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Preface 

This paper is organized so that it can be used in several ways. It can of course be read in its 
entirety for a treatment of the general problem of decentralized information storage. It is also 
possible to read an isolated chapter for a treatment of a single topic, such as protection. Each 
chapter begins with an outline of its organization and ends with a summary of its contents. If the 
reader wishes to look at a chapter in isolation I would also suggest that they read Sections 1.3 and 
3.1. 

There is a comprehensive index at the end of the paper. The index is useful to locate 
references to a specific concept It also indexes the program text, and thus should help a reader 
find the definition of a function or a type. 

I have tried to present enough detail so a reader can easily implement the ideas I discuss. 
However, it is possible to understand the essence of the ideas without reading program text On a 
first reading, a casual reader should probably skip sections titled implementation or refinement 
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ix 



Abstract 

This paper describes an architecture for shared information storage in a decentralized computer 
system. The issues that are addressed include: naming of files and other objects (naming), reliable 
storage of data (stable storage), coordinated access to shared storage (transa~tional storage), location 
of objects (location), use of multiple copies to increase performance, reliability and availability 
(replication), dynamic modification of object representations (reconfiguration), and storage security 
and authentication (protection). 

A complete model of the architecture is presented, which describes the interface to the facilities 
provided, and describes in detail the proposed mechanisms for implementing them. The model 
presents new approaches to naming, location, replication, reconfiguration, and protection. To verify 
the model, three prototypes were constructed, and experience with these prototypes is discussed. 

The model names objects with variable length byte arrays called references. References may 
contain location information, protection guards, cryptographic keys, and other references. In 
addition, references can be made indirect to delay their binding to a specific object or location. 

The replication mechanism is based on assigning votes to each copy of a replicated object. The 
characteristics of a replicated object can be chosen from a range of possibilities by appropriately 
choosing its voting configuration. Temporary copies can be easily implemented by introducing 
copies with no votes. 

The reconfiguration mechanism allows the storage that is used to implement an object to 
change while the system is operating. A client need not be aware that an object has been 
reconfigured. 

The protection mechanism is based on the idea of sealing an object with a key. Sealed objects 
can only be unsealed with an appropriate set of keys. Complex· protection structures can be created 
by using such operators as Key-Or and Key-And. The protection mechanism can be employed to 
create popular protection mechanisms such as capabilities, access control lists, and information flow 
control. 
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Chapter 1: Method and Principles 

1.1 Introduction 

Communication is an essential part of our basic need to cooperate and share with one another. 
We have been given the freedom to have distant friends and increased knowledge about our world 
by advances in communication technology such as the post office, the telegraph, and the telephone. 
Computer systems promise to be another such advance. Large scale community information 
systems are likely to playa major role in our future ability to create, organize, process, store, and 

share information. 
It was once thought that the problem of building large computer systems was that of building 

large computers. It is now clear that this is not the case. Instead of employing a single computer, 
future large scale computer systems will be composed of thousands, or even millions, of computers. 

The goal of this research is to demonstrate an information storage system architecture that can 
be used to integrate a collection of computers. By integrate we mean that the architecture permits 
information to be easily exchanged between the users of the system. We are not suggesting that 
information storage be centralized. Rather, we propose to organize the storage facilities that would 
normally exist in a collection of computers into a single decentralized system. 

The information storage architecture we present is intended to create a foundation for shared 
applications. Example applications include office information systems, programming environments, 
and data base systems. The principles of our architecture are best characterized by the desire to 
provide fundamental storage facilities that can be flexibly adapted to a wide range of uses. 

1.2 Method 

Computer system research is more than the invention of new algorithms; part of the work lies 
in the synthesis of a collection of ideas into a single package. Furthermore, it is important that a 
synthesis be faithful to a single set of coordinated architectural principles. Conceptual integrity 
keeps complex interactions from making the system intractable as it increases in size and function. 
A clear statement of principal design decisions is central to the overall success of a large system. 
The importance of these ideas have been demonstrated by [Belady and Lehman 77] and [Brooks 75]. 

We suggest a four stage process for system creation that is intended to promote these concepts. 
The idea of the process is to emphasize the importance of asking fundamental questions early in the 
life of a system, and to postpone secondary decisions. In order, the four stages are: 

1. Define the system's architectural principles. The architectural principles of a system are a 
set of primary design decisions that consider technical feasibility [Liddle 76]. These 
decisions serve to define and delimit the scope of a system. Furthermore, they allow for 
orderly growth by providing a single conceptual framework that can accommodate 
extensions in system size and function. 

For example, what is the nature of the system? Is it intended to provide a general purpose 
computing environment? Or is going to be used exclusively for electronic mail? How large 
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CHAPTER 1: METHOD AND PRINCIPLES 

will the system be? Are different instances of the system going to be interconnected? What 
are the capacity and reliability requirements of the system? What are the services that the 
system will offer? How will these services be presented to a client? What are the 
requirements for accounting? For protection? 

2. Formulate a system model. A system model is a design for the system in line with its 
architectural principles. A model describes the system's interfaces and mechanisms in 
enough detail that it is possible to reason about the correctness of key algorithms. When 
the system is constructed, the system model is used as a pattern. 

3. Implement the system. A system implementation is a concrete set of hardware and software 
components that realize a system model. The implementation of a system normally starts 
by making a plan for its construction, testing, and documentation. Naturally, there can be 
several implementations of a system model. This is important, as over the life of a system 
new implementations of parts of a system will cause new and old components to coexist 

4. Plan a system configuration. A system configuration is an installed set of components from 
a system implementation. A system implementation represents a wide spectrum of capacity, 
reliability, availability, and performance possibilities; a configuration reflects the decisions 
made to meet specific needs. 

Our research has been organized according to these stages. 
The remainder of this chapter treats the architectural principles of our system and their 

background. We discuss how time-sharing systems, personal computing systems, and computer 
networks have influenced our goals. 

The next six chapters describe our system model by successive refinement. Chapter 2 defines 
the environment of the system model. Chapter 3 presents a simple storage system. This storage 
system would be ideal if one made the following assumptions: 

1. Files, volumes, and other objects never move. 

2. It is never necessary to improve the reliability, availability, or performance characteristics of 
storage devices. 

3. It is never necessary to change the storage that is used to store an object. 

4. People are perfectly trustworthy and there is no need for protection. 

Chapters 4 through 7 remove these assumptions. We add location (Chapter 4), replication (Chapter 
5), reconfiguration (Chapter 6), and protection (Chapter 7) to describe a practical system. 

Chapter 8 discusses system implementation and configuration. Three prototypes were built to 
test the validity of our system model, and experience with these prototypes is discussed. In view of 
these prototypes, we outline our expectations about full scale implementations of the system. 
System configuration is discussed briefly, but it is not thoroughly explored. 

Chapter 9 concludes the paper with a summary of the major ideas introduced in the paper and 
a review of how we have achieved the architectural principles we set forth. 
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CHAPTER 1: METHOD AND PRINCIPLES 

1.3 System Description 

This paper includes a large amount of program text The intent of the program text is to 
provide the reader with a detailed understanding of the system model. Considered collectively, the 
program text is an implementation of the system model. The program text is also intended to be 
used as a pattern for full-scale implementations. Thus, the code that we present is called a model 
implementation. The functions and types of the model implementation are indexed at the back of 
the paper. 

The system model is described in EL ("Exposition Language"), a dialect of Lisp 1.5 [McCarthy 
et at. 62]. Lisp was chosen because it includes an Eval function, which allowed us to define the 
semantics of operations executed at remote processors. In addition, Lisp lends itself to the 
transformation of objects to byte strings and back again (see the descriptions of Encode and Decode 
in the appendix). Appendix A should provide enough information to enable the reader to 
understand the code in the paper. Much of the technical content of the paper is contained in the 
program text, and thus we suggest that the reader take the time now to read Appendix A. 

To help the reader understand EL we present a short example program fragment The 
fragment shown below is not intended to be useful, but it does demonstrate some key EL 
constructs. We start by defining three record types: Person, Experience, and Experienced-Person. 
Experienced-Person is a derived record type that contains the fields and types of Person and 
Experience. The function Open-Person creates a new class that services the operations Name and 
Parent Open-Person takes a person record and a person class as inputs. They respectively 
represent a person and that person's parent When a Name request is sent to a class, Person-Name 
is invoked, and the name of the person is returned. When a Parent request is sent to a class, 
Parent-Name is invoked. Parent-Name gets the name of the class' parent from its superclass, which 
was set when the class was created. 

Every time that we create a class we include a comment that describes the class' instance 
variables. For example, Open-Person creates a class, and Person-Name and Parent-Name can use 
the instance variable name. The value of instance variables persist over class activations. 

Person fa Record[name: Byte-Array]; 
Experience fa Record[years: Integer]; 
Experienced-Person fa Extend[person, Experience]; 

Create-Person[name: Byte-Array / p: Person] +- Prog[ (]; 
p fa Create[person]; p.name fa name; 
Return[p]; 
]; 

Open-Person[p: Person, parent: Person-Class / c: Person-Class] fa Prog[ 
[name: Byte-Array]; 
-- copy name 
name fa p.name; 

create a new class 
c fa Create-Class[List[ 

'Name, 'Person-Name, 
'Parent, 'Parent-Name], parent]; 

3 



CHAPTER 1: METHOD AND PRINCIPLES 

-- Instance variables: name 
Return[c]; 
]; 

Person-Name[/n: Byte-Array] .- Prog[ []; 
-- Person-Name is evaluated in the environment of Open-Person 
Return[name]; 
]; 

Parent-Name[/n: Byte-Array] +- Prog[ []; 
-- ask superclass for its name 
n +- superclass I N ame[]; 
Return[n]; 
]; 

frank-class .- Open-Person[Create-Person[ttFranktt], NIL]; 
alfred-class .- Open-Person[Create-Person["Alfredtt], frank-class]; 
-- dad will be "Frank" 
dad +- alfred-class I Parent[]; 

We observe the following stylistic contentions in program text Variables always begin with 

lower-case letters. Function names and record types are capitalized. Whenever a new object is 

introduced, we follow the same order of presentation as we did in our example. First, we introduce 
the operation to create an object instance. Second, we describe an tt open" function that returns a 

class that will service an object instance. Third, we present the functions that actually implement 
the class' operations. 

Let us define some terms that we will use repeatedly throughout this paper. A client is a 
program that uses the facilities we describe, and a user is a human being that interacts with a client 
The reliability of a system is a measure of the probability that the system will malfunction, and a 

system's availability is a measure of the probability that it will be operational when it is needed. 

1.4 Background 

Early in the 1960's time-sharing was introduced as a way of providing the illusion of a personal 

computer to aid in program debugging. Time-sharing systems turned. out to provide another benefit 

that was not originally anticipated. Users found they could easily share information that was stored 
in a time-sharing system. Sharing proved to be easy because it was as if a single file cabinet 

simultaneously existed in every user's office. Items placed in one file cabinet immediately appeared 

in the rest of the file cabinets. The facilities for information sharing provided by time-sharing soon 
found use in large collaborative software projects. 

As time-sharing matured, sharing was recognized as a basic facility, and made correspondingly 

convenient The crss system [Corbato et al. 62] pioneered multiple access computers, and provided 

a simple shared file system. Based on this experience, Multics [Corbato et al. 72] extended its file 
system to include a tree-structured naming system and advanced protection facilities. 

Late in the 1970's hardware became inexpensive enough that users could be provided their own 
computers [Thacker et al. 79]. Placing a large amount of computational power at the man-machine 
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interface dramatically improved its character. For example, graphics could be introduced, adding an 

important element to the domain of things that computers could be used for. Communication 

networks [Metcalfe and Boggs 76] allowed the users of personal computers to share resources such 

as high-speed printers. However, sharing was not made as convenient as it was in time-sharing 

systems. 

This research proposes to combine the success of time-sharing's shared storage and the success 

of personal computing's man-machine interface into a single system. Unfortunately, it is not 

sufficient to simply add conventional storage to personal computing systems. In a decentralized 

environment such problems as coordination, protection, reliability, availability, and performance 

become much more complicated. For example, in a decentralized system when information is 

transferred between computers iover an insecure channel it must be ~ncrypted to provide protection. 

Furthermore, people's expectations have properly increased. Computers are being used for an 

increasingly diverse spectrum of applications, and many computer users are no longer computer 

professionals. Our understanding of these requirements is reflected in the principles of our 

architecture. 

A number of systems have been built that share our primary goal of integrating a collection of 

computers with a shared information storage system. These systems fall into three broad categories. 

1. Existing time-sharing systems have been modified to access remote files. The RSEXEC 

[Thomas 73] system was an early attempt to join TEN EX systems in this manner, and the 

RSEXEC approach was later adopted by the National Software Works [Forsdick et a1. 77]. 

The Locus project [popek et al. 81] at UCLA has integrated a number of UNIX systems in 

a similar manner. Locus includes facilities for mediating concurrent access to information, 

and there are plans to incorporate replicated data as well. These systems all have major 

restrictions that are rooted in their time-sharing origins. In addition, they have as a general 

rule adopted ad hoc solutions to the intrinsic and environmental problems they faced. 
Thus, they do not provide a general framework of the sort we propose. 

2. Data base systems have been extended to operate on several computers that are connected 

by a network. Examples of such systems are CICS ISC [IBM 80a] and Tandem Computer's 

Encompass fTandem 81]. These systems are intended to provide a specialized service. In 

addition, they have not provided general solutions to many of the problems that we 

consider. 

3. File servers have been constructed for local computer networks, and these file servers have 

been used by client computers for shared storage. WFS, and its successor, IFS, are two 

such file servers [Swinehart et al. 79]. A file server at the University of Cambridge has 

been successfully used as the only storage service of a time-sharing system [Dion 80]. The 

Xerox Distributed File System [Israel et a1. 1978] provides facilities for guaranteeing 

information consistency across file servers, and sophisticated facilities for failure recovery. 

These file servers are more general than the time-sharing based efforts, and motivated the 

system we propose. However, the scope of these servers is limited, and they do not address 
many of the problems that we consider. 
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1.5 Architectural Principles 

The following twelve architectural principles describe and delimit the scope of our ideal storage 
system. We will return to this list at the end of the paper to review how they have been satisfied 

1. The system should behave in a well defined way. In a large system design there are many 

opportunities for selecting a mechanism that works most of the time. Such a mechanism 
can only be employed in conjunction with a backup mechanism that is expected to work all 

of the time. For example, certain existing systems will undetectably malfunction in unusual 

circumstances. We will not consider such designs. 

2. The system should provide a basic storage service. The basic unit of storage should be the 
file, an uninterpreted array of bytes. Read and write primitives should be provided to 

access files. The notion of a volume should also be provided to model storage media. Files 

are created and stored on volumes. 

3. Storage should be resilient to expected failures. From time to time hardware errors, system 
errors, or operator errors will occur. The storage system should expect such errors, and 

recover from them without information loss. Furthermore, if unexpected errors occur, the 

system should indicate that storage has been damaged instead of providing incorrect 

in formation. 

4. Files, volumes, and other objects should be named with unambiguous low-level names. The 

storage system should not anticipate how clients might use these names or what naming 
environments will be presented to users. 

5. The system should mediate concurrent access to storage to ensure consistency. 

6. The system should be decentralized, and the location of storage system objects should be 

hidden from clients. The system should also allow clients to discover where objects are 
located. 

7. The system should allow modular expansion. The storage capacity of the system should not 
be limited by any design decision, nor should the design intrinsically limit the number of 

users that the system can support. 

8. It should be possible to improve the performance, reliability, and availability of the storage 

system by keeping multiple copies of selected storage system objects. This principle 
includes the idea of making temporary copies of objects for rapid access. 

9. It should be possible to reconfigure the system while it is operating. Reconfiguration 

involves changing the storage resources that are used to implement a storage system object 

10. A mechanism for information secrecy and authentication should be provided. The 
mechanism should be general enough that clients can use it to implement a variety of 

protection policies. No one should be able to circumvent the protection mechanism. For 
example, system administrators should not be able to access information that they are not 

authorized to see. 

11. It should be possible to construct derived volumes by extending existing volumes with 
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replication, reconfiguration, and protection structures. Files created on derived volumes will 
use the volume's structure as a template. For example, it should be possible to create a 
volume R from three other volumes A, B, and C. When a file F is created on R, copies of 
F will be automatically maintained on A, B, and C. This allows popular classes of storage 
to be directly represented in the system as volumes. Thus, clients may choose to ignore 
what facilities are being used to provide the storage they use. 

12. A client should be able to select the resources that it uses in such a way that its processor 
can remain autonomous from the rest of the system. 

1.6 Summary 

A new information storage system was proposed. It is intended to be the foundation of diverse 
applications such as office information systems, programming environments, and data base systems. 
The design of the system was divided into four stages: definition of architectural principles, 
formulation of a system model, system implementation, and system configuration. The paper is 
structured according to these stages. The system's architectural principles and their background 
were then introduced. Chapter 2 begins our consideration of a system model to realize these 
principles. 
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Chapter 2: Environment 

The first step in defining the system model is to outline its presumed environment This 

chapter reviews the characteristics of the hardware components we use, introduces the concepts of 

stable storage and unique identifiers, and shows how to perform reliable function evaluation at a 

remote processor. The material in this chapter represents an integration of ideas that have been 

presented before in various forms. Notably [Lampson and Sturgis 79] previously introduced a 

number of the concepts reviewed here. 

2.1 Hardware Components 

Three types of hardware components comprise the system: processors, communication channels, 

and storage devices. In each of the following sections we discuss the characteristics of each type of 

hardware component The hardware model presented is abstract to the extent that it only concerns 

itself with device characteristics that will influence later design decisions. 

2.1.1 Processors 

A processor corresponds to the familiar notion of a stored program digital computer. Processors 

are the active elements in a system, and they operate independently from one another. Processors 

only communicate with each other through communication channels. There is absolute protection 

between processors in the sense that all a malicious processor can do is send messages, which other 

processors can choose to ignore. Depending on application needs, processors may be connected to a 

wide variety of peripherals, such as storage devices, bit-map displays, pointing devices, bar-code 

readers, and laser printers. Although it is not an absolute necessity, we will assume that all 

processors in the system have the following ideal capabilities. 

Every processor is assigned an identifier that is distinct from any other processor's identifier. 

Processor identifiers can be implemented by including a read-only memory in each processor that 

contains its identifier. Fixed length processor identifiers offer simplicity, but for some 

implementations the expansion capability offered by variable length identifiers may be attractive. A 

processor's identifier can be discovered with the function GetProcessorID. 

GetProcessorID[/id: ProcessorID] 

GetProcessorID returns the identifier of the processor that the calling process is using. 

In addition, it is assumed that a processor can encrypt and decrypt data, and generate true 

random numbers. Encryption can be implemented in software, but for efficient operation with high 

security codes it is likely that special purpose hardware will be required. True random numbers are 

useful for generating hard to guess cryptographic keys. A true random number is not the output of 

a pseudo-random number generator, but is derived from a truly random process such as thermal 

noise, shot noise, or radioactive decay. 
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CHAPTER 2: ENVIRONMENT 

2.1.2 Communication 

Communication and synchronization are accomplished between processors by sending and 
receiving messages. A message is an uninterpreted array of bytes that is sent to a destination 
processor. Every processor is assigned an address that includes its processor identifier, so different 
processors will never be assigned the same address. However, we assume that if a processor is 
physically moved its address will change. 

The following functions define the interface to the communication system. Note that Processor 

includes a processor identifier and fields that are private to the communication system. 

Processor ... Extend[Record(id: ProcessorID], PrivateFields]; 

Send[destination: Processor, message: Byte-Array] 

Send transmits message to destination. 

Receive[/message: Byte-Array] 

Receive delays until a message arrives addressed to this processor, and then returns the 
incoming message. 

GetMyProcessor[/self: Processor] 

GetMyProcessor returns the address of this processor. 

The communication system can lose, duplicate, or arbitrarily delay messages. Thus, messages 
may arrive out of order, more than once, or not at all. We will assume that messages damaged in 
transit are detected and discarded by the communication system, and will appear to have been lost 

At least one distinguished address, Broadcast, is defined by the communication system so that a 
processor can discover things about its environment and begin communicating with other processors. 
One or more processors can ask to receive messages addressed to Broadcast. How far broadcast 
messages will propagate in the communication system is implementation dependent. Chapter 4 
discusses how this facility is used. 

Broadcast: Processor 

Packet switched networks [Metcalfe 73] are well adapted to providing a full connectivity 
network at a moderate cost, and are an attractive method for implementing the proposed 
communication system. Local packet switched networks, such as the Ethernet [Metcalfe and Boggs 
76], provide high capacity and low delay at low cost for a local area. A treatment of local networks 
can be found in [Clark et al. 78]. 

Local networks can be connected together by gateway processors and communication channels 
to form an internetwork [Boggs et al. 80]. An internetwork retains the performance and cost 
advantages of a local network, while extending the communication system to accommodate modular 
growth. In an internetwork, non-local packets are forwarded though a succession of gateways to 
eventually arrive at their destination. 

2.1.3 Storage devices 

A storage device is a processor peripheral that stores data. Read and write are the two primitive 
operations that are used to access and update storage devices, respectively. We assume that a 
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storage device will indicate when it has failed to accurately store data. Failure detection is typically 
implemented with the help of labels and checksums [Lampson and Sproull 79]. 

Three fundamental characteristics of storage devices are capacity, latency, and transfer rate. The 
capacity of a storage device is the maximum number of bytes that it can store on a single medium. 
We have been careful to state maximum, because the amount of data that can be stored is often a 
function of the type of media in use. The transfer rate is the maximum number of bytes per 
second that can be transferred to or from the device. The latency of a storage device is the average 
amount of time required to read or write information ignoring the time the device is actually 
transferring data. 

Storage devices have four additional important characteristics. 

1. Some storage devices are designed for random access to data, and some are designed for 
serial access. These devices will be called random access and serial access, respectively. A 
tape drive is an example of a device designed for serial access to data, and an attempt to 
use it in a random access mode would result in poor performance. Although the storage 
capacity of random access devices is increasing, serial access devices may continue to have a 
role in information storage because of their lower cost 

2. Some storage devices allow data to be read or written, but once data is stored it can not be 
overwritten. Such a device will be called write-once. This property is usually due to the 
storage media in use, for example a write-once optical disk. 

3. Some storage devices do not allow data to be written. Such a device will be called read­
only. As a safety feature some storage devices can be made temporarily read-only. 

4. Some storage devices can record on storage media that are interchangeable between other 
storage devices of the same type. Such a device will be said to have removable media. 

2.2 Stable Storage 

Storage that is resilient to a set of expected failures is called stable storage. From time to time 
hardware errors, system errors, or human errors will occur. A stable storage system expects such 
errors, and recovers from them without information loss. Furthermore, if unexpected errors occur, 
a stable storage system indicates that storage has been damaged instead of providing incorrect 
information. Expected hardware failures include storage device transfers that malfunction, and 
information on a storage device that decays and becomes unreadable. Transfers that malfunction 
include transfers that are in progress when their controlling processor fails. 

The write-ahead-log protocol [Gray 78] is widely used to implement stable storage. It 
implements stable storage by carefully maintaining two copies of data on devices with independent 
failure modes. [Lampson and Sturgis 79] suggest a similar. algorithm. 

It is difficult to precisely characterize the reliability of stable storage. Manufacturers give bit 
error rates for their devices, but these figures do not include catastrophic failures. Examples of 
catastrophic failures are head crashes on disk drives, media dropped on the floor by operators, and 
media mistakenly erased by users. 

We shall call storage that is not protected against failures volatile storage. Stable storage will be 
used to record long term system state, and volatile storage will be used for intermediate results. 
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Volatile storage is naturally much more efficient than stable storage because the same precautions 

do not have to be observed 

2.3 Unique Identifiers 

A unique identifier is defined to be a value that is distinct from every other unique identifier. 
We will assume for simplicity that unique identifiers are system generated nonsensical bit strings, 

but unique identifiers could be client generated and sensible. 
All unique identifiers do not have to be the same length. When it is known that a unique 

identifier is going to be used extensively it may be advantageous to use a shorter identifier. Of 
course, there . are fewer short identifiers than there are long ones. 

A common method for generating a unique identifier is to concatenate a processor identifier 
with a locally unique identifier. A locally unique identifier can be implemented by a counter in 

stable storage. Whenever a locally unique identifier is required the counter is incremented and 
returned. An obvious optimization is to withdraw a sequence of locally unique identifiers from 

stable storage at once to reduce delay. Another technique for generating locally unique identifiers is 

as follows. At processor initialization time create a variable nextId and set it equal to a calendar 

clock. A calendar clock is a clock that holds the current date and time and thus monotonically 
increases. Every time a locally unique identifier is requested increment nextld by one and ensure 

that it is less than the calendar clock by pausing if necessary. Now nextId is guaranteed to be 

locally unique. Thus, the second scheme does not require stable storage. 
Although theoretically unique identifiers are unique, there is a chance that the unique identifier 

mechanism could fail and issue duplicate identifiers. Such a failure could result from two 

processors that were mistakenly assigned the same processor identifier, or from a malicious client 

The algorithms we present in many instances check for duplicate unique identifieTh. However, to 

provide a foundation on which to build, we will assume that unique identifiers are in fact unique. 
The following function provides unique identifiers: 

GetUniqueID[/id: UniqueID] 

GetUniqueID returns a unique identifier. On a single processor subsequent unique 
identifiers from GetUniqueID are monotonically increasing. 

2.4 Reliable Remote Evaluation 

2.4.1 Model 

Remote form evaluation is the way one processor requests another processor to evaluate a 

function and return a result A remote evaluation is a generalization of what is commonly referred 

to as a remote procedure call. [Spector 80] provides a taxonomy of remote operations and their 
semantics. 

It is possible to provide precise semantics for remote evaluation because evaluation is formally 

defined with respect to an environment that binds values to free variables and functions. We will 
assume that remote evaluation is done with respect to a default environment that includes the data 
types and functions defined in the paper. 

To communicate with a remote processor it is first opened. Opening a processor results in a 
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class that will service EWlI requests. Eval will evaluate an EL form at the remote processor. To 

make the remote evaluation of fonns easier, we restrict fonns to be defined by the following 

grammar: 

<form> 

<form> 

<form> 

Function[<form> ... <form>1 

<variable> 
Quote[<expression)1 

where <variable> is a local variable. and <expression) is an unrestricted expression. 

Open-Processor(processor: Processor / rp: Processor-Class1 

Open-Processor creates a class that will service requests for remote form evaluations at the 
specified processor. It is possible.to specify Broadcast as the processor. in which case the 

first processor to respond to the open request will be selected. 

rp: Processor-Class I Eval[form: Form I result: Any1 

Assuming there are no processor failures. rp I Eval will evaluate form at the processor 

specified by rp exactly once. returning the result of the evaluation. rp I Eval[x1 is 

equivalent to rp I EvaI(Copy(xll. That is. the evaluation of form will have no side effects on 

the local processor. 
rp I Eval hides communication system failures. but it does not mask processor failures. 

If a remote processor fails while it is evaluating form. Error['ProcessorFailure] is returned. 

rp I Eval is intended to be a low cost method of communication. and thus stable storage 
was considered to be too expensive to use as an integral part of its implementation. 
Without stable storage it is impossible to remember the state of an evaluation that is in 

progress when a processor fails. and thus it is impossible to mask processor failures. 

rp I Eval will not return until it has successfully performed a requested evaluation. It 
will keep trying even if a processor is unavailable. A processor can be unavailable for 

many reasons. such as hardware failure. software failure. or a problem with the 
communication system. 

rp: Processor-Class I Close[] 

Close deactivates a processor class. 

If a processor that is participating in a remote evaluation fails one must assume that portions of 

the evaluation will continue to be in execution for an indefinite time. Imagine that processor A 
requests processor B to evaluate F. and the evaluation of F on processor B requests that processor C 
evaluate G. Such a case might arise if F was "write replicated file" and G was "write file copy". 

Now processor B fails. and processor A requests processor B to evaluate F again. Even if processor 

B finishes evaluating F successfully on its second try. processor C may still be executing a no longer 
needed evaluation of G. Such an unchecked evaluation has been called an orphan [Nelson 81]. 
The orphan resulted from the partial evaluation of F. and may modify the state of the system 
sometime in the future. 

We take the conservative view that the failure of a processor evaluating a function must result 
in a system state where it appears that the function evaluation was never begun. This can be 

accomplished in a straightforward way with transactions. as we shall see in Chapter 3. 
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Processor failures can only be detected when a failed processor returns to service. Until then, it 
is impossible to discriminate between a failure in the communication system and a processor failure. 
It would be possible to assume that a processor had failed if it did not respond within a predefined 
time, but, as we shall see, there are cases when we will attempt to use unavailable processors as a 
matter of course in computations that ultimately succeed. 

2.4.2 Algorithm 

rp I Eval is described in two stages. First, we show how to implement Weak-Remote-Eval, a 
weaker form of remote evaluation. Weak-Remote-Eval has miserable semantics, but it is a useful 
device that allows us to quickly dispense with the details of messages. From this base it will be a 
simple matter to construct rp I Eval. Weak-Remote-Eval is defined as follows: 

Weak-Remote-Eval[processor: Processor, form: Form / result: Any] 

Weak-Remote-Eval will evaluate form at the specified processor, returning the result of the 
evaluation. The function may be evaluated partially or completely any number of times, 
and the result returned. will be from an arbitrary complete evaluation. Furthermore, form 
may be unpredictably evaluated again at indefinite times in the future after Weak-Remote­
Eval returns. However, Weak-Remote-Eval does ensure that two evaluations of form do not 
occur at the same time. 

If the evaluation of form results in Error('Discard] then the remote processor will 
abandon the evaluation and not produce a response. 

With Weak-Remote-Eval we can create global junctions. A global function is a function that 
can be passed between processors. Global functions are only useful when an application can 
tolerate the semantics of Weak-Remote-Eval. We will use global functions in Chapter 3. The 
following function will create a global function: 

Create-Global-Function[fn-name: Atom / gf: Global-Function] 

Create-Global-Function creates a global function. Apply[gf, List[x]] will result in Apply[fn­
name, x] being evaluated on the processor where gf was created. 

Create-Global-Function[fn-name: Atom / gf: Global-Function] +- Prog[ []; 
gf +- List['Lambda, 

List['x], 
List['Weak-Remote-Eval, 

List['Quote GetMyProcessor[]], 

]]; 
Return[gf]; 
]; 

List['Quote, List['Apply, List['Quote, fn-name], 'x]] 

The implementation of Weak-Remote-Eval is straightforward. At the originating processor a 
request message containing the form to be evaluated is fabricated and sent at regular intervals to the 
remote processor until a matching result message is received. At the remote processor request 
messages are received, and if the processor is not already working on an incoming request, a new 
process is created to process it Remote evaluations are assigned unique identifiers so a remote 
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processor can identify request retransmissions, and so responses can be matched to requests. 

Before a form is sent to a remote processor all of the local variables in the form must be 

evaluated. The function Pre-Eval is defined to do this. 

Pre-Eval[form: Form / result: Form] 

Pre-Eval evaluates the atomic arguments in form and quotes them. Eval[Pre-Eval[x)) is 

equivalent to Eval[x]. 

Pre-Eval[form / result] +- Prog[ []; 
IF Null[form] THEN Retum[NIL]; 
IF Atom[form] THEN Return[List['Quote Eval[form))]; 
IF Eq[car[form], 'Quote] THEN Return[form]; 
Return[Cons[car[form], Pre-Evlis[cdr[form]]]]; 
); 

Pre-Evlis[x: List / result: List) +- Prog[ []; 
IF NUll[x] THEN Return[NIL]; 
Return [Cons[Pre-Eval[car[form)), Pre-Evlis[cdr[form])]]; 
]; 

The model implementation of Weak-Remote-Eval follows. 

Message +- Record 
destination: Processor, 
source: Processor, 
id: UniqueID, 
-- reply is T if form is a result 
reply: BOOLEAN, 
form: Any 
]; 

Request: Type +- Record 
message: Message, 
done: BOOLEAN, 
cv: ConditionVariable 
]; 

Incoming: Set +- Set-Create[]; 
Outgoing: Set +- Set-Create[]; 

Weak-Remote-Eval(processor: Processor, form: Form / result: Any) +- Prog [ 
[request: Request; message: Message]; 
request +- Create[Request]; 
message +- Create[Message]; 
-- create message to remote processor 
message. destination +- processor; 
message. source +- GetMyProcessor[]; 
message.id +- GetUniqueID[]; 
message.reply +- NIL; 
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-- evaluate local variables 
message.form +- Pre-Eval[form]; 
requestmessage +- message; 
requestcv +- CreateCondition Variable[RetransmitTime]; 
requestdone +- NIL; 
-- note that we have made request 
Set-Insert[Outgoing, message.id, request]; 
UNTIL request done 00 [ 

-- send request 
Send[ destination, Encode[message]]; 
-- wait for response 
Wait[requestcv]; 
]; 

-- we received our response 
Set-Delete[Outgoing, message.id]; 
Return[requestmessage.form]; 
]; 

Receiver, ProcessReply, ProcessRequest, and Request-Eval comprise the rest of Weak-Remote­

Eval. Receiver listens for messages, and runs in every processor that services requests. 
ProcessReply handles results from earlier request messages. ProcessRequest acts on a request to 
apply a function, forking off Request-Eval to process the evaluation if the request is not already 
being processed. 

Fork['Receiver[]]; 

Receiver[] +- Prog [m: Message]; 
00 [ 

]; 

m +- Decode(Receive[]]; 
IF m.reply THEN ProcessReply[m] 
ELSE ProcessRequest[m]; 
]; 

ProcessReply[m: Message] +- Prog [ [request: Request]; 
-- Reply. Notify waiting process. 
request +- Set-Lookup[Outgoing, m.id]; 
IF Not[Or[Nul1[request], request done]] THEN 

requestmessage +- m; 
request done +- T; 
Notify[requestcv]; 
]; 

]; 
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ProcessRequest[m: Message] ... Prog [ [old: Message]; 
-- if we are already working on this evaluation, don't start 
-- a new worker process. 
old ... Set-Lookup[Incoming, m.id]; 
IF Null[old] THEN [ 

Set-Insert[Incoming, m.id, m]; 
Fork[,Request-Eval[m]]; 
]; 

]; 

Request-Eval[m: Message] ... Prog [ []; 
m.destination ... m.source; 
m.source ... GetMyProcessor(]; 
m.reply ... T; 
m.form ... Eval[m.form]; 
IF m.form # Error['Oiscard] THEN Send[m.destination, Encode[m]]; 
Set-Delete[Incoming, m.id]; 
]; 

Using Weak-Remote-Eval we can now proceed to describe the algorithm for rp I Eval. 
rp I Eval uses connections to implement exactly once semantics and processor failure detection. 

A connection associates a unique identifier and a sequence number with every request As shown 

below, Remember-Eval uses a connection's unique identifier and sequence number to ensure that a 

form is evaluated exactly once. Connections are stored in a volatile set Thus, if a processor fails it 
will forget all of its connections. Remember-Eval always responds to unknown connection 

identifiers with Error['ProcessorFailure], which implements processor failure detection. 
A connection's identifier is generated by the remote processor to ensure that the following 

sequence of events after a connection is closed is harmless: (1) a delayed copy of the open 
connection request arrives. (2) a delayed copy of the first request referenced to the connection 
arrives. If this happens a connection will be established. but the delayed request will be ignored 

because its unique identifier will be incorrect 

When a request is received at a remote processor. one of the following statements will be true: 

1. The request has not been received before. and it is the next request that should be 
processed. In this case. its sequence number will be one larger than the sequence number 

of the last request, and it will not appear in the set HeldResults. The request is evaluated. 
its result is placed in HeldResults (indexed by the request's identifier and sequence 

number). and the result is returned to the originating processor. 

2. The request has been previously received and processed, but the communication system lost 
the reply message to the originating processor. In this case, the result of the request is in 

the set HeldResults. The result is retrieved from HeldResults and returned to the 
originating processor. 

3. The request is a delayed duplicate. and the originating processor has already received the 

results of the request In this case. the sequence number of the request will be obsolete. 
and the results of the request will not be in HeldResults. The request is ignored. 
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4. The request is a future request that should not be processed yet In this case, the request 

will have a sequence number greater than the one expected. The request is ignored 
Weak-Remote-Eval will send the request again. 

Figure 2.1 shows the structure of a class that is created by Open-Processor. It is possible that 

more than one connection may be opened by Open-Processor, and that results can be left in 

HeldResults if an originating processor fails. In a practical implementation time-outs would be used 

to eliminate these problems. 

The following functions constitute the originating processor's part of rp I Eval. 

Connection: Type +- Record [ 
address: Processor, 
id: UniqueID, 
sequence: Integer 
]; 

Open-Processor[ref: Processor / rp: Processor-Class] +- Prog [ 
[c: Connection]; 
-- open connection at remote processor 
c +- Weak-Remote-Eval[ref, 'OpenConnection[]]; 
c.sequence +- 0; 
rp +- Create-Class[List[ 

'Eval, 'Remote-Eval, 
'Close, 'Processor-Close, 
-- CopyReference is described in Chapter 3 
'CopyReference, 'Default-Copy], NIL]; 

-- Instance variables: c 
Return[rp]; 
]; 

Remote-Eval[form: Form / result: Any] +- Prog[[next: Connection]; 
-- take a ticket (get a sequence number) and increment 
-- the connection's sequence number 
next +- Get-Next-Sequence[c]; 
result +- Weak-Remote-Eval[c.address, 'Remember-Eval[next, form]]; 
Weak-Remote-Eval[c.address, 'DeleteResult[ next]]; 
Return[result]; 
]; 

Processor-Close[] +- Prog [[]; 
-- close the connection at the remote processor 
Weak-Remote-Eval[c.address, 'CloseConnection[c]]; 
]; 

Because many remote evaluations can be serviced by a single processor class at once, care must 

be taken to use critical sections when assigning and checking sequence numbers. 
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SL: Lock +- CreateLock(]; 

Get-Next-Sequence[c: Connection I next: Connection] +- Critical[SL, 'Prog[ (]; 
-- increment connection sequence number 
c.sequence +- c.sequence + 1; 
Return[c]; 
]]; 

Bad-Sequence[cl: Connection, c2: Connection I bad: Boolean] +- Critical[SL, 'Prog[ (]; 
IF cl.sequence#c2.sequence THEN Returnrn; 
Return[NIL]; 
]]; 

The following functions are executed by remote processors in support of rp I Eval. 

Connections: Set +- Create-Set[]; 

OpenConnection[1 c: Connection] +- Prog [(]; 
-- create a new connection 
c +- Create[Connection]; 
c.sequence +- 1; 
c.id +- GetUniqueID(]; 
c.address +- GetMyProcessor(]; 
Set-Insert[Connections, c.id, c]; 
Return[c]; 
]; 

HeldResults: Set +- Create-Set(]; 

Result +- Record[value: Any]; 

Remember-Eval[c: Connection, form: Form I result: Any] +- Prog [ 
[connection: Connection; rr: Result]; 
rr +- Set-Lookup[HeldResults, c]; 
-- if we still have result from previous Eval, return it 
IF Not[Null[rr]] THEN Return[rr.value]; 
connection +- Set-Lookup[Connections, c.id]; 
-- if connection unknown, assume that we have crashed 
IF NUll[connection] THEN Return[Error['ProcessorFailure]]; 
-- make sure this is the next in the sequence 
IF Bad-Sequence[connection, c] THEN Return[Error['Discard]]; 
-- create a record so we can distinguish the following cases: 
-- a) a result of NIL 
-- b) a result that is not in HeldResults 
rr +- Create[Result]; 
-- evaluate the form 
rr.value +- Eval[form]; 
Set-Insert[HeldResults, c, rr]; 
Get-Next-Sequence[connection]; 
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DeleteResult[c: Connection] +- Prog [[]; 
-- originating processor has received result 
Set-Delete[HeldResults, c]; 
]; 

CloseConnection[c: Connection] +- Prog [[]; 

2.5 Summary 

-- originating processor closed connection 
Set-Delete[Connections, c.id]; 
]; 

This chapter introduced and characterized three types of hardware components: processors, 

communication, and storage devices. Stable storage was introduced, and identifiers that are unique 

over processors and time were demonstrated. It was shown how to perform remote form evaluation 

exactly once with processor failure detection. 

Exercises 

1. Assume that you have a remote processor class, rp. Give a statement that will determine 

the value of x in the environment at rp. 

2. Assume that your processor provides you with a stream of uncorrelated but biased bits. 

Give an algorithm that will remove the bias (hint: the algorithm will not produce unbiased 
bits at a fixed rate) [von Neumann 51]. 

3. Give an algorithm for implementing stable storage. Assume that the basic unit of storage is 

a page, failures are independent, and the probability that a storage device remembers a 

page after time t is pr(t) = e-At. What is pr(t) for your algorithm? How could you do 

better? 
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Chapter 3: Transactional Storage 

This chapter presents a basic set of facilities for shared information storage in three stages. The 

first section of the chapter introduces transactional storage, the second section discusses algorithms 
for implementing such storage, and the final section outlines some refinements. The information 

storage system described in this chapter would be ideal if storage system objects never moved, 

storage did not need its properties improved, there was no need to reconfigure storage, and people 
were perfectly trustworthy. Each of these problems is the subject of a subsequent chapter. 

3.1 Model 

Users do not want the inconsistent intermediate results they store to be misinterpreted by 

others, and thus inherent with the concurrent sharing of storage is the need for coordination. To 

this end we extend the notion of stable storage to create what we will call transactional storage. 
Transactional storage solves the problem of coordination by providing a client with the illusion that 

there is no other activity in the system. This illusion is achieved by the use of transactions, which 
are a basic unit of concurrency control and error recovery. 

The following sections define a transactional storage system in terms of an an ideal set of 

generic objects and operations. We will call objects that store information files, and objects that 
store files volumes. Volumes are intended to model storage devices. Not all objects have to support 

all operations, and it is possible to create specialized types of files and volumes. For example, an 

indexed file could be defined that implemented storage and retrieval by key. Extensions to the 

basic facilities are provided in subsequent chapters, and we expect that clients will also create 
facilities tailored to their needs. 

A further property of our transactional storage system is that it hides the physical location of a 

resource from its clients. Clients will typically use objects without knowing where they are. 

The facilities of a transactional storage system are introduced in the following five sections. In 
order, the topics covered are naming, transactions, volumes, files, and immutable objects. 

3.1.1 References 
All objects· we define are named by references. A reference contains a unique identifier that 

unambiguously identifies its referent References can be extended to contain such things as location 

hints, cryptographic keys, indirect pointers, and other useful things. We have already introduced 

processor references in Chapter 2 with the type Processor. 

Reference .... Record[id: UniqueID); 

Using references, clients can implement naming systems tailored to their users' needs. A 

general model for a naming system is a function that maps context dependent specifications into 

references. For example, a data base could be employed to resolve queries into references. A 

query might be "show me the file I created last Tuesday". Alternatively, objects could be selected 

from a menu of icons on a terminal screen. In such a system screen coordinates would be resolved 
to references. 
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Records are used to construct references. As described in Appendix A, record instances can be 

converted to and from arrays of bytes by the operations Encode and Decode. Thus references can 

be saved in files. Clients can not predict what fields will be in a reference, and thus should store 

references verbatim. As a matter of convention, the type of a reference will correspond to the type 

of its referent Thus, the function Is (Appendix A) can be used to determine the type of object that 

a reference names. 
Every object has a reference-count, which corresponds to the number of counted references to 

the object An object can also have uncounted references, which do not affect its reference-count 

The storage for an object is not released until all of its counted references are destroyed. When the 

storage for an object is released we say the object is deleted. If a reference is counted, care must be 

taken to ensure that it is not lost, and that it is properly destroyed when it is no longer needed. 

Clients, of course, are not bound to use the full generality of the reference-counting mechanism. 

They could limit the number of counted.references to an object to one, in which case destroying a 

counted reference would function like delete-object Counted references include the Counted type: 

Counted +- Record[); 

Reference-counts are provided as a convenience to help with, but not completely solve, the 

problem of reclaiming objects that are no longer wanted. Reference-counts have traditionally been 

somewhat suspect, but there is a good chance that they will be more reliable when they are 

maintained in transactional storage instead of volatile storage. 

Garbage collection can also be used to reclaim unwanted objects. An asynchronous garbage 

collection scheme has been successfully used in a system that keeps systematic track of all counted 

references [Garnett and Needham 80]. However, as the size of a system grows, it is probably not 

wise to assume that garbage collection will always be a feasible alternative. Furthennore, when 

protection is added to a system, a garbage collector may not be authorized to enumerate all of the 

references in the system. 

There is a well known accounting problem with reference-counts. An object may exist for an 

undefined time after the user that is paying for its storage is interested in it Provisions could be 

made to allow users that fund objects to delete them, but the semantics of reference-counts would 

be destroyed. 

It is possible that a configuration will have enough storage capacity that an object will never 

have to be deleted. As we shall see in Chapter 8, in this case reference-counts are still useful to 

automatically reclaim unused copies of objects that are stored on the configuration's limited amount 

of high performance storage. 

I f a read-only reference is used to refer to an object, no operations can be issued that would 

change the object in any way. Read-only references provide a client with a form of self-protection. 

Read-only references include the type Read-Only. Add-Type (Appendix A) can be used to add the 

type Read-Only to a reference. 

Read-Only +- Record[); 

All of the operations on objects in the system are implemented by classes. To acquire a class 

that will service operations for a given object, a reference for the object is opened with the function 

Open. Open tests the type of its input argument and then evaluates a function that is specialized to 
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deal with the presented type of reference. For example, if Open is applied to a processor reference, 
Open-Processor will be evaluated. Appendix C contains a complete description of Open. The 
following operations are supported by all objects. 

Open[ref: Reference, tc: TC, ring: List[Key], guards: List[Key] I c: Class] 

Open returns a class that will service requests to ref. All operations that the class performs 
will be part of transaction class tc, as described in Section 3.1.2. The precise initialization 
steps that Open takes depend on the reference's type. If a reference's referent can not be 
found, Error['NotFound] is returned. The third and fourth arguments to Open, ring and 
guards, are described in the chapter on protection (Chapter 7). 

c: Class I Close[] 

Close deactivates a class. Open references should be closed after they are no longer being 

used. 

c: Class I GetID[1 id: UniqueID] 

GetID returns the unique identifier of the object serviced by c. 

c: Class I GetTransactionClass[1 tc: TC] 

GetTransactionClass returns the transaction class of class c. 

c: Class I CopyReference[counted: Boolean I ref: Reference] 

An open reference can be copied, and a client can specify whether it wishes the copy to be 

counted or uncounted. Making a counted reference is the only way to increment the 
reference-count of an object 

c: Class I DestroyReference[1 deleted: Boolean] 

When a reference is no longer needed, it should be destroyed. The only way to decrement 
the reference-count of an object is to destroy one of its counted references. 
DestroyReference returns T if the object's reference-count went to zero. If the reference 
count of the object went to zero, the object is deleted when c is closed. 

3.1.2 Transactions 

Function evaluations that access transactional storage, also called actions, are grouped into 
disjoint sets called transactions. A transaction is defined to have three properties. 

Totality. Totality ensures that all of the actions in a transaction will either occur exactly 
once or not at all. Because transactional storage is built from stable storage, totality also 
guarantees that if a transaction appears to occur its effects will be resilient to hardware 
failures. 

Serial Consistency. Serial consistency makes it appear to a transaction that that there is no 
other simultaneous activity in transactional storage. 

To formalize the notion of serial consistency we will adapt some ideas from [Eswaran et 
a1. 76]. As we have stated, a transaction is a set of actions. For simplicity, we will only 
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consider read and write actions, and we will assume that a transaction performs at most one 
read and one write action on a data element 

The question of serial consistency arises when a transactional storage system 
concurrently executes actions drawn from several transactions. Imagine two simple 
transactions: 

Tl 
(all) Read Y 
(a12) Write X 
(a13) Write Y 

T2 
(a2l) ReadX 
(a22) Read Y 
(a23) Write X 

The order in which the actions of Tl and T2 are processed is called a schedule. A 
schedule is an arbitrary interleaving of the actions of a set of transactions into a single 
sequence. A serial schedule results when transactions are executed one at a time to 
completion. Thus, there are two possible serial schedules for our example: 

Sa: {all, a12, a13, a2l, a22, a23} 
Sb: {a2l, a22, a23, all, a12, a13}. 

A schedule generates a dependency relation. A dependency relation describes 
transactions that depend on one another. If S is a schedule, then <T a' e, T b> is a member 
of DEP(S) if: 

T a and T b are distinct transactions 

3jETa and a.i ET b 
3j and a.i are actions from S 
3j occurs before a.i in S 
3j is a write action to a data element e 
there are no other write actions to e between 3j and a.i 
a.i is a read or write action to e. 

In other words, <T a' e, T b> is in DEP(S) if T a updates data element e that T buses. 
If two schedules Sand S* have identical dependency relations, DEP(S) = DEP(S*), 

then they provide each transaction with the same inputs and outputs. Thus, two distinct 
schedules that have identical dependency relations are said to be equivalent. 

A system provides serial consistency if it guarantees that the schedule it will use to 
process a set of transactions is equivalent to one of the possible serial schedules. 

External Consistency. External consistency guarantees that a transaction will always receive 
current information. Using the concepts we have just introduced, we can provide a formal 
definition of external consistency. The actual time order in which transactions complete 
defines a unique serial schedule. This serial schedule is called the external schedule. A 
system is said to provide external consistency if it guarantees that the schedule it will use to 
process a set of transactions is equivalent to its external schedule. 

Let's consider a classical example to see why these properties are important in practice. 
Imagine that a bank teller requests that the money in a customer's savings account be transferred to 
his checking account The bank's computer system would begin a transaction, and evaluate 
functions referenced to this transaction to withdraw the balance of the customer's savings account 
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and deposit it in his checking account Totality ensures that either both the withdrawal and deposit 
will take place, or neither of them will. Serial consistency eliminates problems that might result 
from concurrency. For example, it prevents two independent transactions from observing the same 

balance, and then simultaneously withdrawing it Finally, external consistency ensures that if the 

customer goes to another teller to cash a check, the teller will see the customer's new checking 

account balance. 
A transaction is active until it ends by either committing or aborting. If it commits, the effects 

of its actions will become permanent and public. If it aborts, the effects of its actions will be 

undone. I f a client does not wait for an action to complete before requesting its transaction to 
commit, the action mayor may not occur. Furthermore, a transaction can commit with outstanding 
uncompleted reads. Normally a client controls the destiny of a transaction, but transactions can be 

spontaneously aborted by the system to cope with exceptional conditions such as hardware failure or 

the inability to guarantee consistency. 
In addition to performing actions in transactional storage, a transaction can cause real actions to 

occur [Gray 78]. A real action is an action that once done, can not be undone. Examples of real 

actions are launching a missile or dispensing cash from an automated teller. Totality is guaranteed 

for real actions as well as for updates to transactional storage. For example, assume a withdrawal 
transaction from an automated teller updates transactional storage (to debit the customer's account) 

and dispenses money from the teller machine. Totality guarantees that either both of these actions 

will occur, or neither of them will. 
Committing a transaction is a real action. The only way to undo the effects of a comitted 

transaction is to execute a compensating transaction. If compensation is possible, precisely how it 

can be accomplished is highly application dependant For example, it is very difficult to recall a 

missile that has been launched. 
A benefit of the all-or-nothing nature of transactions is that they can be used to insulate remote 

evaluations from processor failures. We assume that every evaluation of a transactional storage 

system function is associated with a transaction. If a processor fails while it is executing such an 

evaluation, it is sufficient to abort the evaluation's transaction. All of the effects of the evaluation 

will be discarded. Furthermore, if orphans later try to execute actions referenced to the aborted 
transaction, they will not do any damage. 

A coordinator is an object that creates and manages transactions. When a coordinator is 

opened, the transaction parameter to Open is ignored. The interface to coordinators is as follows: 

Transaction +- Extend[Reference, Record[]]; 

Coordinator +- Extend[Reference, Record[]]; 

cc: Coordinator-Class I Create-Transaction[1 t: Transaction] 

Create-Transaction creates a new transaction and returns a reference for it. The transaction 

reference returned is not counted. However, if a counted reference for the transaction is 
made, the transaction will persist after it is committed or aborted. Abort and Commit erase 

transactions that have a zero reference-count 

Once a transaction has been created, it can be opened. The transaction parameter to Open is 

ignored when a transaction is opened. The type of class that results from opening a transaction will 
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be often referred to as a TC, for transaction class. The operations that a transaction provides are as 

follows: 

tc: Transaction-Class I Commit[] 

Commit causes the effects of a transaction to be made permanent and pUblic. 

tc: Transaction-Class I Abort[] 

Abort erases any effects of a transaction and makes it appear as if the transaction had never 
existed. 

tc: Transaction-Class I GetStatus[/ status: Atom] 

GetStatus returns C, A, or NIL, for a transaction that is committed, aborted, or active, 
respectively. 

Clients that hold information derived from an active transaction are called participants. A 
buffer manager is an example of a participant. At commit, a participant should ensure that all 

updated information has been output to transactional storage. At commit or abort, a participant 

may wish to invalidate information that was derived from the transaction. Because the transaction is 

no longer active, the derived information is no longer guaranteed to be current. 

tc: Transaction-Class I AddParticipant[commit, abort: Global-Function / id: UniquelD] 

A client can be informed when a transaction commits or aborts by calling AddParticipant. 
The functions provided by the client will be applied to the specified transaction's reference 

just before the transaction commits or aborts, respectively. 

The final disposition of a transaction is not guaranteed when commit or abort are called. 

Thus, the commit function can not be used to indicate success to a user. Only a successful 
return from tc I Commit indicates that a transaction has sucessfully committed. 

tc: Transaction-Class I DeleteParticipant[id: UniquelD] 

D~leteParticipant deletes a participant. The participant to be deleted is specified by a 
unique identifier that was returned from AddParticipant. 

It is possible that a client will request a transaction to commit and then its processor will fail 

before it can find out what happened. A solution to this problem adopted by some systems is to 

use real actions to indicate success. Alternatively, a client can keep a counted reference for the 
transaction, and use GetStatus to discover what happened when its processor recovers. 

3.1.3 Volumes 

A volume is a file-storage service that is independent of a specific hardware realization. A 
volume can be implemented by a fraction of a storage device, one storage device, or more than one 

storage device. The details of how a physical medium are prepared for use are beyond the scope of 

this work, and we simply assume that a mechanism exists that will create a new volume and return 
a reference for it 

The storage technology used to implement a volume influences its properties. We call the 

volumes implemented by serial devices and write-once devices serial volumes and write-once 
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volumes, respectively. A volume may be both serial and write-once. Serial and write-once volumes 

influence the properties of the files stored on them, as described in the next section. 
A volume is named by a volume reference, and serial and write-once volumes are further 

distinguished by unique types of volume references. The types that are used to implement these 

references are: 

Volume ~ Extend[Reference, Record[]); 
Serial ~ Record[]; 

Serial-Volume ~ Extend[Volume, Serial]; 
Write-Once ~ Record[]; 
Write-Once-Volume ~ Extend[Volume, Write-Once]; 

Users may choose not to rely on reference-counts to determine when a volume should be 

retired, and thus an implementation of volumes may choose not to implement the reference­

counting semantics of CopyReference and Destroy Reference. However, automatic volume 
reclamation may be appropriate for some storage devices [IBM 80b). 

Create-File is the only operation that all volumes must support. However, a volume might 

choose to implement an operation to return its remaining storage capacity, or an operation to 
enumerate the files that it holds. 

3.1.4 Files 

A file is a variable-length array of bytes that can be read and written. The length of a file can 

be set, and the system mayor may not remember information past the declared end of a file. A 
file is initialized to contain all zero bytes, and an attempt to read past the end of file will return 

zero bytes. If data is written beyond the end of a file, the file will be automatically extended and 

have its length adjusted. 
Like other objects, a file is named with a reference. A file reference contains a reference for its 

containing volume. A file reference may also contain other things, such as storage device addresses, 
but as we described in the section on references, the job of a client is simply to store references 

verbatim. A file reference is defined as: 

File ~ Extend[Reference, Record[volume: Volume)); 

Files that are stored on serial and write-once volumes have special properties and reference 
types. If a file is stored on a serial volume, then non-serial access to the file is very expensive. If a 
file is stored on a write-once volume, then it can only be written once. It is unlikely that clients will 

have to deal directly with serial or write-once files. In Chapter 8 we discuss briefly how to obtain 

the cost and performance benefits of serial and write-once devices while presenting a normal file 
interface. Serial and write-once file references are defined as: 

Serial-File ~ Extend[File, Serial]; 
Write-Once-File ~ Extend[File, Write-Once]; 

The following functions define the file operations. Files can be created, read, written, and they 
can have their length changed. 
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vc: Volume-Class I Create-File[name: UniqueID, exists: Boolean / ref: File] 

fc: 
fc: 
fc: 
fc: 

Create-File creates a file with a given name on a specific volume, and returns an uncounted 
reference for the file. If a client wishes to preserve the file, it must make a counted 
reference for it If a file already exists on the specified volume with the given name, 
Error['DuplicateIdentifier] is returned unless exists is T. Although Create-File is described 
in this section, it is intrinsically a volume operation. 

File-Class W rite[startPage: Integer, pages: Integer, data: Byte-Array] 
File-Class Read[ startPage: Integer, pages: Integer / data: Byte-Array] 
File-Class Set-Size(pageCount: Integer] 
File-Class Get-Size[/ pageCount: Integer] 

The fundamental operations for data retrieval and storage are read and write. Files are 
read and written in units of pages, and the size of a page is implementation dependent 
Write writes into a file from an array a specified number of pages starting at a given page 
number. Read reads from a file into an array a specified number of pages starting at a 
given page number. The length of a file can be set and determined by Set-Size and Get­
Size, respectively. 

These operations can result in four exceptional conditions. An attempt to write or set 
the length of a file on a read-only device returns Error['ReadOnly]. An attempt to write or 
set the length of an immutable file (see below) returns Error[' Immutable]. An attempt to 
extend the length of a file, either by writing past the end of it or by an evaluation of Set­
Size, will return Error['InsufficientCapacity] if the file's containing volume is full. If an 
unrecoverable failure is detected Error['StorageDamaged] is returned. 

3.1.5 Mutable and Immutable Objects 
After an idea originally suggested by Paul Mclones, files and volumes can be freely modified 

until they are made immutable. Once an object is niade immutable it becomes permanently read­
only, and there is no way of making the object mutable again. An immutable file can not be 
written or have its length changed, and an immutable volume consists of a permanently fixed set of 
immutable files. 

The following two functions set and test the immutable property: 

or: Class SetImmutableD 
or: Class IsImmutable[/ immutable: Boolean] 

Immutable objects afford important practical benefits. A copy of an immutable object can be 
made without fear that the copy will become obsolete. Furthermore, because immutable objects can 
not change, the concurrency control and error recovery facilities of transactions are not required for 
their contents. However, deleting an immutable object is a real action, and thus requires the 
facilities of transactions. 

Theoretically a storage system could consist of a large number of immutable files and one 
mutable file that contained a single reference. In such a scheme, every time an object was updated, 
a new immutable version of the storage system would be created. The single mutable reference 
would point to the current version of the storage system. The extent to which immutable objects 
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should be used will depend on the characteristics of an application under consideration, and the 
relative cost of mutable files. 

The type of device that is used to store an object and whether the object is immutable or not 
are completely independent For example, objects that are stored on a write-once storage device do 
not have to be immutable. Although an object that is stored on a write-once device can not be 
directly updated, it could be moved to a read-write device, and then updated. 

3.2 Basic Algorithms 

Techniques for implementing single-processor, transactional-storage systems have been well 
understood for some time. At the time of this writing, a few systems have been sucessfully 
constructed that implement a transactional storage system across processor boundaries [Eade et ale 
77; Israel et ale 1978; LeLann 81; Tandem 81]. Because we are drawing on previous work, we will 
provide an overall sketch of how a decentralized transactional storage system can be implemented, 
but the reader should consult the references provided for details. 

Our survey is given in four sections. Transactional storage is first introduced on a single 
processor, and then extended to the decentralized case. We then discuss a different algorithm for 
transactional storage due to Reed. The final section describes how remote objects are accessed in 
our model. 

3.2.1 Single Processor Case 

The job of a transactional storage system is to implement the three properties of transactions: 
totality, serial consistency, and external consistency. Existing systems follow a common pattern 
[Gray 78]. 

The two types of consistency are implemented by lock management A lock protects objects 
that a transaction uses from concurrent updates from other transactions, and it notifies other 
transactions that an object the transaction updates is busy. Locks are typically set implicitly as the 
result of storage system function evaluations. A client can also use its knowledge of what it is trying 
to accomplish to directly set and clear locks as an optimization. Some form of time out mechanism 
is usually provided that will cause a transaction to be aborted if it holds a popular lock too long. 

Totality is implemented by recovery management In an "undo" implementation, updates are 
directly applied to objects, and recovery management remembers old values in case a transaction 
aborts. If a transaction aborts, recovery management undoes the transaction's updates by consulting 
the preserved old values; hence the designation undo. In a "redo" or "intentions" implementation 
a transaction does not directly update objects. Requested updates are remembered by recovery 
management, and if a transaction commits, recovery management applies them to their respective 
objects. Thus, the list of updates remembered by recovery management are called intentions. If the 
system fails while intentions are being applied they must be reapplied, or redone, until they have 
been completely applied. 

Recovery management requires storage. In an undo scheme the extra storage is for old values, 
and in a redo scheme the extra storage is for new values. This storage is implemented in existing 
systems with a log or a shadow mechanism. 

A log is an append-only file that records the history of the system. In typical log-based 
systems, updating an object causes a log record to be written that includes the object's name, old 
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and new values, and information that identifies the update's transaction. 
A shadow mechanism implements storage for new values. New values are written out to fresh 

pages called shadows. If a transaction commits, any files that were updated have their physical 
storage description changed to point to their shadow pages instead of to pages that contain old 

values. 
The ideas of undo and redo can be combined. For example, in System R performance is 

increased by not keeping stable storage up to date. If the system fails, updates may have to be 
undone or redone from the log [Gray et al. 79]. 

Because most log-based systems remember redo values, they implement stable storage. Even if 
part of a file is lost, the log will still have a copy of the data. To prevent logs from becoming 
infinite, condensed snapshots called fuzzy dumps are taken periodically [Gray et al. 79]. Systems 
that only use shadows must implement stable storage with an additional mechanism. 

Recovery management keeps track of the real actions that a transaction has requested. These 
actions are postponed until recovery management is told to commit or abort. If recovery 
management is told to commit a transaction, then the transaction's real actions are performed. 

Now that we have introduced the concepts of lock and recovery management we can describe 
how they are synchronized to implement transactions. Our discussion assumes that a transaction is 
processed by more than one lock manager and more than one recovery manager. Inside of a single 
system there may be several lock and recovery managers. This commonly occurs when two 
independent data base systems are integrated. 

As we have discussed, a transaction is aborted for one of two reasons. First, a client can 
request that a transaction be aborted. Second, if a lock manager can not guarantee the consistency 
of a transaction, the transaction is aborted. When a transaction is aborted, the transaction's 
coordinator tells the transaction's lock managers to release the transaction's locks, and the 
transaction's recovery managers to erase the transaction's updates. 

A transaction is committed only if a client requests that it be committed. When a client 
requests a transaction to commit, the transaction's coordinator executes the following two step 
algorithm. 

1. The coordinator asks all of the transaction's lock managers to guarantee the transaction's 
consistency, and all of the transaction's recovery managers to guarantee to commit on 
demand. If any manager can not make the requested guarantee, the transaction is aborted. 

2. After all of the managers have made their promises, the coordinator informs the recovery 
managers to go ahead and commit the transaction. After the recovery managers have 
applied the transaction's updates, the lock mangers are told to release the transaction's locks. 

This two step process is known as the two-phase commit protocol. 

3.2.2 Decentralized Case 

The decentralized case is not substantially different from the single processor case with multiple 
lock and recovery managers. A transaction that spans processors is implemented by a cooperating 
set of single processor transaction systems. Each processor, with its own transactional storage 
system, is called a worker. A worker implements lock and recovery management for the data it 
stores. 
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A decentralized transaction's coordinator carefully synchronizes the commit and abort processing 
of the transaction's workers as follows. If a transaction is aborted, either because a lock manager 
could not guarantee consistency or because the client requested an abort, the coordinator tells every 
worker to abort. If a client requests commit, the coordinator asks every worker to promise to 
commit on demand. Before a worker can make such a promise it must ensure that as far as it 
knows the transaction is consistent, and it has all of the information in stable storage that is 
required for the transaction to commit If these conditions are met then the worker can make its 
solemn promise. A worker that has made such a promise is said to be prepared. After making its 
promise a worker must remain prepared until it is informed to commit or abort by the coordinator. 
The request and promise sequence is phase one. If all workers promise to commit, then they can 
all be instructed to go ahead and commit This is phase two. If any worker fails or refuses to make 
the promise then the coordinator aborts the transaction. The two steps of a decentralized commit, 
request and receive promises, followed by commit, is the decentralized version of the two-phase 
commit protocol [Gray 78]. 

Coordinators must be very reliable so workers are not left prepared for an appreciable length of 
time. A prepared worker is undesirable because its lock manager can not permit any transactions to 
be processed that would destroy the consistency of its prepared transaction. If a transaction's 
coordinator fails a worker may remain prepared for a long time. 

We now digress for a moment to introduce a necessary idea. Imagine that a value can be 
replicated at a number of distinct places and manipulated in a way that is reasonably tolerant of 
place failures. There are two operations to manipulate the value: TryToSet and ReadValue. 
TryToSet attempts to set the value, but it only sets the value ifit was NIL. Thus, if many TryToSet 
operations are simultaneously evaluated only one of them will successfully update the value. 
TryToSet will not return until the value is not NIL (it mayor may not have succeeded). 
ReadValue returns the current value. Several algorithms have been proposed that solve this 
problem [Lamport 78a; Lampson 80; Thomas 79]. 

The following addition to the synchronization algorithm sketched above keeps workers from 
depending on a coordinator. The coordinator stores the state of a transaction at a number of places 
using TryToSet. The state of a transaction can be NIL. C. or A. representing active, committed, or 
aborted. When a transaction is aborted, the coordinator executes TryToSet[' A]. If a client requests 
that a transaction be commited, and the coordinator has received promises from every worker, then 
the coordinator executes TryToSet['C]. After it has done this, the coordinator sees if the value of 
ReadValue is C, and if so. it tells the workers to commit When a worker is asked to get prepared 
and· make its promise, it is passed the list of places where the state of the transaction is stored. If a 
worker gets restless or its lock manager notes that there are competing requests for a. prepared 
transaction's locks it can use ReadValue to determine the state of the transaction. If the state is C, 
it can go ahead and commit. If the state is A, it can abort. If the state is NIL, it can execute 
TryToSet[' A). Thus, regardless of when the coordinator might fail the transaction will continue to 
move towards termination. 

3.2.3 Reed's Algorithm 

Reed has proposed a new way of implementing transactions [Reed 78). We will not describe 
his scheme in detail, but we briefly sketch how his assumptions differ from tradition. First, he 
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discarded the idea of private storage for recovery management. and instead let new and old values 

coexist in storage. New values are hidden by a version mechanism until a transaction commits, and 

old values persist for an implementation dependent period. Second, he abandoned locks as a 

concurrency control mechanism. Every transaction in his system is assigned a distinct pseudo-time 

period during which it appears to run. Data items have time stamps acquired from transactions, 

and rules are enforced that ensure serial consistency. 

3.2.4 Located References 
Open is defined to return a class that will service requests for an object regardless of where the 

object is located. In this section we will make simplifying assumptions so we can clearly present the 

mechanics of how remote objects are accessed. In later chapters we add more complex concepts, 

such as object location. 

A reference is said to be located if it includes the address of a processor that will service 

requests for its referent Until Chapter 4 we assume that all references are located, and that the 

locations in references are always acctfrate. The address of an object is added to its reference as 

follows: 

Create-Located[ref: Reference, loc: Processor / Iref: Located] 

Create-Located creates a located reference. When Open is applied to Iref, control will be 

transferred to processor loc, and ref will be opened there. 

Located ~ Record[ref: Reference, loc: Processor]; 

Create-Located[ref: Reference, loe: Processor / lref: Located] ~ Prog[ (]; 

Iref ~ Create[Located]; 

lref.ref ~ ref; lref.loe ~ loe; 

Return[Add-Type[lref, Major-Type[ref]]]; 

]; 

When we create references that are derived from other references, the new reference is assigned 

the same major type as the reference it was derived from. For example, if Create-Located is 

applied to a file reference, it will return a located file reference. 

Major-Type[ref: Reference / type: Type] ~ Prog[ []; 

-- return the major type of ref 

Return[Intersection[ref.type, 

]; 

Union[File, Volume, Coordinator, Transaction, Index, Processor, Counted, 

Secure-Door, Suite]]; 

When Open encounters a located reference, it calls Open-Located: 

Open-Located[ref: Reference, tc: TC, ring: List[Key], guards: List[Key] / c: Class] 

Open-Located will open ref on the processor that is specified in its reference. The class 

returned can be used to communicate with the remote object as if it were local. 

It is not sufficient just to evaluate Open on the remote processor because classes can not be 
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passed between processors. Thus, Open-Located arranges to open a reference on a remote 

processor, and have the resulting class kept at the remote processor in a set called Doors. An entry 

in Doors is indexed by a unique identifier, and the unique identifier is returned to the originating 

processor. We will call an entry in the set Doors a door. The class created by Open-Located can 

refer to a remote class by specifying the unique identifer of its door. 

Shown below is the model implementation of Open-Located. Open-Door opens a reference 

on a remote processor and creates a door for the resulting class. A request directed at a located 

class is sent to Enter-Door. Enter-Door passes the request and a door identifier to the remote 

processor, where Door-Eval actually performs the requested operation. Figure 3.1 shows the 

structure of the class that Open-Located creates. 

Open-Located[ref: Reference, te: TC, ring: List[Key], guards: List[Key] / class: Class] f­

Prog [ 
[rp: Processor-Class; d: Door; t: Transaction; r: Reference]; 
IF ref.loc=GetMyProcessor[] THEN [ 

-- object is at this processor 
class f- Open[ref.ref, te, ring, guards]; 
IF Is[class, Error-Type] THEN Return[class]; 

ELSE [ 
-- object is at a remote processor 
t f- tc I CopyReferenceO; 
r f- ref.ref; 
rp f- Open[ref.loc]; 
-- pass guards but not ring to remote processor (details in Chapter 7) 
d f- rp I Eval[,Open-Door[r, t, guards]]; 
IF Is[d, Error-Type] THEN Return[d]; 
class f- Function[Enter-Door]; 
]; 

Instance variables: rp, d, ref, tc 
Return [ Create-Class[ 

]; 

List[' Copy Reference, 'Default-Copy], 
class]]; 

Enter-Door[request: List / result: Any] f- Prog [ 0; 
result f- rp I Eval[,Door-Eval[d, request]]; 
-- Eliminate problems with orphans if the processor fails 
IF result = Error['ProcessorFailure] THEN te I Abort[]; 
Return[result]; 
]; 

Default-Copy[counted: Boolean/ cref: Reference] f- Prog [ []; 
-- default implementation of Copy Reference 
cref f- Copy[ref]; 
IF counted THEN [ 

-- if counted, increase reference count of referent 
Apply[superclass, request]; 
-- add counted type 
Add-Type[cref, Counted]; 
] 
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ELSE Remove-Type[cref. Counted]; 
Retum[cref]; 
]; 

Open-Door opens a reference and returns the identifier of its door. Door-Eval applies a door to a 
request 

Doors ~ Create-Set[]; 

Open-Door[ref: Reference. t: Transaction, guards: List[Key] / d: Door] ~ Prog [ 
[c: Class; dc: Class]; 
c ~ Open[ref, Open [t]. NIL, guards]; 
IF Is[c, Error-Type] THEN Retum[c]; 
d ~ GetUniqueIDD; 
dc ~ Create-Class[List[·Close. 'Close-Door]. c]; 
Set-Insert[Doors, d. dc]; 
-- Instance variables: c, d 
Retum[d]; 
]; 

Door-Eval[d: Door, request: List / result: Any] ~ Prog[ [c: Class]; 
c ~ Set-Lookup[Doors. d]; 
IF Null[c] THEN Return[Error['NoSuchDoor]]; 
Retum[Apply[c. request]]; 
]; 

Close-Door[] ~ Prog [ [tc: Transaction-Class]; 
tc ~ c I GetTransactionClassD; 
c I Close[]; 
tc I CloseD; 
Set-Delete[Doors, d]; 
]; 

3.3 Refinements 

3.3.1 Lock Compatibility 
A typical locking structure that is used to guarantee serial consistency has two types of locks, 

read and update. These locks are set on data items implicitly in response to file operations. The 
compatibility of the locks is specified by Table 3.1. 

No Lock Read 

No Lock Yes Yes 

Read Yes Yes 

Update Yes No 

Update 

Yes 

No 

No 

Table 3.1: Typical Lock Compatibility Matrix 

A transaction is suspended if it attempts to set a lock that is incompatible. This matrix 
corresponds to the familiar rule that either n readers or one updater are permitted to access a file 
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simultaneously. 
This locking rule potentially can introduce long periods of time when information is unavailable. 

For example. if a user controls the length of a transaction. he can hold a update lock for a long 
period of time. This may naturally occur as a user thinks at the keyboard. 

A property of serial consistency is that all of a transaction's updates appear to occur at 
transaction commit time. One can take advantage of this property to increase the concurrency in the 
following way. Updates appear to occur when they are issued. but in fact are buffered until commit 
time by the stable storage system. Allowances are made so a read following a write will receive the 

write's data. When a user updates a datum, an I-Update lock is set, for intention to update. At 
commit time I-Update locks are converted to Commit locks. and the updates are actually reflected in 
stable storage. Table 3.2 specifies the new lock compatibility matrix. 

No Lock Read 

No Lock Yes Yes 

Read Yes Yes 

I-Update Yes Yes 

Commit Yes No 

I-Update Commit 

Yes 

Yes 

No 

No 

Yes 

No 

No 

No 

Table 3.2: Lock Compatibility Matrix with Intention Locks 

With this revised locking matrix, information is only unavailable for predictably short periods of 

time. during commit processing. This results in increased concurrency, but it may cause the later 
abortion of a transaction. We chose to make multiple I-Update locks incompatible, because 

eventually one of the two transactions would probably commit, and become incompatible. Thus we 

chose not to postpone the inevitable. 
This is one example of what is called lock conversion [Gray 78]. Lock conversion allows clients 

to predeclare their intentions to help lock management schedule transactions. 

3.3.2 Lock Granularity 
The granularity of a lock [Gray et al. 76] refers to its scope. For example, a fine grained lock 

might be set on a range of bytes in a file. and a coarse grained lock might be set on an entire file. 
Choosing the granularity of locks presents a trade off between concurrency and lock manager 

overhead. Fine grained locks increase concurrency by not locking as much, but lock management 
will set more locks. On the other hand, if coarser locks are chosen. then concurrency will be 

reduced. 
Locking protocols have been devised that provide variable granularity locks [Gray et al. 76]. 

Variable granularity locks allow clients to decide how much should be locked, and have proven to 
be very valuable in practice. 

3.3.3 Lower Degrees of Consistency 
There are a number of different levels of consistency, but serial consistency is the highest, and 

the consensus is that lower degrees of consistency are not sufficient for all applications [Gray 78]. 
[Gray et al. 76] define four degrees of consistency that can be roughly characterized as follows. 

Degree 0 protects transactions from overwriting each others uncommitted updates. Degree 1 adds 
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totality. Degree 2 adds protection against reading the uncommitted updates of others. Degree 3 
provides serial consistency. Further details are provided in the taxonomy [Gray et al. 76]. 

The motivation for using lower degrees of consistency is that they permit more concurrency, 
perform better because fewer locks are set, and are less complex to implement than higher degrees. 
A transactional storage system could support lower degrees of consistency. However, there are a 
number of ways of achieving the benefits of lower degrees of consistency with the system as 
described. For example, if a transaction runs for a long time it could be broken up into many 
smaller transactions. 

3.3.4 Broken Read Locks 
In some cases when a data item that a transaction has read becomes obsolete it is not necessary 

to abort the transaction. A common example is a cache manager that holds data as a convenience. 
If one of the data items it is holding is no longer current it would be content to be informed of that 
fact so it could remove the item from its cache, and then proceed. 

Transactional storage could inform clients that a data item they previously received has become 
obsolete, and give them the option of not aborting their transaction. This is called breaking a read 
lock, in reference to the read lock the data item held. The advantage of the scheme is that fewer 
transactions are aborted. 

3.3.5 Releasing Read Locks 
Transactional storage could allow clients to inform it that although they read a data item, it did 

not influence their computation, and its corresponding read lock could be released. As a general 
rule, the more read locks a transaction holds, the more likely it is to conflict with another 
transaction and be aborted. In addition, the system must verify that read locks are still being held 
at commit time, which increases the amount of communication that must occur. 

3.3.6 Deadlock 
Cyclic dependencies, or deadlocks, can occur when clients dynamically acquire resources. For 

example, if client A acquires X and wants Y, and client B acquires Y and wants X, a deadlock 
exists. In order to guarantee progress either A or B must be aborted and the other allowed to 
proceed. 

Deadlock prevention requires that all transactions either declare in advance what resources they 
are going to use, or acquire resources in a fixed order. Deadlock prevention is usually considered 
too restrictive for general use, and it reduces concurrency by locking too much for too long. 

Deadlock detection maintains a resource dependency graph to detect when a cyclic dependency 
occurs. This approach is difficult to efficiently implement in a decentralized system, although some 
proposals have been made [Gray 78; Obermarck 80]. 

A time-out strategy resolves deadlocks by aborting a transaction if it holds a resource for too 
long that another transaction has requested. The problem with a time-out scheme is that in a 
system with a lot of contention for resources, once a transaction has run longer than the timeout 
interval it is likely to be aborted. This problem can be alleviated somewhat by specifying the time­
out interval for a transaction when it is created. 
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3.3.7 Checkpoints and Save Points 
It is possible to commit a transaction and still keep the transaction active for further operations. 

Such a commit is called a checkpoint. A checkpoint allows a transaction to save a consistent set of 
results to hedge against the possibility that it might not complete [Gray et al. 79]. 

A save point is an intermediate place in a transaction that recovery management can return to if 
the transaction gets into trouble. For example, if a transaction is involved in a deadlock, it may be 
possible for recovery management to return to the transaction's last save point If this is possible, 
all of the transaction's work will not be discarded, as would be the case if recovery management 

could only abort the entire transaction. 

3.3.8 Nested Transactions 
The one level transaction structure that has been presented can be extended to include nested 

transactions [Davies 73; Reed 78]. Nested transactions are just like normal transactions. except that 
when they commit their results are only visible to their parent transaction. For example. imagine T 

has two nested transactions, Tl and T2. running at the same time. Tl and T2 can not detect each 

others presence, and their results are only visible to T when they commit The results of Tl and T2 

are made public when T commits. 
Nested transactions may provide a performance improvement by making transactions less likely 

to abort For example. in Section 3.2.4 we described a scheme that forced a transaction to abort if a 

processor failed. If Enter-Door created a separate nested transaction for each remote evaluation, 
then on processor failure it could abort the corresponding nested transaction and retry the 

evaluation. 

3.3.9 Stable Storage Failure 
The fundamental premise that we are operating under is that stable storage will not fail. 

However, stable storage will fail sometime. If stable storage fails it is the clients' responsibility to 

reconstruct its contents. Simply using an obsolete copy of the destroyed data will not do. Assume 
that there is a catastrophic failure of volume V, and all that remains is an out of date copy of V 

made at time T. One can not simply restore V to its state at time T because consistency would be 
destroyed. Consider the case where V stores bank account balances, and substantial withdrawals 

have been made since time T. Restoring V would result in the bank giving away money. 

Obsolete information can be of use, however. For example, if V and V's log from time T to 

the present are available stable storage can be totally reconstructed. If a log is not available, a 
salvaging program could read obsolete data and combine it with information available from outside 

the system to rebuild storage. 

3.4 Summary 

Transactional storage was introduced as an ideal way of allowing stable storage to be shared 

between clients. The fundamental characteristics of transactional storage were described, along with 
a model set of objects and primitives. A survey of existing and proposed algorithms for the 
implementation of transactional storage was provided. The final section of the chapter outlined 

some refinements that can be made to the model and its implementation. 

38 



CHAPTER 3: TRANSACfIONAL STORAGE 

Exercise 

1. Give an algorithm for TryToSet Will your algorithm always terminate in finite time? 
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In many instances objects naturally physically move about in a decentralized system. A 
removable storage volume is an obvious example. Other objects, such as coordinators, can also 
move if the processor that implements them changes. 

This chapter describes the techniques that we employ to determine where an object is 
implemented. The first section introduces the notion of an index, the second section shows how 
indexes can be used to implement indirection, the third section introduces indirect references, the 
fourth section discusses how files, volumes, and other objects are located, and the last section 
describes choice references. The chapter ends with a brief summary. 

4.1 Indexes 

An index holds a set of entries. An entry is an array of bytes, and each entry is named with an 
entry-name. Like other objects, indexes are named by references, and Open is evaluated to obtain a 
class to service an index. Like files and volumes, indexes can be made immutable. The following 
functions define the interface to indexes: 

Create-I n dex(storage: File / index: Index] 

Create-Index takes a file reference and returns an uncounted reference for a new index. It 
is presumed that storage either contains the data structures that represent an index, or is a 
zero length file. We will see in Chapter 6 why storage might already contain the data 
structures of an index. The index will inherit the unique identifier of storage. An index 
reference is defined to have the following type: 

Index +- Extend[Record(storage: File], Reference]; 

ic: Index-Class I Write[entry-name: Byte-Array, value: Byte-Array] 

Write enters an entry in an index and names it entry-name. If an entry previously existed 
under the specified entry-name its value is updated. If an entry previously existed and the 
value argument to Write is NIL, the entry is deleted from the index. 

ic: Index-Class I Read[entry-name: Byte-Array / value: Byte-Array] 

Read returns the entry named by entry-name. If there is no entry under the specified 
name, NIL is returned. 

Entry +- Record[entry-name: Byte-Array, value: Byte-Array]; 

ic: Index-Class I Enumerate[last: Entry / next: Entry] 

Enumerate allows all of the entries in an index to be enumerated. The first entry in an 
index is returned when last is NIL, and next is NIL when there are no more entries. 

There are many algorithms for implementing indexed files. Popular approaches are presented 
by [Knuth 73] and [McCreight 77]. 
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CHAPTER 4: LocATION 

As the first step to implement location, we introduce processor-independent indirection. 

Indirection is processor-independent in the sense that an indirect pointer can be made on one 

processor and dereferenced on another processor. The following four functions define the interface 

to the indirection mechanism: 

Create-Indirect[record: Record, index: Index, te: TC / ie: Indirect] 

Create-Indirect creates an indirect entry, places record in the entry, and returns an indirect 

pointer to the new entry. 

Lookup[ie: Indirect, te: TC / record: Record] 

Lookup returns the contents of the indirect entry specified by ie. 

Change-Indirect[ie: Indirect, record: Record, te: TC] 

Change-Indirect places record in the indirect entry specified by ie. If record is NIL, the 

indirect entry is deleted. 

Normalize[ie: Any, te: TC / record: Record] 

If ie is indirect, Normalize dereferences ie using Lookup until the result is not an indirect 

record. 

4.2.2 Basic Algorithm 

Indexes are used to implement indirection. As shown in Figure 4.1, an indirect record points to 

the index entry that is used to hold its value. 

Indirect +- Record[indirect-id: UniqueID, index: Index]; 

Create-Indirect[record: Record, index: Index, te: TC / ie: Indirect] 
+- Prog[ [ic: Index-Class]; 

ie +- Create[Indirect]; 
ie.indirect-id +- GetUniqueID[]; 
ie.index +- index; 
ic +- Open[index, te]; 
IF Is[ic, Error-Type] THEN Return[ic]; 
-- check for unique id generator malfunction 
IF Not[N uIl[ic I Read[ie.indirect-id]]] THEN [ 

ic I Close[]; 
. Return[Error['UniqueIDMalfunction]]; 
]; 

ic Write[ie.indirect-id, Encode[record]]; 
ic I Close[]; 
Return[Add-Type[ie, Major-Type[record]]]; 
]; 

Lookup[ie: Indirect, te: TC / record: Record] +- Prog[ 
[ic: Index-Class]; 
ic +- Open[ie.index, te]; 
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record +- Decode[ic I Read[ie.indirect-id]]; 
ic I Close[]; 
Return[record]; 
]; 

Change-Indirect[ie: Indirec~ record: Record, te: TC] +- Prog[ 
ric: Index-Class; contents: Any]; 
contents +- IF Null[record] THEN NIL ELSE Encode[record]; 
ic +- Open[ie.index. te]; 
ic I Write[ie.indirect-id. contents]; 
ic I Close[]; 
]; 

Nonnalize[ie: Any. tc: TC / record: Record] +- Prog[ []; 
record +- ie; 
UNTIL Not[Is[record. Indirect]] 00 record +- Lookup[record. te]; 
Return[record]; 
]; 

4.3 Indirect References 

With the structure we have described so far once a reference is given to a client it must never 

change. There are many reasons to eliminate this restriction. For example. if a located reference 

could change. then the location of its referent could change. At times it may also be desirable to 

change the referent of a reference, perhaps to cause clients to use a new object 

To allow references to change, we introduce the notion of an indirect reference. Indirect 

references are created by applying Create-Indirect to a reference. Indirect references are used just 

like ordinary references. They are counted or uncounted, depending on the type of their original 

reference. CopyReference and DestroyReference are used to copy and destroy indirect references. 

Indirect-References take up less space than nonnal references, and thus can reduce the amount of 

storage occupied by common references. 

ChangeReference is used to change' an indirect reference and destroy the old reference that was 

in its index entry. Change-Indirect can be used to change an indirect reference, but it does not 

destroy the old reference. 

ic: Indirect-Class I ChangeReference[nref: Reference] 

ChangeReference causes the indirect reference represented by ic to be changed to point at 

nref ic is also changed to service nref 

When a counted-indirect reference is made for an objec~ the object's reference count is 

increased by one. When the destruction of an indirect reference results in the destruction of its 

referent (it was the only counted reference), then the indirect reference's index entry is also 

destroyed. Thus, if three counted-indirect references share an indirect entry, the indirect entry will 

be destroyed when the last of the three references is destroyed. 

A file reference is defined to include a reference for its containing volume. Thus, when a file is 

created on an indirect volume. a reference for the indirect volume is included in the new file 

reference. 

Figure 4.2 shows the class structure that is established when an indirect reference is opened. 
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All requests are first considered by a class specialized for indirect references, which is called an 
indirect class. If a request is not one of the four operations that the indirect class handles, then it is 
passed along to a class for the indirect reference's referent A similar class structure will be used for 
other types of references. 

Open-Indirect[ref: Reference, te: TC, ring: List[Key], guards: ListIKey] I c: Class] 
+- Prog[ [d-ref: Reference]; 
d-ref +- Lookup[ref. te]; 
c +- Open[d-ref, te, ring, guards]; 
IF Is[c, Error-Type] THEN Retum[c]; 
c +- Create-Class[List{ 

'CopyReference, 'Default-Copy, 
'ChangeReference, 'Indirect-Change, 
'DestroyReference, 'Indirect-Destroy, 
'Create-File, 'Indirect-Create-File], 
c]; 

Instance variables: ref, te, ring, guards 
Retum[c]; 
]; 

Indirect-Change[nref: Reference] +- Prog[ 1]; 
-- change reference 
-- first, destroy old reference 
superclass I DestroyReferencel]; 
superclass I Closel]; 
-- second, update index 
Change-Indirect[ref, nref, te]; 
-- third, open new reference and switeh superclass 
superclass +- Open[nref, te, ring, guards]; 
IF Is[superclass, Error-Type] THEN Retum[superclass); 
]; 

Indirect-Destroy[1 deleted: Boolean] +- Prog[ 1]; 
-- destroy reference pointed to 
deleted +- Apply[superclass, request); 
-- destroy indirect if object deleted 
IF deleted THEN Change-Indirect{ref. NIL, te]; 
Retum[deleted]; 
]; 

Indirect-Create-File[] +- Prog[ 1]; 
-- substitute an indirect volume ref 
file-ref +- Apply[superclass, request]; 
IF Is[file-ref, Error-Type] THEN Return[file-ret]; 
file-ref.volume +- self I CopyReference[]; 
]; 

Open-Indirect can cache the results of Lookup requests. However, if it uses one of these 
cached references and an Error results, then it must use Lookup to determine if its cached value is 
still current If an error is going to occur it will occur at Open time, so it is always safe for Open­
Indirect to attempt to use an obsolete cache entry. 
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4.4 Object Location 

Indirect references are used to implement location for volumes, coordinators, and indexes. As a 
matter of convention, indirect references are always made for objects that might move. When the 
location of such an object changes, Change-Indirect is used to update the object's indirect entry with 

a new located reference. 
Take the case of a removable volume as an example. When the volume is created, an indirect 

reference for it is made. This indirect reference is what is given to clients and passed around in the 
system. Whenever the removable volume is mounted, its location is placed in the index specified 
by its indirect reference. Clients that hold the volume's reference will then be able to access it 

Indexes can not always be located with indexes because of the obvious problem with recursion. 
The index-index is introduced to solve this problem. The index-index is named by a fixed, located 
reference. Because the index-index will be used frequently an implementation should represent its 
reference compactly. The reference for the index-index is a located reference: 

Index-Index: Located-Index 

The location in the index-index reference is Broadcast. This is the only use of the broadcast 
address we will make. We assume that every processor that listens for broadcasts knows of a 
processor that will service requests for the index-index. 

Files and indexes are assumed to be located at the same place as their containing volume, and 
we can take advantage of this fact to reduce our need for indirection. We simply determine the 
location of an index's or file's volume, and use it to construct a located reference. 

Open-File[ref: Reference, tc: TC, ring: List[Key], guards: List[Key] / c: Class] +- Prog [ 
[volume-ref: Reference]; 
-- Get located volume reference 
volume-ref +- Normalize[ref.volume, tc]; 
IF Not[Is[volume-ref, Located)) THEN Retum[Error['NotFound)); 
-- Open file at the processor where the volume is 
c +- Open[Create-Located[ref, volume-ref.loc], te, ring, guards]; 
IF Is[c, Error-Type] THEN Retum[c]; 
Retum[Create-Class[List['Copy Reference, 'Default-Copy], c)); 
]; 

Open-Index[ref: Reference, tc: TC, ring: List[Key], guards: List[Key] / c: Class] +- Prog [ 
[volume-ref: Reference]; 
-- Get located volume reference 
volume-ref +- Normalize[Normalize[ref.file, tc].volume, tc]; 
IF Not[Is[volume-ref, Located)) THEN Retum[Error['NotFound)); 
-- Open index at the processor where the volume is 
c +- Open [Create-Located[ref, volume-ref.loc], tc, ring, guards]; 
IF Is[c, Error-Type] THEN Retum[c]; 
Retum[Create-Class[List['Copy Reference, 'Default-Copy], c)); 
]; 

4.5 Choice References 

Let us return to the way we name objects for a moment We have stated that a reference is an 
unambiguous name for a single object Here we modify that view slightly. Imagine that we ~anted 
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to use some object from the list 01 ... On, but we did not care which object was chosen. To 
implement this idea we introduce the idea of a choice reference. A choice reference is a set of 
references S, and when a choice reference is opened, the class returned will correspond to one of 
the elements of S. 

A strategy could be employed to select which element of a choice reference is selected. For 
example, in the case of a volume choice reference we could select the volume with the largest 
remaining capacity. 

An application for choice references is when anyone of a number of processors can service 
requests for an object In this case, we do not want to place the address of a single processor in the 
object's index entry. Instead, we create a processor choice reference that includes all of the 
processors that can service the object, and use this choice reference as the object's location. A 
choice reference is created by Create-Choice: 

Create-Choice[choices: List[Reference] I cr: Choice] 

Create-Choice creates a reference whose referent can be anyone of the references in 
choices. 

Choice +- Record[choices: List[Reference)); 

Create-Choice[choices: List[Reference] I cr: Choice] +- Prog[ 1]; 
cr +- Create[Choice]; 
cr.choices +- choices; 
Retum[cr]; 
]; 

The model implementation for a choice reference opens all of its possible choices at once, and 
uses the first object to respond. Objects that are not selected are closed. 

Open-Choice[ref: Reference. te: TC, ring: List[Key]. guards: List[Key] I class: Class] 
+- Prog[ [choice-made: Condition-Variable, choice-lock: Lock]; 

class +- NIL; 
choice-lock +- Create-Lockl]; 
choice-made +- Create-Condition-Variablel]; 
MapCar[ ref.choices, 'Choice-Open]; 
UNTIL Not[Null[Get-Choice-Class)) 00 Wait[choice-made]; 
Retum[Get-Choice-Classl11; 
]; 

Get-Choice-Class[/c: Class] +- Critical[choice-Iock, 'class]; 

Set-Choice-Class[c: Class] +- Critical[choice-Iock. 'Prog[ 1]; 
IF Is[c Error-Type] THEN Retuml]; 
IF Null[class] THEN [ 

class +- c; 
Broadcast[choice-made]; 
] 

ELSE c I Closel]; 
)); 

Choice-Open[ref: Reference] +- Fork[,Set-Choice-Class[Open[ref, te. ring, guards]]]; 
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4.6 Summary 

This chapter described a general framework for locating objects. Indexes were defined. and 
used to implement indirect records. Indirect records in tum allowed indirect references to be 
created. Indirect references were used to keep the location of an object in a single place that can be 
conveniently updated. Choice references were introduced to handle a service that is implemented 
by many objects. 

Exercise 

1. Under what circumstances would you use a choice reference for a volume? 
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So far we have described a system where only one copy is kept of files, indexes, and volumes. 
This chapter describes how objects can be replicated to improve their availability, reliability, and 
performance. The first section describes a model of the replication facilities we provide, the second 
section shows how our model can be implemented, the third section argues that the replication 
algorithm preserves the properties of transactions, the fourth section offers some refinements to the 
basic algorithm, and the final section compares our method of replication with previous work. The 
chapter ends with a brief summary. 

5.1 Suites 

To introduce what a suite is and how one works let's start with an example. Imagine that we 
would like to maintain three copies of a file. We will say a copy is current if it has received all of 
the updates that have been applied to the file. Here are three approaches for maintaining the 
copies: 

1. Always update all three copies. Thus, all three copies will always be current To read the 
file, we could read anyone of its three copies. Of course, if anyone of the three copies is 
unavailable we would be unable to update the file. 

2. Always update at least two copies. Both of these copies must be current, to guarantee that 
a current copy always receives all of the updates that are applied to the file. To read, we 
know that if we examine two copies, one of them is guaranteed to be current If version 
numbers are kept on the copies, then we can identify a current copy, because it will have 
the highest version number. 

3. Always update at least one copy. Once again, this copy must be current, to guarantee that a 
current copy always receives all of the updates that are applied to the file. To read. we 
know that if we examine all three copies, one of them is guaranteed to be current Version 
numbers are once again required to determine which of the three copies is current 

These methods all preserve the invariant that every set of copies that they write intersects with 
every set of copies that they read. In this way they are always guaranteed to provide current 
information. 

We will call a collection of copies that implements a single object a suite, and individual copies 
representatives. Our example described a file suite with three representatives. Furthermore, we will 
call a set of representatives that is examined to read a suite a read quorum, and a set of 
representatives that is written in response to a suite write operation a write quorum. As in our 
example,every read quorum and every write quorum must have a representative in common. The 
read and write quorums described by the above three methods are respectively: 

1. Write Quorum: {I, 2, 3} 
Read Quorums: {I}, {2}, {3} 
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2. Write Quorums: {I, 2}, {I, 3}, {2, 3} 

Read Quorums: {I, 2}, {l, 3}, {2, 3} 

3. Write Quorums: {I}, {2}, {3} 

Read Quorum: {I, 2, 3} 

The basic idea behind our replication mechanism is a compact encoding of a suite's read and 
write quorums. Every representative of a suite is assigned a non-negative integer, which represents 
a number of votes. A read quorum is considered to be any set of representatives whose votes total 
to r, and a write quorum is considered to be any set of representatives whose votes total to w. Non­
negative integers r and w are chosen such that r + w is greater than the total number' of votes 
assigned to the suite. A suite's voting configuration is the triple (vote-assignment, r, w). 

As in our example, when updates are applied to a write quorum every member of the write 
quorum must be current Thus, every read quorum and every write quorum have a representative 
in common, and every read quorum will always have a representative that is current Version 
numbers make it possible to identify this representative. Section 5.3 describes the algorithm in 

detail. 
To read a suite, at least r votes worth of representatives must be available. To write a suite, 

MAX[r,w] votes worth of representatives must be available. This is because before a suite can be 
written a read quorum of representatives must be assembled to determine what version number a 
current representative will have. When the contents of a suite are totally replaced only w votes 
worth of representatives need be available (Section 5.4.6). 

The algorithm has a number of desirable properties. It starts with and preserves the properties 
of transactional storage, including totality, serial consistency, and external consistency (Section 
3.1.2). It continues to operate even when some representatives are unavailable. It is simple, and 
can be used to create many types of suites. In addition, all of the copies of an object, including 
temporary copies that clients create to increase performance, can be incorporated into the 
framework. 

A suite's characteristics can be chosen from a range of possibilities by adjusting its voting 
configuration. For example, heavily weighting high performance representatives will result in a 
suite with higher performance, and heavily weighting representatives that are very reliable will result 
in a more reliable suite. A completely decentralized structure results from equally weighting 
representatives, and a completely centralized scheme results by assigning all of the votes to a single 
representative. 

Once the general reliability and performance of a suite is established by its voting configuration, 
the relative reliability and performance of Read and Write can be controlled by adjusting rand w. 
As r decreases, reads become more efficient and reliable. As w decreases, writes become more 
efficient and reliable. The choice of rand w will depend on the read to write ratio expected, the 
relative costs of reading and writing, and desired suite characteristics. 

Table 5.1 suggests the diverse mix of properties that can be created by appropriately setting r 

and w. The blocking probabilities shown in the table represent the probability that a quorum will 
not be available. We have assumed that the probability that a representative is unavailable is .01. 

Example 1 is configured for a file with a high read to write ratio in a single server, multiple user 
environment Replication is used to enhance the performance of the system, not the reliability. 
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There is one server on a local network that can be accessed in 75 milliseconds. Two users have 

chosen to make copies on their personal disks by creating weak representatives, or representatives 

with no votes (see Section 5.5.1 for a complete discussion of weak representatives). This allows them 

to access the copy on their local disk, resulting in lower latency and less traffic to the shared server. 

Example 2 is configured for a file with a moderate read-to-write ratio that is primarily accessed 

from one local network. The server on the local network is assigned two votes, with the two servers 

on remote networks assigned one vote apiece. Reads can be satisfied from the local server, and 

writes must access the local server and one remote server. The system will continue to operate in 

read-only mode if the local server fails. Users could create additional weak representatives for lower 

read latency. 

Example 3 is configured for a file with a very high read to write ratio, such as a system 

directory, in a three server environment Users can read from any server, and the probability that 

the file will be unavailable is very small. Updates must be applied to all copies. Once again, users 

could create additional weak representatives on their local machines for lower read latency. 

ExamQle 1 ExamQle2 Exam~le 3 
Latency (msec) 

Representative 1 75 75 75 
Representative 2 65 100 750 
Representative 3 65 750 750 

Voting Configuration (1,0,0) <2,1,1) (1,1,1) 
r 1 2 1 
w 1 3 3 

Read 
Latency (msec) 65 75 75 
Blocking Probability 1.0 X 10-2 2.0 X 10-4 1.0 X 10-6 

Write 
Latency (msec) 75 100 750 
Blocking Probability 1.0 X 10-2 1.0 X 10-2 3.0 X 10-2 

Table 5.1 

Create-Suite is used to organize a collection of objects into a suite. 

Create-Suite[id: UniqueID, r: Integer, w: Integer, rep: List[Reference], votes: List[Integer] 

/ suite: Suite] 

Create-Suite creates a suite reference from a specification that consists of the identifier to be 

assigned to the suite, r, w, a list of representative references, and a list of the 

representatives' respective vote assignments. The suite reference returned can be opened 

and used like an ordinary object The suite's type is determined by the type· of its 

representatives. All of the references in rep must be of the same type, and they all must 

have the same version number. If the resulting reference is a volume reference, then files 

created on suite will be file suites. 

Suite +- Record[]; 
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Normal-Suite +- Extend(Suite, Record(id: UniqueID, r: Integer, w: Integer, rep: 
List[Reference], votes: List[IntegerD; 

Create-Suite[id, r, w, rep, votes I suite] +- Prog[ [); 
-- start making up the suite 
suite +- Create[Normal-Suite); 
suite.r +- r; suite. w +- w; suite. votes +- votes; 
suite.id +- id; suite.rep +- rep; 
Return[Add-Type[suite, Major-Type[car[repDD; 
]; 

When Create-Suite is applied to a set of volumes a volume suite results. A volume suite is a 
template for creating file suites. When Create-File is applied to a volume suite a file suite will be 

created that has the same voting configuration as the volume suite. The new file suite will have a 

set of representatives whose votes total to at least MAX[r,w]. This ensures that the new suite will be 

fully functional. 
In order to allow the replication algorithm to keep track of which representatives have current 

information. and to allow the algorithm to update obsolete representatives. all objects that will be 

used as representatives must implement the following operations. 

class: Class I GetVersion[1 version: Integer) 

The version number of an object is a count of the number of writes that have been 

performed on the object Consistency is guaranteed for version numbers. In other words. 
once GetVersion returns the version number of an object, no other transaction will update 

the object before the the transaction associated with class ends. 

class: Class I Copy[copy-from: Reference] 

Copy copies the index or file specified by copy-from to the index or file serviced by class. 
Copy is implemented in such a way that an object can be copied to itself. After Copy 

finishes. the original object and its copy are indistinguishable. 

The object serviced by class receives the following state from copy-from: version 

number. reference count, length. immutability, and contents. The last thing that is copied is 

the version number. Thus, if a transaction is committed before Copy finishes. the object 

serviced by class will still have its old version number. 

In order to guarantee that an object has a monotonically increasing version number. 
copy-from must have a version number that is larger or equal to the version number of 

class. If this is not the case. Copy will return Error['VersionError). 

5.2 Basic Algorithm 

We present the basic algorithm by describing how operations on a suite are transformed into 
operations· on the suite's representatives. The perspective taken is that of a single transaction. Of 

course there can be many transactions accessing a given suite at the same time. all performing the 
algorithm. 

We also provide a step by step synthesis of a class to implement the algorithm. The class is 

initialized by Open-Suite, which is called by Open to create a class to service a suite. Before Open­

Suite ret IfDS, it gathers a read quorum to determine the suite's version number. Open-Suite 
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establishes the correspondence between operations on the suite (e.g. Create-File) and the functions 
that implement these operations in tenns of the suite's representatives (e.g. Suite-Create). 

Careful use of critical sections has been made so the class can process simultaneous requests. 
Figure 5.1 shows the gross structure of a suite cl&ss. 

Open-Suite[input-ref: Suite, te: TC, ring: List[Key], guards: List[Key] / sc: Class] +- Prog[ 
[x: List[Representative]; 
r: Integer; w: Integer; votes: List[Integer]; 
number-of-representatives: Integer; 
-- normal form of input-ref is suite-ref 
suite-ref: Normal-Suite; 

-- Broadcast[crowd-Iarger] occurs when a new representative becomes available 
crowd-larger: Condition Variable; 

-- write-lock must be locked to access write-quorum or raw-votes 
write-lock: Lock; 
write-quorum: List[Representative]; 
raw-votes: Integer; 
-- suite-lock must be locked to access any of the following: 
suite-lock: Lock; 
suite: List[Representative]; 
current: Integer; a current representative has this version number 
not-found-votes: Integer; 
]; 
-- let's see what is out there and initialize suite variables 
Initiate-Inquiries[]; 
x +- Collect-Read-Quorum[]; 
-- if suite was not found, return error to client 
IF Is[x, Error-Type] THEN Return[x]; 
-- Instance variables: r, w, votes, number-of-representatives, suite-ref, crowd-larger, 
write-lock, write-quorum, raw-votes, suite-lock, suite, current, not-found-votes, 
input-ref, te, ring, guards 
Return[Create-Class[List[ 

]; 

'Read, 'Suite-Read, 
'Copy, 'Suite-Copy, 
'Enumerate, 'Suite-Read, 
'GetVersion, 'Suite-Read, 
'Write, 'Suite-Write, 
'IsImmutable, 'Suite-Read, 
'SetImmutable, Suite-Write, 
'GetSize, 'Suite-Read, 
'GetID, 'Suite-GetID 
'SetSize, 'Suite-Write, 
'GetTransactionClass, 'Suite-Read, 
'Copy Reference, 'Suite-Copy Ref, 
'DestroyReference, 'Suite-Write, 
'Close, 'Suite-Close, 
'Create-File, 'Suite-Create], NIL]]; 
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Suite-GetID[1 id: UniqueID] ... [suite-ref.id]; 

A quorum is represented by a list of Representative records. Collect-Quorum and Collect­
Write-Quorum collect quorums. They are described in detail later. 

Representative ... Record[ 
version: Integer, 
votes: Integer, 
class: Class, 
ref: Reference]; 

A suite read operation is an operation that examines the state of a suite without changing it 
The operations Read. Enumerate, IsImmutable, GetSize. GetTransactionClass, and GetVersion are 
all transformed into Suite-Read. 

A suite read operation can be performed by any current representative. To find a current 
representative the algorithm first collects a read quorum. From this quorum a current 
representative is selected, and the requested read operation is performed by this representative. 
Ideally, one would like to read from the representative that will respond the fastest 

If storage is damaged by an unexpected error, Error['StorageDamaged] will be returned by a 
read request In this event Suite-Read could attempt to find another current representative to read 
from. 

Suite-Read[1 result: Any] ... Prog[ []; 
result ... Apply[Select-Current[Collect-Quorum[r]].class, request]; 
Return [ result]; 
]; 

Select-Current[quorum: List[Representative] I rep: Representative] ... Critical[suite-Iock, 
'Prog[ []; 

FOR rep IN quorum 00 [ 

]]; 

-- find a current representative 
IF rep.version=current THEN 

Return[rep]; 
]; 

A suite write operation is an operation that updates the state of a suite and creates a new 
version. The operations Write, SetImmutable, SetSize, and DestroyReference are transformed into 
Suite-Write. 

A suite write operation is performed by a write quorum, all of whose members are current 
The algorithm first gathers a write quorum, and then every representative in the quorum performs 
the requested write operation. After all of the members of the quorum have finished, a check is 
made to ensure that none of them returned an error, and the result from one of the representatives 
is returned as the result of the write operation. 

The result of concurrent· writes that update the same portion of a suite is undefined. In the 
model implementation, if two concurrent writes update the same portion of a suite it is possible that 
half of the suite will assume one value, and the other half of the suite a different value. When the 
suite is subsequently read, it will be indeterminate which of these two values will be returned. 
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Suite-Write[/ result: Any] f- Prog[ []; 
Retum[Apply-Quorum[Collect-Write-Quorum[]]]; 
]; 

Apply-Quorum[quorum: List[Representative] / result: Any] f- Prog[ 
[process: List[Process]; x: Any]; 
-- start all representatives working on the request 
process f- MapCar[quorum, 'Fork-Request]; 
-- wait for all of the representatives to finish 
result f- MapCar[process, 'Join]; 
FOR x IN result 00 

IF Is[x, Error-Type] THEN Retum[x]; 
Return[car[result]]; 
]; 

Fork-Request[rep: Representative / p: Process] f­

Fork['Apply[rep.class, request]]; 

A Copy request is a special write operation. Because the contents of the suite are being 

replaced, all of the members of the write quorum do not have to be current. A Copy operation is 

transformed into Suite-Copy. Suite-Copy first replaces the contents of the suite, and then updates 

cached version numbers. 

Suite-Copy[/ result: Any] f- Critical[write-Iock, 'Prog[ 
[rep: Representative]; 
-- replace a write quorum 
write-quorum f- Collect-Quorum[w]; 
result f- Apply-Quorum[write-quorum]; 
IF Is[result, Error-Type] THEN Retum[result]; 
Mark-Reps-Current[write-quorum]; 
Return[result]; 
]]; 

Mark-Reps-Current[quourm: List[Representative]] f- Critical[suite-Iock, 'Prog[ 
[rep: Representative]; 
-- update cached version numbers 
current f- car[write-quorum].class I GetVersion[]; 
FOR rep IN write-quorum DO 

rep. version f- current; 
j); 

A CopyReference request is a write operation, because it can update the state of the suite by 

incrementing its reference count. A CopyReference operation is transformed into Suite-CopyRef. 

Suite-CopyRef{counted: Boolean / nr: Suite] f- Prog[ 
[]; 
-- copy the references of a write quorum 
Apply-Quorum[Collect-Write-Quorum[]]; 
-- return a copy of the reference 
nr f- Copy[input-ref]; 
IF counted THEN Add-Type[nr, Counted] 

ELSE Remove-Type[nr, Counted]; 
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Return[nr]; 
]; 

As we discussed in the last section, when Create-File is applied to a volume suite a file suite is 

created Representatives for the new file suite are created on a set of volume representatives whose 
votes total to at least MAX[r,w]. The model implementation of Suite-Create does not allow a volume 
suite to include representatives that are reconfigurable or protected, concepts covered in Chapters 6 
and 7 respectively. 

We digress for a moment to explain a fine point about the operation of Suite-Create. There are 
two types of file suite references. A suite reference returned from Create-Suite is fully expanded, 
and contains a list of a suite's representatives, vote assignments, and so on. This type of suite 
reference is said to be in normal form. The file suite reference returned from Suite-Create does not 
contain a reference for each of its representatives. Such references are condensed and consist of the 
unique identifier of the suite's representatives and a volume suite. This type of file suite reference 
can be easily reconstituted to normal form. as we shall see later. 

Suite-Create[id: UniqueID / nr: Suite-Reference] ... Prog[ 
[result: Any]; 
result ... Apply-Quorum[Collect-Quorum[Max[r, w]]]; 
IF Is[resul~ Error-Type] THEN Return[result]; 
-- create file reference 
nr ... Create[Extend[File, Suite]]; 
nr.id ... id; 
nr.volume ... self I CopyReference[]; 
-- return the new suite's reference. 
Return[nr]; 
]; 

This concludes our discussion of how suite operations are transformed into operations on suite 
representatives. We now turn our attention to how a suite is initialized, and how quorums are 
gathered. 

When a suite is opened queries are sent out to determine the version numbers of the suite's 
representatives. If a representative is available. it responds with its version number. and it can be 
considered for inclusion in a quorum. As each representative reports its version number the highest 
version number seen is updated. After a read quorum of representatives have reported their version 
numbers the highest version number that has been seen is the highest that exists. This in essence is 
the version number of the suite, and any current representative will have this version number. If a 
read quorum of a suite's representatives do not exis~ provisions are made so clients are told that the 
suite does not exist 

It may be that a version number inquiry will never return because its corresponding 
representative is unavailable. As stated in Section 3.1.2, outstanding uncompleted version number 
reads do not affect the ability of a transaction to commit 

Initiate-Inquiries[] ... Prog [ [i: Integer]; 
-- initialize suite 
suite-ref ... Expand-Suite[input-ret]; 
r ... suite-ref.r; 
w ... suite-ref.w; 
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votes +- suite-ref. votes; 
number-of-representatives +- Length[suite-ref.rep]; 
write-lock +- Create-LockO; 
write-quorum +- NIL; 
suite-lock +- Create-LockO; 
crowd-larger +- Create-Condition VariableO; 
suite +- NIL; 
curren t+-O; 
not-found-votes +- 0; 
-- send out version number inqmnes 
FOR i FROM 1 TO number-of-representatives DO 

Fork[,Open-Representative[i]]; 
]; 

Open-Representative[i: Integer] +- Prog[ 
[rep: Representative]; 
rep +- Create[Representative); 
rep.ref +- Nth[suite-ref.rep, i]; 
rep. votes +- Nth[suite-ref.votes, i]; 
rep.class +- Open[rep.ref, te, ring. guards]; 
IF rep. class = Error['NotFound] THEN Not-Found[rep.votes]; 
IF Is[rep.class, Error-Type] THEN ReturnO; 
rep. version +- IF Is[rep.ref, Volume] THEN 0 ELSE class I GetVersionO; 
Note-Representative[ rep]; 
]; 

Note-Representative[rep: Representative] +- Critical[suite-Iock, 'Prog[ 0; 
-- a representative has responded to our inquiry 
IF rep. version > current THEN current +- rep.version; 
suite +- Append[suite, rep]; 
Broadcast[crowd-Iarger]; 
]]; 

Not-Found[votes: Integer] +- Critical[suite-Iock, 'Prog[ 0; 
-- a representative was not found 
not-found-votes +- not-found-votes + votes; 
IF not-found-votes<w THEN ReturnO: 
-- can never get a read quorum; wake up Collect-Quorum 
Broadcast[crowd-Iarger]; 
]]; 

Suite-Not-Found[1 not-found: Boolean] +- Critical[suite-Iock, '[not-found-votes>=w]]; 

The reference produced by Suite-Create is a file reference that contains a volume suite. 

Expand-Suite is used by Initiate-Inquiries to convert such references into normal form. 
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Expand-Suite[ref: Suite / expanded: Normal-Suite] +- Prog[ 
[f: File; v: Volume; nv: Volume; reps: List[Reference]]; 
IF Is[ref, Normal-Suite] THEN Return[ref]; 
-- ref is a result of Suite-Create 
nv +- Normalize[ref.volume, te]; 
reps +- NIL; 
FOR v IN nv.reps DO [ 

f +- Create[File]; fjd +- ref.id; f.volume +- v; 
-- if volume rep is a volume suite, make file rep a file suite 
IF Is[v, Suite] THEN Add-Type[f, Suite]; 
reps +- Append[reps, f]; 
]; 

Return[Create-Suite[refjd, nv.r, nv.w, reps, nv.votes]]; 
]; 

A Close request is applied to every open representative. 

Suite-Close[] +- Critical[suite-Iock, 'Prog[ []; 
Return[Apply-Quorum[suite]]; 
]]; 

Collect-Quorum normally gathers a quorum with a specified number of votes and returns 

immediately to its caller. All of the representatives in the quorum are not guaranteed to be current 

If a quorum of representatives have not reported their version numbers all that Collect-Quorum can 

do is wait for a representative to respond. 

Quorum sizes are the minimum number of votes that must be collected to guarantee correct 

operation. However, quorums can always be expanded by adding additional representatives. In the 

model implementation all eligible representatives are included in every quorum. 

Collect-Quorum[threshold: Integer/ quorum: List[Representative]] +- Prog [ []; 
oo[ 

]; 

-- if the suite does not exist, return an error 
IF Suite-Not-Found[] THEN Return[Error['NotFound]]; 
quorum +- Collect[threshold]; 
IF Not[Null[quorum]] THEN Return[quorum]; 
-- if we can't get a quorum, just wait 
Wait[crowd-Iarger]; 
]; 

Collect[threshold: Integer / quorum: List[Representative]] +- Critical[suite-Iock, 'Prog [ 
[x: Representative; votes: Integer]; 
-- returns a quorum or NIL 
votes +- 0; 
FOR x IN suite 00 votes +- votes + x.votes; 
IF votes<threshold THEN Return[NIL]; 
Return[suite]; 
]]; 

Collect-Write-Quorum attempts to gather a write quorum. All of the representatives in a write 

quorum are guaranteed to be current It is possible that although we have enough votes to make 
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up a write quorum, we do not have enough representatives that are current. Collect-Write-Quorum 

solves this problem by copying the contents of the suite into an available obsolete representative. It 

is always legal to copy the contents of the suite into an obsolete representative. 

Collect-Write-Quorum[1 quorum: List{Representative]] +- Critical[write-Iock, 'Prog [0; 
-- if we have a quorum, return it 
IF Not[Null[write-quorum]] THEN Return[write-quorum]; 
DO[ 

)); 

-- try to get a write quorum 
write-quorum +- Collect-WriteO; 
IF Not[Null[write-quorum]] THEN Return[write-quorum]; 
-- if we have a chance, update an obsolete representative 
-- otherwise, just wait for another representative 
IF raw-votes<w THEN Wait[crowd-Iarger] 

ELSE Update-Obsolete-Representative[]; 
]; 

Collect-Write[1 quorum: List[Representative]] +- Critical[suite-Iock, 'Prog [ 
[x: Representative; votes: Integer;]; 
-- try to gather a write quorum 
votes +- 0; raw-votes +- 0; quorum +- NIL; 
FOR x IN suite DO [ 

raw-votes +- raw-votes + x. votes; 
IF x. version = current THEN [ 

]; 

-- this representative can be included 
votes +- votes + x. votes; 
quorum +- Append[quorum, x]; 
]; 

IF votes>w THEN Return[quorum]; 
-- could not get a quorum 
Return[NIL]; 
]]; 

An obsolete representative must be updated with a consistent version of the suite. The model 

implementation achieves this by not allowing the suite to change while an obsolete representative is 

being updated. Alternatively, an obsolete representative could be updated in a separate transaction. 

Update-Obsolete-RepresentativeO +-, Prog [ 
[rep: Representative]; 
rep +- Select-Obsolete[]; 
IF Not{Null[rep)) THEN [ 

rep.c1ass I Copy[suite-ref]; 
U pdate-Done[ rep]; 
]; 

]; 

Select-Obsolete[1 rep: Representative] +- Critical[suite-Iock, 'Prog [ 0; 
FOR rep IN suite DO 

IF rep.version#current THEN 
-- We found an obsolete representative. 
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Retum[rep]; 

Update-Done[rep: Representative] +- Critical[suite-lock, 'Prog[ []; 
-- mark representative as being current 
rep. version +- current; 
]]; 

The above functions comprise the model implementation of the suite algorithm. There are 
many refinements that can be made to the suite we have described, and some of them are given at 
the end of this chapter. For example, when a suite is closed inquiry processes can optionally be 
stopped. The details of how this can be accomplished were not shown. 

5.3 Correctness Arguments 

We argue that if a representative has the highest version number it has received all of the 
updates to the suite. The set of representatives that we update to make version v+ 1 all have 
version v. The desired result follows by simple induction. 

We argue that the replication algorithm preserves the properties of transactions. Representatives 
are stored in transactional storage, and we base our arguments on the properties transactional 
storage is guaranteed to exhibit 

(totality) Suite updates are transformed to representative updates. Representative updates 
are guaranteed totality. Thus, suite updates are guaranteed totality. 

(consistency) We show that the suite algorithm preserves serial and external consistency 
(Section 3.1.2) by showing that it produces schedules that are equivalent to the unreplicated 
case's schedules. Let S be a schedule, and S' be a schedule that results when we change 
object 0 to be a suite. We wish to show that DEP(S)= DEP(S'). 

<Ta, 0, Tb)EDEP(S) => <Ta', 0', Tb')EDEP(S'). 

Without loss of generality, we only consider O. If <Ta, 0, Tb)EDEP(S) then Ta 
writes 0 and Tb reads or writes O. To write, Ta' updates a write quorum of 
representatives. When Tb' reads or writes it first gathers a read quorum. Read 
quorums and write quorums have an element in common. Thus, <Ta', 0', 
Tb')EDEP(S'). 

<Ta', 0', Tb')EDEP(S') => <Ta, 0, Tb)EDEP(S). 

Without loss of generality, we only consider O. If <Ta', 0', Tb')EDEP(S') then Ta' 
writes a write quorum and Th' reads a read quorum. Thus, Ta writes 0 and Th 
either reads or writes O. Thus, <Ta, 0, Tb)EDEP(S). 
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5.4 Refinements 

5.4.1 Weak Representatives 

Temporary copies can be introduced into a suite by creating representatives that have no votes. 
Such a representative does not change the quorums of a suite, and thus can be introduced at any 
time. Once a suite is open, read requests can be serviced by a weak representative that is current 
When a weak representative is located on a high performance storage device, it can improve the 

performance of the suite. 
Because a weak representative has no votes, it bears no responsibility for the long term 

safekeeping of data. There will always be a write quorum of representatives that contain current 
data. Thus, weak representatives can be discarded at any time. This simplifies the concurrency and 
recovery requirements of weak representatives. An important result of this is that weak 

representatives can be kept in volatile storage. 

5.4.2 Lower Degrees of Consistency 

The suite algorithm provides serial consistency, but if voting rules are intentionally broken, 
lower degrees of consistency will result For example, setting r to be 0 corresponds to the notion 
"give me the latest version you can find, but I don't care if it isn't current". Certain applications 
that have self-correcting characteristics, such as name lookup, can use lower degrees of consistency. 
If the suite algorithm is run on a file system that ensures Degree 0 or Degree 1 consistency, the 

algorithm will guarantee the same consistency it sees, a fact we will not prove here. 

5.4.3 Representative Performance 

While a suite is operating it is a simple matter to gather response time statistics for each 
representative. The functions that collect quorums could be modified to use this information to 
favor faster representatives. 

5.4.4 Expressive Power of Suites 

It is possible of course that a suite representative can be a suite itself. It turns out that 
recursion makes the suite mechanism more powerful. Consider the the set RS of read quorums and 
the set WS of write quorums 

RS = {{I3} {I4} {2 3} {24}} WS = {{I2} {3 4}} 
It is impossible to assign weights to four representatives to achieve a sets of read and write 

quorums identical to RS and WS. However, let us define three suites, Sl, S2, and S3. SI will 
consist of the representatives {I 2}, S2 will consist of the representatives {3 4}, and S3 will consist 
of the representatives {SI S2}. In SI and S2, assign one vote to each representative, and fix r to be 
1 and w to be 2. In S3, assign one vote to each representative, and fix r to be 2 and w to be l. 
The read and write quorum sets of S3 are RS and WS. 

5.4.5 Size of Replicated Objects 

The size of an object that is replicated should be chosen to match the needs of an intended 
application. For example, a data base manger might choose to replicate relations or tuples. Each 
replicated object must be assigned a version number. 

The class we described to implement suites read all of the version numbers of a suite's 
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representatives when it was initialized. An alternative would be to examine a read quorum on every 
read operation. This might be appropriate for replicating small objects that do not lend themselves 
to being opened. 

5.4.6 Total Replacement 

A suite's version number is determined by examining a read quorum. This ensures that two 
transactions that concurrently attempt to update a suite conflict However, if objects are totally 
replaced, then we do not need to guard against concurrent updates. In this case we simply need a 
rule that assigns a single value to a suite. This can be accomplished by replacing version numbers 
with time stamps that are totally ordered. With total replacement. a current representative is found 
by reading the time stamps of a read quorum, and selecting a representative with the largest stamp. 
[Lamport 78b] discusses how to implement suitable time stamps. 

5.4.7 Simultaneous Suite Updates 

Our use of version numbers does not allow a suite to be updated by more than one transaction 
at a time. This restriction can be eliminated if objects are totally replaced (see the previous section), 
or if the transactional storage system provides broken read locks (Section 3.3.4). 

Concurrent disjoint suite updates are not compatible to prevent different updates from selecting 
different write quorums. If two update transactions selected different write quorums then a 
representative that claimed to be current might not have received all of the updates to the suite. 

I f the transactional storage system provides broken read locks then disjoint suite updates can be 
made compatible. The replication algorithm only need ensure that a set of concurrent updates 
selects the same write quorum. 

5.4.8 Releasing Read Locks 

Every lock that a transaction holds necessitates communication at commit time to ensure that 
the lock is still in force (Section 3.3.5). The suite algorithm sends inquiries to all representatives in 
the suite to determine their status. Thus, a read lock is obtained on every available representative. 
An enhancement would be to release the read locks of representatives that are never included in a 
quorum. 

5.4.9 Updating Representatives in Background 

Obsolete representatives can be updated at any time. It would be possible to operate servers 
that examined volume suites, updating obsolete file suite representatives. This could be done when 
there was surplus communication capacity in the internetwork. 

5.4.10 Guessing a Representative is Current 

It is possible to guess that a representative is current before a read quorum has responded to an 
initial inquiry. If the guess is correct. then the delay to open the suite is reduced. If the the guess 
is wrong, then the client's transaction must be aborted. 

5.4.11 Postponed Creation of File Representatives 

When a file is created on a volume suite Suite-Create ensures that at least MAx[r,w] votes worth 
of representatives are created. File representatives could be created on the remainder of the volume 

63 



CHAPTER 5: REPLICATION 

suite's representatives at a later time. After they had been created, these new representatives would 
be handled in the same way as obsolete representatives. 

5.4.12 An Alternative for Replicated Volumes 
An alternative is to implement replicated volumes with a file suite. A storage device is 

fundamentally just a large file, and thus a collection of storage devices could be treated as a file 
suite. A replicated volume could be implemented using such a file suite. This approach has merit, 
but updating an obsolete representative requires that an entire storage device be copied. 

5.5 Related Work 

The essence of the suite algorithm is also described in [Gifford 79b]. Previous algorithms for 
maintaining replicated data fall into two classes. Some insist that every object has a primary site 
which assumes responsibility for arbitrating concurrent updates. [Alsbert et al. 76] first outlined this 
idea This technique is simple, but relatively inflexible. Other algorithms do not employ 
distinguished sites for objects, and they are more complex than primary site algorithms. SDD-l 
[Rothnie et al. 77] keeps all copies of an object up to date by sending updates via a communication 
system that will buffer messages over machine crashes. Thomas' [Thomas 79] proposal only requires 
that a majority of an object's copies be updated, and includes voting. 

Although we share the notion of voting, it is difficult to directly compare our algorithm with 
Thomas' because the two provide different services. Notably: (1) we guarantee serial and external 
consistency for queries (read-only transactions); (2) we do not insist that a majority of an object's 
copies be updated; (3) Thomas' algorithm does not employ weighted voters. which limits its 
flexibility; (4) Thomas' algorithm is more complex because it addresses consistency issues as well as 
replication issues; and (5) our structure allows for the inclusion of temporary copies. 

5.6 Summary 

We have described an algorithm for replicating data that offers many benefits not provided by 
previous solutions. The introduction of weighted voting allows suites to be synthesized with desired 
properties, including the presence of temporary copies. The separation of consistency considerations 
from replication has resulted in a conceptually simple approach which guarantees consistency in a 
straightforward way and is relatively easy to implement. 
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There are many situations in which one might want to change how information is stored. For 
example, if a collection of files is no longer in regular use, it might be desirable to move them to a 
low-cost storage volume. Or perhaps we would like to replace a volume with a volume suite to 
improve availability. 

This chapter shows how the resources that are used to implement a volume, file, or index can 
be changed. The first section of the chapter introduces the concepts of reconfiguration, the second 
section shows how these concepts can be implemented, and the final section offers some refinements 
to the basic algorithm. 

6.1 Reconfigurable Objects 

In chapter four we saw how the location of an object can be changed, and how one object can 
be substituted for another. For example, indirect processor references implicitly define virtual 
processors. Different physical processors can be bound to an indirect processor reference at 
different times. 

However, indirect references have limitations. If we desire to create a virtual volume that is 
serviced by different physical volumes it is not sufficient to simply update an indirect reference. 
We must ensure that when a new physical volume is used it contains the same information as the 
old volume. This requirement holds for indexes, files, and volumes. 

To solve this problem we introduce the notion of a reconfigurable object. A reconfigurable 
object can be implemented by different objects at different times, and the state of the 
reconfigurable object will be properly transferred when one object is substituted for another. A 
naive client will not know that it is using a reconfigurable object, and an object can bereconfigured 
while clients are accessing it 

Create-Reconfigurable[ref: Reference, index: Index, tc: TC, ring: List[Key] / rr: Reconfigurable] 

Create-Reconfigurable creates a reconfigurable object, and uses ref as the first 
implementation of the object The specified index is used in the implementation of the 
reconfigurable object 

rc I Reconfigure[new-ref: Reference] 

Reconfigure can be applied to a class that services a reconfigurable object Assume R 0 is 
the object serviced by rc. After Reconfigure completes, RO will be implemented by new-

ref. rc will also be changed to service new-ref. 

new-ref can be one of two things: 

1. new-ref can be a reference for a brand new object 

2. new-ref can describe a new suite configuration for RO. A client can create a new 
suite configuration with Create-Suite. Thus, Reconfigure can be used to change the 
voting configuration of a suite. 
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6.2 Algorithm 

The structure of a reconfigurable reference for a file or a volume is shown in Figure 6.1. The 

reconfigurable reference contains an indirect reference, which points to the current implementor of 

the file or index. 

A reconfigurable volume is a collection of files which may be reconfigured as a group. The set 

of files that are contained in a reconfigurable volume are kept in the reconfigurable volume's file 

index. Figure 6.2 shows the structure of a reconfigurable volume. The algorithm for volume 

reconfiguration is described below. 

The following functions comprise the model implementation of reconfiguration. 

Reconfigurable +- Record[ref: Indirect]; 

Reconfigurable-Volume +- Extend[Reconfigurable, Record[file-index: Index)); 

Create-Reconfigurable[ref: Reference, index: Index, te: TC, ring: List[Key] 
/ rr: Reconfigurable] +- Prog[ [tref: Reference; telass: Class]; 

IF Is[ref, Volume] THEN [ 
IT +- Create[Reconfigurable-Volume]; 
tclass +- Open[ref, te, ring]; 
-- create a file on volume for the file index 
tref +- tclass I Create-File[GetUniqueID[]]; 
tclass I Close[]; 
-- create file index 
tref +- Create-Index[tref]; 
-- make the index reconfigurable 
IT.file-index +- Create-Reconfigurable[tref, index, te, ring]; 
-- create indirect for volume reference 
IT.ref +- Create-Indirect[ref, index, te] 

ELSE [ 
IT +- Create[Reconfigurable]; 
IT.ref +- Create-Indirect[ref, index, te]; 
]; 

Return[Add-Type[IT, Major-Type[ref])); 
]; 

Open-Reconfigurable[ref: Reference, tc: TC, ring: List[Key], guards: List[Key] 
/ class : Class] +- Prog[ 

[rfn: Function]; 
class +- Open[ref.ref, te, ring, guards]; 
IF Is[class, EITor-Type] THEN Retum[class]; 
rfn +- IF Is[ref, Volume] THEN 'Reconfigure-Volume ELSE 'Reconfigure; 
-- Instance variables: ref, te, ring 
Return[Create-Class[List[ 

]; 

'Reconfigure, rfn, 
'CopyReference, 'Default-Copy, 
'Create-File, 'Reconfigure-Create-File, 
], class]]; 

Figure 6.3 shows how the reconfiguration algorithm for files and indexes works. First, the 
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contents of the object is copied by its new implementor. Second, the indirect reference is changed 

to point at the new implementor. 

Reconfigure[new-ref: Reference] ... Prog[ 
[]; 

for files and indexes only 
ic ... Open[new-ref, tc, ring]; 
ic I Copy[ref]; 
ic I Close[]; 
superclass I ChangeReference[new-ret]; 
]; 

Whenever a file is created on a reconfigurable volume, it is made reconfigurable. The volume's 

,file index is used to implement the necessary indirection. 

Reconfigure-Create-File[] ... Prog[ 
[file-ref: File-Reference]; 
file-ref ... Apply[superclass, request]; 
IF Is[file-ref, Error-Type] THEN Return[file-ret]; 
Return[Create-Reconfigurable[file-ref, ref.file-index, tcU; 
]; 

As shown in Figures 6.4 through 6.6, reconfiguring a volume occurs in three steps: 

1. All of the files on the volume are moved to their new home. This is accomplished by 

moving the files that are listed in the file index one by one. 

2. The file index is moved to the new volume. 

3. The indirect pointer to the current implementor of the reconfigurable volume is switched to 

point at the new volume. 

Contention for a reconfigurable 'volume may cause a transaction that is performing a 

reconfiguration to abort Step 1 can be split up into many smaller transactions, each of which 

would reconfigure a single file. 
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Reconfigure-Volume[new-volume: Volume] +- Prog[ 
[old-home: Reference; new-home: Reference; entry: Entry; vc: Volume-Class; 
ic: Index-Class]; 
-- reconfigure all of the files on the volume 
ic +- Open[ref.file-index, tc, ring]; 
vc +- Open[new-volume, tc, ring]; 
entry +- ic I Enumerate[NIL]; 
-- move all of the files 
WHILE Not[Null[entry]] DO [ 

-- move one file: first construct a reference 
rfr +- Create[Reconfigurable]; 
rfr.ref +- Create[Indirect]; 
rfr.ref.index +- ref.file-index; 
rfr.ref.indirect-id +- entry.entry-name; 

open current implementor of file 
fc +- Open[rfr, tc, ring]; 
-- create new implementor of file 
new-home +- vc I Create-File[fc I GetID[], T]; 

move file 
fc I Reconfigure[new-home]; 
fc I Close£]; 
entry +- ic I Enumerate[entry]; 
]; 

now move the file index 
new-home +- vc I Create-File[ic I GetID[], T]; 
new-home +- Create-Index[new-home]; 
ic I Reconfigure[new-home]; 
-- change the volume's configuration 
superc1ass I ChangeReference[new-volume]; 
-- all done. 
ic I Close£]; 
vc I Close[]; 
]; 

6.3 Refinements 

6.3.1 Reducing Data Movement 
Copy could be modified to return if its source and destination were already identical. Copy 

could accomplish this by checking their unique identifiers and version numbers. 

This could significantly reduce unnecessary data movement. Consider the case of a file suite 

that is reconfigured to change its vote assignments. It may be that no representatives need to be 

updated. In this case, with the proposed improvement to Copy, the Reconfigure operation would 

not cause any data movement. 

6.3.2 Eliminating the File Index 
The file index for a reconfigurable volume could be eliminated by storing a file's index entry in 

its first few pages. When such a file was opened, it would either contain a pointer to itself or to its 

new location. The reason that we did not use this scheme is that if a file that is part of such an 
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indirect chain was unavailable, it would be impossible to find the new home of a file. By using an 
index we avoided this problem at some expense. 

6.4 Summary 

Reconfiguration was accomplished with indirection and transfer of state at the time an object is 
reconfigured. All of the information containing objects we have defined - volumes. files, and 
indexes - can be made dynamically reconfigurable. 

Exercise 

1. Discuss how a volume reconfiguration could use a transaction for each file or index that 

had to be moved. 
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Until this point we have assumed that users are perfectly trustworthy. This chapter relaxes this 
assumption by describing a protection mechanism that can be used to protect client information. 
The mechanism can be used directly for the protection of small objects such as data base entries, 
and it can be used to implement popular protection policies for larger objects. 

Protection can be considered to consist of four distinct components: secrecy (ensuring that 
information is only disclosed to authorized users), authentication (ensuring that information is not 
forged), integrity (ensuring that information is not destroyed), and availability (ensuring that access 
to information can not be maliciously interrupted). 

This chapter describes a new protection mechanism called cryptographic sealing that provides 
primitives for secrecy and authentication. The mechanism is enforced with a synthesis of 
conventional cryptography, public-key cryptography, and a threshold scheme. 

The new mechanism is based on the idea of sealing an object with a key. Sealed objects are 
self-authenticating, and in the absence of an appropriate set of keys, only provide information about 
the size of their contents. Thus, keys are the basic unit of secrecy and authentication in the 
mechanism. New keys can be freely created at any time, and keys can also be derived from existing 
keys with operators that include Key-Or and Key-And. These operators allow protection structures 
to be established that allow any member of a set of keys to unseal an object, that require every 
member of a set of keys to unseal an object, or any combination of these extremes. This flexibility 
allows cryptographic sealing to implement common protection mechansims such as capabilities, 
access control lists, and information flow control. 

Objects and sealed objects are simply arrays of bytes. In order to update the value of a sealed 
object it is necessary to unseal it, change its value, and reseal it. 

Clients must operate in a secure environment so they can safely manipulate unsealed objects. A 
simple way of providing such an environment would be for each client to execute on a separate 
physical processor. For the purposes of this discussion we will assume that every client executes on 
a secure processor that is protected from every other client (see Section 2.1.1). 

Our description of the protection mechanism and its applications is organized into six sections. 
The first section describes some preliminaries, including the general framework of the mechanism 
and the cryptographic methods that we use. The second section covers cryptographic sealing. The 
third section shows how cryptographic sealing can be used to implement capabilities, access control 
lists, information flow control, secure processors, and revocation. The fourth section examines some 
practical considerations. The fifth section is a comparative analysis of cryptographic sealing and 
traditional protection mechanisms. The chapter ends with a brief conclusion. 

76 



CHAPTER 7: PROTECTION 

7.1 Preliminaries 

7.1.1 Framework 

In order to compare the present work wIth previous protection systems [Saltzer and Schroeder 
79] we need to provide an appropriate framework. We will call a protection mechanism active if it 
is placed between a client and protected information, as shown in Figure 7.1. An active protection 
mechanism serves to inhibit unauthorized client requests to storage. If a client could bypass an 
active protection mechanism, it· could gain unauthorized access to protected information. Thus, 
active protection mechanisms depend on a security envelope that a client can not penetrate. As 
shown in the figure, system administrators and operators are inside of this envelope, because they 
have direct physical access to the system. 

The protection mechanism this chapter introduces is the first example of a general purpose 
passive protection mechanism. It is passive because there are no restrictions placed on a client's 
access to storage. However, a client is only able to decipher information that it is authorized to see. 
As shown in Figure 7.2, a passive protection system operates as part of the client. 

A passive protection system can only address the secrecy and authentication aspects of computer 
security. Section 7.3 describes how an active protection mechanism can be used to supplement a 
passive system to provide integrity and availability. When passive and active systems are used 
together in this manner a failure of the active protection system only effects integrity and 
availability. Secrecy and authentication are still guaranteed by the passive protection system. In a 
similar way, if the ability to revoke privileges is desired, an active protection system would be used 
as described in Section 7.3.4. 

Some of the ideas in this chapter have appeared in other forms. Morris [Morris 73] discussed 
the concept of sealing objects. but he did not present a way to create general protection structures, 
and his mechanism was not enforced by cryptography. Chaum and Fabry [Chaum and Fabry 78]. 
Lindsay and Gligor [Lindsay and Gligor 78], and Needham [Needham 79] independently observed 
that cryptography can be used to authenticate objects such as capabilities. Gudes [Gudes 80] 
described a way to use cryptography to implement a form of access control lists without groups or 
indirect keys. 

7.1.2 Environment 

We describe the building blocks of the protection mechanism in detail because with a thorough 
knowledge of these facilities the reader will find it easier to understand the sections that follow. 
The three facilities that the protection mechanism uses are cryptography, a threshold scheme, and 
checksums. It is difficult to motivate all of these facilities in the abstract, and thus we ask the 
reader to be patient until the following section where it will become clear why they were 
introduced. 

7.1.2.1 Cryptography 

Cryptography is used to encrypt information to be protected. also called cleartext. into 
ciphertext. Encryption is a transformation from the space of possible cleartexts to the space of 
possible ciphertexts. The transformation selected depends on the key supplied to the encryption 
function. To decrypt. or recover the cleartext of a ciphertext, requires a specific key so the 
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encryption transformation can be inverted. 
A cryptographic system is called perfectly secure if all that can be discerned from a ciphertext is 

that the ciphertext exists, and that the corresponding cleartext is not longer than the ciphertext. 
Perfect security can only be achieved when the entropy of a key is at least as great as the entropy of 

information encrypted [Shannon 49]. Thus, perfectly secure systems are usually not practical 

because a key must be at least as long as the cleartext it is used to encrypt. 
A cryptographic system is called computationally secure if even when enough infonnation is 

theoretically available to break the system, the amount of computation required to do so is 

unreasonable. Unfortunately, proving facts about the computational complexity of many interesting 
algorithms is beyond the reach of current theory. Thus, most practical cryptosystems can not be 
proven to be computationally secure. In practice, the best that can be done is to invest a substantial 
amount of effort in trying to think of a way to break a system; if the system survives such an 

attack, then it is considered to be secure for practical purposes. As unsatisfying as this may be, it is 

the current state of the art 

The goal of a cryptanalytic attack is to find the key that was used to encrypt a ciphertext. 

Attacks are classified by the information an intruder has to aid him. It is assumed that an intruder 

knows the workings of the cryptosystem he is attacking. As the name implies, in a ciphertext-only 

attack an intruder only has ciphertext. I n a known-cleartext attack an intruder has both the 
ciphertext and the cleartext that was used to generate it. In achosen-cleartext attack an intruder 

can choose text to be encrypted and observe the resulting ciphertext Experience has shown that a 

cryptosystem that is known to be vulnerable to a chosen-cleartext attack should not be used. 
Two generic types of cryptosystems are used to implement cryptographic sealing. As we 

introduce each cryptosystem we will provide enough background so the reader can understand its 

properties. For more infonnation about cryptography see Diffie and Hellman [Diffie and Hellman 
79]. 

The framework of the protection system is very general, and it is designed to accommodate 
new cryptosystems as they are discovered. The interfaces to the cryptosystems are described in 
general terms, allowing stronger implementations of the systems to be adopted as they become 

available. 

Conventional Cryptography 

In a conventional cryptosystem a cleartext is encrypted with a key, and the same key is used to 

decrypt the resulting ciphertext The following functions implement conventional cryptography. 

Create-Conventional-Key[/key: Byte-Array] 

Create-Conventional-Key returns a random key that can be used in conjunction 
with the conventional encrypt and decrypt functions. All of our key creation 
functions are based on a true random bit generator. 

Conventional-Encrypt[clear: Byte-Array, key: Byte-Array I cipher: Byte-Array] 

Conventional-Encrypt encrypts clear with key, producing cipher. 

Conventional-Decrypt[cipher: Byte-Array, key: Byte-Array I clear: Byte-Array] 

Conventional-Decrypt decrypts cipher with key, producing clear. If the key 
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specified was not used to encrypt cipher, the value of clear is undefined. 

Public-Key Cryptography 

In a public-key cryptosystem the key generation function returns a pair of keys. Call the keys of 

such a pair keya and keyb. Only keyb can decrypt ciphertext enciphered with keya, and only keya 

can decrypt ciphertext enciphered with keyb. This is in contrast to a conventional cryptosystem, 

where a single key is used for both encryption and decryption. 

Public-key cryptosystems were first suggested in the open literature by Diffie and Hellman 

[Diffie and Hellman 76]. The name public-key resulted from the observation that with such a 

system certain keys could be made public, solving in part the problem of key distribution. Public­

key cryptosystems have also been called asymmetric cryptosystems. 

Rivest, Shamir, and Adleman [Rivest et al. 78] described the first practical implementation of a 

public-key system. The only cryptanalytic approaches currently known for breaking their scheme 

are at least as computationally complex as factoring extremely large numbers. 

The exact semantics we chose for our definition of public-key cryptography were motivated by 

the Rivest, Shamir, and Adleman proposal. Some public-key cryptosystems allow ciphertext 

enciphered with keya to be decrypted with keyb, but not the converse. In this case we will assume 

that two key pairs from such a system are used to implement one of our public-key pairs to provide 

the appropriate semantics. 

The following functions implement public-key cryptography. 

PK-Pair +- Record[keya: Byte-Array, keyb: Byte-Array]; 

Create-PK -Pair[/pair: PK -Pair] 

Create-PK-Pair computes a pair of public keys. The keys are random, in the sense 

that they are a function of a true random number. 

PK-Encrypt[clear: Byte-Array, key: Byte-Array / cipher: Byte-Array] 

PK-Encrypt encrypts clear with one of the members of a key pair, and it returns 

cipher. 

PK -Decrypt[cipher: Byte-Array, key: Byte-Array / clear: Byte-Array] 

PK-Decrypt decrypts cipher with key, producing clear. If the key specified is not 

correct, the value of clear is undefined. 

7.1.2.2 Threshold Scheme 

A threshold scheme allows a datum D to be divided into n pieces, such that any k pieces are 

sufficient to reconstruct D but complete knowledge of any k-1 pieces reveals no information about 

D [Blakley 79, Shamir 79]. A practical implementation of this system was first demonstrated by 

[Shamir 79]. 

The following functions implement a threshold scheme. 

Threshold-Pieces +- Record[pieces: List]; 
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Threshold-Split[clear: Byte-Array, n: Integer, k: Integer / piece-list: Threshold-Pieces] 

Threshold-Split takes clear and logically splits it into n pieces, any k of which are 

sufficient to recover clear. These pieces are returned as an n element list 

Threshold-Recover(piece-list: Threshold-Pieces / clear: Byte-Array] 

Threshold-Recover takes a list of pieces, and if k pieces are available, it will return 

the original value of clear. Elements on the input list that are not threshold pieces 

are ignored. If k pieces are not available, Threshold-Recover returns Error['Fai/ed}. 

7.1.2.3 Checksums 

A checksum function maps arbitrary input values into a comparatively small set of output 

values, such that independent input values have a small probability of being mapped into the same 

output value. I f a c bit checksum is implemented by a cyclic code, it can be proved that the 

fraction of independent values that have the same checksum is T C [Peterson and Weldon 72, p. 229]. 

Conventional encryption can also be used to create checksums. One way of creating an encryption 

based checksum is to use a cipher block chain technique [NBS 80). 

Add-Checksum[x: Any / cx: Checksummed-Object] 

Add-Checksum returns a copy of x and x's checksum. 

Check-Checksum[cx: Checksummed-Object / x: Any] 

Check-Checksum checks the checksum of cx, and if the checksum is correct, it 

returns the value of x it holds. If the checksum of ex is incorrect, Check-Checksum 

returns Error['Fai/ed}. 

7.2 Cryptographic Sealing 

Our basic protection mechanism, cryptographic sealing, is described in three stages. First, we 

provide a model of what the mechanism does. Second, we show how the mechanism works. Third, 

we discuss the extent to which the mechanism can be trusted. 

In the sections that follow, we extend the notion of keys. These extended keys are similar 

enough to cryptographic keys that we did not coin a new tenn, but the reader should be aware that 

they are not precisely the same. 

7.2.1 Model 

As we have mentioned, keys are the basic unit of secrecy and authentication in the protection 

mechanism. There are two ways to generate a key. It is possible to generate a brand new random 

key that does not depend on any other keys; such a key is called a base key. It is also possible to 

generate a key that is a function of existing keys; such a key is called a derived key. Derived keys 

are used to implement protection structures that can not be realized with base keys alone. 

The keys required to unseal an object depend on the structure of the key used to seal the 

object For example, to unseal an object that was sealed with Key-Or[ka, Key-And[kb, kc}} one 

needs either ka or both kb and kc. To be as explicit as possible, we introduce the unseals relation 

between a set of keys and a key. As we shall see in a moment, if a set of keys S unseals key k, 
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then S can be used to unseal any object that has been sealed with k. I f key set S unseals k we will 

write S > > k. If S > > k we also say that k is unsealed by S. 
Seal and Unseal are the primitive functions of the protection mechanism. Seal seals an object 

with a key, and Unseal reverses the sealing process. The type Key is used below to denote either a 

base or a derived key. 

Seal[x: Any, k: Key I sx: Sealed-Object] 

Seal seals x with k, returning a sealed object Seal operates by value; x and k are not 

modified. Seal[x, NIL} is x. 

Unseal[sx: Sealed-Object, ks: List[Key], tc: TC I x: Any] 

Unseal unseals sx with the set of keys contained in the key set ks. If Unseal is successful, it 

returns x (the original input value to Seal). Otherwise Unseal returns Error['Fai/ed]. 

Unseal does not modify sx. 

The protection mechanism provides two properties. The secrecy property states that a sealed 

object is useless to someone who does not have a set of keys that unseals the key that was used to 

seal the object The authentication property states that Unseal will only return values that were in 

fact properly sealed. 

Secrecy. x can be recovered from Seal[x, k} with a set of keys S if and only if S » k. 

Authentication. If x was not sealed with a key that is unsealed by S then the result of 

Unseal[x, S} will be Error['Failed}. 

The following functions create keys, and completely define the unseals relation. 

Create-Base-Key[1 k: Key] 

Create-Base-Key creates a new regular base key. Regular base keys are the simplest kind of 

keys. To unseal Seal[ x, k} requires k. In other words, a key set unseals k if and only if it 

contains k. 

(S » k) == (k E S) 

Key-Pair +- Record(keya: Key, keyb: Key); 

Create-Key-Pair[1 kp: Key-Pair] 

Create-Key-Pair creates a pair of base keys. These keys are related to each other in the 

following way. To unseal Seal[x, keyaJ requires keyb, and to unseal Seal[x, keyb} requires 

keya. In other words, a key set unseals keya if and only if it contains keyb, and a key set 

unseals keyb if and only if it contains keya. 

(S > > keya) _ (keyb E S) 

(S » keyb) _ (keya E S) 

Key-And[ka: Key, kb: Key I dk: Key] 

Key-And creates a derived key that is the logical and of ka and kb. To unseal Seal[ x, dk} 

requires either dk or a set of keys that will unseal both ka and kb. That is, a key set 
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unseals dk if and only if it unseals both ka and kb or it includes dk. 

(S » dk) _ «S » ka) 1\ (S » kb» V (dk E S) 

Key-Or(ka: Key. kb: Key / dk: Key] 

Key-Or creates a derived key that is the logical or of ka and kb. To unseal Seal[ x, dkJ 

requires either dk or a set of keys that unseals ka or kb. That is. a key set unseals dk if 

and only if it unseals ka or kb or it includes dk. 

(S » dk) = (S » ka) V (S » kb) V (dk E S) 

Key-Quorum[q: Integer. key-list: List[Key] / dk: Key] 

Key-Quorum creates a derived key. key-list is a list of an arbitrary number of keys. To 

unseal Seal[x. dkJ requires either dk or a set of keys that unseals q distinct keys from key­

list. In other words. a set of keys unseals dk if and only if it includes dk or if it unseals q 

distinct keys from key-list. Note that Key-Quorum can be used to implement Key-And and 

Key-Or (with q= 2 and q= 1 respectively). but as we shall see. the implementations of Key­

And and Key-Or are more efficient than Key-Quorum. For some q combination k j , ... , kq 

drawn from key-list; 

(S > > dk) = (1\ 1 < i < q S > > ki ) V (dk E S) 

Submaster(k: Key / dk: Key] 

Submaster creates a derived key. To unseal Seal[x, dkJ requires either dk or a set of keys 

that unseals k. In other words, a key set unseals dk if it unseals k or if it includes dk. 

(S » dk) == (S » k) V (dk E S) 

Seal-Only[k: Key / dk: Key] 

Seal-Only creates a derived key. To unseal Seal[ x, dkJ requires a set of keys that unseals k. 

In other words. a key set unseals dk if and only if it unseals k. A key set that includes dk 

is not sufficient to unseal dk. 

(S » dk) = (S » k) 

Create-Indirect-Key[k: Key, tc: TC / ik: Indirect-Key] 

Create-Indirect-Key creates an indirect key. To unseal Seal[x, ikJ either requires ik or a set 

of keys that unseals k. In other words, a key set will unseal ik if it contains ik or if it 

unseals k. Once an indirect key has been created, it can be changed with Change-Indirect­

Key. Because indirect keys can be altered, the following statement is an implication. 

(S » k) V (ik E S) -+ (S » ik) 

Change-Indirect-Key[ik: Indirect-Key, nk: Key. tc: TC] 

Change-Indirect-Key changes an indirect key. After Change-Indirect-Key has been 

performed, to unseal an object that has been sealed with ik either requires ik or a set of 

keys that unseals nk. In other words, ik is changed such that if a key set unseals nk it now 
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also unseals ike Change-Indirect-Key does not provide revocation as discussed in Section 

7.3.4. 

(S » nk) -+ (S » ik) 

Let us consider an example to make the idea of an indirect key clear. Imagine that the 

following occurs: 

kevin +- Create-Base-Key[]; 

ik +- Create-Indirect-Key[kevin]; 

sx +- Seal[ x, ik]; 

At this point sx can be unsealed with either ik or kevin. The indirect key is then updated: 

harry +- Create-Base-Key[]; 

Change-Indirect-Key[ik, Key-Or[kevin, harry]]; 

After the Change-Indirect-Key occurs, ik, harry. or kevin are required to unseal sx. 

If S » kl and S » k2, then Unseal[Seal[Seal[x, kll. k2l. Sl will be Seal[x. kll. In order to 

recover an object that may have been sealed many times R Unseal can be used. 

RUnseal[sx: Sealed-Object, ks: List[Key], tc: TC / x: Any] 

RUnseal applies Unseal as many times as necessary until its result is not sealed. RUnseal 

always applies Unseal at least once. 

RUnseal-List[sl: List[Sealed-Object], ks: List[Key], tc: TC / Ix: List[Any]] 

RUnseal-List is a function that when passed two lists [al ... an] [kl ... kn] returns 

[RUnsea4.al. kl. tc] ... RUnsea4.an. kn. tc]] 

Seal-List[lista: List[Any], listb: List[Key] / slist: List[Sealed]] 

Seal-List is a function that when passed two lists [al ... an] [kl ... kn] returns [Sea4.al.kl] 

... Sea4an. kn]]. 

NA-Unseal[sx: Sealed[Any], kl: List[Key], tc: TC / x: Any] 

NA-Unseal unseals sx with RUnseal if it is sealed, otherwise it returns sx. Thus, NA­

Unseal does not provide authentication. 

NA-Unseal-List[sx: Sealed[Any], kl: List[Key], tc: TC / x: Any] 

The same as RUnseal-List, except that is uses NA-Unseal. 

7.2.2 Basic Algorithm 

We present the basic algorithm by first outlining the principles of the mechanism and then 

presenting detailed descriptions of the major functions. 

The protection mechanism operates by arranging that precisely enough information is included 

in a sealed object to allow an appropriate set of keys to unseal it. We will first consider base keys 

and then show how this is arranged for derived keys. 

Base keys are directly implemented by cryptography. If an object is sealed with a base key, 
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then Seal encrypts the object with the key. To provide the authentication property, a checksum is 

added to the object before it is encrypted. Unseal uses the checksum to tell if it has a legitimate 

sealed object For example, assume that kb is a base key. Seal[x. kbJ is transformed to: 

Encrypt[Add-Checksum[x], kb]. 

Base keys are assigned unique identifiers which are included in the result of an Encrypt 

operation. Thus, it is easy for Unseal to determine which key can be used to recover the contents 

of a sealed object 

A derived key consists of two fields: key and opener. When an object is sealed with a derived 

key dk, it is sealed with dk.key, and dk.opener is carried along in the sealed object Seal[ x. dkJ is 

transfonned to: 

[Seal[x, dk.key]. dk.opener]. 

The central idea is that the opener of a derived key is carefully constructed so that if S > > dk, then 

it is possible to compute a key that unseals dk.key from dk.opener and S. 
Figure 7.3 gives several examples of sealed objects. The first example shows what happens 

when an object is sealed with a base key. The object is encrypted (as suggested by the heavy box), 

and marked with the key that can be used to decrypt the object. Although it is not shown in the 

figure, the object in the box includes its checksum for authentication. The next three examples show 

how derived keys work. It should be clear from the illustration how the opener expresses the 

protection structure that corresponds to its Seal statement. 

The following functions implement the protection mechanism. Figure 7.4 is a diagram of the 

dependency relationships between the functions, which the reader may find helpful. 

Simple base keys are implemented by conventional cryptography. A simple base key consists of 

a unique identifier and an encryption key. 

Simple-Key +- Record[id: UniqueID, key: Byte-Array]; 

Create-Base-Key[/k: Key] +- Prog[ []; 
k +- Create[Simple-Key]; 
k.key +- Create-Conventional-Key[]; 
k.id +- GetUniqueID[]; 
Retum[k]; 
]; 

Key pairs are implemented by public-key cryptography. Like a conventional key, a Key-Pair­

Halfhas fields for an identifier and akey. A Key-Pair-Halfalso includes the identifier of the key 

that will decrypt it 

Key-Pair-Half +- Record(id: UniqueID, decryptedBy: UniqueID, key: Byte-Array]; 

Create-Key-Pair[1 kp: Key-Pair] +- Prog[ (pkp: PK-Pair]; 
kp +- Create[Key-Pair]; 
kp.keya +- Create[Key-Pair-Half]; 
kp.keyb +- Create[Key-Pair-Half]; 
pkp +- Create-PK -Pair[]; 
-- set up keya 
kp.keyajd +- GetUniqueID[]; 
kp.keya.decryptedBy +- GetUniqueID[]; 
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kp.keyakey +- pkp.keya; 
-- set up keyb 
kp.keyb.id +- kp.keya.decryptedBy; 
kp.keyb.decryptedBy +- kp.keyajd; 
kp.keyb.key +- pkp.keyb; 
Retum[kp]; 
]; 

Before we discuss Seal and Unseal, let us introduce two cryptographic functions that work with 

base keys. The Encrypt function encrypts an object with a base key, and includes in its result the 

unique identifier of the key that will decrypt the resulting ciphertext The Decrypt function takes 

an object that has been encrypted and attempts to decrypt it with the aid of a set of keys. 

Ciphertext +- Record[decryptedBy: UniqueID, text: Byte-Array]; 

Encrypt[clear: Any, k: Key / cipher: Ciphertext] +- Prog[ D; 
cipher +- Create[Ciphertext]; 
-- encrypt clear with k, producing cipher 
IF Is[k, Key-Pair-Half] THEN [ 

ELSE [ 

cipher.decryptedBy +- k.decryptedBy; 
cipher.text +- PK-Encrypt[Encode[clear], k.key]; 
] 

cipher.decryptedBy +- k.id; 
cipher.text +- Conventional-Encrypt[Encode[clear], k.key]; 
]; 

Retum[cipher] ; 
]; 

Decrypt[cipher: Ciphertext, ks: List[Key] / clear: Any] +- Prog[ 
[k: Key, rk: Key]; 
-- decrypt cipher with one of the keys in ks 
clear +- Error['Failed]; 
FOR k IN ksOO [ 

-- If a derived key, get the base key hidden inside. 
rk +- IF Is[k, Derived-Key] THEN k.key ELSE k; 
-- see if we have a match 
IF Is[rk, Simple-Key] THEN [ 

IF cipher.decryptedBy = rk.id THEN 
clear +- Decode[Conventional-Decrypt[cipher.text, rk.key)); 

]; 
IF Is[rk, Key-Pair-Half] THEN [ 

]; 
Retum[clear]; 
]; 

IF cipher.decryptedBy = rk.id THEN 
clear +- Decode[pK -Decrypt[cipher.text, rk.key)); 

]; 

Seal works in the following way. It first tests the type of key that it has been passed. If it is a 

base key then Encrypt is used to encrypt the object and a checksum of the object The checksum is 
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used by Unseal to authenticate the sealed object If Seal is passed a derived key it uses the base 

key contained in the derived key to seal the object, and it includes the opener of the derived key in 

its result 

Derived-Key +- Record[key: Key. opener: List[Sealed-Object]]; 

Sealed-Object +- Record[cipher: Any. opener: Any]; 

Seal[x: Any. k: Key / sealed-x: Sealed-Object] +- Prog[ []; 
IF NUll[k] THEN Return[x]; 
sealed-x +- Create[Sealed-Object]; 
IF Is[k. Derived-Key] THEN [ 

-- Include the derived key's opener in the sealed object 
sealed-x.cipher +- Seal[x, k.key]; 
sealed-x.opener +- k.opener; 
Return[sealed-x]; 
]; 

-- Add a checksum for authentication. 
sealed-x.cipher +- Encrypt[Add-Checksum[x], k]; 
sealed-x.opener t- NIL; 
Return[sealed-x]; 
]; 

Unseal reverses the sealing process. Unseal first checks to see what type of key was used to seal 

an object If the object was sealed with a base key, Unseal uses Decrypt to recover the object's 

contents. The result of Decrypt is authenticated by ensuring that the object's checksum is correct 

If the object was sealed with a derived key, the opener is unsealed, and the resulting key set is used 

to unseal the object 

Unseal[sealed-x: Sealed-Object, ks: List[Key], tc: TC / x: Any] +- Prog[ 
[opener: List[Key]; tp: Threshold-Pieces]; 
-- Ensure that the object was in fact sealed. 
IF Not[Is[sealed-x, Sealed-Object]] THEN Return[Error[,Failed]]; 
IF Null[sealed-x.opener] THEN [ 

-- object was sealed with a base key 
Return[Check-Checksum[Decrypt[sealed-x.cipher, ks]]]; 
]; 

The object was sealed with a derived key. 
opener +- Normalize[sealed-x.opener, tc]; 
IF Is[opener, Threshold-Pieces] THEN [ 

ELSE 

-- The opener is a list of sealed key pieces. 
tp +- Create[Threshold-Pieces]; 
tp.pieces +- RUnseal-List[opener.pieces. ks, tc]; 
opener +- List[Decode[Threshold-Recover[tp]]]; 
] 

The opener is a list of sealed keys. 
opener +- RUnseal-List[opener. ks, tc]; 

Return[Unseal[sealed-x.cipher, Append[opener. ks], tc]]; 
]; 
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The derived key dk that Key-And creates is simple in concept The opener of Key-And can be 

unsealed with a key set S only if S > > ka and S > > kb. ka and kb must not be a key pair. This is 

because with the implementation of public-key cryptography proposed by [Rivest et at. 78] 

encrypting with one and then the other is equivalent to encrypting and then decrypting. This 

restriction could be eliminated at the cost of a small increase in the size of the sealed object by 

changing the opener to be List[Sea/[Sea/[dk.key, ka], Submasterlkb}}}. 

Key-And[ka: Key, kb: Key / dk: Key] +- Prog[ []; 
dk +- Create[Derived-Key]; 
dk.key +- Create-Base-Key[]; 
dk.opener +- List[Seal[Seal[dk.key, ka], kb]]]; 
Retum[dk]; 
]; 

Key-Or is implemented in the same manner as Key-And. One of the elements of the opener of 

Key-Or can be unsealed with a key set S only if S > > ka or S > > kb. 

Key-Or[ka: Key, kb: Key / dk: Key] +- Prog[ []; 
dk +- Create[Derived-Key]; 
dk.key +- Create-Base-Key[]; 
dk.opener +- List[Seal[dk.key, ka], Seal[dk.key, kb]]; 
Retum[dk]; 
]; 

Key-Quorum creates a new base key and then splits the key into n pieces, where n is the length 

of the input key list Things are arranged so that any combination of q of these pieces can be used 

to reconstruct the new base key. The n parts of the base key are then sealed with the n input keys, 

creating an opener that will yield the base key when a key set is available that unseals q or more 

distinct input keys. 

Key-Quorum[q: Integer, kl: List[Key] / dk: Key] +- Prog[ []; 
dk +- Create[Derived-Key]; 
dk.key +- Create-Base-Key[]; 
-- Create the proper number of key pieces. 
dk.opener +- Threshold-Split[Encode[dk.key], Length[kl], q]; 
-- Seal the pieces with the elements of kl. 
dk.opener.pieces +- Seal-List[dk.opener.pieces, kl]; 
Retum[dk]; 
]; 

Submaster is implemented by creating a new base key, and including the key in an opener 

sealed with k. 

Submaster[k: Key / dk: Key] +- Prog[ []; 
dk +- Create[Derived-Key]; 
dk.key +- Create-Base-Key[]; 
dk.opener +- List[Seal[dk.key, k]]; 
Retum[dk]; 
]; 

Seal-Only ensures that only sets that unseal k will unseal dk. This derived key is set up to 
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encrypt objects with one half of a key pair, and to hide the other half in an opener. The opener 

can only be unsealed with a key set S if S > > k. 

Seal-Only[k: Key / dk: Key] +- Prog[ [kp: Key-Pair]; 
kp +- Create-Key-Pair[]; 
dk +- Create[Derived-Key]; 
dk.key +- kp.keya; 
dk.opener +- List[Seal[kp.keyb, k]]; 
Retum[dk]; 
]; 

Create-Indirect-Key creates a key that can be changed. This is accomplished by creating a 

derived key with an indirect opener. By changing the indirect opener, one can change the keys that 

unseal the indirect key. 

Create-Indirect-Key[k: Key, tc: TC / dk: Key] +- Prog[ 0; 
k +- Submaster[k]; 
-- create indirect key 
dk +- Create[Derived-Key]; 
dk.key +- k.key; 
dk.opener +- Create-Indirect[k.opener, tc]; 
Retum[dk]; 
]; 

Change-Indirect-Key[dk: Key, nk: Key, tc: TC] +- Prog[ 0; 
-- if nk is NIL, delete key 
IF Null[nk] THEN 

Change-Indirect[dk.opener, NIL, tc]; 
ELSE 
-- replace opener with new one 

Change-Indirect[dk.opener, List[Seal[dk.key, nk]], tc]; 
RetumD; 
]; 

RUnseal and NA-Unseal are implemented as the following functions. 

RUnseal[sx: Any, ring: List[Key], tc: TC / x: Any] +- Prog[ 0; 
-- recursive unseal 
x +- Unseal[sx, ring, tc]; 
IF Is[x, Sealed] THEN Return[RUnseal[x, ring, tcU; 
Return[x]; 
]; 

NA-Unseal[sx: Any, ring: List[Key], tc: TC / x: Any] +- Prog[ 0; 
unauthenticated unseal 

-- sx does not have to be sealed 
x +- IF Is[sx, Sealed] THEN RUnseal[sx, ring, tc] ELSE sx; 
Return[x]; 
]; 
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7.2.3 Strength 

We reason about the strength of the protection mechanism in two parts. First, assuming that 
the cryptographic systems we use are perfect, we demonstrate the security and authentication 
properties of the mechanism. Second, we examine the assumption that cryptographic systems are 
perfect, and suggest usage conventions that would make the protection mechanism less susceptible 
to cryptanalysis. 

7.2.3.1 Correctness Argument 

It is difficult to prove facts about systems that are based on cryptography because, as we 
discussed, it is difficult to show that cryptosystems have certain properties. Thus, what we will do is 
to make strong assumptions about the behavior of the cryptographic systems that we use, and show 
that the secrecy and authentication properties of the protection mechanism follow from these 
assumptions. 

First, we demonstrate the secrecy property of the protection mechanism, which is: 

Secrecy. x can be recovered from Seal[x, k] with a set of keys S if and only if S » k. 

Our first assumption has to do with the security of cryptography: 

PC. (Perfect Cryptography) Encrypt[x, k] reveals no information about k. If k is one half 
of a public-key pair, then x can only be recovered with the other half of the public-key 
pair, and if k is a classical key, then x can only be recovered with k. 

We interpret "can only be recovered" to mean a total lack of information in the information 
theoretic sense. PC is close enough to what is expected of a practical cryptosystem to make it a 

reasonable assumption. However, we know of one exception to PC. To recover x from 
Encrypt[Encrypt[x, kI], k2] should always require a key set S, such that S » kl and S » k2. In the 
public-key system proposed by [Rivest et at. 78] if kl and k2 are a public-key pair, then 
Encrypt[Encrypt[x, kI], k2] is x. In Key-And, where we will need to reason about an object that 
has been sealed twice, we will assume that kl and k2 are not a public-key pair. 

Our demonstration that the secrecy property follows from PC proceeds by induction on the 
structure of the key k. Our basis is the case where k is a base key. 

Basis. Assume that k is the result of Create-Base-Key or Create-Key-Pair. Seal[x, k] is 
transformed to Encrypt[Add-Checksum[x], k]. The secrecy property follows from PC. 

We now assume the secrecy property as our induction hypothesis, and consider each way that 
derived keys can be created as our induction step. 

Key-And. Assume dk is the result of Key-And[ka, kb]. dk is 

[k, [Seal[Seal[k, ka], kb]l1 

where k is the result of a Create-Base-Key operation. Seal[x, dk] is 

[Seal[x, k], [Seal[Seal[k, ka], kbl1]. 

By the induction hypothesis we need k to recover x, and to recover k we need a set of keys 
that is admitted to ka and to kb. Thus, a set of keys S can recover x if and only if 
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«S » kb) A (S » ka» V (dk E S). 

This is precisely the unseals relation for Key-And. 

Key-Or. Assume dk is the result of Key-Or(ka. kb). dk is 

[k. [Seal[k. ka). Seal[k. kb]]] 

where k is the result of a Create-Base-Key operation. Seal[x. dk) is 

[Seal[x. k). [Seal[k. ka). Seal[k. kb]]]. 

By the induction hypothesis we need k to recover x. and to recover k we need a set of keys 

that is admitted to ka or to kb. Thus. a set of keys S can recover x if and only if 

(S » ka) V (S » kb) V (dk E S). 

This is precisely the unseals relation for Key-Or. 

The arguments for Submaster and Create-Indirect are very similar to Key-And and Key-Or. and 

thus we will omit them. 

D. 

Seal-Only. Assume dk is the result of Seal-Only[k). dk is 

[ka. [Seal[kb. k]]] 

where [ka. kb) is the result of Create-Key-Pair. Seal [x. dk) is 

[Sea1[x. ka). [Seal[kb. k]]]. 

By the induction hypothesis we need kb to recover x. and to recover kb we need a set of 

keys that is admitted to k. kb only appears in openers. Thus. a set of keys S can recover 

x if and only if 

(S » k). 

This is precisely the unseals relation for Seal-Only. 

Key-Quorum. Assume dk is the result of Key-Quorum[q. List[kl .. kn)). dk is 

[k. [Seal(Pl' k1) ... Seal(Pn' kn))) 

where k is the result of a Create-Base-Key operation. and Pl'" Pn are the result of 

Threshold-Split[k. n. q). Seal[x. k) is 

[Seal[x. k). [Seal(Pl' k1) ... Sea1(Pn' kn]]]. 

By the induction hypothesis we need k to recover x. To recover k we need q distinct values 

of Pl'" Pn· By the induction hypothesis we can only recover q distinct values of Pl'" Pn 
with a set of keys that is admitted to q distinct keys in k 1 ... kn. Thus. a set of keys Scan 

recover x if and only if for some set of q distinct keys ka ... kq drawn from k 1 ... kn: 

«S »ka) A .. , A (S» kq)} V (dk E S). 

This is precisely the unseals relation for Key-Quorum. 
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We will now demonstrate the authentication property of the protection mechanism, which is: 

Authentication. If x was not sealed with a key that is unsealed by S then the result of 
Unseal[x, S] will be Error['Failed]. 

To demonstrate the authentication property we need to make an assumption concerning the 
behavior of checksums: 

CHK. Assuming x and Encrypt[x, k] are known, it is intractable to compute Encrypt[Add­
Checksum[x], k] unless k is known. 

The argument we use is once again based on induction on the structure of a key that was used 
to seal an object As our basis we will assume that Unseal decides that an object has been sealed 
with a base key. 

Basis. Assume that Unseal decides that x has been sealed with base key k. By CHK, 
unless the client that sealed x had k it could not generate the correct encrypted checksum. 
If the checksum of Decrypt[x. kl] is not valid Unseal returns Error['Failedj. 

Now we assume the authentication property as the induction hypothesis, and show that if an 
object was sealed with a derived key the authentication property is also guaranteed. 

D. 

Induction Step. Assume that Unseal decides that x has been sealed with a derived key. It 

unseals what it thinks is an opener with kl. If the opener was sealed a key that is unsealed 
by kl, then this operation will return a new key list kl'. By the induction hypothesis this 
operation would return Error['FailedJ if kl' had not been sealed by a key that is unsealed by 
kl. Unseal then uses kl and kl'to unseal x. By the induction hypothesis if x was sealed by 
a key that is not unsealed by the union of kl and kl'then Unseal will return Error['Failedj. 

A key that is unsealed by kl was required to create the opener that contained kl'. Thus, if 
x was not sealed with a key that is unsealed by kl then the result of U nseal[x, kl] will be 
Error['Fai/edJ. 

7.2.3.2 Susceptibility to Cryptanalysis 

In the previous section we assumed that cryptography is perfect Of course it is not Often, 
breaking a practical cryptographic system is a matter of economics [Diffie and Hellman 77]. 
However, if some guidelines are followed, the susceptibility of our protection system to cryptanalysis 
can be reduced. 

The cryptosystems that are used must be secure against a known-cleartext attack. The 
checksums that are included in sealed objects and the implementation of Key-And increase the 
probability that an intruder will be able to use a known-c1eartext attack. 

It is wise to keep the amount of information protected with a single key to a minimum. This 
makes it more difficult for an intruder to perform a known-cleartext attack, and it reduces the 
vulnerability of the system to a single cryptanalytic success. Because keys are inexpensive, a client 
should use as many keys as are natural for its application. 

The strength of the cryptographic system used to protect information should correspond to the 
length of time the information needs to be kept secret For example, if certain information is going 

95 



CHAPTER 7: PROTECfION 

to be sensitive for twenty years, it would not be wise to protect it with a cryptosystem that can be 

broken in one year. Another metric is that the value of information protected with a cryptographic 

system should be considerably less than the cost of an attack on the system. Cryptographic sealing 

can accommodate the coexistence of a number of cryptosystems that have different key sizes and 

strengths. Thus, the strength of a cryptosystem can be matched to the sensitivity of the information 

it protects. 
Finally, there is no need to divulge information that might lead to a successful cryptanalytic 

attack to clients that do not need to know the information. For example, public keys can be 

protected from clients that do not need them. 
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7.3 Applications 

We now turn our attention to applications of cryptographic sealing. The first two sections show 
how cryptographic sealing and a simple active protection mechanism can implement a variety of 
popular protection mechanisms, including capabilities, access control lists, and information flow 
control. The third section demonstrates secure processors. The last section shows how secure 
processors can be used to implement revocation. 

7.3.1 Privilege Establishment 

7.3.1.1 Key Rings 

Keys are used to represent privileges, and thus a list of keys defines a set of privileges. Each 
user has a personal list of keys, or key ring, that defines his privileges. When a key ring is stored, it 
is sealed with a key that only its owner knows. A user authenticates himself to the system by 
providing his key ring key. The key ring key is used to unseal the user's key ring in his processor, 

resulting in his list of privileges. 
A key ring key could be stored on a magnetic card, or perhaps transformed into an easily 

remembered sentence, such as "Ralph and George ran to the store on a rainy cold day with their 
Aunt Essie's dog Fred". Such a transformation could be accomplished with a context free grammar. 

A user's unsealed key ring is the third argument to Open, ring. Open is very careful with a 
user's key ring, and will not transmit it to any other processor. 

7.3.1.2 Encrypted Objects 

Cryptography is used to control access to information stored in files and indexes. An encrypted 

object E is an object that is encrypted with a certain conventional key K. Thus, possession of K 
gives a client the ability to access the information in E. Objects may be encrypted many times. 

Create-Encrypted[ref: Reference, k: Key / eref: Encrypted] 

Create-Encrypted creates an encrypted object. If the object is a file or an index, then to 
access the object a client must have a key that is admitted to k. Create-Encrypted assumes 
that the referent of ref will be totally overwritten and currently contains no information. 

Encrypted objects are implemented by creating a special reference that contains their key and a 
reference to their encrypted form. 

Encrypted ~ Record[ref: Reference, key: Key]; 

Create-Encrypted[ref: Reference, key: Key / eref: Encrypted] ~ Prog[ []; 
eref ~ Create[Encrypted]; 
eref.ref ~ ref; eref.key ~ key; 
Return [Add-Type[eref, Major-Type[ref]ll; 
]; 

When an encrypted object is opened, a class structure is set up that will encrypt and decrypt the 
data portions of read and write requests. 
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Open-Encrypted[ref: Reference, tc: TC, ring: List[Key], guards: List[Key] / c: Class] 
+- Prog[ [k: Key; ew: Function]; 

try to unseal key 
k +- NA-Unseal[ref.key, ring, tc]; 
-- failed, client does not have access 
IF Is[k, Error-Type] THEN Retum[k]; 
ew +- IF I s[ref, Index] THEN 'Encrypted-Index-Write ELSE 'Encrypted-File-Write; 
c +- Open[ref.ref, tc, ring, guards]; 
IF Is[c, Error-Type] THEN Retum[c]; 
c +- Create-Class[List[ 

'Copy Reference, 'Default-Copy, 
'Read, 'Encrypted-Read, 
'Write, ew, 
'Enumerate, 'Encrypted-Enumerate], c]; 

-- Instance variables: k, ref 
Retum[c]; 
]; 

Encrypted-Read[1 value: Byte-Array] +- Prog[ []; 
value +- Apply[superclass, request]; 
Retum[Conventional-Decrypt[value, k.key]]; 
]; 

Encrypted-Index-Write[entry-name: Byte-Array, value: Byte-Array] +- Prog[ []; 
IF Null[value] THEN Retum[superclass I Write[key, NIL]] 
ELSE Retum[superclass I Write[entry-name, Conventional-Encrypt[value, k.key]]]; 
]; 

Encrypted-File-Write[startpage: Integer, pages: Integer, value: Byte-Array] +- Prog[ []; 
Retum[superclass I Write[startpage, pages, Conventional-Encrypt[value, k.key]]]; 
]; 

Encrypted-Enumerate[last: Entry I next: Entry] +- Prog[ []; 
IF Not[Null[last]] THEN last value +- Conventional-Encrypt[lastvalue, k.key]; 
next +- superclass I Enumerate[last]; 
next value +- Conventional-Decrypt[next value, k]; 
Retum[next]; 
]; 

7.3.1.3 Guarded Objects 

To provide integrity and availability we introduce a simple active protection mechanism. 

Imagine that each object is assigned a unique set of passwords, one for each of its independent 

privileges. We will call these passwords guards. Because each object has a unique set of guards, 

they must be stored with the object. For example, suppose file F is assigned write guard G. The 

processor that stores F would require that G be presented for each write access. 

Guards are presented in the fourth argument to Open, guards. Guards are checked at open 

time. For example, if a reference is opened for update (it is not a Read-Only reference) then Open 

checks for a write guard if one is required. Guards can be directly manipulated by a client, or the 

facilities described below can be used to help manage guards. 

The system defines a standard set of guard types. An Access guard must be provided before an 
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object can be used in any way, a Read guard must be provided before an object can be read, a 

Write guard must be provided before an object can be written, a Create guard must be provided 

before an object will service a create operation, and a Change guard must be provided before an 

object will allow its guards to be changed. An object can implement a subset of these guard types, 

or it can choose to implement guards based on its special needs. 

c: Class I Set-Guard[gt: Type, gk: Simple-Key] 

Set-Guard sets a guard for the object serviced by c to be gk. The guard will 

protect the set of privileges specified by gt. If gk is NIL Set-Guard removes 

guards. 

ic: Index-Class I Set-Entry-Guard[entry-id: Byte-Array, gt: Type, gk: Simple-Key] 

Index entries can also be protected by guards. Set-Entry-Guard sets a guard for the 

index entry specified by entry-id. The guard will protect the set of privileges 

specified by gt. If gk is NIL Set-Entry-Guard removes guards. 

7.3.1.4 Protected Volumes 

In many cases clients would like to have the files that they create protected automatically. To 

this end we provide the notion of a protected volume. Files created on a protected volume assume a 

default protection structure specified by the protected volume. 

Create-Protected-Volume[ref: Reference, tl: List[Type], kl: List[Key] / pref: Protected] 

Create-Protected-Volume creates a reference for a protected volume. All files 

created on the protected volume will have the types of access controls in tl set, and 

the resulting privilege keys will be sealed with corresponding elements of kl. The 

elements of tl may be guard types, or they may be the type Encrypted, in which 

case the file will be encrypted. 

Protected ~ Record[ref: Reference, tl: List[Key], kl: List[Key]]; 

Create-Protected-Volume[ref: Reference, tl: List[Key], kl: List[Key] / pref: 
Protected] 

~ Prog[ []; 
pref ~ Create[Protected]; 
pref.tl ~ tl; pref.kl ~ kl; pref.ref ~ ref; 
Retum[Add-Type[pref, Major-Type[ret]]]; 
]; 

When a protected volume is opened the model implementation establishes a class structure that 

will set protection controls in response to create file operations, and that will properly copy a 

protected volume reference. 

Open-Protected[ref: Reference, tc: TC, ring: List[Key], guards: List[Key] / c: Class] 
~ Prog[ []; 

c ~ Open[ref.ref, tc, ring, guards]; 
IF Is[c, Error-Type] THEN Retum[c]; 
Retum[Create-Class[List[ 

'Copy Reference, 'Default-Copy, 
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'Create-File, 'Protected-Create], c]]; 
]; 

Protected-Create[1 cref: Capability] ~ Prog[ []; 
[k: Key; cl: Class; priv: List[Sealed]; x: Cons[Type, Key]]; 
priv ~ NIL; 
-- create file 
cref ~ Apply[superclass, request]; 

open file 
cl ~ Open[cref, te, ring]; 
-- apply guards or encrypt file 
FOR x IN Pair[ref.tl, ref.gl] DO 

k ~ Create-Base-Key[]; 
IF I s[car[x] , Encyrpted] THEN 

ELSE [ 

]; 

cref ~ Create-Encrypted[cref, Seal[k, cdr[x]]]; 

cl I Set-Guard[car[x], k]; 
priv ~ Append[priv, Seal[k, cdr[x]]]; 
]; 

cl I Close[]; 
-- Capabilities are described in Section 7.3.2.1 
Return[Create-Capability[cref. priv]]; 
]; 

7.3.2 Common Protection Mechanisms 

All of the ingredients are now at hand for creating a large number of common protection 

mechanisms. We have represented privilege by the possession of keys, and these keys can be sealed 

such that only authorized clients can unseal them. We will treat the three major types of protection 

mechanisms in current use: capabilities, access control lists, and information flow control. 

7.3.2.1 Capabilities 

A capability is an unforgable ticket which permits a possessor to access the object it names with 

certain privileges [Dennis and Van Horn 66, Lampson 69]. No special privileges are required in our 

system to make a copy of a capability. 

Capabilities can be implemented by including a set of keys and guards in an object's reference. 

For example, imagine object 0 is encrypted with the conventional key K, and G is the write guard 

for object o. If a reference for 0 includes K, then it can be used to read O. If the reference also 

includes G, it can be used to read or write O. Without G or K it is impossible to read or write O. 

To the extent that keys and guards are considered impossible to guess, capabilities can be 

considered unforgable. A capability reference is shown in Figure 7.5. 

Create-Capability[ref: Reference, pI: List[Key] I cref: Capability] 

Create-Capability creates a capability for ref. pI is the list of keys that defines the set of 

privileges that the new capability will have. If any elements of pI are sealed, an attempt 

will be made to unseal them when the capability is opened. 

Capability ~ Record[ref: Reference, pI: List[Key]]; 
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Create-Capability[ref: Reference, pI: List[Key] / cref: Capability] +- Prog[ []; 
cref +- Create[Capability]; 
cref.pI +- pI; 
cref.ref +- ref; 
Return[Add-Type[cref, Major-Type[ret]]]; 
]; 

Open-CapabiIity[ref: Reference, tc: TC, ring: List[Key], guards: List[Key] / c: Class] 
+- Prog[ [PI]; 

pI +- NormaIize[ref.pl, te]; 
pI +- NA-Unseal-List[pl, Append[ring, guards], te]; 
-- expand privilege keys by pI 
c +- Open [ref.ref, te, Append[ring, pI], Append[guards, pI]]; 
IF Is[c, Error-Type] THEN Retum[c]; 
Retum[Create-Class[List['Copy Reference, 'Default-Copy], c]]; 
]; 

7.3.2.2 Access Control Lists 

An access control list system associates a list of users with each object. This list describes who 

may access the object, and with what privileges [Saltzer and Schroeder 79]. 

To implement access control lists each user of the system creates a key pair, and makes one of 

the keys of this pair public. Section 7.4.2 discusses how one user can reliably learn another user's 

public key. A user keeps the private half of his key pair on his key ring. Thus if user X seals an 

object with user Y's public key, only user Y will be able to unseal it. This result follows directly 

from the public-key cryptography that is used to implement key pairs. 

Access control lists are implemented by sealing the privileges in a capability reference, as shown 

in Figure 7.6. In general, a key or guard is sealed with the Key-Or of the users' keys that have 

been granted the corresponding privilege. Once sealed, these references can be placed in a public 

directory system. Only users that have been granted a privilege will be able to unseal its 

corresponding key or guard. 

It is often desirable to be able to grant privileges to a group of users and allow the members of 

the group to change over time. If revocation is not required, indirect keys can be used to define a 

group as 

Group-Key +- Seal-Only[Create-In direct-Key[ 

Key-Or[ul ... Key-Or[un-l, un]]]]; 

where ul ... un are the users' keys that are members of the group. The members of the group can 

be altered with Change-Indirect-Key. 

7.3.2.3 Information Flow Control 

In an information flow control scheme [Denning 76] each object is labeled with one or more 

classifications, and the output of a computation is labeled with the union of the classifications of its 

inputs. An example of an information flow control scheme is the military system of classification. 

If Top Secret and Crypto information are used in a report, then the report would be classified Top 
Secret, Crypto. 

Information flow control schemes are usually nondiscretionary, meaning that the classification of 
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a computation's output is fixed, and can not be altered by a client In the information flow control 

scheme we present a client chooses the classifications of its outputs. Once a classification is 

specified, the protection mechanism ensures that it is properly enforced. 

Cryptographic sealing can be used to implement information flow control in the following 

manner. Represent each classification by a key. If 0 is created from objects that have 

classifications C] ... Cn• seal the privileges in O's reference with Key-And[C] ... Key-And[Cn_]. C,J]. 

For example, imagine that the fictitious company Sierra has two divisions, a medical division 

and an office division. Sierra would like to enforce the policy that information that is private to 

one division is only accessible to employees of that division. Furthermore, Sierra has financial 

information that only senior managers are allowed to access. Sierra could create keys to represent 

these classifications as follows: 

Medical t- Seal-Only[Create-Indirect-Key[ 

Key-Or[<adams), ... Key-Or[<thatch), <west>]]]]; 

Office t- Seal-Only[Create-Indirect-Key[ 

Key-Or[(jones), ... Key-Or[<rainbow), <smith)]]]]; 

Financial t- Seal-Only[Create-In direct- Key[ 

Key-Or[<adams), ... Key-Or[<irby), <welch)]]]]; 

The names in brackets represent the public keys of people that are members of each classification. 

Indirect keys are used so that membership of each classification group can be altered later. 

Information about the overall performance of Sierra could be sealed with Financial. Information 

about the financial performance of the medical division could be sealed with Key-And[Financial. 

Medicalj. 

It is of course possible to combine access control lists and information flow control in a single 

system. This hybrid structure results when "the need to know" is added to an information flow 

control policy. 

7.3.3 Secure Processors 

By a secure processor we mean two things. First, we must have confidence that a secure 

processor will not inadvertently disclose secret information. Specifically, the very general 

mechanism for remote evaluation we introduced in Chapter 2 must be limited in some way to keep 

intruders from executing arbitrary functions on the processor of their choice. Second, when a 

conversation is started with a secure processor the identity of the secure processor must be 

authenticated, and the conversation must be kept secret For example, when a processor sends a 

capability to another processor, the exchange must be kept secret, and the sending processor must 

be sure that it is transmitting the capability to its intended recipient, not to an intruder. 

7.3.3.] Limiting Remote Evaluation 

If a processor uses cleartext forms of encrypted objects it must be demonstrated that its remote 

evaluation mechanism will not inadvertently disclose information. The simplest solution to this 

problem is to forbid any processor that processes cleartext from entertaining remote requests. In 

such a scenario only shared processors would accept remote requests, and these shared processors 

would only deal with encrypted objects. Even if a read guard was not enforced properly, an 
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intruder would not be able to make sense of the information he received. Unfortunately this 
simplistic approach can not always be employed. 

We limit the flexibility of the remote evaluation mechanism by controlling the environment in 
which remote evaluations are performed. The Eval in Request-Eval is done with respect to an 
environment that only contains the functions Open-Connection, Close-Connection, and Remember­
Eval. The Eval in Remember-Eval is done with respect to an environment that only contains the 
functions Open-Door and Door-Eval. Finally, the Eval in Door-Eval is done with respect to an 
environment that only contains the function Open. If global functions are used to register 
transaction participants (Section 3.1.2) these functions will have to be added to the environment of 
Request-Eval. 

This limits remote clients to only being able to access objects for which they have references. 
Although we have not done so in the model implementation, Open could carefully ignore 
malformed references. Although invented references would not give an intruder access to private 
objects, the intruder may be able to cause Open to do strange things. 

7.3.3.2 Secure Channels 

We describe here a method for creating secure, one-way authenticated communication channels. 
Secure means that an intruder can not discover the information that is being transmitted, and can 
not "spoof', or pretend that he is one of the participants in the conversation. One-way 

authenticated means that the client knows that it will be connected to the secure processor it 
specifies. Secure one-way authenticated channels are provided by secure processors. 

A reference for a secure processor includes an ordinary reference for the processor, and a public 
key that will be used to initiate conversations with the processor. The public key is half of a key 
pair, and is not admitted to itself. We assume a secure processor can obtain the other half of this 
pair by evaluating Get-Processor-Key. 

Secure-Processor +- Record[proc: Processor, public-key: Key]; 

A secure processor is implemented with the help of a secure door. A secure door is an object 
implemented by a secure processor that services Eval requests. Secrecy is maintained by encrypting 
all messages to and from a secure door. The key that is used for this encryption is contained in the 
reference for the secure door. Intruders can not discover this key, because it is sent to the secure 
processor sealed with the processor's public key. Authentication of the secure processor is provided 
by virtue of the fact that only it will be able to unseal the key and carry on a conversation. 

Secure-Door +- Record[k: Sealed[Key]]; 

Open-Secure-Processor[ref: Reference, tc: TC, ring: List[Key], guards: List[Key] / c: Class] 
+- Prog[ 

[door-class: Class; seqa: Integer; seqb: Integer; sl: Lock; k: Key; sd: Secure-Door; 
unique-id: UniqueID]; 
-- two sequence numbers, one for transmit, one for receive 
seqa +- 0; seqb +- 0; 
sl +- Create-Lock[]; 
k +- Create-Base-Key[]; 
sd +- Create[Secure-Door]; 
sd.k +- Seal[k, ref.public-key]; 
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door-class +- Open[Create-Located[sd, ref.proc], tc, ring, guards]; 
IF Is[door-class, Error-Type] THEN Return[door-class]; 
-- ask secure door for the connection identifier 
unique-id +- door-class I Connection-ID[]; 
c +- Create-Class[List[ 

'Eval, 'Secure-Processor-Eval, 
'CopyReference, 'Default-Copy], NIL]; 

Retum[c]; 
]; 

Spoofing is prevented with two mechanisms. First, every time a secure door is opened its 

secure processor provides a unique identifier that is incorporated into every message. If an intruder 

replayed a secure conversation after the conversation had ended, a new unique identifier would be 

assigned to the conversation, and the recorded conversation would be ignored. Second, every 

message to or from a secure door includes a message sequence number. This number is checked, 

and ensures that an intruder does not replay portions of a conversation while it is still in progress. 

Secure-Message +- Record[seq: Integer, id: UniqueID, message: Any]; 

Create-Message[message: Any / sm: Sealed[Secure-Message]] +- Critical[sl, 'Prog[ []; 
sm +- Create[Secure-Message]; 
sm.seq +- seqa; 
sm.id +- unique-id; 
sm.message +- message; 
seq a ... seq a + 1; 
Return[Seal[sm, k]]; 
]]; 

Unseal-Message[sm: Sealed[Secure-Message] / message: Any] ... Critical[sl, 'Prog[ []; 
sm +- Unseal[sm, List[k]]; 
IF Is[sm, Error-Type] THEN Retum[sm]; 
IF And[sm.seq= seqb, sm.id= unique-id] THEN 

seqb ... seqb + 1; 
Return[sm.message]; 
]; 

Retum[Error['Tampering]]; 
]]; 

Secure-Processor-Eval[form: Any / result: Any] +- Prog[ []; 
result ... door-class I Eval[Create-Message[form]]; 
Return[UnseaI-Message[result]]; 
]; 

Imagine object 0 is located with a secure processor SP. Here is what happens when 0 is 

opened: 

1. Open-Located (Section 3.2.4) causes SP to opened. When SP is opened, Open-Secure­

Processor opens a secure door SD at the remote processor. Open-Secure-Door creates an 

environment that includes an empty set called Doors. 
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2. Open-Located then opens 0 with Open-Door through SP The class for SP forwards the 

Open-Door request to the remote processor, to the class for SO. The Open-Door is thus 

done in the context of SO. Open-Door creates a door to 0 (Section 3.2.4) in SO's set 

Doors. 

Thus, it is impossible for an intruder to access the door to 0 without first passing through the 

secure door. This is to prevent an intruder from probing the space of door identifiers and 

bypassing our security. 

Figure 7.7 shows the class structure that is established when 0 is opened. The heavy line in the 

figure shows the flow of control when a request is made to the referent of O. 

Open-Secure-Door[ref: Reference I class: Class] fo Prog[ 
[seqa: Integer; seqb: Integec unique-id: Unique-IO; Doors: Set; k: Key; sl: 
Lock]; 
-- set sequence counters to zero and initialize connection identifier 
seqa fo 0; seq b fo 0; 
unique-id fo GetUniqueID[]; 
sl fo Create-Lock[]; 
-- create private Doors set 
Doors fo Create-Set[]; 
-- Unseal key for this channel 
k fo Unseal[re£key, Get-Processor-Key[]); 
Return[Create-Class[List['Eval, 'Secure-Door-Eval, 'Connection-10, 'Connection-10], 
NIL)); 
]; 

Connection-IO[I id: UniquelO] fo Prog[ []; 
-- return identifier of secure connection 
Return[ unique-id]; 
]; 

Secure-Door-Eval[in: Sealed[Secure-Message] lout: Sealed[Secure-Message)) fo Prog[ 
[result: Any]; 
in fo Unseal-Message[in]; 
IF Is[in, Error-Type] THEN Return[Error['Oiscard]]; 
-- The environment of Eval should only include 

Open-Door and Door-Eval 
result fo Eval[in.message]; 
Return[Create-M essage[ result]]]; 
]; 

7.3.4 Revocation 
The problem of revoking access to an object once it has been granted is known as revocation 

[Redell 74]. An indirect key does not provide revocation. Clients can hold on to the contents of 

indirect openers, and thus continue to access items sealed with the indirect key regardless of how 

the opener might be updated. Revocation is implemented by a trusted secure processor that 

provides a level of indirection between a client and the unsealed form of an object's privilege keys. 
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Create-Revocable-Capability creates a capability that has certain privileges, and these privileges 

can be changed by Change-Revocable-Capability. If a client's privileges are reduced by Change­

Revocable-Capability. on subsequent calls to Open there is no way the client can assume its old 

privileges. 

Create-Revocable-Capability[ref: Reference. pI: List[Key]. key-list: List[Key], ck: Key, i: Index, sp: 

Secure-Processor, tc: TC / rref: Revocable] 

Create-Revocable-Capability creates a new revocable capability. pi is the set of privileges 

that the capability has, and these privileges are protected by key-list with Seal-List. Clients 

that can unseal ck can change the revocable capability. The index and secure processor 

specified are used to implement the capability. and must be trusted. 

Change-Revocable-Capability[rref: Revocable, pI: List[Key], key-list: List[Key]. ring: List[Key], tc: 

TC] 

Change-Revocable-Capability changes rref such that the new set of privileges is pi, and 

these permissions are protected by key-list with Seal-List A key ring that can unseal ck 

must be supplied. 

7.3.4.1 Protected Indirection 

In order to implement revocation we first need to introduce indirection with access protection. 

The functions shown below are a simple variation of the standard indirection primitives. As an 

exercise the reader might consider how to implement these functions from the primitives we have 

introduced. 

Create-Secure-Indirect[record: Any, index: Index, tc: TC, access: Key / ind: Indirect]; 

Create-Secure-Indirect creates an indirect entry that can only be accessed by a client that 

can unseal access. 

Change-Secure-Indirect[ie: Indirect, contents: Any. tc: TC, ring: List[Key]] 

Change-Secure-Indirect changes an indirect entry if ring unseals access, and returns NIL. 

Otherwise Error['Failed] is returned. 

Lookup-Secure[ie: Indirect, tc: TC, ring: List[Key]] 

Lookup-Secure returns the contents of ie if ring contains a key that unseals access. 

Error['Failed] is returned if ring does not unseal access. 

7.3.4.2 Revocation Algorithm 

Figure 7.8 shows how revocation is accomplished. Assume that the client can not access the 

second capability shown, but secure processor SP can. The client's key ring is used to used to 

unseal the first capability, which yields a set of intermediate keys. These intermediate keys are then 

passed to SP. SP takes the set of intermediate keys and determines the privilege keys for the object 

SP opens the object on the client's behalf with these keys. Intermediate keys are employed so a 

user's key ring does not have to be passed to SP. 

The model implementation of revocation follows. 
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Create-Revocable-Capability[ref: Reference, pi: List[Key], key-list: List[Key], ck: Key, i: 
Index, sp: Secure-Processor, tc: TC / rref: Revocable] +- Prog[ 

[nkl: List[Key]; gate: List[Sealed[Key]]]; 
nkl +- Create-Key-List[Length[pI]]; 
gate +- Seal-List[pl, nkl]; 
key-list +- Seal-List[nkl, key-list]; 
-- with nkl gate can be unsealed 
rref +- Create-Capability[ref, gate]; 
-- we assume that the secure processor will use its 
-- private key when it looks up indirect references. 
rref +- Create-Secure-Indirect[rref, i, tc, Key-Or[ck, sp.public-key]]; 
-- switch to secure processor 
rref +- Create-Located[rref, sp]; 
-- with key-list nkl can be unsealed 
rref +- Create-Capability[rref, Create-Indirect[key-list, i, tc]]; 
Return[rref]; 
]; 

Create-Key-List[n: Integer / kl: List[Key]] +- Prog[ [i: Integer]; 
-- creates a list of n keys 
kl +- NIL; 
FOR i FROM 1 TO n 00 kl +- Cons[Create-Base-Key[], kl]; 
Return[kl]; 
]; 

Change-Revocable-Capability[rref: Revocable, pi: List[Key], key-list: List[Key], ring: 
List[Key], tc: TC]] +- Prog[ 

[nref: Reference; oref: Reference; nkl: List[Key]; gate: List[Sealed[Key]]]; 
-- create new set of intermediate keys 
nkl +- Create-Key-List[Length[pI]]; 
-- create new sealed privilege list 
gate +- Seal-List[pl, nkl]; 
-- with key-list, a client can discover intermediate keys 
key-list +- Seal-List[nkl, key-list]; 
oref +- Lookup-Secure[rref.ref.ref, tc, ring]; 
nref +- Create-Capability[oref.ref, gate]; 
Change-Secure-Indirect[rref.ref.ref, nref, tc, ring]; 
Change-Indirect[rref.pl, key-list, tc]; 
]; 

7.4 Practical Considerations 

7.4.1 Changing Protection Controls 
Once a set of protection controls has been established there are two ways of changing the 

controls. The first way is to create the protection structure with indirect keys. For example, if an 

indirect key is made for the users that can access a file, it is a simple matter to change this indirect 

key to authorize additional users. Another way to change protection controls is to reconfigure an 

object to a new implementor that is protected with a desired structure. The new implementing 

object may in fact be the same object as the old one, but protected in a new way. 
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7.4.2 Authentication in the Large 
A practical system must ensure that external names are mapped into correct internal keys. 

There are a number of solutions to this problem. Needham and Schroeder [Needham and 

Schroeder 78] have demonstrated one way of transforming external names into authentic internal 

keys. 
Here is a straightforward way to solve the problem in our framework. Provide every processor 

with a reference R that is located with a secure processor. Let R be a reference for the file that 
contains the root of the naming system. If a client uses R as the starting point in resolving names 

to references or keys, then the client will obtain an authentic internal reference or key. We assume 

that R is protected against malicious modification. 
The problem with this approach is that a corrupt system administrator could change R's referent 

in such a way that users would unwittingly give him access to their objects. To guarantee that an 

intermediate party does not tamper with key distribution it is necessary to distribute personal public 

keys outside of the system. 
Another approach would be to create a key pair, [keya, keyb]. keya is kept secret by the system 

administration, and <name, public-key) pairs in the system directory are sealed with keya. keyb is 

made public, and given to users (perhaps in a face to face meeting). It is possible for a user to tell 

if an entry in the public directory is authentic by unsealing it with keyb. 

7.4.3 Performance 
The performance of cryptographic sealing completely depends on the performance of its 

foundation. High performance VLSI components have lowered the cost of conventional 
cryptography to a point where it can be ignored for practical purposes. For example, an encryption 

unit built by the author for the Xerox Dolphin processor can encrypt or decrypt 512 bytes in 332 

microseconds. However, the performance of public-key cryptography and threshold schemes may 

be a significant consideration. The time for a single public-key encryption or decryption is 
currently measured in fractions of a second. The following refinements are intended to improve the 

performance of cryptographic sealing when keys from Create-Key-Pair or Key-Quorum are used: 

1. Unseal discards keys derived from openers as soon as they are no longer needed. An 

important optimization would be to remember these keys, and use them to reduce the 

number of future unseal operations. When such keys were not in use, they could be stored 

on a user's key ring. 

2. When client X is about to seal an object with K, a key-pair half, it creates K', 

K' ~ Submaster[K], 

and seals the object with K' instead of K. K' is then stored in a cache in X's secure 
processor. In the future if X is going to seal another object with K, it uses K' instead. 

Now imagine that client Y is unsealing the objects that client X has sealed in this 

manner. If client Y has adopted the previous suggestion, it will only have to perform a 

single public-key decryption to recover an entire set of sealed objects produced by X. This 

case commonly arises when one user is granting privileges to another user. 
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7.4.4 Comments 
The protection primitives we defined could keep comments, so it would be possible to 

determine how something was sealed, even if one could not unseal it. This would be useful for 

determining how objects were protected. 

7.4.5 Elimination of Authentication 
In some cases the authentication property of the protection mechanism may not be required. In 

such instances the checksum in sealed objects could be eliminated, reducing their size. 

7.5 Comparative Analysis 

To understand how cryptographic sealing might be used it is important to understand its 

advantages and disadvantages when compared with traditional protection mechanisms. The 

disadvantages of cryptographic sealing are: 

1. If integrity or availability guarantees are required, a supplemental active mechanism 

must be used. 

2. A user that holds a privilege can easily grant the privilege to another user by giving 

him the corresponding key. For example, if a user has a key that authorizes him to 

access top secret information, the user can give that key to anyone he chooses. 

3. The ability to revoke a privilege that has been granted to a user requires a 

supplemental active protection. 

4. User names must be translated into authentic keys. 

5. If a client makes extensive use of key-pairs, the cost of the underlying public-key 

cryptography may be prohibitive. 

However, cryptographic sealing provides a number of advantages not found in traditional systems: 

1. . Absolute privacy is provided in the sense that a user does not have to trust the 

computer system where his information is stored. Even a system operator or 

administrator can not gain access to information that he has not been authorized to see. 

Because there are no locksmiths for the mechanism, however, care must be taken not 

to lose critical keys. 

2. The protection system is not privileged. Specifically, a client is free to modify its copy 

of the protection system code. Moreover, a client can not increase its privileges in any 

way by such modification. 

3. Physical security of storage devices and the protection mechanism are not required. 

However, we assume that a client has a secure processor in which it can operate on 

unsealed objects. 

4. It is possible to protect information that is freely distributed (e.g. a physical storage 

medium that is sold) and information that is broadcast. 
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5. Cryptographic sealing allows a simple active protection mechanism (such as the guard 
mechanism outlined in Section 3.2) to implement a variety of protection policies that 
include integrity and availability guarantees. 

6. Cryptographic sealing protects variable size objects. Thus, different objects in a single 
file can be protected in independent ways. 

These advantages make cyptographic sealing well adapted for use in decentralized computer 
systems. 

7.6 Summary 

Starting with cryptography, we described a new mechanism for protecting data. Assuming 
perfect cryptography, we demonstrated the secrecy and authentication properties of the mechanism. 
Our approach to protection is novel in that the contents of storage can be read by anyone, and yet 
information is kept secret from those who have not been granted access. One of the results of the 
mechanism is that absolute privacy is provided. A number of interesting applications of the 
protection mechanism were discussed, including capabilities, access control lists, and information 
flow control. 

Exercises 

1. Assume that with a known cleartext attack k can be discovered from Encrypt{z, k] and z in 
time T. If you are given List{Encrypt{x, kl], Encrypt{kl, k2]] and x, how long will it take 
you to discover k2? 

2. How might reconfigurable and protected volumes be used together? 
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When a complex system is designed the question of its practicality naturally arises. For a 
system to be practical it must supply a service that clients find useful, it must be possible to build it, 
and it must perform adequately. In this chapter we discuss how to realize a practical system based 
on the system model we have presented. The first section discusses implementation considerations, 
and the second section discusses configuration issues. 

8.1 Implementation 

Our discussion of how to implement the system model is divided into two parts. First, we will 
discuss prototypes of the system model and experience with these prototypes. Second, we outline a 
number of considerations for any full-scale implementation of the design. 

8.1.1 Prototypes 
The practicality of our design has been verified in part by prototypes of the transactional 

storage, replication, and low-level protection components of the system model. The second, third, 

and fourth prototypes discussed were constructed by the author. 
An experimental transactional storage system called DFS [Israel et at. 1978] was constructed by 

a group at the Xerox Palo Alto Research Center. DFS demonstrated the feasibility of implementing 
transactions that span processors in a decentralized environment. DFS implements functions that 
are nearly identical to our description of transactional storage (Chapter 3). Although it is a 
prototype, the system has reached a point where it provides a useful service to many applications 

with acceptable performance. 
The replication algorithm was implemented in an experimental system called Violet [Gifford 

79a]. Violet is a decentralized calendar system that includes a simple data management system. 
The replication algorithm as implemented by Violet assigns one vote to each representative and 
fixes rand w to describe a simple majority. Experience with Violet led to the generalization of the 
replication algorithm described in Chapter 5, an understanding of how to structure the 
implementation of such an algorithm (which is shown in the code in Chapter 5), and further 
evidence that the services that we have proposed are useful. 

The protection mechanism based on sealing (Section 7.2) was implemented in isolation. The 
prototype was not directly useful because it simulated the necessary cryptographic functions. The 
intent of the effort was to understand how to create a simple set of recursive functions to implement 
the protection mechanism, and to verify our understanding of the algorithm by trying out some 
examples on the prototype implementation. The prototype led to a simplification of our original 
ideas, which is reflected in the functions in Chapter 7. 

Cryptographic hardware was constructed for the Xerox Dolphin processor. The hardware 
implements the national Data Encryption Standard [DES 75]. The hardware was designed to be fast 
enough that the cost of cryptography could be ignored. Encryption and decryption instructions 
were implemented as block transfers that included a pointer to a key in memory. Provisions were 
also made in the hardware for a processor instruction to generate encryption based checksums. In 
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addition, hardware was developed to generate true random bits that could be obtained with a 

processor instruction. 

8.2.2 Full-Scale Implementations 
We expect that a full-scale implementation of the design would adhere closely to the structure 

of the model implementation we have described. The object oriented programming approach we 
adopted simplifies the construction of a system by allowing separate ideas to be considered and 
implemented in isolation, with Open fitting together appropriate classes to provide aggregate 

services. 
The details of different implementations will vary to a considerable degree. For example, there 

are many ways of achieving the effects of remote evaluation, such as specialized protocols [Boggs et 
al. 80], messages sent through pipes [Osterhout et al. 80], or a remote procedure call mechanism 
[Nelson 81]. 

Our read and write architecture for input and output does not preclude other approaches. For 
example, an alternate architecture for file input and output is to consider a file to logically exist in 

the address space of a processor [Corbato et al. 72]. This is known as mapped input and output and 
the read and write operations defined by our system model can be used in support of this idea. If 

the host operating system allows clients to allocate and directly manage portions of a processor's 
address space, then mapped files can be provided without modifying the host operating system. 

The host operating system would notify a client when a page fault occurred in a client managed 

address space, the client would in tum use the facilities we have described to read the appropriate 
page, and then the client would supply the page to the host operating system. Although no current 
operating system provides such facilities, they probably would not be very hard to implement 

8.2 Configuration 

8.2.1 Static Configuration 
Once the implementation of the system has been Completed, the task remains of arranging a set 

of physical and logical components to provide appropriate service. So far we have presented a 

collection of facilities without suggesting how they might be used together. Because the components 
we have described are fundamental, there are many ways that they can be arranged. We introduce 
system configuration with an example. 

Figure 8.1 shows how a basic storage system might be configured. Starting with three volumes, 

we create indirect volumes to allow the volumes to move. The index that keeps track of the 
volumes' locations is the Index-Index. With the resulting three indirect volumes we create a volume 

suite. The volume suite is configured so that it will be available when any two of its component 
volumes are available. With the volume suite we create a reconfigurable volume to allow the 

volume suite to be reconfigured. The Index-Index is used to keep track of the storage that is used 
to implement the reconfigurable volume. The reconfigurable volume can be used for one of two 
purposes: 

1. The entire reconfigurable volume can be reconfigured to use a different storage service. 
For example, the volume suite could be replaced by a single volume, or the volume suite 
could be reconfigured to have five volumes instead of three. 
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118 



CHAPTER 8: PRACTICAL CONSIDERATIONS 

2. Individual files on the reconfigurable volume can be reconfigured to use a different storage 

service. For example. a file that had not been used in a long time could be moved to a 

low-cost storage device. 

This example describes a structure that would be defined by a knowledgeable system 

administrator. The system administrator would configure storage systems to meet the basic 

requirements of his clients. 

Clients can extend a basic storage service for their special needs. Figure 8.2 shows two volumes 

that define protected storage. Files created on (Accounting Volume> will be able to be read by 

users in (Accounting Dept.> or in (Manufacturing> and updated by users in (Accounting Dept.>. 

(Accounting Dept.> and (Manufacturing> can be changed as people join and leave the groups. 

This is accomplished by changing their indirect keys. Only (John Dover> can read and write files 

created on (John Dover's Volume>. 

Note that there is no way to treat the files created on (Accounting Volume> as a group. The 

same is true for files created on (John Dover's Volume>. Thus. it is not possible to change the 

protection of all of the files created on (John Dover's Volume> because there is no way to 

enumerate these files. However. if (John Dover's Volume> had been a reconfigurable protected 

volume. then we could change the protection of all of the files that had been created on it. There 

is an important subtle difference between reconfigurable protected volumes and protected 

reconfigurable volumes. 

In general. configuration is a difficult problem. This fact is hidden from naive clients. as they 

can use storage without knowing how it is con figured. 

A methodology for configuring a system is as follows: 

1. First. carefully understand the needs of the client population. Clients' needs should be 

analyzed in enough detail to understand specific requirements for capacity. reliability. 

availability. performance. security. and flexibility. 

2. Choose a set of hardware components that is likely to satisfy these client requirements. 

3. Organize the raw capability represented by the hardware components into a set of external 

objects (such as volumes) that clients will use. This corresponds to specifying the client 

interface to the storage service without deciding how the storage service is implemented. 

4. Determine how the external objects will be configured. Suite configurations. the location of 

volumes. an indexing structure. and so on must be selected based. in part. on the 

anticipated applications of the system. 

For example. a wide variety of indexing structures can be created. For a very small 

configuration all objects could be indexed by the index-index: for large configurations it is 

likely that several levels of indexes will be common (index B indexes volume C. index A 

indexes index B. the index-index indexes index A). 

5. Review the properties of the resulting system. and compare them with the requirements 

established in Step 1. 

The last four steps are repeated until an acceptable con figuration is chosen. 

It is likely that a program could help in this process. A program could have knowledge of the 
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types of hardware components available. possible component interconnections. and how the facilities 

we have proposed can be used to create desired properties. For example. the program could 

suggest alternative hardware and suite configurations to achieve a required level of availability. 

Furthermore. when a new type of storage service is required it is important to consider how 

existing storage facilities might be utilized. A configuration program could maintain a data base of 

available storage services and their properties and automatically consider how they might be used. 

In summary. capacity can be added to a configuration by adding storage devices. and the 

properties of storage can be improved by using the facilities described by the system model. 

8.2.2 Dynamic Configuration 

The configuration decisions we have just outlined so far have two properties. First. the 

decisions are reviewed infrequently. Second. the decisions are large in the sense that they affect the 

abstractions that clients see and they involve trucks dropping off new equipment at loading docks. 

We will call the problem of making such decisions static configuration. 

It is also possible to take discretionary actions to improve the performance or lower the cost of 

a system. These decisions do not affect the objects that users see and they are essentiaIIy reviewed 

continuously. We will caII the problem of making such decisions dynamic configuration. Dynamic 

configuration includes ideas such as: 

Using write-once storage to store a file and. when the file is opened for update. temporarily 

reconfiguring the file to read-write storage. This allows lower cost storage technologies to 

be used without the knowledge of clients. 

DynamicaIIy creating weak representatives in response to perceived local needs for 

information. 

Dynamically changing suite configurations to match changes in the referencing 

characteristics of clients. 

It is likely that decision analysis [Raiffa 70] can be applied to help formulate strategy for 

dynamic configuration. Decision analysis aIIows strategy to be formulated with incomplete 

information and allows the value of additional information to be judged. 

8.3 Summary 

We argued that the system model is practical. based on prototypes that have been constructed. 

The model implementation has benefited from experience with a number of prototypes. Thus. it is 

likely that full-scale implementations of the system model will be patterned after the model 

implementation. System configuration was observed to have two independent aspects. The first 

was the static arrangement of hardware components and logical objects to provide a useful service. 

The second was the problem of real-time system management which involves strategies for taking 

discretionary actions to improve the performance of the system. 
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In this paper we have considered the problem of information storage in a decentralized 

computer system. The major ideas that we adopted were: 

1. Transactional Storage Transactions that guarantee totality. serial consistency, and external 

consistency were used to simplify parts of the system. As we have pointed out. all of the 

properties of transactions are not always required, but in some instances they provide a 

foundation that simplifies system design to a large degree. 

2. Object Style The system model was constructed using an object oriented programming 

style. This style allowed a diverse set of ideas to be considered and explained separately. 

From these two starting points. we introduced the following major novel ideas: 

1. Naming References were introduced to name objects. Internally. a reference is a typed' 

record. To a client a reference appears to be a variable length byte string. References can 

include such things as location information, protection guards, cryptographic keys, and other 

references. In addition. references can be made indirect to delay their binding to a specific 

object or location. 

2. Location A new location mechanism was presented that hides the location of objects. 

Location was implemented by using indirection to delay the binding of references to object 

storage sites. 

3. Replication A new replication algorithm was introduced that can improve the availability. 

reliability. and performance of objects. It was shown how previous replication algorithms 

were special cases of the new algorithm. and how temporary copies naturally fit into its 

framework. 

4. Reconfiguration A new reconfiguration mechanism was presented that will dynamically 

reorganize objects. Reconfiguration is accomplished by indirection and state transfer. 

5. Cryptographic Sealing A new very flexible low-level protection mechanism based on 

sealing objects with cryptographic techniques was introduced. The mechanism can be used 

for fine grained protection. Assuming perfect cryptography. the mechanism was shown to 

be correct. 

6. Object Protection The low-level protection mechanism was used to create popular 

protection structures. Access control lists, information flow control. capabilities, secure 

communication channels. and revocation were implemented in terms of our new low-level 

protection mechanism. 
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In Chapter 1 we established a set of architectural principles that the system model was to 

observe. Here we briefly review how the system model satisfies each of the twelve principles. 

1. The system we described will always function in a well defined manner. The semantics of 

concurrent access to storage are well defined. and the mechanism provided for object 

location is always guaranteed to find an on-line object. 

2. The storage service we provide is based on the ideas of files and volumes. 

3. Stable storage is resilient to a set of expected failures. Furthermore. it will detect most 

unexpected failures. 

4. References provide unambiguous low-level names that can be used in a variety of ways by 

clients. 

5. Transactions mediate concurrent access to storage in a well defined way. 

6. The assumed environment of the system model is decentralized. and a mechanism is 

provided for locating objects. Clients can also choose to use located references. 

7. There is no inherent limit to the size of the system. Processors and storage devices can be 

added to increase the capacity of the system. and the number of users that it can service. 

8. Suites provide a comprehensive facility for replicating objects to improve their availability. 

reliability. and performance. Weak representatives allow cache copies to be handled in a 

natural way. 

9. The reconfiguration mechanism allows the storage that is used to implement a storage 

system object to be dynamically changed. 

10. A low-level protection mechanism based on cryptographic sealing is provided. and we 

showed that it is secure. This mechanism is used to create popular protection policies. 

11. Volume suites. reconfigurable volumes. and protected volumes allow complex configuration 

structures to be hidden from clients. 

12. A client specifies the volumes that are used to store its information. Thus. a client can 

guarantee its autonomy if it so desires. 

This paper has considered problems that occur in large scale in formation systems. We have 

taken care to formulate our solutions to these problems in a general way. Some of our solutions. 

such as the protection mechanism. will no doubt find use in a variety of applications. 

In the years to come it will be a challenge to design and build large information systems. These 

systems will alter our life style. influence the way that we interact with each other. and even contain 

sensitive information about us. It is our hope that the ideas we presented will be useful to the 

future designers of such systems. 
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EL. the programming language that is used in the paper to describe algorithms. is a simple 

extension of Lisp 1.5. The purpose of this appendix is to fully describe the extensions we have 

made. The reader unfamiliar with Lisp will find the Lisp 1.5 Manual [McCarthy et al. 62] helpful. 

A.I Language Extensions 

To improve the readability of source programs a number of minor syntactic extensions are 

added to M-Expressions. These extensions have been chosen to make EL programs easy to read for 

people that are familiar with contemporary algebraic languages. 

Things that are ignored: 

Any line that starts with two dashes "--" is treated as a comment and is ignored. 

The expression after a colon ":" is ignored. This is so the types of variables can be 

included as comments in the source text. "Any" is used to indicate that a variable may 

contain any expression. 

Transformations: 

Commas are used to separate variables. 

Function definitions can include a formal return variable after a slash "I". F[x/y] +- Z is 

transformed to F[x] +- Prog[[y]: Return[z]]. 

The following constructs are adopted from Interlisp [Teitelman et al. 78]: IF THEN. IF 

THEN ELSE. WHILE DO. UNTIL DO. FOR DO. and DO. As in Interlisp, they are 

transformed into progs. 

As in Interlisp. certain infix operators are transformed to appropriate functions and 

predicates. The infix predicates transformed are: =. (, >. (=, > =. # (not equal). The 

infix functions transformed are +-. +. -. *. I. t. and they must have a space on either side. 

A shorthand for class invocations is provided. x I y[z] is transformed to Apply[x, List['y, z]] 

(see Section A.2). 

Record accesses are transformed to make programs easier to read. The form x.y +- z is 

transformed to Store[x, 'yo z]. The form x.y without a trailing assignment operator is 

transformed to Fetch[x. 'y] (see Section A.3). 

I f a function is evaluated with too many arguments. the extra arguments are ignored. If a 

function is evaluated with too few arguments. NIL is supplied for the missing arguments. 

A.2 Classes 

Seemingly identical requests can require substantially different amounts of processing. Consider 

reading a file. Reading one file might not present any unusual complications. but reading another 
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file might require decryption, logic to determine which copy of the file to actually read, and 

communication to a remote processor. Ideally, a client should not be able to tell the difference 
between the two files. 

The notion of a class allows algorithms to be composed with one other to provide a composite 

service that has a standard interface. A class can use private state and other classes to process the 

requests that it receives. For example, a class that implemented a replicated file might need state to 

keep track of what copies are current, and might use other services to read and write file copies. 

The concept of a class is further elucidated in [Ingalls 78]. 

To request that a class perform a function the class is applied to a request list. The car of the 

request list is the function to be performed, and the remainder of the request list consists of 

arguments to the function. Section A.I introduced the shorthand for invoking a class 

class I operation [argI .. argn] 

which is transformed to 

Apply[c1ass, List['operation, argl. ... , argn]]. 

When a class starts executing it has at hand a request list, and it also has private state variables 

that were declared when the class was created. These variables are implemented by the closure 

mechanism in Lisp 1.5. 

Create-Class[function-map: List superclass: Class / class: Class] 

Create-Class creates a class that can process the functions included in junction-map. 

junction-map is a list of operation names and functions to implement them. For example, if 

Create-Class was applied to List['Read, 'FRead, 'Write, 'FWrite] it would create a class that 

would evaluate FRead when it received a Read request, and FWrite when it received a 

Write request. If an operation is not contained in junction-map then the request is passed to 

superclass, if it has been specified. If superclass is NIL and the operation is not contained 

in junction-map then Error[,NoFunction] is returned. 

Create-Class saves the environment in which it was evaluated. This saved environment is 

restored whenever the class it created is evaluated. This allows a class to maintain private state 

between invocations. Using our previous example, FRead and FWrite would both execute in the 

environment that Create-Class had, and thus could save state and communicate with each other. 

The following distinguished variables are defined when a class is executing: 

self 

superclass 

request 

The current class. 

This class' superclass. 

The current request. 

The class mechanism is implemented by the following functions: 

Create-Class[function-map: List superclass: Class / self: Class] +- Prog[ 0: 
self +- Function[Standard-Class]: 
-- self. superclass, and request will be available to the class 
Retum[self]: 
]: 
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Standard-Class[request: List / result: Any] ... Prog[ 
[f: Function~ operation: Atom~ self: Class]~ 

operation ... car[request]~ 

f ... Listget[f~nction-map, operation]~ 

IF Null[t] THEN [ 
-- No function. See if we have a superclass. 
IF Null[superclass] THEN Return[Error['NoFunction]]~ 

Return[Apply[superclass. request]]~ 

]: 
Return[Apply[f. cdr[request]]]: 
]: 

Listget[x: List y: Atom / result: Any] ... Prog[ 0: 

A.3 Records 

takes a list of the form [atom. val. ... atom. val] 
-- returns the value associated with y 
IF Null[x] THEN Return[NIL]: 
IF car[x] = y THEN Retum[cadr[x]]: 
Return [Listget[cddr[x]. y]]: 
]: 

To make data structures easier to understand and implement the notion of a record is 

introduced. A record instance consists of a set of independent fields that can be read and written 

with Fetch and Store. respectively. A field is just like a variable. and is named by a tag. A record 

instance is made by applying Create to a record type. A record type is created by applying the 

function Record to a list of tags the new record might contain. It is also possible to create a new 

record type by combining two existing record types with Extend. 

Every record is assigned a unique type. Different types of records are used for different things, 

and often it is convenient to be able to determine the type of a record instance. A client can use 

the function Is to test the type of a record instance. 

Record[tagl: Atom. tag2: Atom. ... tagn: Atom / type: Record-Type] 

Record creates a new record with a distinct type. The arguments to Record are discarded. 

Record[/type: Record-Type] ... Prog[ 0 
Return[List[GetUniqueID[]]] 
]: 

Create[type: Record-Type / instance: Record-Instance] 

Create creates an instance of a record. The instance inherits the types of its template. 

Create[type: Record-Type / instance: Record-Instance] ... Prog[ 0 
Return[List[Cons['type. type]]] 
]: 

125 



ApPENDIX A: EXPOSITION LANGUAGE - EL 

Store[instance: Record-Instance. tag: Atom. value: Any] 

Store sets the value of the field named by tag to be value. Store also returns value. 

Store[instance: Record-Instance, tag: Atom. value: Any] ... Prog[ [] 
PutAsscx;[tag. value, instance]: 
Retum[value]: 
]: 

Fetch[instance: Record-Instance. tag: Atom / value: Any] 

Fetch returns the value of the field named by tag in instance. If no value has been stored 

in the field. NIL is returned. 

Fetch[instance: Record-Instance. tag: Atom / value: Any] "'Prog[ [] 
value ... Assoc[tag. instance]: 
IF Null[value] THEN Return[NIL]: 
Retum[ cdr[ val ue]]: 
]: 

Extend[typea: Record-Type. typeb: Record-Type / type: Record-Type] 

Extend I creates a record type that is the union of its input record types. 

Extend[typea. typeb / type] ... Prog[ [] 
Return[Append[typea. typeb]]: 
]: 

Is[x: Record-Instance. y: Record-Type / result: Boolean] 

The type of a record instance can be checked with Is. Is returns T if the the types of yare 

a subset of the types of x. Otherwise it returns NIL. 

To define Is we need an auxiliary function. Subset. Subset[x: List. y: List] returns T if x is 

a subset of y. 

Is[x: Record-Instance. y: Record-Type / result: Boolean] ... Prog[ [] 
IF Null[x] THEN Return[NIL): 
IF Atom[x) THEN Retum[NIL]: 
Return[Subset[y. Fetch[x. 'type]]]: 
]: 

Subset[x: List y: List / result: Boolean] ... Prog[ [] 
IF NUll[x] THEN Return[T]: 
Return[And[Member[Car[x]. y]. Subset[Cdr[x]. y]]]: 
]: 

Add-Type[x: Record-Instance. t: Record-Type / z: Record-Instance] 

Add-Type adds the type t to the record instance specified by x. x is also returned. 

Add-Type[x: Record-Instance. t: Type / z: Record-Instance] ... Prog[ []: 
x.type ... Union[x.type. t]: 
Return[x]: 
]: 
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Remove-Type[x: Record-Instance, t: Record-Type / z: Record-Instance] 

Remove-Type removes the type t from the record instance specified by x. x is also 

returned. 

Remove-Type[x: Record-Instance, t: Type / z: Record-Instance] +- Prog[ []; 
Efface[t, x.type]; 
Return[x); 
]: 

Examples of record usage: 

Experienced +- Record[experience: Integer]: 
Person +- Record[age: Integer]: 
Experienced-Person +- Extend[person. Experienced]: 
joe +- Create[Experienced-Person]: 
-- IsUoe Experienced] = T 
joe. experience +- 10: 
joe.age +- 26: 

A.4 External Representation 

Encode[object: Any / encoded: Byte-Array] 

Encode converts an object into an array of bytes. and is similar to the Lisp function Print. 

An encoded object may be preserved outside of EL for any length of time. None of the 

data structures in the paper are circular. and thus we do not require that Encode work 

properly on circular structures. 

Decode[encoded: Byte-Array / object: Any] 

Decode converts an encoded object back into a forin that can be directly manipulated; 

Decode is similar to the Lisp function Read. Decode[Encode[x]] is equivalent to Copy[x]. 

A.5 Exception Handling 

Error-Type +- Record[problem: Any]: 

Error[problem: Any] 

When an exceptional condition occurs in an EL function. the function returns what 

amounts to an error code. Error creates an instance of Error-Type. The argument to Error 

is used to set the new instance's problem field so different types of errors can be 

distinguished. Is[x. Error-Type] will return T if x is an error instance. 

Error[problem / instance] +- [ []: 

instance +- Create[Error-Type]: 
instance.problem +- problem: 
Return[instance]: 
]: 
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A.6 Processes 

Fork[form: Any I handle: Process-Handle] 

Fork starts another process that evaluates the supplied form in the current environment. 

Fork returns a process handle that can be used with Join and Stop. 

Join[handle: Process-Handle I result: Any] 

Join returns the result of the evaluation carried out by the process specified by handle. If 

the process specified by handle has not completed its assigned evaluation Join will pause 

until the result is available. If no copies of a process' handle are kept then the result of the 

process' evaluation will be discarded. 

Stop[handle: Process-Handle] 

Stop causes the process specified by handle to be stopped and destroyed. 

A.7 Synchronization 

Create-Lock[/lock: Lock] 

Create-Lock creates a lock. 

Critical[lock: Lock. form: Any I result: Any] 

Critical locks the specified lock. evaluates form. and then unlocks the specified lock. 

Critical returns the result of the evaluation of form. 

Create-Condition-Variable[time-out: Time I cv: Condition-Variable] 

Create-Condition-Variable creates a condition variable. If time-out is not NIL. then it is 

the maximum time that Wait will pause on cv. 

Wait{cv: Condition-Variable] 

Wait pauses until a Broadcast on the specified condition variable occurs. or the time-out 

expires. 

Broadcast{cv: Condition-Variable] 

Broadcast wakes up all processes waiting on cv. 

A.8 Sets 

Set-Create[/set: Set]: 

Set-Create creates a new volatile set. A volatile set is a set that is destroyed when there are 

no more references to it or the machine it is stored on fails. 

Set-Insert[set: Set key: Any. value: Any] 

Inserts or replaces a reference to value in set indexed by key, 
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Set-Lookup[set: Set. key: Any / value: Any] 

Returns the value indexed by key in set. or NIL if there is no such key. 

Set-Delete[set: Set. key: Any] 

Deletes the entry indexed by key in set. 

A.9 Byte Arrays 

Byte-Array[length: Integer I array: Byte-Array] 

The Byte-Array function creates an array of bytes that has a specified length. A byte is an 

eight bit integer. All of the elements of the array are initially set to zero. 

Length[array: Byte-Array / length: Integer] 

Length returns the number of of bytes in an array. 

Elt[array: Byte-Array. element: Integer / value: Byte] 

Elt returns the value of the specified element of the array. 

SElt[array: Byte-Array. element: Integer. value: Byte] 

SElt sets the value of the specified array element. 

A.IO Miscellaneous 

Intersection[lista: List. listb: List / result: List] 

Intersection returns the list of elements that are in Usta and Ustb. 

Nth[l: List. n: Integer / element: Any] 

Nth returns the nth element of list 1. 

Pair[lista: List. listb: List '/ result: List] 

If !ista is [a b c] and listb is [1 2 3]. the result of Pair[lista. listb] is [[a 1] [b 2] [c 3]]. 

Union[lista: List. listb: List / result: List] 

Union returns the list of elements that are either in Usta or Ustb. 
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This appendix is a concise summary of the operations that are implemented by the storage 

system. The reader is referred to the text for full descriptions of these operations. and for details on 

the protection mechanism. 

The operations we introduced to create references that are derived from other references are: 

Create-Capability[ref: Reference. pI: List[Key] / cref: Capability] 

Creates a capability for ref with privileges pI. 

Create-Choice[choices: List[Reference] / cr: Choice] 

Creates a reference whose referent can be anyone of the elements in choices. 

Create-Encrypted[ref: Reference. k: Key / eref: Encrypted] 

Encrypts an object with k. 

Create-Index[storage: File / iref: Index] 

Creates an index. 

Create-Indirect[ref: Reference. index: Index. tc: TC / iref: Indirect] 

Binds iref to ref. but this binding can be changed with ChangeReference. 

Create-Located[ref: Reference. loc: Location / lref: Located] 

When Iref is opened. control will be transferred to loe and ref will be opened. 

Create-Protected-Volume[ref: Reference. tl: List[Type]. kl: List[Key] / gref: Guarded] 

Files created on a protected volume have protection controls set according to tl and gl. 

Create-Reconfigurable[ref: Reference. index: Index. tc: TC / IT: Reconfigurable] 

Creates a reconfigurable object.. whose. first implementor is ref. 

Create-Revocable[ref: Reference. pI: List[Key]. key-list: List[Key]. ck: Key. i: Index. sp: 
Secure-Processor. tc: TC / ITef: Revocable] 

Creates a capability that may be revoked. 

Create-Suite[name: UniqueID. r: Integer. w: Integer. rep: List[Reference]. votes: 
List[Reference] / sref: Suite] 

Creates a suite with the specified configuration. 

Detailed below are the operations that are supported by each type of object. The bold face 

entries correspond to object types. The list begins with the operations that are supported by all 

objects. and then describes specialized operations. 

Class 

CloseD 

Deactivates a class. 

CopyReference[counted: Boolean / copy: Reference] 

Copies a reference. 
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GetIO[/ id: UniqueIO] 

Returns the unique identifier of the object 

GetTransactionClass[1 tc: TC] 

Returns the transaction class associated with this open object. 

OestroyReference[/ destroyed: Boolean] 

Destroys this reference and returns T if its reference count went to zero. 

Indirect 

ChangeReference[new-ref: Reference] 

Changes the indirect reference to point at new-ref. 

Processor, Secure Processor 

Eval[fonn: Any I result: Any] 

Evaluates form at the processor serviced by this class. 

Coordinator 

Create-Transaction[1 tref: Transaction] 

Creates a transaction. 

Transaction 

Abort{] 

Aborts the transaction. 

Commit(] 

Commits the transaction. 

GetStatus[/state: Atom] 

Returns the current state of the transaction. 

AddParticipant[commit: Global-Function. abort: Global-Function lid: UniqueIO] 

Adds a participant to transaction processing. 

OeleteParticipant[id: U niq ue 10] 

Deletes a participant from transaction processing. 

Information Holding Object 

IsImmutable[/ immutable: Boolean] 

Returns T if the object is immutable. 

SetlmmutableD 

Makes an object immutable. 

GetVersion[1 version: Integer] 

Returns the objecfs version number. 
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Copy[from: Reference] 

Overwrites the object with the contents of from. 

Volume, Volume Suite 

Create-File[name: UniqueID, exists: Boolean / ref: File] 

Creates a new file. 

File, File Suite 

Read[startPage: Integer. pages: Integer / data: Byte-Array] 

Reads from a file starting at startPage the number of pages specified by pages. 

Write[startPage: Integer. pages: Integer. data: Byte-Array] 

Updates a file starting at startPage by number of pages specified by pages. 

GetSize[l pageCount: Integer] 

Returns the number of pages in the file. 

SetSize[pageCount: Integer] 

Sets the number of pages in the file. 

Index, Index Suite 

Enumerate[Iast: Entry / next: Entry] 

Enumerates the contents of an index. 

Read[entry-name: Byte-Array / value: Byte-Array] 

Reads the value of an index entry. 

Write[entry-name: Byte-Array. value: Byte-Array] 

Updates the value of an index entry. 
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Appendix C: Open 

The function Open contains the only centralized knowledge of the types of objects that are 
supported by the system. Thus. to add a new type of object to the system it is only necessary to 
add an appropriate line of code to Open. 

The function Open-Local is defined to provide classes to service coordinators. files. indexes. 
volumes. or transactions that reside on the local processor. 

I f the location of a file or an index is not known. we look for it on the local processor. I f it is 

not there. its location is computed. These two things could occur in parallel. 
Although it is not shown in the code. Open could detect when an object was opened more than 

once with identical parameters and return the same class. In certain cases. such as opening a 
processor more than once. the performance gain would be significant 

Open[ref: Reference. tc: TC. ring: List[Key]. guards: List[Key] / class: Class] +- Prog[ It 
-- if passed NIL return NIL 
IF Null[ref) THEN Return[NIL]: 

-- Located. Capability. and Indirect have the highest precedence 
(because they alter where a request is processed. the keys 
it is processed with. and the referent that is used). 

IF Is[ref. Located] THEN Return[Open-Located[ref. tc. ring. guards]]: 
IF Is[ref. Capability] THEN Return[Open-Capability[ref. tc. ring. guards]]: 
IF Is[ref. Indirect] THEN Return[Open-Indirect[ref. tc. ring. guards]]: 

-- The following can occur in any order. 
IF Is[ref. Choice] THEN Return[Open-Choice[ref. tc. ring, guards]]: 
IF Is[ref. Encrypted] THEN Return[Open-Encrypted[ref. tc. ring, guards]]: 
IF Is[ref. Protected] THEN Return[Open-Protected[ref. tc. ring. guards]]: 
IF Is[ref. Processor] THEN Return[Open-Processor[ref, NIL NIL guards]]: 
IF Is[ref. Reconfigurable] THEN Return[Open-Reconfigurable[ref. tc. ring, guards]]; 
IF Is[ref. Secure-Door] THEN Return[Open-Secure-Door[ref, NIL NIL guards]]: 
IF Is[ref. Secure-Processor] THEN Return[Open-Secure-Processor[ref. NIL, NIL guards]]: 
IF Is[ref. Suite] THEN Return[Open-Suite[ref. tc. ring. guards]]; 

-- We don't know where. the object is. Try this processor. 
class +- Open-Local[ref. tc. ring. guards]: 
-- if success. return to client 
IF class # ErrorrNotFound] THEN Return[class]: 
-- Find object 
IF Is[ref. File] THEN Return[Open-File[ref. tc. ring. guards]]: 
IF Is[ref. Index] THEN Return[Open-Index[ref. tc. ring. guards]]: 
-- Not a File or an Index (should not occur) 
Return[ErrorrN otF ound]]: 
]: 
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