
\
\ \

-r,t.!;nqT-t.R Srn: Ir~ L t'c'.T ~ • "",at ~

A POSTMORTEM
FOR A TIME SHARING SYSTEM
BY HOWARD EWING STURGIS

CSL 74-1 JANUARY, 1974

This thesis describes a time sharing system constructed by a project at
the University of California, Berkeley Campus, Computer Center. The
project was of modest size, consuming about 30 mall. years; The. resulting
system was used by a number of programmers. The system wa, designed for
a tommercially available computer, the Control Data 6400 with extended
core store .. The system design was based on several fundamental id.eas,
including:

specification of the entire system as an abstract machine,
a capability based protection system,
mapped address space,
and layered implementation.

The abstract machine defined by the first implementation layer provided
8 types of abstractly defined objects and about 100 actions to
manipulate them.
additional types.

Subsequent layers provided a few very complicated
Plany of the fundamental ideas served us well,

particularly the concept that the system defines an abstract machine,
and c.apability based protection. However, the attempt to provide a
mapped address space using unsuitable hardware was a disaster. This
thesis includes software and hardware proposals to increase the
efficiency of representing an abstract machine and providing capability
based protection. Also included is a description of a crash recovery
consistency problem for files which reside in several levels of storage,
together with a solution that we used.

XEROX
PALO ALTO RESEARCH CENTER
3180 PORTER DRIVE/PALO ALTO/CALIFORNIA 94304

ACKNOWLEDGEMENTS·

First, I thank Professor James "orris, my dissertation committee
chairman, for many hours of discussions and painstaking reading of many
drafts. Second, I thank the other members of my dissertation committee,
Professor R. S. Fabry and Professor "artin Graham. Also, I thank all of
the others who have read early drafts and commented extensively.
including Dr. Butler Lampson, David Redell, Dr. James Gray and Paul
McJones.

For typing many drafts I thank Janet Farness, and for the illustrations
Carl Stewart and Jackie Southern. The Xerox Corporation has given me
generous support while writing this dissertation.

A generous thanks is due to a faculty member who rekindled my interests,
at a time when I ·had become discouraged with the university, Professor
R. Sherman Lehman.

Finally, I thank my wife, Susan Sturgis, for her years of patience while
I followed the rather tortuous path that led to this dissertation.

Howard Sturgis
Woodside California
"ay 1973

• While writing this dissertation, the author was employed by Xerox
Corporation, Palo Alto Research Center, Palo Alto, California. The
project was supported, in part, by a National Science foundation
Grant. GP 7635.

TABLE OF CONTENTS

PART ONE: ASSORTED INITIAL CONSIDERATIONS

1 Introduction
2 The Project
3 The Hardware
4 Fundamental Ideas
5 Requirements Imposed by Some Kinds

of User Level Programs

PART TWO: THE SYSTEM

6 Basic Architectural Considerations
7 ECS System Architecture
8 State Representation in the ECS System
9 ECS System 1-0 Facilities

10 Disk/Directory System
11 Implementation of the Disk/Directory System
12 A Consistency Problem for Disk Files
13 Command Processor
14 A Short Tour of a User Process

PART THREE: ASSORTED REACTIONS

15 Discussion
16 ,A Success
17 Some Disagreeable Facts
18 Speedups
19 Hardware Help
20 A Replacement for Our Kap Facility
21 Distributed System Code
22 Summary and Parting Words

BIBLIOGRAPHY

APPENDICES

A Project History
B Project Kembers.

1
3
5
7

11

13
17
31
35
41
47
51
55
59

63
65
69
73
75
83
87
89

91

93
95

1

CHAPTER 1: INTRODUCTION

In 1968 the University of California Berkeley Campus Computer Center
began a project to design and implement a Time Sharing System for a
Control Data Corporation (CDC) 6400 computer, with Extended Core Store
(ECS). The project continued until the Fall of 1971 when 1t was
terminated due to a lack of funds. The author was a member of the
project from the beginning, and was director at its termination.

The system we deSigned, CAL TSS, included a number of ideas proposed by
other projects. that had not yet been fully tested. These included the
concept of capability based protection (system maintained pointers to
system objects, through which all access to those system objects must
pass). and a mapped address space (all storage resides in flIes, and all
load and store machine instructions actually access data in some file,
rather than in a local memory).

In contrast to other projects, such as "ultics [C3], this was a small
project. At its peak. ther6 were about eleven people involved. many
part time.

This thesis contains a discussion of some of our underlying ideas,
I

describes the system we' constructed and finally some reactions to that
system. Part One describes the project, the hardware and the underlying
ideas. Part Two describes the system. Finally, Part Three contains my
reactions to various aspects of the system.

3

CHAPTER 2: THE PROJECT

In contrast to other projects, this one was quite modest. It began in
the summer of 1968 with a faculty advisor and four programmers from the
computer center, two of whom were half time. This rose to a maximum in
1911 of about nine programmers in the core group, with maybe five others
doing peripheral tasks. Some of these programmers were still part time.
This should be contrasted with ftultics, involving 150 to 200 man years
[e3].

In terms of machine time used, during the period of maximum system
development, we had access to a 6400 for 12 hours per day during the
work week. and numerous hours on weekends. About half of this machine
time was used for system debugging and the other half to supply basic
computing services, such as editing program files and assembling them,
to the system programmers and some outside users.

5

CHAPTER 3: THE HARDWARE

The system was designed for and implemented on a CDC 6400, with Extended
Core Store (ECS) and Central Exchange Jump [Cl]. The machine had 32l 60
bit words of Central Nemory (Cft). and 300K 60 bit words of Extended Core
Store (ECS).

The 6400 CPU has about 25 hardware registers. It can perform register
to register actions in about half a microsecond, and is capable of
fetching two words from memory, adding them and storing the result in
about four microseconds.

ECS was that feature of the hardware which had the most direct influence ,
on the project. This is 500l 60 bit words, which can be block
transferred to or, from Cft. The CPU can start transfers between ECS and
Cft with an initial access time of about 3 microseconds. and a transfer
rate of about to 60 bit words per lIicrosecond. A transfer can be
started at any word address in ECa or Cft and can be of any length, as
small as one word.

The protection machinery supplied by the hardware consists of a pair of
registers: a relocation register and a. bounds register. One such pair
is supplied for central memory and a second pair for ECS. There is no
other address mapping available.

Our 6400 CPU had a special instruction, central exchange jump (CEJ) [see
revision N of Ct]. This instruction causes an exchange of the contents
of all hardware registers with the contents of some region in CN. This
requires about 3 microseconds. The changed registers include the base
and bounds registers. (The same action is available on ~ standard 6400,
initiated from outSide the CPU.)

The CPU has two modes. monitor and usar. This mode controls the
location from which the registers will be loaded during a CEJ. In
moni tor mode the CEJ instruction contains the absolute address of the
new register contents. while in user mode the address is taken froll a '
register loaded during the previous CEJ.

Supporting the CPU and providing access 'to 1-0 devices are ten
Peripheral Processing Units (PPU's). Each PPU is a computer with a 4l
12 bit word memory and a single 18 bit register. It can pick up two 12
bit words, add them, and store the result in 9 microseconds. This time
is extended to 12 microseconds if the addresses are formed by indexing,
the usual case. Each PPU can access CN at about 5 lIicroseconds per 60
bit word.

6

As ide from magnetic tape. the only auxiliary storage (on our machine)
was provided by one half of a 6638 disk. This one half could store
about seven million 60 bit words. The disk rotation time was 52
milliseconds and the maximum positioning time was 110 milliseconds. The
data could be transfered to a PPU at the rate of 12 bits per
microsecond.

At the time the 6400 was purchased there was no suitable hardware
available to connect large numbers of individual user terminals.
Therefore, the computer center designed and constructed a multiplexor
capable of handling a maximum of 256 individual teletypes.

7

CHAPTER 4: FUNDAMENTAL IDEAS

The system design was organized around a small number of fundamental
ideas:

1) Specification as all Abstract "achtlle

As in some programming languages, the system was conceived as
implementing an abstract machine which dealt with a number of different
types of abstract objects. Interaction with the system was to be
accomplished through virtual instructions, which were provided in
addition to the standard hardware instructions. Each of these
instructions was to operate on specific types of objects, and an error
was to be returned to the user if the wrong type of object was presented
to such an instruction. These instructions were to be understood
independently of their implementation, and to be described in terms of
(possibly a sequence of) atomic changes in the state of the object.

2) Capability-Based Protection System

The authority to perform actions or to reference particular objects was
to be conferred by the possession of a capability, which is basically an
unforgeable system-produced pointer to the representation of an object,
together with the type of that object and a specification of the access
to be permitted. This pointer could be followed only by system code, so
that the representation was directly accessible only by the system.

Capabilities are stored in special regions of memory (capability lists).
Virtual instructions are available to move these capabilities from one
list to another. The access granted by a capability may be reduced.

3) Proceues

The single hardware machine would be divided by the system into many
virtual CPU's (processes). In principle, all processes would be
computing simultaneously, at' some fraction of the real machine speed.
Each user would have one or more processes at his disposal. With the
exception of those files in the process map (see 4). a program could
affect objects external to its process only through virtual
instructions.

8

4) Mapped Address Space

Each virtual computer would not have its own central memory, to be
referenced by loa,d and store machine instructions. Instead, associated
wl th each process would be a map which converts each load and store
memory address into a file and address within the file. A load
instruction will load a register with a word from some file, and
conversely, a store instruction will place the contents of a register
into a file. Thus, only one concept of data storage facility need be
deSigned, files, rather than two, ftles and process memories.

5) Layered Implementation

The eventual system seen by a user program would be constructed in two
or more layers. Each layer would be implemented by a program which ran
as a user on the Virtual machine implemented by the previous layer. In
general, a layer would provide new virtual objects, not provided by
previous layers, with the necessary virtual instructions to manipulate
the new objects. Objects implemented by previous layers would still be
available, and would be manipulated by virtual instructions interpreted
by' those previous layers. In particular, ·ordinary· machine
instructions would be interpreted by the real hardware. Thus, the
inefficiency of interpretation would only occur on virtual instructions,
and even then, only the necessary system layers would participate.

6) Distributed System Code

We envisioned that some layers of the system would be implemented by
system code which resided in protected regions within each users
process. This code would manipulate data global to Us process. In
principle, lDany of these system representatives could simultaneously
manipulate that global data.

7) Uninterpreted 1-0 Def/ices

As far as possible, we intended to provide a user program with a direct
representation of each 1-0 device. We intended to avoid converting 1-0
devices into virtual objects, such as files. Such conversion would be
provided by ·user· programs, many of which we would wrUe. However,
since it would be possible for users with special needs to write their
own, we were released from the obligation to provide for all possible
uses of • given device.

9

Furthermore, we wanted the possibility of emulaUng a device by a
process. Thus, any communication with a device must be interceptable by
an emulating process. This rUled out special virtual instruc~ions for
communicating with 1-0 devices.

Origin.s

"ost of these ideas were suggested by previous work.

A paper by Dijkstra [D2] provided us with a glimpse of the beauty of a
system described as an abstract machine. His paper also suggested the
use of layered design to reduce the complexity of any single layer.

Capability based protection was described by Dennis and Van Horn [01].
The idea of storing capabiU Ues in special regions of memory, and
providing actions to move and manipulate the capabilities was provided
by the Chicago machine project [Fl, F2, F3].

"ultics provided the inspiration for a mapped address space, protection
regions within processes ("ultics ri"gs), and distributed system code
[Bl, Q1, Sl].

Finally it should be mentioned that our audacity in beginning this
project which had very modest resources compared with the "ultics
project, derived from the example of project Gania [L2]. This project
constructed a ti •• sharing syst .. on an 808 940 with 3 programmers.

11

CHAPTER 5: REQUIREMENTS IIIPOSED BY SOliE KINDS OF USER LEVEL
PROGRAMS

In addition to the fundamental ideas mentioned in Chapter 4, we were
guided by the requirements of various special kinds of user level
programs which we felt the system should support. These special
programs supply services which must eventually be provided. (One
alternative would have been to construct the system so that it directly
provided these services. In that case, the portions of system code
which provided these services would probably have made demands on ·the
remainder of the system which are Similar to the requirements described
below.)

1) Scope &u&tem &tmulator

A large
loaders
system.
want to

amount of necessary software, such as assemblers, compilers and
already existed for SCOPE, the CDC distributed batch operating

We needed a method for running that sortware, and we did not
build it directly into our system. Therefore, we decided that

it must be possible to write, as a user program on our system, a
Simulator for the SCOPE operating system. In order to be efficient, the
simulator code should only be invoked when the user program made a call
intended for the real SCOPE system. The cost of making the calIon the
simulator should be comparable to the cost of calling a PPU in the SCOPE
system. Finally. once the simulator has been called, it must have full
access to the data of the users program, similar to the access available
to a PPU under the real SCOPE system.

2) Text /tle editor

We expected most of our users to write programs for compilers and
assemblers. These programs would be written as text files, then fed to
the appropriate compiler or assembler. Thus we needed facilities for
conveniently writing and modifying text files. We did not want to build
these text editing facilities into the system. Rather, we intended to
write a text editor as a user program for the system.

The amount of data that must be immediately available to the text editor
should be fairly small, a couple of small text buffers and sufficient
infotmation to tell where to write the text in an output text buffer,
and where to get new text from an input buffer. These bUffers should
need no more than a few hundred words, and the additional words should
also be at most a few hundred. All in all, the total .hould be Ie ••
than a thousand words.

12

On the other hand, it was expected that the program implementing the
editor would be considerably larger than this, hence there must be some
way to share that program among several users. That is, there should be
only one copy of the code for the editor in the main store (ECS) at one
time, even though several persons were using it.

3) Debugger

It ·should be possible to construct a user level program (debugger) which
can intimately control other user level programs, even if those other
programs use sophisticated system facilities. This control should
include the ability to start a user's program at a specified location, .
run it at full machine speed, and regain control under some specified
condition. These conditions should include the detection of an
instruction error on the part of the user program, or a command from the
user at a teletype. Once the debugger has regained control, it should
be able to inspect the internal state of the user's program in detail,
and make modifications.

4) Deutce drtuer8

One of the functions generally performed by an operating system 1s. to
convert an ugly 1-0 device into a more tractable virtual device. A
typical example is to convert a line printer, with its many special
functions, into a write only sequential text fUe. A problem withthls
approach is that some of the flexibility of the deviee may be lost.

As far as pOSsible, we wished to avoid making such conversions in the
basic system. In fact, we desired to permit a user to make his own
conversion, if he wished. Thus, our system would provide an interface
to each 1-0 device which gave a using program direct control over that
device. for example, all of the special functions of the printer would
be directly available.· final1y. we would supply a user level program
which converted the 1-0 device into a general1Y useful virtual device,
but would not attempt to handle all conceivable user desires.

5) Tuptcal U8er Fortran pro,rdm8

We felt that the facilities necessary to support the kinds of programs
mentioned above would certainly be sufficient to support an ordinary
fortran program.

13

CHAPTER 6: BASIC ARCHITECTURAL CONSIDERATIONS

The architectural design of the system was a multistep process. We
first formed a global picture of how user programs should run, then gave
a general division of the necessary functions into levels. finally we
embarked on the detailed design of the various levels. This chapter
describes the issues which motivated our global design.

SUlappinfl

Our general picture of user programs included two types, the interactive
ones and the noninteractlve ones. The interactive programs would reside
in ECS and from time to time be swapped into central memory and allowed
to execute. (See Chapter 3, Hardware.) The non interactive programs
would spend most of their time on the disk. From time to time they
would swap into ECS and while in ECS behave like interactive programs.

If we were able to swap a program at the full ECa transfer rate of 10
words per microsecond, then a 10K word program could be swapped in and
out in two milliseconds, allowing the use of a 20 millisecond quantum
with 90~ efficiency (IK = 1000 base 10). A larger program would need a
larger quantum to obtain the same efficiency, but even a 32K word
program would need no more than a 64 millisecond quantum. Even if we
assumed some degradation in efficiency of the swap, a maximum quantum
size of 100 milliseconds would be sufficient. If there were 100
interactive programs, and 10~ were waiting for service at one time, each
would begin to receive service within one second. This seemed
satisfactory.

Input-output atrateflU

User programs that needed access to amounts of data larger than the
amount that could be swapped into central memory would use some form of .
access to data stored in ECS. (Eventually called ECS files, see next
chapter.) This data stored in ECS could then be used as an 1-0 buffer.
Programs which desired access to this data would read it while they were
running in central memory.

Data from an input-output device would first go to a PPU. The PPU would
transfer the data to a central memory buffer and start a system program
in central memory, which would transfer the data to ECS. This system
program would then inform the appropriate requesting program that the
data was available. (The requesting program was informed by sending an

14

event on an event channel, see next chapter.) Movement in the opposite
direction was similar.

We made rough estimates of the amount of CPU time that would be used by
the system programs to move the data to and from ECS. We assumed that
the main 1-0 load would come from the disk. If we assumed that two
PPU's were alternately reading the disk and then writing into central
memory, central would receive words at the maximum rate of one word
every five microseconds. If enough were buffered so that the main cost
to the central program was the actual transfer to ECS, the central
program would use one microsecond every 50. Thus, we felt this time
overhead was acceptable.

We gave less thought to the space overhead. However. at 512 words per
PPU (the maximum power-of-2 buffer that a PPU could hold), there would
be at most 5120 words of central. On a 64K machine (which we assumed
would be available for such a large system) this is less than 10" of the
total space, which we thought would be acceptable. If this was too
much. we could arrange for the PPU's to transfer a 512 word buffer in
several sections. with a separate request to central memory system
program for each one. This would reduce the necessary buffer space in
central ,memory at an increased cost for CPU time, due to overhead in
responding to each request.

As an alternative to this design with central memory buffers. CDC
offered an optional hardware feature which permitted direct exchange of
data between a PPU and ECS [e2l. We referred to this feature as a
"Back-door". Unfortunately, the rate of this transfer was limited, by
the PPU, to one 60 bit word every 5 microseconds, and while in progress
degraded the transfer rate between central memory and ECS. We were
unable to determine from CDC how great the degradation would be, but
there were hints it might be a factor of two. Since our estimates of
program swapping overhead were heavily dependent on a high transfer rate
between central memory and ECS, and the estimates for the PPU-CM-ECS
scheme indicated a low overhead, we decided to avoid the Back door.

talers

The major factor which contributed to our allocation of responsibilities
within the layers was a desire to produce an interim system as soon as
possible. We wanted a system which we could use to support further
development, i.e., provide editing and storage facilities for the
programs we were writing. Also, ,we felt that such a system would
demonstrate to the administration that we could eventually construct a
final working system. (In fact, we did demonstrate a two teletype

15

system at the end of the first year and moved our program development
under the system six months later.) To this end, all facilities which we
felt were unnecessary for an interim system were pushed to higher
layers.

The first layer would support the interactive programs that reside in
ECS. We called this the ECS system. All data storage would reside in
ECS, while access to the disk would be provided similar to that for any
other I -0 device. I t was intended that the addition of a temporary
executive would produce our interim system. This temporary executive
(called the Bead) would ignore all protection problems.

The second layer would introduce disk files and directories. It would
convert the real disk into a collection of virtual disk files. We
called it the disk/directory system. It would also provide disk
swapping of non-interactive programs.

The third layer was to be the executive. This executive was to provide
password protection for identification of users, charge accounting and
convenient commands for starting programs.

17

CHAPTER 7: ECS SYSTEM ARCHITECTURE

The ECS system was the first layer in CAL TSS. It was a complete, but
small, time sharing system. It provided a small amount of file storage,
interprocess synchronizing facilities and access to physical 1-0
devices. (A description of the ECS system, written during an early
period of the project, appears as [Ll]. A .ore detaUed description
appears in [CS,C6].)

Brtel &letcll

A program running on the ECS system ran inside a &ubprocell (protection
domain) of a procel&. Through calls on the system, it could store data
in ltle&, send signals to programs in other processes via epen' channel&
and call programs in other subprocesses of the &ame process.

\

Each subprocess had a C-U'ha list of system provided, unforgeable,
pointers to various objects, such as files and event channels. This C­
list defined the set of objects which a program in this subprocess could
access.

Each pllll&tcal 1-0 de,tce was represented by a set of fUes and event·
channels. A program could exchange data with the device through the
files, and exchange control signals through the event channels.

The ab&tract maclltle

The abstract machine implemented by the ECS system consisted of the
following 8 types of objects, and about 100 actions which could be
performed on them:

ECS files
Event channels
Processes
C-lists
Capability-creating-authorizations
Operations
Class codes
Allocation blocks

The state of each existing object was represented in some region" or
regions, of ECS.

18

The following will describe each type of object, and the kinds of
actions available. Chapter 8 will give a more detailed description of
the representation.

ECS Jiles

Files were the objects designed to hold data. Basically, a file was
just a sequence of 60 bit words. Facilities were provided for reading
or writing any consecutive subsequence of these words. In fact, files
were more complicated.

The complications were caused by the facilities we expected to provide
in the disk system. There we wanted files which were stored on the
disk, and which could be read or written as described above. Also, we
wanted a user program to be able to attach a portion of a disk file,
forcing that portion of the file to be brought to ECS and held there.
Then, when a disk file read or write was directed to that portion of the
file, the system could automatically read or write the copy in ECS.

As a means of implementing this disk system facility we proposed that an
ECS file be used to hold that portion of the disk file which was in ECS.
In order to make the interpretation of the disk file read or write
request easier, we wanted to have the attached portion of the disk fUe
in corresponding addresses of the ECS fUe. Hence we would have ECS
files which would be holding small portions of very large disk files,
but which themselves would have to be small. Thus the ECS files would
have to have many addresses that existed and many that did not,.

In order to provide this facility we divided the ECS file into blocks,
each block of equal size and holding words with consecutive file
addresses. Furthermore, since we, felt that only a small number of
blocks out of a possibly very large number would exist, we represented
the file as a tree. At the head of the tree would be a block, of
arbitrary but fixed size, containing pointers to the next level of
blocks. After a number of levels of pointer blocks, wherein all blocks
of the same le~el would be of the same power of two, would finally come
a level of data blocks. A pOinter block would only exist if one of its
descendant data blocks existed.

Actions were available to create and destroy data blocks. The
appropriate pointer blocks would be automatically created and destroyed,
as ,descendant data blocks were created and destroyed. Thus the amount
of ECS space required to represent a given file would vary with time.

At the time of creation of the file, a ahape must be given. This shape,

19

specifies the number of levels of pointer blocks desired, the sizes of
the pointer blocks at each level as well as the size of the data blocks.
In order to permit rapid computation of the ECS address of actual data
blocks, we required that the block sizes at all levels, except the head,
be some power of two. Finally, it was possible to create a file with no
pointer blocks, but in which the head block was itself a data block, of
arbitrary size. (Figure 1 contains an example of an ECS file.)

20

HEADER

(PRIMARY
POINTER BLOCK)

SECONDARY LEVEL
POINTER BLOCKS

DATA BLOCKS
(64 WORDS EACH)

STARTING
ADDRESS
(OCTAL) 230080

6100
8 D

6500

8 D

Figure 1. Example or an ECS file, with three existing data blocks and a
maximum possible size or 4608 words.

21

Ellent channels

Event channels provided the means for synchronizing programs in separate
processes, or a program and an 1-0 device. They are a generalization of
the semaphores of Oijkstra [02].

One primitive which might have been used for synchronization is a test­
and-set instruction. This has the deficiency that further primitives
are needed to permit a process to block when attempting to access a
locked data base. Also. there must be some procedure available for a
process which unlocks the data base to discover what process. if any,
should be awakened. Finally. we had no hardware test-and-set
instruction.

The semaphores of Oijkstra provide sufficient facilities to interlock a
single data base [02]. However. we felt that a major means of
communication between distinct processes, or between a process and an I­
o device, wou Id be through a sequence of discrete messages. For
example, a sequence of buffer loads could represent successive lines to
be printed by a printer.

Thus. we designed an event channel to communicate a stream of 60 bit
data items. These items could be the indices of buffers which carried a
more voluminous message.

The basic actions available for event channels included: create. send­
an-event. get-an-event, and destroy. The get-an-event action had four
versions:

A) get an event from an event channel,
if no event waiting.
At) return and so indicate. or
A2) block until one is available;

B) get an event from one of several event channels.
if no event waiting on any of them,
Bt) return and so indicate
B2) block until one is available on one of the channels.

One major problem with event channels was a restriction we imposed: the
waiting events must be recorded in a fixed region for each event
channel. (The size of this region was specified when the event channel
was created.) This imposed a maximum limit on the number of waiting
events an event channel could hold. After this point. an attempt to
send an event to a full event channel returned with a refusal.

22

This problem was helped by providing that when the last possible event
was sent to an event channel, it was automatically converted to a
special one, and the sender informed. Then, a program receiving one of
these special events had to communicate with possible senders, to
straighten things out. In general, this was moderately difficult.

There was no limit on the number of processes which could be blocked,
waiting for an event to arrive at a given event channel.

Processes

Processes were the active elements in the system; they contained
executing programs. Processes were composed of subprocesses (protection
domains, performing a function similar to rings in Hul tics) • One
subprocess within the process was designated as the root. All other
subprocesses within the process had a father, forming a subprocess tree.
Each subprocess had a name (class code, see later), a local C-list and a
map. The map translated a logical memory address into a file address.

Maps

In systems like Hultics [Dt] and TENEX [Ttl, the implementation of a map
is assisted by hardware. We had no such hardware. The map in CAL TSS
actually consisted of swapping directives. When a subprocess was to
run, it was copied from ECS to CH. Each swapping directive in the map
specified some portion of some file (in ECS) to be copied into some part
of CPl. After running, each portion would be copied back to its ECS
file.

It should be understood that the maps in CAL TSS did not give the same
facility as maps in other systems. For example, if the same portion of
a file was mapped into different regions of CH. and the running program
modified one of these CPI regions, the modification was not immediately
reflected in the other region, in contrast to systems like Hultics or
TENEX. In CAL TSS, the change would eventually appear after the
subprocess was swapped out to ECS and back in to CN. In general, this
was a fairly unpredictable occurrence.

The problem was more severe than might be apparent. It is plausible to
assume that a single subprocess would map a portion of a file into at
most one region of CPl. However, two subprocesses might independently
map the same portion of a file. As we will indicate later, both
subprocesses could be swapped into CPI simultaneously. This would lead
to precisely the problem described above. In fact, the disk-system (see

23

Chapters 10 and 11) was composed of two subprocesses, and both mapped a
common region of a scratch file. This indeed led to problems. The fix
used was to explicitly read and write the common portion of the fl1e,
thus losing the automatic benefits of the map.

Subprocess call stack

At most one subprocess of a process could be in execution at a time. A
facility was available for code in one subprocess to call a fixed entry
point in another subprocess. This would create an entry on the call
stack to facilitate a return. The called subprocess would be swapped
into C" if necessary. and begin execution at a predetermined location.
The call action would also transfer some data items from the calling
subprocess to the called subprocess, and transfer some capabilities
between their local C-lists. (Plore on this under operations.) Saving
and restoring the hardware registers was up to the called subprocess.
ECS system actions were available to save the registers in a specified
location, as well as restore them. They were not automatically saved
during the call action.

Subprocess tree

In order to facilitate the construction of debugger subprocesses, and
service subprocesses such as the SCOPE simulator and the disk/directory
system, a control relation was defined among the subprocesses of a
process. This took the form of a tree, which we called the subprocess
tree. An ancestor subprocess had complete control over all descendents.

Under certain conditions, a subprocess and a descendant could be swapped
into C" simultaneously. A program running in the ancestor subprocess
would then have direct access to the logical memory of the descendant.
The memory of the descendant would appear at high addresses within the
memory of the ancestor. "oreover, a similar relationship held for the
local C-lists of the two subprocesses, as well as the maps. (The local
C-list of the second appeared as an extension fo the local C-list of the
ancestor.)

At all times, a certain set of subprocesses within the tree, the JuLL­
path. was defined. This determined which subprocesses were to be
swapped into C". The Full-path had a fairly complicated definition,
which guaranteed that if a subprocess called an ancestor, both would be
in the current full-path, as weU as any intermediate subproc.esses in
the tree.

24

The subprocess tree was used to determine how to process errors and
interrupts. Certain conditions (such as an illegal parameter) occurring
during an action created an error. An error always caused some
subprocess to be called, which would begin execution at a special error
entry point. The subprocess to be called was determined during a scan
of the tree, starting with the subprocess in execution at the time of
the error, and proceeding towards the root. Each subprocess had an
error-mask which specified which kinds of errors it wished to process.
Upon calling a particular subprocess with an error, the corresponding
bit in its error mask would be turned off. In order to receive similar
errors later, the subprocess was required to turn the bit back on.

A program in one process could direct an interrupt at a named subprocess
in another process. (It named the subprocess by giving its class-code.)
Information was associated with each subprocess to determine if it would
accept interrupts. A scan, starting at the named subprocess and
proceeding towards the root, determined which subproces~ would actually
receive the interrupt. That subprocess was then called as soon as it or
one of its descendents was executing.

The ancestor relationship had a number of intended applications. These
included the construction of debugger type subprocesses and the scope
system simulator. The Disk system intended to make use of the facility
to perform reads and writes for portions of a file residing on the disk.

The algorithms for handling errors and interrupts attempted to prevent a
descendent subprocess from unexpectedly getting control over an
ancestor. Only an ancestor of a subprocess could unexpectedly gain
control. We saw this as a generalization of the usual monitor-user mode
facility.

Actions inuoluing processes

The basic actions of creating a new process, and destroying a process
were available. Creating a new process required a description of its
root subprocess, which included its CM field length, C-list, map, class
code and the relative location of its entry point within its central
memory field length.

One other action directly affected a remote process, sending an
interrupt to a particular subprocess within that process. Other actions
on processes directly affected the process in which the program which
called the action was running. These actions included the creation of a
new subprocess, modification of map entries and destruction of named
subprocesses. The creation of a new subprocess required the naming or

25

its father, its class code, its local C-list, the specification of the
initial contents of its map, its central memory field length and the
location of its entry point within its central memory field length.

C-lists (and capabilities)

A C-ltst was a finite sequence of capabiHties. A capability was a
system maintained, unforgeable, authorization. "any capabilities
contained pointers to the representations of system maintained objects,
such as files and event channels, and authorized some actions to be
performed on those objects.

A capability contained three components:

a tllpe,
a set of option bits,
and a "alue.

In the case of' capabilities which contained pointers to system
maintained objects, the tllpe identified the type of the object, the
option--bits defined actions authorized through this capability and the
ua 1 ue was a pointer to the object representation. For capabil1 ties
which did not cOl:'ltain pointers to system maintained objects, the type
and option-bit components performed functions similar to those
components in pointer capabilities.

In order to perform a system action, a program presented indices to one
or more capabilities within its subprocess's local C-list. These
capabilities, in turn, defined the action to be performed and the
objects on which to perform it. ,Before performing the action, the
capabilities presented were checked for proper type and suitable option­
bits. (For more details, see operations.)

Available actions provided facilities for storing capabilities in C­
lists other than in the subprocess's local C-list.These actions
permitted copying capabilities between other C-lists and the local C­
list. They also permitted an indirect specification of a capability to
be used in an action: two indices would be given, the first within the
local C·l1st to name a remote C-Ust, and the second to specify a
capability within the remote C-list. Other actions permitted the
construction and destruction of C-list.

26

CapabtI ttu-creattng-authortzation

These provided a user program with the ability to create private
capabilities. with a type different from the system provided types and
from other private types. Each capability-creating-authorization
capability specified a type which newly created capabilities would
contain. The following three actions provided the facility:

i) create a new capability-creating-authorization.
produces a capability for a capability-creating­
authorization. with a specified type never before seen.

ii) create a new capability.
requires two parameters:

a) a capability-creating-authori-zation
b) a 60 bit datum

produces a capability with all option bits on, with type
as speCified in the capability-creating-authorization, and
with the 60 bit datum as value.

iii) read a capability.
produces two words of data, containing the type, option
bits and numerical value of the value part.

Using these faCilities. a ·user- written subsystem could construct
un forgeable pointers of its own. So long as it never penmitted
unfriendly programs access to its capability-creating-authorization, it
would know that only friendly programs created capabilities of its own
type. Thus. the value of such a capability could be trusted. This
value might. for example. have been the disk address of a header for a
disk file. Furthermore, programs which used such a subsystem would have
available the protection facility of the basic system. For example,
these programs could store disk file capabilities in C-lists, and pass
disk file capabilities with reduced option bits to untrusted subsystems.

Operations

Viewed as a virtual computer, the EeS system had only one virtual
instruction. This instruction accepted a list of parameters, the first
of which was interpreted as a pOinter to an operation. A basic
operation contained two parts; a specification of the actual action to
be performed and a list of specifications for the parameters to that
action.

21

Two kinds of actions could be specified by an operation : a built in ECS
system action, or a call on a named subprocess. The possible parameter
specifications included:

datum, ,
capability of given type with certain option bits,
fixed datum,
fixed capability.
block capability and
block datum.

(The last two were only used for subprocess Calls.)

The fixed datum and capability specifications carried a value for that
parameter in the operation itself. The user' calling such an operation
never saw these parameters. One intended use for fixed parameters,
particularly fixed datum, was to distinguish between different kinds of
calls on a single subprocess. In general, the fixed parameters allow
projection of an operation.

During either a built in ECS action, or for a call ona subprocess, all
capability parameters were automatically checked for correct type, and
at least the specified option bits. If the check. failed, an' immediate
error was generated. For a call on a subprocess. all parameters were
then copied into the address space of the called subprocess, the data
into its memory and the capabilities into its local C-list.

An immediate consequence of specifying an action by pointing to an
object was the ability to control what actions were available to each
subprocess. This was a generalization of one aspect of the usual
monitor-user mode facility on actual computers, that of a restric.ted
instruction set under user mode.

F-return& (failure-return)

An ECS action. or a subprocess, could return with an F-return, distinct
from an error. In particular, the ECS system returned with F-return
when an attempt was made to reference data in a non-existent .portion of
a fUe. This F-return was processed in either of two ways. The
simplest was to reflect it to a program jump in the calling program.

Multi-leuel operGtion&

The more sophisticated use of F-returns was to make the original call

28

with a multi le"el operation. This was an operation with several
possible actions. If the first returned with '-return, the second was
automatically tried.

The major user of this feature was to be the Disk system. It would
provide a two level operation, in which the first level was an ECB file
read or write. and the second was a calion the Disk system subprocess.
Thus. a user could attempt to read the ECB version of a disk file with
this operation. If the desired portion of the file was in ECB, the
action would proceed exactly as if it were an ordinary ECB action (i.e.,
fast). If not. the ECB system would '-return, and an automatic call
would be made on the Disk system to handle the situation. This would be
an inherently slow subprocess call. Thus. an initial expensive calion
the Disk system was avoided if the data were actually in ECB, but it all
appeared as one simple action to the user.

Actions on operations

Only operations which made subprocess calls could be constructed by user
programs. The operations which contained ECB actions existed at the
beginning of the world. Actions existed for constructing new operations
which called given subprocesses with desired parameter specifications.
Actions also existed for constructing a new operation built from an old
one by adding a new level.

Class-code.s were subprocess names. They were used in constructing
operations and in sending interrupts to other processes.

As we conceived the system. each user process would contain a.
representative from each of several classes of subprocesses (e.g., each
user process would contain a representative of the disk/directory
system). We wished to construct operations which would. for all
processes. name a representative of the same class of subprocesses
(e.g.. the representative of . the disk/directory system). One
possibility would have been to name a subprocess by its position in the
subprocess tree. This would have been undesirable for three reasons:

1) It was necessary to prevent an arbitrary program from
constructing an operation that called an arbitrary subprocess
with arbitrary parameters. Hence a subprocess name to be used
in constructing an operation must be protected.

29

2) It was necessary to prevent arbitrary programs froID sending
interrupts to arbitrary subprocesses in other processes, again
the subprocess name must be protected.

3) It was conceivable that in different processes, subprocesses
designed to be called by a given operation might appear at
different positions in the tree, or might not exist at all.

A capability for a class code did not contain a pointer, but contained a
representation of the name as its value part.

Actions were available to create new class codes, to construct
subprocesses at specified points in the tree (specified by class code of
father), to construct operations which called subprocesses of specified
class code and to send interrupts to subprocesses of specified class
code.

Allocation blocls

As we shall see below, the representation of each EeS object occupied
space in ECS. It was necessary to ration this space among prospective
users. Since we expected that a single user might be associated with
more than one process, we decided to ration EeS space through a more
general entity. an allocation block.

Each EeS object, including allocation blocks, had to belong to some
allocation block. (A special root allocation block was exempted from
this requirement.) All actions that created objects required an
allocation block as one parameter. This allocation block was checked
for sufficient free space, which was then allocated to the new object.
For objects which could change size (files and processes) space was
moved to or from their allocation block.

In addition to rationing the use of ECS space, allocation blocks metered
the ECS space used by objects. This meter recorded the time integral of
the ECS space used by objects belonging to the block.

Moreover, other resources were to be rationed and metered by allocation
blocks. These were to include MOT slots (see chapter 8) and CPU time.
In fact, meters for both were installed, but rationing was never
installed for CPU time. (Also, the eventual accounting system read the
meters for ECS space-time and CPU time, but not "OT slots.)

New allocation blocks could be created, and space could be moved about
the tree of allocation blocks. A special action was implemented, to be

30

used only by the disk system, which could move space from one allocation
block to another, while the space continued to be included in the space
time integral of the first block. This permitted the disk system to
borrow space from a user and have the user continue to pay for it.

31

CHAPTER 8: STATE REPRESENTATION IN THE ECS SYSTEM

A general storage allocator provided arbitrary sized blocks of
contiguous space in ECS. With the exception of files, each ECS system
object was represented in a single block. An MOT (Kaster-Object-Table)
provided the absolute ECS addresses of the representation of each ECa
object. A capability for an object pointed to the object by giving its
"OT index.

Storage allocator

A general storage allocator was written which provided arbitrary sized
blocks of contiguous space in ECS. If no free block of contiguous
storage was large enough to satisfy a request, and the ~otal amount of
free space was sufficient, 'a compactor moved all in use block.s to one
end of ECS, and thus combined together all free blocks.

The compactor was made possible by two conventions:

i) For each block in use, there would be exactly one primary
pointer which contained its absolute ECS address, and the block
itself contained the absolute ECa. address of this primary
pointer

ii) Secondary pointers which contained an absolute address could
exist, but they would have to be accompanied by:

a) Sufficient information to recompute the absolute address
through a succession of primary pointers,

b) The count of compactions which had occurred up to the time
of computing the absolute address.

Thus, during compaction, the primary pointers could be found and
updated. Also, before following a secondary pointer, its associated
compaction count was compared with the actual compaction count. If they
disagreed, the pointer was recomputed.

Unique nallle

Each object, when created, was assigned a never before seen unique name.
(We had enough unique names to conservatively last several years of
continuous operation. These names were re-assigned after each dead
start.)

32

Master object table (MOT)

When an object was created, it was assigned a free entry in the PlOT.
This entry contained the unique name of the object and the primary
absolute pointer to the representation of the object. When an object
was destroyed, the unique name in the PlOT entry for the object was
replaced by the unique name to be used by a new object with the same PlOT
index.

The value part of a capability for an object contained the index of the
MOT entry for the object, and the unique name of the object. Whenever
the absolute address of the· representation of an object was to be
obtained from a capability, the unique name in the capability was
checked against the unique name in the PlOT entry. Thus, there was no
need to find and invalidate all capabilities for an object that was
destroyed, as subsequent unique name checks would fail.

Capabtl itll l i.st

A C-list had the simplest representation: a single block containing 2
word entries for each capability. Figure 2 sketches a C-list with one
capability for a .second C-list, and another capability for a destroyed
C-list.

33

---....... --
/'" "-

/" \ MOT

/' I
MOT UNIQUE

INDEX NAME
PRIMARY / FIRST C-LIST I

./ POINTER /

/
~--...--I/

25: 123

57: . 147

236: 513

/
/

- - ___ BACK POINTER TO
PRIMARY POINTER

147

156

"C-LIST"

57

"C-LIST"

236

-

C
S

APABILITY FOR
ECOND C-LIST

C APABILITY FOR
A DESTROYED

-LIST. (NOTE
UNIQUE NAME
MISMATCH.)

C

"­,
\

SECOND C-LIST I
• ",I

OPTION
TYPE

BITS

UNIQUE MOT
NAME INDEX

REPRESENTATION OF
A CAPABILITY

Figure 2. Example of "OT with 2 C-lists.

34

Files

Files were represented by a number of distinct blocks, one for each
existing data or pointer block. Pointer blocks cOQtained primary
absolute pointers to descendant blocks.

Euent channels

Event channels were represented in Single blocks. These blocks·
contained a fixed size buffer area for storing events that had been
sent. but not received. They also contained the head of a circular
doubly linked chain of processes which were b·locked waiting for events.
This chain was held together by "OT-index-unique-name style pOinters,
rather than absolute addresses. A single process could be on more than
one such chain if it was waiting for an event from several event
channels. There was an area in the representation of each process that
contained these chain pointers. (In general, events could be waiting
for processes, or processes could be waiting for events, but never both
on the same event channel.)

Other tvpes oJ objects

Among other objects. processes had a very complex and not very
interesting structure, while most other kinds of objects were fairly
straightforward. One item of interest was the representation of
subprocess maps. These were maintained in two forms, logical and
compiled. The logical form specified, for each entry, a file (through
MOT-index-un1que-name pOinter), file address, logical memory address.
count and read ~nlY flag. The compiled version converted these entries
to absolute ECS and C" addresses. Associated with the compiled version
was a compaction count. Thus, the compiled version constituted a
secondary form of absolute pointers.

35

CHAPTER 9: ECS SYSTEM 1-0 FACILITIES

The major consideration in the design of the 1-0 system was having the
code in the heart of the system as simple as possible. There were a
number of reasons for this, but the paramount one was to allow as much
of the system as possible to continue running, even in the face of an
error in some infrequently used or special purpose part. For example,
we wanted to be able to add code to drive special purpose 1-0 devices
without a long check out period. If most of the code for the device had
to be within the system. then a large effort would be required by system
programmers, whereas if most of the code could be part of a user's
process, then the system programmers could be responsible for only a
small interface program in the system.

Another consideration was experience derived from the SCOPE operating
system which indicated that PPUs were very feeble machines. The SCOPE
operating system depended on having large amounts of special purpose
code in the PPUs, and significant problems developed trying to fit the
code into the memories of the PPU's. Hence we felt that the more
complicated device code should be in central.

The general character of the 1-0 system was controlled by earlier
decisions, and the hardware. There had to be some sort of device
drivers in the PPUs. These would transfer data to and from buffers in
central memory. As necessary they would signal special code in the EeS
system which would transfer data to and from buffers in 'ECS. These ECS
buffers would exist in ECS files, accessable to programs in user
processes. Finally, as necessary, this special code would send and
receive Signals to and from user processes via event channels.

Under the SCOPE operating system, PPU's were assigned to individual user
programs for an 1-0 task. Each time such an assignment was done, the
appropriate program had to be loaded into the PPU from some storage
medium, usually the disk. This system had a number of drawbacks, the
worst being the time required to load the program into the PPU. As one
watched the system run, the same PPU program could be seen to move from
PPU to PPU. It seemed that much more service could have been given if
the program remained in one PPU and serviced several users. However, as
the system designers had chosen to put a large amount of code in the
PPU's, there was far more code than could fit in the 10 PPU's available.
Thus they were essentially forced to swap programs into the PPU's.

Aside from the overhead of swapping the PPU code, there was a second
reason for avoiding the style used in the SCOPE system. We expected to
have a large number of active processes. all frequently doing 1-0. In

36

the SCOPE system there were only 7 Control Points (or processes). Thus
10 PPU's could service these 7 processes moderately well, but would have
trouble with more processes.

We decided that the code in the PPUs should be simple. so that it could
be resident at all times. As a hedge we held open the possibility of
having one or two PPUs hold transient code I but this never proved
necessary. Since the code in the PPUs had to be simple. and sinca we
wanted to make all the potential uses of a particular device available
to users t the interface between central and the PPUs had to be a
logically complete description of the device. We did not want to
convert the device to some virtual device, for example we did not want
to implement the idea of files on magnetic tape within the. PPU.
Attempts to do this sort of thing in the SCOPE system had led to large
amounts of code to implement the logical constructs of files, and left
some of the features of tapes unavailable. For example, under the SCOPE
system. it would be impossible for a central program to write -in-place­
on a tape, whereas by direct control of the tape drive it is possible.

This same argument can be used to show that the same sort of interface
must be preserved between the central code and the user processes. We
wanted to keep the amount of code within the system at a minimum, and
attempts to implement the idea of files at that level could lead to the
same problems.

Thus the user process was to be presented with an interface that
presented the full logical facilities of the device. In fact these
ideas had to be modified in the face of timing constraints. It would be
impossible. for example, to allow a user process to decide exactly what
to write on the disk at each sector position. as that sector position
came by. The reaction time of a process would be too large.
Consequently, some logically equivalent interface would have to be
found, 1f possible.

The following are short descriptions of how we handled some 1-0 devices.

Teletupe 1-0 inter/ace

The multiplexor interface was designed to present each TTY as a separate
device. The TTY was run in full "duplex mode. with an echo for each
typed character. This permitted a visual check that the character had
actually been received by the computer. Wherever possible the echo was
done by the PPU itself. Logically, this echo should be provided by the
receiving process when it receives the character. The process can then
do special purpose functions, such as echoing a different character than

37

it received, or not· echoing at all. These ·functions are useful when
interpreting non printing control characters as special signals, and
when receiving passwords. Also, the echoes can appear at appropriate
places in the output of the process.

It is desirable, if possible, to echo a character immediately after it
1s typed, since unexpected delays in the echoes are unnerving to a user
at a teletype. Unfortunately, it is very expensive to permit a user
process to echo each character as it is typed.

The PPU had tables of I break I characters, one table associated with each
TTY. If a character arrived from the TTY that was not a break character
it would be automatically echoed. If it was a break character, it would
not be echoed, subsequent characters also would not, and a signal would
be sent to the process involved. Furthermore, if a character arrived
from a TTY while ordinary output was in progress on that TTY, the echo
would be prevented and a signal for the first such character sent to the
user process. Thus· characters typed during output could be echoed, by
the receiVing process at the time it actually received them.

As characters were received .they would be packed into one word buffers
held in central memory, and a central action would only be required when
the one word buffer filled, or when a break character arrived. Thus we
attempted to hand the full duplex facility of a TTY to a user process,
and still keep the number of interactions low. Except under unusual
circumstances,·interactions with a central program would occur only once
per one word buffer. Thus the number of interactions was reduced by a
facto~ of five (the number of raw teletype characters which could be
held in one central memory word). The central progr8111 itself
transferred the words to and from a buffer in an ECa fUe, and only
interacted with the user process when that buffer was full or empty,
another reduction. (Of course, there had to be interactions for break
characters etc.)

Magnetic tape 1-0 inter/ace

A reduction in interaction rate was also attained for magnetic tapes,
but in a different manner. A single user request on the magnetiC tape
system was permitted for a series of Similar read or writes. The read
or write,s would proceed sequentially into or out of a buffer in an ECa
file, and would return a single response to the user process at the end
of the sequence. The sequence would be terminated early if an error
occurred, such as parity or end or file. The response would indicate
the reason for termination and the number or reads or writes
successfully completed.

38

Di&~ 1-0 pac~a,e

The ECS system disk 1-0 package was divided into the usual two pieces,
one consisting of PPU code and the other in central memory. It provided
the ability to read or write records starting at any sector boundary and
of lengths 64. 129, 257, or 513 60-bit words. Automatically included in
each record, invisible to the user, was the disk address of the start of
the record. This acted as a check on the disk positioning mechanism.
Also provided were buffers of these same sizes in an ECS file. Event
channels were provided to hold lists of available buffers. Up to 512
requests could be pending at one time. These were sorted by disk arm
position and starting sector. The arm was moved elevator fashion back
and forth, and upon reaching a disk position with pending requests, all
such requests, pending at the time the position was reached, were
serviced. The arm was then moved to the next position with outstanding
requests. Within a given position requests were selected approximately
in . the order of disk rotation. The algorithm used was to select a
request at some distance beyond the current-rotational position, prepare
for the transfer, check that the 1-0 request could still be made without
an intervening full rotation, then execute that actual 1-0 instrUction.
The only SUitable final check was to insist that the rotational position
be more than one sector in advance of the desired sector. For reads,
this led to choosing a request about 3 sectors beyond the current disk
position. Write requests required more preparation time than reads as
it was necessary to move the data from ECS to the PPU before the write
could proceed. This move required as much time as needed to write the
data on the disk. 1-0 requests with the same arm position and starting
sector were handled. in the order made. This was the only order
condition satisfied by the algorithm.

Sixty-four words was the maximum size record that could be written in
one sector position, allowing for two internal address check bytes. The
129 and 257 word records fit in 2 and 4 sectors respectively, while the
513 word records fit in 7 sectors. Except for the 64 word records, the
others were a power of 2 plus one, allowing one check word to be used by
the next level of the system, and still provide power of two record
sizes to the ultimate user.

To make a read request, the higher level disk system would first obtain
a slot from a slot -event channel for permission to make the request.
The disk system would then send an event, on a request event channel,
which would contain the disk address for the request, the size of the
request, an internal number to identify the response and the index of
the slot for the request obtained from the slot event channel. The
request would be stored by the ECS 1-0 system code in an internal table
indexed by slot number. These entries were chained together for equal

39

arm positions and eventually for equal starting sector. The response
would appear on a response event channel, and would contain the internal
number of the request, the index of a buffer containing the data and a
completion code which indicated if any errors had occurred. The higher
level disk system would eventually release the buffer by sending an
event containing the index of the buffer on a buffer event channel.

To make a write request the higher level disk system would first obtain
the index of a buffer from a buffer event channel, and would write the
data in that buffer. Then, as in the case of a read request, it would
obtain a slot number and send the request containing the buffer index,
slot index. internal number, disk address and size of the request. The
response event would contain a completion code, and in the event that
there were no errors the buffer would have been automatically released.
(Figure 3 diagrams the flow of events between the higher level disk
system and the ECS system disk driver described here.)

Information as to the current position of the disk arm and current
direction of motion was made available to the higher level disk system
so that most writes could be in a position expected to be serviced soon.
This. together with ,the fact that a read buffer was not assigned until
the actual read was about to start, reduced the amount of ECS space
required for buffers. It was expected that under heavy load a complete
scan of the disk might take several seconds, possibly up to 10.
However. any given block of data would be held in buffers for only a
fraction of this time.

40

DISK SYSTEM EVENT CHANNELS ECS SYSTEM
DISK DRIVER

Figure 3. Sketch of event flow between disk system code and ECS system
disk driver.

The request and response channels carry a 60 bit coded request or
response. The other channels carry indices of available items.

41

CHAPTER 10: DISK/DIRECTORY SYSTEM

The disk/directory system provided the user machine. (The EeS system
was merely intended as a tool for the production of the disk/directory
system.) Further levels above the disk/directory system were thought of
more in terms of executives than artificial machines.

Objects that existed in the disk/directory system were called disk
objects, of which the two major ones were files and directories. The
files provided a place to store data much aS,in the EeS system and the
directories provided a naming structure for the disk objects. Also, the
directories stored disk level capabilities, corresponding to the
function provided by C-lists in the ECS system. A number of other disk
objects existed and will be described subsequently.

Dhl Jiles

A disk file had the same structure as an EeS system file.
the file could reside on the disk and a portion in EeS.

A portion of
Which portion

was in EeS varied with t1me. If a read or write request was made to a
portion of the file residing in ECS, the action would proceed as fast as
if it were a read or write on an EeS file. On the other hand, if the
request was made to a portion not in ECS the request would proceed more
slowly. An action was available to attach one or more blocks of a file.
This action resulted in those blocks being moved into EeS, but
computation could proceed while the move was being made. If
subsequently the program attempted to read or write data in the attached
blocks. the program would be forced to wait until the blocks were in
ECS, and then would be permitted to continue. Thus the system
essentially provided a buffering facility. Figure 4 gives an example.

Another action that could be performed on disk files was to place parts
of them in subprocess maps. This had an effect similar to placing ECS
files in a map, portions of the disk file became accessable through load
and store instructions. One step in achieving this result was to
implicitly attach the blocks containing the mapped data, thus moving
them into ECS.

42

ECS FILE

DISK FILE

STARTING ADDRESS
(OCTAL)

1000

6200

6600

400

1000

4000

4200

4400

6200

6600

Figure 4. Example of an ECS file representing a portion of a disk file
(128 word data blocks, 8 pointers in each second level pointer block).

43

It was assumed that the total space desired in ECS by all processes
would exceed the capacity of ECS. so we intended to provide two states
for a process. swapped in and swapped out. When swapped out, those
portions of disk files being held in ECS for the process would be moved
out to the disk and the activity of the process would be suspended. We
further assumed that space required in ECS for a process beyond that
held in disk files would be very small. so that many processes could
exist in a swapped out state.

Access leus and locls

Access keys were capabilities that contained an integer. They were to
be used like keys. which could fit certain locks. Associated with
entries in directories were lists of access key numbers which acted as
locks. In order to access a given entry in a directory. one had to
present a key which fitted one of the locks on the entry.

Directories

A directory was a disk object which consisted of a list of entries.
Each entry contained a sumbolic name. an object specification and a list
of access-locls.

a) The sumbolic name was merely a sequence of characters.

b) The object spectfications could be one of three things:

i) an owned entry;

ii) a hard link. i.e •• there would be a pointer to a disk objects
not owned by this entry;

iii) a soft link. specified by a pointer to another directory, a
text name to be used for look up in that directory and an
access key.

c) An access-locl was a pair:

i) a number to be matched against an access key

ii) a set of option bits.

Each disk object. except a root directory. had exactly one ownership
entry in some one directory. Thus the directories formed the objects of
the disk system into a tree structure.

44

The access action required three arguments: a directory, a symbolic
name, and an access key. If an entry was found in the directory with
the symbolic name, the access-lock list for the entry was scanned. If a
number in the access lock list was found which matched the number in the
presented access key, then an ECS system user type capability for the
object specified at the entry was returned with the option bits
associated with the given access key number. (As described in the
chapter on implementation of the disk/directory system. the directory
system maintained private capability-creating-authorizations for
creating user capabilities for disk objects.)

The basic directory access action just described had a number of
variations. In order to reduce the length of access lock lists, we
defined a special access key, the null access key. The number in this
key occurred implicitly in all lock lists and had an associated set of
option bits," of which all others were subsets. The null access key was
accepted as the third argument only if the directory capability in the
first argument had an appropriate option bit on. A capability with this
bit on was generally only available to the owner of the directory.

If the object at the entry was found to be speCified by a soft link, a
further directory lookup was automatically made with the directory, text
name and access key supplied by the entry. The intended purpose of this
facility was to provide pointers to objects whose identity would change
from time to time.

The 1Il0dification of the access-lock list for a given entry did not
require possession of the indicated key. An ordinary datum containing
the number of the key was sufficient (in addition to a suitable
capability for the directory. of course). Thus. one user could provide
access to one of his files for a second user. without ever possessing
access to that second user's access key. The second user need only give
the number of his access key to the first user (e .g., in a written
note) •

Other actions on directories included provision for listing the contents
of a directory, creating and deleting entries, etc.

Dis~ space control

We placed the control of disk space into the directories. Rather than
have accounting blocks to control space as in the ECS system, we decided
it would be Simpler to assign disk space to the directories. When a
directory was created it was specified to be an accounting directory or
not. Whenever disk space was needed to create or enlarge a file or

45

other disk object, the disk tree was scanned starting with the object
and moving towards the root directory until an accounting directory was
found. This accounting directory was then checked to see if it had
sufficient available space for the action intended, and if so, the
available space was reduced. (To save time. a pointer was placed in
each directory to point back to its associated accounting directory.)

Each user was assigned an accounting directory and given space in it.
The user could build as large a tree as he desired from this directory.
within the limits of the space he was given. He could even create
subuser directories. Using this mechanism we could delegate the
authority for making user directories to individual departmentsot the
university. thus reducing the clerical work ot the computer center.

Name-tags

No facility
directories.

was provided for entering ECS system objects into
In fact, the underlying ECS system was destroyed daily and

recreated the next day. Thus it was impossible to conceive of a
directory containing ECS objects. As a way around this difficulty, two
types of disk objects were provided. static and dynamic name-tags.
Name-tags could be associated with ECS system objects, and actions were
provided to obtain a capability for the object associated with a given
name-tag. Static name-t"ags always referrred to the same (or isomorphic)
ECS system objects; and dynamic name-tags could be associated with
arbitrary ECS object~ by user programs. (In fact. the a~sociation was
with capabilities, hence not restricted to ECS objects.) Elaborate
conventions were required by the user programs to make sure that the
dynamic name-tags were in fact associated with appropriate ECS objects,
since the association was destroyed daily.

The system used name-tags to provide directory entries for the ECS tiles
and event channels associated with 1-0 devices. During each system
startup. the appropriate associations were reconstructed.

Subprocess descriptors

A facility provided by the directory system for use by the higher levels
of the system was that of subprocess descriptors. There was a need to
construct a subprocess within a users process, at the request of a user,
which had access to capabilities not available to the user. One purpose
of this was to provide for actions which manipulated objects within the
system to which the user could not be given direct access.

46

A subprocess descriptor was simply a capability for a directory, but
with a different type. An action was provided to the higher levels of
the sYstem, not made available to the users, which could convert this
capability into a directory capability. One of the actions to be
provided by a higher level of the system was to take such a capability,
convert -it to a directory capability, look up a special name within the
directory, take the resulting capability to be that of a disk file; and
interpret the contents of that disk file as a description of a
subprocess to be built within the users process. Part of this
description would be text names. During construction of the subprocess
(done by the command processor, see chapter 13) these names wou ld be
looked up in the directory defined by the subprocess descriptor, and the
resulting capabilities were placed in the local C-list of the new
subprocess.

It was expected that a user would actually want to look up a name in a
sequence of directories (e.g., first a local directory associated with
his current process; second, a directory containing files that live from
session to session and third, a system provided directory containing
generally available subsystems). In order to automate this procedure,
we introduced the idea of a scan list. This was simply an ordinary C­
list in which the capabilities alternated between directories and access
keys. An action was provided by the directory system which would accept
two parameters, a text name and a C-list. The directory system would
assume the C-list was in the form of a scan list, and look up the text
name in the successive directories contained in the C-list, and check
against the associated access keys. An error was returned if the
directory system did not find a capability for a directory or access key
when appropriate.

47

CHAPTER 11: IMPLEMENTATION Of DISK DIRECTORY SYSTEM

The disk/directory system was composed of a number of components. These
included three subprocesses within each user process, a number, of
special processes, and some miscellaneous packages for startup and
shutdown.

Di~~-directoru &u&tem code within a u&er proce&s

The disk/directory system implemented a two level virtual machine on the
ECS system. The two levels were the disk system and the directory
system. The disk system implemented the concept of disk files, which
the directory system in turn used to implement directories. The
original purpose for this division was to modularize the implementation,
and make debugging easier by isolating the problems. A later intention
was to combine the two layers once the system was debugged, but 'this
point was never reached.

The disk system consisted of two subprocesses within each user process,
and a number of ECSsystem processes, invisible to the user. (The user
process tree is described in chapter 14, • A Short Tour of a User
Process·.) One of the two subprocesses within the user process was
intended to handle F-returns on disk file read and write requests, that
is, reads and writes directed to portions of files not currently in ECS.
This subprocess was placed in the tree so that it would be in the full
path of, any subprocess causing such an F-return. Thus it had direct
access to the core of the requesting subprocess. Because the entire
full path had to be capable of residing in central memory, any
subprocess in the full path of a, user subprocess reduced the maximum
possible size of that user subprocess. Therefore, much of the disk
system code was placed in a second subprocess which sat off to one side
of the users full path.

Special austem procea&es (non uaer proceaaea)

There were three kinds of special processes. The first kind handled the
interpretation of responses from the ECS system disk 1-0 code. These
responses were sent by the ECS system to a single event channel. (We
did not want the ECS system to haye to know about the many user disk
processes.) In or.der to send a response to the process originating the
request, an intermediate process examined the response to determine
appropriate further processing. If necessary. an event would then be
sent on an event channel looked at by the originating process.

48

A second kind of special process initiated disk 1-0 for such functions
as closing files. File closing was a two step procedure in which all
blocks except the header were first written to the disk. When these
writes had been successfully completed the header was written. Since
the modified pointer and data blocks were written at new locations on
the disk, the effective disk version of the file showed no change until
the header itself was written. Thus the disk representation of the file
was always a good disk file. This procedure took time, and it was
desirable to permit the user process to proceed with other business.
Hence a speCial process performed the step by step procedure.

The third kind of special disk system process controlled the total disk
space allocated to particular user directories. The information about
space held by these directories was all held in one disk file, and
maintained by this special process. This process had in itself a disk
system which treated the special tile just as any other disk file. For
historical reasons this process was a part of tha disk laval and
accapted commands from the directory leval.

Disk lile copobilities

From the the ECS system's viewpoint, a capability for a disk file was a
user type capability. The capability-creating-authorization for these
disk file capabilities was retained by the disk/directory system and not
made available to the general user. To open a disk file, a user program
presented to the disk system a capability for a disk file. The disk
system read the data part of the capability to obtain a disk address 'and
unique name. Since there was no way user programs could fabricate such
a capability, the disk system knew that the disk address and unique name
had been put there by itself. As a final check during the open
operation, the disk file header was read from the given disk address and
checked for the given unique name. This was necessary because the file
might have been destroyed, and that disk address used for some other
purpose. These disk system unique names were distinct from the ECS
system unique names. A different one was associated with each disk
file. The contents of the files were dumped to tape each night and
reloaded the next morning. During reloading, new disk fUes were
created to hold the old contents, and consequently unique names were
reassigned. Thus the unique name of a file differed from day to day.

Director, s,stem directories

ECS capabilities for disk files were created by the directory system.
The directory system was implemented as a single subprocess within a

40

user process. The directory system maintained each directory in a
s1ngle disk f11e. Directory capabilities were another special kind of
ECS system user capability, for which the capability-creating­
authorization. was retained by the directory system. These directory
capabilities contained the same information in their data parts as disk
file capabilities, but since they were of the wrong type they could not
be used as disk file capabilities by user programs.

Dvnamtc name-tag&

The only form of name-tags actually implemented were dynamic-name-tags.
(The desired effects of static name-tags were obtained through the use
of dynamic name-tags.) A dynamic name-tag was represented by a unique
name, carried in the data part of, a capability. A hash table,
maintained in an ECS file by the directory system, provided an index
into a C-list, private to the directory system. This C-list contained
the capabil1t1es, if any. currently associated with each dynamic name­
tag.

51

CHAPTER 12: A CONSISTENCY PROBLEM FOR DISK FILES

We made three decisions early in the deSign of the system, which
together, had unforseen consequences. These were:

1) The current version of some portions of a disk file may be in ECS,
with no copy on the disk (e.g., attached blocks).

11) After a crash, we must be able to restart the system using only
data on the disk. (It was felt that the structures in ECS were
probably too fragile and complicated to reconstruct after a crash.
Also, one of the more frequent causes of a crash was failure of
ECS.)

lii) Vital information, necessary to the integrity of the system, would
be' stored in disk files. This included directories, with access
control information, and the system accounts. (Once disk files
had been invented, we saw no reason to invent other disk storage
facilities.)

The resulting problem was that the contents of a file after recovery
from a crash may not be the same as before the crash. Moreover, it is
conceivable that they may not represent the contents at tlnll previous
time (1. e., one portion may represent the contents of a different
previous time from another portion).

Initially we felt that this would just be -tough luck- for some
unfortunate user, and it was his responsibility to maintain backup
facilities. Unfortunately, we forgot deciSion iii) above.

We eventually found a way around the problem. described below, but it
greatly increased the system overheads involved in the maintenance of
the system accounts.

'The problem

The current contents of a given disk file are defined by data residing
at many different locations in the physical machine. Some data is on
the disk. some data is in ECS and some data may be in CM. In order to
completely restore the contents of a disk file after a crash to the
contents immediately before the crash, all of this data must be
available.

We made the somewhat arbitrary decision to ignore the data in CM and ECS

52

during crash recovery. This decision was motivated by three
considerations. First, it was easier to write a recovery procedure that
relied solely on data stored on the disk. Second, a more complicated
procedure must include a procedure depending only on the disk, in the
event that data in CPI and ECS proved inconsistent. Finally, we felt
that in most crashes the data in CPI and ECS would be unreliable, thus we
must be prepared to recover from the disk alone.

It is conceivable that the system could have been designed so that the
data on the disk represented a "snapshot" of each file, taken by request
of a user program. (That is, make sure the disk version of the file
correctly represents the current contents.) At one time during the
design we attempted to do this. However, we decided that it was
wasteful of disk space. Consequently, the system took snapshots from
time to time, unpredictably. Moreover, these snapshots only included
data in ECS, they excluded data in CPl. Thus, a snapshot might include
some changes to the file made later than other changes which were not
included, if the earlier changes were still in CM.

In an attempt to ,ermit a program whic~ was using disk filas to prctact
itself over crashes, we provided an action that forced a snapshot. At
the completion of this action, the data on the disk would be a faithful
representation of the file. (This was true only if all data
representing the file was in ECS or on the disk,. and no other program
was modifying the file.)

The problem will also occur in other sustems

In other systems, if we assume that the contents of a file will be
represented by data at many locations within a physical machine, and
that some of these locations will be unavailable after a crash, then
there will be a similar problem. At best, the system may offer
snapshots that are under complete control of the user. However, if a
user has a data base stored in more than one file, after a crash these
files will contain snapshots taken at different past times.

Consequences oj the problem

A using program is not interested in the bits stored in a file for
themselves, but generally uses them to represent some useful logical
structure. For example, an accounting program may intend to update a
number of accounts to reflect a sequence of transactions. The data in
one or more files may represent the state of the accounts, how much
money each has, while another file may represent the sequence of
transactions, "move so many dollars from one account to another-.

53

If this accounting program took no precautions, and a crash occurred
while the accounts were being updated. the contents of the represented
accounts after recovery will have no predictable relationship to the
contents before the crash.

A simple solution would be to have backups for all the files, and return
to the backups after a crash. There still remains the question of how
to identify which files are current. If this information is maintained
in files (where else?), and a crash occurs while it is updated, chaos
may still occur.

If the accounting records are extensive, and the transaction file is
long. it may be too expensive to maintain a complete' backup of all
accounting records while the transaction file is processed.

A .solution

The solution we chose was to prescribe a careful, multistep method for
making changes to files. In essence, one first writes one's intentions
into the file. then carries them out. and finally removes the
intentions. The idea is to arrange things so that 1f a crash occurs,
the disk version of the file will appear to have either no changes, or
all of the changes. This is accomplished by an argreement, among aU
programs that maintain the file. to perform any changes to the file that
they find recorded as intentions.

The recorded intentions must satisfy a number of conditions. It must be
possible to repeat them. even if they have been partially, or
completely. carried out; leaving the file in the intended state. (A
simple list of file addresses with intended new contents would satisfy
this condition.) After a crash. the file must not have a partial list of
intended corrections. (A flag that signifies the presence of intended
changes will satisfy this condition, if it is not turned on until the
entire list of intended changes are guaranteed to be in the file.)

The algorithm for making changes is:

i) lock out other programs from the file (or files).
ii) If the bit signalling the presence of intentions is off, go to

step vii).
iii) (A crash: has occurred, we are now recovering.) Perform the

intended changes.
iv) snapshot the file(s).
v) turn off the intentions bit.
vi) snapshot the file containing the intentions bit.
vii) read the file(s) to determine the desired changes.

54

viii)

Ix)
x)

xi)
xii)
xiii)
xiv)
xv)
xvi)

write a list of intended changes at some known place in the
fUe(s).
snapshot the file(s) containing the list of intended changes.
turn on the intentions bit.
snapshot the file containing the intentions bit.
make the changes.
snapshot the changed file(s).
turn off the intentions bit.
snapshot the file containing the intentions bit.
unlock the file(s).

Discussio"

Various simplications of this algorithm are possible in special cases,
but I believe that in the most general case, all of the snapshots are
needed. If the list of intentions all appear in one file block, so that
the entire list is either present or not after a crash, then it is
possible to dispense with the intentions bit. If all changes will be in
a single file. as well as the intentions list, and the system will
guarantee that all' of the contents of a file after a crash did exist
simultaneously at some time before the crash, then all snapshots except
step xv) can be removed.

It should be noted that the logical state represented by the f11e(s)
changes at step x), but if a crash occurs before step xi) is completed,
the representation may return to the old logical state.

Final1y. snapshots require a significant amount of real time. Disk
operations must be started, and completed. Some of the vital
information (e.g., user accounts) in CAL TSS was ma1nt~ined using a
simplified version of this algorithm. and this contributed to our system
overheads.

55

CHAPTER 13: COMMAND PROCESSOR

The final level of the system, the conunand processor, was construc.ted
under strong time pressure, and was difficult to view as an artificial
machine. It provided a large assortment of functions, mostly determined
by the fact that no previous level had provided these functions.

Some of the functions included at the command processor level were octal
debugging, subprocess construction from subprocess descriptors, teletype
line editing. looking up of compound names in a number of directories,
money accounting on a user by user basis and pass word protection for
entry to the system.

Octal debugger

The octal debugger permitted the inspection of the contents of disk
files by name and address, and the modification of those files. It
permitted the inspection of the contents of the core of an interrupted
user subprocess and the modification of that core. It also permitted
the inspection of the C-list of such a user subprocess and the
modification of that C-list. It permitted the examination of
directories by name and the modification of those directories, as
permitted by the capabilities obtained from the names. It permitted the
interruption of a running subprocess by hitting certain keys on the
users TTY. I t also obtained control over a user's subprocess if the
subprocess committed an error and did not catch the error itself.

Subprocess construction

A general facility was provided for constructing a subprocess from a
description in a given file. This description contained such
information as entry point address, size of a scratch f11e, names of
files to be used in map entries, etc. Various conventions were used to
determine in which directory to look up a name.

A special case of this facility accepted as input a subprocess
descriptor (as described in chapter 10 ,-The Disk/Directory System-).
The command processor had had access to the action which converted the
descriptor to a ,directory. The cOlIIDand processor then looked up a
special name in the resulting directory, obtaining a file which it
processed as above.

56

TTY line collector

The original intention in the design of the system was to permit the
user to construct his own 1-0 interface routines, if he so desired.
Owing to the time pressures we were never able to implement some of the
features necessary for this, and even so we would still have had to
supply standard interfaces for the user who desired them. For these
reasons we supplied a standard subprocess in all user processes which
collected characters from the TTY and transmitted characters to the TTY.
The program in this subprocess normally collected a complete line up to
a carriage return before returning to the caller. This program had a
fairly sophisticated built in editing routine that permitted copying
portions of a previous line, skipping portions of a previous line and
replacing portions of a previous line. These functions could be
controlled on the basis of the characters in that line, for example,
skip up to a given letter. These functions were controlled by the
control keys on the TTY, and were arranged in a simple regular pattern
on the keyboard. For the purpose of editing lines already existing in
files, a subprocess could call the line collector with a line' to be
edited as if it had been a previous line.

Naming

Obtaining an object by name within our system was somewhat complicated.
There were two general reasons for this. First, we had a multiplicity
of directories. and a user was generally confronted with at least th'ree
of them. Second. we tried to minimize the access a subsystem was given
to a user's permanent directory.

A user was confronted with at least three directories. There was a
directory which contained publicly available system provided subsystems
(system directory), such as the editor, SCOPE simulator and a printer
driver. There was a directory which contained the users files which
lived from session to session (permanent directory). Finally, there was
a directory which contained temporary files associated with his current
logged on teletype (temporary directory); such as scratch files
containing the memory of subsystems he was using.

It was necessary to maintain both a temporary and permanent directory
for two reasons. First, two teletypes could be logged on under the same
user name. Thus, they would have access to the same permanent user
directory. A directory associated with the teletype was necessary in
order to prevent naming conflicts among temporary files constructed by
subsystems. Second, we associated disk space control with directories.
Due to the limited amount of disk space available, it was necessary to

57

severely limit the space occupied by files that lived from session to
session. On the other hand,some subsystems required an enormous amount
of temporary file space while running. Thus, the users permanent
directory was provided with a small amount of space, while his temporary
directory was provided with several times that amount of space.

In general, whenever a name was presented to the system to be looked up
in directories, 1t was intended to be looked up first in the temporary
directory, then the permanent directory and finally the system
directory. That is, try the most local scope first, and then try larger
and larger scopes. In order to automate this, these three directories
lter~_-P.laced in a scan list.

Since a scan list was merely a C-list, if this scan list was provided to
a subsystem, that subsystem would have access to the directories
contained in the list. If those capabilities were strong enough, the
subsystem could list all the names occurring in the directory, and using
those names, delete all the files. We had a vision of a run away
subsystem destroying, in a few seconds, all of a users permanent files.
Also, it was necessary to provide some name look up facility to
subsystems, e.g., for use by assemblers with facilities to include text
in other files named by the one being assembled.

In an attempt to prevent this somewhat unlikely catastrophe, while
pr~viding a name look up facility for subsystems, we provided two scan
lists, one weak and one strong. The strong one would be used in
respo~se to commands typed on the teletype, while the weak one was
supplied to the subsystems.

Passwords and accounting

The command processor supplied the entire password and money accounting
portions of the system. The logon procedure required a user to name a
permanent directory. This permanent directory contained a system
pointer to a user profile maintained by the command processor. This
profile contained, among other things, a password. The user was
requested to type in a password and this was checked against the
profile. If it matched, the logon procedure was permitted to proceed.
Once logged on. the user could change his password via a special command
available in the octal debugger. At the end of a seSSion, the command
processor could examine the various totals of space time and CPU used by
the process, convert these to dollars and subtract the result from a
running balance maintained in the profile. A user who had
subdirectories which were also permanent directories could transfer
funds to and from those directories.

58

Each permanent directory profile contained permission to construct a
certain number of descendent permanent directories. This permitted the
administration to construct one permanent directory for a class and let
the instructor construct the necessary student permanent directories
under the class permanent directory.

59

CHAPTER 14: A SHORT TOUR Of A USER PROCESS

The subprocess tree of a user process contained 9 system subprocesses,
one initializing subprocess that destroyed itself after starting the
process, and one or more user subprocesses. The following is a list of
those subprocesses with a brief statement of their function. (See
figure 5.)

Root

All subprocess trees had a root. Instead of having a functional
subprocess for a root we had a very tiny (72 words of CK, all shared)
subprocess which could catch disastrous errors in the sys'tem
subprocesses for later analysis. It also contained some code for the
final destruction of the user process.

BuUder

The Builder was a transient subprocess that constructed the system
portion of the subprocess tree. It was guided by a descriptor file
which described the subprocesses to be constructed, and their location
within the tree. Files to be used in the subprocess maps, and
capabilities to be placed in"their local C-lists were specified by text
names. The bUilder searched a global list of names for each text name
supplied. A global C-list contained a capability corresponding to each
position in the global name list. This was essentially a linking
operation, similar to that provided by a linking loader for user
programs in many systems. After constructing the system subprocesses,
the BUilder destroyed itself and started the appropriate system
subprocess.

Falte bead ghost

The BEAD GHOST subprocess (described later) was provided for aiding in
the debugging of user subprocesses. The Fake Bead ghost was a stripped
down version installed to provide debug facilities for the system
portion of the process.

Dislt F-returft read .rite

This was a disk system subprocess which would be in the full path of any

60

user subprocess requesting disk actions. It performed the actual read
or write of the data in the user subprocess address space.

Di~1t.

The disk subprocess contained the main body of the disk system code
residing in a user process. It was placed out of the full path of a
user subprocess so as to increase ~he maximum C" field length available
to the user subprocess. This was necessary since all subprocesses
within a full path must be capable of residing in C" simultaneously.

\

Directorll

The directory subprocess contained directory system code. It provided
all directory system services for the user.

Bead Seruice.s

An interim monitor available in 1969 and '70 had been called the Bead.
We felt it necessary to continue the services provided by that monitor
and placed the necessary code in this subprocess. Also, Bead Services
supplied a number of specialized services for the co_and processor.
such as recording charges against a users funds.

Bead ghost

This was a subprocess placed in the full path of the user's subprocess
to provide debugging facilities, and an interface to Bead Services.

TTY line collector

This subprocess pro~ided a standard interface to a user's teletype .. It
collected single lines, and output single lines. It contained an editor
for correcting a typed line before it was transmitted to the using
program. (Thus typed input for all programs could be corrected in a
uniform manner.) As an option, it allowed operations 1n units smaller
than single lines.

61

CI'fI'fD

This subprocess contained the command processor and debugger. It
provided complicated naming conventions beyond those provided by single
directories. It provided facilities for calling named programs. It
provided commands for access to user programs being debugged. It
provided general sy~tem services such as construction of new user
directories and transfer of resources from one user to another.

User

This was the location for a user subprocess, if one existed. Any
further user subprocesses would have this one as an ancestor.

62

----1_- FATHER POINTER

- - -- FATHER· POINTER OF
NON-PERMANENT

SUBPROCESS

,,- -
~

I \
\

I USER I
\ /
"--~

" " " " "

Figure 5. The subprocess tree of • user process.

" " " "

63

CHAPTER 15: DISCUSSION

Part Three discusses how the ideas mentioned in Part One worked out.
This chapter presents an overall summary, while subsequent chapters go
into more detail on some of the issues.

Disappointments

As with many other operating system projects, the system we actually
constructed disapPointed us in several ways. It was larger. slower and
considerably more complicated than we expected. It has been difficult
to explain why this happened, although one possibility is that our
expectations were too naive. Chapter 17 details the external
manifestations of these problems.

The fundamental ideas

The fundamental ideas of Chapter 4 naturally divide into two groups:
those with which we were satisfied, and those with which we were not.
The ideas which worked out well were:

The concept of an abstract machine,
Capability based protection,
Processes.
Layered implementation.
Uninterpreted 1-0 devices.

The unfortunate ideas were:

Mapped address space,
Distributed system code.

Probably the worst disaster of the project was to attempt to implement a
mapped address space on an unsuitable machine (i.e.. no mapping
hardware). Also. distributed system code turned out to be considerably
more difficult to design than we anticipated. leading to some very
complicated and not very well understood programs. These problems are
more fully discussed in Chapters 20 and 21.

The concepts of an abstract machine and capability based protection so
permeated our thinking that it is impossible to conceive of the project
without them. They provided the essential framework supporting all of
our design work. These ideas are explored more fully in Chapter 16.

64

The ECS system was the cleanest realization of these ideas.
Unfortunately, as implemented, the computation cost of an ECS system
call (virtual instruction) was higher than we anticipated. Chapter 18
explores improvements in the implementation which would have
substantially reduced this cost, while Chapter 19 proposes hardware
modification to the CPU which would further reduce the cost.

Support Jor $pectal user leuel programs

All of the special purpose programs described in Chapter 5 were
supported as intended. The SCOPE system simulator ran as the first user
level subprocess, with its user as a direct descendent. The ECS system
contained a special feature which generated an error whenever cell 1
within a subprocess field length became nonzero. (This is the form of a
user call in the real SCOPE system.) The SCOPE simulator subprocess
intercepted this error, and when called, the user subprocess would be in
its Full Path. Thus the SCOPE simulator would have direct access to the
user program's memory.

The debugger (most of which existed in the command processor) gained
access to the local memory and C--list of a subprocess through the Bead
Ghost, a small subprocess which was the immediate ancestor of the user
subprocess. (As in the case of the SCOPE system simulator, this access
was provided by the Full Path.)

Both the SCOPE system simuloator and the debugger gained access to a
subprocess local data through the Full Path. I feel an alternative to .
the Full Path was desirable.

The full path was a device which would permit the memory of a
subordinate program to appear as an extension of the memory of a more
powerful program, e.g., a user program running under the SCOPE simulator
or the subject program of a debugger. An unexpected effect of the full
path was to force an unnatural division of system programs into two
parts, one which had access through the full path to a subject program,
and a second larger part which did not.

Actual references to the memory of the subject program were infrequent,
and would have been adequately supported by a special virtual
instruction. In fact, the division of system programs into two parts
could be thought of as an attempt to simUlate such an instruction.
However, the map facility made such a virtual instruction difficult to
implement directly in the ECS system. In Chapter 20 we discuss other
problems with the address map facility, and propose an alternative.

65

CHAPTER 16: A SUCCESS

The most successful aspect of CAL TSS was the concept of an abstract
virtual machine with abstract objects referenced by capabilities. This
success manifested itself in a number of ways:

It provided a unified conceptual framework.
It provided an easy to understand protection mechanism.
It provided modularity with clean interfaces.
It resulted in an almost error free ECS system.

UniJied conceptual framework

The basis for all of our design work was the concept of a set of
objects, each of which can be accessed only through a small set of
primitives. Any design proposal was implicitly expected to consist of
three parts:

i) an abstractly specified set of states for an object,

ii) a set of primitive actions on the object and their effects on
the states,

iii) a representation for the states.

The concept of C-list combines and generalizes a concept which appears
in many operating systems, that of a list of entities which a process
may reference. For example, consider TENEX [Tl]. Associated with each
job is a list of files which processes within that job may access, while
associated with each process is a list of processes which may be
referenced. Neither of these lists provides the full power of a C-list,
and presumably they are managed by entirely separate system routines.
Within CAL TSS, there are no explicit lists of this kind. Rather, they
are implicitly represented by the capabilities that appear in the local
C-lists of the user subprocesses.

Furthermore, associated with each process in TENEX is a set of
·capabilities· (binary flags) which control which system calls are
permissable for the process. The same control in CAL TSS is provided by
controlling which operations (accessable only through capabilities) are
available to a particular subprocess. This is possible since the only
operations available to a subprocess are those in its C-list, and in C­
lists accessable to. the subprocess.

66

Ea$U to under$tand protection

In CAL TSS, all protection is founded on one idea: possession of a
pointer to an object· (capability) grants access to the object as
specified by the pointer. Two subprocesses within a single process have
different access rights because they have access to different sets of
pointers. In general. access rights are transferred from program to
program by moving pOinters.

Access keys and locks are a somewhat different mechanism. However, they ,
are implemented using the capability machinery, and possession of a
capability for an access key is necessary to open a matching lock.
Furthermore, even though an object in another directory may have a lock
matching a given user's access key, the user must explicitly obtain a
capabili ty for the object (using his key) before he can access the
object.

A capability based protection system seems to provide features that are
difficult to obtain in other systems, such as "uIUcs. Two such
features seam to be;

1) The ability to provide for mutually suspicious subsystems within
the same process;

2) The ability for new layers of system to be constructed, which
provide new virtual objects, and permit protection for these
objects to be controlled using the same machinery as used for more
basic objects.

CAL TSS provides for mutually suspicious subsystems simply by placing
them in subprocesses neither of which is an ancestor of the other. One
of these subprocesses may touch objects accessable to the other only
through parameters passed in a call. or with the assistance of a common
ancestor subprocess (presumably a trustworthy bystander).

The addition to the disk/directory system of the ability to construct
"user" disk/directory system types would have made it possible for new
system layers to construct new types of virtual objects. (This facility
was provided by the ECS system, and was used by the disk/directory
system to provide disk/directory objects. It is a quite simple feature
to implement.) Since capabilities for these new type objects could be
placed in directories. access to them could be controlled in exactly the
same ways as access is controlled to disk files and directories. (for
example, this feature would have permitted nametags to be implemented by
system code written upon the disk/directory system, rather than directly
implemented in the disk/directory system.)

61

Modularitu with clean interfaces

The user' I s program views an abstract object through a small number of
functions which modify the state of the object. Any changes in the
algorithms used for these functions, or the internal state
representation, are not directly visible to the using program. Thus
only a small number of programs depend on the internal state
representation, and they can be collected together in a single module.
This is very similar to the form of modularization proposed by D. L.
Parnas [P1].

It resulted in an almost error free ECS sustem

During the last three months of operation an error report was made for
most system crashes. An examination of reports, 18 in all, showed one
crash for unknown reasons, three for suspected hardware causes, and the
rest identified as high level system errors (disk/directory system or
command processor). During this period the system was run for at least
8 hours each working day, with a fairly continuous load of several
users. Even if the one unknown and three suspected hardware crashes are
attributed to the ECS system, I feel that this represents an excellent
record.

The system change log for the last six months of operation records 41
system modifications, of which 1 contained changes to the ECS system
proper. and 6 contained changes to the 1-0 drivers. Only 4 of the 1
changes to the ECS system proper were for repairing errors. The others
were for adding new features or changing assembly parameters.

69

CHAPTER 17: SOME DISAGREEABLE FACTS

As with many other operating systems, the system we actually constructed
disappointed us in several ways. In particular, it was large, slow and
difficult to use. This chapter surveys most of our disappointments. It
must be kept in mind that this is a description of the results of the
first implementation of the system. Other systems, notably Multics,
have had many rewrites which greatly improved their performance. We
feel the same could be expected for CAL TSS. and in the next chapter
some immediate improvements will be suggested.

A major problem for this description is the lack of detailed
measurements of system overhead, either in memory space or CPU time.
This is due to the very strong pressure we felt towards producing a
working system. We assumed that once we had a system up and working, we
could then analyze the system, look for trouble spots and clean them up.
We never reached that stage of development.

Large

The system was large in a number of ways. First, it occupied a large
amount of central memory, thus reducing the available field length for
the user.. The ECS system, together with 1-0 buffers, required about 7K
words (lK = 1000 base 10). The process descriptor together with the
subprocesses in the path between the user subprocess and the root
required another 4K words. On our 32K machine, this left about 21K
words for the user. Furthermore, a user of the SCOPE simulator was
penalized another lK words, leaving him about 20K words .. This last can
be compared with the real SCOPE operating system, as run at U.C.
Berkeley campus computer center in 1971, which occupied 12K words of
C. ft. On a 32K machine this also would provide a single user with a
maximum of 20K words of central. Thus, in some absolute sense, the
SCOPE system preempted as much CM space as our system. However, the
SCOPE system was run on a machine with 64K of CM, while we had only 32K.

Second. the system has a fixed overhead in ECS of 140K words. (Almost
half of the available ECS.) This overhead was composed of system code
and tables. Most of the space seemed to be occupied by the disk system,
but we never had a chance to do a detailed accounting. It was fairly
clear that the ECS system accounted for a fairly small fraction of this
overhead. and most was due to higher levels of the system.

Third, there was a per process overhead in ECS of about 10K words. This
figure was better understood than the fixed ECS system overhead and was
expected to decrease. It was composed of two major parts:

70

i) about 3K was consumed by the local C-lists and storage for the
8 system subprocesses, along with the space necessary to
define the process structure and provide a subprocess call
stack,

ii) about 7K was used to provide an ECS image of portions of disk
files attached by the process.

It is probable that the implementation of process swapping by the disk
system would have reduced this per process ECS overhead to around 3K
(only "swapped-in" processes would require the 7K for ECS images of disk
files). Further reductions would have required a redesign of some
portions of the system. Even without process swapping, various
developments under way at the termination of the project would have
reduced the overhead, possibly by as much as 4K, leaving a 6K overhead.

Thus, since only 300K of the 500K ECS was available for the system (the
rest was dedicated to the computer center's batch system), at most 16
user processes could exist, even if they were idle. Process swapping
would increase this to around 50.

Slow

A user perceived the system as slow in at least two ways. The first was
during the execution of a moderate size program. For example, a typical
50 page assembly on CAL TSS, using the CDC assembler running under the
SCOPE simulator. required about two and one half times as much CPU time
as under the real SCOPE system. The second was .the time required to
start a program. For example, with no other users on the system it
required about 15 seconds of real time to start the SCOPE simulator,
assemble a null program with the assembler and return.

The major contribution to the system CPU cost for running a program was
from disk file 1-0, either explicit file reads and writes, or implicit
via placement in map entries.

Shortly before the termination of the project, a small test program was
written to investigate the disk file 1-0 speed problems. This program
read data from one file, did a small amount of computation, and then
wrote data onto an output file. It wrote as many words as it read, and
computed for about 50 microseconds per word. This test program was able
to maintain a transfer rate, to and from the disk, of about 6K words per
second. (A similar program, running alone on the real SCOPE system,
could transfer about 10K words per second. Due to disk conflicts on the
real SCOPE system, two such programs running simultaneously could
maintain a combined rate of less. than 5K words per second.)

71

This test program was run only a few times, and gave results varying by
almost a factor of 2. Due to the termination of the project, no
improvements on these numbers were obtained. Hence, the figures in the
following discussion are very approximate.

The system CPU costs for the test program run under CAL TSS were over 70
microseconds per word. (Hence, the high CPU costs for running under CAL
TSS.) These CPU costs were caused by the computation necessary to move
each data block to or fr.om the disk. (This corresponds to the
computation to move a page in other systems.) This amounted to
approximately 15 to 25 milliseconds per block, divided about as follows:

1/4 millisecond

2 milliseconds

4 milliseconds

12 milliseconds

ECS system time on behalf of user (ECS system
time spent moving data between ECS and C", in
response to user program requests)

ECS to C" swap time (ECS system time spent
swapping process memory between ECS and C".
Principally during disk system calls from user
code, and when the process blocked waiting for
disk 1-0 to complete.)

non ECS system, system time (Time consumed by the
disk system, viewed as a user program running on
the ECS system.)

ECS system time, on behalf of disk system (Time·
consumed by the ECS system in response to
requests from the disk system: principally
general -book-keeping- by the disk system, and
sending disk 1-0 requests to the ECS system disk
driver.)

The total ECS system time required to communicate with the ECS system
disk 1-0 driver adds up to about 3 milliseconds. The rest of the ECS
system time occurring on behalf of the disk system (about 9
milliseconds), must be bookkeeping overhead within the disk system
itself. Other information indicates that about half of the disk system
ECS system time was spent on event channel sends and receives and half
on ECS file reads and writes. (We eventually expected to reduce this
cost by giving the disk system direct machine instruction access to a
portion of ECS, which would have reduced the ECS system time to about 6
milliseconds. See Chapter 18.)

One final remark on this test: the test program called on the disk
system only once per 16 blocks of data. If it had called once per

72

block, the overheads would have probably been substantially higher.
(Unfortunately, more exhaustive tests were never made, and this
conclusion was never verified.)

A second point where the system. was slow was during user subprocess
construction. This would generally occur in response to a command typed
to the command processor by the user. This would result in a flurry of
activity at the command processor level. First the Dame of the
subsystem had to be looked up in a director.y, rather, in a succession of
directories. Then several names of files needed by the subsystem itself
had to be looked up. Each of these directory references resulted in
disk file actions to read the necessary information. Finally some
scratch. files had to be constructed for the subsystem. In sum, on a
system with only one user, it generally required between 5 and 15
seconds of real time before ;the subsystem itself was ready to begin.
(We considered installing an associative window for the directory
references, but never began a serious design. It is not clear how much
this would have helped.)

Difficult to u~e

The main difficulty for the average user resulted from a multiplicity of
naming conventions. One naming convention was a leftover from an early
experimental system, since the software originally written for it had
not been changed. Other naming conventions resulted from the fact that
in the final system the. user had to be cognizant of at least three
directories that. might contain the file he wanted, his temporary
directory, his permanent directory, and a system directory. We supplied
one naming facility which gave full access to his permanent directory,
and another which did not, in order to protect him from undebugged
subsystems (a protection not generally provided in other operating
systems) .

Finally, a user who desired to write his own subsystems was in severe
difficulty, since we had no complete manuals covering all of the
conventions he had to know. Consequently the only successful subsystem
writers were our own staff and a few determined and inquisitive users.

73

CHAPTER 18: SPEED UPS

As indicated in the previous chapter, the system overheads were quite
high (e.g., on the order of 20 milliseconds per data block transferred
from the disk). In this chapter we will consider the possible effects
of some improvements we had intended to implement. In the next chapter
we will consider possible hardware improvements.

We had two intended improvements, both to the ECS system:

Direct ECS Access

A subprocess could select a Single data block in a Single ECS
file and be given direct hardware access to its contents.

Fast Actions

A small number of ECS actions would be recoded in an ad hoc,
but hopefully more effiCient, manner.

It is probably that these two changes, together with a minor change in
the disk system, would have reduced the per block overhead for disk
transfers to the order of 10 milliseconds for multiblock transfers.

Direct ICS access

The CDC 6400 hardware has a base and bounds register which controls
access to ECS (in addition to similar base and bounds registers for' CM).
In the system as implemented, the ECS bound was always set to zero while
user code was running. After solving some minor bookkeeping problems,
we could have given a subprocess direct access to a single fUe data
block through this single base bounds pair. Thus the cost for each ECS
file access to such a data block would be reduced from about 300
microseconds to about 3 microseconds.

Fast. actions

The execution of an ECS action had three major steps:

1) enter and leave the system
2) find and check types of all parameters
3) perform the action

74

Steps 1 and 2 together consumed from 200 to 250 microseconds for most
actions. For many actions step 3 consumed about 100 microseconds. One
of the parameters which had to be found and checked was the operation
(an object). which specified the action. This consumed from 40 to 50
microseconds. (The next chapter will contain a more detailed
description of parameter fetching.)

We proposed to invent a new type of capability, that for a 'fast­
action'. All capabilities for such actions would conta~n a pointer to
code which would fetch and check the parameters, and th~n execute the
action. We expected that this together with some miscellaneous
improvements in the code for the actions would reduce the CPU time for
such actions by 100 to 150 microseconds, a reduction by about SOX.

For the system as a whole, ECS system action times were about evenly
divided in the following groups:

read and write files
send and receive events
call and return from subprocesses
miscellaneous

If we assume that most of the file and event channel activity was on
behalf of the disk system (which we suspected but never attempted to
prove), and observe that the disk system rarely made subprocess calls,
then we see that a substantial portion of the disk system time is spent
on files and event channels. Pfost of the disk system's fUe actions
were directed to a single file which contained its global data base. If
this file were made directly accessable, great saving would result.
(The disk system was coded so that only a re-assembly was necessary to
take advantage of the direct access.)

This we expected to reduce most disk system ECS fUe action times by
about 90X, the remainder by about 50X, and event channel times also by
about 50X. The approximate figures in Chapter 17 indicate that, of the
18 milliseconds of CPU time required by the disk system for a single
block transfer, 12 milliseconds are consumed in ECS system actions. The
above figures suggest that Direct ECS access and fast actions will
reduce this to about one third, or 4 milliseconds. Thus the per block
overhead for disk transfers would reduce to about 10 milliseconds, for
multiblock transfers.

15

CHAPTER 1 g: HARDWARE HELP

As has been indicated, some of the more frequently used ECa actions
spend half of their time obtaining and checking parameters (e.g.. ECS
file read and writes, and event channel actions). This chapter contains
a proposal to reduce this overhead. It is a hardware capability
mechanism. similar to that in KAGNUK and System 250, with the addition
of type information. Before examining the proposal, we first examine
the details of obtaining and checking parameters in CAL TSS.

Sletch oj entru to a 3U3tem action

When the existing system is entered in response to a user call, the
basic information presented to the system is a pointer to an input
parameter list (IP list). in the user I s address address space. This
list contains information which defines the objects involved in the
action. including the operation itself as the first object. There are
two means of defining an object, direct and indirect. A direct
definition consists of an index in the local C-list of a capability for
the object. An indirect definition consists of an index in the local C­
list of a capability for another C~list, and an index in that other C­
list of a capability for the desired object.

Manu ba3e bound pair3

Figure 6 diagrams the situation for a system call with an indirect
reference to the operation, a direct reference to an object and a single
datum. There are 10 pointers involved, each of which is relative to
some implied base address and must be checked agains't some implied
bound. Furthermore, there are three capabilities involved, each of
which must be checked for the correct type and sufficient access bits,
as well as continued existence of the object (correct unique name in the
appropriate MOT entry). Finally, any data to be manipulated within the
defined object will be addressed relative to a base address (the ECS.
address of the object) and checked against a bound (the size of the
object).

On the CDC 6400, given that the necessary data is already in the central
registers, the time required to access a word in central memory by a
pointer relative to a base bounds pair is twice that required to follow
a direct pointer. Thus, the addition of hardware instructions which
provide memory access by pointers through base bounds pairs could
greatly reduce system overhead. However, additional time would still be
spent checking types, access bits and unique names.

76

CM

REMOTE
C-LIST

USER ADDRESS
SPACE

MOT

OBJECT

OPERATION

- - - - - - -1- - - - - - - - -

IP LIST

I
I
I

LOCAL
C-LIST

ECS

CM
MONITOR
ADDRESS
SPACE

Figure 6. Pointer structure for a typical ECS system call, with an
indirect reference to the operation.

77

Hardware capabilities

The following hardware proposal combines the protected-base-bound-pairs
of a system like MAGNUM or System 250, with the abstract typed objects
of CAL TSS. In particular, it permits a program with proper authority
to directly convert a capability for an· abstract object into a
capability for a base-bound-pair describing the storage area for the
representation of the object. It combines the basic capability hardware
of MAGNUM [Ft], the MOT of CAL TSS (similar to an idea in System 250
[C4, El]), the user type facility of CAL TSS, and a proposal of David
Redell and Bruce Lindsay (the lock facility, intended by them for
software implementation of such features of CAL TSS as the subprocess­
descriptor) .

The Central Processor will have an architecture closer to that of MAGNUM
or System 250 than that of the CDC 6400. There will be two classes of
re,isters, capabiltt, and data. There will be four classes of
'instructions:

capability memory ref
data memory ref
data manipulation
capability manipulation

A capabiUt,-re,i.ster will contain three fields:

type
access bits (These correspond to option bits in CAL T88

capabilities.)
datum

There will be a number of t,pes, six of which will be:

capability segment (C-list)
data segment
datum
create new lock and key authority
lock
key

For capability segment and data segment capabilities, the datum field
will contain two subfields:

base
bound

78

For lock and key capabilities. the datum field will contain three
subfields:

source type
target type
access field check bits

Capabilitu memoru reference instructions

Capability memory reference instructions will either load capability
registers from memory. or store their contents into memory. The actual
memory address will be computed in two steps, first an index is computed
by the program and left in a data register, then the actual address is
computed from this index and the contents of a capability register
specified in the instruction. This specified capability~register must
contain a capability of type capability-segment, and its base will be
added to the given index. (If capabilities occupy more than one word of
memory. the index will be suitably modified to guarantee that the
resulting address will be that of the first word of a capability.) The
index will also be checked against the bound. If a load is to be done,
the capability-segment capability must have the load access bit on.
Similarly, if a store is to be done, the store access bit must be on.

In order to avoid having absolute addresses within the capabilities (as.
stored in memory), and to remain close to the CAL TSS ECS system, the
same trick as used in the System 250 can be used. Instead of a base
bound pair. a segment type capability. stored. in memory. will' contain a
unique name and an index into an "OT. The indexed "OT entry will
contain the same unique name (for checking purposes) and the actual base
bound pair. When a segment type capability is loaded into a register,
the MOT index will be followed, the unique name checked, and the actual
base bound pair loaded. In this case, such a register will have to
contain the original unique name and "OT index for subsequent storage.
(Of course, this "OT index and unique name need not be kept in hardware
registers, but in a known part of memory, as in the System 250.)

On a mach ine Uke the CDC 6400, with an extra memory, any base bound
pair could state which memory contained the address, thus reference to
either memory would be the same. This would be true for both data
segments as well as capability segments.

Data memoru reference instructions

Data memory reference instructions will either load data registers from

79

memory. or store their contents into memory. As for capability memory
reference instructions, the actual memory address will be computed from
a program computed index and the base bound pair in a specified
capability register. This specified capability register must contain a
capabili ty of type data segment, with the appropriate load or store
access bits on.

Data manipulation instructions

These are the standard bit manipulating and arithematic instructions
seen on .a11 computers. They work on data stored in the data registers.

Capabilitu manipulation instructions

There are four subclasses of capability actions:

reduce access bits
read or write datum part of a datum capability
lock or unlock a capability
create a new lock and key

The last three subclasses represent a departure from previous hardware
capability systems.

Reduce access bits

Any capability in a capability register may be replaced by a capability
identical to the original, except that some access bits are turned off
which were on in the original. Thus access available through a
capability may be reduced before passing it to less privileged programs.

Read or write the datum part oj a datum capabilitu

Any program may explicitly read the datum part of a datum capability.
Similarly, any program may arbitrarily replace the datum part of such a
capability. For example, a re-implementation of the CAL TSS disk system
might place the disk address of a disk file in a datum capability. (The
capability must then be locked, as described below, before passing to a
user program.)

80

Lock or unlock a capability

A capability whose type matches the source-type subfield of a given
lock. and has at least the same access bits on as in the access field
check bits subfield of the lock, may be converted to a capability with:

those access-bits on which are on in the given lock,
tupe as given in the target-type subfield of the given lock,
datum part unchanged.

This is referred to as locking the capability with the given lock.

Similarly, a capability may be unlocked if its type matches the target­
type subfield of a given key. We also require that the access bit field
of the capability have at least the same bits on as the access field of
the key. The resulting capability will have:

access-bits as in the access field check bits subfield of the key
type given as source-type in the key
datum part unchanged

Thus, the condition:

any two capabilities, of type either lock or key. with the same
target type, have identical source types and access field check
bits;

will assure that any capability resulting from an unlock operation will
have previously existed, possibly with more access bits on.. (We ex~lain
below how to assure this condition.)

If the MOT-index unique name representation for segment capabilities is
used. then a locked segment capability will contain only the MOT-index
and unique name. Unlocking such a capability will cause the base-bound
pair to be re-computed.

Figure 7 contains an example of locking and unlocking a capability.

Cl

C2 I

C3

C4

C5

A S

D

B "LOCK"

C ,I S. T

B'

C S

C S

D

REPRESENTATION OF A
CAPABILITY

REPRESENTATION OF
DATUM PART OF LOCK
OR KEY

AN UNLOCKED CAPABILITY

A LOCK

Cl J~OCKED BY C2

A KEY, WHICH MATCHES LOCK C2

C3 UNLOCKED BY C4

ACCESS BIT~ TYPE

DATUM PART

ACCESS SOURCE TARGET
CHECK BITS TYPE TYPE

Figure 7. Example of locking and unlocking.

81

82

Create a new locl and leu

Using a create-new-lock-and-key authorization, and presenting a source­
type representation and a set of access-field-check-bits, a program may
obtain two new capabilities. One will be a lock, the other a key,
otherwise they will be identical. The target-type subfield of each will
be a new, never before seen type. The source-type and access-field­
check-bits will be as given. All access bits will be on in both.

Any lock or key capabilities created subsequently, with the same target­
type, must be copies of these just created capabilities. They will have
the same source type and access-field-check bits, since all copy
operations leave the datum parts of a capability unchanged. Thus, the
condition required above is met.

Example

In order to explain the use of these hardware features, we explain how
the ECS system of CAL TSS might be re-implemented.

The state of each object will be represented in one or more segments. A
single data segment might suffice for some simple objects, e.g., a file
with a Single data block. "ore complicated objects would be represented
by a capability segment with capabilities for subparts. A locked
capability for the representing segment is then given to user programs.

A user program will call the system with parameters in hardware
registers. Upon entry, the system will pick up the appropriate keys and
unlock each expected parameter. In one step, this will check for
correct parameter type, sufficient access bits, correct' unique name at
the specified "OT index; and produces a segment descriptor for the
representation of the object.

83

CHAPTER 20: A REPLACEMENT FOR OUR MAP FACILITY

Our attempt to provide a mapped address space was probably the worst
disaster of the project. In this chapter we discuss the manifestations
of that disaster. and then suggest an alternative.

Our attempt to provide a mapped address space required a lot of very
complicated code. and it failed. The complicated code was most evident
in the disk system. but also was evident in our complicated file
structure and multi-level operations. We failed because we did not
correctly simulate a mapped address space.

The decision to simulate portions of disk files residing in ECS by ECS
files led to structuring ECS files as a sequence of blocks. only some of
which might exist. (If ECS files had been merely consecutive blocks of
storage. they would have been much simpler.) Multi-level operations were
supplied to permit an unsuccessful ECS file read or write action to
automatically initiate a more expensive disk file action. This was the
only place where multi-level operations were actually used. The major
complications were in the disk system. which maintained complicated
global tables recording which portions of which files were attached by
which process.

We were successful in our attempt to make ECS tiles appear to represent
the ECS portions of disk· files. However. the main intention in
providing this facUity was to make possible subprocess maps which
pointed into disk files.

The subprocess map facility failed. evan at the simple level of maps
into ECS files. This failure occurred under the following conditions:

1) two subprocesses In' the same process attempt to share some
data by mapping Into some common file. and

ii) they both can be in CM simuitanesouly (one is a descendent of
the other). and

lii) at least one of them is permitted to modify the data.

Under these conditions. a subprocess has to explicitly read and write
the common data in order to insure that his copy is correct. This
totally defeats the purpose of the map.

84·

The reason for this failure is quite simple:.,.the hardware did not
provide address mapping. We attempted to simulate mapping by copying
the mapped data into the appropriate regions of central memory. Thus,
there could occur two independent copies in central memory of the same
region of a file.

This same problem can occur under other conditions:

a) Two different regions in the same subprocess address space map
to the same region in some file. Then a change in the data in
one region will not be immediately reflected in the other.

b) If the system were run on dual 6400's with a single ECS, and
subprocesses in two different processes map into the same
file. In this case, the problem can be prevented by a
potentially very complicated mechanism which prevents the two
subprocess from swapping into different CPI' s simultaneously.
(We intended that our system might eventually run on the two
6400's owned by the computer center.)

c) Two subprocess in the same process, one maps into a file, and
the other attempts direct reads from the file. If one is a
descendent of the other, the problem appears.

d) Same as c, except the subprocesses are in separate processes,
but under a dual 6400 system.

An ol ternaUue

This alternative I am about to describe was considered at the start of
our project, but rejected as not general enough. It acknowledges the
one successful use of maps, the use of shared, read only programs. All
other uses are discarded.

There will be two forms of data storage:

1) ECS files
ii) disk files

An ECS file will be a simple sequence of words, there will be no
di vision into data blocks. A disk fUe will be a simple sequence of
equal sized records. each of which is a sequence of words. (This
directly reflects the physical structure of the disk.) Actions will be
availabl.e to read the contents of one or more consecutive, complete,
disk file records into continguous words of an ECS file. There will be

85

a similar action to write consecutive disk file records from an ECS
file. There will be separate actions to transfer consecutive words
between an ECS file and the local memory of a subprocess.

A subprocess local memory will be specified in two parts. (The vestiges
of a map.) Each part will be an entire ECS file. When a subprocess is
swapped into CPI, the two ECS files will be copied into CPI; and when
swapped out, one of the files will be copied back to ECS. Thus one of
the files contains read only code, while the other contains data local
to this version of the subprocess.

87

CHAPTER 21: DISTRIBUTED SYSTEM CODE

The design of the outer layers of CAL TSS (disk/directory and cODlDand
, processor) depended heavily on distributed system code. I feel this was

a mistake, and that there was a better alternative.

In this thesis I have used the phrase -distributed system code- to
describe the rollowing idea: global data (which represents the state of
the virtual machine) that w111 be manipulated by code which runs in
protected domains (subprocesses) within a user process; several
instances of this code may, in principle, run simultaneously. This idea
has been around for a long time, and a detailed account of its use may
be seen in Saltzer [SI].

It is difficult to argue persuasively for distributed system code.
Saltzer gives the argument that distributed system code makes it easier
to provide a different appearing system for each user. An indiVidual
user' s process would contain that version of the system code which he
desired. (I would view this as providing different sets of virtual
instructions.)

In practice it is difficult to take advantage of this idea. If this
portion of the system code is in fact part of a distributed system and
manipulates global system data, then it is sensitive system code. Hence
it must be checked out by whatever painstaking methods are used for all
system code. Consequently it is unlikely that two versions of a portion
of the system would be completed.

A major proble. introduced by constructing a distributed system is that
of interlocks. Since there are many representatives of the system
attempting to read and modify some global data, they must avoid
interfering with each other. (For example, while one process is
reading, adding one, and rewriting a count, another process may attempt
the same action.) At the worst, if the interlocks are deSigned
carelessly one may be confronted with a 'deadly-embrace'.

Examples of the difficulties one can get into are provided by the disk
system, our major attempt at a distributed system. The majority of the
CPU time consumed by the disk system was in calls on the ECS system. We
have evidence that about one half of this time was spent on ECS file
read and write actions, with the other half going to event channel
actions. At least half of these event channel actions must have been
involved with interlocks. Thus on the order of 25" of the CPU time
spent by the disk system was involved with interlocks.

88

As an extreme example. at one point in the development of the system, we
discovered that while one disk system representative had an item of data
locked. two others could get into a loop asking each other for
permission to use the locked data. This was, of course. fixed, but
demonstrates that much care must be taken.

I believe that we would have been better ofr to avoid distributed system
code, at least in as complicated a rorm as the disk system. (The
proposal made in the preceding chapter would have relieved us from
providing the disk system.) Necessary global data bases could. be
manipulated by dedicated processes. which receive coded instructions
from event channels. Any interlocking of modifications to the data base
would then be purely internal to the process, and thus simpler to
achieve.

89

CHAPTER 22: SUMMARY AND PARTING WORDS

SUl7l7laru

In this thesis we have discussed an operating system project at the
University of California. Berkeley. Computer Center. W~ have discussed
many of the initial ideas and objectives of the project, the actual
system constructed. and a number of reactions to that resulting system.

The project was modest in size. involving about 30 man years. Except
for a necessary item of peripheral hardware, the system was designed for
a commercial computer. the Control Data 6400 with an Extended Core Store·
(ECS) .

We attempted to include a number of fundamental ideas in our design,
including:

specification of the entire system as an abstract machine,
a capability based protection system,
a mapped address space for each virtual computer (process),
layered implementation including distributed system code,
and uninterpreted input output devices.

It was intended that many of the services that must be supplied by a
complete system would be provided by ·user· level programs, whose
special needs would be provided by system features. These features
would be made available to ·ordinary· user programs, as a matter of
principle.

The system made heavy use of ECS, a large core store with a fast block
transfer rate (10 60 bits words per microsecond) to central memory. The
state of each user process was stored in ECS, copied to central memory
for execution and then copied back to ECS. The state of the system was
maintained as the state of abstractly defined objects, whose
representation was stored in ECS. Also, user programs accessed all real
input output devices through the state of these abstractly defined
objects.

The system was designed in layers. The first layer (ECS system)
provided 8 types of abstractly defined objects and about 100 actions to
manipulate them. Subsequent layers provided a few (but very
complicated) additional types of objects. (The entire second part of
this thesis is devoted to a description of these various layers, and the
abstract machines they define.)

90

My major reaction to the resulting system was that it was
disappointingly large, complex and slow. (Possibly this was due to
naive expectations.) Many of our fundamental ideas served us well,
particularly the concept of an abstract machine and capability based
protection. However, mapped address space (on an unsuitable machine)
and distributed system code were unsuccessful.

Part 3 is devoted to an elaboration of my reactions to the system, along
with a number of proposed improvements which would have mitigated some
of the difficulties. In particular, I include a hardware proposal (a
modification of ideas used on other projects) which would have greatly
increased the efficiency of our capability based protection and abstract
machine implementation.

Parting 1B0rd~

There are two firm beliefs that I have acquired from this project:

i) The concepts of designing the system as an abstractly defined
machine together with .capability based protection were
extremely useful and I strongly advocate their future use;

ii) The concepts of distributed system code and mapped address
spaces introduced many complications unnecessary for the
provision of an adequate time sharing system, and I would
recommend at most limited use of these ideas in future
systems.

91

BIBLIOGRAPHY

[Bl] Bensoussan, A., Clingen, C.T .• and Daley, R.C. The Plultics
Virtual Plemory: Concepts and Design, CACN, Vol. 15, No.5, May
1972. pp. 308-318.

[Cl] Control Data Corporation, 6400/6600 Computer Systems, Reference
Planual, Publication No. 60100000.

[C2] Control Data Corporation, 6641-A ECS/PIASS Storage Adapter,
Publication No. 60334200.

[C3] Corbato-l', F.J., Saltzer, J.H. and Clingen. C.T. Plultics-The
First Seven Years, SJCC, 1972, pp. 571-583.

[C4] Cosserat, D.C. A Capability Oriented Plulti-processor System
for Real-time Applications, ICC Conference, Washington, D.C.,
Oct. 1972.

[(5) 'Computer Center, CAL Time-Sharing System Users Guide,
University of California, Berkeley, Nov. 1969.

[C6] Computer Center, CAL-TSS Internals Planual. University of
California, Berkeley, Nov. 1969.

[01] Dennis, Jack B., and VanHorn, Earl C. Progr8lllDing SemantiCS
for Plultiprogrammed Computations, CACN, Vol. 9, No.3, March
1966, pp. 143-155.

[02] Dijkstra, Edsger W. The Structure of the -THE­
Plultiprogramming System. CACN, Vol. 11, No.5, May 1968, pp.
341-346.

[El] England. D.M. Architectural Features of System 250. Infotech
State of'the Art Report on Operating Systems. 1972.

[Fl] Fabry. R.S. A Users View of Capabilities. ICR Quarterly Report
No. 15, Nov. 1967, The Institute for Computer Research, The
University of Chicago.

[F2] Fabry. R.S. Preliminary Description of a Supervisor for a
Plachine Oriented around Capabilities. ICR Quarterly Report, No.
18. August 1968, The Institute for Computer Research. The
University of Chicago.

92

[F3] Fabry, R.S. List-Structured Addressing, Thesis, The University
of Chicago, March 1911.

[Gl] Graham. Robert M. Protection in an Information Prcessing
Utility. CACM. Vol. 11, No.5, May 1968, pp. 365-369.

[Ll] Lampson, B.W. On Reliable and Extendable Operating Systems,
Techniques in Software Engineering, NATO Science Commmittee
Workshop Material, Vol. II. Sept. 1969. (Also published as: An
Overview of the CAL Time-Sharing System, Computation Center,
University of California, Berkeley. Sep. 1969)

[L2] Lampson, B _ W.. Lichtenberger. W. W., and Pirtle, M. W. A User
Machine in a Time-Sharing System. Proceedings of the IEEE. Vol.
54. No. 12, Dec. 1966. pp. 1166-1174.

[Pl] Parnas. D.L. On the Criteria to be Used in Decomposing Systems
into Modules, CACM. Vol. 15, No. 12, Dec. 1972.

[S1] Saltzer. J.H. Traffic Control
System, MAC-TR-30, July 1966,
Technology_

in a Multiplexed Computer
Massachusetts Institute. of

[Tl] Bobrow, D.G., Burchfiel, J.D., Murphy, D.L., Tomlinson, R.S.
TENEX, a Paged Time Sharing System for the PDP-10, CACM, Vol.
15, No.3, "arch 1912.

93

APPENDIX A: PROJECT HISTORY

Summer 1968

December 1968

Summer 1969

January 1970

Summer 1970

Spring 1971

Fall 1971

Time sharing project starts. One faculty advisor and
4 computer center programmers. two half time.

Layered structure of system chosen. with
responsibilities of each layer determined. Major
components of ECS system specified. Actual
programming begins. 2 persons from computer science
department join project unofficially.

Portions of ECS system and a temporary executive
(Bead) completed. A SCOPE simulator and a text
editor written. Public demonstration of system,
exhibiting editing. compiling and execution of
fortran programs from two teletypes simultaneously.

Disk 1-0 interface and disk/directory system design
begun. Several more programmers join the project.

Disk I -0 interface completed. A temporary program
provided which moves entire files between the disk.
and ECS. System will support nearly 10 users
(edi ting large text files and assembling them), if
they cooperate closely on use of ECS space. No file
protection between users.

Several persons invited from computer science
department to use system on an experimental basis.

Disk/directory system design completed. Programming
begun during spring 1970. Plost components of ECS
system completed. Final drive begun on remaining
portions, mostly 1-0 interfaces.
reprogramming of ECS sys tem
processor deSign starts.

Some redesign and
started. Command

Disk/directory system and conunand processor
sufficiently completed to permit use of new system.
Bead system scrapped. Plany components not completed
(disk swapping of user processes, accounting and
others) .

Accounting completed. Disk swapping of user
processes not completed. System difficult to use,

94

November 1971

partially due to multiplicity of conventions carried
over from temporary (Bead) system. Will support at
least 15 simultaneous users of BASIC subsystem. ECS
size limits number of users, rather than CPU time.

Project terminated for lack of funds.

95

APPENDIX B: PROJECT MEMBERS

The initial advisor to the project was Professor Butler Lampson. Other
official and unofficial members were:

William Bridge
Dr. James Gray
Bruce Lindsay
K.arl Malbrain
Gene McDaniel
Paul McJones
Professor James Morris
David Redell
Charles Simonyi
K.eith Standiford
Howard Sturgis
Vance Vaughan

