
Compact Encodings of
List Structure

By Daniel G. Bobrow and
Douglas W. Clark

Compact Encodings of List St ructu re

by Daniel G. Bobrow and Douglas W. Clark

CSL·79·7 JUNE1979

Abstract: List structures provide a general mechanism for representing easily changed
structured data, but can introduce inefficiencies in the use of space when fields of uniform
size are used to contain pointers to data and to link the structure. Empirically determined
regularity can be exploited to provide more space efficient encodings without losing the
flexibility inherent in list structures. The basic scheme is to provide compact pointer fields
big enough to accommodate most values that occur in them, and to provide "escape"
mechanisms for exceptional cases. Several examples of encoding designs are presented
and evaluated, including two designs currently used in Lisp machines. Alternative escape
mechanisms are described, and various questions of cost and implementation are discussed.
In order to extrapolate our results to larger systems than those measured, we propose a.
model for the generation of list pointers, and test the model against data from two programs.
We show that according to our model, list structures with compact cdr fields will, as address
space grows, continue to be compacted well with a fixed width small field. Our conclusion is
that with a microcodable processor, about a factor of two gain in space efficiency for list
structure can be had for little or no cost in processing time.

CR Categories: 3.69, 4.34, 4.6, 5.6

Key words and phrases: compact encoding, list structure, Lisp, list structure regularity,

linearization, Lisp machine

To appear in ACM Transactions on Programming Languages and Systems

XEROX
PALO ALTO RESEARCH CENTER
33'33 Coyote Hill Road / Palo Alto / California
94304

COMPACf ENCODINGS OF LIST STRUCTURE 1

1. Introduction

Most implementations of list structures use fields of uniform size to point to data and to link the

structure. An empirical ~tudy of the use of list structure in Lisp [Oa77] indicates that certain values

of these fields are used far more often than others. This non-uniformity can be exploited to obtain

compact encodings of list structure without sacrificing their generality in representing structured data.

In these encodings a small field is used to represent the most common values, and an escape

mechanism provides access to full-size pointers when they are needed. In this paper we explore this

idea in detail by constructing and evaluating several encoding schemes and escape mechanisms.

Although we discuss the execution time costs of these designs, we concentrate in this paper on

careful evaluations of their savings in space.

The empirical data upon which these encoding designs and evaluations are based are reported in

full in [Cla77, Cla79]. We summarize some of those results here. The list structures in existence at

the end of a typical run of five large Lisp programs (about 50,000 cells each) were measured to

determine the frequency of occurrence of pointer values in car (usually the data field) and cdr

(usually the link field) of each list cell. Some related dynamic measurements were also made, both

to determine the relative frequency and arguments of basic operations, and to verify that list

structures measured at the end of the run were typical of those existing at various points during the

run. The structures examined were just those used as data for the programs, and not those used to

represent the programs themselves. Deutsch has shown that great coding efficiency can be obtained

for programs by compiling them into a carefully designed instruction set [Deu73b]; therefore, we

will not address the problem of compacting program list structure in this paper. Our data came

from the following five programs: CONGEN (called "STRGEN" in [Cla77]), a chemical structure

generator [Smi74]; NOAH, a planning program [Sac77]; PIVOT, a program verifier [Deu73a);

SPARSER, the parser in a speech understanding system [Bat75]; and WIRE, a wire-listing program

used at Xerox PARCo All five are written in Interlisp [Tei74], a sophisticated Lisp system running

on the PDP-I0 computer under the Tenex operating system [Bob72].

Table I shows how pointers in car and cdr were distributed among the data types of Interlisp.

Atoms are Lisp's symbols or identifiers, and small integers are those in the range ±1536. NIL is a

special atom normally used in cdr to indicate the end of a list. There is considerable agreement

among the programs, especially in cdr.

TABLE I
Distribution of data types in list cells (numbers are percentages)

CAR CDR
range mean range mean

NIL 1.0-5.6 3.1 24.2-26.6 25.1
lists 23.3-31.5 28.6 66.7-74.8 72.5
non-NIL atoms 34.2-58.4 45.9 0.5-4.5 1.5
small integers 4.1-34.7 19.5 0.1-1.0 0.5
others 1.6-7.1 2.9 0.0-1.1 0.4

2 COMPACT ENCODINGS OF LIST STRUCTURE

List pointers most often pointed only a short distance away in the address space of list cells. This is

shown in Table II. In both car and cdr, an offset of one was most common, and there was a strong

decline as distance increased. This is a reflection of the fact that free lists tend to start out ordered,

and cells that point to each other are most often created close in time [Oa77]. This very strong

regularity is the reason that we will most often represent list pointers as ce11-relative offsets in the

encodings of this paper. Some encodings will use page-relative offsets, which also benefit from the

regularity shown in Table II.

Table II
Cumulative distribution of relative offsets of list pointers

CAR CDR
offset range mean range mean
±1 19.4-36.3 29.8 53.7-75.8 61.3
±2 26.2-46.1 38.7 58.1-76.6 65.7
±4 35.4-53.6 46.9 66.8-79.7 72.8
±8 44.5-66.8 58.4 72.5-86.6 79.1
±16 47.7-72.8 64.0 77.5-92.6 84.5
±32 49.8-76.2 67.7 81.4-93.8 87.8
±64 51.6-80.3 71.2 84.7-94.9 90.0
±128 53.5-84.0 73.8 87.1-96.3 91.6
±256 55.2-87.0 76.2 88.9-97.0 92.8
others 13.1-44.8 23.8 3.0-11.0 7.2

Pointer distances become dramatically smaller when list structures are linearized [Fen69, Min63].

Linearization is the rearrangement of a list in memory so that cdr points to the next sequential

location whenever possible, i.e., when not prevented by the sharing of list cells among several

pointers. Algorithms for doing this differ chiefly in how they handle the car sub-structures

encountered during the cdr-first traversal: some linearize these car lists in FIFO order (e.g., [Che70,

Bak78]; others use LIFO order (e.g., [Min63, Fen69, Qa76a)). In this paper we use exclusively the

latter approach. Linearization is normally thought of as a concomitant to garbage collection, but

linearized lists can also be created during ordinary computation by appropriately designed Lisp

primitives (e.g., read, list, and append) if the free-list is ordered. Linearizing the list structures of

the five programs made 99 percent of list-pointer cdrs, on average, point to the next cell~ while

improving the car pointer distributions slightly [Oa77].

Pointers to non-NIL atoms were found to follow, roughly, Zipfs law, which models the occurrence

of words in natural language text as well as many other phenomena [Knu73, p. 397; Zip49].

According to Zipfs law, the ztll most common item in a collection occurs with frequency

proportional to II i. Table III shows the frequency distributions of atom pointers, grouped in binary

decades of frequency rank. (CONGEN makes unusually heavy use of a small number of atoms and

is excluded from Table III; atom encodings in this paper will always do better with CONGEN than

with the other four programs.) The number of atoms in each program was between 2477 and 4711;

this variation will, of course, distort inter-program comparisons based on frequency rank. The

column labeled "scaled mean" contains the mean frequency in each binary decade after scaling to

COMPACT ENCODINGS OF LIST STRUCTURE 3

make each program's 2047th atom be its last. Zipfs law predicts that the numbers in this column

should equal the last column of Table III, approaching a constant from above as rank increases.

Instead the "scaled mean" column approaches a slightly larger constant from below; thus Zipfs law

overestimates the frequency of the programs' most common 20-30 atoms, but does reasonably well

for the rest.

Table III
Frequency distribution of pointers to non-NIL atoms

frequency cumulative scaled Zipf prediction
rank range mean mean mean for scaled mean
1 2.1-8.1 4.4 4.4 4.7 12.2
2-3 3.8-7.6 5.6 10.0 5.9 10.2
4-7 5.3-9.0 6.6 16.6 7.0 9.3
8-15 5.4-8.1 7.1 23.7 7.5 8.8
16-31 6.7-10.8 8.6 32.2 9.0 8.6
32-63 6.8-14.3 10.2 42.4 10.8 8.5
64-127 7.9-11.9 10.4 52.8 11.1 8.5
128-255 9.7-11.7 10.7 63.6 11.4 8.5
256-511 8.7-14.4 11.1 74.6 11.8 8.S
512-1023 7.5-11.3 10.3 84.9 11.0 8.S
1024-2047 6.4-12.6 9.3 94.1 9.9 8.S
2048-4095 1.5-10.7 5.3 99.4

The rest of this paper is organized as follows. The basic ideas of list structure encoding are

illustrated by several simple examples in Section 2, which includes a discussion of some general

principles illustrated by the examples. Escape mechanisms are very important to the success of

compact encodings, and are discussed in detail in Section 3. Some of these mechanisms are used by

the encoding designs in two Lisp machines [Deu73b, Deu78, Gre74, Baw77], which are presented

and evaluated in Section 4. Section 5 explores some of the costs of using compact encodings in list

processing systems. Finally We discuss in Section 6 how well these ideas might stand up as address

spaces get dramatically larger.

2. Simple examples of space-conserving encodings

Suppose that we want to represent list structures using 18-bit cells instead of the 36-bit cells used in

PDP-10 Interlisp. In this section we will informally design a set of simple encodings illustrative of

the principle of matching an encoding design to the empirical data. Three encodings will be

specified, corresponding to three divisions of the available 18 bits between car and cdr: 16-2, 12-6,

and 9-9. Our bias towards giving more bits to car is due to the large number of atom pointers

found in car.

We will assume the use of one of the simplest uniform escape mechanisms to allow remote storage

of pointers that do not fit into the fields. The mechanism we have chosen for these examples is to

reserve a single bit-pattern for the field (say anI's) to indicate that the desired value can be found

4 COMPACT ENCODINGS OF LIST STRUCTURE

in a global hash table. The key in the hash table is the address of the cell that should have

contained the pointer. This idea is called "hash linking" by Bobrow [Bob75]. (Since car and cdr

could both have the escape value, one more bit needs to be hashed along with the address of the

cell.)

2.1 Specification

If a compact field is b bits wide, there are 2b codewords or codes available, one of which, in these

examples, is reserved for the hash-link escape. The remaining 2b_l must be divided among the

most common values found in the field. For the encoding of the cdr field, we note that one

codeword should clearly be used for NIL, the atom that accounts for about one-fourth of all cdrs

(Table I). We can divide the remaining patterns between relative offsets of list pointers, and

pointers to the most common nonlist objects. But the latter are rare in cdr, so the allocation of

some codes for the most common atoms or arrays or whatever would probably not be worthwhile.

In the 2-bit cdr case, the best we can do is represent list pointer offsets of + 1 and -1, the pointer

NIL, and the escape. In the 6-bit case, we can use the 62 codewords that remain after representing

NIL and the escape to represent of1sets of -31 to + 31. Similarly, for the 9-bit cdr, we will

represent list pointer offsets -255 to +255. (Our choice of a symmetric window for these relative

offsets is arbitrary but simple, and matches our data fairly well; more highly-tuned encodings might

position the window asymmetrically. In a linearized system, of course, most offsets would go in one

direction.)

The allocation of car codes is more difficult, since different data types abound in car. All three

encodings need one code for the escape and also one for NIL (3.1 percent of cars on the average).

The popular data types in car are lists, atoms, and small integers. For the 9-9 encoding, the

remaining 510 code words will be divided as follows: 348 for the most common atoms, 100 for the

most common small integers, and 62 for list pointer offsets -31 to +31. For the 12-6 encoding we

will keep the 62 codes for lists, and increase those for atoms and small integers to 3007 and 1025,

respectively. If the car field is 16 bits wide, the escape will never be needed: four of the programs

have fewer than 216 total cells, and there is sufficient regularity in car list pointers that the offset

representation will easily bring down the total number of different cars in the fifth program to less

than 216. Almost any sensible choice--for example, about 5000 codes for atoms, 3000 for small

integers, 52000 for lists, and 500 for other data types--will accomodate all existing values in all five

programs.

2.2 Evaluation

We have now specified several simple encoding schemes for car and cdr. What savings in space, if

any, will these designs have over the Interlisp implementation of list cells? Let p and p' be the

fractions of cars and cdrs, respectively, that fit into the small fields of size band b', and let c and c'

be the numbers of bits used by .escape values of car and cdr over and above the bits in the escape

COMPACT ENCODINGS OF LIST STRUCTURE 5

codeword itself. Then the average number of bits required is b+(l-p)c for car and b'+(l-p'c' for

cdr.

Evaluation of the 12-6 encoding. Values of the average p and p' can be found using Tables I-III and

more detailed data from [Oa76b, Oa77]. Consider first p'. All NILs will fit into the 12-6

encoding, accounting on the average for .251 of all cdrs. List pointers with distances between -31

and + 31 account for .87 of list cdrs; lists are .725 of cdrs; therefore .87 * .725 = .631 is the fraction

of all cdrs that are lists representable by a short pointer. The value of p' is thus .251 + .631 = .882.

Thus .118 of all cdrs, those which are neither nearby lists nor NIL, need the escape value and

another c' bits each. The average size of a cdr is 6+.118*c' bits.

Notice that c' (and also c) can be large: if a hash table is used, the simplest possible scheme

requires an 18-bit key (to resolve collisions) and the 18-bit true value of cdr. With c'= 36, the

average size of a cdr in the 12-6 encoding is 6 + .118 *36 = 10.2 bits. (In fact, c' should be larger

still, to account for the hash table's not being completely full; on the other hand we will show in

Section 3 that it is easy to do better than c' = 36.)

We now make a similar calculation for average cars, again using Tables I-III. The atom NIL

accounts for .031 of them; list pointers with distances in the range -31 to + 31 account for .677 of

list cars, and .194 of all cars. If we assume that all small integers used are actually in the range -512

to + 512--a reasonable and supportable approximation--then .195 of the compact cars will specify

small integers. The programs average 2996 atoms each, so the 3007 available codes will handle all

of the atoms, for another .459 of the cars, on average. This gives p = .031+.194+.195+.459 =
.879, leaving a remainder of .121 that will use the escape mechanism. The average size of a car in

this encoding is then 12 + .121 *c bits. If c is 36, the average bit commitment comes to 16.4. Thus

the average size of a cell in the 12-6 encoding is 10.2 + 16.4 = 26.6 bits, saving more than 25

percent in space over the standard 36-bit encoding.

Evaluation of the 9-9 encoding. Evaluation of the 9-bit car is slightly more difficult, since we can no

longer accomodate all of the atoms and small integers. We must choose the most common 348

atoms and 100 small integers. On average, the top 348 atoms account for .335 of all cars, and the

top 100 small integers for .123 of them. The 62 list codes get us, as before, .194 of the cars. The

value of p is .031 + .194+ .123 + .335 = .683. With c = 36, the average size of car for the 9-9

encoding is 20.4 bits.

The 9-bit cdr will get all NILs and all list offsets in the range -255 to + 255, giving, for the average

statistics, p' = .251 + .673 = .924. With c' = 36, the average cdr is 11.7 bits wide. The average cell

size is 20.4+ 11.7 = 32.1 bits.

Evaluation of the 16-2 encoding. As described above, the 16-bit encoding of car will easily handle

all cars in each of the programs, giving p = 1 and an average size of 16 bits.

6 COMPACT ENCODINGS OF LIST STRUCTURE

If the cdr field is only 2 bits wide, we can fit into the encoding just the two list offsets + 1 and -1,

the atom NIL, and the escape. This gives p' = .251 + .444 = .695 and an average cdr size of 13.0

bits. The average cell size for this encoding is 16 + 13 = 29 bits.

These encodings were designed with the average statistics of Tables I-III in mind. It seems

reasonable to repeat the average bit calculations for the five programs' individual statistics,

particularly in view of the similarity among them. These results are shown in Tables IV, V, and VI.

The statistics in the row labelled "Average" represent the encoding effectiveness of a program with

average statistics; this is not the same as the average of the other five numbers in each column.

If linearization in the cdr direction is done on the list structure, then about 97% of all cdrs can be

encoded in two bits [CIa77], with the escape adding less than .9 bits to the total cell size. The last

column of Tables IV, V, and VI show approximately what the cell size would be if linearization

were done.

TABLE IV
Evaluation of the 16-2 encoding

CAR CDR CELL linear CELL
e size e' size size size

CONGEN 1.00 16.0 .736 11.5 27.5 18.9
NOAH 1.00 16.0 .666 14.0 30.0 18.9
PIVOT 1.00 16.0 .624 15.5 31.5 18.9
SPARSER 1.00 16.0 .645 14.8 30.8 18.9
WIRE 1.00 16.0 .813 8.7 24.7 18.9
Average 1.00 16.0 .695 13.0 29.0 18.9

TABLE V
Evaluation of the 12-6 encpding

CAR CDR CELL linear CELL
e size e' size size size

CONGEN .914 15.1 .941 8.1 23.2 22.0
NOAH .894 15.8 .862 11.0 26.8 22.7
PIVOT .820 18.5 .845 11.6 30.1 25.4
SPARSER .871 16.6 .840 11.8 28.4 23.5
WIRE .859 17.1 .944 8.0 25.1 24.0
Average .879 16.4 .882 10.2 26.6 23.3

TABLE VI
Evaluation of the 9-9 encoding

CAR CDR CELL linear CELL
e size e' size size size

CONGEN .869 13.7 .957 10.6 24.3 23.6
NOAH .750 18.0 .911 12.2 30.2 27.9
PIVOT .581 24.1 .882 13.2 37.3 34.0
SPARSER .666 21.0 .897 12.7 33.7 30.9
WIRE .682 20.4 .972 10.0 30.4 30.3
Average .683 20.4 .924 11.7 32.1 30.3

COMPACT ENCODINGS OF LIST STRUCTURE 7

2.3 Discussion

There are several interesting observations to be made about Tables IV-VI. CdTS are more

successfully encoded than cars, for all three encodings. This is, of course, due to the much greater

regularity found in cdr; what especially hurts the car figures is the large number of pointers to a

large number of atoms. Some programs even have a bigger "encoded" car than the 18 bits they

started out with. The innate compressibility or encodability of car and cdr can be measured

precisely by calculating pointer entropy [ela77]. Entropy serves as a loose lower bound on the

efficiency of all single-symbol encodings. The entropy of car pointers for the five programs was

between 6.4 and 10.3 bits; CONGEN had the lowest car entropy, and PIVOT the highest, as is

suggested by Tables V-VI. Cdr entropy ranged from 3.3 bits for WIRE to 5.2 bits for PIVOT, again

agreeing with the results of Tables IV-VI.

Because pointer decoding depends on the type of the object pointed to (except for escapes), that

type must be a function of the codeword alone. (This is a useful property in Lisp systems generally

[Tei74] since it allows the common type checks such as atom(x) and listp(x} to be performed

without actually looking at the object referenced.} Therefore in deriving an encoding we must

allocate a fixed number of codewords (possibly 0) to each data type. The optimal strategy in

allocating these codewords is to "balance" the encoding design so that the marginal increase in

pointers accounted for is equal across all data types. That is, the most infrequent codeword for

each type should be used about equally often. Because the frequency distributions are discrete, not

continuous, exact equality may not be achievable, but it should be the goal of a design. An

example of an encoding designed like this may be found in [Cla76b]. Allocating codewords this

way is equivalent to simply sorting the things that occur in (say) car and picking the most common,

regardless of data type. Grouping these in the codeword space should be done so as to maximize

implementation efficiency. If the sorting order changes much over time, then one must also include

the cost of maintaining the information about the pointer interpretation; for example, if the set of

most commonly referenced atoms changes composition radically during the course of a computation,

then any assignment of interpretation made at one time will lead to less than optimal encoding at

another time.

Is there an "optimal" compact field size for a fixed set of list structure statistics? Tables IV-VI

show that all five programs do better with a 6-bit cdr than with either a 2-bit or a 9-bit one; this

suggests that the optimal size is between 2 and 9. There is a trade-off between field size and escape

cost: the optimal field size should be chosen so that for field size b, escape probability (l-p), and

constant escape cost c, the expression b+(I-p)c is minimized. Since (l-p) is a decreasing function of

b (bigger field, fewer escapes), there is, for fixed c, a unique minimum. The best field size can be

found by increasing b a bit at a time, and stopping when b+(l-p)c increases rather than decreases.

Tables IV-VI suggest that for all five programs, an escape cost of 36 bits dictates a compact cdr size

of more than 2 and less than 9 bits. The tables do not prove this because the encoding designs did

8 COMPACT ENCODINGS OF LIST STRUCTURE

not optimally assign codewords to data types. as discussed above; the bad perfonnance of the 9-bit

cdr might be due to a poor codeword assignment.

The perfonnance on linearized list structure indicates that the minimal 2-bit cdr is quite effective,

and is. in fact, "optimal" in the above sense. The average escape cost (l-p,c' is less than one bit, so

increasing the compact cdr to 3 bits would make things worse. If a large proportion of the data
were static and could be linearized, then it is clear that using a 2-bit cdr field is very efficient. Data

from [Qa79] indicate that once list structure is linearized it tends to stay that way (that is, programs

do not disturb data structures much after creating them). This is a basic assumption underlying the

encoding used for the MIT Lisp machine, whose encoding we describe in Section 4.

3. Escape mechanisms

There are a variety of mechanisms for handling the small fraction of pointers that will not fit into a

compact encoding. The possibility of using a single global hash table was briefly considered in

Section 2; here we will discuss that method, and others, in greater detail. There will, in general, be

two important criteria by which these schemes must be judged: first, the cost in extra bits per

escape pointer, and second, the cost in execution speed of using a particular method. In the

description below, a long pointer is one that can address any object.

3.1 Indirect tables

Suppose that on each page (or other convenient block of contiguous list storage), all the long

pointers are grouped together into a table. Some number of codes in the compact field could be

used as indices into this table, indicating that the pointer encoded in that field is to be found

indirectly, that is, in the table. This scheme costs a proportion of the codeword space sufficient to

address the table, and a fixed commitment of space for the table itself.

The size of the table is an issue. Ideally it would be just big enough to accomodate most of the

long pointers occurring on the page. If the table is too small, it will fill up before the page itself,

creating a problem with several possible solutions: the page might simply be declared "full", thus

wasting the unoccupied cells; or an alternative (and more costly) escape mechanism, such as a hash

link, could be used when new cells were put on a page whose table was full. The latter method

would be absolutely essential if a short pointer on a "full" page were to be changed with rplacd into

a long pointer; this drawback forbids the use of indirect tables alone.

Because the allocation of tables and the means of addressing them are fixed, it becomes possible to

make the individual entries have different sizes. For example, in an 18-bit address space, a full 18-

bit pointer would probably be needed only rarely. Perhaps a 9-bit or 12-bit pointer would do much

of the time. The indirect table could then contain various sizes of entries, arranged so that the size

of the entry is a function only of the index.

COMPACT ENCODINGS OF LIST STRUCfURE 9

3.2 Indirect relative pointers

An immediate generalization of the indirect table idea is to put the long pointer in some nearby

word on the page and point to it with a short pointer. Thus the same words on a page can be used

either for list cells or for indirect pointers, eliminating the problem of having to fix the size of the

indirect table. However, this technique has a problem in the (presumably rare) case that after

allocation of a new cell needing an escape, the next word on the free-list is too far away to address

with a short codeword. The rplacd problem becomes less severe, but can still cause trouble, and

there remains the potential problem that a compact cell may not be big enough to store a long

pointer.

A fraction of the available codewords must be assigned to indirect pointers. The most obvious way

to assign these codes is to have an indirect bit in the short field; but this consumes half of the

available codes--almost certainly not the best way to use them. It might be better to allow only a

small number of short indirect pointers, and to rely on a different escape mechanism (such as a

hash link) if an indirect pointer cannot be used.

Note that if a compacting garbage collector is used and the free-list is kept ordered, these indirect

pointers need only be able to point in the direction of the free-list links. Every creation of one of

these short indirect pointers will involve two consecutive cell-allocations, and the second of any two

consecutive allocations will always have a larger address than the first.

A useful specialization of the indirect relative pointer is to require that the long pointer be stored in

the next cell. This idea is used in the MIT Lisp machine. If a compacting garbage collector is used

then when cons is done, the next cell on the free-list will be adjacent to the cell just allocated, and

available for the escape. However, if rplacd is done on the first cell after one or more additional

conses, another escape mechanism will be needed.

3.3 Hash links

In Section 2 we described a use of Bobrow's [Bob75] hash links as an escape mechanism. In this

simple form, if the compact cdr (or car) field of cell x contains a particular escape codeword, the

true value of cdr(x) (or cat(x)} is found in a hash table, where x is the key. Bobrow points out that

one might have a separate hash table on each page; in that case the stored key would only need to

be an index onto that page. He also proposes a single global table for all hash links; there the key

must be a full-size pointer.

If several escape codewords can be used, the value stored in the hash table can be extended with

additional bits, as Bobrow points out. For example, in a short field of b bits, imagine that if the

high order r bits all equal 1, the remaining b-r bits are to be used as an extension of the value

retrieved from the hash table. One might also consider using different escape values for different

tables. A table for each data type would seem to be a good idea if the long pointers associated with

different types have different lengths.

10 COMPACf ENCODINGS OF LIST STRUCTURE

Another space-saving possibility is to have one hash table in which no keys are stored, only a bit to

indicate whether this entry was made without a collision. Should a collision occur when a new

entry was being added, the new entry would be put in a second table in which collisions were

allowed and keys stored, and the "unique" bit in the first table would be cleared. On lookup, for

entries marked as unique (no collision of hash on entry), the lookup procedure can assume the

match of the key, and use the entry directly. For entries marked as non-unique, the collision table

must be checked first If a matching key is found in an entry there, then that is the correct one.

Otherwise the non-collision table entry is correct If the table sizes are chosen properly, most

entries will be found in the non-collision table.

Various familiar hash table costs must be faced. There is first the space overhead of empty cells in

the table. possibly maintained for lookup efficiency [Knu73]. Second, there is the problem of

rehashing entries into a new larger table when the growth of list structure requires it. This could b~

done at garbage collection time. And third, there is the computation of the hash function itself.

This could be made quite fast with hardware or microcode assistance, and need not involve

additional references to main storage. Numerous other aspects of hash table implementation are

discussed by Knuth [Knu73].

Two other potential problems must be considered. One involves local tables, the other, global ones.

In the case of a local table of fixed size, a page of list cells that has an unusually high number of

escapes can simply not be stored. If the table is full (and if a global table is not available), no more

cells can be put on the page. This potential waste of non-table bits on the page must be counted in

the average cost of an escape.

The problem with global tables is that they must be large, and therefore may not be in core when

they are needed. This is another time penalty associated with the dynamic use of a hash link: there

is some nonzero chance that retrieving the desired value will cause a page fault Schemes in which

the hash table is somehow locked into main memory bear a cost in dynamically available memory

space.

3.4 "Invisible" cells

All of the escape schemes discussed so far have the property that car and cdr are independently

encoded. Relaxing this property yields an interesting and useful escape mechanism that we call

invisible cells after Greenblatt [Gre74]. In an invisible cell a special cdr codeword indicates that this

is not a "real" cell. and that the real cell can be found by following car. which in this case will be

called an invisible pointer. (Car and cdr could be reversed. but because cdr is usually smaller, this

way is better.) The invisible pointer will most commonly point to a cell with unencoded car and

cdr.

SWYM [Han69] has the earliest use we know of invisible pointers in the compact encoding of list

structures. SWYM provided a full size field for the data item, but always assumed that a list

COMPACT ENCODINGS OF LIST STRUCTURE 11

continued in the next contiguous cell in memory. (This assumption required SWYM to prohibit the

rplacd operation.) When this was not the case, a special bit was set indicating that the data portion

of the cell contained the location of the list continuation.

Using an invisible cell is a way to deal with the rplac problem. When a compact cell is rplac'd in a
way with which the other available escapes cannot cope, the entire cell can be made "invisible" and

relocated to a more convenient spot. Pointers that go through an invisible cell can be updated to

their new value either when they are traversed or during garbage collection. This is called

"snapping" the pointer by Greenblatt [Gre74]. Snapping the link on invisible cells in a system

forces the test for pointer equality (EQ in Lisp) to check the contents of the cell since two pointers

should be considered EQ if one is a pointer to an invisible cell, and the other is the contents of that

cell. For just this reason the MIT system calls for snapping links only at garbage-collection time

[Baw77].

4. Lisp machine encodings

Two existing Lisp machines use compact encodings for cdr, one at Xerox PARC [Deu73b, Deu78],

and another at MIT [Gre74, Baw77]. Both have a 24 bit virtual address space, and are

microprogrammable to provide efficient support for the decoding of compact pointers. Their

encoding schemes will be described and contrasted in terms of their efficiency under two sets of

assumptions about the linearity of lists, using statistics from Tables I-II and from [Oa77, Oa79].

4.1 Xerox Lisp Machine

The Xerox encoding uses, pages containing 128 32-bit list cells. The first cell of each page is used as

the head of the free list for that page. The other 127 are available list cells. Each cell is divided

into a 24-bit car field, and an 8-bit cdr field. Car is large enough to point to anything in the

address space. When cdr= 0 it is interpreted as a pointer to the atom NIL; if cdr is in the range 1-

127, then these bits are interpreted as the low order bits of the address of cdr relative to the page

containing this cell. In the range 129-255, cdr is interpeted as a page-relative address of a cell

whose car field contains a pointer to the actual cdr value (an indirect page-relative address). If

cdr= 128 then the cell is "invisible" and car points to another cell in which the actual values of car

and cdr can be found. The four possible cases for interpretation of a cell are summarized in Table

VII below.

TABLE VII
Xerox Lisp machine encoding

cdr contents
o
1-127
128
129-255

cdr interpretation
NIL
Direct page relative
Indicates invisible cell
Indirect page relative

car interpretation
Standard pointer
Standard pointer
Invisible pointer
Standard pointer

size of cell
32 bits
32 bits
96 bits
64 bits

12 COMPACT ENCODINGS OF LIST STRUCTURE

To analyze the effectiveness of this encoding we need to consider when a list cell can be 32 bits, 64

bits, and 96 bits. It will be greater than 32 bits in just those cases in which cdr points to a list that

is not on the page--about 7.3 percent of cdrs, on average--or when it is neither a list nor NIL--2.4

percent of cdrs. Therefore, about 90.3 percent will take only 32 bits.

A 96-bit cell can only be created when a 32-bit cell on a full page has its cdr replaced by an off­

page list or a nonlist other than NIL. Unfortunately, our measurements do not permit us to

calculate precisely how often this would occur. We can, however. make the following

approximation. Dynamic measurements [Cla79] show that the number of rplacds executed during

short runs of three programs is about half the number of cells referenced. (By rplacd we mean any

write of a cdr field, not just those explicitly specified by the programmer. Many such writes are

imbedded in Interlisp list-manipulation functions. It should also be recalled that list-structure

representations of programs, which are changed very rarely, are excluded from these measurements.)

If we assume that no cell gets rplact! d more than once, this implies that about half of all cells

undergo a rplacd.

About 5 percent, on average, of all rplacds change a NIL or an on-page cdr into an off-page list or

a nonlist other than NIL [Cla79]. In the worst case all such rplacds will operate on 32-bit cells on

full pages, and therefore about 2.5 percent of all cells would be 96 bits wide, leaving 7.2 percent at

64 bits, and 90.3 percent at 32 bits. In this pessimistic case the average cell size would be

(.025 * 96) + (.072 * 64) + (.903 * 32) = 35.9 bits.

In the best case there will be no 96-bit cells, 9.7 percent 64-bit cells, and the same 90.3 percent 32-

bit cells; in this case the average cell size would be 35.l bits. Our uncertainty about the 96-bit case,

therefore, changes the average cell size by less than one bit.

If all lists are linearized then the percentage of cdrs that are off-page lists or nonlists other than NIL

decreases from 9.7 to about 3.1. After a linearization is done, there will be no 96-bit cells, since

these can only be created by subsequent executions of rplacd. Thus the average size of a cell after

linearization is 33 bits.

4.2 MIT Lisp machine

The MIT machine also uses a 24 bit virtual address space. Each 32-bit word contains a 24-bit car

field, a 2 bit cdr field, and 5 bits of data type information. We include the data type bits in our

calculation of encoding efficiency because in the Xerox encoding the data type of a pointer is found

using the page number of the pointer and a map of how data types are laid out in the address

space. In the MIT encoding, the four possible cdrs are: 1) cdr= NIL; 2) cdr is the next cell; 3) cdr

is pointed to by the next celIe-an indirect cell-relative escape, discussed in Section 3.2; and 4) this

cell is "invisible"--car points to the "real" cell. The first two cases make a one-word cell, the next

makes a two-word cell, and the last makes (most often) a three-word cell.

COMPACf ENCODINGS OF LIST STRUCTURE 13

About 46 percent of cells will have a cdr accomodated by the first two cases above (Table I and

lQa??]); this leaves 54 percent that take either two or three words to represent. Again, our data fail

us when we try to measure precisely how many cells would take three words. This will happen only

when a one-word cell undergoes a rplacd and the new cdr is neither NIL nor a list in the next cell

and the next sequential cell is not available. Assume that the next cell is never available. Then

rplacd will change a one-word cell into a three-word cell an average of 16 percent of the time; given

that about half of all cells have rplacd done to them, this means that 8 percent of cells will take

three words to represent. Therefore 54-8 = 46 percent will take two words, and the average cell

size is

(.08 * 96) + (.46 * 64) + (.46 * 32) = 51.8 bits.

If all lists are linearized, the MIT encoding does much better. There are no three-word cells after a

linearization, so the average cell size will be the same as that for the Xerox encoding, 33 bits. If list

structure is kept mostly linearized with a copying garbage collector, as the MIT design calls for

[Bak?8], then space is used very efficiently. But cells created after a linearization could be more

efficiently encoded if the two relative uffsets -1 and + 1 were both available. Our data indicate that

both are frequently used in cdr.

On the other hand, these data come only 'from Interlisp programs and are functions in part of the

details of that system's coding of various Lisp functions. The MIT system is different from Interlisp

in its underlying implementation; such things as the ratio of rplacd to cons might therefore be

different for it. Strictly speaking, our evaluation of the MIT encoding is valid only to the extent

that statistics for the MIT Lisp machine are similar to those we have gathered for Interlisp. In the

MIT Lisp machine, many of the standard functions (e.g., list, append) are designed to build

structures with good cdr locality consistent with fast execution and good paging behavior. Thus, our

computation of the average size of an MIT Lisp machine list cell may be too high.

5. Costs and implementation questions

Any scheme for encoding and decoding information carries some time penalty. We have thus far

looked chiefly at the space side of the time-space trade-off; here we consider the time costs of

compact encodings, as well as some other implementation issues.

5.1 Frequency of escape

Perhaps the most important question to ask is how often an escape mechanism is used dynamical/yo

We know from the data of Section 1 and [Oa??] how many static instances of escape codes there

will be for each of our programs. Corresponding dynamic data reported in [Oa?9] can show how

often the time penalty of the escape mechanism will be incurred. In [Oa79] it is shown that static

and dynamic data roughly agree: data-type distributions were similar in the two settings, as were

14 COMPACT ENCODINGS OF LIST STRUCTURE

the distributions of pointer distances; ranking atoms by static frequency did not do violence to the

cumulative distribution of dynamic atom references. This means that in general, the time penalty of

a proposed escape method will be borne approximately as often as the space penalty occurs

statically.

5.2 Impact on Lisp primitives

The standard approach to pointers in Lisp--using full machine addresses all the time--is, while

wasteful of space, very fast: car and cdr are Simple memory read operations; cons is a space

allocation followed by a simple write. Under a compact encoding scheme, the primitive pointer­

manipulating operations of Lisp become, most of the time, only slightly more complicated. In the

rare case that an escape is used, the possibly high costs briefly mentioned in Section 3 must be paid.

Consider car and cdr. These operations must fetch the appropriate small field and check its type:

list, atom, NIL, escape, etc. This can be done quickly in hardware or microcode. Most of the time

an escape value 'Yill not be found; if one is, more complicated decoding must be done. In the

usual case, the true value of car or cdr can be obtained either by a single addition (for lists or small

integers) or a table look-up (for atoms).

The Lisp operations rplaea and rplaed replace an existing car or cdr, respectively, with a new value.

If compact encodings are used, these operations must first check to see whether the new value can

fit into the small field. In the case of lists, this will cost a subtraction and a comparison; in the case

of atoms, a table look-up to see if it is one of the common few hundred or so. The patterns of data

type replacement by rplae operations are discussed in [Cla79]; here we are interested chiefly in how

often "small" pointers (compact ones) are replaced by "large" pointers (escapes). That, after all, is

the most difficult kind of rplae under a compact encoding. The data reported in [Cla79] do not

include enough information to calculate how often this happens with rplaea (atom and number

distributions were not calculated), but there is enough to evaluate the more common rplacd

operation. If we approximate "small" edrs by NILs plus all list pointers with distance under 32, then

in the dynamic runs of [Cla79], the replacement of a small pointer by a large pointer accounted for

just 2.8 percent of rplaeds in CONGEN, 5.5 percent in SPARSER, and 6.6 percent in NOAH.

Most rplaeds (63 to 90 percent) replaced one small pointer by another: an easy operation under a

compact encoding.

The final list-manipulating primitive, cons, creates a new cell containing two given pointers. Once

the cell is allocated, a cons looks, for the purposes of this analysis, very much like a rplaea together

with a rplaed, and the same computational work must be done. Notice,. however, that the

construction of an escape is made easier by the likelihood that nearby cells are unoccupied at the

time of the cons, and thus are available for indirect escapes. In fact, if a linearizing garbage

collector is used, we are guaranteed that at the time ~ eons is done the next cell is unoccupied.

COMPACf ENCODINGS OF LIST STRUCTURE 15

5.3 Atom frequencies

If a compact encoding scheme does not allow all atoms to be referenced directly, some way must be

found to discover which are the most common ones, in order to realize the savings afforded by the

encoding. The problem here is quite different from the case of lists: whereas we can be reasonably

sure beforehand which relative list pointers will be common (namely, the small ones), we have no

way of knowing before a program runs exactly which atoms will be frequently pointed to in list

structure. The obvious way to find out is to count the references to each atom during garbage

collection. The cost of doing this during garbage collection is a small amount of time and enough

space enough to store the counts, plus a sort of the counts when the dust settles. After the common

atoms have been tabulated, the space can be returned until the next garbage collection.

Notice that if the static frequency distribution of atoms is not stable over time, much effort can be

spent in encoding and re-encoding atom pointers to maintain coding efficiency. But these

distributions almost certainly change slowly, so recalculating them at garbage collection time, or

perhaps more rarely, seems sufficient.

5.4 Stability of linearization

Linearizing garbage collection can greatly benefit a compact encoding, as we have seen. The MIT

and Xerox Lisp machine designs both call for linearization to maintain their cdr encodings [Bak78,

Deu76]. An important question is what happens to linearized list structure between linearizations.

An experiment with CONGEN and SPARSER showed that linearized stnlcture is very stable: after

a linearization of all lists, each program perturbed its list structure only slightly [Cla79]. It seems

likely that rplacd (and also rplaca) are most often performed shortly after the cons that created the

cell they change.

6. Extension to larger address spaces

The empirical data used in this paper comes from programs with an effective address space for list

structure of about 216 cells. We have suggested on the basis of these data that one might use

compact representations of most pointers. A serious issue for the application of these ideas in

future systems is how well encoding efficiency will hold up as address space grows. We will be

concerned with the encodability of pointers to atoms and pointers to lists. In this section we will

argue that a fixed-width compact encoding of cdr will, as address space grows, accomodate a

fraction of cdr pointers that is bounded from below by a nonzero constant. We will also show that

a corresponding argument is difficult to make for car pointers, both because car points IllOSt often

to an atom, and because list-pointer clustering in car is less marked than in cdr.

16 COMPACT ENCODINGS OF LIST STRUCTURE

Suppose that we choose to encode the most common k items out of a population of N. ("Items"

will be either atoms or list-pointer distances.) Each item i occurs with probability p(z), and

N

(6-1) l: p(z) = 1
1=1

A fixed-width encoding will succeed if the most common k items account for a fraction of all
pointers that does not vanish as N increases:

k

(6-2) limit l: P(l) ¢ 0
N-+oo 1=1

If condition (6-2) holds then the cost of an increasing address space will eventually be borne in the

size of the pointer delivered by the escape mechanism, rather than in the size of the encoded field

itself. For an encoded field of b bits, an escape cost of c bits, and a probability of failure in the

encoded field of q, the average size of a pointer is b + qc. As N grows, b is constant, c grows, and if

(6-2) holds, q approaches a constant qo' 0 < qo < 1. Of course, b should be chosen to make q small
Without (6-2), q will go to 1, the average size of a pointer will approach b+c, and we would do

better to increase b or perhaps to abandon encoding altogether, particularly if b+ qc > 10g2N.

Of course the P(i) depend on N, as equation (6-1) indicates. It will be convenient in what follows

to express this dependence by writing p(z) as a product of a normalizing term C. which is a function

of N, and a function f(i). which we assume to be independent of N. For example, for items

distributed according to Zipfs law, f(i)=1/i and C=IIHN• where HN is the Nh harmonic number.
In general:

(6-3) p(z) = CJ(I)

N -1

C = (l:f(i»)
;=1

Now the question of whether a fixed width encoding will succeed--condition (6-2)--can be expressed

as:

00

(6-4) l: f(z) converges.
;=1

Starting from our empirical characterizations of the distributions of atom and list pointers, we will

construct models of atom pointers and list pointers in the fonn of (6-3) and then evaluate condition

(6-4) to see whether fixed-width encodings can maintain their efficiency as address space grows.

COMPACT ENCODINGS OF LIST STRUcruRE 17

6.1 Atom pointers

In Section 1 (and in [Qa77]) we suggested that atom pointers are reasonably well modeled by Zipfs

law. except perhaps for the most common few tens of atoms. Zipfs law states that the z'J1 most

common object will occur with frequency proportional to 1/ i. If N is the number of atoms, then

we can instantiate equations (6':3) for atom pointers as follows:

(6-5) P(I) = Cl/i

N -1

C = (~l/i)
1=1

Unfortunately the series
00

(6-6) ~ IIi
1=1

diverges, so if Zipfs law continues to hold as N grows, then the fraction of atom pointers encodable

in any fixed number of bits will eventually decrease to zero. If, however, N is bounded then a

fixed-width field of rIog2Nl bits will work regardless of how atom pointers are distributed. N
would be bounded, for example, in a system whose atoms were the words of a natural language.

If N is not bounded, how might its growth be related to the growth of the address space? Two

assumptions will help us answer this question. First, we assume that half of all cars will point to

atoms (slightly more than the mean shown in Table I), and that no cdrs will (excepting NIL, as

usual). If the address size is m bits and the number of atom pointers is A, then there will be 2m list

cells and A=2m-1. Second, we assume that the least common atom occurs once: P(N)A=1. These

assumptions allow us in principle to express N as a function of m. To simplify these calculations we

will replace Zipfs law by the computationally more convenient cumulative log law [She78], which is

very close to Zipfs law:

(It is easy to show that the cumulative log law diverges in the sense of (6-4).) Applying the

cumulative log law to our two assumptions yields Table VIII. As m grows from 16 to 32, Table

VIII shows how many atoms there will be, what fraction of all atom pointers will be accounted for

by the most common 1024 atoms, and how many pointers will be needed to account for 80 percent

of all ato~ references. Although encoding efficiency falls, it does so quite slowly; even with 224 list

cells and more than 600,000 atoms, the top 1024 atoms will still attract more than half of all atom

pointers.

18 COMPACT ENCODINGS OF LIST STRUCTURE

TABLE VIII
Atom encoding as address space grows

address
width (m)
16
18
20
22
24
26
28
30
32

6.2 List pointers

number of
atoms (f>
3.96*10
1.37*104

4.86*104

1.74*105

6.27*105

2.29*106

8.40*106

3.08*107

1.17*108

percentage of
pointers to
top 1024 atoms
83.7
72.8
64.2
57.5
51.9
47 .. 3
43.5
40.2
37.3

number of
atoms needed
to get 80%
7.54*102

2.04*103

5.61*103

1.56*104

4.34*104

1.22*105

3.46*105

9.79*105

2.85*106

In order to investigate the effects of address-space growth on list pointers, we rely on the hypothesis

that static list pointer locality is largely a function of the time order of cell creation: cells close

together in memory were very probably created close together in time. This property enables us to

model list pointer locality by passing from the addresses of list cells to the times of their creation.

Making this transformation allows us to model the growth of address space as the passage of time,

and permits us to test proposed models against our programs.

We have considerable evidence for this hypothesis. The static measurements of [Qa77] showed that

the so-called "smart cons" of Interlisp [Bob67, Tei74] has very little effect on pointer locality, and

that a single free-list in address order is sufficient to account for this locality. Furthermore, in some

experiments using two of the programs we directly compared address locality with creation-time

locality and found that they were very close. An explanation for this is that even without a

compacting garbage collector (Interlisp has none), free space for list cells tends to come in large

blocks. A compacting garbage collector guarantees that the free storage list is a single huge block;

addresses of cells created between compactions will correspond exactly to their creation times.

Morris's compacting garbage collector [Mor78] will preserve this correspondence exactly; linearizing

garbage collection will change it, but will improve pointer locality, as our data show. Therefore,

ignoring the effects of garbage collection in what follows cannot weaken our convergence results.

We propose that the probability that a pointer in a cell created at time i points to a cell created at

time j depends only on li-}1- We assume this to be true after some large number, N, of cells has

been created; but so as not to deal with cells created very near the beginning or very near the end,

we assume 1 < < i, j < < N. A pointer can point "forward" in time only if it is created by rplaca or

rplacd; pointers "backward" in time can be made by either cons or rplac operations. Let P(i) be the

probability that a pointer points i units forward or backward in time. We assume that the

probability has the same form regardless of which way the pointer was created.

COMPACT ENCODINGS OF LIST STRUC11JRE 19

An examination of our spatial locality data led us to the following model, a simple generalization of

Zipfs law:

(6-7) P(l) = C i'

N -I

C = (~ir)
1=1

If r= 1 then (6-7) is the Zipf model and does not converge. But if r> 1 the series

00

~i'
1=1

does converge and a fixed-width encoding will therefore maintain its efficiency as N grows without

bound.

Testing this model required that we gather new data on the distribution of pointers in list cells with

respect to time of creation. We did this by patching the eons routine in Interlisp to put out a trace

on a file of the addresses of cells as they were created during a typical run of two of the programs,

NOAH and SPARSER. At the end of each run we dumped the contents of the list cells that had

been created (17,800 cells in NOAH, 19,700 in SPARSER). We then translated the contents of each

cell from virtual address to creation time and analyzed the results in terms of the fraction of cens

that contained pointers at different distances (times of creation) away.

TABLE IX
Time locality in NOAH and SPARSER

NOAH SPARSER
k Blear) Bledr) Blear) Bledr)
--
1 .537 .651 .501 .771
2 .084 .092 .053 .046
3 .044 .064 .049 .037
4 .020 .038 .027 .029
5 .028 .021 .033 .017
6 .020 .030 .030 .023
7 .011 .013 .034 .030
8 .014 .013 .026 .016
9 .023 .014 .015 .008
10 .022 .018 .026 .008
11 .028 .012 .036 .004
12 .036 .009 .040 .002
13 .056 .011 .065 .003
14 .067 .015 .046 .006

Table IX shows the result of collecting these statistics into buckets B k containing pointer "distances"

in the range [2k-l,2~. The numbers in Table IX are fractions of the total number of ear or cdr list

20 CUMPACT ENCODINGS OF LIST STRUCTURE

pointers that ended up in each bucket. Note that forward and backward time have been folded

together, e.g., B2 contains pointers to cells created 2 or 3 time units in the past or in the future.
Note also that although a small number of pointers ended up in B15, the experiments were not large
enough to allow all possible values for pointers in B15, so it is omitted from the table.

If these data were generated by model (6-7) with r= 1, we would expect to see the values for Bk
approach a constant as k increased (see, for example, Table III). For car, unfortunately, the

situation is at least this bad: B k seems to increase slightly as k goes from 8 or 9 to 14. Thus the
model with r) 1 cannot explain the car list pointer data. This, together with our conclusions about

atom pointers, leads us to be pessimistic about the continuing efficiency of fixed-width encodings of

car.

But for cdr there is some hope: B k does appear to decrease with k, which is a necessary condition
for (6-7) to hold. To examine this more closely we need to make some calculations. Our model

predicts the following value for B k:

(6-8) Bk = ~ p(z) = C ~;-,
2k-1<K2k 2k-1<K2k

For other than small values of k, this can be approximated by the continuous form:
2k_1

Bk ~ C fX-'dx
2k-1

= C'[(2k-l)l-r - (2k-1)1-,]

where C' and C" are independent of k. Therefore:

10g2 B k ~ C", + k(l-r),

so our model predicts that log2 B k should be an approximately linear function of k with slope (1-r)
(for moderately large values of k, say above 3 or 4).

Figure 1 shows log2 B k versus k for the two sets of cdr data in Table IX. Also shown are plots of

the exact values of log2 Bk for model (6-7), computed according to (6-8) with N=214 and r=l, 1.2,

and 1.3. There are several points to note. First, both sets of data decline quickly from k = 1 to

k=2, then very roughly linearly from k=2 to k= 14. A slope of (l-r)= -.3 fits the SPARSER data

adequately; (1-r)=-.2 does better for the NOAH data. Second, we can "adjust" model (6-7)

without affecting its convergence by removing a finite amount of probability from its tail (k)I) and

adding it to B1• This would greatly improve the fit of the model to the data. Third, the sole
property that we need for convergence .is that the data always lie below some line with negative

slope; the exact form of the model we have used--equations (6-7)--does not matter provided this

COMPACT ENCODINGS OF LIST STRUCTURE 21

property holds, and it seems to hold in Figure 1. In fact, r need not be constant. What is required

is that it be bounded away from 1, for at r= 1 the convergence disappears.

Thus if our assumptions remain valid, then we have demonstrated one plausible model of list-cell

creation that roughly fits our cdr data and has the property that a fixed-width encoding of cdr will
accomodate all but a bounded fraction of cdr list pointers as the total address space grows. Further

testing with programs written for different Lisp implementations and different size address spaces is

needed to increase our confidence in the model, and in the continued utility of compact encodings.

1092 Bk

• • • SPARSER
0 NOAH

-1

-2

-3

model with r = 1
-4

• • ...
-5 • ... •

... •
-6 • •

-1 • • •
-8 •

•
-9 •
-10 k

1 2 3 4 5 6 1 8 9 10 11

Figure 1

22 COMPACT ENCODINGS OF LIST STRUcruRE

7. Conclusion

By taking advantage of the regularities in the use of list structure we can achieve a compact

encoding of list cells. We have suggested ways to compress the average number of bits required for

list pointers and for pointers to atoms. However, our models of the use of these pointer types

suggest that as the total address space for list structure grows, only list pointers in cdr will be

efficiently handled by a fixeq-width encoding. Since cdr contains few pointers to atoms other than

NIL, it is clear that there is a large benefit in encoding it. It is less clear that encoding car will be

worthwhile. Encoding cdr only is the path taken by two groups who are building Lisp machines;

our data and analysis indicates that they should prove quite successful in their uses of compact

encodings of list cells.

Acknowledgments. We wish to thank a number of people who contributed to the development of

these ideas and who helped us make and interpret our measurements. These include Lyn Bates,

Mark Brown, Peter Deutsch, Therese Flaherty, Sam Fuller, Cordell Green, Leo Guibas, Ron

Kaplan, Larry Masinter, Lyle Ramshaw, Earl Sacerdoti, and Beau Shei1. We also wish to thank

Henry Baker and two other referees for detailed comments and suggestions which have helped us

make our discussion more accurate and succinct

COMPACT ENCODINGS OF LIST STRUcruRE

References

[Bak781 Baker, H.G., Jr. List processing in real time on a serial computer. Comm. ACM 21,4 (April
1978), 280-293.

[Bat75] Bates, M. The use of syntax in a speech understanding system. IEEE Trans. on Acoustics,
Speecfi, and Signal Processing 23, 1 (Feb. 1975), 112-117.

[Baw77] Bawden, A., Greenblatt, R., Holloway, J., Knight, T., Moon, D., and Weinreb, D. LISP
machine progress report. M.I.T. Artificial Intelligence Laboratory Memo No. 444, M.I.T., Cambridge,
Mass., Aug. 1977.

[Bob67] Bobrow, D.G., and Murphy, D.L. The structure of a LISP system using two level storage.
Comm. ACM 10,3 (March 1967), 155-159.

[Bob72] Bobrow, D.G., Burchfiel, J.D., Murphy, D.L., and Tomlinson, R.S. TENEX, a paged time
sharing system for the PDP-10. Comm. ACM 15, 3 (March 1972), 135-143.

[Bob75] Bobrow, D.G. A note on hash linking. Comm. ACM 18, 7 (July 1975},413-415.

23

[Che70] Cheney, C.J. A nonrecursive list compacting algorithm. Comm. ACM 13,11 (Nov. 1970), 677-
678.

[Cla76al Clark, D.W. An efficient list-moving algorithm using constant workspace. Comm. ACM 19,6
{June 1976}, 352-354.

[Cla76b] Clark, D.W. List Structure: Measurements, Algorithms, and Encodings. Ph.D. thesis, Dept. of
Computer Science, Carnegie-Mellon University, August 1976.

[Cla771 Clark, D.W., and Green, C.C. An empirical study of list structure in Lisp. Comm. ACM 20,2
(Feb. 1977), 78-87.

[Cla79) Clark, D.W. Measurements of dynamic list structure use in Lisp. IEEE Trans. on Software
Engineering, Vol. SE-5, No.1 (Jan. 1979), 51-59.

[Deu73a] Deutsch, L.P. An interactive program verifier. Ph.D. thesis, Computer Science Dept., Univ.
of California, Berkeley, May 1973.

[Deu73b] Deutsch, L.P. A LISP machine with very compact programs. Third IleAl, Stanford, Ca,
1973, pp. 697-703.

[Deu76] Deutsch, L.P., and Bobrow, D.G. An efficient, incremental, automatic gabage collector.
Comm. ACM 19, 9 (Sept. 1976),522-526.

rDeu78] Deutsch, L.P. Experience with a microprogrammed Interlisp system. Proc. 11th Annual
Microprogramming Workshop, Asilomar Conference Ground, Pacific Grove, Ca., Nov. 1978.

[Fen69] Fenichel, R.R., and Yochelson, J.C. A LISP garbage-collector for virtual-memory computer
systems. Comm. ACM 12, 11 (Nov. 1969),611-612.

[Gre74] Greenblatt, R. The LISP machine. M.LT. Artificial Intelligence Laboratory Working Paper 79,
M.LT., Cambridge, Mass., Nov. 1974.

[Han69] Hansen, W.J. Compact list representation: definition, garbage collection, and system
implementation. Comm. ACM 12,9 (Sept. 1969), 499-507.

[Knu73] Knuth, D.E. The Art of Computer Programming, Vol. 3: Sorting and Searching. Addison­
Wesley, Reading, Mass., 1973.

24 COMPACT ENCODINGS OF LIST STRUCTURE

[McC62] McCarthy. 1., et aL LISP 1.5 Programmer's ManuaL M.I.T. Press. Cambridge, Mass., 1962.

lMin63] Minsky, M.L. A LISP garbage collector algorithm using serial secondary storage. Artificial
Intelligence Project Memo No. 58 (rev.). M.I.T., Cambridge, Mass .• Dec. 1963.

[Mor781 Morris, F.L. A time- and space-efficient garbage compaction algorithm. Comm. ACM 21,8
(Aug. 1978), 662-665. '

[Sac77] Sacerdoti, E.D. A Structure/or Plans and Behavior. Elsevier North-Holland, New York, 1977.

[She781 Sheil, B.A. Median split trees: A fast lookup technique for frequently occurring keys. Comm.
ACM 21, 11 (Nov. 1978), 947-958.

(Smi74] Smith, D.H., Masinter, L.M .• and Sridharan. N$. Heuristic DENDRAL: analysis of molecular
structure. Computer Representation and Manipulation o/Chemical Infonnation (W.T. Wipke, S. Heller,
R. Feldman, E. Hyde, eds.). John Wiley & Sons, Inc., 1974.

[fei741 Teitelman, W. INTERLISP Reference Manual. Xerox Palo Alto Research Center, Palo Alto,
Ca., 1~74.

[Zip49] Zipf, O.K. Human Behavior and the Principle o/Least Effort. Addison-Wesley Press,
Cambridge, Mass., 1949.

b'
3
"C
I»

~
m
:I
n
o
Cl.
5'
cc
'" o
r­
;n' ..
~ ..
c:
!l
c: ..
(!)

