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A POSTMORTEM 
FOR A TIME SHARING SYSTEM 
BY HOWARD EWING STURGIS 

CSL 74-1 JANUARY, 1974 

This thesis describes a time sharing system constructed by a project at 
the University of California, Berkeley Campus, Computer Center. The 
project was of modest size, consuming about 30 mall. years; The. resulting 
system was used by a number of programmers. The system wa, designed for 
a tommercially available computer, the Control Data 6400 with extended 
core store .. The system design was based on several fundamental id.eas, 
including: 

specification of the entire system as an abstract machine, 
a capability based protection system, 
mapped address space, 
and layered implementation. 

The abstract machine defined by the first implementation layer provided 
8 types of abstractly defined objects and about 100 actions to 
manipulate them. 
additional types. 

Subsequent layers provided a few very complicated 
Plany of the fundamental ideas served us well, 

particularly the concept that the system defines an abstract machine, 
and c.apability based protection. However, the attempt to provide a 
mapped address space using unsuitable hardware was a disaster. This 
thesis includes software and hardware proposals to increase the 
efficiency of representing an abstract machine and providing capability 
based protection. Also included is a description of a crash recovery 
consistency problem for files which reside in several levels of storage, 
together with a solution that we used. 
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CHAPTER 1: INTRODUCTION 

In 1968 the University of California Berkeley Campus Computer Center 
began a project to design and implement a Time Sharing System for a 
Control Data Corporation (CDC) 6400 computer, with Extended Core Store 
(ECS). The project continued until the Fall of 1971 when 1t was 
terminated due to a lack of funds. The author was a member of the 
project from the beginning, and was director at its termination. 

The system we deSigned, CAL TSS, included a number of ideas proposed by 
other projects. that had not yet been fully tested. These included the 
concept of capability based protection (system maintained pointers to 
system objects, through which all access to those system objects must 
pass). and a mapped address space (all storage resides in flIes, and all 
load and store machine instructions actually access data in some file, 
rather than in a local memory). 

In contrast to other projects, such as "ultics [C3], this was a small 
project. At its peak. ther6 were about eleven people involved. many 
part time. 

This thesis contains a discussion of some of our underlying ideas, 
I 

describes the system we' constructed and finally some reactions to that 
system. Part One describes the project, the hardware and the underlying 
ideas. Part Two describes the system. Finally, Part Three contains my 
reactions to various aspects of the system. 
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CHAPTER 2: THE PROJECT 

In contrast to other projects, this one was quite modest. It began in 
the summer of 1968 with a faculty advisor and four programmers from the 
computer center, two of whom were half time. This rose to a maximum in 
1911 of about nine programmers in the core group, with maybe five others 
doing peripheral tasks. Some of these programmers were still part time. 
This should be contrasted with ftultics, involving 150 to 200 man years 
[e3]. 

In terms of machine time used, during the period of maximum system 
development, we had access to a 6400 for 12 hours per day during the 
work week. and numerous hours on weekends. About half of this machine 
time was used for system debugging and the other half to supply basic 
computing services, such as editing program files and assembling them, 
to the system programmers and some outside users. 
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CHAPTER 3: THE HARDWARE 

The system was designed for and implemented on a CDC 6400, with Extended 
Core Store (ECS) and Central Exchange Jump [Cl]. The machine had 32l 60 
bit words of Central Nemory (Cft). and 300K 60 bit words of Extended Core 
Store (ECS). 

The 6400 CPU has about 25 hardware registers. It can perform register 
to register actions in about half a microsecond, and is capable of 
fetching two words from memory, adding them and storing the result in 
about four microseconds. 

ECS was that feature of the hardware which had the most direct influence , 
on the project. This is 500l 60 bit words, which can be block 
transferred to or, from Cft. The CPU can start transfers between ECS and 
Cft with an initial access time of about 3 microseconds. and a transfer 
rate of about to 60 bit words per lIicrosecond. A transfer can be 
started at any word address in ECa or Cft and can be of any length, as 
small as one word. 

The protection machinery supplied by the hardware consists of a pair of 
registers: a relocation register and a. bounds register. One such pair 
is supplied for central memory and a second pair for ECS. There is no 
other address mapping available. 

Our 6400 CPU had a special instruction, central exchange jump (CEJ) [see 
revision N of Ct]. This instruction causes an exchange of the contents 
of all hardware registers with the contents of some region in CN. This 
requires about 3 microseconds. The changed registers include the base 
and bounds registers. (The same action is available on ~ standard 6400, 
initiated from outSide the CPU.) 

The CPU has two modes. monitor and usar. This mode controls the 
location from which the registers will be loaded during a CEJ. In 
moni tor mode the CEJ instruction contains the absolute address of the 
new register contents. while in user mode the address is taken froll a ' 
register loaded during the previous CEJ. 

Supporting the CPU and providing access 'to 1-0 devices are ten 
Peripheral Processing Units (PPU's). Each PPU is a computer with a 4l 
12 bit word memory and a single 18 bit register. It can pick up two 12 
bit words, add them, and store the result in 9 microseconds. This time 
is extended to 12 microseconds if the addresses are formed by indexing, 
the usual case. Each PPU can access CN at about 5 lIicroseconds per 60 
bit word. 
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As ide from magnetic tape. the only auxiliary storage (on our machine) 
was provided by one half of a 6638 disk. This one half could store 
about seven million 60 bit words. The disk rotation time was 52 
milliseconds and the maximum positioning time was 110 milliseconds. The 
data could be transfered to a PPU at the rate of 12 bits per 
microsecond. 

At the time the 6400 was purchased there was no suitable hardware 
available to connect large numbers of individual user terminals. 
Therefore, the computer center designed and constructed a multiplexor 
capable of handling a maximum of 256 individual teletypes. 
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CHAPTER 4: FUNDAMENTAL IDEAS 

The system design was organized around a small number of fundamental 
ideas: 

1) Specification as all Abstract "achtlle 

As in some programming languages, the system was conceived as 
implementing an abstract machine which dealt with a number of different 
types of abstract objects. Interaction with the system was to be 
accomplished through virtual instructions, which were provided in 
addition to the standard hardware instructions. Each of these 
instructions was to operate on specific types of objects, and an error 
was to be returned to the user if the wrong type of object was presented 
to such an instruction. These instructions were to be understood 
independently of their implementation, and to be described in terms of 
(possibly a sequence of) atomic changes in the state of the object. 

2) Capability-Based Protection System 

The authority to perform actions or to reference particular objects was 
to be conferred by the possession of a capability, which is basically an 
unforgeable system-produced pointer to the representation of an object, 
together with the type of that object and a specification of the access 
to be permitted. This pointer could be followed only by system code, so 
that the representation was directly accessible only by the system. 

Capabilities are stored in special regions of memory (capability lists). 
Virtual instructions are available to move these capabilities from one 
list to another. The access granted by a capability may be reduced. 

3) Proceues 

The single hardware machine would be divided by the system into many 
virtual CPU's (processes). In principle, all processes would be 
computing simultaneously, at' some fraction of the real machine speed. 
Each user would have one or more processes at his disposal. With the 
exception of those files in the process map (see 4). a program could 
affect objects external to its process only through virtual 
instructions. 
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4) Mapped Address Space 

Each virtual computer would not have its own central memory, to be 
referenced by loa,d and store machine instructions. Instead, associated 
wl th each process would be a map which converts each load and store 
memory address into a file and address within the file. A load 
instruction will load a register with a word from some file, and 
conversely, a store instruction will place the contents of a register 
into a file. Thus, only one concept of data storage facility need be 
deSigned, files, rather than two, ftles and process memories. 

5) Layered Implementation 

The eventual system seen by a user program would be constructed in two 
or more layers. Each layer would be implemented by a program which ran 
as a user on the Virtual machine implemented by the previous layer. In 
general, a layer would provide new virtual objects, not provided by 
previous layers, with the necessary virtual instructions to manipulate 
the new objects. Objects implemented by previous layers would still be 
available, and would be manipulated by virtual instructions interpreted 
by' those previous layers. In particular, ·ordinary· machine 
instructions would be interpreted by the real hardware. Thus, the 
inefficiency of interpretation would only occur on virtual instructions, 
and even then, only the necessary system layers would participate. 

6) Distributed System Code 

We envisioned that some layers of the system would be implemented by 
system code which resided in protected regions within each users 
process. This code would manipulate data global to Us process. In 
principle, lDany of these system representatives could simultaneously 
manipulate that global data. 

7) Uninterpreted 1-0 Def/ices 

As far as possible, we intended to provide a user program with a direct 
representation of each 1-0 device. We intended to avoid converting 1-0 
devices into virtual objects, such as files. Such conversion would be 
provided by ·user· programs, many of which we would wrUe. However, 
since it would be possible for users with special needs to write their 
own, we were released from the obligation to provide for all possible 
uses of • given device. 
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Furthermore, we wanted the possibility of emulaUng a device by a 
process. Thus, any communication with a device must be interceptable by 
an emulating process. This rUled out special virtual instruc~ions for 
communicating with 1-0 devices. 

Origin.s 

"ost of these ideas were suggested by previous work. 

A paper by Dijkstra [D2] provided us with a glimpse of the beauty of a 
system described as an abstract machine. His paper also suggested the 
use of layered design to reduce the complexity of any single layer. 

Capability based protection was described by Dennis and Van Horn [01]. 
The idea of storing capabiU Ues in special regions of memory, and 
providing actions to move and manipulate the capabilities was provided 
by the Chicago machine project [Fl, F2, F3]. 

"ultics provided the inspiration for a mapped address space, protection 
regions within processes ("ultics ri"gs), and distributed system code 
[Bl, Q1, Sl]. 

Finally it should be mentioned that our audacity in beginning this 
project which had very modest resources compared with the "ultics 
project, derived from the example of project Gania [L2]. This project 
constructed a ti •• sharing syst .. on an 808 940 with 3 programmers. 
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CHAPTER 5: REQUIREMENTS IIIPOSED BY SOliE KINDS OF USER LEVEL 
PROGRAMS 

In addition to the fundamental ideas mentioned in Chapter 4, we were 
guided by the requirements of various special kinds of user level 
programs which we felt the system should support. These special 
programs supply services which must eventually be provided. (One 
alternative would have been to construct the system so that it directly 
provided these services. In that case, the portions of system code 
which provided these services would probably have made demands on ·the 
remainder of the system which are Similar to the requirements described 
below. ) 

1) Scope &u&tem &tmulator 

A large 
loaders 
system. 
want to 

amount of necessary software, such as assemblers, compilers and 
already existed for SCOPE, the CDC distributed batch operating 

We needed a method for running that sortware, and we did not 
build it directly into our system. Therefore, we decided that 

it must be possible to write, as a user program on our system, a 
Simulator for the SCOPE operating system. In order to be efficient, the 
simulator code should only be invoked when the user program made a call 
intended for the real SCOPE system. The cost of making the calIon the 
simulator should be comparable to the cost of calling a PPU in the SCOPE 
system. Finally. once the simulator has been called, it must have full 
access to the data of the users program, similar to the access available 
to a PPU under the real SCOPE system. 

2) Text /tle editor 

We expected most of our users to write programs for compilers and 
assemblers. These programs would be written as text files, then fed to 
the appropriate compiler or assembler. Thus we needed facilities for 
conveniently writing and modifying text files. We did not want to build 
these text editing facilities into the system. Rather, we intended to 
write a text editor as a user program for the system. 

The amount of data that must be immediately available to the text editor 
should be fairly small, a couple of small text buffers and sufficient 
infotmation to tell where to write the text in an output text buffer, 
and where to get new text from an input buffer. These bUffers should 
need no more than a few hundred words, and the additional words should 
also be at most a few hundred. All in all, the total .hould be Ie •• 
than a thousand words. 
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On the other hand, it was expected that the program implementing the 
editor would be considerably larger than this, hence there must be some 
way to share that program among several users. That is, there should be 
only one copy of the code for the editor in the main store (ECS) at one 
time, even though several persons were using it. 

3) Debugger 

It ·should be possible to construct a user level program (debugger) which 
can intimately control other user level programs, even if those other 
programs use sophisticated system facilities. This control should 
include the ability to start a user's program at a specified location, . 
run it at full machine speed, and regain control under some specified 
condition. These conditions should include the detection of an 
instruction error on the part of the user program, or a command from the 
user at a teletype. Once the debugger has regained control, it should 
be able to inspect the internal state of the user's program in detail, 
and make modifications. 

4) Deutce drtuer8 

One of the functions generally performed by an operating system 1s. to 
convert an ugly 1-0 device into a more tractable virtual device. A 
typical example is to convert a line printer, with its many special 
functions, into a write only sequential text fUe. A problem withthls 
approach is that some of the flexibility of the deviee may be lost. 

As far as pOSsible, we wished to avoid making such conversions in the 
basic system. In fact, we desired to permit a user to make his own 
conversion, if he wished. Thus, our system would provide an interface 
to each 1-0 device which gave a using program direct control over that 
device. for example, all of the special functions of the printer would 
be directly available.· final1y. we would supply a user level program 
which converted the 1-0 device into a general1Y useful virtual device, 
but would not attempt to handle all conceivable user desires. 

5) Tuptcal U8er Fortran pro,rdm8 

We felt that the facilities necessary to support the kinds of programs 
mentioned above would certainly be sufficient to support an ordinary 
fortran program. 
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CHAPTER 6: BASIC ARCHITECTURAL CONSIDERATIONS 

The architectural design of the system was a multistep process. We 
first formed a global picture of how user programs should run, then gave 
a general division of the necessary functions into levels. finally we 
embarked on the detailed design of the various levels. This chapter 
describes the issues which motivated our global design. 

SUlappinfl 

Our general picture of user programs included two types, the interactive 
ones and the noninteractlve ones. The interactive programs would reside 
in ECS and from time to time be swapped into central memory and allowed 
to execute. (See Chapter 3, Hardware.) The non interactive programs 
would spend most of their time on the disk. From time to time they 
would swap into ECS and while in ECS behave like interactive programs. 

If we were able to swap a program at the full ECa transfer rate of 10 
words per microsecond, then a 10K word program could be swapped in and 
out in two milliseconds, allowing the use of a 20 millisecond quantum 
with 90~ efficiency (IK = 1000 base 10). A larger program would need a 
larger quantum to obtain the same efficiency, but even a 32K word 
program would need no more than a 64 millisecond quantum. Even if we 
assumed some degradation in efficiency of the swap, a maximum quantum 
size of 100 milliseconds would be sufficient. If there were 100 
interactive programs, and 10~ were waiting for service at one time, each 
would begin to receive service within one second. This seemed 
satisfactory. 

Input-output atrateflU 

User programs that needed access to amounts of data larger than the 
amount that could be swapped into central memory would use some form of . 
access to data stored in ECS. (Eventually called ECS files, see next 
chapter.) This data stored in ECS could then be used as an 1-0 buffer. 
Programs which desired access to this data would read it while they were 
running in central memory. 

Data from an input-output device would first go to a PPU. The PPU would 
transfer the data to a central memory buffer and start a system program 
in central memory, which would transfer the data to ECS. This system 
program would then inform the appropriate requesting program that the 
data was available. (The requesting program was informed by sending an 
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event on an event channel, see next chapter.) Movement in the opposite 
direction was similar. 

We made rough estimates of the amount of CPU time that would be used by 
the system programs to move the data to and from ECS. We assumed that 
the main 1-0 load would come from the disk. If we assumed that two 
PPU's were alternately reading the disk and then writing into central 
memory, central would receive words at the maximum rate of one word 
every five microseconds. If enough were buffered so that the main cost 
to the central program was the actual transfer to ECS, the central 
program would use one microsecond every 50. Thus, we felt this time 
overhead was acceptable. 

We gave less thought to the space overhead. However. at 512 words per 
PPU (the maximum power-of-2 buffer that a PPU could hold), there would 
be at most 5120 words of central. On a 64K machine (which we assumed 
would be available for such a large system) this is less than 10" of the 
total space, which we thought would be acceptable. If this was too 
much. we could arrange for the PPU's to transfer a 512 word buffer in 
several sections. with a separate request to central memory system 
program for each one. This would reduce the necessary buffer space in 
central ,memory at an increased cost for CPU time, due to overhead in 
responding to each request. 

As an alternative to this design with central memory buffers. CDC 
offered an optional hardware feature which permitted direct exchange of 
data between a PPU and ECS [e2l. We referred to this feature as a 
"Back-door". Unfortunately, the rate of this transfer was limited, by 
the PPU, to one 60 bit word every 5 microseconds, and while in progress 
degraded the transfer rate between central memory and ECS. We were 
unable to determine from CDC how great the degradation would be, but 
there were hints it might be a factor of two. Since our estimates of 
program swapping overhead were heavily dependent on a high transfer rate 
between central memory and ECS, and the estimates for the PPU-CM-ECS 
scheme indicated a low overhead, we decided to avoid the Back door. 

talers 

The major factor which contributed to our allocation of responsibilities 
within the layers was a desire to produce an interim system as soon as 
possible. We wanted a system which we could use to support further 
development, i.e., provide editing and storage facilities for the 
programs we were writing. Also, ,we felt that such a system would 
demonstrate to the administration that we could eventually construct a 
final working system. (In fact, we did demonstrate a two teletype 
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system at the end of the first year and moved our program development 
under the system six months later.) To this end, all facilities which we 
felt were unnecessary for an interim system were pushed to higher 
layers. 

The first layer would support the interactive programs that reside in 
ECS. We called this the ECS system. All data storage would reside in 
ECS, while access to the disk would be provided similar to that for any 
other I -0 device. I t was intended that the addition of a temporary 
executive would produce our interim system. This temporary executive 
(called the Bead) would ignore all protection problems. 

The second layer would introduce disk files and directories. It would 
convert the real disk into a collection of virtual disk files. We 
called it the disk/directory system. It would also provide disk 
swapping of non-interactive programs. 

The third layer was to be the executive. This executive was to provide 
password protection for identification of users, charge accounting and 
convenient commands for starting programs. 
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CHAPTER 7: ECS SYSTEM ARCHITECTURE 

The ECS system was the first layer in CAL TSS. It was a complete, but 
small, time sharing system. It provided a small amount of file storage, 
interprocess synchronizing facilities and access to physical 1-0 
devices. (A description of the ECS system, written during an early 
period of the project, appears as [Ll]. A .ore detaUed description 
appears in [CS,C6].) 

Brtel &letcll 

A program running on the ECS system ran inside a &ubprocell (protection 
domain) of a procel&. Through calls on the system, it could store data 
in ltle&, send signals to programs in other processes via epen' channel& 
and call programs in other subprocesses of the &ame process. 

\ 

Each subprocess had a C-U'ha list of system provided, unforgeable, 
pointers to various objects, such as files and event channels. This C­
list defined the set of objects which a program in this subprocess could 
access. 

Each pllll&tcal 1-0 de,tce was represented by a set of fUes and event· 
channels. A program could exchange data with the device through the 
files, and exchange control signals through the event channels. 

The ab&tract maclltle 

The abstract machine implemented by the ECS system consisted of the 
following 8 types of objects, and about 100 actions which could be 
performed on them: 

ECS files 
Event channels 
Processes 
C-lists 
Capability-creating-authorizations 
Operations 
Class codes 
Allocation blocks 

The state of each existing object was represented in some region" or 
regions, of ECS. 
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The following will describe each type of object, and the kinds of 
actions available. Chapter 8 will give a more detailed description of 
the representation. 

ECS Jiles 

Files were the objects designed to hold data. Basically, a file was 
just a sequence of 60 bit words. Facilities were provided for reading 
or writing any consecutive subsequence of these words. In fact, files 
were more complicated. 

The complications were caused by the facilities we expected to provide 
in the disk system. There we wanted files which were stored on the 
disk, and which could be read or written as described above. Also, we 
wanted a user program to be able to attach a portion of a disk file, 
forcing that portion of the file to be brought to ECS and held there. 
Then, when a disk file read or write was directed to that portion of the 
file, the system could automatically read or write the copy in ECS. 

As a means of implementing this disk system facility we proposed that an 
ECS file be used to hold that portion of the disk file which was in ECS. 
In order to make the interpretation of the disk file read or write 
request easier, we wanted to have the attached portion of the disk fUe 
in corresponding addresses of the ECS fUe. Hence we would have ECS 
files which would be holding small portions of very large disk files, 
but which themselves would have to be small. Thus the ECS files would 
have to have many addresses that existed and many that did not,. 

In order to provide this facility we divided the ECS file into blocks, 
each block of equal size and holding words with consecutive file 
addresses. Furthermore, since we, felt that only a small number of 
blocks out of a possibly very large number would exist, we represented 
the file as a tree. At the head of the tree would be a block, of 
arbitrary but fixed size, containing pointers to the next level of 
blocks. After a number of levels of pointer blocks, wherein all blocks 
of the same le~el would be of the same power of two, would finally come 
a level of data blocks. A pOinter block would only exist if one of its 
descendant data blocks existed. 

Actions were available to create and destroy data blocks. The 
appropriate pointer blocks would be automatically created and destroyed, 
as ,descendant data blocks were created and destroyed. Thus the amount 
of ECS space required to represent a given file would vary with time. 

At the time of creation of the file, a ahape must be given. This shape, 
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specifies the number of levels of pointer blocks desired, the sizes of 
the pointer blocks at each level as well as the size of the data blocks. 
In order to permit rapid computation of the ECS address of actual data 
blocks, we required that the block sizes at all levels, except the head, 
be some power of two. Finally, it was possible to create a file with no 
pointer blocks, but in which the head block was itself a data block, of 
arbitrary size. (Figure 1 contains an example of an ECS file.) 
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HEADER 

(PRIMARY 
POINTER BLOCK) 

SECONDARY LEVEL 
POINTER BLOCKS 

DATA BLOCKS 
(64 WORDS EACH) 

STARTING 
ADDRESS 
(OCTAL) 230080 

6100
8 D 

6500

8 D 

Figure 1. Example or an ECS file, with three existing data blocks and a 
maximum possible size or 4608 words. 
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Ellent channels 

Event channels provided the means for synchronizing programs in separate 
processes, or a program and an 1-0 device. They are a generalization of 
the semaphores of Oijkstra [02]. 

One primitive which might have been used for synchronization is a test­
and-set instruction. This has the deficiency that further primitives 
are needed to permit a process to block when attempting to access a 
locked data base. Also. there must be some procedure available for a 
process which unlocks the data base to discover what process. if any, 
should be awakened. Finally. we had no hardware test-and-set 
instruction. 

The semaphores of Oijkstra provide sufficient facilities to interlock a 
single data base [02]. However. we felt that a major means of 
communication between distinct processes, or between a process and an I­
o device, wou Id be through a sequence of discrete messages. For 
example, a sequence of buffer loads could represent successive lines to 
be printed by a printer. 

Thus. we designed an event channel to communicate a stream of 60 bit 
data items. These items could be the indices of buffers which carried a 
more voluminous message. 

The basic actions available for event channels included: create. send­
an-event. get-an-event, and destroy. The get-an-event action had four 
versions: 

A) get an event from an event channel, 
if no event waiting. 
At) return and so indicate. or 
A2) block until one is available; 

B) get an event from one of several event channels. 
if no event waiting on any of them, 
Bt) return and so indicate 
B2) block until one is available on one of the channels. 

One major problem with event channels was a restriction we imposed: the 
waiting events must be recorded in a fixed region for each event 
channel. (The size of this region was specified when the event channel 
was created.) This imposed a maximum limit on the number of waiting 
events an event channel could hold. After this point. an attempt to 
send an event to a full event channel returned with a refusal. 
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This problem was helped by providing that when the last possible event 
was sent to an event channel, it was automatically converted to a 
special one, and the sender informed. Then, a program receiving one of 
these special events had to communicate with possible senders, to 
straighten things out. In general, this was moderately difficult. 

There was no limit on the number of processes which could be blocked, 
waiting for an event to arrive at a given event channel. 

Processes 

Processes were the active elements in the system; they contained 
executing programs. Processes were composed of subprocesses (protection 
domains, performing a function similar to rings in Hul tics) • One 
subprocess within the process was designated as the root. All other 
subprocesses within the process had a father, forming a subprocess tree. 
Each subprocess had a name (class code, see later), a local C-list and a 
map. The map translated a logical memory address into a file address. 

Maps 

In systems like Hultics [Dt] and TENEX [Ttl, the implementation of a map 
is assisted by hardware. We had no such hardware. The map in CAL TSS 
actually consisted of swapping directives. When a subprocess was to 
run, it was copied from ECS to CH. Each swapping directive in the map 
specified some portion of some file (in ECS) to be copied into some part 
of CPl. After running, each portion would be copied back to its ECS 
file. 

It should be understood that the maps in CAL TSS did not give the same 
facility as maps in other systems. For example, if the same portion of 
a file was mapped into different regions of CH. and the running program 
modified one of these CPI regions, the modification was not immediately 
reflected in the other region, in contrast to systems like Hultics or 
TENEX. In CAL TSS, the change would eventually appear after the 
subprocess was swapped out to ECS and back in to CN. In general, this 
was a fairly unpredictable occurrence. 

The problem was more severe than might be apparent. It is plausible to 
assume that a single subprocess would map a portion of a file into at 
most one region of CPl. However, two subprocesses might independently 
map the same portion of a file. As we will indicate later, both 
subprocesses could be swapped into CPI simultaneously. This would lead 
to precisely the problem described above. In fact, the disk-system (see 
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Chapters 10 and 11) was composed of two subprocesses, and both mapped a 
common region of a scratch file. This indeed led to problems. The fix 
used was to explicitly read and write the common portion of the fl1e, 
thus losing the automatic benefits of the map. 

Subprocess call stack 

At most one subprocess of a process could be in execution at a time. A 
facility was available for code in one subprocess to call a fixed entry 
point in another subprocess. This would create an entry on the call 
stack to facilitate a return. The called subprocess would be swapped 
into C" if necessary. and begin execution at a predetermined location. 
The call action would also transfer some data items from the calling 
subprocess to the called subprocess, and transfer some capabilities 
between their local C-lists. (Plore on this under operations.) Saving 
and restoring the hardware registers was up to the called subprocess. 
ECS system actions were available to save the registers in a specified 
location, as well as restore them. They were not automatically saved 
during the call action. 

Subprocess tree 

In order to facilitate the construction of debugger subprocesses, and 
service subprocesses such as the SCOPE simulator and the disk/directory 
system, a control relation was defined among the subprocesses of a 
process. This took the form of a tree, which we called the subprocess 
tree. An ancestor subprocess had complete control over all descendents. 

Under certain conditions, a subprocess and a descendant could be swapped 
into C" simultaneously. A program running in the ancestor subprocess 
would then have direct access to the logical memory of the descendant. 
The memory of the descendant would appear at high addresses within the 
memory of the ancestor. "oreover, a similar relationship held for the 
local C-lists of the two subprocesses, as well as the maps. (The local 
C-list of the second appeared as an extension fo the local C-list of the 
ancestor.) 

At all times, a certain set of subprocesses within the tree, the JuLL­
path. was defined. This determined which subprocesses were to be 
swapped into C". The Full-path had a fairly complicated definition, 
which guaranteed that if a subprocess called an ancestor, both would be 
in the current full-path, as weU as any intermediate subproc.esses in 
the tree. 
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The subprocess tree was used to determine how to process errors and 
interrupts. Certain conditions (such as an illegal parameter) occurring 
during an action created an error. An error always caused some 
subprocess to be called, which would begin execution at a special error 
entry point. The subprocess to be called was determined during a scan 
of the tree, starting with the subprocess in execution at the time of 
the error, and proceeding towards the root. Each subprocess had an 
error-mask which specified which kinds of errors it wished to process. 
Upon calling a particular subprocess with an error, the corresponding 
bit in its error mask would be turned off. In order to receive similar 
errors later, the subprocess was required to turn the bit back on. 

A program in one process could direct an interrupt at a named subprocess 
in another process. (It named the subprocess by giving its class-code.) 
Information was associated with each subprocess to determine if it would 
accept interrupts. A scan, starting at the named subprocess and 
proceeding towards the root, determined which subproces~ would actually 
receive the interrupt. That subprocess was then called as soon as it or 
one of its descendents was executing. 

The ancestor relationship had a number of intended applications. These 
included the construction of debugger type subprocesses and the scope 
system simulator. The Disk system intended to make use of the facility 
to perform reads and writes for portions of a file residing on the disk. 

The algorithms for handling errors and interrupts attempted to prevent a 
descendent subprocess from unexpectedly getting control over an 
ancestor. Only an ancestor of a subprocess could unexpectedly gain 
control. We saw this as a generalization of the usual monitor-user mode 
facility. 

Actions inuoluing processes 

The basic actions of creating a new process, and destroying a process 
were available. Creating a new process required a description of its 
root subprocess, which included its CM field length, C-list, map, class 
code and the relative location of its entry point within its central 
memory field length. 

One other action directly affected a remote process, sending an 
interrupt to a particular subprocess within that process. Other actions 
on processes directly affected the process in which the program which 
called the action was running. These actions included the creation of a 
new subprocess, modification of map entries and destruction of named 
subprocesses. The creation of a new subprocess required the naming or 



25 

its father, its class code, its local C-list, the specification of the 
initial contents of its map, its central memory field length and the 
location of its entry point within its central memory field length. 

C-lists (and capabilities) 

A C-ltst was a finite sequence of capabiHties. A capability was a 
system maintained, unforgeable, authorization. "any capabilities 
contained pointers to the representations of system maintained objects, 
such as files and event channels, and authorized some actions to be 
performed on those objects. 

A capability contained three components: 

a tllpe, 
a set of option bits, 
and a "alue. 

In the case of' capabilities which contained pointers to system 
maintained objects, the tllpe identified the type of the object, the 
option--bits defined actions authorized through this capability and the 
ua 1 ue was a pointer to the object representation. For capabil1 ties 
which did not cOl:'ltain pointers to system maintained objects, the type 
and option-bit components performed functions similar to those 
components in pointer capabilities. 

In order to perform a system action, a program presented indices to one 
or more capabilities within its subprocess's local C-list. These 
capabilities, in turn, defined the action to be performed and the 
objects on which to perform it. ,Before performing the action, the 
capabilities presented were checked for proper type and suitable option­
bits. (For more details, see operations.) 

Available actions provided facilities for storing capabilities in C­
lists other than in the subprocess's local C-list.These actions 
permitted copying capabilities between other C-lists and the local C­
list. They also permitted an indirect specification of a capability to 
be used in an action: two indices would be given, the first within the 
local C·l1st to name a remote C-Ust, and the second to specify a 
capability within the remote C-list. Other actions permitted the 
construction and destruction of C-list. 



26 

CapabtI ttu-creattng-authortzation 

These provided a user program with the ability to create private 
capabilities. with a type different from the system provided types and 
from other private types. Each capability-creating-authorization 
capability specified a type which newly created capabilities would 
contain. The following three actions provided the facility: 

i) create a new capability-creating-authorization. 
produces a capability for a capability-creating­
authorization. with a specified type never before seen. 

ii) create a new capability. 
requires two parameters: 

a) a capability-creating-authori-zation 
b) a 60 bit datum 

produces a capability with all option bits on, with type 
as speCified in the capability-creating-authorization, and 
with the 60 bit datum as value. 

iii) read a capability. 
produces two words of data, containing the type, option 
bits and numerical value of the value part. 

Using these faCilities. a ·user- written subsystem could construct 
un forgeable pointers of its own. So long as it never penmitted 
unfriendly programs access to its capability-creating-authorization, it 
would know that only friendly programs created capabilities of its own 
type. Thus. the value of such a capability could be trusted. This 
value might. for example. have been the disk address of a header for a 
disk file. Furthermore, programs which used such a subsystem would have 
available the protection facility of the basic system. For example, 
these programs could store disk file capabilities in C-lists, and pass 
disk file capabilities with reduced option bits to untrusted subsystems. 

Operations 

Viewed as a virtual computer, the EeS system had only one virtual 
instruction. This instruction accepted a list of parameters, the first 
of which was interpreted as a pOinter to an operation. A basic 
operation contained two parts; a specification of the actual action to 
be performed and a list of specifications for the parameters to that 
action. 
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Two kinds of actions could be specified by an operation : a built in ECS 
system action, or a call on a named subprocess. The possible parameter 
specifications included: 

datum, , 
capability of given type with certain option bits, 
fixed datum, 
fixed capability. 
block capability and 
block datum. 

(The last two were only used for subprocess Calls.) 

The fixed datum and capability specifications carried a value for that 
parameter in the operation itself. The user' calling such an operation 
never saw these parameters. One intended use for fixed parameters, 
particularly fixed datum, was to distinguish between different kinds of 
calls on a single subprocess. In general, the fixed parameters allow 
projection of an operation. 

During either a built in ECS action, or for a call ona subprocess, all 
capability parameters were automatically checked for correct type, and 
at least the specified option bits. If the check. failed, an' immediate 
error was generated. For a call on a subprocess. all parameters were 
then copied into the address space of the called subprocess, the data 
into its memory and the capabilities into its local C-list. 

An immediate consequence of specifying an action by pointing to an 
object was the ability to control what actions were available to each 
subprocess. This was a generalization of one aspect of the usual 
monitor-user mode facility on actual computers, that of a restric.ted 
instruction set under user mode. 

F-return& (failure-return) 

An ECS action. or a subprocess, could return with an F-return, distinct 
from an error. In particular, the ECS system returned with F-return 
when an attempt was made to reference data in a non-existent .portion of 
a fUe. This F-return was processed in either of two ways. The 
simplest was to reflect it to a program jump in the calling program. 

Multi-leuel operGtion& 

The more sophisticated use of F-returns was to make the original call 
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with a multi le"el operation. This was an operation with several 
possible actions. If the first returned with '-return, the second was 
automatically tried. 

The major user of this feature was to be the Disk system. It would 
provide a two level operation, in which the first level was an ECB file 
read or write. and the second was a calion the Disk system subprocess. 
Thus. a user could attempt to read the ECB version of a disk file with 
this operation. If the desired portion of the file was in ECB, the 
action would proceed exactly as if it were an ordinary ECB action (i.e., 
fast). If not. the ECB system would '-return, and an automatic call 
would be made on the Disk system to handle the situation. This would be 
an inherently slow subprocess call. Thus. an initial expensive calion 
the Disk system was avoided if the data were actually in ECB, but it all 
appeared as one simple action to the user. 

Actions on operations 

Only operations which made subprocess calls could be constructed by user 
programs. The operations which contained ECB actions existed at the 
beginning of the world. Actions existed for constructing new operations 
which called given subprocesses with desired parameter specifications. 
Actions also existed for constructing a new operation built from an old 
one by adding a new level. 

Class-code.s were subprocess names. They were used in constructing 
operations and in sending interrupts to other processes. 

As we conceived the system. each user process would contain a. 
representative from each of several classes of subprocesses (e.g., each 
user process would contain a representative of the disk/directory 
system). We wished to construct operations which would. for all 
processes. name a representative of the same class of subprocesses 
(e.g.. the representative of . the disk/directory system). One 
possibility would have been to name a subprocess by its position in the 
subprocess tree. This would have been undesirable for three reasons: 

1) It was necessary to prevent an arbitrary program from 
constructing an operation that called an arbitrary subprocess 
with arbitrary parameters. Hence a subprocess name to be used 
in constructing an operation must be protected. 
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2) It was necessary to prevent arbitrary programs froID sending 
interrupts to arbitrary subprocesses in other processes, again 
the subprocess name must be protected. 

3) It was conceivable that in different processes, subprocesses 
designed to be called by a given operation might appear at 
different positions in the tree, or might not exist at all. 

A capability for a class code did not contain a pointer, but contained a 
representation of the name as its value part. 

Actions were available to create new class codes, to construct 
subprocesses at specified points in the tree (specified by class code of 
father), to construct operations which called subprocesses of specified 
class code and to send interrupts to subprocesses of specified class 
code. 

Allocation blocls 

As we shall see below, the representation of each EeS object occupied 
space in ECS. It was necessary to ration this space among prospective 
users. Since we expected that a single user might be associated with 
more than one process, we decided to ration EeS space through a more 
general entity. an allocation block. 

Each EeS object, including allocation blocks, had to belong to some 
allocation block. (A special root allocation block was exempted from 
this requirement.) All actions that created objects required an 
allocation block as one parameter. This allocation block was checked 
for sufficient free space, which was then allocated to the new object. 
For objects which could change size (files and processes) space was 
moved to or from their allocation block. 

In addition to rationing the use of ECS space, allocation blocks metered 
the ECS space used by objects. This meter recorded the time integral of 
the ECS space used by objects belonging to the block. 

Moreover, other resources were to be rationed and metered by allocation 
blocks. These were to include MOT slots (see chapter 8) and CPU time. 
In fact, meters for both were installed, but rationing was never 
installed for CPU time. (Also, the eventual accounting system read the 
meters for ECS space-time and CPU time, but not "OT slots.) 

New allocation blocks could be created, and space could be moved about 
the tree of allocation blocks. A special action was implemented, to be 
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used only by the disk system, which could move space from one allocation 
block to another, while the space continued to be included in the space 
time integral of the first block. This permitted the disk system to 
borrow space from a user and have the user continue to pay for it. 
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CHAPTER 8: STATE REPRESENTATION IN THE ECS SYSTEM 

A general storage allocator provided arbitrary sized blocks of 
contiguous space in ECS. With the exception of files, each ECS system 
object was represented in a single block. An MOT (Kaster-Object-Table) 
provided the absolute ECS addresses of the representation of each ECa 
object. A capability for an object pointed to the object by giving its 
"OT index. 

Storage allocator 

A general storage allocator was written which provided arbitrary sized 
blocks of contiguous space in ECS. If no free block of contiguous 
storage was large enough to satisfy a request, and the ~otal amount of 
free space was sufficient, 'a compactor moved all in use block.s to one 
end of ECS, and thus combined together all free blocks. 

The compactor was made possible by two conventions: 

i) For each block in use, there would be exactly one primary 
pointer which contained its absolute ECS address, and the block 
itself contained the absolute ECa. address of this primary 
pointer 

ii) Secondary pointers which contained an absolute address could 
exist, but they would have to be accompanied by: 

a) Sufficient information to recompute the absolute address 
through a succession of primary pointers, 

b) The count of compactions which had occurred up to the time 
of computing the absolute address. 

Thus, during compaction, the primary pointers could be found and 
updated. Also, before following a secondary pointer, its associated 
compaction count was compared with the actual compaction count. If they 
disagreed, the pointer was recomputed. 

Unique nallle 

Each object, when created, was assigned a never before seen unique name. 
(We had enough unique names to conservatively last several years of 
continuous operation. These names were re-assigned after each dead 
start.) 
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Master object table (MOT) 

When an object was created, it was assigned a free entry in the PlOT. 
This entry contained the unique name of the object and the primary 
absolute pointer to the representation of the object. When an object 
was destroyed, the unique name in the PlOT entry for the object was 
replaced by the unique name to be used by a new object with the same PlOT 
index. 

The value part of a capability for an object contained the index of the 
MOT entry for the object, and the unique name of the object. Whenever 
the absolute address of the· representation of an object was to be 
obtained from a capability, the unique name in the capability was 
checked against the unique name in the PlOT entry. Thus, there was no 
need to find and invalidate all capabilities for an object that was 
destroyed, as subsequent unique name checks would fail. 

Capabtl itll l i.st 

A C-list had the simplest representation: a single block containing 2 
word entries for each capability. Figure 2 sketches a C-list with one 
capability for a .second C-list, and another capability for a destroyed 
C-list. 
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Files 

Files were represented by a number of distinct blocks, one for each 
existing data or pointer block. Pointer blocks cOQtained primary 
absolute pointers to descendant blocks. 

Euent channels 

Event channels were represented in Single blocks. These blocks· 
contained a fixed size buffer area for storing events that had been 
sent. but not received. They also contained the head of a circular 
doubly linked chain of processes which were b·locked waiting for events. 
This chain was held together by "OT-index-unique-name style pOinters, 
rather than absolute addresses. A single process could be on more than 
one such chain if it was waiting for an event from several event 
channels. There was an area in the representation of each process that 
contained these chain pointers. (In general, events could be waiting 
for processes, or processes could be waiting for events, but never both 
on the same event channel.) 

Other tvpes oJ objects 

Among other objects. processes had a very complex and not very 
interesting structure, while most other kinds of objects were fairly 
straightforward. One item of interest was the representation of 
subprocess maps. These were maintained in two forms, logical and 
compiled. The logical form specified, for each entry, a file (through 
MOT-index-un1que-name pOinter), file address, logical memory address. 
count and read ~nlY flag. The compiled version converted these entries 
to absolute ECS and C" addresses. Associated with the compiled version 
was a compaction count. Thus, the compiled version constituted a 
secondary form of absolute pointers. 
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CHAPTER 9: ECS SYSTEM 1-0 FACILITIES 

The major consideration in the design of the 1-0 system was having the 
code in the heart of the system as simple as possible. There were a 
number of reasons for this, but the paramount one was to allow as much 
of the system as possible to continue running, even in the face of an 
error in some infrequently used or special purpose part. For example, 
we wanted to be able to add code to drive special purpose 1-0 devices 
without a long check out period. If most of the code for the device had 
to be within the system. then a large effort would be required by system 
programmers, whereas if most of the code could be part of a user's 
process, then the system programmers could be responsible for only a 
small interface program in the system. 

Another consideration was experience derived from the SCOPE operating 
system which indicated that PPUs were very feeble machines. The SCOPE 
operating system depended on having large amounts of special purpose 
code in the PPUs, and significant problems developed trying to fit the 
code into the memories of the PPU's. Hence we felt that the more 
complicated device code should be in central. 

The general character of the 1-0 system was controlled by earlier 
decisions, and the hardware. There had to be some sort of device 
drivers in the PPUs. These would transfer data to and from buffers in 
central memory. As necessary they would signal special code in the EeS 
system which would transfer data to and from buffers in 'ECS. These ECS 
buffers would exist in ECS files, accessable to programs in user 
processes. Finally, as necessary, this special code would send and 
receive Signals to and from user processes via event channels. 

Under the SCOPE operating system, PPU's were assigned to individual user 
programs for an 1-0 task. Each time such an assignment was done, the 
appropriate program had to be loaded into the PPU from some storage 
medium, usually the disk. This system had a number of drawbacks, the 
worst being the time required to load the program into the PPU. As one 
watched the system run, the same PPU program could be seen to move from 
PPU to PPU. It seemed that much more service could have been given if 
the program remained in one PPU and serviced several users. However, as 
the system designers had chosen to put a large amount of code in the 
PPU's, there was far more code than could fit in the 10 PPU's available. 
Thus they were essentially forced to swap programs into the PPU's. 

Aside from the overhead of swapping the PPU code, there was a second 
reason for avoiding the style used in the SCOPE system. We expected to 
have a large number of active processes. all frequently doing 1-0. In 
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the SCOPE system there were only 7 Control Points (or processes). Thus 
10 PPU's could service these 7 processes moderately well, but would have 
trouble with more processes. 

We decided that the code in the PPUs should be simple. so that it could 
be resident at all times. As a hedge we held open the possibility of 
having one or two PPUs hold transient code I but this never proved 
necessary. Since the code in the PPUs had to be simple. and sinca we 
wanted to make all the potential uses of a particular device available 
to users t the interface between central and the PPUs had to be a 
logically complete description of the device. We did not want to 
convert the device to some virtual device, for example we did not want 
to implement the idea of files on magnetic tape within the. PPU. 
Attempts to do this sort of thing in the SCOPE system had led to large 
amounts of code to implement the logical constructs of files, and left 
some of the features of tapes unavailable. For example, under the SCOPE 
system. it would be impossible for a central program to write -in-place­
on a tape, whereas by direct control of the tape drive it is possible. 

This same argument can be used to show that the same sort of interface 
must be preserved between the central code and the user processes. We 
wanted to keep the amount of code within the system at a minimum, and 
attempts to implement the idea of files at that level could lead to the 
same problems. 

Thus the user process was to be presented with an interface that 
presented the full logical facilities of the device. In fact these 
ideas had to be modified in the face of timing constraints. It would be 
impossible. for example, to allow a user process to decide exactly what 
to write on the disk at each sector position. as that sector position 
came by. The reaction time of a process would be too large. 
Consequently, some logically equivalent interface would have to be 
found, 1f possible. 

The following are short descriptions of how we handled some 1-0 devices. 

Teletupe 1-0 inter/ace 

The multiplexor interface was designed to present each TTY as a separate 
device. The TTY was run in full "duplex mode. with an echo for each 
typed character. This permitted a visual check that the character had 
actually been received by the computer. Wherever possible the echo was 
done by the PPU itself. Logically, this echo should be provided by the 
receiving process when it receives the character. The process can then 
do special purpose functions, such as echoing a different character than 
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it received, or not· echoing at all. These ·functions are useful when 
interpreting non printing control characters as special signals, and 
when receiving passwords. Also, the echoes can appear at appropriate 
places in the output of the process. 

It is desirable, if possible, to echo a character immediately after it 
1s typed, since unexpected delays in the echoes are unnerving to a user 
at a teletype. Unfortunately, it is very expensive to permit a user 
process to echo each character as it is typed. 

The PPU had tables of I break I characters, one table associated with each 
TTY. If a character arrived from the TTY that was not a break character 
it would be automatically echoed. If it was a break character, it would 
not be echoed, subsequent characters also would not, and a signal would 
be sent to the process involved. Furthermore, if a character arrived 
from a TTY while ordinary output was in progress on that TTY, the echo 
would be prevented and a signal for the first such character sent to the 
user process. Thus· characters typed during output could be echoed, by 
the receiVing process at the time it actually received them. 

As characters were received .they would be packed into one word buffers 
held in central memory, and a central action would only be required when 
the one word buffer filled, or when a break character arrived. Thus we 
attempted to hand the full duplex facility of a TTY to a user process, 
and still keep the number of interactions low. Except under unusual 
circumstances,·interactions with a central program would occur only once 
per one word buffer. Thus the number of interactions was reduced by a 
facto~ of five (the number of raw teletype characters which could be 
held in one central memory word). The central progr8111 itself 
transferred the words to and from a buffer in an ECa fUe, and only 
interacted with the user process when that buffer was full or empty, 
another reduction. (Of course, there had to be interactions for break 
characters etc.) 

Magnetic tape 1-0 inter/ace 

A reduction in interaction rate was also attained for magnetic tapes, 
but in a different manner. A single user request on the magnetiC tape 
system was permitted for a series of Similar read or writes. The read 
or write,s would proceed sequentially into or out of a buffer in an ECa 
file, and would return a single response to the user process at the end 
of the sequence. The sequence would be terminated early if an error 
occurred, such as parity or end or file. The response would indicate 
the reason for termination and the number or reads or writes 
successfully completed. 
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Di&~ 1-0 pac~a,e 

The ECS system disk 1-0 package was divided into the usual two pieces, 
one consisting of PPU code and the other in central memory. It provided 
the ability to read or write records starting at any sector boundary and 
of lengths 64. 129, 257, or 513 60-bit words. Automatically included in 
each record, invisible to the user, was the disk address of the start of 
the record. This acted as a check on the disk positioning mechanism. 
Also provided were buffers of these same sizes in an ECS file. Event 
channels were provided to hold lists of available buffers. Up to 512 
requests could be pending at one time. These were sorted by disk arm 
position and starting sector. The arm was moved elevator fashion back 
and forth, and upon reaching a disk position with pending requests, all 
such requests, pending at the time the position was reached, were 
serviced. The arm was then moved to the next position with outstanding 
requests. Within a given position requests were selected approximately 
in . the order of disk rotation. The algorithm used was to select a 
request at some distance beyond the current-rotational position, prepare 
for the transfer, check that the 1-0 request could still be made without 
an intervening full rotation, then execute that actual 1-0 instrUction. 
The only SUitable final check was to insist that the rotational position 
be more than one sector in advance of the desired sector. For reads, 
this led to choosing a request about 3 sectors beyond the current disk 
position. Write requests required more preparation time than reads as 
it was necessary to move the data from ECS to the PPU before the write 
could proceed. This move required as much time as needed to write the 
data on the disk. 1-0 requests with the same arm position and starting 
sector were handled. in the order made. This was the only order 
condition satisfied by the algorithm. 

Sixty-four words was the maximum size record that could be written in 
one sector position, allowing for two internal address check bytes. The 
129 and 257 word records fit in 2 and 4 sectors respectively, while the 
513 word records fit in 7 sectors. Except for the 64 word records, the 
others were a power of 2 plus one, allowing one check word to be used by 
the next level of the system, and still provide power of two record 
sizes to the ultimate user. 

To make a read request, the higher level disk system would first obtain 
a slot from a slot -event channel for permission to make the request. 
The disk system would then send an event, on a request event channel, 
which would contain the disk address for the request, the size of the 
request, an internal number to identify the response and the index of 
the slot for the request obtained from the slot event channel. The 
request would be stored by the ECS 1-0 system code in an internal table 
indexed by slot number. These entries were chained together for equal 
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arm positions and eventually for equal starting sector. The response 
would appear on a response event channel, and would contain the internal 
number of the request, the index of a buffer containing the data and a 
completion code which indicated if any errors had occurred. The higher 
level disk system would eventually release the buffer by sending an 
event containing the index of the buffer on a buffer event channel. 

To make a write request the higher level disk system would first obtain 
the index of a buffer from a buffer event channel, and would write the 
data in that buffer. Then, as in the case of a read request, it would 
obtain a slot number and send the request containing the buffer index, 
slot index. internal number, disk address and size of the request. The 
response event would contain a completion code, and in the event that 
there were no errors the buffer would have been automatically released. 
(Figure 3 diagrams the flow of events between the higher level disk 
system and the ECS system disk driver described here.) 

Information as to the current position of the disk arm and current 
direction of motion was made available to the higher level disk system 
so that most writes could be in a position expected to be serviced soon. 
This. together with ,the fact that a read buffer was not assigned until 
the actual read was about to start, reduced the amount of ECS space 
required for buffers. It was expected that under heavy load a complete 
scan of the disk might take several seconds, possibly up to 10. 
However. any given block of data would be held in buffers for only a 
fraction of this time. 
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DISK SYSTEM EVENT CHANNELS ECS SYSTEM 
DISK DRIVER 

Figure 3. Sketch of event flow between disk system code and ECS system 
disk driver. 

The request and response channels carry a 60 bit coded request or 
response. The other channels carry indices of available items. 
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CHAPTER 10: DISK/DIRECTORY SYSTEM 

The disk/directory system provided the user machine. (The EeS system 
was merely intended as a tool for the production of the disk/directory 
system.) Further levels above the disk/directory system were thought of 
more in terms of executives than artificial machines. 

Objects that existed in the disk/directory system were called disk 
objects, of which the two major ones were files and directories. The 
files provided a place to store data much aS,in the EeS system and the 
directories provided a naming structure for the disk objects. Also, the 
directories stored disk level capabilities, corresponding to the 
function provided by C-lists in the ECS system. A number of other disk 
objects existed and will be described subsequently. 

Dhl Jiles 

A disk file had the same structure as an EeS system file. 
the file could reside on the disk and a portion in EeS. 

A portion of 
Which portion 

was in EeS varied with t1me. If a read or write request was made to a 
portion of the file residing in ECS, the action would proceed as fast as 
if it were a read or write on an EeS file. On the other hand, if the 
request was made to a portion not in ECS the request would proceed more 
slowly. An action was available to attach one or more blocks of a file. 
This action resulted in those blocks being moved into EeS, but 
computation could proceed while the move was being made. If 
subsequently the program attempted to read or write data in the attached 
blocks. the program would be forced to wait until the blocks were in 
ECS, and then would be permitted to continue. Thus the system 
essentially provided a buffering facility. Figure 4 gives an example. 

Another action that could be performed on disk files was to place parts 
of them in subprocess maps. This had an effect similar to placing ECS 
files in a map, portions of the disk file became accessable through load 
and store instructions. One step in achieving this result was to 
implicitly attach the blocks containing the mapped data, thus moving 
them into ECS. 
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ECS FILE 

DISK FILE 

STARTING ADDRESS 
(OCTAL) 

1000 

6200 

6600 

400 

1000 

4000 

4200 

4400 

6200 

6600 

Figure 4. Example of an ECS file representing a portion of a disk file 
(128 word data blocks, 8 pointers in each second level pointer block). 
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It was assumed that the total space desired in ECS by all processes 
would exceed the capacity of ECS. so we intended to provide two states 
for a process. swapped in and swapped out. When swapped out, those 
portions of disk files being held in ECS for the process would be moved 
out to the disk and the activity of the process would be suspended. We 
further assumed that space required in ECS for a process beyond that 
held in disk files would be very small. so that many processes could 
exist in a swapped out state. 

Access leus and locls 

Access keys were capabilities that contained an integer. They were to 
be used like keys. which could fit certain locks. Associated with 
entries in directories were lists of access key numbers which acted as 
locks. In order to access a given entry in a directory. one had to 
present a key which fitted one of the locks on the entry. 

Directories 

A directory was a disk object which consisted of a list of entries. 
Each entry contained a sumbolic name. an object specification and a list 
of access-locls. 

a) The sumbolic name was merely a sequence of characters. 

b) The object spectfications could be one of three things: 

i) an owned entry; 

ii) a hard link. i.e •• there would be a pointer to a disk objects 
not owned by this entry; 

iii) a soft link. specified by a pointer to another directory, a 
text name to be used for look up in that directory and an 
access key. 

c) An access-locl was a pair: 

i) a number to be matched against an access key 

ii) a set of option bits. 

Each disk object. except a root directory. had exactly one ownership 
entry in some one directory. Thus the directories formed the objects of 
the disk system into a tree structure. 
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The access action required three arguments: a directory, a symbolic 
name, and an access key. If an entry was found in the directory with 
the symbolic name, the access-lock list for the entry was scanned. If a 
number in the access lock list was found which matched the number in the 
presented access key, then an ECS system user type capability for the 
object specified at the entry was returned with the option bits 
associated with the given access key number. (As described in the 
chapter on implementation of the disk/directory system. the directory 
system maintained private capability-creating-authorizations for 
creating user capabilities for disk objects.) 

The basic directory access action just described had a number of 
variations. In order to reduce the length of access lock lists, we 
defined a special access key, the null access key. The number in this 
key occurred implicitly in all lock lists and had an associated set of 
option bits," of which all others were subsets. The null access key was 
accepted as the third argument only if the directory capability in the 
first argument had an appropriate option bit on. A capability with this 
bit on was generally only available to the owner of the directory. 

If the object at the entry was found to be speCified by a soft link, a 
further directory lookup was automatically made with the directory, text 
name and access key supplied by the entry. The intended purpose of this 
facility was to provide pointers to objects whose identity would change 
from time to time. 

The 1Il0dification of the access-lock list for a given entry did not 
require possession of the indicated key. An ordinary datum containing 
the number of the key was sufficient (in addition to a suitable 
capability for the directory. of course). Thus. one user could provide 
access to one of his files for a second user. without ever possessing 
access to that second user's access key. The second user need only give 
the number of his access key to the first user (e .g., in a written 
note) • 

Other actions on directories included provision for listing the contents 
of a directory, creating and deleting entries, etc. 

Dis~ space control 

We placed the control of disk space into the directories. Rather than 
have accounting blocks to control space as in the ECS system, we decided 
it would be Simpler to assign disk space to the directories. When a 
directory was created it was specified to be an accounting directory or 
not. Whenever disk space was needed to create or enlarge a file or 
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other disk object, the disk tree was scanned starting with the object 
and moving towards the root directory until an accounting directory was 
found. This accounting directory was then checked to see if it had 
sufficient available space for the action intended, and if so, the 
available space was reduced. (To save time. a pointer was placed in 
each directory to point back to its associated accounting directory.) 

Each user was assigned an accounting directory and given space in it. 
The user could build as large a tree as he desired from this directory. 
within the limits of the space he was given. He could even create 
subuser directories. Using this mechanism we could delegate the 
authority for making user directories to individual departmentsot the 
university. thus reducing the clerical work ot the computer center. 

Name-tags 

No facility 
directories. 

was provided for entering ECS system objects into 
In fact, the underlying ECS system was destroyed daily and 

recreated the next day. Thus it was impossible to conceive of a 
directory containing ECS objects. As a way around this difficulty, two 
types of disk objects were provided. static and dynamic name-tags. 
Name-tags could be associated with ECS system objects, and actions were 
provided to obtain a capability for the object associated with a given 
name-tag. Static name-t"ags always referrred to the same (or isomorphic) 
ECS system objects; and dynamic name-tags could be associated with 
arbitrary ECS object~ by user programs. (In fact. the a~sociation was 
with capabilities, hence not restricted to ECS objects.) Elaborate 
conventions were required by the user programs to make sure that the 
dynamic name-tags were in fact associated with appropriate ECS objects, 
since the association was destroyed daily. 

The system used name-tags to provide directory entries for the ECS tiles 
and event channels associated with 1-0 devices. During each system 
startup. the appropriate associations were reconstructed. 

Subprocess descriptors 

A facility provided by the directory system for use by the higher levels 
of the system was that of subprocess descriptors. There was a need to 
construct a subprocess within a users process, at the request of a user, 
which had access to capabilities not available to the user. One purpose 
of this was to provide for actions which manipulated objects within the 
system to which the user could not be given direct access. 
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A subprocess descriptor was simply a capability for a directory, but 
with a different type. An action was provided to the higher levels of 
the sYstem, not made available to the users, which could convert this 
capability into a directory capability. One of the actions to be 
provided by a higher level of the system was to take such a capability, 
convert -it to a directory capability, look up a special name within the 
directory, take the resulting capability to be that of a disk file; and 
interpret the contents of that disk file as a description of a 
subprocess to be built within the users process. Part of this 
description would be text names. During construction of the subprocess 
(done by the command processor, see chapter 13) these names wou ld be 
looked up in the directory defined by the subprocess descriptor, and the 
resulting capabilities were placed in the local C-list of the new 
subprocess. 

It was expected that a user would actually want to look up a name in a 
sequence of directories (e.g., first a local directory associated with 
his current process; second, a directory containing files that live from 
session to session and third, a system provided directory containing 
generally available subsystems). In order to automate this procedure, 
we introduced the idea of a scan list. This was simply an ordinary C­
list in which the capabilities alternated between directories and access 
keys. An action was provided by the directory system which would accept 
two parameters, a text name and a C-list. The directory system would 
assume the C-list was in the form of a scan list, and look up the text 
name in the successive directories contained in the C-list, and check 
against the associated access keys. An error was returned if the 
directory system did not find a capability for a directory or access key 
when appropriate. 
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CHAPTER 11: IMPLEMENTATION Of DISK DIRECTORY SYSTEM 

The disk/directory system was composed of a number of components. These 
included three subprocesses within each user process, a number, of 
special processes, and some miscellaneous packages for startup and 
shutdown. 

Di~~-directoru &u&tem code within a u&er proce&s 

The disk/directory system implemented a two level virtual machine on the 
ECS system. The two levels were the disk system and the directory 
system. The disk system implemented the concept of disk files, which 
the directory system in turn used to implement directories. The 
original purpose for this division was to modularize the implementation, 
and make debugging easier by isolating the problems. A later intention 
was to combine the two layers once the system was debugged, but 'this 
point was never reached. 

The disk system consisted of two subprocesses within each user process, 
and a number of ECSsystem processes, invisible to the user. (The user 
process tree is described in chapter 14, • A Short Tour of a User 
Process·.) One of the two subprocesses within the user process was 
intended to handle F-returns on disk file read and write requests, that 
is, reads and writes directed to portions of files not currently in ECS. 
This subprocess was placed in the tree so that it would be in the full 
path of, any subprocess causing such an F-return. Thus it had direct 
access to the core of the requesting subprocess. Because the entire 
full path had to be capable of residing in central memory, any 
subprocess in the full path of a, user subprocess reduced the maximum 
possible size of that user subprocess. Therefore, much of the disk 
system code was placed in a second subprocess which sat off to one side 
of the users full path. 

Special austem procea&es (non uaer proceaaea) 

There were three kinds of special processes. The first kind handled the 
interpretation of responses from the ECS system disk 1-0 code. These 
responses were sent by the ECS system to a single event channel. (We 
did not want the ECS system to haye to know about the many user disk 
processes.) In or.der to send a response to the process originating the 
request, an intermediate process examined the response to determine 
appropriate further processing. If necessary. an event would then be 
sent on an event channel looked at by the originating process. 
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A second kind of special process initiated disk 1-0 for such functions 
as closing files. File closing was a two step procedure in which all 
blocks except the header were first written to the disk. When these 
writes had been successfully completed the header was written. Since 
the modified pointer and data blocks were written at new locations on 
the disk, the effective disk version of the file showed no change until 
the header itself was written. Thus the disk representation of the file 
was always a good disk file. This procedure took time, and it was 
desirable to permit the user process to proceed with other business. 
Hence a speCial process performed the step by step procedure. 

The third kind of special disk system process controlled the total disk 
space allocated to particular user directories. The information about 
space held by these directories was all held in one disk file, and 
maintained by this special process. This process had in itself a disk 
system which treated the special tile just as any other disk file. For 
historical reasons this process was a part of tha disk laval and 
accapted commands from the directory leval. 

Disk lile copobilities 

From the the ECS system's viewpoint, a capability for a disk file was a 
user type capability. The capability-creating-authorization for these 
disk file capabilities was retained by the disk/directory system and not 
made available to the general user. To open a disk file, a user program 
presented to the disk system a capability for a disk file. The disk 
system read the data part of the capability to obtain a disk address 'and 
unique name. Since there was no way user programs could fabricate such 
a capability, the disk system knew that the disk address and unique name 
had been put there by itself. As a final check during the open 
operation, the disk file header was read from the given disk address and 
checked for the given unique name. This was necessary because the file 
might have been destroyed, and that disk address used for some other 
purpose. These disk system unique names were distinct from the ECS 
system unique names. A different one was associated with each disk 
file. The contents of the files were dumped to tape each night and 
reloaded the next morning. During reloading, new disk fUes were 
created to hold the old contents, and consequently unique names were 
reassigned. Thus the unique name of a file differed from day to day. 

Director, s,stem directories 

ECS capabilities for disk files were created by the directory system. 
The directory system was implemented as a single subprocess within a 
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user process. The directory system maintained each directory in a 
s1ngle disk f11e. Directory capabilities were another special kind of 
ECS system user capability, for which the capability-creating­
authorization. was retained by the directory system. These directory 
capabilities contained the same information in their data parts as disk 
file capabilities, but since they were of the wrong type they could not 
be used as disk file capabilities by user programs. 

Dvnamtc name-tag& 

The only form of name-tags actually implemented were dynamic-name-tags. 
(The desired effects of static name-tags were obtained through the use 
of dynamic name-tags.) A dynamic name-tag was represented by a unique 
name, carried in the data part of, a capability. A hash table, 
maintained in an ECS file by the directory system, provided an index 
into a C-list, private to the directory system. This C-list contained 
the capabil1t1es, if any. currently associated with each dynamic name­
tag. 
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CHAPTER 12: A CONSISTENCY PROBLEM FOR DISK FILES 

We made three decisions early in the deSign of the system, which 
together, had unforseen consequences. These were: 

1) The current version of some portions of a disk file may be in ECS, 
with no copy on the disk (e.g., attached blocks). 

11) After a crash, we must be able to restart the system using only 
data on the disk. (It was felt that the structures in ECS were 
probably too fragile and complicated to reconstruct after a crash. 
Also, one of the more frequent causes of a crash was failure of 
ECS. ) 

lii) Vital information, necessary to the integrity of the system, would 
be' stored in disk files. This included directories, with access 
control information, and the system accounts. (Once disk files 
had been invented, we saw no reason to invent other disk storage 
facilities. ) 

The resulting problem was that the contents of a file after recovery 
from a crash may not be the same as before the crash. Moreover, it is 
conceivable that they may not represent the contents at tlnll previous 
time (1. e., one portion may represent the contents of a different 
previous time from another portion). 

Initially we felt that this would just be -tough luck- for some 
unfortunate user, and it was his responsibility to maintain backup 
facilities. Unfortunately, we forgot deciSion iii) above. 

We eventually found a way around the problem. described below, but it 
greatly increased the system overheads involved in the maintenance of 
the system accounts. 

'The problem 

The current contents of a given disk file are defined by data residing 
at many different locations in the physical machine. Some data is on 
the disk. some data is in ECS and some data may be in CM. In order to 
completely restore the contents of a disk file after a crash to the 
contents immediately before the crash, all of this data must be 
available. 

We made the somewhat arbitrary decision to ignore the data in CM and ECS 
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during crash recovery. This decision was motivated by three 
considerations. First, it was easier to write a recovery procedure that 
relied solely on data stored on the disk. Second, a more complicated 
procedure must include a procedure depending only on the disk, in the 
event that data in CPI and ECS proved inconsistent. Finally, we felt 
that in most crashes the data in CPI and ECS would be unreliable, thus we 
must be prepared to recover from the disk alone. 

It is conceivable that the system could have been designed so that the 
data on the disk represented a "snapshot" of each file, taken by request 
of a user program. (That is, make sure the disk version of the file 
correctly represents the current contents.) At one time during the 
design we attempted to do this. However, we decided that it was 
wasteful of disk space. Consequently, the system took snapshots from 
time to time, unpredictably. Moreover, these snapshots only included 
data in ECS, they excluded data in CPl. Thus, a snapshot might include 
some changes to the file made later than other changes which were not 
included, if the earlier changes were still in CM. 

In an attempt to ,ermit a program whic~ was using disk filas to prctact 
itself over crashes, we provided an action that forced a snapshot. At 
the completion of this action, the data on the disk would be a faithful 
representation of the file. (This was true only if all data 
representing the file was in ECS or on the disk,. and no other program 
was modifying the file.) 

The problem will also occur in other sustems 

In other systems, if we assume that the contents of a file will be 
represented by data at many locations within a physical machine, and 
that some of these locations will be unavailable after a crash, then 
there will be a similar problem. At best, the system may offer 
snapshots that are under complete control of the user. However, if a 
user has a data base stored in more than one file, after a crash these 
files will contain snapshots taken at different past times. 

Consequences oj the problem 

A using program is not interested in the bits stored in a file for 
themselves, but generally uses them to represent some useful logical 
structure. For example, an accounting program may intend to update a 
number of accounts to reflect a sequence of transactions. The data in 
one or more files may represent the state of the accounts, how much 
money each has, while another file may represent the sequence of 
transactions, "move so many dollars from one account to another-. 
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If this accounting program took no precautions, and a crash occurred 
while the accounts were being updated. the contents of the represented 
accounts after recovery will have no predictable relationship to the 
contents before the crash. 

A simple solution would be to have backups for all the files, and return 
to the backups after a crash. There still remains the question of how 
to identify which files are current. If this information is maintained 
in files (where else?), and a crash occurs while it is updated, chaos 
may still occur. 

If the accounting records are extensive, and the transaction file is 
long. it may be too expensive to maintain a complete' backup of all 
accounting records while the transaction file is processed. 

A .solution 

The solution we chose was to prescribe a careful, multistep method for 
making changes to files. In essence, one first writes one's intentions 
into the file. then carries them out. and finally removes the 
intentions. The idea is to arrange things so that 1f a crash occurs, 
the disk version of the file will appear to have either no changes, or 
all of the changes. This is accomplished by an argreement, among aU 
programs that maintain the file. to perform any changes to the file that 
they find recorded as intentions. 

The recorded intentions must satisfy a number of conditions. It must be 
possible to repeat them. even if they have been partially, or 
completely. carried out; leaving the file in the intended state. (A 
simple list of file addresses with intended new contents would satisfy 
this condition.) After a crash. the file must not have a partial list of 
intended corrections. (A flag that signifies the presence of intended 
changes will satisfy this condition, if it is not turned on until the 
entire list of intended changes are guaranteed to be in the file.) 

The algorithm for making changes is: 

i) lock out other programs from the file (or files). 
ii) If the bit signalling the presence of intentions is off, go to 

step vii). 
iii) (A crash: has occurred, we are now recovering.) Perform the 

intended changes. 
iv) snapshot the file(s). 
v) turn off the intentions bit. 
vi) snapshot the file containing the intentions bit. 
vii) read the file(s) to determine the desired changes. 
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viii) 

Ix) 
x) 

xi) 
xii) 
xiii) 
xiv) 
xv) 
xvi) 

write a list of intended changes at some known place in the 
fUe( s). 
snapshot the file(s) containing the list of intended changes. 
turn on the intentions bit. 
snapshot the file containing the intentions bit. 
make the changes. 
snapshot the changed file(s). 
turn off the intentions bit. 
snapshot the file containing the intentions bit. 
unlock the file(s). 

Discussio" 

Various simplications of this algorithm are possible in special cases, 
but I believe that in the most general case, all of the snapshots are 
needed. If the list of intentions all appear in one file block, so that 
the entire list is either present or not after a crash, then it is 
possible to dispense with the intentions bit. If all changes will be in 
a single file. as well as the intentions list, and the system will 
guarantee that all' of the contents of a file after a crash did exist 
simultaneously at some time before the crash, then all snapshots except 
step xv) can be removed. 

It should be noted that the logical state represented by the f11e(s) 
changes at step x), but if a crash occurs before step xi) is completed, 
the representation may return to the old logical state. 

Final1y. snapshots require a significant amount of real time. Disk 
operations must be started, and completed. Some of the vital 
information (e.g., user accounts) in CAL TSS was ma1nt~ined using a 
simplified version of this algorithm. and this contributed to our system 
overheads. 
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CHAPTER 13: COMMAND PROCESSOR 

The final level of the system, the conunand processor, was construc.ted 
under strong time pressure, and was difficult to view as an artificial 
machine. It provided a large assortment of functions, mostly determined 
by the fact that no previous level had provided these functions. 

Some of the functions included at the command processor level were octal 
debugging, subprocess construction from subprocess descriptors, teletype 
line editing. looking up of compound names in a number of directories, 
money accounting on a user by user basis and pass word protection for 
entry to the system. 

Octal debugger 

The octal debugger permitted the inspection of the contents of disk 
files by name and address, and the modification of those files. It 
permitted the inspection of the contents of the core of an interrupted 
user subprocess and the modification of that core. It also permitted 
the inspection of the C-list of such a user subprocess and the 
modification of that C-list. It permitted the examination of 
directories by name and the modification of those directories, as 
permitted by the capabilities obtained from the names. It permitted the 
interruption of a running subprocess by hitting certain keys on the 
users TTY. I t also obtained control over a user's subprocess if the 
subprocess committed an error and did not catch the error itself. 

Subprocess construction 

A general facility was provided for constructing a subprocess from a 
description in a given file. This description contained such 
information as entry point address, size of a scratch f11e, names of 
files to be used in map entries, etc. Various conventions were used to 
determine in which directory to look up a name. 

A special case of this facility accepted as input a subprocess 
descriptor (as described in chapter 10 ,-The Disk/Directory System-). 
The command processor had had access to the action which converted the 
descriptor to a ,directory. The cOlIIDand processor then looked up a 
special name in the resulting directory, obtaining a file which it 
processed as above. 
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TTY line collector 

The original intention in the design of the system was to permit the 
user to construct his own 1-0 interface routines, if he so desired. 
Owing to the time pressures we were never able to implement some of the 
features necessary for this, and even so we would still have had to 
supply standard interfaces for the user who desired them. For these 
reasons we supplied a standard subprocess in all user processes which 
collected characters from the TTY and transmitted characters to the TTY. 
The program in this subprocess normally collected a complete line up to 
a carriage return before returning to the caller. This program had a 
fairly sophisticated built in editing routine that permitted copying 
portions of a previous line, skipping portions of a previous line and 
replacing portions of a previous line. These functions could be 
controlled on the basis of the characters in that line, for example, 
skip up to a given letter. These functions were controlled by the 
control keys on the TTY, and were arranged in a simple regular pattern 
on the keyboard. For the purpose of editing lines already existing in 
files, a subprocess could call the line collector with a line' to be 
edited as if it had been a previous line. 

Naming 

Obtaining an object by name within our system was somewhat complicated. 
There were two general reasons for this. First, we had a multiplicity 
of directories. and a user was generally confronted with at least th'ree 
of them. Second. we tried to minimize the access a subsystem was given 
to a user's permanent directory. 

A user was confronted with at least three directories. There was a 
directory which contained publicly available system provided subsystems 
(system directory), such as the editor, SCOPE simulator and a printer 
driver. There was a directory which contained the users files which 
lived from session to session (permanent directory). Finally, there was 
a directory which contained temporary files associated with his current 
logged on teletype (temporary directory); such as scratch files 
containing the memory of subsystems he was using. 

It was necessary to maintain both a temporary and permanent directory 
for two reasons. First, two teletypes could be logged on under the same 
user name. Thus, they would have access to the same permanent user 
directory. A directory associated with the teletype was necessary in 
order to prevent naming conflicts among temporary files constructed by 
subsystems. Second, we associated disk space control with directories. 
Due to the limited amount of disk space available, it was necessary to 
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severely limit the space occupied by files that lived from session to 
session. On the other hand,some subsystems required an enormous amount 
of temporary file space while running. Thus, the users permanent 
directory was provided with a small amount of space, while his temporary 
directory was provided with several times that amount of space. 

In general, whenever a name was presented to the system to be looked up 
in directories, 1t was intended to be looked up first in the temporary 
directory, then the permanent directory and finally the system 
directory. That is, try the most local scope first, and then try larger 
and larger scopes. In order to automate this, these three directories 
lter~_-P.laced in a scan list. 

Since a scan list was merely a C-list, if this scan list was provided to 
a subsystem, that subsystem would have access to the directories 
contained in the list. If those capabilities were strong enough, the 
subsystem could list all the names occurring in the directory, and using 
those names, delete all the files. We had a vision of a run away 
subsystem destroying, in a few seconds, all of a users permanent files. 
Also, it was necessary to provide some name look up facility to 
subsystems, e.g., for use by assemblers with facilities to include text 
in other files named by the one being assembled. 

In an attempt to prevent this somewhat unlikely catastrophe, while 
pr~viding a name look up facility for subsystems, we provided two scan 
lists, one weak and one strong. The strong one would be used in 
respo~se to commands typed on the teletype, while the weak one was 
supplied to the subsystems. 

Passwords and accounting 

The command processor supplied the entire password and money accounting 
portions of the system. The logon procedure required a user to name a 
permanent directory. This permanent directory contained a system 
pointer to a user profile maintained by the command processor. This 
profile contained, among other things, a password. The user was 
requested to type in a password and this was checked against the 
profile. If it matched, the logon procedure was permitted to proceed. 
Once logged on. the user could change his password via a special command 
available in the octal debugger. At the end of a seSSion, the command 
processor could examine the various totals of space time and CPU used by 
the process, convert these to dollars and subtract the result from a 
running balance maintained in the profile. A user who had 
subdirectories which were also permanent directories could transfer 
funds to and from those directories. 
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Each permanent directory profile contained permission to construct a 
certain number of descendent permanent directories. This permitted the 
administration to construct one permanent directory for a class and let 
the instructor construct the necessary student permanent directories 
under the class permanent directory. 
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CHAPTER 14: A SHORT TOUR Of A USER PROCESS 

The subprocess tree of a user process contained 9 system subprocesses, 
one initializing subprocess that destroyed itself after starting the 
process, and one or more user subprocesses. The following is a list of 
those subprocesses with a brief statement of their function. (See 
figure 5.) 

Root 

All subprocess trees had a root. Instead of having a functional 
subprocess for a root we had a very tiny (72 words of CK, all shared) 
subprocess which could catch disastrous errors in the sys'tem 
subprocesses for later analysis. It also contained some code for the 
final destruction of the user process. 

BuUder 

The Builder was a transient subprocess that constructed the system 
portion of the subprocess tree. It was guided by a descriptor file 
which described the subprocesses to be constructed, and their location 
within the tree. Files to be used in the subprocess maps, and 
capabilities to be placed in"their local C-lists were specified by text 
names. The bUilder searched a global list of names for each text name 
supplied. A global C-list contained a capability corresponding to each 
position in the global name list. This was essentially a linking 
operation, similar to that provided by a linking loader for user 
programs in many systems. After constructing the system subprocesses, 
the BUilder destroyed itself and started the appropriate system 
subprocess. 

Falte bead ghost 

The BEAD GHOST subprocess (described later) was provided for aiding in 
the debugging of user subprocesses. The Fake Bead ghost was a stripped 
down version installed to provide debug facilities for the system 
portion of the process. 

Dislt F-returft read .rite 

This was a disk system subprocess which would be in the full path of any 
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user subprocess requesting disk actions. It performed the actual read 
or write of the data in the user subprocess address space. 

Di~1t. 

The disk subprocess contained the main body of the disk system code 
residing in a user process. It was placed out of the full path of a 
user subprocess so as to increase ~he maximum C" field length available 
to the user subprocess. This was necessary since all subprocesses 
within a full path must be capable of residing in C" simultaneously. 

\ 

Directorll 

The directory subprocess contained directory system code. It provided 
all directory system services for the user. 

Bead Seruice.s 

An interim monitor available in 1969 and '70 had been called the Bead. 
We felt it necessary to continue the services provided by that monitor 
and placed the necessary code in this subprocess. Also, Bead Services 
supplied a number of specialized services for the co_and processor. 
such as recording charges against a users funds. 

Bead ghost 

This was a subprocess placed in the full path of the user's subprocess 
to provide debugging facilities, and an interface to Bead Services. 

TTY line collector 

This subprocess pro~ided a standard interface to a user's teletype .. It 
collected single lines, and output single lines. It contained an editor 
for correcting a typed line before it was transmitted to the using 
program. (Thus typed input for all programs could be corrected in a 
uniform manner.) As an option, it allowed operations 1n units smaller 
than single lines. 
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CI'fI'fD 

This subprocess contained the command processor and debugger. It 
provided complicated naming conventions beyond those provided by single 
directories. It provided facilities for calling named programs. It 
provided commands for access to user programs being debugged. It 
provided general sy~tem services such as construction of new user 
directories and transfer of resources from one user to another. 

User 

This was the location for a user subprocess, if one existed. Any 
further user subprocesses would have this one as an ancestor. 
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CHAPTER 15: DISCUSSION 

Part Three discusses how the ideas mentioned in Part One worked out. 
This chapter presents an overall summary, while subsequent chapters go 
into more detail on some of the issues. 

Disappointments 

As with many other operating system projects, the system we actually 
constructed disapPointed us in several ways. It was larger. slower and 
considerably more complicated than we expected. It has been difficult 
to explain why this happened, although one possibility is that our 
expectations were too naive. Chapter 17 details the external 
manifestations of these problems. 

The fundamental ideas 

The fundamental ideas of Chapter 4 naturally divide into two groups: 
those with which we were satisfied, and those with which we were not. 
The ideas which worked out well were: 

The concept of an abstract machine, 
Capability based protection, 
Processes. 
Layered implementation. 
Uninterpreted 1-0 devices. 

The unfortunate ideas were: 

Mapped address space, 
Distributed system code. 

Probably the worst disaster of the project was to attempt to implement a 
mapped address space on an unsuitable machine (i.e.. no mapping 
hardware). Also. distributed system code turned out to be considerably 
more difficult to design than we anticipated. leading to some very 
complicated and not very well understood programs. These problems are 
more fully discussed in Chapters 20 and 21. 

The concepts of an abstract machine and capability based protection so 
permeated our thinking that it is impossible to conceive of the project 
without them. They provided the essential framework supporting all of 
our design work. These ideas are explored more fully in Chapter 16. 
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The ECS system was the cleanest realization of these ideas. 
Unfortunately, as implemented, the computation cost of an ECS system 
call (virtual instruction) was higher than we anticipated. Chapter 18 
explores improvements in the implementation which would have 
substantially reduced this cost, while Chapter 19 proposes hardware 
modification to the CPU which would further reduce the cost. 

Support Jor $pectal user leuel programs 

All of the special purpose programs described in Chapter 5 were 
supported as intended. The SCOPE system simulator ran as the first user 
level subprocess, with its user as a direct descendent. The ECS system 
contained a special feature which generated an error whenever cell 1 
within a subprocess field length became nonzero. (This is the form of a 
user call in the real SCOPE system.) The SCOPE simulator subprocess 
intercepted this error, and when called, the user subprocess would be in 
its Full Path. Thus the SCOPE simulator would have direct access to the 
user program's memory. 

The debugger (most of which existed in the command processor) gained 
access to the local memory and C--list of a subprocess through the Bead 
Ghost, a small subprocess which was the immediate ancestor of the user 
subprocess. (As in the case of the SCOPE system simulator, this access 
was provided by the Full Path.) 

Both the SCOPE system simuloator and the debugger gained access to a 
subprocess local data through the Full Path. I feel an alternative to . 
the Full Path was desirable. 

The full path was a device which would permit the memory of a 
subordinate program to appear as an extension of the memory of a more 
powerful program, e.g., a user program running under the SCOPE simulator 
or the subject program of a debugger. An unexpected effect of the full 
path was to force an unnatural division of system programs into two 
parts, one which had access through the full path to a subject program, 
and a second larger part which did not. 

Actual references to the memory of the subject program were infrequent, 
and would have been adequately supported by a special virtual 
instruction. In fact, the division of system programs into two parts 
could be thought of as an attempt to simUlate such an instruction. 
However, the map facility made such a virtual instruction difficult to 
implement directly in the ECS system. In Chapter 20 we discuss other 
problems with the address map facility, and propose an alternative. 
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CHAPTER 16: A SUCCESS 

The most successful aspect of CAL TSS was the concept of an abstract 
virtual machine with abstract objects referenced by capabilities. This 
success manifested itself in a number of ways: 

It provided a unified conceptual framework. 
It provided an easy to understand protection mechanism. 
It provided modularity with clean interfaces. 
It resulted in an almost error free ECS system. 

UniJied conceptual framework 

The basis for all of our design work was the concept of a set of 
objects, each of which can be accessed only through a small set of 
primitives. Any design proposal was implicitly expected to consist of 
three parts: 

i) an abstractly specified set of states for an object, 

ii) a set of primitive actions on the object and their effects on 
the states, 

iii) a representation for the states. 

The concept of C-list combines and generalizes a concept which appears 
in many operating systems, that of a list of entities which a process 
may reference. For example, consider TENEX [Tl]. Associated with each 
job is a list of files which processes within that job may access, while 
associated with each process is a list of processes which may be 
referenced. Neither of these lists provides the full power of a C-list, 
and presumably they are managed by entirely separate system routines. 
Within CAL TSS, there are no explicit lists of this kind. Rather, they 
are implicitly represented by the capabilities that appear in the local 
C-lists of the user subprocesses. 

Furthermore, associated with each process in TENEX is a set of 
·capabilities· (binary flags) which control which system calls are 
permissable for the process. The same control in CAL TSS is provided by 
controlling which operations (accessable only through capabilities) are 
available to a particular subprocess. This is possible since the only 
operations available to a subprocess are those in its C-list, and in C­
lists accessable to. the subprocess. 
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Ea$U to under$tand protection 

In CAL TSS, all protection is founded on one idea: possession of a 
pointer to an object· (capability) grants access to the object as 
specified by the pointer. Two subprocesses within a single process have 
different access rights because they have access to different sets of 
pointers. In general. access rights are transferred from program to 
program by moving pOinters. 

Access keys and locks are a somewhat different mechanism. However, they , 
are implemented using the capability machinery, and possession of a 
capability for an access key is necessary to open a matching lock. 
Furthermore, even though an object in another directory may have a lock 
matching a given user's access key, the user must explicitly obtain a 
capabili ty for the object (using his key) before he can access the 
object. 

A capability based protection system seems to provide features that are 
difficult to obtain in other systems, such as "uIUcs. Two such 
features seam to be; 

1) The ability to provide for mutually suspicious subsystems within 
the same process; 

2) The ability for new layers of system to be constructed, which 
provide new virtual objects, and permit protection for these 
objects to be controlled using the same machinery as used for more 
basic objects. 

CAL TSS provides for mutually suspicious subsystems simply by placing 
them in subprocesses neither of which is an ancestor of the other. One 
of these subprocesses may touch objects accessable to the other only 
through parameters passed in a call. or with the assistance of a common 
ancestor subprocess (presumably a trustworthy bystander). 

The addition to the disk/directory system of the ability to construct 
"user" disk/directory system types would have made it possible for new 
system layers to construct new types of virtual objects. (This facility 
was provided by the ECS system, and was used by the disk/directory 
system to provide disk/directory objects. It is a quite simple feature 
to implement.) Since capabilities for these new type objects could be 
placed in directories. access to them could be controlled in exactly the 
same ways as access is controlled to disk files and directories. (for 
example, this feature would have permitted nametags to be implemented by 
system code written upon the disk/directory system, rather than directly 
implemented in the disk/directory system.) 
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Modularitu with clean interfaces 

The user' I s program views an abstract object through a small number of 
functions which modify the state of the object. Any changes in the 
algorithms used for these functions, or the internal state 
representation, are not directly visible to the using program. Thus 
only a small number of programs depend on the internal state 
representation, and they can be collected together in a single module. 
This is very similar to the form of modularization proposed by D. L. 
Parnas [P1]. 

It resulted in an almost error free ECS sustem 

During the last three months of operation an error report was made for 
most system crashes. An examination of reports, 18 in all, showed one 
crash for unknown reasons, three for suspected hardware causes, and the 
rest identified as high level system errors (disk/directory system or 
command processor). During this period the system was run for at least 
8 hours each working day, with a fairly continuous load of several 
users. Even if the one unknown and three suspected hardware crashes are 
attributed to the ECS system, I feel that this represents an excellent 
record. 

The system change log for the last six months of operation records 41 
system modifications, of which 1 contained changes to the ECS system 
proper. and 6 contained changes to the 1-0 drivers. Only 4 of the 1 
changes to the ECS system proper were for repairing errors. The others 
were for adding new features or changing assembly parameters. 
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CHAPTER 17: SOME DISAGREEABLE FACTS 

As with many other operating systems, the system we actually constructed 
disappointed us in several ways. In particular, it was large, slow and 
difficult to use. This chapter surveys most of our disappointments. It 
must be kept in mind that this is a description of the results of the 
first implementation of the system. Other systems, notably Multics, 
have had many rewrites which greatly improved their performance. We 
feel the same could be expected for CAL TSS. and in the next chapter 
some immediate improvements will be suggested. 

A major problem for this description is the lack of detailed 
measurements of system overhead, either in memory space or CPU time. 
This is due to the very strong pressure we felt towards producing a 
working system. We assumed that once we had a system up and working, we 
could then analyze the system, look for trouble spots and clean them up. 
We never reached that stage of development. 

Large 

The system was large in a number of ways. First, it occupied a large 
amount of central memory, thus reducing the available field length for 
the user.. The ECS system, together with 1-0 buffers, required about 7K 
words (lK = 1000 base 10). The process descriptor together with the 
subprocesses in the path between the user subprocess and the root 
required another 4K words. On our 32K machine, this left about 21K 
words for the user. Furthermore, a user of the SCOPE simulator was 
penalized another lK words, leaving him about 20K words .. This last can 
be compared with the real SCOPE operating system, as run at U.C. 
Berkeley campus computer center in 1971, which occupied 12K words of 
C. ft. On a 32K machine this also would provide a single user with a 
maximum of 20K words of central. Thus, in some absolute sense, the 
SCOPE system preempted as much CM space as our system. However, the 
SCOPE system was run on a machine with 64K of CM, while we had only 32K. 

Second. the system has a fixed overhead in ECS of 140K words. (Almost 
half of the available ECS.) This overhead was composed of system code 
and tables. Most of the space seemed to be occupied by the disk system, 
but we never had a chance to do a detailed accounting. It was fairly 
clear that the ECS system accounted for a fairly small fraction of this 
overhead. and most was due to higher levels of the system. 

Third, there was a per process overhead in ECS of about 10K words. This 
figure was better understood than the fixed ECS system overhead and was 
expected to decrease. It was composed of two major parts: 
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i) about 3K was consumed by the local C-lists and storage for the 
8 system subprocesses, along with the space necessary to 
define the process structure and provide a subprocess call 
stack, 

ii) about 7K was used to provide an ECS image of portions of disk 
files attached by the process. 

It is probable that the implementation of process swapping by the disk 
system would have reduced this per process ECS overhead to around 3K 
(only "swapped-in" processes would require the 7K for ECS images of disk 
files). Further reductions would have required a redesign of some 
portions of the system. Even without process swapping, various 
developments under way at the termination of the project would have 
reduced the overhead, possibly by as much as 4K, leaving a 6K overhead. 

Thus, since only 300K of the 500K ECS was available for the system (the 
rest was dedicated to the computer center's batch system), at most 16 
user processes could exist, even if they were idle. Process swapping 
would increase this to around 50. 

Slow 

A user perceived the system as slow in at least two ways. The first was 
during the execution of a moderate size program. For example, a typical 
50 page assembly on CAL TSS, using the CDC assembler running under the 
SCOPE simulator. required about two and one half times as much CPU time 
as under the real SCOPE system. The second was .the time required to 
start a program. For example, with no other users on the system it 
required about 15 seconds of real time to start the SCOPE simulator, 
assemble a null program with the assembler and return. 

The major contribution to the system CPU cost for running a program was 
from disk file 1-0, either explicit file reads and writes, or implicit 
via placement in map entries. 

Shortly before the termination of the project, a small test program was 
written to investigate the disk file 1-0 speed problems. This program 
read data from one file, did a small amount of computation, and then 
wrote data onto an output file. It wrote as many words as it read, and 
computed for about 50 microseconds per word. This test program was able 
to maintain a transfer rate, to and from the disk, of about 6K words per 
second. (A similar program, running alone on the real SCOPE system, 
could transfer about 10K words per second. Due to disk conflicts on the 
real SCOPE system, two such programs running simultaneously could 
maintain a combined rate of less. than 5K words per second.) 
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This test program was run only a few times, and gave results varying by 
almost a factor of 2. Due to the termination of the project, no 
improvements on these numbers were obtained. Hence, the figures in the 
following discussion are very approximate. 

The system CPU costs for the test program run under CAL TSS were over 70 
microseconds per word. (Hence, the high CPU costs for running under CAL 
TSS.) These CPU costs were caused by the computation necessary to move 
each data block to or fr.om the disk. (This corresponds to the 
computation to move a page in other systems.) This amounted to 
approximately 15 to 25 milliseconds per block, divided about as follows: 

1/4 millisecond 

2 milliseconds 

4 milliseconds 

12 milliseconds 

ECS system time on behalf of user (ECS system 
time spent moving data between ECS and C", in 
response to user program requests) 

ECS to C" swap time (ECS system time spent 
swapping process memory between ECS and C". 
Principally during disk system calls from user 
code, and when the process blocked waiting for 
disk 1-0 to complete.) 

non ECS system, system time (Time consumed by the 
disk system, viewed as a user program running on 
the ECS system.) 

ECS system time, on behalf of disk system (Time· 
consumed by the ECS system in response to 
requests from the disk system: principally 
general -book-keeping- by the disk system, and 
sending disk 1-0 requests to the ECS system disk 
driver.) 

The total ECS system time required to communicate with the ECS system 
disk 1-0 driver adds up to about 3 milliseconds. The rest of the ECS 
system time occurring on behalf of the disk system (about 9 
milliseconds), must be bookkeeping overhead within the disk system 
itself. Other information indicates that about half of the disk system 
ECS system time was spent on event channel sends and receives and half 
on ECS file reads and writes. (We eventually expected to reduce this 
cost by giving the disk system direct machine instruction access to a 
portion of ECS, which would have reduced the ECS system time to about 6 
milliseconds. See Chapter 18.) 

One final remark on this test: the test program called on the disk 
system only once per 16 blocks of data. If it had called once per 
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block, the overheads would have probably been substantially higher. 
(Unfortunately, more exhaustive tests were never made, and this 
conclusion was never verified.) 

A second point where the system. was slow was during user subprocess 
construction. This would generally occur in response to a command typed 
to the command processor by the user. This would result in a flurry of 
activity at the command processor level. First the Dame of the 
subsystem had to be looked up in a director.y, rather, in a succession of 
directories. Then several names of files needed by the subsystem itself 
had to be looked up. Each of these directory references resulted in 
disk file actions to read the necessary information. Finally some 
scratch. files had to be constructed for the subsystem. In sum, on a 
system with only one user, it generally required between 5 and 15 
seconds of real time before ;the subsystem itself was ready to begin. 
(We considered installing an associative window for the directory 
references, but never began a serious design. It is not clear how much 
this would have helped.) 

Difficult to u~e 

The main difficulty for the average user resulted from a multiplicity of 
naming conventions. One naming convention was a leftover from an early 
experimental system, since the software originally written for it had 
not been changed. Other naming conventions resulted from the fact that 
in the final system the. user had to be cognizant of at least three 
directories that. might contain the file he wanted, his temporary 
directory, his permanent directory, and a system directory. We supplied 
one naming facility which gave full access to his permanent directory, 
and another which did not, in order to protect him from undebugged 
subsystems (a protection not generally provided in other operating 
systems) . 

Finally, a user who desired to write his own subsystems was in severe 
difficulty, since we had no complete manuals covering all of the 
conventions he had to know. Consequently the only successful subsystem 
writers were our own staff and a few determined and inquisitive users. 
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CHAPTER 18: SPEED UPS 

As indicated in the previous chapter, the system overheads were quite 
high (e.g., on the order of 20 milliseconds per data block transferred 
from the disk). In this chapter we will consider the possible effects 
of some improvements we had intended to implement. In the next chapter 
we will consider possible hardware improvements. 

We had two intended improvements, both to the ECS system: 

Direct ECS Access 

A subprocess could select a Single data block in a Single ECS 
file and be given direct hardware access to its contents. 

Fast Actions 

A small number of ECS actions would be recoded in an ad hoc, 
but hopefully more effiCient, manner. 

It is probably that these two changes, together with a minor change in 
the disk system, would have reduced the per block overhead for disk 
transfers to the order of 10 milliseconds for multiblock transfers. 

Direct ICS access 

The CDC 6400 hardware has a base and bounds register which controls 
access to ECS (in addition to similar base and bounds registers for' CM). 
In the system as implemented, the ECS bound was always set to zero while 
user code was running. After solving some minor bookkeeping problems, 
we could have given a subprocess direct access to a single fUe data 
block through this single base bounds pair. Thus the cost for each ECS 
file access to such a data block would be reduced from about 300 
microseconds to about 3 microseconds. 

Fast. actions 

The execution of an ECS action had three major steps: 

1) enter and leave the system 
2) find and check types of all parameters 
3) perform the action 



74 

Steps 1 and 2 together consumed from 200 to 250 microseconds for most 
actions. For many actions step 3 consumed about 100 microseconds. One 
of the parameters which had to be found and checked was the operation 
(an object). which specified the action. This consumed from 40 to 50 
microseconds. (The next chapter will contain a more detailed 
description of parameter fetching.) 

We proposed to invent a new type of capability, that for a 'fast­
action'. All capabilities for such actions would conta~n a pointer to 
code which would fetch and check the parameters, and th~n execute the 
action. We expected that this together with some miscellaneous 
improvements in the code for the actions would reduce the CPU time for 
such actions by 100 to 150 microseconds, a reduction by about SOX. 

For the system as a whole, ECS system action times were about evenly 
divided in the following groups: 

read and write files 
send and receive events 
call and return from subprocesses 
miscellaneous 

If we assume that most of the file and event channel activity was on 
behalf of the disk system (which we suspected but never attempted to 
prove), and observe that the disk system rarely made subprocess calls, 
then we see that a substantial portion of the disk system time is spent 
on files and event channels. Pfost of the disk system's fUe actions 
were directed to a single file which contained its global data base. If 
this file were made directly accessable, great saving would result. 
(The disk system was coded so that only a re-assembly was necessary to 
take advantage of the direct access.) 

This we expected to reduce most disk system ECS fUe action times by 
about 90X, the remainder by about 50X, and event channel times also by 
about 50X. The approximate figures in Chapter 17 indicate that, of the 
18 milliseconds of CPU time required by the disk system for a single 
block transfer, 12 milliseconds are consumed in ECS system actions. The 
above figures suggest that Direct ECS access and fast actions will 
reduce this to about one third, or 4 milliseconds. Thus the per block 
overhead for disk transfers would reduce to about 10 milliseconds, for 
multiblock transfers. 
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CHAPTER 1 g: HARDWARE HELP 

As has been indicated, some of the more frequently used ECa actions 
spend half of their time obtaining and checking parameters (e.g.. ECS 
file read and writes, and event channel actions). This chapter contains 
a proposal to reduce this overhead. It is a hardware capability 
mechanism. similar to that in KAGNUK and System 250, with the addition 
of type information. Before examining the proposal, we first examine 
the details of obtaining and checking parameters in CAL TSS. 

Sletch oj entru to a 3U3tem action 

When the existing system is entered in response to a user call, the 
basic information presented to the system is a pointer to an input 
parameter list (IP list). in the user I s address address space. This 
list contains information which defines the objects involved in the 
action. including the operation itself as the first object. There are 
two means of defining an object, direct and indirect. A direct 
definition consists of an index in the local C-list of a capability for 
the object. An indirect definition consists of an index in the local C­
list of a capability for another C~list, and an index in that other C­
list of a capability for the desired object. 

Manu ba3e bound pair3 

Figure 6 diagrams the situation for a system call with an indirect 
reference to the operation, a direct reference to an object and a single 
datum. There are 10 pointers involved, each of which is relative to 
some implied base address and must be checked agains't some implied 
bound. Furthermore, there are three capabilities involved, each of 
which must be checked for the correct type and sufficient access bits, 
as well as continued existence of the object (correct unique name in the 
appropriate MOT entry). Finally, any data to be manipulated within the 
defined object will be addressed relative to a base address (the ECS. 
address of the object) and checked against a bound (the size of the 
object). 

On the CDC 6400, given that the necessary data is already in the central 
registers, the time required to access a word in central memory by a 
pointer relative to a base bounds pair is twice that required to follow 
a direct pointer. Thus, the addition of hardware instructions which 
provide memory access by pointers through base bounds pairs could 
greatly reduce system overhead. However, additional time would still be 
spent checking types, access bits and unique names. 
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Figure 6. Pointer structure for a typical ECS system call, with an 
indirect reference to the operation. 
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Hardware capabilities 

The following hardware proposal combines the protected-base-bound-pairs 
of a system like MAGNUM or System 250, with the abstract typed objects 
of CAL TSS. In particular, it permits a program with proper authority 
to directly convert a capability for an· abstract object into a 
capability for a base-bound-pair describing the storage area for the 
representation of the object. It combines the basic capability hardware 
of MAGNUM [Ft], the MOT of CAL TSS (similar to an idea in System 250 
[C4, El]), the user type facility of CAL TSS, and a proposal of David 
Redell and Bruce Lindsay (the lock facility, intended by them for 
software implementation of such features of CAL TSS as the subprocess­
descriptor) . 

The Central Processor will have an architecture closer to that of MAGNUM 
or System 250 than that of the CDC 6400. There will be two classes of 
re,isters, capabiltt, and data. There will be four classes of 
'instructions: 

capability memory ref 
data memory ref 
data manipulation 
capability manipulation 

A capabiUt,-re,i.ster will contain three fields: 

type 
access bits (These correspond to option bits in CAL T88 

capabilities. ) 
datum 

There will be a number of t,pes, six of which will be: 

capability segment (C-list) 
data segment 
datum 
create new lock and key authority 
lock 
key 

For capability segment and data segment capabilities, the datum field 
will contain two subfields: 

base 
bound 
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For lock and key capabilities. the datum field will contain three 
subfields: 

source type 
target type 
access field check bits 

Capabilitu memoru reference instructions 

Capability memory reference instructions will either load capability 
registers from memory. or store their contents into memory. The actual 
memory address will be computed in two steps, first an index is computed 
by the program and left in a data register, then the actual address is 
computed from this index and the contents of a capability register 
specified in the instruction. This specified capability~register must 
contain a capability of type capability-segment, and its base will be 
added to the given index. (If capabilities occupy more than one word of 
memory. the index will be suitably modified to guarantee that the 
resulting address will be that of the first word of a capability.) The 
index will also be checked against the bound. If a load is to be done, 
the capability-segment capability must have the load access bit on. 
Similarly, if a store is to be done, the store access bit must be on. 

In order to avoid having absolute addresses within the capabilities (as. 
stored in memory), and to remain close to the CAL TSS ECS system, the 
same trick as used in the System 250 can be used. Instead of a base 
bound pair. a segment type capability. stored. in memory. will' contain a 
unique name and an index into an "OT. The indexed "OT entry will 
contain the same unique name (for checking purposes) and the actual base 
bound pair. When a segment type capability is loaded into a register, 
the MOT index will be followed, the unique name checked, and the actual 
base bound pair loaded. In this case, such a register will have to 
contain the original unique name and "OT index for subsequent storage. 
(Of course, this "OT index and unique name need not be kept in hardware 
registers, but in a known part of memory, as in the System 250.) 

On a mach ine Uke the CDC 6400, with an extra memory, any base bound 
pair could state which memory contained the address, thus reference to 
either memory would be the same. This would be true for both data 
segments as well as capability segments. 

Data memoru reference instructions 

Data memory reference instructions will either load data registers from 
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memory. or store their contents into memory. As for capability memory 
reference instructions, the actual memory address will be computed from 
a program computed index and the base bound pair in a specified 
capability register. This specified capability register must contain a 
capabili ty of type data segment, with the appropriate load or store 
access bits on. 

Data manipulation instructions 

These are the standard bit manipulating and arithematic instructions 
seen on .a11 computers. They work on data stored in the data registers. 

Capabilitu manipulation instructions 

There are four subclasses of capability actions: 

reduce access bits 
read or write datum part of a datum capability 
lock or unlock a capability 
create a new lock and key 

The last three subclasses represent a departure from previous hardware 
capability systems. 

Reduce access bits 

Any capability in a capability register may be replaced by a capability 
identical to the original, except that some access bits are turned off 
which were on in the original. Thus access available through a 
capability may be reduced before passing it to less privileged programs. 

Read or write the datum part oj a datum capabilitu 

Any program may explicitly read the datum part of a datum capability. 
Similarly, any program may arbitrarily replace the datum part of such a 
capability. For example, a re-implementation of the CAL TSS disk system 
might place the disk address of a disk file in a datum capability. (The 
capability must then be locked, as described below, before passing to a 
user program.) 
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Lock or unlock a capability 

A capability whose type matches the source-type subfield of a given 
lock. and has at least the same access bits on as in the access field 
check bits subfield of the lock, may be converted to a capability with: 

those access-bits on which are on in the given lock, 
tupe as given in the target-type subfield of the given lock, 
datum part unchanged. 

This is referred to as locking the capability with the given lock. 

Similarly, a capability may be unlocked if its type matches the target­
type subfield of a given key. We also require that the access bit field 
of the capability have at least the same bits on as the access field of 
the key. The resulting capability will have: 

access-bits as in the access field check bits subfield of the key 
type given as source-type in the key 
datum part unchanged 

Thus, the condition: 

any two capabilities, of type either lock or key. with the same 
target type, have identical source types and access field check 
bits; 

will assure that any capability resulting from an unlock operation will 
have previously existed, possibly with more access bits on.. (We ex~lain 
below how to assure this condition.) 

If the MOT-index unique name representation for segment capabilities is 
used. then a locked segment capability will contain only the MOT-index 
and unique name. Unlocking such a capability will cause the base-bound 
pair to be re-computed. 

Figure 7 contains an example of locking and unlocking a capability. 
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Create a new locl and leu 

Using a create-new-lock-and-key authorization, and presenting a source­
type representation and a set of access-field-check-bits, a program may 
obtain two new capabilities. One will be a lock, the other a key, 
otherwise they will be identical. The target-type subfield of each will 
be a new, never before seen type. The source-type and access-field­
check-bits will be as given. All access bits will be on in both. 

Any lock or key capabilities created subsequently, with the same target­
type, must be copies of these just created capabilities. They will have 
the same source type and access-field-check bits, since all copy 
operations leave the datum parts of a capability unchanged. Thus, the 
condition required above is met. 

Example 

In order to explain the use of these hardware features, we explain how 
the ECS system of CAL TSS might be re-implemented. 

The state of each object will be represented in one or more segments. A 
single data segment might suffice for some simple objects, e.g., a file 
with a Single data block. "ore complicated objects would be represented 
by a capability segment with capabilities for subparts. A locked 
capability for the representing segment is then given to user programs. 

A user program will call the system with parameters in hardware 
registers. Upon entry, the system will pick up the appropriate keys and 
unlock each expected parameter. In one step, this will check for 
correct parameter type, sufficient access bits, correct' unique name at 
the specified "OT index; and produces a segment descriptor for the 
representation of the object. 
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CHAPTER 20: A REPLACEMENT FOR OUR MAP FACILITY 

Our attempt to provide a mapped address space was probably the worst 
disaster of the project. In this chapter we discuss the manifestations 
of that disaster. and then suggest an alternative. 

Our attempt to provide a mapped address space required a lot of very 
complicated code. and it failed. The complicated code was most evident 
in the disk system. but also was evident in our complicated file 
structure and multi-level operations. We failed because we did not 
correctly simulate a mapped address space. 

The decision to simulate portions of disk files residing in ECS by ECS 
files led to structuring ECS files as a sequence of blocks. only some of 
which might exist. (If ECS files had been merely consecutive blocks of 
storage. they would have been much simpler.) Multi-level operations were 
supplied to permit an unsuccessful ECS file read or write action to 
automatically initiate a more expensive disk file action. This was the 
only place where multi-level operations were actually used. The major 
complications were in the disk system. which maintained complicated 
global tables recording which portions of which files were attached by 
which process. 

We were successful in our attempt to make ECS tiles appear to represent 
the ECS portions of disk· files. However. the main intention in 
providing this facUity was to make possible subprocess maps which 
pointed into disk files. 

The subprocess map facility failed. evan at the simple level of maps 
into ECS files. This failure occurred under the following conditions: 

1) two subprocesses In' the same process attempt to share some 
data by mapping Into some common file. and 

ii) they both can be in CM simuitanesouly (one is a descendent of 
the other). and 

lii) at least one of them is permitted to modify the data. 

Under these conditions. a subprocess has to explicitly read and write 
the common data in order to insure that his copy is correct. This 
totally defeats the purpose of the map. 
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The reason for this failure is quite simple:.,.the hardware did not 
provide address mapping. We attempted to simulate mapping by copying 
the mapped data into the appropriate regions of central memory. Thus, 
there could occur two independent copies in central memory of the same 
region of a file. 

This same problem can occur under other conditions: 

a) Two different regions in the same subprocess address space map 
to the same region in some file. Then a change in the data in 
one region will not be immediately reflected in the other. 

b) If the system were run on dual 6400's with a single ECS, and 
subprocesses in two different processes map into the same 
file. In this case, the problem can be prevented by a 
potentially very complicated mechanism which prevents the two 
subprocess from swapping into different CPI' s simultaneously. 
(We intended that our system might eventually run on the two 
6400's owned by the computer center.) 

c) Two subprocess in the same process, one maps into a file, and 
the other attempts direct reads from the file. If one is a 
descendent of the other, the problem appears. 

d) Same as c, except the subprocesses are in separate processes, 
but under a dual 6400 system. 

An ol ternaUue 

This alternative I am about to describe was considered at the start of 
our project, but rejected as not general enough. It acknowledges the 
one successful use of maps, the use of shared, read only programs. All 
other uses are discarded. 

There will be two forms of data storage: 

1) ECS files 
ii) disk files 

An ECS file will be a simple sequence of words, there will be no 
di vision into data blocks. A disk fUe will be a simple sequence of 
equal sized records. each of which is a sequence of words. (This 
directly reflects the physical structure of the disk.) Actions will be 
availabl.e to read the contents of one or more consecutive, complete, 
disk file records into continguous words of an ECS file. There will be 
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a similar action to write consecutive disk file records from an ECS 
file. There will be separate actions to transfer consecutive words 
between an ECS file and the local memory of a subprocess. 

A subprocess local memory will be specified in two parts. (The vestiges 
of a map.) Each part will be an entire ECS file. When a subprocess is 
swapped into CPI, the two ECS files will be copied into CPI; and when 
swapped out, one of the files will be copied back to ECS. Thus one of 
the files contains read only code, while the other contains data local 
to this version of the subprocess. 
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CHAPTER 21: DISTRIBUTED SYSTEM CODE 

The design of the outer layers of CAL TSS (disk/directory and cODlDand 
, processor) depended heavily on distributed system code. I feel this was 

a mistake, and that there was a better alternative. 

In this thesis I have used the phrase -distributed system code- to 
describe the rollowing idea: global data (which represents the state of 
the virtual machine) that w111 be manipulated by code which runs in 
protected domains (subprocesses) within a user process; several 
instances of this code may, in principle, run simultaneously. This idea 
has been around for a long time, and a detailed account of its use may 
be seen in Saltzer [SI]. 

It is difficult to argue persuasively for distributed system code. 
Saltzer gives the argument that distributed system code makes it easier 
to provide a different appearing system for each user. An indiVidual 
user' s process would contain that version of the system code which he 
desired. (I would view this as providing different sets of virtual 
instructions.) 

In practice it is difficult to take advantage of this idea. If this 
portion of the system code is in fact part of a distributed system and 
manipulates global system data, then it is sensitive system code. Hence 
it must be checked out by whatever painstaking methods are used for all 
system code. Consequently it is unlikely that two versions of a portion 
of the system would be completed. 

A major proble. introduced by constructing a distributed system is that 
of interlocks. Since there are many representatives of the system 
attempting to read and modify some global data, they must avoid 
interfering with each other. (For example, while one process is 
reading, adding one, and rewriting a count, another process may attempt 
the same action.) At the worst, if the interlocks are deSigned 
carelessly one may be confronted with a 'deadly-embrace'. 

Examples of the difficulties one can get into are provided by the disk 
system, our major attempt at a distributed system. The majority of the 
CPU time consumed by the disk system was in calls on the ECS system. We 
have evidence that about one half of this time was spent on ECS file 
read and write actions, with the other half going to event channel 
actions. At least half of these event channel actions must have been 
involved with interlocks. Thus on the order of 25" of the CPU time 
spent by the disk system was involved with interlocks. 
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As an extreme example. at one point in the development of the system, we 
discovered that while one disk system representative had an item of data 
locked. two others could get into a loop asking each other for 
permission to use the locked data. This was, of course. fixed, but 
demonstrates that much care must be taken. 

I believe that we would have been better ofr to avoid distributed system 
code, at least in as complicated a rorm as the disk system. (The 
proposal made in the preceding chapter would have relieved us from 
providing the disk system.) Necessary global data bases could. be 
manipulated by dedicated processes. which receive coded instructions 
from event channels. Any interlocking of modifications to the data base 
would then be purely internal to the process, and thus simpler to 
achieve. 
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CHAPTER 22: SUMMARY AND PARTING WORDS 

SUl7l7laru 

In this thesis we have discussed an operating system project at the 
University of California. Berkeley. Computer Center. W~ have discussed 
many of the initial ideas and objectives of the project, the actual 
system constructed. and a number of reactions to that resulting system. 

The project was modest in size. involving about 30 man years. Except 
for a necessary item of peripheral hardware, the system was designed for 
a commercial computer. the Control Data 6400 with an Extended Core Store· 
(ECS) . 

We attempted to include a number of fundamental ideas in our design, 
including: 

specification of the entire system as an abstract machine, 
a capability based protection system, 
a mapped address space for each virtual computer (process), 
layered implementation including distributed system code, 
and uninterpreted input output devices. 

It was intended that many of the services that must be supplied by a 
complete system would be provided by ·user· level programs, whose 
special needs would be provided by system features. These features 
would be made available to ·ordinary· user programs, as a matter of 
principle. 

The system made heavy use of ECS, a large core store with a fast block 
transfer rate (10 60 bits words per microsecond) to central memory. The 
state of each user process was stored in ECS, copied to central memory 
for execution and then copied back to ECS. The state of the system was 
maintained as the state of abstractly defined objects, whose 
representation was stored in ECS. Also, user programs accessed all real 
input output devices through the state of these abstractly defined 
objects. 

The system was designed in layers. The first layer (ECS system) 
provided 8 types of abstractly defined objects and about 100 actions to 
manipulate them. Subsequent layers provided a few (but very 
complicated) additional types of objects. (The entire second part of 
this thesis is devoted to a description of these various layers, and the 
abstract machines they define.) 
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My major reaction to the resulting system was that it was 
disappointingly large, complex and slow. (Possibly this was due to 
naive expectations.) Many of our fundamental ideas served us well, 
particularly the concept of an abstract machine and capability based 
protection. However, mapped address space (on an unsuitable machine) 
and distributed system code were unsuccessful. 

Part 3 is devoted to an elaboration of my reactions to the system, along 
with a number of proposed improvements which would have mitigated some 
of the difficulties. In particular, I include a hardware proposal (a 
modification of ideas used on other projects) which would have greatly 
increased the efficiency of our capability based protection and abstract 
machine implementation. 

Parting 1B0rd~ 

There are two firm beliefs that I have acquired from this project: 

i) The concepts of designing the system as an abstractly defined 
machine together with .capability based protection were 
extremely useful and I strongly advocate their future use; 

ii) The concepts of distributed system code and mapped address 
spaces introduced many complications unnecessary for the 
provision of an adequate time sharing system, and I would 
recommend at most limited use of these ideas in future 
systems. 
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APPENDIX A: PROJECT HISTORY 

Summer 1968 

December 1968 

Summer 1969 

January 1970 

Summer 1970 

Spring 1971 

Fall 1971 

Time sharing project starts. One faculty advisor and 
4 computer center programmers. two half time. 

Layered structure of system chosen. with 
responsibilities of each layer determined. Major 
components of ECS system specified. Actual 
programming begins. 2 persons from computer science 
department join project unofficially. 

Portions of ECS system and a temporary executive 
(Bead) completed. A SCOPE simulator and a text 
editor written. Public demonstration of system, 
exhibiting editing. compiling and execution of 
fortran programs from two teletypes simultaneously. 

Disk 1-0 interface and disk/directory system design 
begun. Several more programmers join the project. 

Disk I -0 interface completed. A temporary program 
provided which moves entire files between the disk. 
and ECS. System will support nearly 10 users 
(edi ting large text files and assembling them), if 
they cooperate closely on use of ECS space. No file 
protection between users. 

Several persons invited from computer science 
department to use system on an experimental basis. 

Disk/directory system design completed. Programming 
begun during spring 1970. Plost components of ECS 
system completed. Final drive begun on remaining 
portions, mostly 1-0 interfaces. 
reprogramming of ECS sys tem 
processor deSign starts. 

Some redesign and 
started. Command 

Disk/directory system and conunand processor 
sufficiently completed to permit use of new system. 
Bead system scrapped. Plany components not completed 
(disk swapping of user processes, accounting and 
others) . 

Accounting completed. Disk swapping of user 
processes not completed. System difficult to use, 
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November 1971 

partially due to multiplicity of conventions carried 
over from temporary (Bead) system. Will support at 
least 15 simultaneous users of BASIC subsystem. ECS 
size limits number of users, rather than CPU time. 

Project terminated for lack of funds. 
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APPENDIX B: PROJECT MEMBERS 

The initial advisor to the project was Professor Butler Lampson. Other 
official and unofficial members were: 

William Bridge 
Dr. James Gray 
Bruce Lindsay 
K.arl Malbrain 
Gene McDaniel 
Paul McJones 
Professor James Morris 
David Redell 
Charles Simonyi 
K.eith Standiford 
Howard Sturgis 
Vance Vaughan 


