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Preface 

This report describes a programming language called Euclid. intended for the expression of -system 
programs which are to be verified. Euclid draws heavily on Pascal for its structure and many of its 
features. In order to reflect this relationship as clearly as possible, the Euclid report has been writ­
ten as a heavily edited version of the revised Pascal rep on. 

Proof rules for Euclid appear in a separate report [London et al. 1978]. An informal discussion of 
the language design appears in [Popek et. al. 1977]. Euclid has been implemented (with some 
omissions) by the Computer Systems Research Group, University of Toronto. Toronto, Canada, and 
I.P. Sharp Associates, Toronto, Canada [Holt et. al. 1978, Holt and Worunan 1979, Holt el al. 
1980]. The translator is a 70,000 line Euclid program, the largest such program now in existence 
[Wortman and Cordy 1981]. 

This is the fourth version of the Euclid repon; earlier versions appeared in May 1976, August 1976, 
and February 1977 (the latter as SIGPLAN Notices 12, 2, Feb. 1977). 
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1. Introduction 

"There is no royal road to geometry. " 
Proclus, Comment on Euclid, Prol. G. 20. 

The programming language Euclid has been designed to facilitate the construction of verifiable sys­
tem programs. By a verifiable program we mean one written in such a way that existing fonnal tech­
niques for proving certain properties of programs can be readily applied; the proofs might be either 
manual or automatic, and we believe that similar considerations apply in both cases. By system we 
mean that the pI:ograms of interest are part of the basic software of the machine on which they run; 
such a program might be an operating system kernel, the core of a data base management system, 
or a compiler. 

An important consequence of this goal is that Euclid is not intended to be a general-purpose 
programming language. Furthermore, its design does not specifically address the problems of con­
structing very large programs; we believe most of the programs written in Euclid will be modest in 
size. While there is some experience suggesting that verifiability supports other desired goals, we as­
sume the user is willing, if necessary, to obtain verifiability by giving up some run-time efficiency, 
and by tolerating some inconvenience in the writing of his programs. 

We see Euclid as a (perhaps somewhat eccentric) advance along one of the main lines of current 
programming language development: transferring more and more of the work of producing a cor­
rect program, and verifying its correctness, from the programmer and the verifier (human or 
mechanical) to the language and its compiler. 

The main changes relative to Pascal take the form of restrictions, which allow stronger statements 
about the properties of the program to be made from the rather superficial, but quite reliable, 
analysis that the compiler can perform. In some cases new constructions have been introduced, 
whose meaning can be explained by expanding them in terms of existing Pascal constructions. The 
reason for this is that the expansion would be forbidden by the newly introduced restrictions, 
whereas the new construction is itself sufficiently restrictive in a different way. Major extensions to 
Pascal are prototypes, machine dependent features, counted storage, and modules. 

The main differences between Euclid and Pascal are summarized in the following list: 

Visibility: Euclid provides explicit control over the visibility of identifiers, by requiring the 
program to list all the identifiers imported into a routine or module, or exported from a 
module. 

Variables: The language guarantees that two identifiers in the same scope can never refer to 
the same or overlapping variables. There is a uniform mechanism for binding an identifier 
to a variable in a procedure call, on block entry (replacing the Pascal with statement), or in 
a variant record discrimin'ation. The variables referenced or modified by a routine (Le., 
procedure or function) must be known in every scope from which the routine is called. 

Pointers: This idea is extended to pointers, by allowing dynamic variables to be assigned to 
collections, and guaranteeing that two pointers into different collections can never refer to 
the same variable. 

Slorage allocation: The program can control the allocation of storage for dynamic variables 
explicitly, in a way that very narrowly confines tlle opportunity for making a type error. It 
is also possible to declare that some 'dynamic variables should be reference-counted, and 
automatically deallocated when no pointers to them remain. 

Types: Types have been generalized to prototypes, which have formal parameters, so that ar­
rays can have bounds that are fixed only when they are created, and variant records can be 
handled in a type-safe manner. Records are generalized to include constant components. 

Afodules: A new kind of record, called a module, can contain routine and type components, 
and thus provides a facility for modularization. The module can include initialization and 
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finalization statements that are executed whenever a module variable is created or de­
stroyed. 

Constants: Euclid defines a constant to be a literal, an identifier whose value is fIxed 
throughout the scope in which it is declared, or an expression whose operands are constant 

For statement: A generator can be declared as a module type, and used in a for statement 
to enumerate a sequence of values. 

Loopholes: features of the underlying machine can be accessed, and the type-checking can 
be overridden, in a controlled way. Except for the explicit loopholes, Euclid is designed to 
be type-safe. 

Assertions: the syntax allows assertions to be supplied at convenient points. 

Deletions: A number of Pascal features have been omitted from Euclid: input-output, reals, 
multi-dimensional arrays, labels and gotos, and functions and procedures as parameters. 

The only new features in the list that can make it hard to con vert a Euclid program into a legal 
Pascal program by straightforward rewriting are prototypes, storage allocation, fmalization, and some 
of the loopholes. 

There are a number of other considerations that influenced the design of Euclid: 

It was supposed to be based on current knowledge of programming languages and 
compilers; concepts that were not fairly well understood, and features whose 
implementation was unclear. were omitted. Implementation experience has shown that 
certain features escaped this constraint: modules, type equivalence, legality assenions. 

Although program portability was not a major goal of the language design, it is necessary to 
have compilers that generate code for a number of different machines, including mini-com­
puters. 

The object code must be reasonably efficient, and the language must not require a highly 
optimizing compiler to achieve an acceptable level of efficiency in the object program. The 
Toronto compiler in fact achieves object program efficiency comparable to that of the C 
compiler for straightforward programs. 

Since the total size of each program was to be modest, separate compilation was not 
required (although it was certainly not ruled out). 

The required run-time support must be minimal, since it presents a serious problem for 
verification. 
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2. Summary of the language 

"Be sure a/it: give me the ocular proot" 
Othello III, iii, 361. 

This section contains a summary of Euclid. The infonnation here is intended to be consistent with 
the remainder of the report, but in case of conflict the body of the report (sections 3-12) governs. 
Many details are omitted here, and some general statements are made without the qualifications con-
tained in the body of the report. . 

An algorithm or computer program consists of two essential parts, a description of actions that are 
to be perfonned, and a description of the data that are manipulated by these actions. Actions are 
described by statements, and data are described by type definitions. A data type defines both a set of 
values and the actions that may be performed on elements of that set 

The data are represented by values. A value may be constant, or it may be the value of a variable. 
A value occurring in a statem~nt may be represented by a literal constant, an identifier which has 
been declared to be constant, an identifier which has been declared as a variable, or an expression 
containing values. Every identifier occurring in the program must be introduced by a declaration. A 
constant or variable declaration associates with an identifier a data type, and either a value or a vari­
able. 

In general, a definition specifies a fixed value, type, or routine, and a declaration introduces an iden­
tifier and associates some properties with it A data type may either be directly described in the con­
stant or variable declaration, or it may be referenced by a type identifier, in which case this iden­
tifier must be introduced by an explicit type declaration. 

A constant declaration associates an identifier with a value; the association cannot be changed 
within the scope of the declaration. If the value can be determined at compile-time, the constant is 
said to be manifest; the expression defining a manifest constant must contain only literal constants, 
other manifest constants, and certain built-in operations. 

An enumerated type definition indicates an ordered set of values, i.e., introduces identifiers standing 
for each value in the set. TIle simple data types are the enumerated types, the subrange types, and 
the five standard simple types: Boolean, Integer, Char, StorageUnit and AddressType. For the first 
three, there is a way of writing literal constants of that type: true and false for Boolean, numbers 
for Integers, and quotations for Chars. Numbers and quotations are syntactically distinct from iden­
tifiers. The set of values of type Char is the character set available in a particular implementation. 
TIle type Storage Unit has values which occupy the minimum unit in which storage allocation is 
done: this may of course differ from one implementation to another. Since no operations are 
defined on StorageUnit values, nothing more need be said about them. The type AddressType has 
values that are machine addresses. 

A type may also be defined as a subrange of a simple type by indicating the smallest and the largest 
value of the subrange. 

Structured types are defined by describing the types of their components, and indicating a structur­
ing method. The various structuring methods differ in the selection mechanism serving to select the 
components of a variable of the structured type. In Euclid, there are five basic structuring methods 
available: array, record, module, set, and collection. 

In an array structure, all components are of the same type. A component is selected by an array 
selector, or computable index. The index type, which must be simple, is indicated in the array type 
declaration. It is usually a progranlffier-defined enumerated type, or a subrange of the type Integer. 
Given a value of the index type, an array selector yields a variable or constant of the component 
type. Every array structure can therefore be regarded as a mapping of the index type into the com­
ponent type. 
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In a record structure, the components (called fields) are not necessarily of the same type. In order 
that the type of a selected component be evident from the program text (without executing the 
program), a record selector is not a computable value, but instead is an identifier uniquely denoting 
the component to be selected. These field identifiers are declared in the record type definition. 
Records may include constant as well as variable components; manifest constant components, of 
course, do not need to be stored in each record value. 

A record type may be specified as consisting of several variants. This· implies that different record 
values, although declared to be of the same type, may assume structures which differ in a certain 
manner. The difference may consist of a different number and different types of components. The 
variant which is assumed by a record value is indicated by a constant of some simple type, called 
the tag. 

A module structure is much like a record, but may include routines and types as components. In 
this way, the operations that are defined on a data structure can be conveniently packaged with the 
structure. Module components cannot be accessed outside the module body unless they are ex­
plicitly exported. Thus, in a properly written program, it is evident from the lexical structure how 
the state of a module can be altered. 

A set structure defines the set of values that is the powerset of its base type, i.e., the set of all sub­
sets of values of the base type. The base type must be a simple type. 

Variables declared in explicit declarations are called stalic. The declaration associates an identifier 
with the variable, and the identifier is used to refer to the variable. The language guarantees that 
two identifiers that are known in the same scope cannot refer to the same variable, or to overlap­
ping variables. Thus. an assignment to an identifier cannot change the value of any other identifier 
known in the same scope. 

In contrast, variables may also be generated by executable statements. Such a dynamic generation 
yields a pointer value (a substitute for an explicit identifier) that subsequently serves to refer to the 
variable. This pointer may be assigned to other variables, namely variables of type pointer. Each 
pointer variable may assume values pointing to variables in a single collection C, all of whose mem­
bers are of the same type, or may assume the value C.nil, which points to no variable. Because 
pointer variables may also occur as components of structured variables which are themselves dynami­
cally generated. the use of pointers permits the representation of finite graphs in full generality. Al­
though the language cannot guarantee in general that two pointer variables do not refer to the same 
variable, it can make this guarantee for two pointers in different collections. 

A zone can be associated with each collection to provide procedures for allocating and de allocating 
the storage required by variables in that collection; if the zone is omitted, a standard system zone is 
used. The program may free a dynamic variable explicitly, in which case the program is responsible 
for ensuring that no other pointers ·to the freed variable remain. Alternatively, the collection may be 
reference-counted, in which case each variable is automatically freed when no pointers to it remain. 
TIle main advantage of reference-counted variables, as compared with explicit deallocation~ is that 
the correctness of the deallocation does not have to be verified. 

TI1foughout this report, the word variable means a container that can hold a value of a specific 
type. A variable mayor may not be associated with an identifier. A constant, by contras~ is simply 
a value of a specific type. The fundamental difference is that assignment to a variable is possible. 

A prototype may be declared by a type declaration with fonnal parameters; such a prototype repre­
sents a set of types, one of which is specified each time the prototype is referenced and actual 
parameters are supplied for the formals. 

Two types are the same if their definitions are identical after any type identifiers that are not 0-

paque have been replaced by their definitions, and any actual parameters and any constant iden­
tifiers declared outside the type have been replaced by their values. A type identifier is opaque if it 
is a module type, or is exported from a module. . 
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The most fundamental statement is the assignment statement. It specifies that a newly computed 
value be assigned to a variable (or a component of a variable). The value is obtained by evaluating 
an expression. Expressions consist of variables, constants, operators and functions operating on the 
denoted quantities and producing new values. Variables, constants, and functions either are declared 
in the program or are standard entities. Euclid defines a fixed set of operators, each of which can be 
regarded as describing a mapping from the operand types into the result type. The set of operators 
is subdivided into groups of: 

1. arithmetic operators of addition, subtraction, sign inversion, multiplication, division, and 
computing the remainder (mod). 

2. Boolean operators of negation (not), conjunction (and), disjunction (or) and implication 
(-». 

3. set operators of union, intersection, set difference, and symmetric difference (xor). 

4. relational operators of equality, inequality, ordering, set membership and set inclusion. The 
results of relational operations are of type Boolean. 

The procedure statement causes the execution of the designated procedure (see below). 

There are two kinds of escape statements: an exit statement is used to terminate a loop, and a return 
statement to terminate a routine. An escape statement qualified by a when clause causes termination 
only if a Boolean expression is true. 

Assignment procedure, and escape statements are the components or building blocks of structured 
statements, which specify sequential, selective, or repeated execution of their components. Sequential 
execution of statements is specified by the compound statement; conditional or selective execution 
by the if statement and the case statement; and repeated execution by the loop statement and the for 
statement. 

The if statement serves to make the execution of a statement dependent on the value of a Boolean 
expression, and the case statement allows for the selection among many statements according to the 
value of a selector. The discriminating case statement provides a safe way of discriminating the cur­
rent variant of a variant record. The for statement is used when a bound on the number of itera­
tions is known beforehand, and the loop statement is used otherwise. 

A block can be used to associate declarations with statements. The identifiers thus declared have sig­
nificance only within the block. Hence, the block is called the scope of these identifiers, and they 
are said to be local to the block. Since a block may appear as a statement, scopes may be nested. 
An if, case, for or loop statement, or a module type declaration, also defines a scope in a similar 
way. 

A block can be named by an identifier and be referenced through that identifier. The block is then 
called a procedure, and its declaration a procedure declaration. However, an identifier that is not lo­
cal to a given procedure body is accessible in that body only if it is accessible in the immediately 
enclosing scope, and 

it is pervasive in some enclosing scope or 

it is explicitly imported into the given procedure body. 

A procedure has a fixed number of parameters, each of which is denoted within the procedure by 
an identifier called the Jonnal parameter, which is local to the procedure body. Upon an activation 
of the procedure, an actual quantity has to be indicated for each panllneter which can be referenced 
from \\rithin the procedure through the formal parameter. This quantity is called the actual 
parameter. There are two kinds of parameters: constant parameters and variable parameters; rou­
tine and type parameters are not allowed. In the first case, the actual parameter is an expression 
that is evaluated once. The formal parameter represents a local constant whose value is the result of 
this evaluation. In the case of a variable parameter, the actual parameter is a variable and the for­
mal parameter is bound to this variable. Any indices or I10inters in the actual parameter expression 
are evaluated before execution of the procedure. 
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Functions are declared analogously to procedures: procedures and functions are collectively called 
routines. The main difference lies in the fact that a function yields a result, which may be of any as­
signable type and must be specified in the function declaration. Functions may therefore be used as 
constituents of expressions. Variable formal parameters and imported variables are not permitted 
within function declarations; as a consequence, functions cannot have side effects. 

Since Euclid is intended for the writing of programs that are to be verified (either mechanically or 
by hand), there are a number of explicit interactions between the language and the verifier, in addi­
tion to the many aspects of the language that have been motivated by the desire to ease verification. 
These explicit interactions fall into two main categories: 

embedding of assertions in the program: the special symbols assert, invariant, pre and post 
introduce assertions. These may be written as comments that are ignored by the compiler. 
Presumably they will be used by the verifier, which can take advantage of their relationship 
to the structure of the program. Alternatively, an assertion may be written as a Boolean ex­
pression, which is compiled into a run-time check if the checked option is enabled. 

compiler-generated assertions: in cases where the compiler needs to be able to assume that 
some condition holds,· but is unable to deduce that it does, the compiler may generate a 
legality assertion (in a new listing of the program) for the verifier, and then proceed as 
though confident of its truth. The legality of the program will then depend on the validity 
of the compiler-generated assertion. Each case in which such an assenion may be generated 
is spelled out in this report. 



8 ~OTATIO~, TER..\lI~OLOGY, A~D VOCABCLARY CHAP. 3 

3. Notation, terminology, and vocabulary 

"The best words in the best order. " 
Coleridge. 

The syntax is described in a modification of Backus-Naur form, in which syntactic constructs are 
denoted by English words or phrases, not enclosed in any special marks. These words also suggest 
the nature or meaning of the construct, and are used in the accompanying description of semantics. 
Basic symbols of the language are written in boldface or enclosed in quote marks; e.g., begin and 
";". Possible repetition of a construct is indicated by enclosing the construct within metabrackets { 
and } . Possible omission of a construct is indicated by enclosing the construct within metabrackets 
[ and] . The word "empty" denotes the null sequence of symbols. 

The grammar defining the syntax of Euclid is distributed throughout this report; for convenient ref­
erence, it has also been collected in Appendix A. 

3.1 Vocabulary 

The primitive vocabulary of Euclid consists of basic symbols classified into letters, digits, and special 
symbols. Note that this vocabulary is not the character set. The character set is implementation 
dependent, and each implementation must define, in its character set, distinct representations for all 
the basic symbols. Suggestions for doing this in some common cases may be found in section 13. 

Each implementation must specify a single break character that can be used within an identifier. 
Two identifiers are similar if they are composed of the same sequence of characters, except for 
changes from upper to lower case letters or vice versa, and for the presence or absence of break 
characters. The intended use of the break character is to visually separate an identifier into its com­
ponent parts. In an implementation that can print upper and lower case letters, a transition from 
lower to upper case can also be used for this separation. It is recommended that this convention be 
used when possible, in preference to the explicit break character, for implementations that have 
lower case letters; obviously it cannot be used if the entire identifier is upper case. Thus, an identi­
fier might be represented as 

alphaBeta using 96-character ASCII, with capitalization as the break. 
ALPHA BETA sing the IBM PL/I character set, with as the break. 
ALPHA \BETA using the Model 33 Teletype character set, with \ as the break. 

All of these identifiers would be similar to the identifier ALPHABET A. With these conventions, it 
is possible to convert from one representation to another in a reasonable way (see 13.). 

Each time an identifier is used, it must be written in exactly the same way (i.e., with the same capi­
talization and use of break characters) as it was written when it was declared. However, another 
identifier that is similar according to the above rules may not be declared in any scope in which the 
first identifier is known (see 7.3). 

The following capitalization convention is used in this report: type, routine and module identifiers 
begin with a capital letter; other identifiers begin with a small letter. This convention is not part of 
the definition of Euclid, however . 

letter 

octal Digit 
digit 
hexDigit 
breakChar 

.. - "A'" "B" , "C"'''D'' , "E" , "F" , "G" I"H" , "I"'''J'' , "K" ,'''L'' , "M'" 
"N" , "0" ,"P" , "Q" , "R" I "S" , "T" I "u" , "V" , "W" I "X" , "Y" , "Z"I 
"a" , "b" , "c" , "d" , "e" I "f' I "g" , "h" I "i" I "j" , "k" , "I" , "m"I"n" I 
"0" '''p'' '''q'' I tlr" I"s" , "t" '''u'' , "v" I "w" I "x" l"y"I"z" 

.. - "0" I "1" '''2'' , "3" '''4'' '''5'' '''6''1 "1" 

.. - octal Digit , "8" , "9" 

.. - digit' "A" , "B'" "C" , "D" , "E" I "F" 
:: = <some implementation-dependent character not a letter or digit> 
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specialSymbol 

wordSymbol 

The construct 

VOCABCLARY 

::= "+", ,,_It , ... " '"=''' .. < .. ,"}" '''<='' '''}='' '''-}'''''(''I tI) .. I .... " I 
"{"'''}'' I": =" '''.'' , "," ,";",":" ,'.," '"t''''' =}"'''$'' '" #'" 
wordSymbol 
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:: = abstraction' aligned I and I any' array I assert' at I begin I bind I bits I 
bound, case' checkable' checked' code I collection I const I con\'erter I 
counted I decreasing I default I dependent I diy I else' elseif I end I exit I 
exports I finally I for' forward I from' function I if I imports' in I include I 
initiall~' I inline , in\'ariant I loop I machine I mod I module I not I of I or I 
othen\-ise , packed I parameter I penash-e I post I pre I procedure I read only I 
record I return I returns I set I then , thus I to I type I unknown I \'ar I when I 
with I xor 

"{" <any sequence of symbols not containing "}"} "}" 

may be inserted between any two identifiers, literal constants (see 4.), or special symbols. It is called 
a comment, and may be removed from the program text without· altering its meaning. The symbols 
"{" and "}" do not occur otherwise in the language. 

Any verification system that accepts Euclid programs as input may define a convention for dis­
tinguishing comments that have special meaning for the verifier. One reasonable convention is that 
every comment in which a certain character appears as the first character after the { is intended for 
the verifier. 

The word routine is used as a synonym for the phrase procedure or jUnction. The word note is used 
to introduce material that adds no new infonnation, but is intended simply to help the reader under­
stand the implications of rules that have already been stated. The definition of Euclid is not affected 
by any such notes (although its comprehensibility may be). The words thus and hence playa similar 
role. 

3.2 Legality assertions 

Throughout this report, various restrictions are placed on legal Euclid programs. Many of these 
restrictions cannot be checked syntactically, and in some cases they involve dynamic conditions that 
are difficult (or impossible) to check statically. Nevertheless, programs that violate them are not 
considered to be meaningful Euclid programs. It is the responsibility of the compiler to verify as 
many of these properties as it can, and to produce Boolean expressions called legality assertions for 
those it cannot. Thus, a program is a legal Euclid program, with well-defined semantics, only if it 
can be verified that no execution leads to falsification of any legality assertion. Note that legality 
assertions are produced only for conditions specified in this report 

If checking is enabled for a scope (Le., checked is specified and not overridden by an inner not 
checked: see 6.2.3 and 9.2.1), all legality assertions in the block, and all programmer-supplied asser­
tions that are Boolean expressions, are compiled into run-time checks, as an aid in detecting illegal 
programs before the verification process is complete. See 6.2.6 for the use of a collection's Free 
procedure in a checked scope. 

3.3 Lexical structure 

Tbe text of a program is built up out of declarations and statements, collectively called units, accord­
ing to the syntax specified below. The syntax is constructed in such a way that a unit is always fol­
lowed by a semicolon, but in all cases the semicolon is optional. The recommended style is to omit 
a semicolon at the end of a line. 

Commas are used as separators in enumerated types, case label lists, element lists, and parameter 
lists, and within declarations in identifier lists, bind lists, and import! export lists. 
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There are several kinds of brackets that are used to group declarations and statements for various 
purposes. The following list gives the unique closing bracket for each opening bracket 

if ... end if 
loop ... end loop 
case ... end case 
= > ... end caseLabel 

begin ... end, or end routineIdentifier whenever the block is the body of a routine declaration 
code ... end routine Identifier 

record ... end record, or end typeIdentifier whenever the record definition is the declaration of a 
type identifier 

module ... end module, or end typeldentifier whenever the module definition is the declaration of 
a type identifier 
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4. Identifiers, numbers and strings 

"And twenty more such names as these 
Which never were nor no man ever saw. " 

The Taming of the Shrew, Induction, i~ 95. 
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Identifiers serve to denote constants, variables, types, prototypes, and routines. Their association 
must be unique within their scope of validity, i.e., within the scope in which they are declared (see 
6., 7.3). 

identifier :: = letter { letterOrDigit } 
Ie tterOrDigit : : = letter I digit I breakChar 

Throughout the report, non-terminals of the form xIdentifier are syntactically equivalent to identi­
fier; the qualifying x reflects the intended class of associations. 

The usual decimal notation is used for numbers, which are the literal constants of the data type 
Integer (see 6.1.2.). Numbers may also be written in octal or hexadecimal notation. Note that un­
signed numbers are always non-negative; a negative manifest constant can be written as an expres­
sion, e.g., -14 or (-32767-1) or SignedInt.first 

unsignedNumber .. - digit { digit} I 

Examples: 

1 100 

octalDigit { octalDigit} "#8" I 
digit { hexDigit} " # 16" 

717#8 OCAD1#16 123#16 

Sequences of characters enclosed by quote marks are called literal string constants. They are the 
literal constants of the standard type String (see 6.2.1). A character code, whether or not it is in the 
printing character set, can also be represented in a literal string constant as follows: 

$tidd, where each d stands for a decimal digit. represents the character code with the 
decimal representation ddd. Note: Char.Ord($$ddd) = ddd (see 6.1.2). 

For convenience, $S, $T, $N, $$, $' represent space, tab, newline, $, and' respectively. The charac­
ters $, " tab and newline may only be represented by an extension. The $ddd construction can be 
used only in a machine-dependent module (see 6.2.3). 

literal String :: = "''' { extendedCharacter } ,,,It 
extendedCharacter :: = character I "$" extension 
extension .. - digit digit digit I "s" I "T" I "N" I "$" I "'" 

Examples: 

'A' ';' , $' , 'Here comes a null: $000, and there it went' 
'Euclid' 'THIS IS A STRING' 'This$Sis$Sa$Sstring' 

A single character preceded by a dollar sign is a literal constant of the standard type Char (see 
6.1.2). The $ convention may also be used in these constants. 

literalChar .. - "$" extendedCharaeter 

Exan1ples: 

$a $$S {space character} $$000 {the NUL character} $" $$$ 
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5. Manifest constants 

A manifest constant is 

a literal constant; 

"One here will constant be, 
Come wind, come weather. " 

Pilgrim's Progress 

CHAP. 5 

an identifier declared as a constant with a defining expression that is a manifest constant; 

a field designator whose field identifier is a manifest constant (see 7.2.2), or one of the de­
signators listed in the next paragraph; . 

an expression whose operands are all manifest constants, and which does not involve any 
functions, except the standard ones defined in this report. 

If T is an enumerated type, or a subrange type with manifest bounds, then T.first and T.last are 
manifest. A type or prototype is manifest if every type, prototype and expression in its defmition is 
manifest. For any manifest type T except Integer, T.size and T.alignment are manifest 

Thus, the value of a manifest constant can be computed in a straightforward way at compile time. 
A general constant, by contrast, has a value that is fixed during the lifetime of the scope in which it 
is defined, but may be computed in an arbitrary way at the beginning of that lifetime. Note that a 
constant fonnal parameter is not a manifest constant 

literalConstant :: = unsignedNumber I lite ralString I literal Char I enumeratedValueldentifier 
manifestConstant :: = literal Constant I manifestExpression 
manifestExpression :: = expression 

Examples: 

--100 $a 'Euclid' red 3*C%r.Ord( Co!or.last) 
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6. Types 

"What is written without effort is in general read without pleasure." 
Johnson 

A data type determines the set of values which variables and constants of that type may assume, 
and the set of basic operations that may be performed on them. A type declaration associates an 
identifier with the type. The type identifier denotes the same type as its definition, unless it is 
declared as a module type (see 6.2.3) or is exported from a module, in which case the identifier 
denotes a different type; type equivalence is discussed in detail in 6.4. Prototypes are introduced in 
6.3. 

An identifier must be declared before it is used. When there are mutually recursive routines, types 
or prototypes, however, it is impossible to give the definition of every identifier before its use. In 
this situation, a defmition of fon\'ard may be given instead, and later in the same closed scope 
another declaration, of the form type T= ... (or procedure P= ... , or function F= ... ) must appear to 
provide the true definition. If ~ identifier declared with forward has parameters, these must appear 
in the forward definition and must not be repeated in the true definition. Between its forward and 
true definitions, or within its own definition, a type may only be used as the object type of a collec­
tion. 

A type definition may not contain calls to functions which import variables, or variable identifiers 
that are free, except for variables appearing 

in an import list, 

as the collection variable of a pointer type, 

as the zone of a collection type, or 

within a nested, closed scope. 

Hence, a type identifier denotes the same type throughout the scope in which it is declared, a type 
component in a module denotes the same type in every value of the module type, and the type 
denoted by a prototype application depends only on the values of the actual parameters. Note, 
however, that the same type identifier may denote different types in different scopes, e.g., in dif­
ferent instantiations of a routine. 

All types (except Integer) automatically acquire components when they are declared. For example, 
an array type T has the component T.IndexType (see 6.2.1). Any component of a type is automati­
cally also a cOlnponent of every constant or variable of that type. Thus if v is a constant or variable 
of type T, v.IndexType is the same as T.IndexType. 

A type T is assignable unless it is a collection type (see 6.2.6), an opaque type for which assignment 
is not exported (see 6.2.3). or a structured type with a variable component whose type is not assig­
nable (see 6.2). If T is not assignable, variables of type T may not appear on the left side of an as­
signment statement, and constants and constant parameters of type T may not be declared. 

This report specifies the standard representations, in terms of bits, for the values of certain types. 
These specifications are given so that machine-dependent records and machine-code procedures can 
be sensibly defined, and so that the effect of an explicit type conversion can be predicted. The fol­
lowing contexts are defined as sensitive: 

a variable component of a machine-dependent record (see 6.2.4) 

a variable declared at a fixed address (see 7.) 

an actual parameter or result of a machine-code routine (see 10.) 

the actual parameter or result of an explicit type converter (see 6.5) 
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A type may not appear in a sensitive context unless its representation is specified. either in this 
report, or explicitly by the implementation. Except in these sensitive contexts, there is no way for a 
Euclid program to determine the representation of any value, and an implementation is therefore 
free to use any representation, provided that it converts each value to the standard representation 
when it appears in a sensitive context. 

type :: = simpleType I structuredType 
typeDeclaration :: = type typeIdentifier = preAssertion type Definition I prototypeDeclaration 
typeDefinition :: = type I forward 

There are two components implicitly declared for each type T other than Integer: 

T.size the result, of type Integer, is the number of Storage Units (see 6.1.2) re­
quired for the representation of a variable of type T. 

T.alignment the result, of type Integer, is the required alignment of variables of type T, 
in StorageUnits. Thus, if p : Ptype is a pointer to such a variable, and 
PtypeToAddressType is a converter from Ptype to AddressType, then 

PtypeToAddressType(p) mod Ptype.alignment= O. 

There is a component implicitly declared for each variable or constant: 

x.ItsType the type of x 

6.1. Simple types 

There are no type variables in Euclid. However, a type may be a component of a module (see 
6.2.3), and hence may be referenced by a field designator (see 7.2.2), as well as by an identifier. 

simpleType :: = enumeratedType I standardSimpleType I subrangeType I 
derivedSimpleType I simpleTypeAppl 

derivedSimpleType .. - [containingVariable "." ] simpleTypeIdentifier 

6.1.1. Enumerated types 

An enumerated type defines an ordered set of values by enumeration of the identifiers which 
denote these values. There must be at least two such identifiers. The identifiers are declared as con­
stants in the current scope. If the current scope is a type declaration of type T, for which the 
enumerated type is the definition. however, the identifiers are declared in the enclosing scope in­
stead, i.e., the scope in which T is declared. As with all other declarations, the identifiers may not 
be used for any other purpose in the scope in which they are declared. 

The standard representation of the· Ith identifier (counting from 0) in the enumeration is the same 
as the representation of the unsigned Integer i. Thus, if T is an enumerated type, T.first is repre­
sented exactly like tlle Integer O. 

enumeratedType .. - "(n enumeratedValueldentifier { "," enumeratedValueIdentifier} tI)" 

Examples: 

type Color = (red, green,. blue, orange, yellow, purple) 
type Suit = (club. diamond, heart, spade) 
type Day = (Alonday, Tuesday, Wednesday, Thursday. Friday, Saturday, Sunday) 
type SexType = (female, male) 
type Classification = (confIdential secret, topSecret) 
type Device = (disk. display. keyboard, printer, tape) 

Components implicitly declared for each enumerated and subrange (see 6.1.3) type T are (with x: T 
and y: Integer): 
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T.first 
T.last 
T.Succ(x) 
T.Pred(x) 
T.Ord(x) 

T.Val(y) 
T.Max(~, x2) 

T.Min(x1, x2) 

the first value (in the enumeration). 
the last value (in the enumeration). 

SI~PLE TYPES 

the value succeeding x (in the enumeration). T.Succ(T.last) is undefined. 
the value preceding x (in the enumeration). T.Pred(T.first) is undefined. 
an Integer which is the ordinal number of the value x in the enumeration 
of T. Thus, T.Ord(T.first) =0. 
a value of type T, such that T.Val(T.Ord(x» = x and T.Ord(T.Val(y»= y. 
the Xi for which T.Ord(x) is larger. 
the Xi for which T.Ord(x) is smaller. 
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For instance, Suit.last is spade, and Day.first is Monday. 

6.1.2. Standard simple types 

The following types are standard in Euc1i<L and are pervasive throughout all programs (see 7.3): 

Integer Its values are the positive and negative integers, in the mathematical 
sense. It is not possible to declare a variable to be of type Integer. 
Instead, variables can be declared to be of some suitable subrange type. 
Constants of type Integer may be declared, however, and numbers are 
literal constants of type Integer. Note that no standard components are 
defined for Integer. 

SignedInt, Unsignedlnt Every implementation has these two standard types; they are ordinary 
subranges of Integer which are pre-defined for convenience. The inten­
tion is that they should be large subranges of Integer type that can be 
handled efficiently by the machine, and that contain: 

Boolean 

Char 

for Signedlnt, equal numbers of positive and negative numbers, 
or perhaps one more negative number. 

for UnsignedInt, 0 and no negative numbers. 

If T is defined by type T = m .. n, for any manifest constants m, n~O, 
and i is a value of type T, the standard representation of i is the ordi­
nary binary representation of the integer i, filled out on the left with 
any number of extra zeros. The standard representation of a signed in­
teger must be defined by the implementation, but is not defined in this 
report. 

There are two standard functions defined on any sub range of Integer: 

Abs(x) returns an Integer which is the absolute value of x. 
Odd(x) returns ~ Boolean which is true if and only if x is odd. 

Its values are the truth values denoted by the identifiers false and true. 
It is defined by type Boolean = (false; true). 

It is an enumerated type whose values are a set of characters detennined 
by the implementation, but including at least the 26 capital letters and 
the 10 decimal digits. They are denoted by the characters themselves 
preceded by a dollar sign (see 4.). 

There is a standard function Chr identical to Char. Val. 



16 DATA TYPES 

StorageUnit 

AddressType 

6.1.3. Subrange types 

CHAP. 6 

The ordering of the values of type Char is implementation dependent 
Use of this ordering in comparisons of Chars, sub ranges of Chars, or 
the Chr and Char.Ord functions, will in general result in non-portable 
programs. Unlike other machine-dependent features of Euclid, this one 
is not restricted to machine-dependent modules. However, the ordering 
must obey 

$A($B( ... ($Z, $a($b( ... ($z, and $1 =Char.Succ($O), ... , 
$9 = Char.Succ($8). 

It is the basic unit for storage allocation (see 6.3). There are no distin­
guishable values or constants of this type, and no operations are defined 
on this type. Thus, a StorageUnit variable simply serves to occupy a 
known amount of space. The standard representation of a StorageUnit is 
not defined. 

There is a standard componeIit of the type StorageUnit: 
sizeInBits an Integer constant which defines the number of bits 

III a StorageUnit 

There is a standard component of every Storage Unit variable: 
address the machine address (of type AddressType) of the vari­

able. 

It is a non-negative sub range of Integer, large enough to hold a full 
machine address; i.e., a value of x.address, if x is a StorageUnit variable. 

A type S may be defined as a sub range of another simple type T by indication of the smallest and 
the largest value in the subrange. The first constant specifies the lower bound (S.first), and the se­
cond the upper bound (S.last). If S.first>S.last there are no values of this type. When a record or ar­
ray component has a sub range type, the type must be manifest; this restriction ensures that the pack­
ing of array and record components is manifest. 

If type A is a subrange of type B, and type B is a subrange of type C, we say that A is also a sub­
range of C. The Succ, Pred, Ord, Val, Max, Min, first and last components are defined for all sub­
range types. If A is a subrange of B, and a is of type A and b is of type B, and a= b, and the stan­
dard representation of b is defined, then it is the same as the standard representation of a. 

subrangeType 
constantSum 

Examples: 

:: = constantSum" .. " constantSum 
::= sum 

type OneToOneHundred = 1 .. 100 
type SymmetricRange = -10 .. 10 
type Primary = red .. blue {the values of a Primary are red, green, and blue} 
type ScreenPosition = 1 .. 480 {y coordinate for display screen} 

6.2. Structured types 

A structured type is characterized by the type(s) of its components and by its structuring method. 
Moreover. a structured type definition may contain an indication that a packed data representation 
is preferred: if a definition is prefixed with the symbol packed, this is a hint to the compiler that 
storage should be economized even at the price of some loss in efficiency of access, and even if this 
may expand the code necessary for accessing components of the structure. Adding occurrences of 
packed may make a legal program into an illegal one (because of type compatibility (see 6.4) or if a 
component of the structure has been renamed as an entire variable (see 7.4)}, but will not otherwise 
change the meaning of the program. 
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structuredType :: = [packed] unpackedStructuredType I derivedStructuredType I 
structuredTypeAppl 

unpackedStructuredType :: = arrayType I recordType I moduleType I mdRecordType I 
setType I collectionType I pointerType 

derivedStructuredType :: = [containing Variable It. If] structuredTypeIdentifier 

6.2.1. Array types 
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An array type is a structure consisting of a flXed number of components that are all of the same 
type, called the component type. The elements of the array are designated by indices, values belong­
ing to the index type. The array type definition specifies both the component type and the index 
type. The index type may not be StorageUnit If the component type is a subrange, the bounds 
must be manifest 

The standard representation of an unpacked array A of type array I of C is defined as follows. Let 
t=C.size+(C.alignment-l), and s=t-(t mod C.alignment). Then successive components of A oc­
cupy successive groups of s StorageUnits, with no unoccupied StorageUnits in between. A(I.first) oc­
cupies the first s StorageUnits, i.e., the ones with the smallest machine addresses, and A(l.last) oc­
cupies the last s StorageUnits, i.e., the ones with the largest machine addresses. Each component is 
aligned in the same way as a variable of type C. The entire array thus occupies Max(O. s*(I.last -
I. first + 1» StorageUnits. The standard representation of a packed array is not defined. 

arrayType :: = array indexType of componentType 
indexType :: = simpleType 
componentType :: = type 

There are two standard components of an array type T: 

T.lndexType the index type 
T.ComponentType the component type 

Like other components of types. they are also components of any variable or constant of the type 
(see 6.). Thus if a is a variable of type T, then a.IndexType is the same as T.IndexType, and likewise 
for ComponentType. 

Examples: 

type ArrayO = array 1 .. 100 of SignedInt 
type Array] = array -10 .. 10 of 0 .. 99 
type Array2 = array Boolean of Color 
type NameTable = array OneToOneHundred of String(50) 

There are two standard pervasive identifiers having to do with strings, declared as follows. 

type Stringlndex = 1 .. stringMaxLength 
type String(length: String Index) = packed array l .. length of Char 

Literal string constants are of type String. with length equal to the number of characters. Routines 
can readily be defined to extract substrings, do pattern matching. or perfonn any other desired 
operations on strings (see 10. and 11. for examples). Furthennore, these routines might be machine­
coded for efficiency. The value of the pervasive manifest constant stringMaxLength is imple­
mentation -defined. 

6.2.2. Record types 

A record type is a structure consisting of a fixed number of components, possibly of different types. 
The record type definition specifies for each component, called a field, its type and an identifier 
which denotes it. The scope of these field identifiers is the record definition itself. They are also ac­
cessible within a field designator (see 7.2) referring to a variable or constant of this type. Record 
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components may be constants or variables. Constant components are accessible within a field desig­
nator referring to the type itself, as well as in a designator referring to a variable. Neither a variable 
binding nor a module type definition may appear in a record. If the type of a component is a sub­
range, the bounds must be manifest 

For the syntax of constant and variable declarations, see 7. If the record type appears as the defini­
tion of a type identifier, it must end with the ciause end identifier; otherwise it must end with end 
record. 

The size of a record containing an unpacked array is equal to some constant value, independent of 
the array size, plus the size of the array. The standard representation of a record is not defined. 

recordType :: = record fieldList endRecord 
endRecord : : = end record I end identifier 
fieldList :: = [recordDeclaration";"] [ variantPart] .';" 
recordDec1aration : : = recordDeclarationPart { ";" recordDec1arationPart} 
recordDeclarationPart :: = constantDec1aration I var variableDeclarer 

A record type may have several variants. In this case a constant identifier of some manifest simple 
type must be used as a selector in a case construction that enumerates the possible variants. This 
identifier is called the tag, and its value indicates which variant is assumed by the record variable at 
a given time. Each variant structure is identified by a case label, which is a set of manifest constants 
of the type of the tag. The tag must be a manifest constant or a formal parameter of a prototype 
declaration in which the case appears (see 6.3). When the prototype is applied, however, the actual 
parameter corresponding to such a formal must be a manifest constant, or any. In the latter case, 
the default clause specifies the variant to which values of the type will be initialized. 

A variant record r has a standard component 

r.itsTag the value of the tag. 

The case label lists must be disjoint. Furthennore, the union of the lists must exhaust the 
enumerated type of the tag, unless there is an otherwise variant, in which case all the tag values not 
mentioned explicitly are lumped under that variant. The case label following the end of each variant 
must be one of the labels specified by its case label list. 

variantPart :: = case tag [default manifestConstant] of variant { ";" variant} 
[otherwiseVariant] It;" end case 

variant 
caseLabelList 
caseLabelEnd 
caseLabel 

:: = caseLabelList" =}" recordDeclaration ";" end caseLabelEnd I empty 
:: = caseLabel { "," caseLabel } 
:: = literal I manifestConstantIdentifier I "(" caseLabel ")" 
:: = manifestConstant I subrangeType 

tag :: = identifier 
otherwise Variant .. - othen\'ise" =)" recordDeclaration 

Examples: 

type Date = record 
,'ar day: 1 .. 31 
"ar month: (Jan, Feb. Mar. Apr. May, Jun, Ju' Aug, Sep. Oct, Nov, Dec) 
,'ar year: 1900 .. 2100 
end Date 

type Stream (dev: Device) = record 
case dev default keyboard of 
display => 

var first, last: DisplayControlBlock {not defined in this report} 
var height: ScreenPosition : = ScreenPosition.first 
var nLines: 0 .. (ScreenPosition.1ast) div 8 
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end display 
tape, disk = > 

,'ar file: FileHandle{not defined in this report} 
var position: Unsignedlnt : = 0 
,'ar buffer: array 0 .. 255 of Char 
end tape 

keyboard => 
var buffer: array 0 .. 20 of Char 

RECORD TYPES 

,'ar bujFirst. bujLast: buffer.lndexType : = buffer.lndexType.first 
end keyboard 

othen\'ise => {null fieldList} 
end case 

end Stream 

6.2.3 Module types 
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A module type is a generalization of a record type. Module components may be declared as con­
stants, variables, routines, types, or prototypes. These declarations have the same form and the same 
meaning as the declarations in a block. Thus, a module serves as a package for a collection of re­
lated objects. A module type or prototype declaration is always opaque; i.e., it is not the same as 
any other type (see 6.4). Thus, two different module declarations always define different types, even 
if the definitions are textually identical. Except for this consideration and the visibility restrictions, 
however, a module definition is equivalent to a record definition containing the module's constants 
and variables, together with separate declarations of the module's routines and types. References to 
the constant and variable components within the routines are explained in 6.2.3.2. 

The optional identifier following module in the type definition is declared as a variable in the scope 
of the definition, and its type is the module type. It may be used within the definition to name the 
entire value, i.e., for self-referencing. 

The standard representation of a module is not defined . 

moduleType 

endModule 
module Body 
checkedClause 
declaration 
dec1arationPart 

pervasive 
invariant 
assertion 

.. - [machine dependent] module [ identifier] 
importClause exponClause moduleBody endModule 

:: = end module I end identifier 
.. - checkedClause declaration ";" initialAction invariant finalAction 
:: = checked I not checked 1 empty 
.. - empty 1 pervasive declarationPart {";" pervasive declarationPart} 
.. - constantDeclaration 1 variableDeclaration 1 typeDec1aration 1 

procedureDeclaration 1 functionDec1aration 1 converterDec1aration 1 
assert assertion 
penasive I empty 

:: = [abstraction functionDec1aration ";"] invariant assertion ";"1 empty 
:: = "(" expression ")" I empty 

The following example outlines how one might package floating-point numbers and operations on 
them in a module. An example of a complete module may be found in section 12. 

var Real: machine dependent module 
exports ( 

Add Subtract, Times, Divide, Greater. zero, Number, 
Value with (: =, =, sign, exponent. mantissa)) 

type Exp = - 80# 16 .. 7F # 16; 
type Alant = 0 .. OFFFFFF # 16 
type Value = machine dependent record 

var sign (at 0 bits 0 .. 0): 0 .. 1 : = 0 
"ar exponent (at 0 bits 1 .. 7): Exp: = 0 
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,'ar mantissa (at 0 bits 8 '0 31): Mant: = 0 
end Value 

const zero: Value: = (0,0,0) 

inline function NumbeT{m: SignedInt, ex: SignedInt) returns num: Value = 
imports (Mant) 
begin 
if m<0 then num.sign : = 0 else num.sign : = 1 end if 
num.mantissa : = Abs(m); num.exponent : = ex 
end Number 

function Adc(const I. r: Value) returns sum: Value = 
code ... end Add 

converter ValToInt(Value) returns SignedInt 

inline function Greater(const I. r: Value) returns g: Boolean = 
imports (VaIToInt) 
begin {use type converters to compare 1 & r as Signedlnts} 
return (ValToInt{f» VaIToInt{r)) 
end Greater 

end Real 

6.2.3.1 Exporting 

CHAP. 6 

The scope of a module's field identifiers is the module definition itself. Those which are exported 
by the module definition are also accessible within a field designator referring to a variable or con­
stant of the module type, in any scope in which the module type is accessible. Furthermore, in such 
a scope constant and type components are accessible within a field designator referring to the type 
itself. The packaging supplied by the module thus provides protection against improper use of com­
ponents that are intended to be known only within the module definition. 

A constant identifier is always exported as a constant: this may be specified by a binding condition 
of const, or the binding condition may be omitted. A variable identifier may be exported as a vari­
able using the binding condition var, or as a readonly variable using the binding condition readonly 
or omitting the binding condition (see 7.). A variable may not be exported as a constant. No vari­
able in the explicit import or export list of a module Inay overlap any other such variable (see 7.4). 

A constant or variable identifier i may be exported only if 

all identifiers used in the type definition in the declaration of i are exported or accessible in 
the scope S enclosing the module definition; and 

i is a field identifier of the module, i.e., it is declared at the outermost level in the module. 

Similarly, a routine identifier R may not be exported unless all identifiers used in the type defini­
tions of its formal parameter list and return type (if any) are exported or accessible in S, and R is 
declared at the outermost level. 

The ItsType component of an exported constant or variable is automatically exported. 

When a type T is exported from a module M, it is always opaque outside its defining module; i.e., 
it is not the same as any other type (see 6.4). Thus all operations on values of type T and literal con­
stants of type T are inaccessible outside M, except that: =, =, t, subscripting, field identifiers, and 
enumerated value identifiers may be explicitly exported by a with clause appended to the export 
item for the type. Anything not specified is not exported. Thus: 

T is assignable outside M if and only if assignment is exported. 
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If T is an array type, subscripting is permitted outside M if and only if the IndexType com­
ponent is exported. 

If T is a pointer type, dereferencing is permitted outside M if and only if "t" is exported. 

Ts field identifiers (including standard ones, like size) are accessible outside M if and only 
if the with clause specifies that they should be exported. 

If T is an enumerated type, its enumerated value identifiers are accessible outside M if and 
only if the with clause specifies that they should be exported; subrangeType (with manifest 
bounds) is permitted in an exportltem to facilitate this. Note that like all exported iden­
tifiers, they may only- be used in suitable field designators. 

Values of the module type itself may not be assigned or compared for equality unless : = or =, 
respectively, appear in the export list. Furthermore, : = and = may not appear in the export list if 
the module imports any variables, and : = may not appear if it has a final action. 

exportClause :: = exports exportList ";" I empty 
exportList .. - "(" exportItem { "," exportItem} ")" 
exportItem :: = bindingCondition identifier [ with exportList] I ": =" I "=" '''t'' I 

sub range Type 
bindingCondition .. - const I readonIy I var I empty 

6.2.3.2 Importing 

A module is a closed scope; i.e., identifiers declared outside the module are not known inside un­
less they are known in the immediately enclosing scope, and either are pervasive or are imported 
into the module (by the import clause in the module definition, or because they appear in the for­
mal parameter list of the module declaration). Importing is discussed in detail in 7.3. Note that vari­
ables imported into a module may not be used except in the import lists of routines or modules 
declared in the module, or as collection variables or zones (see 6.). Hence, they cannot affect any 
variables, constants or functions declared in the module. A module may not import a routine 
declared with fon\'ard if the routine's true declaration has not yet appeared; hence mutual recursion 
of routines and modules is impossible. Note that mutual recursion of routines in two modules is im­
possible because a forward type may not appear in an import list. See 10. for the use of forward in 
an import list 

A routine R declared in a module lrf may import a constant or variable identifier x of type T 
declared in M. The meaning of x in R is explained as follows. Replace R with another routine R' 
which does not import x, but instead has an additional formal parameter x: T with the same bind­
ing condition. Replace every call .Mi.R(arguments) with Mi.R'(J.lix, arguments), where Mi is an ex­
pression of type M; export x if necessary to make this legal. Replace every call R(arguments) inside 
M with R'(x, arguments). Importing a routine or type identifier declared in M is equivalent to 
duplicating its definition within R. 

importClause .. - singleImportClause { It;" singlelmportClause } I empty 
singlelmportClause .. - imports importList [thUS importList] It;" 
importList .. - "C' importItem { "," importItem} ")'" "f' It)" . 
importItem .. - [fon\-ard 1 pervasive bindingCondition identifier 

6.2.3.3 Afachille-dependency 

A module type may be prefixed with the synlbols machine dependent, which simply means that it 
may contain 

- other machine-dependent module and record declarations, 

fixed addresses in variable declarations (see 7.), 

extended characters of the form $ddd (see 4.), 
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type conveners involving types with implementation-dependent representations (see 6.5), 

uses of the address component of a StorageUnit variable (see 6.1.2), 

machine-code routine declarations (see 10. and 11.). 

A module that is not machine-dependent may not contain any of these things. Thus it is possible to 
tell from the heading of a module type whether it is allowed any machine dependencies or not 
Note that machine-dependent identifiers exported from a machine-dependent module, as well as the 
machine-dependent module type itself. may be used in other modules that are not machine-depen­
dent Since exported types can only be manipulated by exported routines, the routines serve to en­
capsulate the machine-dependencies. 

6.2.3.4 Initial andfinal actions 

A module may include an initial action, which is executed whenever a new variable of the module 
type is created, and a final action, which is executed whenever such a variable is destroyed. These 
actions are considered to be parameterless procedures declared in the module. If several module 
variables are declared, as in the program fragment 

begin x:Ml; y:M2; z:Ml; ... end 

the order of creation is x, Y. z, and the order of destruction is -4 y. x. This follows from the fact that 
the three declarations start three nested scopes, all of which end at the end (see 7.3). If an array a of 
modules is declared, the order of creation is a(a.IndexType.first) .. a(a.IndexType.1ast), and the order 
of destruction is the reverse. If a record containing modules is declared, the order of creation is the 
order of the components, and the order of destruction is the reverse. 

The meaning of final actions is precisely explained by the following rewriting rule. If M is a module 
type with a final action, let M' be the same type except that the final action is replaced by an ex­
paned procedure named Finally with the same routine definition. Then if S is any statement, 

begin var x:M; Send 

is short for 

begin \'ar x:M': begin S' end; x. Finally end 

where S' is the same as S except that every occurrence of 

exit when B; 

not in a nested reepetitive statement, is replaced by 

if B then x.Finally: exit end if; 

and likewise for each return not in a nested closed scope. Note that since M is not assignable~ an 
identifier of type M cannot be introduced by a constant parameter or function result declaration. 

The extension to arrays and records containing such modules is straightforward, using the rules of 
the previous paragraph. A collection of such modules is also possible; x.Finally is called when ~ is 
freed (see 6.2.6). 

initialAction 
finalAction 

"­.. - initially routineDefinition ";" I empty 
finally routineDefinition ";" I empty 

6.2.3.5 Invariants and abstractions 

A module may also specify an invariant that is supposed to be true during the lifetime of the 
module variable (Le., after the execution of the initial action and before the execution of the final 
action), except perhaps when one of the procedures of the module has been called and has not yet 
returned. Like other assertions, this one may be empty or a Boolean expression. In the fonner case 
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the content of the assertion is supplied in a comment. This comment is of course ignored by the 
compiler, but presumably is interpreted by the verifier. In the latter case the assertion must· be a 
legal Boolean expression; code is generated to check it, whenever checking is enabled for the scope 
enclosing the module type definition (see 9.2.1): 

on every entry to or exit from any exported procedure in the module; 

on every assignment to an exported variable outside the module; 

after the initial action and before the final action. 

The abstraction function, necessary for one approach to the verification of modules [Hoare 1972, 
London et al. 1977], maps the values inside the module into a value of the module type. The need 
for this mapping in verification arises because a variable of the module type may be represented in­
side the module by different variables. The body of the abstraction function may contain constructs 
outside Euclid in the same way that assertions may, i.e., within comments. The abstraction function 
is not callable from a Euclid program, and is treated as a comment by the compiler. 

6.2.4 Machine-dependent records 

A machine-dependent record type is a restricted kind of record type that allows (in fact, requires) 
the programmer to specify the exact position and size of each variable field. The position is 
specified in StorageUnits, where the first StorageUnit of the record is numbered 0, and then in bits, 
where the first bit· of the specified StorageUnit is numbered 0, and the bit numbering continues to 
successive StorageUnits in the obvious way. The ordering of bits in a StorageUnit is implemen­
tation-defined. If the bits clause is omitted, the field occupies an integral number of StorageUnits, 
and its size is computed from the size of its type; the value is right-justified in the field. The compi­
ler's responsibility is to check that fields do not overlap and that each field is at least large enough 
to hold values of its type. The size of a value of machine-dependent record type is equal to the max­
imum value of 

1 + a+ « b.1ast + Storage Unit. size In Bits -1) div StorageUnit.sizeInBits 

over all the variable components, where a is the value following at, and b is the simple type follow­
ing bits. An implementation may place restrictions on how fields overlap natural storage boundaries. 
The type specifying bits must be a sub range of Integer, and must be manifest except possibly for 
the last component of the record. 

A machine-dependent record may have constant components like an ordinary record. It may not be 
the definition of a prototype. All its variable components must have position specifications, and they 
cannot be exported, passed as variable parameters. or bound to. Furthermore, they must all have 
types whose standard representation is specified. Note that the standard representation of a 
Inachine-dependent record is specified, but the standard representation of an ordinary record is not. 

An alignment clause, aligned mod a, in a machine-dependent record declaration forces a value of 
the record type to be allocated so that the machine address of its first StorageUnit is 0 mod a; a 
must be a power of 2, and an implementation may limit its maximum value. 

The module in which a machine-dependent record type appears must be a machine-dependent 
module. . 

mdRecordType :: = machine dependent record [ alignmentClause ] 
[ mdDeclarationPart { ";" mdDedarationPart } ] ";" endRecord 

mdDeclarationPart :: = constantDeclaration I 
,'aT identifier "(" at manifestConstant [ bits subrangeType 1 ")" 
":" typeDefinition [ initialization] 

alignmentClause :: = aligned mod manifestConstant 

Example: 
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type Interrupt Word = machine dependent record aligned mod 8 
var device (at 0 bits 0 .. 2): DeviceNumbet; 
var channel (at 0 bits 3 .. 5): 0 .. 7; 
var slopCode (at 0 bits 6 .. 7): (jinishedOk, errorStop, powerOJ!J; 
var command (at 1 bits 0 .. wordSize): ChannelCommand 
end Interrupt Word 

6.2.5. Set types 

CHAP. 6 

A set type defines the range of values which is the powerset of its base type. Base types must be 
manifest simple types other than StorageUnit. An implementation may restrict the cardinality of a 
base type (see 13.). Operators applicable to all set types are: 

+ union 
set difference: i appears in a- b if and only if it appears in a and not in b. 

xor symmetric difference: i appears in a xor b if and only if it appears in exactly 
one of a and b. 

* 
in 
<=,>= 

intersection 
membership 
set inclusion 

Sets can be built up from values of the base type as described in 8. The standard representation of 
a set S: set of B is defined if the standard representation of values of B is defined. It is a sequence 
of n significant bits, where n = (B.1ast - B.first + 1), preceded by any number of insignificant zero 
bits. If the significant bits are numbered 0, 1, ... , n -1, then bit i is one if and only if x is in S and 
B.Ord(x) = i. 

setType 
baseType 

:: = set of base Type 
:: = simpleType 

There is one standard component of a set type T: 

T.BaseType the base type 

Examples: 

type Hue = set of Color 
type SubtractivePrimaries = set of red .. green 
type SymSet = set of - 5 .. + 5 
type EntrieslnUse = set of Arrayl.IndexType 

6.2.6. Pointer and collection types 

A variable which is declared in a program (see 7.) is denoted by its identifier. The variable exists 
during the entire lifetime of the scope to which it is local. and such a variable is therefore called 
static. In contrast, variables may also be generated dynamically. i.e., without much correlation to the 
structure of the program. These dynamic variables are generated by the standard procedure com­
ponent New described below; since they do not occur in an explicit variable declaration, they can­
not be denoted by an identifier. Instead, they may be referred to by a pointer value which is 
provided by New when the dynamic variable is generated. A pointer type thus consists of an un­
bounded set of values pointing to elements of the same type. No operations are defined on pointers 
except the test for equality, the pointer -following operator t, which yields the variable referred to 
by the pointer, and the standard function component Index, which converts a pointer into an 
Integer. 

The standard representation of a pointer is the same as the standard representation of AddressType. 

A dynamic variable must be an element of a collection. ': collection is not a type: it is a variable 
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that behaves very much like an array variable. Just as an element of an array variable A can be 
referenced by subscripting A with an index whose type is the index type of A (A.IndexType), so an 
element of a collection C can be referenced by subscripting C with a pointer whose type is the 
pointer type of C (1'C). There are two differences: 

No two collections have the same pointer type. Hence the pointer alone is sufficient to 
specify the collection, and we allow pt as shorthand for C(P), where p is of type 'tC. 

There are no operations that produce pointer results, except explicit type conversion and 
the standard procedure C.New that creates a new variable. Hence the storage allocation 
strategy for collections can be quite different. from the strategy for arrays. 

The reason for having collections is that two pointers to different collections are guaranteed to point 
to different variables; two pointers to the same collection are either equal, and point to the same 
variable, or unequal, and point to non-overlapping variables. Hence collections are a means by 
which the programmer can express some of his knowledge about the ways in which his program is 
using pointers. If he prefers not to do this, or has no knowledge about pointers to variables of type 
T which can be expressed in this way, he can simply declare a single collection of Ts and use it 
everywhere. 

There are no operations on collections. A collection may not be assigned to another collection. In 
fact, there is nothing to do with a collection except to subscript it, or to pass it as a var actual 
parameter. A collection type may not be the component type of an array or record or the object 
type of a collection. 

Associated with every collection is a zone, which provides storage for its variables. A zone is a 
module variable with three special components (and possibly other components): 

a variable storageBlocks, which is a collection of a record type containing a special variable 
component (and possibly other components): 

theSlorage, a StorageUnit 

a procedure Allocate{size, alignment: UnsignedInt, var pointer: tstorageBlocks) 

a procedure Deallocate(pointer: tstorageBlocks, size: UnsignedInt) 

These components must be exponed; they are intended only for use by the standard procedures 
New and Free. A zone must be a machine-dependent module variable. Note that a collection Cs 
zone must be imponed as a variable into any scope in which C.New or C.Free is called. If C is 
reference-counted, C.zone must also be imponed as a variable into any scope in which a non-local 
variable of type tC is assigned to. 

A collection declared without a zone will use a standard zone called systemZone. This zone is not 
pervasive (since it is a variable), but must be imported where it is needed. 

A collection C can be reference-counted, in which case a variable in C will be freed automatically 
when no pointers to it remain and no identifiers are bound to it (see 7.4); note that inaccessible cir­
cular structures will not necessarily be freed. The optional manifest constant is an Unsignedlnt that 
gives the maximum reference count that should be maintained; if more than this number· of 
pointers to a variable in C ever exist at one time, the program is illegal. The Free procedure does 
not exist for a reference-counted collection. Space is allocated for the reference count in each vari­
able in C. 

A collection C must be checkable if C.Free is to be used in a checked scope. A checkable collection 
incurs checking overhead in all scopes, whether checked or unchecked. Aside from execution speed, 
the size of the compiled program, and the amount of space required in the system zone, the 
presence or absence of checkable has no effect. In particular, it cannot be determined by the 
program itself. See 14.12 for an implementation note. 
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This is the only situation in which checking a scope requires any change elsewhere in the program. 
The resulting inconvenience can perhaps be reduced by converting back and forth between check­
able and { checkable} in declarations, with the help of a text editor. 

There is one standard component of a dynamic variable v in a counted or checkable collection: 

v.refCount the number of pointers to v, plus the number of identifiers bound to v. 

Note that assignment of arrays containing pointers to counted or checkable collections will result in 
loops to do the necessary refCount adjustments. Likewise, the assignment of records with variant 
parts containing such pointers will result in tests of the tag to conditionally do the necessary adjust­
ments. 

coUectionType 
countControl 
objectType 
pointerType 

"­.. -
countControl collection of objectType [ in zoneIdentifier] 
counted [ manifestConstant] I checkable I empty 
type 
.. 1''' collection Variable 

There are six standard components of a collection variable C: 

C.ni1 

C.ObjectType 

C.zone 

C.Index( obj: 'tC) 

C.New(\'ar p: 'tC) 

C.F ree( var p: 'tC) 

a pointer that points to no variable at all. 

the object type. If there are any unknowns in the collection definition, 
C.ObjectType is a prototype with formal parameters corresponding to 
the unknowns. 

the zone (see above). 

a function that takes a pointer to C and returns an Integer. This 
function has only one defined property: it is one-to-one. 

allocates a new variable v in collection C and assigns a pointer to v to 
the pointer variable p. C.New imports C as a variable. 

This procedure works as follows: It first calls Allocate for the pointer's 
zone with some s~ T.size, and T.alignmen~ as parameters, where 
T= C.ObjectType. It gets back a tstorageBlocks, and uses the theStorage 
component in this block as the first StorageUnit for the newly created 
variable. (It is up to the verifier of the zone to ensure that a sequence of 
at least n free StorageUnits begins there if Allocate(n, ~ p) was called, 
and that the storage allocated does not overlap with that of any other 
variable.) Last. any initialization specified by the type of v is per­
fonned. 

If C.ObjectType is a prototype. then values for the parameters cor­
responding to unkno'\\ns must be supplied as additional parameters to 
New, in the same order in which they appear in the prototype's fonnal 
parameter list, so that the variable being created will have a definite 
type. 

frees the variable v pointed to by p and sets p to C.nil. C.Free imports C 
as a variable, and works as follows: Any finalization specified by the 
type of v is performed. Then the Deallocate procedure for Cs zone is 
called with a pointer to the storageBlocks variable from which v was 
originally allocated- by C.New, and the size that was given to C.New. 
This procedure is not defined for reference-counted collections. 
C.Free(p) is illegal if there is any other pointer value in existence equal 
to p. Thus the legality assertion for C.Free(p) is p.refCount= 1. It is il­
legal to use C.Ffee in a checked scope unless C is checkable. 

Note that New and Free are procedures that violate the strict type checking of Euclid. These 
procedures, explicit type conversions (see 6.5) and machine code routines (see 10), are the only ways 
of doing so. 
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Examples: 

"ar myStreams: collection of Stream(unknol\n) in ioZone 
type StreamRe/ = tmyStreams 
,'ar userlnput, userOutput. anyStream: StreamRe/ 

myStreams.New{userlnput, keyboard) {create & initialize input stream} 
myStreams.New(userOutput, display) {also an output stream} 
"ar stringStorage: collection of String(unknol\u) 
type StringRe/ = tstringStorage 

6.3 Prototypes 

It is possible to declare a prototype by including a fonnal parameter list in a type declaration: 

type T{a: SignedInt, b: Color) = U 

27 

Every use of T, except in an import or export list, must be an application, with an actual parameter 
list that supplies values for all the fonnal parameters. Thus, a prototype is a template, from which a 
number of types can be obtained by supplying actual parameters for the fonnals. The formal 
parameters of a prototype must be constant, and hence of an assignable type. An identifier x that is 
accessible as a field identifier of U may not also identify one of Ts fonnal parameters; this rule 
prevents x from being ambiguous in the context v.X, where v is of type T( ... ). 

When a prototype application appears in the formal parameter list of a procedure, an actual 
parameter of the application can be a previous formal parameter of the procedure (see 10.). Thus, 
procedures can be written to accept actual parameters whose type is any application of a prototype. 

The built-in type constructors i.j (subrange), case c of ... (variant part of a record type), and tC 
(pointer) also take parameters. In fact, the first two can take parameters of any simple type, and the 
last can take any collection variable. Thus all three are unlike user-defined prototypes, in which the 
types of the parameters are specified in the formal parameter list. For sub range and case the actual 
parameters must be constants, but need not be manifest. Thus, textually identical occurrences of one 
of these constructors, like identical prototype applications, do not necessarily produce the same type. 

The case constructor is normally used in the declaration of a prototype T in which its parameter is 
in turn declared to be a (necessarily constant) formal parameter of T. Note that when T is applied, 
actuals must be supplied for all its fonnals, even though some of the fonnals may be used only in a 
variant that is not selected. Furthermore, the actual parameter supplied for the tag must be a 
manifest constant, any, or unkno\\u. 

Parameters of a prototype application may be referenced like record components; thus after 

type T(p: color, q: Boolean) ... ; ,'ar x: T(red, true) 

the expression x.p= red is true. Note that the parameters of a module type need not be exported, 
since they are declared outside the module definition. 

When a prototype T is applied (e.g., in the declaration of a variable), the actual parameters are sub­
stituted for the formals, producing a type. If the definition of T contains references to further 
prototypes, these in turn must have actual parameters which are substituted for these formals. This 
expansion process proceeds recursively l:lntil finally a type definition with no prototypes results. In 
certain cases, however, Euclid makes it possible to defer fixing the value of a parameter. In 
particular: 

If a fonnal parameter is the tag of a varian~ its actual may be the sytnbol any; then a vari­
able can be changed from one variant to another during execution, by assigning values of 
different variants to the variable. 



28 DATA TYPES CHAP. 6 

If an application of T is used as the object type of a collection, one or more actuals may be 
the symbol unknown, and fixed only ~hen a variable in that collection is created. 

If an application of T is the type of a formal parameter of a routine, one or more actuals 
may be the symbol parameter. This is a shorthand which indicates that they are to be 
passed as additional parameters of the routine. 

The first two cases are described in detail below; for the third, see 10. 

The symbol any may be used as an actual parameter of a prototype application, provided that the 
corresponding formal is used only as the tag of a variant Suppose V is such a prototype, with a for­
mal parameter s, of enumerated type T, used as a tag (there might be other formals, but they are 
omitted in this example). Then V(any) is a type whose values are the union of the values of V(i) as i 
ranges over all the elements of T. It differs from any particular V(i) in two important ways: 

If x is declared to be of type V(any), only those· components of x that are outside the case 
constructor with tag s can be referenced. A discriminating case statement (see 9.2.2.2) can 
be used to bind x to an identifier y whose type is V( i), and then all the components of y 
can be referenced in the scope of the discrimination. 

The value of the tag x.itsTag, and hence the choice of variant, can be changed during execu­
tion by assignment to x (but not, of course, to y if y is of type V(i». This is the only case in 
which any property of a variable which is determined by the parameters of its type can be 
changed after the variable has been created 

Note that any is not a value; x.itsTag will never be any, but will be equal to the current value of 
the tag, and x.s is undefined. 

The symbol unkno'\\n may be used as an actual parameter in a prototype application which appears 
as the object type of a collection. A variable in the collection can only be created by the standard 
procedure New, however (see 6.2.6), and when New is called, actual parameters must be supplied 
for all the unknowns in the object type; note that any is not a legitimate actual parameter in this 
case. Hence a type never involves unknown except in the object type of a collection. In this case the 
standard representation of variables in the collection is undefined. 

When a pointer to collection of 1\ ... , unknown, ... ) is dereferenced to yield a variable v, that variable 
has type 1( ... , x, ... ), where x is the value that was supplied to New when v was created. As in other 
cases where the parameters of types are not manifest constants, the compiler may have to generate 
legality assertions to ensure that the type of a dereferenced pointer has SOlne property demanded by 
the context in which it is used. If the unknown parameter is only used as the tag of a variant, a dis­
criminating case statement can be used to bind a referenced variable to an identifier of known type, 
just as is done with any. 

Note that all actual parameters in an object type other than any and unknm\n are evaluated when 
the collection is declared, not when a variable in the collection is created. 

prototypeDecIaration :: = type typeIdentifier typeFormalList = preAssertion typeDefinition 
typeFonnalList :: = "(" typeFonnalSection { "," typeFonnalSection} If)" 
typeFonnalSection :: = identifier { .. , .. identifier} If:" indexType 
simpleTypeAppl :: = derivedSimpleType typeActualList 
structuredTypeAppl :: = derivedStructuredType typeActualList 
typeActualList :: = "(" typeActualParameter { "," typeActualParameter} ")" 
typeActualParameter :: = expression I any I unknown I parameter 

Examples of type definitions: 

type FamilyMembe!{sex: SexType) = forward 
var members: collection of Fami/yA/embe!{unknown) 
type FamilyMember = record 
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var age: 0 .. 100 
var mother, father, sibling: t members 
,'ar oldestChild: t members 

case sex default female of 
female 
male 
end case 

end FamilyMember 

type Subject = FamilyMembe!{any) 
type Family = tmembers 

6.4 Type compatibility 

PROTOTYPES 

= > l'ar husband: t members end female 
=> ,'ar wife: tmembersend male 
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This section defines the conditions under which two types are the same, and describes the rules for 
type compatibility in the language. The basic idea is this: a type identifier is an abbreviation for its 
definition. After all such abbreviations have been removed, two types are the same if their defini­
tions look the same. However, a module type identifier, or any type identifier exported from a 
module, is considered to be different from any other type, hence operations on such a type are 
restricted to these exported from the module. 

Two types are the same if their expanded definitions are equal. The expanded definition of a type is 
obtained by the following algoridun: 

Start with the type. 

Replace each type or prototype identifier by its definition, unless the definition is a module 
type, or the identifier was exported from a module. During this replacement, substitute any 
actual parameters for the corresponding formals. 

Replace x.ltsType by the type of x. 

If x is a module variable and T an exported type, replace x in x. T by the type of x. 

Repeat these replacements until there are no more to be done. 

The result is the expanded definition. 

Two expanded definitions are equal if, 

when all extended parameters are removed, they are identical sequences of basic symbols; 

the values of corresponding extended parameters in the two sequences are equal. 

The extended parameters of an expanded definition are the constant expressions that appear as 

actual parameters of unexpanded prototype identifiers, 

parameters of subrange or case constructors, 

case labels in a variant, 

constant definitions, 

following at or aligned in a machine-d~pendent record declaration. 

If the compiler cannot determine whether or not two types are the same (e.g., because their ex­
tended parameters are not manifest), and they must be the same for the program to be legal, then 
the compiler will assume that they are tbesame, and generate a legality assertion guaranteeing this 
fact 

When a value is assigned to a variable, or a variable is bound to an identifier, the types must be 
compatible according to the following rules: 
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In an assignment, both types must be the same, except that when the left side is a variable 
v of a simple type, then 

If v is of a sub range type, its range may differ from the range of the expression on 
the right side (note, however, that other parameters of types, such as array bounds, 
may not differ). In a legal Euclid program, the actual value being stored will be 
within the range of the variable. Where the compiler cannot verify the legality of 
an assignment, it will generate one or more legality assertions concerning the range 
of the actual value. 

Occurrences of any as an actual parameter in the type of the variable may cor­
respond to occurrences of any value in the type of the right side. Thus, a 1(red) 
may be assigned to a 1(any}, but not the reverse. 

In a binding (see 7.4), the type Tv of the variable must be the same as the type T; of the 
identifier. If the binding is part of a procedure or function call, however, actual parameters 
in the specification of T. may be other formal parameters of the procedure or function (see 

I 

10.). 

The following table summarizes ~e transitions which are possible: 

To (formal T(red) T(any) 
or left side 
From (actual 
or right side) 

1(red) 

T(any) 

6.S Explicit type conversions 

bind 
assign 

discriminate 

assign 

bind 
assign 

In recognition of the fact that controlled breaches of the type system are sometimes necessary, 
Euclid provides a mechanism for specifying such breaches. It takes the form of a class of pseudo­
functions called type-converters. A type-converter is declared by a converter declaration, which 
specifies an explicit conversion from one type (the source) to another (the target). The two types 
must have the same size. The function takes a value of the source type as its single argument, and 
produces a value of the target type. No code is generated by the function. except perhaps for code 
supplied by the implementation to bring the representations of the argument and result into the 
standard form specified in this report. 

It is possible to specify procedure or function as the source type, so that a program can get hold of 
the starting address for a routine in order to link to it from a machine code body (see 10.) 

If either source or· target type has an implementation-dependent representation, the converter 
declaration can only appear in a machine-dependent module. 

converterDeclaration :: = converter functionIdentifier "(" sourceType ")" returns targetType 
targetType :: = typeIdentifier 
sourceType :: = typeIdentifier I procedure I function 

Examples (from Appendix B): 

convertcr MakeCellPtr(AddressType) returns eel/Ptr 
conl'crter CellPtrToSBPtr (CellPlr) returns SBPtr 
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7. Constants and variables 

ItDeclare, i/thou hast understanding." 
Job 38,4 

A constant is a literal constant, or an identifier declared as a constant, or an expression whose 
operands and actual parameters are all constants. . 

constant : : = expression 

A constant declaration consists of an identifier denoting the new constant, followed optionally by its 
type, and then by an expression that defines its value. The defining expression is evaluated, and its 
value becomes the value of the constant, which can never change thereafter. The type of the con­
stant, if specified, must be assignable, and assignment-compatible with the type of the defining ex­
pression (see 6.4); otherwise its type is taken from the expression. 

The defining expressions for constants are evaluated when 

a scope is entered, or 

a record or module type is defined 

A structured constant may be used to define a constant of a record or array type. The constants 
within the parentheses are the values of the components of the structured value. For a record, the 
order is the order in which the components appear in the definition; note that the tag of a variant 
is not a component and hence may not appear in a structured constant. For an array a, the order is 
a(a.lndexType.first) to a(a.lndexType.last}. If the structured type contains other structured types as 
components, their values are in turn represented as nested structured constants. All the simple con­
stants appearing in a structured constant must be manifest 

constantDeclaration .. - const identifierList [It:" type] ": =" expression I 
const identifierList n:" type n: = II structuredConstant 

identifierList .. - identifier { "," identifier} 
structuredConstant .. - "(" [constantItem { "," constantItem} ] n)" 
constantItem :: = manifestConstant I structuredConstant 

A variable declaration consists of a list of identifiers denoting the new variables, followed by their 
type and optional initialization, or it consists of a binding. The initialization is exactly equivalent to 
an assignment statement executed immediately after the declaration of which the variable declara­
tion is a pan. A bind declaration specifies that each of the identifiers in the bindList is to be bound 
to an already existing variable. rather than to a newly created one (see 7.4). If the variable binding 
condition is readonly, or omitted, then the newly declared identifier cannot be changed within the 
new scope. In particular, it cannot be assigned to, or passed as a variable parameter, and a 
procedure which imports it ,'ar cannot be called; the same restrictions apply to any variable that is 
part of it. Note that all the renamings of components of a single entire variable must be accom­
plished within a single bindList, since otherwise the no-overlap rule (see 7.3) would be violated. 

TIle fixed address. if present, specifies the absolute address in memory where the variable is to be. al­
located. It is the compiler's responsibility to ensure that a variable allocated at a fixed address does 
not overlap any otller variable. A fixed-address component is either a variable declared at a fixed ad­
dress, or a module type containing a fixed-address component Such a cOlnponent must have a 
manifest type and may only appear as a component of a machine-dependent module type. Note 
that because of the no-overlap rule, only one variable of each type with a fixed-address component 
may be declared. 

Note that a variable may not be declared to be of type Integer, but only of some subrange type. 
Constants may be of type Integer, however. 
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variableDeclaration :: = var variableDeclarer I 
bind variable Binding I bind "(" bindList If)" 

bindList :: = variableBinding { ", II variableBinding} 
variableBinding :: = varBindingCondition identifier to variable 
varBindingCondition :: = readonly I var I empty 
variableDeclarer :: = identifierList [fixedAddress] n:" type [initialization] 
fixedAddress .. - "(" at manifestConstant If)" 
initialization .. - ": =" expression 

Examples: 

const iC, jC : = -1 {iC and jC will be Integers and have the value -I} 
const tc: Color: = red 
var k, I: - 5 .. 5 : = iC {both variables initially have the value of iC} 
var sensitivity: array Device of Classification 
bind var a"ayEntry to aO(l) {aO(I) must be a valid reference. a"ayEntry is simply another 

name for aO(l) over the scope of this declaration} 
bind input to UserInput {input is UserInput for the scope of this declaration, but cannot be 

changed within the scope} 
var a, b: Signedlnt: = iC {a and b initially have the value -I} 
var cv: Color 
const tenN : = 10* n 
const hue] : = Hue{red, blue} 
const diskIdle: InterruptWord : = (0, 1, InterruptWordjinishedOk, nullCommand) 
var diskControl (at 104#8): Interrupt Word : = diskIdle 
var dateTable: array 1 .. 10- iC of Date 
const index: array -1 .. 9 of UnsignedInt: = (3,1,4,1,5,9,2,6,5,3,6) 

. var str: String(10) 
var shades: array C%r of Hue 
var jimB, butler, ralph,jimM, gerald: Fami/yMember(male) 
var Smiths, Joneses: Family 
var ~ j, x, y, z: SignedInt 
var p, q: Boolean : = false 
var strP i, strPl: StringReJ 
var reall, reall: Real Va/ue 
var pi, pl: tmembers 
var country: (NotKnown, UnitedStates, Can~ GreatBritain, Other) 
,'ar operator: (plus, minus, times) 
var col: Color 
var anArray: array OneToOneHundred of Signedlnt 
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Denotations of variables designate an entire variable, or a component of a variable, or a variable 
referenced by a pointer (see 6.2.6) .. Variables or constants occurring in examples below are assumed 
to be declared as indicated above. 

Associated with every variable is a main variable which is entire; the variable is said to be part of its 
main variable. One variable is part of another if, roughly, an assignment to either can change the 
value of the other, and the space of possible values of the first variable is a (not necessarily proper) 
subset of the space of possible values of the second variable. The following sections define main 
variables and part precisely. "Part of' is a transitive relation: if x is part of y and y is p~ of z then 
x is part of z. It is also reflexive: x is part of ·x. Two variables are the same if and only if each is 
part of the other. Two variables overlap if and only if one is part of the other. 

variable :: = entireVariable I cornponentVariable 
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7.1. Entire variables 

A variable identifier denotes an entire variable, which is its own main variable. An entire variable is 
never pan of another entire variable known in the same scope (see 7.4). Hence, two entire variables 
which are simultaneously known never overlap. 

entire Variable :: = variable Identifier 

7.2. Component variables 

A component of a variable is denoted by the variable followed by a selector specifying the com­
ponent. The fonn of the selector depends on the structuring type of the variable. 

componentVariable :: = indexedVariable I fieldDesignator I referencedVariable 
base Variable :: = variable I functionDesignator 

Corresponding to each kind of component variable described below except a referenced variable, 
there is a corresponding constant expression that differs from the component variable in only one 
way: a constant array, record, or module appears in place of the base variable. 

7.2.1. Indexed variables 

A component of an array variable is denoted by the variable followed by an index expression. The 
main variable of an indexed variable is the main variable of the array variable. The indexed variable 
is part of the array variable. An indexed variable ~ is part of another indexed variable ~ if and only 
if either they have the same array variable and the two indexes are equal, or the array variable of ~ 
is part of~. 

indexedVariable 
array Variable 

:: = arrayVariable "Cit expression ")It 
:: = base Variable 

The type of the index expression and the index type declared in the definition of the array type 
must be subranges of the same type. The value of the index expression must be a value of the in­
dex type for the program to be legal. 

Examples: 

index{ -- 1) 
dateTable«i mod 10- iC)+ 1) 
shades{green) 

7.2.2. Field designators 

A component of a record or module variable, or a formal parameter of the type of any variable, is 
denoted by the variable followed by the field identifier of the component or parameter. The field 
identifier of a module component must be exponed in the type definition. If the component is a 
constant or type, the record or module type may be used in place of a variable. A field designator 
is a variable only if the field identifier was declared as a variable; otherwise it is a constant. A vari­
able field designator is readonly if the field identifier was exponed as readonly. If a field designator 
is a variable, its main variable is the main variable of the containing variable, and the field desig­
nator is pan of the containing variable. A field designator Ii is part of another field designator fi if 
and only if either their containing variables are the same and their field identifiers are identical, or 
ii's containing variable is part of fi. 

fieldDesignator :: = containing Variable"." fieldIdentifier 
containingVariable :: = base Variable 
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Examples: 
str.length 
jimM.sex 
diskldlecommand 
real1.mantissa 

7.2.3. Referenced variables 
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If p is a pointer variable whose collection C has ObjectType T, p denotes that variable and its 
pointer value, whereas pt is short for C(P), which denotes the variable of type T referenced by p. In 
a referenced variable. the pointer is said to be dereferenced. The main variable of a referenced vari­
able is the main variable of the collection to which the variable belongs. The referenced variable is 
part of the collection variable. A referenced variable '1 is part of another referenced variable '2 if 
and only if either they have the same collection and the. two pointers are equal, or the collection of 
r1 is part of 'r 

referencedVariable .. - collection Variable "(It pointer ")'" pointer "t" 
collection Variable .. - base Variable 
pointer :: = variable, functionDesignator 

Examples: 

Smithst 
Smithst .mother 
strP}'t .text(l) 

7.3 Scope rules and importing 

A scope is a region of text in which an identifier (other than a field identifier) is known with a 
single meaning. A scope is either 

a type, prototype, or routine declaration, beginning with the type, procedure, or function 
and ending at the end of the declaration, or 

a region of the program between the end of a declaration and the next unmatched end, or 

a record or module body, bracketed by record, or module and the imports and exports 
clauses, and the matching end, or 

a routine body (see 10.) 

A module or routine body is called a closed scope; other scopes are open. Note that a closed scope 
is nested within the open scope of the surrounding declaration. 

An identifier is accessible in a scope S imlnediately nested in a scope V if it is 

declared in S, or 

declared pervasive in some enclosing scope (see 6.2.3 for syntax), or 

explicitly imported into S (note that S must be closed), or 

a fonnal parameter of V (which must be a prototype or routine declaration), or 

accessible in V and S is open. 

An identifier must be accessible in S to be used in S outside of an assertion, in any context except 
as a field identifier; the scope rules for field identifiers are given in 6.2.2 and 6.2.3. An identifier 
used in S and not declared in S is said to be free in S. An identifier may not be declared pervasive 
if it is a variable or if its definition imports anything explicitly. Note that a pervasive identifier is 
accessible in every scope contained in the scope of its declaration, no matter how deeply_ 
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An identifier is known in S if it is 

accessible in S, or 

known in V if S is open, or 

implicitly imported into S (see below). 

An identifier must be known in S to be used in S within an assertion, in any context except as a 
field identifier. 

Note that a pointer cannot be dereferenced within a given scope unless its collection is accessible in 
that scope, and cannot be dereferenced to a variable unless the collection is accessible as a variable 
in that scope; these rules are identical to the rules for indexed variables. 

Note that there is only one circumstance in which a declaration in Euclid can have any side effects: 
a declaration of a module variable may have side effects from the execution of the module's initial 
action, if the module imports any variables. 

7.3.1. Declaring new identifiers 

New identifiers are declared 

as record or module components, 

as enumerated value identifiers, 

in a declaration at the head of an executable scope, 

as parameters of a for or discriminating case, or 

as fonnal parameters of a routine or prototype declaration, or result identifier of a function 
declaration. 

These new identifiers are accessible within the newly established scope. They are not accessible out­
side of this scope, except that: 

Field identifiers of records, or of modules if exported, are accessible outside the scope as 
the field identifier in a suitable field designator, which is considered to be a continuation of 
that scope. 

If an enumerated type is the definition in a declaration of type T, its value identifiers are 
declared in the same scope as T, rather than in the inner scope of the type declaration. 

Note that the name declared by a routine declaration is not declared in the closed scope which is 
the definition. but in the enclosing scope; it must be imported explicitly into the definition if it is 
recursive. Even if it is declared pervasive, it must still be imported explicitly into the scope of its 
own definition: this requirement makes the presence of recursion obvious. On the other hand. any 
fOlmal parameters of the declaration are accessible in the closed scope. Note also that importing of 
a module type into its definition is forbidden by the rule which restricts the use of an incompletely 
defined type identifier to the object type of a collection; a pointer type to a collection of such 
modules could be imported. 

A new identifier may not be declared if it is similar (see 3.1) to any other identifier known in the 
scope. Of course. an identifier known in the enclosing scope of a closed scope, but not imported or 
pervasive, is not known, and hence may be redeclared. This is the only way in which an identifier 
can become unknown in an inner scope. This and the restriction on formal parameters of types (see 
6.3) are the only restrictions on redeclaration. 
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7.3.2 Imp/icit importing 

Identifiers can also be· implicitly imported into a closed scope S. If X is a routine, module type, or 
prototype explicitly imported into S, then identifiers imported (explicitly or implicitly) into X or 
used in the type definitions of the formal parameter list of X, are implicitly imported into S. 
Furthennore, any identifier used in a formal parameter list is implicitly imported into the closed 
routine or module body which follows. The set of implicitly imported identifiers which are not ex­
plicitly imported is computed automatically, and printed by the compiler in its listing of the 
program, in the form of thus clauses appended to the explicit import lists (see 6.2.3.2 for syntax). 
Each import list has a thus clause which lists the identifiers implicitly imported as a result of the ex­
plicitly imported identifiers in that list, unless they have appeared in a previous thus clause, or are 
explicitly imported. Any thus clause in the source program is ignored 

Implicitly imported identifiers make it possible to write assertions (especially legality assertions) that 
refer to values not needed by the executable program. Note that identifiers that are only imported 
implicitly may only be used in assertions. Note that because of the implicit import rule, and the 
corresponding rule for exported routines and types (see 6.2.3), the type of any formal parameter or 
component of X can be expressed in S using the same sequence of basic symbols that appeared in 
its declaration; this allows legality assertions involving such types to be expressed in S. Note also 
that it is not possible for S to cause any variable to be referenced or modified unless the variable is 
either declared in S or imported into S. 

7.3.3 Explicit importing 

A non-pervasive identifier accessible outside a closed scope must be explicitly imported to be acces­
sible within the scope. If an enumerated type is explicitly imported, all its enumerated value iden­
tifiers are automatically explicitly imported. An explicitly imported identifier has the same status as 
a newly declared one. The import clause can specify (in the binding condition) for each variable 
identifier whether it is imported as an ordinary variable, or readonly (the default). A readonly vari­
able may not be changed explicitly; i.e., it may not be assigned to, or bound to a variable. A 
readonly variable is not a constant, however, since its value may change as a result of statements ex­
ecuted in a module in an enclosing scope where it is not readonly. A readonly variable identifier 
may not be imported as a var, and a variable identifier may not be imported as a constant A con­
stant identifier is always imported as a constant; its binding condition may be const or may be 
omitted. 

Note that a closed scope has the property that all its possible interactions with enclosing scopes can 
be detennined by examining its import list, identifiers declared pervasive in some enclosing scope, 
its parameters, and, in the case of a module, its export list. In the case of a routine no export list is 
needed, since nothing is left after the routine returns. 

7.4 Binding 

An identifier may be bound to a variable when it appears 

as a var or readonly formal parameter in a procedure declaration (functions cannot have 
such parameters); 

in a variable binding in a variable declaration. 

A variable to which an identifier is bound is said to be named. 

The scope of a binding is the scope of the declaration, and within this scope the identifier denotes 
the variable. That is, the initial value of the identifier is the value of the named variable at the tilne 
of binding, and the last value assigned to the identifier will be the value of the named variable after 
control finally leaves the scope. If this variable is part of an array variable, its index is evaluated 
when the scope is entered; if it is part of a referenced ,,;ariable, the pointer is evaluated when the 
scope is entered. 
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The type of the identifier being bound must be the same as the type of the named variable to 
which it is bound. A var identifier may not be bound to a readonly variable. A component of a 
packed structure or a machine-dependent record must not appear as a named variable. Note that 
this does not prevent discrimination of a packed variant record (see 9.2.2.2), since in that case it is 
the entire record which is named, not a component 

Any variable bound (readonly or var) to an identifier known in a scope S is considered to be named 
in S. 

To simplify the description of the rules for naming variables, we will assume for the rest of this sec­
tion that a procedure does not import any variables; the initial and final actions of a module are 
considered to be parameterless procedures for this purpose. Any procedure which does import vari­
ables is to be rewritten with additional variable formal parameters, as described in 6.2.3. The rewrit­
ten program will behave exactly like the original one. In order to ensure that the rewritten program 
is a legal one, however, we impose the following requirement: any variable imported by a 
procedure must be known in every scope that contains a call of the procedure, if the necessary field 
identifiers are exported. 

The language ensures that an entire variable can never overlap (see 7.1) any other variable known 
in the same scope that has a different main variable, or in other words that 

the value of an entire variable can change only 
as the result of assignment to that variable or one of its parts, or 

as a result of a procedure call in which that variable was the main variable of an ac­
tual parameter corresponding to a variable formal parameter; 

an assignment to an entire variable can never change the value of any variable that is 
known in the scope containing the assignment, except one of its own parts. 

To prevent binding from destroying this non-overlap property, the following restriction is imposed: 
no two variables which are named by a scope can overlap. If the compiler cannot determine 
whether or not two variables overlap (e.g., a(i) and a(j} overlap iff i=j}, it will assume that they 
don't, and generate a legality assertion to that effect for the verifier to deal with. Note that variable 
identifiers that it is illegal to use in a scope because of this rule are still known, and hence are not 
eligible for redeclaration. An identifier is known everywhere in its scope, except inside nested closed 
scopes that do not import it (explicitly or implicitly). 

Note that in general, identifiers that are declared as constants cannot cause any aliasing problems, 
since their values can always be copied. Of course the compiler is free to use a pointer rather than 
copy a value if it can determine that the meaning of the program is the same; this will certainly be 
true if the variable involved does not overlap any variable accessible in the same scope. In other 
cases the value must be copied. 
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8. Expressions 

"Grant me some wild expressions, Heavens, or I shall burst. II 
Farquhar, The Constant Couple, V, iii 

Expressions are constructs denoting rules of computation for obtaining values of variables and 
generating new values by the application of operators. Expressions consist of operands (i.e., vari­
ables and constants), operators, and functions. 

The rules of composition specify operator precedences according to eight classes of operators. Unary 
minus has the highest precedence, then the multiplying operators, then the adding operators, then 
the relational operators, then not, then and, then or and finally, with the lowest precedence, - >. 
Sequences of operators of the same precedence· are associated from left to right 

Since functions cannot have side effects, the order of evaluation of operands in an expression need 
not be defined. 

The rules of precedence are expressed by the following syntax: 

factor :: = variable I literal Constant I constantIdentifier I functionDesignator I set I 

set 
elementList 
element 
term 
sum 
relation 
negation 
conjunction 
disjunction 
expression 

.,(" expression ")" I n -- " factor 
.. - setTypeIdentifier n(n elementList ")" 
.. - element { "," element} I empty 
.. - expression I simpleType I all 
.. - factor I term multiplyingOperator factor 
:: = term I sum addingOperator tenn 
:: = sum I sum relational Operator sum I sum [not] in simpleType 
:: = relation I not relation 
:: = negation I conjunction and negation 
:: = conjunction I disjunction or conjunction 
:: = disjunction I disjunction n - >n disjunction 

Expressions in an element list for a set of type T = set of U must all be of type U. m denotes the 
empty set of type T, T( U) denotes the set containing all the elements of U, and T{x .. y) denotes the 
set of all values in the interval x .. y. If V is a subrange of U, It V) is an abbreviation for 
It V.first. V.Iast). 

Note that the operators on sets, summarized in 6.2.5, can be used to perform bitwise logical opera­
tions, and in fact these operators are intended to be implemented with the machine's logical opera­
tions on words. 

Examples: 

Factors: 

Tenns: 

Sums: 

x 
15 
(x+y+z) 
Abs(x+y) 
Hue(b/ue, col, green) 
Hue(C%r) 
SymSet{l, 5, -- 4 .. -1, 2) 
-x 

x*y 
i div (1- i) 
x mod (5*y) 

x+y 
hue! xor shade5{red) 
[*j+l 
hue! -- Hue(blue) 
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Relations: x = 15 
x not= 15 
p<= q 
(Kj) = (j<k) 
cv in hue} 
cv not in shades(orange) 
i in OneToOneHundred 
i not in 25 .. (x*5) 

Negations: not (p not = q) 
not q 

Conjunctions: x< = y and y(z 
p and not q 

Disjunctions: p or (x>y) 

Expressions: false -. > p or (x > y) 
a*a > b*b - > (Abs(a) > Abs(b» 

8.1. Operators 
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The types of the operands must be the same as the types specified below, or subranges of those 
types. A consequence is that a value whose type is exported from a module cannot be an operand 
in an expression outside the module, except perhaps of the "=" operator. Where the type of the 
result is specified below to be Integer, it is never a su brange, regardless of the operand types. Thus 
first. last and size are not defined on arithmetic expressions. 

It is the responsibility of the compiler to ensure that all legal arithmetic expressions evaluate to their 
mathematically correct values. The compiler may generate legality assertions restricting the values of 
operands in expressions, but it must support the evaluation of all well-behaved expressions, i.e., ex­
pressions whose Integer operations are all well-behaved. An operation is well-behaved if its 
operands and result are all in the range SignedInt. In addition, certain combinations of operators 
and extended range operands are considered well-behaved, as specified in the descriptions of in­
dividual operators. 

An extended range operand is 

a literal constant that is in Unsignedlnt, but not in SignedInt, 

a constant, variable or function designator whose type is a sub range of UnsignedInt but not 
of SignedInt, 

a sum or difference with at least one extended range operand. 

8.1.1. Afultiplying operators 

multiplyingOperator :: = "*" I div I mod 

operator operation type of operands 

* multiplication Integer 
set intersection the same set type T 

div division with Integer 
truncation 

mod modulus Integer 

type of result 

Integer 
T 

Integer 

Integer 

The div operator truncates toward zero, so that --(a div b)= -a div b. Also, a div --b= --a div b. 
The mod operator is defined by a mod b=a-«a div b)*b). The right operand of dh' or mod must be 
non-zero. 
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8.1.2. Adding operators 

addingOperator :: = It +" I " --" I xor 

operator operation 

+ addition 
set union 

su btraction 
set difference 

xor symmetric 
difference 

type of operands type of result 

Integer Integer 
the same set type T T 

Integer Integer 
the .same set type T T 

the same set type T T 

When used as an operator with one Integer operand only, - denotes sign inversion. 
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If + or - has an extended range operand, the operation is well-behaved if and only if the result is 
in the range Unsignedlnt 

8.1.3. Relational operators 

relationalOperator :: = "= " I not" =" I "(" I "( =" I ")" I ")=" 

operator 

=, not = 

<,) 
<=, )= 

in, not in 

in, not in 

type of operands 

most types 

any enumerated or sub range type 
any enumerated, subrange or set type 

any enumerated or sub range type 
and a set type with a compatible 
base type, respectively 

any enumerated or subrange type 
and an index type (not value), 
respectively. 

type of result 

Boolean 

Boolean 
Boolean 

Boolean 

Boolean 

Both operands of the first six operators must be (sub ranges of) the same type. 

The operators (= and >= stand for less than or equal, and greater than or equal respectively. TIley 
may also be used for comparing values of set type, and then denote set inclusion. If p and q are 
Boolean expressions, p = q denotes their equivalence. Note that all enumerated types define ordered 
sets of values. 

If (, (=, ), or > = has an extended range operand, the operation is well-behaved if and only if the 
value of the other operand is non-negative. 

8.104 Other operators 

operator operation type of operands type of result 

not logical negation Booiean Boolean 

and logical "and" Boolean Boolean 

or logical "or" Boolean Boolean 

-) logical implication Boolean Boolean 

The right operand of and or -- > need not be legal if the left operand is false; the right operand of 
or need not be legal if the left operand is true. . 
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8.2. Function designators 

A function designator specifies the evaluation of a function. It consists of the identifier or field 
designator designating the function, and· a list of actual parameters. The parameters are expressions, 
and their values are substituted for the corresponding fonnal parameters. The type of the function 
designator is the type of the function's result identifier (see 9.1.2, 10., and 11.). 

functionDesignator :: = function ["(" expression { "," expression} If)"] 
function:: = [containing Variable"." ] functionldentifier 

Examples: 

FindMax{Index) 
Gcc(147, k) 
Power(Index{i), str.length) 
ReaI.Add{reall, ReaI.Number(314159, 1» 
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9. Statements 

"The statements was interesting. but tough." 
Huckleberry Finn, eh. 17 

Statements denote algorithmic actions, and are said to be executable. 

statement .. - simpleStatement I structuredStatement 

9.1. Simple statements 

A simple statement is a statement of which no pan constitutes another statement. The empty state­
ment consists of no symbols and denotes no action. 

simpleStatement :: = assignmentStatement I procedureStatement I escapeStatement I 
assertStatement I emptyStatement 

emptyStatement :: = empty 

9.1.1. Assignment statements 

The assignment statement serves to replace the current value of a variable with a new value 
specified by an expression. 

assignmentStatement :: = variable": = .. expression 

The variable and the expression must be of the same type, with the exceptions permitted by 6.4. 

Note that assignment is not allowed if the type T of the variable is not assignable (see 6.), or if the 
variable is readonly. Except when pointers to counted or checkable collections are involved (see 
6.2.6), assignment need not require any more work than copying the bits of the representation. 

Examples: 

x:= y+z 
p: = iin 1..99 
p: = (1< = i) and (K100) 
shades(blue) : = Hut{blue, Color.Succ(c» 
realJ : = real2 

9.1.2. Procedure statements 

A procedure statement serves to execute the procedure denoted by the procedure identifier. TIle 
procedure statement may contain a list of actual parameters which are assigned or bound to the cor­
responding J0I111al parameters declared in the procedure declaration (cf. 10.). The correspondence is 
established by the positions of the parameters in the lists of actual and formal parameters, respec­
tively. There are two kinds of parameters: constant parameters and variable parameters; routine 
and type parameters are not permitted. 

In the case of a COllstallt parameter, the actual parameter must be an expression (of which a variable 
is a special case). The corresponding formal parameter denotes a local constant of the called 
procedure, and the current value of the expression is the value of this constant As in the case of a 
constant declaration, the type of the actual parameter must be assignable, and assignment-com­
patible with the type of the formal (see 6.4). 

In the case of a variable parameter, the actual parameter must be a variable, and the corresponding 
formal parameter is bound to this actual variable (see 7.4) during the entire execution of the 
procedure. The types must be the SaIne. A variable parameter must be used whenever the 
parameter represents a result of the procedure. 
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proced ureS tatement 
procedure 

Examples: 

TreeSort{DA} 
ZeroArra,}(DA} 
Replace(str, i, 3, '***') 

9.1.3 Escape statements 

SI\1PLE STATE\1E~TS 

procedure [ "(If expression { "," expression} tI)"] 
[containing Variable". If] procedureldentifier 

43 

An escape statement senres to indicate that further processing should continue at the statement fol­
lowing the smallest enclosing repetitive statement (exit). or that control should return immediately 
from the routine currently being executed (return). An exit must be within the scope of a repetitive 
statement that in turn is within the smallest closed scope containing the exit; hence control cannot 
leave a routine body through the execution of an exit. A return, on the other hand, may cause con­
trol to leave any number of open scopes that contain the return and are contained in the smallest 
routine body containing the return. Note that any module variables that are destroyed as a result of 
an escape will have their final actions executed before the escape (see 6.2.3). The when .clause, if 
present, makes execution of the escape conditional. Thus, the statement 

S when B 

is equivalent to 

if B then S end if. 

An expression must not appear in a return statement unless the statement is in a function body, and 
in that case the type of the expression must be assignment-compatible with the type of the 
function's result value. 

escapeStatement 
escapeBody 

Example: 

begin 

escapeBody [when expression] 
exit I return I return "(ft expression ")" 

var flag: (a, b,finished) : = finished 
for ... loop 

flag : = a; exit 

flag : = b; exit 

end loop 
casejlagof 

end 

a => ... enda 
b => ... end b 
finished = > ... end finished 
end case 

9.1.4 Assert statements 

An assert statement introduces an assertion (see 6.2.3) that is supposed to hold whenever control 
reaches that point in the progratn. The compiler treats it as a comment, as it does the assertions sup­
plied by invariant, pre and post clauses, unless the assertion is a Boolean expression, and the 
checked option is enabled for the enclosing scope (9.2.1). in which case the Boolean expression is 
evaluated. and execution of the program is tenninat~d if it is false. 
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assertStatement assert assertion 

Examples: 

assert (X<y and y(z) 
assert {z*(w**;) = x**y} 

9.2. Structured statements 

CHAP. 9 

Structured statements are constructs composed of other statements, which are to be executed either 
in sequence (compound statement and block), conditionally (conditional statements), or repeatedly 
(repetitive statements). 

structuredStatement :: = compoundStatement I block I 
conditionalStatement I repetitive Statement 

9.2.1. Compound statements and blocks 

The compound statement specifies that its component statements are to be executed in the same se­
quence as they are written. Note that a compound statement is a statement, and has no brackets; 
hence a sequence of statements can be written wherever a single statement can be written. 

compoundStatement :: = statement { ";" statement} 

Example: z:= x; x:= y;y:= z 

A block is a compound statement within which new identifiers can be introduced. The symbols 
begin and end act as brackets to delimit the scope of the new identifiers. If a scope S starts with 
checked, checking is enabled for that scope; if S starts with not checked, checking is disabled for S; 
otherwise checking is inherited from the enclosing scope (see also 6.2.3). If checking is enabled, 
each legality assertion in S, and each assertion in the source text of S that is a Boolean expression, 
is compiled into a runtime check, which aborts execution of the program if the assertion is false. 

block : = begin executableScope end 
executable Scope .. - checkedClause [ declaration ";" ] statement 

Example: 

begin 
const twoX : = 2*x 
"ar w: Signedlnt 
w : = twoX* twoX-x 

begin 
bindyto w; 

end 

y : = twoX* m'oX* twoX + y 
end 

9.2.2. Conditional statements 

{equivalent to w : = twoX* twoX*twoX + w} 

A conditional statement selects for execution a single one of its component statements. 

conditionalStatement :: = ifStatement I caseStatement 
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9.2.2.1.ljslalemenIS 

The if statement specifies that a statement is to be executed only if a certain condition (Boolean 
expression) is true. If it is false, the statement following the symbol else is to be executed, if 
present 

The statement 

if a then S elseif ... end if 

is an abbreviation for 

if a then S else if ... end if end if. 

ifStatement 

elseifClause 

if expression then executableScope elseifClause 
[ else executableScope ] end if 
{ elseif expression then executableScope } 

The expression between the symbols if or elseif and then must be of type Boolean. 

Examples: 

if .x<lS then z: = x+ y; cv; = blue else cv: = red; z: = 0 end if 

if pI not = members.nil then pJ : = pJt . relations; p2 : = members.nil end if 

if su(l) = $$$ then country: = UnitedStates 
elseif str(l) = $# then country: = GreatBrilain 
else country: = NotKnown 
end if 

9.2.2.2. Case statements 

The case statement consists of an expression (the selector) and a list of elements, each labelled by a 
set of manifest constants of the type of the selector. It specifies that the one element is to be ex­
ecuted whose label contains the current value of the selector. A special label othen,-ise can be used 
to label a statement that should be executed if none of the other labels contains the current value of 
the selector. If none of the labels contains the selector. and there is no otherwise, the program is 
illegal. Each element, except the othen,-ise element, must be terminated with end followed by one 
of the constants in its label. 

If the selector is discriminating an object, the parameter bound to the object is automatically 
declared in each case list element, either as a constant whose value is the expression in the object, 
or as a variable bound to the variable in the object. The expression or variable in the object must 
be a variant record r. say of type T. The value of r.itsTag is used to select one of the case list 
elements: in this situation, each case label list of the discriminating case statement must correspond 
to exactly one variant of the record. Within the elelnent selected by a particular value of the tag, 
say red, the parameter has the type T(red). Thus with the type declaration 

type T(tag: Color) = record 

case tag of 
red =) .. . 
green =) .. . 

end case 
end T 

the program 

,'ar anyx: T(any); ... ; 
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case x : = anyx of 
red =) ... 

green => ... 
end case 

is equivalent to 

var anyx: 1{any); ... ; 
case anyx.itsTag of 

red = > const x: T(red) : = anyx; ..• 
green = > const x: T(green) : = anyx; ... 

end case 

CHAP. 9 

except that the constant declarations in the latter would not be legal, because it is illegal to assign a 
1(any) to a 1(red). 

caseStatement 
simpleCase 
discriminatingCase 
caseTail 
caseBody 
caseListElement 
otherwiseElement 
object 

parameter 

Examples: 

case operator of 
plus => 
minus => 
times => 
end case 

case i of 

:: = simpleCase I discriminatingCase 
:: = case expression caseTail 
:: = case object caseTail 
:: = of caseBody end case 
:: = caseListElement { ";" caseListElement} otherwiseElement ";" 
:: = caseLabelList" = > .. executableScope end caseLabelEnd I empty 
:: = ";" othern·ise " = >" executableScope I empty 
: : = [const] parameter": = " expression I 

varBindingCondition parameter bound to variable 
: : = identifier 

x:= x+y end plus 
x : = x- y end minus 
x: = x*yend times 

1 =) cv : = red end 1 
2 = > cv : = blue end 2 
3,8 => cv: = green end 3 
4 .. 6,9,10 =) cv: = yellow end 4 
otherwise => cv: = purple 
end case 

case "ar s bound to anyStreamt of {begin new line} 
display = > s.height : = s.height+ 1 end display 
tape. disk =) 

s.position : = s.position + 1 
s.bujJeJ(s.position) : = $$N 
end tape 

keyboard => end keyboard {don't send characters to input device} 
otherwise => {also null} 
end case 

9.2.3. Repetitive statements 

Repetitive statements specify that certain statements are to be executed repeatedly. If a bound on 
the number of repetitions is known before the repetitions are started, or if the repetitions are con­
trolled by a generator, the for statement is the appropriate construct; otherwise the loop statement 
should be used. 
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A repetitive statement introduces a new scope. The statements of this scope are executed repeatedly. 
The declarations of the scope take effect before each execution of the statements starts, and remain 
in effect until the end of that execution. 

repetitiveStatement :: = 100pStatement I forStatement 

9.2.3.1. Loop statements 

The statements in the scope are executed repeatedly until control leaves the scope through an es­
cape statement. 

loop Statement loop executableScope end loop 

Examples: 

loop; exit when Color.Ord(tc) = x; lC: = Color.Succ(tc} end loop 

loop 
if Odt(i) then z: = z*x end if 
i: = idiv 2 
exit when i= 0 
x: = x*x 
end loop 

loop k: = imodj; i: = j; j: = k; exit whenj = 0; end loop 

9.2. 3. 2. For statements 

The for statement indicates that a statement is to be repeatedly executed while a progression of 
values is assigned to a new constant identifier called the parameter or controlled constant of the for 
statement. 

The parameter is declared as a constant in the scope. The type of the parameter is the type of the 
value component of the module type, the type of the elements of the index type, or the base type of 
the set 

forStatement 
generator 

setExpression 

:: = for parameter generator "~" loop executableScope end loop 
.. - in [containingVariable "." ] moduleTypeldentifier I 

[decreasing] in indexType I in setExpression 
.. - expression 

A module type generator is a module type which has three components with special names: vari­
ables called value (of any assignable type) and stop: Boolean, and a procedure called Next. These 
identifiers must be exported. A for statement of the fonn 

for v in ModuleTypeGenerator loop LoopBody end loop 

is equivalent to the block 

begin "ar cree: ~10duleTypeGenerator 
loop exit when cree.stop 

end 

begin const v: = cree. value; Loop Body end 
cree.Next 
end loop 

The initial and final actions in the declaration of the generator module type can perfonn any in­
itialization or cleanup that may be appropriate; note that the final action is executed whenever con­
trol finally leaves the for statement, whether normally or via an escape statement 
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~ote that if the generator module type imports no variables, the loop body and the generator are in­
dependent, and interact only through the parameter \'alues that are passed from the generator to the 
body. Thus termination can be proved solely as a propeny of the generator. 

A for statement with an index type generator, of the fonn 

for v in AnIndexType loop LoopBody end loop 

is equivalent to the block 

begin laT vv:AnIndexType: = AnIndexType.first 

end 

if vv < == AnI ndexType.1ast then 
loop 

end if 

const v: =vv 
Loop Body 
exit when vv= AnIndexType.last 
vv: = AnIndexType.Succ(vv) 
end loop 

If decreasing is present, interchange first and last, and replace Succ by Pred and < = by > = . Note 
that the bounds of an index type must be constants. 

A for statement with a set expression generator, of the fonn 

for v in SetExp loop LoopBody end loop 

is equivalent to the statement 

begin const se: = SetExp 
for v in se.BaseType 

end 

Examples: 

loop 
if v in se then LoopBody end if 
end loop 

for 1m in OneToOneHundred 
loop 
if anArra;(/m»max then max: = anArray(lm) end if 
end loop 

for ci decreasing in Color loop Q(ci) end loop 

9.2.4 Other uses afbinding 

If a record variable is to be used a number of times in field designators, it is often convenient to 
bind a short identifier to it (see 7.4). Note that the binding is fixed on entry to the scope. 

Example: 

begin bind d to dateTable(i+ 5); 
if dmonth = 12 then dmonth : = 1; dyear: = d.year+ 1 
else dmonth : = dmonth + 1 
end if 
end 

is equivalent to 
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if dateTableU+ 5).month = 12 then 
dateTable{ i+ 5).month : = 1 
dateTable{ i+ 5).year: = dateTable{i+ 5).year+ 1 

else dateTable{i+ 5).month : = dateTable{i+ 5).month+ 1 
end if 

and also to 

begin 
bind d to dateTable (i + 5) 
bind (m to dmonth, y to d.year) 
if m = 12 then m : = 1; y: = y+ 1 else m: = m+ 1 end if 
end 

OTHER LSES OF BI.'\DI.'\G 49 
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10. Procedure declarations 

" Bu t a name for an effect." 
Cowper 

A procedure declaration serves to define a part of a program, and to associate an identifier with it 
so that it can be activated by procedure statements: a function declaration (see 11.) plays a similar 
role. Collectively, procedures and functions are called routines. 

If a routine is declared with forward, everything except the routine body must appear in the forward 
declaration, and only the identifier is repeated in the true declaration. The imp on list of a forward 
declaration may itself contain identifiers preceded by forward, indicating that their own forward 
declaration is yet to come. The thus list of an identifier declared in a forward declaration is 
produced by the compiler at the point where the actual declaration is encountered; it is necessary 
that declarations (possibly forward) of all imported identifiers (including implicitly imported 
identifiers) have been encountered by this point 

A machine-code routine is exactly like an ordinary routine, except that its body is a sequence of 
machine instructions, represented as manifest Integer constants according to an implementation­
dependent convention. An implementation may define a more elaborate syntax for code bodies. 
Machine code routines may only 'appear in machine-dependent modules. 

procedureDeclaration :: = procedureHeading" = " routineDefmition 
routineDefinition :: = imponClause preAssenion postAssenion routine Body 
rou tine Body :: = block identifier I code Block identifier I forn'ard 
code Block : : = code manifestConstant { ";" manifestConstant } end 

The procedure heading specifies the identifier naming the procedure, and the formal parameter iden­
tifiers (if any). The parameters are either constant or variable parameters (see also 9.1.2). 

The standard representation of a routine must be defined by the implementation, so that a routine 
can be the argument of a type converter. A linkage between a machine code routine and a Euclid 
routine R can then be made by a declaration of the form 

com'erter MakeRoutineLink (procedure) returns RoutineLink 
\'ar Rlink: RoutineLink (at 100) : = MakeRoutineLink(R) 

with an appropriate jump in the machine code body to the routine address stored at 100. The type 
RoutineLink would of course have to be properly declared in the program. 

If the heading is prefixed by inline, this is a hint to the compiler that the procedure body should be 
copied at each call. Such copying tends to result in faster execution, at the expense of a larger ob­
ject program. The meaning of the program is not ch~nged by the inline prefix. However, an in line 
routine may not have a forward body or impon its own name (Le., may not be recursive). 

procedureHeading .. - [inline] procedure procedureIdentifier fonnalParameterList 
formalParameterList :: = "(" fonnalSection { "," fonnalSection} ")" I empty . 
formal Section .. - pervasive bindingCondition identifier { "," identifier} ":" type 
preAssertion :: = pre assertion ";" I empty 
postAssertion :: = post assenion ";" I empty 

A formal section without const, var, or readonly implies that its constituents are constants. 

A type specification for a fonnal parameter may have actual parameters that are preceding formal 
parameters; thus 

procedure/en: 0 .. 1000, a: array l..n of SignedInt) ... 

is a legal declaration. This procedure might be called as follows: 
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begin "ar 00: array 1..200 of Signedlnt; ... ./t200, aa); ..• end 

Furthermore, in order to reduce the proliferation of parameters that would otherwise be required, 
we allow the following shorthand: the type of a formal parameter may be a prototype application 
with some or all of the actual parameters of the type replaced by the symbol parameter. Each actual 
parameter of the prototype for which parameter appears is treated as though it appeared as an addi­
tional formal parameter of the procedure, and the appropriate actual parameter is supplied in every 
call of the procedure. Thus 

type Ta(n: Unsignedlnt) = array l..n of Signedlnt; proceduref(a: Ta(parameter» ... 

is also legal and is equivalent to the previous declaration of f, except that all the calls on f will be 
modified appropriately. The previous call would be written 

•.. f(aa) ... 

and would be modified to become 

... f(200, aa) ..• 

The use of a procedure identifier in a procedure statement within its declaration implies recursive 
execution of the procedure. Note that the identifier must be explicitly imported, even if it is per­
vasive. 

Examples of procedure declarations: 

type AnI ndex = 1..256 

type DataArra;{n: AnIndex) = array l..n of Signedlnt 

procedure TreeSort(\'ar a: DataArra){parameter» = 
{This procedure is a version of Floyd's TreeSort algorithm in CACM, 7 (1964), p. 70l. TreeSort 

sons the array a in ascending order} 
post {(a in Perm{a') andjin 1 .. a.n--1) --) a{j)<= a{j+1}} 

begin type Index = a.IndexType 

inline procedure Swap{il. i2: Index} = 
imports (,'ar a) 
post {a in Perm(a') and a(il) = a'(i2) and a{i2) = a'(il)} 

begin 
const t : = a( ill 
a(il) : = a{i2); a(i2): = t 
end Swap 

procedure SiftU]iJow, high: Index) = 
imports(lar a) 
pre {j in 2*(low+ 1) .. high --) a{j} < = dj div 2)} 
post {jin 2*10)-\-" .. higJz --) (aU) < = a(j dh 2) and a in Perm(a'»)} 

begin "ar son: Index: = low 
loop const father: = son 
son: = 2*father 
return when son) high 
if son<higJz and a(son)<a(son+ 1) then son: = son + 1 end if 
return when a(son) <= a{father) 
Swap( son, father} 
assert {j in 2* low .. son -- > a(j) < = a(; div 2)} 
end loop 

end SijtUp 

for i decreasing in 1 .. (Index.last div 2) 
loop 
SijiU!iJ. Index.1ast) 
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assert {Sijiec.(2*i, Index.last)} 
end loop 

for i decreasing in 1 .. I ndex.last -1 
loop 
Swap(1, i+ 1) 
SijtUp(l, i) 
end loop 

end TreeSort 

type DataArraySegment{m, n: Anlndex) = array m .. n of SignedInt 

procedure ZeroArray(,'ar a: DataArraySegment{parameter. parameter» = 
post {iin a.m .. a.n -) a(i)=O} 

begin 
for i in a.Index Type loop a( i) : = 0 end loop 
end ZeroArray 

procedure Replace(\'ar target: String(parameter), 
first, len: StringIndex, source: String(parameter» = 

pre (larget.length+ source.length-Ien < = targez.length) 
post {(i in 1 . .first-1-) zarget(i) = target' (i» and 

(i in first .. first + source. length -1 -) 
target{ i) = source( i --first + 1» and 

(i in first + source. length .. zarget.length+ source.length-Ien -) 
target{i) = target'(i+ len- source. length» and 

(target.length = target'. length + source.length-Ien)} 
begin 
const offset: = source.length-Ien 
const tl : = targez.length 
if offset) 0 then 

for i decreasing in first + len .. tlloop target{ i + offset) : = target{ i) end loop 
elseif offset < 0 then 

for i in first + len .. t!loop target{i+of!set) : = target{i) end loop 
end if 
targez.length : = tl + offset 
for i in 1 .. source.length loop tgt(first+ i-I) : = source(i) end loop 
end Replace 

Mutually recursive procedures require the use of fon\'ard in an imports clause: 

procedure A = imports (forward B) forward 
procedure B = imports (A) thus (B) begin ... end 
procedure A = imports () thus'(A} begin ... end 

CHAP. ]0 

A more s)mmetric version declares all the mutually recursive procedures with fon\'ard. In the 
following example A calls B calls C calls A: 

procedure A = imports (fon\'ard B) fon\'ard 
procedure B = imports (forward C) fon\'ard 
procedure C = imports (A) fon\'ard 

procedure A = imports ( ) thus (C, A) begin ... end 
procedure B = imports ( ) thus (A, B) begin ... end 
procedure C = imports () thus (B, C) begin ... end 
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11. Function declarations 

"The Fonn remains, the Function never dies." 
Wordsworth 

Function declarations serve to define parts of the program that compute values. A function is ac­
tivated by the evaluation of a function designator (see 8.2), which is a constituent of an expression. 

functionDeclaration :: = functionHeading" =" routineDefinition 

The function heading specifies the identifier naming the function, the fonnal parameters of the func­
tion, and the type of the function. 

functionHeading :: = [inline] function functionldentifier fonnalParameterList 
[returns resultldentifier n:" type] 

Functions may return values of any assignable type (see 9.1.1). The value of the result identifier 
when the function returns (i.e., after any finalization) detennines the value of the function. In all 
other respects the result identifier is exactly like a local variable identifier. A return statement with 
an expression assigns the expression to the result identifier before returning. A return statement 
without any value is supplied automatically just before the end of the body. A machine-code func­
tion returns its value by an implementation-defined convention. 

Occurrence of the function identifier in a function designator within its declaration implies recursive 
execution of the function. Note that the identifier must be explicitly imported., even it if is per­
vasive. 

A function may not have variable parameters, or import anything \'ar (although importing a variable 
readonly is legal); hence, a function cannot have side effects. Furthermore, a function will return 
the same value whenever it is called with the same actual parameters, if the values of all imported 
variables are unchanged. 

Examples: 

function FindAfax(a: DataArraySegment{parameter, parameter» 
returns index: Signedlnt = 

post {k in a.m .. a.n --> a(index) >= a(k»)} 
begin 
index: = a.m 
for i in a.m+ 1 .. a.n 

loop 
assert {k in a.m .. i-I - > a{index) > = a(k)} 
if a(i) > a(index) then index: = i end if 
end loop 

end FindMax 

function Gcd(m. n: Signedlnt) returns r: Signedlnt = 
imports( Get!) 
begin if n = 0 then return (m) else return (Gcd(n, m mod n» end if end Gcd 

function Powe!{x: Signcdlnt, y: Unsignedlnt) returns z: Signcdlnt = 
begin ,'ar w: Signedlnt: "ar i: Unsignedlnt 
w : = x; i: = y; z: = 1 

loop assert {z*(w**i) = x**y} 
exit when i = 0 
if Odd( i) then Z : = z*w end if 
i: = idiv 2 
w:= w*w 
end loop 
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assert {z = x**y} 
end Power 

function Substrl,s: String(parameter),first: StringIndex, len: StringLength) 
returns r: String(len) = 

pre (first + len < = s. length + 1) 
post {(dn I..len - > t{i) = .s(i+ first-I» and r.length = len} 
begin 
r.length : = len 
for i in I..len loop t{i) : = .s(i + first-I) end loop 
end Substr 

function Catenate(sl: String(parameter), s2: String(parameter), size: StringLength) 
returns r: String(size) = 

pre «sl.length + s2.length < = size) and 
(r.length = sl.length + s2.length» 

post «dn I..sl.length -) T(i) = sl(1» and 
(i in I..s2.length -) t{i+ sl.length) = s2{i»)} 

begin 
for i in 1 .. sl.length loop t{i) : = sl(i) end loop 
for dn 1 .. s2.length loop t{i+sl.length): = s2(i) end loop 
end Catenate 

CHAP. II 
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12. Programs 

"All are but parts of one stupendous whole." 
Pope, An Essay on Man 

A Euclid program consis~s of a sequence of module type declarations, possibly prefixed by an in­
clude clause that causes additional text to be insened into the program. The include clause is a list 
of items, each of which names a file containing the text of a Euclid program; the file is named by a 
literal string, according to an implementation-defined convention. If from is present, only the named 
module types are included; otherwise all the declarations in the file are included. If the same type 
identifier from the same file is included more than once, duplicates are suppressed. If different files 
contain types with the saine name, however, an error results because of the normal Euclid rule that 
forbids redeclaration of names. 

An implementation may use some method other than the textual substitution described above to 
provide this facility. In particular, it may take advantage of the fact that an included file has already 
been compiled. Thus the structure of compilation units is intended to facilitate separate compilation 
(although not to require it). 

This repon does not specify how the module types declared in programs are instantiated to start a 
program. 

program 
compilation Unit 
includeClause 
includeltem 
fileName 

:: = compilationUnit 
:: = [inc1udeClause ";" ] typeDeclaration { ";" typeDeclaration} 
:: = include includeltem { ";" include Item } 
:: = [typeIdentifier { "," type Identifier } from] fileName 
:: = literalString 

Examples: 

include Scanner, SymbolTable from "ParserUtilities" 
type Parser = module 

end Parser 

type NumberTable = module exports (Search. Delete, Insert) 
{This module implements a table of numbers, e.g., currently open accounts, as an associa-

tive memory} 

penashe const tableSize: = 763 

pen ashe type Tablelndex = 1 .. table Size 

penasive type CyclicScan(item: ~ignedlnt} = {a generator for a for loop} 
module exports (Next, value. stop) 
const start: = (item mod tableSize) + 1 
\'ar value: TableIndex: = start 
\'ar stop: Boolean: = false 

procedure Next = 
imports( var value. start, var stop) 

begin 
if value = tableSize then value: = 1 
else value: = value+ 1 end if 
stop: = (valuenot= start) 
end Next 

end CyclkScan 

type State = (jresh.full deleted) 

type TableEntry(f1ag: State} = 
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record 
casejlagof 

full =) lar key: Signedlnt end full 
otherwise =){ nothing} 
end case 

end TableEntry 

var table: array Tablelndex of TableEntry{any) 

function Search(key: Signedlnt) returns r: Boolean = 
imports (table) 

begin 
for i in CyclicScan( key) 

loop 
case entry: = table( i) of 

fresh => return (false) endfresh 
full => return (true) when entry.key = key; end/ull; 
othern·ise =) 
end case; 

end loop; 
return (false); 
end Search; 

procedure Deleu{key: Signedlnt) = 
imports (\'ar table) 

begin 
const deletedEntry: TableEntr;(deleted) : = 0; 
for i in CyclicScan(key} 

loop 
case entry: = table( i) of 

full =) if entry. key = key then 
table(i) : = deletedEntry; 
return 
end if 
end full 

fresh =) return end fresh 
othen,-ise =) 

end case 
end loop 

end Delete 

procedure Insert{key: Signedlnt) = 
imports (lar table, Search) 

begin 
return when Search(key) {if already there}; 
for i in CyclicScan(key) 

loop 
case table( i).jlag of 

fresh deleted = > 

end loop 

,'ar t: TableEntry{full) 
t.key: = key 
table( i) : = t 
return 
end fresh 

otherwise = > 
end case 

assert (false) {table will never be full} 
end Insert 

CHAP. 12 
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const!reshEntry: TableEntryifresh) : = 0 
initially 

begin 
for i in table.IndexType loop tabld.i) : = !reshEntry end loop 
end 

end NumberTable 

PROGRAYfS 57 
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13. Implementation standards 

tI&That's not a regular rule: You invented it just now.' 
'It's the oldest rule in the book. ' said the King. 
Then it ought to be Number One,' said Alice." 

Alice in Wonderland, Ch. 12 

One motivation for the development of Euclid was the need for a powerful and flexible language 
that could be reasonably efficiently implemented on most computers. Its features are defined 
without reference to any particular machine in order to facilitate the interchange of programs. To es­
tablish a reasonable minimum standard for Euclid implementations, the following requirements are 
imposed on every implementation. 

l. Word symbols, such 'as begin, end, etc., may be written as a sequence of letters (without sur~ 
rounding escape characters). They may not be used as identifiers. An implementation may 
also allow such symbols to be written in other ways (e.g., in boldface), provided there is a 
straightforward transformation into the representation as a sequence of letters. 

2. Blanks, ends of lines, and comments are defined as separators. An arbitrary number of 
separators may occur between any two consecutive Euclid symbols, with the following 
restriction: no separators may occur within identifiers, numbers, and word symbols. 

3. At least one separator must occur between any pair of consecutive identifiers, numbers, or 
word symbols. 

4. The implementation may set limits on the size and complexity of the source program. 
However, these limits must be chosen from the following list, and must not be more restric­
tive than indicated below. An implementation should not reject a program for exceeding 
some limit not on this list; it may accept programs which exceed any of these limits. 

a) The range of Unsignedlnt (must include 0 .. 216 _1). The range of SignedInt (must in­
clude - 215 + 1..215 _-1). It is recommended, but not required, that lar§er subranges 
of Integer than these be permitted, say up to 0 .. 232 -1 and - 231 + 1..2 1-1. Integer 
literal constants with values in any permitted subrange of Integer must be accepted. 

b) The maximum number of elements in the base type of a set (at least 16). 

c) Depth of nesting of ends (at least 20). 

d) Depth of nesting of parentheses in an expression (at least 7). Number of basic sym­
bols in an expression (at least 50). 

e) The total number of identifiers known in a scope (at least 200). The total number 
of identifiers in a program (at least 1000). 

f) The number of non-compound statements and declaration parts in the source 
program (at least 2~OO). 

g) The maximum number of characters in an identifier (at least 50). 

h) The value of stringMaxLength (at least 255). 

i) The maximum value of alignment (may be 1). 

13.1 Representation of special symbols 

TIle preferred representations of special symbo·ls that are not words, in the IBM PL/I 60-character 
set, and in the Model 33 Teletype set, are as follows: 
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Special symbol PL// Teletype 

{ (* (* 
} *) *) 
t @ t 

break \ 

Programs can be converted from one representation to another by a finite-state algorithm that recog­
nizes each special symbol and identifier in the source representation, and outputs the corresponding 
symbol in the target representation. During this conversion, break characters can be supplied by any 
uniform algorithm. The recommended strategy for break characters is as follows: 

If neither representation has lower case, or both do, break characters should be preserved. 

If only the source has lower case, a break character should be inserted between a lower case 
letter and a following upper case letter in an identifier. 

If only the target has lower case, all letters should be converted to lower case, except that 
when a letter follows a break character, the break character should be dropped and the let­
ter left in upper case. 

Unfortunately, this algorithm removes initial capitals; analysis of the declarations is required to 
determine which identifiers denote types or routines and hence should be capitalized 

13.2 Standard format for programs 

It is strongly recommended that an implementation include an option to produce a version of the 
source program in a standard format. The recommended standard is: 

One level of indentation for each unmatched begin, record, module, loop, if, or case. The 
bracket and its corresponding end should also be indented, except in the case of if .. elseif .. 
else. and case. The for clause should not be indented. Indentation should be omitted if the 
entire compound statement or declaration will. fit on one line. Thus 

a:= 3;aJ:= 31;a2:= 32 
begin 
b:= 4 
end 

c:= 5 

if b=4 then 
a:= 6 

else 
a:= 7 

end if 

if b = 4 th en a : = 6 else a : = 7 end if 

loop 

end loop 

for iin 0 .. 5 
loop 

end loop 

A second level of indentation for the scope in each case element. Thus 

case a of 
3 =) 
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OutputLine( a, b, 1(0) 
InputLine(a. b, 100) 
end 3 

4 =) 
OutputLine(a, b,2(0) 
InputLine(a. b,200) 
end 4 

end case 

CHAP. ]3 

If a statement is too long for one line, it should be continued on subsequent lines with a 
small amount of indentation (one or two spaces). 

Several short statements may be put on the same line. 

Semicolons should be omitted at the ends of lines (see 3.1). 

13.3 Annotation 

It is strongly recommended that an implementation include an option to produce an annotated list­
ing of the source program, in which all identifiers automatically imported into a closed scope and 
the formal parameter declarations corresponding to uses of parameter are noted. 

I t is recommended that options exist to add to the annotated listing declarations for all explicitly im­
ported identifiers, and warnings of identifiers imponed but not used, or imported ",'ar but not set 
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14. Implementation notes 

mThe horror of that moment, • The King went on, ~I shall never, never forget!' 
'y ou will, though, , the Queen said 'if you don't make a memorandum of it. ", 

Through the Looking-Glass, Ch. 1 
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This section discusses implementation techniques for parts of the Euclid language that are relatively 
new or tricky. Of course, no implementation is required to use these techniques. 

14.1 Identifiers 

Identifiers may vary in capitalization, and in the presence or absence of break characters. The 
Euclid rule is that each time an identifier is usecL it must be written the same way it was declared 
(see 3.). This rule can be efficiently enforced by normally looking up the identifier exactly as it is 
written, and making the more expensive comparison that ignores break characters and capitalization 
only when adding an identifier to the symbol table. If a hash table is used, the hashing algorithm 
should probably be chosen to map equivalent identifiers into the same hash code. 

An alternative implementation is to store the identifier in a standard case, with break characters 
removecL and to append to it the additional information needed to keep track of the case of each 
letter, and the presence of break characters. 

14.2 Parsing 

Euclid has been designed to be amenable to deterministic parsing [Aho and 10hnson 74]. The syn­
tax presented in the body of the report is not directly suitable for this purpose, since it was chosen 
primarily to aid the reader and facilitate the exposition. 

J 4.3 One-pass translation 

Euclid has been designed to permit one-pass translation. To this end, identifiers must be declared 
before they are used. Recursive routines and types may break this rule by using forn'ard for the 
definition, but all the type information must still be present before use. 

14.4 Routine parameters 

Constant parameters can be passed either by copying the value. or by reference, i.e., by passing the 
address of a variable containing the value. unless the variable overlaps some variable accessible in 
the routine, in which case the paratneter must be passed by copying. The same test that is required 
to detect the overlap of two variables can be used to detect this overlap: it depends on the defini­
tion of overlap given in section 7. Note that (explicitly and implicitly) imported variables must be 
treated exactly like variable parameters for this test 

Variable parameters can be passed either by passing the address of the variable, or by copying the 
value on entry to the routine, and copying it back on exit: the latter copying is unnecessary if it is 
readonly. TIle absence of overlap means that this double copying will always work. If a variable is 
passed by double copying, then a constant parameter whose value is an overlapping variable can 
safely be passed by reference; this might be desirable if the constant is much larger than the vari­
able. 
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14.5 Routines in modules 

If a routine R is declared in a module M, and R imports a non-manifest component c of M, then R 
must obtain access to c when it is called. The call must take the form m.RC .. ), where m is a variable 
or constant of type M. This may be done in two ways: 

By passing m (presumably by reference). and treating m as a record within R; c would then 
be accessed by its known position relative to the address of m. 

By passing c explicitly. This might be preferable if it is the only such component. 

If R imports only manifest constants, everything can be done at compile-time. If it imports any non­
manifest component c, however, c must in general be passed as a parameter, since it could be dif­
ferent for different module variables. There is one exception: if R imports only constants that 
depend only on constants declared in module types for which only one variable is ever created, 
then the references to these constants can be compiled into R, and they need not be passed as 
parameters. 

1 4.6 Constant components o/records and modules 

The same observations apply in general to constant components. Except under the conditions 
described above, a constant component or parameter must be stored in each variable, since it may 
be different from one variable to another. Of course, if the component or parameter is never 
referenced except during initialization, then it need not be stored. 

14.7 Finalization 

If a scope declares a module variable that includes a finalization statement, then code must be ex­
ecuted whenever the scope is exited which performs the finalization. This might be done inline, or 
by calling a routine. The same is true whenever a Free procedure is executed to free such a vari­
able. 

Since this machinery must be present anyway, it can be used to allow variables declared in the 
scope, whose size is not manifest, to be allocated someplace other than in the frame of the routine 
containing the scope. The finalization code for the scope would then be expanded to include code 
for freeing tlle storage used by such variables. Whether this technique is worthwhile depends on the 
allocation strategy used for activation records. 

14.8 Inline code 

In general, it is highly desirable for an implementation to consider the use of inline code for all 
short routine bodies, even if the program has not explicitly declared them inline. It is quite com­
mon for such bodies to be shorter than their calling sequences, especially since they can be sub­
jected to normal optimization once they have been inserted inline. 

14.9 Reference counts 

There is an important special case in which· it is possible to avoid incrementing and decrementing 
reference counts. Suppose that the progr<:UTI has a declaration 

type C = counted collection of ... 

We say that a scope S is C-conservative if it contains no assignments to variables of type tC that are 
not local to S, it contains no uses of v.refCount for variables in C, and all procedures that it calls 
are also C-conservative. Within S it is not necessary to update reference counts for variables in C, 
since no variable in C can be freed in S. and every such variable will have the same reference count 
on exit from S that it had on entry to S. This idea can be extended to routines that make assign­
ments to variable parameters of type tc. 
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14.10 Representation ojpointers . 

It is possible to take advantage of the fact that pointers are strictly segregated by collection, to make 
the representation of a pointer depend on the collection it is in. For instance, a pointer could be 
relative to some base address. Of course, such a representation cannot be used in a sensitive context. 

14.11 Prototypes 

Suppose T is a prototype. It is not generally necessary to store its actual parameters with a variable 
whose type is an application of T. The two exceptions (see 6.3) are: 

T has an actual parameter any, or 

the variable is in a collection whose object type contains unknown. 

In all other cases, the values of the parameters are known from the declaration. If the declaration 
contains parameter, it must be in a formal parameter list, and the value can be passed as an addi­
tional formal (see 10.). If the. type is exported from a module, it may import components of the 
module, in which case the remarks of 14.5 are applicable. 

These considerations are especially relevant for variant records and arrays. A variant record is nor­
mally used in one of three ways: 

a) To express the uniformity of several different record structures, even though the particular 
structure in use is always manifest from the declarations. 

b) When the variant is expected to change during execution. A variable of this kind must be 
declared with any, and the tag must be stored in the record. Furthermore, enough space 
must be allocated for the largest of the possible variants. 

c) When the variable is dynamic, and the variant is fixed at the time the variable is created. A 
collection of such variables must be declared with unknown, and the tag must be stored 
with each variable, or with each pointer. 

The third case, involving unknown, is also appropriate for arrays. For example, there might be a col­
lection of strings of widely varying length, all of which should be treated uniformly. 

When one of the bounds of an array is a parameter, the size of the resulting type is not known at 
compile-time; such a type is called length-unresolved. If more than one length-unresolved variable is 
declared in a record or routine, it is not possible to determine the relative position of every such 
variable at compile-time. This situation can be dealt with by constructing pointers to all the length­
unresolved components except the first one at the time the record variable or routine instance is 
created, and referring to them indirectly through these pointers. 

14.12 Checkable collections 

One possible implementation that meets the requirements of 6.2.6 is to allocate a Finger record in 
the system zone for each variable in a checkable collection C: 

type Finger = record ,'ar refCount: UnsignedInt; const addr: AddressType 
end Finger 

TIle representation of a tC is the address of the finger~ and an extra level of indirection is required 
on every reference. 



64 REFERE~CES 

References 
[1] Abo, A.V. and Johnson, S.C. LR parsing. Computing Surveys 6, 2 (June 1974). 

[2] Ambler, A. et al. Gypsy: A language for specification and implementation of verifiable 
programs. SIGPLAN Notices 12,3, pp 1-10 (March 1977). 

[3] Clark, B.L. and Ham, FJ.B. The Project SUE System Language Reference Afanual. 
University of Toronto, Computer Systems Research Group Technical Report CSRG-42 
(Sept. 1974). 

[4] Clark, B.L and Homing, J.1. Reflections on a language designed to write an operating sys­
tem. SIGPLAN Notices 8, 9 (Sept. 1973). 

[5] Geschke, C.M. and Mitchell, J.G. On the problem of unifonn references to data structures. 
IEEE Trans. SE-l, 2, pp 207-219 (June 1975). 

[6] Hoare, C.A.R. Proof of correctness of data representations. Acta Infonnatica 1, pp 271-281 
(1972). 

[7] Hoare, C.A.R. Hints on programming language design. Stanford University, Computer 
Science Department, Technical Report STAN-cs-73-403 (Dec. 1973). 

[8] Holt, R.C. et aI. The Euclid language: A progress report. Proc. ACM National Con/., (Dec. 
1978). 

[9] Holt, R. C. and Wortman, D. B. A model for implementing Euclid modules and type 
templates. SIGPLAN Notices 14, 8, pp 8-12 (Aug. 1979). 

[10] Holt, R. C. et. aI. The Toronto Euclid Compiler Project Workbook. 1. P. Sharp Associates, 
Ltd., Toronto (March 1980). 

[11] Ichbiah, lD. et al. The System Implementation Language LIS. cn, 68 route de Versailles, 
78430 Louveciennes, France (Dec. 1974). 

[12] Jensen, K. and Wirth, N. Pascal User Afanual and Report, 2nd ed. Springer-Verlag, 1975. 

[13] Liskov, B. and ZilIes, S. An introduction to CLU. SIGPLAN Notices 9, 4 (April 1974). 

[14] Liskov, B. Abstraction mechanisms in CLU. Comm ACM 20, 8, pp 564-576 (Aug. 1977). 

[15] London, R.L. et al. Proof rules for the programming language Euclid. Acta Infonnatica 10, 
pp 1-26 (1978). 

[16] Popek, G.J. et al. Notes on the design of Euclid. SIGPLAN Notices 12, 3, pp 11-18 (March 
1977). 

[17] Richards, M. BCPL: A tool for compiler writing and structured programming. Proc. AFIPS 
Conj 34, pp 557-566 (1969.SJcc). 

[18] Thompson, D.H. Base + Builder language definition. Technical Note 4, Computer Systems 
Research Group, UniYersity of Toronto (March 1976). 

[19] Wirth, N. TIle programming language Pascal. Acta Infonnatica 1, pp 35-63 (1971). 

[20] Wirth, N. Modula: A language for modular multiprogramming. Soflware- Practice and 
Experience 7, L pp 3-35 (Jan. 1977). 

[21] Wortman, D.B. On legality assertions it;l Euclid. IEEE Trans. SE-S, 4 (July 1979).' 

[22] Wortman, D.B. and Cordy, J. Early Experiences with Euclid. Proc. 5th Int. Con/. Software 
Eng. (March 1981). 

[23] Wulf, W., London, R.L. and Shaw, M. An introduction to the construction and verification 
of Alphard programs. IEEE Trans. SE-2, 8, pp 253-265 (Dec. 1976). 



APP.A COLLECTED SY~TAX 65 

Appendix A. Collected syntax 

The syntax of Euclid, as presented in this report, is collected below for convenient reference. The 
numbers in the left margin are the numbers of the sections in which the following text appears. 

3.1 

letter 

octalDigit 
digit 
hexDigit 
break Char 
specialSymbol 

wordSymbol 

4. 
identifier 
letterOrDigit 

unsignedNumber 

literalString 
extendedCharacter 
extension 

literaIChar 

5. 
literal Constant 
manifestConstant 
manifestExpression 

6. 

type 
type Declaration 
type Definition 

6.1. 

.. - "A" I "B" I"C" I "D" I "E" I "F" '''G'' , "H" , "I" I "1" , "K" ,"L" , "M" , 
"N" I "0" I"P" I "Q" , "R" '''S'' , "T", "U" , "V"'''W'' , "X","Y" , "z", 
"a" I "b" , "c" , "d" , "e" , "f' , "g" , "h" , "i" '''j'' , "k" I "I'" "m" I "n" I 
"0" '''p'' , "q" '''r'' '''s'' , "t" , "u" '''v'' I "w" I "x" , "y" '''z'' 

:: = "0'" "I" , "2" I "3" , "4" , "5" I "6" , "7" 
:: = octalDigit I "8" , "9" 
:: = digit I "A" I "B" I "C" I "D" , "E" '''F'' 
:: = (some implementation-dependent character not a letter or digit> 
::= "+" I "-" 1"*" 1"=" I "(" I ")" I "(=" I "}=" I "-)" 1"(" '")''' " .. " I 

"{til"}" 1":=" I"." I"," I ";" I ":" I '"'' I "t"'''=)'' I "$" I "#"1 
wordSymboI 

:: = abstraction, aligned I and I any I array I assert I at I begin I bind I bits I 
bound I case I checkable I checked I code I collection, const I conl'erter I 
counted I decreasing I default I dependent I dh I else I elseif I end I exit I 
exports I finally I for I forward I from I function I if I imports I in I include I 
initially I inline I inl'ariant I loop I machine I mod I module I not I of I or I 
othen\'ise I packed I parameter, pen'ash-e 'post' pre I procedure I readonly I 
record I return' returns' set I then, thus' to I type I unknown I ,'ar I when I 
with I xor 

:: = letter { letterOrDigit } 
: : = letter I digit I breakChar 

:: = digit { digit} I 
octalDigit { octalDigit} " #8" I 
digit { hexDigit } .. # 16" 

:: = "'" { extended Character } "''' 
:: = character '''$'' extension 
:: = digit digit digit I "s" I "T" , "N" I "$" I .. '" 

.. - "$" extendedCharacter 

:: = unsignedNumber I lite ralString IliteralChar I enumeratedValueIdentifier 
:: = literalConstant I manifestExpression 
:: = expression 

:: = simple Type , structuredType 
:: = type typeIdentifier = preAssertion typeDefinition , prototypeDeclaration 
:: = type I fonnud 

simpl~Type :: = enumeratedType' standardSimpleType , subrangeType I 
derivedSimpleType I simpleTypeAppl 

derivedSimpleType :: = [containingVariable "." ] simpleTypeIdcntifier 
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6.1.l. 

enumeratedType 

6.1.2. 

6.1.3. 

subrangeType 
constantSum 

6.2. 

"(" enumeratedValueldentifier { "," enumeratedValueldentifier} tt)" 

:: = constantSum tt .. " constantSum .. -.. - sum 

structuredType :: = [packed] unpackedStructuredType I derivedStructuredType I 
structuredTypeAppl 

unpackedStructuredType:: = arrayType I recordType I moduleType I mdRecordType I 
setType I collectionType 'pointerType 

derivedStructuredType:: = [c0ntainingVariable ..... ] structuredTypeldentifier 

6.2.1. 

arrayType 
indexType 
componentType 

6.2.2. 

:: = array indexType of componentType 
:: = simpleType 
:: = type 

recordType 00 - record fieldList endRecord 
endRecord .. - end record, end identifier 
fieldList .. - [recordDec1aration ";" ] [variantPart] n;n 
recordDeclaration :: = recordDec1arationPart { ";" recordDec1arationPart} 
recordDec1arationPart :: = constantDeclaration' ,oar variableDeclarer 

variantPart :: = case tag [default manifestConstant] of variant { ";" variant} 

variant 
caseLabelList 
caseLabelEnd 
case Label 
tag 
otherwise Variant 

6.2.3 

moduleType 

endModule 
module Body 
checkedClause 
declaration 
declarationPart 

pervasive 
invariant 
assertion 

6.2.3.1 

[othenviseVariant] ";" end case 
:: = caseLabelList" =)" recordDec1aration ";" end caseLabelEnd' empty 
:: = case Label { "," caseLabel } 
:: = literal, manifestConstantIdentifier , "(" caseLabel ")" 
:: = manifestConstant I subrangeType 
.. - identifier 
.. - othen,-ise" =)" recordDeclaration 

:: = [machine dependent] module [ identifier] 
importClause exportClause module Body cndModule 

:: = end module, end identifier 
:: = checkedClause declaration ";" initialAction invariant finalAction 
:: = checked, not checked I empty 
:: = empty I penrasive declarationPart {";" pervasive dec1arationPart} 
:: = constantDec1aration' variableDeclaration I typeDec1aration I 

procedure Declaration I functionDeclaration I converterDeclaration I 
assert assertion 

:: = pen-ashe I empty 
00 - [abstraction functionDec1aration ";"] in-rariant assertion n;" I empty 
00 - "(" expression ")" I empty 

APP. A 
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exportClause 
exportList 
exportItem 

bindingCondition 

6.2.3.2 

importClause 
singlelmportOause 
importList 
importItem 

6.2.3.4 

initialAction 
finalAction 

6.2.4 

COLLECTED SY~T AX 

:: = exports exportList It;" I empty 
:: = .,(It exportItem { "," exportltem} ")" 
:: = bindingCondition identifier [ l\·ith exportList] I ": =" I "=" I "1"1 

subrangeType 
: : = const I readonly I var I empty 

:: = singlelmportClause { ";" singlelmportClause} I empty 
:: = imports importList [thus importList] ";" 
:: = "(" importltem { "," importltem} "}" 1"(" ")" 
.. - [forward] pervasive bindingCondition identifier 

:: = initially routineDefinition ";" I empty 
:: = finally routineDefinition ";" I empty 

mdRecordType :: = machine dependent record [alignmentOause] 
[ mdDeclarationPart { ";" rndDeclarationPart} ] "; II endRecord 

mdDeclarationPart :: = constantDeclaration I 
vaT identifier "(" at rnanifestConstant [bits subrangeType ] ")" 
":" typeDefinition [ initialization] 

alignmentOause :: = aligned mod manifestConstant 

6.2.5. 

setType 
baseType 

6.2.6. 

collection Type 
countControl 
objectType 
pointerType 

6.3 

:: = set of base Type 
.. - simpleType 

:: = countControl collection of objectType [ in zoneldentifier] 
:: = counted [ manifestConstant] I checkable I empty 
::= type 
.. - "1" collectionVariable 

prototypeDeclaration :: = type type Identifier typeFormalList = preAssertion typeDefinition 
typeFormalList :: = "(" typeFormalSection { "," typeFormalSection} It)" 
typeFormalSection :: = identifier { "," identifier} ":" indexType 
simpleTypeAppl :: = derivedSirnpleType typeActualList 
structuredTypeAppl :: = derivedSrructuredType typeActualList 
typeActualList :: = "(It typeActualParameter { ", It typeActualParameter} tt)" 
typeActualParameter :: = expression I any I unknm\n I parameter 

6.5 

converterDec1aration :: = converter functionldentifier 1tC' sourceType ")" returns targetType 
targetType :: = typeldentifier . 
sourceType :: = typeldentifier I procedure I function 

7. 
constant :: = expression 
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constantDec1aration 

iden tifierList 
structuredConstant 
constantItem 

:: = const identifierList [ ":" type]": = " expression I 
const identifierList ":" type It: =" structuredConstant 

:: = identifier { "," identifier} 
::= "(n [constantItem {"," constant Item } ] n)" 
:: = manifestConstant I structured Constant 

variableDeclaration :: = "ar variableDec1arer I 
bind variableBinding I bind "(n bindList ")" 

bindList :: = variable Binding { "," variable Binding } 
variableBinding :: = varBindingCondition identifier to variable 
varBindingCondition :: = readonly I "ar I empty 
variableDeclarer :: = identifierList [fixedAddress] ":" type [initialization] 
fixedAddress :: = "(" at manifestConstant ")" 
initialization :: = ": =" expression 

variable 

7.1. 

entire Variable 

7.2. 

componentVariabIe 
base Variable 

7.2.l. 

indexedVariable 
arrayVariable 

7.2.2. 

fieldDesignator 
containing Variable 

7.2.3. 

referenced Variable 
collection Variable 
pointer 

8. 

:: = entireVariable I componentVariable 

variab leI dentifier 

indexedVariable I fieldDesignator I referencedVariable 
variable I functionDesignator 

:: = arrayVariable "(" expression ")" 
.. - base Variable 

containing Variable"." fieldldentifier 
baseVariable 

collection Variable "(n pointer ")" I pointer "1''' 
base Variable 
variable I functionDesignator 
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factor variable IliteralConstant I constantIdentifier I functionDesignator I set I 
"(n expression n)" I n -.- " factor 

set 
elementList 
element 
term 
sum 
relation 
negation 
conjunction 
disjunction 
expression 

8.1.1. 

setTypeldentifier "(n elementList ")" 
element { "," element} I empty 
expression I simpleType I all 
factor I tenn multiplyingOperator factor 
term I sum addingOperator term 
sum I sum relational Operator sum I sum [not] in simpleType 
relation I not relation 
negation I conjunction and negation 
conjunction I disjunction or conjunction 
disjunction I disjunction" _)n disjunction 

multiplyingOperator :: = "*" I div I mod 
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8.1.2. 

addingOperator :: = "+ II I " --" 1 xor 

8.1.3. 

relationalOperator :: = "= "\ not" = "1"(" 1"(= "I ")"1")=" 

8.2. 

functionDesignator:: = function ["(" expression { "," expression} ")"] 
function :: = [containingVariable "." ] functionldentifier 

9. 

statement 

9.1. 

simpleStatement 

emptyStatement 

9.1.1. 

:: = simple Statement I structuredStatement 

:: = assignmentStatement I procedureStatement I escapeStatement I 
assenStatement I emptyStatement 

::= empty 

assignmentStatement :: = variable ": =" expression 

9.1.2. 

procedure Statement :: = procedure [ "(" expression { "," expression} ")" 1 
procedure :: = [containing Variable "."] procedureldentifier 

9.1.3 

escapeStatement 
escapeBody 

9.1.4 

assertStatement 

9.2. 

:: = escapeBody [ when expression] 
: : = exit I return I return "(" expression ")" 

: : = assert assertion 

structuredStatement :: = compoundStatement I block I 
conditionalStatement I repetitiveStatement 

9.2.1. 

compoundStatement :: = statement { ";" statement} 

block : = begin executable Scope end 
executableScope :: = checkedClause [declaration ";" ] statement 

9.2.2. 

conditionalStatement :: = ifStatement I caseStatement 

9.2.2.1. 

ifStatement 

elseifClause 

:: = if expression then executableScope elseifClause 
[ else executableScope ] end if 

.. - {elseif expression then executableScope } 
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9.2.2.2. 

caseStatement 
simpleCase 
discriminatingCase 
caseTail 
case Body 
caseListElement 
otherwiseElement 
object 

parameter 

9.2.3. 

:: = simpleCase I discriminatingCase 
:: = case expression caseTail 
:: = case object caseTail 
:: = of case Body end case 
:: = caseListElement { ";" caseListElement } otherwiseElement ";" 
:: = caseLabelList" =)" executableScope end caseLabelEnd I empty 
::= ";" othenvise "=)" executableScope I empty 
:: = [const] parameter" : =" expression I 

varBindingCondition parameter bound to variable 
:: = identifier 

repetitiveStatement :: = loop Statement I forStatement 

loopStatement :: = loop execu~bleScope end loop 

forStatement 
generator 

setExpression 

10. 

:: = for parameter generator ";" loop executableScope end loop 
:: = in [containingVariable "." ] moduleTypeIdentifier I 

[ decreasing] in indexT ype I in setExpression 
:: = expression 

procedureDecIaration:: = procedureHeading" =" routineDefinition 
routineDefmition :: = imponClause preAssertion postAssertion routine Body 
routineBody :: = block identifier I codeBlock identifier I forward 
codeBlock :: = code manifestConstant { ";" manifestConstant} end 

procedureHeading 
fonnalParameterList 
fonnalSection 
preAssertion 
postAssertion 

II. 

:: = [inIine] procedure procedureIdentifier formalParameterList 
:: = "(" fonnalSection { "," fonnalSection} ")" I empty 
:: = pervasive bindingCondition identifier { "," identifier} ":" type 
: : = pre assertion ";" I empty 
:: = post assertion ";" I empty 

functionDeclaration :: = functionHeading" = " routineDefinition 

functionHeading 

12. 

program 
compilation Unit 
includeClause 
includeltem 
fileName 

:: = [inline] function fi.mctionldentifier forrnalParameterList 
[returns resultIdentifier ":" type] 

:: = compilationUnit 
:: = [includeClause n;"] typeDeclaration { ";" typeDeclaration } 
:: = include includeltem { ";" includeltem} 
:: = [typeIdentifier { "," typeldentitler} from] fileName 
:: = literalString 

APP.A 
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Appendix B: Toronto Euclid 

This section defines the Toronto Euclid subset of the Euclid language. The Euclid language is 
defined in the body of this report. Toronto Euclid is the name given to the subset supported by the 
Toronto Euclid compiler released in fall 1979. Note that any language restrictions imposed by the 
Euclid Report apply to Toronto Euclid even though not repeated here. 

This appendix consists of three parts. The first part gives a list of the notable features of Euclid 
which are included in Toronto Euclid. The second part lists the ways in which Toronto Euclid 
extends or modifies the Euclid language. The third part gives a summary of the features of full 
Euclid which are not included in Toronto Euclid. 

Note that the Toronto Euclid compiler is designed to eventually support full Euclid and hence does 
not necessarily enforce the Toronto Euclid subset Features not included in Toronto Euclid may be 
correctly implemente<L flagged as an error, or cause the compiler or object program to abort. 

B.1 Notable features of Toronto Euclid 

The following is a list of notable features of the full Euclid language which are included in Toronto 
Euclid. 

Abstraction fimctions: are treated as comments (as required by the Euclid Report). 

assert statements are supported both in statement lists and in declaration lists. Assert conditions are 
evaluated and checked at run time in checked scopes. Manifest assert conditions are evaluated at 
compile time. 

bind statements are supported. Names may be bound to arbitrarily complex subscript andlor field 
references. Both "ar and readonly binds are acccepted and enforced in Toronto Euclid. 

code blocks: Machine code blocks as the body of a routine are supported. In Toronto Euclid, code 
blocks are written in Unix assembly language and must begin and end with a line consisting only of 
the character "?" in column 1. Toronto Euclid code blocks can access only the parameters to· the 
routine. 

Constant folding: Manifest expressions (expressions consisting of values known at compile time) are 
evaluated at compile time and folded to the result value. Set expressions and expressions containing 
the mod operator are not folded at compile time. 

Dynamic storage allocation (collections and pointers) is supported in the default zone (SystemZone) 
only. counted and checkable collections are not allowed. 

exit when is supported. A loop may be exited either unconditionally (via exit) or conditionally (via 
exit when). 

Export lisls: The exports clause of Euclid modules is enforced in Toronto Euclid. Only fields and 
components which are exported from a. module may be referenced outside the module (via the . 
operator). Only those fields which are exported \'ar may be assigned to outside the module. In 
Toronto Euclid. eyery exported field and component is implicitly exported with all of its field and 
components. In Toronto Euclid, every exported symbol is implicitly exported with: =. = and t 
(if it applies). The Toronto Euclid compiler accepts but does not enforce the with clause of full 
Euclid. It fully implements \'ar, const and rcadonly in export lists. 
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for loops are supported, including subrange, named type and set generators. Module generators are 
not allowed. The decreasing attribute of a for loop is supported. 

forward types and routines: The body of a type or routine may be declared fon,-ard and the actual 
body given in a later declaration. 

Import lists: The imports clauses of Euclid modules and routines are fully enforced in Toronto 
Euclid. That is, every symbol defined externally to a module or routine which is used in the module 
or routine must be imponed into the scope. Variables must be imported \'ar if they are to be 
assigned to or passed to a var formal. Symbols which are declared or imported pervasive in an 
enclosing scope are automatically imported and need not be imported explicitly. The Toronto 
Euclid compiler fully implements var, const, readonly and pervasive in import lists. 

initially routines in single-use modules are supported. 

invariant conditions in modules are supponed. The invariant condition is evaluated and checked at 
run time on exit from the initially routine, on entry to and again on exit from every exported 
procedure, and on entry to (but not exit from) every exported function, providing the module is 
declared in a checked scope. Manifest invariant conditions are evaluated at compile time. 

machine dependent records are supported. The aligned mod clause causes an alignment of the 
record to be done by the compiler. Fields of the record are allocated at specific offsets within the 
record given by at clauses in the field declarations. The bits clause of full Euclid is not supported. 

Alani/est if conditions: No code will be generated for the else pan of an if statement whose condi­
tion expression is folded to false at compile time nor for the then part of an if statement whose con­
dition expression is folded to false. Case statements are not similarly optimized. 

module variables and types: Single-use modules (module variables) are fully supported except that 
finally routines are not allowed. Multiple-use modules (module types) are supported but must not 
have an initially routine nor any internal initialization. (A module is multiple-use if it is declared as 
a type, is the component type of an array, or is the type of more than one variable. Modules nested 
within a multiple-use module are themselves considered multiple-use.) 

Named types: Declaration and use of named types is supported. Prototypes are not supported. 

Nonscalar assignment and comparison: Assignment and comparison of whole arrays, records and 
modules is supported. Euclid restricts non-scalar comparisons to "=" and not "=". Comparison of 
records and modules with holes (embedded unused storage) gives unpredictable results. 

packed types: Array, record. module and set types may be declared packed. This has the effect of 
packing fields or components whose type is enumerated or sub range into bytes if possible. The 
Toronto Euclid compiler will pack enumerated types of 256 elements or less and sub range types in 
the range 0 .. 255 into a byte on the PDP-II. Set types of 8 elements or less are always packed into a 
byte on the pOP-II. 

penasive COllstants. types and routines: Constants, types and routines which are declared or imporied 
using penasiYe are automatically imported into every subscope of the scope in which they become 
pen!asive. (They may also be import.ed explicitly into a subscope if desired.) 

readonly. const and "ar binding conditions are accepted and enforced in import lists. export lists~ 
routine fonnals lists and bind statements. 

Register variables: The Toronto Euclid compiler allocates scalar and set local variables of a routine 
to registers when possible. Four registers are available for this purpose on the PDP-IL 



APP.B TORO~ 10 ECCLID 73 

Routine pre- and post-conditions are evaluated and checked at run time in checked scopes. Manifest 
pre- and post-assertions are evaluated at compile time. 

Semicolons: All semicolons are optional in Toronto Euclid. 

set variables and types are supported. The set operators "+", "--", xor, "*", in, not in, "(=" and 
")=" are supponed. For loops with set generators are supported. Sets may have. a maximum of 16 
elements. 

Standard components: The following standard components of full Euclid are supponed in Toronto 
Euclid: address, alignment, BaseType, ComponentType, first, Free. /ndexType, ItsType, last, New, ni~ 
ObjeetType, Ord. Pred, size, size/nBils. Suee. (Note: standard components apply only to the types for 
which they are legal as specified in the Euclid Report.) 

Structured cOlistants: Array and record structured constants are supported. As in full Euclid, the ele­
ments of a structured constant must be manifest. The scalar values in a structured constant are not 
range checked. 

thus clauses are accepted and treated as comments (as required in full Euclid). In Toronto Euclid, 
it is necessary to import into a closed scope only those symbols which are accessed directly. The list 
of symbols accessed indirectly through an imported symbol (the thus list) will be calculated and 
checked for overlap errors automatically by the compiler. 

Type converters are supponed for conversions from type to type. Routine type converters are not al­
lowed. 

Type pre-conditions: The pre condition in a type declaration is evaluated and checked at run time in 
checked scopes. Manifest preassertions are evaluated at compile time. 

Variables at absolute locations: A variable may be declared using the at clause, which gives its ab­
solute machine address. 

B2. Extensions and modifications of Euclid in Toronto Euclid 

Toronto Euclid extends or modifies Euclid in the following ways: 

Character literals: The character literals $$E (end of file) and $$F (form feed) are provided. The cor­
responding $E and $F may appear in string literals. 

check~d scopes: In Toronto Euclid .. the checked keyword causes run-time checking of all subscripts 
and user assertions including pre. post and in,·ariant conditions. Scopes are checked by default. Case 
statement tag expressions are always run-time range checked, even in unchecked scopes. TIle 
Toronto Euclid compiler does not elnit run-time checking code for Euclid legality assertions. It does 
not implement run-time range checking on assignment. 

code blocks: The bodies of machine code routines appear as Unix assembly language code. The as­
sembly language code must begin and end with a line consisting only of the character "1" in 
column 1. Toronto Euclid code blocks can acce~s only the parameters to the routine. 

Comments: The character "{" cannot appear in the body of a comment, so that unclosed comments 
can be detected by the compiler. 

include clauses may be placed anywhere in a Toronto Euclid source program. The included file 
may contain any valid Euclid source text. Included files must not themselves contain include 
clauses. 
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Afachine dependent features such as variables declared at an absolute location, machine dependent 
records" machine dependent characters and string literals containing machine dependent characters 
are not restricted to machine dependent modules in Toronto Euclid. 

Non-scalar const 'parameters (except sets) are passed by reference. Scalar and set const parameters 
are passed by value. \'ar and readonly parameters are passed by reference. 

set constructors: In Toronto Euclid, sub ranges used as elements in a set constructor must be 
manifest. Type names are not allowed as elements in a set constructor. In Toronto Euclid, the result 
of a set constructor is never manifest 

Spelling rules: The Toronto Euclid compiler does not enforce Euclid capitalization rules in iden­
tifiers. Upper and lower case letters are considered equivalent in Toronto Euclid identifiers. 

String literals: String literals are of type packed array l..Iength of char in Toronto Euclid. 

B3. Features not included in Toronto Euclid 

The following features of full Euclid are not included in the Toronto Euclid subset: 

bits clauses (in machine dependent records): The bits clause in the declaration of a field of a 
machine dependent record (e.g., var x (at 2 bits 1 .. 5) ) is not allowed. 

checkable collections are not allowed. 

counted collections are not allowed. 

Export of": =': "=" and "t" is accepted but not enforced. In Toronto Euclid, every exported sym­
bol is automatically exported with n: = ", "=" and "t" (if it applies). Every module automatically 
exports ": =" and "=" for itself. Note that export of symbols (including readonly export) is fully en­
forced. 

Export of a subrange of symbols (e.g., exports (red .. blue» is not allowed. 

finally routines are not allowed. 

Initial values in records and multiple-use modules: Initial values for variables declared as fields of 
records, machine dependent records or multiple-use modules are not allowed. A multiple-use 
module must not have an initially routine. (A module is multiple-use if it is declared as a type, is 
the component type of an array, or is the type of more than one variable. ~1odules nested within a 
multiple-use module are themselves considered multiple-use.) 

inline routines: The inline keyword is accepted but ignored. 

Library includes: Include clauses of the fonn: include 'file' from 'library' are not allowed. Note that 
the simpler form, include 'file' is allowed. 

Non-manifest array bounds: The bounds of an array's index type must be manifest. Exception: 
routine formal parameters which are arrays may have non-manifest bounds. 

Non-scalar functions: The type returned by a function must be a scalar or set type. 

Prototypes are not allowed. The features implied by parameter, any and unknown are not allowed 

Predefined (built-in) identifiers and standard components: TIle following predefined identifiers and 
standard components of Euclid are not supported: Abs. Index, itsTag, Max, Min. Odd. rejCounl, String. 
Slringi ndex, stringM axLength SystemZone, lone. 
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Range checking: The Toronto Euclid compiler does not implement run-time range checking on as­
signment. Subscripts are range checked in checked scopes. Case statement tag expressions are always 
range checked. The ranges of scalars in structured constants are not checked. 

return when: The when clause is not allowed in a return statement. The when clause is allowed in 
exit statements, however. 

Routine type converters: procedure and function are not accepted as the source type for a type con­
verter. 

Separate compilation of modules and routines is not supported. 

Type String(n): The predefined parameterized type String is not allowed. String literals are allowed 
and have the type packed array l..length of Char. 

User zones (e.g., collection of R in UserZone) are not allowed 

Variant records and discriminatIng case statements are not allowed. 
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Index 

Abs 
absolute address 
abstraction 
abstraction function 
accessible 
actions 
actual parameter 
adding operator 
addition 
address 
AddressType 
aligned mod 
alignment 
alignment clause 
all 
Alphard 
and 
annotated listing 
any 

63,67,74 
application 
arithmetic operators 
array 

75 
array type 
array variable 
assert 

69 
assert statement 
assertion 
assignable 
assigned 
assignment statement 
assignment-compatible 

15 
31 
19 
23, 71 
34,35 
4 
6,27,42 
40,69 
40 
16 
4,16 
23,29,67, 72 
14 
23,67 
38,68 
1 
40 
60 
18, 27-30, 37, 45-6, 56, 

27 
6 
17, 19,32,50-2,56,66, 

4,17,17,66 
33,68 
7,19,44,51-4,56,66, 

44,69,71 
3, 7,19,44,66 
13,20,22,31,42,53 
29 
6,42,69 
31, 42, 43, 69 

base type 24, 67 
base variable 33, 68 
BCPL 1 
bind 31-2,44,48-9,68,71 
bind list 32,68 
binding 30-1, 36, 48 
binding condition 21 31 67 .... , , 
bindList 32 
bits 19-20 23-4 67 72 74 
bitwise logical operations 38 ' ", 
block 6, 44, 69 
Boolean 4, 15 
Boolean operators 6 
bound 6,29,36,42 
bound to 46,70 
brackets 10 
break character 8, 65 

capitalization convention 8 
case 10, 18, 27-9,43,45-6, 

56,59,66,70 
case body 46, 70 
case label 18, 66 
case list element 46, 70 
case statement 6, 45, 46, 70 
case tail 46, 70 
Char 4,15 
character code 11 
character literals 11, 73 
checkable 25-6,67, 71 
checkable 25, 42 
checkable collection 63, 74 
checked 7,9,19,43,44,66,73 
checking 9,23 
Chr 15 
closed scope 21, 34 
CLU 1 
code 10,20,50,70,71,73 
collection 26-8,62,67, 75 
collection 5, 24, 34 
collection type 26,67 
collection variable 34, 68 
conuna 9 
conunent 9, 73 
compilation unit 55, 70 
component 13, 19 
component type 17, 66 
component variable 33, 68 
compoundStatement 6, 44, 69 
computable index 4 
compatible 29 
conditionalStatement 44, 69 
const 20-1,31-2,36,44,46, 

48,50-2,55-7,63,67-8, 70-2, 74 
constant 
constant component 
constant declaration 
constant folding 
constant item 
constant parameter 
constant sum 
containing variable 
controlled constant 
converter 
conjunction 
constant 
converter 
count control 
counted 

data 
declaration 
declaration part 
declaration 

3, 4, 5, 31, 42 
62 
4,31,68 
71 
31,68 
42,61 
16,66 
33,68 
47 
30,67 
38,68 
67 
20,30,50 
26,67 
26,42,62,67,71 

4 
4 
19,66 
19,35,66 
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declared 13,34 for statement 4, 6, 70, 72-3 
decreasing 47-8,51-2, 70, 72 fonnal parameter 6,27,34,42,50,70 
default 18,28,66 formal section 50, 70 
definition 4,13 forward 13-4, 21,28, 50,52,61, 
dereference 34-5 65,67,70,72 
derived simple type 14,65 forward definition 13 
derived structured type 17,66 Free 25,26,34 
difference 40 from 55,70,74 
digit 8,65 function 13,20,30,34,53-4,56, 
discriminating case statement 67, 70, 75 

6, 28, 45-6, 70 function 7,38,41,69 
disjunction 38,68 function designator 41,69 
div 18,23,38-9,47,51,53, function heading 53, 70 

68 
division 39 generator 47,70 
dynamic 5,24, 71 Gypsy 1 

efficiency 2-3 hence 9 
element 38,68 hexadecimal 11 
elseif clause 45,69 hexDigit 8,65 
empty statement 42,69 Hoare 1 
end module 19,66 
end record 18,66 identifier 11,61,65 
entire variable 33,68 identifier list 31,68 
enumerated type 4,14,36,66 if 10,20,22 
equivalence 40 if statement 6,45,69 
escape statement 6,43,69 implementation standards 58 
executable 42 implication 40 
executable scope 44,69 implicit importing 36 
exit 22,43,47-8, 53,69, 71, import item 21,67 

75 importing 6, 21, 34, 36, 53 
exit statement 6,43 importlists 21,67,72 
expanded definitions 29 imports 20-1,51-3,55-6,67, 72 
explicit importing 36 in 24,26,73 
explicit type conversion 30 include 55,70,74 
export item 21,67 include clause 55, 70, 73 
export lists 21,67,71 include item 55, 70 
exported 20 index 26 
exported type 29 index type 17,66 
exports 19,21,55,67,71,74 index type generator 48 
expression 4,6,38,68 indexed variable 33,68 
extended character 11,65 initial action 22,31,67,72 
extended parameters 29 initially 22,57,67,72,74 
extended range 39 in line 20,50-1,53,62,70,74 
extension 11,65 Integer 4,15,31,39 

intersection 24,39 
factor 38,68 invariant 7,19,66,73 
field 5, 17 invariant 19,22,66,72 
field designator 33,35,68 include 55 
field identifier 17 initialization 32,68 
field list 18,66 itsTag 18,28,45 
file name 55, 70 ItsType 14,20,29 
final action 22,43,47,67 
finalization 62, 74 known 35,37 
finally· 22,67,72 
first 15 label 45 
fixed address 31-2,68 last 15 
for 56 legal 9, 16, 23, 33, 37, 45 
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legality assertion 7,9,28,29,36,37,39, not 8, 12-3,28-9,35 
44 not checked 9,19,44,66 

length-unresolved 63 not in 39-40, 73 
letter or digit 11,65 note 9 
letter 8,65 numbers 4,11 
lexical structure 9 
library includes 74 object type 26,67 
LIS 1 object 46, 70 
literal char 11,65 octal 11 
literal constant 4 octalDigit 8,65 
literal constant 12,65 Odd 15 
literal string 11,65 one-pass translation 61 
literal string constant 11 opaque 5 
local 6 opaque 19,20 
loop 10,43,47-8,51-4,56-7, open 34 

59, 70 operand 38-9 
loop statement 6,47,70 operator 6,38-9 
loopholes 3 optimizing compiler 3 
lower bound 16 or 6,38-40,68 

Ord 15 
machine dependent 19, 21, 23, 66-7 order of creation 22 
machine-code routine 50 order of destruction 22 
machine-dependent 21, 74 order of evaluation 38 
machine-dependent record 23,37, 72 otherwise 18-9,45-6,56,66,70 
main variable 32 otherwise element 46, 70 
manifest 4, 15-8, 21, 23-5, 27, 29, otherwise variant 18,66 

31,45 overlap 32,37 
manifest constant 12,65 
manifest if conditions 72 packaging 20 
manifestExpression 65 packed 16-7,66, 72, 74-5 
mdDeclarationPart 23,67 packed 16,37,72 
mdRecordType 23,67 parameter 27-8,51-4,60,63,67, 
membership 24 74 
Mesa 1 parameter 45-7, 50-1, 70, 74 
Min 15 parsing 61 
mod 6, 14, 17,23, 33, 38-9, part 32 

47,53,55,68,71 Pascal 1 
Modula 1 pervasive 19,55,66,72 
module 10,19,34,55,59,66 pervasive 6. 19, 34, 66, 72 
module body 19,66 PLII 59 
module structure 2,5 pointer 2,5,24,34,35,68 
module type 19, 72 pointer type 26,67 
module type generator 47 portability 3 
moduleType 19,66 position specifications 23 
modulus 39 post 7,50-4, 70, 73 
multiplication 39 post assertion 50, 70 
multiplying operator 39,68 pre 7, 50-2, 54, 70, 7~ 

pre assertion 50, 70 
named 36-7, 72 precedences 38 
negation 38,40,68 Pred 15 
New 24,26,28 procedure 13, 30,34, 50-2,55-6, 
new identifiers 35 67, 70, 75 
newline 11 procedure 6,43,69 
nil 26 procedure declaration 6,50, 70 
no-overlap 31,37 procedufe heading 50, 70 
non-manifest array bounds 74 procedure statement 6 
not 6,38-40,45,55,68-9, procedure statement 43,69 

72 program 55, 70 
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proof rules 1 set expression generator 48 
prototype 5, 27,29,.63, 74 set inclusion 24,40 
prototype declaration 28,67 set operators 6 

set type 5,24,67,73 
quotations 4 side effects 35 

Signedlnt 15 
range checking 75 similar 8 
readonly 20-1,31-2,36-7,50,53, simple 4 

67-8, 71-2, 74 simple case 46, 70 
readonly 20,42 simple statement 42,69 
record 10,18,23,28,34,45, simple type 14,65 

56, 59, 63, 66, 67 simpleTypeAppl 28,67 
record declaration 18,66 singlelmportClause 21,67 
record type 5,17 size 14 
record type 18,66 size In Bits 16 
recordDec1aration 18 source type 30,67 
recursive 35,51,53 space 11 
refCount 25 special symbol 9,59,65 
reference counted 2,5,25,62 spelling rules 74 
referenced Variable 34,68 standard components 73 
register variables 72 standard format for programs 
relational operator 6,40,69 59 
relation 38,68 standard representation 13-9, 23-4, 50 
repetItIve statement 47, 70 standard simple types 4 
representation of pointers 63 statements 4,42,69 
representations of special symbols static 5,24 

58 storage allocation 2 
restrictions 2 storageUnit 4, 16-7,22-3,25-6 
return 20,22,43,51,53,56, strict type checking 26 

69, 75 String 17 
return statement 6,43,53 String literals 74 
returns 20,30,50,53-4,56,67, Stringlndex 17 

70 stringM axLength 17 
routine 7,9,50 structured constant 31,68,73 
routine body 50, 70 structured statement 6,44,69 
routine definition 50, 70 structured type 4,16-7,66 
routine parruneters 61 structuredStatement 44,69 
routine pre- and post-conditions structuredTypeAppl 28,67 

73 structuring method 4 
routine type converters 75 sub range 4, 16 
run-tilne 3 subrange type 16,66 

subtraction 40 
SaIne 42 Succ 15 
SaIne 29,32,37 SUE 1 
same 5 sum 38,68 
scope 6,34,36,44-8,69-70 summary 4 
scope rules 34 sytrunetric difference 24 
selector 45 syntax 8 
self-referencing 19 system Zone 25 
semicolon 9, 73 system program 2 
sensitive 13 
separate compilation 3,55, 75 tab 11 
separators 58 tag 5, 18, 27-8, 31,66 
set 24,38,67 target type 30,67 
set 38,68 term 38,68 
set constructors 74 thus 21,36,50,52,67 
set difference 24 thus clause 9, 36, 73 
set expression 47, 70 to 32,44,48-9,68 
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translator 
true definition 
type 

62-3,65,67 
type 
type compatibility 
type declaration 
type definition 
type identifier 
type pre-conditions 
type-converter 
typeActualList 
typeF ormalList 

1 
13 
13-9,24,45,51-2,55, 

13-4,65 
29 
4,13-4,65 
4, 14,65 
13 
73 
30, 73 
28,67 
28,67 

union 24,40 
units 9 
unknown 26-8,63,67, 74 
unpackedStructuredType 17,66 
Unsignedlnt 15 
unsignedNumber 11, 65 
upper bound 16 

Val 
values 
varBindingCondition 
variable 
variable binding 
variable declaration 
variable parameter 
variant 
variant part 
verifiable program 
verifier 
visibility 
vocabulary 

well-behaved 
when 
whenc1ause 
with 
wordSymbol 

xor 

zone 

15 
4 
32,68 
2,4-5,32,35,42,53,68 
32,68 
31-2,68 
42,61 
5, 18,66, 75 
18,66 
2 
7 
2 
8 

39 
43,56,69,75 
6,43 
19-21,67, 71 
9,65 

6,24,38,40,69,73 

5,25-6,75 






