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Chapter 1 

Introduction 



2 

How can a computer be programmed to plan and execute strategies that achieve 

some desired goal? Variants of this problem have nurtured efforts to develop 

the necessary epistemology" and .computational techniques, as part of a" pursuit of 

"artificial intelligence" (AI). The variant known as "robotics" has attempted not 

only to plan strategies involving actions similar to those of humans in the real 

world, but also to build electronic "eyes" to observe the world and computer­

controlled arms and wheels to achieve motor activity. 

A characteristic of most of these planning systems is that they generate 

reasonable plans, but not "optimal" ones. In fact, the techniques used in AI 

planning currently allow little discrimination of preference among reasonable 

plans. A certain amount of tinkering and adjustment offer only limited ad hoc 

relief. 

What is needed is a combination of the powerful AI techniques for restricting 

attention to those plans that are l'eas~nable, together with techniques for finding 

good plans among the reasonable ones. A simple but wasteful formulation of 

the combination might involve enumerating all reasonable plans and then 

evaluating each one to identify the best plan. One of the questions addressed 

in this dissertation is: how can a system benefit from a tighter integration of 

the techniques? 

The notion of optimality that we shall introduce into AI planning is borrowed 

from mathematical decision theory. The central idea of the discipline is that a 

numerical utility function can be used to evaluate decisions (see Chernoff and 

Moses, 1959, or Raiffa, 1970, for introductions to decision theory). A single 

numerical value summarizes the advantages of a set of actions, including effects 

of uncertainty, risk, and value of outcomes. A typical utility function would be 

the profits realized from a particular investment outcome. 

\i. 

The aim of this research is to conlbine decision theory and AI techniques so 

that planning uses models of optimality that accompany a decision-theoretic 

formulation, and also uses heuristic information to avoid the large searches 

characteristic of problems cast solely in decision-theoretic terms. 'rhe basic 

approach is to conduct an organized search of plan alternatives using the utility 

function to measure the promise of partially-complete plans. Promising avenues 

are explored incrementally to build and refine plans. Between each increment, 

the promise of the plan is reassessed. As new information is gathered, the 
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pending plans are re-evaluated in light of the new information. Similarly, as 

plan execution progresses and the state of the world changes, pending plans are 

re-evaluated to take account of information acquired du.ring execution or are 

discarded if they cease to apply to the case at hand. 

Decision Theory 

A dominant tenet of this work is that the utility function and the model of 

costs and' outcomes accompanying it constitute a convenient way for representing 

certain kinds of information used to solve a problem. Two perspectives on the 

utility notions are important: what sorts of information are naturally represented 

in this fashion, and what computational techniques can be applied to this 

information in pursuit of problem solutions? 

Many of the arguments for the utility function are the result of years of 

development of mathematical decision theory and of various utility theories 

(Fishburn, 1970). The justification of the utility function applies to many 

problems attacked in AI; consider some introductory arguments: 

• The first, and perhaps the best, argument for a numerical utility function 

is that the choice between alternative courses of action is often inherently 

numerical. One chooses the cheapest, or fastest, or strongest alternative. 

Many problems in robot problem-solving are virtually inexpressible in non­

numerical terms. Examples also abound in medicine: it is known only 

that a certain fraction of schizophrenics respond to a certain drug, and 

there is no way to determine in advance whether a given patient will 

respond. 

• Another main use of a utility function can be called "comparing the 

incomparable." If flying is faster and safer than driving, but more 

expensive and subject to delay, how can we choose which to do? What 

change in price would cause us to choose otherwise? The expected utilities 

of the alternative decisions answer these questions. By contrast, a heuristic 

program capable of comparing differing strategies symbolically will have 

rules covering many combinations of goals and circumstances, and the 

addition of new entities may req~ire significant reprogramming. But if 

utility information about trains were added to a representation of 

transportation based on utilities, no further rules would be required to 
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relate trains to other modes of transportation. Decision theory provides a 

uniform way of treating information related to choosing a course of 

action, given the relevant. utility and probability values. 

• Many of the properties of a plan that the planning system needs in 

reasoning are revealed by the utility function. The numerical utility 

measure permits two plans to be compared, permits the value of potential 

improvements to plans to be assessed, permits the planning activity to 

o.rganize an orderly search for the best plans, and permits the effective 

allocation of resources to planning, acting and information-gathering. 

This dissertation applies the utility function to reveal tradeoffs among competing 

strategies for achieving various goals, taking into account reliability, the 

complexity of steps in the strategy, the value of the goal, and so forth. 

Techniques of decision theory can be applied to satisfy a number of objectives 

when constructing and executing plans: 

• Comparing alternative plans. Often these comparisons are made among 

instances of a common plan outline or skeleton. 

• Coping with uncertainty. The calculation of expected utility permits the 

reliability of a plan to be considered when assessing its worth. 

• Finding good plans. The' utility of partially-completed plans, together with 

bounds on the utility of the completion required, can be used to organize 

and guide a search for the best plan. 

• Improving a plan. Failure paths in plans 'can be elaborated with recovery 

plans. The increase in expected utility of the elaborated plan measures 

the effect of generating a plan to cope with the failure path. 

• Acquiring information. Utility measures can be used to' plan efficient 

strategies for acquiring information needed for further planning. 

• Allocating resources among planning, acting or information-gathering. The 

utility measure can also be used to decide which activities are most 

beneficial to the system. 

The last observation, that a utility measure can assess the value of planning, is 

particularly noteworthy. Knowledge of the performance behavior of the planning 
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system) however crude) is widely applicable. From an external viewpoint, it can 

be used to choose among planning, executing and information-gathering activities. 

Within the planning systelu,. it can be used to allocate resources among 

competing planning techniques because the promise of a particular approach, 

measured by an estimate of its utility, can be balanced by an estimate of the 

planning effort required to complete the plan. 

The objective of a problem-solver should be to maximize the utility of the 

planning process and the execution process jointly. The effort expended to 

develop a plan and the effort expended to execute the plan are equally 

important to the objective. We shall be concerned with developing techniques for 

such optimal planning. These methods will find P-optimal solutions. in contrast 

to solutions that offer only optimal execution utilities. 

Symbolic Pro"blem-Solving 

The notions of optimality must be fused with planning techniques developed to 

find reasonable plans from symbolic models of a problem. AI research in 

general-purpose systems for planning and acting has drawn heavily on the closely 

related task of problem-solving. 1 An early paradigm for problem-solving relied on 

the techniques of predicate calculus and theorem-proving for representing the 

model and reasoning processes: the model of the behavior of actions and of the 

state of the world is expressed as axioms in predicate calculus; the problem 

statement is expressed as a theorem to be proved; the sequence of actions that 

will accomplish the desired result is extracted from a mechanical proof of the 

theorem (Green) 1969)." This approach is limited by available theorem-proving 

techniques: it is not possible to cope with models of much complexity. 

These difficulties have led to emphasis on procedural embeddings of similar 

models. often aided by one of a host of "AI programming languages" (Bobrow 

and Raphael. 1974). These techniques admit larger models and allow 

specification. in the form of a computer program. of solution methods that are 

likely to be fruitful. This ability to direct the processing along preferred 

avenues has been used in ad hoc ways to extract "good" solutions. 

1We--shaii--use--the--term planning to mean the process of creating a plan. or 
sequence of actions. which will achieve a given goal. Originally. planning was a 
technical term in AI that referred to techniques of planning out problem 
solutions before actually trying a detailed solution. Robotics work has typically 
used the term in the looser sense we adopt here. 
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The use of both of these methods,however, has been largely devoted to 

demonstrating the existence of one solution to the given problem, and not to 

exploring multiple solutions in order to find the best one. This convenient 

practice cannot suffice for our purposes: several alternative strategies must be 

examined and the best one selected for execution. 

Often, the alternative strategies that must be considered in order to find the 

optimal solution are variants of a simple "skeleton." A real-world example of this 

sort of strategy is the "wheelless student problem," buying a used automobile. A 

typical procedure is first to read newspaper advertisements and bulletin boards 

to assess the situation generally. Then, at relatively low cost, one can telephone 

various purveyors of cars and inquire about' them. At some point, one must 

,actually go to the effort of seeing and, driving certain of these. There are 

professional diagnostic services that can be employed, at considerable cost, to 

further test the car. In each of these steps, one must decide when to stop that 

stage and go on to the next one. One does not, of course, proceed in strict 

order; there will normally be alternatives at several different levels of 

investigation. Notice that the "plan" itself is trivial: read, telephone, look, drive, 

professionally test and buy. It is the application of this plan to the world 

situation that is difficult. This behavior is typical: many planning activities are 

characterized by complex applications of simple plans. 

Reading this documen t 

This dissertation uses two case studies to explore the synthesis of the AI and 

decision-theoretic approaches. Chapter 2 is devoted to the first, which uses an 

elaboration of the classical "monkey and bananas" problem to present a tutorial 

on aspects of decision theory and introduces several specializations for our 

purposes. 

The second case study, described in Chapter 3, introduces additional specialized 

techniques. The chief features are' a hierarchical structuring of symbolic and 

decision-theoretic reasoning, arid an attention to the costs of planning activities. 

The study itself is a computer program that plans travel itineraries. A user 

states a problem such as "journey from Stanford to the University of Rochester," 

and gives some information about his utility function. The' problem is attacked 

at several hierarchical levels of processing. giving rise to increasingly detailed 

plans. Each level summarizes progress on a. plan by computing an upper bound 
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on the utility of the plan -at this and all subsequent levels of processing. A 

promising partial plan is -subjected to more detailed processing that tries to 

discover rapidly the Inajor difficulties with the plan, often by adding constraints 

or complexities that cast increasing doubt on a previously good plan, and thereby 

reducing the utility of executing the plan. This process can be summarized as 

finding fault with crude plans by considering more details. 

Chapter 4 explores SODle of the techniques used in the case studies in more 

detail. It aims both to offer Inore elaboration of some of the techniques and to 

suggest ways some may be generalized. 

Chapter 5 is devoted to an analysis of the _ approach in light of previous and 

current AI work. The techniques explored in the case studies can be applied in 

a number of active areas. Chapter 6 recalls the main ideas of the dissertation 

and relates the fields of AI and Decision 'rheory. 

The following table n1ay help to point the reader to sections that describe points 

of particular interest: 

Topics from decision theory: 
Utility functions: 
Uncertainty: 
Testing, value of information: 

Integration into problem-solving: 
Searching for good solutions: 
Allocating planning effort: 
Optimal planning: 
Hierarchical organization: 
Hierarchically consistent utility models: 

Summaries: 
Monkey and bananas case: 
Travel planner case: 
Full summary: 

2.1.1 
2.1.3 
2.2, 2.3 

2.1.4, 4.2 
2.4, 3.2.3, 4.3 
4.3.1 
3.2, 3.4, 4.2.2 
3.3, 4.1.9 

2.5 
3.1, 3.3.6, 3.5 
6.1 





Chapter 2 

Introduction to Decision Theory and AI Planning 
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This chapter presents in a tutorial form the essential ingredients of the 

synthetic approach: the concepts of mathematical decision theory and their 

relation to conventional AI problem-solving techniques. The presentation uses 

the "monkey and bananas" problem as an example, exposing a sequence of 

techniques as the example is embellished. The description assumes familiarity 

with AI problem-solving (see Fikes, 1976, for a summary); it assumes little 

knowledge of decision theory (introductions can be found in Raiffa, 1970, or 

Chernoff and Moses, 1959). 

2.1 Decision Tlleory in Symbolic Problem-Solving 

Decision theory helps a symbolic problem~solver search for the best plan to 

achieve a given goal. A utility function on plans can govern a search strategy 

that explores plans of high utility; the search terminates by announcing the plan 

of highest utility. 

We shall illustrate how symbolic problem-solving and decision analysis can be 

combined with the classical example: A hungry monkey is in a room where a 

bunch of bananas hangs from the ceiling. The monkey cannot reach the 

bananas. There is, however, a movable box in the room; if the box is under the 

bananas and the monkey stands on the box he can reach the bananas and eat. 

The goal for a symbolic problem solver is to find a plan that will feed the 

monkey. 

A typical problem-solver is given a symbolic model of the problem and searches 

for a combination of "actions" that achieves a given goal. A possible symbolic 

model, specified in the style of a modern AI language, records information about 

the position of objects with an "AT" relation that associates an object and its 

Cartesian coordinate position. Additional relations declare boxes to be climbable 

and pushable and bananas to be edible. An initial set of relations might be: 

(AT MONKEY 9 9 0) 
(AT BANANAS 0 0 5) 
(AT BOX 2 2 0) 
(HEIGHT BOX 5) 
(CLIMBABLE BOX) 
(PUSH ABLE BOX) 
(EDIBLE BANANAS) 

This set is a symbolic representation of a "state of nature," or simply a state. 
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The symbolic ~odel must also include a model of the actions that' are capable of 

effecting transitions among states. The actions are specified below. If all 

relations in the list of preconditions are in the set of relations describing the 

current state,' then the operator can be applied. Application of an operator 

causes a transition to a new state by deleting relations in the delete list from 

the current set, and adding those in the add list. (The functions X, Y and Z 

refer to the coordinate entries in the AT relation. The symbol $ will match any 

value in the corresponding position in the relation.) 

WALKTO(a) 
Preconditions:(AT MONKEY $ $ 0) 
Delete list: (AT MONKEY $ $ 0) 
Add list: (AT MONKEY X(a) yea} 0) 

PUSHTO(a,{J) 

CLIMB(a) 

Preconditions: (PUSHABLE a) 
(AT MONKEY X(a) Yea) 0) 
(AT a $ $ 0) 

Delete list: (AT MONKEY $ $ 0) 
(AT a $ $ 0) 

Add list: (AT MONKEY XCP) YCft) 0) 
(AT a X(fJ) YCft) 0) 

Precondi tions: (CLIMBABLE a) 
(AT MONKEY X(a) yea) 0) 

Delete list: (AT MONKEY $ $ 0) 
Add list: (AT MONKEY X(a) Yea) HEIGHT(a)) 

CONSUME(a) 
Precondi tions: (EDIBLE a) 

(AT MONKEY X(a) Yea) Zeal) 
Delete list: (EDIBLE a) 
Add list: (FED) 

The problem-solver, given the goal (FED), tries to find a sequence of actions 

leading from the initial state to one that includes the (FED) relation. It might 

generate the sequence: 

WALKTO(BOX) . 
PUSHTO(BOX,BANANAS) 
CLIMB(BOX) 
CONSUME(BANANAS) 

We shall refer to such a sequence as a plan to achieve the goal. In a robotics 

experiment, the original relations and this plan can be used as a set of 

commands to software and hardware subsystems that cause a robot to simulate 

the actions of the monkey. 
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If the problem statement and the corresponding symbolic information given to 

the problem-solver were expanded to include multiple tools, multiple sources of 

food, or multiple goals, the problem-solver could generate other plans as well. If 

the initial relations model several boxes, a plan for each box could be generated. 

But if the number of alternative plans grows at all large, the combinatorial 

explosion will overwhelm any present problem-solver. 

2.1.1 Computing the Utility of a Plan 

The utility of one of the W ALKTO, PUSHTO, CLIMB, CONSUME plans is derived 

from a utility m'odel that accompanies the symbolic model. It is a measure of 

the value of achieving the' goal, diminished by the cost of executing each of the 

steps in the plan. We shall assume for now that this utility can be expressed 

as a sum of contributions from individual steps and a contribution representing 

the value of achieving the goal. (Note: This treatment omits important 

considerations such as risk that are discussed in Chapter 4.) 

For each goal, we assign a function that evaluates the utility of achieving the 

goal. In our example, we shall assign U e=200 to the goal of eating, i.e., t.o 

achieving a state in which the monkey is fed. Goals of less value to the 

monkey are assigned correspondingly smaller utilities. For later reference, we 

shall assume that the next most desirable goal is "don't bother trying to eat," 

which has utility Udb. 

The utility associated with executing ea"ch step of the plan is often called the 

"cost" of the step. A robotics experiment that simuiates each operator with a 

collection of processes, including computation and, control of a robot vehicle or 

manipUlator, might use cost assignments that express the consumption of 

resources required to accomplish each step. The table below specifies an 

assignment of negative-valued cost functions C that reflect the expenditure of 

resources required for each step. 

WALKTO(a). The monkey walks from its present location to (X(a),Y(a)). 
The cost is Cw = -1 X the distance between the present position and the 
destination. 

PUSHTO(a,,B). The monkey pushes the object a to the location X(,B),Y(fJ). Cp 
= -10 X the distance the object is pushed. 

CLIMB(a). The monkey climbs the object a. Cb '" -20. 

CONSUME(a). The monkey consumes the food a. Cc = -5. The cost' of the 
CONSUME action does not include the utility Ue of achieving the goal 
because, in general, an action may have several outcomes. The 
contribution Ue is a property of the outcome, not of the action. 
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Using this model, the tolal utility of the symbolic plan W ALKTO, PUSHTO, 

CLIMB, CONSUME is: Utotal=Cw+Cp+Cb+Cc+Ue. The utility of the next-best plan 

is Udb. 

2.1.2 Comparing Alternative Plans 

The plan with greatest utility can be selected for execution: it is the "best" of 

the plans generated by the symbolic problem-solver, as evaluated by the utility 

model. To illustrate the power of comparing plans, consider generating plans 

using each of the four boxes shown in the "map" of Figure 2-1. Table 1 shows 

the total utilities of' the WALKTO. PUSHTO, CLIMB. CONSUME plans using the 

different boxes. The plan to use box B h~ the greatest utility and is therefore 

selected as the best plan. 

Monkey 

Bananas 

Figure 2-1. Map showing a hypothetical location of the monkey, the 
bananas, and four boxes. The axes indicate an (x,y) coordinate 
system. Which box should the monkey push under the bananas and 
mount to reach the food? 

Table 1 

Cw Cp Cb Cc Ue Utotal 
Box A -3 -117 -20 -5 200 55 
Box B -13 -36 -20 -5 200 126 
Box C -6 -64 -20 -5· 200 105 
Box D -13 -81 -20 -5 200 81 
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This simple utility model adds considerable capability to the problem-solver. The 

location of the boxes and the cost functions determine which box is selected as 

the best one to use. For example, if Cp = <;V, box C will be preferred rather 

than B. If the initial position of the monkey changes, different boxes may be 

preferred. Figure 2-2a shows a map of regions in which the monkey might start 

out, together with the preferred box in each region. 

Use B 

.~ 

B 

Figure 2-2. (a) Regions of box preference are shown based on the 
initial location of the monkey. (b) The shaded region indicates where a 
box preferred to B must lie. Both maps are made assuming 
Cp=-2Xdistance. 

The cost functions also provide answers to a number of questions that an 

intelligent strategist must pose. For example, when should one try to find a box 

of higher utility than any presently located, and where should one search? Figure 

2-2b shows the region in which a box preferred to B would have to lie. 

Another important class of strategic questions concerns what decision theorists 

call "sensitivity analysis:" how much confidence can be placed in the 

identification of the best plan? Is it substantially better than the next best, or 

do the utilities show that the planner is nearly indifferent' to the choice? Do 

slight inaccuracies in the map or model cause a substantial change in the choice 

of best strategy? We shall later return to these inlportant questions. 
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2.1.3 Coping with Uncertain ty 

Execution of a plan can go awry and produce outcomes considerably different 

from the desired goal. Clearly the reliability of a plan must be incorporated into 

the calculation of its utility. Decision theory shows how to weight the utility 

of an outcome with its probability of occurrence and thus to calculate a total 

utility that expresses the consequences of possible failures. 

Let us augment the monkey and bananas problem by introducing a simple kind 

of failure: There are two kinds of boxes in the room: wooden and cardboard. 

Cardboard boxes' will not support the monkey; wooden ones will. When the plan 

outline is applied to a box of u~known type, either the box is wood. and the 

monkey succeeds in eating, or it is cardboard and he fails. This possibility is 

modeled as an unreliable CLIMB step (see Figure 2-3). In the absence of more 

precise information about the box to which the plan is applied, we shall use a 

single probability Po to express the likelihood that the box is wooden. In 

addition, we shall assign a utility to the failure outcome. A simple assignment is 

simply Udb,' corresponding to abandoning the quest for food. However, failure­

recovery plans of higher utility may exist: a plan to clear away the destroyed 

cardboard box and to try using another box may have a higher utility than Udb. 

Techniques for devising failure recoveries will be more fully developed below; we 

shall temporarily assume the utility of the failure outcome to be Udb. 

The utility of the plan is calculated as the mathematical expectation of the 

utilities of the individual outcomes, i.e., Utotal = L ~i Ui. where Ui is the total 

utility of a particular path in the "decision tree," and Pi is the probability of 

taking the path (k Pi = 1). For Figure 2-3; the total utility Utotal is 

po(Cw+Cp+Cb+Cc+Ue) + (l-Po)(Cw+Cp+Cb+Udb). 

This technique allows the planner to trade off cost and reliability; classical AI 

problem-solvers have no means of expressing these tradeoffs. For example, if we 

use the costs of Table 1 and· assume an identical Po for all boxes, no change 

occurs in the selection of the best plan. However, if the probabilities differ for 

various boxes, a reliable plan may be preferred to a less-reliable one. For 

example, if Poc is the probability that box C is wood, Pob that of ·box B, and 

Poc > Pcb + .11, the expected utility of using box C will be greater than that 

of using box B, even though a plan to use B is always preferred in the absence 

of failure. 



wood (po =.8) 

Consume 
C=-5 

U t =87 

WalkTo(B) 

C=-13 

PushTo 

C=-36 

Climb 

C=-20 

cardboard (1-p o=.2) 

U
db 

=0 

Figure 2-3. A decision tree showing a plan in which the CLIMB step 
fails with probability 1-po. 
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The expected utility is a numerical measure of the merits of the strategy 

expressed by the plan. It does not predict that executing the plan will have an 

outcome of comparable utility, but predicts only the average utility of outcomes 

of many executions. Thus, if we use the expected utility as a measure when 

searching for good plans, we do not guarantee good outcomes, only good 

stra tegies. 

2.1.4 Finding Good Plans 

Because the utility of a plan can be used to compare the merits of competing 

plans, it can be used to guide a search for good plans. The basic idea is to 

search by expanding paths of greatest expected utility. A nUInber of algorithms 

have been devised that can use numerical measures to guide such a search (see 

surveys in Nilsson, 1971, and Lawler and Wood, 1966). 

Using numerical measures to guide search is not new to AI. Many game-playing 

progranls employ a numerical score to represent the desirability of a board 

position and to guide a search. In fact, a game-playing program that uses a 
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plausible move" ~enerator and, a numerical evaluation of progress toward a win is 

a simple example of a combination of symbolic and ad hoc utility models in 

problem-solving. Robotics problem-solving programs (e.g., S,TRIPS in Fikes and 

Nilsson, 1971) 'have also used simple numerical measures, such as the number of 

opera tors in a plan, as a search guide. 

Searching can be guided in several ways; we shall illustrate "progressive 

deepening" and "pruning" as examples. The A * algorithm (Hart, . Nilsson, Raphael, 

1968) is typical of a progressive-deepening approach: a non-terminal node, N, of 

a search tree is expanded if it lies on the most promising path. The measure of 

promise is an estimate of the utility of the complete plan, computed as the sum 

of two terms: g,. a measure of the utility contributions ascribed to the nodes 

already included in the path (i.e., the total cost 1 of the steps from the root 

node to N), and ~ an upper bound estimate of the utility of a path from N to 

the goal. These terms for the monkey and bananas example might be: 

g( node) = ~ Ci from root to node 
h(n od e) (upper-bound estimate of costs from node to the goal) + Ue 

The calculation of g requires calculating the contribution to the utility of the 

steps of the partially complete plan. It is for this reason that we have 

formulated our utility model as a sum of terms attributable to individual steps 

of the plan. The estimate used for h can be based on a simple "state­

difference" approach. For example, if, at node N,' the monkey is not located at 

the bananas, then an upper bound on h is the cost of moving the monkey to 

the bananas. 

Progressive deepening uses a running estimate of the path utility to guide 

application of further planning effort. One advantage of this technique is that 

it will automatically attenuate the processing of plans that loop: such plans are 

abandoned because, as steps are added to the plan, g decreases continually 

without an offsetting increase in h. 

"Pruning" is characteristic of several kinds. of search algorithms that avoid 

exploring portions of the tree because the optimal plan can be shown to lie 

elsewhere. Many algorithms in use in operations research, known generically as 

"branch and bound" algorithms, have this property. The basic idea is to ignore 

1Note-"ihat--the--litiiity- contributions of steps that consume resources are negative. 
Thus an upper bound on the' utility is one for which resource expenditure is 
least. 
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paths that have an upper bound on their utility that is less than the utility 

achievable by some other path. A similar technique for mini-max trees is called 

"alpha-beta," and has been extended for use with decision trees. (Nilsson, 1971, 

and Slagle and Lee, 1971). 

The key information that guides pruning is the bounds information: the tighter 

the bounds the more pruning. Bounding the utility of a plan such as that of 

Figure 2-3 requires bounding the utility of the part of the plan that is 

incomplete, the failure path. Bounding the failure path is equivalent to 

bounding the utility of the possible recovery strategies. One way to do this is 

as follows: 

Lower bound: Don't bother with the current goal, and assign utility Udb to 

the failure. Thus the lower bound of the entire plan is Ulower = 

Cw+Cp+Cb +Po(Cc+ U e)+(I-Po)Udb .. 

Upper bound: Assume that the failure caused no damage, and that there is 

an alternative plan as good as the present one. (Note: Given that a good 

plan fails, we do not have to assume that there exists a recovery p~an 

better than the original one, because that will be covered by cases 

involving other boxes.) 

Uupper 

Uupper 

Cw+Cp+Cb+Po(Cc+Ue)+ (l-po)Uupper 

= (Cw+Cp+Cb)/po +Cc+Ue 

If we perform these calculations for all boxes, as in Table 1, we find: 

Table 2 

Box Ulower Uupper 

A 16 20 
B 87 109 
C 66 82 
D 42 52 

This bounding scheme shows clearly that utilities of plans involving boxes A, C, 

or D cannot exceed even the lower bound on using box B. Thus portions of the 

tree that call for boxes A, C and D to be used are pruned. 

The numerical utility model thus furnishes information that is useful in guiding 

search. This information, whether encoded in cost functions or in bounding 

schemes, can easily involve "domain-dependent" information, as exemplified by our 
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assignmen t of a function' of distance' to the cost of walking. The symbolic 

model also constrains search: the symbolic preconditions are used to avoid 

searching foolish plans, e.g., ones that require reaching for the bananas when the 

monkey is not "AT" the bananas. These techniques can be implemented in the 

new AI languages (see survey in Bobrow and Raphael, 1974) by instantiating 

each subgoal pursuit as a separate process and including bounds estimates and 

costs when proposing new subgoals. A branch and bound algorithm, such as A *. 
can then schedule the processes (subgoals). always executing the most promising 

subgoal. Such dynamic allocation of effort to problem-solving processes motivated 

the design of the SAIL multiple process structure (Feldman, et a1, 1972). 

2.2 Improving the Plan 

In this section, we shall focus on improvements that can be made to a plan 

prior to its execution. A plan outline often can be altered to yield a greater 

expected utility by making detailed, ~ften local, improvements to the plan. The 

measure of improvement in this plan elaboration process is the increase in 

expected utility resulting from filling in details. 

A plan can be improved by developing plans to recover from failures in the 

original outline. The failure in Figure 2-3 can be elaborated with steps to clear 

away the mess, choose an alternative box, and try to use it to reach the 

bananas. Such an elaboration is shown in Figure 2-4; the expected utility of 

the p~an has risen from 87 to 96 as a result of the elaboration. The increase 

occurs because the plan to deal with' the failure of box B (i.e., to try again 

'with box C) has a higher utility than that' of giving up ( 45 vs 0). This 

process can be carried on indefinitely, but if the probability of failure is fairly 

low, the cost of additional planning may exceed the slight improvement in 

expected utility. (Generating plans for recovering from failures is similar to the 

generation of the original plan: a symbolic problem-solver can provide plan 

outlines; the alternative recovery strategies are compared with utility 

measurements.) 

Elaborating failures tightens the bounds on a plan. Figure 2-4 has a set of 

bounds shown in brackets as a triple: lower bound, expected value, and upper 

bound. Bounds are assessed from bottom to top; the triple, with a prime symbol 

is calculat.ed using the Uupper formula, then the effects are propagated up 

through the tree. This process yields a rather tig~t bound on the utility of 

using box B (c.f. Table 2). 
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Figure 2-4. The failure of the CLiMS step is elaborated with a 
recovery strategy. This has the effect of increasing the utility of the 
plan to 96 (compared to 87 in Figure 2-3). The triples in brackets 
represent the lower bound, expected value, and upper bound of the 
plan. 
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Another kind of plan improvement can be achieved by introducing steps in the 

plan to gather information, and thereby to reduce the uncertainty in the 

outcome. A simple example is shown in Figure 2-5: a perfect and costless test 

determines whether each box is wooden. If the test announces that a box is 

wooden, which happens with probability Po, then the plan to use that box is 

guaranteed to be successful. If the test announces that a box is cardboard, the 
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next best plan is tried, and so forth. Adding these tests causes Utotal to rise to 

121. 

Ue 
Figure 2-5. Four perfect :and costless tests for wooden boxes are 
inserted into the plan. This illustrates that case when we know only 
that each box has an independent probability of .8 of being wooden. 

A more realistic Inodel of such information' gathering accounts . for the 

expenditure of resources required to perform t~e test and for, the possibility that 

the test gives an incorrect answer. We shall define two such tests that can be 

used to elaborate the monkey and bananas plan: 

TEST-FAR: A visual test measures whether a box is - wooden. It does not 
require that the monkey be located near the box. It has a cost Ctf. The 
answer is characterized by two conditional probabilities Pfw and Pfc: 

Pfw = Pr{tcst announces "wood" I box is wooden} 
I-Pfw = Pr{test announces "cardboard" I box is wooden} 

Pfc = Pr{test announces "wood" I box is cardboard} 
I-Pfc = Pr{ test announces "cardboard" I box is cardboard} 

If the test always yields correct answ~rs, Pfw=1 and Pfc=O. 

TEST-NEAR: This test is analogous to TEST-FAR, but the monkey must be 
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at the same location as the box being tested. This test might involve 
"thumping" the box. Cost Ctn. The behavior is characterized by: 

Pnw :: Pr{test announGes "wood" I box is wooden} 

Pnc = Pr{test announces "wood" I box is cardboard} 

If the test always yields correct answers, Pnw=1 and Pnc=O. 

Aa 

cardboard 

Sa 

cardboard 

cardboard 

cardboard 

Sp 

Figure 2-6: Decision trees for the four possible strategies using TEST­
NEAR and TEST-FAR. 
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Adding these ~ests to the ·plan outline produces the four strategies shown in 

Figure 2-6. In order to calculate the expected utilities of these plans, and 

thereby to choose the best one, we must describe· the consequences of performing 

a test. We shall use a simple Bayesian model: a test causes a change in the 

probability that the tested box is wooden, according to Bayes' rule: 

Pr{box is wood I TEST-FAR announces "wood"} = 
Pfw Pr{box is wood} I 
[ Pfw. Pr{box is wood} + Pfc (l-Pr{box is wood}) ] 

Pr{box is wood I TEST-FAR announces "cardboard"} = 
[ (I-Pfw) Pr{box is wood} ] I 
[ (I-Pfw) Pr{box is wood} + (I-Pfc) (I-Pr{box is wood}) ] 

. . 
In these equations, Pr{box is wood} is the estimate of. the probability that the 

box is wooden before the test is performed (the a priori probability), and Pr{box 

is woodiTEST-FAR announces ... } is the estimate derived from the answer to the 

test (the a posteriori probability). Analogous relations hold for TEST-NEAR. 

We also need to calculate the probabilities of taking each of the two paths that 

emanate from the TEST operation: 

Pr{test announces "wood"} = Pfw Pr{box is wood} + Pfc (l-Pr{box is wood}) 

Pr{test announces "cardboard"} = I - Pr{test announces "wood"} 

As an example of these calculations, we shall evaluate the expected utility of 

the Ba strategy of Figure 2-:6 applied to box B, with the prior probability of 

finding a wooden box, Po, set to 0.8, the performance of TEST-FAR characterized 

by Ctf=-20, Pfw=0.9 and Pfc=O.I, and the failure utilities UFI and UF2. set to O. 

For each of the three paths through the tree, we must calculate the probability 

the path is taken and the utility of the path: 

Path 

TEST-FAR, FI 

TEST-FAR, WALKTO, 
PUSHTO, CLIMB, F3 

TEST-FAR, WALKTO, 
PUSHTO, CLIMB, 
CONSUME, Ue 

. Ui Path probability 

-20 Pr{ test announces "cardboard"} - . 
1-(PfwPo + Pfc(l~po)) = .26 

-89 Pr{box is cardboardltest announces "wood"} X 
Pr{ test announces wood} = 
[l-(PfwPo)/(PfwPo+Pfc(l-po))] X .74 = .02 

106 Pr{box is woodltest announces "wood"} X 
Pr{ test announces "woo~"} = 
[(PfwPo)/(PfwPo+Pfc(l-po))] X .74 = .72 

The expected utility is EU = ~ PiUi = 69. Similar calculations for all four 
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strategies, applied to box B, are recorded in Table 3. For the given set of costs, 

utilities and probabilities, strategy AfJ is selected. The strategy can be improved 

still further QY elaboration to cope with the failures F2 and Fa. as described 

above. Using both methods, a strategy with expected utility 105 turns out to 

be optimal. 

Parameters: 

Strategy 

Aa 
AfJ 
Ba 
BP' 

Cw=-l X distance 
Cp=-10 X distance 
Cb=-20 
Cc=-5 
Ue=200 
UFi=O 

Table 3 

Expected utility 

87 (c.f. Figure 2-3) 
88 
69 
63 

Ctf=-20 
Ctn=-10 
Pfw=·9 
Pfc=·l 
Pnw=l 
Pnc=O 
Po=·8 

Comparison of the four strategies shown in Figu.re 2-6, 
showing that strategy AfJ has the greatest expected utility. 

In addition to providing information, a test may also cause a change in state. 

For example, a medical test may present some risk to the .patient: the outcome 

may worsen the patient's condition in addition to providing diagnostic data. Or 

it may have cumulative toxic effects, as in the case of tests that require X-ray 

exposure. 

The model of testing reveals tradeoffs among various information-gathering 

strategies as differences in utility. If the insertion of tests in a plan causes 

the expected utility of a plan to rise, the test is providing information that 

helps reduce the uncertainty of the outcome. Decision theory calls this increase 

in utility the "value of information." 

If different strategies have nearly identical utilities, as do Aa and AfJ in Table 

3, the planner might announce indifference between the strategies, and perhaps 

use other methods to decide which one to pursue. Such small differences may be 

insignificant when uncertainties in the probability or utility models are taken 

into account. Although we nlay in princip~e reduce these errors by refining the 

model, we shall always be faced with insignificantly. small differences. 
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Elaborations cause the search space to grow quite large because of the various 

choices of inclusion and exclusion of tests, the increased number of failures that 

require recovery strategies, etc. .The search would be wholly impractical without 

a guide such as the branch and bound algorithm. We shall address below other 

methods of combatting the "combinatorial explosion" during elaboration. 

2.3 World Model Acquisition 

The planning activities described in previous sections have assumed that the 

planner begins :with a complete model of the world. Because acquiring such a 

"world model" and locating all the boxes is a sizeable task, an efficient strategy 

for feeding the monkey must make efficien~ allocation of resources to build the 

model. 

A decision-theoretic model of the acquisition process can express the cost and 

reliability of an acquisition operator and the utility and probability of locating 

an object in the world. Once again, the utility measure can be used to search 

for an efficient strategy. A key cOllcept in this approach is that the expected 

utility of a .plan that uses an object, as computed in section 2.1.1, can be used 

to estimate the value of locating the object. 

The vision strategy must decide where to look. For our example, we shall use a 

grid to divide the world into regions and use a utility calculation to decide 

which region should be scrutinized. We shall use a simple acquisition operator 

LOOKAT: 

LOOKAT(x,y). Examine the unit square at (x,y) with a VISIon system to 
determine if a box lies in the square.· The cost of the operator is Cx,y. 
The outcome of the operator could be characterized by the two 
probabilities: 

Plb = Pr{LOOKAT(x,y) announces "box"lbox at (x,y)} 

PIn = Pr{LOOKAT(x,y) announces "box"lno box at (x,y)} 

In the remainder of the example, we shall assume Plb=l and Pln=O. 

In addition, we shall requ.ire a priori estimates of the probability that a box lies 

in a square, Pr{box at (x,y)}. The utility of looking at a square is thus: 

Ulook,x,y = Cx,y + Pr{box at (x,y)} Ubox,x,y + (1 - Pr{box at (x,y)}) UfaH 

where Ubox,x,y is the utility of using a box found at square (x,y), which is 

estimated by e~aluating the utility of a plan outline. (e.g., Figure 2-3) without 
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elaboration. Th~ Uloob,y values are calculated for all squares, and the square 

with the largest value is chosen as the best place to look for a box. The 

vision plan can also be elaborated. If the LOOKAT operator fails to locate a 

box, we might apply the LOOKAT operator to another square, and so forth 

(Figure 2-7). This is just like coping with failure in CLIMB -- we chose an 

alternative. 

U 
box,x2'Y 2 

Figure 2-7. Elaboration generates a sequence of LOOKAT operators 
that examines additional squares until an object is located. 

The results of the LOOKAT operation change information in the world model. 

If a box is located, it is recorded in the model. In all cases, the probability 

that a box is located in the scrutinized square, Pr{box at (x,y)}, is modified. 

This is analogous to the treatment of TEST-NEAR and TEST-FAR: Bayes' rule is 

used to update Pr{box at (x,y)} just as it is used to update Pr{box is wood} as 

a result of the TESTs. This means that once a square is looked at and found 

not to contain a box, it will probably not be tested again. 

The a priori values for the Pr{box at (x,y)} are supplied by a function that can 

contain considerable information about the world. If boxes are more common in 

the garage than in the house, this can be expressed in the probability 

assessmen ts. 

Because acquisition operators change the world model, the results can cause 

widespread changes to the utilities of current plans. We could, in principle, 

model an acquisition operator with a large number of outcomes and generate 
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plans for each contingency although a large number of eventually useless plans 

would result. A mechanism to control the amount of plannmg ahead and to' 

permit periodic; re-evaluation of plans is clearly needed. The. next section 

addresses this topic. 

2.4 The Trinity: Look, Think, Act 

At some point, the planning operations sketched in the previous sections must 

be halted and the best plan actually executed. In fact, planning must be 

severely limited, lest resourc~s be wasted in any of numerous ways such as 

generating detailed plans for paths that are never· encountered or planning 

without adequate world model information or pursuing complicated elaborations 

that increase plan utilities only slightly. However, if planning is curtailed, we 

must be able to resume planning later on. 

What is needed is an efficient scheduling of planning, looking and acting. The 

scheduler decides in some· way which activity is most beneficial at the moment, 

grants it a resource quantum, and ~hen repeats. A natural quantum for looking 

and acting is execution of one of the "operators" such as LOOKAT or W ALKrO. 

A natural quantum for planning might be. one iteration of a branch and bound 

algorithm, or the addition of one elaboration to a plan. Although allocating 

effort to planning can at worst cause wasted effort, allocating effort to action 

has considerably more import. 

The decision to plan or to execute CaD be made with a utility measure. We 

compare the utility of looking (i.e., executing. a step in the best information­

acquisition plan), acting (i.e., executing a step. in the best action plan), or 

additional planning (i.e., elaborating existing plans with branch and bound as a 

guide, or deve~oping more symbolic plans). Unfortunately,' specifying a utility 

function that reflects the· benefits of future planning is quite difficult. 

Decision theorists have addressed a problem called "cost of analysis," which 
is loosely related to the notion of planning cost used here (Matheson, 
1968). In a practical analysis, the cost of building a model and assessing 
probability and utility values is often large enough to invite the question: 
what is the utility of developing a model with a certain amount of 
detail? An estimate of this utility can be derived by modeling a set of 
initial tests of varying cost that give different sorts of information about 
prevailing probability distributions. The tests and their costs correspond 
to the various analysis choices. 

In our case, planning is the application of the model to a particular 
situation, which may involve substantial symbolic reasoning, tree expansion, 
etc. We desire simply to discount the value 'of a partial plan by the cost 
of the processing required to generate the details needed for execution. 
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A simple ad hoc approach can be used to limit planning activities by specifying 

a stopping' criterion. The difference between' the upper bound and expected 

utilities of a plan for vision or action is a limit on the improvement in the 

plan that infinite planning would achieve. We have the choice between 

executing the plan as it stands, and receiving, on the average, the expected 

utility, and spending more effort planning and receiving, at most, the upper 

bound on the plan. Comparing the utilities of these two alternatives, we have: 

Execute: 

Plan with cost Cplan: 

Uexecute = Uplan expectation 

Uplan < Cplan + Uupper bound 

If Uplan > Uexecute, we choose to plan. This requires that the planning effort 

be constrained: Cplan > (Uplan expectation)-(Uupper bound). Thus the 

additional planning effort is limited by the difference between the upper bound 

and the expected utility. Obviously this is a crude approximation and could be 

refined. 

This approach essentially compares the risk of the current plan (as estimated by 

the difference between the upper bound and the expectation) with the cost of 

further planning. It does not attempt to predict the actual value of planning, 

but rather measures the cost and maximum value of planning steps. It would 

certainly be better to use the expected value of the benefits of planning if this 

quantity could be computed; Chapters 3 and 4 take up this topic. 

The main loop of the system plans until such a stopping criterion is reached, 

and, then either looks or acts, whichever has the greater utility. Then the 

process repeats. The outcomes of looking or acting are, of 'course, recorded and 

cause adjustments in the utilities of various available plans. This mixing of 

planning and acting is a uniform framework for providing "monitoring" and 

"verificationfl functions in current robotics systems (Munson, 1971; Grape, 1973; 

Bolles, 1976). 

Techniques for control of planning activity such as those presented here cannot 

be borrowed from decision theory. Conventional decision analysis is performed by 

an individual, who uses human judgement in allocating effort to the analysis. 

Formal techniques are used for modeling or for evaluating decision trees, but not 

for controlling the planning process itself. 
.' 



28 

2.5 Summ.ary 

'fhis chapter has presented an introduction to decision theory in an AI problem­

solving context. The utility calculations of decision theory have been applied to 

a number of planning needs: 

• Conlparing alternative plans. Often these comparisons are made among 

instances of a common plan outline or skeleton. 

• Coping with uncertainty. The calculation of expected utility permits the 

reliability of a plan to be considered when assessing its worth. 

• Finding good plans. The utility of partially'-completed plans, together with 

bounds on the utility of the completion required, can be used to organize 

and guide a search for the best plan. 

• Improving a plan. Failure paths in plans can be elaborated with recovery 

plans. The increase. in expected utility of the elaborated plan measures 

the effect of generating a plan to cope with the failure path. 

• Acquiring information. Utility measures can be used to plan efficient 

strategies for acquiring information needed for further planning. 

• Allocating resources among planning, acting or information-gathering 

activities. The utility measure can also be used to decide which activities 

are Inost beneficial to the system. 

Many of these techniques will appear in the PEGASUS implementation described 

In Chapter 3 and will be considered in more detail in Chapter 4. 



Chapter 3 

PEGASUS, The Travel Planner 

.' 
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In order to explore the effectiveness of an approach combining decision theory 

and symbolic planning, a computer program to formulate certain travel itineraries 

has been developed. This chapter presents the external behavior and internal 

operation of the program, PEGASUS, named after "surface" transportation that 

flew. This chapter serves as a case study of the application of the techniques 

sketched in Chapter 2. Further extensions of the techniques, based on the 

experience of the PEGASUS program, are given in Chapter 4. 

The chapter presents explanations of PEGASUS at several levels 'of detail. 

Section 3.1 is devoted to examples intended to show PEGASUS's reasonably 

realistic model of travel and the sorts of itineraries· generated. Section 3.2 

provides a first. explanation of the program structure, and emphasizes the 

hierarchical planning techniques incorporated in PEGASUS. The section includes 

a discussion of the allocation of planning effort (section 3.2.3). The remainder 

of the chapter is devoted to more detailed explanations of PEGASUS's model 

(section 3.3) and the processing undertaken in the various levels of. abstraction 

(section 3.4). 

3.1 Generating Travel Itineraries 

The problem statement consists of an origin location, a destination location, and 

a collection of constraints that restrict the acceptable times of travel: 

From: 
To: 
Constraint: 

HOME (Palo Alto, California) 
ROC (Rochester, N.Y. airport) 
LEAVE HOME AFTER (JUL 13 8:00) timeDecay=10 value=100 

A good deal of information is available to the program about geographical 

locations (36 spots), scheduled conveyances (102 bus trips, 338 airplane trips, 30 

train trips), and unscheduled conveyances (taxi, rental car, walking). Given the 

problem statement and some computing effort, an itinerary is proposed: 

-> Itinerary # 1. Utility: . 660.58 
TAXI. From HOME to SFO. Departure JUL 13 9:38 transit time 0:22. 
Layover at SFO starting JUL 13 10:00 lasting 0:05. 
AA 182. From SFO to ORD. Departure JUL 13 10:05 transit time 3:44. 
Layover at ORD starting JUL 13 15:49 lasting' 0:41. 
AA 500. From ORD to ROC. Departure JUL 13 16:30 transit time 1:24. 
Arriving at .destination JUL 13 18:54. 

Listed with the itinerary is its utility, computed from the itinerary and an 

internal utility model that expresses the value of the plan in terms of the 

resources rCfluired to complete it: 
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• Time. The transit and layover times are considered to be "costs" of the 

trip. Other things being equal, trips with shorter eiapsed times are 

preferre4 to those with longer elapsed times. 

• Money. Cash expenditures for fares on the various conveyances are also 

considered to be costs of the trip. Other things being equal, inexpensive 

trips are preferred to expensive ones. 

• Stress. Various events in the course of a trip may contribute to the 

traveler's stress. Examples are running to make a tight connection, having 

to change planes in the middle of the night, or using a mode of 

conveyance that, for whateyer reason, is abhorrent to the traveler. Other 

things being equal, trips that impose low stress will be preferred to those 

with higher stress. 

• Miscellaneous. Contributions to the utility that do not fall into one of 

the three categories above are included in this "resource." 

The utility function aggregates these "resource requirements" for a trip into one 

metric. Revealed in the function is the way that tradeoffs are made: how 

should a plan that is inexpensive but slow be compared to one that is expensive 

but fast? For present purposes, we shall assume that the function is linear: 

u = - CtXTime - CmXMoney - CsXStress - CxXMiscellaneous + constant 

Because the coefficients may vary among travelers, PEGASUS provides facilities 

for altering them and reevaluating the plan. 

-) Utility function modifications. 
Coefficient for money: 1.0 -) OK 
Coefficient for time: .33 -) .05 
Coefficient for stress: .1 -) OK 
-) Itinerary # 1. Utiliiy: 772.24 
TAXI. From HOME to SFO. Departure JUL 13 9:38 transit time. 0:22. 
Layover at SFO starting JUL 13 10:00 lasting 0:05. 
AA 182. From SFO to ORD. Departure JUL 13 10:05 transit time 3:44. 
Layover at ORD starting JUL 13 15:49 lasting 0:41. 
AA 500. From aRD to ROC. Departure JUL 13 16:30 transit time 1:24. 
Arriving at destination JUL 13 18:54. 

Just as the utility function contains an assessment of certain of the traveler's 

preferences, so must the specification of the time constraints. The constraint 

"leave home after 8:00" might be an expression of mild objection to arising 
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absurdly early. However,' "leave Stanford after 15:00" might reflect required 

attendance· a class that does not end until 15:00. Consequently, a constraint 

requires two parameters in addition to the plan: first, how important is the 

strict observance of the constraint (value); second, how firm is the time 

(timeDecay). 

Each itinerary also contains "backup" suggestions in case something goes wrong 

with the planned itinerary. If a flight is cancelled, or if the traveler misses a 

flight, the backup may be invoked. In any case, some estimate of the backup 

alternatives is required to assess properly the utility of the main plan. The 

itinerary mentioned above has two backups: 

-) Itinerary # 1. Utility: 772.24 
TAXI. From HOME to SFO. Departure JUL 13 9:38 transit time 0:22. 
Layover at SFO starting JUL 13 10:00 lasting 0:05. 
AA 182. From SFO to ORD. Departure JUL 13 10:05 transit time 3:44. 
Layover at ORD starting JUL 13 15:49 lasting 0:41. 
AA 500. From ORD to ROC. Departure JUL 13 16:30 transit time 1:24. 
Arriving at destination JUL 13 18:54. 

Backup at SFO (Utility: 787.9): 
Layover at SFO starting JUL 13 10:00 lasting 0:15. 
UA 126. From SFO to ORD. Departure JUL 13 10:15 transit time 3:55. 
Layover at ORD starting JUL 13 16:10 lasting 1:30. 
UA 794. From ORD to ROC. Departure JUL 13 17:40 transit time 1:30. 
Arriving at destination JUL 13 20:10. 

Backup at ORD (Utility: 789.5): 
Layover at ORD starting JUL 13 15:49 lasting 1:51. 
UA 794. From ORD to ROC. Departure JUL 13 17:40 transit time 1:30 .. 
Arriving at destination JUL 13 20:10 . 

. If the itinerary proposed by the system is unacceptable, .some aspect of the 

problem statement or of PEGASUS's model of the traveler must be erroneous. 

The user may alter the problem statement (e.g., by altering the statement of 

constraints) or certain of the system parameters (e.g., the coefficients of the 

utility function). After any such changes, the solution is reassessed. In the 

following example, the traveler decides to place more emphasis on leaving early. 

The solution utility falls: 

- ) Itinerary # 1. Utility: 772.24 

-) Constraint editor: 
--) Add a constraint: Leave HOME before JUL 13 9:00 timeDecay=.1 value=10 
-) Itinerary # 1. Utility: 660.72 
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If the traveler adopts an itinerary, he may wish to make reservations on various 

flights. He can record the success or. failure at making a reservation; the 

system keeps abreast of progress: 

-) Itinerary II 1. Utility: 660.72 

-) Trip editor: 
--) Modify AA 182. From SFO to ORD. Departure JUL 13 10:05, 

to include reservation in class: Y 
-) Itinerary II 1. Utility: 661.0 

The utility of the final plan is increased somewhat because reservations increase 

the probability that the traveler will be able to follow the plan successfully. 

The utility would rise even more if a reservation on the second leg of the trip 

were secured. 

To this point, PEGASUS has demonstrated only the ability to formulate and 

refine a plan, and to re-evaluate the plan if the user changes utility assessments 

and the like. Of equal importance is the ability to act: to instruct the traveler 

which flights to take, and to process new information as the trip proceeds. 

Relevan t information concerns . cancelled trips, delayed trips, observations of 

traffic delays, weather, and so forth. 1 

-) Now is: JUL 13 9:00 
-) Observations. 

Property: WEATHER 
Spot: ORD 
New value: 4 (very bad) 

-) Itinerary # 1. Utility: 750 

As the traveler progresses to ORD, the plans are updated. The originally 

planned leg becomes: 

-) Itinerary II 1. Utility: 732 
AA 500. From ORD to' ROC. Departure 16:30 transit time 1:24. 
Arriving at destination 18:54. 

There is, however, a plan with higher utility: 

-) Itinerary # 6. Utility: 781 
AA 524. From ORD to ROC. Departure 21:30 transit time 1:22. 
Arriving at destination 23:52. 

1Unfortun-;teii,--t"ilis--sort of information only su~tly affects common travel 
itineraries. The examples I have chosen, therefore, are somewhat extreme. 
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The· reason that this flight has greater value is that the model of weather used 

by PEGASUS expects the exceptional weather conditions to regress toward the 

normal weather. for CRD at this time of year. 

The system can assimilate several sorts of informatiol1 that concern the execution 

of specific itineraries: 

Departure delays 
Arrival delays 
VVeather reports 
Traffic delays 

Take-off delays due to traffic 
Landing delays due to traffic 

Load-factor information 
Modifications to constraints 
Modifications to the utility function 

Acquiring information of this sort is not always easy--the traveler may have to 

walk to information desks, make· telephone calls, etc. Ideally, the importance of 

a piece of information and the expense of obtaining it should be considered 

when deciding what information to gather. PEGASUS provides a simple form of 

this calculation, and answers the question "What is it worth to inquire abo~t 

Boston weather?" or "What is it worth to make a reservation?" A "value of 

information calculation" can be made: 

-) Itinerary # 1. Utility: 787.7 
AA 500. From ORD to ROC. Departure JUL 13 16:30 transit time 1:24. 
Arriving at destination JUL 13 18:54. 
-) Itinerary # 2. Utility: 783.9 
UA 794. From ORD to ROC. Departure JUL 13 17:40 transit time 1:30. 
Arriving at destination JUL 13 20:10. 
-> Value of weather at ROC measured on JUL 13 16:10 is .1. 
(If ROC has bad weather, itinerary #2 will be selected because 

the weather model expects the weather to be better later.) 

Note that the value of weather information is very small, because the prevailing 

weather in ROC in July favors successful completion of any flight. If the same 

trip were attempted on January 13, the value of weather inforlnation rises to 

11.9! 

3.2 A First Explana tion 

This section describes briefly the techniques used to implement the travel 

itinerary planner. The behavior of this program, demonstrated in the previous 

section, is achieved with a combination of heuristic and decision-theoretic 
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techniques. The important ingredient introduced in this section is the 

hierarchical nature of the planning in PEGASUS, and the structure of the 

symbolic and utility models that. make it possible. 

3.2.1 Primi ti ves 

The PEGASUS program constructs itineraries. An itinerary is a tree of steps 

corresponding to the primitive "actions" that a traveler can be expected to 

undertake (e.g., "Take United 424 from SFO to ORD."). Each step has certain 

essential information with it: 

• Origin and Destination (often referred to as "from" and "ton). These label 

the segment of the trip represented by the step; both origin and 

destination are spots. A spot may be a train station, bus depot, airport, 

city, home, place of business, etc. 

• Conveyance (often called the "step type"). This entry specifies the generic 

class of conveyance used to achieve this step~ e.g., AIR, TRAIN, WALK. 

• Resource Vector (often' called "factors"). This vector lists the quantities 

of various resources that will be required in order to execute the step, 

and is denoted by the boldface symbol r. The elements of the resource 

vector are: 

• Time. This is a measure (or estimate) of the elapsed time required to 

complete the step, measured in minutes. In certain cases, it includes 

an "interface" time required before the succeeding step may commence. 

Money. This is a measure of cash expenditures required, usually for 

fares. 

Stress. This is a measure of a hypothetical human resource: the 

reserves of an individual to cope with situations that strain the 

person. The contribution of a step to this quantity may vary from 

person to person, and includes such things as: stress caused by 

hurrying to Inake a connection, by changing planes in the middle of 

the night, by taking "red-eyen flights, etc. Another contribution is the 

"stress of time," which expresses preferences for time spent in various 

spots or on various conveyances. For example, waiting an hour at 
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HOME may have a· higher utility than waiting 30 minutes in a bus 

terminal. 

• Miscellaneous. This is a catchall for contributions to the utility of 

the step that do not fit the three other factors. Contributions to this 

factor will be explained as needed. 

• Starting time, duration. If itinerary planning has progressed to the point 

where departure and arrival times are chosen, these two entries record the 

choices for this step. All times are recorded in minutes with respect to a 

fixed reference time. 

When other information needs to be associated with a step, it is placed on .a 

property list attached to the step description. Examples of such information are 

constraints and pointers to records that describe a particular trip in detail. 

The utility of an itinerary is computed as a function of the resources required 

to execute the itinerary. This involves computing the resources r required for 

each step of the itinerary, summing the resources of the individual steps to 

calculate the resources required for the entire itinerary, and finally applying the 

utility function U(r) to the sum. 

3.2.2 Program Structure at a Glance 

The growth of good itineraries is managed by a progression of processing at 

different levels of detail. The first level is used to make only very crude plans; 

the last level molds an itinerary with the most detailed analysis of which 

PEGASUS's model is capable. 

A level can be visualized as a single routine and various subroutines for 

performing the processing. The routine is responsible for creating a task to 

solve a specific problem or subproblem, for executing the task to analyze and 

solve the problem, for eventually returning oile or more solutions to the problem, 

and for processing miscellaneous inquiries and imperatives relating to the task. 

When a level is presented with a new problem, it creates a task to search for 

solutions to the problem, and returns solutions as they are uncovered in the 

course of the search. The search task itself proceeds incrementally, being 

allocated computing time by a control program. A level is thus a program that 

creates tasks, or coroutines, which are periodically allocated computing time to 

solve their appointed problem. 
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The overall organization requires that each level must report solutions in "best­

first" order, using an upper bound on the utility of the solution as a measure 

of "best." We ,shall return later to examine the implications of this requirement. 

A solution from one level is presented to the next level for analysis in more 

detail. The lower level will use the solution from the higher level as a guide 

in performing its search, but will be concerned chiefly with adding to the 

planned itinerary new detail that was not considered at higher levels. As we 

shall' see, a single "problem" often gives rise to several solutions. These 

percolate through the levels· of processing, becoming alternative strategy choices 

at each leve1.2 

Before describing the control of tasks in more detail, w:e shall present a capsule 

description of the processing at each level in PEGASUS. 

1. TOP. The TOP level is given the problem presented by the user: the origin 

and destination for the trip. The purpose of this level is to consider several 

primary means of conveyance and to compute an upper bound on the utility of, 

all itineraries that can be constructed using such a primary means. For example, 

if the problem is to go from HOME (Palo Alto, California) to ROC (Rochester, 

N.Y. airport), we might generate 5 answers: 

Solution 1: 
AIR U* =77 4.3 (!) 

Solution 2: 
RENTAL CAR U*=-592.4 

Solution 3: 
BUS U*=-667.4 

Solution 4: 
TAXI U*=-1969.6 

Solution 5: 
WALK U* =-29619.5 

(The answer labeled (!) is passed to the next level in our example.) 

The upper bound for AIR is calculated by assuming that both origin and 

destination are on the transportation graph connected by AIR (i.e., that both are 

airports), and that a direct flight is available that flies as fast as' the fastest 

flight known in the data base, and is as cheap (per mile) as the cheapest flight 

2TI;c--iiierar'Ciii'C;.-r-task-oriented design of PEGASUS is related to other AI 
problem-solving systems, and was inspired in part by NOAH (Sacerdoti, 1975). 
See section 5.2 for further discussion of the relation to other AI work. 
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known. Upper bounds for other conveyances are calculated using similar 

reasoning. 

Our initial presentation of PEGASUS will assume that the best answer at each 

level is passed on to the next level for more detailed processing. The solution 

thus promoted is labeled with (!) in the list above. In fact, PEGASUS uses a 

more complicated control structure to pursue alternative solution paths. 

2. SP. The SP level conducts a shortest-path search on the graph formed from 

spots and known trips that use the specified conveyance. In our example, TOP 

passed down the solution "Go from HOME to ROC by AIR." Since HOME is not 

on the graph of spots connected by AIR (Le., it is not an airport), SP puts in a 

dummy step, and assumes that there is a route from HOME to a nearby airport. 

There are many possible routes that SP ultimately returns. The first few are: 

Solution 1: 
HOME-[assume]-SJC-ORD-ROC U* =700.6 (1) 

Solution 2: 
HOME-[ assume ]-SFO-DTW-ROC U*=699.5 

Solution 3: 
HOME-[assume]-SFO-ORD-ROC U*=698.4 

Solution 4: 
HOME-[ assume ]-OAK -ORD-ROC U*=696.7 

Solution 5: 
HOME-[assume]-SMF-ORD-ROC U*=657.0 

The three-letter codes are standard abbreviations for airports: SJC is San Jose, 

ORD is Chicago O'Hare, DTW is Detroit, SFO is San Francisco, OAK is Oakland, 

SMF is Monterey. 

The upper bound is calculated by assuming that each leg takes the minimum 

time of all applicable trips in the data base, that the fare is the cheapest of all 

possibilities, that the stress is the least, etc. Notice that the utility of the 

best plan at this level is less than that of the answer at level TOP. Several 

factors account for this: -(1) HOME is not an airport, which means slower and 

more expensive means are required to journey from HOME to an airport; (2) No 

non-stop trips are available, which means that minimum travel time is longer 

than anticipated in TOP; (3) The cheapest available fare is not as cheap as 

estimated in TOP, ana. (4) The "stress of time" contributions reduce the utilities 

according to the traveler's relative preference for various airports and 

conveyances. 

.' 
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3. INSTANTIATE. This level is responsible for choosing specific instances of 

trips described in the data base. In the example, specific flights from SJC to 

ORD and from ORn to ROC must be selected. In addition to the route passed 

from SP, the user's constraints are taken into account. For the first time, 

"interface" steps (called WAIT steps) are inserted between legs of a trip to 

represent time spent in layover waiting for a connection or waiting to embark, 

etc. The most promising flight selections returned by INSTANTIATE are: 

Solution 1: 
HOME-SJC: [ assume], departing 7:01 
SJC: wait 30 minutes 
SJC-ORD: UA 464, departing 7:45, arriving 13:30 
ORD: wait 55 minutes 
ORD-ROC: UA 362, departing 14:25, arriving 16:52 u* =687.9 (!) 

Solution 2: 
HOME-SJC: [assume], departing 12:21 
SJC: wait 30 minutes 
SJC-ORD: UA 356, departing 13:05, arriving 19:00 
ORD: wait 150 minutes 
ORD-ROC: AA 524, departing 21:30, arriving 23:52 U* =651.8 

Solution 3: 
HOME-SJC: [assume], departing 7:01 
SJC: wait 30 minutes 
SJC-ORD: UA 464, departing 7:45, arriving 13:30 
ORD: wait 180 minutes 
ORD-ROC: AA 500, departing 16:30, arriving 18:54 u* =644.0 

Solution 4: 
HOME-SJC: [assume], departing 7:01 
SJC: wait 30 minutes 
SJC-ORD: UA 464, departing 7:45, arriving 13:30 
ORD: wait 250 minutes 
ORD-ROC: UA 794, departing 17:40, arriving 20:10 u* =616.5 

Again, the upper bounds at this level are less than in SP: (1) Waiting times 

have increased the total time required to complete the trip; (2) Because specific 

flights have been chosen, the cheapest fare is now the cheapest that Can be 

arranged given the constraint that the pair of flights is used; (3) Various stress 

contributions associated with scheduled times may have appeared; (4) The WAIT 

nodes have introduced more "stress of time'" contributions due to relative 

preference of the traveler for flying or waiting in an airport. 

4. DOLLARS. This level considers all possible fares that might be charged in 

order to pursue the itinerary passed down fronl INSTANTIATE. In our example, 

the cheapest fare is a coach through fare ($156). If, for some reason, a coach 
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seat . is unavailable on one leg, there are coach/first class combinations, and so 

forth: 

Solution 1: 
SJC-ORD: UA 464, Coach 
ORD-ROC: UA 362, Coach (through fare) U* =687.9 0) 
Solution 2: 
SJC-ORD: UA 464, Coach 
ORD-ROC: UA 362, First (no through fare) U*=655.9 

Solution 3: 
SJC-ORD: UA 464, First 
ORD-ROC: UA 362, First (through fare) U*=640.9 

Solution 4: 
SJC-ORD: UA 464" First 
ORD-ROC: UA 362, Coach (no through fare) U*=631.9 

5. FILLIN. This level fills in the details of any legs of the trip that still have 

no executable plans, i.e., are marked as assuming the leg can be achieved. In 

our example, the leg from HOME to SJC requires such work. The FILLIN 

processing is accomplished by a recursive calion the entire planning system. 

We get: 

Solution 1: 
HOME-SJC: TAXI, departing 7:01 
SJC: wait 30 minutes 
SJC-ORD: UA 464, departing 7:45, arriving 13:30 
ORD: wait 55 minutes 
ORD-ROC: UA 362, departing 14:25, arriving 16:52 U* =681.8 (!) 

Solution 2: 
HOME-SJC: RENTED-CAR, departing 6:46 
SJC: wait 30 minutes 
SJC-ORD: UA 464, departing 7:45, arriving 13:30 
ORD: wait 55 minutes 
ORD-ROC: UA 362, departing 14:25, arriving 16:52 U*=673.2 

Again, the upper bound on utility has decreased because a taxi is not both the 

cheapest and fastest ground transportation available. 

6. PROB. This level interprets an itinerary in light of all probabilistic 

information that is available. For example, the probabilities of missing a 

connection, of cancelling a flight, and of airports closing due to bad weather are 

all included in the assessment of the plan. PROB also optimizes the departure 

times of unscheduled conveyances such as taxis to achieve the maximum utility. 



HOME-SJC: TAXI, departing 7:16 
SJC: wait 15 minutes 
SJC-ORD: UA 464, departing 7:45, arriving 13:30 
ORD: wait 55 minutes 
ORD-ROC: UA 362, departing 14:25, arriving 16:52 U*=681.8 

E U=650.9 
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Here, the upper bound, U*, remains undiminished compared to the answer 

returned from FILLIN, because the plan does not differ from that returned by 

FILLIN if all aspects of the plan proceed smoothly (the upper bound 

assumption). However, the expected utility is somewhat "lower because the 

failure paths in the itinerary will require additional resources to journey to the 

destination. 

Utility 

780 

740 

700 

660 

620 

Top SP Instantiate Dollars Fillin 

Figure 3-1: Graph summarizing the progress of plans through the six 
hierarchical levels of processing and the drop in utility that 
accompanies more detailed analysis. Each dark square represents a 
solution. In our overview, we have assumed that the best solution 
within each level is passed on for more detailed processing at the 
next level (arrows). The heavy dark line in the PROB level represents 
the range between "the upper bound and the expected utility. 

Prob 

This completes the processing of the itinerary. The progress through the several 

levels is summarized in Figure 3-1, which demonstrates the propagation of 

solutions through the six levels of processing and the fall in utility as more 

detailed planning is performed. 
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3.2.3 Control· of. Planning Effort 

PEGASUS requires a scheme to allocate planning resources that goes beyond the 

simple propagation of tibest" solutions demonstrated in the example. Although 

this procedure will rapidly yield a complete plan, it is not guaranteed to be the 

optimal one, or even a very good one. Figure 3-2 shows an example of the 

propagation of plans in which a plan judged inferior by SP turns out to be the 

best. 
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Top SP Instantiate Dollars Fillin Prob 

Figure·3-2: A collection of problems in various stages of processing in 
PEGAS·US. Each square represents a solution; its propagation to the 
next level is represented by an arrow. The two lines U1 and U2 show 
two cuts of uniform utility through the processing. Notice that the 
most attractive solution to the SP level does not in fact yield the best 
detailed plan. 

PEGASUS needs to propagate other solutions, in addition to the best at each 

level, and needs to allocate planning resources to a number of tasks in various 

stages of planning at various levels. This allocation is, of course, derived from 

utility estimates of the partially-complete plans being examined by the various 

tasks. 

The upper bound on the utility of plans being generated by a particular 

planning task is a measure of planning progress. In order to provide proper 
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controls over planning effort, each task is required to implement two primitive 

opera tions: 

• Return the upper bound U* on the utility of the plan (or partially­

complete plan) being processed by the task. 

• Apply planning effort on this task until the upper bound falls below a 

parameter provided by the control routine. This primitive may terminate 

before reaching the stated upper bound if a new solution is uncovered 

during the processing.. The upper bound may only decrease as more 

planning effort is applied: this stipulation represents a restriction on the 

way the processing' within ~ level is organized (see section 4.3 for more 

discussion). 

For example, the problem "Go from HOME to ROC by AIR" presented to level 

SP may require a good deal of computation to answer. We know, before any 

computing is done, that solutions will have U<774.3, the bound established by 

the TOP level. The routines associated with level SP can be directed to work 

on the problem until either a solution is generated, or until the current U* .of 

the problem falls below 760. The search for answers must of course be 

organized so that answers of high utility are explored first, then answers of 

lower utility, etc. The U* used to measure the progress of planning simJ?ly tracks 

the falling hopes of the planning undertaken by a task. Figure 3-3 shows an 

empirical plot of the fall of the utility in processing the SP level of our 

example as a function of computing time. 

Uniform planning. A simple utility-based allocati9n strategy is to run the task 

that reports the largest upper bound. We periodically survey all tasks at all 

levels; each reports its current U*, the upper bound on . itineraries that the 

approach will yield. Suppose that task i has the largest value of U*, and task j 

the next highest (If only one task exists, j is assigned to a dummy task that 

. always has U* =-00). Effort is then allocated to i using the primitive described 

above, until it returns an answer or U* i falls below U*} Then the survey and 

allocation of effort is· repeated, etc. This technique has the effect of devoting 

effort to an approach until it produces a solution or until it ceases to be better 

than other approaches. 

Another way to view this technique is that all tasks are actively competing· for 
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Figure 3-3: An empirical graph of the fall of the upper bound U· as 
processing proceeds in the SP level. The times were measured for 
the problem presented in section 3.2.2. Circles represent points at 
which solutions to the problem are reported (there are four solutions 
clustered near 7 seconds). 

computation- resources. The utility measure corresponds to a priority in a 

scheduling algorithm: resources are granted to the task of highest priority until 

that priority falls below that of some other pending task, or the task blocks 

waiting for results from some other process (e.g., an input/output process).3 The 

key point is that the upper bound on the utility, a single numerical measure of 

promise of a planning task, can be used to allocate planning resources. 

The uniform' planning scheme finds the optimum plan. The, essentially breadth­

first approach will pursue many alternative solutions in the crude levels of the 

hierarchy before even a single plan is propagated to the final PROB level. 

When the control strategy attempts to allocate resources to a task that can 

perform no more planning because it represents a plan already developed in full 

detail, the planner terminates and announces this plan as the "best" one. The 

uniform strategy guarantees that there is no other plan with an upper bound 

that exceeds that of this- "best" plan. 

Depth-first planning. Although the uniform approach does arrive at the best 

3T-h;-pres-e-nt'-implementation "polls" the tasks at various levels to decide which .' 
has highest priority. Another design might implement each task as . an 
independent process that is periodically checked by a scheduler. The scheduler 
switches tasks whenever it discovers. that the upper bound of the running 
process has fallen below that of some suspended process. 
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answer or set ~f answers according to the utility function on itineraries, these 

answers may no longer be best when the cost of the computation required to 

construct them is included in the utility assessment. If computing tim~ was 

quite expensive, we might use a depth-first approach (used in the example of 

section 3.2.2): whenever the first solution is produced when processing a task, 

pass it to the next level, compute on the new task until the first solution 

emerges, and so forth until a solution is delivered by the most detailed planning 

level. Because of its depth-first character, this method yields a. completely 

detailed plan quickly, although the plan is not necessarily optimal or even very 

good (see Figure 3-2). 
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Figure 3-4: After the first solution to the entire problem is generated, 
more planning may be indicated. In the illustration, the solid lines 
represent the depth-first method, which yields a solution with utility 
Ua. At this point, there remain other problems with higher upper 
bour~ds; in particular, the second level has not been pursued enough to 
discover solutions with utility less than Us. It may happen that such 
pursuit would uncover a better plan (dashed lines). In any case, we 
know that the best solution must lie between Ua and Us. 

Hybrid planning. The information contained in the U* values for partial plans in 

the suspended tasks at various levels is used to pursue a strategy intermediate 

between the uniform approach and the depth-first approach. Suppose we apply 

the depth-first approach until a detailed answer is generated; let this answer 

have utility U* a (see Figure 3-4). Let U* s be the maximum of the U*'s of the 

suspended tasks. The~ clearly, if U* 0 is the utility of the optimal plan,' 

U* a~U* o<U* s. If the user is indifferent to small errors in utility, less than 

* * U s-U a, then no more planning is required. 
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Otherwise, the difference between U* sand U* a bounds the amount of further 

planning effort we should invest~ Let rc be the resource vector describing' 

computing resQurces Tequired to complete the' planning of the, problem that 

corresponds to U* s = UC r* s) Cr* s is the resource vector used to compute the 

upper bound for problem s). We can compare the worth of the plan, t()gether 

with ,the computing effort we devote to it, to the utility of our available plan: 

as long, as U(r* s+rc) > U* a, we can continue planning. Eventually, increases in 

,both resources r* sand rc will cause the inequality to fail; at this point,' we 

have exceeded the planning bound. 

A less crude approximatiol! to the cost of planning can be used more effectively. 

If, for each partially-planned problem in the level structures, we can 'estimate 

the processing ,resources needed to complete the planning, we can calculate a 

modified upper 'bound U* c = U(r* + rc), where r* is the resource vector used to 

calculate the upper bound on the problem in the structure (i.e., U*=U(r*)), and 

rc is the computation resource estimate. For the one solution generated by the 

depth-first approach, rc=O. This model is a first approximation: it assumes that 

the investment of processing effort (rc) will simply add to the detail of the 

plan without increasing the resources (r*) its execution requires, and thUs 

decreasing the total U*. A more sophisticated attempt might involve modeling 

the expected decrease in U*. 

An estimate of rc is not hard to generate in this case: the initial processing 

using the depth-first approach demonstrates the resource requirements of each 

level while working on plan:ning tasks that are very similar to the tasks that 

may need completing. We simply record the extent of this processing for each 

level; rc is then the sunl of these requirements for all levels of detail yet to be 

applied to the plan. 

3.2.4 The Cen tral Theme 

The preceding paragraphs have outlined the main theme of the PEGASUS 

im plemen tat ion: 

Problems move through several levels of processing, giving rise to 

increasingly detailed plans. Each level summarizes progress on a 

planning task by computing an upper bound, U*, on the utility of 

the plan at this and all subsequent levels of processing. The upper 



bound decreases monotonically as the solution methods available to 

the routines in a level become exhausted. Among other implications 

of this requirement' is that solutions to a problem are reported 

best-first. 

* The U bound also decreases as a plan en ters levels of more 

detailed analysis. Detailed analysis often takes the form of added 

constraints or complexities that cast increasing doubt on a 

previously good plan. The optimistic upper bound is reported to 

the task scheduler that controls allocation of computing resources to 

the various competing tasks. However, the more rapidly the 

(relative) disadvantages of a plan are uncovered by the processing, 

the more rapidly it ceases to compete for computing resources, and 

thus permits better plans to be examined more carefully. 

This process can be summarized as finding fault with crude plans 

by adding detail. 

3.3 The Model 
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The model of travel used by PEGASUS must not only be realistic, but must also 

be organized to ease the various kinds of utility and upper bound calculations 

needed in the hierarchical planning organiza tion. In particular, the utility bounds 

calculated at different levels of detail, and based on different plan features, 

must all be consistent. This section describes features of the model not already 

unveiled, as a preface to a more detailed examination of PEGASUS processing. 

We shall occasionally point out details that the PEGASUS model does not 

confront. Often in these cases the problem is one of implementation scope 

rather than of limitations of the approach. That is, the decision-theoretic 

framework for representing and processing information and for expressing 

tradeoffs in travel planning has much more power than PEGASUS's model 

actually exploits. 

3.3.1 Utility Function 

The utility function maps the resource vector (or factors), consisting of 

measurements of time, money, stress and miscellaneous into a single utility. 

This function has a linear form with four parameters that can be adjusted to 

accomodate preferences of different travelers: 
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Let r = [ Time Money Stress Miscellaneous] 

U(r) = [ Ct em Cs ex. ] • r + constant 

The evaluation of U( r) is accomplished by a single function in PEGASUS, so 

that the form of the utility function can be changed easily. The planning 

routines in PEGASUS strive to be independent of the form of the utility 

function, in' order to ensure the planning techniques will work properly with 

more elaborate functions .. 

Although the operation of PEGASUS does not require that the utility function 

be linear, it is essential that U(r) be monotonic. in the individual dimensions 

Time, Money, Stress, and Miscellaneous, i.e., 

oU(r)/oTime < 0 
oU(r)/oMoney < 0 
oU(r)/oStress ~ 0 
oU(r)/oMiscellaneous < 0 

'tIr 
'tIr 
'tIr 
'tIr 

This property simplifies calculation of the upper bounds U*. To calculate the 

upper bound for a trip, we ascribe to each step of the itinerary the minimum 

resources required to accomplish the step, consistent with the constraints imposed 

by the current level of planning detail. The minimum resources are computed 

independently for each step:· the minimum time, minimum money, etc. Let 

r* i = [ min j(Timeij); min j(MoneYij); 

. min j(StreSSij); min j(Miscellaneousij) ] 

where j indexes the. alternative ways of accomplishing the i th step; . thus Stressij 

is the stress resource required to execute the ith step with the jth alternative 

method. Then 

U*(trip) = U(Ii r* 0" 

where r* i is given above. 

section 4.1.9. 

3.3.2 Spots and Conveyances 

More examples of bounds calculations are given in 

In order to plan trips, a data base of geographical locations and available 

conveyances is required. PEGASUS does not attempt to record exhaustively all 

transportation available in the United States,. but rather includes examples. 
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Spots are geographical locations, with entries to specify latitude, longitude and 

time zone.' At present, 36 spots are known to PEGASUS. 

Conveyance information is entered into PEGASUS in a form as it might appear 

in an airlines guide, and then indexed in several ways. For each path between 

two spots connected by a particular conveyance, entries are associated with the 

departure spot; in this way, spots are linked into graphs for each means of 

transportation. Currently, 338 airplane flights (November, 1973 airlines guide) 

among 25 cities, 102 bus trips on the San Francisco peninsula, and 30 train 

trips are included in the data base. 

3.3.3 Constrain ts 

What does a traveler mean by the requirement: "I want to leave home after 6:00 

on July 1?" PEGASUS adds two complexities to this seemingly simple statement. 

First, the traveler has an implicit matching constraint: " ... but before 17:00." If 

such a matching constraint is absent, there is an unbounded number of equally 

good plans that satisfy the constraint. As a convenience, therefore, the system· 

supplies a second constraint~ 8 hours later. (The number 8 is an arbitrary ch~ice 

made by PEGASUS; the traveler could be required to make his wishes explicit.) 

... Miscellaneous resource 

.\-------(a) 
o 

o 

time ~ 

Figure 3-5: Miscellaneous resource contributions of constraints that 
express a desire to leave after to. Note that for t)to, there is no 
contribution to the miscellaneous resource. (a) A strong constraint. (b) 
A weaker constraint. 
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The other intricacy that PEGASUS attaches to the interpretation of a constraint 

is a measure of its absoluteness .. For example, the traveler may really mean: "I 

want to leave after 6:00,' but .if there is a trip that leaves at 5:58, I will, 

consider it to be only a little poorer than one at 6:02." Once again, we can use 

a utility model to express this preference: we express the effect of a constraint 

as the contribution to the "miscellaneous" resource. The constraint function, of 

which two samples are shown in Figure 3-5, is parameterized by severity of the 

constraint (fl) and by a time constant (a): 

A constraint is a triple (to, a, fJ) 

Let Violated(t) = 0 if (t>to and P>O) or (t<to and fJ<O) 
1 otherwise 

Let Limit(t) = a (It-toD /20 

Miscelianeousconstraint(t) = Violated(t) 1,81 [1 - e-a/t-tol + Limit(t)] 

Here t is the departure (or arrival) time, to is the time mentioned in the 

constraint, a and P are parameters (fl'>0 if the constraint reads " ... after ... "; p<O 

if it reads " ... before ... "). The contributions of a "strong" constraint always exceed 

those of a "weak" constraint. The function is always positive, with zero the 

minimum value, which represents no degradation to the utility of a plan due to 

constraints. Thus planning at high levels that does not include constraint 

effects can calculate upper bounds U* by assuming a zero contribution to the 

Miscellaneous factor from constraint effects. 

To determine precisely the shape of the constraint preference function for a 

traveler is a, complex problem in utility assessment. PEGASUS does not address 

this problem, and simply lets the traveler specify values of p (a critical 

constraint might use 100, a desirable one 50) and of a (a firm time estimate 

might have a time constant of IO/minutes, a looser constraint .1/minutes). If 

the traveler finds that utility assessments made' with these choices are not to 

his liking, he can modify the constraint and re'-evaluate plans. 

3.3.4 Stress of Time 

If the PEGASUS utility model used only the components explained so far, a 

large class of tradcoffs could not be made by the system. If, for example, two 

alternative itineraries require the same elapsed time but use different 

conveyances, the program's model will be unable to distinguish between them, or 

to express preferences of the form "I prefer going by bus to driving because I 
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can get work done en route .. " Similarly, travelers may prefer to spend time in 

some spots (e.g., waiting time at home between a departure time expressed in a 

constraint -- leave HOME after 7:00 -- and the departure of an actual 

conveyance) and not in others (e.g., waiting in the Chicago airport). 

The stress of time model simply adds a contribution a*(elapsedTime)+b to the 

Stress factor, where a and b are derived from information stored with spots and 

conveyances. The contributions to stress of time must always be positive, for 

the same reasons explained above for constraint contributions. In' order to 

reflect the user's preferences, it may be necessary to cause a value of a or b to 

become negative. In this case, it is necessary to add constant terms to a's and 

b's of all spots and conveyances so that min(a)=O;' min(b)=O in order to preserve 

the property that the minimum resource contribution is O. After such an 

adjustment, the stress contributions for all steps in pending tasks must be 

recomputed.4 

This simple stress model is ,not intended to be accurate; its inclusion is essential 

if the system is to exhibit reasonable problem~solving behavior in the travel 

domain. If we were to construct a planner that attempted to organize all 

personal activities, we would require a rather different utility model. For 

example, "constraints" as used above are really expressions of the relative 

preference for time spent traveling compared to time spent in other activities at 

both ends of the trip. 

3.3.5 Distributions 

Probability density distributions are used to represent information of various 

sorts in PEGASUS: departure, transit and arrival times of conveyances, weather, 

load factors, etc. These all make use of a common representation for 

distributions. The representation was chosen with the following criteria: 

• All calculations required by the system must have closed forms. 

• Skew distributions are needed: t.he probability that an airplane departs 5 

minutes early is not the same as the probability that it departs 5 

minutes 'late. 

4ModifYi~g--;ff-;'s--ancf b's in a large system might be impractical. In this case, 
we can define two global variables, ag and bg. and re-formulate the stress of 
time contribution as (a+ag)*(elapsedTime)+(b+hg). The upper bound conditions 
become min(a+ag)=O; min(b+bg)=O, and it suffices to modify ag or bg to meet 
these constraints. -
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• A continuous form is desirable, in order to permit incremental calculations 

to be performed. Although discrete approximations might suffice for' 

several 9f the quantities, a continuous form always admits a discrete 

interpretation, and not vice-versa. 

The following two-tailed exponential density function was chosen: 

p(X;XO,Al,A2)= [AIA2/(Al +A2)] eAl(X-xO) 

[AIA2/(Al+A2)] e-A2(x-XO) 

Parameters: xo, Al)O, A2)O 

for x<xO, or 

for x)xo 

Conceptually, this can be ,viewed as two different exponential distributions, one 

for x<xO, one for x>xo; the first· has decay parameter A 1, the second' A2. . A 

normalization constant is chosen so that the entire function integrates to 1. We 

shall write X[XO,Al,A2] to indicate a random variable with such a density 

function, i.e., 

·t 
Pr{X[X(),Al,A2]<t} = S p(x;XO,Al,A2) dx 

-00 

The mean of the random variable X[XO,Al,A2] is xO-l/AI+l/A2; the variance is 

I/AI2+I/A22. Consequently, we can think of translating the loose statement "the 

value of x is a, with variation -b, +c" into the distribution X[a-b+c,l/b,l/c].5 

We approximate the sum of two such distributions by summing the means and 

individual variances. A random variable' can be multiplied by a scalar: 

These distributions are used to model several quantities: 

Weather. The weather condition at a spot is measured on a linear scale 

from 0 to about 5. Roughly, 0 is the best weather there is, 3 starts to 

affect driving a car, 4 is hazardous driving and airports beginning to close, 5 

closes virtually all airports. Thus if W(XO.Al,A2] describes the distribution of 

ORD weather, we might let 

00 

Pr{ORD closed} = S p(X;XO,Al,A2) dx 

4.5 

5The--a;~~ent--is--that I/AI is the standard deviation below the mean (i.e, 
corresponds to c), and 1/A2 is the standard deviation above the mean (Le., 
corresponds to b). 



Load Factors. The ratio of the number of seats filled on a flight to the 

number' of seats on the empty aircraft is called the load factor. If we 

augment this definition to .calculate the number of seats that could have 

been. filled divided by the capacity, then load factors greater than 1 are 

possible. Hence if F[xO,Al,A2] is the load factor distribution for a flight, 

then 

00 

Pr{no space on flight without reservation} = S P(X;xo,Al,A2) dx 

1 

Departure and Arrival Times. Times are important quantities to model in 

order to assess the probability of making a connection. Suppose D[XO,Al,A2] 

represents the departure time of an airplane. The arrival time A at the 

destination can be viewed as the sum of the random variable D with: 

T 

Adelay 

Pdelay 

Departure delay. After leaving the gate, how long is it until 

you are airborne? This is really a quantity that absorbs all 

components of delay due solely to conditions at the departure 

spot. 

Transit time. Variation here may be due to winds (airplanes) or 

traffic delays (automobile). T is computed by multiplying the 

nominal transit time by a random variable that describes 

proportional delay. 

Arrival delay. Delay components at the arrival spot, e.g., delay 

in approach patterns, ground services, etc. are lumped in this 

quantity. 

Processing delay. This delay models the time spent between 

arrival and the ability of the passenger to choose options freely. 

If he has baggage, this time is longer than if he does not. 

PEGASUS views all' these delays as independent, and simply sums the 

distributions: A=D+ Dde lay+T*nominaITransi tTime+ Adelay+ P delay. The departure 

distribution D is computed in one of two ways. If we are computing D for 

an initial departure (e.g, the "origin of a flight"), we simply sum the nominal 

departure time with a starting delay S[XO,A},A2]. If we are computing D for 
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a continuati?n leg ofa multi-stop trip (e.g., the IDW-ROC leg of a flight 

that flies ORD-DTW-ROC), then the departure distribution must be affected 

by the arrival time of the previous leg: we ·set D=A+B[xO,Al,A2], where B. 

represents the distribution of time between arrival and actual departure. Note 

that the distribution B usually depends on the difference between A and the 

nominal departure time. 

Armed with distributions of arrival and departure times of connecting 

conveyances, we can compute the probability that the connection can be 

completed successfully:6 

A( XO,A 1,A2] ==> arrival of flight 
D[XO',AI',A2'] ==> departure of connecting flight 

00 

Pr{make connection} = S Pr{A<t} p(t;XO',Al',A2') dt 

-00 

= I + (AI A2 AI' A2') X 

{e-AI'(xO'-~O) /[(AI'+A2')AI'(AI'+Al)(AI'-A2)] + 

e-A2(xO'-xO) /[(AI +A2)A2(A2+A2')(A2-Al')] } 

These distributions are only useful to PEGASUS because they change, either 

because different situations give rise to different a priori distributions or 

because information from observations causes the distributions to change. 

Whenever an observation is recorded, estimates of a distribution change. 

Unfortunately, PEGASUS usually needs to compute distributions that apply some 

time after the observation: PEGASUS thus needs a model of how these 

quantities change with time. Because the quantities mentioned above often 

change slowly and uniformly, we use an exponential decay to model the effect of 

observation. If the random variable X is observed at to to be xO, we have at 

some t>to, 

Xt = e-a(t-tO) X[a,O,O] + (le-a(t-tO)) X[XO,Al,A2] 

where X[xo,AI,A2] is the a priori distribution A that applies at time t; a is 

typically .005/minute.? Thus, two-day old observations of SFO weather carry little 

weight; two-hour old observations much more. The exponentials are, in effect,. 

blending functions for distributions. 

6Afthoug1--this~e~pr-ession appears to diverge as AI' approaches A2, it does not! 

7In the expression, the observation X[a,O,O] could also be a distribution. Such a 
distribution might result from applying Bayes' rule to model an imperfect test. 
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PEGASUS maintains a library of a priori and measured distributions that 

describe the quantities mentioned above. The library is indexed by distribution· 

name· (e.g., w~ather, load factor, Adelay) and by spot (e.g., ORD. SFO). and 

optionally by means (e.g., AIR, TRAIN). by carrier (e.g, UA, AL), by weather 

conditions, and by time pattern (e.g., day of the week, time of day). The index 

thus permits us to say "United Airlines load factors between 13:00 and 23:00 

Fridays are .8 -.3 +.1," or "Traffic delays leaving ORD from 15:30 Fridays to 

18:00 are 15 -2 +5 minutes," or "The weather at JFK at 13:00 July 3 was 2." 

The library is represented as property lists attached to spots, and is searched to 

find a match in. distribution name, means, carrier, weather and time whenever a 

distribution is needed. The search will retrieve all relevant information, whether 

entered . initially or as a result of a measurement; if no probability information 

is associated with a spot, the. special spot DEFAULTSPOT is interrogated. 

3.3.6 Summary of the Model 

This is a convenient point to summarize the components of PEGASUS's travel 

model. The model is. basically dynamic, but is initialized by a static data base 

consisting of a priori measurements and schedules. During planning and 

execution, the model is altered to reflect the traveler's requirements (e.g., utility 

function changes) and to reflect current observations. 

Utility model: The utility of a .plan is computed by applying the utility function 

(part of the model) to a resource vector that summarizes the requirements of 

the plan. The contributions to the resource vector are: 

Time: 

Money: 

Stress: 

Miscellaneous: 

Elapsed time in transi t 

Layover time 

Fares for transportation 

Computer time for the cost-of-planning model 

Contributions due to time of travel (e.g., night) 

Stress of time contributions 

(from spots or conveyances) 

Contributions due to constraint evaluation 

Probability model: The model permits calculation of the probability that a 

connection fails because of timing, that a flight will be cancelled (either due to 

weather problems or mechanical . failure), that a passenger will find a seat 

available on a flight, that a flight will be able. to land successfully· at its 
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destination, or that an airport is closed. The underlying quantities used· to 

compute these probabilities are:' 

Weather. (numerical approximation) 

Load Factors 

Departure delays 

Arrival delays 

Traffic delays 

Processing delays 

These quantities have a priori distributions recorded that may be altered by 

observations given to the system. 

3.4 The Explanation in More Detail 

This section re-examines the level processing of PEGASUS, 

understanding of the fundamental organization and of the model. 

the descriptions are: 

given an 

The foci of 

• How decision theory and symbolic techniques interact in the levels. 

• How decisions made at one level constrain processing at subsequent levels. 

• How the design is influenced by the necessity for working on a problem 

incrementally (and quite frequently reporting' the U* of the best plan) and 

for changing the structure incrementally when updates are made. 

3.4.1 Implementation of Planning Tasks 

The dominant organizational feature of PEGASUS is the collection of routines 

associated with each level of processing. Additional modules control planning 

effort, interact with the user, manage the model data base, and perform resource 

calculations. The implementations of all the levels share a comnion protocol for 

interacting with the module responsible for controlling the planning effo.rt. A 

planning task is given control with one of the following messages: 

PROBLEM. This rnessage invokes machinery to create a new task for 

processing at the given level. Accompanying the message is a solution' 

extracted from the next higher level of processing. The result is a list 

structure that represents the new task; the message types listed below can 

be applied to the new task structure. 
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UTILITY .. This message requests the task to return the resource vector 

that gives rise to the upper bound on the plans that this task will 

generate. It is by interrogating tasks 'with the RESOURCES message that 

the scheduler identifies tasks that represent promising plans. 

WORKON. This message instructs the task to continue planning. Along 

with the message comes an argument that gives a cutoff utility: the task 

should plan· until the upper bound of the plan falls below the cutoff. 

SOLUTION. This message requests the task to return the next solution 

itinerary, if one is available. Even after the planning controller extracts 

a solution and passes it on to another. level, the original task is retained 

in case additional solutions will be needed. 

REEVALUATE. Whenever information in the model is changed, all tasks 

are passed the REEVALUATE message, together with a list of changed 

information, organized into several categories such as: utility function 

changes, transportation grap~ changes, specific trip changes, constraint 

changes, and so forth. It is. the job of each level's reevaluation processing 

to modify the task representation incrementally to reflect the changed 

situation. 

ADVANCE. When a step of an itinerary is executed, and the traveler 

"advances" to a new state, tasks are told to alter their structures 

accordingly to reflect the new situation. In practice, this reduces to 

stating a new starting spot and a new. constraint that requires departure 

from the spot to be later than the "present" time. Consequently, 

ADVANCE requires treatment similar to REEVALUATE. The tasks 

representing paths not taken by the traveler remove themselves from 

consideration by arranging to respond to the UTILITY query with an 

eJ:'-tremely low utility.' 

PRINT. The task is instructed to print its state for debugging purposes. 

The representation of a task is a LISP record that contains, in effect, bindings 

of variables that describe the state of the planning in the task. When a task, 

is given control, additional bindings are of course made as functions are entered, 

but the bindings in the instance record alone survive from one activation of the 

task to the next. This theme represents a weak form of the ideas of Smalltalk 

(Goldberg and Kay, 1976) .. 
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InterLisp-10 (Teitelman, 1975) was chosen for PEGASUS implementation, in part 

because of excellent program-development facilities. At the outset, it was not' 

clear whether ,one of the new AI languages would help or hinder combining AI 

and decision theory ideas in one program. Most of these new languages have 

sparse facilities for controlling search effort, a lack that I surmised to be ,crucial 

when trying to use the utility function to guide search. The chief disadvantage, 

of not ,using an underlying "language" is that the boundary between concepts of 

general applicability and of specific application to the travel problem is obscUred. 

3.4.2 Levels 

1. TOP., When the TOP level is p'resented with a problem, it retrieves a list of 

all conveyances known to PEGASUS and proceeds to calculate an upper bound on 

using each conveyance as the principal conveyance to solve the problem. It does 

so by building single-step itineraries using idealized conveyances as the means of 

transportation. The idealized conveyance is a fictitious conveyance that is 

similar in performance to' the real one, but without many of the constraints. 

Thus AIR* (the final asterisk indicates an idealized conveyance) is a conveyance 

that can fly non-stop from anywhere to anywhere; it is as fast and as cheap 

(per mile) as any AIR flight known to PEGASUS, and departs whenever 

necessary without delay.8 This "conveyance" thus has a resource vector that is 

less (dimension by dimension) than the resource vector for any achievable 

itinerary using AIR transport; 'hence the utility function applied to this vector 

yields an upper bound on any AIR itinerary. 

TOP makes a list of the steps using idealized conveyances and sorts it by U*. 

TOP is always capable of returning a SOLUTION, the next entry on the sorted 

list. Re-evaluating is merely a matter of applying the utili~y function again to 

all elements of the list and re-sorting it. 

2. SP. (Shortest Path) The SP level performs an A * search of the graph of 

conveyances determined by TOP to be the principal conveyance: TOP thus 

constrains the search space for SP. The measure of path length used to guide 

the search is, of course. a utility measure. 

8Afthough--va;"fo-uS'-'kfn-ds of transportation are used as examples for discussion, 
the exalnples are typical of a wider class of transportation. In most processing 
of itineraries, PEGASUS distinguishes only between scheduled and unscheduled 
modes of transportation. Here, for example, AIR is' an exemplar of AIR, TRAIN, 
mwa ' 
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If the origin or destination are not on the conveyance graph, SP connects them 

to the graph with ASSUME steps. ASSUME is hypothetical ground 

transportation that achieves the best performance of any ground transportation 

known to the system (i.e., has the highest utility, evaluated in the sense of the 

TOP evaluations). Figure 3-6 shows a part of the search tree generated by SP 

for our example problem (HOME to ROC). 

AIR 

SJC-ORD 

AIR 

ASSUME 

HOME-SFO 

AIR 

SFO-ORD 

Figure 3-6: A portion of the SP search tree to find a route from HOME 
to ROC. 

SP calculates the promise of each partial path as U* =U(Lrp + fh), where rp are 

lower bounds on the resource vectors needed' for steps on the path, and fh is a 

lower bound on the resources required to complete the path. U* is therefore an 

upper bound on all itineraries that have prefixes equal to the part of the path 

already planned. As a~ example, consider the path D,F in Figure 3-6. The 

resource vector for D is computed by the. ASSUME hypothesis given above: rD = 

[ 22.8; 1.46; 0; 0 ] (Recall that· the resource vector is [ Time; Money; Stress; 

Miscellaneous]). The resource vector for F is computed from the minimum fare 

charged on an SFO-ORD air trip and the minimum time that any plane takes to 

make the trip: rF = [ 250; 101; 0; 0]. The resource vector rh is just the lower 
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bound on an air route from· ORn to ROC t computed with the AIR* idealized 

conveyance: 11l = [ 93.4; 28; 0; 0 ]. Finally we calculate the bound on the 

utility of the partial plan by evaluating U( rD+lF+11l). This calculation is 

simplified by storing, with node F, the vector sum of resources required by F 

and its ancestors in the tree. 

SP maintains a listt L, of nodes that are incompletely expanded, sorted so that 

the partial path with largest ,U* is first on the list. When the control program 

requests work on SP, the following steps take place (simplified): 

Let N(conveyance,from,to) be the first node on L. L is initialized with a 
dummy node N(dummy,goalfrom,goalfrom), where goalfrom is the 
traveler's starting point. 

If N's U* is less than the U limit allocated to the task, return; 

else if to is the goal, remove N froni L and return the answer; 

else if to is not on the graph of conveyances requested, find 
nearby spots that are, add them as successors 
N'(ASSUME, to,newspot), and remove N from L; 

several 
to N: 

else find a path fron;t to by AIR that has, not yet been considered t say 
from to to newto, and add as successor to N: N'(AIR,to,newto). 
Sort this new path into L by its U* calculation. If no such paths 
from to by AIR remain, add a successor to N: N'(ASSUME,to,goalto), 
and remove N from L. 

Repeat the entire process. 

This loop permits planning to be suspended after each new node is added in the 

search. At any time, the U* of the first node on' L is the measure of planning 

progress on the problem. 

Re-evaluation is a straightforward matter of updating the tree and L. It will 

be required if the utility function changes,' if stresses of time change, or if arcs 

of the conveyance graph are added or deleted. Re-evaluation also causes all 

solutions previously returned to be re-evaluated. If a solution depends upon an 

arc in a transportation grap~ that 'has been deleted, it is marked invalid. An 

invalid solution behaves as if it was never generated: tasks at lower levels that 

depend on it are ignored. When the traveler advances on his trip, all paths but 

one leaving node A are pruned and cQrresponding 'nodes are removed from 1..1. 

The new constraints imposed by SP are the symbolic requirements that cause, 

steps of an itinerary to be chosen from a set of existing transportation paths 

and to be joined consistently (i.e., the origin of a step is the same as the 

destin a tion of the preceding st~p ). 
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3. INSTANTIATE.· The INSTANTIATE level chooses particular airplane flights (or 

bus trips, train trips, etc.) for steps in the route returned by SP. The· 

constraints stipulated by the user, as well as a· data base of scheduled trips, are 

used to formulate the new itinerary. 

The route computed by SP is used as a template by INSTANTIATE. The 

"strongest" constraint is identified, and used to establish departure time 

estimates, using the minimum transit times computed by SP. These guesses, 

whiqh will aid computing upper· bounds during the INSTANTIATE search, are 

almost certainly unachievable, as they assume that planes fly arbitrarily 

frequently. The first step of the template that can be scheduled (e.g., SJC to 

ORn by· AIR) is called the template pivot. 

The search proceeds along two dimensions: the choice of a flight ·to use for the 

pivot step, and the choice of flights after the pivot (given the pivot choice). 

The situation for our examples is shown schematically in Figure 3-7. Because 

the strongest constraint reads " ... after ... ," pivots are chosen with increasingly later 

departures (increasingly earlier dep~tures are chosen if the strongest constraint 

is " ... before ... "). Given the pivot choice, the remaining steps of the itinerary are 

filled in by a search through successively later connecting trips, as ,shown by 

dashed lines in the figure.9 The remainder of our discussion of INSTANTIATE 

explains how this search is controlled and limited. 

Upper bounds on partial plans must be calculated· to guide the searching. A 

partial plan is scored by referring to the template: .the portion of the itinerary 

not yet planned is assumed to proceed smoothly, without time delays. For 

example, suppose node AO had just been generated (i.e., A1 and A2 do not yet 

exist). Since AO has us arriving in ORn at 13:30, 61 minutes later than the 

template guess, the part of the template corresponding to the unplanned part of 

the itinerary, i.e., T2, is evaluated with aU times 61 minutes later than in the 

original template. If, for example, T2 has a constraint associated with it of the 

form "arrive in ROC before 18:00," this evaluation will penalize later choices of 

the pivot. After nodes Al and A2 have been generated, AO must still be scored 

eTIlii-search-may--app-ear to be of little use: once a good connecting flight is 
found, why look for others? But it may be that the traveler is very cost­
conscious, and the cheapest fare may be available only on the later plane (e.g., 
night coach). Working against this preference may be constraints on travel 
time, stress considerations, etc. However, the alternatives must be considered in 
order to bring these preferences to light and to locate backup flights should the 
ideal plan fail.· . 
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Template: l2 TO T2 

0 0 0 
ASSUME:HOME"SJC AIR:SJC-ORD AJR:ORD-ROC 

"leave after 6:00" 

Est. depart: 6:00 6:44 12:59 
Est. arrival: 6:14 12:29 15:22 

~2 
~1 UA 464 

A1 
UA 362 

7:01 "'-
Wait 

I-- 7:45 I--
Wait 

I-- 14:25 
0:30 0:55 

7:15 13:30 16:52 

\ 
r-\. 

B 
-1 UA 356 

12:21 r-- Wait 
I-- 13:05 -

12:35 
0:30 

19:00 

Figure 3-7: A portion of the 'structure used by INSTANTIATE to choose 
actual flights. The template is shown at the top; estimated departure 
and arrival times are made based on the constraint and minimum transit 
times. A pivot choice (AO) is made, based on the estimated departure 
time of 6:44. We briefly work backwards to fill in A-1 and A-2, and 
then forward to propose A2 and therefore the interface WAIT step. A 
second pivot choice (B) is shown; it has not been expanded because 
the estimated termination time (using template estimates for the ORD­
ROC leg) yields too Iowa utility. 

(because it is capable of supporting further, later, connections such as the 

example shown with dashed lines in the figure). But now, further expansions 

will require that we leave ORD later than the departure time of A2, i.e., after 

14:25, so AO's evaluation is now calculated by assuming ternplate times are 86 

minutes later than given. Hence, as a node is expanded with later and later 

connections, its utility falls. 

...... 
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These upper. b~unds are used to guide searching. For a given pivot choice, a 

list is retained containing all expandable nodes (e.g., AO, A2) sorted by upper 

bound. Whenever an incremental search step is performed on ·a particular pivot, 

the first element of the list is expanded, or, if it corresponds to the last 

template node, it is returned as a solution. Along the other dimension, each 

pivot's score is computed as the largest upper bound within that pivot. Thus 

the best pivot to work on is the one with the largest value of its best upper 

bound. 

u 

Time df pivot choice 

Figure 3-8: Illustration of the effect on utility of departure time of the 
pivot choice. Too early departures violate the departure constraint; 
too late departures begin to violate the matching constraint. 

But when 'should new pivot choices be generated? The scheme used by 

PEGASUS to make this decision is based on the behavior of constraints. 

Suppose the strongest constraint is "leave ... after ... " We start out with a good 

guess at a pivot (e.g., node AO in the figure). Earlier pivot choices will have 

lower upper bounds because the constraint effect is felt by the upper bound 

calculation. Later pivots will eventually have decreasing upper bounds' because 

the effect of the m.atching constraint is felt (see Figure 3-8). Thus, whenever 

INSTANTIATE finds that the "best" pivot to augment with new expansions is 

the earliest (latest) of the pivots so far examined, a new, earlier (later) pivot is 

created. The constraints thus limit, by virtue of their utility model, the choice 

of pivots. 

One of the functions, therefore, of the utility model for constraints (section 

3.3.3), is to limit this search. Unless the constraints are formulated so that the 
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utility contribution of a constraint always decreases as the constraint, is 

increasingly violated, the limiting effect will not occur.10 It is for this reason' 

that the constraint utility model has two terms: (1) a term that, corresponds to 

the traveler's preferences in the region of times where good solutions will lie, 

and (2) a term that provides proper asymptotic properties to limit the se~ch for 

instan tiations. 

Re-evaluation of the structures created by INSTANTIATE is quite tricky, not. due 

to fundamental problems, but simply because there is a lot of structure to be 

updated. In addition to changes in utility function, stress of time, and so forth, 

INSTANTIATE must consider planes that are cancelled, changes in departure 

times or delays en route, new flights created (extra sections), etc. 

When the traveler advances during execution of a planned itinerary, the 

structure can be modified accordingly, including a possible change of pivot step, 

or it can simply be pruned to discard paths not taken. The present 

implementation uses the second approach. 

The new constraints imposed by INSTANTIATE are the constraints specified .by 

the user and the requirement that trip ,instances be selected from scheduled 

offerings of commercial transportation services. Unscheduled conveyances (taxi, 

rental car, etc.) are hand,led by INSTANTIATE as well, but complete ~cheduling 

freedom for these means that ~o new constraints are added by these choices. 

4. DOLLARS. This level might be dubbed "the fare specialist." It is responsible 

for enumerating all fares 'for the itinerary proposed by INSTANTIATE, and 

returning them best-first. Because standard tra~sportation mechanisms offer so 

few fare alternatives, DOLLARS makes a list of all possibilities, sorts it by U* 

and returns solutions on demand. 

An annoyance that DOLLARS must cope with is the chaotic nature of airline 

fares in the United States., Rules for computing through fares involve 

distinctions about on- and off-line connections, trunk to feeder connections, 

layover time, connecting one fare class to another, etc. DOLLARS handles 

£2!!~~!~_~P.]Y __ l?~!!!.~_2f_ this complexity. 
10If the magnitude of the constraint contribution is too small, the' creation of 
new pivots will not be adequately constrained, and will not terminate. This 
situation arises if the decrease in utility due to layover times for the best 
possible trip exceeds the decrease caused by the constraint violations. Such a 
situation may arise for itineraries with' steps on which airplanes fly very 
infrequently. The behavior of constraint contributions at times far from the 
constraint time (Figure 3-8) is intended to reduce the liklihood of such looping. 
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5. FILLIN. The FILLIN level elaborates' any ASSUME steps in plans by calling 

the TOP, SP, INSTANTIATE and FILLIN levels recursively on a new problem: the 

origin and destination are' those of the ASSUME step, and a new constraint is 

added to insure that the itinerary generated will dovetail with time choices 

already made and to prevent planning the ASSUME step with the same 

conveyance already used for the remainder of the plan. The recursive nature 

permits fairly interesting plans. For example, HOME [assume] SFO [air] ORD 

might be elaborated to HOME [walk] CALIFORNIA-ST-STATION [train] 

BURLINGAME-STATION [taxi] SFO [air] ORD. 

The recursive call in FILLIN is the closest analog in PEGASUS to a subgoal 

that must be planned, and it causes 'a fundamental problem, the subgoal 

problem. Thp. subgoal problem derives from the fact that 

if the utility function is non-linear. . The precise impact of the non-linearity on 

FILLIN can be demonstrated as follows: let rl be the sum of the factors for the 

steps of the trip already planned out; let r2 be the factors required by plans to 

fill in the ASSUME path. The recursive call will generate plans in best-first 

order, i.e., sorted by U(r2). But FILLIN is required to return answers best-first 

as well, i.e., sorted by UCrl +r2). Thus if the utility function is non-linear, 

FILLIN cannot simply seize each solution returned by the recursive search, 

append the steps already planned (corresponding to rl) and return the result. 

(Solutions to this problem are explored in section 4.2.1) Because PEGASUS's 

. utility function is presently linear, the equality holds, and the technique 

described here is valid. 

If two steps of a plan are ASSUME steps (e.g., the first and last steps), FILLIN 

manages two searches, and ultimately generates all possible combinations of 

solutions, but returns the best first. Because we desire to return the best 

solutions first, and because each of the two subgoal searches also return their 

best solutions first, we can avoid engaging in the subgoal searches unless they 

are needed. This technique depends on the fact that PEGASUS's utility function 

is K-linear. (See section 4.2.1 for further discussion of this problem.) 

The recursive calls on the entire searching mechanism mean that a "problem" 

may be presented to a level that is identical to a problem presented earlier, on 

which progress may have already been made. To permit "problem" processing to 
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be shared, each' level keeps two kinds of information: problems, and ,task 

instances. An instance simply records the. parent problem and a list of solutions 

generated by the problem that have also been returned by the task. Thus,when 

a new. solution is requested from a task, it first checks to see if the problem 

has uncovered a solution as yet unnoticed by the task. If so, it is added to 

the list and returned. If not, then the problem is called to work on generating 

the next solution. The effect is that a task will first return solutions that the 

problem has already generated; only then will new search effort be ~ndertaken 

by the problem. 

Re-evaluating FILL IN tasks is a matter of re-evaluating the planned 'steps and 

passing the re-evaluation instructions down to' the . recursive searches. Advancing 

due to execution is also a matter of passing the advancement .to the relevant 

lower search or of terminating the search altogether. 

6. PROB. The PROB level introduces all aspects of the probability model and 

calculates the expected utili~y of a plan from a decision tree. Figure 3-9 shows 

the tree built for our example. The new piece of structure is the ENODE, or 

expectation . node, that represents' possible outcomes and probabilities. The 

following description of ENODE interpretation refers to the figure: 

SUCCESS: The success entry A represents the successful completion of the 

HOME-SJC step, and, the successful embarc;ltion on UA 464. The WAfT 

steps are clearly seen to be interface steps. These steps are included in 

plans because they contribute to the utility, but they confuse thinking 

about travel itineraries as sequences of motion actions. 

MISSED: For some reason, the connection failed. This may be a 

consequence of the arrival distribution of the taxi and the departure 

distribution of the airplane. For example, traffic along the way may have 

delayed the taxi. This term also includes the probability that the flight 

will be cancelled and the probability that no space is available on the 

flight. 

CLOSED: This outcome, node C, represents the closing of the San Jose 

airport. Thus not only will UA 464 not take off, but no other aircraft' 

will for a while. 

ASTRAY: The taxi never got to SJC. 'This might be due to an accident. 



TAXI 
HOME-

SJC 

I A B C D 

Success Missed Closed Astray 
.91 .08 .01 .00 

1 ~-, 
(5:20 waiting time) Wait 

5i~ T 
UA 464 

SJC-

ORO 

I 
Success Missed Closed Astray 

.84 .14 .01 .01 

I 
Wait 

I 
UA 362 
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Figure 3-9: Part ot" the deci$ion tree built by PROS for the sample 
problem. The horizontal boxes show a classification of outcomes of 
the connection between the steps above and below the box: The 
dashed box shows an example of a simple bound estimate: if the 
traveler misses UA 464, he can resume progress along the same route 
after waiting 5:20. Of course, this may not represent the best strategy 
in this case. 
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In the case of ai~planes, it might be that the destination airport was 

closed or had landing delays so long that the airplane had to divert its 

landing to another airport to avoid running short of fuel. 

The probabilities associated with these outcomes are calculated from the model of .' 

distributions described above. Whenever the quantities underlying the probability 
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model change, the probabilities are re-computed, and the decision tree is re­

evaluated .. 

The interesting issue associated with the PROB level is: what should we do 

about planning for the various unsuccessful outcomes? Because of the way 

PEGASUS is structured, it is not necessary to generate actual plans, because 

such plans will emerge from the planning structure when the traveler "advances" 

to the actual situation:' the advancing mechanism ensures that PEGASUS is 

always working on the problem of getting from where the traveler is at present 

to the ultimate destination. What is important to PROB. is a good utility 

estimate for these outcomes, because the differences in backup possibilities for 

various plans is what will make certain plans demonstrably different from others 

(e.g., if our plan used the last flight of the night from ORD to ROC, the 

consequences of missing the plane are quite undesirable). Section 2.2 proposed 

two options: 

• Compute upper bounds. Exact emulation of the approach of section 2.2 is 

of little use. The upper bound viewed from, say, node B can be 

characterized by the hope that there is another plane that flies to ORD, 

just ready to go, with space available, etc. But this will have a utility. 

identical to the "successful" plan! Thus, using the upper bound would not 

adequately represent the consequences of missing the flight. 

• Compute lower bounds. Unlike the monkey and bananas example, our 

travel model rules out lower bounds. The taxi may have gone ASTRAY 

because it crashed and killed the traveler, a consequence with a uselessly 

low utility. Even if we could bound the utility, this would not express 

the probable consequences of, say, missing the flight.' 

What we need to do is to compute an upper bound, but to include enough 

constraints so that there is information in the modified bound: 

1. A crude estimate. Assume that there is as good a continuation plan, but 

that there will be' some delay involved before you can embark on it. For 

example, at node B we remark that the next SJC-ORD plane leaves at 

13:05, which will involve a wait of .about 320 minutes. So we estimate 

the utility of this plan as shown by dotted lines in the figure. This can .' 

be viewed as a "low" bound, because options 2 and 3 may yield higher 

utilities. 
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2. A better estimate. The crude estimate does not consider alternative 

routes. If the first plane of an SJC-ORD-CMH route is missed, an SJC­

DAL-CMH route may be a good alternative (DAL is Dallas, CMH 

Columbus). Somewhere in the collection of tasks in PEGASUS is the 

germ of such a plan. We can find it, and use the current U* 

measurement, together with a wait estimate, to estimate the utility of the 

recovery plan. This will be a "high" bound because the U* we extract 

from the task will be itself an upper bound.11 

3. An expensive· estimate. We can call the PEGASUS planner recursively to 

plan an itinerary with a new time constraint~ This is computationally 

expensive, but yields a good estimate. 

How good an estimate do we need? The answer depends on how much error can 

be tolerated in the calculation of the expected utility of the entire plan. If the 

error can be E, then the error in a (single) failure estimate can be Elp, where p 

is the failure probability. Thus if the failure probabilities are low, extremely 

crude estimates suffice. 

Another way to view this decision is to look at the cost of computation. If we 

can model the computation needed to calculate each of the three modified 

bounds, the model can be used to determine whether the calculation is 

worthwhile. The upper bound on the original. plan, UO, and on the crude 

estimate, U 1, bound the range of expected utility for our plan. The maximum 

improvement that scheme 2 can make is P(UO-Ul), where p is the failure 

probability. This can be compared with the expense of the computation. At 

present, PEGASUS simply uses scheme 1. 

3.4.3 He-evaluation and Execution Monitoring 

Re-evaluating plans in the. light of fresh information and after planned steps 

have been executed is a key function of an AI planning program. One way to 

model the desired effect is to view the new information as an augmentation or 

replacement of, corresponding information in the system's model of the world, 

followed by a complete re-planning effort. But if the changes are small, an 

incremental approach is clearly preferable. 

------------------------- * 11Some care must be exercised, because the U found in the structure may 
exceed the utility of the original strategy.. This is because the problem we 
found had not yet been subjected to sufficient proce~sing, thereby decreasing its 
U*. 
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In PEGASUS, the mechanisms for handling re-evaluation and execution 

monitoring are closely related .. To re-evaluate all plans according to new' 

information, a, structure describing changes is passed to each problem at each 

level. If any of the changed information affects the problem (i.e., if it was 

used in order to make decisions about or evaluations of the problem), the 

current state of the problem is modified to reflect the changes. 

This process emphasizes the changes that have taken place, in order to avoid 

needless re-evaluation of all plans, including those with unchanged prerequisites. 

The data structures used to represent planning states must be designed to admit 

with facility the incremen~al modifications required by 'these changes. 

During the execution of a plan, when the traveler progresses along a planned 

itinerary, all plans are incrementally updated to reflect the change. Thus, in the 

example above, if the traveler successfully gets from HOME to SJC, plans will 

be updated so that they are solutions (or partial solutions) to the problem: "Go 

from SJC to ROC, leaving' SJC after now." This is a special case of re-evaluating 

plans in the' light of new information, i.e., an observed change of state in the 

world. Although this appears to be a more drastic change. and may alter plan 

structures in more fundamental ways than,' say, a re-evaluation resulting from a 

5-minute change in a departure time, the effects of the two sorts of updates on 

a plan are large or small .independen t of this distinction. 

To a purely symbolic planner, changing the problem from "Go from HOME to 

ROC ... " to "Go from SJC to ROC ... " is a chang~ in the symbolic problem 

statement or in the symbolic world-model. The update might involve re­

organizing the symbolic structure .of the plan, or re-organizing preconditions to 

some steps, etc. Many of these aspects are present in the ~EGASUS system: an 

update because of progress in executing a plan requires predominantly symbolic, 

rather than numerical, processes. 

The re-evaluation and monitoring schemes are thus a brief glimpse at an area 

where symbolic and decision-theoretic aspects of planning enjoy analogous 

treatments. Keeping plans abreast of all changes in ava.ilable information 

requires a combination of techniques, largely because the information. itself is of 

varying character. 
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3.4.4 Calculating the Value of Information 

In PEGASUS, the re-evaluation mechanism is used to help calculate the value of 

the information that may be gained from an observation of some quantity. 

PEGASUS generates some hypotheses about the outcome of the test, given the a 

priori information about the quantity, and re-evaluates the plans for each 

hypothetical outcome. The utility of plans, given that the measurement is made, 

is therefore the expectation of the utilities of the best plans in those situations: 

Uwith info = ~i Pi maxj {U(tripj!measurement is i)} 

In other words, for each value of the measurement, we calculate the utility of 

the best plan, and then sum these utilities, weighted by the probability that the 

measurement will in fact have that value. For example, in the case of the 

weather, we might try four cases: w~l, w=2, w=3, and w>4. 

We now must decide whether to make the test. If we choose to do so, we 

receive utility Uwith info + Utest + Ureevaluate, where Utest represents the 

"cost" of the test, and Ureevaluate represents the cost of incorporating the test 

results into PEGASUS's plans and of performing the value-of-information 

calculation itself. If we don't make the measurement, we just have the current 

best trip, with utility Ubest. The value of information is thus 

Uwith info - Ubest + CUtest + Ureevaluate) 

If this quantity is positive, the test should be performed. Note that bounds 

arguments can be used to rule out many tests: Ubest is known; an upper bound 

on Uwith info can be estimated by finding in the levels an' ancestor of the plan 

corresponding to Ubest that does not include the effects of the information 

being tested; Utest is presumably known; and Ureevaluate can be provided by 

the cost-of-planning model. 

It may happen that no value of the measurement changes the identity of the 

best plan. If so, there 'is certainly no point to making the measurement. 

PEGASUS tests for this case first by choosing the first two hypotheses at 

extremes of the range of measured values. If the best plan is the same at both 

extremes, no more tests are made.12,13 

12Thii-is--a--filinear'-;--assumption: if plan A is "best" for extremely bad weather 
and for extremely good weather, then it will be "best" for all sorts of weather. 
We could, of course, keep track symbolically of the quantities on which the 
utility depends, and use symbolic techniques to determine whether this 
assumption is valid. 
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The main point. of this section· is that the incremental update and re-evaluation 

mechanisms installed in PEGASUS for updating plans during execution or when 

the traveler changes a parameter are useful for other purposes. 

3.5 Conclusion 

The organization of PEGASUS's search into levels serves effectively to limit 

searching required. The policies chosen at each level are such that a large 

number of different travel. itineraries are feasible: because different instances 

may be chosen, the actual number is unbounded. On the other hand, it seems 

that the constraints inherent in the problem narrow searching considerably: 

people cope with this problem daily without recourse to extraordinary intelligence 

~r training. 

PEGASUS demonstrates the value of utility estimates for a number of planning 

purposes: The estimates control planning effort. Utility and symbolic templates 

transmit guidance generated by cruder levels of processing to searches in more 

detailed levels. Bounds are used to help estimate the value of information. 

PEGASUS shows that many of the. tradeoffs involved in planning and executing 

travel itineraries have natural and cOlnputable representations in decision­

theoretic terms. The travel planner is a fine example of how complications arise 

when applying to real situations a simple scenario: go to the airport, take an 

airplane to an airport near the destination, ... 

13Decision--theory--t-exts are replete with descriptions of the "value of perfect 
information," and how to calculate it. In PEGASUS t the re-evaluation mechanism 
is powerful enough to evaluate the effect of imperfect information, because the 
model can represent it (e.g. t observations only alter: distributionst and do not 
collapse them to discrete measurements). 



Chapter 4 

Critique and Extensions 
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The combinations of decision· theory and artificial intelligence exemplified in the 

case stu,dies of Chapters 2 and 3.can be broadened. This chapter touches on the 

issues that concern these studies, and seeks to depict the limitations of the two 

examples and . the power of the general approach. The issues can be divided, 

perhaps too neatly, into two categories: the construction of the models of the 

domain used by a problem-solver, and the problem-solution and processing 

techniques used to formulate solutions. 

4.1 Models 

A problem-solving system that undertakes problems in a certain domain works 

with an abstract model of the domain. The abstract character of the model is 

necessary because not every detail of the real domain can be considered in the 

planning system. The design of the abstracted model of the world is a key to 

the performance of the system. On the one hand, a repertoire of symbolic 

operators alone, as used in many robotics systems, generates plans that are 

blatantly wasteful of resources. The augmented operators described in the monkey 

and bananas example, which include cost and reliability measures, still fall far 

short of a complete model of "reality." Yet if the model gets too complicated, 

with many possible elaborations. outcomes and failures, the search may grow 

unmanageably large. 

The model can be said to be the knowledge of the domain encompassed by the 

system. The techniques for designing, representing and manipulating this 

knowledge are a central topic in AI (Bobrow, 1975). This thesis is an 

investigation of interactions that arise when some knowledge is encoded in 

utility and probability functions and some in symbolic processing techniques or 

rules. 

The knowledge spans a wide range of applicability. Some is specific to a 

particular invocation of the planner, such as the locations of the monkey and 

bananas, or the announced destination of a traveler. Some is applicable to all 

probleIDs in the domain, such as the basic behavior of boxes or the ways in 

which legs of a trip can be concatenated to form itineraries. And some is more 

general still, such as the A * algorithm or techniques for contr~lling a planning 

hierarchy. But these are merely extremes of a continuum: the probability of the 

monkey's successfully testing a box may grow slowly with time as he learns to 

test well; or a priori values of traffic and weather conditions change slowly, but 

must be combined with any more recent values available. 
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Along another dimension, we can characterize the domain knowledge in the 

examples as symbolic or decision-theoretic. These' categories are also extreme, 

but offer convenient headings for describing the models. 

4.1.1 Symbolic Models 

The symbolic model of a problem drives a process that generates alternative 

feasible plans in much the same way a plausible move generator finds feasible 

moves in a game-playing program. The model thus contains knowledge about 

symbolic constraints, which limit the points in the state space that can be 

reached to those that can be derived from the initial, state by applying actions. 

The representation of the' actions contains much of the constraint information. 

Section 2.1 shows such a model for the monkey and bananas example. 

The symbolic model for PEGASUS is represented in several ways. There is 

substantial data describing the constraints of the transportation system: several 

transportation graphs, the compendium of scheduled conveyances, and so forth. 

The knowledge used to build itineraries is represented entirely as procedures for 

processing at the various' levels of detail. For example. the rules (or 

concatenating individual trips into plan sequences exercise symbolic constraint on 

the sorts of plans considered. 

Care is required to be sure that the symbolic constraints do not prevent some 

reasonable plans from being generated. Consider two examples of such errors in 

PEGASUS: 

• The itinerary ROC [air] LGA [bus] JFK [air]' ... cannot be generated: the 
SP search examines only the graph of the "principal conveyance" suggested 
by TOP. Clearly the model could be altered to permit PEGASUS to search 
a larger graph for routing solutions, or even to recognize that such 
"changes of airport" are a common strategy when traveling on the AIR 
graph. 

• The symbolic model builds itineraries that require the nominal departure 
time of connecting transportation to be later than the nominal arrival 
time at the point of connection. However, because departures may be 
delayed (a property taken into consideration at the PROB level), there is 
some probability that such a plan will succeed. 

The second case is mitigated during execution by the arrival of information: if 

the earlier flight 'is known to be delayed, PEGASUS will generate a plan to use 

it. 

If symbolic constraints reject feasible plans, the planning system can' become 
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inadmissible with respect 'to the goal of maximizing the utility of' the plan. 1 

However, to relax the symbolic constraints might widen the search' considerably, 

and require a great deal 'more . computation to find any solution. As we shall 

see, a system that takes account of the cost of planning may tolerate 

inadmissible symbolic processing. 

4.1.2 Utility Models 

The utility model must reveal the tradeoffs a planning system makes among 

alternative plans. A requirement, therefore, of the utility model is that it give 

rise to proper performance of the problem-solver. The central role of the utility 

function places additional requirements o~ its formulation: information in the 

utility model is used to constrain searches by reasoning with utility bounds and 

to limit planning activities by estimating the value of planning. The 

cost/outcome model of system operators strives to summarize, in a few functions, 

the behavior of large, complicated ~ystems. Surely the complexity cannot be 

captured in a few simple functions. On the other hand, an excessively precise 

model of the operation of the subsystems would paralyze planning, turning it 

into a huge simulation. 

This section addresses two topics: ways to formulate the utility function to 

express the necessary tradeoffs, and the requirements placed on the utility 

function by the computational and problem-solving setting. 

4.1.3 Formulating Utility Functions 

This section treats utility theories only briefly in order to establish notation and 

terminology for what follows and to expand somewhat on the simple utility 

formulations used in Chapters 2 and 3. A lucid survey of utility theories can 

be found in (Fishburn, 1970). 

An informal utility model is implicit in any notion of "best" or "good" solutions 

to a problem. Such a model need not be expressed in numerical terms. 

However, if alternative solutions can be ordered by preference, a trivial ordinal 

utility function can be formed (assign utility n to the "best" solution of n, 

utility n-1 to the next best, etc.). It is common for heuristic techniques that 

1The--ter"ills---adffiissibk and complete are closely related. A complete procedure 
for proving theorems is one that will eventually find a proof, if a proof exists. 
An admissible procedure is one that finds an optimal solution, if there is a 
solution. 

" 
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express preference in conventional AI systems to be isomorphic to ordinal utility 

functions. Decision theories based on ordinal utility theories are severely limited: 

they cannot cope with uncertainty; no help is provided in calculating bounds; 

and as the number of alternatives grows, so does the task of associating or 

"looking up" utility values given states of nature. Arrow's paradox (Arrow, 1951) 

shows that ordinal theories cannot handle multiple goals properly, a consideration 

relevant to robot problem-solving. 

Cardinal utility functions are, by contrast, very useful indeed, and have received 

the most attention. They usually take the form of a mapping from a vector of 

abstract features characterizing the state of nature to a single real number. The 

feature' vector (or "resource vector," as we called it in Chapter 3) includes what 

,might be loosely termed "measurables," e.g., time, money, computer cycles, watt­

hours. Although the measurements may include errors of various· sorts, different 

individuals would not hotly dispute the results of the measurements. However, 

individuals will differ in their choice of mapping function; it is here that the 

relative importances or values of the measurements are combined. 

Although many functions could be used to express the same preferences among 

states, various additional restrictions are imposed on the utility function. The 

most common set of restrictions arises from the need to handle uncertainty. It 

is convenient to have the utility of a gamble be expressed as the expectation of 

the utilities of the two outcomes, i.e., the utility of a gamble that results in 

outcome 01 with probability PI and in outcome 02 with probability P2 is 

PI U(01)+P2U(02). (The restrictions on the utility function are often expressed 

as a set of axioms for the utility theory. See Fishburn, 1970.) The ability of a 

utility theory to deal with gambles enables, of course, a corresponding decision 

theory to cope with uncertainty in the outcomes of various decisions. 

4.1.4 Notation 

We shall often refer to the utility models used in the Monkey and Bananas and 

PEGASUS examples in this section, and will introduce a notation that subsumes 

both models: 

Define an abstraction of a state of nature with a symbol s. An action in 
a plan is denoted by ai, and has the effect of changing the state of 
nature from si-l to si. 

Define a resource assignmen t function R that maps s ~ r, a resource 
vector. The resource assignment for a step of a plan is denoted ri = 
R(si)-R(si-l) We sometimes refer to the utility of an entire plan as rp = 
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R(Sf)-R(sO), where sO and sf are the initial and final states of the plan. 
Individual elements of the resource vector are referred to- using brackets: 
riEl]. 

The utility functionU maps resource vectors to real numbers, thereby 
assigning a value to a particular vector of measurables. We speak of "the 
utility of plan p," or U(p), and mean U(rp). This is simply the utility of 
the resources consumed in executing the plan; the advantages of reaching 
the goal are reflected in the resources rp. Note that we are calculating 
the utility of a single outcome; to obtain the expected utility of a 
strategy, we must sum the utilities of all outcomes, weighted by their 
pro ba bili ties. 

Define the class of functions L as linear mappings from vectors to the 
real numbers. That is, 'L(r) = lmer + lc, a simple vector dot product. 

Define a function to be K-linear if it is of the form K(L(r)), where K is 
an arbitrary positive' monoto~ic function. 

Now the two examples can be expressed in these terms: 

Monkey and Bananas: riEl] = -Ci, where Ci (as used in Chapter 2) is the 
cost of the ith step. ri[2] = 0 if the ith step is CONSUME, otherwise 1. 
ri[3] = -1. U(r)=[ -1 "'Ufed-Ufed]·C:~:ri). The utility function i.s therefore 
linear, of the form U(rp) = L(rp) 

PEGASUS: ri is the four-dimensional vector [ Time; Money; Stress; 
Miscellaneous]. U(r)=[a b c d]e(~riJ + constant; a,b,c,d ~ O. The utility 
function is linear, of the form U(rp) = L(rp) 

These models calculate utilities in two stages: first, a solution or partial solution 

is given a resource assignment; second, the utility function is applied to the 

resource assignment to yield the utility. In a hierarchical planner, either or 

both of these steps can vary frorn level to level. 

4.1.5 Additivity 

Because planning activities focus on building a sequence of individual steps to 

form complete plans, they need ways of calculating incremental changes to plan 

utilities. This need arises when adding steps to a partially complete plan, wh.en 

adding detail to an existing step, or when considering alternatives for a 

particular step of the plan. In each case, the planner needs to compute the 

change in total utility as a consequence of an incremental change in the 

structure of the plan .. It is advantageous to keep this calculation simple, as it 

will be performed repeatedly while planning. 

The formulation of the basic state space as a vector space of measurable 

resources insures the incremental additivity ~roperty.2 Thus we can characterize a 

2Th;-term--;'iddli"ivfii' is used differently in some discussions of utility theories 
(e.g., Fishburn, 1970). It is used there to mean that U(r) can be expressed as a 
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plan or partial plan by the sum of the resources it requires, rp. Adding step j 

and updating the utility requires: (a) setting rp~rp+rj and (b) calculating the 

utility of the plan up = U(rp). If we restrict the utility function to be linear, 

we need only calculate up~up+U(rj). 

The chief implication of the additivity property is that we can associate rp with 

every plan, even if the plan is incomplete. 

4.1.6 Risk 

One appeal of the utility function is the ability to express aversion to risk 

observed in many human, professional (e.g., medical) and corporate decisions. To 

express risk aversion, we define a utility function that is a convex monotonically 

increasing function of the original (non risk-averse) utility. Figure 4-1 shows 

two gambles to illustrate the point. If we choose p=.95, the two bets have 

identical expectations, $950. However many people would vastly prefer owning 

bet A rather than B because they are averse to the risk of B. We can express 

the risk aversion by choosing the utility function for money, U, so that p 

U($1000) = (l-p) U($19000) where p is altered until individuals believe that bets 

A and B are equally desirable. Note that p will be less than .95, so U($19000) 

< 19 U($1000): this effect can be achieved with a suitable convex function. 

Receive 

$1000 

A 

Receive 

$0 

Receive 

$0 

B 

Receive 

$19000 

Figure 4-1: Two gambles with equal expected value in dollars ($950). 
Most people will prefer gamble A because they are averse to risk: the 
utility of $19000 is less than 19 times the utility of $1000. 

The utility functions of the examples in Chapters 2 and 3 can be extended to 

handle risk by simply applying such a convex function, i.e., define the new 

utility U' to. be U'(e)=K(UCe)), where K is a positive convex monotonically 

increasing function. Thus, a K-linear utility function can express risks. 

~ 

sum--Yti"iC"ii:iJ)--u~i~g--a separate utility function Ui for each dimension of the 
resource vector space. 
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Although the implications for problem-solving with arbitrary non-linearities in 

the utility function are severe, the special case of K-linear functions remains 

tractable. These issues are discussed in the next section. 

4.1.7 Monotonicity 

Calculating upper bounds on plans is greatly simplified if the utility function 

has a monotonic property: 

oU(r) / or[i] < 0 V i, r 

This expression translates to "as a resource requirement of a plan increases, the 

utility always decreases." Thus an upper bound .can be calculated by simple 

.reasoning that determines the minimum values of the individual resources. 

U(r[1]) 

a 

r[1 ] 

Figure 4-2: A utility function that is not monotonic in a single resource 
r[1 ]. 

If the monotonic property does not hold, it is mathematically possible to 

reformulate the utility function to restore monotonicity. Suppose a person's 

utility for the resource "minutes of exercise" looked like Figure 4-2; the resource 

vector here is simply [ exerciseTime]. We can always make a new problem 

with an additional dimension in the resource vector that records the negative of 

the troublesome resource: for the example, we devise a two-dimensional resource 

vector [ exerciseTime -exerciseTime]. Now set U(r) = ul(r[l]) + u2Cr[2]), where 

Ul and u2 are shown in Figure 4-3; this utility function satisfies the 

monotonicity property. This formulation somewhat complicates the calculation of 

upper bounds: the upper. bound for plan p requires finding a resource vector of 

minima, i.e., minC exerciseTime) and mine -exerciseTime) = -max( exerciseTime). For 
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example, if we wish to calculate an upper bound for a plan in which the time 

devoted to exercise is unknown, we find r = [ 0 -00 ], which gives U(r) = UI(O) 

+ u2(-OO) = a, as it should. 

U
1 

(r[ 1]) 

a ..... --------....... 

o r[1] ~ r[2] ~ 

Figure 4-3: Two monotonic utility functions on two resources that sum 
to the utility function of Figure 4-2. 

o 

o 

This formulation. is more than a mathematical trick: two separate, nameable 

effects correspond to the two resources. In our example, r[l] might be called 

"time fatigued," and r[2] might be called "time sedentary." Now the shapes of 

the utility functions in Figure 4~3 correspond to intuition. Another example can 

be found in drug doses: there are often separate therapeutic effects for· moderate 

doses (u2) and toxic effects for· extreme doses (uI). 

4.1.8 Resource Assignmen ts 

The link between a symbolic plan, or partial p1!ln, and the utility function is 

the scheme of resource assign men ts. This scheme maps plans in to resource 

vectors: r RjCs), where s represents the steps of the plan and r its assigned 

resources. The function R can take several forms; hence its subscript. 

A hierarchical planning organization such as PEGASUS will use a different R for 

each level of analysis. This is the mechanism whereby the problem space is 

progressively explored: coarse analysis employs an R that expresses only some of 

the constraints on the solution. Finer analysis will use a more sophisticated R. 

However, the R's used at different levels must remain consistent in order that 

the upper bound calculations be correct. 

Another reason that R takes on different forms is that the particular kind of 
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resource assignment we require may vary. For example, if we wish to calculate 

an upper bound on the utility of a plan p, we will want R to reveal the 

minimum resources required to· execute p. These upper bound assignments' are 

explored in . the next section. 

4.1.9 Upper Bound Calculations 

As we demonstrated in Chapters 2 and 3, the upper bound on the utility of 

plans and partial plans is used to guide search. The bounds of the examples 

are generated by the following general reasoning: 

An upper bound on a step of a plan results from considering all possible 

alternative ways of executing the step, and bounding the utility of these 

alternatives. The power of bounding depends on the fact that most 

bounds can be calculated without explicitly enumerating the alternatives. 

The monotonicity property of the utility function simplifies these calculations: an 

upper bound on utility is generated by an "upper-·bound resource assignment" 

(UBRA, denoted r*), values of resources that give rise to the highest possible 

utility.3 

1. Dimension-by-dimension UBRA. One method for calculating the UBRA is 

demonstrated in Chapter 3: 

] (4-1a) 

where fi * is the UBRA of the ith step of the plan and rij is the resource 

vector of the jth alternative method for achieving the step. These can be 

summed to get the upper bound on the utility of the entire plan: 

U*(r) = U(~rt) (4-1b) 

Note that the determination of the UBRA for the entire plan (4-1b) does not 

depend on the details of the utility function, and requires only that the utility 

function have the monotonicity property. 

2. Utility-based UBRA. We could identify rt by looking for the alternative that 

gives rise to the highest utility: 

___________ llf!ij_ > _ .!:!(!ij) V j ( 4-2a) .' 
3Calculating upper bounds in this fashion assumes that no elaboration of the 
plan can move "backward" in resource space, i.e., diminish the resources required 
for any step. This is analogous to the consistency property required of shortest­
path algorithms (Hart, Nilsson, Raphael, 1968). 
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If the utility function is linear or K-linear, we are justified in computing the 

bound: 

U*(r) = U(l:rt) (4-2b) 

This bound is tighter than that of ,(4-1b) because of the way in which ri* was 

identified. This technique suffers in a system in which the utility function may 

change, because computing an updated upper bound will require enumerating 

anew all the alternatives (j) for each step. By contrast, the first, technique 

eases re-evaluation: we save l:ri*, the UBRA for the entire plan, and simply 

apply the new utility function to it. 

We can see these two techniques in use in the following examples: 

1. .Treatment of (for example) AIR. When PEGASUS is planning in the SP 

level, it must compute an upper bound on a path without regard to 

particular flights chosen. It computes the UBRA as follows: 

When the data base for the AIR transportation graph is built, all flights 

that traffic on each arc are examined, and a minimum resource vector ra is 

associated with each arc a. Only the resources for elapsed time and money 

are considered: 

ra[i] minf raf[i] 

where raf is the resource vector for flight f on arc a. This is the 

dimension-by-dimension minimum of the resource vectors (eq. 4-1). This 

bound may. not be achievable: for example, the flight with the cheapest fare 

(e.g., night coach) may require more time (e.g., use slower aircraft). PEGASUS 

uses this method. 

We might be tempted to calculate a tighter bound by applying the utility 

function to the raf's and finding the maximum: 

ra = raF where U(faF) 2:: U(raf) 'tIf 

This method (similar to eq. 4-2) is awkward if the utility function can 

change after ra is selected: keeping fa current requires accessing all raf in 

the data base each time a new traveler with a new' utility function is 

presen ted to the system. 
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There is no intrinsic reason fOf choosing among the two methods .. The choice 

will depend on the anticipated, use of the system: how frequently will the 

utility func'~ion change? Once again, the decision is related, to costs of 

planning: the second method reduces planning time by providing tighter 

bounds, but will substantially increase planning time if the utility function 

changes. 

2. Treatment of idealized conveyances. In order to compute an upper bound 

on the utility of an idealized conveyance, we need a UBRA in which the 

minimum is calculated dimension-by-dimension. For example, we calculate a 

resource vector for AIR~ as rEi] = max( d rd[i], rm[i]) where d is the distance 

to be traveled; fd is a vector of minimum rates of resource expenditure (per 

mile); and rm is a vector of minimum resources possible for this conveyance. 

Both fd and fm are calculated as the AIR graph data base is built, by 

computing minimum resource rates along all arcs of the graph: 

where fa is the "upper bOWld" for arc a described in the previous example, 

and da is the physical distance represented by arc a. Similarly, 

The role of this fm[i] is to prevent certain conveyances from dominating. For 

example, no actual AIR transportation in the PEGASUS data base costs less 

than $8 or takes less than 25 minutes. If these minima are not taken into 

account, AIR* is an overly optimistic upper bound 'on very short trips (e.g., 1 

mile!) and wastefully permits more detailed cOJ)sideration of airline travel on 

such trips. 

3. Treatment of ASSUME. The PEGASUS shortest-path search of the 

transportation graph inserts steps using ASSUMEd ground transportation if 

necessary to get the traveler ini tially to a node of the graph (e.g., in 

searching the AIR graph, we assume a traveler could get to a nearby airport). 

An upper bound for the ASSUME conveyance could be computed by setting 

the resource vector so that rEi] = max(d 8d[i], am[i]), where 8d and am are 

found by taking the minima, dimension-by-dimension, of the rd and fm for 

all idealized ground conveyances. This bound turns out to be too optimistic; 

it fails to constrain search adequately. By way of illustration, consider: 
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Suppose TOP returns a solution TRAIN* for a very short trip. When 

this is processed by the SP level. an ASSUME step is found to be the 

best way to accomplish. the entire trip. The ASSUME resources involve. 

no money (the cheapest ground transportation is walking) and very 

little time (fastest is by train); it therefore dominates TRAIN* over 

any route. What this means, in effect. is that we are using in SP 

assumptions that do not reflect the constraints imposed by TOP (i.e., 

exclusion of trains from ASSUME steps). 

A solution to this problem is to calculate explicitly the resource vector 

generated by the relevant idealized conveyances (WALK, RENTED-CAR, TAXI, 

etc.) and to choose the one that· maximizes utility (equation 4-2). This 

therefore represents a tighter bound. However, it places an additional burden 

on updating: if the utility function changes in any way, the alternative 

idealized conveyances must again be evaluated to find the one with greatest 

utility. In PEGASUS, this is a ·small burden because there are only 6 

idealized conveyances. 

All of these bounds examples involve some form of "enumerating the 

alternatives": sometimes the enumeration is done once when a data base is 

constructed; sometimes it is done during planning in order to get tighter bounds. 

In som.e cases we have simply saved a UBRA in the data base (as for all flights 

on a given arc); sometimes we have saved a computation formula that· will 

generate the UBRA (as for idealized conveyances). 

·The powerful use of bounds in PEGASUS occurs because. utility calculations 

applied for reasoning at coarse levels of detail generate upper bounds on the 

constraints that may be introduced at lower levels. Although this sort of bound 

can also be viewed as "enumerating the alternatives" (Le., all possible effects of 

constraints). we are never tempted to use explicit enumeration because the upper 

bound, or minimum resource. is usually readily apparent from simple reasoning. 

For example, waiting times between connecting trips are not considered when 

finding a route in SP. However, because au / aTime < 0, we can derive an upper 

bound by assuming the waiting times will be O. This general technique is used 

to handle all constraints: the upper bound results from a resource vector that 

includes the minimum contribution from these constraints. If, in addition, these 

minima are all designed to be 0, the upper bound is especially easy to calculate 

-- simply ignore the effects of the constraint. 
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One . of the prime considerations in choosing bounding techniques is the desire to 

get adequately tight upper bounds. The third example above shows that' the 

search-limiting nature of bounds may make more expensive bound calculations 

worthwhile. 1f resources are allocated to the planning system with regard to 

cost of computation, looser bounds simply give license for unrealistic expectations 

of the results additional planning may bring. 

4.1.10 Adjusting Model Parameters 

Both the utility and probability models contain numerous parameters that must 

be adjusted to achieve proper performance of the planning system. It is 

relevant to distinguish between two approaches to adjusting the models: (1) an 

. empirical approach, in which physical quantities are measured to some precision 

and delivered to the planner, and (2) a subjective approach, in which a designer 

or skilled individual is asked to estimate "proper performance" or rationales for 

the system. 

The bulk of the models used in the two examples can be adjusted empirically. 

The "Airlines Guide" and similar schedules supply nominal values for transit 

times and fares. They could, but unfortunately do not, provide other 

information for the model: distributions for delays, effects of weather, etc. Any 

serious attempt to build a useful travel planner would need to secure these 

numbers or to measure the quantities directly. 

However, not all parameters of the models are subject to direct empirical 

verification. The utility model is the most obvious example; in PEGASUS this 

includes a utility function, the stress of time model, and the model of 

constraints. Only if the objective of the planner is particularly simple (e.g., 

artificial robotics problems), is it possible to derive these models analytically. If 

not, utility information must be extracted from a human; this is a complicated 

process. and is likely to elicit inconsistent judgements (Tversky and Kahneman, 

1974). 

Although the general problem is quite complex,' some simple adjustments can be 

made based on human reactions to proposed plans. If a user prefers plan A to 

plan B "because it is less expensive," this suggests increasing the weight given 

to the money factor in the resource vector until the utility of A exceeds that 

of B. The' trick is feasible because the user has identified the trouble. Other 



87 

causes might be traced to stress of time parameters: "because I dislike waiting 

in New York," or "I'm scared to land in Chicago during rUsh hour." This 

technique essentially asks a client to sort emerging plans by preference. 

Presenting alternative plans for comparison is not trivial. Although PEGASUS 

can easily generate plans of decreasing utility, they are often minor variants of 

each other (e.g., using slightly different transportation to an airport, but using 

the same selection of flights), and do not differ enough to extract determined 

preferences. A selection of cases designed to elicit preferences might better 

explore more coarsley the space of alternatives, and generate plans with 

substantial variations in the resource requirements. 

PEGASUS probability information is stored in a data base partitioned by certain 

retrieval keys: in each partition lies an applicable probability distribution. The 

probability model embodies certain dependencies that we anticipated were 

necessary, e.g., arrival delays depend on weather conditions and on the airline. 

A simple retrieval system locates the proper probability distribution given 

retrieval keys (location, time of day, weather, carrier, means of conveyance). 

Some of these keys match "ranges" of values in the data base (e.g., a time of 

day can lie in the range 4-8 PM weekdays; a location can lie in the midwest; a 

carrier can be a trunk airline). 

One advantage of partitioned models is that the partition can be refined to 

divide the parameter space more ~inely, and thereby to increase the precision of 

the model. As an aid to refinement, we can record empirical observations with 

each cell of the partition. For example, we record the actual observed departure 

delays in a cell of the partition -- a given airline from a given airport, within 

a certain range of times -- and periodically verify that the observations that 

fall within the cell are properly characterized by the distribution associated with 

the cell. This process can be automated (and would probably be dubbed 

"learning") or carried out manually (Yakimovsky and Feldman, 1974). 

How accurate must the model be? Because an exact model may be difficult or 

expensive to acquire, it would be useful to anticipate how the perfonnance of 

the system changes due to errors. If errors in the resource assignment and 

utility functions can be estimated, the simple form of the utility function and 

of the calculation of expectations allows us to compute the effect of errors on 

the final utility value; this process is called "sensitivity analysis" by decision 

theorists. It has the effect, for example, of requiring only crude utility 

estimates for outcomes of low probability. 
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In principle, we' could acknowledge errors explicitly, propagate distributions of 

utilities up' the planning tree, and apply statistical tests to the distributions of 

alternative plans to determine whether one is significantly better than another. 

This is not a practical process, in part because it places extra burdens on the 

representation of plan utilities, and in part because we must calculate utilities 

for a conceptually infinite number of outcomes represented by a particular 

probability distribution (e.g., we have a probability distribution of waiting times, 

and must calculate a corresponding distribution of utility values). 

The planning process itself is capable of reducing certain kinds of errors in the 

utility of a plan. This is precisely what more detailed analysis will bring. The 

elaboration process of Chapter 2 reduces errors in this fashion by introducing 

tests that may reduce errors in the model; it is advantageous to ~mploy them if 

the more exact model gives rise to plans of higher utility. Consider too a 

hierarchical planner such as PEGASUS. The final level of detail, PROB, does not 

supply details necessary to execution of the plan, but is included only to reduce 

the error in the plan's utility estimate. 

There are s~veral more subtle implications of model errors. The first might be 

called "indifference to small differences in utility." Suppose that calculated 

utilities Uc differ by up to 20 units from the exact utility function that 

captures a client's "true" preferences Ut. If a problem-solver finds a "best" plan 

with utility Uc=304, generating alternative plans with utilities in the range· 284-

304 is of dubious value; some of these plans will have Ut >Uc, and some 

.Ut < Uc, but even if these actual preferences are elicited and the model is 

altered, the precision of the model may not be increased.4 If errors of this sort 

are significant, a utility-driven planning system may want to include some 

hysteresis: in our example there is no point in abandoning pursuit of a plan 

with U=295 until its utility drops below 284; even if there are partially-planned 

alternatives with U=290. 

Finally, the costs of planning interact with model errors. As we mentioned 

above, additional planning may reduce the utility error in a plan. But the cost 

of planning itself represents an "error" to the client. Why should we struggle 

to calculate an exact utility value for the plan, when the cost of planning will 

distort the plan's value to the client? 

4jf--tiie--~odel--does--not consider an effect that is important to the client, 
fluctuations in the property among plans will appear as noise in the utility 
calculation. If the noise is uncorrelated with the properties that are considered 
by the model, no adjustment of model parameters will decrease the noise. 

.' 
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These observati?ns may be summarized by noting that careful sorting of plan 

alternatives by utility is not worthwhile in the presence of noise in the utility 

evaluation. Instead, we want to generate alternatives with differences· that are 

significant compared to the noise level. 

4.2 Processing the Models 

In this section we examine computational methods for extracting problem 

solutions from the symbolic and decision-theoretic models. The discussion centers 

on basic problem-so~ving techniques, on hierarchical planning, and on the cost of 

planning. Although the methods themselves are not all new, new problems 

appear when they are combined. 

4.2.1 Problem-Solving Techniques 

We shall summarize the individual techniques discussed in Chapters 2 and 3, and 

point out several interesting problems associated with them. 

Search 

A fundamental problem-solving technique involves searching a graph for plans of 

highest utility, subject to symbolic constraints. A broad class of search 

techniques has been studied extensively by operations researchers; general ideas 

such as branch and bound (Lawler and Wood, 1966) and dynamic programming 

(Bellman, 1957) have been developed for this purpose. 

The symbolic constraints on a search arise in varied forms. In some cases, an 

explicit graph must be searched; or a graph is implicit in that arcs correspond 

to satisfied preconditions; or the possibilities are limited by some deduction (e.g., 

the search for elaborations need not consider TEST steps that alter model 

parameters that do not enter into the calculation of the utility of the plan). 

Search is not necessarily a dumb, torpor-laden process: the constraints and the 

power of the search technique may combine to make search a very attractive 

solution mechanism. Binary division algorithms used in most computer hardware 

are in fact search algorithms: to generate a bit of the quotient, the alternatives 

(0 and 1) are considered -- at each stage, half the search tree is pruned by· 

testing the sign of a single subtraction! 

The case studies use a number of different search techniques, each appropriate 

for a particular purpose. We can arrange the techniques into four classes: 
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1 .. Enumeration. If' the search space is known to be small,. enumerate all 

feasible solutions (Le., those that meet symbolic constraints); 'apply the utility 

analysis to. each solution; sort the solutions by the resulting utility value. 

Examples: TOP, DOLLARS. This technique req~ires no assumptions about the 

form of the utility function and no model for calculating upper bounds on 

partial plans. 

2. Shortest path graph search. This very familiar search technique builds 

optimal plans incrementally, using the utility function and an upper bound on 

the unexplored part of the plan as a search guide. Examples: SP, monkey 

and bananas (section . 2.1). A large collection of work has been done 

concerning shortest path searches; see Pohl (1969) for a nice summary. 

Many shortest-path algorithms use "heuristic" information to guide the search, 

but still return optimal solutions. A * is such an algorithm. Pohl's bi­

directional extensions also use heuristic guides (Pohl 1969, also 1973). 

Not all shortest-path algorithms make easy the reporting of upper bounds on 

the search as it progresses. A * reports upper bounds in a straightforw~d 

way (hence its use in. SP). However, Pohl's weighted version does not lnake 

upper bound calculation easy. 

u u 

........ , .. 
. , ...... . ................... 

(a) ta tb td ~ (b) ta tb 

Figure 4-4: Bounded enumeration. Shown are answers (labeled F) as 
a function of a departure time. Increasingly later departure times (td) 
are considered until the upper bound U* falls below the utility of the 
best solution (F 1) at time tb. Consequently, a wider range of times (ta 
to tb) must be considered in (a) than in (b) because F1's utility in (a) 
is considerably below the upper bound. 
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3. Bounded enumeration. This technique is similar to enumeration in that a 

collection of solutions is generated and evaluated, but it differs in one 

respect: the search has the .potential to generate a large number of solutions, 

but the enumeration is arrested by a bound calculation. Example of bounded 

enumeration: INSTANTIATE. The INSTANTIATE search was designed to 

enumerate trips with departure times within certain limits; the limits are 

widened until the upper bound on all possible trip departures outside the 

limits is below the calculated utility of a chosen trip. Figure 4-4a shows 

the situation schematically: td is the range of possible departure times at a 

connecting point;. td cannot be earlier than t a, for that represents the time 

of arrival at the point. The solid line represents the upper bound U* on all 

trips departing after the corresponding time, and shows an early effect due to 

stress of waiting time and a later effect due to violation of an arrival 

constraint. F1 represents the utility of an actual connection; it is less than 

U* because the cheapest fare is not available on Fl. (The fare is available on 

F4, which accounts for a utility greater than that of its neighbors.) We see 

from the illustration that we need not consider connections with td>tb, for 

their utilities are guaranteed to be less than Fl. We can continue this 

search by lowering the cutoff Uc, thereby increasing tb and enume.rating more 

connections. 

Figure 4-4b shows a similar situation in which the cheapest fare is available 

on all flights. Because the upper bound is tighter, i.e., the difference 

between it and the utilities of feasible plans is less, the search is narrowed. 

This is just another example of search limiting by information available in 

the bounds. 

4. Subgoals. Decomposing a goal into subgoals whose solution will achieve 

the original goal is a corrlIDon problem-solving technique. Sub goal pursuit is 

often a feature of searching; AND-OR trees are one example, in which 

disjunctive subgoals are sprouted at odd levels in a search tree, and 

conjunctive subgoals at even levels. The techniques mentioned above 

(enumeration, shortest path, bounded enumeration) were all used in PEGASUS 

to generate alternatives, that is, to search inlplicit disjunctive subgoals: the 

whole program is organized to foster alternatives. 

Dealing with conjunctive sub goals is somewhat more difficult, and interacts 

with the choice of utility function. This interaction arises because we wish 
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to explore the conjunction in such a way that solutions of high utility are 

generated first. Our discussion will use an example from PEGASUS: the 

FILLIN level is responsible for elaborating the ASSUME steps, and must 

build solutions of the form ((solution to ASSUMEd step) AND (existing 

itinerary)). For example, FILLIN might be given a plan ASSUME (HOME to 

SJC), then WAIT (at SJC), then AIR UA 356 (SJC to ORD), etc. We can 

characterize this plan as ASSUME AND p, where p represents the portion of 

the itinerary that, within FILLIN, requires no subgoal expansions. 

In order to generate solutions to ASSUME AND P in order of decreasing 

utility, we might at first assume we need only generate solutions to ASSUME 

with decreasing utilities and append p to each solution. This does not work 

in all cases, because the utility function can be non-linear. 

Counter-example: Let rp be the resource vector for part p of the 

plan; let ri (or rj) be the resource vector for the ith solution to 

ASSUME. We want to find j that maximizes total utility: 

(a) 

Suppose we do this by finding the j that maximizes the utility of 

the ASSUME step, i.e., 

(b) 

Let U(r)=lrI2=(r[I])2 + (r[2])2, choose rp=[ 4 1], r1=[O 1.1], r2=[1 0]. 

By (a), j=2; by (b), j=1. 

For an intuitive example of this effect, consider a data-structure selection 

application (Low, 1974; Rovner, 1976). Suppose the utility function is -st, 

the familiar space-time product used in charging for computer services. If 

we choose one data-structure to maximize -Sltl, and a second to maximize 

-s2t2, the conjunction of the two choices, -(SI+s2)(tl+t2), may not be the 

optimal combination. 

We can constrain the utility function so that maximizing the utility of the 

subgoal search also maximizes the utility of the total plan. For example, if 

the utility function is K-linear, i.e., of the form U(rJ=K(L(r)) (notation of 

section 4.1.4; L is a linear dot product; K is an arbitrary monotonic function 

that allows expression of risk), it has the desired property. 
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Proof: We need to show (b) implies (a). (b) implies L(rj) > 
L(ri) 'Vi because K is monotonic. Hence L(rp+rj) > L(rp+ri) 'Vi 

because L is linear. Therefore U(rp+rj) > U(rp+ri) 'Vi because 

K is monotonic. This calculation works because· the in teraction 

among the elements of the resource vector is linear. 

This idea can be extended easily to handle more than one subgoal search, 

such as ASSU1fEl AND P AND ASSUME2. Let the sequence aI, a2, ... 

represent the solutions returned from the first search ( U(a1» U(a2» ... ), 

and bl, b2. ... from the other ( U(b1» U(b2) > "')'. Solutions to the full 

probleln are represente~ by the sequence Cl, C2, ... where ci = c(j,k) = [ aj p 

bk J, where ci is the plan formed by concatenating the plan aj, the fixed 

(already planned) part p, and the plan bk. Because we require U(C1» U(c2» 

... , the choices of j and k are constrained. Furthermore, we want to devote 

effort to the subgoal searches only when necessary. The algorithm to achieve 

this, used in FILLIN, is: 

. O. Set jMax to jReturned to O. Set kMax to kReturned to O. Set S to 

null. 

1. If jReturned '* jMax then go to step 2. jMaxtojMax+ 1. Generate 

the new solution ajMax. Add c(jMax,k) to S for 1 <k<kMax. 

2. If kReturned '* kMax then go to step 2. kMaxtokMax+1. Generate 

the new solution bkMax. Add c(j,kMax) to S for l~j<jMax. 

3. Remove from S the plan with greatest utility, say c(x,y), and 

declare it the next solution to the conjunction. Set jReturnedtox, 

kReturned~y, and go to step 1. 

The idea behind this algorithm is that whenever c(j,k) is returned as best, 

we must be sure that c(j+l,k) and c(j,ktl) become available for comparison 

before returning the next solution. 

A general solution that avoids the dependency on K-linearity might be to 

pass rp to the procedures for solving the ASSUME step; they can simply add 

rp to all resource vectors before calculating the utility. Unfortunately, this 

technique will fail if more than one subgoal is involved, e.g., ASSUME1 AND 

P AND ASSUME2· It is irnpossible to 'pass to ASSUME 1 a resource vector 
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U of a. 
J 

4 (1) 1 1 1 ? 
3 8 208 158 1 
2 9 209 159 1 
1 10 210 160 1 

200 150 (?) U of b k 
1 2 3 k 

Figure 4-5: Pursuit of conjunctive subgoals. The situation depicted 
has jMax=3, kMax=2, and c(3,1) with a utility of 208 will be returned as 
the next solution. Before another solution can be returned, it will be 
necessary to generate a4 so that c( 4,1) can be constructed. 

that does not depend on the results of search in ASSUME2 and vice-versa.5 

Knowledge of the utility function may allow a bounds calculation that can be 

used (as in bounded enumeration) to calculate cutoff utilities for the 

ASSUME 1 and ASSUME2 searches· such that the optimal solution to the 

entire problem cannot involve solutions to ASSUMEl below its cutoff or 

solutions to ASSUME2 below its cutoff. 

Heuristics 

Heuristic techniques can be used to circumvent exhaustive searches, often by 

applying specialized knowledge of the problem domain. A common consequence 

of the~e techniques is that solutions are not guaranteed to have the highest 

utility of all possible solutions. We shall see that hierarchical planning and 

'cost-of-plannfng techniques can be used to apply heuristic techniques sensibly. 

As an example of a heuristic method, PEGASUS include.s special scripts for 

comnlon itineraries for connecting airline flights: west coast and east coast cities 

not linked by direct routes are often linked by connections in Chicago or Dallas. 

Although solutions to SP problems to which this heuristic applies are generated' 

without search, they are not optimal: 

5This--Is-~-kill--to-tl;e-'" shortcomings of the linear theory of conjunctions: satisfy 
each subgoal independently. Sussman, 1973, explores this problem in the 
symbolic domain. 



Solutions generated by SP in order (without heuristic): 
SJC-ORD-ROC· U=694.7 
SFO-DTW-ROC U=693.6 
SFO-ORD-ROC U =692.4 
OAK-ORD-ROC U=690.7 

Heuristic solution: 
SFO-ORD-ROC U=692.4 
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SP combines these nlethods: first, it returns heuristic solutions if it has 

applicable scripts. If the planning algorithm requests further solutions, SP 

reverts to its shortest path search. Note that generating a heuristic solution 

will not decrease the upper bound; only the shortest path search offers proof 

that all remaining solutions lie below some bound. In the example, the upper 

bound remains at 774 even though a heuristic solution with utility 692 has been 

generated. 

This use of "heuristic solutions" is similar to the current thrust in -AI work to 

use modest amounts of reasoning to devise very good solutions to goals or 

subgoals, and to do the reasoning in advance of proposing the solution. This 

reduces search to a minimum, and places less reliance on backtrack techniques to 

resolve difficulties encountered deep in the search tree. The approach generates 

solutions without exhaustive search, but the process is insensitive to optimality. 

Because these methods have been explored in other AI ventures, their use was 

deemphasized in PEGASUS. 

Solution Lookup 

In some cases, it may be feasible to retrieve a solution from a data base. The 

cross-country heuristic of the previous section is an example. Another instance of 

this technique occurs in INSTANTIATE: a simple problem of the form "what is 

the next airplane flying from ORn to ROC leaving soon after July 14 16:001't is 

answered by referring to a data base similar to the airlines guide. This 

retrieval does not guarantee optimality, because no knowledge of the utility 

function is involved. 

We may even. be able to retrieve optimal solutions by considering all the 

relevant parameters. Ideally, a strategy could be labeled with a set of conditions 

under which it is optimal; the optimal strategy can be later retrieved by 

examining the necessary conditions. Such conditions might take the form of 
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rules. For example, a decision rule for the monkey and bananas problem with 

one box is (see Figure 2-6 to identify the strategies Aa, AP, and Ba): 

if dm < 50' then (if db < 3 then Aa else AP ) 
else ( if db < 8 - dm/tO then Aa else Ba ) 

Parameters: Cw, Cp, Cb, Cc, Ctf,Ctn, Ue, UFi' 
Pfw, Pfc, Pnw, Pnc, Po· 

The variables in the rule are dm, the distance from the monkey to the box, and 

db, the distance from the box to the bananas; all other parameters of' the 

problem constitute conditions under which this rule applies (e.g., costs, utility 

function). The rule does not attempt to compare eating strategies to plans for 

pursuing other goals. Rather, it is a convenient way to retrieve a good strategy 

based on a small number of symbolic requirements and some parameters. After 

retrieving the best eating strategy, its utility can be compared with that of 

other plans. 

Unfortunately, generating concise rules to cover a wide variety of situations 'is 

not a trivial task. We can, of course, always resort to planning and searching 

decision trees if a pre-computed strategy is lacking. Furthermore, the results of 

each search could be stored for ready reference in the future. But a deeper 

problem makes this hard: if small changes to any parameter result iIi different 

strategies, the number of rules could grow unreasonably large. Alternatively, we 

can use a partitioning technique such as the one described above for probability 

models. 

Different forms of solution, lookup can cover a wide range of capabilities. A 

single proper action can be extracted from a data base, using relevant con~traints 

as the keys. Alternatively an entire sequence of actions, or script, can be 

retrieved.6 The script may not offer a final' solution, but rather a template for 

further processing. It might require elaboration, or it might simply be an upper 

bound for a plan alternative: Chapter 2 presents an instance of this technique. 

I.Jocal Calculations 

Various kinds of local calculations can sometimes be used to avoid the 

combinatorial explosion that a search technique would experience. 

Often the optimal value of a numerical parameter can be found by closed form 

6Scllank--i'i'1-d--Abclson~- 1977, describe an entire framework based on scripts for 
processing cognitive information, 
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calculations or by limited' search. The PROB level in PEGASUS uses such a 

technique to compute the best departure time for an unscheduled first step of a 

trip (e'-g., a TAXI or RENTED-CAR goiilg to an airport). PEGASUS does this by, 

reevaluating the plan with a succession of departure times, using a hill-climbing 

procedure to locate the departure time that maximizes utility. Although the 

form of the utility function is known, this optinlization is not expressed in 

closed form because the evaluation of failure probabilities is so complicated. In 

any case, a variety of numerical optimization procedures (e.g., dynamic 

programming) are available to generate local solutions. 

LOOKAT 
Cost C1 

LOOKAT 
Cost C2 

Figure 4-6: Example of closed-form calculation of the expected utility 
of a sequence of LOOKAT operators. 

Another example arises from Chapte'r 2: how to determine where to look for a 

box (section 2.3; Figure 2-7). We are asked to find an appropriate ordering of 

LOOKAT operators that ,maximizes, utility; a, search of all possible orderings of 

hundreds of (x,y) locations is out of the question. But we note that if the a 

priori Pr{box at (x,y)} values are independent, we simply sort the LOOKAT(x,y) 

operators by the value of Ubox,x,y+Cx,y/Pr{box at (x,y)}. 

Proof: Consider two LOOKAT operators (Figure 4-6) and a 

common failure outcome. We have two possible orderings: (a) 

Utility Ua received from the plan LOOKATl; LOOKAT2; FAIL or 

(b) Ub received from the' plan LOOKAT2; LOOKATl; FAIL. Now 

Ua~Ub implies 

Cl +Pl U 1 +(1-Pl)[C2+P2U2+(1-P2)UF] ~ 

C2+P2U2+(1-P2)[Cl +Pl U 1 +(l-Pl)UF] 



98 

.which, after some manipulation, comes to Ul+C1/Pl ~ U2+C2/P2. 

This simple. case can be extended by induction to show that we 

simply sort the operators by Ui+Ci/Pi. We can also "sort in" 

alternatives besides LOOKAT's (e.g., giving up, Udb) by assuming 

C=O, P=l, and theretun: just sorting based on their utility! This 

cost/probability ratio is sometimes used as an ad hoc figure of 

merit (Slagle, 1971 p. 99, and Garvey 1976); but as we see, it 

derives very easily from simple decision-theoretic considerations. 

Elaboration 

Elaboration techniques transfornl crude plans. into more detailed ones, using 

utility measures as a guide. PEGASUS performs most elaborations as a 

consequence of its hierarchical planning discipline, which is considered in the 

next section. 

The monkey and bananas example, however, suggests a different· model of 

elaboration: the probleln-solver has a number of plan-improving techniques it can 

apply. Hypothesized improvements .are accepted if they cause the plan's utility 

to rise. Following are examples of elaboration: 

1. Fixing failures. Paths in the plan outline that end in failure are 

expanded to recover. Often, this involves pursuing another top-level 

alternative plan. In this case, an estimate of the utility of fixing up the 

failure.is the current utility assessment of the top-level alternative. This 

is, of course, not completely correct, because the state of the world used 

to compute the top-level utility is not the same as that after a failure. 

For example, in the monkey and bananas problem, failure F3 (Figure 2-6) 

leaves the monkey under the bananas, and the ruins of a cardboard box 

under the monkey. Later, if the search for good strategies indicates 

effort should be devoted to this plan, the failure elaboration may be 

improved from an estimate to an explicit plan. 

2. Inserting steps. The insertion of tests was considered in Chapter 2; the 

location of such insertions is governed by preconditions on the test and 

state information prov~ded in the plan outline. The· elaboration process' 

considers inserting only those tests that will affect the outcome of 

subsequent steps, i.e~, tests that nlOdify a parameter that is used to 



99 

calculate the cost or outcome probabilities of a subsequent step. 

Determining how to insert tests that change the basic' plan outline by 

changinK the state of the world (e.g., tests that require the monkey to 

make additional moves for a better view) is very hard. 

3. Changing operators. The model may provide several operators that 

accomplish the same operation (from the standpoint of the symbolic 

model) but with different costs, or different reliabilities, etc. Thus. we 

might have two operators: WALKTO and WALKTO-AVOIDING-OBSTACLES. 

The choice of operator' (or sub-graph of the plan outline) is controlled by 

utility appraisals. 

4~ Moving operators. If a plan outline is a sequential union of several 

outlines (e.g., stacking two blocks, the QA4 "buy groceries and mail a 

letter" problem (Rulifson, Derksen and Waldinger, 1972), or certain 

assembly problems (Taylor, 1976))~ it may be advantageous to re-order 

some of the steps. 'A simple case, the grouping of vision operations, was 

discussed above. In general, however, this is a very hard problem. The 

decision-theory techniques provide a useful way to decide if progress' is 

being made, but they do not obviate a considerable amount of. symbolic 

reasoning to decide whether the plan outline remains legal. 

The elaboration process has a strong parallel with trial evaluation: a plan 

modification is tentatively made, the utility of the new plan is computed, and 

the modification is saved if the utility rises. Thus a test will be inserted if its 

"value of information" is greater than its cost because the recalculation of the 

utility automatically incorporates both of these influences. 

Elaboration should not be confused with a general plan-construction task. It is 

a local technique, and assumes that the utility space is well behaved: elaboration 

is a hill-climbing technique. It is a mechanism for improving, a plan 

incrementally, and can be likened to debugging almost-correct programs (Sussman, 

1973). 

4.2.2 lIierarchical Planning 

The organizing concept of pr~GASUS,and a source of considerable power for its 

problem-solving, is the hierarchical planning, discipline. The prilne motivation for 

hierarchy is to prevent ilblind" one-step-at-a-time planning that is likely to 
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explore many solution paths that are dead ends; they do not lead to solutions. 

This awesome possibility should be particularly evident in the travel domain: to 

mount a depth-first search in. which the initial actions are specified in great. 

detail, such as "Walk from HOME to the California Street train station, leaving 

at 7:10," is to disappear into a combinatorial jungle. 

The key to efficient hierarchical processing is to make use of increasingly 

detailed constraints as the detail of the solution alternatives increases. In 

PEGASUS, we introduce the time constraints when the flexibilities of scheduling 

are introduced (INSTANTIATE). We introduce the stress of -time model as soon 

as alternative transportation modes are being considered. 

Although hierarchical planning using symbolic techniques alone is quite powerful, 

the additional information provided by the utility function ·adds considerable 

power to the method. A purely symbolic approach depends on each level to 

select a good solution according to criteria available to it, and then to hope that 

the plan will survive scrutiny at more detailed levels. The utility function 

represents one criterion that will be applied consistently at all levels of detail, 

and thus directs high-level planning toward plans that are likely to receive 

favorable treatment when analyzed in detail. 

We shall see that the utility function has additional uses in a hierarchical 

organization: allocating planning resources. 

Hi erarchical Constrain ts 

A solution at one level of detail constrains pursuit of solutions at the next 

more detailed level in several ways: 

1. Symbolic constraint. A solution is, in effect, a symbolic template for a 

more detailed solution. TOP reports AIR*, SP searches the AIR graph. 

SP reports a particular route; INSTANTIATE finds pertinent transportation 

along the route. 

2. Utility constraint. A solution _ can also act as a utility template. 

When a lower level works on a task and needs to bound the utility 

contributions of a part of the itinerary not yet subjected to the additional 

detail, the resource estilnates generated at the previous level of detail can 

be used. 
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An interesting relationship between the levels is revealed in the correspondence 

between the answer from one level and the search in the next. For example, 

SP useS the "idealized conveyance" to bound unplanned parts of partial paths. 

This is precisely the same analysis used to solve the TOP level. Similarly, 

INSTANTIATE uses the route parameters calculated by SP as a bound on 

unplanned parts of the instantiated itinerary. Thus the criteria used to evaluate 

a plan at one level are the search guides, the heuristic, at the next level. 

As plans are propagated into levels of increasing detail, conflicts with the 

original, top-level decisions may arise. In a purely symbolic setting, the detailed 

analysis nluy impose constraints that violate constraints at higher levels. This 

simply means that the abstract solution did not lead to a valid detailed solution. 

The planner can backtrack (as in GPS. (see Newell and Simon, 1971) or 

ABSTRIPS (Sacerdoti, 1974)) or can attempt to repair the derivation tree of 

plans (as in NOAH (Sacerdoti, 1975)). 

The constraints added by ~EGASUS levels are rarely of this sort, but instead 

represent gradual lessening of the utility calculated at higher levels. Thus as 

constraints are added, a plan may cease to appear as attractive a solution as it 

once did, but it is not usually demonstrated to be simply inlpossible. 

However, it occasionally happens that the choice of best solution at one level 

may present the next or subsequent levels wj.th a problem that has no 

reasonable solution. For example, the crude reasoning in TOP may suggest 

taking a train from home to work; the SP level will discover that no train 

transportation goes near these places. This situation is detected when SP finds 

that the ASSUMEd ground transportation to get to the goal is preferable to 

taking a train headed toward the goal. This means that some other planning 

task elsewhere in PEGASUS dominates all plans using a train--in particular, 

there is somewhere a plan worked out in some detail that specifies the very 

ground transportation shown to dominate. The inferior plan is marked as 

"dominated" so that further planning will not be attempted. If the utility 

function or some other piece of the model is altered, the mark is removed; "the 

changes nlay have caused the dOIninance to disappear.7 

71;-hc-I;Y~~--belie~~d--t-o-dominate may also encounter a similar domination when it 
is considered in detail, and so forth. If this happens, the original domination 
"proof" is of course no longer v<:, lid. For this reason, the domination marks are 
used only when doing depth-first planning, in order to assure that the depth­
first search will generate a feasible plan. 
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Ordering of the Hierarchical Levels 

Why are the levels ordered as they are? What are the criteria for ordering? 

In some sense. any order would do,· for all details and constraints would 

eventually be considered. The key to making the program efficient, however, is 

to perform first the planning that most firmly constrains· further processing. 

The order of processing in PEGASUS was chosen by arguments based on this 

principle: "Instantiation will be more tightly constrained when a route .has 

already been chosen," and so forth. Unfortunately, the best order may vary from 

problem to problem. If, for example, the hard problem is to find a way to the 

airport, then delaying th~ FILLIN processing is unattractive. In some cases, 

exceptional information (e.g., that ORD airport is closed due to snow) is a strong 

indication of the sort of analysis that should be used to constrain the search. 

Because the U* measure is used to constrain searches from exploring clearly 

inferior areas, it is a key measure of how effectively the problem is being 

constrained as it is processed. Consequently, the best processing strategy is one 

that causes the U* measure to decrease as rapidly as possible. 

The ingredients of a good high-level technique are therefore the combination of 

low cOInputation cost and quick discovery of flaws. Reasoning based on. both of 

these properties led to doing probability-related processing last (PROB level in 

. PEGASUS). More powerful methods are available for searching deterministic 

graphs than decision trees (Hart~ 1969), and can therefore be applied first.8 Also, 

it can be argued that probability will. have a small effect on most plans, as 

travel is fairly reliable--the processing at higher levels has been induced to find 

reasonable plans, and not to generate proposals that have low probabil~ty of 

success. This design requires that· only the PROB level need deal with· decision 

trees; all other levels deal with sequential plans. 

Although the PEGASUS fixed ordering works satisfactorily in most cases, it is 

appallingly inefficient in certain situations. Suppose we know that the 'weather 

in Chicago is poor. PEGASUS's upper bound calculations do not use this 

knowledge; only when expectations arc calculated in PROB is the difficulty 

revealed. All planning tasks in progress that have not yet been analyzed by 

PROB will continue to attract planning attention because they have high upper 

8(fne-must-be-so~e-;;iiat careful about this argument. The deterministic graph 
we are searching is an upper bound on tlie probabilistic graph. Consequently, 
although it can be searched efficiently, it yields only limited information about 
the true (probabilistic) graph. 
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bounds. All sorts of plans involving Chicago may tumble down to PROB for 

processing, 'only to have their prospects diminish. In such cases, it may be 

possible to calculate an adjustment to the resource assignments of all high-level. 

plans than anticipate using Chicago that will not exceed the change in resource 

assignment that such plans would experience in the PROB level. This is an 

example of how a piece of exceptional information thwarts the pre-established 

hierarchy, but can be included in the more abstract levels simply because much 

of its eff act can be expressed numerically. 

A pre-esta blished hierarchy is certainly not necessary: we could mass all planning 

tasks in a single heap, and try to apply to the task with highest current utility 

precisely the right planning step. This step would deftly identify the proper 

constraint argument to apply in order to further lessen the upper bound on the 

utility of the plan or find the proper expansion of the plan \vith more detail. 

The most effective argument would vary from problem to problem, and would of 

course change as plans become more· fully analyzed. The difficulty with this 

approach, however, is to design representations for plans that indeed make the 

application of constraints in arbitrary orders practical. 

4.3 Control of Planning 

We have repeatedly cla.imed that the utility information can be used to control 

planning effort. The simplest forms of control are exactly analogous to the 

control, over a search exerted by a numerical evaluation function: 

Breadth-first (uniform) planning: Find the task in the labyrinth of levels 

that reports the greatest upper' bound on utility. 

this task until its bound is no longer the highest. 

Apply planning effort to 

Rep~at until the problem 

with the highest utility is one that has undergone all levels of processing. 

This method reveals the optimal solution. 

The uniform planning approach demonstrates the main idea of the planning 

algorithm: the job of a planning routine is to find constraints on a plan that 

cause its utility bound to fall sharply and consequently to inhibit further 

planning effort on this plan. Uniform planning is a search process: we are 

looking for the plan of highest utility, and are improving the utility estimate 

as we go along. This perspective is most readily seen if we arrange all .' 

problenls in a single list, sorted by plan upper bounds. These bounds 
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calculations have varying, precislons: plans in which only crude analysis· has 

been done have correspondingly crude. utility estimates--only the first few 

bits· of the bound value are significant. When· planning effort is devoted to 

a problem, 'a more precise utility estimate is developed; and the altered plan 

is re-sorted into the list. This is similar to a digital search for the largest 

value in which only certain digits of the keys need to be examined (Knuth, 

1973, section 6.3). In our case, the digits are not generated unless and until 

they are needed by the search. 

Depth-first planning: When the first solution emerges from a level, planning 

at that level is suspended. The solution spawns a new problem at a new 

level, adding more detail. Effort is now devoted to the new level. Repeat 

until a plan is processed at the finest .level of detail. If, during the search, 

a case of utility dominance (described above) is encountered, the problem is 

marked as dominated, and a new solution is sought from the next higher 

level. This method does not guarantee finding the optimal plan. 

Depth-first planning is powerful because each level of analysis can propose 

the "best" solution it is capable of devising. If, by good fortune, the "best" 

solution proposed by a level remains the absolutely best (in the utility sense) 

solution after analysis by more detailed levels, depth-first planning would be 

infallible. This approach is increasingly practiced in AI: "smart" analysis is 

used to develop good solutions that will not· cause a depth-first search of 

alternatives to backtrack. Such a principle may, however, devote more 

computing resources to deriving the "best" answer to a level than are really 

worthwhile. 

Both of these planning techniques seem to call for solution methods within the 

hierarchical levels that return the "best" solution first. This is an unnecessary 

restriction: levels can have the freedom to use other criteria for returning 

solutions; A level might attempt to return first a solution that it expects will 

be globally best. For example, if ORD is known to be closed, the SP level 

might report a route SJC-DAL-CMH rather ths;ln SJC-ORD-CMH even though 

SJC-ORD-CMH has a higher utilIty measured by SP criteria. Or a level might 

try to report 'a first solution that requires little computin~--the SP heuristics. 

for cross-country flights are an example of this strategy. In either case because 

the solution is not the "best," there remain solutions that are locally better (i.e., 

according to the evaluation at this level) and the emergence of this solution 
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Figure 4-7: Profile of a typical planning process. Early solutions (A 
and 8) are heuristic solutions generated with little processing, and do 
not cause the upper bound· to fall. Later answers are emitted in the 
presence of a falling upper bound. 

105 

does not cause the upper bound for th~ entire task to fall. This property is 

shown schematically in Figure 4-7. This sort of behavior is advantageous for 

depth-first planning--the whole idea is to promote a plan that has global 

promise. 

The uniform planning approach is still valid in this situation, although 'it cannot 

take advantage of these early solutions. The reason is that the problem with 

largest upper bound gets 'resources; the task shown in Figure 4-7 will' therefore 

be given resources until solution C emerges and is passed on to a lower level. 

Solution A (or B) will be ignored until upper bounds at all levels have fallen 

below the utility recorded for A (or B). 

The relaxation of the "best-first" requirement shows how heuristic techniques can 

be applied in our framework. Solutions A and B might have been generated by 

heuristics--they require relatively little computation to derive, but do not reduce 

the upper bound. These inexpensive solutions are available for, processing at 

lower levels, but the undiminished upper bound of the original problem will 

invite more processing to be applied to the task should the heuristic solutions 

prove poor. 

Clearly, neither the uniform approach nor the depth-first approach is adequate 

by itself: the depth-first approach cannot guarantee a good plan; the uniform 

approach uses too much planning. tirne. What we need is a way to pursue a 

planning strategy in termedia te between these extremes: analyzing the "'cost of 

planning" reveals a solution. 
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4.3.1 The Cost of Planning' 

Planning is not free. If resources cOllsumed in problem-solving were of no 

concern, we could build a perfect chess-playing program: it could examine all 

possible future games derivable from a given board position (- 10160 nodes) and 

choose a best move. Both PEGASUS and the Monkey and Bananas example 

could be formulated as dynamic programming problems; the exploration of the 

huge state space would reveal the optimal solution. 

But these large problems are not solved with exhaustive techniques: we implicitly 

acknowledge that pIa'nning is not free, and formulate solution techniques that 

attenuate the processing required. 

A consequence of including costs of planning in the derivation of the, "optimal" 

solution is that the performance of the problem-solver is included in the 

assessment of optimality. In order to differentiate between optimal plans and 

optimal planning, we shall introduce two terms: 

• S-optimal. The §olution itself is optimal, as defined by the various utility 

and probability models. 

• P-optimal. The Elanning is optimal, in the sense that utility of the plan 

and the planning together is optimal. 

The economics of planning are just as important as the economics of the 

solution itself. Thus, a P-optimal solution may be a barely adequate solution to 

'the problem,' provided r~latively few planning resources are. consumed. Or the 

solution may be itself S-optimal, even though more planning resources were used. 

There are, of course, applications in which either the cost of planning or the 

cost of the plan dominates the total. If· the cost of planning is large, as 

exemplified by chess-playing programs, solutions of widely varying utility may all 

have nearly identical total ~osts. In the extreme, planning techniques need not 

search for the best solut~on, but must be efficient. If the cost of executing the 

plan is large, as exemplified by optimization problems on a huge scale (how to 

refine $100,000,000 of oil), we need techniques that find the S-optimunl. 

Notions of the cost of planning have application in problem-solving at many,' 

levels. The discussion above centers on an external description of the entire 
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problem-solving ,process: what, planning resources are invested, and what sorts of 

solutions result?' But this same question 'arises repeatedly in any search: if the 

search proceeds along a particular path, how much· processing will be required to 

find a solution, and how good will that solution be? The second question is 

answered by the utility model of the problem, as explained in earlier sections. 

The first question is the province of a cost-of-planning model. 

We can distinguish two sorts of cost-of-planning models: a recording model and 

a predictive model. The" recording model simply measures expenditure of 

resources as planning actually progresses, and charges the appropriate plan with 

the expenditure. A predictive model must compute, ori the basis of a partially 

complete plan and possibly additional information (e.g., a data base that 

characterizes problem-solving performance .in the past), the cost of planning 

required to complete the plan. 

PEGASUS incorporates the cost of planning in its control of the hierarchical 

planning tasks. The next ~hree sections describe two con trol models and the 

PEGASUS implementation that uses both models. 

The Search Model 

The direction of a problem-solver is controlled, jointly by the utility of the 

solution approach and the utility of the planning. Let us couch this control in 

the form of an optimal search, algorithm. We shall need some notation: consider 

a plan p that is not yet completely finished. First, we consider resources 

already assigned to p: 

* r g Upper bound resource assignment to p given current detail of 

processing. The subscript g is intended to evoke the function 

g( n) in the discussion of A * ( section 2.1.4). 

rpg Planning resources already consumed to generate p. A nasty 

problem arises in computing this number. In any search, the 

developmen t of solutions shares .a good deal of the processing. 

Properly assessing' each solution for the resources it consumed 

. may require re-assessment when more solutions arise. 

Second, we consider upper bound resource assignments to the effects of further 

processing on p: 
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r*h Upper bound resource assignment on the effects that will arise 

as p is refined to become a complete plan. That is, if r is the . 

. resource assignment of the complete plan, derived .. from p, then 

U(r) <U(r* g + r*w. 

* r ph Upper bound resource assignment for processing required to 

finish the planning of p. Estimating this quantity requires a 

predictive cost-of-planning model. 

Using these estimates, we c~ntrol planning with an A * algorithm using the 

evaluation function U(r* g + r* pg + r*h + r* ph). By contrast, what we have 

called "breadth-first" planning is .dri.ven by U(r* g). In both cases, planning 

terminates when the plan selected to work on is already complete to the finest 

level of detail. . 

If A * is to be admissible, i.e., if it i~ to find the optimal solution, it is 

essential that the second. two resource assignments be upper bounds. If we 

disregard this requirement, we can include more heuristic information that 

increases the selectivity of the search, at the expense of missing the P-optim~l 

solution. 

The Cutoff Model 

Depth-first planning suggests a rather different use of the cost of planning: !the 
! 

cutoff model (first mentioned in section. 2.4). Consider the picture of a complete 

problem-solver shown in Figu.re 4-8. A plan Pi is presented to the "black box" 

for processing. The box consumes resources: at time t>O, it has consumed .rpCt). 

The box keeps an upper bound resource assignment for the task given it in 

ruCt). At integer' times, a plan "solution" emerges: PoCl) emerges at t=l, Po(2) 

at t=2, etc. Let R be a resource assignment function that characterizes as much 

detail of plans as the problem-solver is capable. Then we can . calculate the 

utilities of the emerging solutions: UCR(Po(j))). These plans do not necessarily 

emerge in order of decreasing utility. 

Let us suppose that we have, by some mechanisln, determined to allocate 

planning resources to this problem-solver. When should we stop· allocating 

resources? Clearly, if 

U(ru(t)) < maXj::l,2, ... t U(R(poO))) . 



•• Pi -­
Input plan 

PLANNER ~ po(1) 

~ po(2) 

Upper bound = ru(t) ~ po(3) 

.4~ 

r (t) 
p 

Planning resources 

Figure 4-8: A model of a single level of a hierarchical planning 
process. It is presented with an input plan (Pi), and some planning 
resources that total rp(t) at time t. Answers Po(i) are generated. 
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the problem-solver has already generated the best solution according to its 

criteria, and can stop. We can also write down the condition for cutting off 

planning effort at time t: 

U(ru(t) + rp(t) - rp(j)) ~ U(R(Po(j))) 

The right-hand side is the utility of executing the plan that was generated at 

time j. The left-hand side represents the current upper-bound, diminished by 

the planning resources consumed since time j. This inequality, which subsumes 

the earlier one, curtails planning when more resources have been expended than 

the difference between the upper bound and the utility of the. plan generated. 

There are several such equations, one for each solution already generated. If the 

utility function is K-linear, we may write the condition for cutoff: 

U(ru(t) + rp(t)) ~ maxi=l,2, ... LtJ U(R(Po(i)) + rp(i)) 

Implementing this cutoff requires only a recording cost-of-planning model. 

However, if an anticipating cost-or-planning model may be able to determine at 

time t that rp(Lt+lJ) is so large (i.e., that so many resources will be required 

to generate the next solution) that the inequality can be demonstrated to hold 

before actually expending the resources. 

Note that this method continues to work during execution of a plan, provided 

we assume that all planning tasks are "advanced" and updated to reflect the 

new situation. If execution has gone awry, the updates will lower SUbstantially 

the utilities of existing plans, thus allowing execution of some planning tasks 

previously cutoff. This is a consistent way that re-planning is accomplished. 
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Now let us a~k. whether any resources should be devoted to this problem-solver 

at all, even before Po(l) is generated. In order to answer this question, we 

assume the existence of a currently "best" plan- Pb. already available--if no 

planning has been done at all. this is simply the "do nothing" plan. ·with an 

appropriate low utility. . What information do we have? 

* r ph 

We know the resource assignment for Pi, the crude plan 

presented to our problem-solver. U(R(Pi)) is' an upper bound 

on max:(U(R(po(j))) if we were to actually generate the po(j). 

Lower bound on the amount of planning resources known to be 

needed by this problem-solver.. The anticipating cost-of­

planning model is used to 'compute this, and it can use any 

relevant information about Pi. Of course, the computation 

itself should consume much less resources than r* ph. 

r*h Lower bound on the growth of plan resources as a result of 

constraints imposed by. this problem-solver. 

. . 

The problem-solver should not be used at all if 

Here again, we could disregard the upper bounds requirement, and obtain greater 

selectivity (i.e., fewer competing problem-solvers will allow resources to be 

devoted to them) at the expense of admissibility. 

These two cutoff criteria can be applied recursively to a problem-solving 

framework such as used in PEGASUS (see Figure 4-9). Note that the recursion 

is from the right--i.e., the outputs of all nested models are the same, not the 

inputs. Consequently, the 'Po are always completed plans, and are evaluated with 

R, the most detailed resource assignment available in the problem-solver. This· 

is an essential feature: if, in level 1,. we use a corresponding resource assignment 

RI in the cutoff equations (Figure 4-10), the equations will usually stop the 

planner too early. If this level generates answers best-first (by its own 

evaluation, RI), only one answer will be generated. because thereafter the upper 

bound ru(t) will represent plans strictly poorer than the first· answer: U(ru(t)) <. 
U(R(Po(l))) for all t>1. This error is sometimes called "the one-step planning 

pitfall:" local optima, viewed under a subset of all problem constraints. do not 

always turn out to be global solutions as well. 



. Level 0 'Level 1 Level 2 

Figure· 4-9: Recursive application of the cutoff criterion to a 
hierarchical planning system. The thinnest lines show boundaries 
around systems of the form of Figure 4-8. Note that the recursion is 
from the right, i.e., the Po answers must have had all possible detailed 
processing applied to them. 

An implementation 
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PEGASUS makes use of both models. The search model is helpful in deciding 

which of the many competing tasks should get resources. A siInpIified form of 

the cutoff model, applied only to PEGASUS as a whole, is used to curtail 

planning. 

In PEGASUS, the control of the various tasks assumes r*h=O. This is largely 

because we express the upper bound on more detailed planning as carefully as' 

possible in the upper bound resource assignment for r* g. For r* ph~ we measure 

* the best planning performance of each level, and compute r ph as. the sum of 

the minimum requirem'ents for all levels to which p has not yet been subjected. 

However, rpg is assulned to be zero, because of the difficulty in computing it 

properly. rrhis is a serious fault that must be addressed in future systems. 

By way of example, consider the following table summarizing the performance of 
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Level 0 Level 1 Level 2 

Figure 4-10: Incorrect application of the cutoff criterion. The further 
drop in utility that level 2 can cause may have the effect of allowing 
more planning within the level 1 process identified. 

PEGASUS on a typical run, using three different planning strategies: uniform, 

depth-first, and CofP (planning controlled by the cost-of-planning techniques): 

Technique 

Uniform 
CofP 
CofP 
CofP 
Depth First 

Number' 
of 

solutions 

16 
4 
1 
2 
1 

Utility 
of best 
solution 

649 
649 
633 
633 
633 

Planni.ng Planning 
time cost 
(sec) (utility units/sec) 

672 0 
242 -.3 
101 -1 

59 -3 
42 

For this problem, uniform planning found the S-optimum solution, but so did P- " 

optimal planning using ,all but the highest costs of computer time. 

4.4 Summary 

Although this chapter has attempted to review many of the aspects of our 

problem-solving formulation, two points stand out: 

• Heuristic Inethods have a place in problem-solvers that find optimal 

solutions. Maintaining upper bounds on all, solution paths by uniform 
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application of resource assignments and the utility function permits the 

value of heuristic solutions to be compared with the potential of more 

exhaustive techniques. As a consequence, the heuristic solution will be 

used when it appears good, but may be supplanted with a more exhaustive 

technique when an upper bound indicates the solution is poor. 

• The cost of planning rnust be viewed as a resource requirement, just as 

are the resources required to execute a plan. A cost of planning model 

can be used to help control planning by discoun~ing the ut'nity of a 

partial plan by the amount of resources required to complete the planning. 

Consequently, an exhaustive search may, simply because it is 

computationally expensive, be dominated "by a" heuristic solution. 





Chapter 5 

Decision Theory and Current AI Work 
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This chapter relates the work presented in this dissertation to other work in AI. 

There are three primary relations: What other work or problems motivated this 

study? What ~echniques have been borrowed from previous work? And what 

contributions can this work make to present or future endeavors? 

5.1 The Origin of This Study 

The motivation for an exploration of ways to find good solutions to symbolic 

problems and to control allocation of planning resources emerged from 

shortcomings of a large AI system, an "Instant Insanity" puzzle solver (Feldman, 

et 81, 1971). This system, constructed at the Stanford Artificial Intelligence 

Project in 1970, was desiglled to l?uild, using a computer-controlled manipulator, 

a tower of four blocks that was a correct solution to the puzzle (each "side" of 

the tower must present an example of each of four colors). The blocks were 

initially scattered on a work table; the computer was expected to derive position 

and color information from images of the table measured by a vidicon equipped 

with color filters. 

The final system was extremely large, consisting of 8 time-sharing jobs th~t 

communicated through shared memory and interprocess communication--altogether 

more than 300K words of program. The system consisted of a monitor job and 

seven "specialist" jobs: 

• Control and Planning 

• TV Camera Mod~l 

• Edge Follower (image gathering and analysis) 

• Simple Body Recognizer 

• Color Finder 

• Manipulator trajectory calculator 

. Manipulator servo 

Each of these programs save the first was the pride of a different graduate 

student, eager to see his program exploited fully. But the size and complexity 

of the system immediately generated questions that required comprehensive 

strategic control of the whole process. For example: . 
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How much effort 'should be devoted to analyzing a scene for edges? 

When can the analysis stop? The answers depend on the quality of 

information needed 'by the body finder, and how it fares in its task. 

How is information about the arm tt:ajectory to be used properly? Some 

tasks given to the trajectory planner require an intermediate step, to 

deposit and re-grasp the block, a rather expensive and somewhat unreliable 

operation. If a particular trajectory request requires such an intermediate 

step, is there an alternative that is less costly? Perhaps the blocks can 

be stacked in another order to avoid the extra step. Or perhaps there is 

an "extra" block on the table whose use would avoid the intermediate 

step. But maybe it is obscured, and will be hard to recognize with the 

body-finder. 

Clearly, what is needed is a method for assessing the relative advantages of 

different sequences of actions to build the tower. These sequences need to 

contain primitives that correspond to the controllable aspects of the specialists, 

such as which solution methods to try. The controller needs to monitor the 

execution of these sequences because actual execution costs and outcomes differ 

from estimates used during planning. 

These problems were barely new at the time the Instant Insanity demonstration 

was being fashioned. Indeed, the problem of overall control was rapidly ,being 

identified as an area of weakness in robot problem-solvers' at the time (Munson, 

1971; Fikes, Hart and Nilsson, 1972;' Winston, 1972). These issues stimulated 

this work and also influenced subsequent Stanford efforts (Bolles, 1976; Taylor, 

1976). 

5.2 Planning and Problem-Solving 

PEGASUS is related in diverse ways to previous efforts in problem-solving, and 

offers a new perspective in some areas. This section examines briefly these 

relationships by exploring a few selected facets of problem-solving. More 

complete surveys of modern problem-solving appear in Bobrow (1975) and Fikes 

(1976). 

Mechanisms for exploring alternatives. A key issue throughout the history of 

problem-solving has been the manner in which alternative solution possibilities 

are generated and pursued. For example, the renowned "hypothesize and test" 
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paradigm is one structure for sifting through alternatives. We have seen in 

both case studies involving decision-theoretic notions a requirement that we 

explore enough alternative solutions (or partial solutions) to verify that we are 

pursuing a good one. Because we desire a good solution, it is reasonable to 

generate more alternatives than if we seek only a feasible solution. 

A classical method for exploring alternatives is heuristic search (Newell and 

Simon, 1971, offer an excellent formulation of these techniques). The 

representation for an alternative is a node in a search tree. A node can be 

expanded into one or more successor nodes that can in turn be considered. For 

example, a noae of a gam~ tree is usually a state of the game, such as a board 

position, and the successors are tha collection of legal moves from that position. 

A resolution theorem-prover might consider a node to be a clause; successors are 

generated by resolving two -existing clauses. These progranls struggle to find the 

best node to expand next to lead to a quick solution, but are usually confronted 

with large lists of unexpanded nodes among which to choose. The expansion 

process is very local: virtually no information about the goal is used in the 

expansion itself. 

Frustrations with node-searching techniques led to a competing paradigm for 

problenl-solving, using "procedural embedding" of knowledge (MicroPlanner: 

Sussman, Winograd and Charniak, 1970; Conniver: McDermott and Sussman, 1972). 

The basic idea is to use knowledge about kinds of goals and classes of solutions, 

represented as fragments of computer programs, to constrain the exploration of 
( 

state-space. A program, in. principle embodying arbitrary computation, can be 

used to choose among the various successor operators applicable in a given state. 

Once a choice is made, the consequences are typically explored in a depth-first 

fashion, counting on the excellence of the choice. If, as the solution is explored, 

a symbolic constraint cannot be satisfied, control is caused to backtrack to one 

of the choices, and a new alternative is tried. It was soon realized that as 

much care and computation wanted to be devoted to backtrack choices as to 

(forward) solution choices (Sussman and McDermott, 1972). 

This tcehnique makes it hard to apply uniform problem-solving processes, such as 

utility evaluation. The decision processes are embedded in computer routines, 

largely inaccessible to external inquiry. More importantly, the decision 

consequences are disguised in bindings in a control stack that is an inconvenient 

representation for the current plan. 



The poor accessibility of plan knowledge in part motivated a softening of the 

procedural embedding, shown in the NOAH system (Sacerdoti, 1975)' and in KRL' 

(Bobrow and Winograd, 1977). These systems retain the power of. careful. choice 

by using programs as the representation for considerable domain knowledge, but 

rely on separate, accessible representations for plan knowledge: the procedural net 

in NOAH, the description in KRL. The division also enables other processing, in 

addition to the application of certain uniform problem-solving procedures. In 

NOAH, for example, it permits plan steps to be re-ordered to construct linear 

plans from "non-linear" symbolic constraints; by contrast, reordering a call-stack 

representation of. a plan is unthinkable. 

Despite withdrawal from control' structures as plan representations,' current 

problem-solving systems are not intended to consider a large number of 

alternatives. Rather, they assume that the specificity of heuristics of choice will 

be matched to the size of the problem space in such a way that the problem­

solving system can be expected to explore twos, not hundreds, of partial 

solutions. That choice algorithms can be made to improve as fast as the 

problem space expands, both by formalizing problems with greater detail and by 

toughening solution criteria to include objectives such as optimality, is extremely 

questionable. 

The most recent effort in AI languages (KRL) emphasizes flexibility, so that 

systems could perhaps be tailored to explore a variable number of alternatives. 

In KRL, the designer is provided with a framework in which problems of 

representation. control and processing can be resolved· in a variety of ways. The 

handling of alternatives must be just as flexible as the representation of plan or 

domain knowledge: the extent of exploration of alternatives is decided by the 

designer of the particular problem solution. 

Processes in planning. It would seem that an obvious way to provide flexibility 

for the handling of alternatives is to use the techniques of multiprogramming: 

each alternative pursuit is represented as a process that owns state information 

relevant to its task and is allocated computing resources in some way. We can 

examine an AI problem-solving system for opportunities to split computation into 

parallel or quasi-parallel tasks, perhaps to take advantage of several processors. 

Such an approach has seen some use in AI (Fennel, 1975; Taylor 1976). 

However, experimentation with proc~sses ha~ been hampered by the poor support 

provided by most programming languages. Only recently has there been progress 
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in this area (Feldman, et a1, 1972; McDermott and Sussman, 1972; Bobrow and 

Wegbreit, , 1973). 

The real payoff from multiprogramming would seem to appear when the process 

structure is derived from the need to explore various alternative solution 

possibilities. This is the approach used in PEGASUS, GUS (Bobrow, et aL 1977), 

Hearsay II (Lesser, et aL 1975), and SNIFFER (Fikes and Hendrix, 1977). But a 

conventional process approach may bundle up too much of its state in a control 

stack, and make it all but impossible to pass into that context various global 

changes that must affect the processing. 

A tool to attack this problem can be found in the class/instance model derived 

from SIMULA and Smalltalk (Goldberg and Kay, 1976), and evidenced in a crude 

form in PEGASUS. The idea is to fix on the "instance data," the data structure 

that must be owned by a particular process. Other data is not of such vital 

concern: the class itself is usual~y defined as a collection of procedures; 

individual activations of an instance indeed require a control and binding context 

for local variables, but it is fleeting and can be destroyed aft.er, each operation 

on the instance is complete. Thus the crucial item is the instance data 

structure, which can be viewed during instance processing as a collection of 

bindings. PEGASUS uses this idea in a primitive form, without proper 

supporting language primitives. This style will be more ably supported in Plits 

(Feldman, 1976). 

To proper access to processes must be added proper control and allocation of 

resources. Generally, the few uses of process structures in AI have scheduled 

processes with the objective of achieving desirable performance from the problem­

solver. Ad hoc priority schemes that have little or no relation to the problem 

domain are used to drive the scheduler. At most, the costs of planning are 

loosely incorporated into the developer's notion of desirable performance.' 

Generally, the uses of numerical models in problem-solving have atrophied as the 

flexibility of symbolic techniques has increased. 

Numerical guides to problem-solving. Numerical guides to problem-solving are as 

old as AI itself; indeed AI was born of a split with the numerically-oriented 

worlds of optimization and "signal processors." The uses of numerical measures in 

AI can usefully be divided into two classes: 
...... 
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Objectivity., The objective of the problem-solver is stated in part 

numerically, and depends on a numerical model of the domain. Examples 

are:' to solve a puzzle in the minimum number of moves or' to plan an 

optimum travel itinerary, based on a model of the traveler's utility. 

• Selectivity. A numerical method of some form is used to steer problem­

solving in a direction where solutions are thought to lie. Numerical 

controls are attractive for several reasons: 

• The numerical function provides a convenient way to aggregate 

different sorts of heuristic information, to "weight" information, etc. 

• The tractability of simple mathematical functions (e.g., polynomials) 

often suggests techniques. For example, differentiation might be used 

in a hill-climbing procedure. 1 

• Finally, of course, search techniques are available that use numerical 

information fully.' A numerical score allows the "best" node of a 

search tree to be expanded, or the "best" problem-solving pro~ess to 

be executed. 

Numerical objective functions are not in wide use in problem-solving, although 

they are attractive in signal-rich applications (e.g., speech and vision). Indeed, 

one of the aims of this work is to argue that some problem-solving objectives 

are best stated numerically, and that use of numerical objectives should be 

encouraged. As we have seen, even if "heuristic" problem-solving techniques are 

used, a numerical objective function helps determine whether an acceptable 

solution has been found, or whether additional processing is warranted. 

By contrast, numerical fun,ctions to provide selectivity have been, and continue 

to be, widely used in AI (various books provide ample surveys: Nilsson, 1971; 

Newell and Simon, 1971; Slagle, 1971). A selectivity function is used to imprint 

a topography onto the solution space that is believed (by the designer of the 

function) to elevate solution locations so that. they may be found by an 

1Unfortu~ateiY,-:-the'i-e--is a converse to this advantage. The reverse problem is 
enticing: what results will a particular neat mathematical function have on a 
problem-solver? Samuel, for instance, tried briefly an evaluation function for 
playing checkers that involved the first and higher moments of the white and 
black pieces about various axes on the board. The results were predictably 
disappointing: the abstractions of mechanics and of c;heckers arc not likely to 
have much overlap (Samuel, 1967). 



121 

altitude-sensitive search. But such a design may emphasize selectivity rather 
\ . 

than precision, and may render a numerically-controlled search incomplete: an 

erroneously low. upper bound on the value of a partial path can irremediably 

prevent further exploration of that path. Consequently, the designer worries 

about the magnitude of the error (Pohl, 1973). A common hedge against error 

in a game-playing evaluation function is to search ahead several moves, and then 

"back up" the scores: the (static) score of a particular next move is thereby 

buttressed by a small amount of searching (Slagle, 1971, presents many 

variations on this theme). Distressingly little work has been done to determine 

experimentally the precision of a heuristic or' evaluation function, although this 

is feasible only when a large number of points in the space can be examined 

and evaluated. There are exceptioD;s: Paxton (1977) has explored the performance 

of various speech-processing techniques over a sample of 11 input utterances. 

Samuel (1967) used a learning scheme that is at heart an error detector that 

provides a feedback signal to adjust the evaluation polynomial. 

Hierarchies. 2 Hierarchical representations are one method of organizing the 

application of constraints to the solution space, shrinking it until no more 

constraints remain, and (one can hope!) leaving a non-empty portion of the 

space: the solution. By contrast, a single search makes tentative explorations of 

the solution space in different directions, evaluates them in the light of all 

constraints, and pursues paths according to the results of the evaluation. Early 

problem-solvers (e.g., STRIPS in Fikes and Nilsson, 1971) used this second 

approach. 

Hierarchies for problem-solving developed in an attempt to reap more substantial 

search reduction by using constraints cleverly. The first application of this idea 

is found in GPS, and is called "planning."3 For example, as an aid to proving 

theorems in propositional calculus, solutions are first sought to a more abstract 

problem that retains only certain aspects of t.he real problem (differences in 

connectives, signs and order of symbols are ignored). This solution limits the 

choice of operators. to apply in the search for a solution in the original space. 

2Thi;-section--uses-the word "hierarchy" in a loose way to mean a succession of 
increasingly detailed abstract representations of a problem. The sequence need 
not represent a strict containment tree or domination of detailed levels by more 
abstract levels. I have no desire to take up the hierarchy/heterarchy debate. 

3GPS thrust a technical definition upon this abstract noun. The emergence of 
robot problem-solving systems inevitably caused the term to be used in a looser 
sense to describe the generation of action sequences. . 
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If no solution results, a different solution to the abstract problem is sought, and 

the process repeated (Newell and Simon, 1971, p. 428). 

The next work that strongly evokes hierarchies is the ABSTRIPS problem-solver 

(Sacerdoti, 1974). This technique, born of the quasi-formal theorem-proving in 

STRIPS, seeks solutions first to simplified for1;D.s of the problem and uses these 

to guide a means-end analysis solution to the original problem. The simpler 

problems are constructed by dropping many of the antecedent conditions that 

must be satisfied in order that an operator may be applied. When a solution to 

the simpler problem is found, some of the dropped constraints are restored, and 

a solution to the more constrained problem is sought. constrained to visit the 

same solution-space points as the simple solution. ABSTRIPS uses a clever, but 

restricted, method to construct the abstract problems: 'why shou~d the abstract 

problem definitions be so closely related to the detailed ones? (See Amarel, 1968, 

for a beautiful description of alternative non-intuitive abstractions of the 

missionary and cannibals problem.) Additionally, ABSTRIPS borrowed from STRIPS 

the limitations of an inaccessible planning control structure. 

Sacerdoti remedied both of these difficulties in NOAH (Sacerdoti, 1975)' The 

abstract versions of a problem are "programmed up" in a language called SOUP, 

similar in many ways to other AI languages. Rather than directly executing all 

SOUP code, however, the system partly executes code and partly examines, in a 

global fashion, the interactions among the constraints of the several GOALS 

attempted in ·the SOUP code. This analysis often establishes constraints on the 

order of application of the operators--all this is without intervention by the 

SOUP code. When the· problem is satisfactorily "solved" at' one level of detail, 

NOAH expands the steps of the plan in more detail by invoking SOUP code 

specified for each step. Thus, the selectivity in choosing planning paths is much 

the same as, say, MicroPlanner, but the control is entirely different: Sacerdoti 

saw that a breadth-first approach permits many problems of global constraint to 

be resolved before detailed analysis is attempted. 

Execution monitoring. ·The need for execution monitoring arises because the 

states of the world induced during execution of a plan may differ from the 

states hypothesized during planning, consequently causing further execution to 

run amok. Generally, execution monitoring is accomplished by endowing the 

computer system with a complete world model, and by updating that model after 

every action is performed. Then the actual state of the world, as reflected in 

.' 



123 

the model, can be compared with the state anticipated by the planning system. 

Various kinds of processing can take care of· differences between reality and 

anticipation: to detect failures ·and replan. to recover; or to detect surprises that 

unexpectedly ease the problem solution~ 

The most renowned example of execution monitoring is the STRIPS PLANEX 

system (Fikes and Nilsson, 1971), which uses a representation of the plan called 

a "triangle table." The table records, for each action in the plan, a syrqbolic 

"kernel" that is compared with the world model to decide which step' to execute 

next. If all goes "according to plan," these comparisons result in a simple 

sequential execution of the planned steps. If something goes seriously awry, no 

kernel will be satisfied, and replanning is indicated. 

Hayes, in a travel planning program, also makes use of a perfect world model to 

invoke appropriate replanning when something is wrong (Hayes, 1975). The 

replanning effort is limited by redoing only those sections of a plan that have 

become invalid. The idea, is to keep a data structure that records decisions 

made during. the planning _ process, together with their dependency on other 

decisions and their relation to planning subgoals. When execution of a subgoal 

fails, it is therefore possible to identify and remove decisions that are 

inappropriate to the new situation, and to eliminate from the plan those steps 

that depend on the invalidated decisions. In a rather different way, this same 

idea is used in PEGASUS: when new information is available, replanning is 

limited to those subplans that are directly affected by the information. A 

dependency structure such as used by Hayes is not kept: it would be massively 

cumbersome in PEGASUS--consider the dependency of decisions on the numerical 

values in the utility function!4 

NOAH begins to relax the requirement for a perfect world model, updated after 

every step. If a particular action fails, NOAH probes around for the discrepancy 

in the world model, and replans, often by patching an existing plan, using 

domain semantics (SOUP code) tailored for this kind of error. An interesting 

aspect of this treatment is that the discrepancy between reality and the 

execution simulation of reality is allowed to grow quite large; consequently the 

4Haycs--;ctualfY--deaf(-only with pos.itive decision premises becoming invalid, e.g., 
cancellation of conveyances upon which the itinerary depends. A more difficult 
problem is dealing with negative premises: a decision to take a particular train 
depends on the non-existence of trains with better connections as well as on the 
existence of the chosen train. The PEGASUS updating scheme, although slower, 
is able to make such adjustments.' 
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world model need not be constantly updated.5 

An execution monitor may choose to limit its information-gathering requirement 

by updating certain parts of the world model very frequently, and ignoring the 

majority of the model. A simple example of such a technique is a servo control, 

as might be used to effect the positioning of a mechanical arm. A more 

complex example is the use of feedback around simple assembly strategies such 

as a spiral search for a hole using axial position feedback (Finkel, et a1, 1975; 

Taylor, 1976). Bolles has investigated numerous ways of limiting vision 

processing required to close such feedback loops (Bolles, 1976). 

5.3 Decision Theory in Robotics 

This dissertation is by no means the first work that observes the problems of 

incorporating cost and reliability into planning systems and seeks relief using 

ideas from decision theory. Munson (1971), in a speCUlative paper on robot 

problem-solving, thought that utility would be a powerful aid in developing 

strategies, but the ideas were never put into practice. Piper (1972) experimented 

with searching a homogeneous probabilistic graph (decision tree) to find plans ~f 

action. This work was an outgrowth of experiments with the Graph Traverser, 

itself an experiment in general-purpose problem-solving. Hart (1969) has pointed 

out, however, that searches of probabilistic trees have rather poor performance 

properties (admissible searches, guaranteed to find the optimum path, are nearly 

exhaustive). This is one of the reasons PEGASUS uses a hierarchical 

organization to search deterministic graphs first, thus bounding search in a 

probabilistic space. 

The most effective uses of decision theory in robotics have all appeared in 

recent vision systems. It is not surprising that decision theory has been applied 

to these problems, partly because vision problems are often attacked with 

numerical techniques, partly because of similarities between vision and statistical 

decision problems, and partly because of the appeal of allocating sensibly the 

large amount of computation these systems require. Three vision developments 

~!~ __ e_s~~~~~Y __ ~2!~~~!~hy: 
5NOAH's actions are intended to be interpreted and executed by a human. To 
an action that he believes he has executed successfully, the operator responds 
"OK." To one that has failed, he responds "CAN'T." Of course, the "OK" answers 
have the effect of updating the model so that the following step is executed 
next, but the right way to look at these answers is as shorthand for "I was 
able to carry out the command you gave ine, as I understood it," not "I have 
verified that all consequences of my action match the expectations of the 
planner." 
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• Yakimovsky (Yakimovsky and. Feldman, 1974) developed a system for 

region-growing that works from a ·model of the class of images presented 

to the system. The model provides estimates of the liklihood of 

competing region-growing decisions. The system searches the space of 

possible region shapes and interpretations by trying to maximize the 

liklihood that a particular solution is the proper one. The key to this 

system is that the model could express "semantic" relationships, e.g., "a 

region labeled sky is most likely to be above a region labeled grass." 

• Garvey and Tenenbaum (1974) expanded these ideas to apply to -scene 

analysis and to the reduction of effort· in locating specific objects in a 

scene. Likely positions of objects (e.g., pictures are high on walls; 

telephones are on tables) are used, together with estimates of the cost of 

making certain visual discriminations (e.g., color, orientation of a surface), 

to plan a sequence of vision operators to find the requested object. 

• Bolles (1976), in a most ambitious system for "verification vision," has 

made extensive use of statistical detection criteria. His job is to reduce 

to a given level the uncertainty of some crude measurement; he selects 

vision operators based on their cost and their empirically observed power 

to reduce uncertainty. He specifically copes with the powerful geometric 

constraints available in most verification: the number of degrees of 

freedom is usually much smaller than would be computed assuming all 

features and objects are independent. This system is a fine example of 

the combination of symbolic (geometric) constraints with decision-theoretic 

criteria. 

5.4 Potential Applications 

It is worthwhile to speculate briefly on how some of the techniques presented in 

this dissertation might benefit current AI systems. The observations divide into 

two main categories: better allocation of planning effort, with attention to the 

cost of planning, and mo~e use of utility or other objective functions. 

• Hearsay II (Lesser, et a1, 1975). The Carnegie-Mellon speech understanding 

system drives a search to analyze a speech wave with a partially 

numerical process. Hypotheses from various sources are recorded in a 

global "blackboard," linked together by dependency relations, and tagged 



126 

with "at,tention' focussing" numbers. A uniform procedure propagates focus 

information among the hypotheses,. according to dependencies. Processing 

of the hypotheses is scheduled by a multi-process scheduler, driven by the 

attention-focussing tags and capable of allocating one of several processors 

to a task. The attention-focussing markers are apparently used both to 

express the validity of a hypothesis and to direct processing effort. No 

attempt is made to combine the cost of processing with the validity, but 

simply to use validity as a way of imposing selectivity in the search. 

• SRI/SDC speech system (Paxton~ 1977). Paxton has made several empirical 

studies of the effectiveness of different heuristics for controlling the 

effort in this speech analysis system. 'He Was concerned with issues such 

as: Should processing be focussed ,by inhibiting alternative choices? The 

answer turns out be depend on the false-alarm rate of acoustic matching 

processes. These measurements contain the germ of a cost-of-planning 

model for the system that could apply the information uniformly: should 

effort be put in reducing false alarms to permit focus? Because of the 

large variance in input utterances, it is unwise to encode the results of 

these studies as heuristics that say. in effect, "in situation a use method 

b;" the characterization of situations is too coarse to permit unequivocal 

decisions. Once again, we find an application for numerical tradeoff 

among several approaches. 

• MYCIN (Shortliffe, 1974). MYCIN is a decision-making 'framework applied 

to diagnosing bacteremia. Semantics of the domain, painstakingly acquired 

from physicians, are encoded in a data base and used to form implications 

(e.g., if a and .... b then c), with a numerical qualification on the 

confidence of the implication (a "certainty factor," CF). The confidence 

measure, only loosely related to probability, is used as the basis for 

comparing two or more implications of the available evidence, and 

consequently for suggesting the "best" diagnosis and treatment. The CF 

attempts to combine several effects (e.g., empirical probability, expressions 

of caution by physicians because of the" severity of a missed diagnosis, 

etc.). What is entirely absent from MYCIN is any notion of value: the 

relative consequences, to the patient, of various diagnoses, the costs of 

laboratory tests, etc. Ginsberg (1969) investigated a utility function that 

reflects patient's preferences in similar situations. 
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• NOAH (Sacerdoti, '1975). The NOAH framework offers an excellent 

opportunity to experiment with some of the ideas presented here in a 

general-purpose setting.. NOAH has well-developed structures for 

hierarchical planning and for invoking procedures that expand crude plans 

into more detailed ones. Adding a mechanism to report resource 

assignments and therefore to calculate utility information would be 

straightforward. A more substantial modification will be needed to permit 

concurrent exploration of a number of alternative plans. 

Other applications in Computer Science 

Computer systems are getting bigger. This is true not only of AI programs,but 

also of such apparently trivial applications as text editors. Some of the growth 

can be ascribed to growing requirements: an AI program may attempt to solve 

an intricate problem; a text editor may acquire complexity because it attempts to 

offer a very pleasant experience to i~s user; or a command and control system 

may grow as requirements increasingly integrate diverse aspects of the problem 

into one system. 

But an additional generator of growth is particularly interesting: as the 

repertoire of computer solution techniques grows, designers attempt to devise 

general-purpose programs that can cope efficiently with ever broader classes of 

input problems. For example: 

• "Hidden surface elinlination" is a problem in computational geometry often 

associated with computer graphics (Sutherland, et al, 1974)., There is no 

solution that is "best" for all geometrical and topological situations that 

may arise. Even the details of the solution techniques, par~icularly the 

selection of certain sorting and computational geOlnetry algorithms, may 

depend on the statistics of the problem presented for solution and on the 

exact form of output desired. 

• Computer-controlled manipulators require an intricate program of control 

signals to accomplIsh an assembly task. Many aspects of the task can be 

planned in advance, given specifications of the assembly and of the 

geometry of the pieces. Some aspects of planning must await more 

precise information about locations of the parts. Some of the procedures 

cannot be planned in detail at all, because of cumulative manipulator 
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errors; local iterative procedures, such as a search to insert a screw in a 

hole, must be used (Taylor, 1976). 

• How should a function be integrated. numerically? There are many 

techniques, of varying applicability, speed, and precision. 

• The range of computer language translators, extending from interpreters to 

compilers to very sophisticated optimizers, encompasses a myriad of 

techniques. Much is known about optimization tricks, but an optimizing 

compiler may be expensive. At the other end, an interactive user 

demands flexibility, but expects adequate efficiency. 

The interesting aspect of these examples is that solution techniques abound; the 

problem is to build systems that plan a proper application of the techniques to 

achieve an efficient solution. All of the considerations explored in this 

dissertation are relevant: We need to plan in the presence of uncertainty about' 

many of the problem details. We need to assess tradeoffs among. different 

techniques with differing reliabilities and costs. We need to balance the effort 

invested in planning with that devoted to achieving the solution itself. We 

need to devote a judicious amount of effort to monitoring execution progress and 

to replanning if necessary. As we learn more about the individual solution 

techniques and about planning techniques, we can expect to build computer 

systems that plan the proper combination of techniques to solve classes of 

problems. 



Chapter 6 

Conclusions 
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6.1 Summary 

This dissertation has explored a conjunction of AI and decision-theoretic 

techniques, especially as applied to two' case studies. Our aim has been to use a 

judicious amount of mechanism to achieve good solutions to problems. The 

utility function proves useful for: 

• Comparing the value of alternative plans, including expressing tradeoffs 

among multiple goals. The plans may be plans of action, plans to acquire 

information, or plans to engage in planning activities. 

• Expressing the effects of uncertainty and risk consistently for all plans, so 

that plan evaluation includes these effects. 

• Exposing to the designer or user crucial parameters 'that affect the 

system's decisions. 

The utility functions we devised in the two case studies exhibit certain 

properties tailor for application in a problem-solver: 

• Additivity of a "resource vector" that represents the plan-specific 

parameters for the utility calculation permits inexpensive incremental 

updates to the utility as a plan is built and modified. 

• Monotonicity simplifies arguments used to construct resource vectors 'that 

give rise to upper bounds on the. utility of partially complete plans. 

Used in a problem-solver, the utility function on plans and' partial plans helps 

apply various solution techniques: ' 

• Search. The utility function provides a numerical guide to control search. 

Calculation of upper bounds on partial plans is important for this use. 

• Elaboration. The utility of a plan can be used to assess the benefits of 

modifications or ex~ensions to a plan that are thought to improve it. 

• Hierarchies. The utility function provides a way to organize a hierarchy. 

Solutions at one level of detail furnish symbolic and utility "templates" to 

work on more detailed solutions. The utility of a solution at one level .' 

becomes the guide at the next level, used to bound incomplete plans and 

to control search. 
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• Heuristics and specialists. The utility function allows the peaceful 

cooperation of different solution techniques by subjecting the efforts of all 

to a uniform evaluation. A low value of the utility of a plan generated 

by a heuristic that "is not good enough" will suggest invoking another 

available solution technique. 

The utility function also helps to allocate resources to planning, acting and 

information-gathering. In particular, a model of the cost of planning is used to: 

• Allocate planning resources to alternative processing techniques with regard 

for their efficiency: their ability to generate high-utility solutions with 

low expenditures of planning resources. 

• Engage in only enough planning to' find the P-optimal solution, i.e., the 

optimal solution to the problem, given that planning costs must be 

charged against the final solution. 

If we characterize problem-solving as a massive topo~ogical sort through a 

problem-space, the utility evaluation emerges as one technique for computing the 

sorting order. Symbolic constraints will cause great sections of the space to be 

excised from further consideration. Extremely low utility bounds will similarly 

discard other areas. In the remaining regions, the utility and symbolic "sorting 

keys" are developed to greater and greater precision as attention focusses on the 

solution. 

6.2 Suggestions for Further Work' 

Systems. The approach presented in this work could influence the design of 

problem-solving systems able to use utility information. Current AI practice 

would encourage these techniques to be designed into a language. As mentioned 

in Chapter 5, a receptive host language might be Sacerdoti's NOAH. If this is to 

be attempted, a number of needs revealed by PEGASUS must be addressed; not 

all require innovation: 

1. Many individual problems are being pursued at once. As increasing 

attention has been placed on procedural methods for reducing search, or 

for representing search implicitly in a control, s'tack, facilities for 

conventional searching have atrophied. The whole thrust of attempts to 

optimize requires examining several solutions; these arc often alternative 
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instantiations of plan outlines. The need to keep several solution tasks in 

progress is also responsible for several other requirements in this list. 

2. Means must be provided to allocate computing resources to the various 

plans being pursued. Each plan could be represented. as a process; a 

scheduler could be used to control the planning. 

3. Access to the plan processes is needed for various purposes. A task 

scheduler will ask for current upper bound evaluations in order to allocate 

effort. Re-evaluation requires enumerating plans and applying a plan­

specific p'rocedure to effect updates. Some planning techniques may 

require access to current pl~ns in order to locate an alternative (e.g., for 

a fail ure recovery). 

4. The massaging of plans as a consequence of execution is especially 

taxing. Regardless of the suspended state of planning on each problem, 

the problem itself must be transformed into a new one, in which the 

first, now executed, step is discarded (or, at more abstract levels, simply 

altered). As initial parts of plans are removed, it is possible th~t 

remaining tails of two or more plans become identical: duplicate plans 

must be removed from the processing schedule. The exact notion of 

"identical" will vary from abstraction to abstraction--plans are identical at 

level SP if they use the same route; at level INSTANTIATE the same trip 

choices are required as well. 

5. Incremental changes. One lesson of the PEGASUS experiment is the 

chaos that results when clean mechanisnls for effecting incremental 

changes are absent. Whereas most AI planning progranls have limited the 

"changeable" parts of the state of nature to the direct effects of planned 

actions, PEGASUS attempts to withstand changes in utility model (i.e., 

goal structure), in available conveyances, in weather conditions, etc. This 

problem is so widespread that the "demons" of AI languages or 

"continuously evaluating expressions" offer solutions that are too bulky. 

Part of the answer lies in designing searching and planning procedures 

that can cope reasonably with new data (e.g., "an extra section of flight 

103 is being added"), regardless of the progress of the search, and then 

expressing these with uniform conventions, such as the class/instance 

paradigm. 
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6. Sharing. PEGASUS uses fairly crude and replicative data structures for 

describing plans that often have common sub-pieces. Although a good 

deal of sharing is practical within levels (e.g., SP), as plans are packaged 

for shipment to other levels, they are copied. It is tempting to design a 

canonical plan representation to achieve more sharing (as in, for example, 

QA4, Rulifson, et al, 1972)' There are at least two problems with such a 

design: the equality checks mentioned above are not made significantly 

easier, and, more importantly, there is no canonical plan-building direction 

(unlike the building of lists by CONS) -- some solution techniques work 

forward, some backward, some in both directions. 

Cost of Planning. PEGASUS makes only beginning attempts to model planning 

costs. One class of extensions is trivial: adding to the repertoire of planning 

resources measurect computer time, access to data bases (suppose each access to a 

travel guide cost $.10), storage utilization, etc. Refinements here can lead to 

more precise models of the cost of computation, but not to more effective uses 

of the information. 

However, power lies in being able to estimate future effects of planning. This 

information was used in PEGASUS to curtail planning, but not to choose among 

alternative problem-solving techniques. More effective predictive cost-of-planning 

models can certainly be built. Generally, these are statistical models that map 

certain features of the plan and problem-solving system into estimated costs. 

The features may include aspects of the plan (e.g., number of steps, current level 

of detail) and aspects of the planner (e.g., estimated branching factors in 

searches, enumeration of as yet untried specialized planning tricks, etc.) 

Admissibility. The framework we have developed here requires a notion of 

admissibility that is broader than normally given: it must include the effects of 

the cost of planning. Corresponding to searches for P-optimal plans, there is a 

criterion of P-admissibility. A solution technique will be P-admissible if it finds 

a solution with maximum utility of execution and planning combined. This 

criterion permits more than purely numerical tradeoff of solution and planning 

costs: in cases of large planning costs, we can even use incomplete symbolic 

methods. Allowing incomplete methods may permit approximate solutions to 

some of the "very hard" problems (e.g., NP-complete problems) to be P-optimal. 

Of course, computers generate only approximate solutions to many problems 

presented to them (e.g., finite precision arithmetic represents an approximation in 
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many cases),. ~ut the notion of P-admissibility will determine what sorts of 

a pproxima tions are sa tisf actory. 

P-admissibility may yield solutions at varying levels of detail. A P-optimal 

solution from a hierarchy of abstractions might not necessarily . have completed 

processing at the most detailed level. This is another sort of approximation: in 

some cases we will obtain more abstract solutions than in others. 

The problem, of course, is that we have no techniques for making effective use 

of the P-admissibility notion in the most general sense: to justify approximate 

symbolic or abstract solution techniques in the presence of planning costs. P­

admissibility has some non-intuitive implications: Should a technique that. is 

executed on a faster or less expensive computer be required to find a better 

solution? 

In many ways, P-admissibility is what AI is all about. It recognizes that 

optimal solutions to computationally outrageous problems are not useful. AI has, 

in effect, loosely defined P-admissibility by using techniques that attempt to get 

good solutions most of the time for modest computational investments. AI is 

concerned with the design of methods to achieve these solutions: heuristics, 

hierarchies, bounds arguments, and so forth. 

6.3 Decision Theory and Artificial In telligence 

Some readers will have already objected that our suggestions do not increase the 

range of problems solvable by decision theory or symbolic processing, that each is 

a powerful and complete paradigm, and that our remarks bear on efficiency 

considerations alone. The pure symbolic processor claims that he can achieve 

optimization effects by dividing numeric ranges into a small number of "symbolic 

values" (e.g., temperature into COLD, COOL, WARM and HOT) that suffice for a 

given problem. Information about tradeoffs can be encoded as a set of symbolic 

preferences; (FED and \VALKED-A-LONG-DISTANCE) is preferred to ((not FED) 

and W ALKED-A -SHORT-DISTANCE). Or he will assess tradeoffs numerically by 

instantiating theorems of number theory, analysis' and algebra. This gives rise to 

crude and awkward models in cases where a small amount of numerical 

processing is more natural and accurate. 

The pure mathenlatical programmer, on the other hand, will mathematize all 

constraints or move complexity into value or reward functions. He will 
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formulate any search as a shortest path problem with appropriate arc weights 

and propose dynamic programming to calculate a solution. The result is often a 

huge state space for very simple problems, making numerical solution simply 

infeasible. 

Practitioners of either field adopt more moderate approaches: the AI designer 

finds many problems suited to partially-numerical approaches. Similarly, the 

decision theorist engages in a substantial amount !)f sYInbolic reasoning to 

formulate his model and to apply it intelligently to the situation; he may also 

use "heuristic" solution techniques on large problems. A human analyst will 

perform the reasoning req~ired to build a decision tree intelligently, one that 

represents sensible plans. From the point of view of AI, this construction 

process is itself an endeavor of interest. 

From the point of view of decision theory, our formulation aims to permit a 

computer program to emulate a good decision analyst. Such an analyst combines 

formulating plans and searching decision trees to arrive at a solution. A good 

analyst will monitor the implementation of the decisions, keeping abreast of 

exogenous changes in the utilities on which his solution was based, formulating 

additional plans, etc. This is in contrast to conventional computer programs used 

to search one static tree exhaustively. 

From the point of view of AI, the advantage of decision theory is the ability to 

find solutions that are "optimal" in some model. Although the approach requires 

a certain amount of search to find solutions, we have shown several powerful 

methods to limi t the search: 

• The symbolic problem solver constrains the search later undertaken to 

perfect a strategy. A rough plan generated in sinlplified, abstract space, 

can be used to constrain the more careful planning. These are basic 

search-limiting methods of AI not practiced in decision analysis programs. 

• A number of decision-theoretic techniques limit search. Branch-and-bound 

methods limit search based on bounds derived from the utility models. In 

addition, one can prove that the failure Fl in Figure 2-6 should not 

include paths that persist in using the sanle box (i.e .. paths that disregard 

the outcome of the test): every such strategy is d01ninated by one that 

simply does not perform the test at all. Such "utility theorems" limit 

search. 
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Another example of search limiting occurs when' the plan outline specifies 

a loop. Any paths that involve loops continue to incur increased costs as 

they are expanded,' but. the ultimate utility is fixed. 1'he loop thus 

expends effort without approaching the goal; such paths will be cut off by 

the branch-and-bound algorithm. 

• Domain-independent heuristics can be applied to limit search. One such 

heuristic is to explore paths of high probability first, and perhaps be 

willing to bound pessimistically those paths of low probability. Although 

pure decision theory looks dimly on this technique because even paths of 

low probability may have unbounded utilities, in many cases we can 

meaningfully assign bounds to the utilities. 

Certain of the recovery mechanisms, e.g., using another' top-level 

alternative, are domain-independent, as is the method of approximating the 

utility of such an alternative p~an. 

• Domain-dependent heuristics can limit search. Although these techniques 

may require a certain amount of reprogramming for each new domain, 

they are probably far more powerflll than domain-independent methods. 

The current AI trend toward knowledge-based systems (Nilsson, 1974; 

Bobrow and Collins, 1975; Fikes, 1976) is due in part to benefits of 

distributing domain knowledge throughout systems. 

Search-limiting heuristics are not without drawback -- the resulting search may 

not guarantee finding the optimal solution, i.e., it is not admissible. However, 

the utility measure still allows us to extract the best plan among those 

developed in the search. 

The Combina tion 

What the two fields of decision theory and artificial intelligence offer is a 

collection of techniques that can be applied judiciously to solve problems. There 

are cases when decision . theory applied to the problem domain adds little to AI 

techniques, but may still offer help in allocating planning resources: 

• Insignificant Costs. The benefit of optimal planning may simply be too 

low if the costs of the planning and execution are themselves insignificant 

or if the planning costs greatly exceed the exccu lion costs. 
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Identical Values. A ·problem may give rise to solutions of identical 

preference. A theorem-proving program may not be at all concerned with 

finding the shortest proof or with the expense of the search. A program 

that attempts to "understand" a paragraph of natural language in order to 

answer questions about it is likewise not concerned with optimization but 

with capturing a conceptual structure. In these cases, the utility function 

on outcomes is nearly constant, and gives no information to the search. 

Both of these examples are characterized by the intuition that the domain 

is inherently symbolic: the understanding problem is to build a conceptual 

structure that is communicated as a string of words; the theorem-proving 

task, even as practiced by humans, is primarily symbolic manipulation. 

There are notions of "best" solutions in both cases, but they are second­

order considerations. 

However, these examples are confronted with problems in allocating 

solution effort, and we can still hope to find the "best derivation" of the 

solution. Humans too may find processing resources limited when 

performing these chores, and must settle for approximate solutions 

(Norman and Bobrow, 1974). 

• Modeling Difficulties. It may be very difficult to construct a utility and 

probability model that applies to the problem. Although the central 

theorem of decision theory shows that any choice of a "best" plan is an 

implied assessment of utilities and probabilities, it still may be difficult 

to cast the model in numerical terms. 

A particularly painful aspect of this problem is presented by Bayes' rule: 

if we use the rule to calculate the probability distribution resulting from 

a sequence of tests, a potentially huge number of conditional probabilities 

(or probability distributions) is required. This difficulty, coupled with 

that of extracting probability information from humans, has led to several 

alternative "rules of inference" for computing likelihood information based 

on test outconles (e.g., Shortliffe, 1974). This is an important current 

research topic. 

But there are also ways in which decision theory adds considerable power: 

• Convenient Representation. Utility and probability models are often 
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convenient ways of representing parameters of a problem; they thereby 

ease parameter modification by a designer or by a user with a slightly 

different problem. For example, if a vision operator is modified to use a 

faster algorithm and therefore less computer time, a small modification to 

the utility model will suffice to alter the performance of an entire vision 

system correctly. It would be less obvious how to modify a set of 

symbolic heuristics that governs the application of the operator. 

A simple utility function may express the tradeoffs among the various 

resources the system consumes (money, elapsed time, etc.). The 

information that g~verns the tradeoffs the system actually makes is thus 

localized and easily modifiable. Some such modifications can be made by 

the system itself in reaction to complaints about its behavior; the changes 

could require only simple numerical calculations to compute new 

parameters for the utility model. It is less obvious how a program should 

itself "learn" heuristics. 

Finally, because decision theory is continually being applied to real-world 

problems, new models are built, refined and used. For example, efforts 

are underway to provide doctors with decision-theory models to help plan 

the diagnosis and treatment of various diseases (Pauker and Kassirer, 

1975; Ginsberg, 1969). Computer aids to such decision-making can take 

advantage of the models.: 

• Ubiquity of Planning. Such models are not limited to application in 

traditional "AI" domains. For example, an optimizing compiler embarks 

upon substantial symbolic reasoning to plan efficient object code for a 

program; sophisticated optimizers measure or estimate how often a section 

of code is executed and use this as an estimate of the utility of an 

optimization. An extended utility structure would permit trading off 

different forms of optimization and including the 'user's utility 'function. 

Automatic programming, and in particular automatic coding (Low, 1974; 

Rovner, 1976), seem to involve the same kinds of planning and elaboration 

mechanisms presented here. 

• Optimal Planning. A decision-theoretic model of a planning process itself 

can be used to make planning decisions and thus to control allocation of 

effort to planning tasks. Many AI' progralns such as planners, problem-
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solvers, parsers, and "understanders" require such guidance in the 

application of available methods: Is it more important to plan further 

ahead or to investigate detail of the current plan? (Sacerdoti. 1974) How 

far should consequences of a situation be investigated? (Rieger, 1975) 

Increasingly, this problem becomes one of controlling a number of 

processes, which are "triggered" by various changes in the world model, 

and which are responsible for exploring consequences of the change 

(Bobrow and Winograd. 1977). If two alternative parsings of a sentence 

appear similar in a crude analysis. should one be examined in detail. or 

should both be explored uniformly? (Paxton and Robinson, 1973) How are 

alternative hypotheses pursued? (Woods, 1974) 

Even if the plans themselves have nearly constant utility, optimal 

planning is useful. For example, in a theorem prover, we are given a set 

of clauses and must decide which of several resolutions to make; if we 

can calculate the cost of planning a solution from a given set of clauses, 

we choose the resolution that gives rise to the lowest planning cost. 

Thus although the space of outcome utilities is constant, the utilities of 

various alternative planning approaches are not. This second space has 

been important to the development of search programs; it corresponds for 

example to the evaluation functions in game-playing programs. 

When the costs, uncertainties. and outcomes of the planning process itself 

are considered in controlling a planning and execution system. the system 

does "optimal planning." Although the plans generated may not be optimal. 

the entire process, including planning. is optimal. This suggests an 

extended notion of admissibility that includes consideration of planning 

costs. 

• Detection Problems. AI has embraced a number of problems that have 

. significant detection components: speech understanding and machine vision 

are the most obvious examples. The problems of efficient detection, and 

especially of uncertainty in the results, are at the heart of decision 

theory. In an AI setting, the knowledge gained from detection operations 

must be incorporated into higher-level reasoning that has significant 

sy-Inbolic components. It is perhaps in these problems that the approach 

we propose is most advantageous, for it unifies inherently numerical 

computation (detection) with sYlnbolic reasoning (understanding). Indeed it 
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is thes~ areas that gave rise to the approach and saw early applications 

(Yakimovsky and Feldman. 1974; Garvey and Tenenbaum. 1974; Tenenbaum, 

1973; Bolles. 1976). 

As computer systenls generally, and AI programs particularly, become larger and 

more complex, they make more internal choices among available methods to 

attack the stated problem. This is a natural consequence of increased 

understanding of computer algorithms and of desires to make programs more 

general in purpose. Even if we are reluctant to impose numerical models on the 

solution space, we cannot neglect opportunities to measure and guide the choices 

these systems make to generate solutions to the problem. 
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Appendix 

Trace of PEGASUS Execution 

This appendix presents a trace of the execution of PEGASUS on a simple 

problem. The trace is intended to elucidate several points about the operation 

of the planner: 

• How the utility measures applied to all levels are used to control the 

planning. 

• How the cost of planning changes the outcome of the planner, and how 

the information is used. 

• How many alternatives are considered, at least in part. 

PEGASUS is given the problem of designing an itinerary to travel from HOME 

(Palo Alto, California) to UR (University of Rochester, Rochester, N.Y.), given the 

constraint to leave home after 7:00 June 14. The salient features of the model 

of the client are: 

Utility functicn = 1000 - Money -.33 Time -.1 Stress - Misc 

Cost of planning = -.3 • ComputcrTime (measured in seconds) 

Quality of time contributions to stress: 

Home: 0 

all other spots: .03/minute 

Air: .05/minute 

Train: .1/minute 

Bus: .1 /minute 

~ 

The itineraries planned by PEGASUS are: 

Itinerary 1. (Tasks 0.1,2.3.4.5.6) Utility: 633.2546 

Main path: probability=.5939, U=676.16 

TAXI·. From f-IOME to SFO. Departure JUN 14 8:13 transit time 0:22 (512.96). 

Layover at SFO starting JUN 14 8:35 lasting 0: 10. 

AA 92. From SFO to DTW. Depmture JUN 14 8:45 transit time 4:03 (5139.0). 

Layover at DTW starting JUN 14 15:48 lasting 1 :02. 

AA 92. From DTW to ROC. Departure JUN 14 16:50 transit time 0:57 ($17.0). 

Layover at ROC starting JUN 14 17:47 lasting 0: 15. 

TAXI". From ROC to UR.'Departure JUN 14 18:02 transit time 0:01 ($1.42). 

Arriving at destination JUN 14 18:03. 

Backup: probability = .1684, U=616.07 

Layover at SFO starting JUN 14 8:35 lasting 3:25. 

UA 86. Fran) SFO to DTW. Departure JUN 14 12:00 transit time 4:03 ($139.0). 

Layover at DTW starting JUN 14 19:03 lasting 0:02. 

AL 736. From DTW to ROC. Departure JUN 14 19:05 transit time 1:10 (517.0). 

Layover at ROC starting JUN 14 20: 15 lasting 0: 15. 

TAXI-. From ROC to UR. Departure JUN 14 20:30 transit time 0:01 (51.42). 

Arriving at destination JUN 14 20:31. 

. .... 
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Backup: probability = .2498. U=623.27 
Layover at DTW starting JUN 14 15:48 lasting 3:17. 
AL 736. From DTW to ROC. Departure JUN 1419:05 transit time 1:10 ($17.0). 
Layover at ROC starting JUN14 20: 15 lasting 0: 15. 
TAXI-. From ROC to UR. Departure JUN 14 20:30 transit time 0:01 ($1.42). 
Arriving at'destination JUN 14 20:31-

Itinerary 2. (Tasks 0.1,8,14.15.16,17) Utility: 638.697 
Main path: probability = .7391, U=679.81 
TAXI·. From HOME to SJC. Departure JUN 14 7:16 transit time 0:14 (58.28). 
Layover at SJC starting JUN 14 7:30 lasting 0:15. 
UA 464. From SJC to ORD. Departure JUN 14 7:45 transit time 3:45 ($126.0). 
Layover at ORD starting JUN 14 13:30 lasting 0:55. 
UA 362. From ORO to ROC. Departure JUN 14 14:25 transit time 1 :27 ($30.0). 
Layover at ROC starting JUN 14 16:52 lasting 0: 15. 
TAXI". From ROC to UR. Departure JUN 14 17:07 transit time 0:01 ($1.42). 
Arriving at destination JUN 14 17:08. 

Backup: probability = .1032, U=565.57 
Layover at SJC starting JUN 14 7:30 lasting 5:35. 
UA 356. From SJC to ORD. Departure JUN 14 1.3:05 transit time 3:55 ($126.0). 
Layover at ORD starting JUN 14 19:00 lasting 0:30. 
AA 214. From ORO to ROC. Departure JUN 14 19:30 transit time 1 :25 (S30.0). 
Layover at ROC starting JUN 14 21 :55 lasting 0: 15. 
TAXI·. From ROC to UR. Departure JUN 14 22: 1 0 transit time 0:01 ($1.42). 
Arriving at destination JUN 14 22: 11. 

Backup: probability = .1381,' U=635.80 
Layover at ORD starting JUN 14 13:30 lasting 3:00. 
AA 500. From ORO to ROC. Departure JUN 14 16:30 transit time 1 :24 ($30.0). 
Layover at ROC starting JUN 14 18:54 lasting 0:15. 
TAXI'. From ROC to UR. Departure JUN 14 19:09 transit time 0:01 ($1.42). 
Arriving at destination JUN 14 19: 10. 

Itinerary 3. (Tasks 0,1,7,10,12.20.21) Utility: 649.1374 
Main path: probability = .6101, U=682.48 
TAXI·. From HOME to SFO. Departure JUN 14 9:38 transit time 0:22 ($12.96). 
Layover at SFO starting .JUN 14 10:00 lasting 0:05. 
AA 182. From SFO to ORO. Departure JUN 14 10:05 transit time 3:44 (S126.0). 
Layover at ORO starting JUN 14 15:49 lasting 0:41. 
AA 500. From ORO to ROC. Departure JUN 14 16:30 transit time 1 :24 ($30.0). 
Layover at ROC starting JUN 14 18:54 lasting 0: 15. 
TAXI'. From ROC to UR. Departure JUN 14 19:09 transit tirne 0:01 ($1.42). 
Arriving at destination JUN 14 19: 10. 

Backup: probability = .1852, U=646.63 
Layover at SFO starting JUN 14 10:00 lasting 0: 15. 
UA 126. From SFO to ORD. Departure JUN 14 10: 15 transit time 3:55 (8126.0). 
Layover at ORD starting JUN 14 16: 1 0 lasting 1 :30. 
UA 794. From ORD to ROC. Departure JUN 14 17:40 transit time 1 :30 ($30.0). 
Layover at ROC starting JUN 14 20: 10 lasting 0: 15. 
TAXI". From ROC to UR. Departure JUN 14 20:25 transit time 0:01 ($1.42). 
Arriving at destination JUN 14 20:26. 

Backup: probability = .2142. U=655.30 
Layover at ORO starting JUN 14 15':49 lasting 1 :51. 
UA 794. Fr9m ORO to ROC. Departure JUN 14 17:40 transit time 1 :30 ($30.0). 
Layover at ROC starting ,JUN 14 20: 10 lasting 0: 15. 
TAXI-. From ROC to UR. Departure JUN 14 20:25 transit time 0:01 ($1.42). 
Arriving at destination JUN 14 20:26. 

Itinerary 4. (Tasks 0.1.7.11.13.2~~.23) Utility: 595.3527 
Main patl): probability = .6(393, U=675.94 
TAXI·. From I-lOME to SFO. Departure .JUN 14 14:18 transit time 0:22 ($12.96). 
Layover at SFO stmting JUN 14 14:40 lasting 0:20. 



AA 222. From SFO to ORO. Departure JUN 14 15:00 transit time 3:49 ($126.0). 

Layover at ORO starting JUN 14 20:49 lasting 0:41. 

AA 524. From ORO to ROC. Departure JUN 14 21 :30 transit time 1 :22 ($30.0). 
Layover at ROC starting JUN 14 23:52 lasting 0: 15. 

TAXI·. From ROC to UR. Departure JUN 15 0:07 transit time 0:01 ($1.42). 

Arriving at destination JUN 15 0:08. 

Backup: probability = .0779. U=467.32 

Layover at SFO starting JUN 14 14:40 lasting 0:50. 
UA 130. From SFO to ORO. Departure JUN 14 15:30 transit time 3:55 ($126.0). 

Layover at ORO starting JUN 14 21 :25 lasting 9:35. 

AA 196. From ORO to ROC. Departure JUN 15 7:00 transit time 1 :22 ($30.0). 

Layover at ROC starting JUN 15 9:22 lasting 0:15. 
TAXI·. From ROC to UR. Departure JUN 15 9:37 transit time 0:01 ($1.42). 
Arriving at destination JUN 15 9:38. 

Backup: probability = .2166. U=470.74 
Layover at ORO starting JUN 14 20:49 lasting 10:11. 
AA 196. From ORO to ROC. Departure JUN 15 7:00 transit time 1 :22 ($30.0). 
Layover at ROC starting JUN 15 9:22 lasting 0: 15. 

TAXI·. From ROC to UR. Departure JUN 15 9:37 transit time 0:01 ($1.42). 
Arriving at destination JUN 15 9:38. 
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A chart of the tasks undertaken is. presented in Figure A-I. Each task is 

identified by a number that describes the order in which the tasks were started. 

Task 0 is created when the problem statement is ingested. The first solution to 

this task initiates task 1, which later produced solutions numbered 2, 7, 8, and 

9. The arrows symbolize the passing of a solution to a new level; in 

parentheses near each arrow is a pair: the utility of the solution generated, and 

the time (in seconds) since the previous solution to the task was generated. 

It is instructive to make a table showing where each solution path "lost" its 

utility: 

Itinerary SP INST ANTIA TE DOLLARS FILLIN PROB 

-81 -14 -0 -11 -35 

2 -80 -13 -0 -7 -36 

3 -82 -9 -0 -10 -24 

4 -82 -10 -0 -10 -79 

We notice that the differences among the plans are largely "explained" by the 

analysis done in the PROB level. Itinerary 4 is poor because there is very poor 

backup at ORD--AA 524 is the last flight of the day. Itinerary 3, on the other 

hand, has exceptionally good backup (short waiting times before the next flight 

on the same route). Itineraries 1 and 2 have intermediate appeal. It will not 

always be the case that PROB processing is the most significant. In this case, 

because transportation to the airports is similar and because planes fly often 
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enough on the route to make scheduling easy, the INSTANTIATE and FILLIN 

contributions are almost identical. 

Let us examine the processing' of PEGASUS in somewhat more detail. Until the 

time task 6 is generated, PEGASUS is using its depth-first approach, and is 

simply allocating effort to the most recently initiated task. Thereafter, however, 

the processing skips around, governed by the upper bounds (and discounted by 

the cost of planning). Here is a sample (note that when a solution is 

generated, its true utility is cited, whereas control of. planning is based on Up, 

the upper bound of the task, discounted by the expected costs of completing a 

solution that would emerge from the task): 

Work on task 7 (INSTANTIATE) until Up drops below 679.4. 
This generates a new solution of U=684,O, and spawns task 10. 

Work on task 7 (INSTANTIATE) until Up drops below 679.4. 
This generates a new solution of U=682.8, and spawns task 11. 

Work on task 10 (DOLLARS) until Up drops below 679.0. 
This generates a new solution' of U=684.0, and spawns task 12. 

Work on task 12 (FILlIN) until Up drops below 679.0. 
Work on task 1 (SP) until Up drops below 679.4. 
Work on task 7 (INSTANTIATE) until Up drops below 678.3. 
Work on task 11 (DOLLARS) until Up drops below 677.8. 
This generates a new solution of U=682.8, and spawns task 13. 

Work on task 13 (FILlIN) until Up drops below 677.8. 
Work on task 8 (INSTANTIATE) until Up drops below 677.0. 
This generates a new solution of U=681.5, and spawns task 14. 

Each FILLIN process sets up a recursive call on the entire system in order to 

flesh out the ASSUMEd steps of the original plan. Here is a sample sequence 

from task 4: 

Work on task a (TOP; HOME-SFO) until Up drops below -10E10. 
This generates a new solution (TRAIN·) of U=988, and spawns task b. 

Work on task b (SP) until Up drops below 983. 
This generates a "utility dominance," and causes b to bo suspended. 

Work on task a (TOP) until Up drops below -1 OE 1 O. 
This generates a new solution (BUS·) of U=988, and spawns task c. 

Work on task c (SP) until Up drops below 979. 
This generates a "utility dominance," and causes c to be suspended. 

Work on task a (TOP) until Up drops below -1 OE 1 O. 
This generates a new solution (TAXI·) of U=979, and spawns task d. 
(Note: TAXI has no transportation graph, and proceeds to INSTANTIATE) 

Work on task d (INSTANTIATE) until Up drops below 974. 
This generates a new solution ... 

... TAXI from HOME to SFO continues through the proctlssing. 

Work on task i (TOP; ROC-UR) until Up drops below -1 OE1 O. 
This generates a new solution (TRAIN·) of U=999, and spawns task j. 

Work on task j (SP) until Up drops below 994. 
This generates a "utility dominance," and causes j to be suspended. 

Work on task i (TOP) until Up drops below -1 OE1 O. 
This generates a new solution (TAX'·) of U=998, and spawns task k . 

... TAXI from ROC to UR continues through Ihe processing. 
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FILLIN (task 4) returns a joint solution of U=668. 

Figures A-2 through A-4 illustrate various aspects of the· progress of the 

solution in the presence of cost of planning. They plot the lessening in utility 

as planni~g proceeds; the numbers indicate the point at which the task of that 

number was started. For example, Figure A-2 shows only task 1: it was 

spawned with a solution that had U=774; the task itself generated solutions that 

spawned tasks 2, 7, 8 and 9. Figure A-3 overlays all possible solution paths in 

an attempt to compare the various different possibilities; note that this is not 

the order in which PEGASUS actually pursued alternatives. The sequence 1-2-3-

4-5-6, the depth-first solution, is shown darkened. Notice that the optim&l 

solution (task 21) would have actually required slightly less computing than did 

the depth-first solution. Figure A-4 shows the actual planning sequence used by 

PEGASUS. The numbers near the vectors label the task whose execution 

resumed at this point; the numbers in a straight row indicate the points at 

which new tasks were started. Overlaid on the drawing is a line whose slope 

represen ts the cost of planning. 

PEGASUS eventually stopped planning when the planning resources consumed 

since the emergence of the depth-first solution exceeded the cutoff (U=59 in this 

case). When PEGASUS suspended execution, the tasks were in the following 

states: 

Task Excess U Up, with cost of planning 
number time 

TOP 
0 0 -593.2 -600.2 

SP 
4.0 656.1 652.3 

INST ANTIATE 
2 .6 666.8 663.6 

7 0 666.2 663.2 

8 .4 655.3 649.8 

9 1.7 658.5 652.8 

DOLLARS 

3 0 654.4 649.2 

10 0 652.0 646.7 

11 0 650.8 645.6 

14 0 649.5 644.3 

18 0 644.0 639.8 

24 0 647.2 644.3 

26 0 638.8 635.8 

27 0 665.8 662.9 

FILLIN 

4 .9 663.6 663.6 

12 2.2 663.0 663.0 

13 1.9 661.9 661.9 
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Figure A-2: History of solutions to task 1, as more planning resources' 
are applied. Solutions started tasks 2, 7, 8 and 9. Notice that 
solutions 2 and 7 were generated with a heuristic method, as they 
have slightly lower utility than solution 8, which emerged later. 
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Figure A-3: Overlay of all possible solution trajectories. This plot 
attempts to compare the depth-first path actually taken first (shown 
darker) with other possibilities. Note that the depth-first path 
terminates at a point labeled 6; the optirnum solution is labeled 2'1. An 
enlargement of the center area is also shown. 
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