page O stuff

0

page 1 stuff (DOS)

#400

two maching language routines
(from BCPLD/1 in load string)

#1000

Nova debugger (may not
be present)

'S

BCPL runtime routines

statics

BCPLO
BCPL1
BCPL2

BCPL stack frames

/N

Free storage

~

‘Compiler overlay area

‘DOS

~#1000
" ~#4400
~#5300

~ #6200 -

~

~#17000

BCPL stack frames grow from here towards DOS.
If these two areas collide, the compiler aborls. -

Free storage grows from beginning of overlay area
towards 0. Beginning of free storage depends '
upon size of overlay code.)

~#64000

COMPILER CORE ORGANIZATION

LEX Core Org:hization CAE, SAE, TRN Core Organization

, 0 0
Resident stuff Resident stuff
~#17000 ~#17000
Frame stack Frama stack \L
CAE builds tha.tree in free
DICTIONARY. #10000 word storage which grows /\'
block which goes away after towards O.
LEX pass. ' /N . o
. SAE and TRN scan the tree
~#54000 ’ ~#52000
CAE, SAE, TRN overlay area
E
((:l;((‘j}ZL‘?’rL; X (BCPL.YC, BCPL.YS,
’ BCPL.YT)
DOS JSéOOO » DOS #64000
The length of LEX code The Max length(CAE, SAE, TRN) is remembered
is remembered with A/X by B/X during loading.
during loading. ~ NCG Core Organization ™
0
Resident stuff
1 ~#17000
Frame stack '
%
Free storage for dictionary
and tables
N\
~#33OQO_
#6000 word code block
~£40000
Code for NCG
The length of NCG code
is remembered with C/X {BCPL.YQG)
during loading. ’ ,
~#64000
DOS

COMPILER CORE ORGAMIZATION (2)

FOR

CASETO

ptr to exp

ptr to exp

ptr to exp

ptr to exp

0 or plr to exp

ptr to statement

SWITCHON

ptr to exp

ptr to statement

CASE

pir to exp

ptr {o slatement

(character number)

ptr to statement

(character number)

DEFAULT

ptr to statement

REPEAT

ptr to statemenl

N

{LOCAL) + name

0

REPEATWHILE/REPEATUNTIL

pir to exp

ptr to statement

——

Return/Endcase/Loop/Break/Finish/Abort

Control Nodes

{figure 5)

{One word slatements are one word nodes)

FNAP

(Binary Operator)

ptr to exp

ptr to exp

O or ptr to exp

ptr to exp

(VECAP MULT DIF REM LSHIFT RSHIFT PLUS MINUS

COND EQ NE GR GE LS LE LOGAND LOGOR EQV NEQV)
ptr to exp Qualdescriptor:
ptr to exp # Names
ptr to exp ' ' #100000+name1
subscripts on name
SIZE/OFFSET ptr to exp11
. 5
0] . > »
L]
' Qualdeﬂscriptor pir to exp 1n
. .
]
1 <]
#100000+namek
LEFTLUMP/RIGHTLUMP # subscripts on nameK.
ptr to exp ptr to exp1,K
. 13
0 - . "
Qualdescriptor ' . pir to expN,K
. L]
) n
o

More Expressnion Nodes
(Figure 7)

Line Structure

(char numbér) ptr to structdef

pir to stat

pir to stat

Static Let
ptr to stat ptr to def
7#£ of names ptr to stat
~(zlabel/label) + name
ptr to exp
L]
. Manifest
pir to stat
ext # of names

——

ptr to stat (consiant) + name

plr to exp

of names

(extlabel/zextlabel) + name

0

-

STATEMENT NODES

(FIGURE 1)

Def:

AND

ptr to line

DEFNODES

(Figure 3)

ptr to line

Explist:
LINE COMMA
(character number) plr to exp

VALDEF

ptr to and/def

ptr to explist

ptr to namelist

: > (LABEL) + name <
ptr to explist
0
0
FNDEF "} (LLOCAL) +name <* RTD%EF
0
. 0 or ptr to namelist 0 or p!r.to namelist
ptr to. exp pir tostétement
0 0
o 0
0 or .or.
Namelist:
(LOCAL) + name] NiL COMMA
0 0 ptr to namenode/nil

ptr to namelist

Expressions:

(Note: Anywhere in the tree, "ptr to exp” is only a pointer to one of the following nodes if bitO is O..
o word with bit0 = 1 appears where a "ptr to exp” is expected, the right hand 12 bits are the

<

dictionary identifier for a name. This is done to minimize tree size.)

NUMBER TABLE
value ‘ - length
pir to expl
, . -
STRINGCONSTANT "
om
length char 1
- pir to expn
-
<]
. 'CHARCONSTANT © W NIL/TRUE/FALSE
charcode . 0/-1/0
VAOLF

ptr to statement

LV/RV/NEG/NOT/VEC

pir to exp.

Expression Nodes

(Figure 6)

STRUCTDEFS:

FIELDLIST .

of fields

pir to struct def 1

ptr to struct def n

OVERLAYLIST

of overlays

ptr'to struct def 1

BITDEFS:

e

Taxm

pir to struct def n

UPLUMP

pir to struct def

O or ptr to exp

pir to exp

STRUCTURE MNODES

(Figure 2)

RV

100000 + name

- BLANK

ptr to structdef/bitdef

#100000 + NAME

ptr to strucldef/bitdef

“BIT

O or ptr to exp

Seem

BYTE

O/ptr to exp

WORD

0 or pir to exp

Statements:

SEQ

ptr to statement

pir to statement

COLON

ptr to namelist

pir to statement

0

0

ASS

ptr to namelist

ptr to exp

RTAP

pir to exp

0 or ptr to explist

Statement Nodes

(Figure 4)

IF/UNLESS/WHILE/UNTIL

pir to exp

pir to statement

TEST

pir to exp

pir-to statement (true)

ptr to statement (false)

GOTO

ptr to exp

RESULTS

plr to exp

(LABEL) + NAME

0

Font Conventions

Italics represents file names: BCPJ0.

Bold represents procedures, manifests or statics: Rem!Sym})), Ch

Bold Italics represent lexemes, tree nodes, and ocode: AND, VALDEF.
Noie: Font conventions do not apply to headings.

Compiler Core Organization

- Use pictures!

0.777

1000
..~1000

«..~4400
..~5300

«.~6200

«.~17000

..64000

AT

standard page 0, 1 stuff

two machine language routines
(from BCPLD/1 in foad string)

Nova debugger
(may not be present)

standard BCPL non-time routines

statics

BCPLO gmain brogram)

BCPLI (170 procedures)
BCPL2 (other utility procedures)

The BCPI frame stack grows
from here towards DOS.

If frame space and free space collide (during a
procedure call, or a free storage block is allocated)
the compiler aborts.

Free storage space for cach pass
grows towards 0 from the beginning
of the code for the pass

The start of free storage Jor a given
pass depends on the size of its code.

Code for the individual gnsses
is read in just above DOS.

DOS

LEX Core Organization

0
Resident stuff
..~17000
, Frame stack
..~44000 '
Dictionary (#10,000 word free storage block
which goes away after LEX pass)
*...~54000
v Code for LEX (overlay file BCPL.YL)
~64000 '
DOS
Yy

* The start of free space for LEX is (top of DOS) - (length of LEX |
E\Odf)' The length of the LEX code is remembered during loading with
/ I. . .

CAE, SAE, TRN Core Organization

0..*17000
Resident stuff
«.~17000
frame stack
CAE builds the tree in free storage, which grows
from ~52000 towards 0. SAE and TRN scan the tree.
*..~52000 ' :
Code for each of the CAE, SAE, AND TRN passes -
(BCPL.YC, BCPL.YS, BCPL.YT overlay files) 1s read
in here at the beginning of the pass.
.~64000 |
DOS
LAT777

*The start of free space is (top of DOS) - max(length of CAE/SAE/TRN code).

- N

maximum length is remembered during compiler loading with B/X. :

The

NCG Core Organization

0

Resident Stuff
..~17000

Frame Stack

NCG alocates space for the dictionary, and for various

tables, above the fixed-length code block.
..~33000 a

"~ Code (#5000 word free-storage block)
*.~400000 _
, Code for NCG (overlay file BCPL.YG)'

64000 |

DOS
Yy

* The start of free storage for NCG is (top of DOS) - (length of NCG code). The '
length of NCG code is remembered during loading with C/X. »

LEX

LEX is the lexical analysis pass. It reads the source file (and any of its "get” files) and
converts the source stream into a stream of lexemes, The lexeme stream is written as it js
generated onto the temporary file $55.8L (which will be read by CAE). LEX builds an
identifier dictionary in coré, and writes the dictionary onto the temporary file $835.BD .
when it is done. (The dictionary is used by NCG to output external name strings for the
loader; SAE also uses the dictionary to print undefined name error messages.)

The lexeme stream is essentially a stream of bytes, one byte for each lexical unit recoznized
in the source text; a few lexemes (NAMEBRA, NAMEKET, LINE NUMBER, NAME,
STRINGCONST., CHARCONST) are followed in the lexeme strecam by additional bytes of
information. The byte values for the lexemes are defined as manifests in the "get” file
BLEXX; many of these definitions have bits set in the left half, used by the procedure
LexOut to do automatic semicolon insertibn. These lexeme definitions are duplicated in
BCAEX (without the left-haif bits), since CAE reads the lexeme stream. Many lexemes are
also used as trec node identifiers, and therefore are declared in BSAEX and BTRNX: some
are also used as ocode operators, and appear in BNCGX as well. ,

The driver for LEX is ReadSource in BLEXO it is called by the compiler’s main program
after the LEX overlay file (BCPL.YL) is read in and the free storage pointer is initialized.

ReadSource()
1. Creates space for a few vectars used by LEX.

2. Allocates a free storage block for the Dictionary.
(see below for dictionary structure)

3. Opens the source file,

4. Opens the temp file §358.81 :
(Sce the description of OpenTemp, ResetStream, ctc.)

5. Main Loop: calls Readsymbh repeatedly, until the end of the
source text is reached. Lo '

6. Cleans up the source file line pointer tab!e.‘
7. Writes out the dictionary onto the temp file $85.8D.

The main procedure of the LEX phase is Readsymb in BLEX.. FEach time it is called, it
outputs a lexeme to the file $$$.};L via LexQOut(lexeme)) and returns. LexQOut handles
the automatic insertion of semicolons and DO's; when this happens, the flag ReadAhead
is set, so that the next call on Readsymb will simply output the lexeme that caused the
semicolon or DO to be inserted. LexOut also outputs extra information for the lexemes
which require it. : v :

Normal entry to Readsymh() reads a char into Ch (via Reh() in BLEXO0), and branches
on the character class; as determined by Kind(Ch):)

Ignorable (space, tab): ignore o

Digit: start of a decimal number; read it and output NUMBER lexeme.

Capital, Small (alphabetic): start of a reserved word or identifier

Default: either a special char ("+", ">". etc) or illegal; branch on the character itself,

If 2 name is read (string of letters & digits), it is looked up by ReservedWord() (in
BLEX2). If it is a reserved word (other than "get") the corrcs’)onding lexeme is output.
If it is "get”, the file name is read and the file is opened. Otherwise, the name is an
identifier, and is entered in the dictionary; the lexeme NAME is output.

If a special char is read, some code appropriate to the character is exccuted. For most
characters, this is just LexOut(appropriate lexeme), perhaps reading ahead one character,
as for ">". Some characters, like "#" and brackets, require some extra work,

Source File Handling

Throughout compilation, pointers to the source text are needed for printing error
messages. A source text pointer must fit in one word, since there is at least one node in
the parse tree for every source line and every statement in the program; so sequential
character number is used. This means that there must be a way of converting a
scquential character number to an output file name and a character number within the
input file. (Remember that "get” file input is intermixed with main source file input,
and that "get” files may be nested.) LEX construcis the following tables for this purpose:

GetnameV (two words per source file, indexed by file
‘ number)

GetlineV (three words ber entry)

GetnomeV: ptr to name of filel, Jen of file 1)
ptr to name of file 2, len of file 2,
etc. _

GetnameP contains the number of source files *2.

An entry is made in GetlineV each time a "get” file is opened or closed, An entry
contains: : ‘

—...».....—\..—..-....-...._.._....._.".q_.—......-.._-........-.._........._.._........

sequential char number of last char read
from the previous source:

——..—.....-....-.........—..................—_.._..._.‘._....._........___.......—__..

...-...._......_..._....—_..._.._...—......"..._.-..._,.,-.._.......——.-_a.._-_—

So once GetlineV is complete, it can be used to convert a sequential char number to a
source file number and a character number in that source file. One must simply find the
first GetlineV entry whose first word is larger than the sequential character number, and
offset the sequential char number by the difference between the first and third words of

that entry. _ .

"This is what the procedure WriteLine (in BCPLO) does.

To Add a Reserved Word to BCPL:
Choose a lexeme name and a byte value. '

The value must be one which is not used for any existing lexeme (BLEXX), tree node id
(BCAEX) or ocode opcode (BTRNX). :

Define the name in BLEXX with bits bl, b2, el, e2, as follows:
If the reserved word must start a statement (like "switchon®”, "goto"), set "b2".

If the word might start a statement (like "rv"” or "("), or if it begins a
declaration (like "static"), set "bl”.

If the word might end a statement (like "J” or ")) set "el”.
See the existing definitions for more examples of where the bits are used.
Add the new reserved word to the ReservedWord procedure in BLEX 2.

Under “"case $<initial letter>”, add
" veg("<rest of word>")?<lexeme>,

and add an extra parenthesis to the "0)))).." at the end of the case expression.

Now LEX will output the new lexeme whenever it encounters the new reserved word in
the source text. -

Of course, you must define the lexeme in BCALX, and add the appropriate code to CAE
to parse and build the tree segment for the new statement or expression.

To Add a New Special Character or Character Combinations:

Choose a lexeme name and byte value, and declare it as for a new reserved word,

In Readsymb in BLEX?, there is a long "switchon” statement whose "cases™ are character.
constuants. A "case” must be added for the new character, or, if one already exists, it
must be modified. Use "case$=" for a model of how to rcad ahcad to check for a
character combination.

The unuscd, characters are currently:

« left arrow) -
) single quote?
reverse single quote)
\ back slash)
{} curly brackets) .

=) (A) (tilda, not, hat)
¢ (vertical bar)

"

Dictienary
The first word of the dictionary is the current length of the dictionary.
The next 5210 words of the dictionary are the heads of sorted lists of dictionary entrics, one for ez

upper- and lower-case letter, in the order a, A, b, B,....,z Z. Each list looks liker

v e o oo o e a o o o o e o e o

head . ptrto Ist'a’ pir to 1st ‘A’ © ptr to st 'b’ - 0

- e o e - ot o o e e

a - n ¢l A: BCPL : BCPL
c2 ¢3 string e string
(BCPL '
string)

o e o o B ot i o - o a2 2 n o e 2 s e

The pointers are relative to the first word of the dictionary. The list is sorted algebraically on the
word of the string, then on the second, etc. (This is not quite alphabetical order, because the first
has the length of the string in its left half.)

Most Important Routines in CAF: teadblockbody, Rcom, Rexp

There are two main classes of tree nodes: "exp" and “stat”, corresponding to expressions
and statecmenis, :

"stat” nodes are constructed by Readblockbody()BCAET and by Rcom(Nextfn) (BC‘AE.?).

Readblockbody() is used where a declaration is legal as the next statement. It calls
Reom(Readblockbody) if the next statement is not a declaration.

Reom(Reom) is used where a declaration is not permitted (that is, where a declaration, if
It appears, must be enclosed in brackets, as after "if exp then .. .").

Reom(Nextfn) calls Nextfor(Nextfn) after rocessing a staternent which does not affect
the class of statement to be expected. So Ecom(Rcom) will parse a sequence of
non-declaration statements: Recom(Readblockbody) will parse a sequence of statements
which includes declarations [Readblockbody calis Recom(Readblockbody) when a
non-declaration statement is seen.]

“exp” nodes are constructed by Rexp(n), where "n" is an integer corresponding to the
precedence of the expression to be passéd.

Names in the CAE Tree Structure

Names appear in the trce in two different contexts:

1. In a node which

STATIC
EXT
MANIFEST

ALDEF
FNDEF
RTDEF
COLON
FOR

2. Wherever "---exp" can appear in a tree node,
(That is, a use of the name as an expression.)

1. Wherever a name is declared, two words arc allocated for it; either in the
declaration node itself (STATIC, EXT, MANIFEST) or as a separate block pointed at by
the declaration node (VALDEF, ENDEF, RTDEF, COLON, FOR). The first of these two
words has the name's dictionary pointer (relative address of the name string in the
dictionary) in the right-hand 12 bits, and the data type of the name in the left-hand 4
bits.. The second word is used for various purposes, depending on the type. ’ :

2. - Wherever a name is used as an expression, the tree node word which would
normally be a pointer to the expression node is set to "#100000 + name”; that is, to the
dictionary pointer for the name, with bit 0 + 1. gSince a tree node pointer always has
bit 0 = 0, pointers to exp nodes can be distinguished from names by bit 0. When SAE
encounters a name (bit 6)= 1) where it expects a pointer to an expression node, it looks
up the name in the dynamic symbol table, and puts a pointer to the definition node in
its place. See the "Dvec” documentation.]

LINE nodes

In most places where a "--stat” appears, the pointer will point at a LINFE node; the third
word of the LINE node points at the actual statement node. The LINE nodes allew the .
compiler to print the source text corresponding to a tree segment when an error is detected.
The procedure WriteLine in BCPLY

outputs a line of source text, given the (char number) from a LINE node.

LINE nodes may also appear in AND nodes (ANLD nodes appear only under LET nodes.)

SAF: Decllabels and Declvars
These arc the two top-level routines in SAE; both in BSAEL

Decllabels (address of a tree node)

Scans the tree branch looking for COLON nodes, calling DeclStatic to declare the static variables whicl
are defined by such nodes. Decllabels just remembers some information, and -uses Scanlabels to do th
work. Scanlabels recurses on itself whenever it encounters a non-declaration node (a node which doe

not start a new block) which points at a substatement branch of the tree.

Declvars (address of a tree node)

Scans the tice branch. [t processes each declaration node, building the dynamic symbol table Dvec; an
it calls Lookat whenever 1t encounters an expression. {(Lookat replaces a name with a pointer to it
definition.) Declvars calls Decllabels and then recurses on itscif for nodes which have substatemen

branches not examined by a higher-level instance of Declabels.

The only purpose of Decllabels is to jimplement the well-known Algol label kludge, which requires
label defined within a block to be treated as it if were declared at the beginning of that bloc!

| So the real work of SAE is done by Declvars.

SAE: Dvec, the Dynamic Symbol Table

Dvec points at a_vector allocated by the SAE driver DeclareNames in BSAEO. There are 2 words
entry (DvecN = 2) and 512 entries 'max: (DveeMax = 512). There are threo global indexes into Dy

Dvec!DvecS is the first unused entry.

DvecDvecE is the first entry made for the declaration node being processed. (That is. the first
incomplete entry.) So searches begin at Dvecl(Dveck-2) and proceed backwards
towards Dvec!0,

Dyec!Dvecl” is the first dynamic variable for the current function or routine. A referenced dynan
variable (definad with let or as formal parameters) must be between DyvectDyecd ani
Dvec!DvecS, since dynamic variables cannot be referenced outside of the procedure |
which they are declared. : :

These global indexes are saved whenever a declaration node is encountered. The declaration is
processed; then the subtree under the declaration is processed; and finally the clobal indexes are
restored. This is the mechanism whereby the block structure for the scope of names is maintainec

There are two kinds of entries in Dvec: normal names (variables and manifests) and structure nar
Normal name: . Dvecli -~ 74100000 + name ‘ ' '
Dvec!(i+1) —===-mmmmmm oo (type) + name
type-dependent extra word
"name” means the dictionary pointer assigned to the name string by LEX.
#100000 distinguishes normal names from structure names.

The second word is a pointer to the two free words allocated by the name. (In STATIC,
EXT, and MANIFEST nodes, the words are in the node itself: in VALDEF, FNDEF, RTDEF
COLON, and FOR nodes, there is a pointer to the two-word block.) A dictionary pointer
may be 12 bits wide; the high-order 4 bits indicate the data type of the name. The possibl
types are:

LOCAL: dynamic variable (dcefined with "let name=val” or as a formal paramete
CONSTANT: manifest constant

LABEL

ZLABEL

EXTLABEL ' :
ZEXTLABEL . (all state variable types.)
INTLADEL

ZINTLABEL

A name is declared as a static variable in an external declaration and/or in a static
dcclaration, function, or routine declaration (let F(a,b)---), or statement label
L:---). In external and static declarations, a name may be preceded by "@",
indicating that it is to be a page-zero static. :

If a name appears in both an external declaration and one of the other kinds of sta:
declaration, its type is INTLABEL, or ZINTLABEL if it was declared to be in page
ZEro. , ' '

If a name :nlp cars in an external declaration, but not in another declaration, its type
is EXTLABEL or ZEXTLABEL :

If a name is declared as static, but not as external, its type is LABEL ot ZLABET.

The second word of the two-word name node contains:
LOCAL 0, to be sct to the frame offset by TRN

MANIFEST: CAE leaves a pointer to the expression in this word; SAE evaluates
it and replaces the expression pointer with the value.

other: A static number is allocated () and stored in this word. This
number is used in the Ocode to indentify the variable.

Structure names in Dvec are intermixed with normal names. A structure name entry looks like:
Dvecli name

Dvec!(i+1) ptr to structdef.

Structure names can aJ) ear in the tree only in certain contexts (as the right-hand operand of
LEFTLUMP, RIGHTLUMP, SIZE, and OFFSET). So normal name searches (via CellWithName)
ignore nodes with bit 0 = 0, and structure name searches (with Strat\WithName) ignore normal
names.) ' : :
Ounly top-level structure names are entered in Dvec. The second word of a structure name entry is a
pointer to the structure definition node in which the name is defined. This node can be a
FIELDLIST, OVERLAYLIST, or UPLUMP node, or a two-word node which looks like:

i #100000 + name

ptr to structdef/bitdef

(a "bitdef" node is a BIT, BYTE, or WORD node.)

The procedure DeclStruct in BSAL2 creates structure entries in Dvee, and scans the structure
definition for reasonability. ‘ -

The procedure LookatQual in BSAE4 processes structure. references.

SAE Ocodc'

>

SAE must pass information to the code generator pass NCG about each static variable it defines. S
SAE opens the Ocode temp file $$8.5C, and outputs the following: S

—>For names of type: LAI)‘L’L, ZLABEL, INTLABEL, ZINTLABEL:

one byte: LOC/ZLOC/INT/ZINT
two bytes: dictionary pointer

one byte: "value type”

two bytes: "value”

The "value type” word and "value” depend on how the name was defined.

a. If defined by static <named>={exp>,

value type = static) i o
value = value of <exp> (it must be a ?-time constant)

b. If defined by let <mamed=<formals> ... (procedure)

value type = ENTRY o
value = a sequential number allocated for each ENTRY or LENTRY.

c. If defined by <name>: (statement label)

value type = LENTRY . ‘ .
value = a sequential number allocated for each ENTRY OR LENTRY.

- —For names of type FXTLABEL or ZEXTLABEL,

onc byte: EXT/ZEXT
two byles: dictionary pointer

That is, external names whichi do not appear in a static, function, routine, or lab!
declaration have no value. The Ocode information for such names is output only if the

name is used in some expression.

When an SAE Ocode item is output for a name a sequential number is assgned to that name. Whe
I'RN later outputs an Ocode item which refers to that name, it identifics the static name with th
number. So the order in which static names are output by SAE is important.

For procedure and label names, another sequential number is assigned by SALE. When TRN lat
generates an Ocode item for a procedure entry point or a label definition, it ouputs both the sequenti
static number (identifying the name) and the sequential entry number (identifying the entry point), ¢

that NCG knows what entry point to assign to each name.

The SAE Ocode is scanned by Scanlmpures in BNCG]J.

TRN scans the tree and outputs the remainder of the Ocode stream. The principal routines are
‘Trans in BTRNI, which processes statement nodes; and Load in BTRNS5, which processes expressions
which Trans encounters in the tree.

Load (pointer to expression node):

Gencrates the appropriate Ocode to place the value of the expréssion on tbp of the simulated stack

If the expression pointer has bit 0 = 1. it is a pointer to a name declaration node. Loud checks th
type of the node (the left-hand 4 bits of the first word of the declaration: node); according to type
Load outputs a one-byte opcrator, followed by two 2-byte values:

LN value dict name- for a manifest pame

Lp frame-loc' dict name for a dynamic name

LL static number dict name for a non-page-zero static ndme
LZ static number dict hame for a page-zero smt.ic name.

and increases SSP by one.
If the expression pointer has bit 0 = 0. it points at an expression node, so Load branches on the
kind of node it is. ' .
1. For binary operators; Load basically does
Load (left-hand expression) [which increases SSP]
lLo;xd (right-hand cxpressibn) [which increases SSP]
output binary operator
decrease VSSP
rcturn
These operators are:
EQ NIELS LE GR GE
MULT DIV REM LSHIFT RSHIFT o
PLUS MINUS LOGAND LOGOR EQV NEQV
VECAP
[For commut'utive binary operators and for rclations, the right~hm’1d operand is output first if it is
:Oc(;“:x;s)tjmt (If both operands are constants, Lookat in S/\'E will have pruned the tree for nl()sl such

_ 2. Other simple nodes:

NOT, NEG, RV : Load (operand)

‘ output NOT, NEG, or RV operator
TRUE, F)lLSE ‘ : output FRUE, FALSE operator
NUMBER : output LN operalor '

output binary value (2 bytes

L LN expects the name of a manifest after the value.]

CHARCONST : output LC operator
: “output char code (2 bytes)

STRONGCONST : . output LSTR operator

“output byte stream: length (1 byte)
char 1 (1 byte)

-

char n (1 byte)
TABLE . . output TABLE operator
output table length (2 bytes)
output table values: word 1 (2 bytes)

word n (2 bytes)
3. LV Load calls. LoadLy
The operand of an lv-expression must -be a name, an 1v expression, a vector subscript expression, a

structure reference, or a conditional expression.

“

—>For names, LoadLV outputs:
dynamic variable: LLP frame effect dict name
non-page-zero static: LLL static number dict name

page zero static: LLZ static number dict name

—»For vector subscripts,] o
Load (left-hand operand)
Load (right-hand operand)

" output PLUS operator

—>For rv-expressions,
Load (operand)
output LVRV operator.

(This is done because "lv_(rv x)" is not equivalent to 'x if bit 1 of "x" is set during execution.
NCG generates a subroutine call to check this, and follow the indirect chain of "x".)

— For structure references, LoadlLV_processes the field qualifier, and then gencrates Ocode to divide
the bit-offset of the field by 16, if necessary, and to add in any remaining constant word-offset.

—> For "lv(<exp>?<exp].?,(exp2>)", Loadl.V generates Ocode for *Cexp>Nvlexpl > lviexp2>®.

4. VALOF

Load calls Trans to process the statement operand of VALOF. A "results” statement in this block
will cause Trans to output a Ocode operator which will in turn cause NCG to compile a jump to an
internal label. After T'rans has processed the statement, Leoad assigns this label (out{)utting LABR,
internal label number) and then outputs RSTACK stackpointer, which indicates to NCG that a result
value is to be found (in ACO) at this point in the program. .

5. COND

Load generates Ocode for "<exp> W expl>, <extep2d" as if it were "valof [test<exp>then
results<expl> or results<exp2.]

For example, "x Is 07 -x, x” outputs the following:

LP x gload dynamic var "x")
LN Q. , load constant "0™)
LS (less than operator)
JF labl (if false, jum{) to internal label)
LP x load "-x" ang
A]l;‘G " " ”
RES 1ab2 (preserve result and jump to end of condition)
LAB 1abl assign first label here))
Ly x ‘ load "+x") . . _
RES 1ab2 precerve result and jump to end of condition)
LAB lab?2 assign result label) .
RSTACK p (push a value onto the simulated stack at
' stack portion p)
6. FNAP

Load calls Transcall in BTRN3

Transcall also handles RTAP for Trans. FNAP and RTAP are different only in that FNAP appears in
an expression context, hile RTAP appears in a statement context.

Ocode; FNCALL/ RTCALL (operator)
For each parameter:

Load{parameter i)

PARAM (operator)

parameter number (one byte)

tal # of parameters (one byte)

dict name of procedure (two bytes,
0 if not a name)

Load (procedure expr)

FNAP/ RTAP (operator)

total # of parameters (one byte)

stack position at beginning of call (two bytes)

7. Structure References

Structures

CAE

Rstruct(read overlay switch) in BCAE4 parses structure declaration. Tt builds
structdef nodes - see the tree node templates for the format of these nodes.

Raualname(number of extra words in node) in BCAF4 parses structure references. It
builds a node containing the qualifier descriptor, with the specified number of words
at the beginning (2 for SIZE, OFFSET, 3 for LEFT/RIGHTLUMDP). : ‘
SAE | ‘

Declvars in BSAET calls DeclStruct in BSAE2 Lo scan structure declarations, It declares
top-level names in Dvec, evaluates replication and size constants in the declaration, and
replaces RV (@) names with pointers to the defining structure. . :

Lookat in BSAE3 calls Looka{Qual in BSAE4 to process LEFTLUMP, RIGHTLUMP, S]ZE,v
and OFFSET nodes. LookatQual basically evaluates all field effects which do not involve
non-constant subscripts, and constructs a representation of the field-access algorithm,

TRN

DoQual in BTRN3 optimizes the algorithm given by LookatQual and generates the basic
Ocode for the structure reference. ‘ L : ‘

NCG

The routines in BNCGS handle most of the structure Ocode items. CGplus in BNCG7 looks
ahead for some structure Ocode items for optinizalion purposes.

- BSAES

£

LookatQual (addr of start of qualdesar in LE)’TLUI&-IP, RIGHTLUMP, SIZE, OFFSET ocode
. (see the template for these tree nodes) oo

This procedure creates a vector (in the tree space) describing the referenced field, and puls a
pointer to it into the node (node!3 for LUMPs, node!2 for SIZE and OFFSET). :

This vector has the form:

.0 offset (in bits) after the last non-constant subscript
1. size of field in bits)
2: number of non-constant subscripts

for each non-constant subscript:

offsct gin bits) to this subscript
—exp for subscript

—(low limit value, high limit value)
size of replicated clement

(Offsets for constant subscripts are computed and added in at compile time.)

So the algorithm for computing the bit number of the first bit of the accessed field of:

0 K
0
S
0
2: n
Ki : .
—X. i =1 ton (n non-constant subscripts)
i _ , _
—(L_,H)
i
Si

is K+ 2(Ki+ (X, - L)*Si)
0 i i i
(This is a run-time algorithm, since the X_ are not constants.)
i : ‘
DoQual in BTRN3 optimizes this expression as it generates the Ocode for the structure

reference.

.

BTRN3 DoQual(inputdescriptor, outputvector, wordsubsériptswitch)

inputdescriptor is the address of a vector generated by LookatQual in BSAFE4,

word 0: KO (final offset)
1: S (size of referenced field)
1: n (no. of non-constant subscripts '
3-23+(4+n) : K_ (offseti)
‘ —exp (ith subscript exp)
—_)(Li'l”i) (subscript limits)

S. (size of replicated field)
i

outputvector

is a four word block for the final Ocode in formation. All preliminary
Ocode needed for the computation of the non-constant subscript offscts is

generated. The outputvector contains:

‘word 0: Ocode operator
1: constant part of offset computation in words
2: constant part of offset computation in bits
3: size of final field in bits.

wordsubscriptswitch

if false, the subscript ¢omputation is carried out in terms of bits; if true, as
much as possible is done In terms of words (bits/16). (The "bits" mode is
used for OFFSET nodes.) :

The possible Ocode operators in outputvectbr!() are:

WQUAL :the field is a fuli word or a part of a single word
XQUAI: the field is < 16 bits wide, but overlaps a word boundary.
MIVOUAL: the ficld i n>1 words Tong, and starts on a word boundary.

(The only non-constant subscripts are on elements which are 16*n bits wide)

YQUAL: the field is 8 bits long and starts on a byte boundary

WBQUAL the field is <16 bits wide, and a non-constant bit subscripl is present
MWEQUAL: the ficld is >16 bits wide and a non-constant bit subscript is present

WOQUAL

Load (wordaddress)
wordoffset
bitoffset (0-15) :
- length (bitoffset + length <16)

XQUAL

Load (wordaddress)

wordoffset = 0 .

bitoffset (1-15)

length (<16; but (bitoffset+length)>16)

YQUAL

Load (bytepointer)
wordoffset=0
bitoffset=-

fength=i

MWQUAL

Load(wordaddress)
wordoffset :
bitoffset=0
length=16*n n>1

MWBQUAL

Load (bit offset)
wordofTset=0
bitof fset=0
length (<£16)

Load Z\vordadd ress)

MWEBQUAL

Load §wordadd ress)
Load (bitaddress)
wordoffset=0
bitoffset=0

length (>16)

OCODE (output by TRN)

S is the simulated stack. Ocode operators are one byte. Arguments to the following operators are -
two ‘bytes, left followed by right, unless otherwise indicated. : .

LINE charnum

PLINE charnum

Inserted in the Ocode before most statements, so that NCG can print the
corresponding source code on errors or on the ASM listing. PL/NE appears only onc
for each line of source text; LINE appears for each statement on a source line.

LP frame position 0/name -

Push onto § the value of the dynamic variable allocated at this frame position.

LN ' binary value 0/name
Push the binary value onto S. | -
LL & LZ static var number 0/name

Push onto S the value of the static variable whose number is given. (LZ=> itis a
page zero static). .

LLP frame position 0/name
Push onto S the address of the dynamic variable.
LLL & LLZ static var number 0/name

Push onto S the address of the static variable. (LLZ=> page zero static)

LC binary value
Push the binary value onto S,

LSTR <byte stream>

Push the address of a string constant onto S. The <{byte stre

us am> consists of one 1
giving the number of chars, followead by that number of byt

€5,

TABLE <double-byte stream>

Push the address of a table constant onto S. The <double-b

bytes giving the number of binary values, followed by th
values. A T

yle streamd consists of
at number of 2-byte binm

A

TRUE

Push the value #177777 onto S

L. %

FALSE
-~ Push the value 0 onto S.
LLypP frame offset

Push onto S the address of the fr

ame word which is <frame offset> words below th
vector area of the frame. (See)2 :

NEWLOCAL name

Declare a new dynamic variable whose frame position is the current top of S. The
value currently on the top of S is the value to be stored in the variable, -

"let x=10" generates LN 10 0

‘ NEWLOCAL (name of x)
"let v=vec 10" gecnerates ‘ CLLYP >
NEWLOCAL (name of v)

SP frame offset 0/name

Store the value at the top of 5 into the dynamxc varnbk whose frame offsat
is given. Pop S.

.

SL, S7Z static var number {/name

Store the value at the top of S into the static vanab!e whose number is g,wcn.
(SZ=>page zcro static) Pop S

RV
Treat the value at the top of S as an indirect address word. Replace the top
of S with the contents of the memory address at references.

VECAP ‘ ' o
Treat the sum of the lop two vﬂues on S as a memory address; rq)l ace thoge
two values with the contents of that memory address.

STIND
Treat the value at the top of S as an indirect addrcss word. Store into the
location 1t references the value at (top-1) of S. Pop S twice.

STVECAP

Treat the sum of the top two values on 1S as a memory address; store into that
focation the value at (top 2) of S. Pop S three times.

LRVE

Treat the value at the top of S as an indirect address word. -Replace the tof
of S with the memory address that would be referenced by the indirect addr
word. (le, follow the indirect address chain.)

"x=rv y" Yx=yli" v x=y” "xlizy” x=1v(rvy)

LPy LPy
LP x LVRV

LPy LPy LPy
¥
ND LP i SPox

RV Ly L
SP x : VECAP ST

PLUS Binary operators: replace the top two elements of S with the value
MINUS of the operator applied to their values. (The top element is the right-hand
MULT opcrand._s .

Div ‘

REM

LSHIET

RSHIFT

LOGAND

LOGOR o

EQV : com

NEQV - '

I(- Relations: replace the !ofp two clements of S by the value #177777 if the
NE relation is five, or by 0 if false. : A .
LS

LE

GR

G

N?‘G Binary operators: replace the top clement with the result of the operator.
NOY¥ ' h

JUMP internal label number
Transfer control the place where LAB <internal label numberd> appezars in the Ocode,

JTr internal label number

Transfer control if the value at the top of S is non-zero. Pop the valuc off S.
JF “internal label number

Transfer control of the value at the top of S is zero. Pop the yalue off 8.
RES internal label number

Transfer control as for JUMP, after preserving the value at the top of S (i.e., load it into
ACO0). (Generated by "results<exp>”) Pop the value off 5.

LADB internal label number

Assign the place to which the above should transfer control.

(LAB's are also output for "case” labels.)
GOTO
The value at the top of S is the address to which control should be transferred. Pop S.

FINISH
ABORT

End exccution of the entire program. (On the Nova, do a .RTN system call.) (ABORT types
a message on the terminall) i

SWITCHON

number of cases default Tabel number
c€ase value case label number
case value case label number

n o n

- (2+n*2 parameters, each 2 bytes)

at the top of S is the value to be branched on. If this value is among the <case

The value
lues, transfer control to the corresponding <case label numberl>. Otherwise,

valuc1> va
transfer control to the <dcfault Jabel number). Pop the value off S.

(LAB ocode operators are output by TRN at each case label)

LENTRY static var number entry point number

Generated when a statement label is encountered. Its two parameters are like the first two of

ENTRY.

ENTRY static var number entrypoint number MaxSSP MaxVecSSP .

The static variable is defined as a function or routine which beging Here. The <entry point
“number> associates this entry point with the static variable Ocode information which was

output by SAE,

MaxSSP is _the size of the frame which will be needed by the code for this procedure,
exclusive of the space for vectors. MaxVeeSSP is the space needed for vectors. So the

frame size is the sum of these,

SAVE initial frame size

This Ocode generator appears only after an ENTRY operator. lts parameter is the number of
formal parameters plus the number of words needed for the frame header.

NUMARGS . name

{)f a "numargs" variable was specified after the argument list, this Ocode operator causes it to
e declared.

RTRN

~ Generated by "return”, and at the end of a routine body. Causes a return from the current
routine, : '

FNRN

Generated at the end of a function body. Causes a return from the function, with the value
at the top of the stack S as the result value. ‘

ENDFRAME
Marks the end of the procedure body begun by the corresponding ENTRY.

"RTCALL
FNCALL

Signals the beginning of a procedure call. (RYTCALL if standing alone as a statement,
FNCALL if used in an expression.)) :

PARAM i(one byte) nfone byte) 0/name(2 bytes)

The value at the top of $ is the ith parameter to be passed to a procedure. A total of n
arguments arc to be passed. The name of the procedure to be called is given as the third
parameter to PARAM, (if the expression before the argument list is not a name, 0 is used).

RTAP

FNAP
, n(one byte) p(2 bytes)

The \I'ixh;c at the top of S is the address of the first instruction of the routine or function to
be called.

n arguments are to passed; the argument values are the values in (top-1) to (top-n) of S.

p is the offset of the top of S at the place in which the RTCALL or FNCALL appeared (it is
mcluded here for checking only). ‘ :

If the operator was FNAP, the value of the function call is left on the top of S.

STACK stack top position |
Force the top of S to be at <stack top position>-1.

RSTACK stack top position 5

Force the top of S to be at <stack top position>-1; then Push onto S the value that was
preserved by the RES that was just cxecuted.

RES labnum is gencrated by “results”. At the end of a "valof” block, the <labnum>
is assigned (with LAB labnum). The next Ocode item after this LAB is RSTACK.

So RES forces a value into ACO, gengrates a jump, and then forgets about the value it
loaded. RSTACK pretends that some value has just been loaded into ACO.

The purpose of STACK (and RSTACK) is to indicate where the simulated stack top should be
at the beginning and end of blocks; that is, it appears after” declarations, and after the last
statement of a block that began with a declaration. Basically, then, STACK (and RSTACK)
are used to keep TRN and NCG synchronized with respect to what the value of "SSp*
should be at critical points. Certain other Ocode items are also accompanicd by an "SSp*
value for the same reason.

STORE

This Ocode operator is output in order to force NCG to generate code to store into actual
frame locations any values on the simulated stack which have not been fully processed.

STORE should not really be an Ocode item; NCG should know when it is necessary
to clean up the simulated stack. The operator is left over from TX-2 days.

argvec is used as a stack with five words per entry. Each entry describes an item on the
simulated stack; that is, a run-time operand. The NCG variables argl, arg2, and argl
always point at the top entry, the entry next to the top, and the entry below that,
respectively; when an entry is pushed or popped, these pointers are changed. “So argl, arp2,
and argd arc pointers to the three most recent run-time operand descriptors which have
been processed. : - :

An argvec entry consists of five words; if arg is a pointer to some argvec entry, its fields are
referenced with typelarg, loclarg, reflarg, postarg, and namelarg,

typelarg indicates what kind of operand is being described; ‘]

loclarg depends on the type. The possible types, and the meaning of the corresponding lac's
1=) I)l o P=

are:

LOCAL frame offset

Word <frame offset> in the frame of the current procedure.
This describes both dynamic variables and temporary cells
vsed in the frame. -

LABEL static variable number

Static variable. The <static variable number> is the number
used throughout SAE, TRN, and NCG to identify. the static.

COMMON static variable number

Page zero static variable. The <static variable number> is as
for LABEL

NUMBER binary value
Constant with the given value.
RVIOCAL frame offsct

Describes an operand which is to be referenced by

indirection through the <frame offset> word of the frame-
This descriptor would be generated, for instance, by an

L1 @, n

operand “rv x", where “x" is a dynamic variable.

RVILABEL static variable number

+*

Describes an operand which is to be referenced by
indirection through the static variable corresponding to the
{static variable number>,

RVCOMMON gtatic variable number |
Like RVLABILL, but the static is a page-zero static variable.
RVNUMBER binary value

Results from "rv n”, where "n" is a constant expression. This
operand is to be referenced by indirect through a memory
word which contains the <binary valued.

LVLAREL static variable number

Describes an operand whose value is the address of the static

variable. Results from "lv s", where "s" is static.
LVC()MMON static variable number |
| Like LVLABEL but the static is a page-zero stalic variable,
AC -0 | .
Describes an operand which is in ACOI or AC1L.
XR 3
Describes an operand which is in AC3.

Temporarily ignoring the other fields of an arg, let us look at an example of how NCG
processes a statement.

Assume lf‘“‘t P (in word 6 of the frame) is a dynamic variable and s (static var number 13)
1S a static. Then the statement N

S =TV Dp + 2

would generate this Ocode:

LP . 0
4
LN
PLUS
A SL13
NCG proceeds as follows: oo
LP 6 |
causes the descriptor LOCAL, 6 to be pushed onto argvee. So argl points at
this descriptor. :
RV)
IS a unary operator, so it is to be applied to the operand described by argl.
This changes the descriptor in argl to RYLOCAL, .
LN 2 .
causes the descriptor NUNMBER, 2 to be pushed onto argvec. So now:
arg2 - RVLOCAL, 6 ‘ ' ”
argl — NUMBER, 2
PLUS

is a binary operator, so it is to be applied to arg2 and argl. This will cause

- the code generator to gencrate the necessary code to load the operands
described by arg2 and argl into free accumulators, and then generate an
ADD instruction: ‘ ’

LDA 0 @6,2 //rv oof frame word 6.
LDA 3 .+K1 //74+K1 will contain a 2.
ADD 3,0 //7add, leave, result in ACO.

(In the process of gencrating this code, arg! and arg2 are modified several -
times; we will ignore this in this example, since they will go away
immediately.)

After this code is gcneratecl; argvec will be popped twice, and then the
descriptor AC, 0 will be pushcg. S0 now

arg2 — ?
argl — AC 0.

SL 13 :
indicates that the og)crand.dcscribed by argl is to be stored into static
variable #13. So NCG_will, upon encountering this ocode item, push a
descriptor LABEL 13, giving: : .

arg2 — AC 0 .
argl — LABEL, 13

and then generate code to store arg? into the operand described by argl. (If
arg2 were not in an accumulator code would just have to be géneraled to
fead it) So '

STA Q0 @+K2 . - //7.4K2 will contain
//the address of s

Now argvec is poped twice, and we are done.

Note that no code was generated until the PLUS was seen, because the operands up to that
point could be described by argyvec descriptors. One of the purposes of the argument stack
15 to allow the generation of code for -an operand to be postponed as long as possible.

The name field of an argvec entry contains the dictionary pointer for the name of the
operand, or 0 if it is not a variable or manifest. The name field is used only to generate
meaningful comments on the /A listing, if it is requested.

The ref word in argvee entrics allows more complex operands to be described in argvee, so
that code generation can be postponed even further. If arg is a pointer to an argvec entry,
reflarg is interpreted as follows: -

if reflarg is 0, the operand is as described above.

Jif bits 041 of reflarg are 01, the operand resulted from a vector subscript
expression; where one operand_of "I'" was a constant between -#200 and +#177.
The right-hand 8 bits of reffarg contain the constant subscript. For example,

LOCAL, loc = 6, ref = O describes an operand o
which is in word 6 of the current frame; it is Joaded into ACO with
LDA 0, 6, 2. A

LOCAL, loc = 6, ref = #40007 describes an operand which is the result of an
expression like "vI]”, where "v" is the dynamic variable which is allocated to
word 6 of the frame. This operand is loaded into ACO with:
' LDA 3 6,2

LDA 0 73

if bits 0+1 of reflurg are 11, the operand resulted from “rv" applied to a vector
subscript cxpression where one operand of “F was a small constant.

LOCAL, loc = 6, ref = #140007 results from “rv(vI7)", and is loaded into
ACO by

LDA 3 6,2

LDA 0 @73

The only legitimate values for a ref field are:
0 normal addressing
#40000+n subscripted reference:

n is an 8-bit signed value,
so the ref field for "wvi-7”
would be #40371.

#140000+n rv of a subscripted reference.

Note that #100000+n is not legitimate; bit 0, indicating indirection, is only set if
the operand is already subscripted. The only reason for having bit 1 set is that n
may be 0. Eg, the ref field for "viI0" 1s #40000.

A descriptor of type AC may not have a non-zero ref field. If a VECAP Ocode operator is
encountered with : .

ag2 — AC loc = 0, ref = 0
argl — NUMBER loc = 1, ref = Q.

(eg., resulting "(v+w*33!’/" after (v+€v*3) is loaded into ACO). -
NCG will generate :

MOV 0, 3

then pop the two args and push XR, loc = 3, ref = #40007. If this operand is to be loaded
into AC 0, it will be done with ' :

LDA 0 73

The pos field of an argvee.entry records the offset in the current frame of the word which
1s reserved as a temporary call for the operand described by the entry. An example:

The Ocode for: x~'(a+b)/‘(c*d) is

LP x

LP a

L’ b

PLUS x.a,bcd mean the

LP ¢ . frame offsets for these

Lra variables. 4
MULT

Dy

AMINUS

By the time MULT is encountered, argvec contains

=== = LOCAL x,
argd - AC 0 .

arg2 — LOCAL ¢
argl — LOCAL (

and the code

LDA 0 a2
LDA 3 b2
ADD 3 30

has been generated.

Now code must be generated for multiplying ¢ and d; this will require vsing both AC’s, so a
temp is needed for arg3. Cells in the frame are used for such temps; postargd contains the
offset of the temp for arg3. '

Assume that postargd = 11 (See below for how pos gets sct)
So the MULT will generate:

STA 0 <11,2

LDA 0 ¢2

LDA 1 d2 ,

JSR multiply routine //leaves result in AC1L

When the store into temp gets cenerated, the descriptor for arg3 is changed to
LOCAL loc = 11. So after the multiply popped arg2 and argl, and pushes the result
descriptor A(,, 1, argvec contains :

arg3 — LOCAL x
arg2 — LOCAL 11
argl — AC 1

Now DIV must load arg2 into ACO before doing the division; since arg2 is LOCAL,
this is done by : :

.LDA 0 11,2

Then the rest of the code is generated by DIV and MINUS:
: JSR divide subroutine //leaves result in ACO

LDA 3 x.2
SuUB 3,0

and the final argvec is

argld — 7
arp2 — 7
argl — AC 0.

Any operand in argvec may need to be stored in a temp at any time, so a frame word is
reserved for each operand which is stacked up in argvec. Frame space is, of course, also
uscd for dynamic variables; this variable space is allocated and de-allocated according to
the lexical scope of declarations.

let f(a,b,c,d) be

[let x = - -
let pq = - - -
l'ct y s o - ' -)
x = x- (a+b)/(c*d) //same expression as in the

//example above.

The frame for this procedure looks like

0
% framcheader
3
4 a
5 b
6 c
7 d
g X
p oy
10 q : '
11 - temps which might be needed
i% - for processing x-(a+b)/(c*d)

~In the inner block, words 9410 are reserved for p and q. When this block is exited,
they are unreserved. Then word 9 is reserved for y. So at the beginning of the final
assignment statement, the first unused word of the frame is word 10: this is where -
temps necded for this expression will be allocated. When the MULT ocode operatar
is encountered, argvee will contain:

type’ loc , ' ref pos .
m——— LOCAL 8 0 10 //x
arg3—» AC 0 0 11 //(a+b)
arp2— LOCAL 6 0 12 //c
argl— LOCAL 7 0 13 //4d.

So word 11 of the frame will be uvsed as the temp for saving arg3.

An aside on frame size determination:

The frame size necded for this procedure would be (at least) 14 words, since
word 13 of the frame was reserved as a temp for “d" in computing
"x=(a+b)/(c*d)". This is the case even if, as in the a hove, that word is never
actually needed. (The reason is that by the time NCG finds out that it is not
needed, it is 1oo late to do anything aboul it; TRN determines how the Sframe space-
is to be allocated.) ' ,

If a procedure allocates vector space ("lev v = vec 100”) the variable ("v") is
allocated among the other dynamic variables and temps; but the vecior space (the
101 words that v will point to) is allocated below the last temp word . reserved.
So if the declaration of "y" in the above example were "let y = vec 100", "y would
still be word 9, and would point to word 14 of the frame at run-time. The Sframe
size would be 115 words (14+101). ‘

SSP and argvec Handling in NCG
L

SSP is the global NCG variable which kee{)s track of allocation of words in the procedure
frame. The value of SSP is the offset of the first unused frame word relative to word 0 of
the frame. Thus SSP always has the value postargl+l.

SSP is initialized by case ENTRY: of the procedure Scanpures in BNCG2. (The ENTRY
ocode item is followed by a SAHVE whose 2-byte parameter is the initial value of SSP).
Initstack {in BNCG3] is called, which sets up argvec and initializes S5P to 4 + (number_of
formal parameters to the procedure). At this point, argvec has three dummy entries,
corresponding to are3, arg2, and argl; each is LOCAL, with loc, and pos fields set to SSP-3,
SSP-2, SSP-1 respectively. . :

.

Push (type, ref, loc) pushes an entry onto argvec and bumps SSP. Popl() and Pop2() pops
one or two entries and decrements SSP.

SetSSP(newvalue) sets SSP to a new value. If the new value is smaller than the current
value, it does the appropriate number of pops. I the new value is greater than the current
value, it pushes the appropriate number of temp cell descriptors.

Clearstack(SSPvalue) gencrates code to stoie into temps every operand below the SSPvalue.

CGmemref (op, arg) [in BNCG4]

This routine generates the memory reference instruction op for the operand described by
arg. It compiles any preliminary code necded to sct up the reference (c.g.. loading AC3
with the base address for a subscript referencej), computes the address (indirect; index, and
displacement fields) for the instruction, and finally gencrates (op -+ address).

op may be:
IMP, JSR, 1SZ, DS7
LDAO, LDAL, LDA2, LDA3
STA 0. STA 1, STA 2. STA 3
(that is, for LDA+STA, the AC field is part of op)

arg is a pointer to a five-word operand descriptor, usually in argvee (ie,
argl, arg2 arg3). The descriptor may not be of type AC; it may be of type
XI¢ only if reflarg is non-zero. (That is, arg ‘must describe g memory
reference). o

compiles the_following code;

Typelarg loclarg reflarg code
X 1OCAL p 0° op p.2
xIn LOCAL p #40000+n LDA 3 p,2; op n3
@(x'n) LOCAL p #140000+n LDA 3 p,2; op @n,3
@x RVLOCAL p 0 op @p, 2
(@glz)z;é!?n)!) RVLOCAL p #40000+n LDA 3@p,2; op n,3
x)in
RVLOCAL p #140000+n LDA 3@p,2; op @n,3
A [p is the offset of
the word in the
frame.] :
(s is a static)
s LABEL | 0 op @.+N
sn LABEL I #40000+n LDA 3@.+N; op n,3
@(s'n) LABEL l #140000-+n LDA 3@.4N; op @ n,3
[.-+N contains the
address of the -
static}
@s RVLABEL | 0 op @.+N .
&@Zén) RVIABEL | #406000+n LDA 3 @+N; op n3
QU(@s)!n v :
RVLABEL | #140000+n LDA 3 @.+N; op@n, 3

[.+N contains the
address of the
static -+ #100000]

Typelarg loctarg reflarg code

(z is a page-zero static)

Z . COMMON] 0 op a

zZn COMMON 1 #40000+n LDA 3 a ; op n3
@(z!n) COMMON -~ 1 #140000+n “LDA 3 a ; op @n3
@z RVCOMMON | 0 op @ a

(@z)'n RYCOMMON 1 #40000+n 6bA 3 @a ;0p n3
@(@2)'n) RVCOMMON 1 #140000+n LDA 3 @a ‘op @n3

[a is the address
of the static in
page zero.]

(k is a number, or a manifest name)

k NUMBER 0 . op 4N :
kin NUMBER #40000+n LDA 3 .+N; op n3

@(k!n) NUMBER X #40000+n LDA 3 .+N; op@n,3
, [.+N contains
. the value k.]

Ivs LVIABEL I 0 op .+N
LYCOMMON | 0 :
(Iv s)in LVLABEL 1 0 LDA 3 +N ; op n3
LYCOMMON. 1 #40000+n

@((v s)n) LVLABEL 1 #140000+n LDA 3 N ; op @n3
_ [.+N contains the
' _.address of the static
or page zero stlatic.}

CGmemref handles RVNUMBER specially if reflarg is 0.

1. If the value of the constant is between 0 and #377:

@k RVNUMBER X 0 ~op k [ie, like
©a page zero
-reference]
3;\.] If the value of the constant is between #100000 and #100177, and not if compiling for
to. . ’
@« RVNUMBER X 0 '. op @ (k S#377)

[1e. in indirect
reference through
‘a page zero location.

Otherwise, .
RVNUMBER k -0 Cop @ +N
RVNUMBER X #40000+n LDA 3 @.+N; op n,3
3 @.aN; op@n,3

RVNUMBER k& #£1400004+n LDA
: . [.+N contains the
value k]

. Note:

The ogcmnd type RVLABEL is never eenerated if compiling for the Alto (because

“op @.+N", where ".4N" contains #1----- + address of static does not do a
multiple indircction, as it does on the Nova). Instcad, "@ s", where s is a static,
generates :

LDA 3, @+N //+N contains addr of s.
op 0,3

The more complex cases ("(@s)'n" and "@@s!n)") are done by

LDA 3 @.+N
STA 3 temp.2

and setting the arg to RVLOCAL, temp. <ref>

The)rinci(j)al routines which manipulate the address modes of operands on argvec are
CGrvb and CGsubser(j), both in LNCGH.

CGry() applies the "rv" operator to argl.

CGsubscr(f) essentially does (arg2!(argl+j)), where j is a number between #-200 and
71. . :

X

The PLUS Ocode operator also manipulates addressine modes (CGplus in BNCG7). It looks
ahead at the next operator; if a VECAP, STVECAP, WQUAL, or STHQUAL operator is next,
it trics to do things in an order which will generate reasonable code. E.G., CGplus doe
"(v+1)1i" as if it had been written (v,

Also, the structure code generation routines in BNCGS do a considerable amount of
address~-mode manipulcation.

CGmemref (oparg) [in BNCG]

This routine generates the memory reference instruction op for the operand described bg
arg. It compiles any })rclumnary.code needed to set up the reference (c.g., loading AC
with the base address for a subscript reference) computes the address (indirect, index, and

displacement fields) for the instruction, and finally gencrates (op + address).

op may be:
IMP, JSR, ISZ, DSZ, LDS 0, LDS 1, LDA 3, STA 0, STA 1, STA 2, STA 3
(That is, for LDA + STA, the AC ficld is part of op.)’

arg is:

a pointer. to a five-word operand descriptor, usually in argvec (i.e, arg
arg?, arg3). The descriptor may not be of type AC it may be of type X

only if reflarg is non-zero. (I'hat is, arg must deseribe a memory reference).

1
R

CGmemref campiles the following code:

typelarg loclare reflarg code

b3 LOCAL p 0 _ op p2 =

x!n LOCAL p #40000+n LDA 3 p,2 ; opn3

@(x!n) LOCAL p #40000+n LDA 3 p2 : op@n,3

@x RVIOCAL p #0 @p,2

(@x)in RVIOCAL p #40000-+n L?.)A '% @p,2;0p@n,3 -

@(@x)) RVIOCAL p #40000+n LDA 3

@p,2;0p@n,3 - . [p is the offset of the
word m the frame.]

(s is a static)

s LABEL 1 o op @.+N

st LABEL | #40000+n LDA 3 @.+N; op nJ3

@(s!n) LABEL] $40000+n LDA 3 @.+N; op @n,3
[.+N contains the
address of the above]

@s RVLABEL 1 0 op @. »N

(@s)n RVLABEL 1 #40000+n -LDA 3 @.+N; op n3

C@((As)in) RVLABEL 1 #40000+n LDA 3 @+N: op@n.3

' : [.+N contains the

address of the static
+ #100000

(z is a pure zero static)

z . COMMON | 0 op a

Al COGLIATON | #40000+n LDA 3 a ; op n3

@(z\n) . COMMON 1 #40000+n - 7+ LDA 3 a ; op @n,3

@z RYCOMMON | -0 op@a

(@z}IN . RVCOMMON | #40000+n LDA 3 @a; op n,3

@((Ox)’n RYCOMMON | #40000-+n LDA 3 @a ; op@n,3

[a is the address of
the static in page zero]

(k is a number, or a something name)

K ~ NUMBER k 0 ' ~ op 4N
kin NUMBER k 2£40000+n LDA 3 +N; op nJ3
- @(k!n) NUMBER k #40000-+n _ LDA 3 .4n ; {) @n,3
- [+N contains the
_ value k] .
vs LVLABEL] 0 op 4N
LVYCOMMON] 0
(v s)in LVLABEL i #40000+n LDA 3 +N ; op n,3
' LYCOMMON | #40000+n .
C@(lv s)in) LYLABEL ! #140000+n LDA 3 »N op@n,3
LVCOMBMON] #140000+n [.+N com.uns the address

of the static or page-zero
static.}

CGmemref handles RVNUMBER specially if reflarg is 0.

(1) if the value of th constant is between 0 and #377:

@ k RVNUMBER k 0 op k.
[1.c., like a page-
zero static]

P) }\f] the value of the constant is between #100000 and #100377, and if not compiling
or Alto. o _

@ k RYNUMBER k 0 op @ (k S #377)
[ie, in indirect reference through a page-zero location.]}

Otherwise, ‘ '
RNNUMBER k 0 op @ +N -
RVYNUMBER k #40000+n LDA 3 @.+N ; op n3
RYNUMBER k #140000+n LDA d @.+N ; op @n,3

[.+N contains the
value k] '

Note: The operand type RVLABEL is never gencrated if compiling for the Allo (because

“op @.+N", where ".+N" contains "#100000 + address of static” does not do a multiple
indirection, as it does on the Nova). Instead, "@s", where s is a static, generates

LDA 3, @.+N //.+N contains addr of s.
op 03 '

The more complex cases ("@s)'n" and "@@s!n)") are done -by

I.LDA 3 @.+N
STA 3 temp, 2

and sclting the arg to RVLOCAL temp,<ref>.

The principal routines which manipulate the addfessing modes of operands on argvec are
CGrv() and CGsubscr(j), both in BNCG4.

CGrv() applies the "rv" operator to argl.

CGsubscr(j) essentially does (arg2!(arg1+)), where j is a number between #-200 and
177,

The PLUS Ocode operator also manipulates addressing modes (CGplus in BNCG7). It looks
ahcad at the next operator; if a FECAP, STVECAP, }VQUAL or STHQUAL oparator is next,
it trics to do things in an order which will generate reasonable code, E.g., CGplus does
"(v1)HT as if it had been written "(v+i)!L".

Also, the structure code generation routines in BNCGS do a considerable amount of
address-mode manipulation.

