This document is for internal Xerox use only.

DRAFT - DRAFT - DRAFT

Design for a D'istributed Data Storage Sysiem

by Butler W. Lampson and Howard E. Sturgis

February 5, 19781_

This document is a preliminary description of the design of 2 system for storing data on a
number of computers. The design provides protection for the datz, properly controlled

simultaneous access by several users, and a high degree of xmmumty against foss of sLored
data because of system malfunctncms

© Copyright 1976 by Xerox Corporation

XERUX

PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alte / California 94304

This document: is for inlernal Xerox use only.

CHAPTER 1. INTRODUCTION

.. and gives to airy nothing
A local habuauon and a name. '
Midsummar Night's Dream V i IG

This document describes the design of 'the core of a distributed file syétem. This design is the
result of about two years of intermittent work by a group consisting of the authors, Charles
Simonyi, Patrick Baudelaire and Ed Fiala; there have also been various occasional participants.

Our current plan is to implement this design (or some suitably modified version of it} during -
1976, together with the directory, archiving and backup facilities {collectively called extended
facilities) needed to make it a viable alternative or supplement to the Maxc file system. The
goal is to have an operational system by the end of 1976. We estimate that this will take three
man-years of work by four people. Currently Ed Taft, Howard Sturgis and Barbara Hunt are
planning to participate in the implementation; a fourth person 1s needed. :

The reader should note that this memo describes only the core of the distributed file system,
~and not the extended facilities. We believe that the extended facilities can be implemented as
a separate set of modules, depending on the system described here for storage of data, but not
themselves providing any functions on which the storage system depends. The system
described here will be called the d:smbuled data storage system to distinguish it from a
complete distributed file system.

CHAPTER 2. OBJECTIVES

The design is motivated by a number of objectives. These mainly have to do with the aspect
which the system presents to a program which is using its facilities. The following short list
of the objectives is followed by a more detailed dlscussxon The italicized keywords provide a
.convenient one-sentence summary of the objectwes. ’

Data storage : 4
. The system stores files whuch are sequences of bytes.
It is possible to have mformatlon stored redundantly.
Distributed :
The system is lmph.mented on several co-operatmg computers. '
"The normal mode of access is- remote, over the Ethernet.
Protected '
- Each file has protection information associated wnh it.
Requests are authentncated
Consistent : :
A sequence of several reads and wrltes can be performed as an indivisible, atomic
“operation, in spite of crashes or simultaneous activity by other users.
_User programs can maintain local caches for data stored in the system.

It is important to recognize that a number of things which are often thought of as essential
properties of a file system are omitted from the data storage system. In particular,

- There is no provision for symbolic names or directories.

. There are no provisions for accessing data without regard for which machine is stonng
it (although there are facilities for finding out which machme is stonng it).
There is no- backup or archiving.

. Data is entirely unstructured, except for the orgamzatlon mto files, which is intended
only to provide a minimum location-independent naming facility.

As an obvious consequence of these points, the system is mtended to be used by
-programs, not directly by people.

These things are missing not because they are considered to be unimportant, but because we
believe they can be provided by separate components interposed between the user and the data

storage system. We have tried to put into the data storage system only those facmues which
cannot be separated out in this way.

The remainder of this section expands on each of the points in the list of objectives above.
The reader should bear in mind that this section is only a description of objectives, and that
complete descriptions of the various mechanisms in the system, and more thorough discussions
of the alternatives which have been considered, can be found in Ilater sections.

Here, and in the rest of this document, the word user means user program, since human users
do not appear. .

2.1 Data storage

2.1.1 Files

The objects stored in the system are files. There is no attempt to store more complicated
objects such as databases, sealed items, capabilities, or whatever. A file has several components:

an identifier which serves to name it; this is a 64 bit number;
a length I;

a sequence of L data bytes:;

some protection information;

an interception list,

a property list;

possibly other components.

" Note that a file is named by its identifier, rather than by a text name. User programs, or
system facilities outside of the data storage system, may use some f xles to represent dlrecmnes
and’ thus prowde ‘a symbolic nammg facility. ’

2.1.2 Redundancy

~ An option is provided to store fxles redundantly (in some cases thls may be mandatory) The 1
weakest form of redundant storage permits the loss of a single disk page without losing any .
information. The strongest form of redundancy perm:ts the loss of an entire machine or disk
- pack without the loss of mformauon

2.2 Distribution

2.2.1 Several cooperating computers

The ‘system is implemented on several computers, communicating over some packet facility,
such as the Ethernet. The net is assumed to be imperfect, in that not all transmitted messages
will be received (a message received with a bad checksum is treated as not received).

The system behaves as a single organism in certain important ways. For example, the user can
specify that a set of changes to the stored data should appear to occur simultaneously on all
the system computers holding portions of the affected data. Also, files may move from one
computer to another,. possibly in response to a user request, and possibly spontaneously.

However, the user must be aware that several computers are involved. He is expected to
determme which computer currently stores a particular piece of data, and to address requests
for reading or writing that data to the appropriate computer. A mechanism which allows the
user to direct his requests to a single computer can be provided outside the data storage system.

The system provides a way of finding out where a file is stored given its identifier. "ThisA
process may be rather inefficient, however, and the system is designed on the assumption that
users will normally keep track of the current (or most probable) location of a file.

2.2.2 Access is normally remote

Users normally access the system from remote computers; no provision is made for ordinary
user programs to run in system computers. This access is over a packet communication
facility, and takes the form of requests for various commands; a request is coded into packets
in some way which is well-matched to the properties of the network. It is assumed that the
communication facility will not always succeed in transmitting a message. . This assumption’
affects the algorithms that users should should use when accessing the system.

It is possible that programs which are outside the data storage system, but are part of a larger
file system, might reside in the same computers on which the data storage system runs. It is
also possible for a personal computer to participate in the data storage system, by responding
to requests for service in the same way that a system machine would respond. However, it
must be recognized that the system cannot offer any guarantees about the security or correct
functioning of such a personal machine.

2.3 Protection

2.3.1 Files are protected

The system provides two relatively independent protection mechanisms, hard and soft. The
intention is that hard protection will provide credible, but awkward guarantees; while the soft
system will provide flexibly programmed access, and hence can be programmed to give
unintended access. Each request from a user must pass both bamers to be accepted.

The only entity to which protection information can be attached is a flle AH the information
in a file is protected identically, and different files have entirely independent protection.

232 Requests are authentzcated

To support the control of access to files, each request is submitted to a series of authentlcatxon
. procedures. In order to gain access to more highly protected files, the request will be subjected
to more extensive authentication procedures. These procedures are defined and performed
independently of the actual file access. That is, a request will specify what level of
authentication it requires independently of the command it requests. The result of the
authentication is then checked against the protecuon information on the file when the request
is about to be performed.

24 Consistency :

2.4.1 Atomic commands

The system provides a mechanism called a transaction, which serves to package a set of file
access requests, possibly including a number of reads and writes of different files, into a single
action. That is, all the writes in the transaction will appear to occur simultaneously, and the
information obtained by all the reads in the transaction will still be correct at the apparent
time of the write. In the event of file system crashes, whether hardware or software, either all
the writes of the transaction will have been performed, or none of them.

The algorithms which implement transactions have a side effect: tocks are implicitly set on the

data by reads and writes. These locks can lead to deadlock. The system handles these
deadlocks by timeout; when a timeoul occurs, the transaction involved may be aborted. Thus,

users must be able to handle unexpected aborts of their transactions. Of course, system crashes

would occasionally abort a transaction in any case, but deadlocks may cause aborts to occur

much more frequently.

2.4.2 Caches

There is a facility which allows a user to maintain a local copy or cache of desired portions of
files stored in the system. If the user follows an appropriate algorithm, the system guarantees
the accuracy of the local copy. That is, whenever the user fetches any information from the
cache, he will be informed of any changes which may have affected that information.

This facility is useful in situations where the user is reading some information frequently, and
the information is updated by other users quite infrequently. For example, the information

might be a directory or index into a data base, which likely to be often accessed and rarely
changed.

CHAPTER 3. AN EXTERNAL VIEW OF THE SYSTEM

-In this chapter we are concerned with the way the storage system appears to a user (1e. a using
program). We will describe the system in terms of the states it can be in, and the operations
which the user can invoke to read and modify its state. The reader should note that in this
section we are describing an interface, and are not saying anything about the implementation.
The internal orgamzauon of the system is discussed later in this document.

The ‘state of the system is dxvrded into two parts permanent or stable and temporary or
volatile. Roughly speaking, stable state represents files, and volatile state represents
transactions. Volatile state contains such things as interlocks on data which is being read or .
written by transactions in progress, and modrftcatlons to files which have been requested by
transactions in progress (these modifications do not become part of the stable state until the
transaction is completed). Stable state is preserved over system crashes, while volatile state is
not. The stable system state is called the S-state or S-view, and the volanle state is called the
V-state or V-view. .

All file system commands are performed as a result of requests sent by users. When 2
command is complete, a response is usually sent back to the user who requested the command.
A request is sent to a particular computer. In almost all cases, a request is part of a
transaction, and is sent to the representative of that transaction in that computer; this
representatlve is called a worker.

A request mvolves at least three levels of protocoi: network, authentication and data. It arrives
at a storage system computer as a collection of packets. The network protocol combines these
packets to form a raw request. Then the authentication protocol converts this raw request into
an authenticated request. Finally, the authenticated request is delivered to the appropriate
worker, which makes any necessary protection checks, and if these are successf ul performs the
requested operatlons on the data ' :

Responses travel in the opposite direction, from workers to users. We have not, as yet, given
much consideration to the transformattons which convert a logtcal responsc into a collection
of packets

The remamder of this secnon is devoted to descnbmg these various components ‘of the system
from the user's point of view. ‘

3.1 Protection

The model on which the protection mechanism is based is the following. Think of each
system computer as a windowless building with a single door. At the door there is a series of
security officers, but inside the building people and documents flow around freely. Requests
written on pieces of paper arrive at the door. Each request is examined by the first security
officer. He may look at the sender’'s name, examine the signature, check the ID of the
messenger who delivers the paper, look for a password written on the paper, or even decode an
. encrypted message.

Based on any or all of this information, the security officer stamps the paper with a rubber

stamp which tells the people in the bunldmg how senously to take it. The mark which the
rubber stamp leaves on the paper is called an impression, but we will often abuse language and
simply call it a stamp. The text of a stamp mxght be By order of the commanding officer, or
From the payroll department, or Cleared to receive secret information. The purpose of the
stamp is to provide a simple, uniform and reliable basis on which receivers of the request can
decide whether to act on it or not. The security officer's function is to convert the
complicated, varied and uncertain properties which the request has when it arrives from the
real world into this simple form. The scheme is based on the assumption lhat the paper is not
subject to tampering once it is msxde the building, .

After leaving the first security offxcer the request may pass through additional offlcers who
 scrutinize it further, and perhaps afﬁx additional stamps. Finally it leaves the security .
officers, and is routed through the building to be acted upon. Suppose a file clerk receives it,
reads it, and determines that it is asking for a copy of a particular document to be delivered to
the originator of the request. He extracts the document from the file and looks at its cover
sheet. There he finds a list of the stamped texts which can authorize copying of the document,
e.g. Cleared to receive Xerox private. The clerk looks at the request to see whether it has a -
stamp with one of these texts. If so, he proceeds to send the requested information; if not, he
rejects it The texts listed on the document are cal!ed guards.

“In order to make the secunty off:cers job easier when he is decrdmg wh:ch stamps to affix,
and to make it convenient for a request to carry only the minimum stamps which are needed
" to accomplish its intended mission, each request contains a special section labeled Claims for
Stamps. In this section the originator of the request lists the stamps he wants to have on the
- request. The security officer affixes only those stamps whose names appear in the Claims far
Stamps secnon and which he determines that the request is entitled to have.

This model of the system as a building, with security enforced at the entrance explains why we

insist that storage system computers not be shared with user programs. Since the storage
system has no internal protection mechanism, it depends for its security on its completev
isolation from any malicious influence. If a user program is to run on the same machine, then

either '

the machine must have protectlon mechanisms, not part of the storage system, whxch
ensure the isolation of the storage system from the user program, or :

the user program must be trusted or

. data stored on that machine must be recognized as insecure, and other storage system
machines must treat that one as suspect

We can imagine circumstances under which each of these alternatives might be acceptable. For
our current purposes, however, we will proceed under the assumption that the storage system
owns its machines, and that no user programs run in the storage system machines.

3.1.1 Levels of protection"

In our view, there is a fundamental conflict between security and convenience. In order to be
highly secure, a protection system must be fairly simple, and it must be stable, i.e. infrequently
changed. Simplicity is important because security is only as strong as its weakest-link, which a
determined and ingenious enemy is likely to find. If there are many links, each one cannot be
scrutinized carefully enough -to ensure its strength. Stability is important because each change
is an opportunity for an error. Furthermore, when changes are frequent, those responsible for
specifying the changes or checking their correctness become overworked and make mistakes.

In addition, simplicity and stability are essential if .the system is to be credible to its users,
especially when it is new. No sensible man will put his trust in a very complicated and
constantly changing mechanism, unless perhaps the mechanism has accumulated a great deal of
operating time without a failure. ,

Unfortunately, these desirable properties cannot be had for nothing. A simplé mechanism will
be unable to represent the complex requirements for individual privacy and restricted sharing

of information which are likely to be associated with a large collection of stored information.
And these requirements are constantly changing. The two temporary payroll clerks may enter
information from time-cards only on Thursday afternoon, except that Thursday, July 4 is a
holiday and they will work on July 3 instead. The medical department may read the work
histories, and read and update the medical records, for all employees, but may not see any
other information in the personnel files. And so forth. Methods are known for satisfying
protection requirements like these, but they do not lead to a simple and stable system.

The data storage system reconciles the need for security with the need for flexibility by
providing two levels of protection. The first level, called the hard protection mechanism,
caters for security at the expense of flexnbxhty The second level provides sojft protection,
which is as flexible as we know how to make it within the general framework of the storage
system. Still more elaborate protection can be provided by programs operating outside lhe
storage system, such as a database manager.

.At each level there are stamps and guards. In the interests of simplicity, cach request gets
~ exactly one hard stamp, and each. file exactly one hard guard. By contrast, a request can have
any number of soft stamps, and a file can be guarded by an arbitrary Boolean expression
containing ands, ors, and tests for specific soft stamps. , :

The remainder of this section on protection presents the technical: details of the protection
mechanism we have designed for the distributed data storage system. We have tried to make -
the terminology consistent between the informal description above and the precise one below,
~ but m case of doubt it is the precise description which governs. .

3.1.2 The nature of authentication

In deciding whether or not to authenticate a request by affixing one of its claimed stamps, the
authenticator has two kinds of information at his disposal: the origin of the request and its
content. These are called indicators of the requesL

We take the position that each separate message must be authenticated independently of any
other messages, since the viscissitudes of communication preclude any guarantee of the
relationship ‘between messages. We do admit the possibility that the authenticator might have
some state. For example, a sign-on dialog conducted with some machine in the recent past
might cause messages from that machine to be treated with greater respect.

Ongm indicators consxst of

O1) the network on which the request arrived (supphed by the recexvmg hardware and
software);

. 02) any avéllable information about the route the request has followed since it left its
source (supplied by the networks it has passed over);

03) the source machine (usually supplied by the network into which it was fxrst
launched); :

04) the source- socket (supplied by software in the source machine).

These indicators have been listed in order of decreasing reliability, since each one introduces a
new, possibly unreliable, supplier of information, and is also subject to corruption by the
mechanisms involved in supplying the indicators above it.

How seriously each indicator should be taken, in deciding whether to affix a particular stamp,
depends on a careful analysis of the properties of the various suppliers of information. It also
depends on the level of confidence which the stamp is supposed to represent. Consider
indicator (0O3), for example. A message arriving on a dial-up telephone line carries no origin
indicator of its source. One arriving on the Ethernet does carry a source machine number, but
since the software on any Alto can supply any number, the indicator is not very
confidence-inspiring (this is not a fundamental property of the Ethernet, by the way, but an
accident of the Alto interface implementation). On the Nova MCA, however, the network

hardware supplies the source machine number, so the receiver can trust it if he is willing to
discount the possibility of errors or tampering with the MCA hardware. Decisions about how
‘much to trust the origin indicators are a matter of policy, and the protection system is
constructed to accept such policy decisions as parameters. . ,

Content indicators take more varied forms. All of them have the property that they depend
only on the data bits in the received message, and not on any properties of the communication
paths it has traversed (although these properties may influence the receiver's confidence in
them). There are two basic types of content indicator:

C1) a password, which is a sequence of bits appearmg at some agrced upon place in
the message; _

C2) encrypllo.n of the message, which when decrypted contains a password

In the case of encrypnon it is not partncularly important that the password be secret, provxded
that the encryption key is secret. The main purpose of the password is to allow the receiver to
be confident that the message is recognizable, i.e. that it was actually produced by someone
who knew the key, and is not just a random collection of bits. It is important, however, that
the decrypted password should depend in some complex way on all the bits in the encrypted
message. Otherwise an enemy can copy the bits which determine the password from some
legmmate message, and supply anythmg he chooses for the rest of the message.

The two schemes offer equal secunty if thc commumcanon path is secure When it is not
‘encryption is essential, and can offer arbitrarily good security, provided a good algorithm is
used and the key is change'd sufficiently often. Ih addition to providing secure authentication,
of course, encryption also performs the important function of -concealing the content of the
message from observers ;

We feel that encryption wxll be an essentlal part of most secure distributed f ile systems in the
real world. We do not, however, have any particular expertise in the design of encryption
methods. Fortunately, a strategy for obtaining security through encryptxon dmdes naturally
mto two almost completely independent parts: ,

~ the encryption and decryption algorithms;
the doctrine for distribution and use of keys.

We propose to use some trivial encryption algorithm (which will be quite unable to withstand
any serious attack), but to handle the keys in a realistic- manner. . Some later system which is
nearer to a product can then readily. pick up the proposed federal standard encryptnon
algonthm and add -the necessary hardware to implement it cheaply. '

Initially, we propose to assxgn one key to each <user, system machine> pair, and to change the
keys infrequently by some manual method. We have spent some design effort on more.
elaborate key distribution strategies, which will be descnbed elsewhere and which might be
lmplemented later if they seem worthwhile.

To summarize, an authentncatlon procedure has at its dlsposal six mdlcators for the message ﬂ:
is considering, O1-04, Cl1, and the encryption key used to successfully decrypt the message
into a recognizable form. Based on this information it must make its decisions about what
stamps to affix to the message. The job of the storage system is to allow the algorithm for
making these decisions to be specified in a sufficiently flexible way..

3.1.3 Hard Protectipn

In order to make the hard protection as independent as possible of the details of how requests
- are processed, hard stamps are affixed to a request as soon as possible, and are.checked against
- hard guards as late as possible. Thus, the first thing which happens to a request after it has
been assembled from its constituent packets is hard authentication. The single hard stamp
affixed to the request is carried along by the request wherever it goes, until the request causes a

physical disk access. At this point the stamp is checked against the single hard guard of the
disk page being accessed. This guard is stored on the disk just in front of the data. The
system attaches the same hard guard to every page of a file, but the checking does not depend
on reading the guard from one place on the disk and the data from another Thus the
opportunity for errors which associate the wrong hard guard with the data is minimized.

The text of a hard stamp or hard guard has a very simple and somewhat awkward form. It
consists of three parts: '

a compartment, represented by an integer;
a level, also represented by an integer;

a sel, represented by a bit-vector. Elements of the set are called hard groups, and the
text is said to be in the groups which appear in its set.

There is a partial ordering on hard texts, defined as follows. If u and v are texts, then ulv iff -
compartment(u)=compartment(v), and ‘ ' ‘
level(u)<level(v), and
set(y) is included .in set(v).

When a hard stamp is checked against a hard guard, it passes the check if
text(stamp)<text{(guard).

At this point, the earlier use of the word awkward should be clear..

The decision about what hard stamp to affix to a request is based on a comparison of the six
indicators described in the previous section with a data base which parametrizes the hard
authenticator. The exact form of this data base has not been specified, but it will be set up at
system startup time and cannot be changed during normal operation of the system. Thus there
are no commands which the user cangive to the hard protection system, except to set the hard
guard of a newly created file, The user’s only interactions with hard protection are through
certain fields which appear in every request:
In the un-encrypted or clear portion of the request.
(O1) delivering network;
(O2) routing information;
(03) source machine;
(O4) source socket;
(C2) encryption key number.
In the ercrypted portion:
(Cl) password;
claim for hard stamp;
claim for hard principal (see below).

- The hard authenticator examines O1-O4 and C1-C2, decrypts the message if necessary,
consults its data base, and emerges with a maximum hard stamp and an integer h If the
claimed hard stamp is € the maximum hard stamp, the authenticator affixes the claimed hard
stamp to the request. If the claimed hard principal is equal to I, it affixes the soft stamp <hp,
h> to the request. Finally, it affixes soft stamps corresponding t6 Ol, O3 and O4. The
significance of these soft stamps is described in the next section.

3.1.4 Soft Protection

Soft protection is more complicated than hard protection, both in the methods for affixing
stamps to requests and in the structure of guards on files. In partlcuiar“

a request can carry clanms for several soft stamps, and hencc can acquire several soft .
stamp impressions, provided the soft authenticator accepts the claims;

instead of having a single guard which contains the text of a single stémp, a file can
have a list of soft guards, any one of which can authorize access (much like a chain of

padlocks, which can be opened by opening any one of the padlocks). Furthermore,
each soft guard contains a set of soft stamp texts, and all the texts must be present on
the request to satisfy the guard (much like a padiock which requires several keys to
open it; actually, this arrangement is more common with safes)

a soft guard also contains a set of permissions, such as read and write. Each command
which works on a file can require that a certain set of permissions for that flle be
granted before it will be carried out.

The text of a sl?ft stamp is a pair: {type, value>. There are the followmg soft stamp types:

*networ

*originating machine

*source socket

*hard principal

soft password

: derived. _
“Stamps whose types are starred in the hst are cal!ed przmary slamps. All the primary stamps
are attached by the hard authenticator, as described in sectlon 3130

The value of a soft stamp is simply an integer. For primary stamps, the integer encodes the
information extracted by the hard authenticator. The encoding is published, so that anyone -
constructing a soft guard knows exactly what soft stamp texts to mclude for the primary
stamps he wants to demand

A soft password stamp is affixed to any request which contains a claim for'it. The claim, of
‘course, includes the text of the stamp, which includes the integer value. The only information
provided by a password stamp is that the originator knew that a particular integer was worth
usmg. hence the name, password. Since the integers are fairly large (say 64 bits), this password

- gives about as much security as a typical login password for a time-sharing system. Perhaps

. we will apply a one-way encryption algorithm to the integer in the claim to obtain the stamp,
so that a text can be compromlsed wnthout compromising its password :

Denved soft stamps are objects in the system much hke files. Then' purpose is to stand for
groups of users. Thus, there might be a derived soft stamp called Personnel, whose text would
appear on the guard list of files kept by the personnel department. The various members of
the department would be given access to the Personnel stamp. The same effect could be
achieved by putting the primary stamps for each person on all the guard lists, but this would
be much less convenient and more error-prone, as well as being wasteful of storage.

A new derived soft stamp can be created in very much the same way that a file is created; the
system guarantees that a stamp with that text has never been seen before and will never be
created again. Each derived soft stamp is protected by a soft guard list exactly like the soft
guard list of a file. If a request claims a derived soft stamp, the system decides whether to
~affix it by checking whether the soft stamps the request already has are sufficient to obtain
affix permission for the claimed stamp, in exactly the same way that it decides whether to read
a file by checking whether the request's stamps are sufficient to obtain read permission for the
file. This process of affixing soft stamps can be iterated several times, if the primary stamps
- can obtain stamp alpha, which in turn is sufficient to obtain beta, etc.

There is a fixed, small universe of permissions (perhaps 32). The set of permissions in a soft
guard is some subset of this universe (represented, obviously, by a bit vector of perhaps 32
bits). Different commands assign meaning to different permissions by published convention.
Thus, for example, the ReadFile command interprets one of the permissions as read
permission, and it insists that a request must obtain this permission before it will deliver any
data from the file. A user who wants to allow or deny read access to his file can do so by
constructing a soft guard containing the permission which ReadFile interprets as read. In this

document we will simply refer to permissions by name, as we have done with read and write.

As we have already seen, the soft guard list for a file (or for a soft stamp) may contain several

guards. Each of these guards has-a set of permissions which it can grant if it is satisfied.
. The set of permissions which the request obtains is the union of all the permissions granted by
all the guards which it satisfies. A convenient way to think about this i1s that guards with the
same permissions are “or"ed; satisfying any one of them is enough to obtain the permission.

A single soft guard contains one or more soft stamp texts, and they must all be present to
satisfy the guard. Thus the guard tests for the presence of stamp @ and stamp band ... The
entire guard list, then, is roughly an "or" of "and"s of tests for the presence of particular soft
stamps on the request. ’

There are commands to read and modify a soft guard list. Thcse commands themselves require
a modify guards permission.

32 Files

All user data stored in the file systemn is associated with some file. Each file is made up of a
number of components; the most important component is the data, but there are other
components which store the name, protection information, and other useful information. A
user may read each of these components, and may modify most of them. In this section we
describe the file components and their intended use. In the next section (3.3) we describe the
commands available on files., - , :

At any instant, each file has a state which completely defines its future behavior, i.e. what will
happen as a result of user requests directed to the file. The entire system also has a state,
which likewise defines its future behavior; the state of the system is simply the union of the

states of all the files. . :

3.2.1 File identifier

The file identifier is a 64 bit number. No two files have the same number. The number is
assigned by the system at the time the file is created, and cannot be modified. This identifier
is not to be confused with a text name. One of the extended facilities (not a data storage
system facility) is the ability ‘to convert between text names and these identifiers. It is
conceivable that the same file may have more than one text name, or that two different text
names refer to the same file. In fact, this is likely to happen if there is more than one text
naming context. File identifiers have been introduced in order to provide a unique, context
independent, name for a file. An identifier may be passed around among users, and will
always refer to the same file. Of course, knowing the name of a file does not grant a user
access to the file. :

' 3.2.2 Hard Guard

The hard guard contains the text of a hard stamp. This text is specified at the time the file is
created, . as one of the parameters in the file creation command. This stamp text will be
recorded in all physical records representing the file. The text can never be changed
throughout the life of the file. : :

All commands directed to the file after its creation must have an impressed hard stamp which
is greater than or equal to, (in the partial order for hard stamp texts), the hard stamp text in
the hard guard. This check will be made as each physical record is read from the disk.

3.2.3 Soft Guard List

The soft guard hst is a sequence of soft guards, each of which is a pan‘ consisting of’:
1} a set of soft stamp texts, and
2) a set of permissions.

A permission is the right to perform a particular command on the file, eg. to
read-file-data-length. A transaction process uses the file guard list to determine which of the
requested commands to perform. A requested command will not be performed, unless there is
a guard <T,P> on the access list such that:

1) for each soft stamp text, L in T, the authentlcated request carries a soft stamp with
text equal to r, and

2) P contains a permission for the requested. command.

3.2.4 File data

The file data is a sequence of bits. There are commands to determine the length of the -
sequence, to determine the value of particular bits in the sequence, to change the value of
particular bits, and to change the length of the sequence. ldeally, these commands would -
accept bit addresses within the sequence. However, various efficiency arguments have been
presented which suggest that the file should be treated as a sequence of bytes, of some fixed
size yet to be determined. The sizes sug ggested vary from 1 bit, to the size of a disk page. Of
course, there are several possible disk page sizes. Since this issue is still open, our description
is couched in terms of bytes, and we do not specify the size of a byte. In the actual
implementation this size could be as small as 1 bit, or as large as a disk page. Thus:

The file data is a finite sequence of bytes, addressed starting’at 0.

3.25 ‘Soft Stamp List

This is a sequence of the texts of soft stamps which have been impressed on the file. The
intended use is for one user to impress a stamp on a file in order to certify to a second user
“that the file has some desireable property. For this certification to have the mtended
significance, the first user must have effective control over both

the use of the stamp which is 1mpressed on the file, and

_ the contents of the file.’ - '

Otherwise, some other user may impress the stamp on some file which does not have the stated
property, or the contents may change after the stamp has been impressed, and the f 1le would .
no longer have the stated property. o .

The exact form of the hst, and the exact commands available on the list, have not yet been
specified.

3.2.6 .File fnterception Lz’sr'

The file interception list is at present only a suggestion. Its intended purpose is to allow
selected commands on the file to be intercepted. A request for an intercepted command would
not be performed, but instead would be sent to some place specified by the interception list.
This might result in the command being interpreted by some other process, or simply being
logged and then performed in the usual manner.

3.3 File Commands

The reader must recognize that what is presented here is on!y a preliminary spemfxcatlon for

" the commands. It is expected that as the design progresses, these descriptions will change.
However, some general statements can be made. First, the commands naturally divide into
groups, one for each of the components of a file, and one for commands on the file as a
whole. Within each group there are generally commands which read the state of the
component (or a portion of the state) and commands which modify the state of the component.

For most componenté, there will be enough commands so that a user can obtain a complete
representation of the state of that component, and can set the state to any desired value. In

general, several commands may be required to accomplish these goals. Further, a user must
have sufficient authority (stamps on his requests). :

For two components it is not logically possible to offer these abilities: the unique identifier
and the hard guard text. The unique identifier never changes (it is the name of the file);
hence there is no command to modify its value. Also, since it is the name of the file, it must
be included in any request directed to the file. Thus, there is no use for a command to read
its value. The hard guard is similar, it never changes in value, and thus there is no command
to change its value. It can, however, be read.

* A user requests that a command be performed by sending a request (section 3.5) to a
transaction (section 3.4). Each request includes information to identify the request, along with
a number of stamp impressions. In the following descriptions we suppress all of this
information, and only mention those parameters required to specify an individual command.

The system returns a response to each request. The response acknowledges successful
completion of the request, and also contains any information which the request returns.
Alternatively, the response tells the user why his request could not be carried out. Of course, it
is possible for requests to be lost, and for responses to be lost. The user must therefore be
prepared to repeat his requests; section 3.4.8 describes the algorithms which users should
employ to get thenr work done in splte of system crashes or other failures. -

The descnpuon of commands below have the followmg form: -
Name of command(parameters) returns .results

" followed by a description of the command. Parameters and results have names of the form

<type><modifier>, where the optional modifier serves to dlstmgumh dxfferent mstances of the

same type. The following basic types are used:

bt byte (of data)
fi file identifier
“ht hard text
pm permission
58 : soft guard
st soft stamp.

. In addition, there are type constructors which can be prefixed to emstmo types to obtain new
" ones. The meaning of the constructors used here should be clear enouﬂh from their names:

a address
i index in an array or sequence (an integer).
1 length (an_ integer)
n - number of items (an integer)
seq . sequence. The elements are normally numbered starting from 0.
A sequence includes its length; the length of a seqFoo will be a
- 1SeqFoo.
set . set

There are several commands which takes an index i, or an index and a number n which
together define a sequence of index values. For example, to read data from a file a command
-must specify the index of the first byte and the number of bytes to be read. Such a command
normally makes a standard adjustment to ensure that the indexes it uses will not be larger than
the length ! of the array. This adjustment is

iemin(i, I); nemin(n, I-a).

In addition, when a command involves writing a sequence of items, it is possible that the
request does not contain enough items; eg. the request which says: “write 10 bytes, starting at
byte 1122," might contain only 8 bytes of data. If this happens, no changes are made to the
file, and an error response is returned. The descriptions of commands below make no further
mention of these standard checks.

We begin with a description of the commands on a file as a whole, followed by the commands
for each component, grouped into subsections numbered to correspond with the subsections of
3.2 in which the component is described.

3.3.1 Commands on the entire file

CreateFile(ht, setSt) returns fi
Ht is the text of a hard stamp and setSt is a set of texts of soft stamps. A new file is
created (i.e. a previously unused file identifier is assigned). In the new file, the hard
guard contains ht, and the soft guard list contains a snnOIe pair, <setSt, pmAll>, where
pmAll is the set of all permissions. .
No specific impressions are requlred on the request which authorize the use of ht and
setSt. Thus, it is possible for a user to create a file wh:ch he can not subsequently
access. :

'The result is the file identifier assigned to the newly created fxle.
Destrony le{fi)

The file spec:fued in the request is destroyed The identifier of the file will never be’ B
- used agam

SetRed undancy(f i, rd)

‘Sets the level_of redundancy to be used in ’storing the file on the system _disks.‘_ :

3.3.2 File identifier Commands
There are no commands on the identifier, since any‘ request to read the identifier must be

acompanied by the identifier in order to- ldenufy the file, and the 1denttf1er can not be
- changed ,

3.3.3 Hard G_uard Corﬁmands
ReadHardGuard(fi) returns ht

Returns the hard stamp -text stored in the hard guard.

3.34 Soft Guard List Commands

We have not made a strong ‘committment to a partlcular set of soft guard list commands The :
following set is believed to be logically suffxcxent however

ReadGuardListLength(fi) returns 1SeqSg |
Returns the number of guards on the list.
SetGuardLlstLength(ﬁ !Seng)

Sets the guard list length to ISech If this; lengthens the list, the new guards are
empty. If this shortens the list, guards with high indexes are discarded.

ReadGuard(fi, iSg) returns sg

Returns the contents of the guard with address iSg. The representation to be used in
the response for the value of a guard pair has not yet been chosen.

SetGuard(fi, iSg, setSt, se'th)

Sets the guard with address iSg. SetSt is the set of soft stamp texts to be placed in the
guard. SetPm is the set of permissions to be placed in the guard. We have not as yet
chosen representations for setSt and setPm. However, the representation will be some
sequence of bits and will not, for example, include stamp 1mpressrons for elements of

setSt.
As for any other command, there must be sufficient impressions on the request so that
the current soft guard list permits the command SetGuard itself.

3.3.5 Data Commands

,ReadFileDataLength(fi) returns ISqut
Returns the number of bytes in the file data.
.SetFileDataLength(fi, 1SeqBt)
Sets the file datz; length to ISeqBt bytes. If this is iarger than the previods value, the
new bytes, which are at high addresses, will have a value of 0. If it is smaller, bytes -
with high addresses are discarded. ' _
: ReadBytes(fi, iBt, nBt) returns seqBt
| Reéds nBt data bytes_ from the file, starting at byte iBt.
WriteBytes(fi, iBt, nBt, seqBt) ‘

' Writes nBt data bytes into the file, starting at byte iBL

3.3.6 Soft Sidmp List Commands

The exact commands have not yet been specified.

3.3.7 Interception List Commands

. The exact commands have not yet been specified. »

3.4 Transactions

In order to explain the facnhty we call transactions, we begin by describing the use of a system
which does not have the facility. A user program interacts with this resmcted system by
sending individual commands to perform a single read or write. Eventually, the system sends
responses to the user indicating the resuit of each command. While waiting for a response, the
user is at hberty to send other commands

These commands are not like subroutine calls in a programming language, since there is no
way the user can tell ‘exactly when the command is executed. There is some delay from the
time the using program sends a command until the system receives it, some further delay until
the command has been executed, and still further delay before the user program receives the
response. If the user sends several commands, the order in which they are received by the
" system may not be the same as the order in which sent. Thus, they may not be executed in the
same order as they were sent. Further, a command could be lost in transit, or the response
could .be lost in transit. Thus, if a user receives no response to a command it is not clear ,
whether. the command has been executed '

Consider a user who mamtams a data base contammg severa! money accounts. A typlcal task
for this user is to move some money from one account to another. As input, the user is given
the name of each account, and the amount of money to move. The user will proceed by first
reading the contents of the two given accounts; then computing the new values for these
accounts (checking for overdrawn accounts) and finally writing the new values into the data ,
base. .

There are at least two ways in which a naive user could fail at this task. The first failure:
mode involves two ‘independent users maintaining the same data base, and carrying out
simultaneous updates to the data. If these two users are not "careful”, they may attempt to
simultaneously move money from the same account. In particular, they may each compute the
new ‘balance by subtracting some amount of money from the same original balance. The result
will be that only one of .the two amounts of money is actually withdrawn from the account.
Thus the balance will be too high. : , :

This failure can be ptevented if each user always checks to be sure the other is not modtfymg
an account balance. This check is usually implemented through the use of Jocks, arranged so
that if one user has an account locked, the other cannot read or write it. Now a user first
‘locks both of the accounts, then reads the current balance, computes the new values, writes the
new values into the data base, and finally releases the locks. This scheme is usually refined to
allow two kinds of locks, one for data which is only to be read, and the other for data to be
modified. This refmement usually reduces the chance for confhct between two mdependent
users. - :

The second failure mode involves an inopportune system crash. It is possiblc for the system to
crash after a user has modified one account balance, but before the other is updated. Unless
some complicated provisions have been made, the unfinished update will not be made when
the system is restarted. Thus, the accounts could be left in a state where one account has been
incremented and the other has not been decremented. ‘

Now consider another user whose task is to display on a screen the current balance of several
~ selected accounts. The selections are presumably made by an operator, and change from time
to time.- Certain important accounts may remain selected for long periods of time, e.g. all
- day. We assume it is important that an incorrect balance never be displayed. A possible
scheme for this user is to continuously re-read the account balances which it is displaying.
This scheme has two obvious drawbacks. In the first place it generates a lot of
- communication traffic, constantly re-reading the same values. In the second place, the values
displayed are always just a little bit old. That is, there will be some {small) delay from the
time an account balance changes until the new value is displayed; moreover, during this time

an incorrect balance is displayed.

An improved technique is to read-lock any balance to be displayed on the screen, before
reading the account. However, this prevents any other program from updating the account. A
better method is to mark the account so that whenever another program tries to update the
balance, the display program will be informed. If the message arrives early enough, the display
program can temporarily remove the account from its screen, and replace it with the new value
when it is known. Some difficulties may still arise; for example the warning message may be
lost; so that the display program never learns that the balance has changed

The above discussion was not intended to prove that it is impossible to write user programs
which acomplish the stated ends, but simply to convince the reader that it is difficult.
Further, these programs will require some facility which provides the appropriate lock
mechanisms. - We could have chosen to provide such a lock mechanism, and leave the details of
correct use to the users. Instead, we have decided to provide an interface which (we believe)
handles all of the difficult problems menuoned above, ,

We descnbe this mterface as a transaction interface. We use the word transaction in two
different ways: :

as a noun, which names a collection of commands from users in which the data
written is a function of the data read, and

as an adjective, to describe the various components of the sy%tem wh;ch support the
'mterface.

The transaction interface pérmits' the user to specify that a group of otherwise independent -
commands (a transactlon) is to be treated as a single atomic action. The mechanism mamtams
three propemes .

1) (The atomic property) Each transaction appears atomic relative to other
“transactions. That is; consider the set of all commands contained in all transactions
which properly finish. Then there is an order of execution for these commands such
that all of the commands of each transaction occur with no mtervemng commands
from other transactions, and:

a) each command leads to the same response to the user as in the actual
execution, and

. b) the final state of the system is the same as in the actual exccution, i.e., any
subsequent reads lead to the same response to the user as they would af ter the
actual execution. ,

2) (Consistency over system crashes.) Each transaction cither completely finishes, so
that all write commands are carried out, or aborts, so that no write commands are
carried out. This property is maintained in the presence of (repeated) system crashes.

3) (Cache property.) . By following a sat:sfactory algorithm (described below) a user

can maintain a local representation (cache) of a portion of the data stored in the file .
system. This representation will be faithful. That is, if any user initiates a transaction

to modify some data which is represented in the cache, and sends a message to the

cache maintainer when the transaction is reported by the system to be complete, then at

the time the cache maintainer receives this message the old value of the data will no

longer be represented in the cache. More generally, there is no way for the cache

maintainer to see inconsistent values for the data.

As an alternative to the above statement of the atomic property, it is tempting, but misleading,
to say that there will be some "instant of truth” for each transaction. At this instant the results
of any reads in the transaction are still true (i.e. the same results would be obtained by another
read, unless some of the data was rewritten by the same transaction), and the effect of any
writes in the transaction is true (i.e. the data which was written would be retrieved by reading

from those addresses). Although it is true that the atomic property is implied by the existence
of such an instant of truth, this way of describing the atomic property is bad for two reasons:

It introduces the idea of simultaneity, i.e. of a system-wide "instant" which “is
otherwise unnecessary.

It is not really necessary for any “instant of truth” to exist, since it is all nght to allow
the locations read by transaction A to be modified by another transaction B, as long as
the locations being written by A are not allowed to be read by anyone else until A's
writes are complete, : .

The atomic property is accomplished through the use of conventional read and write locks,
together with ‘a time out mechanism. The locks serve to delay the execution of some
commands, while the time outs lead to the aborting of some transactions. The commands of
those transactions which are not aborted will be executed in such an. order as to satxsfy the
atomlc property. . _ : o

The lmp]ementatlon xmposes a stronger condition on the execution sequence than that lmphed
by the atomic property Consxder the sequence of commands: .

Begm transaction A
Begin transaction B
A reads p

B reads p

B writes p

A writes q

End A

End B

In this case, the implementation will delay the execution of the "B writes p” command until
after "End A", even though this delay is not logically necessary.

While there is no “instant of truth” as described above, the actual implementation does impose
a pseudo "instant of truth”. That is, there is some instant during the completion of a
transactlon at which time: : ’ .

The data obtamed from the read commands ot the transaction is stxll correct. (At Ieast
for those read commands with unbroken read locks.)

The data to be modified by write commands is write locked, and will remain so unm '
the modifications to the locked data are complete.

This pseudo instant of truth is not a real instant of truth for two reasons: the write
commands have not yet been carried out, and the system my decxde (later) to abort the
transaction. :

The property of consistency over system crashes is obtained by delaying all actual
modifications to the stored data until the transaction is completed. At this time a list of all
the necessary modifications is stored on the disk as a single act, and then the modifications are’
carried out. If the system should crash before the modifications are complete, the crash
recovery mechanism will find the list of modifications, and begin again to carry them out.
This idea is explained in more detail in section 6. v .

Except for one problem a user could implement a cache through the use of a transaction. The
user opens a transaction, and obtains any information to be stored in the cache through read
commands in the transaction. The atomic property of the transaction mechanism guarantees
that no other user will be able to modify the original of any data stored in the cache.
However, the system will not allow a transaction to hold data locked indefinitely. A read lock -
will eventually time out, and then if another transaction attempts to modify the locked data
the transaction holding the lock will be aborted

A read lock which has timed out and is impeding another transaction is called "broken",
Instead of aborting a transaction wich is holding a broken read lock, the user is given the
oportunuy to "release"” the lock. By releasing the lock the user declares that no write command
in the transaction is dependent on the data read under the authority of the lock. A user who
is maintaining a cache will release all broken read locks, and remove the associated data from
the cache.

Since it is possible for a message from the system to a user to be lost, a command is provided
to test for broken read locks. A negative response from the system to this command indicates
_that no locks have been broken., A user who is maintaining a cache will periodically ask the
system if there are any broken read locks.

Yet one more feature is required to provide the cache property. A transaction which causes a
read lock to be broken is prevented from completing until a certain time has elapsed from the
moment the lock is broken. This time period is a system wide constant, T. Now if the cache .
maintainer has sent an inquiry to the system, and received a response indicating that there are
no broken read locks, then the cache maintainer knows that the data stored in his cache is
consistent for a penod of time, T, beginning at the moment the inquiry was sent to the
system.

There are a number of different kinds of objects involved in a transaction. These include
users, requests and commands, transaction processes, read locks and write locks. Transaction
processes are the active agents which reside in the file system and carry out the commands of a
transaction; each one is associated with a single transaction. There are two kinds of
_transaction processes: workers, and coordinators.” “The following scenario should gwe a rough
idea of their relationships. :

A user beg.ins a transaction by sending an OpenTransaction command to some computer in the
system. The system on that computer constructs a resident coordinator to control the
transaction. The coordinator sends a response, which includes the name of the new
transaction, to the user. The user then sends a create-worker command to the coordinator, and
indicates on which system computer the worker should be resident, (usually the computer on
which the coordinator is resident). The coordinator sends a response to the user.

The user can now send file commands (various forms of Read and Write) to the newly created
worker. Further, the user can at any time command the coordinator to create a worker on
another computer. We require that any command which addresses data must be sent to a
worker residing on the computer which stores the addressed data. As a result, the user (or his
agents) will have to create additional workers if his transaction involves data on more than
one machine. The worker handles a Read command by attempting to set a read lock on the
data.- After this succeeds, it reads the data and sends a response to the user. The read lock
remains set until the transaction terminates, (unless something unusual happens). A Write
command is handled similarly, except that a write lock is sel. .

Finally, the user sends a CloseTransaction command to the coordinator. The coordinator then ‘
synchronizes with the various workers (of this transaction) and eventually completes the
transaction. At this time a response is sent to the user.

During the transaction, various other things can happen. For example, a user of the
transaction can command the coordinator to AddAUser. Another possible event is the
time-out of a lock. If this is a read lock, the appropriate user is informed, generally before
the lock is actually released. The user can now choose to Abort the transaction, or to re-read
the pertinent information, and recompute what it should do. If this involves changing
something which has already been written, the user must issue new Write commands which
make the necessary changes. If a write lock times out, thls generally results in a system
mxtlated abort of the transaction.

Another possibility is for a user to send a ChecYpomt command to the coordinator. The result
is equivalent to sending a CloseTransaction command, and then opening a new transaction and

re-reading all of the information the user held at the end of the old transaction. The
Checkpoint avoids the necessity for re-reading and re-setting the various locks. Write locks
existing before the checkpoint are converted into read locks after the checkpomt.

Throughout the discussion we have used phrases such as "Read command”, "Write command"”
and "data”. In this section we blur the distinction between the various components of a file
state. By a Read command, we mean any file command which can send information about the
state of the file (including its components) to the user, without modifying the file state. By a
Write command we mean any command which can result in a change in a file state. Finally,
by data we mean any portion of the file state. This blurring of terminology will continue:
throuvhout this section.- . ' . oo T

For eff‘ iciency, a user sends commands in groups, called requests. Each request is directed to a
particular file system process, and contains a set of commands together with sufficient stamp
impressions to authorize the commands. In general a single request can contain commands for
more than one process. These processes must all be on the same file system computer, and
involved. in the same transaction. For example, the request which contains the
OpenTransactlon command (directed to a file system machine, rather than a particular
transaction process) can contain the command (directed to the as yet uncreated “coordinator)
which causes the creation of a worker. In the case that this worker is on the same computer as
the coordmator the request can also contam commands to be dzrected to the worker,

An |mportant feature of the transactlon implermentation is that the detalled system state is
viewed as representing two different abstract states. We call these two abstract states the V
view (of the system state) and the S view. V stands for volatile and S stands for salvageable or
solid or stable. After a system crash, enough of the system state will be reconstructed so that
the new S view is the same as the S view before the crash. The V view, however, is completely
lost, and is replaced by a new V view constructed from the S view. Thus the essential property
of the S view is that the S view is not affected by a system crash “A large part of the system
is devoted to making this property hold.

The.V view of the system state contains all of the transactions which are in progress, their
partxal modifications to the files, and any locks they have set. The S view describes the state
- the system would have if all transactions currently in progress were aborted and their partial
changes to the file states were forgotten The V view after a crash is the S view with no
transactions in progress. o _

- In the remainder of this section we present a more detailed description of transaction
processes, locks, and algorithms which should be followed by users to accomplish desired ends.

3 4.1 Requests

A user (sectlon 343) makes things happen by sending requests to a file system computer
Each request contains one or more commands, and each request, except for the first request of
a‘transaction is directed by the user to a specific transaction process (section 3.4.2).

A request, as seen by a transacuon process, contains the following mformatxon'
Transaction identifier
Transaction process identifier
User :
Sequence number (wnthm the (user,transaction process) pair)
Hard stamp text which has been impresed on this request
Set of soft stamp texts which have been impressed on thls request
-Set of commands, each of which contains:
Command name
File unique identifier

Zero or more additional parameters

In a number of cases, some of these fields have no meaning. For example, the request which
opens a transaction cannot name the transaction identifier, and actions which do not involve
files cannot be expected to specify a file identifier. In these cases special information is
required for the affected fields.

The request is delivered to the specified process. If the first command in the request results in -
the creation of a process on the same computer, the request (modified by the removal of the -
first command) is redirected to the newly created process. If this in turn results in the
creation of a new process on the same computer, the request (modrfred again)} is again
redrrected to the new process. .

3.4.2 Transaction processes

Each transaction process lives on a single system computer. Processes do not move from one
computer to another. Transaction processes are created and destroyed in response to user
commands. There are two kinds of transaction process, coordinator and worker. Each
* transaction will have exactly one coordinator, and one or more workers. .For each transaction,
there will be one worker on each computer which contains data referenced during the
transaction. This mcludes the computer which contains the coordmator

Generally, requests containing commands which control the logical progress of the transactron
will be addressed to the coordinator, while requests containing only data commands will be
addressed to the worker on the computer which contains the dam. Note that requests do not -
have to pass through the coordinator to reach the workers. :

3.4.3 Users

Requests are sent from a user to a transaction process.. A user is an abstraction invented to
stand for a source of requests. Responses to commands in a request are sent to the user which
sent the request. We consider the source to be a program, because we generally assume that the
commands 'in a transaction are being constructed by some algorithm. In order to make full
use of our facilities, this algorithm will have to satisfy some conditions (see [3.4.8]). A user
is assumed to reside on one computer, and in many respects, it acts like a process.

A single transaction may have more than one user. These different users need not reside on
the same computer. If a single transaction has more than one user, these programs may have
to co-operate closely. For example, we provide no lock protection between requests sent to the
'same transaction by different users. The reason for taking this view of users is so that a
computation which is using the storage system can 1tself run on several machines, using its
own methods for coordinating its activities. .

A single user may have several transactions in progress. Each request sent by the program
~identifies the transaction to which it belongs. A single computer may contain more than one
user. User written programs will not reside on file system computers, for the reasons
~ explained in section 3.1. However, some system programs, runmng on file system machines,
will act as users. :

344 Locks

The file system partitions the file state into lock regions. A command to access any
information in a region results in a lock on the whole region. These regions may, for reasons
of efficiency, be larger than a byte. Each lock specifies:

a region,
read or write,

the transaction which set the lock,
the user who sent the request resulting in the lock,
a time of expiration

A single region may have more than one lock. There may be more than one lock on a single
region from a single transaction. In fact, there will be one lock for each independent
command referencing information in the region. If any lock on a region is a write lock,
however, all locks on the region must be from the same transaction.

The purpose of locks is to prevent two transactions from interfering with each other. A
transaction process will be prevented from setting a lock which conflicts with a lock set by a
different transaction. (Note: not merely by a different transaction process.) These locks can,
and will, lead to deadlocks. To counter this possibility, we include a mechanism for forcmg
locks to release, even if a transaction is. not yet completem v

Whenever a lock is set, an expnratlon ume is recorded in the lock. Nothing happens until both
the expiration time has been reached, and some other transaction is waiting to set a conflicting
lock. At this time the lock times out, but is not yet released. An internal system message is
sent to the transaction process responsible for the timed out lock; note that this. process is
guaranteed to be running on the machine which is storing the lock. It is the responsibility of
this process to release the lock, and in most cases this will occur within a reasonable time. -
There is one situation described below, in section 6.1.1, in which the release may be delayed
for a long time. In any case, a read lock will not be released until T seconds (a system wide -
constant) have eiapsed from the instant the lock timed out : _

If the timed out lock is a read lock, the transaction process immedietly sends a message to the
user who commanded the read which caused the lock to be set. That user then can

abort the transaction : ,
‘re-read the information and re-compute the modifications it wants to make

‘decide that it doesn't care about the continued validity of that information and
proceed regardless. '

In any case, the transaction process will release the read lock T seconds after the lock nmed out.

If the timed out lock is a write lock, and the transaction is not in the process of completing,
the transaction is aborted, the lock released and a message sent to the appropriate user. If the -
transaction was in the process of completing, it will usually finish before the lock is released.

3.4.5 Request sequences

Each request is a transaction belongs to a request sequence. There is one sequence for each
(user,transaction process) pair. When there are several users and several processes for a single
transaction, probably most of these sequences will be empty. Each request specifies the
sequence to which it belongs (by the pair <user, transaction process>) and its position in that
sequence (numbered 1, 2, ...). In this way, it is possible to recognize, when one request is
received, that a previous -one is missing. Further, the final request to close the transaction is
sent to the coordinator, and includes the counts of requests in all non empty sequences. Thus,
it is possible to discover whether any requests have been lost.

3.4.6 Data types for transaction commands

A number of new data types are involved in the commands described in the next few sections,
and they are tabulated here for reference. Section 3.3 contains a list of data types mtroduced
so far. :

co coordinator .
mi machine identifier
sn sequence number

ti transaction identifier
li lock identifier

tp transaction process
us user

wk worker

34 7 Transaction control commands

Commands are available to control the transaction, which only indirectly affect the data stored
in files. Most of these commands must be in requests directed to the coordinator (wc shall
indicate those Wthh are directed elsewhere).

OpenTransaction(us) returns [ti, co]

- Obtains:a new ti, creates a coordinator for the new transaction, and returns to the user
the new identifier and the name of the new coordinator.

"~ This must be the first command of its request, and the request must be directed to a
file system machine, rather than to a transaction process. The request may contain
other commands to- be performed by the new transaction (if it does, they must include .
at least a command to create a worker). If the request contains more than one
command, the first command will be deleted from the requcst, and the modified
request sent to the newly created coordinator. .

. CloseTra’nsactxon ((usl, tp), snl), ... (usk. tp,. snk))

The coordinator (through its workers) checks to see that all requests from user us, to
process tp, contammg sequence numbers less than or equal to sn; have been recewed

If not, a warning messge is sent to the user specifying the lost requests. This is done
fori=1,...k If this list of user-process pairs does not include all pairs with
non-empty request sequences, then an error response is sent to the user.

" Next the coordinator (through its Worxers) waits for all commands. in the named
requests to complete. When all are complete all locks are released and a response is
sent to the user. - ‘

CreateWorker(mi) returns wk

The coordmator creates a worker on the named machine. The coordmator then sends a
response to the user with the tp of the new process.

This command must be the first command in ils request, as received by the
coordinator. If there are more commands in the request, this first command is deleted
from the request, and the modified -request is sent to the new worker.

CheckPoint((uTsl,'tpl, snl), o (us, tp,. snk))

Proceed as for CloseTransaction, until all commands are complete. Then the
coordinator (through its workers) converts all write- locks (which have resulted from
the commands in the transaction) into read locks. (This has almost the same effect as
if the user closed the transaction, opened a new transaction, re-read all data read in the
. previous transaction, and re-read all data modified in the previous transaction. Asside
. from efficiency, the difference is that pending write commands from other
transactions can not occur.) '

Finally, a response is sent to the user.

AreYouStiliThere returns seqLi

This command can only be sent to a worker, which rsponds with a list of broken- read
locks (perhaps null).

ClearReadLock(li)

The specified read lock is released. If the lock had been previously broken, it is
removed from the set of broken read locks. Once released, it is possible for other
transactions to modify the data which was locked. Therefore, the read command whlch '
caused the lock is assumed to be not included in the transacuon

AddAUser(us)

The specified user is added to the transaction. Requests sent by the new user to
~ transaction processes will be honored. : _ :

AbortTransaction o

All read and write locks are released. All write commands are f orgotten A response is
- sent to the user. All transaction progesses are destroyed

3.4.8 Messages sent from a transaction process to a user

Responses to commands

A response is sent to the user for each command in each request. For efficiency, these

responses - will be batched in larger messages. [If there are several users for a

transaction, the response is sent to the user who sent the request. -In some cases there

will be information in the response (e.g. a response to a Read), in other cases the
“response will only signify that the command has been noted and will take place (i.e.
. change the S vnew) when the transaction f:mshes (eg a response to a Wnte)

Timed out read loc;k

Each read lock has an associated termination time. If a lock has passed this time, it is
said to be timed out. Nothing happens until some other transaction is impeded by the
lock. When this occurs, the lock is broken and a message is sent to the user who
requested the Read which caused the lock to be set. The data covered by the lock will
not actually be modified until a time T has elapsed after the lock is broken. (T is a
system wide constant). The fact that the lock is broken will be recorded by the worker
process involved. The transaction will not be allowed to successfully finish until the
user who set the lock explicitly releases the lock.

Unexpected Abort

Each write lock has an associated termination time. If a lock has passed this time, it is
said to be timed out. Nothing happens until some other transaction is impeded by the
lock. When this happens, the transaction which set the lock is aborted, and a message
is sent to each user of the transaction.

" A transaction is also aborted if the system crashes on one of the file system machines
involved in the transaction. In this case, the user may not be informed.

35 User algorithms

In order to obtain the full services of the transaction machinery, a user must follow certain
conventions. That is, the properties claimed for the transaction mechanism assume that the
user behaves in certain ways.

For the purpose of this dlscussmn the user commands can be partitioned into three broad
classes:

Transaction control
File read
File write

The transaction control commands are all those described in section 3.4.7. The file read
commands are all other commands which can not result in a change in a file state. Finally, .
the file write commands are those remaining.

Outstanding commands will be carried out in an unpredxctab!e order. Thus, if it is desired .
that the execution of one command definitely precede another, they should be sent in separate
requests, and the user should wait for an appropriate response to the first command before
sending a request containing the second. This remark does not apply to the Checkpoint and
Close;l"ransacnon commands smce they automancally walt until the specnfled commands are
comp ete. : :

3.5.1 Combining Commands into Requests

3.5.2 Basic User algorithm

If there is only one user, “all the desnred data is on a single file system machine and there are
no unusual c1rcumstances then the user proceeds as follows:

Send a request to the file system machine on which the desired data 1s stored. This
request contains the following two commands: .

OpenTransaction
CreateAWorker on the same machine

The response to this request will contain the names of the co- ordmator and the worker

which have been created to handle this transaction. The sequence numbers on the

. requests sent to each transaction process form an independent sequence. In this case

there are two transaction processes,. the co-ordinator and the worker. The sequence

numbers on successive requests sent to the co- -ordinator will increase by one, as will the

sequence numbers on successive requests sent to the worker. The first request sent to
each transaction process will have sequence number 1.

Now read the des:red data from the files on the file system machine by dxrectmg
requests containing Read commands to the newly created worker.

When sufﬁcxent data has been read, compute modifications a.nd send requests
containing Write commands to the worker. These requests can contain additional Read
commands if so desired. "Continue to send Read commands and Write commands as
desired.

When all of the desired commands have been sent to the worker, terminate the
transaction by sending to the co-ordinator a request containing a CloseTransaction
command. This command will contain the sequence numbers of the last requests sent:
to the co-ordinator and to the worker. .

The co-ordmator will eventually respond with a message mdxcatmg that the transactlon
has been correctly closed.

3.5.4 Multiple file system machines

A user must be aware of the existence of multiple file system machines for two reasons. First,
for each file, he needs to find the machine which contains that file. Second, in certain
unusual circumstances, one file system machine may crash, and its duties be taken over by
another. It has not yet been decided what mechanism will be provided for locating files.
However, there will be some facility which will map from a file identifier to the machine
containing the file.

If portxons of the desired data are on different machines, then the above basic algorithm must
be modified. Additional commands are sent to the co-ordinator to CreateAWorker on other
file system machines. These commands can be included in the original request, if the identity
of the other machines is known in advance. However, if the identities of other machines are
determined during the transaction, these commands are included in addmonal requests sent to
the co-ordinator after the first request. . '

With many worker processes involved, the user must maintain independent request sequence
numbering for each transaction process. There is a sequence for the co-ordinator and a
sequence for each worker. The CloseTransaction. command must include the maximum
sequence number on the last request sent to each transaction process.

3.54 Multiple users

If more than one user is to be involved in a single transaction, one of the users will open the
~ transaction. Commands can now be included in requests to the co-ordinator which {perhaps
repeatedly) AddAUser to the transaction. These users must provide their own interlocks when
accessing and modifying overlapping data, since the system provides no interlocks between
actions occuring in the same transaction. : :

Each user prowdes mdependent sequence numbers on requests to each transaction process. The

CloseTransaction command must include the maximum sequence number occuring in each

sequence of requests between a user and a transaction process. In_principle, there is such a -
maximum sequence number for each (user, transaction process) pair. In fact, only non zero

maximum sequence numbers need be included. : -

335 Read lack tlme out

In the event that a read lock tlmes out, and some other transactlon is actua!ly 1mpedcd by the
lock, then. the system will "break"” the lock, allowing the other transaction to proceed. - If this
happens, a message will be sent to the user whose lock is broken, and the fact of the broken
lock will be recorded by the worker. A later request to the co-ordinator to close the
transaction will result in the abort of the transaction. ~

The user may avoid the abort by sending a request to the worker to release the read lock,
before attempting to finish the transaction. Since the data covered by the broken lock will
have changed by the time the transaction finishes, the consistency guarantee is no longer valid.
However, the guarantee still covers all of the other reads of the transaction. In complicated
situations, the most reasonable course may be to abort the transaction and start over. Another.
aproach would be to re-read the affected data, after releasing the broken locks. If the user
" follows this policy, he must be aware of several complications. -

The broken Iocks must be released before re-reading the affected data. This f ollows
from two facts:

the broken locks must be released before frmshmg the transaction (else the
transaction will abort),

if the locks are released after the re-read, then the new locks set by the re-read
will also be released.

The re-read will be held up until the other transaction (Which caused the locks to
break) finishes. This may take some time, and other locks may time out in the interim.

_If the new values of the data lead to the same modifications as the old values, then it is

- reasonable to finish the transaction as before. One the other hand, if the new values

. lead to different modifications, the user can proceed by requesting writes which both
accomplish the new modifications and cancel the old modifications.

358 User Maintdined Cache

One intended application for this file systém is support of a user who maintains a local
representation (cache) of a portion of some files stored in the system. For example, in an
accounting system, such a user might maintain a display of the current balance of certam
accounts.

A user maintains such a cache by opening a transaction, and then reading all the information
to be represented in the local cache through the.transaction. This places read locks on the -
data. Thus, the data will remain unchanged until a read lock is broken. Note that in general,
_if the local representation is to be maintained for a long period of time, all of the read locks
will eventually time out. However, they will not break untxl some other transaction attempts
to change the locked data. .

If a read lock is broken, the data still does not change for the time period T. The 'system will
send a message to the user when the lock is broken; however, the message may be lost. This
difficulty is overcome through the use of the AreYouStillThere command. At regular intervals
the user sends this command to each worker process involved in the transaction. The
transaction responds with a message which lists any broken read locks.

Now, if the AreYouStiliThere command is sent at time t; to a worker, and a response is

returned which shows no broken read locks, then all data read through that worker is valid
until time ty+T. If no response is received before ty+T then all information read through that

worker is assumed to be invalid. If a response is received which shows certain read locks to hc
broken, then the data depending on those locks becomes invalid at time to+T.

In the event that some read locks are broken, the user program proceeds by first releasing the
-broken locks, then re-reading the affected data. When the other transaction finishes, its write
locks will be released and the new reads will succeed. The new values of the data will be
returned to the user program, which can store it in its local representation. In the meantime,
it must have the affected data represented by some special flag which indicates the the correct
values are unknown. :

The reader should note two facts. First, the AreYouStillThere command must be sent more
frequently than once per time interval T, to allow for the delay between sending the message
and receiving the response. Second, the time interval T is to be counted from the time the
AreYouStillThere command is sent, not fom the time the response is received. This follows
from the fact that there is no way to determine for sure exactly when the system begins to
count the period T, except that it must begin after the AreYouStillThere command is received
by the file system machine. _

3.5.9 Missing system responses

The user must always be alert to the problem of a lost message, which is usually manifested
through a missing response to a user request. Such a response may be missing because

the request did not reach the file system machine
. the file system machine crashed
before it could handle the request
while processing the request '
- after processing the request
the response itself my have been lost in transmrssron

For requests to workers simply resending the request with the same sequence number will
suffice. It is essential that the same sequence number be used, since if some sequence numbers
have not been seen when the transaction is closed, the transaction will be aborted. Moreover,
it does not hurt to resend the same request, since repeating any read actions can not hurt, and
all write actions have been designed to be repeateable without changing their effect.

3.5.10 Unexpected abort

" The file system may “abort a transactron at any time before it is finished. - Reasons for an
abort include;

timed out write locks,

broken read locks which have not been cleared
lost requests,

system crashes.

The user may not even be informed of an abort, but may have to infer that one has occured
when the file system responds to a request with "Never heard of that transaction”™. If a
transaction is aborted, the user is expecied to open a new one and try again.

A system crash may occur at any time. The usual result is an abort of all unfinished
transactions. The user will- not be informed. If the user has not issued a
CloseTransactionCommand, he will discover that the transaction has been aborted when he
receives a response of the form "Never head of that transaction”. A

However, if th'e -user has sent a CloseTransacnonCommand, it is impossible to discover
whether the transaction completed before the crash. There are two possible solutions, and we
have not selected one. One solution is for the user to perform a recognizable change to a piece
- of data stored in the file system which is known to be private. This data can then be checked
~ after a system crash. The other solution is for the system to maintain a correct list of
completed transactrons.

3.6 Authentication

3.7 Request Assembly

CHAPTER 4. INTRODUCTION TO THE ALGORITHMS

The algorithms which implement the claims of the preceeding chapters are described in the
following chapters. In this chapter we explain some of the general issues which were
considered during the design of these algorithms. ’

4.1 Lost messages

The file system runs in more than one computer. Thus, there will be communication
between activities in different computers. This communication will be accomplished by
sending messages from one activity (process) to another. We admit that there is some
chance (hopefully small) that the message will be fosz. However, we do assume that no
message will be incorrectly transmitted.. That is, there will be sufficient error checking in
the message transmission machmery to detect garbled messages (which are usually converted
into lost messaoes)

Thus, in order to detect the occurrence of a lost message, algorithms which send messages to
initiate remote actions will expect a response message from the recipient. Three kinds of
response are possible: "I have completed the requested action”, "I could not perform the
requested action”™ and no response. ‘ . .

The last possibility, no response, can be due to any one of several events:
The message containing the request may have been lost
“The system containing the recipient activity may be down.

- The system containing the recipient activity may have gone down when the requested
action was partly done. ‘

The system containing the recipient actlvnty may have gone down after the requested
activity was complete but before the recipient could send a response message.

The ‘response message may have been lost.
The requestmg activity did not wait long enough for a response.

In order to deal with the _possibility of no response the requestmg process must detect the
lack of a response. This is usually done by means of a time-out, l_Jpon the occurrence of
such a time-out, the request is resent, and a new time-out period initiated.

Since the first request may have been correctly received, the recipient must be prepared to
deal with duplicate requests. In the case of activities which can be re-performed without
affecting the system state (e.g. reads), the recipient can ignore this problem of duplicate
requests, and simply re-perform the action. However, if duplicating the activity would lead -
to incorrect results, the recipient must not repeat the activity, but still must send a correct
response. All writes require this treatment, for the following reason: although writing the
same value V twice is harmless in general, it is disastrous if the user followed the sequence

-write ¥V

wait for acknowledgement

write W.
and a duplicate "write V" arrives after W has been wntten.

If the requested activity is lengthy, an additional protocol may be added: upon receipt of
the request, the recipient will acknowledge receipt. When this protocol is used, the requestor
uses a short initial time-out period. If this time-out occurs, the requestor assumes the
message was lost, and re-sends. After receiving the acknowledgement from the recipient, the
requestor then waits for the normal time-out period.

4.2 Error detection versus errer correction

In general, different mechanisms are used for error detection and error correction. This
means that both mechanisms must work for an error to be corrected; if the error detection
mechanism fails, the redundant information which would allow the error to be corrected .
will never be looked at, and the incorrect value will be used. Two examples will 1llustrate
this ldea

Messages transmitted between the various file system computers contain redundancy to allow
the detection of transmission errors. In the event that an error is detected, the receiver
either ignores the message (simulating a /ost message), or informs the sender. In either case,
the error is corrected by retransmission of the message. However, if an error should occur
which cannot be detected from the accompanyingfedundancy, an incorrect action will occur,
even though the correct -information is still available from the sender.

Each record stored on the disk is accompanied by -various amounts of error detection
redundancy. This redundancy generally consists of some sort of checksum, together with the
logical identity of the data and the physical address of the record. Two forms of error
correction are provided. In the event-that the stored data defines. part of the V-view, the
system is restarted as if from a crash, restoring a correct, though empty, V-view. For data
which contributes to the S-view, some redundant information is stored elsewhere on the disk
to allow reconstruction (see section 5). However, if an error should occur which cannot be
detected from the redundant information stored with the record, this additional redundant
information will never be examined.

"4.3 Crash recovery

At any time, any one of the file system machines may crash. A crash may be caused by one
of several kinds of events, including: the discovery that the V-view is inconsistent, foss of
information used to maintain the V~-view, an infinite loop, pressing of the Boot button, and
various hardware errors. A crash on a particular machine is followed by crash. recovery on
that machine. The end result of crash recovery will be to restore an S-view consistent with
the S-view at the time of the crash, along with an empty V-view (no m-progress
transactions).

What constitutes a correct S-view after crash recovery depends on the activities in progress
at the time of the crash. Any activity affecting the S-view is part of a transaction designed
to make atomic changes to the S-view. That is, if any activity was in progress to change the
S-view, after crash recovery either the entire change (due to the activity and all other
activities in the same transaction) will appear, or no change (due to that activity or any
other activity in the same transaction). This choice is made independently for each
transaction in progress at the time of the crash. :

This condition must also be satisfied by the crash recovery procedure itself, since a crash can
occur during crash recovery. In fact, it is assumed that an arbitrary number of crashes could
occur during crash recovery. The effect on other file system computers must also be
considered. If two or more are performing some co-operative task, it must always be

.considered that one or more of them may initiate crash recovery at any time.

After crash recovery the V-view contains no in-progress transactions. This is accomplished
by either completing the transactions which were in progress at the time of the crash, or
aborting them. This choice is made for each transaction individually. A transaction will be
completed only if it was already in the process of completing at the time of the crash. Since
the process of completing a transaction s an activity which modifies the S—vnew this choice
is made by the mechanism described above.

CHAPTER 5. REDUNDANT STORAGE MECHANISM

It is conceivable that a system crash would be accompanied by the destruction of some
~ information stored by the file system.(e.g. a hardware error while a disk record is being
written). Thus, recovery from crashes should include some ability to reconstruct lost .
information. Further, this redundancy should be used to correct information lost during
normal operatron eg by a failure to correctly read a single physrcal record

Since crash recovery is only expected to reconstruct the S (salvageab!e) view, we need only
consider .information. contributing to that view. (The inability to read information which
- belongs to the V-view is treated as a crash.) As a first step towards the desired facility, all
information contributing to the S-view is stored on system disks. Hence, crash recovery
need only consider the contents of disk storage,.and can ignore any information stored
elsewhere, e.g. in fast memory, The second step is to provrde some mechanism for
redundant disk storaoe, both for error detection and for error correction.

This" mechamsm prov:des a virtual storage system used by the rest of the fr!e system. As
such, there will ‘be procedures for storing information and reading information. - Also, there
will be some miscellaneous procedures for assigning and releasing storage space. The actual
storaoe rs on the physical disk, with redundancy. L

The data to be stored is assumed to be partmoned into pages, each of equal size. In this
chapter we use the word data to stand for information stored for higher levels of the

- system. This information contains not only file data bytes, but also the other components

of frles as well as the mternal structure which the system uses to hold them together.

The dxsk is pamtmned mto physrcal records. The data page size is chosen so that a smgle
page will fit on a single physical record, together with some additional information used to
provrde error checking. The physical disk records are partitioned into two groups. Records
in the first group are used to store data pages (wrth error detection redundancy). Records in
the second group are used to provide error correction redundancy for some of the records in
the first group. All the mechanisms to be described use the same error detection scheme,
The error check bits will be computed by a standard algorithm from the logical address of
the data page, the contents of the data page and the disk address of the physical record used
to store the page.

There are two different facilities which might be provided for storing a page of data. The '
first (called static writing) writes the data page at a specified physical address. The second
(called dynamic writing) chooses an address at which to write the paoe writes the page
- there, and returns in a response the actual address.

There are three disasters from which one may wish to recover lost information. . They are
listed in increasing order of seriousness: ,

A single physical record is lost.
All physical records at a single arm posrtron on a smgle drsk are lost.

All records on a smgle disk, or on all the disks associated with a singie computer, are
lost. :

We have investigated several proposed mechanisms to recover from these various events
This investigation resulted in two conclusions:

The methods adequate to recover the loss of a single physical record can be modxfred
to handle the loss of an entire arm position.

The methods which are adequate to recover from. the loss of an entire arm position
suffer from one of two difficulties:

They require two physical records to store one data page, or

© They cannot be used to write a page statically. (This difficulty appears to be
due to the constraint that the modification should appear atomic over system
crashes.)

An invéstigation of methods for the representation of files led to the following conclusion:

- All reasonable methods required that some data pages be written statically. (These are
generally pointer pages, which contain the disk addresses of other pages.) -

Thus, the system incorporates three different redundancy mechanisms, one for static writes,
one for dynamic writes, and a third to handle the loss of an entire disk or an entire
machine. These three are roughly characterized as follows:

- Mechanism A requires 2 physical records to store each page of data, and the stored
- pages can be written statically. This method can defend against the loss of all
physical records at one disk arm posmon. ' ,

Mechanism B requires N+1 physical records to store N pages of data, for some N.
However, the stored pages cannot be written statically. This method can defend
against the loss of all physical records at one disk arm position. .

Mechanism C requires M+1 disk drives (or computers) to store M disk drives (or.i
computers) worth of information. This method can defend against the loss of all
physical records stored on one disk drwe (or one computer)

The choice of mechamsm A or B, for storing a particular data page is made by h|°her levels
of the system. Procedures are available for each mechanism.

All the redundancy methods have the property that a single bad spot on a disk (i.e. a
physical record which cannot be written reliably) makes some number n of physical records
. unusable. In the case of method A, n=2; for method B, n=1 unless the bad spot is an XOR
page, in which case n=N+1; for method C, n—(M+1)*(the n for method A or B depending on
which is being used).

There is a small improvement in the algorithms described below which avoids this loss; it is
mentioned here for completeness, and is not included in the descriptions below. This
improvement is to provide a list of bad records, with an alternate physical address at which
the contents of each bad record is stored. In order to retain the ability to resist loss of all
records at a given arm position, this alternate address should be in the same arm position as
the bad record. Before a physical disk address is actually used, this list of alternates is
checked, and if the address is on the list, the alternate address is used instead.

So that higher levels of the system, which depend on the redundant storage facility, can
behave properly in the face of crashes, the redundancy mechanisms are designed with crash
recovery in mind. That is, at any instant, the redundancy mechanisms have a number of
activities in progress, in response to requests from the higher levels of the system. These
requests include: read a page, write a page, allocate a record and release a record. All of
these activities (except reading a page) constitute modifications to the stored information.
Each mechanism has a crash recovery procedure designed to assure that all requested
in-progress modifications have the property that after crash recovery they are erther
completed or not started. :

We now proceed with a description of the three redundancy mechanisms. For each
mechanism, we describe the disk representation, the interface procedures provided to higher
levels of the system, and the crash recovery procedure.

5.1 Mecharism A: duplication

A portion of the disk is partitioned into pairs of physical records. The two members of
. each pair are in different disk arm positions. Some form of naming is provided for these

pairs such that it is possible to identify the two physical records comprising a palr from the
name of the pair.

S.1.1 Procedurer

AllocateFreeRecordPalr - :
Returns the name of a free paxr the pair is marked’ busy

WritePage(nPr, pg)

Writes the page pg, together with additional redundancy, on each physical record of
the pair nPr. The write is not reported complete until both physical writes have
completed. Since there is no essential order between the two physical writes, both
may be requested simultaneously, and thus added to an exrstmg pool of uncompleted
disk requests. . . _

ReadPage(nPr) returns pg

. Choose one of the physical records arbltran!y. and read it Compute the proper

. value of the error check bits and compare it against the value just read. If the check

-is ok, return the page just read to the requestor. If not, read the second physical
record, and perform the same error check. If the check is ok, reconstruct the
appropriate record for the first member of the pair and re-write it; concurrently,
return the correct page to the requestor. If the second record fails the redundancy
check, then the page is lost (fall back to mechanism C).

ReleasePair(nPr)
Mark as free the pair thh name nPr

5.1.2 Recording free pages

There are three possible mechamsms for recordmg the free pairs in the S-vrew - We have
not as yet chosen one.

The first method is to reserve a single bit in each physical record which is included
-in the error check. This bit is used to mark the record as free. . The system
maintains in the V-view a list of the free pairs. The allocation procedure checks
. that a pair thought to be free is actually free, by reading the physical records. If a
supposed free pair turns out to be busy, this constitutes a system crash. The free list
is reconstructed during crash recovery. :

The second method is to maintain an explicit bit table in the S-view. Since this blt' '
table must be modified statically, it must be recorded using double redundancy.

The third method is implicit. A record pair is busy if it can be reached from some
root pair by following pointers; otherwise it is free. In this case the system also
maintains a list of free pairs in the V-view, but there is no check on the list.

5.1.3 Crash Recovery

Begin by reading all physical records, and perform an error check on each one. If exactly
one of a pair passes the check, recompute an appropriate value for the other member of the
pair and re-write it. If both pass the check, but contain different pages, choose one
arbitrarily and re-write the other to conform (this case occurs when the system crashes while
the pair is being written). If both pass the check and agree on their contents, all is well with
that pair. . .

If there is some pair for which neither record of the pair passes the check, then it may be
neccessary to consider that some information on this disk has been lost, in which case,
mechanism C must be invoked. This will not be necessary if the pair can be proven to be
free. The method of proof depends on the method of marking free record pairs. In
particular, marking them free with a free bit stored in the record itself will not help here, .

5.2 Mechanism B: parity

A portion of the disk is partitioned into groups of physical records called correction
groups. Each record in a correction group is on a different disk arm position from all the
other records in the group. One record in each group is designated as the partty record, and
the others are called data records

The general rdea is that the parity record wrll always contain the bitwise parity of the data
records in its group, not including the checksum or the included field (defined below).
Thus the parity record contains parity bits only for the information content of the records
in its group. The bitwise parity record is computed by taking a bitwise exclusive or (xor) of
the data records; re bit { of the parity record is the xor of bxt i of each of the data records.

Since it is impossible to srmultaneously change a data record and the parity record, an
additional feature is required. A special field (called the included field) is set aside in the
parity record. This field contains one bit for each data record in the group. A data record
in the group is said to be included if its corresponding bit is on in the included field of the
parity record. The system maintains the truth of the condition that the parity record
contains the parity of all included records (except for bits in the included field, and
checksum bits).

Now it is easy to change the contents of a data record. Read in the parity record and the
old value of the data record to be changed. Compute a new parity record which does not
- include the record to be changed. (This changes the parity data, and one bit in the included
field). Write out this new parity record. Write the new value of the data record. Now
write out a new parity record which includes the changed record. Observe that for a short
time, the data record is not included int he parity check, and hence the information in the
data record cannot be recovered by the redundancy mechanism. This is the reason for the
restriction against writing statically when using this mechanism.

For each page write, this mechanism requires 5 disk actions. The first two may be

simultaneous, reading the old data record and the old parity record, but the others must
occur in strict sequence. Moreover, the ability to resist the loss of all physical records at a
single disk head position requires that disk arm .seeks take place between these actions.

Thus we must be sure that these actions can be batched so as to reduce the effective cost of -
the seeks

To do this, we break the actions for a single data record into two groups.

. The first group comprises the first 3 actions described above (read the data record,
read the parity record, rewrite the parity record). This sequence of actions
effectively frees the data record. All data records which have been released from use
can be collected into a pool. = At convenient times, the system can perform this
“sequence of actions for some of the pooled records, in particular, some subset which
occur at the same arm position, and whose parity records occur at the same arm

position.

The second group of actions comprise 3 actions: write the data record, read the parity
record, and re_write the parity record. Observe that this has increased the total
number of actions to 6. The first two of these last 3 actions may be simultaneous.

5.2.1 Procedures

WriiePane(pg) returns nDr

When complete, returns the address nDr of the record on which the page has been
written.

ReadPage(nDr) returns pg

First reads the addressed physical record and checks the internal redundancy
information. ..If ok, the page of information is returned. If not ok, an error
correction algorithm must be executed. First read the parity record corresponding to
the addressed record. If the parity record fails its error check, then some
. information has been lost (fall back to mechanism C). Now read in all other
- included records, check their internal redundancy, and compute their parity. If any
. fail their internal redundancy check, some information has been lost (fall back to
_ mechanism C). If all pass their internal check, xor the accumulated bitwise parity
with the parity record, and the result is the information content of the originally
addressed record. ' Return this page of :information, and re-write the bad page
corrrectly. :

ReleaseRecord(nDr)

- Read the contents of the record and its parity record. If either record fails its
.internal check, recompute the parity record by reading all other records in the group;
when this is done, all the records can be included in the parity computation, or free
"records can be excluded. If both records are OK, compute the new value of the
parity record as the xor of the two records, turn off the mcluded bxt and rewrite the
parity record. ,

These three procedures require careful disk scheduling in order to work efficiently. The
actual address of a record to be written should be ass:gned as late as possible, so that as
.many records as possible are written in the same arm position. Also, their parity records
should lie in the same arm position, which must be different from that of the data records.

Released ‘tecords should be accumulated v‘and freed as a background task.

5. 2 2 Crash Recovery

Crash recovery begins by reading all parity records and determining which data records are
to be included. Next, read all included records and form the accumu!ated parity for the
group. If any record fails the internal check, it can be recomputed from the others. If two
‘records fail the internal check, some information is lost: fall back to scheme C. If all
records pass the internal check, but the accumulated parity does not agree with the parity
record, there is a real problem. (Fall back to mechanism C?)

5.3 Mechanism C: cross-disk parity

The basic idea in this method is to form a cross-disk parity record. To this end, one disk in
the group is designated as the parity disk. It is assumed that each disk stores exactly the
same number of physical records. The physical records are partitioned into groups, such
~ that each group has exactly one member stored on each disk. These groups are treated as

. pamy groups as in mechamsm B. That is, the record in each group which is on the parity
disk will contain the bitwise parity of all other records in the group. This scheme assumes
either that only one disk in the same correction group is attached to each machine, or that
each disk is accessible from more than one machine, so that the scheme can work when a
machme goes down as well as when a disk breaks

A variation on this method places some of the parity records in each disk. Another
variation works on a per-machine rather than per-disk basis; this makes it unnecessary for
each disk to be accessible from more than one machme We do not describe either variation
here.

- Not every physical record stored on a given disk participates in a cross disk correction
group. In particular, only one record out of each record pair involved in mechanism A need
participate. Further, the parity record in each correction group of mechanism B does not
participate.

Observe that the computation. of several cross-disk xors can be pipelined if the disks arc on -
separate machines. The first machine, M;, in the pipe line reads its representative from

group 1, Ry;, and sends it to machine M,. Now M, continues to read records from groups
.in sequence, sending Rj,, Ryj etc to My. At the same time, M, reads its representative from
group 1, Ry, and forms the xor with Ry;. It transmits this xor to M3. Now M, reads its
representative from group 2, R,,, forms the xor with Ry,, ands sends the result to M3. Thus,
M; receives from M;_; the xor of the representatives from each group which occur on M,
M,, . .. M;.;. Machine M; adds its representatives to the xors and transmits the result to
machine M;,;. o :

If all of these machines are connected by a single Ethernet, this pipeline will eventually
break down. However, if there is a single connection between each successive pair (M;, M),

(Mo, M3), ..., the pipeline should run as fast as the records can be read from a single disk.

5.3.1 The algorithm

This mechanism, C, sits between the disk and mechanisms A and B. That is, it provides
another virtual disk storage facility, used by mechanisms A and B. Thus, the actual file
system routines see a virtual storage system (A and B) which in turn is implemented by
routines which use ‘a virtual storage system (C). Mechanism C is implemented by routines
which use the real disk. Note that the implementation described below assumes that it is -
underlying another redundancy mechanism, such as A or B, and therefore sacrifices some
security against crashes in favor of efficiency. This sacrifice does not compromise the
ability of the system to maintain consistency, but it may occasxonally cause information to
be lost. which could have been preserved. v

We now give the algorithm for writing a record which participates in cross-disk parity.
Assume the record to be written is record R on machine M. The algorithm is written as
though the parity disk is on a different machine; the obvnous simplifications can be made if
this is not the case.

On machine M:

Read the old contents of record R. Check the internal redundancy, and correct the
contents if necessary. Note that this read can be avoided if record R has known
“contents, e.g. if it is free and has been zeroed. '

Send the new and the old contents of record R to the p'mty machine.

Wait for acknowledgment from the parity machine. Resend if no acknowledgment
after some suitable delay. : :

Write the new contents into record R. This can be done in parallel with sending

information to the parity machine.
Report completion of write to the process which requested it.

Inform the parity machine that the new write is complete, repeating the meésage-
until it is acknowledged. .

At the parity machine;
Receive old and new contents of record R from machine M.
"Acknowledge receipt to machine M.
Read old parity record for record R.

Write new parity record for record R. Keep a record (in memory. not on the disk)
that this change is in progress on machine M. This record allows the cross-disk
redundancy to be preserved if machine M crashes durmg the write, as long as the
parity machine doesn't crash.

Upon receipt of write complete message from machme M, acknowledge to machme
M. If still holding a record of the in-progress write on machine M, delete the record.

.5 3.2 Crash recbvery ’

Smg!e machme crash on machine M not the parity machine.

Negotiate with-the parity machine to find.all in-progress changes to the contents of
the disks on machine M. "Make all the in-progress changes. Report the completion
of each change to the parity machine. The reason for this procedure is to keep the
parity records in good shape in spite of single machine crashes, so that the machines
not involved in the crash don't lose the protection of the cross disk redundancy.
- Now carry out the crash recovery algorithms for mechanisms A and B. If this leaves
any records in doubt, use the cross-disk parity to compute the correct values.

Contents of a disk on ‘machine M (not the parity machine) are lost.

The parity machine computes the contents of the disk on machine M, in two steps.

- First the parity machine computes the bitwise parity of all records, except the one on

“machine M, in each correction group. This parity record is in fact the correct

- contents of the corresponding record on machine M. A parttctpanng machine will

use the new value for any page which is in the process of being written. The second

- step is to use mechanisms A and B to compute the correct value of the redundant

pages on machine M. The result is an image of the correct contents of the disk on |

machine M. .The parity machine now continues the recovery procedure for a

non-parity machine, and replaces machine M in the file system. When machine M is
eventually repaired, 1t becomes the new parity machme.

Mulnple machme crash, not mcludmg the parity machme

Recover machines one by one by whatever methods are available, until only one is
left, then use the immediately previous procedure.

Any crash involving the parity machine.

All machines recover as if the parity machine did not exist. Then recompute the
contents of the parity machine.

If mechanism C is to be used, the small improvement suggested just before the descriptions
of mechanisms A and B becomes fairly essential. This improvement is to keep a record on
each machine of bad physical records and use substitute records. If this is not done, a single
bad record on one machine will make all the correspondmg records on the other machlnes
useless, - |

CHAPTER 6. TRANSACTION ALGORITHMS

6.1 Introduction

.In this chapter we present the algori‘thms used to obtain the properties of transactions which
were described in section 3.4, These properties can be summanzed by three notions:;

interlock concurrent transacnons
make transactions atomic over system crashes, and
synchronize simultaneous activities on multiple file system computers.

. Different ideas contribute to each of these objectives. A lock mechanism is used to.
interlock the transactions (see section 3.4.4, and below). The concept of an intentions list is
used to provide atomicity over system crashes (see below). Finally, messages sent between
computers are used to synchronize the checkpoint and finish actions for a single transaction

involving multiple system computers (see section 4 for some discussion of the pitfalls).

.6.1.1 Locks

The lock mechanism we use has a number of ramxflcatlons The flrst issue is grain size. We
have divided the information content of a file into various sized partitions (we have not as
yet made a final choice of partition sizes). Each partition is individually locked. When a
portion of a file is to be read or modified, all partitions containing affected information
must be appropnately (read or write) locked. Moreover, the chosen partitions are smaller
than the unit of physical storage (one disk page). Also, the mechanism for modifiying a
portion of a page involves creating a new copy of the page. Thus it is neccessary to
read-lock the contents of the whole page when modifying a portion of the page. ‘These read
‘ locksfare in addition to the write locks on the pomon of the information to be actually
modified

The second issue related to focks is that of time-outs. In order to prevent a single user from
holding information locked indefinitely, each lock on a partition has an associated time
limit. Nothing happens when this time limit is reached, until the lock is actually impeding
the progress of some other transaction. What happens when this occurs depends on whether
the timed-out lock is a read or a write lock.

If the timed-out lock is a read lock, the transaction holding the lock is informed (via a
BrokenReadLock message) and the transaction desiring access to the information (it must
be write access, or there would be no conflict with the read lock) is allowed to write-lock the
partition and proceed; in effect, "breaking” the read lock. However, the current time + T (a
system wide constant) is recorded in a variable tmEf (time of earliest finish), in the private
data of the transaction breaking the read lock. This transaction is not allowed to finish
(effectively carry out its requested modifications) until the current time exceeds tmEjf.
Thus, the old values of the locked data remain effectively correct until time tmEf.

A user makes use of this facility by means of the 'AreYouStil]Therc'command. If a user, at

time T,, transmits to a transaction worker a request containing this command, and receives a

response which indicates that there are no brokex} read locks, then all of the information
which the user has read through that worker is correct until at least time T;+T.

If the timed-out lock is a write lock; a different policy is followed. As in the case of a read
lock, nothing happens until the lock is actually impeding some other transaction. Then a
message (TimedOutWriteLock) is sent to the transaction worker holding the lock. The lock
remains in effect. The worker holding the lock is expected to release the lock as soon as
possible. Note that since the lock and the worker are on the same machine, transmission
delays, or a crash which affects only.one of the parties, cannot delay the worker's response.
There is only one situation, described below, in which the worker’s response can be delayed
indefinitely. '

If the worker is not currently involved in a checkpoint or finish command, the worker will
abort the transaction, thus releasing the lock. In this case, the worker -informs its
coordinator that the transaction is to be aborted, and proceeds (on its own) to perform the
abort locally. Thus in this case the lock is released immediatly.)

If the worker is 'invo!ved in a ‘checkpoint or finish command, the worker's activity in
response to the TimedOutWriteLock message depends on the exact phase of the transaction
(see subsequent discussion of multiple machine crash recovery). If the transaction has not yet
reached the ready phase, the worker proceeds as above, informing its coordinator that the
transaction is to be aborted and performing the abort locally. If the transaction has passed
the ready phase, (has reached the finishing or checkpointing phase), then'the write lock will
be released shortly as a consequence of termination of the checkpoint or finish action. If
the action is in the ready phase, the worker may not (locally) decide to abort. In this case,
the worker sends a message to its co-ordinator requesting an abort. The co-ordinator will
“initiate an abort unless it has passed the r-wait phase (and thus may have sent a get-finished
message to one of its workers). _

In the case that the worker is in the ready phase, and the machine on which the co-ordinator
resides has crashed, there may be some delay before the write lock is released. This occurs -
because there is no way to determine whether the transaction has begun to finish, or not.
The. worker must wait until the crashed machine has recovered. .

An important detail of the algorithm is that a worker attempting a write will not break any
read locks until there are no impeding write locks. . Thus, read locks which have been set to
cover the remainder of a partially modified page w:ll never: be broken.

6.1.2 'lntehtiohs

The goal of the crash recovery algorithm is to make transactions appear atomic over crashes.
That is, either all or none of the file changes requested between the last checkpoint and the
current checkpoint or finish should appear in the stored data. The central idea behind the
algorithm is that of an intentions list. We first describe the idea assuming that only cne
computer is involved, and then later we extend it to cover multiple file system computers.

An intentions list is a list of the actions which must be taken to finish (or checkpoint) a
transaction. We assume that the intentions list itself may be written as a single atomic act.
If it requires several pages of disk space, simply write all but the first page, wait for
completion of these writes, and then write the first page.

The actions in an intentions list must be such that they can be repeated several times and -
lead to the same result.- This situation occurs when the file system crashes during the
completion of the transaction, followed by crashes during crash recovery. More precisely,
any sequence of actions composed - from successive mual segements of the given list,
followed by the complete given list should result in the same effect as the original list. For
example, if the given intentions list is: :

A Ay As Ay A Ag
then the following sequence of actions should lead to the same result:
Ay Ay Aj AL Ay A AL Ay As As Ay Ay As Ay As Ag

More generally, since it is desirable to carry out these actions concurrently, they should be
such that they can be carried out in any order, with any number of repetitions. If each
action is of the form: Store data D at address A, then these conditions are sausﬁed This is
the only sausfactory form for the actions that we have discovered.

In order to apply this idea, we have chosen to represent hles by one or more pointer pages,
each of which contains pointers to data pages. - In this context, data pages contain all of the
information needed to define files as described in section 3.2. Thus, what we are calling
data pages here contain the file data described in section 3.2, as well as all the other
information contained in the file.

The pointer pages are stored on 111@ disk using redundancy mechanism A {which allows static
writing). The data pages are stored using mechanism B (which does not allow static
writing). A modification to the file is carried out by writing new data pages for the ones to
be modified, and then rewriting the pointer pages to contain modified pointers which point
to the new data pages. In effect, we swing the pointers to the new data pages.

The intentions list contains a list of the pointers to be changed, and their new values. Thus,
"to carry out a succession of changes within a.single transaction, proceed. as follows:

As each modification is received, determine which data pages in the file are to be -
changed, read in their old values and compute the new values.

From time to time, write out the new data page values on free disk pages (using
redundancy mechanism B). This results in no actual change to the files, since no
pointers are changed.

Form a tentative list of the pointers Wh!Ch must be changed.

When the transaction finishes, and all new data pages have been written, write the
list of pointer changes on the disk, using redundency mechanism A; these are the
intentions.

Now read in the old pointer pages, compute new values and re-wnte them in place.

Crash recovery proceeds as follows: _
' Perform crash recovery for the redundancy mechanisms.

Find all lists of intentions and carry them out. When a particular list has been
completely carried out, write an empty list on top of it A

There is an alternative scheme which we have not exammed fully.- In this a]termtlve scheme
an undo list is maintained during the transaction; it contains the old values of the pointers.
In this scheme, the actual pointers can be changed to the new values during the transaction.
The step of completing the transaction consists of simply erasing the undo list. If the
system should crash any time before the transaction is complete, then crash recovery would
reset the values of the pointers to their old values, resulting in un-modified-files. We shall
not consider this scheme further.

6.1.3 Multiple system computers

The preceeding discussion ignored the possibility that there may be more than one system
computer involved in a single transaction. In this case, a number of situations can arise.
First, any one, or more than one, of the system computers may crash.. Second, a write lock
may time-out on one of the computers. In this case, it is desirable (for speed) to release the
lock without consulting any other system computer.

The method used for multiple computers is to identify a single computer as the controller of
the transaction. This identification is accomplished by introducing a process to co~ordinate
the transaction. The machine on which the co-ordinator resides controls the transaction.
The processes which actually carry out the work of the transaction are termed workers.

Associated with each worker is an intentions list. There is also an intentions list associated -
with the co-ordinator. The worker intentions lists are as described above, except that an.
additional variable (sPhaseWk) is stored with each list (in the S-view, i.e. on the dtsk) The
value of this variable will signify one of three things: :

working: the transaction has not yet finished,

finishing: the transaction has finished, and the intentions in this hst should be
- carried out after a crash,

readyToFxmsh ask the co-ordinator if the transaction is finished.

Associated with the co-ordmator is also an intentions list and a variable called sPIzaseCo
The entries in the co-ordinator's intentions list are the disk address (and machine) for each
worker intentions list. The actions of the co-ordinators intentions list are to set sPhaseWk
of each workers intentions list to finishing. Thus a single variable (sPhaseCo) determines
whether the transaction is finished, and setting this variable to finishing consmutes the '
logical act of finishing the transaction.

The basic |dea for crash recovery is to scan the disk for mtent:onc lxsts. lf a worker's -
intentions list is found, its sPhaseWk is examiped. If sPhaseWk=working, the transaction
has not started to finish. and the list is destroyed. If sPhaseWk=finishing the transaction is
finished, so the intentions are carried out, and the list destroyed. ln the third case,
sPhaseWk=readyToFinish, the appropriate pages are write locked, and a worker is started
which attempts to communicate with its co-ordinator to discover if the transaction is
finished. (In fact, the second case is also handled by write locking the appropnate pages and
starting up a worker process to carry out the intentions.)

If a co-ordinator's intentions list is found, its sPhaseCo is examined. If sPhaseCo:idle, the
transaction is not yet finished, and the list is destroyed. If sPhaseCo=f-wait the transaction
is finished, and then a co-ordinator is started which attempts to inform each of its workers
that the transaction is finished, and which responds appropriately to worker messages
inquiring about the state of the transaction. .

In the case that a machme M crashes, and is restarted wnth some process m:ssmg, due to a
definitely unfinished (or definitely fmxshed) transaction, M will eventually receive messages
from other processes in the transaction. In this case, M will respond with a NeverHeardOfx
-message. In all cases, the process sending the original message is then able to decxde for
itself whether the transaction should be finished or aborted. ' ,

6.1.4 Progress of a transaction

The true state of a transaction is determined by the phase of the co-ordinator. However, the
phase of each worker is stepped forward with the phase of the co-ordinator, so that for each
worker phase only certain coordinator phases are possible, and vice versa:. Thus, the phase of
a worker can be used to determine the possible phases of the co-ordinator. If the possible
phases of the co-ordinator do not affect the action to be carrled out by a worker, the
co-ordinator need not be consulted.

The general paltern is that the co-ordinator changes phase, then sends a message to each
worker. Upon receiving such a message, each worker carries out some activity, then changes
phase and sends a message to the co-ordinator. The following table shows the possible
- configurations which can be reached during the normal flow of the algorithm (i.e, ignoring
write lock time-outs, user requested aborts and system crashes). The state of an individual
process is described by the value of two variables, vPhase and sPhase. "As their names -
'suggest, one is in the V-view and the other in the S-view. For each poss:ble state of a

co-ordinator, we list the possible states of a worker in the same transaction. We use
abbreviations for the phase names.

Abbreviations for worker phases:

w for working

PTF for preparingToFinish (vPhase only)
PdTF for preparedToFinish (vPhase only)
RTF . for readyToFinish

F - for finishing

m for missing (the process has been destroyed)

Abbreviations for co-ordinator phases:

I for idle

| for p-wait (vPhase only)
R for r-wait (vPhase only)
F for f-wait

m for missing

In the'following table, each pair (p, i) stands for vPhase = p and sPhase = i/

Co-ordinator . ‘Worker
wn - W, W)
(P)
.» %0,
R, I) PATF, W
®.D iRTF, RT%)
F,F . RTF, RTF
R A
. . m
m

A transaction is logically finished at the moment the co-ordinator changes from state (R, 1)
to state (F, F). : .

In order to convince oneself that the algorithms presented below work correctly in the
presence of timed out write locks, system crashes and user requested aborts, it is necessary to -
consider the possible combinations of co-ordinator and worker states. For each such
combination, examine the algorithim and see that it leads to the correct resuit. -

For example, consider the time-out of a write fock. If we examine the algorithm, we see
that this is handled in one of three ways. If the worker is in one of the states (W, W), (PTF,
W) or (PdTF, W) then the worker performs a local abort, and signals the co-ordinator that
it 1s aborting. In these cases it is known that the co-ordinator has not yet reached state (F,
F); thus the local abort is legitimate. Moreover, even if the message to the co-ordinator is
lost, the worker will eventually disappear, and messages from the co-ordinator will be
responded to by "Never-Heard-of-That-Worker”, which will in turn lead the co-ordinator
to aborL ' :

If the worker is in state (RTF, RTF), then the co-ordinator could be either in (R, I) or (F,
F). In the first case the transaction has not yet finsished. Moreover, ‘it could be a
- substantial period of time before it does finish, since the co-ordinator is waiting on some
worker, and the worker may be waiting on some user. Thus, if the co-ordinator is in state
(R, W) it is desirable to abort and release the timed out write lock. On the other hand, if
the co-ordinator has reached state (F, F), the transaction is finished and the write locks will

be released soon. Since there is no way the worker can determine which case holds, the

worker sends an abort request to the co-ordinator.

Possible occurrences of a system crash are analyzed in a similar fashion, paying particular
attention to the situation occuring after processes are deleted. Sometimes a deleted process
signifies that the transaction is finished, and other times it snomﬁe> that the transactlon is

to be aborted. :

A more formal analysis could be obtained as follows. Define a configuration as a set
" consisting of one co-ordinator state and one or more worker states, A transaction is in a
particular configuration if the co-ordinator has the state specified in the configuration, and
there is at least one worker in each worker state included in the configuration. Now a
configuration change diagram can be constructed which shows possible transitions among
" the configurations, due to various events. The particular configuration { (I, I), (W, W) } is
the start configuration. (This represents the co-ordinator in state (I, 1) and each worker in
state (W, W).) One now checks that any path in the diagram starting with the start
configuration either leads to all intentions being carried out, or none.

6.2 Data structures involved in transactions

There are a number of data structures used by the transaction machinery, which are not
directly visible to a user, and hence were not described in section 3.4. We give a brief
description of these. The first, a file, is not associated with a particular transaction. The
others are either ‘associated with a transaction worker process, or a co-ordinator. process.

6.2.1 File

A file consists of one or more pomter pages, which contain pointers to the disk addresses of
data pages. The information content of the file is stored in the data pages, while the
identity and order. of the data pages is determined by the contents of the pointer pages. The
pointer pages are stored on the disk by redundancy mechanism A, and data pages are stored
by mechanism B.

The pomter p'a ges are designed so that individual pointers can be rewritten by: reading in
the old pointer page, modifying a pointer and re-writing the page. This can be repeated
indefinitely with the same result. , _

6.2.2 Workef

Associated with each worker process we have the following items. The local intentions list.
(including sPhaselVk) will survive a system crash, while the other items do not. 'In the event
of a system crash, if the worker process is to be restarted, these other items are set to values
depending on the value of sPhaseWk

Local intentions Itst

This list contains a variable, sPhaseWk, and a sequence of palrs The possxb]e values
of the variable are the ordered set: .

working < readyToFinish < firishing,

The 'sequence is initialized to be empty, and sPhaseWk to working. Each pair
contains the -address of a file page pointer (given by the disk address of a pointer
page, and the index of the pomter within the page), togethcr with the address of a -
data page.

Each worker intentions list is stored on the disk using redundaﬁcy mechanism A,
and survives a system crash.

vPhaseWk

A variable which defines current mode of the worker. It takes on the (ordered)
values:

working < preparingToFinish < prep'lredTolesh
- < readyToFinish < finishing < aborting

tmEf
Earliest time the transaction can finish, initialized to the current time.

doAbort
Initialized to false.

setRsnfcWk

A set of request serial numbers (i.e. pairs <{user, integer>) which are incomplete. A

request serial number rsn is incomplete if some request for the same user with a later
serial number has arrived, and no request numbered rsi has been completely

processed by the worker

setRsnMaxWk

A set contarmng all the maximal rsn's on requests seen by this worker. This set has
one element for each user who has sent a request to this worker.

6.2.3 Coordinator

The following items are associated with a co-ordinator procesé. The first, the intentions list
(including sPhaseCo) survives a system crash. The others are reconstructed after a system
crash, depending on the value of sPhaseCo. :

Intentions List

This list contains a variable, sPhaseCo, and a sequence of pairs. The possible values
of the variable are the ordered set:

working < f-Wait.

The sequence is initialized to empty and sPhaseCo to working. Each pair identifies a
worker intentions list, by giving a machine name and a disk address.

Each co-ordinators intentions list is stored on the disk using redundancy mechamsm
A, and survives a system crash.

vPhaseCo ‘
‘This variable takes on the ordered set of values:
working < p-wait < r-wait < f-waif
and for a newly created co-ordinator is initialized to werking.

doAbort
Initialized to false.

6.3 Worker process algorithm

We now present the algorithm followed by a worker process. This description omits the
details of the internal file structure, and only differentiates between file reads and writes.
The process only acts in response to messages received from other processes. These messages
may be user requests, or control messages from other file system processes, possibly on other

file system computers. This description is written in an ad hoc language. The only unusual
feature of the language is the concurrent statement. Indentation is used to denote grouping.

The worker is composed of three main concurrent processes. The first two described below
handle normal acitvity (i.e. user requests and lock time-outs). The third controls finishing
and checkpointing. The first two spawn independent processes to handle each request, whlle

the third is programmed as a single process. '

Concurrently

Process user messages,
Process messages from other workers on this machme
Process messages from co-ordinator

Process user messages: _
Concurrently, for each user message (request). wnh Isn <user sn>
if (vPhaseWk > preparedToFinish) then ignore this request
if (»PhaseWk preparingToFinish) then

Compare serial number on this request with the maximum serial number
. encountered on requests from the same user. If the number on this request
is higher than the maximum encountered, then ignore this request.

Augment setRsnlcWk and setRsnM axW k:

Find the element in .setRsnMaka for this wuser, and call it <user,
snOldMax>. lf there isn't one, add <{user, 0> to selenMaka and use
that.

" for.iin (snO!dMax .sn} do add <user, > to setRsnIch i.e. add the current
request’s rsn to the set of imcomplete rsn's, together with rsn’s for any
requests which seem to have been lost in transmission.

if sn>snOldMax then replace user, snOldMax> in setRsnMaka by <user,
snd>. .

~ Concurrently, for each command in the request .

switch on type of command
(In this descnpuon we only consnder the generahzed cases of read and .
write). _ - o :

Read command:

Obtain the necessary read locks by any desired solutton to the readers
and writers problem, adding appropriate entries to the set of read lock
entries for this worker.

Read the data from the disk. (Watch out if the data is wrlte locked by
this- transaction, as the S-view will be inaccurate.)

Send an action completed response to the user specified in the request,
containing the data read from the file.

(This completes the read command.)

Write command:
concurrently, obtain the necessary locks, and prepare the write.

Obtain locks:
The necessary locks are:
Write locks for any mformatlon to be modified

Read locks for any information which is stored on the same file
page as some information which is to be modified, but is not

itself to be modified.

Obtain the locks by any desired solution to the readers and wnters
problem, with the following additions:

If the system reaches a state in which all the impeding write
locks are timed out, send WriteLockTimedOut messages to each
worker holding those locks.

If the system reaches a state in which all impeding locks are
timed out read locks, then (Note: it is essential that at this
point there are no impeding write locks):

Send ReadLockBroken messages to each worker holding
those locks.

Re-set tmEf to the current time + T.
Erase the timed out read locks.

Prepare the write: . :
‘Concurrently, for each file page containing data to be modified:

When all the read locks have been obtained for the data on this -
page, read the old version of the page and create a new version
containing the modified data. Add the appropriate pointer
change to the list of intentions for lhlS _transaction on this
system machine. . -

Send a command completed response to the user specified in the
request.

(This completes the write command)

ClearReadLock command:

Remove all lock entries from the set of read locks for this worker whxch
match the data addresses and user specified in this request.

Remove all lock entries from the set ‘of broken lock entries for this
worker, which match the data addresses and user spec:ﬁed in thlS
request. -

Send a response to the user specified in- the request.
(This completes the clear a read lock command.)

AreYouStiliThere commahd:

Send a response to the user specified in the request. Place in the response
a list (even if null) of all entries in the in the set of broken read locks
for this worker, which designate the user specified in this request.

(This completes the AreYouStillThere command.)
(This conipletes the user request comman.dv s_witéh)
Delete <user, sn> from setRsnIch. , |
(This completes the activity for a usér inessage.)
Process messages Jfrom other workers in this machine:
| Concurrently, for each message »
- Switch on type of message

BrokenReadLock message:
if (vPhaseWk > preparedl‘of:msh) then ignore this message

for each appropriate entry in the set of read locks (for this worker)
" Remove the entry from the read lock set
Send an appropriate message to the user specified in the read lock
Place the entry in the set of broken read locks (for this worker)

TimedOutWriteLock message:

if vPhaseWk < readyTofinish then
Set .doAbort + true
Send Abort to Co-ordinator

if vPhaseWk = rea(‘!yTofinish' then
Send Abort to- Co-ordinator

Process messages from co-ordinator:

Wait forvmessage from co-ordinator, or dodbort = true
if message = Abort, then goto Abort '

if message

‘GetPreparedToCheckpoint then' goto Checkpoint

. if message = GetPreparedToFinish then goto Finish
if doAbort then gote Abort

. Error

Checkpoint:
~ begin checkpoint code

[program will be filled in in due time]

Resume wait for message from co-ordinator, at ‘Process messages from
co-ordinator.

end checkpoint .code

Finish:

begin finish code :
for each user specified in the message

modlfy setRsnlcWk and setRsnMaxWk (as described in Process user
messages above), exactly as though a request had arrived from the user with
the serial number given for that user in the GetPreparedToFxmsh message.

Set vPhaseWk -« preparingToFinish

wait until (the set of indices of uncompleted requests is empty and the -
current time exceeds the value of tmEf) or (doAdbort = true).

if dodbort = true then goto Abort

if the set of broken read locks is non- empty then
{Note: an alternative would bc to invite a user to release the broken read
focks).

Set doAbort « true
Send Abort to Co-ordinator
- goto Abort

Set yPhaseWk <« prepared’l"oﬁmsh
Send PreparedToFlmsh to the co-ordinator, mcludmg the dxsk address of the

intentions list. '

Release all Read locks (held by this worker).

wait for message from co-ordinator, time-out or Abort-flag = true
if time-out then ‘

Send PreparedToFinish to the co-ordinator, including the disk addfess of
the intentions list.

Resume the wait for message from co-ordinator or time-out
if doAbort = true or méssage = Abort or messagé =.
NeverHeardOf ThatCoordinator then goto Abor? :
if message = GetPreparedToFinish then

Send PreparedToFinish to co-ordinator

Resume preceeding wait for message or time-out

if message # GetReadyToFinish then error
Set sPhaseWk = readyToFinish, and wait for the disk write to finish.
Set vPhaseWk = readyToFinish

- [Worker must now interogate the co-ordinator to determine if the
transaction is finished. Up to this point the worker knew that the
transaction was not finished.] - '

ReadyToFinish: |
Send ReadyToFinish to co-ordinator ‘
Wait for message from co-ordinator or time-out ’ : ‘
if time-out or message = GetReadyToFinish thei gote ReadyToFinish

if message = Abort then goto Abort

if message # GetFinished and message # NeverHeardOfThatCoordinator
then error

Set sPhaseWk « finishing, and wait for the disk write to finish.
Set vPhaseWk <« finishing , :
Send Finished to the co-ordinator

[The worker now knows that the transaction is finished.]

Finishing:
Carry out intentions.
Release all write locks (held by this worker).
Desti’oy Intentions list.
Destroy worker.

end finish code
“Abort:

begin abort code
Release all read locks held by this worker
Release all write locks held by this worker
Destroy intentions list
Destroy worker

end abort code

6.4 Co-ordinator algorithm

The co-ordinator is essentially a single process. However, during waits for responses from
the workers, a number of subsidiary processes are spawned.’

Wait for a message from a user or a worker
Switch on message type
User request message:
begin user request
. for each command
‘ switch on command
Command not directed to co-ordinator:

(Then this action, and subsequent actions in thxs request, must be directed to
the worker on this machine)

Send remainder of the request to the worker on this machine
Resume global wait
Create new worker command:
[Code will be filled in]
Checkpoint command:
[Code will be filled m]
Finish command:
Send GetPreparedToFinish to all workers
Set vPhaseCo « p-wait
concurrently for each worker
begin each worker
wait for. response, time-out or doAbort = true
if time-out then)
Resend GetPreparedToFinish to the worker and resume waiting
if doAbort = true then cease processmg this worker '

" switch on response

NeverHeardOjT hatWorker response: .
(sent by the system on the machme on which the worker is purported
to reside.)

Set doAbort « true

PreparedToFinish response:

Record the address (of the workers intentions list) in the
co-ordinator's intentions list; the address is transmitted in the
PreparedToFinish response.)

Abort response:
Set doAbort = true

end each worker

if doAbort = true then goto Abort
Set vPhaseCo ¢ r-wait
Send GetReadyToFinish to all workers
concurrently for each worker
begin each worker ' ‘
wait for response, time-out, or doAbort = true
if time-out then ‘
Resend GetReadyToFinish to the worker’
Resume waiting ' ' -
{Note: an alternative to the preceeding code would be
to abort).
if doAbort = true ther gote Abort
switch on response

ReadyToFinish response:
finished with this worker

PreparedToFinish response:
Send GetReadyToFinish to the worker
- Resume waiting

Abort response:

~ Set doAbort « true

Finished with this worker
NeverHeardQfThatWorker response:

(sent by the system on the machine on which the worker is
purported to reside)

Set doAbort = true
finished with this worker

end each worker

- if doAbort = true then goto Abbrt
~ Set vPhaseCo « f-wait ' S
Set sPhaseCo « f-wait, and wz_xit, for the disk write to finish

[The transaction is now effectively finished.]
[Resume co-ordinator here during crash recovery]

Send GetFinished to each worker
concurrently for each worker
~ begin each worker
wait for response or time-out:
if time-out or response = ReadyToFinish then
Resend GetFinished to the worker
Resume waiting
if response = Finished then flmshed with this worker

if response = ReadyToFinish then
Send GetFinished to the worker
Resume waiting

end each worker
Erase co-ordinator intentions list
Destroy co-ordinator process

Abort command:
goto Abort

end of switch on command

end user request

Message (unsolicited) from some worker
switch on type of worker message
Abort message:
gote Abort
(end of switch on type of worker message)

(end of switch on message type)

Abort: .
Send Abort to each worker
Destroy co-ordinator's intentions list

Destroy co-ordinator

6.5 Crash recovery algorithrﬁ

chan the disk, looking for worker intentions lists and co-ordinators intentions list. .

for each worker's intentions list do
switch on sPhaseWk
< readyToFinish
destroy this intentions llst

readyToFlmsh

start up a worker process, with
vPhaseWk = readyToFinish
All pages write locked which appear in the intentions list
~start the worker at' ReadyToFinish

’finishing ;
Start up a worker process with

vPhaseWk = finishing : . |
All pages write locked which appear in t,he mtent:ons list

Start the worker process at Finishing
(end of switch on sPhaseWk) '

i

for each co-ordinators intentions list

switch on sPhaseCo
idle

Send abort to each worker

Destroy co-ordinator's intentions list

F-Wait

Start up a co-ordinator process at the pomt labeled "Resume co- ordmator here
during crash recovery".

(end of switch on sPhaseCo)

7.0 Processes, Medularization

