4, Pass4, Symbols, SymbolOps, 
SymLiteralOps, Tree, TreeOps, "-a-b-cj-ns", HeapImpl, 
LogImpl, LiteralOpsImpl, P4Impl, SymbolOpsImpl, 
SymLiteralOpsImpl, TreeOpsImpl, ComDataImpl, Pass4Impl]; 

P4Imp18: P4 - @Pass4Xc.mesa[Alloc, ComData, Environment, 



ApPENDIX E 

Heap, LiteralOps, Log, P4, Symbols, SymbolOps, SymLiteralOps, 
Tree, TreeOps, "-a-b-cj-ns", HeapImpl, LogImpl, 
Li~aralOpsImpl, P4Impl, SymbolOpsImpl, SymLiteralOpsImpl, 
TreeOpsImpl, ComOataImpl]; 

ReplOps: INTERFACE - @ReplOps.mesa[Symbols, SymbolTable]; 
ReplOpsImpl: ReplOps - @ReplPack.mesa[ReplOps, Strings, 

SymbolTable, Symbols, Types, "-a-b-cj-ns", StringsImpl, 
TypesImpl]; 

P4Impl: P4 - (P4Impll) PLUS (P4Imp12) PLUS (P4Imp13) PLUS (P4Imp14) PLUS 
(P4Imp15) PLUS (P4Imp16) PLUS (P4Imp17) PLUS (P4Imp18); 

P5: INTERFACE - @P5.mesa[CodeOefs, Literals, Symbols, Tree]; 
CodeOefs: INTERFACE - @CodeOefs.mesa[Alloc, Environment, 

Literals, PrincOps, Symbols, SymbolSegment, Table]; 
P5F: INTERFACE - @P5F.mesa[CodeOefs]; 
P5L: INTERFACE - @P5L.mesa[CodeOefs, Environment, Symbols]; 
P5S: INTERFACE - @P5S.mesa[CodeOefs, Tree]; 

145 

P5U: INTERFACE - @P5U.mesa[Alloc, CodeOefs, PackageSymbols, Symbols, Tree]; 
PeepholeOefs: INTERFACE - @PeepholeOefs.mesa[Alloc, CodeOefs, 

FOpCodes, PrincOps]; 
Stack: INTERFACE - @Stack.mesa[Alloc, CodeOefs, Symbols]; 
Counting: INTERFACE - @Counting.mesa[CodeOefs, Symbols, Tree]; 
FOpCodes: INTERFACE - @FOpCodes.mesa; 
OpCodeParams: INTERFACE - @OpCodeParams.mesa[Environment, 

Mopcodes, PrincOps]; 
OpTableOefs: INTERFACE - @OpTableOefs.mesa[Environment]; 
[Code: INTERFACE, CodeImpl: Code, CompilerUtilImp15: CompilerUtil] -
8Code.mesa[ 

CodeOefs, CompilerUtil, P5, Symbols, "-a-b-cj-ns", P5Impl]; 
P5UImpl: P5U - @CgenUtil.mesa[Alloc, Code, CodeOefs, 

ComOata, FOpCodes, LiteralOps, OpTableOefs, P5, 
P5U, PackageSymbols, PrincOps, Runtime, Stack, SymbolOps, 
Symbols, Table, Tree, TreeOps, "-a-b-cj-ns", AllocImpl, 
ComOataImpl, CodeImpl, LiteralOpsImpl, OpTableOefsImpl, 
P5Impl, RuntimeImpl, StackImpl, SymbolOpsImpl, TreeOpsImpl]; 

[CodeOefsImp12: CodeOefs, P5Impll: P5] - @Temp.mesa[ 
Alloc, Code, CodeOefs, ComOata, FOpCodes, Log, P5, P5U, 
PrincOps, Stack, SymbolOps, Symbols, "-a-b-cj-ns", ComOataImpl, 
CodeImpl, P5UImpl, LogImpl, P5Impl, StackImpl, SymbolOpsImpl]; 

[P5LImpll: P5L, CodeOefsImp13: CodeOefs] - @VarUtils.mesa[ 
Alloc, BcdOefs, Code, CodeOefs, Environment, Inline, LiteralOps, 
Literals, P5, P5L, P5U, PrincOps, Stack, SymbolOps, Symbols, 
"-a-b-cj-ns", CodeImpl, InlineImpl, LiteralOpsImpl, P5Impl, 
P5UImpl, P5LImpl, StackImpl, SymbolOpsImpl]; 

[P5LImp12: P5L, CodeOefsImp14: CodeOefs] - @VarBasics.mesa[ 
Alloc, Code, CodeOefs, PrincOps, Environment, FOpCodes, 
Inline, LiteralOps, Literals, P5, P5L, P5U, Stack, Symbols, 
"-a-b-cj-ns", CodeImpl, LiteralOpsImpl, P5Impl, P5UImpl, 
P5LImpl, StackImpl]; 

[P5LImp13: P5L, CodeOefsImp15: CodeOefs] - @VarMove.mesa[ 
Alloc, Code, CodeOefs, Environment, FOpCodes, Inline, 
Literals, OpCodeParams, P5L, P5U, PrincOps, Stack, Symbols, 
"-a-b-cj-ns", CodeImpl, InlineImpl, P5UImpl, P5LImpl, 
StackImpl]; 

[P5Imp12: P5, P5SImpll: P5S] - @Oriver.mesa[ 
Alloc, Code, CodeOefs, ComOata, FOpCodes, P5, P5L, P5S, 
P5U, PrincOps, Stack, SymbolOps, Symbols, Tree, TreeOps, 
"-a-b-cj-ns", AllocImpl, ComOataImpl, CodeImpl, CodeOefsImpl, 
P5Impl, P5LImpl, P5UImpl, StackImpl, SymbolOpsImpl, TreeOpsImpl]; 

OpTableOefsImpl: OpTableOefs - @OpTable.mesa[OpTableOefs, 
"-a-b-cj-ns"]; 

P5Imp13: P5 - @FOpTable.mesa[P5, "-a-b-cj-n~"]; 
[CodeOefsImp17: CodeOefs, P5SImp12: P5S] - @Address.mesa[ 

Alloc, Code, CodeOefs, ComOata, FOpCodes, Inline, P5, 
P5L, P5S, P5U, SymbolOps, Symbols, Tree, TreeOps, "-a-b-cj-ns", 
ComOataImpl, CodeImpl, InlineImpl, P5UImpl, P5LImpl, P5Impl, 
SymbolOpsImpl, TreeOpsImpl]; 

StackImpl: Stack - @StackImpl.mesa[Alloc, Code, 
CodeOefs, FOpCodes, P5, P5L, P5U, Stack, Symbols, 
"-a-b-cj-ns", CodeImpl, P5Impl, P5LImpl, P5UImpl]; 

[CodeOefsImp19: CodeOefs, P5Imp14: P5, P5SImp13: P5S] - @Flow.mesa[ 
Alloc, Code, CodeOefs, Environment, FOpCodes, Literals, 
P5, P5L, P5S, P5U, PrincOps, SOOefs, Stack, Symbols, Tree, 



146 CONTROLLING LARGE SOFfW ARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

TreeOps, "-a-b-cj-ns", CodeImpl, P5UImpl, P5LImpl, P5Impl, 
TreeOpsImpl, StackImpl]; 

[CodeDefsImpllO: CodeDefs, P5Imp15: P5, P5SImp14: P5S] - @Calls.mesa[ 
Alloc, Code, CodeDefs, ComData, Counting, Environment, 
FOpCodes, Log, OpTableDefs, P5, P5L, P5S, P5U, PrincOps, 
RTSD, SDDefs, Stack, SymbolOps, Symbols, Tree, TreeOps, 
"-a-b-cj-ns", ComDataImpl, CodeImpl, CountingImpl, LogImpl, 
OpTableDefsImpl, P5Impl, P5LImpl, P5UImpl, StackImpl, 
SymbolOpsImpl, TreeOpsImpl]; 

[CodeDefsImplll: CodeDefs, P5Imp16: P5, P5SImp15: P5S] - @Store.mesa[ 
Alloc, Code, CodeDefs, ComData, Counting, Environment, 
FOpCodes, P5, P5L, P5S, P5U, Stack, SymbolOps, Symbols, 
Tree, TreeOps, "-a-b~cj-ns", Co~eImpl, ComDataImpl, CountingImpl, 
P5UImpl, P5LImpl, P5Impl, StackImpl, SymbolOpsImpl, TreeOpsImpl]; 

[CountingImpl: Counting, CodeDefsImpl12: CodeDefs] - ~CountingImpl.mesa[ 
Alloc, CodeDefs, ComData, Counting, FOpCodes, P5, P5L, 
P5U, RTSD, Stack, SymbolOps, Symbols, SymLiteralOps, Tree, . 
TreeOps, "-a-b-cj-ns", ComDataImpl, P5Impl, P5LImpl, P5UImpl, 
StackImpl, SymbolOpsImpl, SymLiteralOpsImpl, TreeOpsImpl]; 

[CodeDefsImpl13: CodeDefs, P5Imp17: P5] - @Constructor.mesa[ 
Alloc, Code, CodeDefs, ComData, Counting, Environment, 
FOpCodes, Inline, LiteralOps, Literals, P5, P5L, P5U, 
PrincOps, SDDefs, Stack, Symbols, SymbolOps, Tree, TreeOps, 
"-a-b-cj-ns", ComDataImpl, CodeImpl, CountingImpl, InlineImpl, 
LiteralOpsImpl, P5Impl, P5LImpl, P5UImpl, StackImpl, SymbolDpsImpl, 
TreeOpsImpl]; 

[CodeDefsImpl14: CodeDefs, P5Imp18: P5] - @Expression.mesa[ 
Alloc, BcdDefs, Code, CodeDefs, ComData, Environment, 
FOpCodes, Inline, Literals, OpCodeParams, P5, P5L, P5S, 
P5U, PrincOps, Real, Stack, SymbolOps, Symbols, Tree, 
TreeOps, "-a-b-cj-ns", CodeImpl, ComDataImpl, InlineImpl, 
P5Impl, P5LImpl, P5SImpl, P5UImpl, RealImpl, StackImpl, 
SymbolOpsImpl, TreeOpsImpl]; . 

[CodeDefsImpl15: CodeDefs, P5Imp19: P5] - @FlowExpression.mesa[ 
Alloc, Code, CodeDefs, FOpCodes, P5, P5L, P5U, Stack, 
Symbols, Tree, TreeOps. "-a-b-cj-ns", CodeImpl, P5UImpl, 
P5LImpl, P5Impl, StackImpl, TreeOpsImpl]; 

[CodeDefsImp116: CodeDefs, P5ImpllO: P5] - @Statement.m,esa[ 
Alloc, Code, CodeDefs, ComData, FOpCodes, Log, P5, P5L, 
P5S, P5U, PrincOps, Stack, SymbolOps, Symbols, Tree, T~eeOps, 
"-a-b-cj-ns", ComDataImpl, CodeImpl, P5UImpl, P5LImpl, 
P5Impl, P5SImpl, StackImpl, SymbolOpsImpl, TreeOpsImpl, 
LogImpl]; 

[CodeDefsImpl17: CodeDefs, P5Implll: P5] - @Selection.mesa[ 
Alloc, Code, CodeDefs, ComData, FOpCodes, P5, P5L, P5S, 
P5U, RTSD, Stack, Symbol0ps, Symbols, SymLiteralOps, Tree, 
TreeOps, "-a-b-cj-ns", ComDataImpl, CodeImpl, P5UImpl, 
P5LImpl, P5Impl, P5SImpl, StackImpl, SymbolOpsImpl, SymLiteralOpsImpl, 
TreeOpsImpl]; 

[CodeDefsImpl18: CodeDefs, P5Impl12: P5] - @OutCode.mesa[ 
Alloc, Code, CodeDefs, ComData, CompilerUtil, Environment, 
FileStream, FOpCodes, Inline, Literals, LiteralOps, Log, 
Mopcodes, OSMiscOps, P5, P5U, PrincOps, Stack, Stream, 
Symbols, SymbolOps, SymbolSegment, Table~ "-a-b-cj-ns", 
ComDataImpl, CodeImpl, CompilerUtilImpl, FileStreamImpl, 
InlineImpl, LiteralOpsImpl, LogImpl, OSMiscOpsImpl, P5Impl, 
P5UImpl, StackImpl, StreamImpl, SymbolOpsImpl]; 

[CodeDefsImpl19: CodeDefs, P5Impl13: P5, PeepholeDefsImpll: PeepholeDefs] -
@PeepholeQ.mesa[ 

Alloc, Code, P5U, CodeDefs, FOpCodes, Inline, OpCodeParams, 
P5, PeepholeDefs, SDDefs, "-a-b-cj-ns", CodeImpl, InlineImpl, 
P5UImpl, P5Impl, PeepholeDefsImpl]; . 

[P5Impl14: P5, PeepholeDefsImp12: PeepholeDefs] - @PeepholeU.mesa[ 
Alloc, Code, CodeDefs, FOpCodes, Inline, Mopcodes, OpCodeParams, 
OpTableDefs, P5, P5U, PeepholeDefs, PrincOps, "-a-b-cj-ns", 
CodeImpl, InlineImpl, P5UImpl, OpTableDefsImpl, P5Impl]; 

PeepholeDefsImp13: PeepholeDefs - @PeepholeZ.mesa[ 
Alloc, Code, CodeDefs, ComData, FOpCodes, Log, MiscAlpha, 
Mopcodes, OpCodeP~rams, OpTableDefs, P5, PeepholeDefs, 
P5U, RTSD, SDDefs, "-a-b-cj-ns", CodeImpl, ComDataImpl, 
LogImpl, OpTableDefsImpl, P5Impl, P5UImpl, PeepholeDefsImpl]; 

[CodeDefsImp120: CodeDefs, P5FImpll: P5F] - @DJumps.mesa[ 



ApPENDIX E 

Alloe, Code, CodeDefs, OpCodeParams, P5F, "-a-b-ej-ns", 
CodeImpl, P5FImpl]; 

[CodeDefsImp12~: CodeDefs, P5FImp12: P5F] - @CrossJump.mesa[ 
Alloe, Code, CodeDefs, OpTableDefs, P5F, P5U, PeepholeDefs, 
"-a-b-ej-ns", CodeImpl, OpTableDefsImpl, P5UImpl, P5FImpl, 
PeepholeDefsImpl]; 

[CodeDefsImp122: CodeDefs, P5Impl15: P5, P5FImp13: P5F] - @Final.mesa[ 
Alloe, Code, CodeDefs, ComData, FOpCodes, Mopeodes, OpCodeParams, 
OpTableDefs, P5, P5F, P5U,PeepholeDefs, "-a-b-ej-ns", 
CodeImpl, ComDataImpl, OpTableDefsImpl, P5UImpl, P5Impl, 
P5FImpl, PeepholeDefsImpl]; 

CodeDefsImpl: CodeDefs - (CodeDefsImp12) PLUS (CodeDefsImp13) PLUS 
(CodeDefsImp14) PLUS (CodeDefsImp15) PLUS (CodeDefsImp17) PLUS 
(CodeDefsImp19) PLUS (CodeDefsImpll0) PLUS (CodeDefsImplll) PLUS 
(CodeDefsImpl12) PLUS (CodeDefsImpl13) PLUS (CodeDefsImpl14) PLUS 
(CodeDefsImpl15) PLUS (CodeDefsImpl16) PLUS (CodeDefsImpl17) PLUS 
(CodeDefsImpl18) PLUS (CodeDefslmpl19) PLUS (CodeDefsImp120) PLUS 
(CodeDefsImp121) PLUS (CodeDefsImp122); 

P5Impl: P5 - (P5Impll) PLUS (P5Imp12) PLUS (P5Imp13) PLUS (P5Imp14) PLUS 
(P5Imp15) PLUS (P5Imp16) PLUS (P5Imp17) PLUS (P5Imp18) PLUS 
(P5Imp19) PLUS (P5Impll0) PLUS (P5Implll) PLUS (P5Impl12) PLUS 
(P5Impl13) PLUS (P5Impl14) PLUS (P5Impl15); 

P5Flmpl: P5F - (P5FImpll) PLUS (P5FImp12) PLUS (P5FImp13); 
P5LImpl: P5L - (P5LImpll) PLUS (P5LImp12) PLUS (P5LImp13); 
P5SImpl: P5S - (P5SImpll) PLUS (P5SImp12) PLUS (P5SImp13) PLUS 

(P5SImp14) PLUS (P5SImp15); 
PeepholeDefsImpl: PeepholeDefs - (PeepholeDefsImpll) PLUS 

(PeepholeDefsImp12) PLUS (PeepholeDefsImp13); 
PaekageSymbols: INTERFACE - @PaekageSymbols.mesa[PrineOps, 

Symbols, SymbolSegment, Table]; 
[CompilerOpsImpl: CompilerOps, CompilerUtilImp18: CompilerUtil] -

@Sequeneer.mesa[ 
CBinary, Alloe, CharlO, CompilerOps, CompilerUtil, ComData, 
Copier, File, FileParmOps, FileStream, LiteralOps, Log, 
OSMiseOps, Stream, Strings, SymLiteralOps, SymbolPaek, 
SymbolOps, SymbolSegment, SymbolTable, Time, TimeStamp, 

147 

Tree, TreeOps, "-a-b-ej-ns", AlloeImpl, CBinaryImpl, CharIOImpl, 
CompilerUtilImpl, CopierImpl, FileStreamImpl, FileParmOpsImpl, 
LogImpl, LiteralOpsImpl, OSMiseOpsImpl, StreamImpl, SymLiteralOpsImpl, 
SymbolOpsImpl, SymbolTableImpl, StringsImpl, TimeImpl, 
TreeOpsImpl, SymbolPaekImplA, ComDataImpl]; 

[ComData: INTERFACE, ComDataImpl: ComData] - @ComData.mesa[ 
Alloe, BedDefs, BedOps, FileParms, OSMiseOps, Symbols, 
SymbolSegment, SymbolTable, Strings, Tree, "-a-b-ej-ns"]; 

ErrorTable: INTERFACE - @ErrorTable.mesa[Log, Tree]; 
LogImpl: Log - @LogPaek.mesa[Alloe, CharlO, ComData, 

CompilerUtil, ErrorTable, FileStream, LiteralOps, 
Log, Stream, Strings, Symbols, SymbolOps, Tree, 
TreeOps. "-a-b-ej-ns", AlloeImpl. CharIOImpl, CompilerUtilImpl. 
FileStreamImpl, LiteralOpsImpl. SymbolOpsImpl. TreeOpsImpl. 
ComDataImpl]; 

CBinarylmp12: CBinary - @ErrorTab.bed; 
DebugTable: INTERFACE - @DebugTable.mesa[Symbols. Tree]; 
CompilerUtilImp19: CompilerUtil - @Debug.mesa[Alloe, 

BedDefs, CharlO, CompilerUtil, DebugTable, Literals, 
LiteralOps, Strings, Stream. Symbols. SymbolOps, 
Tree, TreeOps, "-a-b-ej-ns", AlloeImpl, CharIOImpl, 
CompilerUtilImpl, LiteralOpsImpl, SymbolOpsImpl, 
TreeOpsImpl]; 

CBinaryImp13: CBinary - @DebugTab.bed; 
CBinaryImpl: CBinary - (CBinaryImpll) PLUS (CBinaryImp12) PLUS 

(CBinaryImp13); 
CompilerUtilImpl: CompilerUtil - (CompilerUtilImpll) PLUS 

(CompilerUtilImp12) PLUS 
(CompilerUtilImp13) PLUS (CompilerUtilImp14) PLUS (CompilerUtilImp15) 

PLUS 
(CompilerUtilImp16) PLUS (CompilerUtilImp17) PLUS (CompilerUtilImp18) 

PLUS 
(CompilerUtilImp19); 

FileParmOps: INTERFACE - @FileParmOps.mesa[CommandUtil, 
File, FileParms, Strings]; 

FileParmOpsImpl: FileParmOps - @FileParmPaek.mesa[ 



148 CONTROLLING LARGE SOFTWARE DEVELOPMENT IN A DISTRIBUTED ENVIRONMENT 

BcdOefs, BcdOps, CommandUtil, File, FileParms, FileParmOps, 
FileSegment, OSMiscOps, Space, Strings, SymbolTable, 
TimeStamp, "-a~b-cj-ns", CommandUtilImpl, OSMiscOpsImpl, 
SpaceImpl, StringsImpl, SymbolTableImpl]; , 

[ExecOpsImp12: ExecOps, TemporarySpecialExecOpsImpl: TemporarySpecialExecOps] 
- @Interface.mesa[ . 

CharlO, CommandUtil, CompilerOps, ExecOps, Fe~dback, File, 
FileParms, FileParmOps, FileStream, Heap, Inline, OSMiscOps, 
Stream, String, Strings, TemporarySpecialExecOps, Time, 
TimeStamp, "-a-b-cj-ns", CharIOImpl, CommandUtilImpl, 
CompilerOpsImpl, ExecOpsImpl, FileStreamImpl, FileParmOpsImpl, 
Heaplmpl, InlineImpl, OSMiscOpsImpl, StreamImpl, StringImpl, 
StringsImpl, TimeImpl]; 

ExecOpsImpl: ExecOps - (ExecOpsImp12) THEN (ExecOpsImpll); 
CommandUtilImpl: CommandUtil - @CommandPack.mesa[ 

Astii, CharlO, CommandUtil. Heap, Stream, Strings, 
"-a-b-cj-ns", CharIOImpl, HeapImpl, StringsImpl]; 

TestC: CONTROL - @TestCompilerImpl.mesa[Ascii, Exec, 
ExecOps, Feedback, Heap, TemporarySpecialExecOps, 
UserTerminal, "-a-b-cj-ns", ExecImpl, HeapImpl, 
TemporarySpecialExecOpsImpl, UserTerminalImpl] 


