
\
' \ \

\
\

NEW PROGRAMMING LANGUAGES
FOR AI RESEARCH
BY DANIEL G. BOBROW AND BERTRAM RAPHAEL*

New directions in Artificial Intelligence research have led to the need for
certain nove~ features to be embedded in programming languages. This paper
gives an overview of the nature of these features, and their implementation
in four principal families of AI Languages: SAIL; PLANNER/CONNIVER;
QLISP/INTERLISP; and POPLER/POP-2. The programming features described
include: new ~ types and accessing mechanisms for stored expressions;
more flexible control structures, including multiple processes and
backtracking; pattern matching to allow comparison of data item with a
template, and extraction of labelled subexpressions; and deductive
mechanisms which allow the programming system to carry out certain
activities including modifying the data base and deciding which subroutines
to run next using only constraints and guidelines set up by the programmer.

~ertram Raphael is at the Stanford Research Institute, Menlo Park, California.

REPORT NO. CSL-73-2

DATE August 20, 1973

DESCRIPTORS

XEROX
PALO ALTO RESEARCH CENTER
3180 PORTER DRIVE/PALO ALTO/CALIFORNIA 94304

TABLE OF CONTENTS PAGE

CHAPTER I INTRODUCTION 2

CHAPTER II LANGUAGES COVERED 4

CHAPTER III SPECIAL FEATURES COMMON TO THE NEW LANGUAGES 7

A Data Types 7
B Control Structures 9
C Pattern Matching 13
D Deductive Mechanisms 14

CHAPTER IV DIFFERENCES BETWEEN THE NEW LANGUAGES 16

A Data Types and Storage Meohanisms 16
1 SAIL 16
2 PLANNER/CONNIVER 18
3 QLISP/INTERLISP 20
4 POPLER 21

B Control Structures 22
1 SAIL 22
2 PLANNER/CONNIVER 23
3 INTERLISP/QLISP 25
4 POPLER/POP-2 28

C Pattern Matching 29
1 SAIL 29
2 PLANNER/CONNIVER 29
3 QLISP/INTERLISP 31
4 POPLER 33

D Deductive Mechanisms 34
1 SAIL 34
2 PLANNER/CONNIVER 35
3 QLISP/INTERLISP 39
4 POPLER 41

CHAPTER V CONCl,.USIONS 42

CHAPTER VI BIBLIOGRAPHY 49

New Programming Languages for AI Research

Daniel G. Bobrow
Xerox Palo Alto Research Center

Palo Alto, California 94304

Bertram Raphael
Stanford Research Institute

Menlo Park, California 94025

Tutorial Lecture presented at

THIRD INTERNATIONAL JOINT CONFERENCE
ON

ARTIFICIAL INTELLIGENCE

stanford University
Stanford, California

Session 1: Monday, August 20, 1973

I INTRODUCTION

Most programming languages are universal in the sense that any

algorithm that can be expressed by a program in one language can also be

expressed in any of the other languages. However, the set of unique

facilities provided by a language makes some types of programs easier to

write in that language than in any other. Indeed, the main reason for

introducing new features into a programming language is to automate

procedures that the user needs and would otherwise have to code explicitly;

such features reduce the housekeeping details that distract the user from

the algorithms in which he is really interested. Therefore, underlying the

design of any programming language is a set of assumptions about the types

of programs that users of that language will be writing.

Historically the needs of the artificial intelligence (AI) research

community have stimulated new developments in programming systems. The

first high-level list-processing primitives were developed by Gelernter for

a geometry theorem prover· (Gelernter 1959)1 the first general string­

manipulation system was developed by Yngve for computational linguistics

research; the first wide uses of conditional expressions and recursion were

at least partly due to John McCarthy's AI interests.

For more than a decade, the list processing and symbol manipulation

languages--such as CO~lIT, IPL, LISP, SLIP (Bobrow 1964)--have been the

basis for almost all AI achievements. Although the effectiveness of

research with these languages has improved dramatically due primarily to

greatly expanded memory sizes and new interactive debugging facilities, the

languages themselves have remained remarkably stable. In recent years,

2

however, new directions for emphasis in AI research--such as studies of

representation of knowledge, robotics, and automatic programming--have led

to a widely felt need for certain rather novel features to be embedded into

programming languages; and some languages containing several of these

features have recently been implemented. The purpose of this paper is to

give an overview of the nature of these new programming features and the

present state of their availability in the new languages.

3

II LANGUAGES COVERED

The languages to be discussed in this paper are generally in an early

stage of development: they are inadequately documented; neither the designs

nor the implementations are fully debugged; they have been used at most for

only a few significant application programs; and they are so dependent upon

local operating systems and environments that they are extremely difficult

to export. However, the common threads of new ideas running through these

languages appear so basic and useful that some of the languages have

already received widespread publicity, and once the ideas stabilize, the

successors to these systems are likely to provide the basic tools for AI

research for years to come.

In this paper we shall not attempt to identify and describe specific,

completely-defined languages, because such descriptions would rapidly

become obsolete in view of today's level of activity in the system design

area. Instead, we shall devote the next section (Section III) of the paper

to discussing the new features present in many of the emerging systems.

section IV will then compare how these features are being handled in each

of four evolving families of languages being developed at different major

AI research centers:

(1) SAIL, a language developed at the stanford AI Project (Swinehart

1971);

(2) PLANNER and CONNIVER, systems being developed at the MIT AI

laboratory (Sussman 1970; Baumgart 1972; McDermott 1972);

4

(3) the QLISP language being developed as an extension of INTERLISP

(formerly called BBN-LISP) which is a joint continuing product of

Xerox PARC and BBN (Reboh 1973; Teitelman 1973);

(4) the POPLER extension of POP-2 from the University of Ldinburgh

(Davies 1973).

These four sets of languages each have long, independent histories.

SAIL is a marriage of LEAP (Feldman 1969), an associative

retrieval formalism, and a version of llliGOL 60. It has been in use at

Stanford since 1969. Recent improvements, stimulated by the needs of

AI researchers, have been primarily focused on adding more l~werful and

flexible control mechanisms.

The PLANNER concept was developed by Hewitt at HIT starting in

1967 (Hewitt 1971, 1972), and Sussman and Winograd built a first

implementation, MICRO-PLANNER, which contained a subset of PLANNER

features. These projects estahlished the basis of the currently

popular concept of procedural representation of knowledge. CONNIVER is

a recent attempt by Sussman at HIT to remedy some observed shortcomings

in the practical use of PLru~NER, while preserving its good ideas.

QLISP was a successor to QA4, which was developed prlinarily by

Rulifson (Rulifson 1968, 1972) at SRI. These languages evolved from

years of question-answering and theorem-proving research. Although

strongly influenced by PLANNER, QA4 was intended to be a more uniform

and complete formalism. QLISP is a current attempt to make QA4

features more accessible by merging them into an establisheQ, widely-

available LISP system INTERLISP. INTERLISP has provided a general

5

control structure framework at the systems level along with many user

interaction facilities.

POPLER is largely based on the ideas in PLANNER, but is

implemented and embedded in POP-2. POP-2 provides a compiler oriented

stack machine with an extensible data type facility. Although

POPLER1.5 has been available only since spring of 1973, POP-2 has been

in use for AI research at the University of Edinburgh for a number of

years.

6

III SPECIAL FEATURES COHHON TO THE NEW LANGUAGES

The following paragraphs discuss some of the special features of the

new languages and why they are desirable.

with:

• Data types and memory management

These special features deal

• Control structures, including pseudo-parallelism, conditional

interrupts ("demons"), alternative contexts, and backtracking

• Pattern matching, used for both data retrieval and program control

• Automatic deductive mechanisms

In order to present the principal features of these languages in a

reasonable amount of space, the following discussion is necessarily

oversimplified. Many features of each language will not be discussed, and

we may take some liberty with syntax to make short examples readable out of

context. The reader should refer to the appropriate reference manuals for

more accurate and complete presentations of the ideas outlined below.

1'1. Data Types

The earliest programming languages permitted the user to manipulate

only numbers, either as scalars or arrays. The major contribution of the

symbol manipulation languages was the introduction of symbolic data types,

such as lists, trees, and strings. A few languages, including SNOBOL4

(Griswold 1968), permit the user to define additional types of data

structures; but such data extension facilities are not widely used,

probably because the user then has the burden of providing all the basic

operators needed to work with his new data type, and even if he does he

7

will wind up with a unique program that is unusually difficult for others

to read and understand.

Lists, trees, and strings were adequate building blocks as long as AI

researchers were groping for representations and algorithms to handle

idealized "toy" problems. Recently, as the emphasis has shifted to larger,

more complex, more realistic problem domains, a greater variety and

richness in data types has become desirable. In particular, in addition to

lists, trees, and strings, one would like to be able to use content­

retrievable ordered triples (or n-tuples), unordered sets, and formal

statements of a logical formalism or a programming language, as basic data

types. These are operationally different types, but still basically

problem independent, e.g., an unordered set, not a personnel record. For

each data type, the programming language should provide a set of operations

or functions needed to create items of that type, to perform basic

manipulations on that type (e.g., LISP'S~, ~, and cons for binary

trees, union and intersection for sets, ~.), and when appropriate to

transform one type into another. All of the new languages provide

important new data types and a framework for their use.

The symbol-manipulation languages, like most other programming

languages, left the programmer with full responsibility for creating,

indexing, and accessing any data files he wished to use. Recently, AI

researchers have recognized the need for large, relatively permanent

information files that must be maintained and accessed in an efficient

manner. In some cases these files must be divided into sections that are

each available only to certain programs under certain conditions. The new

8

languages provide built-in, automatic mechanisms for handling such data

files in a convenient way.

B. Control Structures

In the earlier AI languages the flow of control among procedures or

functions, the primitive units of program that we shall here call access

modules, was strictly hierarchical. An access module is any unit in which

is introduced new bindings, that is, associations between variable names

and values. In hierarchical control, every module was expected to complete

its work (perhaps calling other modules) and then return control to its

parent, the module that activated it. Recursive control was permitted,

i.e., a module could call itself or one of its ancestors in the control

hierarchy as a subroutine; however, each such recursive call to a module

could be thought of as creating a separate instance or activation of the

module to be used at a new level so that the strict hierarchy was

maintained. Moreover, once an activation had been exited, it disappeared

and could not be "continued" again. The bindings in that module were lost.

Reinitiating a module caused a new activation of the module to be created

and run from its beginning.

A generalization in some LISP systems was the so-called "funarg"

mechanism, which allowed a set of variables and their current values

(bindings) to be passed from one part of the control tree to another

independent of the continued existence of the defining context. This

feature allowed use of free variables in the definition of a functional

argument which would not conflict with use of the same variable in the

program that called the functional argument, and also preservation of

9

variable values between calls. However, the basic relation between access

modules was still strictly hierarchical. Special purpose coroutines

existed in the IPL-V "generator" feature, which allowed reentry to certain

predefined routines, usually for scanning data bases incrementally.

Huch more flexible control structure is a major contribution of the

newer AI languages. The basic control innovation that is now being made

available is the ability to save a module and its context in a state of

suspended animation. An active access module can relinquish control not

only by returning control to its parent and vanishing, as in a hierarchy,

but also by giving control to another module that is in such a suspended

state. The suspended module is poised to continue execution from right

where it left off. The "resumer" can save his own state, but no other

module is obligated to "return" control to such a suspended module in order

to complete a computation. Thus in addition to moving up and down

hierarchical trees by initiating and terminating execution of access

modules, flow of control may now also wander among the access modules by

suspending and resuming their executions in any order, unconstrained by the

tree structure of their inherent control relationships. Each activation

will have a unique caller, i.e., the module that initiated (and thereby

created) it, but it may also be reached from (and transfer control to) any

number of other modules.

In order to make this flexible control flow possible, the

implementations of the new languages must provide for appropriate

bookkeeping. Bobrow and Wegbreit (1973b) define a general model for

control that has been used as the basis for such implementations including

those in three of the languages described below (CONNIVER, INTERLISP and

10

POPLER) • This model defines the set of information or frame that must be

associated with every activation of an access Module, to make possible its

suspension

includes:

and reactivation in a meaningful \"lay. This information

(1) A binding link that specifies where to find values (bindings) of

variables local to this activation (such as LISP prog and lambda

variables).

(2) An access ~ that specifies the environment in which to find values

for free variables (not specified in the local environment, and found

in LISP, for example, by tracing up the normal hierarchical chain of

control) •

(3) A control ~ that specifies which module activation is to continue

processing if the current module terminates at a "normal" exit (such as

a conventional return statement).

(4) The process state in the module, which specifies where and how to

continue a previously suspended operation.

temporaries, and the current "program counter".

This includes current

A point to note about a frame of an access module is that it has in the

frame itself all the information necessary to continue running the

activation, e.g., the continuation point and values of temporary variables

of a module at the time it calls another access module are stored in the

caller. Because independent returns to a frame may require distinct

continuation points and temporary storage, a separate copy of this part of

the frame must be made for each independent successor, although the

bindings need not be copied.

11

The control structure induced by this model is a tree of modules, with

control passing among any of the suspended modules in the structure. If

only one process is active at a time, we call it a coroutine regime. If

processing can be thought of as going on simultaneously in several modules,

we call it a multiprocessing regime. Multiprocessing is usually done by

scheduling through time-quantum interrupts at the system level, or time

allocation in the language interpreter. It can also be effectively

achieved in a coroutine regime by cooperation, e.g., by having each active

process frequently resume an executive module to request further resource

allocation.

Backtracking is a special coroutine regime in which instances of

modules are saved at decision points, and restored in a last-in-first-out

sequence when subsequent modules "fail" (a special form of termination).

In addition to restoring the control environment (automatic on resuming

processes), some alternate philosophies have developed on restoration of

the data state--sometimes called the data context--which existed at the

time the decision point was saved (both for variable bindings and general

data bases). Some systems normally "undo" all data changes (e.g., HICRO­

PLANNER) some only bindings (e.g., LISP70 (Tessler 1973», and some provide

a programmable facility for undoing any specified changes (Teitelman 1969).

Backtracking as a search mechanism follows a strictly depth-first search on

a decision tree, and this formerly popular control mechanism has been

criticized (Sussman 1972) for its inefficiency in many situations.

Another addition to the AI jargon in the control domain is the udemon",

which is a module that is activated when certain conditions become true.

Demons are usually implemented by having data-accessing functions check for

12

"sensitive data", evaluating the current monitoring condition involving the

sensitive data "touched", and having those functions transfer control to

the demon module when appropriate.

c. Pattern Hatching

Pattern matching was first used extensively in the string manipulation

languages (COMIT, SNOBOL), in order to permit substrings to be identified

by their contents rather than by their addresses. This kind of data

specification is extremely useful in current AI applications that

frequently require large symbolic data stores, so some form of pattern­

directed data retrieval has been included in all the new languages.

Basically, pattern-matching facilities allow the comparison of a given

template with a set of data items, where the template may have a number of

variables. If the template matches one of the data items, a side effect of

the match is the setting of values to these variables. A template may

match more than one item, and it may match an item in more than one way, so

some pattern-matching facilities allow the user to specify whether he

wishes all possible matches to be found at once, or one match at a time (on

request) after each preceding one is processed.

In addition to searching through a data base, pattern matching may be

used as part of the control mechanism to select the next subroutine. Here

each subroutine contains a template as part of its definition, and the

subroutine can be executed only if its template matches its actual

argument. A common use for this mechanism is in goal-directed problem

solving systems. Suppose each subroutine is capable of producing as its

output a certain, unique form of data structure; then a template describing

13

that form is included in the definition of the subroutine. Now when the

top-level program' wishes to achieve a "goal"--e.g., produce a certain data

structure--it need merely call for the execution of any subroutine that

matches the goal (wit~out knowing which particular subroutine will step

forth). Such use of pattern-directed function invocation (originated in

PLANNER (Hewitt 1971» permits "knowledge" to be distributed throughout the

programs of a complex system, permitting more flexible modification and

growth of AI programs than would be allowed by the more conventional top­

down hierarchical control.

D. Deductive Mechanisms

The extent to which a progranuner may specify ~ he wants accomplished

without detailing h2!. it is to be done is one way of defining the "level"

or "power" of a programming language. For example, the lowest level

computer languages, assembly codes, require an explicit statement for each

wired-in instruction to be executed. Algebraic languages, such as FORTRAN,

permit the user to describe a desired result by a combination of

mathematical relations, e.g., x=a+b-c, and leave to the compiler decisions

about the order in which elementary commands are performed. LISP programs

may be recursive, in which case the system has added responsibility for

stack manipulation--and possibly translating the recursion into an

iteration.

The new languages go a step further. They permit the programming

system to carry out certain activities, including modifying the data base

and deciding which subroutines to run next, using only constraints and

guidelines the programmer sets up for each programmed activity. For

14

example, the programmer can request a result, and the procedures which

"match" the request will be tried by the system using a problem solving

mechanism working within the pre-established guidelines. The process of

constructing a problem-solving program then becomes a matter of developing

and modifying guidelines, and specifying matching criteria, rather than

developing procedural algorithms. We call the semi-automatic search and

data-construction features of these languages deductive because they bear

some resemblance to so-called "theorem-proving programs" that attempt to

deduce desired logical expressions (theorems) from previously-specified

expressions (axioms). The mechanisms built into these languages allow

expression of many strategies for proving different types of theorems,

and/or solving complex problems.

15

IV DIFFERENCES BETWEEN THE Nl'.."'W LANGUAGES

A. Data Types and Storage Mechanisms

In this section we describe the novel data types of the various

languages and how they are formed, stored, accessed, and manipulated. Of

course, these languages also have the usual arithmetic data types and

individual variable and array storage, which are generally unexceptional

and need no further discussion here.

1. SAIL. SAIL is an ALGOL-like language which contains a symbolic data

system based upon an associative storage mechanism (originally called LEAP

(Feldman 1969». The basic element of this system is the ~, a unique

data element which may pe named by an identifier and referenced by an item­

var iable. '!\tIO kinds of structures may be formed from items:

• Sets of items

• Associations, which are ordered triples of items.

1m association of three items is usually denoted

iteml B item2 = item3

where iteml, item2, and item3 are called (appropriately enough) the first,

second, and third elements of the association, respectively. They are also

occasionally called the attribute, object, and value of the association in

suggestion of the semantics usually given associations, e.g.

COLOR B APPLE = RED

is a typical association.

16

An association may itself be designated to be an item included as an

element of higher-order associations. However, the use of such nested

associations appears to be somewhat awk""ard.

Appropriate functions exist for creating and deleting associations, and

for inserting and removing items from sets. In addition, the FOREACH

statement conveniently specifies iteration through sets, e.g.

FOREACH X SUCH THArl' X IN set DO statement

causes statement to be executed repeatedly for ! bound to each element of

set in turn.

The most important feature of associations is that they are

automatically stored in a permanent data structure that may be accessed in

an associative manner. In particular, the set referenced in a FOREACH

statement can be implicitly defined by referencing the association store;

e.g.

FOREACH X SUCH TlffiT COLOR a X = RED DO statement

will cause all known red things to be processed by statement, even though

no such explicit set had been created. FOREACH statements also allow

looping through corresponding pairs, triples... In addition, the special

symbol ANY can be used as a "don't care" comparator; thus the specification

COLOR a X = ANY defines the set of all objects X that have any color

attribute in the association memory.

The sets and associations in SAIL provide a convenient, efficient

mechanism for accessing certain symbolic data structures. However, sets

and triples are not necessarily as convenient as list structures for many

applications. For this reason a new data type, ~, has recently been

added to SAIL. It is not yet clear how cleanly lists can be merged into

17

the system; it will be interesting to observe whether major SAIL users

switch from triples to lists as their primary data representation. A major

problem \vith these lists is that the only legal elements of these liets are

items.

2. PLANNER/CONNIVER. Full PLANNER (as defined by (Hewitt 1972» is an

evolving theoretical framework of programming languages, and therefore is

not an appropriate candidate for this review of existing systems, though a

number of its ideas will be discussed. The PLANNER system described here

is the HICRO-PLANNER implementation defined in (Sussman 1970).

HICRO-PLANNER and CONNIVER are implemented in LISP and allow access to

LISP constructs. Thus all LISP data structures are available when needed-­

although care must be taken to distinguish between LISP and PLANNER values

of similar variables.

PLANNER makes available to the programmer two semantically different

types of data items: assertions and theorems. An assertion is an ordered

n-tuple represented by a LISP list of non-numeric objects called items.

The range of possible formats for assertions is wide, except that by

convention an assertion usually represents a true fact. For e}~ample, the

following are possible assertions:

(SHELLY GARLIC)

(SHALL-PRIMES (1 2 3 5 7 11))

(COLOR APPLE RED)

(THIS IS AN ASSERTION)

Assertions may be created, erased, and associatively accessed in a manner

similar to SAIL associations.

18

Theorems in PLANNER are the procedures or subroutines of the language.

Each theorem contains as part of its definition information about when it

should be invoked and what kind of effect it is expected to have upon the

data base of assertions. Thus theorems are procedural, describing actions

to be carried out, as opposed to the declarative assertions. However,

theorems as well as assertions may be dynamically created or modified by

running programs (e.g., by the execution of other theorems).

An explicit data-base context mechanism is an important independent

CONNIVER and QA4 innovation. Instead of a single global base to which

assertions (items) may be added or removed, CONNIVER has a tree of such

data bases. Any modification of the data base occurs only in that data

associated with the current node of the context tree, and data contexts may

easily be changed under program control. For example, a game situation can

conveniently be represented by a context tree of board position where the

highest context is the initial position and each lower context is derived

from its parent by making just the changes required for the current move.

This structure permits consideration of alternative situations merely by

switching contexts, rather than making extensive changes to the data base.

(of course, at some point these changes must actually be performed, or else

the data base must be multiply generated and stored; but co~mIVER transfers

the responsibility for this bookkeeping from the programmer to the

implementation.)

19

3. QLISP/INTERLISP. QLISP has attempted to provide a full range of data

types, in order to give the programmer considerable freedom in choosing a

representation for his problem domain. The major data types are: tuple,

class, bag and vector. Built-in functions provide for forming, combining

and testing data of the different types. All QLISP data structures are

stored in a permanent data base called the discrimination net. Insertion

into the net converts any element into a canonical form so that every

possible expression has a unique representation and location in the net.

Because expressions in the net have unique locations, they can be given

permanent property lists just like LISP atoms. These properties are used

in the deductive process described later.

Tuples (short for "n-tuple") and vectors are simply LISP lists with any

number of elements, but are made unique by the discrimination net search.

A tuple and vector differ only in their evaluation rules.

A class is viewed as unordered, and repeated elements are ignored;

e.g., the following are equivalent:

(CLASS ONION (TUPLE HILK EGGS) POTATO ONION)

(CLASS (TUPLE BILK EGGS) ONION· POrrATO (TUPLE l·lILK EGGS))

Internally, classes are put into lexicographic order with duplications

removed. A bag is an unordered tuple, or equivalently, a set that may have

repeated elements; e.g., (BAG A B B) is equivalent to (BAG B A B) but

different from (BAG A B). Bags are particularly useful when known as the

argument of certain operators. For example, if we say that the argument of

PLUS is a bag, then we need not assert that PLUS is associative and

symmetric, because the system already knows this as properties of bags.

20

4. POPLER. The data type mechanism of POP-2 allmvs creation of new data

structures with fields of arbitrary size and interpretation. It provides a

straightforward way of defining the constructor, accessor and updater

functions of any new type, and automatic storage management of the data

elements. For example we can define a record of type "person" containing

three components, a list item (of indicated width ~ for full pointer size),

a 7 bit field for age, and a I bit field for sex:

recordfns ("person" , [0 7 I]) sex "* age "* name "* unpackper "*makeper;

Note that this defines and names five new functions for creating (makeper)

and accessing records of this type.

The POPLER extension of POP-2 also provides an "associative" memory for

items of certain kinds modelled on CONNIVER. The data base ,is interrogated

by using a retrieval pattern, and items which match (instantiate) that

pattern are retrieved. "List constants" and "procedures" (corresponding to

PLANNER assertions and theorems) are stored in separate data bases. within

each data base, items are stored in a particular context. A context is a

tree-like data structure used to control the scope within which any item is

present. As in CONNIVER, this permits consideration of alternative

situations merely by switching contexts rather than changing a global data

base. In order to facilitate access to items, POPLER provides an index to

all items asserted in any state. This ensures one unique copy is used by

all the states. The use of a global index introduces one problem in

garbage collection. Sone states may become inaccessible, and therefore so

should some items; but the index still holds a pointer to the iteras.

POPLER allows the user to get around this problem somewhat by specifically

"unindexing" items.

21

B. Control Structures

1. SAIL. As a compiler based system, SAIL (Feldman 1972) insists that

points in the program at which branches in the control structure can take

place be known at compile time. Thus the flow of control for the complete

computation is constrained to stay within a branching structure defined in

advance; e.g., no process can decide during execution to create a process

that branches from above itself in the hierarchical control chain. Only

the current control context can be split.

A new process is created by the command

SPROUT (item, procedure)

where item names the new process for future reference, and procedure

specifies the program that the new process is to execute. A SPROUTed

process is assumed to begin running immediately and runs in parallel with

the process that contained the SPROUT instruction. Since true parallelism

is not possible on a single-processor computer, the SAIL runtime system

includes a scheduler that supervises the multiprocessing regime by deciding

which process is to be executed at a given instant. Processes can contain

instructions to suspend or terminate themselves or other processes, and can

specify priorities and time quanta for running. A coroutine regime is

facilitated by a RESUME construct which suspends the current process and

reactivates a named suspended process. Multiprocess time coordination is

done by JOIN{set) which suspends the process calling JOIN until all

processes in set have terminated. Backtracking within a process is

possible, but the programmer must explicitly identify places to which

backtracking is possible, and then specify which variables are to have

22

their values restored. No mechanism is available for one process to

evaluate a particular expression in the binding context of another process.

Additional communication among processes is facilitated by a kind of

mail or "notice" service based upon a message queuing system. Any process

may place messages for other processes into various queues; processes may

themselves be placed on other queues, while waiting for an appropriate

message. One of the jobs of the multi-processing scheduler is to "deliver

the mail" whenever possible. Demons can be implemented by means of this

message-queuing mechanism, although no special ones

available.

are standardly

2. PLANNER/CONNIVER. Both HICRO-PLANNER and CONNIVER are implemented as

interpretive languages written in a LISP system which permits only a

standard recursive call control structure (plus the possibility of machine­

language subroutines); therefore, the flexible control features of the new

languages must be designed into their interpreters and are not available to

LISP functions. These features essentially provide modules with the

binding, access, control, and state-saving information required by the

general control model described earlier (Sec. IIIB).

In HICRO-PLANNER, the general control capabi~ities are not directly

available to the user; the system provides the user with establishment of

backtrack points (by pattern-matching or GOAL statements), and the

automatic restoration of appropriate contexts whenever backtracking takes

place. Furthermore, backtracking can be invoked either explicitly (by a

FAIL statement), or spontaneously when a process runs out of things to do.

23

In CONNIVER, every time a non-atomic expression is evaluated by the

interpreter, a new frame is created. In addition, all the components of

every frame--bound variables, access link, control link, and so on--are

available to the programmer. Thus, by explicitly referencing and modifying

frames a CONNIVER programmer may create any kind of control regime he

wishes.

The FRA~m command produces a pointer to the current frame, so that it

may be modified or executed again later. The TAG command is similar to

FRAME, but also specifies a starting location within the frame rather than

the entire frame. For example, after execution of the CONNIVER version of

the program

{PROG (X)
(SETQ X 50)
{SETQ G2 (TAG A»
(SETQ Gl (FRAME»
(PRINT 'FOO)

A (PRINT 'FIE))

the global variables Gl and G2 would both point to a frame within this

prog. The subsequent command (CONTINUE Gl) would start right after the

(SETQ Gl(FRAME» and print both FOO and FIE; (CONTINUE G2) restarts at A

and would print FIE only.

Frames may also be used to specify a binding context. The CEVAL

command requests evaluation relative to a specified context. Thus after

the above PROG had been run, the following code:

(SETQ X 17)
(PRINT (CEVAL 'X GI»

24

would print 50.

In addition to the basic frame-manipulation commands, CONNIVER also

offers the programmer some higher-level control constructs. For example,

the AU-REVOIR command for exiting from a function first constructs a

continuation point using FRAME so that the exited function may be resumed

at a future time. This facilitates the construction of co-routines.

Additional special functions and message-passing conventions are provided

for facilitating use of generators, a special kind of co-routine process

which can generate requested data items one or a few at a time, and when

more are requested, resume processing in their original contexts. The IF­

ADDED and IF-REMOVED processes are demons which are activated when items

are added to or removed from the data base. Although the backtracking

regime of PLANNER would be easy to program in CONNIVER, it would conflict

with a major motivation of CONNIVER (Sussman 1972) to allow the flexibility

of mUltiple processes with possibly independent data base contexts.

Decision points and failure mechanisms are not provided in the basic

systems because it was felt that this encouraged poor programming

practices.

3. INTERLISP/QLISP. QLISP is primarily a subroutine package, plus some

syntactic extensions embedded in INTERLISP (Teitelman 1973). Unlike

CONNIVER with MIT LISP and POPLER with POP-2, QLISP and INTERLISP

procedures operate in the same control world. Since QLISP has no separate

interpreter, its control structure is completely dependent upon that of

INTERLISP--which, at the time of this writing, is simply the recursive call

structure of LISP. However, a general frame-oriented control structure is

25

currently being implemented in INTERLISP using a "spaghetti stack"

technique (Bobrow & Wegbreit 1973a) which has the property that for

ordinary recursive function calls it costs very little more than the usual

stack storage allocation mechanism. This system is almost operational and

will be combined with QLISP in the near future.

The INTERLISP frame will contain the usual binding, access, and control

links and a continuation point (current state), as described earlier, plus

some other fields for additional features. Functions will exist that

enable the programmer to locate existing frames by name or by following

along access or control chains, creating a new process using any existing

frame as above, and constructing arbitrary control structure trees of new

frames. Hultiprocessing is done by explicit passing of control among

processes, or to a user-programmed scheduler.

An extremely general relative evaluation function will permit

independent specification of both access and control environments before

evaluating a specified expression. The effects of both the CONTINUE and

the CEVAL commands of CONNIVER and the relative stack evaluation of

BBN-LISP can be obtained as special cases of this new INTERLISP capability.

Another feature of the INTERLISP frame is the exit-function. In any

sys~em that implements flexible control structures, when a module makes a

normal return to its parent, certain bookkeeping operations must be

performed by the system during the actual transfer. INTERLISP provides a

place in the frame for a user function to be specified for execution at

this time. This exit function may be specified at run time by a different

module. Thus, for example, a module can insert an exit function in the

26

module three above it in the control chain which causes a breakpoint to the

user just before that higher module returns to its parent.

The present control structure of QLISP is rather restrictive, because

the new INTERLISP features mentioned above have not been available to build

upon. In particular, only "recursive" backtracking is possible; that is,

one can only backtrack to a higher point in a depth-first control tree.

This means that once a QLISP expression exits with a value, that expression

cannot be re-entered as a generator to produce another value. However, as

Sussman (Sussman 1972) pointed out, most sequential backtracking programs

can be rewritten into nested recursive tests. QLISP provides, as a

temporary expedient, a recursive backtracking version BIS of its basic

associative retrieval program IS. IS takes a pattern as its argument, and

tries to find an instance of that pattern in the data base. BIS takes as

an additional argument a test for any expression found. If a proposed

expression is rejected, BIS attempts to find a different instantiation of

its pattern argument. For example, the following program will search the

data base for something that John owns which is colored red: (The pattern-

matching operations are explained further in Section C.)

(BIS (OWNS JOHN + X)

(IF (IS (COLOR $X RED» THEN (PRINT $X)
ELSE (FAIL»)

After the spaghetti stack and associated .control operations are added

to INTERLISP, the QLISP ~ function will probably be modified to create its

own backtrack point, so that the above code could be replaced by

(IS (OWNS JOHN + X» followed by the above IF statement, without needing an

enclosing BIS operator.

27

Demons, in current QLISP, are set up as groups of functions called

teams that may be associated with any net storage or retrieval command.

This gives the programmer the flexibility needed to design either an

efficient system, in which he carefully selects the appropriate times to

trigger each demon, or a more carefree system, in which he calls for all

demons at every opportunity.

4. POPLER/POP-2. POPLERl.5 follows the PLANNER philosophy in terms of

making a failure mechanism and backtracking an important part of the

control facility. It uses the Bobrow and Wegbreit frame structure model

and allows general multiprocessing to be programmed with primitives similar

to the ones described for COID1IVER and INTERLISP. The POPLER interpreter

does the time-sharing quantum management. Data base demons are modelled

directly on PLANNER.

Its special additional fields for the module frame are an updateable

frame data item which can be accessed by the user, a frame type which

specifies certain continuation properties of the procedure, and an action

list which is used for the backtrack control scheme. The action list

contains failure actions which are executed when backtracking occurs, and

exit actions which are executed when a POPLER function returns via its

control link. The latter provide the same facility as the exit function of

INTEP~ISP. The extended control facilities are only available in POPLER,

and not in the underlying POP-2.

28

C. Pattern Hatching

In this section we shall describe the principal automatic pattern­

matching and variable-binding operations of the new languages.

1. SAIL. Following normal ALGOL conventions, variables in SAIL must be

declared with their types. Item variables or itemvars, represented by

identifiers, name locations that may have SAIL items as their contents.

These contents (also referred to as the values of the itemvars) are

frequently determined by a search and match operation invoked by a FOREACH

statement. For example, if X and Yare itemvars, the statement

l"OREACH X, Y SUCH THAT father III X = Y DO •••

will cause the template

father III =

to be matched against all triples in the data base that begin with

"father", call the second and third elements of each such triple X and !,

respectively, and execute the program specified after the DO for each such

pair. Thus, patterns per ~, as data structures, do not exist in SAIL.

Rather, the program syntax simultaneously specifies several patterns and

uses them to retrieve desired items from the data base.

2. PLANNER/CONNIVER. PLANNER, CONNIVER, QA4, and QLISP, like LISP, do not

have declarations for variables. In LISP all identifiers in argument

positions are assumed variables unless explicitly "quoted". In pattern

matching context, however, it is much more convenient to operate in

"inverse quote mode"; that is, to assume all identifiers are constants

29

unless marked by a prefix to be a variable. The specific prefix used

identifies the type of binding the variable may take.

PLANNER has three types of pattern variables: ?, $? and $ +. The

pattern ? matches anything. The basic distinction between the prefixes $?

and $ + is that $?X insists on preserving a previously assigned value for

X, if any, whereas $ +X permits the value of X to be changed. For example,

if we let + be the assignment operator, after

$+ X + A,

the operation $?X + B will cause a failure error because X is already

bound to A.

In present implementations, pattern matching in PLANNER can only

instantiate variables at the top level of the data list structure. This

does not seem to be a serious constraint, primarily because patterns are

only matched against assertions, and PLANNER assertions rarely have more

than one level of structure.

CONNIVER uses pattern matching in much the same way as PLANNER--to

fetch items from the data base, or to identify applicable programs by their

patterns. The pattern matching algorithm is kept simple by requiring the

programmer to identify the role of each variable in a pattern by means of a

prefix. Several prefixes are used:

?X permits X to be assigned any value

!X restricts X to be assigned to an expression that contains no

variables

,X requires that a previously-assigned value of X be substituted into

the pattern before the match begins

30

@exp specifies that exp, which may be any LISP expression, is to be

evaluated by the LISP interpreter before the match begins.

The CONNIVER pattern matcher may be used on arbitrary LISP data and may

contain variables at any level. For example, the pattern

«FREDS ?X) • ?REST)

matches both

«FREDS FATHER) WHISTLES) and

«FREDS GONE) HE SAID),

generating association lists

«X FATHER) (REST (WHISTLES») and

«X GONE) (REST (HE SAID»).

3. QLISP/INTERLISP. Pattern matching plays a much more important role in

QLISP than it does in the previously-discussed languages. Patterns are

used here not only to access the data base and to select appropriate

functions (by means of goal statements or other demon constructs), but also

as a basic method for operating upon complex data structures.

QLISP variables come in three varieties and two modes, all identified

by prefixes. The varieties are + , ?, and $:

+X permits X to be assigned any value.

?X permits X to be assigned a value if it has none before, but does

not permit a preassigned value to be changed.

$X references a preassigned value of X, that must exist.

QLISP functions resemble LISP functions but, instead of a list of bound

variables to associate with actual arguments, the lambda expression begins

with a pattern to be matched against the actual argument. (QLISP functions

31

have only one argument, but this can be an n-tuple.) Pattern extraction

eliminates the need for possibly confusing chains of cars and cdrs. For

example, suppose we want a program to transform a list structure of three

elements in the following way:

(A (B C» -+ «C B) A).

The LISP function to do this would be:

(LAMBDA (X) (LIST (LIST (CADADR X) (CAADR X» (CAR X»).

In QLISP it would be much more transparent:

(QLAI1BOA (TUPLE + X (TUPLE + Y + Z» (TUPLE (TUPLE $Z $Y) $X».

Moreover, if the actual data did not have the appropriate form, e.g., if we

tried to run these programs on the lists

(A B C) or

(A (B C) (0 E»,

the LISP program would generate an error at same lower level that might be

difficult to diagnose, or (in the second example) it would calculate a

meaningless result that would cause some future program to run into

trouble; the QLISP program immediately reports that its argument does not

have the anticipated structure.

There are two modes of variables: individual variables, which we have

been discussing thus far; and segment variables, denoted by the prefixes

++, ??, and $$, which match any number of elements of a class, bag, or

tuple.

Now we can see how the pattern-matching technique for labeling

substructures of an expression is particularly useful for QLISP structures

of mixed data type. Suppose we wish to find an expression that plays some

special role in an arbitrary set of algebraic expressions such as

32

{ 17, a-b, S+c+d+e, c+b+d, d-a}.

This set could be represented in QLISP hy

(CLASS 17
(TUPLE DIFF A B)
(TUPLE PLUS (BAG 5 C DE»
(TUPLE PLUS (BAG C B D»
(TUPLE DIFF D A».

Now let us pose the question, "If any number is subtracted from something

in one expression and added to something in another, tell me what it is

added to". When matched against the above set, the following pattern

(CLASS (TUPLE DIFF +Vl +V2)
(TUPLE PLUS (BAG +V2 + +X»
+ +V3)

will cause the variable X to be bound to the answer,

$X = (BAG CD).

4. POPLER. Pattern matching in POPLER is used for the same purposes as in

PLANNER/CONNIVER. Pattern variables in POPLER have four types, two modes,

and restrictions. The restrictions include a data type restriction, and

user programmable tests. The types are as indicated by the prefix forms

below, where we have taken the liberty of substituting the pound sign (#)

for the Sterling pound sign.

##X matches only the current value of X.

#*X will assign a matched item to a variable as long as the

restrictions are satisfied.

#:X will tentatively assign the value, but sets up a failure action to

restore the old value in case of later failure back.

#>X behaves like #:X if the variable is unassigned, but will only

match the value of X (as does ##X) if it has an assigned value.

33

In matching list structure elements, individual variables can also have a

segment mode, and match an interior segment of a list. The segment mode

forms of the above types are prefixed with ###, #**, #::, and #».

POPLER patterns are very, general, with variables at arbitrary levels in
~

a list, and a stock of standard pattern "actors" (Hewitt 1972) which help

specify the pattern. These include an actor which tests whether a

specified list is contained in the target, one which will check property

lists, and combiners to allow alternatives and conjunctions. New actors

are easy to add.

D. Deductive Hechanisms

In this section we shall describe the principal automatic search,

deduction or decision-making facilities for the new languages.

1. SAIL. SAIL does not have any explicit deduction mechanism. However,

complex semi-automatic search procedures that implement certain deductive

principles can easily be programmed with the aid of a device called a

"matching procedure". A matching procedure is a boolean procedure that may

contain unbound pattern variables as arguments. The matching procedure is

called from a FOREACH enumeration statement. It returns either by

succeeding and returning values for the previously unbound parameters, or

failing, which causes the FOREACH to terminate.

For example, suppose we wish to execute some program hum for every

known part of a human being. If the data base has associations such as

34

part III human = hand
part III human = foot
part III hand = finger
part II!I finger = fingernail
part III foot = toe

The statement

FOREACH X SUCH THAT part III human = X DO hum

would only run hum on hand and foot. However, the following use of a

recursive matching procedure partof would run hum on all parts of the

human, because partof specifies the desired transitivity of the part

relation:

FOREACH X SUCH THAT partof (human,X) DO ~

Here is a definition of partof, with comments enclosed in quotes:

HATCHING PROCEDURE partof(itemvar a; ?itemvar b);
"The question mark indicates a possibly unbound parameter"

BEGIN
FOREACH b SUCH THAT part III a = b DO

BEGIN SUCCEED; "pass back as first answer each value of b found by
direct memory look-up"

q + b;
FOREACH b such that partof(q,b) DO SUCCEED;

"Recursive call for transitivity; whenev"er any b is
found, it is passed back to the caller."

END; "Outer FOREACH now iterates."
FAIL; "No more possible answers."

END;

2. PLANNER/CONNIVER. The key to the deductive mechanism of PLN~NER is the

theorem, an expression containing as major elements a target pattern we

shall call P and a program Q. There are three categories of theorems:

consequent, antecedent, and erase. These categories differ primarily in

the ways they are invoked.

35

The most important category with respect to deduction is the consequent

theorem, which usually has the logical form

Q implies P;

that is, "if program Q were successfully executed then the assertion

matched by pattern P would be proven". Frequently the "program" Q itself

merely requests that an assertion be proven, so that the consequent theorem

sets up an automatic backward-chaining mechanism for searching the data

base.

These searches are initiated by the goal statement. For example,

suppose some program wishes to determine whether a finger is part of a

person, when the data base contains the assertions (PA~r ARM PERSON),

(PART HAND ARM) and (PART FINGER HAND) • The program statement

(GOAL (PART FINGER PERSON»

would first look directly for the assertion (PART FINGER PERSON) in the

data base, but not find it; then the goal mechanism would look for a

consequent theorem whose pattern matches the assertion of the goal. If the

theorem

(CONSEQUENT
(PARI' $?X $?Z)
(GOAL (PART $?X $?Y»
(GOAL (PART $?Y $?Z»

}
}

[Pattern P]

[Program Q]

is stored in theorem memory, then by matching (PART $?X $?Z) against the

goal (PART FINGER PERSON) the theorem would "run", i.e., attempt to prove,

two new instantiated goal statements:

(GOAL (PARI' FINGER $?Y» and

(GOAL (PARI' $?Y PERSON».

36

Upon matching the first goal against the data base, Y is instantiated as

HANDi the second goal can then be satisfied by another use (a recursive

call) of the same consequent theorem.

The above example shows how facts implicitly present in the combined

data base and theorem memory can be deduced when needed. An alternative

approach to making needed facts accessible is to deduce them at the

earliest opportunity and store them explicitly for future possible use.

This approach is possible in PLANNER by using antecedent theorems.

Whenever anything is asserted, i.e, added to the data base, all

antecedent theorems are checked against the new assertion. If the P part

matches the assertion, the Q part is immediately executed.

Suppose we have the following theorem:

(ANTECEDENT
(PART $?X $?Y)
(GOAL (PART $'?Y $?Z»
(ASSERT (PART $?X $?Z»

}
}

[Pattern P]

[Program Q]

Now, continuing the above example, if some program executes

(ASSERT (PART FINGERNAIL FINGER»

then P of the above' theorem matches, so the two-statement Q is

automatically instantiated and executed. First (GOAL PART FINGER $?Z» is

proven from the data base by setting Z to HAND, and then

(ASSERT (PARr FINGERNAIL HAND)) is executed. This latter assertion again

invokes the same antecedent theorem. Eventually

(PARr FINGERNAIL ARM) and

(PARI' FINGERNAIL PERSON)

are also added to the data base, eliminating the need for deducing these

facts (with consequence theorems) if they are ever needed in the future.

37

Of course, antecedent theorems must be used judiciously to avoid cluttering

up the data base with many relatively useless facts.

The third PLANNER theorem type is erase: Its Q part is executed

whenever P matches a fact that is being erased (deleted) from the data

base. Just as antecedent theorems, which are triggered by assertions, are

usually used to assert additional derived facts, erase theorems, which are

triggered by erasures, are usually used to erase additional dependent facts

in order to clean up the data base.

CONNIVER takes the view that PLANNER theorems and their associated

search or data-manipulation activities are too automatic. Instead of

offering, for example, a GOAL mechanism that searches through alternative

derivations (by means of consequent theorems) until a final proof is found,

CONNIVER gives the programmer mechanisms for designing his own search

algorithms. These mechanisms can be used to construct algorithms similar

to the ones built into PLANNER, if desired, but they also permit much more

flexible communication and dynamic modification of the search procedures.

CONNIVER data items each reside in their own named data contexts; each

major element of a CONNIVER search algorithm also resides in its own

control context. The PLANNER concept of pattern-directed program

invocation--ernbodied in the P and Q elements of every PLANNER theorem--has

been carried over into CONNIVER. However, the process of matching the

pattern P, to generate data items and to bind variables, takes place in a

control context independent from the program Q that makes use of those

bindings. The two processes may be interleaved in any manner desired by

the programmer, who is given convenient handles for coordinating and

communicating between such processes. Thus, although there are no built-in

38

deductive mechanisms quite like PLANNER's theorems, CONNIVER makes it easy

for a programmer to devise his own, more tightly controlled, deductive

procedures.

3. QLISP/INTERLISP. The QLISP goal statement is quite similar to the goal

statement of PLANNER; it causes first a search through the data store for

an item matching the argument of the goal, and then, if that search is

unsuccessful, the goal statement invokes the execution of appropriate

functions (programs) whose target pattern matches the goal. Every QLISP

function has as part of its definition a "bound variable expression" that

contains a pattern that is matched against its argument before the function

may be invoked. This pattern filters out inappropriate arguments, and it

binds variables within the function definition to appropriate elements of

the selected arguments. As in PLANNER, QLISP functions also maintain

appropriate control information to backtrack automatically through

alternative matches until a goal is successfully completed, although

backtracking between functions is dependent on the completion of the

ItITERLISP control structure implementation. (By QLISP functions we mean

the new QLAMBDA form which has been added to the repertoire of function

types available in INTERLISP.)

In addition, the QLISP goal statement has several features that are

oriented somewhat differently from the comparable PLANNER statement:

a) The goal statement consists of two distinct operations in

sequence: a data base search, followed by the pattern-directed

execution of programs. These two operations, called is and cases,

respectively, are commonly used independently.

39

I

b) SAIL normally only stores true propositions (assertions) in its

main permanent data base. Although any expression may be stored

in the PLANNER data base, the built-in GOAL search mechanism

assumes they all represent assertions. Although PLANNER

assertions may have property lists, these are not used by the

system in any standard way. QLISP encourages the programmer to

put in the net any complex structures he wishes: each has a unique

occurrence, and a property list. In following goal chains, QLISP

system functions know that assertions are just those net

expressions that have on their property lists a MODELVALUE

attribute with truth value T (true) or NIL (false).

c) The QLISP demon mechanism is implemented by requiring the user to

specify teams of demon functions (perhaps none) as part of every

data storage or retrieval operation. By specializing these data

operations, e.g., one for changes to the robot world, another for

logical propositions, the team mechanism 'allows tighter

specification of relevant demons. Standard teams for ASSERT and

DELETE could implement the PLANNER antecedent and erase theorems.

d) Like CONNIVER, QLISP has both data and control contexts which may

be created or modified by the programmer. Goal statements may be

executed with respect to any specified contexts: therefore data­

base changes need not be undone, as in PLANNER, with erase and

antecedent theorems. As the applicable scope of an expression

changes, CONNIVER permits moving of expressions to other contexts.

QLISP will be able to perform a similar function.

40

4. POPLER. The POPLER deductive mechanism is modeled after PLANNER and

CONNIVER, with procedures which can be called by "pattern directed

invocation". A target-pattern, representing what is to be done, is used to

select a procedure whose procedure pattern matches the target-pattern.

There are four types associated with different classes of targets: achieve,

infer, assert or erase. Assert procedures are the "antecedent theorems" of

PLANNER, invoked when appropriate data items are added to the data base;

erase procedures operate when items are removed. Achieve and infer

procedures correspond to two different PLANNER uses of "consequent

theorems"; check, is something now the case, versus, goal, make

something be the case. Inferring does not allow the use of operators which

are defined to change the world. To use Davies example (1973 p.7.l), in a

chess playing program we should certainly want to distinguish between the

target statements:

1) achieve ([I am checkmated]) ;

2) infer ([I am checkmated]);

The former would attempt to lose the game, while the latter only checks

\tlhether the game is already lost.

In addition to direct invocation of relevant procedures with backtraCk

control, POPLER allows the CONNIVER-like construction of a possibilities

list independent of the invocation of the procedures. possibilities can be

procedure items or generators, and can be pruned by any function with

access to this possibilities list. POPLER also allows user association of

recommendation lists and filters to help modify the straightforward

(default) depth first search.

41

V CONCLUSIONS

We have described in this paper several new programming languages for

AI research. We shall now review some of the principal features and

present status of these languages:

(1) SAIL. This language is one of the most stable, debugged, and heavily

used of the languages surveyed. It runs on a PDP-IO under the DEC 10-50

monitor. Its ALGOL base provides full algebraic capability, with well­

tested I/O and interface·to assembly-language subroutines. The debugging

features remain an extension of an assembly code debugger. Swinehart

(1973) has implemented a display package for a system built on top of SAIL

which allows informative exploration of a control structure tree. The

associative memory is a single, permanent, top-level structure; no

convenient way exists for partitioning access to the associations on the

basis of control context, subject matter, etc., except by explicit

programming. Hajor storage management, including erasure of abandoned

data, is the programmer's (rather than the system's) responsibility; so is

the specification of which variables to save or restore upon backtracking.

Fairly elaborate process control and communication features have recently

been added to the language, and it seems likely that the language will

continue to be modified in an evolutionary manner to respond to the needs

of its users.

(2) PLANNER. HICRO-PLANNER is an implementation of a subset of Hewitt's

PLANNER ideas (Hewitt 1972). MICRO-PLANNER was written in LISP under the

42

HI'!' ITS system that runs only on the PDP-IO at HIT, but HICRO-PLANNER has

been transferred to other LISP systems for experimental use. PLANNER

introduced the important coupled concepts of pattern-directed program

selection and procedural representation of knowledge. Extensive automatic

depth-first search and backtrack control is a debatable feature of PLru~ER:

this automatic control structure permits the programmer to describe· his

algorithms in a piecemeal declarative fashion without worrying about

sequential program flow; but it can lead to highly inefficient thrashing in

the absence of suitable constraints, and the right constraints are

frequently awkward to express. The natural conventions for using the data

store asssurne that it holds only elementary propositi~ns that are presumed

to be true; there are no built-in checks for consistency, and there is no

convenient way to make use of the knowledge that a given proposition is

false. PLANNER has received much publicity, partly because of t:.he

outstanding research for which it is being used at the MIT AI Laboratory.

Its future probably depends upon the efficiency of its new implementations

and the experiences of a growing community of users.

(3) CONNIVER. This new system grew out of the collective experience of

UICRO-PLANNER users. It too is implemented in LISP under ITS. The

philosophy of CONNIVER is to return a much greater degree of control--and

responsibility--to the user than was permitted by PLANNER. As a result,

CONNIVER is a system in which it is possible for skilled programmers to

design efficient algorithms that involve the kind of complex interacting

processes needed in current AI research. Since CONNIVER does not have

PLANNER-like conventions to structure the semantics of its data and

43

programs--assertions, theorems, goals, etc.--it may be substantially more

difficult for a new user to learn. On the other hand, the inefficiencies

of blind backtracking may make PLANNER also an impractical language except

in the hands of an expert who learns the subtleties of its more complex

control options.

(4) QLISP/INTERLISP. Much of the QLISP philosophy, and large chunks of its

actual code, were taken directly from QA4, an experimental language

implemented at SRI more than two years ago. The usefulness of QLISP's new

data types and pattern-matching facilities were tested in QA4 in problem-

solving and automatic-programming research. The major shortcomings of

QA4--such as slow execution and lack of debugging tools and utility

functions--have been overcome by embedding QLISP directly into INTERLISP.

All the well-established capabilities of INTERLISP debugging aids, user

file structures, and so on, as well as all of basic LISP, are automatically

available. Although some of the control structure operations available

through the QA4 interpreter are not present in QLISP, the new control

features of It~ERLISP will soon make the combined INTERLISP/QLISP system

one of the most flexible systems available. QLISP is still under active

development and a first version of QLISP is now being completed at SRI;

preliminary versions have been available for experimental use for several

months. A new version of the pattern matcher that gains generality by

using a unification-like algorithm is being added and substantial changes

may take place when the new control structure implementation for INTERLISP

is complete. QLISP will eventually contain an efficient implementation of

44

most of the desirable language features we have discussed, and will be

available to the large, interested community of TENEX system users.

(6) POPLER. POPLER 1.5 is a programming language implemented in and an

extension of POP-2, a system developed at the University of Edinburgh for
....

application to Artificial Intelligence programming. POP-2 has been, used

for several years on the ICL 4130 in Edinburgh; in the past year a PDP-lO

implementation has been completed (for the 10/50 monitor), and others have

been started. Recently a new interactive editor has been completed, and

the system is well documented and friendly to users. POP-2 is a simple

programming language with good data structure facilities: built-in words,

arrays, strings, lists and records. A "garbage collector" automatically

controls storage for the programmer.

POPLER 1.5 was completed in spring 1973, and has not yet been used for

any major projects. It looks like it will provide most of the facilities

of a PLAtlliER like system. It has a sophisticated control structure which

is "visible" to the programmer and program. Programs can be compiled into

POP-2 or kept in data structures and interpreted by a special evaluator.

The language has general facilities for pattern matching, pattern

invocation of procedures, and pattern directed retrieval from a context

structured data base. The principal problem with POPLER stems from the

fact that it is built on top of POP-2 and is not integral \-lith the system.

Another problem is that it currently ",arks only in Edinburgh, and the

folklore of the system is in very few hands.

45

The languages we discussed above are the principal systems currently in

use, or likely to be in use in the near future, at the largest AI

laboratories. Among them, they represent the major new directions in the

development of AI software tools. Several other experimental language

systems have some features in common with the systems we have surveyed. We

did not include such other systems in detail in this paper because either

the system was purely experimental and unlikely to see extensive use, the

features of AI interest are only incidental to the main functions of the

language, or we were not sufficiently familiar with the system to treat it

accurately here. Nevertheless, the reader may be interested in learning

more about at least the following relevant systems:

(1) ABSET (Elcock 1971), a programming language based on sets,

developed at the University of Aberdeen;

(2) EeL, an extensible language system developed (Wegbreit 1972) at

Harvard University for work in automatic programming. Similar to

INTERLISP internally, it has particularly good handling of

extended data types. It combines a pleasant source language, an

interpreter for list structure representation of programs, and

several levels of optimizing compiler. It has been working for

about a year.

(3) LISP-70 (Tesler 1973), a compiler based LISP system designed to be

a "production language" for AI, that is, it biases language

features toward efficient implementation. The full system is not

yet up, but a prototype !4LISP2 (Smith 1973) used some of the

pattern matching and automatic rule maintenance for some natural

46

language processing work. LISP-70 looks as if it will be an

interesting language when it is finally available.

(4) SMALLTALK (Kay 1973) and PLANNER73 (Hewitt 1973), both embody an

interesting idea which extends the SIMULA (Ichbiah 1971) notion of

classes, items that have both internal data and procedures. A

user program can obtain an "answer" from an instance of a class by

giving it the name of its request without knowing whether the

requested information is data or is procedurally determined. Alan

Kay has extended the idea by making such classes be the basis for

a distributed interpreter in SHALLTALK, where each symbol

interrogates its environment and context to determine how to

respond. Hewitt has called a version of such extended classes

actors, and has studied some of the theoretical implications of

using actors (with built-in properties such as intention and

resource allocation) as the basis for a programming formalism and

language based on his earlier PLANNER work.

and PLANNER73 are both not yet publicly available, the ideas may

provide an interesting basis for thinking about programs. The

major danger seems to be that too much may have been collapsed

into one concept, with a resultant loss of clarity.

The development of software tools for AI research is currently an

extremely active area, and the systems emerging from this activity are

still in a great state of flux. However, one can begin to see the features

fitting together. For example, current AI research interests in

representation of knowledge demands the availability of permanent

associative memories and complex symbolic structures formed from new data

47

types such as sets. These structures almost force the use of pattern-based

analysis and retrieval methods. Pattern matching applied to such data, in

turn, is highly likely to be ambiguous and thus suggests backtrack control.

The simultaneous availability of all these features results in extremely

parsimonious descriptions of current AI algorithms. Within the next few

years we expect that one or more successors of QLISP, PLANNER/CONNIVER,

POPLER, and similar developmental efforts will stabilize and become the

basis for the major AI results of the next decade. Such successors will

embody not only the new features described here, but will face up to the

programming process as an entity (as described in Bobrow 1972), and provide

the programmer the tools necessary to facilitate all his interactions in

building a working system (e.g., editing, debugging, optimization,

documentation, etc.). Another challenge will be to seek coherence in the

Babel, and enough agreement on the forms of programs to allow successive

researchers to stand on the shoulders of their predecessors, not their

toes.

48

BIBLIOGRAPHY

Baumgart, B.G. }fICRO-PLANNER ALTERNATE REFERENCE MANUAL. stanford AI Lab
Operating Note No. 67, April 1972.

Bobrow, D. G. REQUIREHENTS FOR ADVANCED PROGRAMMING LANGUAGES FOR LIST
PROCESSING APPLICATIONS. Communications of the ACM. Volume 15, Number
7, pp. 618-627, July 1973.

Bobrow, Daniel G. and Raphael, Bertram. A COMPARISON OF LIST-PROCESSING
COMPUTER LANGUAGES. Communications of the ACM. Volume 7, Number 4,
April 1964.

Bobrow, Daniel G. and t'legbreit, Ben. A MODEL AND STACK IHPLE1-1ENTATION OF
HULTIPLE ENVIRONMENTS. Communications of the ACM, Volume 16, Number
la, October 1973.

Bobrow, Daniel G. and Wegbreit, Ben. A MODEL FOR CONTROL STRUCTURES FOR
ARI'IFICIAL INTELLIGENCE PROGRAHMING LANGUAGES. Proceedings of IJCAI,
Stanford, California, August 1973.

Burstall, R.l-1., Collins, J .S., and Poppleston, R.J. PROGRAMHING IN POP-2.
Edinburgh University Press, 1971.

Davies, D. Julian M. POPLER 1.5 REFERENCE MANUAL. University of
Edinburgh, TPU Report No.1, May 1973.

Elcock, E. t-l. et ale ABSET, A PROGRAHMING LANGUAGE BASED ON SETS:
motivation and examples. Machine Intelligence 6, Edinburgh University
Press, 1971.

Feldman, J .A. et ale RECENT DEVELOPMENTS IN SAIL--An ALGOL-based language
for artificial intelligence. FJCC, 1972.

Feldman, J.A. and
Communications
1969.

Rovner, P.D.
of the ACN.

AN ALGOL-BASED ASSOCIATIVE LANGUAGE.
Volume 12, Number 8, pp. 439-449, August

Gelernter, H. and Rochester, N. HEALIZATION OF A GEOHETRY THEOREH-PROVING
}mCHINE. Proc. International Conference on Information Processing.
Paris, Unesco House, 1959.

Griswold, 1<..1:.:. et ale THE SNOBOL4 PROGRAMHING LANGUAGE.
1968.

Prentice-Hall,

Hewitt, C. PROCEDURAL EMBEDDING OF KNOWLEDGE IN PLANNER. Proceedings of
IJCAI, London, September 1971.

49

...

Hewitt, C.
PLANNER:
robot.

DESCRIPTION AND THEORETICAL ru~ALYSIS (USING SCHEMATA) OF
A language for proving theorems and manipulating models in a

AI Hemo No. 251, MIT Project MAC, April 1972.

Hewitt, C. et ale A UNIVERSAL MODULAR ACTOR FORl-1ALISH FOR ARTIFICIAL
INTELLIGENCE. Proceedings of IJCAI, Stanford, California, August 1973.

Ichbiah, J.D. and Morse, S.P. GENERAL CONCEPTS OF THE SIMULA 67
PROGIDU1MING LANGUAGE. Companie Internationale pour le Informatique,
Paris, September 1971.

Kay, A. et ale
1973.

SMALLTALK, NOTEBOOK. Xerox Palo Alto Research Center,

HcDermott, Drew V. and Sussman, Gerald Jay. THE CONNIVER REFERENCE MANUAL.
AI Hemo No. 259, HIT Project HAC, May 1972.

Reboh, Rene and Sacerdoti, Earl. A PRELIMINARY QLISP MANUAL. SRI AI
Center Technical Note 81, August 1973.

Rulifson, J.F., Waldinger, R.J., and Dirksen, J.A. QA4, A LANGUAGE FOR
WRITING PROBLEN-SOLVING PROGRAMS. Proceedings IFIP Congress, 1968.

Rulifson, J.F. et ale QA4: A PROCEDURAL CALCULUS FOR INTUITIVE REASONING.
SRI AI Center Technical Note 73, November 1973.

Smith, D.C. and Enea, H.J.
1973.

MLISP2. Stanford AI Lab Heroo AIM-195, May

Sussman, Gerald Jay and McDermott, Drew Vincent. WIlY CONNIVING IS BETTER
THAN PLANNING. AI Memo No. 255A, MIT Project MAC, April 1972.

Sussman, G.J. and Winograd, T. MICRO-PLANNER REFERENCE MANUAL. AI Memo
No. 203, l'-1IT Project HAC, July 1970.

Swinehart, D.
SYSTEr·1S.

A MULTIPLE-PROCESS APPROACH TO INTERACTIVE
PhD Thesis, Stanford University, 1973.

PROGRAl'1l1ING

Swinehart, D. and Sproull, B. SAIL. Stanford AI Project Operating Note
No. 57.2, January 1971.

Tei telrnan, W. TO\vARD A PROGRAMMING LABORATORY. Proceedings IJCAI,
Washington, D.C., 1969.

Teitelrnan, w., Bobrow, D., and Hartley, A. INTERLISP REFERENCE MANUAL.
Xerox Palo Alto Research Center, 1973.

Tesler, L.G. et ale THE LISP70 PATTERN MATCHING SYSTm~. Proceedings of
IJCAI, Stanford, California, August 1973.

Wegbreit, Ben et ale
September 1972.

ECL PROGRAM1-1ER • S HANUAL.

50

Harvard University,

