
The Impact of Mesa on System Design

Hugh C. Lauer
Edwin H. Satterthwaite

Xerox Corporation
Palo Alto, California

Abstract

The Mesa programming language supports program modularity in ways that permit
subsystems to be developed separately but to be bound together with complete type
safety. Separate and explicit interface definitions provide an effective means of
communication, both between programs and between programmers. A configuration
language describes the organization of a system and controls the scopes of interfaces.
These facilities have had a profound impact on the way we design systems and organize
development projects. This paper reports our recent experience with Mesa, particularly
its use in the development of an operating system. It illustrates techniques for
designing interfaces, for using the interface language as a specification language, and for
organizing a system to achieve the practical benefits of progrmn modularity wjthout
sacrificing strict type-checking.

Mesa is a programming language designed for system implementation. It is used within the Xerox
Corporation both by research laboratories as a vehicle for experiments and by development
organizations for 'production' programming. Some of our initial experience with Mesa was
reported previously [Geschke et ai, 1977]. Since that time, the language has evolved in several
directions and has acquired a larger and more diverse community of users. That community has
accumulated a substantial amount of experience in using Mesa to design and implement large
systems, a number of which are now operational. It has beCOme increasingly clear that the value
of Mesa extends far beyond its enforcement of type-safety within individual programs. It has
profounuly affected the ways we think about system design, organize development projects, and
communicate our ideas about the systems we build.

This paper reports some of our recent experience with Mesa. It is based primarily upon the
development of one particular system-what we refer to as the Pilot operating system-tbr a small,
personal computer. We also draw upon the lessons learned from other systems. These represent a
non-trivial amount of programming; a survey of just the authors' immediate colleagues at the end
of 1978 uncovered several hundred thousand lines of stable, operational Mesa code. Pilot itself is
a 'second generation' client of Mesa. It is the first major system to take advantage of explicit
interface and configuration descriptions (discussed below) in its original design. rn addition, its
designers were ai>le to make careful assessments of earlier systems to discover both the benefits
i.md pitfalls of using Mesa. As a result, we were able to benefit from, as well as add to, the
accumulated 'institutional learning' about the practical problems of developing large systems in
Mesa.

The purpose of this paper is to communicate those lessons, which deserve more emphasis and
discussion than they have received to date in the literature. We concentrate upon the impact and
adequacy of the Mesa programming language and its illfluenceupon system design; a companion
paper [Lynch and Horsley, 1979J focuses upon organizational and marwgement issues. This paper
contains three main sections. First, the fm:ilities provided by Mesa for supporting the development

2 H. C. LAUER AND E. H. SATIERTHWAITE

and organization of modular programs are discussed. In the second section, we describe the role
played by the Mesa interface 'and configuration languages in system design, particularly from the
perspective of Pilot. The final section is a qualitative assessment of the adequacy of Mesa as a
system implementation language.

Context

Mesa is both a language and a system. The Mesa language features strict type-checking much like
that of PASCAL [Wirth, 1971] or EUCLID [Lmnpson et aI, 1977], with similar advantages and
disadvantages. In particular, the type-checking moves a substantial amount of debugging from
run-time to compile-time. Much has been written on this subject; our views and design decisions
have changed little since our earlier report [Geschke et aI, 1977]. The type system of Mesa
pervades all other aspects of the language and system. The latter consists of a compiler, a binder,
a source language debugger, and a number of other tools and utilities. The system has been
implemented on machines that can be microprogrammed at the register transfer level; thus we
have also been able to design and impicment a machine architecture specifically tailored to Mesa.

Mesa is an evolving language and system. The published version of the language manual [Mitchell
et al. 1978] differs from descriptions presented in earlier papers in a number of ways, most notably
in the explicit definition and control of interfaces. More recently, processes, monitors, and
synchronization have been added; these resemble the 'procedure-oriented model' of [Lauer and
Needham, 1978]. The compiler, instruction set, and microprogrammed interpreters have all
evolved to accommoda~e tllese changes.

Ine Pilot operating system upon which this report is based is programmed entirely in Mesa, as are
all of its clients. In addition to providing tlle usual set of operating system facilities, Pilot
implements all of the nm-time machinery needed to support tile execution of Mesa programs,
including itself. The clients are assumed to be friendly and cooperating, not hostile or malicious.
Since no debugging takes place on machines that are simultaneously supporting other users, no
attempt has been made to provide a strong protection mechanism; instead the goal has been to
minimize the likelihood of uncontrolled damage due to residual errors. Pilot was designed and
implemented by a core group oJ' six people, with important contributions by members of other
groups in specialized areas. By late 1978, the total system consisted of approximately twenty five
thousand lines of Mesa code.

Modularity in Mesa

Systems built in Mesa are collections of modules. The general structure of a Mesa module is
described in [Geschke et aI, 19771. Viewed as a piece of source text, a module resembles an
ALGOL procedure or SIMULA class declaration. Although the Mesa language enfbrces no particular
style of module usage, a de facto standard has evolved. An instance of a module typically manages
a collection of objects. Each object contains infonnation characterizing its own state. The module
instance provides a set of procedures to create, operate upon, and destroy the objects; it contains·
any dak1 shared by the entire collection (e.g., a table of allocated resources) and perhaps some
initialization code also.

Modules communicate with each other via interfaces. A module may import an interface, in which
case it may use facilities defined in that interface and implemented in other modules. We call the
importer a cliellt of the interface. A module may also export an interface, in which case it makes
its own facilities available to olher modules as defined by that interface. In Mesa, modules are
identical to units of compilation; there is no provision for nesting modules within a single
compilation unit. A collection of modules can be bound together into a con!tgumlhlll by the Mesa

THE IMPACT OF MESA ON SYSTEM DESIGN 3

binder or by a loader; this causes all imported interfaces to be connected to corresponding
exported interfaces.

This section contains a brief, simplified description of Mesa interface definitions and of the
configuration description language. At the end of the section is a note on the consistent
compilation requirement, a constraint that has an important impact on the style and organization
of any large system programmed in Mesa.

Inter/aces

Interfaces are defined by compilation units called DEFINITIONS modules. An interface described by .
such a module can be partitioned into two parts, either of which can be empty. A constant part
defines types and constants that can be used by any module with access to the interface. The
variable part defines the operations available to clients importing the interface. In general, the
operations are defined ill terms of procedures and signals (dynamically bound unique names, used
primarily for exception handling). The variable part of an interface may be thought of as a record
consisting of procedure- and signal-valued fields. We call this an interface record. Figures la and
lb are excerpts from the definition of a hypothetical Channel interface. They illustrate the
declarations typically found in the constant and variable parts respectively. Note that the attribute
PRIVATE hides the definition of Object from clients; it is declared here because it is required for
the declaration of Handle.

A module that uses an interface is said to import an instance of the corresponding interface record.
Every module lists the DEFINITIONS modules for the interfaces that it imports. In essence, the
importer is parametrized with respect to these interfaces. The compiler reads (the compiled
version of) each of the imported modules and obtains all of the information necessary to compile
the importing module. No knowledge about any implementors of the interfaces is required, but
the types and parameters of all references to an interface are fully checked at compile time. The
compiler also allocates space in the object program for (the required components of) the imported
interface records but does not initialize it.

Similarly, a module that implements an interface is said to export it. Such a module contains
procedure and/or signal declarations, each with the PUBLIC attribute, for the procedures and/or
signals defined in the interface. The compiler ensures that the types in the exporter are assignment
compatible with the corresponding fields of the interface record and thus with the types expected
by importers of the interface. In essence, instantiation of an exporter yields an instance of the
exported interface record in which procedure and signal descriptors have been assigned to the
fields. Figure 1c suggests the form of a module that exports Channel. In this example,
Channellmplementation imports another interface, Device, so that it can use operations
defined there.

The Mesa binder (and at nl11-time, tile loader) collect exported interface records and assign their
values to the corresponding interface records of the importers. The rules for colleclion and
assignment are expressed in a configuration description language, which is discussed below.

The Mesa approach to interfaces has several important advantages:

Once an interface has been agreed upon, construction of the importer and exporter can
proceed independently. In particular, interfaces and implementations are decouplcd. Not
only is information betler hidden, but minor programming bugs can be fixed in exporting
modules without invalidating a previollsly established interface and without sacrificing full
type-checking across module boundaries.

4 H. C. LAUERANDE. H. SATIERTHWAITE

In large projects, interface specifications are units of communication among design and
programming groups (see below· under Interfaces and Specifications).

Interfaces partition the name space and effectively reduce the number of global names that
must be kept distinct within a project.

Interfaces enforce consistency in the connections among modules. The operations upon a
class of objects are collected into a single interface, not defined individually and in
potentially incompatible ways. An earlier binding scheme, using component-by-component
connection, could for example obtain Allocate from one module and Free from an entirely
unrelated one.

Nearly all of the work required for the type-checking of interfaces is done by the compiler.

This approach should be contrasted with the alternatives. Interfaces in typical assembly language
programming are defined implicitly, by attributes attached to symbols scattered through the text of
the implementors. The associated binders (linkage editors) and loaders do no type checking and
impose little structure on the use of names. Implementations of higher-level languages that are
constrained to use the same binders seldom do any better, even when they offer strict intra-module
type-checking. We believe that the type-checking of interfaces is the most important application of
the type machinery of Mesa. In a few PASCAL derivatives (see for example [Kieburtz et aI, 1978]),
inter-module type-checking is provided by a special binder, but interfaces are still defined
implicitly.

If importers and exporters refer to inconsistent versions of an interface, the type-checking scheme
used by Mesa will fail. The following rather conservative approach has therefore been adopted to
guarantee consistency. Whenever a DEFINITIONS module is compiled, the compiler generates a
uniqlle internal name for the interface (essentially a time stamp). Interfaces are 'the same' for the
purposes of binding only if they have the same internal name. This!Ule is an extension of Mesa's
equivalence rule for record types (see (Geschke et aI, 1977] for further discussion). The compiler
places the unique name of the interface in the object code generated for any importer or exporter
compiled using that interface. II is this internal name that is used by the binder or loader to match
interfaces. Thus the binder or loader checks that each interface is used in the same version by
every importer and exporter.

This strategy has profound effects on the organization and management of large systems. It
guarantees complete type-safety and consistency among all modules in a system communicating via
a particular interface. On the other hand, it introduces both direct and indirect dependencies
among modules to the level of exact versions; establishing consistency can require a great deal of
recompilation. Subsequent sections discuss these issues.

Configurations and Binding

Mesa provides a separate configuration description language, C/Mesa, for specifying how separately
compiled modules are to be bound together to form configurations. [n the simple cases considered
here, configuration descriptions arc just lists of modules and (sub)configurations. These
descriptions ca!1 be nesled, however, and the nesting implicitly determines the scope of an interface
according to the following rules:

A component of a configuration (Le., a module or 'sub-configuration' named within the
configuration description) may import an interface if and only if that interface is either
imported by the configuration itself or is exported by some component of that
configuration.

A configuration may export an interface only if it is exported by one of its components.

THE IMPACT OF MESA ON SYSTEM DESIGN 5

The Mesa configuration language is, in -fact, more general than this; it has many of the attributes
of a 'module interconnection language' as defined by [DeRemer and Kron, 1976]. C/Mcsa
provides such features as multiple, named instances of interfaces, the assignment of specific
instances to specific importers, and the joint or shared implementation of an interface by more
than one module. This generality is little used by Pilot and is not discussed here.

A complete system is represented by a hierarchy of configuration descriptions. The scope rules for
interfaces permit an interface to be confined to, or excluded from, any given branch of the
hierarchy. This can be best illustrated by an example. Let A, B, C, ... be interfaces and let U,
V, W, X, . . . be modules that import and export them as indicated in the comments. Consider
the following three C/Mesa configuration descriptions:

Config1: CONFIGURATION
IMPORTS A
EXPORTS B =

BEGIN
Uj
V' ,

END.

--imports A, C
--exports B, C

Config2: CONFIGURATION
IMPORTS B =

BEGIN
W· ,
X' ,

END.

--imports B, exports C
--imports B, C

Config3: CONFIGURATION
IMPORTS A =

BEGIN
Config1 j
Config2j

END.

These configuration descriptions guarantee the following properties of the interfaces (among
others):

The scope of interface C in Config1 is just that configuration; that is, this instance of C
is known to an components of Config 1 but to no component outside of it. Every
component of Con fig 1 that imports C will be bound to the same implementation, the
one provided by V.

The interface C in Config2 is entirely independent of the interface C in Config 1.
Whether these two interfaces are different instances of the same interlace definition does
not matter; they do not represent the same implemelltation. All components of Config2
that import C are bound to the implementation in W, not V.

Interface A is imported into Config3 (from some yet to be specified larger configuration),
but it is imported only into the branch of the hierarchy represented by Config1. 'nms
no component of Config2 may import A, even though it is known at a higher level in the
hierarchy.

l11e scope rules for configurations provide a powerful tool for controlling the interactions among
different parts of the system. Individual subgroups of the development team can define their own
interfaces for their own purposes without involving larger unit'>, without having to cope with
unexpected cans from unrelated parts of the system, and without having any nami,ng conflicts.

6 H. C. LAUER AND E. H. SATTERTHWAITE

Similarly, the organization of the whole system is subject to scrutiny, and all interfaces between
different parts of the system are f1l1ly exposed. No private, undocumented interfaces between low­
level components in unrelated branches of the configuration hierarchy can exist.

Pilot makes extensive use of nested configurations to limit the scopes of interfaces. The
configuration descriptions are organized as a four level heirarchy. The highest of these exports just
the 'public' interfaces defined in the Functional Specification (see below). At the next level are the
major internal interfaces, used for communication among the major subsystems of Pilot-e.g.,
input/output, memory management, etc. At lower levels are the interfaces that provide
communication within a subsystem. At each level, the interfaces are defined and managed by the
group or individual responsible for that configuration. This has been an important factor in
keeping the logistics of the project manageable and its schedule reasonable.

Consistent Compilation

When one module is referenced during the course of compiling another, a compilation dependency
is established. This dependency imposes a partial ordering on a collection of modules. If one
module is changed and recompiled, all those that follow it in the ordering must also be recompiled
before the collection is again consistent. It is seldom possible to bind a system together as long as
any inconsistencies remain. An example illustrates the problem. Let A be an interface between
modules U and V. If some change is required in A, it is a relatively simple matter to recompile
first A and then U and V. These three are then consistent with each other and may be correctly
bound together. If only U or only V were recompiled, the bindcr would report an error. Suppose,
however, that interface B uses a type defined in A, say as the type of an object pointed to by a
field of a record. Suppose further that modules X and Y communicate using B. If X also
references A, any attempt to recompile X will fail until B is recompiled; then consistent binding
requires recompilation of Y also. Thus Y has an indirect compilation dependency on A.
Whenever A is recompiled, B, X, and Y must be also.

If the number of modules and interfaces in a system is large and if interfaces are evolving,
ensuring this strictly-checked consistency becomes a major logistic problem for the project
manager. The practical effect of this consistent compilation requirement is to force system
designers to pay very close attention to when and how modules are updated. Without careful
planning and system design, small changes to one or a few interfaces can trigger a recompilation of
an entire system. For small systems, this is not significant, but for largcr projects, it is a headache
and it sacrifices many of the operational benefits of modularity. All members of the project must
bring their work into phase and 'check in' their olltstanding modules. These must then be
recompiled in a sequence consistent with the partial order.

In our experience, such a universal recompilation effort nearly always reveals newly introduced
inconsistencies and interactions bctween modules. These must be resolved immediately to allow
the recompilation and rebinding to proceed. In the development of Pilot, the recompilation effort
took more than a week the first time it was tried; this eventually converged to one-and-one-half or
two days once the logistics were debugged. Note that this period is one of enforced inactivity
among the members of the project-Le., they are not able to continue coding and devc!opment of
the system being integrated. (Because of the hierarchical structure of Pilot, universal
recompilations were rare. In most cases, only the components of one of the nested configurations
needed to be recompiled, requiring much less time and effort and affecting fewer people.)

The enforcement of consistent compilation is a result of Mesa's strict type- and version-checking at
the module level. We have found that a utility program capable of computing the partial ordering
and scheduling the required compilations is of great help in dealing with consistent compilation.
Three more drastic alternatives can be imagined:

THE IMPACT OF MESA ON SYSTEM DESIGN 7

First, compatibility of interfaces might be defined recursively, in tenns of component-by­
component compatibility of types and values. This not only involves the binder in much
more elaborate type checking but also requires access to large symbol tables during
binding and loading. Previous use of this scheme in Mesa demonstrated that it had
unacceptable performance and introduced a different set of operational problems.

Second, the compiler and binder could be more discriminating and enforce recompilation
of B, X, and Y only when they are actually affected by the changes made to A. So far,
attempts to do this in ways that do not reduce to the first alternative have not been very
successful.

Finally, the onus could be placed on the programmer to recompile B, X, and Y when
required. This, however, sacrifices the type-safeness of the Mesa language in one of the
places where it is most required: at the interface between two modules. Failure to .
recompile at the appropriate times will result in a discrepancy between them that is not
apparent in any source text. (In fact, one early version of Mesa, used 'unique' names that
were incorrectly computed and were not always unique. We found that debugging in the
presence of undetected version mismatches was extremely tedious and frustrating.)

111e universal recompilation effort is, in effect, the root of a software release po Llcy. UDserve ma{
the clients of Pilot itself must be recompiled whenever the external interfaces (those exported by
Pilot) are recompiled. This, of course, can be very time-consuming and costly. Therefore, new
releases of system software-Le., new versions with updated interfaces-must be carefully planned
and must not be undertaken lightly. 'Maintenence' releases, on the other hand, involve updates
only to program modules or strictly internal interfaces. These releases can be absorbed-very easily
by clients at will and at the cost of a few seconds or minutes binding.

While consistent compilation is a logistic problem for the project manager, it is a programming
benefit. If it becomes necessary to change an interface, the type- and version-checking done by
the compiler and binder wilt detect all references to that interface and will expose aU parts of the
syslem that must be modified to accommodate the change. The experience of many projects in
Mesa is that once a previously running system has been successfully recompiled and rebound
following changes to its internal or external interfaces, it will immediately run with the same
reliability as before. The correct use of SU-ict interface checking is not always obvious, but it must
be mastered if the potential benefits are to be obtained. (This parallels our experience with intra­
module type checking.)

Programming in the Interface Language of Mesa

Designing interfaces and reducing them to Mesa DEFINITIONS modules is as much an act of
programming as designing algorithms and reducing them to executable code. In Mesa, inlet/aces
are not derived ex post facto from the compiled modules constituting a system. Most of the early
'programming' of Pilot was, in fact, interface programming, and one member of the design team
was recognized as the 'interface programmer.' This was a senior member of the group who had
the responsibility of ensuring that all interfaces were complete, were consistent with each other,
and conformed to project standards.

111e notion of an intertace programmer did not exist a priori but arose from the methods used ill
the specification and design of Pilot. The original assignment of the interface programmer was to
act as editor of the Functional Specification, a document describing the external characteristics of
tl1e Pilot operating system. However, it soon became apparent thal Mesa text was an inherent part
of this specification. In addition, while each or the designers contributed an interf.lce and draft
specification that was satisfactory for the area of his responsibility, the collection of these had to be
integrated illto a coherent whole. Thus, the editing task evolved into one resembling
programming. The first part of this section illustrates the specification method and the use of the

8 H. C. LAUERANDE. H. SATTERTHWAITE

Mesa interface language for defining the external characteristics of Pilot

One of the most important responsibilities of the interface programmer was to ensure that there
were no compilation dependencies between client programs and internal details of Pilot. This is
not as easy as it sounds, and we had suffered some bitter experience in previous systems that failed
to do this. In one case, a field of a record representing a low-level data structure was accidentally
omitted in some code shared between Pilot and the Mesa system itself. The omission did not
affect the operation of the Mesa system and was discovered only after most of the testing of a new
release of that system had been completed. Unfortunately, the DEFINITIONS module in which the
record was located was near the root of the tree of compila:tion dependencies and, because of
schedule commitments, could not be corrected prior to release. As a consequence, all versions of
Pilot built on that release of Mesa had to avoid using a fundamental feature of the system
architecture. Considerable pains were taken in the subsequent design of the Pilot interfaces to
avoid this kind of problem. The second part of this section describes a language feature that helps
to minimize such undesirable interactions.

The third prot of this section describes how the explicit and strictly checked interfaces of Mesa
permitted the functional simulation of Pilot using an older operating system. Contrary to our
expectations and previous experience in operating system design, tlle conversion of the client
programs from the simulated system to the real one was painless.

Interfaces and Specifications

The interface language of Mesa served as the nucleus of the functional specification of tl1e Pilot
operating system. This provided a means for defining the scope and character of the system, for
documenting it for clients and potential clients, and for focusing the programming effort.

In this particular project, two versions of a Functional Specification document were prepared
before coding began. The first of tllese was tlle culmination of a long study in which the general
nature of the system, its goals, and its requirements were identified. The first version of the
Functional Specification was circulated alld detailed design of the system began. Approximately six
montlls later, the second version of the FUllctional Specification was prepared. It incorporated
changes and refinements resulting from the design effort and from comments by the client
organizations. Following this, Pilot was coded and tested for a period of approximately six
montl1s. Finally, the Functional Specification was edited to make minor changes and distributed as
a programmer's reference manual.

The external specification of Pilot at tlle fUl1ctionallevel is essentially a specification of it') public
interfaces-Le., of the types and constants defined by the system, of the procedures that clients can
call, and of the signals representing error conditions detected by tlle system. These interfaces
consist of approximately a dozen DEFINITIONS modules representing the major functional areas of
the system. They are named according to fllnction, e.g., File and Volume to describe the file
storage system, Space to describe memory management, etc.

Figure 2 illustrates two fragments of the Functional Specification for the File interface. The two -
parts of the figure illustrate, respectively, tlle definitioll of the notion of tile capabilities in this
system and the operation for creating files. File capabilities are simply and conveniently described
in terms of the type File.1D (described car1ier in the FUllctional Specification). The null value of a
file capability is also defined at this point in terms of File.nuIllD, a previously defined null value
of File.lD, and the empty set. Figure 2a contains all of the infonnation about file capabilities
needed by a Mesa programmer designing a client of Pilot, and it illustrates the self-documentating
nature of high-level languages such as Mesa. .

THE IMPACT OF MESA ON SYSTEM DESIGN 9

In Figure 2b, the file creation operation is defined. First, definitions of the procedure and
associated error signals are presented as they appear in the interface (note that the Create
operation defined in the File interface can cause signals defined in the Volume interface to be
raised). Following this is a narrative describing the function of the Create operation and the
error responses that can occur. The initial state of the file is fully defined (including values of
attributes defined elsewhere in the Functional Specification). The type attribute of the file is
defined in conjunction with Create and consists of a CARDINAL (Le., non-negative integer)
encapsulated in a record (to create a unique type).

When the Functional Specification was completed, the Mesa text was extracted using a text editor,
embedded in a prototype DEFINITIONS module and compiled. This revealed a host of minor errors
and several circularities. Several omissions were also detected, indicating that the document was
incomplete in these respects. These, of course, were corrected both in the interfaces and in the
document. The result was twofold: First, the interfaces compiled from the document became the
'official' versions and were used in the implementation. Second, we had confidence that we had
adequately documented the whole system as an integral part of its development, in advance and
not as a last minute chore.

From the Pilot experience, we conclude that the combination of Mesa and English in the style we
have described is an effective specification tool. There is no fon11al or mechanical verification
method to ensure or 'prove' that the resulting system satisfies the specifications. Nevertheless, our
experience has been that human 'verification' is tractable; i.e., the redundancy in this description
plus ordinary debugging and testing techniques are sufficient to convince us that the operating
system meets its specifications with a reasonable degree of reliability. There were very few cases in
which the specifications were misinterpreted or interpreted differently by different people.

A Note on Exporting Types

At the lime Pilot was developed, Mesa did not permit modules to export types, only procedures
and signals. Constants and types could, of course, be declared in interfaces, but these were known
at compile-time to both the importers and the exporters of the interfaces. Unlike procedures and
signals, types to be used by one module could not be bound at some later time to types defined by
implementation modules elsewhere. Thus every module using instances of a type had to be
compiled in an environment in which that type was completely defined, even if the compilation
actually required no knowledge of the internal SUllcture of the type.

This restriction introduced unreasonable compilation dependencies between implementation details
and the external interfaces of Pilot. This is partly a result of the 'object' style of programming.
Consider, for example, the specification of the Channel interface introduced previously. The
desired interface must provide the type Channel.Handle, to be used by Pilot to identify objects
describing channels, and a number of operations, such as Channel.C reate, requiring handles as
arguments or returning them as results. Figures 1a and 1b suggest the obvious mapping of these
requirements into a Mesa DEFINITIONS module.

While Figure 1 shows the most type-safe way to define a Channel.Handle, that interface has a
serious operational shortcoming. A client program is not concerned with the actual values of
Channel. Handle; it only stores them and passes them as parameters. The implementation might
use a pointer, an alTay index, or some other kind of token to represent a Channel.Handle. In
particular, it should be free to change its representation without impacting Channel clients (Le.,
without forcing them to be recompiled). Unfortunatc1y, the definition in Figure 1 requires a
commitment to the representation or not only Channel.Handle but also Channel.Object at the
time the interface is defined. The only flexibility retained by the implementor is in the algorithms
and data structures hidden within Channellmplementation. Thus, fixing bugs and improving
the system behaviour- must be confined to .major releases of Pilot, at which time it is expected that
all clients will, at least, be recompiled.

10 H. C. LAUERANDE. H. SATIERTHWAITE

Clients also suffer in this approach. Because the representation of the Channel.O bject is clearly
exposed in the interface (even though it is marked PRIVATE), the client programmer is tempted to
make unwarranted assumptions about the properties of the objects. Indeed, he can even reference
objects directly (using a very simple breach of the type system subject only to administrative
control), rather than via the exported procedures of the interface. If the implementation of
channels is changed in a subsequent release of Pilot, the client program must. be revised, not just
recompiled.

In Pilot, introducing implementation details into public interfaces was avoided by carefully placed
breaches of the type system. The Mesa version of the Channel specification was defined as
shown in Figure 3. The declaration in Figure 3a defines Channel.Handle to be a unique record
type occupying one word of storage. This change has no effect on clients of the interface (see
Figure 3b) and does not sacrifice type checking of channel handles within clients. The actual
representation of the Channel.Handle is defined in the implementation module as suggested by
Figure 3c, where the LOOPHOLE construct changes the type of its first argument to its second
argument, with no change in representation.

Note that the implementation module can be recompiled whenever necessary and rebound to the
rest of the system without affecting any interfaces. In particular, the implementation details of the
embedded types Object and InternalHandle (except the latter's size) can be changed at will.
The type InternalHandle is bound at compile time to the current version of Object, but the
type Channel.Handle is constant for the life of the interface.

This need to breach the type system to minimize compilation dependencies has suggested an
improvement to the Mesa language, namely the exporting of types. To do this, we replace the
declaration of Channel.Handle in Figure 3a by:

Handle: TYPEj

This defines Channel.Handle to be a type that will be bound at a later time. An implementation
module then exports the type in exactly the same way it exports procedures-by declaring a
PUBLIC type with the required name. In Figure 3c, the declaration of InternalHandle is
replaced by:

Handle: PUBLIC TYPE = POINTER TO 0 bjectj

references to h 1 are replaced by references to h, and the assignments using LOOPHOLEs are
removed. Breaches of the type system are no longer required in the source code. Clients of
Channel arc unaffected. The binder checks that each exported type is exported by precisely one
implementing module and thal therefore all modules of a configuration refer to the same type.
The only information that needs to be known about the type when the interfhce is designed or a
client is compiled is the size of its representation. Note that an exported lype docs not have a run­
time representation that is available to clients; only the exporter can have any knowledge of the
internal structure of that type.

Functional Simulation of the Pilot Operating System

A side effect of the explicit definition of interlilces in separate compilation units is that the same
set of interlaces can be implemented by two different systems, and a client Can be bound to either
one. Provided that corresponding procedures of the two systems implement the same 'semantics,'
the client perceives no functional difference between them. This proved to be a valuable feature
for the early clients of Pilot. To allow them to begin their own testing before Pilot was complete,
a simulated version of Pilot was provided using an older operating system.

THE IMPACT OF MESA ON SYSTEM DESIGN 11

This simulated version used exactly the same interfaces (Le., source and object DEFINITIONS
modules) as the real one. It consisted of only a small amount of code that converted calls upon
Pilot procedures into calls upon old operating system procedures. In the configuration description
of the simulated system, all interfaces of the old system were carefully concealed from clients.
For all of the basic operating system facilities, the simulated system and the real one provided
virtually identical functional behaviour.

The conversion from the simulated environment to the real environment took very little time and
effort. In one typical case, an operational version of an application system was demonstrated using
the simulated Pilot system. Within two weeks, it was operational on the real system and had
successfully executed the same tests as it had in the simulated environment. We attribute this
success primarily to the strongly checked interfaces of Mesa which, along with the English
narrative in the Functional Specification, provided sufficient redundancy to permit the
implementation of exactly the same functions on two different systems.

This simulated system was not our first attempt. In an earlier effort, the old operating system
interfaces were not concealed, and the interface modules of the simulated system were only
'approximately' the same as those of the real system. As a result, conversion from the simulated
system was a very painful process. Programs that worked well on the simulated system needed
extensive revision prior to conversion because (much to the surprise of their implementors!) they
were found to contain extensive dependencies upon the facilities of the old system, which were still
available and visible.

Adequacy of Mesa as a System Programming Language

Previous sections have discussed some potential benefits of high-level languages, particularly in the
areas of consistency checking, information hiding, and control of interfaces. 'These languages offer
other well known advantages, such as greater descriptive power and the suppression of many
coding details. A question often raised, however, is whether a language such as Mesa is adequate
for implementing components of 'real' systems, especially very low-level programs such as the
kernel of an operating system or a device driver. In the case of the Pilot project, the answer is an
unqualified 'yes.' All system software, including all run-time support for the language, trap
handlers, interrupt routines, etc., is coded in Mesa. Even a bootstrap loader that fits into a single
256-word disk block has been written in Mesa.

We must, however, expand upon our answer. In our opinion, several easily overlooked
characteristics of our environment contributed substantially to our success. The more important of
these arc discussed in this section.

Access to the Hardware

Mesa was designed to provide complete but controlle'd access to the underlying machine. There
are several aspects of this. Note that the features described below appear quite infrequently in our
code, and the use of most of them is subject to strict administrative control. Each one, however,
seems crucial in certain situations.

The programmer has the option of specifying the representation to be used for a particular type.
If, for example, the attribute MACHINE DEPENDENT is att.ached to a record declaration, the mapping
between the fields of that record and tile bit. positions in its represenultion is precisely defined and
guaranteed by the compiler. 1\n important use of this at.tribute is to create structures that exactly
match hardware-defined fOimats; thereafter, interaction with the hardware, can be described
symbl)lically. 1\ somewhat. less satisfying use is to specify the fonnals of records placed on

12 H. C. LAUER AND E. H. SATIERTHWAITE

secondary storage media. The Mesa system is still evolving; each release defines a 'virtual
machine' that may differ from its predecessors in certain details. Any data structure likely to
outlive a particular release is, in effect, dependent upon the virtual machine that created it. Clients
are encouraged to recognize this dependency explicitly, either by specifying some fixed format in
the original declaration or by inventing their own unique naming scheme for version control.

The Mesa language allows explicit breaches of the type system. For essentially the same reasons
reported previously [Geschke et ai, 1977], we have made modest use of such breaches, often to
decode representations. Trap handling, for example, sometimes requires inspection of a procedure
descriptor as a string of bits. We use another breach, the assignment of an integer to a pointer, to
access hardware-defined memory locations. This is one of the rare cases in which a non-pointer
value must be assigned to a pointer, and it is almost always done by a constant declaration in an
internal DEFINITIONS module rather· than by an executable program.

The language also makes available the low-level 'transfer' primitive, as defined in [Lampson et ai,
1974], for the transfer of control between contexts. Use of this primitive sacrifices readability and
a certain amount of type checking; in conjunction with the heap (non-stack) allocation of frames,
however, it has allowed us to experiment with unconventional control structures and to implement
the lowest levels of trap handlers, interrupt routines, process schedulers and the like in Mesa.

Finally, Mesa pelmits bodies of procedures to be specified as sequences of machine instructions.
When one of these procedures is called, that sequence is compiled 'inline' in the body of the caller.
This facility permits direct access to any special operations of the machine not reflected in the
Mesa language, such as I/O control, interrupt masking, etc.

Efficiency

Implementing Mesa on a microprogrammed machine has given us the opportunity to design an
instruction set that is well-matched to the requirements of the language. In our experience, space
has proved more critical than time in most systems for small, personal computers; overall
performance depends more upon the amount of primary memory available than on raw execution
speed. We have therefore cmphasized compactness in our design.

Mesa object code is very compact. This is primarily due to the design of the instruction set itself.
We used techniques for program analysis similar to those described in [Sweet, 1978] to discover
common operations and to choose efficient cl1codings of them. The current compiler does little
global analysis and optimization, but extensive 'peephole' optimization docs contribute further to
the compactness of the object code. That code is considerably more compact than the code
produced by most other compilers known to us, even those that perform extensive optimization.
In fact, Mesa object code is often more compact than good assembly code tor machines with a
conventional instruction set.

We have been careful to definc operations that have reasonable implementations in microcode.
Execution speed is therefore adcquate also; critical timing-dependent code, such as a disk interl1lpt
handler that operates on each sector, can be satisfactorily programmed in Mesa without making
undue demands on processor time. We seldom find it necessary to resort to obscure coding styles
to achieve fast programs; when bottlenecks are discovered, it is often more profitable to improve
the microcode.

Tools

Another essential r:equircment for programming in a Jangauge such as Mesa is a sct of tools that
maintain the illusion of a Mesa 'virtual machine'. The most notable of these is a powerful source-

THE IMPACT OF MESA ON SYSTEM DESIGN 13

language debugger, which is routinely used by all Mesa programmers. To allow the debugging of
programs such as Pilot itself, our debugger operates on the 'world swap' principle. Embedded in
the program to be debugged is a small nub which fields traps, faults, breakpoints, and other
conditions. Using a few carefully chosen primitive operations, this nub causes the entire state of
the memory to be saved on a file and then loads a debugging system to examine that file. Because
of the swap, an errant program cannot damage the debugger, and the debugger. is not dependent
upon the system being debugged for any of its operations.

The debugger provides the usual facilities; for example it is possible to display variables
symbolically, to set conditional breakpoints and to display the state or call stack of any process.
All interactions with the programmer are symbolic and are expressed in terms of his original
program. Thus each displayed value is formatted according to its type, the original source code is
used to specify the location of a breakpoint, etc. In addition, the debugger contains an interpreter .
of a subset of Mesa; it is valuable for following paths through data structures, setting variables, and
calling procedures in the user's memory image.

System Integration

The entire Mesa system is integrated and can evolve to meet new requirements as they are
recognized. We can influence all levels of the implementation; to add new facilities or remove a
bottleneck, changes can be made where they are most appropriate.

The evolution of processes in Mesa demonstrates this. Earlier versions of the language had no
special support for processes in any fonn. Because of the accessibility of the underlying machine,
particularly the transfer primitives, users were able to write their own packages supporting process
creation and scheduling. In fact, several such packages were written, each designed to perform
well for certain classes of applications. Most of the packages were mutually incompatible,
however, and since the language had no notion of a 'process' or 'critical section', the compiler
could offer no help in checking for process-related inconsistencies.

After much discussion of the alternatives, we decided to adopt a 'procedure-oriented model' of
processes [Lauer and Needham, 1978] as our standard. The concepts of processes, monitors, and
condition variables were added to the language. While it is possible (and, at the lowest levels of
the system, sometimes necessary) to ignore these additions, they provide a standard way of
programming that is adequaLe for most applications. The compiler was extended not only to
accept Lhese constructs but also to check for obvious inconsistencies in their use. In our initial
implementation, process scheduling was done largely in software; this was relatively easy and gave
us some flexibility for experimentation. Subsequently, certain parts of the scheduler were moved
into microcode to obtain a substantial performance improvement.

Conclusions

The correct lIses of the type system, interface language, and configuration language of Mesa are
not always obvious. They must be mastered both by individuals and by organizations if the
benefits arc to be obtained. The benefits, however, can be very substantial. Mesa provides a
measure of control over the design and development of systems that greatly exceeds anything else
available to us within the resources of a modest-sized development project. As a result,
sophisticated systems can be implemented robusLly and reliably by small groups within reasonable
times. One of the most important practical beneftts of Mesa is that the 'easy' bugs arc eliminated
almost at once and the 'hard' bugs are encountered much sooner in the life of a system.

14 H. C. LAUERANDE. H. SATTERTHWAITE

Acknowledgements

Many of our colleagues have shared experiences and insights that contributed to the ideas
expressed in this paper. We are particularly indebted to the other implementors of Mesa and
Pilot. Butler Lampson, Charles Simonyi and John Wick made major contributions to the design of
Mesa's interfaces and configuration descriptions.

References

DeRemer, F., and Kron, H. H., "Programming-in-the-Large Versus Programming-in-the-Small,"
IEEE Transactions on Software Engineering SE·2 2 (June 1976), pp. 80-86.

Geschke, C. M., Morris, 1. H., and Satterthwaite, E. H., "Early Experience with Mesa,"
Communciations of the ACM 20 8 (August 1977), pp. 540-553.

Kieburtz, R. B., Barabash, W., and Hill, C. R., "A Type-Checking Program Linkage System for
Pascal," in Proceedings 3rd International Conference on Software Engineering, (Atlanta,
May 1978), pp. 23-28.

Lampson, B. W., Homing, 1. J., London, R. L., Mitchell, J. G., and Popek, G. L., "Report on the
Programming Language Euclid," Sigplan Notices 12 2 (February 1977).

Lampson, B. W., Mitchell, 1. G., and Satterthwaite, E. H., "On the transfer of control between
contexts," in Lec.ture Notes in Computer Science, Vol. 19, G. Goos and 1. Hartmannis,
Eds., Springer-Verlag, New York (1974), 181-203.

Lauer, H. C., and Needham, R. M, "On the Duality of Operating' System Structures," in
Proceedings of the Second International Symposium 011 Operating Systems, IRIA,
Rocquencourt, France, October 1978.

Lynch, W. c., and Horsley, T. R. "Pilot: a Software Engineering Case Study," submitted to this
conference, 1979.

Mitchell, 1. G., Maybury, W., and Sweet, R. E., Mesa Language Manual, Technical report CSL-78-
1, Xerox Corporation, Palo Alto Research Center, Palo Alto, California, February 1978.

Sweet, R. R, Empirical Estimates of Program Entropy, Technical report CSL-78-3, Xerox
Corporation, Palo Alto Research Center, Palo Alto, California, September 1978.

Wirth, N., "The programming language Pascal," Acta Infonnatica 1 (1971).

THE IMPACT OF MESA ON SYSTEM DESIGN

Object: PRIVATETVPE = RECORD [•••]j

Handle: TYPE = POINTER TO Channel.Objectj

nuliHandle: Channel.Handle = NIL;

Figure Ia

Create: PROCEDURE [a: arguments] RETURNS [h: Channel.Handle];

Operation: PROCEDURE [h: Channel.Handle, a: arguments];

Figure Ib

Channellmplementation: PROGRAM IMPORTS Device EXPORTS Channel =
BEGIN

END.

Create: PUBLIC PROCEDURE [a: arguments] RETURNS [h: Channel.Handle] =
BEGIN

END;

Operation: PUBLIC PROCEDURE [h: Channel.Handle, a: arguments] =
BEGIN

END;

Figure Ie

15

16 H, C, LAUER AND E, H, SATTERTHWAITE

A File,Capability is an encapsulation of a File,IO, along with a set of permissions, and is used
to represent the right to perform a specific set of operations on a specific file or volume,

File,Capability: TYPE = PRIVATE RECORD [
flD: File,lD, permissions: File,Permissions]j

File,Permissions: TYPE = SET OF {read, write, grow, shrink, delete}j

File,nuIiCapability: File.Capability = [flD: File,nuIllO, permissions: {}]j

Note: Capabilities are redundant specifications of intent, not "ironclad" vehicles for protection,
If a client program conscientiously limits the permissions in its capabilities to those. it
expects to use, it will reduce its chances of accidentally destroying its own data in case of
minor hardware or software malfunctions,

Figure 2a

File,Create: PROCEDURE [volume: Volume,lD, initialSize: File,PageCount,
type: File,Type] RETURNS [file: File,CapabilitY]j

File,Error: ERROR [type: File,ErrorType];

File.ErrorType: TYPE = {reservedType, ' , .}j

Volume.lnsufficientSpace: ERRORj

Volume.Unknown: ERROR [volume: Volume.lD]j·

The Create operation creates a new file on the specified volume. The operation returns a
File.Capability (with all pennissions) for the new file. If volume does not name a volume
known to Pilot, Volume. Unknown is signaled. The signal Volume.lnsufficientSpace is
generated if there is not enough space on the volume to contain the file. The file initially contains
the number of 'pages specified by initialSize (filled with zeros) and has the following other
attributes (see ~5.2,5):

type = type parameter to Create

immutable = FALSE

temporary = TRUE

The type attribute of the file is a tag provided by Pilot for the use of higher level software. , ..

File,Type: TYPE = RECORD [CARDINAL]j

The type of a file is set at the time it is created and may not be changed. , , ,

Create may signal File,Error[reservedType] if its type argument is one of a set of values
reserved by the Pilot tile implementation,

Figure 2b

THE IMPACf OF MESA ON SYSTEM DESIGN

Handle: TYPE = PRIVATE RECORD[UNSPECIFIED]i

Figure 3a

Create: PROCEDURE [a: arguments] RETURNS [h: Channel.Handle]i

Operation: PROCEDURE [h: Channel.Handle, a: argumentS]i

Figure 3b

Channellmplementation: PROGRAM IMPORTS Device EXPORTS Channel =
BEGIN

END.

Object: TYPE = RECORD [•••]i
InternalHandle: TYPE = POINTER TO Objecti

Create: PUBLIC PROCEDURE [a: arguments] RETURNS [h: Channel.Handle] =
BEGIN

h1: InternalHandlei

h1 +- ••• i

h +- LOOPHOLE[h f, Channel.Handle}i
END;

Operation:' PUBLIC PROCEDURE [h: Channel.Handle, a: arguments] =
BEGIN

h1: InternalHandle = LOOPHOLE[h,lnternaIHandle}i

END;

Figure 3c

17

