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1. Introduction 

This paper reports measurements of dynamic instruction frequencies for two Mesa [1,2] programs 
running on a Dorado personal computer [5] at the Computer Science Laboratory of the Xerox Palo 
Alto Research Centers. The purpose of this study is to examine the patterns of use associated with 
the Mesa instruction set, and to find the implications of that usage for the Mesa architecture and its 
implementation. This paper discusses Mesa's byte encoding. patterns of memory references, use of 
an expression evaluation stack, and the costs of emulating 32-bit operations on a 16-bit processor. 

Mesa is a high level, systems implementation language with a strong, flexible type machinery that 
permits independently compiled programs to be combined as a functional unit The Mesa compiler 
generates instructions that run on any processor that implements the Mesa architecture. The Mesa 
architecture defines the instruction set and other run time facilities necessary to support Mesa 
programs. There are a variety of implementations of Mesa, including one for the Dorado. The 
work described here was done with a prototype version of the· Mesa architecture. The differences 
between the two architectures are not consequential to this study. The official architecture is 
described elsewhere [8]. 

2 .. Experimental Method 

The author modified the Dorado's microcoded, Mesa emulator to keep statistics on instruction 
frequencies. The microcode maintained an array of 216 32-bit counters, where each element in the 
array contained the count of the number of times a particular pair of instructions executed. The 
microcode was modified to save the opcode byte of the last instruction, and that byte was 
concatenated with the current opcode byte to provide an index into the array of instruction pair 
counts. Single instruction frequencies were computed from this data. This bookkeeping activity 
slowed the Mesa emulator by about a factor of six. 

The Mesa run time system was modified so that this counting facility was disabled while the system 
executed disk-wait loops. The measurements did not distinguish between time spent in the 
operating system and time spent in the two programs described below. 

While different instructions require different amounts of time to execute, only instruction frequency 
information was collected. This paper does not make a study of the execution times (duration) for 
the various instructions (such information is crucial to the analysis of any implementation of the 
Mesa virtual machine). 

The two programs examined were the Mesa compiler and a VLSI circuit analysis program, 
VlsiCheck. The compiler was designed to execute on an Alto [4] with only 64K words of 16-bit 
memory. It comprises about 39,000 lines of source, and is an example of a program highly 
optimized for space efficiency. The compiler is a production program, and to enhance its speed, it 
does not use bounds or pointer checking. In contrast, VlsiCheck, which is about 500 lines of 
source, deals with 32-bit quantities (both data and pointers), and may require 1M word of memory 
or more. VlsiCheck is a relatively new program that makes full use of bounds and pointer 
checking. 



AN ANALYSIS OF A MESA INSTRUCTION SEI' 

3. Mesa's Run Time Structures 

Mesa is a high level9 systems implementation language that provides for facilities such as a strong 
type system and separate compilation of modules. While the ability to declare new data types at 
compile time is a crucial part of the language, it is not interesting from an architectural perspective, 
since the Mesa instruction set provides no particular accommodations to the type machinery. See 
[1,2] for more information about the language, [8] for a more detailed discussion of the run time 
system, and [9] for details about the byte encoding. . 

Procedures and Modules. In a Mesa program, code executes as part of a procedure body or module 
body. All procedures exist in the context of a module, and a procedure's data exists only for the 
duration of the procedure's execution. A module, however, contains information with a longer 
Iifetime9 i.e., as long as the module exists in an executing Mesa program. The Mesa processor 
architecture supports two run time structures that parallel this arrangement: for each instance of a 
module there is a unique structure known as the Global Frame that contains module specific 
information, and for each activation of a procedure there is a unique structure known as the Local 
Frame that contains procedure specific values. 

Memory Access. Memory that is addressed by 16-bit pointers lives in an area known as the Main 
Data Space, which contains the. Local and Global frames as well as some structures allocated by the 
programmer. The Mesa architecture defines dedicated registers to hold pointers to the current 
Local (L) and Global (G) frames, and the Main Data Space (MDS). Much of the Mesa instruction 
set is concerned with reading or writing data relative to one of these three pointers. Access to 
memory outside the MDS is described below. 

Byte Encoded Instmction Set. The Mesa instruction set employs a compact form of byte encoding 
[9,10,11] wherein the first byte is the opcode of the instruction and subsequent bytes are operands 
for the, instruction. The instruction set has been optimized to provide a high degree of code 
compaction: the instructions that occur most frequently (by static measurements) are one-byte long, 
those that occur less frequently two-bytes long, etc. [9]. Code compaction supports the goal of being 
able to make large, complex systems that can run efficiently in machines with relatively small 
amounts of primary memory [8]. 

The Mesa compiler facilitates code compaction in an important way: variables in the Local and 
Global frames are allocated in an order that reflects their static frequency of use. The compiler 
sorts variables by decreasing order of static occurrences (the number of occurrences in the program 
text), and places them in that order in the Local or Global frames. Since the most frequently 
occurring instructions are encoded in one-byte, the most frequently occurring variables can be 
referenced with one-byte instructions. 

In this. paper, the terms I..oca\ and Globalirefer to the ith entries in the respective frame. For 
example, Load Local 4 (LlA) is a one-byte instruction9 but Store Global 23 (SGB 23) uses two-bytes 
where the second byte provides an eight-bit offset 

Expression Evaluation Stack. The Mesa architecture defines a small expression evaluation stack that 
can be implemented in the high speed registers of the processor. The architecture defines the 
minimum size of the stack, and all ALU operations (arithmetic, Boolean) take operands from the 
stack and leave results on the stack. Consequently, neither the ALU instructions nor the load and 
store instructions, which move items between memory and the stack, require bits to specify machine 
register addresses. 
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4. The Mesa Instruction Set 

This section provides a brief overview of the Mesa instruction set The instruction set provides a 
collection of general purpose operations and some special purpose ones. 

Memory References. Memory instructions either operate relative to one of the pointers discussed in 
§3 (L, G, MOS), or provide a full (32-bit) address. In addition to instructions that deal with 16-bit 
quantities, there are instructions that support the use of 32-bit quantities such as LONG POINTER, 
LONG INTEGER, etc. 

The compiler decides the locations of variables within the Local and Global frames, and the Mesa 
run time-system allocates the storage for those frames at run time. The programmer may allocate 
storage for additional structures within or outside the MOS. There are instructions that perform 
miscellaneous operations on memory data such as reading or writing bytes from a string, moving a 
block of bytes, Raster Op [4], etc. 

Records. The compiler may use one or more instructions to access the components of a record. To 
support records, there are special instructions to load or deposit contiguous bit fields within a 16-bit 
value. 

Branches and Control Transfers. The normal flow of program execution through a sequence of 
consecutive code bytes may be interrupted because of branches or control transfers. A branch is a 
conditional or an unconditional jump, and a variety of them are defined. The opcode byte defines 
the type of branch and any data bytes provide the PC-relative offset Control transfers are 
exemplified by procedure call and return, coroutine transfers, and process switches. The instruction 
set likewise defines a variety of instructions to support these activities. 

Arithmetic and Boolean Operations. There are a collection of arithmetic and Boolean instructions 
that operate on the top two elements of the evaluation stack and leave their results on the stack. 
While these instructions default to 16-bit quantities, some work on 32-bit quantities. Floating point 
instructions are implemented with traps if there is no supporting microcode or hardware. 

5. Partitioning the Instruction Set into Different Groups 

To avoid the blizzard of detail associated with data collected for this study, much of this paper 
discusses the Mesa instruction set in terms of different groups of instructions. A col1ection of 
groups that contains the entire instruction set is a partition, and five partitions of the instruction set 
are described below. J;:ach partition provides a different insight into the use of the Mesa instruction 
set. 

The Stardard Partition. This partition reflects a division of the instruction set into ten groups that 
are most obviously defined by the architecture, and is very similar to one documented elsewhere [8]. 

• Load/Store: Load or Store values between the evaluation stack and memory locations 
relative to the Local or Global frames. 

• Load Immediate: Load constant values onto the evaluation stack from the code stream. 

• R/W: Read or write values relative to a pointer. The pointer may be MOS relative or a 
"LONG" pointer. . 

3 
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• ALU Ops: Perfonn an arithmetic or Boolean operation and push the results onto the top 
of the evaluation stack. 

• Stack Ops: Change the stack pointer only (this may recover "popped" data). 

• Jumps: These are unconditional jumps; they always execute. 

• Conditional Jumps: These are local jumps that happen only if the condition specified by 
the opcode is true. 

• Xfers: These are non-local transfers [3]. such as procedure calls and returns (as opposed 
to conditional and unconditional jumps). 

• Process: These instructions identify process operations. 

• Miscellaneous: Various instructions that do not fit into any other categories. 

Locals vs. Globals. This partition distinguishes those instructions that reference data through the 
Local or Global frames from all other instructions. This includes instructions like "Load Local 3" 
and indirect instructions that reference data through pointers in frames. However. not all 
instructions that might touch the Local or Global frames are included in this grouP. since 
instructions that deal with pointers. procedure call and return. etc .• are not included. 

• Locals: Move values between the expression "evaluation stack and the Local frame. 

• Locals Indirect: Move values between the expression evaluation stack and memory 
through a pointer in the Local frame. 

• Globals: Similar to "Locals". except the references are to the Global frame. 

• Globals Indirect: Similar to "Locals Indirect". except the references are through the 
Global frame. 

• All other instructions. 

Loads vs. Stores. This partition distinguishes instructions that load values onto the stack from 
memory from the ones that store values from the stack into memory. 

• Loads: These instructions read values from memory and place them in .. the evaluation 
stack. 

• Stores: These instructions write values from the evaluation stack into memory. 

• All other instructions. 

Components for Memory Address. This partition distinguishes the number of components that must 
be added together to compute the effective address for an instruction that references memory. 
Instructions that use multi-component addresses must use an ALU to compute the effective address 
of the instruction. For simplicity of analysis we distinguish only two of the many possible cases, 
and instructions that deal with more than one data item are in the category of "other". 

• Meml: These instructions use a single-component address. 

• Mem2: These instructions use a two-component address. 

• All other instructions. 
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Instruction Length. This partition distinguishes instructions based upon their instruction length. 

• Lengthl: These instructions are only one-byte long. 

• Length2: These instructions are two-bytes long. 

• Length3: These instructions are three-bytes long. 

6. Single Instruction Frequencies 

A Short Glimpse at Individual Instructions. It is hard to learn much of general interest by examining 
individual instruction frequencies of a small set of programs, since those statistics may highlight 
idiosyncratic behavior of the programs. For example, only three of the top eight most frequently 
executed instructions in both VlsiCheck and the compiler are the same. (See the table below). 

The compiler's favorite instruction is a conditional branch while VlsiCheck's is a double-word load. 
The compiler concerns itself with making discriminations about the information it has in hand, 
while VlsiCheck continually searches a large data-base outside the MDS. This means that VlsiCheck 
must make extensive use of 32-bit pointers and data. 

A Few of the Most Frequent Instructions 

Complier % Sum VlsiCheck % Sum 

Jump If :;f:0 10.30 10.3 Load Local 7.04 7.04 
Double-Word 

Load LO 8.96 19.26 Load LO 6.39 13.43 

Read Field 7.50 26.76 Store Local 5.15 18.58 
Double-Word 

Load Immed 5.51 32.27 Recover Stack 4.93 23.51 
16-bit Value Item 

Add 4.94 37.21 Load Immed .4.60 28.11 
Byte (8-bit value) 

Read Indirect 4.6 41.81 Load Immed. 0 3.92 32.03 

Recover Stack 3.51 45.32 Read Indirect 3.11 35.14 
Item Index OtT Pointer 

Load GO 2.99 48.31 Jump If ¢O 3.03 38.17 

Single Instruction Frequencies by Partition: The Standard Partition. Recall from §5 the groups of 
the Standard Partition reflect the designer's view of the instruction set: ALU operations, loads and 
stores, jumps, etc. The two tables appearing on the following page show the relative frequencies for 
the standard groups. In summary. they show that most instructions move data in and out of 
memory. there are a moderate number of transfers. and there are relatively few ALU operations. 

The most important result shown by the first table is that for both programs. about 50% of all 
instructions are primarily concerned with reading or writing memory. The Xfer and Process groups 
also reference memory, though their functions are different Thus. the speed of memory references 
is an important parameter in any Mesa processor implementation. 

The second table shows statistics about branches, conditional branches. and procedure calls. These 
are interesting because of the effect they have upon instruction prefetch hardware in a computer­
they interrupt the expected, sequential processing of the code stream [13J. 
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Statistics For "Standard" Partition 

Compiler VlsiCheck 

Group % Sum Group % Sum 

LdlStore 32.97 32.97 LdlStore 35.15 35.15 
RIW 19.59 52.57 RIW 14.14 49.29 
CondJumps 16.82 69.39 Stack Ops 12.23 61.52 
Ld Immed 11.43 80.82 ALU Ops 10.76 72.28 
ALU Ops 8.14 88.96 Ld Immed 10.53 82.81 
Stack Ops 3.87 92.84 CondJumps 8.42 91.23 
Xfers 3.55 96.39 Xfers 5.31 96.54 
Jumps 2.25 98.64 Jumps 1.75 98.29 
Mise 1.35 99.99 Mise 1.67 99.96 
Processes 0.0l 10()'o Processes 0.04 100.0 

Branches, Xfers, and Jumps 

Compiler VlsiCheck 

Type % Sum Type % Sum 

CondJumps 16.82 16.82 CondJumfs 8.42 8.42 
Xfers 3.55 20.37 Xfers 5.3 13.73 
Jumps 2.25 22.62 Jumps 1.75 15.48 

The tables ·and figures below show the most frequently executed instructions within each group of 
the Standard Partition. For the sake of brevity, only the first three or four instructions in each 
group are shown. Note that within each group only a few instructions account for most of the 
activity in that group, and that bounds and NIL checking (in Stack Ops group) cost only 5.14% of all 
instructions, even in a program like VlsiCheck, that extensively reads and writes memory. 

Opcode mnemonics are provided in the appendix. 

Compiler Percentages VlsiCheck Percentages 

Instr Group Over Sum 
All 

Instr Group Over Sum 
All 

LdlStore=32.97% Over All LdlStore=35.15% Over All 

LLO 27.16 8.96 8.96 LLDB 20.04 7.04 7.04 
LGO 9.06 2.99 11.95 LLO 18.17 6.39 13.43 
LLI 7.29 2.40 14.35 SLDB 14.65 5.15 18.58 
LU 5.02 1.76 20.34 

RIW=19.59% Over All RlW=14.14% Over All 

RF 38.23 7.49 7.49 RILP 21.96 3.11 3.11 
RO 23.68 4.64 12.13 RO 13.00 1.84 4.95 
RXLP 6.86 1.34 13.47 RDBL 10.38 1.47 6.42 

RSTR 9.66 1.37 7.79 

CondJumps= 16.82% Over All Stack Ops = 12.23% Over All 

JZNEB 61.18 10.29 10.29 PUSH 40.30 4.93 4.93 
JZEQB 7.87 1.32 11.61 NILCKL 21.78 2.66 7.59 
JEQB 5.71 .96 12.57 BNOCK 10.37 1.33 8.92 

NILCK 9.42 1.15 10.07 

Ld Immed = 11.43% Over All ALU Ops=10.76% Over All 

LIW 47.31 5.41 5.41 MUL 24.16 2.60 2.60 
LIB 13.95 1.59 7.00 ADD 21.62 2.33 4.93 
LIO 13.49 1.54 8.54 SUB 12.98 1.40 6.33 
LIl 9.79 1.12 9.66 INC 11.33 1.22 7.55 
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Reading the Graphs. Solid lines represent the cumulative contribution of instructions to their group, 
and the dashed lines represent their cumulative contribution to all instructions executed. Note, the 
histograms are not sorted by frequency in order to make differences between instruction frequencies 
easier to notice. 
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, Single Instruction Frequencies by Partition: Locals vs. Globals. This group compares instructions 
that reference data in the Local or Global frames. The code of a procedure can easily and directly 
access both its Local and Global variables. All other data must be accessed through pointers. The 
table and Figure 2 provide details about the data. 

Statistics For "Locals VS. Globals" Partition 

Compiler 

Group % 

Locals 26.44 
Globals 7.20 
LocaIsIndirect 3.84 
GlobaisIndirect 0.28 

Compiler: LLO through LL7 

1.00 
0.80 

0.60 

0.40 

0.20 

Sum 

26.44 
33.64 
37.48 
37.76 

OkLLLLLLLLCCC~~ 

012345678 

VIsiCheck 

Group % Sum 

Locals 34.29 34.29 
Globals 1.95 40.96 
LocaIsIndirect 4.72 39.01 
GlobaisIndirect 0.17 41.13 

VlsiCheck: LLO through LL 7 

FIGURE 2. 

1.00 
0.80 

0.60 

0.40 

0.20 
O~~ __ ~~~~~ __ ~ 

012345678 

The Locals and Globals groups account for most of the references - explicit indirection through 
, those frames was relatively infrequent (except VlsiCheck's Localslndirect). The total percentage of 

all references into those frames is greater since some pointer instructions may reference Local-or 
Global data. By far. the preponderance of references went to the local frame: 30.28% (compiler). 
39.01% (VlsiCheck). In other words, 70%-80% of "Local or Global frame instructions" referenced 
the Local frame. These statistics support intuition which expects local storage to' be very heavily 
used. 

Notice that VlsiCheck uses more load double-word instructions than load local zero instructions. 
This follows from two facts: First, VlsiCheck deals with many double-word quantities, and second, 
there is no single-byte instruction that loads double-word quantities beginning at Local frame 0 or 
Local frame 1, etc. The load double-word instruction is a two-byte instruction, in which the second­
byte specifies the offset into the Local frame, wherein the double-word quantity begins. The 
compiler will allocate a double-word quantity first in the frame if the static references justify doing 
this. Since there is no "Load Local 0 Long" instruction, the references to Local 0 decrease. 

Single Instruction Frequencies by Partition: Loads vs. Stores. This partition distinguishes memory 
read and write instructions from all others. There is considerable difference between the ratio of 
loads to stores in the two programs: for VlsiCheck. it is 2: 1 loads to stores, and for the compiler it 
is almost 4:1. Of course, instruction fetch references, which are not included here, will increase the 
statistics in favor of loads. Such references may not be performed by the processor. The table on 
the following page compares the statistics for the. two programs. 
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Statistics For "Loads vs. Stores" Partition 

Compiler VlsiCheck 

Group % Sum Group % Sum 

Loads 40.64 40.64 Loads 32.79 32.79 
Stores 11.27 51.91 Stores 15.40 48.19 
Others 48.09 100.0 Others 51.81 100.0 

Figure 3 shows that the distribution of opcode frequency usage for Loads in the compiler is more 
skewed than it is for Stores: 8 load instructions account for more than 76% of the Loads group, 
while 12 store instructions are needed to approach 75%. VlsiCheck, on the other hand, shows 
approximately the same distribution for both load and store instructions. 
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VlsiCheck: Loads 

1.00 
0.80 

0.60 

0.40 

0.20 

Ouu~.-__ ~~~~~ 
o 10 

VlsiCheck: Stores 

1.00 
0.80 

0.60 

0.40 

0.20 

20 30 40 

OUD~~ __ ~ __ ~"~ 
o 10 20 30 40 

Single Instruction Frequencies by Partition: Memory Address Components. This partition 
distinguishes memory reference instructions on the basis of whether an ALU is required to compute 
the virtual address. Members of the Mem1 group do not require an ALU operation - they could be 
performed by an operand prefetch unit in the processor. The table appearing on the next page 
shows the pattern of use for instructions in this group. For the compiler, over 19% of all 
instructions, almost 1 in 5, are of type Mem1 where the offset is zero, while for VlsiCheck this value 
decreases to approximately 11%. 
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The Mem2 group accounts for about 17% of the compiler's and 25% of'VlsiCheck's instructions. 
Remember that this group includes the instructions that load or store, given a pointer and a single 
offset; it does not include complicated instructions that perform more than one memory reference, 
even though the first reference is of type Mem2. The remaining memory references executed by 
those programs are distributed across instructions with complicated operands for the memory 
operation. 

Statistics For "Memory Components" Partition 

Compiler VlsiCheck 

Group % Sum Group % Sum 

Mem1 19.18 19.16 Meml 10.94 10.94 
Mem2 16.78 35.94 Mem2 24.81 35.75 

Single Instruction Frequencies by Partition: Instruction Length. Dynamic instruction length 
frequencies indicate how much bandwidth there must be between the memory and the processor to 
keep the processor busy with instructions. The advantage of Mesa's compact instruction set 
becomes evident here, since both programs executed one-byte instructions more than half the time, 
and the average instruction length is about 1.5 bytes. 

Statistics For "Instruction Length" Partition 

Compiler V1siCheck 

Group % Sum Group % Sum 

Length1 55.22 55.22 Length1 56.72 56.72 
Length2 38.64 93.86 Length2 41.66 98.38 
Length3 6.14 100.0 Length3 1.62 100.0 

Average Length 1.51 1.45 

7. Pairwise Instruction Frequencies 

Pairwise instruction data presents a large quantity of detail, and both programs show idiosyncracies 
at this level of detail. For the compiler, the 140 most frequent pairs account for only 30% of all 
pairs executed, and for VlsiCheck, they account for only 37% of all pairs. The data was analyzed by 
grouping instructions as members of various groups, and by attempting to infer information about 
the character of usage based upon group membership. 

For example, the pairwise data associated with the compiler shows that load immediate instructions 
were used frequently as a parameter for conditional branches. While the processor executes the 
load immediate instruction, it does not utilize many of the resources available to it In particular, if 
there is an instruction pre fetch unit that has decoded the instruction and provided its parameters to 
the processor, the processor itself is not using the memory system during the time it pushes the 
constant onto the evaluation stack. During this interval the processor's memory port is idle, and 
thus available for some other use. (See the following table). Sweet and 10hnsson [9] note a 
similarity in the static statistics, and they recommend new, conditional branch instructions that 
provide small constants from the alpha byte of. the conditional branch. 
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Group 

Statistics For "Any Group, Condition Jump" Pairs 

VlsiCheck Compiler 

% Sum Group % 

Memory Loads 
LdImmed 

12.90 
3.07 

12.90 
15.97 

Memory Loads 
LdImmed 

4.23 
2.20 

Sum 

4.23 
6.43 

Memory Loads and Stores. Consider the set of pairs, "memory load or store" followed by any 
other group. Of all the times the compiler executes a memory load instruction, about a third of the 
following instructions is a branch, about a third of them is another load instruction, and about 15% 
of the following instructions are stack or ALU operations. 

Conditional Branches. The frequency and behavior of conditional branches may have considerable 
impact on a machine due to the necessity of acquiring the target instruction from the memory. For 
example, the IBM 370/91 [12] and 3033 [15] have hardware to prefetch instructions down both 
branches of a conditional jump. Simpler machines may implement instruction fetching using a 
microcoded emulator with no specific hardware support. 

The compiler's conditional branches are preceded by instructions that load the processor with data 
and they are followed with instructions of the same sort. When the data being loaded comes from 
memory, there is a contention between the need for an instruction reference and the need for a data 
reference to memory (unless the code and data are kept in separate memories that can be accessed 
simultaneously). See the table below. . 

Statistics For "Any Group, Condition Jump" Pairs 

Compiler VlsiCheck 

Group % Sum Group % Sum 

RIW 10.37 10.37 RIW 2.92 2.92 
LdImmed 3.07 13.44 LdImmed 2.19 5.11 
LdlStore 2.93 16.37 LdlStore 1.78 6.89 
Stack Ops 0.25 16.62 ALUOps 1.74 8.63 

Statistics For "Condition Jump, Any Group" Pairs 

Compiler V1siCheck 

Group % Sum Group % Sum 

LdlStore 9.09 9.09 LdlStore 4.31 4.31 
LdImmed 4.89 13.98 LdImmed 1.68 5.99 
Stack Ops 1.81 15.79 Stack Ops 0.83 6.82 
R/W 0.29 16.08 ALUOps 0.47 7.29 

The most frequent instruction that precedes a conditional jump (for the compiler) is the read field 
instruction - 40.86% of the pair "load some value from memory, conditional jump." This is 5.27% 
of all the pairs executed by the compiler, and probably reflects idiosyncratic behavior. 

Bounds and NIL Checking. The importance of stack operations to VlsiCheck is an anomaly due to 
classification: the instructions that perform bounds and NIL checking are classed here as stack 
operations, and they account for about 5.1% of all instructions. These instructions precede 
instructions of the LdlStore and RIW groups. If 5.1% is subtracted from the percentage for stack 
operations in VlsiCheck (12.23%), the remainder, which indicates the per cent of "pure" stack 
instructions, is about 7% - nearly twice the figure for the compiler. The factor of two probably 
stems from executing the "recover" operation on the stack twice as often because of 32-bit values in 
the stack: The recover instruction regains old values in the stack by incrementing the stack pointer 
without pushing a value. This trick acquires old values without making memory references. Of 
course, the compiler's code generator is responsible for assuring the recovered value is still valid. 
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The NIL checking instructions raise another -issue. If' the processor has hardware support for a 
virtual memory, most of the· NIL checking instructions can be removed by making NIL a 
distinguished value that is not mapped. Processor references to it would cause a page fault and that 
could be translated into an attempt to dereference NIL by the software. This could save VlsiCheck 
up to 3.8% of its instructions. However, pointers that are indexed may still require explicit checking 
since the value of "NIL + index" may be a legitimate, mapped address. 

Load Immediate Instructions. These instructions exist because of the way the Mesa instruction set 
has been optimized to minimize code size. In many other architectures, ALU and memory 
instructions permit relatively large constants as parameters, whereas many Mesa instructions acquire 
constant parameters from the stack where preceding instructions have left them. The most frequent 
uses for load immediate instructions is to provide a parameter for a memory reference, for a 
conditional branch, or for an ALU operation. 

Some of the statistics associated with the set of pairs that follow load immediate instructions are 
shown below. 

Statistics For "Load Immediate, Some Group" Pairs 

Compiler VlsiCheck 

Group % Sum Group % Sum 

RIW 5.11 5.11 ALUOps 2.60 2.60 
CondJump 3.07 S.lS CondJump 2.20 4.S0 
ALUOps 1.53 9.71 RIW 1.34 6.14 

8. Discussion 

Compiler's Variable Location Optimizations. Recall from §3 that the compiler chooses the locations 
of variables in a frame based upon their static frequency of usage. This provides for superior code 
compaction, since one-byte instructions thereby reference most variables. The statistics presented 
show that the compiler's static analysis of variable usage also successfully predicts dynamic usage. 
Local and Global zero are the most frequently used Local and Global variables. Figure 2 shows the 
frequency of variable references of Locals 0-7.. Notice that the frequencies do not monotonically 
decrease, and that the aberrations represent a very small fraction of all instructions. These 
variations are due, of course, to the compiler's inability to predict perfectly which variables will be 
accessed most frequently at run time. 

Caching Local Variables. If Locals and Globals 0-3 are kept in a register cache. up to 23.98% of 
the compiler's instructions, and 16.63% of VlsiCheck's instructions can be transformed from 
memory-reference instructions into register-to-register instructions. The advantage of this depends 
upon the speed difference between memory and the registers. This arrangement requires care since 
it must work properly in the presence of pointers, procedure calls, and process switches. Lampson 
[14] discusses the advantages of this approach to implementing speedy procedure calls. 

Memory Components. Ten to twenty percent of the instructions were full pointer (Mem1) 
instructions which do not require an ALU operation in the processor to compute their virtual 
address. This suggests that fairly simple operand prefetch hardware might provide substantial 
performance improvement in a Mesa processor. The problem with operand prefetching is the 
hardware interlocks that must be implemented in order to assure that an address used by the 
prefetch hardware is not being modified by the processor. Once such interlocks are present, it 
might be worthwhile to prefetch Mem2 type operands as well. 
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A different advantage might be obtained by speeding up memory references that use full. pointers, 
instead of trying to speed up those that require the ALU for arithmetic on two or more operands 
before the effective address has been computed. 

The use of base registers in the memory system that point to the base of the Local and Global 
frames [5] would change all the direct Local and Global memory instructions (the LdlStore group) 
into full pointer instructions, thereby eliminating the need for an ALU in the processor for over 30% 
of all instructions that reference memory. 

Presumably, most of the advantages associated with the Mem1 instructions are directly due to the 
compiler's choice of Local 0 and Global O. 

The Implications of the Stack. Typical machine architectures define a processor with a set of 
general purpose registers instead of an expression evaluation stack. The chief advantage of a 
register architecture is to provide a cache for frequently used values. The disadvantages are the extra 
costs associated with saving and restoring the registers across procedure calls and context switches, 
and decreased code compaction because register addresses must be provided within most 
instructions. The chief advantage of a stack oriented architecture is the code compaction: lohnsson 
and Wick provide an example program that shows a reduction from 36 bytes to 7 bytes by using a 
stack architecture, although more typical results show a factor of two compaction [8]. The 
disadvantage of an evaluation stack is the lack of registers available for caching values. 

The question is whether there are higher run time costs associated with an evaluation stack as 
opposed to general purpose registers. 

Properly answering that question is difficult since the ideal approach would be to implement a 
second, register oriented architecture and to analyze the difference in performance between the two 
architectures. Those instructions that simply manipulate the stack (e.g., Recover) can be identified 
as stack oriented overhead that would not occur in a· register oriented architecture. The compiler 
and VlsiCheck executed 3.7% and 6% of their instructions as stack manipulation instructions. This 
is a minimal cost for a simple stack architecture. The actual cost for Mesa is greater since the 
number of extra memory loads it performs to keep information on the stack is not available. 
Naturally, the code compression proffered by the stack oriented Mesa byte codes reduces other costs 
in the system: a lower bandwidth is required between the memory and the processor for instruction 
fetches, the compiled code can fit in a machine with less memory, and a machine with a virtual 
memory will experience fewer code faults. 

Emulating 32-bit Data Paths with a 16-bit Processor. The Mesa processor has evolved in the 
context of 16-bit hardware and much of the instruction set reflects this. Mesa assumes a 16-bit 
word, and the only way to get 32-bit values is to instruct the compiler that a variable is of type 
"LONG ... ". The default status of 16-bit words becomes apparent when we examine the 32-bit 
oriented instructions executed by VlsiCheck, which extensively uses 32-bit values, and the compiler, 
which uses few of them. .. 

Only 20% of VlsiCheck's instructions were 32-bit oriented. Fewer than 1.69% of the instructions 
were 32-bit arithmetic operations. The VlsiCheck program makes extensive use of 32-bit pointers 
and arithmetic values: about 15.2% of the instructions were 32-bit loads, stores, or arithmetic 
computations. An additional 2.7% perform NIL checking on long pointers. The 32-bit instructions 
must take at least twice as long to execute on a machine with 16-bit data paths. Even though the 
work of the pibgram uses large values, the majority of instructions are of the "short" kind. 

Since so many of the 32-bit instructions reference memory, a useful optimization would provide a 
pipelined, 32-bit memory reference (over 16-bit data paths) to minimize the overhead of acquiring 
the second 16 bits. 
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Only l.2% of the compiler's instructions deal with 32-bit loads and stores, and a compiler 
optimization that causes it to generate code for double-word quantities when separate values are 
consecutive in memory, may account for most of those memory operations. 

Instruction Length vs. Frequency of Execution. The smaller the average instruction, the more 
instructions the processor can acquire in the same unit of time. The preponderance of one-byte 
instructions reduces the demand for memory bandwith to fetch instructions. 

By using the frequency statistics associated with control transfers, branches, and instruction length, 
we can try to analyze the requirements for an instruction fetch unit Assume that half the 
conditional branches cause the processor to change the PC. Then the compiler and VlsiCheck cause 
the processor to change the PC during 14.2% and 11.3% of the instructions, respectively. This 
means the processor changes the PC about once every seven or eight instructions. An average 
instruction length of 1.5 bytes means that an instruction buffer of 16 bytes would accommodate 10 
instructions on the average. 

If there is a uniform distribution of instruction sequences between branches and procedure calls, 
there is little reason to have an instruction buffer much bigger than 16 bytes unless the hardware is 
prepared to handle branches in a sophisticated fashion. Two possible uses for extra instruction 
buffering are an associative instruction cache or special hardware to follow both sides of a 
conditional branch [12]. This course introduces much undesirable complication. Since the processor 
will change the PC every seven or eight instructions, any latency associated with the instruction 
fetch hardware should be kept low. 

Successive Memory Loads: Advantage for the Dorado. The Dorado's processor allows the 
microprogrammer to pipeline the execution of Mesa instructions [5,13]. In particular, the memory 
fetch started by one microinstruction may be completed by the next microinstruction. This means 
that load instructions may require only one microinstruction (start the fetch) rather than two (start 
the fetch in one cycle and acquire the data the next cycle). The frequency of load-load instructions 
determines the advantage of this arrangement which costs extra \lmicrocode space and makes the 
microcode more complex. Successive load instructions are 8.4% of VlsiCheck's instructions and 
12.8% of the compiler's, and such instruction pairs can exploit the microcode pipelining feature of 
the Dorado. 

This approach is also exploited to save a cycle when dealing with the evaluation stack. Instructions 
may leave the value of the top of the stack in a special register and leave the stack pointing at the 
value underneath the top of the stack. This way the ALU Ops, and other instructions that deal with 
two items on the stack, need not pop one item off the stack to perform an ALU operation on it 
(The alternative to this arrangement is to implement a stack with two output ports.) UnfortUnately, 
it is difficult to infer the advantage of this arrangement from these statistics. An unsophisticated 
inspection of the data indicates that only .35% of the compiler's pairs and 1.6% of VlsiCheck's 
benefit The actual percentage is probably much greater; unfortunately, whether an instruction pair 
benefits from this approach requires a detailed, instruction-implementation dependent analysis that 
was not performed. 
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9. Conclusions and Summary 

This paper has described and discussed the patterns of instructions executed by·two different Mesa 
programs. 

The statistics show that the compiler's optimizations for code compaction are a good predictor for 
the frequency with which variables are referenced dynamically. In particular, the first few Locals 
and Globals account for most references in those frames. This result suggests that a special cache 
for the first few Local and Global variables would effectively reduce the number of memory 
references required by the instruction set 

The unique cooperation between the compiler and the Mesa processor effectively reduces the load 
on the processor in two ways: Instructions are shorter and operands' effective addresses are easily 
computed. It might be possible to exploit this fact with hardware that prefetches operands for the 
"zero offset" instructions, although that might not be worthwhile if the locals-cache described above 
were implemented. 

Fewer than 20% of VlsiCheck's instructions were 32-bit instructions. We see that a program that 
extensively exploits 32-bit values and "full length" pointers (processor implementation dependent 
size) pays a corresponding penalty for 16-bit data paths: 20% of the instructions require an extra 
memory reference. This presumes, of course, that the compiler can recognize the variables that 
need be only 16-bits wide and properly optimize the code that manipulates them. The exact time 
penalty will be a function of the processor implementation. 
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Appendix: Instruction Descriptions 

LLi, LGi, SLi, SGi 
Load or Store from the Local or Global Frame the ith variable 

LLB, LLDB, SLB, SLOB 

RF 

Ri 

Load or Store from the Local or Global Frame given a byte offset "0" indicates a double­
word quantity 

Read a bit field from a 16-bit value 

Read the ith word from the pointer on the top of the stack 

RXLP,RILP 
Read a value, indexed or indirect with post indexing 

JZNEB, JZEQB, JEQB 
Conditional branches with a byte offset for the PC 

LIW, LIB, Li 
Load immediate values (word, byte, small constant) 

RECOVER 
Recover the previous top of stack by incrementing the stack pointer without modifying the 
contents of the stack 

MUL, ADD, SUB, INC 
Arithmetic operations 

BNDCK, NILCK, NILCKL 
Boundary and pointer check instructions 
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