ProcessDefs.mesa 2-Sep-78 13:68:17 Page

-- ProcessDefs.Mesa Edited by Sandman on April 5, 1978 4:59 PM

DIRECTORY
ControlDefs: FROM "controldefs",
Mopcodes: FROM "mopcodes";

ProcessDefs: DEFINITIONS =
BEGIN

SDC: PRIVATE POINTER TO CARDINAL = LOOPHOLE[20B7;

CurrentPSB: PRIVATE POINTER TO ProcessHandle = LOOPHOLE[21B7];
ReadylList: PRIVATE QueueHandle = LOOPHOLE[22B];

CurrentState: PRIVATE POINTER TO ControlDefs.SVPointer = LOOPHOLE[23B];

DIW: POINTER TO WORD = LOOPHOLE[421B];
WakeupsWaiting: PRIVATE POINTER TO WORD = LOOPHOLE[452B};
ActiveWord: PRIVATE POINTER TO WORD = LOOPHOLE[453B];

InterruptLevel: TYPE = [0..15];

ParityLevel: InterruptlLevel = 0;

SwatlLevel: InterruptlLevel = 3;

TimeoutLevel: InterruptLevel = 4;

UnusablelLevel: InterruptLevel = 15;

ConditionVector: TYPE = ARRAY InterruptLevel OF POINTER TO CONDITION;
CV: POINTER TO ConditionVector = LOOPHOLE[40B];

MonitorLock: TYPE = MACHINE DEPENDENT RECORD [
lock: {locked, unlocked},
-- priority: Priority,
queue: PackedQueue];

MonitorHandle: TYPE = POINTER TO MonitorLock;
LockedEmpty: MonitorLock = [locked, Empty];
UnlockedEmpty: MonitorLock = [unlocked, Empty];

-~ NOTE: Both fields of a MonitorLock are packed into the same word, with
-- the lock in the high-order bit and "locked" represented by zero, so

- that a MonitorHandle to a locked MonitorLock can be loopholed into a
-~ QueueHandle.

Condition: TYPE = MACHINE DEPENDENT RECORD [
wakeupWaiting: {no, yes},
queue: PackedQueue,
timeout: Ticks];

ConditionHandle: PRIVATE TYPE = POINTER TO Condition;

-~ NOTE: The first two fields of a Condition are packed into the same word,
- with wakeupWaiting in the high-order bit and "no" represented by zero,
-- so that a ConditionHandle to a Condition without a waiting wakeup can
- be loopholed into a QueueHandle.

Fork: PROCEDURE [UNSPECIFIED] RETURNS [ProcessHandle];

Join: PROCEDURE [ProcessHandle] RETURNS [ControliDefs.FrameHandle];
Detach: PROCEDURE [UNSPECIFIED];

ValidateProcess: PROCEDURE [ProcessHandle];

InvalidProcess: SIGNAL [process: ProcessHandle];

GetPriority: PROCEDURE RETURNS [Priority]:

SetPriority: PROCEDURE [Priority];

SetTimeout: PROCEDURE [condition: POINTER TO CONDITION, ticks: CARDINALJ;
DisableTimeout: PROCEDURE [POINTER TO CONDITION];

Abort: PROCEDURE [UNSPECIFIED];

EnableScheduling, DisableScheduling, Yield: PROCEDURE;

InitializeMonitor: PROCEDURE [monitor: POINTER TO MONITORLOCK];
InitializeCondition: PROCEDURE [
condition: POINTER TO CONDITION, ticks: CARDINAL];

TooManyProcesses: ERROR;
Aborted, TimedOut: SIGNAL;

ProcessHandle: PRIVATE TYPE = POINTER TO PSB;

PSB: TYPE = PRIVATE MACHINE DEPENDENT RECORD [
link: ProcessHandle,



ProcessDefs.mesa 2-Sep-78 13:58:17 Page

cleanup: ProcessHandle,

timeout: Ticks,

enterFailed: BOOLEAN,

detached: BOOLEAN,

fil11: [0..378],

state: {frameReady, frameTaken, dead, alive},

timeoutAllowed, abortPending, timeoutPending, waitingOnCV: BOOLEAN,
priority: Priority,

frame: ControlDefs.FrameHandle];

Priority: TYPE = [0..7];
DefaultPriority: Priority = 1; N

TimerGrain: CARDINAL = 50; ~- 50 milliseconds/tick
Ticks: TYPE = CARDINAL;

DefaultTimeout: Ticks = 100;

MsecToTicks: PROCEDURE [CARDINAL] RETURNS [Ticks]:
TicksToMsec: PROCEDURE [Ticks] RETURNS [CARDINAL]:

Clean: PRIVATE ProcessHandle = LOOPHOLE[0];

Nul1QueueHandle: PRIVATE QueueHandle = LOOPHOLE[O0];
QueueHandle: PRIVATE TYPE = POINTER TO Queus;

Queue: PRIVATE TYPE = ProcessHandle;

PackedQueue: PRIVATE TYPE = POINTER [0..77777B] TO PSB;
Empty: PRIVATE PackedQueue = FIRST[PackedQueue];

Enter: PROCEDURE [POINTER TO MONITORLOCK] RETURNS {success: BOOLEAN] =
MACHINE CODE BEGIN Mopcodes.zME END;
Exit: PROCEDURE [POINTER TO MONITORLOCK] =
MACHINE CODE BEGIN Mopcodes.zMXD END;
Wait: PROCEDURE [POINTER TO MONITORLOCK, POINTER TO CONDITION, CARDINAL] =
MACHINE CODE BEGIN Mopcodes.zMXW END;
ReEnter: PROCEDURE [POINTER TO MONITORLOCK, POINTER TO CONDITION]
RETURNS [success: BOOLEAN] = MACHINE CODE BEGIN Mopcodes.zMRE END;
Notify: PROCEDURE [POINTER TO CONDITION] =
MACHINE CODE BEGIN Mopcodes.zNOTIFY END;
Broadcast: PROCEDURE [POINTER TO CONDITION] =
MACHINE CODE BEGIN Mopcodes.zBCAST END;
Requeue: PROCEDURE [from: QueueHandle, to: QueueHandle, p: ProcessHandle] =
MACHINE CODE BEGIN Mopcodes.zREQUEUE END;
-- Note: this depends on having one instruction after enabling:
EnableAndRequeue: PRIVATE PROCEDURE [QueueHandle, QueueHandle, ProcessHandle] =
MACHINE CODE BEGIN Mopcodes.zDWDC; Mopcodes.zREQUEUE END;

DisableInterrupts: PROCEDURE = MACHINE CODE BEGIN Mopcodes.zIWDC END;
EnableInterrupts: PROCEDURE = MACHINE CODE BEGIN Mopcodes.zDWDC END;

END.



