
Wind River Workbench

USER’S GUIDE

VxWorks Version

®

2.6

Wind River Workbench User's Guide

Copyright © 2006 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/product_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Workbench User’s Guide, 2.6 (VxWorks Version)

1 Oct 06
Part #: DOC-15844-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

PART I: INTRODUCTION

1 Overview .. 3

1.1 Introduction ... 3

1.2 Wind River Documentation ... 4

1.3 Road Map to the Wind River Workbench User’s Guide 4

1.4 Understanding Cross-Development Concepts ... 5

1.4.1 Hardware in a Cross-Development Environment 5

1.5 Basic Eclipse Concepts .. 7

1.5.1 Window ... 7

1.5.2 Workspace ... 7

1.5.3 Perspectives ... 8

1.5.4 Views .. 10

1.5.5 Editors .. 11

1.5.6 Projects ... 11

1.6 Accessing Additional Interface Information .. 12

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

iv

2 Wind River Workbench Tutorials ... 13

2.1 Introduction ... 13

2.2 Starting Wind River Workbench ... 14

2.3 Tutorial: Creating a Project and Running a Program 15

2.3.1 Before You Begin ... 15

2.3.2 Creating a Project ... 16

2.3.3 Importing Source Files Into Your Project .. 16

2.3.4 Building Your Project ... 16

2.3.5 Creating a Connection Definition to the VxWorks simulator 17

2.3.6 Downloading the Program and Attaching the Debugger 18

2.3.7 Setting Up the Device Debug Perspective .. 18

2.3.8 Setting and Running to a Breakpoint. ... 20

2.3.9 Modifying the Breakpoint ... 21

2.4 Tutorial: Editing and Debugging Source Files ... 22

2.4.1 Before You Begin ... 22

2.4.2 Introducing an Error into the Source Code .. 22

2.4.3 Tracking Down a Build Failure .. 22

2.4.4 Displaying File History ... 23

2.4.5 Rebuilding the Project ... 23

2.5 Tutorial: Using the Editor’s Code Development Features 24

2.5.1 Using Code Completion to Add Symbols to Your File 24

2.5.2 Using Parameter Hints .. 25

2.5.3 Using Bracket Matching to Clarify Syntax ... 25

2.5.4 Finding Symbols in Source Files .. 26

2.6 Tutorial: Tracking Items of Interest in Your Files ... 26

2.6.1 Creating a Bookmark on a Source Line in a File 26

2.6.2 Creating a Bookmark for an Entire File ... 27

 Contents

v

2.6.3 Locating and Viewing Your Bookmarks ... 27

2.7 Tutorial: Using Workbench to Debug a VxWorks 5.5.x Target 27

2.7.1 Before You Begin .. 28

2.7.2 Creating a Project ... 28

2.7.3 Creating a VxWorks 5.5.x Target Server Connection 29

2.7.4 Launching a Kernel Task and Attaching the Debugger 29

2.7.5 Setting and Running to a Breakpoint .. 30

2.7.6 System Mode Debugging .. 31

2.7.7 Using Core Dump Files ... 32

2.7.8 Using Already Available Tornado 2 Projects .. 32

3 Setting Up Your Development Environment 35

3.1 Introduction ... 35

3.1.1 Overview of Host and Target Configuration Tasks 36

3.1.2 Understanding Target Servers and Target Agents 37

3.2 Configuring Your Cross-Development System .. 40

3.2.1 Configuring Host Software ... 40

3.2.2 Verifying Serial Setup and Power .. 45

3.3 Setting Up a Boot Mechanism ... 49

3.4 Booting VxWorks .. 50

3.4.1 Default Boot Process .. 50

3.4.2 Entering New Boot Parameters .. 52

3.4.3 Boot Program Commands ... 53

3.4.4 Description of Boot Parameters ... 55

3.4.5 Booting With New Parameters ... 58

3.4.6 Alternate Boot Methods .. 59

3.4.7 Rebooting VxWorks ... 60

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

vi

3.5 Configuring Host-Target Communication for Workbench 61

3.5.1 Ethernet Connections ... 61

3.5.2 Serial-Line Connections ... 64

3.6 Troubleshooting VxWorks Problems .. 67

PART II: PROJECTS

4 Projects Overview .. 71

4.1 Introduction ... 71

4.2 Workspace/Project Location ... 72

4.3 Creating New Projects ... 73

4.3.1 Subsequent Modification of Project Creation Wizard Settings 74

4.3.2 Projects and Application Code ... 74

4.4 Overview of Preconfigured Project Types ... 74

4.4.1 Workbench Sample Projects .. 75

4.4.2 VxWorks Image Project ... 75

4.4.3 VxWorks Boot Loader Project ... 76

4.4.4 VxWorks Downloadable Kernel Module Project 76

4.4.5 VxWorks Real-time Process Project ... 77

4.4.6 VxWorks Shared Library Project .. 78

4.4.7 VxWorks ROMFS File System Project ... 78

4.4.8 User-Defined Projects .. 79

4.4.9 Native Application Project .. 79

4.5 Projects and Project Structures .. 80

4.5.1 Adding Subprojects to a Project ... 80

4.5.2 Project Structures and Host File System Directory Structure 81

4.5.3 Project Structures and the Build System ... 82

 Contents

vii

4.5.4 Project Structures and Sharing Subprojects .. 83

4.5.5 Customizing Build Settings for Shared Subprojects 83

4.6 Project-Specific Execution Environments ... 83

4.6.1 Using a project.properties file with a Shell ... 85

4.6.2 Limitations When Using project.properties Files 85

5 Creating VxWorks Image Projects .. 87

5.1 Introduction ... 87

5.2 Creating a VxWorks Image Project ... 88

5.2.1 Specifying a Non-Default Driver ... 91

5.3 Importing a VxWorks Image Project .. 92

5.3.1 Migrating a VxWorks Image Project .. 92

5.4 Configuring Kernel Components ... 93

5.4.1 The Kernel Configuration Editor ... 94

5.5 VxWorks Image Projects in the Project Navigator ... 94

5.5.1 Global Project Nodes ... 95

5.5.2 Project Build Specs and Target Nodes ... 95

5.5.3 Build Output Folders ... 96

5.5.4 Makefile Nodes ... 97

5.5.5 Project File Nodes ... 97

5.6 Adding Application Projects to the VxWorks Image Project 99

5.7 Notes on Board Support Packages (BSPs) ... 100

5.7.1 Using the Simulator BSP ... 100

5.7.2 Using a Wind River BSP .. 100

5.7.3 Using a Custom BSP for Custom Hardware .. 100

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

viii

6 Creating Boot Loader Projects ... 103

6.1 Introduction ... 103

6.2 Creating a Boot Loader Project .. 104

6.3 Creating a Customized Boot Loader ... 105

6.3.1 Selecting Boot Loader Drivers .. 106

6.4 Boot Loader Projects in the Project Navigator .. 106

6.4.1 Global Project Nodes ... 106

6.4.2 Project Build Specs and Target Nodes ... 107

6.4.3 Makefile Nodes ... 107

6.4.4 Other Project Files .. 107

7 Creating VxWorks ROMFS File System Projects 109

7.1 Introduction ... 109

7.2 Creating a VxWorks ROMFS File System Project .. 110

7.3 Configuring the VxWorks ROMFS File System ... 110

7.4 VxWorks ROMFS File System Projects in the Project Navigator 111

7.4.1 Global Project Nodes ... 111

7.4.2 Project File Nodes ... 112

8 Creating VxWorks Real-time Process Projects 113

8.1 Introduction ... 113

8.2 Creating a VxWorks Real-time Process Project .. 114

8.3 Configuring VxWorks Real-time Process Projects ... 115

8.3.1 Configuring Build Support and Specs .. 115

8.3.2 Configuring Build Tools .. 116

8.3.3 Configuring Build Macros .. 117

 Contents

ix

8.3.4 Configuring Build Paths .. 118

8.4 VxWorks Real-time Process Projects in the Project Navigator 120

8.4.1 Global Project Nodes ... 120

8.4.2 Project Build Specs and Target Nodes ... 120

8.4.3 Makefile Nodes ... 121

8.4.4 Project File Nodes ... 121

8.5 Application Code for a VxWorks Real-time Process Project 122

8.6 Linking to VxWorks and Using Shared Libraries .. 122

9 Creating VxWorks Shared Library Projects 123

9.1 Introduction ... 123

9.2 Creating a VxWorks Shared Library Project ... 124

9.3 Configuring VxWorks Shared Library Projects ... 124

9.3.1 Configuring Build Support and Specs .. 125

9.3.2 Configuring Build Tools .. 126

9.3.3 Configuring Build Macros .. 126

9.3.4 Configuring Build Paths .. 128

9.4 Shared Libraries in the Project Navigator ... 130

9.4.1 Global Project Nodes ... 130

9.4.2 Target Node ... 130

9.4.3 Makefile Nodes ... 130

9.4.4 Project File Nodes ... 131

9.5 Source Code for the Shared Library ... 131

9.6 Making Shared Libraries Available to Applications 131

9.6.1 Configuring the Application Projects .. 132

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

x

10 Creating VxWorks Downloadable Kernel Module Projects 133

10.1 Introduction ... 133

10.2 Creating a VxWorks Downloadable Kernel Module Project 134

10.3 Configuring VxWorks Downloadable Kernel Module Projects 134

10.3.1 Configuring Build Support and Specs .. 135

10.3.2 Configuring Build Tools .. 136

10.3.3 Configuring Build Macros .. 137

10.3.4 Configuring Build Paths .. 138

10.4 Downloadable Kernel Modules in the Project Navigator 140

10.4.1 Global Project Nodes ... 140

10.4.2 Project Build Specs and Target Nodes ... 140

10.4.3 Makefile Nodes ... 141

10.4.4 Project File Nodes ... 141

10.5 Application Code for a VxWorks DKM Project ... 142

11 Creating User-Defined Projects .. 143

11.1 Introduction ... 143

11.2 Creating and Maintaining Makefiles ... 144

11.3 Creating a User-Defined Project .. 144

11.4 Configuring a User-Defined Project ... 145

11.4.1 Configuring Build Support ... 145

11.4.2 Configuring Build Targets ... 146

11.4.3 Configuring Build Specs ... 147

11.4.4 Configuring Build Macros .. 147

11.5 Creating an Application for VxWorks .. 148

 Contents

xi

12 Creating Native Application Projects ... 151

12.1 Introduction ... 151

12.2 Creating a Native Application Project ... 152

12.3 Configuring Native Application Projects .. 152

12.3.1 Configuring Build Support and Specs .. 153

12.3.2 Configuring Build Tools .. 154

12.3.3 Configuring Build Macros .. 155

12.3.4 Configuring Build Paths .. 156

12.4 Native Applications in the Project Navigator ... 158

12.4.1 Global Project Nodes ... 158

12.4.2 Project Build Specs and Target Nodes ... 158

12.4.3 Makefile Nodes ... 159

12.4.4 Project File Nodes ... 159

12.5 Application Code for a Native Application Project ... 160

13 Working in the Project Navigator .. 161

13.1 Introduction ... 161

13.2 Creating Projects ... 162

13.3 Adding Application Code to Projects ... 162

13.3.1 Importing Resources .. 162

13.3.2 Adding New Files to Projects ... 163

13.4 Opening and Closing Projects ... 163

13.4.1 Closing a Project ... 163

13.5 Scoping and Navigation .. 164

13.6 Moving, Copying, and Deleting Resources and Nodes 166

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

xii

13.6.1 Resources and Logical Nodes ... 166

13.6.2 Manipulating Files ... 167

13.6.3 Manipulating Project Nodes ... 167

13.6.4 Manipulating Target Nodes .. 168

14 Advanced Project Scenarios ... 171

14.1 Introduction ... 171

14.2 Resource Locations ... 172

14.3 Multiple, Unrelated Software Systems .. 173

14.3.1 Using Different Workspaces for Different Systems 173

14.3.2 Using the Same Workspace for Different Software Systems 174

14.4 Complex Project Structures .. 174

14.4.1 Project Assumptions .. 175

14.4.2 Infrastructure Design ... 176

14.4.3 Development ... 181

14.4.4 Finalization .. 186

PART III: DEVELOPMENT

15 Navigating and Editing .. 195

15.1 Introduction ... 195

15.2 Wind River Workbench Context Navigation .. 196

15.2.1 The Symbol Browser .. 197

15.2.2 The Outline View .. 197

15.2.3 The File Navigator .. 198

15.3 The Editor ... 198

15.3.1 Code Templates .. 199

 Contents

xiii

15.3.2 Configuring a Custom Editor ... 200

15.4 Search and Replace .. 201

15.4.1 Initiating Text Retrieval ... 201

15.5 Static Analysis ... 201

15.5.1 Sharing Static Analysis Data with a Team .. 202

16 Building Projects .. 205

16.1 Introduction ... 205

16.2 Configuring Workbench Managed Builds .. 208

16.2.1 Configuring Standard Managed Builds .. 208

16.2.2 Configuring Flexible Managed Builds .. 208

16.3 Configuring User-Defined Builds .. 214

16.4 Accessing Build Properties ... 214

16.4.1 Workbench Global Build Properties .. 215

16.4.2 Project-specific Build Properties .. 215

16.4.3 Folder, File, and Build Target Properties .. 215

16.4.4 Multiple Target Operating Systems and Versions 216

16.5 Build Specs .. 216

16.6 Makefiles ... 217

16.6.1 Derived File Build Support ... 217

17 Building: Use Cases ... 221

17.1 Introduction ... 221

17.2 Adding Compiler Flags ... 222

17.2.1 Add a Compiler Flag by Hand ... 222

17.2.2 Add a Compiler Flag with GUI Assistance .. 223

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

xiv

17.3 Building Applications for Different Boards ... 224

17.4 Creating Library Build-Targets for Testing and Release 225

17.5 Architecture-Specific Implementation of Functions 228

17.6 Executables that Dynamically Link to Shared Libraries 229

17.7 User-Defined Build-Targets in the Project Navigator 232

17.7.1 Custom Build-Targets in User-Defined Projects 232

17.7.2 Custom Build-Targets in Workbench Managed Projects 233

17.7.3 User Build Arguments ... 233

17.8 A Build Spec for New Compilers and Other Tools .. 233

17.9 Developing on Remote Hosts .. 235

17.9.1 General Requirements ... 236

17.9.2 Remote Build Scenarios ... 236

17.9.3 Setting Up a Remote Environment .. 237

17.9.4 Building Projects Remotely ... 238

17.9.5 Running Applications Remotely .. 239

17.9.6 Rlogin Connection Description .. 240

17.9.7 SSH Connection Description .. 240

18 RTPs and Shared Libraries from Host to Target 241

18.1 Introduction ... 241

18.2 A VxWorks Real-time Process from Host to Target ... 242

18.2.1 Set Up the Project Structure for Real-time Processes 242

18.2.2 Add Code to the Real-time Process Project .. 243

18.2.3 Add the Real-time Process to the VxWorks ROMFS Target File System
244

18.2.4 Build the System ... 246

18.2.5 Set up the Target Connection .. 246

 Contents

xv

18.2.6 Run the Real-time Process on the Simulator .. 247

18.3 A VxWorks Shared Library from Real-time Process to Target 247

18.3.1 Set Up the VxWorks Shared Library Project .. 247

18.3.2 Add Code to the Shared Library Project ... 248

18.3.3 Add the Shared Library to the Run-Time Process 249

18.3.4 Modify the Code in the Real-time Process Project 251

18.3.5 Generate Include Search Paths ... 251

18.3.6 Add Libraries to the VxWorks ROMFS Target File System 252

18.3.7 Build the System Again ... 253

18.3.8 Run the RTP with the Shared Library on the Simulator 253

PART IV: TARGET MANAGEMENT

19 Connecting to Targets .. 257

19.1 Introduction ... 257

19.2 The Target Manager View ... 258

19.3 Defining a New Connection .. 258

19.4 Establishing a Connection .. 259

19.4.1 Assumptions ... 259

19.4.2 Connecting to the Target ... 259

19.4.3 Specifying an Object File ... 260

19.4.4 The Kernel Shell ... 261

19.5 The Registry .. 262

19.5.1 Launching the Registry ... 262

19.5.2 Remote Registries ... 263

19.5.3 Shutting Down the Registry ... 263

19.5.4 Changing the Default Registry ... 264

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

xvi

20 New Target Server Connections ... 265

20.1 Introduction ... 265

20.2 Defining a New Target Server Connection ... 265

20.2.1 Wind River Target Server .. 266

20.2.2 Target Server Connection Page .. 266

20.2.3 Object Path Mappings Page .. 270

20.2.4 Target State Refresh Page .. 273

20.2.5 Connection Summary Page .. 274

20.3 Kernel Configuration ... 275

21 New VxWorks Simulator Connections ... 277

21.1 Introduction ... 277

21.2 Defining a New Wind River VxWorks Simulator Connection 277

21.2.1 VxWorks Boot Parameters Page ... 278

21.2.2 VxSim Memory Options Page .. 278

21.2.3 VxWorks Simulator Miscellaneous Options Page 278

21.2.4 Target Server Options Page ... 279

PART V: DEBUGGING

22 Launching Programs .. 283

22.1 Introduction ... 283

22.2 Launching a Kernel Task or a Process .. 284

22.2.1 Defining the Target Connection ... 285

22.2.2 Defining the Kernel Task or Process to Run ... 285

22.2.3 Specifying a Build Target to Download .. 286

22.2.4 Specifying The Projects to Build ... 286

 Contents

xvii

22.2.5 Defining Debug Behavior ... 287

22.2.6 Specifying Where Workbench Should Look for Source Files 288

22.2.7 Configuring Access Methods ... 288

22.2.8 Using Your Launch Configuration .. 289

22.3 Reset & Download: Hardware Debugging Launches 289

22.4 Launching a Native Application ... 290

22.4.1 Specifying the Location and Arguments for Your Application 290

22.4.2 Specifying Remote Settings .. 290

22.4.3 Setting Environment Variables ... 291

22.4.4 Configuring Access Methods ... 291

22.4.5 Running Your Native Application ... 292

22.5 Relaunching Recently Run Programs .. 292

22.5.1 Increasing the Size of the Launch History List 293

22.6 Controlling Multiple Launches ... 293

22.7 Launches and the Console View ... 298

22.8 Using Attach-to-Target Launches .. 300

22.8.1 Attaching the Debugger to a Running Task or Process 301

22.8.2 Attaching the Debugger to the Kernel .. 301

22.8.3 Attaching the Kernel in Task Mode ... 301

22.8.4 Attaching the Kernel in System Mode .. 302

22.9 Suggested Workflow .. 302

23 Managing Breakpoints .. 305

23.1 Introduction ... 305

23.2 Types of Breakpoints ... 305

23.2.1 Line Breakpoints ... 306

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

xviii

23.2.2 Expression Breakpoints ... 307

23.2.3 Hardware Breakpoints ... 307

23.3 Manipulating Breakpoints ... 309

23.3.1 Importing Breakpoints ... 309

23.3.2 Exporting Breakpoints ... 310

23.3.3 Refreshing Breakpoints .. 310

23.3.4 Disabling Breakpoints .. 310

23.3.5 Removing Breakpoints .. 310

24 Debugging Projects .. 313

24.1 Introduction ... 313

24.2 Using the Debug View .. 314

24.2.1 Understanding the Debug View Display .. 315

24.3 Coloring Views ... 318

24.4 Stepping Through a Program ... 319

24.5 Using Debug Modes .. 320

24.5.1 Setting and Recognizing the Debug Mode of a Connection 323

24.5.2 Debugging Multiple Target Connections .. 324

24.5.3 Disconnecting and Terminating Processes ... 324

24.5.4 Configuring Debug Settings for a Custom Editor 324

24.6 Understanding Source Lookup Path Settings ... 326

24.7 Using the Disassembly View ... 326

24.7.1 Opening the Disassembly View ... 327

24.7.2 Understanding the Disassembly View Display 327

24.8 Using the Kernel Objects View ... 328

24.8.1 Understanding the Kernel Objects View Display 329

 Contents

xix

24.9 Remote Kernel Metrics .. 331

24.10 Run/Debug Preferences .. 336

25 Troubleshooting .. 337

25.1 Introduction ... 337

25.2 Startup Problems .. 338

25.2.1 Pango Error on Linux .. 341

25.3 General Problems ... 341

25.3.1 Java Development Tools (JDT) Dependency .. 341

25.3.2 Help System Does Not Display on Solaris or Linux 342

25.3.3 Help System Does Not Display on Windows 342

25.3.4 Removing Unwanted Target Connections .. 342

25.4 Error Messages .. 343

25.4.1 Project System Errors ... 343

25.4.2 Build System Errors ... 345

25.4.3 Target Manager Errors ... 348

25.4.4 Launch Configuration Errors ... 353

25.4.5 Debugger Errors ... 354

25.4.6 Static Analysis Errors ... 354

25.5 Troubleshooting VxWorks Configuration Problems 355

25.5.1 What to Check .. 355

25.6 Error Log View .. 358

25.7 Error Logs Generated by Workbench ... 358

25.7.1 Creating a ZIP file of Logs .. 358

25.7.2 Eclipse Log .. 359

25.7.3 DFW GDB/MI and Debug Tracing Logs .. 360

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

xx

25.7.4 Debugger Views GDB/MI Log .. 360

25.7.5 Debugger Views Internal Errors Log ... 361

25.7.6 Debugger Views Broadcast Message Debug Tracing Log 361

25.7.7 Target Server Output Log .. 362

25.7.8 Target Server Back End Log .. 362

25.7.9 Target Server WTX Log ... 363

25.7.10 Target Manager Debug Tracing Log .. 364

25.7.11 Static Analysis Parser Logs ... 364

25.8 Technical Support ... 365

PART VI: USING WORKBENCH WITH OTHER TOOLS

26 Integrating Plug-ins .. 369

26.1 Introduction ... 369

26.2 Finding New Plug-ins .. 370

26.3 Incorporating New Plug-ins into Workbench .. 370

26.3.1 Creating a Plug-in Directory Structure ... 370

26.3.2 Installing a ClearCase Plug-in .. 371

26.4 Disabling Plug-in Functionality .. 373

26.5 Managing Multiple Plug-in Configurations ... 373

27 Using Workbench in an Eclipse Environment 375

27.1 Introduction ... 375

27.2 Recommended Software Versions and Limitations .. 375

27.3 Setting Up Workbench .. 376

27.4 Using CDT and Workbench in an Eclipse Environment 377

 Contents

xxi

27.4.1 Workflow in the Project Navigator .. 377

27.4.2 Workflow in the Build Console .. 379

27.4.3 Workflow in the Editor .. 379

27.4.4 Workflow for Debugging .. 380

28 Using Workbench with Version Control .. 381

28.1 Introduction ... 381

28.2 Using Workbench with ClearCase Views .. 381

28.2.1 Adding Workbench Project Files to Version Control 382

PART VII: REFERENCE

A Command-line Updating of Workspaces ... 387

A.1 Overview .. 387

A.2 wrws_update Reference .. 388

B Command-line Importing of Projects ... 391

B.1 Overview .. 391

B.2 wrws_import Reference .. 392

C Configuring a Wind River Proxy Host .. 395

C.1 Overview .. 395

C.2 Configuring wrproxy ... 397

C.3 wrproxy Command Summary .. 399

D Glossary ... 403

D.1 Introduction ... 403

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

xxii

D.1.1 Refining a Search .. 403

D.2 Terms ... 404

Index .. 409

1

PAR T I

Introduction

1 Overview ... 3

2 Wind River Workbench Tutorials 13

3 Setting Up Your Development Environment 35

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

2

3

 1
Overview

1.1 Introduction 3

1.2 Wind River Documentation 4

1.3 Road Map to the Wind River Workbench User’s Guide 4

1.4 Understanding Cross-Development Concepts 5

1.5 Basic Eclipse Concepts 7

1.6 Accessing Additional Interface Information 12

1.1 Introduction

Welcome to the Wind River Workbench User’s Guide. Wind River Workbench 2.6 is
an Eclipse-based development suite that provides an efficient way to develop
real-time and embedded applications with minimal intrusion on the target
system.1

Wind River Workbench is available on Windows, Linux, and Solaris hosts, but in
this guide, screenshots and paths will be shown as on Windows.

1. Eclipse is an industry-standard framework for building development suites.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

4

1.2 Wind River Documentation

A wide variety of documentation in many different formats is available to
Workbench customers. See the getting started for your platform for a description
of the full document set.

1.3 Road Map to the Wind River Workbench User’s Guide

■ Part I. Introduction provides an introduction to basic Eclipse terminology and
functionality, walks you through a set of tutorials that introduce the major
features of Workbench, and explains how to set up your development
environment in order to run your programs on real target hardware.

■ Part II. Projects explains the Project System, including creating new projects,
importing and exporting existing projects, and creating VxWorks images and
user applications.

■ Part III. Development describes the Editor, Static Analysis, and Build System
features of Workbench.

■ Part IV. Target Management provides details about using the Target Manager,
including how to configure a target server, and how to create and manage your
target connections.

■ Part V. Debugging explains Debugger functionality, including launch
configurations, attaching the debugger to processes, working with
breakpoints, displaying processes in the Debug and Disassembly views, and
examining registers and memory. This section also provides Troubleshooting
information, explaining how to respond to error messages you may see while
using Workbench.

■ Part VI. Using Workbench with Other Tools describes how to incorporate
plug-ins, such as ClearCase, into Workbench.

■ Part VII. Reference provides information about updating your workspace with
the command-line, as well as a Glossary of Workbench and Eclipse terms for
which you may want more information.

1 Overview
1.4 Understanding Cross-Development Concepts

5

11.4 Understanding Cross-Development Concepts

Cross-development is the process of writing code on one system, known as a host,
that will run on another system, known as a target.

Cross-development allows you to write code on a system that you have available
to you (such as a PC running Linux, Windows, or Solaris) and produce
applications that run on hardware that you would have no other convenient way
of programming, such as a chip destined for a mobile phone.

1.4.1 Hardware in a Cross-Development Environment

A typical host is equipped with large amounts of RAM and disk space, backup
media, printers, and other peripherals. In contrast, a typical target has only the
resources required by the real-time application with perhaps some small amount
of additional resources for testing and debugging.

Working on the Host

You use the host just as you would if you were writing code to run on the host
itself—to manage project files; edit, compile, link, store multiple versions of your
real-time code, and configure the operating system destined to run on the target.

Connecting the Target to the Host

A number of alternatives exist for connecting the target system to the host, such as
Ethernet, serial, and JTAG. See 3. Setting Up Your Development Environment for more
information about setting up your hardware.

Running Your Application Code

Run-time code is the code that is intended for the final application. The run-time
includes the kernel, your application-specific code, and some selected library code.
The term run-time does not usually refer to the target agent, although you will
typically include it during development and debugging. See 3.1.2 Understanding
Target Servers and Target Agents, p.37 for more information about the target agent.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

6

Workbench allows you to avoid the cumbersome process of downloading your
complete run-time code each time you make a change by allowing you to
download and run individual application modules as they are developed. You can
even run application modules on the host in the target simulator, Wind River
VxWorks Simulator, if target hardware is not available.

Advantages of Using Wind River Workbench

Wind River Workbench ensures the smallest possible difference between the
performance of the target you use during development, and the performance of
the target after deployment, by keeping most development tools on the host.

A fundamental advantage of using Wind River Workbench is that your application
does not need to be fully linked. Code that is only partially completed can be
downloaded for incremental testing and debugging; application modules do not
need to be linked with the run-time system libraries, or even with each other. The
host-resident shell and debugger can be used interactively to invoke and test either
individual application routines or complete tasks.

Workbench loads the relocatable object modules directly, and maintains a complete
host-resident symbol table for the target. This symbol table is incremental: the
target server incorporates symbols as it downloads each object module. You can
examine variables, call subroutines, spawn tasks, disassemble code in memory, set
breakpoints, trace subroutine calls, and so forth, all using the original symbol
names.

Wind River Workbench shortens the cycle between developing an idea and
implementing it by allowing you to quickly download your incremental run-time
code and dynamically link it with the operating system. Your application is
available for symbolic interaction and testing with minimal delay.

The Workbench debugger allows you to view and debug applications in the
original source code. Setting breakpoints, single-stepping, examining structures,
and so on are all done at the source level, using a convenient graphical interface.

1 Overview
1.5 Basic Eclipse Concepts

7

11.5 Basic Eclipse Concepts

Wind River Workbench is based on the Eclipse Platform, an industry-standard
framework for building development suites.

This section provides a very brief overview of some of the Workbench components
inherited from Eclipse.

1.5.1 Window

The term window refers to the desktop development environment. You can open
more than one window at a time by selecting Window > New Window (each
window will see the same projects and workspace.) A Workbench window can
contain one or more perspectives.

1.5.2 Workspace

Workbench uses a workspace to store your current working environment. Some of
the items that are saved with the workspace include the set of open projects, and
the size and location of views.

The workspace also contains information about the current session, including the
types and positions of your views when you last exited Workbench, current
projects, and installed breakpoints.

The default location of your workspace is installDir\workspace, but it can be
located elsewhere if necessary. If you want to run two or more copies of
Workbench, each must have its own workspace.

Maintaining More Than One Workspace

If you want to run two independent copies of Workbench (to keep some projects
and files completely separate from others) you must establish a second workspace.
This is not a required step for the tutorial in 2. Wind River Workbench Tutorials.

1. Launch Workbench as described in 2.2 Starting Wind River Workbench, p.14.

2. Select File > Switch Workspace to open the Select a workspace dialog.

3. Select the directory where you want your workspace to be located, then select
Make New Folder. Type the name of your new workspace, then click OK.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

8

1.5.3 Perspectives

A perspective groups together an editor area and one or more views that are
convenient to have available while working on a particular task.

For example, Figure 1-1 shows the Application Development perspective, which is
designed to help you create projects, browse files, and edit and build source code.

NOTE: The path to each of your workspaces must be unique. If you want a new
workspace to be located in the installation directory alongside your original
workspace, it must have a unique name (for example, workspace2 or
newWorkspace). If it is located in a different directory, it can have the same name
as the original: workspace.

Figure 1-1 Application Development Perspective

1 Overview
1.5 Basic Eclipse Concepts

9

1It includes the Project Navigator on the top-left side of the screen, the Outline view
on the top-right, the Target Manager on the bottom-left, and the Stacked view (also
known as a tabbed notebook) on the bottom-right with the Tasks view visible.

To open a new perspective, select Window > Open Perspective > Other and
choose a perspective you want to explore, or click the Open a perspective icon in
the upper right corner of the Workbench window, select Other, and choose a
perspective.

Figure 1-2 shows the Device Debug perspective, which contains views that are
useful when you are running and debugging programs, including the Debug and
Breakpoints views, and a tabbed notebook containing the Local Variables, Watch,
and Register views. These views replace the Outline view of the Application
Development perspective.

The Application Development perspective opens by default, but you can switch
between perspectives by selecting an icon in the shortcut bar along the top right

Figure 1-2 Device Debug Perspective

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

10

edge of the Workbench window. When you start Workbench for the first time, the
Open a perspective icon and the Application Development tab appear as shown
in Figure 1-1.

As you open perspectives, their icons appear in the shortcut bar, as seen in
Figure 1-2. To see them all side by side, click to the left of the Open a Perspective
icon and drag to the left until all open perspectives are visible.

To customize a perspective, you can open, close, and move views to create a
comfortable work environment, then select Window > Save Perspective As and
give your perspective a name. That configuration of views will be restored the next
time you open your perspective. You can further customize your perspective by
selecting Window > Customize Perspective.

You can restore a perspective to its default configuration by selecting
Window > Reset Perspective.

1.5.4 Views

Views reside in perspectives, and allow you to display, manipulate, and navigate
the information in Workbench.

Certain views appear in particular perspectives by default, but you can add any
view to any perspective by selecting Window > Show View, then either selecting
the view you want, or selecting Other, selecting the perspective containing that
view, then choosing the view from the list.

There are two things to remember when using views:

■ Only one view (or editor) can be active at a time. The title bar of the active view
is highlighted.

■ Only one instance of a type of view can be present in a perspective at a time
(but multiple editors can be present to view multiple source files).

Many views have their own menus. To open the menu for a view, click the down
arrow at the right end of the view's title bar. Some views also have their own tool
bars. The actions represented by buttons on view toolbars only affect the items
within that view.

Moving and Maximizing Views

Move a view by clicking either its title bar or its tab in a stacked notebook, and
dragging it to a new location.

1 Overview
1.5 Basic Eclipse Concepts

11

1There are several ways to relocate a view:

■ Drag the view to the edge of another view and drop it. The area is then split,
and both views are tiled in the same area. The cursor changes to an appropriate
directional arrow as you approach the edge of a view.

■ Drag the view to the title bar of an existing view and drop it. The view will be
added to a stacked notebook with tabs. When you drag the view to stack it, the
cursor changes to an icon of a set of stacked folders.

■ If you drag a view over a tab in an existing view, the view will be stacked in
that notebook with its tab at the left of the existing view. You can also drag an
existing tab to the right of another tab to arrange tabs to your liking.

To quickly maximize a view to fill the entire perspective area, double-click its title
bar. Double-click the title bar again to restore it.

1.5.5 Editors

An editor is a special type of view used to edit files. You can associate different
editors with different types of files such as C, C++, Ada, Assembler, and Makefiles.
When you open a file, the associated editor opens in the perspective’s editor area.

Any number of editors can be open at once, but only one can be active at a time. By
default, editors are stacked in the editor area, but you can tile them in order to view
source files simultaneously (see 15. Navigating and Editing for more information
about Editors).

Tabs in the editor area indicate the names of files that are currently open for
editing. An asterisk (*) indicates that an editor contains unsaved changes.

1.5.6 Projects

Workbench uses projects as logical containers and as building blocks that can be
linked together to create a software system. The Project Navigator lets you visually
organize projects into structures that reflect their inner dependencies, and
therefore the order in which they are compiled and linked.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

12

1.6 Accessing Additional Interface Information

For more information about the Workbench interface, press the help key for your
host. On Windows press F1, on Linux press CTRL+F1, and on Solaris press the HELP
key to open a help view containing a brief description of the current view and links
to sections of Workbench documentation with more information on the same topic.
You can also access the help system by selecting Help > Help Contents >
Wind River Documentation.

For more information on Eclipse functionality, see the Eclipse Workbench User Guide
under Help > Help Contents > Wind River Partner Documentation > Eclipse
Platform Documentation, as well as the Eclipse web site at www.eclipse.org.

13

 2
Wind River Workbench

Tutorials

2.1 Introduction 13

2.2 Starting Wind River Workbench 14

2.3 Tutorial: Creating a Project and Running a Program 15

2.4 Tutorial: Editing and Debugging Source Files 22

2.5 Tutorial: Using the Editor’s Code Development Features 24

2.6 Tutorial: Tracking Items of Interest in Your Files 26

2.7 Tutorial: Using Workbench to Debug a VxWorks 5.5.x Target 27

2.1 Introduction

This chapter provides tutorials that are designed to introduce you to Wind River
Workbench and to familiarize you with its views and development concepts. The
VxWorks Simulator is used to execute the sample programs, and no special
hardware or system setup is required.

In the course of these tutorials, you will:

■ Create a project.
■ Import source files.
■ Build a project.
■ Connect to a simulator.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

14

■ Set breakpoints.
■ Step through code.
■ Set a Watch variable.
■ Run code.
■ Edit source files.
■ Track build errors.
■ Debug a project.
■ Rebuild and rerun your code.

These tutorials assume a basic understanding of embedded projects and
debugging concepts. They also assume that you have the Workbench software
(with VxWorks support) installed correctly on your host, and that the software is
installed in the default location and with the default settings.

To run the VxWorks 5.5 debugging tutorial, you must also have VxWorks 5.5 and
Tornado 2 installed.

For definitions of unfamiliar terminology, see D. Glossary.

2.2 Starting Wind River Workbench

1. Before you can run the tutorials, you must start Workbench.

On Windows:

Start > Programs > Wind River > Workbench 2.x > Wind River
Workbench 2.x

On Linux and Solaris:

Open a terminal window, then navigate to your Workbench installation
directory. From the command line, type:

./startWorkbench.sh

2. When you start Workbench for the first time, Workbench creates a new registry
database1. A dialog appears telling you how to migrate your registry settings
from a previous registry to the new one2.

1. A new database will also be created in /tmp if the default database is not accessible.
2. If you did not have a previous version of Workbench installed and therefore do not have

registry settings to migrate over, you can safely ignore this dialog.

2 Wind River Workbench Tutorials
2.3 Tutorial: Creating a Project and Running a Program

15

2

3. Click OK. The Wind River Workbench welcome screen appears.

4. Select the arrow to open Workbench to the Application Development
perspective.

2.3 Tutorial: Creating a Project and Running a Program

This tutorial uses the ball sample program, written in C. This program implements
a set of balls bouncing in a two-dimensional grid. As the balls bounce, they collide
with each other and with the walls. You see the balls move by setting a breakpoint
with the property Continue on break at the outer move loop, and watching a
global grid array variable in the Memory window.

First, you will create a new project in your workspace, then you will import the ball
source files into it from their Workbench installation directory.

2.3.1 Before You Begin

Workbench preserves its configuration when you close it, so that at next launch
you can resume where you left off in your development.

If you experimented with opening perspectives and moving views before starting
this tutorial, switch back to the Application Development perspective by clicking
its icon in the upper right corner of the Workbench window. If its icon is not visible,
drag the shortcut bar to the left (your cursor will turn to a double-headed arrow)
or click the double-right arrows and select the perspective.

To reset the perspective and its views to their default settings, select
Window > Reset Perspective.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

16

2.3.2 Creating a Project

1. Select File > New > Wind River Workbench Project. The New Wind River
Workbench Project dialog appears.

2. From the Target operating system drop-down list, select Wind River VxWorks
6.x. Click Next.

3. From the Build type drop-down list, select Downloadable Kernel Module.
Click Next.

4. In the Project Name field, type ball. For the purposes of this tutorial, keep
Create project in workspace selected. Click Finish. The ball project appears in
the Project Navigator.

2.3.3 Importing Source Files Into Your Project

Next, import the ball sample project files.

1. Right-click the ball project folder, then select Import. The Import wizard
appears.

2. Select General, then File System, then click Next. The File System page of the
Import wizard appears.

3. Click the Browse button next to the From directory field. The
Import from directory page appears.

4. Navigate to the installDir\workbench-2.x\samples directory. Select ball, then
click OK. The File system page reappears, with the ball folder in the left pane
and the files in that folder in the right pane.

5. Select the check box next to ball. This automatically selects all the files in the
right pane. Because you are importing into the ball project, ball appears in the
Into folder field. Click Finish.

6. To see the contents of the ball project folder, click the plus next to it in the
Project Navigator. You will see the project files in black, and the build targets
in green. Any files that appear in gray are read-only.

2.3.4 Building Your Project

1. Build the ball project by right-clicking the ball folder in the Project Navigator
and selecting Build Project from the context menu.

2 Wind River Workbench Tutorials
2.3 Tutorial: Creating a Project and Running a Program

17

2

2. The first time you build a project, a dialog appears asking if you want
Workbench to generate include paths. You do not need to do this for the
tutorial, so click Continue.3

3. Build output displays in the Build Console at the bottom of the screen, and the
output file ball.out appears in ball/SIMNTdiab/ball/Debug.

2.3.5 Creating a Connection Definition to the VxWorks simulator

You create and manage connections to a target, including the VxWorks simulator,
using the Target Manager.

1. To create a new target connection definition, click the Create a New Target
Connection icon on the Target Manager toolbar, or right-click in the
Target Manager and select New > Connection.

2. In the New Connection wizard, select Wind River VxWorks Simulator
Connection, then click Next.

3. Continue clicking Next to accept all of the default configuration settings, then
click Finish to create your connection definition. Because the
Immediately connect to target if possible box is selected by default,
Workbench attempts to connect to the simulator.

3. For more information about include paths, open the build properties dialog by
right-clicking on your project and selecting Properties, then press the help key for
your host.

NOTE: The directory name SIMNTdiab reflects the active build spec, which is
comprised of build settings appropriate for the VxWorks simulator and the
Wind River Compiler. The Debug directory reflects the fact that debug mode
flags are turned on by default.

If you select a different build spec by right-clicking the project and selecting
Build Options > Set Active Build Spec, or if you clear the debug mode
checkbox, the string will be different.

NOTE: If you installed VxWorks support when you installed Workbench, a
VxWorks simulator connection definition named vxsim0 automatically appears
below default(localhost).

This is a valid connection definition, and you can use it. However, to understand
how to manually create new target connections, continue with this tutorial.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

18

Workbench displays connecting, then connected - target server running in the
Workbench status line at the bottom of the window4 once the connection is
made. A VxWorks simulator window opens5, and the connection appears
under default(localhost), with the type of target displayed under the
connection.

You are now ready to run the sample program.

2.3.6 Downloading the Program and Attaching the Debugger

1. In the Project Navigator, right-click the build target
ball/SIMNTdiab/ball/Debug/ball.out, then select Debug Kernel Task. The
Debug launch configuration dialog appears, with ball.out already filled in as
part of the Name of the launch.

2. Type main in the Entry Point field (or click Browse and select Downloads >
ball.out > main), then click Debug.

3. Several events now occur: Workbench automatically builds the ball project,
switches to the Device Debug perspective, runs the ball program on the
simulator, attaches the debugger, executes the program up to main(), and then
breaks.

For more information about using the other tabs and fields in the launch
configuration dialog, see 22. Launching Programs or open the launch configuration
dialog and press the help key for your host.

2.3.7 Setting Up the Device Debug Perspective

The views in the Device Debug perspective can be repositioned to suit your needs.

To set up the Device Debug perspective to match this tutorial:

1. The action of the ball program is displayed in the Memory view, so select
Window > Show View > Memory. Click OK.

The Memory view appears in the lower-right corner of the Workbench
window, in the tabbed notebook with the Local Variables and Watch views.

4. To display this and other status information in the Target Manager, select Window > Pref-
erences > Target Manager > Label Decorations, then choose what you want to display.

5. You do not need the VxWorks simulator window for this tutorial, so minimize it if you wish,
but do not close it. For more information, see Wind River VxWorks Simulator User’s Guide.

2 Wind River Workbench Tutorials
2.3 Tutorial: Creating a Project and Running a Program

19

2

2. Click on the title bar of the Memory view and drag it to the left, over the tabbed
notebook containing the Tasks view and the Build Console. Wait for an icon of
a set of stacked folders to appear at the cursor, then drop the view.

3. Right-click in the Memory view and select Display > Items size - 8 bytes.

4. Resize the Memory view so you see at least 10 rows (place the cursor over the
top border of the view, and when it becomes a double-headed arrow, click and
drag upwards).

5. Resize the view horizontally so you see one column in the Address pane, two
columns in the Binary pane (the central section of the Memory view) and one
column in the Text pane (the right-hand section of the view). The view should
look similar to Figure 2-1.

6. In the Watch view6, click the Name column, then type grid and press ENTER.
The memory address of the grid global variable appears in the value column.
This address can vary from one session to another if something changes, for

Figure 2-1 Resizing the Memory View

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

20

example if you compile with the GNU compiler instead of the Wind River
Compiler.

7. Type the memory address of the grid global variable into the Memory view
address bar and press ENTER.

8. To initialize the program, click the Step Over icon in the Debug view twice so
the Memory view displays an empty box. If necessary, resize the Memory view
horizontally or vertically to frame the box correctly, as shown in Figure 2-2.

As the program runs, characters representing different types of balls (two
zeros, two @ signs, and two asterisks) appear in this empty box, bounce
around, and collide with each other and with the walls.

2.3.8 Setting and Running to a Breakpoint.

1. In main.c (which should still be open in the Editor) scroll past the three
initialization for loops and set a breakpoint at the while statement by
double-clicking in the vertical ruler to the left of it.

A blue dot appears in the vertical ruler, and the Breakpoints view displays the
module and line number of the breakpoint.

6. If it is not visible in the lower right corner, click the >> next to the name tab and select it from
the list.

NOTE: If the box does not appear, make sure the address you entered in the
Memory window is that of the grid global variable.

Figure 2-2 Initializing the ball Program

2 Wind River Workbench Tutorials
2.3 Tutorial: Creating a Project and Running a Program

21

2

2. With the breakpoint set, run to it by clicking the Resume button in the Debug
view. Workbench stops when it hits the breakpoint.

3. Examine the Memory view. You should see the six characters of the sample
program (representing balls) in the box. Click Resume again; colored
highlights indicate changes in ball position since the Memory view was last
refreshed.

2.3.9 Modifying the Breakpoint

Next, change the behavior of the breakpoint so that at each break, the display will
refresh (to show the bouncing balls) without stopping execution.

1. Right-click the breakpoint in the vertical ruler and select
Breakpoint Properties from the context menu (or right-click the breakpoint in
the Breakpoints view and select Properties). The Line Breakpoint Properties
dialog appears.

2. Select Continue on Break, change the Continue Delay to 50, then click OK.

3. Now click the Resume button and watch the balls bounce in the Memory
window.

4. To stop the program, open the Breakpoint Properties dialog again, clear
Continue on Break, then click OK. The balls may bounce once more after you
click OK, but they will stop.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

22

2.4 Tutorial: Editing and Debugging Source Files

This tutorial demonstrates how Workbench can help you with some of the most
basic activities in development: editing code, building your project and noting
where the build fails, and tracking and fixing errors.

2.4.1 Before You Begin

To set up Workbench for this tutorial, switch back to the Application Development
perspective by clicking its icon in the upper-right corner of the Workbench
window.

2.4.2 Introducing an Error into the Source Code

Because the ball sample program is shipped without errors, you must introduce
one into the sources in order to view a failed build.

1. In the Project Navigator, double-click main.c to open it in the Editor.

2. Select main() in the Outline view. The Editor switches focus to display it.

3. Delete the semicolon (;) after the call to gridInit() so that it reads as follows:

gridInit()

4. Close and save the file.

2.4.3 Tracking Down a Build Failure

1. Build the ball project by right-clicking the ball folder in the Project Navigator
and selecting Build Project from the context menu. Build output appears in
the Build Console tab at the bottom of the screen.

2. When the build encounters the error you created in the main.c file, the build
fails. Workbench displays a red icon containing a white X in several places:

■ In the Build Console, which comes to the foreground and displays
information about the error, including the general location where the
problem is suspected to be.

NOTE: The status bar at the bottom of the Workbench window displays the line
number and column (61:16) where your cursor is located in the Editor.

2 Wind River Workbench Tutorials
2.4 Tutorial: Editing and Debugging Source Files

23

2

■ In the Project Navigator, which displays red error markers to alert you that
the build failure was in the ball project, and that main.c is the file
containing the error.

■ In the Problems view, which displays a description of the error, including
the filename, folder, and line number.

3. Double-clicking the red icon in any of these locations opens the main.c file in
the Editor, with the focus at (or near) the line suspected of containing the error.

4. Replace the semicolon after gridInit.

5. Save and close the file.

2.4.4 Displaying File History

Workbench tracks all changes that you make to any files in the project. To display
the change history of the main.c file, right-click the file in the Project Navigator and
select Compare With > Local History.

The Compare with Local History dialog appears. The upper area of the dialog
displays a list of the dates and times when the file was changed. When you select
one of the list entries in the upper part, the lower part displays the file as of that
time on the left and the version before then on the right (that is, the changes
associated with that save). Note the changes you just made. When you are finished,
click OK to close the dialog.

2.4.5 Rebuilding the Project

Right-click the ball folder at the top of the project tree and this time, select
Rebuild Project. The project compiles with no errors.

NOTE: You can also use the local history feature to restore deleted files. Right-click
the folder the files were in, select Restore from Local History, choose the files you
want to restore, then click Restore.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

24

2.5 Tutorial: Using the Editor’s Code Development Features

The Wind River Workbench editor provides code completion, parameter hints,
and bracket matching that can help you develop your code.

2.5.1 Using Code Completion to Add Symbols to Your File

Code completion automatically suggests methods, properties and events as you
enter code.

To use code completion, begin typing in the Editor. Right-click in the Editor and
select Source > Content Assist. You can also use CTRL+SPACE to display a pop-up
list containing valid choices based on the letters you have typed so far.

For example, in ball’s main.c:

1. Position your cursor inside the function main() to the right of the first {
character and press ENTER. Note that the cursor automatically indents
beneath the brace.

2. Begin typing grid and invoke code completion: g, r, CTRL+SPACE.

A dialog appears with suggestions, and as you continue to type the i and the
d, your choices narrow:

NOTE: You can change indentation, brace style, and other code formatting
options by selecting Window > Preferences > General > Editors > Wind River
Workbench Editor.

2 Wind River Workbench Tutorials
2.5 Tutorial: Using the Editor’s Code Development Features

25

2

Select gridAddBall() and press ENTER to add the function to the file.

2.5.2 Using Parameter Hints

Parameter hints describe what data types a function accepts. When you add a
function using code completion, or when you enter a function name and an open
parenthesis, the Workbench Editor automatically displays any available parameter
hints.

You can also request parameter hints as you enter your code by right-clicking in
the Editor and selecting Source > Parameter Hints, or by using the
CTRL+SHIFT+SPACE keyboard shortcut.

2.5.3 Using Bracket Matching to Clarify Syntax

Bracket matching helps you read and troubleshoot complex syntax by highlighting
related parentheses, square brackets, and braces.

If you position your cursor before an open bracket or after a closing bracket, a
rectangle will enclose the corresponding bracket to make it easier to find. You can
jump between the opening and closing brackets by pressing CTRL+SHIFT+P.
Bracket matching operates on the following characters:

(), [], { }, " ", /* */, < > (C/C++ only)

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

26

2.5.4 Finding Symbols in Source Files

The easiest way to find a symbol in a source file you are working with is to select
it in the Outline view, but sometimes that is not possible. So Workbench also
provides other ways to find symbols.

1. If it is not already open, double-click the ball project’s main.c file to open it.

2. Select main(): int in the Outline view. The Editor immediately switches focus
and highlights the declaration of main().

3. Several lines below main() is the symbol gridInit(). This symbol does not
appear in the Outline view because that view only displays symbols declared
in the file that is open (and has focus) in the Editor.

4. To see the declaration of gridInit(), double-click it and then press F3. The
grid.c file opens automatically in the Editor, positioned at the declaration of
gridInit().

2.6 Tutorial: Tracking Items of Interest in Your Files

Adding a bookmark to a source file is similar to placing a bookmark in a book: it
allows you to find an item you are interested in at a later time by looking in the
Bookmarks view. Open the Bookmarks view by selecting Window > Show View
> Bookmarks.

You can create a bookmark on a particular line of code within a file, or you can
bookmark the file itself.

2.6.1 Creating a Bookmark on a Source Line in a File

1. To create a bookmark on a line of code in your file, right-click in the Editor
gutter to the left of the item you want to keep track of, then select
Add Bookmark.

NOTE: Hovering over gridInit() displays a pop-up showing the comments
and declaration for the function.

2 Wind River Workbench Tutorials
2.7 Tutorial: Using Workbench to Debug a VxWorks 5.5.x Target

27

2

2. In the Add Bookmark dialog, enter a meaningful comment to help you
identify it later, then click OK. A small bookmark icon appears in the Editor
gutter, and a marker, or annotation, appears in the overview ruler at the right
edge of the Editor showing your bookmark relative to its position in the file.
An entry also appears in the Bookmarks view.

Hovering over the bookmark icon shows you the text you entered, and
clicking the annotation on the right will return the Editor’s focus to this
position if you scroll to a different line in the file.

2.6.2 Creating a Bookmark for an Entire File

1. To create a bookmark for a file, right-click it in the Project Navigator and select
Add Bookmark.

2. In the Add Bookmark dialog, enter a meaningful comment to help you
identify it later, then click OK.

3. The file will not look any different in the Project Navigator, but the comment
you typed, the filename, and the folder appear in the Bookmarks view.

2.6.3 Locating and Viewing Your Bookmarks

1. To see the bookmarks in all your projects, open the Bookmarks view by
selecting Window > Show View > Bookmarks.

2. To open the file that contains a particular bookmark, double-click the
bookmark (or right-click it and select Go To). The file opens in the Editor with
the bookmark location highlighted.

3. To remove a bookmark you no longer need, right-click it and select Remove
Bookmark.

2.7 Tutorial: Using Workbench to Debug a VxWorks 5.5.x Target

This tutorial explains how to use Workbench to create a Tornado 2 target server
connection and debug a VxWorks 5.5.x target.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

28

To use these instructions, you must have Workbench 2.x, VxWorks 5.5.x, and
Tornado 2 installed.

2.7.1 Before You Begin

1. To allow Workbench to find your Tornado installation, run the
installDir/workbench-2.x/x86-win32/bin/wrregistert22x.bat script in a
command shell.

2. When the script asks for the location of your Tornado installation, type the
path and press Enter. The script will update your install.properties file.

2.7.2 Creating a Project

1. Select File > New > Example, then select VxWorks 5.5 Downloadable Kernel
Module Sample Project and click Next.

2. Select the Cobble demo, then click Finish. The project appears in the Project
Navigator.

3. Right-click the new cobble_55 project, then select Build Options > Set Active
Build Spec. From the dialog that appears, change the active build spec to
PPC603diab and select Debug mode. Click OK.

4. Right-click the project and select Build Project. The Build Console displays a
warning about a bug in the code.

5. Double-click the error symbol to open cobble.c to line 280, then fix the bug.

6. Edit line 1337 and change the priority of task tCrunch to 210. If you do not do
this, it will appear that breakpoints are not hit.

2 Wind River Workbench Tutorials
2.7 Tutorial: Using Workbench to Debug a VxWorks 5.5.x Target

29

2

7. Right-click the project folder and select Rebuild Project (Workbench saves
your changes before starting the build).

Your project should build cleanly this time.

2.7.3 Creating a VxWorks 5.5.x Target Server Connection

Now that you have created your project, you are ready to create a target server
connection.

1. From the Target Manager toolbar, click Create a New Target Connection. The
New Connection wizard opens.

2. From the Connection Type list, select Wind River VxWorks 5.5.x Target Server
Connection. Click Next.

3. Click Next through the next few screens, reviewing and customizing the target
server options as necessary. Click Finish to create your connection definition.

Once the connection to the Tornado target server is established, it appears
under default(localhost) followed by [Target Server running].

4. To connect to the Tornado 2 target, right-click the target server and select
Connect. The target connection appears under the target server connection8.

2.7.4 Launching a Kernel Task and Attaching the Debugger

1. In the Target Manager, right-click your target, then select Target Mode. Make
sure Task is selected.

2. Right-click your target again, and this time select Debug Kernel Task. The
debug launch configuration dialog appears. This dialog allows you to define

7. You can display line numbers by right-clicking in the Editor, selecting Preferences, then
selecting Show line numbers, or you can just scroll up or down and click in the file. The line
number and column position of the cursor is displayed at the bottom of the window.

NOTE: If you get a target server connection error, it could be caused by a long
delay in checking out a license for the Tornado 2 target server. To lengthen the
timeout, select Window > Preferences > Target Manager and increase the time
in the Workbench timeout till target server must be connected field.

8. If you like, click next to Kernel Tasks to display the list of kernel tasks running in
the system as well as the name of the core file.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

30

which downloadable module to load, which entry point to call, which
debugging options to implement, and what the source lookup path should be.

You will see that the Name field displays your project’s build target and target
name, but as yet no entry point is defined.

3. Click Browse next to the Entry Point field, then select Downloads >
cobble_55.out > progStart. Click OK.

4. Click the Download tab to bring it to the foreground, then click Add. In the
Download dialog, type or browse to the location of your project’s build target
(installDir/workspace/cobble_55/PPC603diab_DEBUG/cobble_55.out).
Make sure Load Symbols to Debug Server is selected, then click OK.

5. Click the Debug Options tab to bring it to the foreground. Select
Automatically attach spawned Kernel Tasks.

6. The launch configuration is now complete. Click Debug to launch the task and
attach the debugger. Workbench changes to the Device Debug perspective,
displays the task in the Debug view, and opens cobble.c in the Editor (if it is
not already open) with the focus in progStart.

2.7.5 Setting and Running to a Breakpoint

The easiest way to find a particular function that you want to place a breakpoint
on is to use the Outline view.

1. The Outline view does not appear by default in the Device Debug perspective,
so open it by selecting Window > Show View > Outline.

2. Select the function cosmos; the Editor will shift focus to that section of
cobble.c, with cosmos highlighted.

3. Scroll down to line 166 (containing nadaNichtsIdx) then right-click in the left
Editor gutter and select Breakpoints to open the Breakpoints submenu.

4. When adding a breakpoint, you can specify the breakpoint’s scope: either the
task that is selected in the Debug view (here, tProgStart) or every task
(Unrestricted). In this example, the code is run by the task tCosmos, not
tProgStart, so select Add Breakpoint (Scope = Unrestricted). If you had
selected Scope = tProgStart, the breakpoint would never have been triggered.

5. Workbench also allows you to specify the stop scope: either Stop Triggering
Thread, or to Stop All. However, in VxWorks 5.5, Stop All is not supported; it
behaves the same as Stop Triggering Thread. So in this example you do not
need to select either one.

2 Wind River Workbench Tutorials
2.7 Tutorial: Using Workbench to Debug a VxWorks 5.5.x Target

31

2

6. With your breakpoint set, select tProgStart in the Debug view and click
Resume.

The task tProgStart disappears from the Debug view; its only purpose was to
launch the tCrunch, tCosmos, and tMonitor tasks that now appear in the
Debug view and under Kernel Tasks in Target Manager.

7. Select the task tCrunch in the Debug view to set the scope, then select the
function crunch in the Outline view. The Editor switches its focus and
highlights the function. Several lines below crunch, right-click in the gutter
beside line 268 (beginning while) and select Breakpoints > Add Breakpoint
(Scope = tCrunch).

8. Back in the Debug view, select tCosmos and click Resume. When tCosmos hits
its breakpoint, click Resume again 9 more times. At this point the task tCrunch
hits its breakpoint and both tasks stop.

2.7.6 System Mode Debugging

In system mode, when a breakpoint is hit, the whole system stops.

1. Before switching to system mode, highlight tCrunch and tCosmos in the
Debug view, click Resume, then click Disconnect (not Terminate).

2. In the Target Manager, right-click your target (which should still be running),
then select Target Mode > System to switch into system mode.

3. Open the target console by right-clicking your target and selecting Target
Tools > Target Console. At the prompt, type i to display the list of running
tasks. If you clicked Disconnect (and not Terminate), tCosmos and tCrunch
are still running.

4. In the Target Manager, right-click your target and select Attach to Kernel
(System Mode).

Once the target is in system mode, you can right-click various system tasks and
select Attach to Kernel Task (System Mode). Then when the system stops, you
can get the backtrace of the tasks you have attached.

5. Right-click tCosmos and tCrunch and select Attach to Kernel Task. The tasks
appear in the Debug view.

6. Select monitor in the Outline view; this will switch the Editor’s focus to that
part of cobble.c.

7. Set a breakpoint by right-clicking in the gutter next to line 302 (beginning if).

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

32

If you select Breakpoints > Add Breakpoint (Scope = tCosmos), the
breakpoint will never be triggered because the code is only run by the
tMonitor task.

Therefore, set the breakpoint using either Scope = Unrestricted or Scope =
tMonitor (you must select tMonitor in the Debug view before you can choose
it as the breakpoint scope).

8. When the breakpoint is triggered, the whole system stops, as shown in the
Target Manager and in the Debug view. If you try to type something in the
target console, nothing appears because the whole target is stopped.

9. Remove the breakpoint by right-clicking it in the Breakpoints view and
selecting Remove. In the Debug view, select tMonitor and click Resume to
resume the system.

2.7.7 Using Core Dump Files

You can use core dump files to see backtraces of various tasks.

1. On the Target Manager toolbar, click Create a New Target Connection.

2. In the New Connection wizard, select Wind River VxWorks 5.5.x Core Dump
Connection, then click Next.

3. On the next screen, type in or navigate to the location of your core dump file
and the VxWorks kernel image. Click Next through the next few screens and
adjust settings if necessary, then click Finish. Since Immediately connect to
target if possible is selected by default, the connection definition will appear
in the Target Manager and Workbench will connect.

4. A dialog appears telling you that the core dump was successfully attached, but
since Workbench cannot determine the cause for a VxWorks 5.5 core dump the
cause is listed as UNKNOWN. The dialog also displays the program counter
of the current execution context.

5. In the Debug view, the backtrace of the current execution context appears.
Note that the run control icons are disabled. You can also attach to other tasks
and see their backtraces.

2.7.8 Using Already Available Tornado 2 Projects

You can import existing Tornado 2 projects into Workbench.

2 Wind River Workbench Tutorials
2.7 Tutorial: Using Workbench to Debug a VxWorks 5.5.x Target

33

2

1. Create a new user-defined project by selecting File > New > User-Defined
Project.

2. In the Target Operating System dialog, select Wind River VxWorks 5.5 (this
allows you to use the Tornado 2 compilers). Click Next.

3. On the next screen, type a descriptive name into the Project name field, then
select Create project at external location and type in or browse to the location
of your existing Tornado 2 project. Click Next.

4. A dialog appears telling you that the directory you pointed to already contains
project information. Click Yes to overwrite existing project information.

5. Click Finish. Your project now appears in the Project Navigator.

6. Right-click the new project and select Build Project. Since this is a user-defined
project, the build calls the Makefile generated by Tornado 2 tools. If you need
to add or remove files, you still need to use the Tornado 2 IDE or edit the
Makefile manually.

To launch Tornado from Workbench, select Target > Launch Wind River Tornado.

To debug a kernel module, proceed as described in 2.7.4 Launching a Kernel Task and
Attaching the Debugger, p.29. You can also import a kernel project and rebuild it as
well.

Workbench provides added value over Tornado in your ability to use the Search
view, the Outline view, and the very powerful static analysis tools to manage your
projects.

Limitations and Known Issues

To have module synchronization, you must specify the -s option to the target
server.

When the target loads a module, it appears in the Target Manager. You can select
and delete it, and it will disappear from the Target Manager, but the module is still
running on the target. This is because the target server cannot remove a module
loaded by the target. This is a limitation of Tornado 2, and the Workbench
debugger cannot overcome this limitation.

This chapter has been a brief introduction to basic operations with perspectives,
views, and editors, and simple debugging capabilities. The rest of this guide
provides more in depth information about these and other features of Wind River
Workbench.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

34

35

 3
Setting Up Your Development

Environment

3.1 Introduction 35

3.2 Configuring Your Cross-Development System 40

3.3 Setting Up a Boot Mechanism 49

3.4 Booting VxWorks 50

3.5 Configuring Host-Target Communication for Workbench 61

3.6 Troubleshooting VxWorks Problems 67

3.1 Introduction

This chapter explains how to configure your host and target, including how to
download a VxWorks image and boot your target.

The most common development environment setup uses both a serial and a
network connection between the host and target. The serial connection is used to
communicate with the boot loader, and the network connection is used to transfer
files, including the VxWorks system image. A default VxWorks image is provided
for this configuration.

For a discussion of common configuration and setup problems and tips for how to
solve them, see 25.5 Troubleshooting VxWorks Configuration Problems, p.355. For
definitions of terminology that may be unfamiliar to you, see D. Glossary.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

36

You do not need much of this chapter if all you want to do is connect to a target
that is already set up on your network. If this is the case, read 3.2 Configuring Your
Cross-Development System, p.40 and then proceed with 3.4 Booting VxWorks, p.50.

3.1.1 Overview of Host and Target Configuration Tasks

Host Configuration Tasks

You will need to complete these configuration tasks once per host:

■ Install Wind River Workbench.

■ Configure TCP/IP for your host.

■ Configure a method for transferring a VxWorks image to your target, such as
FTP.

Target Configuration Tasks

You will need to complete these configuration tasks once for each new target:

■ Install the VxWorks boot loader for your target (see the Wind River Workbench
On-Chip Debugging Guide for details).

■ Set up one or more physical connections between your target and host.

■ Define a Workbench target server to connect to the new target.

Normal Operation

You will need to repeat these tasks each time you want to re-initialize your target
during development:

■ Boot VxWorks on the target. VxWorks includes a target agent, the interface
between VxWorks and all other Wind River Workbench tools.

■ Launch or restart a Workbench target server on the host.

NOTE: Paths to Workbench directories and files are prefixed by installDir in this
guide. Substitute the actual path to your Workbench installation directory.

3 Setting Up Your Development Environment
3.1 Introduction

37

3

3.1.2 Understanding Target Servers and Target Agents

Wind River Workbench host tools such as shells and debuggers communicate with
the target system through a target server running on the host. A target server can be
configured with a variety of back ends, which provide for various modes of
communication with the target agent running on the target. VxWorks can be
configured and built with a variety of target agent communication interfaces.

Your choice of target server back end and target agent communication interface is
based on the mode of communication that you establish between the host and
target (network, serial, JTAG, and so on). The target server must be configured with
a back end that matches the target agent interface with which VxWorks has been
configured and built. See Figure 3-1 for a detailed diagram of host-target
communications.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

38

Target Agent Modes

All of the target server back ends included with Workbench connect to the target
through the target agent. Thus, in order to understand the features of each back
end, you must understand the modes in which the target agent can execute. These
modes are called user mode, system mode, and dual mode.

Figure 3-1 Wind River Workbench Host-Target Communication

Shell Debugger
Other

Browser Tools

Non-WDB
Agent

VxWorks

WTX
PROTOCOL

AGENTS

WDB TARGET AGENT
COMMUNICATION
INTERFACES

TARGET SERVER
BACK ENDS

HOST

TARGET (board or simulator)

Target Server

Serial
Comm

Interface

Network
Comm

Interface

WDB
Serial

Non-WDB
Back End

WDB
Target
Agent

Pipe
Comm

Interface

WDB
Pipe

WDB
RPC

3 Setting Up Your Development Environment
3.1 Introduction

39

3

■ In user mode, the agent runs as a VxWorks task. Debugging is performed on a
per-task basis: you can isolate the task or tasks of interest without affecting the
rest of the target system.

■ In system mode, the agent runs externally from VxWorks, almost like a ROM
monitor. This allows you to debug an application as if it and VxWorks were a
single thread of execution. In this mode, when the target encounters a
breakpoint, VxWorks and the application are stopped and interrupts are
locked. One of the biggest advantages of this mode is that you can single-step
through ISRs; on the other hand, it is more difficult to manipulate individual
tasks. Another drawback is that this mode is more intrusive; it adds significant
interrupt latency to the system, because the agent runs with interrupts locked
when it takes control (for example, after a breakpoint).

■ To support dual mode debugging, VxWorks images are configured with both
agents by default: a user-mode agent (INCLUDE_WDB_TASK), and a
system-mode agent (INCLUDE_WDB_SYS). Only one of these agents is active
at a time; switching between the two can be controlled from either the
Workbench debugger (see 24.5 Using Debug Modes, p.320) or the host shell (see
Wind River Workbench Host Shell User’s Guide).

In order to support a system-mode or dual-mode agent, the target communication
path must work in polled mode (because the external agent needs to communicate
to the host even when the system is suspended). Thus, the choice of
communication path can affect what debugging modes are available.

Communication Paths

The most common VxWorks communication path—both for server-agent
communications during development, and for applications—is TCP/IP
networking over Ethernet. That connection method provides a very high
bandwidth, as well as all the advantages of a network connection.

Nevertheless, there are situations where you may wish to use a non-network
connection, such as a serial line or a ROM-emulator connection. For example, if
you have a memory-constrained application that does not require networking, you
may wish to remove the VxWorks network code from the target system during
development. Also, if you wish to perform system-mode debugging, you need a
communication path that can work in polled mode.

Note that the target server back end connection is not always the same as the
connection used to load the VxWorks image into target memory. For example, you

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

40

can boot VxWorks over Ethernet, but use a serial line connection to exploit a
polled-mode serial driver for system-mode debugging.

You can also use a non-default method of getting the run-time system itself into
your target board. For example, you might burn your VxWorks run-time system
directly into target ROM, as described in the VxWorks Programmer’s Guide:
Configuration and Build.

Or you can use a ROM emulator to quickly download new VxWorks images to the
target’s ROM sockets. Another possibility is to boot from a disk locally attached to
the target; see the VxWorks Programmer’s Guide: Local File Systems. Individual Board
Support Packages (BSPs) may provide other alternatives, such as flash memory;
see the reference information for your BSP.

For a tutorial that explains how to use Wind River ICE or Wind River Probe to load
the run-time system onto your target, see Wind River ICE for Wind River Workbench
Hardware Reference or Wind River Probe for Wind River Workbench Hardware Reference.

3.2 Configuring Your Cross-Development System

Before VxWorks can boot an executable image obtained from the host, the network
software on the host must be correctly configured (see Configuring Host Software,
p.40), your target must be connected and powered up (see Verifying Serial Setup and
Power, p.45), and the boot loader must be loaded onto your target.

3.2.1 Configuring Host Software

For your target to communicate with the Workbench host tools, you need to have
a Wind River registry, TCP/IP, and FTP running on your host.

The following sections describe these procedures in more detail.

Establishing the VxWorks Target Name and IP Address

You can configure the server that provides Domain Name Service (DNS) so that
your computer uses that server to translate system names to network IP addresses.

3 Setting Up Your Development Environment
3.2 Configuring Your Cross-Development System

41

3

Consult your operating system documentation on how to configure your system
to take advantage of DNS.

If you do not have a domain name server at your site, you can specify how to map
machine names to IP addresses in a file called hosts
(C:\Windows\system32\drivers\etc\hosts on Windows, /etc/hosts on Linux
and Solaris) which records the names and IP network addresses of systems
accessible on the network from the local system (otherwise, you would have to
identify targets by IP address).

Each line consists of an IP address and the name (or names) of the system at that
address.

For example, suppose your host system is called mars and has Internet address
90.0.0.1, and you want to name your VxWorks target phobos and assign it address
90.0.0.50. The hosts file must then contain the following lines:

90.0.0.1 mars
90.0.0.50 phobos

This configuration is represented in Figure 3-7 on page 53

Configuring FTP on Windows

To use the default VxWorks configuration and boot VxWorks over the network,
you must have an FTP server running on the host where the VxWorks system
image is stored, and the FTP server must have a user ID and password defined that
your VxWorks target can use to identify itself.

Workbench includes an FTP server application, WFTPD. Start this FTP server from
the Windows Start menu by selecting Programs > Wind River > VxWorks 6.x
and General Purpose Technologies > FTP Server.

Before an FTP client can connect to WFTPD, you must complete the following
steps:

1. Open the WFTPD window and select Security > Users/rights (Figure 3-2).

! CAUTION: If you are in a networked environment, do not pick arbitrary IP
addresses for your host and target as they could be assigned to someone else.
Contact with your system administrator for available IP addresses.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

42

2. WFTPD displays the User / Rights Security Dialog box shown in Figure 3-3.
Click the New User button; another dialog box (also shown in Figure 3-3)
appears where you can enter whatever arbitrary name you wish as the user ID
for the VxWorks boot ROM. Be sure to use this same name when you assign
the user (u) VxWorks boot parameter described in 3.4.4 Description of Boot
Parameters, p.55.

3. After you specify the user name and click OK, WFTPD displays a third dialog
box where you can specify a password (Figure 3-4). Use any memorable
arbitrary string, and be sure to use this same string when you assign the
ftp password (pw) VxWorks boot parameter described in 3.4.4 Description of
Boot Parameters, p.55.

Because the password does not display as you type it, you must type it twice
to be sure the correct password is recorded.

Figure 3-2 WFTPD Security Menu

Figure 3-3 Adding a New User for WFTPD

3 Setting Up Your Development Environment
3.2 Configuring Your Cross-Development System

43

3

4. After defining the new user ID and password, be sure to fill in the
Home Directory text box (Figure 3-5). The VxWorks boot loader does not
require this information, but WFTPD refuses to connect to a client unless you
specify a home directory. Any directory will be fine, as long as you permit
sufficient disk access for the VxWorks boot loader to read the boot image on
your Windows disk.

5. Close the User / Rights Security Dialog box by clicking Done.

6. To enable logging of FTP activities, select Logging > Log Options and select
the types of activities you want to log. The log file will be saved in the home
directory you specified above.

When you have finished configuring your FTP settings, leave the FTP server
running. It must be running on your host when your target tries to access the
VxWorks image.

Figure 3-4 WFTPD Password Dialog Box

NOTE: Your password must not be an empty string.

Figure 3-5 WFTPD Home Directory

NOTE: You can run the FTP server as a restricted user, but you cannot add new
users and passwords if you are a restricted user. A non-restricted user must add
the new users and passwords for you.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

44

Configuring FTP on Linux and Solaris

To use the default VxWorks configuration and boot VxWorks over the network,
you must have an FTP daemon running on the host that the target is connected to,
and the user ID and password that your VxWorks target uses to identify itself must
be able to be authenticated by the network.

If desired, you can use rsh on Solaris instead of FTP.

Becoming Familiar with the Wind River Registry

The Wind River registry is a service that keeps track of running target servers. The
registry must be running for Workbench tools to communicate with VxWorks
targets. Workbench development tools communicate with the target server using
TCP/IP, which in turn communicates with the VxWorks target over the selected
communication method (such as serial, Ethernet, or TMD). The registry is always
required, independent of the link between the target server and the VxWorks
target.

Workbench starts the default registry automatically, though if required you can
connect to a registry running on a networked host instead (see 19.4.2 Connecting to
the Target, p.259 for details about connecting to other registries).

You can tell that the Wind River registry is running on your host system if:

■ The registry icon is displayed in the Windows system tray.

■ Running the ps command on Linux or Solaris shows wtxregd.ex in the jobs list.

To shut down the registry:

■ Right-click the registry icon in the Windows system tray and select Shutdown.

■ Type killall wtxregd.ex in a Solaris terminal window.

■ Type wrenv.linux -p workbench-2.x wtxregd stop in a Linux terminal
window.

Changing Wind River Registry Daemon Default Behavior

The behavior of the Wind River registry daemon can be changed by updating the
registry default options. These options control the location of the registry daemon
database, log file locations, levels, and timeouts, and so on.

3 Setting Up Your Development Environment
3.2 Configuring Your Cross-Development System

45

3

You can update the registry default options from a terminal window command
line, or by modifying the registry daemon default options configuration file
(installDir/workbench-2.x/foundation/4.x/resource/wtxregd/wtxregd.conf).

For available options and other information about the operation of the registry,
type installDir/workbench-2.x/foundation/4.x/host_type/bin/wtxregd help at a
command line, refer to the wtxregd.conf file, or see the online reference entry for
wtxregd (Help > Help Contents > Wind River Documentation > References >
Host Tools > Wind River Workbench Host Tools API Reference).

Example Usage

Store the Wind River registry daemon database within a user specific directory.
On Windows:

wtxregd -d $(HOME)/registry-db

On UNIX:

wtxregd start -d $(HOME)/registry-db

3.2.2 Verifying Serial Setup and Power

Hardware settings are specific to your target and host. This section describes in
general terms the types of hardware connections you must make to follow the
instructions in this book, but be aware that you may need to make adjustments to
accommodate your specific cross-development system.

Configuring your target hardware may involve the following tasks:

■ Protecting your equipment against electrostatic discharge.

■ Setting switches and jumpers on the target CPU board.

■ Connecting a serial cable and/or an Ethernet cable, if the target supports
networking.

■ Connecting a power supply.

Perform the following general procedures as appropriate for your particular target
hardware. For details, see the target reference for your BSP (such as
installDir/vxworks-6.x/target/config/bspname/target.ref) and the documentation
provided by your target system’s manufacturer.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

46

Protecting Equipment from Electrostatic Discharge (ESD)

You should always discharge the static electricity that may have collected on your
body before you touch integrated circuit boards, including targets and network
interface cards (NICs).

Electrostatic discharge precautions include:

■ touching the metal enclosure of a plugged-in piece of electrical equipment
(such as a PC or a power supply in a metal case)

■ placing your equipment on, or standing on, an anti-static mat

■ wearing an ESD wrist strap

Setting Board Switches and Jumpers

Many CPU and Ethernet controller boards still have configuration options that are
selected by hardware jumpers, although this is less common than in the past. These
jumpers must be set correctly before VxWorks can boot successfully.

You can determine the correct jumper configuration for your target CPU from the
information provided in the target information reference for your BSP, and in the
target system’s documentation.

Connecting a Serial Cable and Configuring the Terminal View

Most targets include at least one on-board serial port. Wind River Workbench
includes a Terminal view that you can use to open a serial connection from within
Workbench, just as you would with any other terminal emulation program such as
hyperterminal, minicom, or telnet.

To configure the Terminal view:

NOTE: If you are using a Wind River ICE or Wind River Probe emulator to connect
to your target, see the Wind River ICE for Wind River Workbench Hardware Reference
or Wind River Probe for Wind River Workbench Hardware Reference for information
about how to connect to your target.

! CAUTION: Failure to take proper ESD precautions can degrade target hardware
over time, leading to intermittent errors or hardware failure.

3 Setting Up Your Development Environment
3.2 Configuring Your Cross-Development System

47

3

1. Stop any other program already using the serial port.

2. If it is not already running, start Workbench.

3. If it is not already visible, open the Terminal view (select
Window > Show View > Terminal).

4. To get a better view of what is happening in the Terminal view, double click on
the tab at the top of the view. The view will expand to fill the Workbench
window.

5. If the default settings shown at the top of the view are correct for your board,
click the green Connect icon. You will see CLOSED turn to OPENED.

If the settings need to be adjusted, click the square Settings button to open the
Terminal Settings dialog. Configure the terminal settings as appropriate for
your system:

Connection Type: Serial
Select this for a connection to a local target. On Linux, if you are not
running your Linux host as a root user, make sure the permissions are set
correctly for you to access the serial port (if you do not have permissions
set correctly, only the NET option is available under Connection Type).

To set permissions, issue one of the following commands (depending on
which port you plan to use):

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

48

$ chmod 666 /dev/ttyS0
$ chmod 666 /dev/ttyS1

Port
Set to the port you are using. Defaults are COM1 on Windows, ttyS0
on Linux, and /dev/cua/a on Solaris.

Baud Rate
Configure the baud rate to match the speed of your connection.

Data Bits
Default on all platforms is 8.

Stop Bits
Default on all platforms is 1.

Parity
Default on all platforms is None.

Flow In
Default on all platforms is None.

Flow Out
Default on all platforms is None.

Connection Type: Network
Select this for a connection to a remote target.

Host
Type in the IP address of the host the target is connected to.

Port
Set to the port you are using. You can select telnet or tgtcons from the
drop-down menu, or you can type in the port number.

6. Click OK to open a connection to your target.

7. To disconnect from your target, click Disconnect.
To reopen the connection with the existing settings, click Connect.

After initially configuring the boot parameters and getting started with VxWorks,
you may wish to configure VxWorks to boot automatically without a terminal.
Refer to the target system hardware documentation for proper connection of the
RS-232 signals.

Connecting a Cable for the Ethernet Connection

Always make sure you use the correct cable:

3 Setting Up Your Development Environment
3.3 Setting Up a Boot Mechanism

49

3

■ when connecting your board directly to your host, use a crossover cable

■ when connecting your board to a LAN, use a non-crossover cable

Connecting A Power Supply

For standalone targets, use the power supply recommended by the board
manufacturer.

3.3 Setting Up a Boot Mechanism

Workbench is shipped with the following VxWorks images, compiled both with
the Wind River Compiler and with the GNU compiler:

vxWorks
vxWorks_rom
vxWorks_romCompress
vxWorks_romResident

In every case, you will need to create your own boot medium.Your board will
require one of the following media:

ROM

Most boards boot from ROMs.

For cases where boot ROMs are used to boot VxWorks, install the appropriate
set of boot ROMs on your target board(s). When installing boot ROMs, be
careful to:

■ Install each device only in the socket indicated on the label.

■ Note the correct orientation of pin 1 for each device.

■ Use anti-static precautions whenever working with integrated circuit
devices. For more information, see Protecting Equipment from Electrostatic
Discharge (ESD), p.46.

! CAUTION: Be sure to follow ESD precautions (see Protecting Equipment from
Electrostatic Discharge (ESD), p.46) whenever working with integrated circuit
boards, including targets and NICs.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

50

Floppy Disk

Some BSPs for systems that include floppy drives use boot diskettes instead of
a boot ROM. For example, Pentium systems usually boot from diskette.

Flash Memory

For boards that support flash memory, the BSP may be designed to write the
boot program there. In such cases, an auxiliary program to write the boot
program into flash memory is supplied by the board vendor.

For specific information on a particular booting method, see
Help > Help Contents > Wind River Documentation > Guides > Operating
System > VxWorks BSP Developer's Guide. Instructions for making a floppy
disk for booting a Pentium target are in the target.ref file for the BSP.

You may also wish to replace a boot ROM, even if it is available, with a ROM
emulator. This is particularly desirable if your target has no Ethernet capability,
because the ROM emulator can be used to provide connectivity at near-Ethernet
speeds. Contact Wind River for information about support for ROM emulators.

3.4 Booting VxWorks

Once you have configured your host software and target hardware, you are ready
to boot VxWorks.

With your target connected to your host and a serial connection open in the
Terminal view, click Connect (see Connecting a Serial Cable and Configuring the
Terminal View, p.46).

3.4.1 Default Boot Process

When you boot VxWorks with the default boot program (from a ROM, a diskette,
or another medium), you must use the boot loader prompt to provide the boot

NOTE: If you are using a VxWorks image configured for a network connection (the
default), you must have an FTP server running on the host where the VxWorks
system image is stored. See Configuring FTP on Windows, p.41 or Configuring FTP on
Linux and Solaris, p.44 for more information.

3 Setting Up Your Development Environment
3.4 Booting VxWorks

51

3

program with information that allows it to find the VxWorks image on the host and
load it onto the target. The default boot program is designed for a networked
target, and needs to have the correct host and target network addresses, the full
path and name of the file to be booted, the user name, and so on.

Unless your target CPU has non-volatile RAM (NV-RAM), you will eventually
find it useful to build a new version of the boot loader that includes all parameters
required for booting a VxWorks image. In the course of developing an application,
you will also build bootable applications

When you power on the target hardware (and each time you reset it), the target
system executes the boot program from ROM; during the boot process, the target
uses its serial port to communicate with your terminal or workstation. The boot
program first displays a banner page, and then starts a seven-second countdown,
visible on the screen as shown in Figure 3-6.

Unless you press any key on the keyboard within that seven-second period, the
boot loader will attempt to proceed with a default configuration, and will not be
able to boot the target with VxWorks.

Figure 3-6 Boot Program Banner Display

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

52

3.4.2 Entering New Boot Parameters

To interrupt the boot process and provide the correct boot parameters, first power
on (or reset) the target; then stop the boot sequence by pressing any key during the
seven-second countdown.

The boot program displays the VxWorks boot prompt:

[VxWorks Boot]:

To display the current (default) boot parameters, type p at the boot prompt:

[VxWorks Boot]: p

A display similar to the following appears; the meaning of each of these
parameters is described in 3.4.4 Description of Boot Parameters, p.55.

boot device : ln
unit number : 0
processor number : 0
host name : mars
file name : c:\temp\vxWorks1

inet on ethernet (e) : 90.0.0.50:ffffff00
inet on backplane (b) :
host inet (h) : 90.0.0.1
gateway inet (g) :
user (u) : fred
ftp password (pw)(blank=use rsh) :secret
flags (f) : 0x0
target name (tn) : phobos
startup script (s) :
other (o) :

This example corresponds to the configuration shown in Figure 3-7. The p
command does not actually display the lines with blank fields, although this
example shows them for completeness.

1. Pre-built VxWorks images are available in
installDir\vxworks-6.x\target\proj\bsp-compiler\default, but in this example the vxWorks
file has been copied to c:\temp.

3 Setting Up Your Development Environment
3.4 Booting VxWorks

53

3

To change the boot parameters, type c at the boot prompt:

[VxWorks Boot]: c

In response, the boot program prompts you for each parameter. If a particular field
has the correct value already, press ENTER. To clear a field, enter a period (.), then
press ENTER. To go back to change the previous parameter, enter a dash (-), then
press ENTER. If you want to quit before completing all parameters, type CTRL+D.

Network information must be entered to match your particular cross-development
system configuration. The Internet addresses must match those in the hosts file on
your system (or those known to your Domain Name Server), as described in
Establishing the VxWorks Target Name and IP Address, p.40.

If your target has non-volatile RAM (NV-RAM), the boot parameters are stored
there and retained even if power is turned off. For each subsequent power-on or
system reset, the boot program uses these stored parameters for the automatic boot
configuration.

3.4.3 Boot Program Commands

The VxWorks boot program provides a limited set of commands. To see a list of
available commands, type either h or ? at the boot prompt, followed by ENTER:

[VxWorks Boot]: ?

Figure 3-7 Boot Configuration Example

TARGET

phobos

HOST

mars

90.0.0.50:ffffff0090.0.0.1

c:\temp\vxWorks

user: fred

Ethernet

90.0.0.x subnet

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

54

Table 3-1 describes each of the VxWorks boot commands and their arguments.

Table 3-1 VxWorks Boot Commands

Command Description

h Help command—print a list of available boot commands.

? Same as h.

@ Boot (load and execute file) using the current boot
parameters.

p Print the current boot parameter values.

c Change the boot parameter values.

l Load the file using current boot parameters, but without
executing.

g adrs Go to (execute at) hex address adrs.

d adrs[, n] Display n words of memory starting at hex address adrs. If n
is omitted, the default is 64.

m adrs Modify memory at location adrs (hex). The system prompts
for modifications to memory, starting at the specified
address. It prints each address, and the current 16-bit value
at that address, in turn. You can respond in one of several
ways:

ENTER: Do not change that address, but continue prompting
at the next address.

number: Set the 16-bit contents to number.

. (dot): Do not change that address, and quit.

f adrs, nbytes, value Fill nbytes of memory, starting at adrs with value.

t adrs1, adrs2, nbytes Copy nbytes of memory, starting at adrs1, to adrs2.

s [0 | 1] Turn the CPU system controller ON (1) or OFF (0) (only on
boards where the system controller can be enabled by
software).

e Display a synopsis of the last occurring VxWorks exception.

3 Setting Up Your Development Environment
3.4 Booting VxWorks

55

3

3.4.4 Description of Boot Parameters

Each of the boot parameters is described below, with reference to the example in
3.4.2 Entering New Boot Parameters, p.52. The letters in parentheses after some
parameters indicate how to specify the parameters in the command line boot
procedure described in 3.4.6 Alternate Boot Methods, p.59.

boot device
The type of device to boot from. This must be one of the drivers included in the
boot loader (for example, enp for a CMC controller). Due to limited space in
the boot media, only a few drivers can be included. A list of included drivers
is displayed at the console (type ? or h).

unit number
The unit number of the boot device, starting at zero.

processor number
A unique numerical target identifier for systems with multiple targets on a
backplane. The backplane master must have its processor number set to zero.
For boards not connected to a backplane, a value of zero is typically used but
is not required.

host name
The name of the host machine to boot from. This is the name by which the host
is known to VxWorks; it need not be the name used by the host itself. (The host
name is mars in the example of 3.4.2 Entering New Boot Parameters, p.52.)

file name
The full pathname of the VxWorks image to be booted (c:\temp\vxWorks in
the example). This pathname is also reported to the host when you start a
target server, so that it can locate the host-resident image of VxWorks. The
pathname is limited to a 160 byte string, including the null terminator.2

inet on ethernet (e)
The Internet Protocol (IP) address of a target system Ethernet interface, as well
as the subnet mask used for that interface. The address consists of the IP
address, in dot decimal format, followed by a colon, followed by the mask in

v Display BSP and boot ROM version.

N Set Ethernet address.

Table 3-1 VxWorks Boot Commands (cont’d)

Command Description

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

56

hex format (here, 90.0.0.50:ffffff00). For more information about working with
IP addresses, see Establishing the VxWorks Target Name and IP Address, p.40.

inet on backplane (b)
The Internet address of a target system with a backplane interface (blank in the
example).

host inet (h)
The Internet address of the host to boot from (90.0.0.1 in the example).

gateway inet (g)
The Internet address of a gateway node for the target if the host is not on the
same network as the target (blank in the example).

user (u)
The user ID that VxWorks uses to access the host for the purpose of loading the
VxWorks image file specified by the filename boot parameter (fred in the
example); use the user name you created in Configuring FTP on Windows, p.41.
That user must have permission to read the VxWorks boot-image file.

On a Windows host, the user must have FTP access to that host. On a UNIX
host, the user must have FTP or rsh access. The ftp password boot parameter
described below controls how the boot loader accesses the host. For rsh, the
user must be granted access by adding the user ID to the host's /etc/host.equiv
file, or more typically to the user's .rhosts file (~userName/.rhosts).

ftp password (pw)
The user password used by the boot loader to access the host using FTP for the
purpose of boot loading the file specified by the filename boot parameter. Use
the password you created in Configuring FTP on Windows, p.41.

2. If the same pathname is not suitable for both host and target—for example, if you boot from
a disk attached only to the target—you can specify the host path separately to the target
server, using the -c filename option in the Advanced Target Server Options field of the
New Target Server Connection dialog.

NOTE: This field is not required by the boot program, but you must supply it
to boot over the network from a Windows host. Without it, the boot loader
attempts to load the run-time system image using a protocol based on the
UNIX rsh utility, which is not available for Windows hosts. So an FTP
password is required, but only for host access during boot loading.

3 Setting Up Your Development Environment
3.4 Booting VxWorks

57

3

flags (f)
Configuration options specified as a numeric value that is the sum of the
values of selected option bits defined below. (This field is zero in the example
because no special boot options were selected.)

target name (tn)
The name of the target system to be added to the host table (here, phobos).

startup script (s)
If the kernel shell is included in the downloaded image, this parameter allows
you to pass to it the path and filename of a startup script to execute after the
system boots. A startup script file can contain only the shell’s C interpreter
commands. This parameter can also be used to specify process-based
applications to run automatically at boot time, if VxWorks has been configured
with the appropriate components. See VxWorks Application Programmer’s
Guide: Applications and Processes and Target Tools.

other (o)
This parameter is generally unused and available for applications (blank in the
example). It can be used when booting from a local SCSI disk to specify a
network interface to be included.

0x01 = Do not enable the system controller, even if the processor number is 0.
(This option is board specific; refer to your target documentation.)

0x02 = Load all VxWorks symbolsa, instead of just globals.
0x04 = Do not auto-boot.
0x08 = Auto-boot fast (short countdown).
0x20 = Disable login security.
0x40 = Use BOOTP to get boot parameters.
0x80 = Use TFTP to get boot image.
0x100 = Use proxy ARP.
0x200 = Use WDB agent.
0x400 = Set system to debug mode for the error detection and reporting facility

(depending on whether you are working on kernel modules or user
applications, for more information see the VxWorks Kernel Programmer’s
Guide: Error Detection and Reporting or the VxWorks Application
Programmer’s Guide: Error Detection and Reporting).

a. Loading a very large group of symbol can cause delays of up to several minutes while
Workbench loads the symbols. For information about how to specify the size of the
symbol batch to load, click in the Debug view and press the help key for your host.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

58

3.4.5 Booting With New Parameters

After entering the boot parameters, initiate booting by typing the @ command:

[VxWorks Boot]: @

Figure 3-8 shows a typical VxWorks boot display. The VxWorks boot program
prints the boot parameters, and the downloading process begins.

The following information is displayed during the boot process:

■ The boot program first initializes its network interfaces.

■ After the system is completely loaded, the boot program displays the entry
address and transfers control to the loaded VxWorks system.

■ When VxWorks starts up, it begins just as the boot ROM did, by initializing its
network interfaces; the network-initialization messages appear again,
sometimes accompanied by other messages about optional VxWorks facilities.

Figure 3-8 VxWorks Booting Display

3 Setting Up Your Development Environment
3.4 Booting VxWorks

59

3

■ After this point, VxWorks is up and ready to attach to the Wind River
Workbench tools.

■ The boot display may be useful for troubleshooting. The following hints refer
to Figure 3-8. For more troubleshooting ideas, see 25.5 Troubleshooting VxWorks
Configuration Problems, p.355.

– If Attaching network interface is displayed without the corresponding
done, verify that the system controller is configured properly and the
network interface card is properly jumpered. This error may also indicate
a problem with the network driver in the newly loaded VxWorks image.

– If Loading... is displayed for more than 30-45 seconds without the size of
the VxWorks image appearing, this may indicate problems with the
Ethernet cable or connection, or an error in the network configuration (for
example, a bad host or gateway Internet address).

– If the line Starting at is printed and there is no further indication of
activity from VxWorks, this generally indicates there is a problem with the
boot image.

3.4.6 Alternate Boot Methods

To boot VxWorks, you can also use the command line, take advantage of
non-volatile RAM, or create new boot programs for your target.

Command Line Parameters

Instead of being prompted for each of the boot parameters, you can supply the
boot program with all the parameters on a single line at the boot prompt
([VxWorks Boot]:) beginning with a dollar sign character (“$”). For example:

$ln(0,0)mars:c:\temp\vxWorks e=90.0.0.50 h=90.0.0.1 u=fred pw=…

The order of the assigned fields (those containing equal signs) is not important.
Omit any assigned fields that are irrelevant. The codes for the assigned fields
correspond to the letter codes shown in parentheses by the p command. For a full
description of the format, see the reference entry for bootParseLib.

This method can be useful if your workstation has programmable function keys.
You can program a function key with a command line appropriate to your
configuration.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

60

Non-volatile RAM (NV-RAM)

As noted previously, if your target CPU has non-volatile RAM (NV-RAM), all the
values you enter in the boot parameters are retained in the NV-RAM. In this case,
you can let the boot program auto-boot without having a terminal program
connected to the target system.

Customized Boot Programs

See the VxWorks Kernel Programmer’s Guide for instructions on creating a new boot
program for your boot media, with parameters customized for your site. With this
method, you no longer need to alter boot parameters before booting.

BSPs Requiring TFTP on the Host

Some Motorola boards that use Bug ROMs and place boot code in flash require the
TFTP protocol on the host in order to burn a new VxWorks image into flash.
Workbench ships with a version of TFTP. See your target system documentation on
how to burn flash for these boards.

3.4.7 Rebooting VxWorks

When VxWorks is running, there are several ways you can reboot it. Rebooting by
any of these means restarts the attached target server on the host as well:

■ Entering CTRL+X in the Terminal view (other Windows terminal emulators do
not pass CTRL+X to the target, because of its standard Windows meaning.)

■ Invoking reboot() from the host shell.

■ Pressing the reset button on the target system.

■ Turning the target’s power off and on.

When you reboot VxWorks in any of these ways, the auto-boot sequence begins
again from the countdown.

! CAUTION: Be sure to follow ESD precautions (see Protecting Equipment from
Electrostatic Discharge (ESD), p.46) whenever working with integrated circuit
boards, including targets and NICs.

3 Setting Up Your Development Environment
3.5 Configuring Host-Target Communication for Workbench

61

3

3.5 Configuring Host-Target Communication for Workbench

If you are developing applications, an Ethernet connection is the easiest to set up
and use, since most VxWorks targets already use the network (for example, to
boot), so no additional target set-up is required. Furthermore, a network interface
is typically a board’s fastest physical communication channel.

If you need a JTAG or other emulator connection, see the Wind River ICE for
Wind River Workbench Hardware Reference or the Wind River Probe for Wind River
Workbench Hardware Reference for information about making emulator connections
to your target.

The next few sections describe the setup of Ethernet and serial line connections
within Workbench.

3.5.1 Ethernet Connections

When VxWorks is configured and built with a network interface for the target
agent (the default configuration), the target server can connect to the target agent
using the default wdbrpc back end.

The target agent can receive requests over any device for which a VxWorks
network interface driver is installed. The typical case is to use the device from
which the target was booted; however, any device can be used by specifying its IP
address to the target server.

Connecting to the Target Server

You can connect the target server to the agent by following these steps:

1. Click the Create a new target connection icon in the Target Manager toolbar.

NOTE: If you experience problems when using Workbench tools with a hardware
platform with a new Ethernet driver/chipset, it is highly recommended that you
use the WDB agent over a different communications link (such as serial or the
JTAG Transparent Mode Driver) to isolate if the driver is the source of the problem.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

62

The Connection Type dialog appears.

2. Select Wind River VxWorks 6.x Target Server Connection then click Next.
The Target Server Options dialog appears.

3 Setting Up Your Development Environment
3.5 Configuring Host-Target Communication for Workbench

63

3

3. Select the wdbrpc back end, and type in the name or IP address of the target
(you may specify a name only if you added it to your hosts file in Establishing
the VxWorks Target Name and IP Address, p.40).

4. In the Advanced Target Server Options section, select the Verbose target
server output.

Your command line should look like this:

tgtsvr -V -R C:/installDir/workspace -RW ipaddress

5. Click Next through the next few screens, then click Finish. Your new target
server connection definition will appear in the Target Manager connection list,
along with the simulator connection definition you created in 2.3.5 Creating a
Connection Definition to the VxWorks simulator, p.17.

The Immediately connect to target if possible box is selected by default, so if
your target booted successfully in Booting With New Parameters, p.58, the Target
Manager will attempt to connect to your target.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

64

6. If everything is set up properly, you will see connected - target server running
at the bottom of the Workbench window. If you have problems connecting, see
Troubleshooting VxWorks Configuration Problems, p.355.

3.5.2 Serial-Line Connections

A minimal cross-development configuration is one in which the standalone target
is connected to the host development system by a single serial line. For a
configuration of this sort, use a combination of a boot mechanism that does not
require a network and an alternative Workbench communications back end.

Workbench can operate over a raw serial connection between the host and target
systems, and can operate on non-networked systems, but this type of connection
is very slow and may not be practical for real-world debugging.

When you connect the host and target exclusively over serial lines, you must:

■ Configure and build a boot program to download over the serial connection,
or build an image that boots directly from on-board Flash/ROM memory.

■ Reconfigure and rebuild VxWorks with a target agent configuration for a serial
connection.

■ Configure and start a target server for a serial connection.

A raw serial connection has some advantages over an IP connection. The raw serial
connection allows you to scale down the VxWorks system (even during
development) for memory-constrained applications that do not require
networking: you can remove the VxWorks network code from the target system.

When working over a serial link, use the fastest possible line speed. The
Workbench tools—especially the debugger—make it easy to set up system
snapshots that are periodically refreshed. Refreshing such snapshots requires
continuing traffic between host and target. On a serial connection, the line speed

3 Setting Up Your Development Environment
3.5 Configuring Host-Target Communication for Workbench

65

3

can be a bottleneck in this situation. If your Workbench tools seem unresponsive
over a serial connection, try turning off periodic updates in the browser, or else
closing any debugger displays you can spare.

Configuring the Target Agent For Serial Connection

To configure the target agent for a raw serial communication connection,
reconfigure and rebuild VxWorks with a serial communication interface for the
target agent (see the VxWorks Programmer’s Guide for details).

Configuring the Boot Program for Serial Connection

When you connect the host and target exclusively over serial lines, you must
configure and build a boot program for the serial connection because the default
boot configuration uses an FTP download from the host.

Testing the Connection

Be sure to use the correct kind of cable to connect your host and target. Use a
simple Tx/Rx/GND serial cable because the host serial port is configured not to
use handshaking. Many targets require a null-modem cable; consult the target
system’s documentation. Configure your host system serial port for a full-duplex
(no local echo), 8-bit connection with one stop bit and no parity bit. The line speed
must match whatever is configured into your target agent.

Before trying to attach the target server for the first time, test that the serial
connection to the target is good. To help verify the connection, the target agent
sends the following message over the serial line when it boots (with
WDB_COMM_SERIAL):

WDB READY

To test the connection, attach a terminal emulator to the target-agent serial port,
then reset the target (see Connecting a Serial Cable and Configuring the Terminal View,
p.46). If the WDB READY message does not appear, or if it is garbled, check the
configuration of the serial port you are using on your host.

As a further debugging aid, you can also configure the serial-mode target agent to
echo all characters it receives over the serial line. This is not the default
configuration, because as a side effect it stops the boot process until a target server

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

66

is attached. If you need this configuration in order to set up your host serial port,
edit installDir\vxworks-6.x\target\config\comps\src\wdbSerial.c.

Look for the following lines:

#ifdef INCLUDE_WDB_TTY_TEST
{

#if WDB_TTY_ECHO == TRUE
int waitChar = 0333;

#else /* WDB_TTY_ECHO == FALSE */
int waitChar = 0;

#endif /* WDB_TTY_ECHO == TRUE */

#ifdef INCLUDE_KERNEL
/* test in polled mode if the kernel hasn't started */

if (taskIdCurrent == 0)
wdbSioTest (pSioChan, SIO_MODE_POLL, waitChar);
else
wdbSioTest (pSioChan, SIO_MODE_INT, waitChar);

#else /* INCLUDE_KERNEL */
wdbSioTest (pSioChan, SIO_MODE_POLL, waitChar);

#endif /* INCLUDE_KERNEL */
}

#endif /* INCLUDE_WDB_TTY_TEST */

In each call to wdbSioTest(), change waitChar to 0300.

With this configuration, attach any terminal emulator on the host to the COM port
connected to the target to verify the serial connection. When the serial-line settings
are correct, whatever you type to the target is echoed as you type it.

Connecting to the Target Server

After successfully testing the serial connection, you can connect the target server
to the agent by following steps similar to those in Connecting to the Target Server,
p.61:

1. Close the serial port that you opened for testing (if you do not close the port,
it will be busy when the target server tries to use it).

2. Click the Create a new target connection icon in the Target Manager toolbar.
The Connection Type dialog appears.

NOTE: This configuration change also prevents the target from completing its boot
process until a target server attaches to it. Thus, it is best to change the
wdbSioTest() calls back to the default as soon as you verify that the serial line is
set up correctly.

3 Setting Up Your Development Environment
3.6 Troubleshooting VxWorks Problems

67

3

3. Select Wind River VxWorks 6.x Target Server Connection then click Next.
The Target Server Connection dialog appears.

4. Select the wdbserial back end, and type in the name or IP address of the target
(you may specify a name only if you added it to your hosts file in Establishing
the VxWorks Target Name and IP Address, p.40).

5. In the Advanced Target Server Options section, select Verbose target
server output, then specify the communications port with -d, and also specify
the line speed to match the speed configured into your target. Your command
line should look like this:

tgtsvr -V -d comport -bps speed -B wdbserial ipaddress

6. Click Next through the next few screens, then click Finish. Your new target
server connection definition will appear in the Target Manager connection list.

7. Select the target server definition you just created, then click the Connect icon.
If everything is set up properly, you will see connected - target server running
after the target server connection. If you have problems connecting, see
Troubleshooting VxWorks Configuration Problems, p.355.

3.6 Troubleshooting VxWorks Problems

If you encountered problems booting or exercising VxWorks, there are many
possible causes. Read 25.5 Troubleshooting VxWorks Configuration Problems, p.355
before contacting Wind River customer support. Often, you can locate the problem
just by rechecking the installation steps and your hardware configuration.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

68

69

PAR T II

Projects

4 Projects Overview .. 71

5 Creating VxWorks Image Projects 87

6 Creating Boot Loader Projects 103

7 Creating VxWorks ROMFS File System Projects 109

8 Creating VxWorks Real-time Process Projects 113

9 Creating VxWorks Shared Library Projects 123

10 Creating VxWorks Downloadable Kernel Module Projects 133

11 Creating User-Defined Projects 143

12 Creating Native Application Projects 151

13 Working in the Project Navigator 161

14 Advanced Project Scenarios 171

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

70

71

 4
Projects Overview

4.1 Introduction 71

4.2 Workspace/Project Location 72

4.3 Creating New Projects 73

4.4 Overview of Preconfigured Project Types 74

4.5 Projects and Project Structures 80

4.6 Project-Specific Execution Environments 83

4.1 Introduction

Workbench uses projects as logical containers and as building blocks that can be
linked together to create a software system. The Project Navigator lets you, among
other things, visually organize projects into structures that reflect their inner
dependencies, and therefore the order in which they are compiled and linked.

Pre-configured templates for various project types allow you to create or import
projects using simple wizards that need only minimal input.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

72

4.2 Workspace/Project Location

Wind River Workbench cannot know where your source files are located, so it
initially suggests a default workspace directory within the installation directory.
However, this is not a requirement, or even necessarily desirable. If you use a
workspace directory outside of the Workbench installation tree this ensures that
the integrity of your projects is preserved after product upgrades or installation
modifications.

Normally, you would set your workspace directory at the root of your existing
source code tree and create your Workbench projects there. For multiple, unrelated
source code trees, you can use multiple workspaces.

Some considerations when deciding where to create your project:

Create project in workspace
Leave this selected if you want to create the project under the current
workspace directory. This is typical for:

– Projects created from scratch with no existing sources.

– Projects where existing sources will be imported into them later on (for
details, see Adding Application Code to Projects, p.162).

– Projects where you do not have write permission to the location of your
source files.

Create project at external location
Select this option, click Browse, then navigate to a different location if you
want to create the project outside the workspace. This is typical for:

– Projects being set up for already existing sources, removing the need to
import or link to them later on.

– Projects being version-controlled, where sources are located outside the
workspace.

Create project in workspace with content at external location
Select this option, click Browse, then navigate to your source location if you do
not want to mix project files with your sources, or copy sources into your
workspace. This is useful for:

– Projects where you do not have write permission to the location of your
source files.

– Projects where team members have their own projects, but share common
(sometimes read-only) source files. This option eliminates the need to

4 Projects Overview
4.3 Creating New Projects

73

4

create symbolic links to your external files before you can work with them
in Workbench.

4.3 Creating New Projects

Although you can create projects anywhere, you would generally create them in
your workspace directory (see 4.2 Workspace/Project Location, p.72). If you follow
this recommendation, there will generally be no need to navigate out of the
workspace when you create projects. Note that if you do create projects outside the
workspace, you must have write permission at the external location because
Workbench project administration files are written to this location.

To create a new project, click the toolbar icon or select File > New > Wind River
Workbench Project to open the New Wind River Workbench Project wizard. It
will help you create one of the pre-configured project types. You can also select the
specific type of project you want to create by clicking the toolbar icon or by
selecting File > New > ProjectType. For more information about these projects, see
Overview of Preconfigured Project Types, p.74.

To create one of the demonstration sample projects, select File > New > Example
to open the New Example wizard. Each comes with instructions explaining the
behavior of the program.

Whichever menu command you choose, a wizard will guide you through the
process of creating the specific type of project you select. For step-by-step
descriptions of how to create projects of each type, see the following chapters:

■ 5. Creating VxWorks Image Projects
■ 6. Creating Boot Loader Projects
■ 7. Creating VxWorks ROMFS File System Projects
■ 8. Creating VxWorks Real-time Process Projects
■ 9. Creating VxWorks Shared Library Projects
■ 10. Creating VxWorks Downloadable Kernel Module Projects
■ 11. Creating User-Defined Projects
■ 12. Creating Native Application Projects

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

74

4.3.1 Subsequent Modification of Project Creation Wizard Settings

All project creation wizard settings can be modified in the Project Properties once
the project exists. To access the Project Properties from the Project Navigator,
right-click the icon of the project you want to modify and select Properties. For
more information about project properties, see 16.4 Accessing Build Properties,
p.214.

Project structural settings (sub- and superproject context of the project you are
creating) can be most easily modified in the Project Navigator by
dragging-and-dropping project folders into or outside other folders.

4.3.2 Projects and Application Code

All application code is managed by projects of one type or another. You can import
an existing Workbench-compatible project as a whole, or you can add new or
existing source code files to your projects. For more information, select File >
Import to open the Import File dialog and press the help key for your host.

4.4 Overview of Preconfigured Project Types

Different types of projects are used for different purposes. Workbench supports a
number of such project types, each of which will be discussed in more detail in
later chapters. This section contains a brief overview of the available project types.

In the Project Navigator, you can identify the project type by its icon.

Table 4-1 Project Type Icons

Icon Project Type

VxWorks Image Project

VxWorks Boot Loader Project

VxWorks Downloadable Kernel Module Project

VxWorks Real-time Process Project

4 Projects Overview
4.4 Overview of Preconfigured Project Types

75

4

4.4.1 Workbench Sample Projects

A good place to start exploring the sample projects is 2. Wind River Workbench
Tutorials. The tutorials use sample projects to walk you through many aspects of
Workbench and shows you some of the project types introduced below.

4.4.2 VxWorks Image Project

Use a VxWorks Image project to configure (customize/scale) and build a VxWorks
kernel image to boot your target. By adding a VxWorks ROMFS File System project
and kernel modules, applications, libraries, and data files, you can link a complete
system into a single image.

A new VxWorks Image project can be based either on an existing project of the
same type, or on a Board Support Package. For more information, please see 5.7 Notes
on Board Support Packages (BSPs), p.100.

Refer to 5. Creating VxWorks Image Projects for more information on working with
this type of project.

VxWorks Shared Library Project

VxWorks ROMFS File System Project

User-Defined Project

Native Application Project

Table 4-1 Project Type Icons (cont’d)

Icon Project Type

NOTE: This manual does not discuss Middleware Component projects, as they are
only functional if you have licensed the Wind River VxWorks Platforms product.
For more information about these projects, see the documentation for your
run-time technologies products.

This manual also does not discuss Standalone Application Projects, as they are
only functional if you have licensed the Wind River On-Chip Debugging
product. For more information about these projects, see Wind River Workbench
On-Chip Debugging Guide: Using the OCD Standalone Project Wizard.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

76

4.4.3 VxWorks Boot Loader Project

Use a VxWorks Boot Loader project to create a VxWorks boot loader (also referred to
as the VxWorks boot ROM) to boot load a target with the VxWorks kernel.

Boot loaders are used in a development environment to load a VxWorks image that
is stored on a host system, where VxWorks can be quickly modified and rebuilt.
Boot loaders are also used in production systems where both the boot loader and
operating system image are stored on a disk.

Boot loaders are not required for standalone VxWorks systems stored in ROM.

Refer to 6. Creating Boot Loader Projects for more information on working with this
type of project.

4.4.4 VxWorks Downloadable Kernel Module Project

Use Downloadable Kernel Module projects to manage and build modules that will
exist in the kernel space. You can separately build the modules, run, and debug
them on a target running VxWorks, loading, unloading, and reloading on the fly.
Once your development work is complete, the modules can be statically linked
into the kernel, or they can use a file system if one is present (see 4.4.7 VxWorks
ROMFS File System Project, p.78). Figure 4-1 illustrates a situation without a file
system on the target.

Figure 4-1 Downloadable Kernel Modules: Overview

.wrproject

*.c, *.cpp

*.h

*.o. *.out

Makefile Kernel

HOST TARGET

modules Kernel
including
statically
linked
modules

TARGET

Cross-development Final Product

Target
Server

4 Projects Overview
4.4 Overview of Preconfigured Project Types

77

4

Kernel-mode development is the traditional VxWorks method of development; all
the tasks you spawn run in an unprotected environment, and all have full access
to the hardware in the system.

A Downloadable Kernel Module that is linked into the kernel is a bootable
application that starts when the target is booted.

Refer to 10. Creating VxWorks Downloadable Kernel Module Projects for more
information on working with this type of project.

4.4.5 VxWorks Real-time Process Project

Use VxWorks Real-time Process projects to manage and build executables that will
exist outside the kernel space. You can separately build, run, and debug the
executable.

At run-time, the executable file is downloaded to a separate process address space
to run as an independent process. A Real-time Process binary can be stored on a
target-side file system such as ROMFS, see 7. Creating VxWorks ROMFS File System
Projects.

Figure 4-2 shows how executables, when loaded into a Real-time Process, run as a
separate entity from the kernel.

Refer to 8. Creating VxWorks Real-time Process Projects, 17.6 Executables that
Dynamically Link to Shared Libraries, p.229, and 18. RTPs and Shared Libraries from
Host to Target for more information on working with this type of project.

Figure 4-2 Real-time Processes: Overview

.wrproject

*.c, *.cpp

*.h

*.o. *.vxe
Makefile Kernel

HOST TARGET

RTP

Cross-development Final Product

Target
Server

Kernel
[+modules]

TARGET

RTP

File System

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

78

4.4.6 VxWorks Shared Library Project

Use VxWorks Shared Library projects for libraries that are dynamically linked to
VxWorks Real-time Process projects at run-time. Like the Real-time Process project,
you will need to store the shared library on a target-side file system, which you can
create using 4.4.7 VxWorks ROMFS File System Project, p.78. You can also use
VxWorks Shared Library projects to create subprojects that are statically linked into
other project types at build time.

Refer to 9. Creating VxWorks Shared Library Projects, 17.6 Executables that
Dynamically Link to Shared Libraries, p.229, and 18. RTPs and Shared Libraries from
Host to Target for more information on working with this type of project.

4.4.7 VxWorks ROMFS File System Project

Use a VxWorks ROMFS File System project as a subproject of any other project type
that requires target-side file system functionality.

So, for example, you may not need a file system project for Downloadable Kernel
Module projects (which can be linked to the VxWorks kernel directly, see
10. Creating VxWorks Downloadable Kernel Module Projects for details), but you will
need to create one for other project types.

This project type is designed for bundling applications and other files, of any type,
with a VxWorks system image in a ROMFS file system. No storage media is
required beyond that used for the VxWorks boot image. Therefore, no other file
system is required to store files; systems can be fully functional without recourse
to local or NFS drives, RSH or FTP protocols, and so on. Note that the name
ROMFS has nothing to do with ROM media. It stands for Read Only Memory File
System.

Refer to 7. Creating VxWorks ROMFS File System Projects for more information on
working with this type of project.

4 Projects Overview
4.4 Overview of Preconfigured Project Types

79

4

4.4.8 User-Defined Projects

User-Defined projects assume that you are responsible for setting up and
maintaining your own build system, file system population, and so on. The user
interface nevertheless provides support for the following:

■ You can configure the build command used to launch your build utility;
this allows you to start builds from the Workbench GUI.

■ You can create build targets in the Project Navigator that reflect rules in
your makefiles; this allows you to select and build any of your make rules
directly from the Project Navigator.

■ You can view build output in the Build Console.

Refer to 11. Creating User-Defined Projects for more information on working with
this type of project.

4.4.9 Native Application Project

Use a Native Application project for C/C++ applications developed for your host
environment. Wind River Workbench provides build and static analysis support
for native GNU 2.9x, GNU 3.x, and Microsoft development utilities (assembler,
compiler, linker, archiver). There is no debugger integration for such projects in
Workbench, so you have to use the appropriate native tools for debugging.

Figure 4-3 VxWorks ROMFS File System: Overview

.wrproject

*.c, *.cpp

*.h

*.o. *.vxe
Makefile Kernel

HOST TARGET

RTP

Cross-development Final Product

Target
Server

TARGET

 File System

RTP +
Shared Libs
(*.so) *.*

Kernel
[+modules]

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

80

4.5 Projects and Project Structures

All individual projects of whatever type are self-contained units that have no
inherent relationship with any other projects. The system is initially flat and
unstructured. You can, however, construct hierarchies of project references within
Workbench. These hierarchies will reflect inter-project dependencies and therefore
also the build order.

When you attempt to create such hierarchies of references, this is validated by
Workbench; that is, if a certain project type does not make sense as a subproject of
some other project type, or even the same project type, such a reference will not be
permitted.

4.5.1 Adding Subprojects to a Project

Workbench provides several ways to create a subproject/superproject structure:

■ You can drag-and-drop project nodes in the Project Navigator. This is the
easiest way to set up a structure among existing projects. Select the project that
you want to make into a subproject and drag it onto its new parent
(superproject).

■ You can use the Add as Project Reference dialog. In the Project Navigator,
right-click the project that you want to make into a subproject and choose
References > Add as Project Reference, or select the project and choose
Project > Add as Project Reference. In the dialog, you will see a list of valid
superprojects; you can select more than one.

■ You can use the Project References page in the Properties dialog. In the
Project Navigator, right-click the project that you want to make into a
superproject and choose Properties, or select the project and choose
Project > Properties. Then select Project References. In the dialog, you will
see a list of projects; select the ones that you want to make into subprojects.

Subprojects appear as a subnodes of their parents (superprojects); see Figure 4-4
and Figure 4-5.

Workbench validates subproject/superproject relationships based on project type
and target operating system. It does not allow you to create certain combinations.
For example, a Real-time Process project cannot be a direct subproject of a
VxWorks Image project (but it can be added to a ROMFS File System project). In
general, a user-defined project can be a subproject or superproject of any other
project with a compatible target operating system.

4 Projects Overview
4.5 Projects and Project Structures

81

4

For additional information about project structure, see 14.4 Complex Project
Structures, p.174.

Removing Subprojects

To undo a subproject/superproject relationship, use one of these methods:

■ In the Project Navigator, right-click the subproject and choose References >
Remove Project Reference, or select the subproject and choose
Project > Remove Project Reference.

■ In the Project Navigator, right-click the superproject and choose Properties, or
select the superproject and choose Project > Properties. Then select Project
References and uncheck the subprojects that you want to disassociate from
their current parent.

4.5.2 Project Structures and Host File System Directory Structure

A tree of directories has only one Workbench project at the top, all subdirectories
will automatically be included in this project. Do not attempt to create project
hierarchies by creating projects for subdirectories in a tree. This will result in
overlapping projects, which is not permissible.

Figure 4-4 illustrates an ideal host file system directory structure.

Figure 4-4 Workspace/Directory Structure and Project Structure

Physical Logical

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

82

This flat system, on the left, maps to the project structure displayed on the right,
which also represents the ideal (recommended) basic project structure (you may
not need all the project types displayed).

The illustrated project structure is achieved as follows:

1. Create a project for each of the directories on the left.

2. In the Project Navigator, drag and drop the individual projects into place.

4.5.3 Project Structures and the Build System

As you can see in Figure 4-4, project structures are logical, not physical,
hierarchies. These hierarchies define and reflect the inner dependencies between
projects, and therefore also the order in which they have to be built.

Figure 4-5 illustrates the build order in this project structure.

The build starts at the top of the structure, recursively checks dependencies in each
branch, and builds all out-of-date objects and targets at each leaf, until it finishes
at the top of the tree.

Assuming that everything in Figure 4-5 needs to be built, the build order will be:

1. DKM _1

NOTE: All references in this section to build and the build system assume that your
projects use Workbench build support. Your user-defined projects are not
automatically included in these descriptions, though it is possible to integrate
custom projects into such a system.

Figure 4-5 Build Order in Project Structures

4 Projects Overview
4.6 Project-Specific Execution Environments

83

4

2. SL

3. RTP_1

4. (SL already built in 2 above.)

5. RTP_2

6. FS

7. VIP_1

4.5.4 Project Structures and Sharing Subprojects

Project structures can share subprojects. That is, a single physical project can be
referenced by (dragged and dropped into) any number of logical project
structures.

The products of any update or build of a subproject, or element thereof, will be
available to project structures that reference that subproject.

4.5.5 Customizing Build Settings for Shared Subprojects

A single file system folder can be imported into multiple logical project structures,
appearing as a subproject of each one. In each case, you can assign a different build
specification (known as a build spec) depending on what is required by each project.

A folder can also be assigned several different build specs within the same project.

Later, when you set a particular active build spec for the project as a whole, the sub
folder that is assigned the same build spec will be included in the build, while
others assigned different build specs will be excluded. See 17.5 Architecture-Specific
Implementation of Functions, p.228 for an example.

4.6 Project-Specific Execution Environments

If your development process requires you to maintain different build and external
tool execution environments for each of your projects, Workbench allows you to

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

84

create a project.properties file within each project that define which tools, tool
versions, and environment variable settings should be used for each one.

You can share the project.properties file with your team to maintain consistency,
and you should add it to source control along with your other project files.

1. In the Project Navigator, right-click your project, then select New > File.

2. In the New File dialog, create or link to a project.properties file:

■ To create a new file, type project.properties in the File name field, then
click Finish.

■ To link to an existing project.properties file, click Advanced, then select
Link to file in the file system. Type in the path or navigate to the file, then
click Finish.

3. The new project.properties file appears under your project in the Project
Navigator, and opens in the Editor so you can add or edit its content.

4. The project.properties file uses the same syntax as other properties files used
by wrenv (such as install.properties and package.properties). For more
information about wrenv syntax and options, see VxWorks Command Line Tools
User’s Guide: Creating a Development Shell with wrenv.

As an example of what you can specify, the following lines define an extension
to the workbench package, adding the variable PROJECT_CONTEXT to the
environment with the value of set:

projectprops.name=projectprops
projectprops.type=extension
projectprops.subtype=projectprops
projectprops.version=0.0.1
projectprops.compatible=[workbench,,2.6]
projectprops.eval.01=export PROJECT_CONTEXT=set

NOTE: When sharing files with a team, or accessing them from a common
location, it is advisable to use a path variable instead of an absolute path since
each team member’s path to the location may be different.

To define a path variable, click Variables, then click New, then type a Name for
the path variable and the location it represents (or click File or Folder to
navigate to it). Click OK twice to return to the New File dialog; your path
variable and its resolved location appear at the bottom of the dialog. Click
Finish.

4 Projects Overview
4.6 Project-Specific Execution Environments

85

4

5. To find the information you will need to create your own extension, find the
project’s platform by looking to the right of your project’s name in the Project
Navigator (for example, it might say Wind River VxWorks 6.4).

6. Open your installDir/install.properties file and look for the section listing the
platform information. This is the type, subtype, and other information you
must include to identify the package you want to extend.

7. Workbench uses the project properties specified in this file whenever you
build a target in the project. To apply the project properties from the command
line, include the -i option for both the project.properties and
install.properties files when invoking wrenv.

-i installDir/install.properties -i installDir/workspace/myproject/project.properties

In both cases, the environment for make is altered to include the environment
and properties specified in the file.

4.6.1 Using a project.properties file with a Shell

The Project > Open Shell menu item also takes advantage of the settings you
specified in the project.properties file. This action is context sensitive, so the
opened shell sets the environment of the selected project’s platform, plus the
extension from the properties file if one exists. If you did not have a project selected
before opening the shell, a dialog appears with the environments you can choose.

4.6.2 Limitations When Using project.properties Files

A project.properties file creates an extension to a project, meaning it can include
new tools, define variables, and specify versions. But it cannot exclude things that
are already included, or overwrite existing variables, or undo PATH settings that
are set within the properties you are trying to extend.

You cannot use a project.properties file with Native Application projects because
they do not have a package associated with them and so cannot be extended.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

86

87

 5
Creating VxWorks Image

Projects

5.1 Introduction 87

5.2 Creating a VxWorks Image Project 88

5.3 Importing a VxWorks Image Project 92

5.4 Configuring Kernel Components 93

5.5 VxWorks Image Projects in the Project Navigator 94

5.6 Adding Application Projects to the VxWorks Image Project 99

5.7 Notes on Board Support Packages (BSPs) 100

5.1 Introduction

Use a VxWorks Image project (VIP) to configure, customize, scale, and build a
VxWorks kernel image to boot your target. A VIP can be a complete application
and can also contain projects of other types. For example, you can add
Downloadable Kernel Modules or, through an intermediary VxWorks ROMFS File
System, you can add Shared Libraries and Real-time Processes to your VIP.

A new VxWorks Image project can be based on an existing VIP (which can be
imported into your workspace; see Importing a VxWorks Image Project, p.92) or on a
Board Support Package (see 5.7 Notes on Board Support Packages (BSPs), p.100).

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

88

5.2 Creating a VxWorks Image Project

Before creating the project, see the general comments on projects and project
creation in 4. Projects Overview and the comments on specifying drivers in
5.2.1 Specifying a Non-Default Driver, p.91.

1. Create a VxWorks Image Project by selecting File > New > Wind River
Workbench Project. The New Wind River Workbench Project wizard appears.

2. Select a target operating system, then click Next.

3. From the Build type drop-down list, select System Image. Click Next.

4. Type a name for your project.

5. Decide where to create your project:

Create project in workspace
Leave this selected if you want to create the project under the current
workspace directory.

Create project at external location
Select this option, click Browse, then navigate to a different location if you
want to create the project outside the workspace.

Create project in workspace with content at external location
Select this option, click Browse, then navigate to your source location if
you do not want to mix project files with your sources, or copy sources into
your workspace.

6. The next page of the wizard asks what the project is based on. You are asked
whether you would like to base your project on An existing VxWorks Image
project, or on A board support package (BSP).

– If you have already configured a VxWorks Image project that closely
matches your current needs, you can base your project on that.

Project creation will be faster using an existing VxWorks Image project
since the project facility does not have to regenerate configuration
information from BSP configuration files. The files are simply copied.

– You can select a supplied BSP from the drop-down list, or navigate to a
third party or other custom BSP (see also 5.7 Notes on Board Support
Packages (BSPs), p.100). The list of known BSPs will depend on the BSPs
you have installed (including the simulator).

5 Creating VxWorks Image Projects
5.2 Creating a VxWorks Image Project

89

5

– If you select A board support package, you are asked to select a Tool
chain. A tool chain is the suite of tools (compiler, linker, and so on) that
will be used to build projects. This is part of the build spec that configures
how things are built. The available list of tool chains depends on what you
have installed.

When you are ready, click Next.

7. You are asked to select networking options for the kernel.

– Select Use IPv6 enabled kernel libraries to include IPv6 support.

– Select Use System Viewer free kernel libraries to exclude Wind River
System Viewer support. This option builds the project without System
Viewer instrumentation, provided the kernel has previously been
compiled with OPT=-fr or OPT=-inet6_fr specified. (Instrumentation-free
kernel libraries are not supplied with the product.)

For information on building the VxWorks kernel, see the source-code
installation and build instructions in your getting started guide. For
information about System Viewer, see the Wind River System Viewer User’s
Guide.

– Select Use source mode build to build from source, rather than from
libraries, whenever possible. This compiles only those parts of the system
that are needed by that specific project configuration, greatly increasing its
ability to scale VxWorks down to smaller sizes. Source builds also enable
the system to perform better, because only the needed source is compiled.

If the component configuration does not allow a build from source, then
the project facility will build from libraries as usual.

When you are ready, click Next.

NOTE: Once the VxWorks Image project is created, you cannot change the BSP
that it is based on. You must create a new project with the correct BSP.

NOTE: If you intend to select one of the VxWorks scalability profiles, your
toolchain must be based on the Wind River Compiler (diab).

NOTE: In this release, only the following BSPs allow configurations that are
buildable from source: integrator1136jfs, wrSbcPowerQuiccII,
Bcm1250_cpu0_mips64, Bcm1250_cpu1_mips64, Bcm1250eCpu0_mips64,
and Bcm1250eCpu1_mips64.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

90

8. You are asked if you want to select a kernel configuration Profile. A Profile is a
preconfigured collection of kernel components that attempts to match given
needs. Selecting a profile can save you quite a bit of manual configuration, but
it is not required.

PROFILE_BASIC_OS—Basic VxWorks OS Profile
This profile provides a small operating system on which higher level
constructs and facilities can be built. It supports an I/O system, file
descriptors, and related ANSI routines. It also supports task and
environment variables, signals, pipes, coprocessor management, and a
VxWorks ROMFS file system. (See the VxWorks Profiles for a Scaling the
Operating System section in VxWorks Kernel Programmer’s Guide: Kernel)

PROFILE_ENHANCED_NET—Enhanced Network Profile
This profile adds to the default profile certain components appropriate for
typical managed network client host devices. The primary components
added are the DHCP client and DNS resolver, the Telnet server (shell not
included), and several command-line-style configuration utilities.

PROFILE_BOOTAPP—BootApp Configuration Profile
This profile provides a VxWorks boot loader. The default boot-loader
parameters can be changed with the DEFAULT_BOOT_LINE parameter to
the INCLUDE_BSP_MACROS component. For information about selecting
non-default drivers, see 5.2.1 Specifying a Non-Default Driver, p.91. Note
that this profile is not available for all BSPs for this release. If your BSP is
not supported for this profile, you must use a boot loader project to create
a boot loader (for information about boot loader projects, see 6. Creating
Boot Loader Projects.)

PROFILE_BASIC_KERNEL—Basic VxWorks Kernel Profile
This profile builds on the minimal kernel profile, adding support for
message queues, task hooks, and memory allocation and deallocation.
Applications based on this profile can be more dynamic and feature rich
than the minimal kernel. (See the VxWorks Profiles for a Scaling the Operating
System section in VxWorks Kernel Programmer’s Guide: Kernel.)

PROFILE_MINIMAL_KERNEL—Minimal VxWorks Kernel Profile
This profile provides the lowest level at which a VxWorks system can
operate. It consists of the micro-kernel, and basic CPU and BSP support.
This profile is meant to provide a very small VxWorks systems that can
support multitasking and interrupt management at a very minimum, but
semaphores and watchdogs are also supported by default. (See the
VxWorks Profiles for a Scaling the Operating System section in VxWorks Kernel
Programmer’s Guide: Kernel.)

5 Creating VxWorks Image Projects
5.2 Creating a VxWorks Image Project

91

5

PROFILE_COMPATIBLE—VxWorks 5.5 Compatible Profile
This profile provides the minimal configuration that is compatible with
VxWorks 5.5.

PROFILE_CERT—VxWorks DO-178 Certification Profile
This profile provides a DO-178 Level B-certifiable API subset of the
VxWorks operating system.

PROFILE_DEVELOPMENT—VxWorks Kernel Development Profile
This profile provides a VxWorks kernel that includes development and
debugging components.

Please refer to the VxWorks Kernel Programmer’s Guide: Kernel and the help page
for vxprj::profile for more information about profiles.

9. When you are done configuring your project, click Finish. The new VxWorks
Image project will appear at the root level in the Project Navigator.

5.2.1 Specifying a Non-Default Driver

If your system requires a (supported) driver that is not provided as the default,
how you select the appropriate driver and de-select the default depends on
whether or not the driver is VxBus-compliant or not.

Drivers that are compatible with the VxBus facility can be added or removed as
standard configuration components (for example, INCLUDE_BCM52XXPHY) using
vxprj or Workbench. Drivers that are not compatible with VxBus must be added or

! CAUTION: The OS scale profiles (PROFILE_MINIMAL_KERNEL,
PROFILE_BASIC_KERNEL, and PROFILE_BASIC_OS) are built from
source code, so you must install VxWorks source to use them. For this release,
the profiles can only be built with the Wind River Compiler. In addition, the
profiles are only available for the BSPs listed in the Note on page 89.

NOTE: If Workbench encounters a problem during project configuration, it
will display an error and ask you if you want to delete the project. If you click
OK, the New Project wizard will reappear with all the settings you chose for
the project that failed. This gives you the opportunity to fix just the setting
causing the problem, rather than having to re-enter all the selections in the
wizard.

If you do not want to fix the problem and recreate the project, click Cancel.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

92

removed by defining or undefining the respective macros in
installDir/vxworks-6.x/target/config/bspName/config.h.

For information about the VxBus drivers available for your system, see
installDir/vxworks-6.x/target/src/hwif/util/cmdLineBuild.c. For information
about non-VxBus drivers supported for a given BSP, see the VxWorks BSP
References.

5.3 Importing a VxWorks Image Project

One situation where you would want to import a VxWorks Image project is if you
are using the vxprj command-line project facility to build a custom board support
package (see the VxWorks Command-Line Tools User’s Guide: Working with Projects
and Components and the vxprj API reference entry for more information).

You can then import the custom-built BSP into Workbench as follows:

1. Right-click the Project Navigator and choose Import.

2. Select VxWorks 6.x > Existing VxWorks 6.x Image Project into Workspace,
then click Next.

3. Browse to the location of the custom-built BSP (a *.wpj file), then click Finish.

5.3.1 Migrating a VxWorks Image Project

In Workbench 2.3, the .wrmakefile template used to generate the Makefiles for the
VIP project contained all functionality on how to build VIP projects.

In Workbench 2.4, the VIP-specific instructions moved to a dedicated
vxWorks.makefile, which now contains the necessary functionality to build the
VIP. The .wrmakefile now only covers generic managed build process instructions
such as recursion.

NOTE: Changes to config.h must be made before you create a VxWorks image
project (using either vxprj or Workbench). Any changes made to config.h after a
VIP is created are not picked up by the project.

5 Creating VxWorks Image Projects
5.4 Configuring Kernel Components

93

5

So when migrating existing VIP projects created with versions older than
Workbench 2.4 to Workbench 2.6, you must update the makefile template
manually.

■ If you updated your Workbench installation to version 2.5 or 2.6 and want to
continue using VxWorks 6.3, copy over the newly installed (version 2.5 or 2.6)
.wrmakefile and vxWorks.makefile to your existing VIP project to cause the
project to work properly with the new build system. The simplest way to get
these files is to create a new VIP (using the defaults), copy over the two files,
and delete the VIP again.

■ If you also updated your VxWorks installation to version 6.3 or 6.4, then you
must not only copy over the above two files but also run tcMigrate to migrate
your VIP project from VxWorks 6.1 to 6.2, 6.3, or 6.4.

For more information about migrating to a new version of VxWorks, see the
tcMigrate help entry (by typing tcMigrate into the help system Search field)
and the Wind River Workbench Migration Guide: Workbench Projects.

5.4 Configuring Kernel Components

The Wind River Workbench distribution includes VxWorks kernel images located
in installDir/vxworks-version/target/config. A kernel image is a binary module that
can be booted and run on a target system. The kernel image consists of system
object modules linked into a single non-locatable object module with no
unresolved external references. In most cases, you will find the supplied kernel
image adequate for initial development. However, later in the cycle you may want
to create a custom VxWorks kernel image.

The VxWorks kernel is a flexible, scalable operating system with numerous
facilities that can be tuned, and included or excluded, depending on the
requirements of your application and the stage of the development cycle. For
example, various networking and file system components may be required for one
application and not another; the Kernel Configuration Editor provides a simple

NOTE: If you made any manual modifications to your previous .wrmakefile
file, you must manually migrate those to the new version of the file. If your
modifications affected VxWorks image-specific instructions, migrate them to
the new vxWorks.makefile.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

94

means for including or excluding such components. In addition, it may be useful
to build VxWorks with various target tools (such as the target-resident shell)
during development, and then exclude them from the production application.

For more information about kernel components, please refer to the VxWorks Kernel
Programmer’s Guide: Kernel.

5.4.1 The Kernel Configuration Editor

To configure the kernel of a VxWorks Image project, in the Project Navigator,
double-click the Kernel Configuration node immediately under the VxWorks
Image project root node. This opens the Kernel Configuration Editor.

The Kernel Configuration Editor consists of three tabs (select at the bottom edge
of the view).

■ The Overview tab provides a read-only summary of the configuration that is
updated by changes you make on the other two tabs.

■ The Bundles tab allows you to add or remove entire bundles of components
that you can fine-tune to your needs in the Components tab.

■ The Components tab displays a tree of bundles and, at the leaf nodes of
expanded bundles, individual components and their parameters.

For more information about the Kernel Configuration Editor, open it and press the
help key for your host.

5.5 VxWorks Image Projects in the Project Navigator

After a VxWorks Image project has been created (see 5.2 Creating a VxWorks Image
Project, p.88), a number of nodes appear in the Project Navigator. This section
describes these nodes as they appear immediately after project creation, as well as
some that only appear after the projects are built using a specific build specification
(referred to here, and in the user interface, as a build spec).

For general notes about manipulating nodes, for example, moving, copying,
filtering, and so forth, please see 13. Working in the Project Navigator.

5 Creating VxWorks Image Projects
5.5 VxWorks Image Projects in the Project Navigator

95

5

5.5.1 Global Project Nodes

5.5.2 Project Build Specs and Target Nodes

Each target node is associated with a predefined build spec.

The default VIP target is a RAM-based image. If you want to create an image of
another type, select a different target node when you build the project. See Creating
New Build Targets, p.96 for more information.

ProjectName
The icon at the root of the project tree identifies the type of project; the
icon’s label is the name you gave the project when you created it.

Kernel Configuration
Immediately below the project node of a VxWorks Image project, there
is the Kernel Configuration node. Double-click the Kernel
Configuration node to open the Kernel Configuration Editor. Please
refer to 5.4 Configuring Kernel Components, p.93, for information on
using this editor.

NOTE: What follows is a typical list of build specs. The build specs initially
available for a project are determined by the board support package. The VxWorks
simulator BSP (see 5.7.1 Using the Simulator BSP, p.100) does not supply ROM build
specs.

default
This represents the target built using the default build spec and appears
immediately after the project is created. It is a RAM-based image,
usually loaded into memory by a VxWorks boot loader. This is the
default development image and the only one that is available if you
specify a simulator as your target “board”. It is also available in formats
such as vxWorks.bin and vxWorks.hex. The .hex options are variants of
the main options with Motorola S-Record output. The .bin options are
variants of the main options with binary output.

default_rom
This is a ROM-based image that copies itself to RAM before executing.
This image generally has a slower startup time, but a faster execution
time than default_romResident. It is also available in .bin and .hex
formats.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

96

Creating New Build Targets

To add a build target to a project, right-click the project and choose
New > Build Target (or select the project and choose File > New > Build Target).
Type a name for the new build target and click Finish.

For VxWorks Image projects, build-target names should have the form
vxWorks[type][format], where type can be empty (the default RAM-based image),
_rom, _romCompress, or _romResident, and format can be empty (the default ELF
image), .bin, or .hex. Examples:

vxWorks
vxWorks.hex
vxWorks_rom
vxWorks_romResident.hex
vxWorks_romCompress.bin

Each target name corresponds to one of the build specs described above. Target
names are case-sensitive and must be spelled correctly to invoke the intended
predefined build specs.

5.5.3 Build Output Folders

When you create the project, a node called vxWorks (default) is added to the
project tree. It will hold the build output of the default target (created by setting
the active build spec to default). Nodes are created for each target as you build

default_romCompress
A compressed ROM image that copies itself to RAM and decompresses
before executing. It takes longer to boot than default_rom but takes up
less space than other ROM-based images (nearly half). The run-time
execution is the same speed as default_rom. It is also available in .bin
and .hex formats.

default_romResident
A ROM-resident image. Only the data segment is copied to RAM on
startup. It has the fastest startup time and uses the smallest amount of
RAM. Typically, however, it runs slower than the other ROM images
because ROM access is slower. It is also available in .bin and .hex
formats.

5 Creating VxWorks Image Projects
5.5 VxWorks Image Projects in the Project Navigator

97

5

them. The names of the nodes match those of the targets and will, once built, hold
the corresponding target’s build output.

Other build output folders will be created if you use other build specs. These will
have the same names as the build spec used (see 5.5.2 Project Build Specs and Target
Nodes, p.95).

5.5.4 Makefile Nodes

Three Makefiles are created in the project folder. One is a template that can also be
used for entering custom make rules. The others are dynamically regenerated from
build spec data at each build.

5.5.5 Project File Nodes

The project creation facility generates, or includes copies of, a variety of files when
a VxWorks Image project is created.

Application Initialization Stubs

Two of the files that are copied to the project at creation time are stubs for entering
calls to your application code:

.wrmakefile
A template used by Wind River Workbench to generate the project’s
Makefile. Add user-specific build-targets and make rules in this file.
These will then be automatically dumped into the Makefile.

Makefile.mk
Called from Makefile. Connects the Workbench project to the VxWorks
build system. Includes a list of components and build parameters. Do
not edit.

Makefile
Do not add custom code to this file. This Makefile is regenerated every
time the project is built. The information used to generate the file is
taken from the build specification on which the target node is based.

usrAppInit.c
A stub for adding DKM application initialization routines.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

98

Other Project Files

Normally, you need not be concerned with the remaining project files. However,
here a brief summary of the remaining VxWorks Image project files displayed in
the Project Navigator:

usrRtpAppInit.c
A stub for adding RTP application initialization routines.

projectName.wpj
Contains information about the project used for generating the project
makefile, as well as project source files such as prjConfig.c.

.project
Eclipse platform project file containing builder information and project
nature.

.wrproject
Workbench project file containing common project properties such as
project type, etc.

linkSyms.c
A dynamically generated configuration file (therefore not to be checked
in to your version control system) that includes code from the VxWorks
archive by creating references to the appropriate symbols. It contains
symbols for components that do not have initialization routines.

prjConfig.c
A dynamically generated configuration file (therefore not to be checked
in to your version control system) that contains initialization code for
components included in the current configuration of VxWorks.

prjComps.h
A dynamically generated configuration file (therefore not to be checked
in) that contains the preprocessor definitions (macros) used to include
VxWorks components.

prjParams.h
A dynamically generated configuration file (therefore not to be checked
in) that contains component parameters.

5 Creating VxWorks Image Projects
5.6 Adding Application Projects to the VxWorks Image Project

99

5

5.6 Adding Application Projects to the VxWorks Image Project

Once you have created application projects, populated these with code, and
successfully built them, you will want to add these to the VxWorks Image project.
You may also want to add a VxWorks ROMFS file system (see 7. Creating VxWorks
ROMFS File System Projects).

Step 1: Link the application projects to the VxWorks Image project.

Some projects, including downloadable kernel modules and user-defined projects,
can be managed as subprojects of a VxWorks Image project. If your application
projects are not already set up as subprojects of a VIP, see 4.5.1 Adding Subprojects
to a Project, p.80 for information on how to do this. Building VIPs with application
subprojects helps assure correct linking and dependency-checking.

RTP and shared-library projects cannot be direct subprojects of a VIP, but they can
be subprojects of a File System project that is in turn a subproject of a VIP.

Step 2: Add the application initialization routines to the VxWorks Image project.

When VxWorks boots, it initializes all operating system components (as needed),
and then passes control to the user’s application for initialization. To add
application initialization calls to VxWorks, do the following:

■ For DKM projects, double-click userAppInit.c to open the file for editing, and
add the necessary calls to the usrAppInit() function.

■ For RTP projects, double-click userRtpAppInit.c to open the file for editing,
and add the necessary calls to the usrRtpAppInit() function.

Step 3: Configure the VxWorks Image project VxWorks kernel.

VxWorks must be configured to support the calls your application makes to it, or
you will not be able to link your image. If your BSP provides a “bare-bones”
VxWorks configuration, you may wish to use the Kernel Configuration Editor’s
Auto Scale facility to detect and add most of the VxWorks functionality you
require. Auto Scale will compile your code, analyze the symbols in your object
modules, map them to components, and offer to include those components. There
may be some components that Auto Scale does not detect. If you Auto Scale, build,
and still get link errors, you will need to add the additional components from the
Kernel Configuration Editor (for more information about auto scale and the kernel
configuration editor, open the editor and press the help key for your host).

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

100

5.7 Notes on Board Support Packages (BSPs)

A Board Support Package (BSP) consists primarily of the hardware-specific VxWorks
code for a particular target board. A BSP includes facilities for hardware
initialization, interrupt handling and generation, hardware clock and timer
management, mapping of local and bus memory space, and so on.

You can base a VxWorks Image project on the VxWorks simulator BSP, a Wind
River BSP supplied with Workbench, or a third-party BSP; or you can create your
own custom BSP.

5.7.1 Using the Simulator BSP

You can base your VxWorks Image project on the VxWorks simulator BSP if you
want to develop a custom BSP and application code for your product in parallel,
or if your target hardware is not yet ready. The simulator BSP contains default
VxWorks functionality sufficient for supporting most applications.

5.7.2 Using a Wind River BSP

If your BSP was installed with Workbench 2.6, you can create a VxWorks Image
project from it directly (see 5.2 Creating a VxWorks Image Project, p.88).

For information on migrating a Tornado 2.x-compliant BSP or a SNiFF+ 4.1 (or
newer) BSP to Workbench, see the Wind River Workbench Migration Guide.

5.7.3 Using a Custom BSP for Custom Hardware

Creating a BSP

If you need to create your own BSP, please refer to the VxWorks BSP Developer’s
Guide. If you wish to develop the BSP and the application code in parallel, you may
want to begin application development on the VxWorks Simulator. See 5.7.1 Using
the Simulator BSP, p.100.

5 Creating VxWorks Image Projects
5.7 Notes on Board Support Packages (BSPs)

101

5

Using a Pre-Existing BSP with the Wind River Workbench Project Facility

If you already have a custom BSP that is Tornado 2.x compliant, please see the
VxWorks Migration Guide for information on migrating to Workbench.

If you already have a custom, non-compliant BSP, you will need to modify it to
conform to the guidelines outlined in the VxWorks BSP Developer’s Guide in order
to use it with the Workbench project facility. Once you have modified it, verify that
it builds properly before creating a project for it.

Using a BSP Outside of Wind River Workbench

You may use a non-compliant BSP by managing its configuration manually. For
information on using manual methods, see the VxWorks Command-Line Tools User’s
Guide. You can still create downloadable projects to hold your application code and
download them to a target booted with a non-compliant BSP.

NOTE: If you do not make your BSP Workbench compliant, Workbench will not be
able to provide project-based support for customizing, configuring, or building it.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

102

103

 6
Creating Boot Loader Projects

6.1 Introduction 103

6.2 Creating a Boot Loader Project 104

6.3 Creating a Customized Boot Loader 105

6.4 Boot Loader Projects in the Project Navigator 106

6.1 Introduction

Use a VxWorks Boot Loader project to create a customized VxWorks boot loader (also
referred to as the VxWorks bootrom) to boot a target with a VxWorks image.

Boot loaders are used in a development environment to load a VxWorks image that
is stored on a host system, where VxWorks can be quickly modified and rebuilt.
Boot loaders are also used in production systems where both the boot loader and
operating system image are stored on a disk.

Because Boot Loader projects provide rudimentary board support (boot loading),
they can also be used for loading standalone Downloadable Kernel Module
Applications without a full-blown VxWorks kernel.

Boot loaders are not required for standalone VxWorks images, nor is it possible to
create a boot loader for an image meant to be run on the VxWorks simulator.

For more information about boot loaders, see the VxWorks Kernel Programmer’s
Guide: Kernel and 3.3 Setting Up a Boot Mechanism, p.49.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

104

6.2 Creating a Boot Loader Project

Before creating the project, see the general comments on projects and project
creation in 4. Projects Overview.

1. Create a VxWorks Boot Loader Project by selecting File > New > Wind River
Workbench Project. The New Wind River Workbench Project wizard appears.

2. Select a target operating system, then click Next.

3. From the Build type drop-down list, select Boot Loader. Click Next.

4. Type a name for your project.

5. Decide where to create your project:

Create project in workspace
Leave this selected if you want to create the project under the current
workspace directory.

Create project at external location
Select this option, click Browse, then navigate to a different location if you
want to create the project outside the workspace.

Create project in workspace with content at external location
Select this option, click Browse, then navigate to your source location if
you do not want to mix project files with your sources, or copy sources into
your workspace.

6. The next page of the wizard asks you to set:

– The Board support package for which you want to create a boot loader.

– The Tool chain that you will use with the project.

– The Boot loader image Style and Format.

Boot loader images come in the following styles: Compressed,
Uncompressed, (ROM-)Resident, and (ROM-)Resident At High
Address. These are functionally the same but have different memory
requirements and execution times. After the project has been created, you

NOTE: The PROFILE_BOOTAPP configuration profile provides a simpler method
of creating a boot loader (based on a VxWorks Image Project) than the one
described here. It is not, however, available for all BSPs with this release. For more
information, see the description of PROFILE_BOOTAPP—BootApp Configuration
Profile, p.90.

6 Creating Boot Loader Projects
6.3 Creating a Customized Boot Loader

105

6

can change the Style by right-clicking the project and selecting Set Active
Build Spec.

The VxWorks Kernel Programmer’s Guide: Kernel chapter provides detailed
information on Style and Format. BSP documentation specifies which
types are available for a specific target.

7. When you are ready, click Finish. The new project appears at the root level in
the Project Navigator.

6.3 Creating a Customized Boot Loader

By default, a Boot Loader project merely creates a default boot loader. You may
find it necessary or desirable to customize various features of the boot loader, by
doing one or more the following:

■ Adding or removing VxWorks components. For example, you can exclude
networking components if you are not going to use the network to boot your
system.

■ Selecting non-default drivers. If the boot loader’s default drivers are not
appropriate for your target, you need to change the driver selection for the
boot loader. For more information, see 6.3.1 Selecting Boot Loader Drivers, p.106.

■ Setting boot parameters that are appropriate for your development
environment, or for deployed systems. Boot parameters specify the IP
addresses of the host and target systems, FTP user names and passwords, the
location of the VxWorks image to boot, and so on. For information about boot
parameters, see 3.4.4 Description of Boot Parameters, p.55.

In order to change the default configuration of a boot loader you must edit the
installDir/vxworks-6.x/target/config/bspName/config.h file. You can open the file in
the editor by clicking on config.h in the Project Navigator.

For more information about these topics, see the VxWorks Kernel Programmer’s
Guide: Kernel, 3.3 Setting Up a Boot Mechanism, p.49, and the VxWorks BSP
References entry for your BSP.

NOTE: Once the Boot Loader project is created, you cannot change the BSP that
it is based on. You must create a new project with the correct BSP.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

106

6.3.1 Selecting Boot Loader Drivers

If your boot loader requires a (supported) driver that is not provided as the default,
you must edit installDir/vxworks-6.x/target/config/bspName/config.h to define the
macro for the correct driver, and undefine the macro for the one you do not need.

For information about the VxBus drivers available for your system (and the macro
names to use in config.h), see installDir/target/src/hwif/util/cmdLineBuild.c. For
information about non-VxBus drivers supported for a given BSP, see the VxWorks
BSP References entry for the BSP in question. Note that the macro names for VxBus
drivers do not have the leading INCLUDE_ element (for example,
DRV_SIO_NS16550), whereas the names for non-VxBus drivers do (for example,
INCLUDE_ELT_3C509_END).

6.4 Boot Loader Projects in the Project Navigator

After a Boot Loader has been created, a number of nodes appear in the Project
Navigator. This section describes these nodes as they appear immediately after
project creation.

For general notes about manipulating nodes, for example, moving, copying,
filtering, etc., please see 13. Working in the Project Navigator.

6.4.1 Global Project Nodes

NOTE: Changes to config.h must be made before you create a VxWorks image
project (using either vxprj or Workbench). Any changes made to config.h after a
VIP is created are not picked up by the project.

ProjectName
The icon at the root of the project tree identifies the type of project; the
icon’s label is the name you gave the project when you created it.

6 Creating Boot Loader Projects
6.4 Boot Loader Projects in the Project Navigator

107

6

6.4.2 Project Build Specs and Target Nodes

Each Boot Loader project has a single IDE-managed build target whose name has
the form bsp (buildSpec)—for example, simpc (bootloader_res). To switch build
specs, right-click and choose Set Active Build Spec.

Build-spec names have the form bootloader[style][format], where style can be
empty (the default compressed image), _uncmp (uncompressed), _res
(ROM-resident), or _res_high (ROM-resident at high address), and format can be
empty (the default ELF image), .bin (binary output), or .hex (Motorola S-Record).
Examples:

bootloader
bootloader.bin
bootloader_res_high
bootloader_uncmp.hex

You can create new build targets with user-defined make rules by right-clicking on
the project and choosing New > Build Target or by choosing File > New > Build
Target.

6.4.3 Makefile Nodes

6.4.4 Other Project Files

Normally, you need not be concerned with the remaining project files. However,
here a brief summary of the remaining VxWorks Boot Loader project files
displayed in the Project Navigator:

Makefile
Do not add custom code to this file. This Makefile is regenerated every
time the project is built. The information used to generate the file is
taken from the build specification on which the target node is based.

.project
Eclipse platform project file containing builder information and project
nature.

.wrproject
Workbench project file containing common project properties such as
project type, etc.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

108

109

 7
Creating VxWorks ROMFS File

System Projects

7.1 Introduction 109

7.2 Creating a VxWorks ROMFS File System Project 110

7.3 Configuring the VxWorks ROMFS File System 110

7.4 VxWorks ROMFS File System Projects in the Project Navigator 111

7.1 Introduction

Use a VxWorks ROMFS File System project as a subproject of a VxWorks Image
project that requires ROMFS. The VxWorks ROMFS file system provides a means
for bundling RTP applications and shared libraries with the VxWorks system
image. At runtime, these files can be accessed in the VxWorks /romfs directory
(and any subdirectories you create).

To use other file systems—such as dosFs—in your applications, configure
VxWorks with the appropriate components.

For more information about ROMFS and other file systems, see the VxWorks Kernel
Programmer’s Guide: Local File Systems or the VxWorks Application Programmer’s
Guide: Local File Systems; and the VxWorks Application Programmer’s Guide:
Applications and Processes.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

110

7.2 Creating a VxWorks ROMFS File System Project

Before creating the project, see the general comments on projects and project
creation in 4. Projects Overview.

1. Create a VxWorks ROMFS File System project by selecting File > New >
Wind River Workbench Project. The New Wind River Workbench Project
wizard appears.

2. Select a target operating system, then click Next.

3. From the Build type drop-down list, select ROMFS File System. Click Next.

4. Type a name for your project.

5. Decide where to create your project:

Create project in workspace
Leave this selected if you want to create the project under the current
workspace directory.

Create project at external location
Select this option, click Browse, then navigate to a different location if you
want to create the project outside the workspace.

Create project in workspace with content at external location
Select this option, click Browse, then navigate to your source location if
you do not want to mix project files with your sources, or copy sources into
your workspace.

6. When you are ready, click Finish. The VxWorks ROMFS File System is created
at the root level in the Project Navigator, and the ROMFS File System Contents
Editor opens (for more information, see 7.3 Configuring the VxWorks ROMFS
File System, p.110).

7.3 Configuring the VxWorks ROMFS File System

1. If it is not already open, double-click the VxWorks ROMFS File System
Contents node under the VxWorks ROMFS File System project. This opens the
File System Contents Editor so you can add files or create subdirectories.

7 Creating VxWorks ROMFS File System Projects
7.4 VxWorks ROMFS File System Projects in the Project Navigator

111

7

2. Two panels display the contents of the host and the target. Select files then click
Add and Remove to move files between the two panels. Click Add External to
add a file from outside your workspace to the target contents.

3. To create a subdirectory, right-click in the Target Contents panel and select
Add New Folder to File System. To remove it, right-click it and select Remove
From File System.

4. When you are finished, save and close the editor.

Make sure that you add the correct binary or data files. Click the file names in the
Target Contents pane and verify the path in the Host path field in the bottom
panel. This can be useful, for example, to check that:

■ You have used the correct version of a versioned shared library.

■ You have taken files from the correct build-spec output folder.

7.4 VxWorks ROMFS File System Projects in the Project
Navigator

After you have created a VxWorks ROMFS file system project, a number of nodes
appear in the Project Navigator. This section describes these nodes as they appear
immediately after project creation. For general notes about manipulating nodes,
for example, moving, copying, filtering, etc., please see 13. Working in the Project
Navigator.

7.4.1 Global Project Nodes

ProjectName
The icon at the root of the VxWorks ROMFS File System project tree
identifies the type of project; the icon’s label is the name you gave the
project when you created it.

VxWorks ROMFS File System Contents
Below the project node is the VxWorks ROMFS File System Contents
node. Double-click the VxWorks ROMFS File System Contents to
open the File System Contents Editor. Please refer to 7.3 Configuring the
VxWorks ROMFS File System, p.110, for information on using this editor.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

112

7.4.2 Project File Nodes

The project creation facility generates, or includes copies of, a variety of files when
a VxWorks ROMFS File System project is created. Normally, you need not be
concerned with these files. However, here is a brief summary of the VxWorks
ROMFS File System project files displayed in the Project Navigator:

.project
Eclipse platform project file containing builder information and project
nature.

.wrproject
Workbench project file containing common project properties such as
project type, etc.

113

 8
Creating VxWorks Real-time

Process Projects

8.1 Introduction 113

8.2 Creating a VxWorks Real-time Process Project 114

8.3 Configuring VxWorks Real-time Process Projects 115

8.4 VxWorks Real-time Process Projects in the Project Navigator 120

8.5 Application Code for a VxWorks Real-time Process Project 122

8.6 Linking to VxWorks and Using Shared Libraries 122

8.1 Introduction

Using VxWorks Real-time Process (RTP) projects to manage and build modules that
will exist outside of the kernel space, you can separately build, run, and debug the
VxWorks Real-time Process executable.

At run-time, the executable file is downloaded to a separate address space to run
as an independent process. The binary produced from a VxWorks Real-time
Process project must be stored on a target-side file system, see 7. Creating VxWorks
ROMFS File System Projects.

VxWorks Real-time Process projects provide a protected, process-based,
user-mode environment for developing applications. In this mode, applications
are developed as VxWorks executables. An application has a well-defined start
address. When the executable is loaded, memory is allocated by the system for the

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

114

executable, execution begins at the known start address, and all tasks in the
process run within the same memory-protected address space. When the
application terminates, all the resources associated with it are freed back to the
system.

8.2 Creating a VxWorks Real-time Process Project

Before creating the project, see the general comments on projects and project
creation in 4. Projects Overview.

1. Create a VxWorks Real-Time Process project by selecting File > New >
Wind River Workbench Project. The New Wind River Workbench Project
wizard appears.

2. Select a target operating system, then click Next.

3. From the Build type drop-down list, select Real-time Process Application.
Click Next.

4. Type a name for your project.

5. Decide where to create your project:

Create project in workspace
Leave this selected if you want to create the project under the current
workspace directory.

Create project at external location
Select this option, click Browse, then navigate to a different location if you
want to create the project outside the workspace.

Create project in workspace with content at external location
Select this option, click Browse, then navigate to your source location if
you do not want to mix project files with your sources, or copy sources into
your workspace.

6. When you are ready, click Finish. The VxWorks Real-time Process project is
created and appears at the root level in the Project Navigator.

8 Creating VxWorks Real-time Process Projects
8.3 Configuring VxWorks Real-time Process Projects

115

8

8.3 Configuring VxWorks Real-time Process Projects

Once you have created your project, you can configure its build support and specs,
build tools, build macros, and build paths.

For general details about build properties, see 16.4 Accessing Build Properties, p.214
or press the help key for your host.

1. To access build properties for your project, right-click it in the Project
Navigator and select Properties.

2. From the Properties dialog, click Build Properties.

8.3.1 Configuring Build Support and Specs

Use this tab to configure build support and build specs for your project.

1. A VxWorks Real-time Process project is a predefined project type that uses
Workbench build support, so build support is enabled by default. If you are
creating a project because you want to browse symbol information and you are
not interested in building it, click Disabled to disable build support (you can
click Managed build to re-enable it later, if you want).

2. If necessary, edit the default Build command.

3. All available build specs are selected (and therefore enabled) by default. To
restrict the list of enabled build specs to only those you need for your project,
click Disable All and then select the checkbox next to the build spec(s) you
want to enable for this project.

4. To reset build properties to their default settings or import build settings from
another project, click Import and select the source of the build settings.

5. If you enabled one build spec for this project, it appears in the Default build
spec and Active build spec fields.

If you enabled more than one, the build spec in the Default build spec field is
used for builds, though you can select a different Active build spec for a
particular build. The build spec in the Active build spec field is also
propagated to the appropriate fields on the Build Tools, Build Macros, and
Build Paths tabs.

NOTE: Highlighting the name of the build spec is not sufficient to enable it;
there must be a check in the checkbox to enable the build spec.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

116

6. Select or clear the Debug Mode checkbox, depending on whether you want
the build output to include debug information or not.

7. For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

8.3.2 Configuring Build Tools

Use this tab to configure build tools, build output generation, and build flags for
your project.

1. The build tools you can select for RTP projects are C-Compiler, C++-Compiler,
Linker, Librarian, or Assembler. In addition, you can define your own build
tool.

■ C-Compiler, C++-Compiler, Assembler: These tools produce a
BuildTargetName.obj file on Windows or a BuildTargetName.o file on UNIX.

■ Linker: The linker produces a BuildTargetName.vxe file. This single,
partially linked and munched (integrated with code to call C++ static
constructors and destructors) object is intended for downloading.

The Linker output product cannot be passed up to superprojects, although
the current project’s own, unlinked object files can, as can any output
products received from projects further down in the hierarchy.

■ Librarian: The Librarian produces an archive BuildTargetName.a file.

The Librarian output product can be passed up to superprojects, as can the
current project’s own, unlinked object files, as well as any output products
received from projects further down in the hierarchy.

■ To define your own build tool, click New and enter a build tool name, then
click OK. Your build tools appears in the drop-down list, and you can
configure all build tool settings to fit your needs.

2. For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

NOTE: You can also change the active build spec and the debug mode by
right-clicking the project in the Project Navigator and selecting Build
Options > Set Active Build Spec.

8 Creating VxWorks Real-time Process Projects
8.3 Configuring VxWorks Real-time Process Projects

117

8

8.3.3 Configuring Build Macros

Use this tab to define global and build spec-specific macros that are added to the
build command when executing builds.

1. To change the value of an existing global build macro, select the value in the
Build macro definitions table and type in a new one, or click Edit and type in
the new value, then click OK.

2. To define a new global build macro, click New next to the table, then enter a
Name and Value for the macro. Click OK.

3. To change the value of an existing build spec-specific macro, select the Active
build spec for which the value should be applied, select the value in the Build
spec-specific settings table, then type in a new one. Or click Edit and type in
the new value, then click OK.

4. To define a new build spec-specific macro, click New next to the table, enter a
Name for the macro, leave the Value blank, then click OK.

To define the value, select the macro, select the Active build spec for which the
value should be applied, click Edit and enter the New value, then click OK.

The macro will always be appended to the build command when a build is
launched, and the value will be set according to the active build spec,
including empty values.

For example, if the build command is make --no-print-directory and the
macro is TEST_SPEC, you can define values to be used with different build
specs:

The resulting build commands are as follows:

NOTE: If your project uses the standard managed build, and you select a different
build tool on the Build Tools tab, this choice does not carry over to the Build
Targets tab. You must manually assign the new build tool to your build target.

NOTE: You can define and use global build macros even if you do not select
or define any build specs for your project.

spec 1: Value = spec1Val
spec 2: Value = spec2Val
spec 3: Value =

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

118

5. For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

8.3.4 Configuring Build Paths

Use this tab to specify a redirection root directory for your build output, and add,
delete, or reorder the directories searched by the build tools.

1. By default, build output is directed to a subdirectory in your workspace.
However, if you want to redirect it somewhere else in your file system, specify
a location in the Redirection root directory field.

2. The Redirection directory is a subdirectory of the Redirection root directory.
By default this directory has the same name as the Active build spec, though
you can change it by typing a new directory name in the field.

3. The Include paths table shows the paths used by the compiler to resolve
include directives. To analyze your project and update the displayed include
paths, click Generate to open the Generate Include Search Paths dialog.

a. On the Analyze include directives page, specify which include directives
you want Workbench to ignore when generating include paths.

– Select the first box to ignore inactive include directives, or clear it to
analyze them. Inactive include directives are those directives ignored
by the build system because they are surrounded by compiler options
and preprocessor directives such as #ifndef.

– Select the second box to ignore system includes, or clear it to analyze
them.

When you are ready, click Next to analyze include directives. This may
take some time for a large project.

b. The Resolve include directives page displays results from the analysis.
The upper field displays unresolved include directives in three groups:
resolvable by one include search path, resolvable by multiple search paths,
and not resolvable. The lower field displays resolved directives:
predefined search paths, as well as the search paths Workbench was able
to resolve.

build command for spec 1: make --no-print-directory TEST_SPEC=spec1Val
build command for spec 2: make --no-print-directory TEST_SPEC=spec2Val
build command for spec 3: make --no-print-directory TEST_SPEC=

8 Creating VxWorks Real-time Process Projects
8.3 Configuring VxWorks Real-time Process Projects

119

8

– To automatically resolve all include directives that can be resolved,
click Resolve All.

– To automatically resolve an individual include directive or one of the
groups of unresolved directives, click Resolve. If Workbench found
one matching header, it will resolve the include directive. If it found
multiple matching headers, a dialog displays the headers and asks
you to select one.

– To open the file so you can see the context of an unresolved include
directive, click Show in Editor.

– To manually resolve include directives for which no matching headers
were found, click Add and navigate to the location of the appropriate
headers. Click OK to add the path to the list of resolved directives; any
directives resolved by that path are removed from the unresolved list.

– To view, enable, or disable variables for paths and path segments, click
Substitution. Click a variable or group of variables to enable or
disable them.

Variables are grouped into four groups, and are applied to all
generated paths in the resolved directives field:

Wind River environment: includes Wind River platform and
Workbench variables.

Build macros: includes global and local build macros, as defined
in project properties.

Project locations: includes variables referring to projects in the
workspace.

System environment: includes all environment variables that do
not appear in the build macro or Wind River environment groups.

Click Apply to see your changes but leave the dialog open for further
editing, or click OK if you are finished.

– To copy search paths to the clipboard so you can paste them into a
make file, select the search path then click Copy.

NOTE: When automatically resolving include directives, Workbench uses
heuristics to determine the best matches, but the results may be incorrect. So
you should examine and if necessary Remove undesired search paths in the
lower field. The newly-generated search paths are marked with a yellow plus
on the folder icon ().

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

120

c. When you are ready, click Finish to return to the Build Paths tab.

4. To manually add an include directory for an Active build spec, select the build
spec from the drop-down list, click Add, and browse to or type in the path (be
sure not to erase the -I at the beginning of the path). Click OK.

To add an include path that applies to all your build specs, click Add to all and
then browse to or type in the path, then click OK.

5. When you are finished configuring your project, click OK.

8.4 VxWorks Real-time Process Projects in the Project Navigator

After you have created a VxWorks Real-time Process project, a number of nodes
appear in the Project Navigator. This section describes these nodes as they appear
immediately after project creation. For general notes about manipulating nodes,
for example, moving, copying, filtering, etc., please see 13. Working in the Project
Navigator.

8.4.1 Global Project Nodes

8.4.2 Project Build Specs and Target Nodes

Each target node is associated with a predefined build specification.

The RTP build targets depend on the options you selected during project creation.
Specifically, you will not have both an archive (TargetName.a) target and a
TargetName.out target immediately after project creation. Which of these will be
visible depends on the build tool you selected. Also, the presence or absence of the
green upward arrow on the target icon (to indicate whether the target is passed up
the hierarchy) will be determined by your project settings.

ProjectName
The icon at the root of the project tree identifies the type of project; the
icon’s label is the name you gave the project when you created it.

8 Creating VxWorks Real-time Process Projects
8.4 VxWorks Real-time Process Projects in the Project Navigator

121

8
8.4.3 Makefile Nodes

At project generation time two Makefiles are copied to the project. One is a
template that can also be used for entering custom make rules. The other is
dynamically regenerated from build spec data at each build.

8.4.4 Project File Nodes

The project creation facility generates, or includes copies of, a variety of files when
a project is created. Normally, you need not be concerned with these files.
However, here a brief summary of the DKM project files displayed in the Project
Navigator:

TargetName.vxe (BuildSpecName[_DEBUG])
This single, partially linked and munched (integrated with code to call
C++ static constructors and destructors) object, produced by the Linker
build tool is intended for downloading.

TargetName.a (BuildSpecName[_DEBUG])
An archive produced by the Librarian build tool that has to be statically
linked into an executable.

.wrmakefile
A template used by Workbench to generate the project’s Makefile. Add
user-specific build-targets and make-rules in this file. These will then be
automatically dumped into the Makefile.

Makefile
Do not add custom code to this file. This Makefile is regenerated every
time the project is built. The information used to generate the file is
taken from the build specification that on which the target node is
based.

.project
Eclipse platform project file containing builder information and project
nature.

.wrproject
Workbench project file containing common project properties such as
project type, etc.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

122

8.5 Application Code for a VxWorks Real-time Process Project

After project creation you have the infrastructure for a VxWorks Real-time Process
project, but often no actual application code. If you are writing code from the
beginning, you can add new files to a project. If you already have source code files,
you will want to import these to the project. For more information please refer to
13.3.1 Importing Resources, p.162, and 13.3.2 Adding New Files to Projects, p.163.

8.6 Linking to VxWorks and Using Shared Libraries

In order to have your VxWorks Real-time Process project binary initialized once
the kernel has booted, you will need to:

■ Create a VxWorks Image project, see 5.2 Creating a VxWorks Image Project, p.88.

■ Configure the VxWorks Image project as described under 5.6 Adding
Application Projects to the VxWorks Image Project, p.99 and 5.4 Configuring Kernel
Components, p.93.

■ Create a ROMFS target file system before the target is disconnected from the
host system, see 7.2 Creating a VxWorks ROMFS File System Project, p.110.

■ If you want to dynamically link to shared libraries, the VxWorks Real-time
Process project needs to be appropriately configured, see 17.6 Executables that
Dynamically Link to Shared Libraries, p.229, and 18. RTPs and Shared Libraries
from Host to Target.

123

 9
Creating VxWorks Shared

Library Projects

9.1 Introduction 123

9.2 Creating a VxWorks Shared Library Project 124

9.3 Configuring VxWorks Shared Library Projects 124

9.4 Shared Libraries in the Project Navigator 130

9.5 Source Code for the Shared Library 131

9.6 Making Shared Libraries Available to Applications 131

9.1 Introduction

Use VxWorks Shared Library projects for libraries that are dynamically linked to
Real-time Process applications at run-time. Such a shared library can be stored on
a host file system, a network file system, or a local file system on the target
(including ROMFS). You can also use VxWorks Shared Library projects to create
subprojects that are statically linked into other project types at build time.

Please refer to 17.6 Executables that Dynamically Link to Shared Libraries, p.229, and
18. RTPs and Shared Libraries from Host to Target for more information on working
with this type of project. Also refer to the VxWorks Application Programmer’s Guide:
Applications and Processes for more information about shared libraries.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

124

9.2 Creating a VxWorks Shared Library Project

Before creating the project, see the general comments on projects and project
creation in 4. Projects Overview.

1. Create a VxWorks Shared Library project by selecting File > New >
Wind River Workbench Project. The New Wind River Workbench Project
wizard appears.

2. Select a target operating system, then click Next.

3. From the Build type drop-down list, select Shared User Library. Click Next.

4. Type a name for your project.

5. Decide where to create your project:

Create project in workspace
Leave this selected if you want to create the project under the current
workspace directory.

Create project at external location
Select this option, click Browse, then navigate to a different location if you
want to create the project outside the workspace.

Create project in workspace with content at external location
Select this option, click Browse, then navigate to your source location if
you do not want to mix project files with your sources, or copy sources into
your workspace.

6. When you are ready, click Finish. The VxWorks Shared Library project is
created and appears at the root level in the Project Navigator.

9.3 Configuring VxWorks Shared Library Projects

Once you have created your project, you can configure its build support and specs,
build tools, build macros, and build paths.

For general details about build properties, see 16.4 Accessing Build Properties, p.214
or press the help key for your host.

1. To access build properties for your project, right-click it in the Project
Navigator and select Properties.

9 Creating VxWorks Shared Library Projects
9.3 Configuring VxWorks Shared Library Projects

125

9

2. From the Properties dialog, click Build Properties.

9.3.1 Configuring Build Support and Specs

Use this tab to configure build support and build specs for your project.

1. A VxWorks Shared Library project is a predefined project type that uses
Workbench build support, so build support is enabled by default. If you are
creating a project because you want to browse symbol information and you are
not interested in building it, click Disabled to disable build support (you can
click Managed build to re-enable it later, if you want).

2. If necessary, edit the default Build command.

3. All available build specs are selected (and therefore enabled) by default. To
restrict the list of enabled build specs to only those you need for your project,
click Disable All and then select the checkbox next to the build spec(s) you
want to enable for this project.

4. To reset build properties to their default settings or import build settings from
another project, click Import and select the source of the build settings.

5. If you enabled one build spec for this project, it appears in the Default build
spec and Active build spec fields.

If you enabled more than one, the build spec in the Default build spec field is
used for builds, though you can select a different Active build spec for a
particular build. The build spec in the Active build spec field is also
propagated to the appropriate fields on the Build Tools, Build Macros, and
Build Paths tabs.

6. Select or clear the Debug Mode checkbox, depending on whether you want
the build output to include debug information or not.

7. For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

NOTE: Highlighting the name of the build spec is not sufficient to enable it;
there must be a check in the checkbox to enable the build spec.

NOTE: You can also change the active build spec and the debug mode by
right-clicking the project in the Project Navigator and selecting Build Options
> Set Active Build Spec.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

126

9.3.2 Configuring Build Tools

Use this tab to configure build tools, build output generation, and build flags for
your project.

1. The build tools you can select for Shared Library projects are C-Compiler,
C++-Compiler, Shared Library Linker, Static Librarian, or Assembler. In
addition, you can define your own build tool.

■ C-Compiler, C++-Compiler, Assembler: These tools produce a
BuildTargetName.obj file on Windows or a BuildTargetName.o file on UNIX.

■ Shared Library Linker: The shared library linker produces a
BuildTargetName.so target that is dynamically linked to at run-time.

The output product of the shared library linker will normally be passed up
to superprojects. If you do not pass the library target up to its
superprojects, references in the superprojects’ application code cannot be
resolved at compile time.

■ Static Librarian: The static librarian produces an archive
BuildTargetName.a file.

The static librarian output product can be passed up to superprojects, as
can the current project’s own, unlinked object files, as well as any output
products received from projects further down in the hierarchy.

■ To define your own build tool, click New and enter a build tool name, then
click OK. Your build tools appears in the drop-down list, and you can
configure all build tool settings to fit your needs.

2. For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

9.3.3 Configuring Build Macros

Use this tab to define global and build spec-specific macros that are added to the
build command when executing builds.

NOTE: If your project uses the standard managed build, and you select a different
build tool on the Build Tools tab, this choice does not carry over to the Build
Targets tab. You must manually assign the new build tool to your build target.

9 Creating VxWorks Shared Library Projects
9.3 Configuring VxWorks Shared Library Projects

127

9

1. To change the value of an existing global build macro, select the value in the
Build macro definitions table and type in a new one, or click Edit and type in
the new value, then click OK.

2. To define a new global build macro, click New next to the table, then enter a
Name and Value for the macro. Click OK.

3. To change the value of an existing build spec-specific macro, select the Active
build spec for which the value should be applied, select the value in the Build
spec-specific settings table, then type in a new one. Or click Edit and type in
the new value, then click OK.

4. To define a new build spec-specific macro, click New next to the table, enter a
Name for the macro, leave the Value blank, then click OK.

To define the value, select the macro, select the Active build spec for which the
value should be applied, click Edit and enter the New value, then click OK.

The macro will always be appended to the build command when a build is
launched, and the value will be set according to the active build spec,
including empty values.

For example, if the build command is make --no-print-directory and the
macro is TEST_SPEC, you can define values to be used with different build
specs:

The resulting build commands are as follows:

5. For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

NOTE: You can define and use global build macros even if you do not select
or define any build specs for your project.

spec 1: Value = spec1Val
spec 2: Value = spec2Val
spec 3: Value =

build command for spec 1: make --no-print-directory TEST_SPEC=spec1Val
build command for spec 2: make --no-print-directory TEST_SPEC=spec2Val
build command for spec 3: make --no-print-directory TEST_SPEC=

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

128

9.3.4 Configuring Build Paths

Use this tab to specify a redirection root directory for your build output, and add,
delete, or reorder the directories searched by the build tools.

1. By default, build output is directed to a subdirectory in your workspace.
However, if you want to redirect it somewhere else in your file system, specify
a location in the Redirection root directory field.

2. The Redirection directory is a subdirectory of the Redirection root directory.
By default this directory has the same name as the Active build spec, though
you can change it by typing a new directory name in the field.

3. The Include paths table shows the paths used by the compiler to resolve
include directives. To analyze your project and update the displayed include
paths, click Generate to open the Generate Include Search Paths dialog.

a. On the Analyze include directives page, specify which include directives
you want Workbench to ignore when generating include paths.

– Select the first box to ignore inactive include directives, or clear it to
analyze them. Inactive include directives are those directives ignored
by the build system because they are surrounded by compiler options
and preprocessor directives such as #ifndef.

– Select the second box to ignore system includes, or clear it to analyze
them.

When you are ready, click Next to analyze include directives. This may
take some time for a large project.

b. The Resolve include directives page displays results from the analysis.
The upper field displays unresolved include directives in three groups:
resolvable by one include search path, resolvable by multiple search paths,
and not resolvable. The lower field displays resolved directives:
predefined search paths, as well as the search paths Workbench was able
to resolve.

– To automatically resolve all include directives that can be resolved,
click Resolve All.

– To automatically resolve an individual include directive or one of the
groups of unresolved directives, click Resolve. If Workbench found
one matching header, it will resolve the include directive. If it found
multiple matching headers, a dialog displays the headers and asks
you to select one.

9 Creating VxWorks Shared Library Projects
9.3 Configuring VxWorks Shared Library Projects

129

9

– To open the file so you can see the context of an unresolved include
directive, click Show in Editor.

– To manually resolve include directives for which no matching headers
were found, click Add and navigate to the location of the appropriate
headers. Click OK to add the path to the list of resolved directives; any
directives resolved by that path are removed from the unresolved list.

– To view, enable, or disable variables for paths and path segments, click
Substitution. Click a variable or group of variables to enable or
disable them.

Variables are grouped into four groups, and are applied to all
generated paths in the resolved directives field:

Wind River environment: includes Wind River platform and
Workbench variables.

Build macros: includes global and local build macros, as defined
in project properties.

Project locations: includes variables referring to projects in the
workspace.

System environment: includes all environment variables that do
not appear in the build macro or Wind River environment groups.

Click Apply to see your changes but leave the dialog open for further
editing, or click OK if you are finished.

– To copy search paths to the clipboard so you can paste them into a
make file, select the search path then click Copy.

c. When you are ready, click Finish to return to the Build Paths tab.

4. To manually add an include directory for an Active build spec, select the build
spec from the drop-down list, click Add, and browse to or type in the path (be
sure not to erase the -I at the beginning of the path). Click OK.

To add an include path that applies to all your build specs, click Add to all and
then browse to or type in the path, then click OK.

NOTE: When automatically resolving include directives, Workbench uses
heuristics to determine the best matches, but the results may be incorrect. So
you should examine and if necessary Remove undesired search paths in the
lower field. The newly-generated search paths are marked with a yellow plus
on the folder icon ().

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

130

5. When you are finished configuring your project, click OK.

9.4 Shared Libraries in the Project Navigator

After a VxWorks Shared Library project has been created, a number of nodes
appear in the Project Navigator. This section describes these nodes as they appear
immediately after project creation. For general notes about manipulating nodes,
for example, moving, copying, filtering, and so on, please see 13. Working in the
Project Navigator.

9.4.1 Global Project Nodes

9.4.2 Target Node

9.4.3 Makefile Nodes

At project generation time a template that can also be used for entering custom
make rules is copied to the project.

ProjectName
The icon at the root of the project tree identifies the type of project; the
icon’s label is the name you gave the project when you created it.

TargetName.so (BuildSpecName[_DEBUG])
A VxWorks Shared Library produced by the Shared Library Linker
that is dynamically linked at run-time.

.wrmakefile
A template used by Workbench to generate the project’s Makefile. Add
user-specific build-targets and make-rules in this file.

9 Creating VxWorks Shared Library Projects
9.5 Source Code for the Shared Library

131

9

9.4.4 Project File Nodes

The project creation facility generates, or includes copies of, a variety of files when
a project is created. Normally, you need not be concerned with these files.
However, here a brief summary of the Shared Library project files displayed in the
Project Navigator:

9.5 Source Code for the Shared Library

After project creation you have the infrastructure for a Shared Library project, but
often no actual library source code. If you are writing code from the beginning, you
can add new files to a project. If you already have source code files, you will want
to import these to the project. For more information refer to 13.3.1 Importing
Resources, p.162, and 13.3.2 Adding New Files to Projects, p.163.

9.6 Making Shared Libraries Available to Applications

To make shared libraries accessible to your applications at run-time, you have to
make sure of a few configuration details, both on the library side and on the
application side. You also need a file system project to store the library on the target
(see 7. Creating VxWorks ROMFS File System Projects).

1. Make sure the shared library is a subproject of all applications that need to
access it. If the library is used by many applications, create projects for each
application and make the library a subproject of each (see 13. Working in the
Project Navigator for information on how to do this).

.project
Eclipse platform project file containing builder information and project
nature.

.wrproject
Workbench project file containing common project properties such as
project type, etc.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

132

2. Make sure the library target is passed to superprojects. You can do this in the
Project Properties as follows:

– In the Project Navigator, right-click the shared library project folder you
are interested in and select Properties. (If the project folder is a subnode
under several different superprojects, it does not matter which you choose
because these nodes are only logical representations of the same project.)

– In Project Properties, select Build Properties node, then the Build Tools
tab. On the Build Tools tab, be sure the Generated build target can be
passed check box is selected. If the output of the library build is not passed
up to superprojects, references from the superproject to the library
subproject cannot be resolved at build-time.

3. Click OK to close the Project Properties.

9.6.1 Configuring the Application Projects

Most shared library projects are created as subprojects of one or more application
projects. Although a superproject knows the location of its subprojects, it does not
know that a particular subproject is a shared library, so the application project’s
linker has to be configured to accommodate dynamic access to shared libraries. For
more information, please see 17.6 Executables that Dynamically Link to Shared
Libraries, p.229, and 18. RTPs and Shared Libraries from Host to Target.

133

 10
Creating VxWorks

Downloadable Kernel Module
Projects

10.1 Introduction 133

10.2 Creating a VxWorks Downloadable Kernel Module Project 134

10.3 Configuring VxWorks Downloadable Kernel Module Projects 134

10.4 Downloadable Kernel Modules in the Project Navigator 140

10.5 Application Code for a VxWorks DKM Project 142

10.1 Introduction

Use VxWorks Downloadable Kernel Module (DKM) projects to manage and build
modules that will exist in the kernel space. You can separately build the modules,
then run and debug them on a target running VxWorks, loading, unloading, and
reloading on the fly.

Once your development work is complete, the modules can be statically linked
into the kernel or added to a file system if one is present.

Kernel-mode development is the traditional VxWorks method of development. All
the tasks you spawn run in an unprotected environment and all have full access to
the hardware in the system.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

134

10.2 Creating a VxWorks Downloadable Kernel Module Project

Before creating the project, see the general comments on projects and project
creation in 4. Projects Overview.

1. Create a VxWorks Downloadable Kernel Module Project by selecting File >
New > Wind River Workbench Project. The New Wind River Workbench
Project wizard appears.

2. Select a target operating system, then click Next.

3. From the Build type drop-down list, select Downloadable Kernel Module.
Click Next.

4. Type a name for your project.

5. Decide where to create your project:

Create project in workspace
Leave this selected if you want to create the project under the current
workspace directory.

Create project at external location
Select this option, click Browse, then navigate to a different location if you
want to create the project outside the workspace.

Create project in workspace with content at external location
Select this option, click Browse, then navigate to your source location if
you do not want to mix project files with your sources, or copy sources into
your workspace.

6. When you are ready, click Finish. The Downloadable Kernel Module project is
created and appears at the root level in the Project Navigator.

10.3 Configuring VxWorks Downloadable Kernel Module Projects

Once you have created your project, you can configure its build support and specs,
build tools, build macros, and build paths.

For general details about build properties, see 16.4 Accessing Build Properties, p.214
or press the help key for your host.

10 Creating VxWorks Downloadable Kernel Module Projects
10.3 Configuring VxWorks Downloadable Kernel Module Projects

135

10

1. To access build properties for your project, right-click it in the Project
Navigator and select Properties.

2. From the Properties dialog, click Build Properties.

10.3.1 Configuring Build Support and Specs

Use this tab to configure build support and build specs for your project.

1. A VxWorks Downloadable Kernel Module project is a predefined project type
that uses Workbench build support, so build support is enabled by default. If
you are creating a project because you want to browse symbol information and
you are not interested in building it, click Disabled to disable build support
(you can click Managed build to re-enable it later, if you want).

2. If necessary, edit the default Build command.

3. All available build specs are selected (and therefore enabled) by default. To
restrict the list of enabled build specs to only those you need for your project,
click Disable All and then select the checkbox next to the build spec(s) you
want to enable for this project.

4. To reset build properties to their default settings or import build settings from
another project, click Import and select the source of the build settings.

5. If you enabled one build spec for this project, it appears in the Default build
spec and Active build spec fields.

If you enabled more than one, the build spec in the Default build spec field is
used for builds, though you can select a different Active build spec for a
particular build. The build spec in the Active build spec field is also
propagated to the appropriate fields on the Build Tools, Build Macros, and
Build Paths tabs.

6. Select or clear the Debug Mode checkbox, depending on whether you want
the build output to include debug information or not.

NOTE: Highlighting the name of the build spec is not sufficient to enable it;
there must be a check in the checkbox to enable the build spec.

NOTE: You can also change the active build spec and the debug mode by
right-clicking the project in the Project Navigator and selecting Build Options
> Set Active Build Spec.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

136

7. For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

10.3.2 Configuring Build Tools

Use this tab to configure build tools, build output generation, and build flags for
your project.

1. The build tools you can select for DKM projects are C-Compiler,
C++-Compiler, Linker, Partial Image Linker, Librarian, or Assembler. In
addition, you can define your own build tool.

■ C-Compiler, C++-Compiler, Assembler: These tools produce a
BuildTargetName.obj file on Windows or a BuildTargetName.o file on UNIX.

■ Linker: The linker produces a BuildTargetName.out file. This single,
partially linked and munched (integrated with code to call C++ static
constructors and destructors) object is intended for downloading. The
Linker output product cannot be passed up to superprojects, although the
current project’s own, unlinked object files can, as can any output products
received from projects further down in the hierarchy.

■ Partial Image Linker: The Partial Image Linker produces a
BuildTargetName.o file. This single, partially linked, but not munched (not
integrated with code to call C++ static constructors and destructors) object
is for subproject support only; it is not intended for download. The
Partial Image Linker output product can be passed up to superprojects, as
can the current project’s own, unlinked object files, as well as any output
products received from projects further down in the hierarchy

■ Librarian: The Librarian produces an archive BuildTargetName.a file. The
Librarian output product can be passed up to superprojects, as can the
current project’s own, unlinked object files, as well as any output products
received from projects further down in the hierarchy.

■ To define your own build tool, click New and enter a build tool name, then
click OK. Your build tools appears in the drop-down list, and you can
configure all build tool settings to fit your needs.

2. For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

10 Creating VxWorks Downloadable Kernel Module Projects
10.3 Configuring VxWorks Downloadable Kernel Module Projects

137

10

10.3.3 Configuring Build Macros

Use this tab to define global and build spec-specific macros that are added to the
build command when executing builds.

1. To change the value of an existing global build macro, select the value in the
Build macro definitions table and type in a new one, or click Edit and type in
the new value, then click OK.

2. To define a new global build macro, click New next to the table, then enter a
Name and Value for the macro. Click OK.

3. To change the value of an existing build spec-specific macro, select the Active
build spec for which the value should be applied, select the value in the Build
spec-specific settings table, then type in a new one. Or click Edit and type in
the new value, then click OK.

4. To define a new build spec-specific macro, click New next to the table, enter a
Name for the macro, leave the Value blank, then click OK.

To define the value, select the macro, select the Active build spec for which the
value should be applied, click Edit and enter the New value, then click OK.

The macro will always be appended to the build command when a build is
launched, and the value will be set according to the active build spec,
including empty values.

For example, if the build command is make --no-print-directory and the
macro is TEST_SPEC, you can define values to be used with different build
specs:

The resulting build commands are as follows:

NOTE: If your project uses the standard managed build, and you select a different
build tool on the Build Tools tab, this choice does not carry over to the Build
Targets tab. You must manually assign the new build tool to your build target.

NOTE: You can define and use global build macros even if you do not select
or define any build specs for your project.

spec 1: Value = spec1Val
spec 2: Value = spec2Val
spec 3: Value =

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

138

5. For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

10.3.4 Configuring Build Paths

Use this tab to specify a redirection root directory for your build output, and add,
delete, or reorder the directories searched by the build tools.

1. By default, build output is directed to a subdirectory in your workspace.
However, if you want to redirect it somewhere else in your file system, specify
a location in the Redirection root directory field.

2. The Redirection directory is a subdirectory of the Redirection root directory.
By default this directory has the same name as the Active build spec, though
you can change it by typing a new directory name in the field.

3. The Include paths table shows the paths used by the compiler to resolve
include directives. To analyze your project and update the displayed include
paths, click Generate to open the Generate Include Search Paths dialog.

a. On the Analyze include directives page, specify which include directives
you want Workbench to ignore when generating include paths.

– Select the first box to ignore inactive include directives, or clear it to
analyze them. Inactive include directives are those directives ignored
by the build system because they are surrounded by compiler options
and preprocessor directives such as #ifndef.

– Select the second box to ignore system includes, or clear it to analyze
them.

When you are ready, click Next to analyze include directives. This may
take some time for a large project.

b. The Resolve include directives page displays results from the analysis.
The upper field displays unresolved include directives in three groups:
resolvable by one include search path, resolvable by multiple search paths,
and not resolvable. The lower field displays resolved directives:
predefined search paths, as well as the search paths Workbench was able
to resolve.

build command for spec 1: make --no-print-directory TEST_SPEC=spec1Val
build command for spec 2: make --no-print-directory TEST_SPEC=spec2Val
build command for spec 3: make --no-print-directory TEST_SPEC=

10 Creating VxWorks Downloadable Kernel Module Projects
10.3 Configuring VxWorks Downloadable Kernel Module Projects

139

10

– To automatically resolve all include directives that can be resolved,
click Resolve All.

– To automatically resolve an individual include directive or one of the
groups of unresolved directives, click Resolve. If Workbench found
one matching header, it will resolve the include directive. If it found
multiple matching headers, a dialog displays the headers and asks
you to select one.

– To open the file so you can see the context of an unresolved include
directive, click Show in Editor.

– To manually resolve include directives for which no matching headers
were found, click Add and navigate to the location of the appropriate
headers. Click OK to add the path to the list of resolved directives; any
directives resolved by that path are removed from the unresolved list.

– To view, enable, or disable variables for paths and path segments, click
Substitution. Click a variable or group of variables to enable or
disable them.

Variables are grouped into four groups, and are applied to all
generated paths in the resolved directives field:

Wind River environment: includes Wind River platform and
Workbench variables.

Build macros: includes global and local build macros, as defined
in project properties.

Project locations: includes variables referring to projects in the
workspace.

System environment: includes all environment variables that do
not appear in the build macro or Wind River environment groups.

Click Apply to see your changes but leave the dialog open for further
editing, or click OK if you are finished.

– To copy search paths to the clipboard so you can paste them into a
make file, select the search path then click Copy.

NOTE: When automatically resolving include directives, Workbench uses
heuristics to determine the best matches, but the results may be incorrect. So
you should examine and if necessary Remove undesired search paths in the
lower field. The newly-generated search paths are marked with a yellow plus
on the folder icon ().

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

140

c. When you are ready, click Finish to return to the Build Paths tab.

4. To manually add an include directory for an Active build spec, select the build
spec from the drop-down list, click Add, and browse to or type in the path (be
sure not to erase the -I at the beginning of the path). Click OK.

To add an include path that applies to all your build specs, click Add to all and
then browse to or type in the path, then click OK.

5. When you are finished configuring your project, click OK.

10.4 Downloadable Kernel Modules in the Project Navigator

After a VxWorks Downloadable Kernel Module has been created, a number of
nodes appear in the Project Navigator. This section describes these nodes as they
appear immediately after project creation. For general notes about manipulating
nodes, for example, moving, copying, filtering, and so forth. Please see 13. Working
in the Project Navigator.

10.4.1 Global Project Nodes

10.4.2 Project Build Specs and Target Nodes

Each target node is associated with a predefined build specification.

The VxWorks Downloadable Kernel Module project software targets depend on
the options you selected during project creation. Specifically, you will not have
both an archive (TargetName.a) target and a TargetName.out target immediately
after project creating. Which, if any, of these will be visible depends on the build
tool you selected. Also, the presence or absence of the green upward arrow on the
target icon (to indicate whether the target is passed up the hierarchy) will be
determined by your creation settings.

ProjectName
The icon at the root of the project tree identifies the type of project; the
icon’s label is the name you gave the project when you created it.

10 Creating VxWorks Downloadable Kernel Module Projects
10.4 Downloadable Kernel Modules in the Project Navigator

141

10

10.4.3 Makefile Nodes

At project generation time two Makefiles are copied to the project. One is a
template that can also be used for entering custom make rules. The other is
dynamically regenerated from build spec data at each build.

10.4.4 Project File Nodes

The project creation facility generates, or includes copies of, a variety of files when
a project is created. Normally, you need not be concerned with these files.
However, here a brief summary of the VxWorks Downloadable Kernel Module
project files displayed in the Project Navigator:

PartialImage.pl
This default target is always built for VxWorks Downloadable Kernel
Module project. This single, partially linked, but not munched object is
for subproject support only; it is not intended for download. By default,
the build target is passed to the next level (hence the green upward
arrow on the icon).

TargetName.out (BuildSpecName[_DEBUG])
This single, partially linked and munched object, produced by the
Linker build tool is intended for downloading.

TargetName.a (BuildSpecName[_DEBUG])
An archive produced by the Librarian build tool that has to be statically
linked into an executable.

.wrmakefile
A template used by Workbench to generate the project’s Makefile. Add
user-specific build-targets and make-rules in this file. These will then be
automatically dumped into the Makefile.

Makefile
Do not add custom code to this file. This Makefile is regenerated every
time the project is built. The information used to generate the file is
taken from the build specification on which the target node is based.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

142

10.5 Application Code for a VxWorks DKM Project

After project creation, you have the infrastructure for a VxWorks Downloadable
Kernel Module project, but often no actual application code. If you are writing
code from the beginning, you can add new files to a project. If you already have
source code files, you will want to import these to the project. For more
information please refer to 13.3.1 Importing Resources, p.162, and 13.3.2 Adding New
Files to Projects, p.163.

You can link your VxWorks Downloadable Kernel Module with the operating
system and have it start automatically at boot time. To do this:

1. Create a VxWorks Image project. See 5.2 Creating a VxWorks Image Project, p.88.

2. Configure the VxWorks Image project as described under 5.6 Adding
Application Projects to the VxWorks Image Project, p.99 and 5.4 Configuring Kernel
Components, p.93.

.project
Eclipse platform project file containing builder information and project
nature.

.wrproject
Workbench project file containing common project properties such as
project type, and so on.

143

 11
Creating User-Defined Projects

11.1 Introduction 143

11.2 Creating and Maintaining Makefiles 144

11.3 Creating a User-Defined Project 144

11.4 Configuring a User-Defined Project 145

11.5 Creating an Application for VxWorks 148

11.1 Introduction

User-Defined Projects assume that you are responsible for setting up and
maintaining your own build system, file system population, and so on. The user
interface provides support for the following:

■ You can configure the build command used to launch your build utility; this
allows you to start builds from the Workbench GUI. You can also configure
different rules for building, rebuilding and cleaning the project.

■ You can create build targets in the Project Navigator that reflect rules in your
makefiles; this allows you to select and build any of your make rules directly
from the Project Navigator.

■ Build output is captured to the Build Console.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

144

11.2 Creating and Maintaining Makefiles

When you create a User-Defined project, Workbench checks the root location of the
project’s resources for the existence of a file named Makefile1. If it does not exist,
Workbench creates a skeleton makefile with a default all rule and a clean. This
allows you to use the Build Project, Rebuild Project, and Clean Project menu
commands, as well as preventing the generation of build errors. You are
responsible for maintaining this Makefile, and you can write any other rules into
this file at any time.

If you base your User-Defined project on an existing project, the makefile of that
project will be copied to the new project and will overwrite a makefile in the new
project’s location. If necessary, you can change the name of the new project’s
makefile using the -f make option to avoid overwriting an existing makefile.

11.3 Creating a User-Defined Project

Before creating the project, see the general comments on projects and project
creation in 4. Projects Overview.

1. Create a User-Defined project by selecting File > New > Wind River
Workbench Project. The New Wind River Workbench Project wizard appears.

2. Select a target operating system, then click Next.

3. From the Build type drop-down list, select User-Defined. Click Next.

4. Type a name for your project.

5. Decide where to create your project:

Create project in workspace
Leave this selected if you want to create the project under the current
workspace directory.

1. If you specified a different filename in the New Project wizard’s Build Command field
using the -f make option, which can include a relative or absolute path to a subdirectory,
Workbench checks for the file you specified.

11 Creating User-Defined Projects
11.4 Configuring a User-Defined Project

145

11

Create project at external location
Select this option, click Browse, then navigate to a different location if you
want to create the project outside the workspace.

Create project in workspace with content at external location
Select this option, click Browse, then navigate to your source location if
you do not want to mix project files with your sources, or copy sources into
your workspace.

6. When you are ready, click Finish. Your project appears in the Project
Navigator.

11.4 Configuring a User-Defined Project

Once you have created your project, you can configure its build targets, build
specs, and build macros.

For general details about build properties, see 16.4 Accessing Build Properties, p.214
or press the help key for your host.

1. To access build properties for your project, right-click it in the Project
Navigator and select Properties.

2. From the Properties dialog, click Build Properties.

11.4.1 Configuring Build Support

Use this tab to configure build support for your project.

1. Build support is enabled by default. Click Disabled to disable it, and click
User-defined build to re-enable it.

2. If necessary, edit the default build command.

3. Specify whether received build targets should be passed to the next level.

4. Specify when Workbench should refresh the project after a build.

NOTE: Build tools and build paths cannot be configured for User-defined projects.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

146

Because a refresh of the entire project can take some time (depending on its
size) Workbench does not do it by default. You may choose to refresh the
current project, the current folder, the current folder and its subfolders, or
nothing at all. This option applies to all build runs of the project.

5. You may continue configuring your project by selecting another build tab, or
if you are finished, click OK to close the Build Properties.

11.4.2 Configuring Build Targets

Use this tab to configure make rules and define custom build targets for your
project.

1. Type the desired make rules into the fields in the Make rules section. These
rules are run when you select the corresponding options from the Project
menu or when you right-click your project in the Project Navigator and select
them from the context menu.

The Build Folder and Clean Folder options are available when you select a
folder in the Project Navigator.

2. To define a custom build target, click New. The New Custom Build Target
dialog opens.

3. Type in a name for your build target, then type in the make rule or external
command that Workbench should execute. You can also click Variables and
add a context-sensitive variable to the make rule or command.

The variables represented in the Select Variable dialog are context-sensitive,
and depend on the current selection in the Project Navigator. For variables that
contain a file-specific component, the corresponding target is only enabled
when a file is selected and the variable can be evaluated. Build targets without
file-specific components are always enabled.

4. Choose the type, whether it is a Rule or a Command.

5. Choose a refresh option for the build target, specifying whether Workbench
should use the project setting, refresh the current folder or project, or do
nothing. Click OK to close the dialog.

6. Edit a build target’s options by clicking Edit or Rename. You can also edit the
options (except name) by clicking in the column itself.

7. You may continue configuring your project by selecting another build tab, or
if you are finished, click OK to close the Build Properties.

11 Creating User-Defined Projects
11.4 Configuring a User-Defined Project

147

11

Once you have defined a build target, it is available when you right-click a project
and select Build Options. The build targets are inherited by each folder within the
project, eliminating the need to define the same build targets in each individual
folder.

11.4.3 Configuring Build Specs

Use this tab to define and import build specs.

1. To define a new build spec for your project, click New and enter a build spec
name. Click OK. If this is the first build spec for this project, it automatically
appears in the Default build spec and Active build spec fields. Once you have
defined more than one, you can choose a different default and active spec from
the drop-down list.

2. To reset build properties to their default settings or import build settings from
another project, click Import and select the source of the build settings.

3. Decide whether to clear build setting overrides, then click Finish to return to
the Build Specs tab.

4. You may continue configuring your project by selecting another build tab, or
if you are finished, click OK to close the Build Properties.

11.4.4 Configuring Build Macros

Use this tab to define global and build spec-specific macros that are added to the
build command when executing builds.

1. To change the value of an existing global build macro, select the value in the
Build macro definitions table and type in a new one, or click Edit and type in
the new value, then click OK.

2. To define a new global build macro, click New next to the table, then enter a
Name and Value for the macro. Click OK.

NOTE: The Debug mode option is not available for User-defined builds, as this
has an effect only on build tool-specific fields, which are not available for
User-defined projects.

NOTE: You can define and use global build macros even if you do not select or
define any build specs for your project.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

148

3. To change the value of an existing build spec-specific macro, select the Active
build spec for which the value should be applied, select the value in the Build
spec-specific settings table, then type in a new one. Or click Edit and type in
the new value, then click OK.

4. To define a new build spec-specific macro, click New next to the table, enter a
Name for the macro, leave the Value blank, then click OK.

To define the value, select the macro, select the Active build spec for which the
value should be applied, click Edit and enter the New value, then click OK.

The macro will always be appended to the build command when a build is
launched, and the value will be set according to the active build spec,
including empty values.

For example, if the build command is make --no-print-directory and the
macro is TEST_SPEC, you can define values to be used with different build
specs:

The resulting build commands are as follows:

5. For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

11.5 Creating an Application for VxWorks

In order to have your application initialized once the kernel has booted, you will
need to:

■ Create a VxWorks Image project, see 5.2 Creating a VxWorks Image Project, p.88.

spec 1: Value = spec1Val
spec 2: Value = spec2Val
spec 3: Value =

build command for spec 1: make --no-print-directory TEST_SPEC=spec1Val
build command for spec 2: make --no-print-directory TEST_SPEC=spec2Val
build command for spec 3: make --no-print-directory TEST_SPEC=

11 Creating User-Defined Projects
11.5 Creating an Application for VxWorks

149

11

■ Configure the VxWorks Image project as described under 5.6 Adding
Application Projects to the VxWorks Image Project, p.99 and 5.4 Configuring Kernel
Components, p.93.

■ Before the target is disconnected from the host system, create a target-side file
system, see 7.2 Creating a VxWorks ROMFS File System Project, p.110.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

150

151

 12
Creating Native Application

Projects

12.1 Introduction 151

12.2 Creating a Native Application Project 152

12.3 Configuring Native Application Projects 152

12.4 Native Applications in the Project Navigator 158

12.5 Application Code for a Native Application Project 160

12.1 Introduction

Use a Native Application project for C/C++ applications developed for your host
environment.

Workbench provides build and static analysis support for native GNU 2.9x, GNU
3.x, and Microsoft development utilities (assembler, compiler1, linker, archiver)
though you must acquire and install these utilities as they are not distributed with
Workbench.

There is no debugger integration for native application projects in Workbench, so
you must acquire and use the appropriate native tools for debugging as well.

1. Workbench supports the MinGW, Cygnus, and MS DevStudio compilers. Compilers for
native development are distributed with Wind River VxWorks Platforms, but not with
Workbench.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

152

12.2 Creating a Native Application Project

Before creating the project, see the general comments on projects and project
creation in 4. Projects Overview.

1. Create a Native Application project by selecting File > New > Wind River
Workbench Project. The New Wind River Workbench Project wizard appears.

2. Select Host Operating System (Native Development), then click Next.

3. From the Build type drop-down list, select the type of application you want to
create. Click Next.

4. Type a name for your project.

5. Decide where to create your project:

Create project in workspace
Leave this selected if you want to create the project under the current
workspace directory.

Create project at external location
Select this option, click Browse, then navigate to a different location if you
want to create the project outside the workspace.

Create project in workspace with content at external location
Select this option, click Browse, then navigate to your source location if
you do not want to mix project files with your sources, or copy sources into
your workspace.

6. When you are ready, click Finish. The Native Application project is created
and appears at the root level in the Project Navigator.

12.3 Configuring Native Application Projects

Once you have created your project, you can configure its build support and specs,
build tools, build macros, and build paths.

For general details about build properties, see 16.4 Accessing Build Properties, p.214
or press the help key for your host.

1. To access build properties for your project, right-click it in the Project
Navigator and select Properties.

12 Creating Native Application Projects
12.3 Configuring Native Application Projects

153

12

2. From the Properties dialog, click Build Properties.

12.3.1 Configuring Build Support and Specs

Use this tab to configure build support and build specs for your project.

1. A Native Application project is a predefined project type that uses Workbench
build support, so build support is enabled by default. If you are creating a
project because you want to browse symbol information and you are not
interested in building it, click Disabled to disable build support (you can click
Managed build to re-enable it later, if you want).

2. If necessary, edit the default Build command.

3. All available build specs are selected (and therefore enabled) by default. To
restrict the list of enabled build specs to only those you need for your project,
click Disable All and then select the checkbox next to the build spec(s) you
want to enable for this project.

If you are working on a Windows application, you would normally enable the
msvc_native build spec, and disable the gnu-native build specs. If you are
working on a Linux or Solaris native application, you would normally enable
the GNU tool version you are using, and disable all others.

4. To reset build properties to their default settings or import build settings from
another project, click Import and select the source of the build settings.

5. If you enabled one build spec for this project, it appears in the Default build
spec and Active build spec fields.

If you enabled more than one, the build spec in the Default build spec field is
used for builds, though you can select a different Active build spec for a
particular build. The build spec in the Active build spec field is also
propagated to the appropriate fields on the Build Tools, Build Macros, and
Build Paths tabs.

6. Select or clear the Debug Mode checkbox, depending on whether you want
the build output to include debug information or not.

NOTE: Highlighting the name of the build spec is not sufficient to enable it;
there must be a check in the checkbox to enable the build spec.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

154

7. For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

12.3.2 Configuring Build Tools

Use this tab to configure build tools, build output generation, and build flags for
your project.

1. The build tools you can select for Native Application projects are C-Compiler,
C++-Compiler, C-Linker, C++-Linker, Librarian, or Assembler. In addition,
you can define your own build tool.

■ C-Compiler, C++-Compiler, Assembler: These tools produce a
BuildTargetName.obj file on Windows or a BuildTargetName.o file on UNIX.

■ C-Linker: The linker produces a BuildTargetName.exe file on Windows and
a BuildTargetName file on UNIX. This partially linked and munched
(integrated with code to call C++ static constructors and destructors)
object is intended for downloading. The C-Linker output product cannot
be passed up to superprojects, although the current project’s own,
unlinked object files can be passed, as can any output products received
from projects further down in the hierarchy.

■ C++-Linker: This linker produces a BuildTargetName.exe file on Windows
and a BuildTargetName file on UNIX.

■ Librarian: The Librarian produces a BuildTargetName.lib file on Windows
and a BuildTargetName.a file on UNIX. The Librarian output product can
be passed up to superprojects, as can the current project’s own, unlinked
object files, as well as any output products received from projects further
down in the hierarchy.

■ To define your own build tool, click New and enter a build tool name, then
click OK. Your build tools appears in the drop-down list, and you can
configure all build tool settings to fit your needs.

2. For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

NOTE: You can also change the active build spec and the debug mode by
right-clicking the project in the Project Navigator and selecting Build
Options > Set Active Build Spec.

12 Creating Native Application Projects
12.3 Configuring Native Application Projects

155

12

12.3.3 Configuring Build Macros

Use this tab to define global and build spec-specific macros that are added to the
build command when executing builds.

1. To change the value of an existing global build macro, select the value in the
Build macro definitions table and type in a new one, or click Edit and type in
the new value, then click OK.

2. To define a new global build macro, click New next to the table, then enter a
Name and Value for the macro. Click OK.

3. To change the value of an existing build spec-specific macro, select the Active
build spec for which the value should be applied, select the value in the Build
spec-specific settings table, then type in a new one. Or click Edit and type in
the new value, then click OK.

4. To define a new build spec-specific macro, click New next to the table, enter a
Name for the macro, leave the Value blank, then click OK.

To define the value, select the macro, select the Active build spec for which the
value should be applied, click Edit and enter the New value, then click OK.

The macro will always be appended to the build command when a build is
launched, and the value will be set according to the active build spec,
including empty values.

For example, if the build command is make --no-print-directory and the
macro is TEST_SPEC, you can define values to be used with different build
specs:

The resulting build commands are as follows:

NOTE: If your project uses the standard managed build, and you select a different
build tool on the Build Tools tab, this choice does not carry over to the Build
Targets tab. You must manually assign the new build tool to your build target.

NOTE: You can define and use global build macros even if you do not select
or define any build specs for your project.

spec 1: Value = spec1Val
spec 2: Value = spec2Val
spec 3: Value =

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

156

5. For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

12.3.4 Configuring Build Paths

Use this tab to specify a redirection root directory for your build output, and add,
delete, or reorder the directories searched by the build tools.

1. By default, build output is directed to a subdirectory in your workspace.
However, if you want to redirect it somewhere else in your file system, specify
a location in the Redirection root directory field.

2. The Redirection directory is a subdirectory of the Redirection root directory.
By default this directory has the same name as the Active build spec, though
you can change it by typing a new directory name in the field.

3. The Include paths table shows the paths used by the compiler to resolve
include directives. To analyze your project and update the displayed include
paths, click Generate to open the Generate Include Search Paths dialog.

a. On the Analyze include directives page, specify which include directives
you want Workbench to ignore when generating include paths.

– Select the first box to ignore inactive include directives, or clear it to
analyze them. Inactive include directives are those directives ignored
by the build system because they are surrounded by compiler options
and preprocessor directives such as #ifndef.

– Select the second box to ignore system includes, or clear it to analyze
them.

When you are ready, click Next to analyze include directives. This may
take some time for a large project.

b. The Resolve include directives page displays results from the analysis.
The upper field displays unresolved include directives in three groups:
resolvable by one include search path, resolvable by multiple search paths,
and not resolvable. The lower field displays resolved directives:
predefined search paths, as well as the search paths Workbench was able
to resolve.

build command for spec 1: make --no-print-directory TEST_SPEC=spec1Val
build command for spec 2: make --no-print-directory TEST_SPEC=spec2Val
build command for spec 3: make --no-print-directory TEST_SPEC=

12 Creating Native Application Projects
12.3 Configuring Native Application Projects

157

12

– To automatically resolve all include directives that can be resolved,
click Resolve All.

– To automatically resolve an individual include directive or one of the
groups of unresolved directives, click Resolve. If Workbench found
one matching header, it will resolve the include directive. If it found
multiple matching headers, a dialog displays the headers and asks
you to select one.

– To open the file so you can see the context of an unresolved include
directive, click Show in Editor.

– To manually resolve include directives for which no matching headers
were found, click Add and navigate to the location of the appropriate
headers. Click OK to add the path to the list of resolved directives; any
directives resolved by that path are removed from the unresolved list.

– To view, enable, or disable variables for paths and path segments, click
Substitution. Click a variable or group of variables to enable or
disable them.

Variables are grouped into four groups, and are applied to all
generated paths in the resolved directives field:

Wind River environment: includes Wind River platform and
Workbench variables.

Build macros: includes global and local build macros, as defined
in project properties.

Project locations: includes variables referring to projects in the
workspace.

System environment: includes all environment variables that do
not appear in the build macro or Wind River environment groups.

Click Apply to see your changes but leave the dialog open for further
editing, or click OK if you are finished.

– To copy search paths to the clipboard so you can paste them into a
make file, select the search path then click Copy.

NOTE: When automatically resolving include directives, Workbench uses
heuristics to determine the best matches, but the results may be incorrect. So
you should examine and if necessary Remove undesired search paths in the
lower field. The newly-generated search paths are marked with a yellow plus
on the folder icon ().

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

158

c. When you are ready, click Finish to return to the Build Paths tab.

4. To manually add an include directory for an Active build spec, select the build
spec from the drop-down list, click Add, and browse to or type in the path (be
sure not to erase the -I at the beginning of the path). Click OK.

To add an include path that applies to all your build specs, click Add to all and
then browse to or type in the path, then click OK.

5. When you are finished configuring your project, click OK.

12.4 Native Applications in the Project Navigator

After a Native Application project has been created, a number of nodes appear in
the Project Navigator. This section describes these nodes as they appear
immediately after project creation. For general notes about manipulating nodes,
for example, moving, copying, filtering, etc., please see 13. Working in the Project
Navigator.

12.4.1 Global Project Nodes

12.4.2 Project Build Specs and Target Nodes

Each target node is associated with a predefined build specification.

The build target depends on the options you selected during project creation.
Specifically, you will not have both an archive (TargetName.a for a gnu build spec,
or TargetName.lib for a msvc build spec) target and a TargetName(.exe for a msvc
build spec) target immediately after project creation. Which of these will be visible
depends on the build tool you selected. Also, the presence or absence of the green
upward arrow on the target icon (to indicate whether the target is passed up the
hierarchy) will be determined by your project settings.

ProjectName
The icon at the root of the project tree identifies the type of project; the
icon’s label is the name you gave the project when you created it.

12 Creating Native Application Projects
12.4 Native Applications in the Project Navigator

159

12

12.4.3 Makefile Nodes

At project generation time two Makefiles are copied to the project. One is a
template that can also be used for entering custom make rules. The other is
dynamically regenerated from build spec data at each build.

12.4.4 Project File Nodes

The project creation facility generates, or includes copies of, a variety of files when
a project is created. Normally, you need not be concerned with these files.
However, here a brief summary of the DKM project files displayed in the Project
Navigator:

TargetName[.exe] (BuildSpecName[_DEBUG])
An executable.

TargetName.a|.lib (BuildSpecName[_DEBUG])
An archive produced by the Librarian build tool.

.wrmakefile
A template used by Workbench to generate the project’s Makefile. Add
user-specific build-targets and make-rules in this file. These will then be
automatically dumped into the Makefile.

Makefile
Do not add custom code to this file. This Makefile is regenerated every
time the project is built. The information used to generate the file is
taken from the build specification that on which the target node is
based.

.project
Eclipse platform project file containing builder information and project
nature.

.wrproject
Workbench project file containing common project properties such as
project type, etc.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

160

12.5 Application Code for a Native Application Project

After project creation you have the infrastructure for a Native Application project,
but often no actual application code. If you are writing code from the beginning,
you can add new files to a project. If you already have source code files, you will
want to import these to the project. For more information please refer to
13.3.1 Importing Resources, p.162, and 13.3.2 Adding New Files to Projects, p.163.

161

 13
Working in the Project

Navigator

13.1 Introduction 161

13.2 Creating Projects 162

13.3 Adding Application Code to Projects 162

13.4 Opening and Closing Projects 163

13.5 Scoping and Navigation 164

13.6 Moving, Copying, and Deleting Resources and Nodes 166

13.1 Introduction

The Project Navigator is your main graphical interface for working with projects.
You use the Project Navigator to create, open, close, modify, and build projects. You
also use it to add or import application code, to import, or customize build
specifications, and to access your version control system.

Various filters, sorting mechanisms, and viewing options help to make project
management and navigation more efficient. Use the arrow at the top-right of the
Project Navigator to open a drop-down menu of these options.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

162

13.2 Creating Projects

Creating projects is discussed in general under 4. Projects Overview. Specific
descriptions for creating individual project types are provided in the other
chapters in Part II. Projects.

13.3 Adding Application Code to Projects

After creating a project, you have the infrastructure for a given project type, but no
actual application code. If you already have source code files, you will want to
import these to the project.

13.3.1 Importing Resources

You can import various types of existing resources to projects by choosing
File > Import.

For details about the entries in the Import File dialog, open it and press the help
key for your host.

NOTE: If Workbench encounters a problem while importing resources, it will
display an error (such as the project already contains a file with the same name). If
you click OK, the Import wizard reappears with all the original settings. This gives
you the opportunity to fix just the item causing the problem, rather than having to
re-enter all the selections in the wizard.

If you do not want to fix the problem and import the resources now, click Cancel.

13 Working in the Project Navigator
13.4 Opening and Closing Projects

163

13

13.3.2 Adding New Files to Projects

To add a new file to a project, choose File > New > File.

You are asked to Enter or select the parent folder, and to supply Filename.

For a description of the Advanced button, and what it reveals, open the New File
dialog and press the help key for your host.

13.4 Opening and Closing Projects

You can open or close a project by right-clicking it in the tree and choosing Open
Project (if it is currently closed), or Close Project (if it is currently open). You can
also select Project > Open Project or Project > Close Project.

13.4.1 Closing a Project

■ The icon changes to its closed state (by default grayed) and the tree collapses.

■ All project member files that are open in the editor are closed.

■ All subprojects that are linked exclusively to the closed project are closed as
well. However, subprojects that are shared among multiple projects remain
open as long as a parent project is still open, but can be closed explicitly at any
time.

NOTE: Importing resources creates a link to the location of those resources; it does
not copy them into your workspace.

Later, if you want to delete a project, check the path in the Confirm Project Delete
dialog very carefully when deciding whether to choose Also delete contents
under 'path' or Do not delete contents—choosing to delete the project contents
may delete your original sources or the contents of a project in a different
workspace, rather than the project in your current workspace.

If this happens, right-click the folder that originally contained the files, then select
Restore from Local History. Workbench will show you a list of files you can choose
to restore.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

164

■ In general, closed projects are excluded from all actions such as symbol
information queries, and from workspace or project structure builds (that is, if
a parent project of a closed subproject gets built).

■ It is not possible to manipulate closed projects. You cannot add, delete, move,
or rename resources, nor can you modify properties. The only possible
modification is to delete the project itself.

■ Closed projects require less memory.

13.5 Scoping and Navigation

There are a number of strategies and Workbench features that can help you
manage the projects in your workspace, whether you are working with multiple
projects related to a single software system, or multiple unrelated software
systems.

■ Close projects

If you expect to be working in a different context (under a different root
project) for a while, you can right-click the project you are leaving and select
Close Project.

If you close your root projects when you stop working on them, you will see
just the symbols and resources for the project on which you are currently
working (see also 13.4.1 Closing a Project, p.163).

■ Go into a project

If you want to see, for example, the contents of only one software system in the
Project Navigator, select its root project node and right-click Go Into. You can
then use the navigation arrows at the top of the Project Navigator to go back
out of the project you are in, or to navigate history views.

■ Open a project in a new window

If you expect to be switching back and forth between software systems (or
other contexts) at short intervals, and you do not want to change your current
configuration of open editors and layout of other views, you can open the
other software system’s root project in a new window (right-click
Open in New Window). This essentially does the same as Go Into (see

13 Working in the Project Navigator
13.5 Scoping and Navigation

165

13

Go Into a Project), except that a new window is opened, thereby leaving your
current Workbench layout intact.

■ Open a new window

You can open a new window by choosing Window > New Window. This
opens a new window to the same workspace, leaving your current Workbench
window layout intact while you work on some other context in the new
window.

■ Use Working Sets

Using working sets lets you set the scope for all sorts of queries. You can, for
example, create working sets for each of your different software systems, or
any constellation of projects, and then scope the displayed Project Navigator
content (and other query requests) using the pull-down at the top-right of the
Project Navigator.

To create a Working Set, from the drop-down menu, choose
Select Working Set. In the dialog that appears, click New, then, in the next
dialog, specify the Resource type.

In the next dialog select, for example, a software-system root project and give
the working set a name. When you click Finish, your new working set will
appear in the Select Working Set dialog’s list of available working sets.

After the first time you select a working set in the Select Working Set dialog,
the working set is inserted into the Project Navigator’s drop-down menu, so
that you can directly access it from there.

■ Use the Navigate Menu

For day-to-day work, there is generally no absolute need to see the contents of
your software systems as presented in the Project Navigator.

Using the Navigate > Open Resource (to navigate files) and
Navigate > Open Symbol (to jump straight to a symbol definition) may often
prove to be the most convenient and efficient way to navigate within, or
among, systems.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

166

13.6 Moving, Copying, and Deleting Resources and Nodes

The resources you see in the Project Navigator are normally displayed in their
logical, as opposed to physical, configuration (see 4.5 Projects and Project Structures,
p.80). Depending on the type of resource (file, project folder) or purely logical
element (target node) you are manipulating, different things will happen. The
following section briefly summarizes what is meant by resource types and logical
nodes.

13.6.1 Resources and Logical Nodes

Resources is a collective term for the projects, folders, and files that exist in
Workbench.

There are three basic types of resources:

■ Files

Equivalent to files as you see them in the file system.

■ Folders

Equivalent to directories on a file system. In Workbench, folders are contained
in projects or other folders. Folders can contain files and other folders.

■ Projects

Contain folders and files. Projects are used for builds, version management,
sharing, and resource organization. Like folders, projects map to directories in
the file system. When you create a project, you specify a location for it in the
file system.

When a project is open, the structure of the project can be changed and you will
see the contents. A discussion of closed projects is provided under
13.4.1 Closing a Project, p.163.

Logical nodes is a collective term for nodes in the Project Navigator that provide
structural information or access points for project-specific tools.

■ Subprojects

A project is a resource in the root position. A project that references a
superproject is, however, a logical entity; it is a reference only, not necessarily
(or even normally) a physical subdirectory of the superproject’s directory in
the file system.

13 Working in the Project Navigator
13.6 Moving, Copying, and Deleting Resources and Nodes

167

13

■ Build Target Nodes

These are purely logical nodes to associate the project’s build output with the
project.

■ Tool Access Nodes

These allow access to project-specific configuration tools. VxWorks ROMFS
File System Projects have a node that opens a tool for mapping host-side
project contents to target file system contents. VxWorks Image Projects have a
node that opens the Kernel Configuration Editor for configuring the VxWorks
kernel.

13.6.2 Manipulating Files

Individual files, for example source code files, can be copied, moved, or deleted.
These are physical manipulations. For example, if you hold down CTRL while you
drag-and-drop a source file from one project to another, you will create a physical
copy, and editing one copy will have no effect on the other.

13.6.3 Manipulating Project Nodes

Although copying, moving, or deleting project nodes are undertaken with the
same commands you would use for normal files, the results are somewhat
different because a project folder is a semi-logical entity. That is, a project is a
normal resource in the root position. A project that is referenced as a subnode is,
however, a logical entity; it is a reference only, not a physical instance.

If you copy/paste (or hold down CTRL while you drag-and-drop) a project folder
node to a new location in the project editor (for example, under some other project
node to be used as a subproject there) all that happens is that a reference to one and
the same project is inserted. This means that if you modify the properties of one
instance of the subproject node, all other instances (which are really only
references) are also modified. One such property would be, for example, the
project name. If you rename the project node in one context, it will also be renamed
in all other contexts.

Moving and (Un-)Referencing Project Nodes

If you drag-and-drop a project folder, you are making a logical, structural change.
However, if you select a project folder node and right-click Move, you will be

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

168

asked to enter (browse for) a new file system location. All the files associated with
the current project will then be physically moved to the location you select,
without any visible change in the Project Navigator (you can verify the new
location in the Project Properties).

When you drag-and-drop a project node, you are actually performing the
equivalent of right-click Add as Reference or, if you have selected a subproject,
also right-click Remove Reference. These commands open a dialog allowing you
to either have the currently selected project reference other projects as a subproject,
or, in the Remove Reference dialog, to remove the currently selected project from
its structural (logical) context as a subproject, in which case it will be moved to the
root level as a standalone project in the Project Navigator.

Deleting Project Nodes

To delete a subproject, which might potentially be linked into any number of other
project structures, you first have to either unlink (right-click it and press Delete)
all instances of the subproject, or get a flat view of your workspace. To do this, open
the drop-down list at the top-right of the Project Navigator’s toolbar and choose
Hide > Project Structure. This hides the logical project organization and provides
a flat view with a single instance of the (sub)project that you can then delete by
pressing Delete again.

When you delete a project you are asked whether or not you want to delete the
contents. If you choose not to delete the contents, the only thing that happens is
that the project (and all its files) are no longer visible in the workspace; there are no
file system changes.

13.6.4 Manipulating Target Nodes

Target nodes cannot be copied or moved. These are purely logical nodes that make
no sense anywhere except in the projects for which they were created. If you copy
or move entire projects, however, the target nodes and generated build-targets
beneath them are also copied.

Deleting Target Nodes

Deleting a target node also removes the convenience node that represents the
generated, physically existing build-target. However, the physically existing
build-target (if built) is not deleted from the disk.

13 Working in the Project Navigator
13.6 Moving, Copying, and Deleting Resources and Nodes

169

13

The convenience node referred to above, lets you see at a glance whether the target
has been built or not, even if you have uncluttered your view in the Project
Navigator by hiding build resources (in the drop-down menu at the top-right
choose Hide > Build Resources) and/or collapsing the actual target node. If you
have collapsed the node, the + sign will indicate that the build-target exists).

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

170

171

 14
Advanced Project Scenarios

14.1 Introduction 171

14.2 Resource Locations 172

14.3 Multiple, Unrelated Software Systems 173

14.4 Complex Project Structures 174

14.1 Introduction

The scenarios developed in this chapter suggest how you could use the Wind River
Workbench to manage various constellations of projects and project types. Because
Workbench provides a variety of possibilities for achieving different ends, the
scenarios are neither prescriptive, nor comprehensive. All we can do here is offer
some suggestions.

The scenarios do not look at the edit/compile/debug cycle; the emphasis is on
project organization and handling. The discussion looks at:

■ resource locations

■ strategies for working with multiple, unrelated software systems

■ complexities within a single software system, including project structure
design, development, and finalization steps

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

172

14.2 Resource Locations

One complexity that you might be faced with, especially in team development
situations, is that you might have to use file system resources (files and directories)
that are outside your workspace.

As long as file system resources are located in the default location (your own
workspace), for example because you have checked them out from your version
control system, there is nothing to discuss.

When you create projects in Workbench, project-specific administrative files are
stored at the file system location of the resources used by the project. This means
that, if these resources are outside your workspace, you may not have write
permission there and that the necessary files therefore cannot be created.

This may be an issue, for example, also with respect to centrally maintained header
files and third party libraries. In such cases you have the following options:

■ Have your administrator, who does have write permission, create the project
(see Creating Projects for External Headers, p.185) and import the project as
follows:

– In the Project Navigator, right-click Import.

– In the Import wizard, select Existing Project into Workspace and click
Next.

– Browse to the directory where the project was created and click OK, then
Finish.

This is the recommended way to proceed in cases where not everyone is
allowed to write to resource directories. This way all team members always
access both the same, most up to date source files and the same project, thereby
ensuring consistency across the entire team without any synchronization
overhead. Note that, if you have multiple workspaces, you would have to
import the project to each workspace.

Furthermore, if the external resources are not just header files, that is, if they
are buildable, build support must be either disabled for the imported project
(if existing build output is externally available), or build output of the
imported projects must be redirected somewhere that users have write
permission (open the build properties dialog, click the build paths tab, and
press the help key for your host). Write permission will also be required for the
.wrproject file in the project directory and the .wrfolder files in each folder, for
modifications (added/removed resources) and for maintaining changes in
build properties.

14 Advanced Project Scenarios
14.3 Multiple, Unrelated Software Systems

173

14

■ The other option is to copy the resources to somewhere that you do have write
permission.

This option is not recommended because of the synchronizations problems
that are bound to arise sooner or later. Consider this a last resort.

14.3 Multiple, Unrelated Software Systems

The assumption is that you work on multiple, unrelated software systems in
parallel. Each of these systems will normally (but not necessarily) consist of any
number of subprojects organized into project structures; that is, each system will
normally be arranged as a tree under a single superproject. However, ignoring the
internal organization of your software systems for the moment (this is discussed
under Complex Project Structures, p.174), first look at the software systems as a
whole.

During the course of any working day you might spend time working in different
software systems that have nothing to do with each other (other than the fact that
you happen to be working in them). You will presumably want to be able to focus
as fully as possible, with as little distraction as possible, on the software system you
are working on at any given time. If you have to switch from one system to the
other fairly frequently, the switch should be easy and rapid.

14.3.1 Using Different Workspaces for Different Systems

Using different workspaces for unrelated software systems lets you keep these
systems completely separate, without seeing any sign of the currently non-relevant
context anywhere.

However, when you switch from one workspace to another (choose
File > Switch Workspace), you are actually closing your current Workbench
instance and reopening a new instance that uses the selected new workspace. This
takes time, but offers the advantage that the new workspace opens exactly as you
left it when you last closed it.

This option, because of the time overhead involved in switching, is probably most
feasible if you have only a few separate software systems, and if you spend
extended periods of time in one or other context without interruption.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

174

However, if you have, a system that you work on most of the time, and several
other systems where you have to frequently do relatively minor maintenance
work, you might find it more convenient to use a single workspace for all, or many
of, your projects.

Naturally, there is no reason why you should not have both multiple workspaces
as outlined here, and, within one or more of these, also maintain multiple,
unrelated software systems in the same workspace as discussed below.

14.3.2 Using the Same Workspace for Different Software Systems

Using the same workspace for any number of unrelated software systems does not
stop you from keeping these systems completely separate. The only sign of each
currently non-relevant system can be a single icon (or not even that if you Go Into
a project - see 13.5 Scoping and Navigation, p.164). This means that all software
systems are immediately visible and accessible, without being unduly obtrusive.
Furthermore, switching from one software system to another is much faster than
using different workspaces as described above. On the other hand, if you are
working on multiple, very large software systems, general performance might
become an issue that would suggest using separate workspaces.

Some of the ways that will help you handle multiple software systems in the same
workspace are introduced under 13.5 Scoping and Navigation, p.164

14.4 Complex Project Structures

This section develops a simple infrastructure as a possible approach to a
high-level, internal organization of an individual software system.

14 Advanced Project Scenarios
14.4 Complex Project Structures

175

14

14.4.1 Project Assumptions

The following discussion attempts to align how Workbench project structures and
project types can support a software system that includes the following
requirements.

■ There is a kernel

In the design phase, you need not think too much about the kernel. It is
sufficient to know that there will be one at some point.

Use a simulator for initial development and testing.

■ The output product must be a single flashable image

This image will contain the kernel as well as all the run-time components
(binaries from Real-time Process Projects, libraries, data files, and so on). A
target-side file system is therefore required; this will be implemented using
Wind River ROMFS technology by setting up a VxWorks ROMFS File System
project.

However, in the design phase, you do not need not worry about this; it is
sufficient to know that there will be a VxWorks ROMFS File System project at
some point.

■ The software system will have to be ported to different boards

Although the kernel as such is not initially of primary importance, the
assumption that you will have to port the system at some stage may be a
design consideration. If you are developing and testing on a simulator (see
above), there will be porting to do anyway.

■ There are run-time products.

■ One or more modules are needed as abstraction layers that wrap around the
kernel

Use Downloadable Kernel Module Projects for these.

■ There are application modules

These have to be process-based and they have to run in their own
memory-protected address space.

Use Real-time Process Projects for these.

■ There are shared libraries

These are potentially used by any or all of the application modules.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

176

Use Shared Library Projects for these.

■ There is legacy code

Use User-Defined Projects and/or Real-time Process Projects and/or
Downloadable Kernel Module Projects.

User-Defined Projects are appropriate in situations where you would rather
not tamper with how the application is built. In other situations, you can wrap
your legacy projects in one of the standard project types supported by
Workbench.

■ There are external headers

These are centrally maintained and are potentially used by any or all of the
software system’s modules.

Use a User-Defined project (without build support) for these.

■ Building a complete product image must be simple

14.4.2 Infrastructure Design, p.176, tries to meet all the above requirements and
provide a push-button build of the full product image, including all its
components, for multiple architectures.

14.4.2 Infrastructure Design

Based on the Project Assumptions, p.175, the following describes how you could go
about building an infrastructure for such a software system.

The infrastructure described here is not a requirement for project management in
Workbench. It can however be convenient to create such an infrastructure to
facilitate porting a software system to other boards, as well as to allow building an
entire product image, even for multiple boards, all at once. Furthermore, such an
infrastructure does not need to be in place from the start; it can be folded over a
project system at any stage of development.

NOTE: The screenshots in the following have been filtered in various ways to hide
everything that is not related to project structure. If you follow the procedures
described, you will see this same structure, as well as a number of additional files,
folders, target nodes, and so on.

14 Advanced Project Scenarios
14.4 Complex Project Structures

177

14

Create Container Projects

This infrastructure uses empty container projects at the superproject level as well
as at subproject levels. The type of container used in each case will depend on the
type of content the container will later accommodate.

In the current context, the term container project is therefore used to denote a project
of any type that does not, however, itself contain any source code files; all
application source files will be in subprojects referenced by the empty container
project.

Step 1: Create a container project.

Creating a container project as the topmost superproject the software system is an
organizational artifact to provide a convenient way of keeping everything
together, and thereby also cleanly separating the software system from other
software systems you might work on in the same workspace.

The only other real functionality the superproject container project needs to
provide is that it has to be buildable. Although the project itself contains no source
code files, you will want to able to start the build at the top of your future project
tree to recursively build the whole structure.

The default User-Defined project provided by Workbench is exactly what you need
for a topmost container project.

To create a new User-Defined project, in the Project Navigator, right-click
New > User-Defined Project.

In the wizard that appears, in the Project name field, enter: playpen_sim (this is
an arbitrary name for a fictitious software system; the suffix _sim reflects that this
system will be built for the simulator) and click Finish. (You can ignore the Next
button and the other Wizard pages because the defaults are fine.)

This creates a default User-Defined project; that is, one that supports a
user-defined build based on existing makefiles. Since this is a just a container
project without any (user-defined) makefiles, Workbench will create a Makefile
with a default all rule and a clean. This allows you to use the Build Project,
Rebuild Project, and Clean Project menu commands, as well as preventing the
generation of irritating build errors. If you want, you can write any other rules into
this file at any time. See also 11. Creating User-Defined Projects.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

178

Step 2: Create container projects for each project type and for external headers.

Recall that Project Assumptions, p.175, stated requirements for Downloadable
Kernel Modules, Real-time Process Projects, Shared Library Projects, and
User-Defined projects.

Creating empty projects for each of these project types facilitates porting from the
simulator to a board, and from one board to another. This is because, in a tree of
projects of the same type, all subprojects are built using the same build spec as that
used by the topmost project. This applies to all project types except User-Defined
projects (there is no way to predict how these are built).

So, for example, by creating an empty Real-time Process project type container
project and later populating this container with real Real-time Process project type
subprojects, then you only need to use a different build spec for the container when
it comes to porting the system to a different board (more about this later).

Note that Real-time Process projects and Shared Library projects actually use the
same build specs, so, technically speaking, you could lump these two project types
together under one container and save yourself a couple of steps. However, the
orderly separation of project types appears a little cleaner and is therefore adopted
here.

The naming convention used for these containers indicates the project type that
will be stored within (actually only reference) these containers, plus a suffix that
indicates the software system they belong to and the board they will be built for
(_playpen_sim).

To create the empty container project types, proceed as follows:

■ To create a new container Downloadable Kernel Module project, in the Project
Navigator, right-click New > Downloadable Kernel Module Project.

In the wizard that appears, in the Project name field, enter:
DKMs_playpen_sim and click Finish.

■ To create a new container Real-time Process project, in the Project Navigator,
right-click New > Real Time Process Project.

NOTE: You can ignore the Next button and click Finish on the first page in each of
the wizards because the defaults are fine for the moment.

NOTE: Project references can only be created if the projects are based on the same
Platform. Platform here refers to the settings in Window > Preferences > General
> Target Operating Systems.

14 Advanced Project Scenarios
14.4 Complex Project Structures

179

14

In the wizard that appears, in the Project name field, enter:
RTPs_playpen_sim and click Finish.

■ To create a new container Shared Library project, in the Project Navigator,
right-click New > Shared Library Project.

In the wizard that appears, in the Project name field, enter:
LIBs_playpen_sim and click Finish.

■ To create a new container User-Defined project, in the Project Navigator,
right-click New > User Defined Project.

In the wizard that appears, in the Project name field, enter:
UDPs_playpen_sim and click Finish.

■ To create a new container User-Defined project (without build support) to
accommodate the external, centrally maintained header files mentioned in
Project Assumptions, p.175, in the Project Navigator, right-click
New > User-Defined Project.

In the wizard that appears, in the Project name field, enter: headers_playpen
(notice that we have not appended the suffix _sim; this is because this project
does not use a build spec, see below) and keep clicking Next until you get to
the wizard’s Build Support page.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

180

In the wizard’s Build Support page, select the Disabled option and click
Finish.

In the Project Navigator you should now see the flat list of container projects
(collapsed) shown in Figure 14-2.

Figure 14-1 Disable Build Support for Header Projects

Figure 14-2 Container Projects

14 Advanced Project Scenarios
14.4 Complex Project Structures

181

14

Step 3: Drop all container projects onto the topmost container project.

The topmost container project must be referenced by all other container projects;
in other words, all other container projects must by subprojects of playpen_sim.

In the Project Navigator, select all projects except playpen_sim and drag-and-drop
them into playpen_sim.

Figure 14-3 illustrates the infrastructure created in the above steps. Notice the
referencing arrows at the left of the subproject icons.

14.4.3 Development

Once you set up the infrastructure for your first board (or simulator), you will
populate the container projects with real projects that actually contain source files.

In order to later facilitate porting the software system to other boards you would,
organize these, at least initially, so that:

■ All Real-time Process projects are subprojects of RTPs_playpen_sim.

■ All Downloadable Kernel Module projects are subprojects of
DKMs_playpen_sim.

■ All Shared Library projects are subprojects of LIBs_playpen_sim.

■ All projects for external headers are in headers_playpen.

■ All User-Defined projects (except the ones in headers_playpen, where build
support is disabled) are subprojects of UDPs_playpen_sim.

Figure 14-3 Container Projects Referenced by the Topmost Container

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

182

Referencing Containers

There are a number of ways you can associate projects with other projects as
subprojects. Above, during the creation of the container project infrastructure,
drag-and-drop was used. Another method is to right-click Add Reference. You
can also create the reference during project creation as demonstrated in the
example below.

Example 14-1 Creating and a Project and Referencing its Container

Assumption: you are creating a Real-time Process project. This, according to the
conventions outlined above, will be a subproject of RTPs_playpen_sim. The
quickest way to achieve this is:

1. In the Project Navigator, select RTPs_playpen_sim. This is the Real-time
Process project you are currently creating should reference as a subproject.

2. Right-click New > Real Time Process Project.

3. In the wizard, enter a Project name (use rtp_1 in this example) and click Next.

4. In the wizard’s Project Structure page there is a Superproject check box
labelled Link to project RTPs_playpen_sim. This check box appears because
you selected the RTPs_playpen_sim project in step 1, above.

5. Select Reference RTPs_playpen_sim and continue to create the project.

14 Advanced Project Scenarios
14.4 Complex Project Structures

183

14

Shared Libraries

The recommended convention, above that “All Shared Library projects are
subprojects of LIBs_playpen_sim.” might seem strange. Shared libraries are
normally subprojects of the projects that use them, so why put shared libraries in
this seemingly disconnected location (LIBs_playpen_sim)?

The libraries are actually even more disconnected than they appear. Remember
that, physically speaking, all the projects in any project structure, no matter how
deep, are topographically flat as shown in Figure 14-5. This figure shows exactly
the same system as Figure 14-6, which displays the logical view you normally see
(you can switch from one representation to the other using the drop-down menu
at the top-right of the Project Navigator Hide > Project Structure).

Figure 14-4 Linking as Subproject during Project Creation

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

184

While it is true that you will normally only have libraries as subprojects of
applications that use them (even if you are developing a library you will probably
have a test application project above the library), it does not matter how often a
library node occurs in a given tree, or even in the entire workspace, it is physically
only one library and will therefore only be built once (see Figure 14-5). In this
sense, it does not matter that the libraries will appear in one extra place,
LIBs_playpen_sim.

Figure 14-6 shows exactly the same system as Figure 14-5. Notice that the Shared
Library project, lib_1, occurs three times: once each under rtp_1 and rtp_2, and
once, seemingly unnecessarily, under LIBs_playpen_sim.

Figure 14-5 Physical View of the System

Figure 14-6 Logical View of the System

14 Advanced Project Scenarios
14.4 Complex Project Structures

185

14

If you adhere to the convention recommended above, that “All Shared Library
projects are subprojects of LIBs_playpen_sim.”, you will have to copy (for
example, using hold down CTRL while you drag-and-drop) library nodes to
subproject locations under applications that use them. Note again that when you
do this, you are not really copying anything; you are creating references—if
anything, you are copying links (again note the reference arrows on subproject
icons). However, on the upside, whenever you need to add your library projects to
applications, you will know exactly where to find them because they are neatly
collected in their container project, in our example, LIBs_playpen_sim.

The other advantage of adhering to this convention will, as already mentioned,
become apparent when it is time to port the software system to different boards.

External Headers and Projects that Use Them

This section starts by describing how to create projects for external headers on the
assumption that you follow the convention of having projects of the same type
referencing their respective container projects, in our example, headers_playpen.
The discussion continues with an outline of the steps you need to apply to the
projects that use these header projects.

Creating Projects for External Headers

Headers, or any other resources that are external to your workspace, might be a
problem if you do not have write permission. If you do not have write permission,
proceed as described under 14.2 Resource Locations, p.172.

If you have write permission, and it is up to you to create projects for external
headers, you would create User-Defined projects for these. These projects, like
their container project, headers_playpen, will have build support disabled.

To create projects for the external headers:

1. In the Project Navigator, right-click headers_playpen and select
New > User-Defined Project.

2. On the first wizard page, give the project a name (headers_1 in the example),
clear the Default check box and browse to the root directory that contains the
files you need. Click Next.

On the Project Structure page, select Link to project headers_playpen. If you
do not see a check box, or if the label is different, you did not select
headers_playpen in step 1, above. In this case you can manually move the
project when you are finished. Click Next twice.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

186

3. In the wizard’s Build Support page, select Disabled, click Finish.

Generating Include Search Paths for Projects

Once you have created the header project(s), others can import them (see
14.2 Resource Locations, p.172). Whether you create the header projects yourself, or
whether you import them, the include paths of the projects that use the headers
have to be updated. If you are able to import the header projects, the chances are
that you will also be able to import (or use your version control system to
synchronize) the projects that use the headers.

On the other hand, if you are the one who creates the headers project(s), you will
probably also be the one who updates the projects that use them and then makes
these available to others. In this case, or if you create a new project that uses the
headers project from the start, you will generally proceed as follows.

Once your workspace knows the headers (because there is a project for them),
include search paths can be generated.

For each topmost project that uses the headers proceed as follows:

In the Project Navigator, select the project that uses the headers and choose
Project > Generate Include Search Paths.

In the wizard that appears you can configure and generate include search paths for
the project, its subprojects and folders, as well as for multiple build specs.

Note that in the Project Properties dialog, Build Properties node, Build Paths tab,
and the Generate button (for include paths) invoke a similar wizard. This wizard,
only lets you configure include paths for one build spec at a time.

Testing and Debugging

A simulator connection should be sufficient for initial testing and debugging of
your applications. Please refer to 21. New VxWorks Simulator Connections for
information about simulator connections, and to 24. Debugging Projects for
information on debugging.

14.4.4 Finalization

Once things are working on the simulator, and your board and hardware
connections are up and running, it is time to port the software system from the
simulator to the board(s).

14 Advanced Project Scenarios
14.4 Complex Project Structures

187

14

The steps below, especially step 2, where you create four new container (sub)
projects might initially seem tedious. However, you cannot just copy the existing
ones because as you remember, no physical copies are created, only references (that
look like copies) are created.

Creating four empty container projects per architecture does not take long, and
you only do it once. After that, the advantages include:

■ Your projects are clearly and systematically organized.

■ You never need to worry about changing build specs for individual projects.

■ You can build your whole workspace (all the boards you support) at one time,
again without manipulating the build specs.

■ Any resource modifications, adding, removing, editing, at source project level
will be reflected in all the project structures (=boards) simultaneously,
regardless of where you make the modification since these are references, not
copies.

Repeat the following steps for each board you will be supporting.

Step 1: Create VxWorks Image project and VxWorks ROMFS File System projects.

1. First, create a VxWorks Image project using the BSP appropriate to your board,
see 5. Creating VxWorks Image Projects.

This will be a top-level project. If you follow the naming conventions used in
this chapter, the project might be named something like playpen_ppc.

2. Then, if you are using Real-time Process projects and/or Shared Library
projects, you will also need to create a VxWorks ROMFS File System project,
see 7. Creating VxWorks ROMFS File System Projects.

This will be a subproject of the VxWorks Image project (playpen_ppc). The file
system will be linked with the VxWorks system image created from the
VxWorks Image project, and will hold the binary and data files of the system’s
run-time components. These are associated with the file system in Step 3
below.

When you build the VxWorks Image project, the VxWorks ROMFS File System
subproject and the other associated subprojects will be compiled to binaries
and linked to the kernel. If you update files in the file system, rebuilding it
creates a new file system image, which is then re-linked to the kernel.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

188

Step 2: Create container subprojects for each project type (except headers).

Essentially, you repeat the procedure outlined under Step 2:Create container projects
for each project type and for external headers., p.178, except that:

■ You do not need to create another project for the headers as they do not use a
build spec.

■ Instead of appending the suffix _sim to the project names, you would, in our
example, append _ppc.

■ You have to set the build spec for each container (except the one for
User-Defined projects, which cannot have pre-defined build specs) because
the wizard default (simulator) will no longer apply.

Step-by-step, the procedure is as follows:

1. To create a new container Downloadable Kernel Module project:

a. Right-click in the Project Navigator and select
New > VxWorks Downloadable Kernel Module Project.

b. In the wizard that appears, in the Project name field, enter:
DKMs_playpen_ppc and click Next until you reach the wizard’s
Build Specs page.

c. In the Build Specs page, select Deselect All, then select the check box next
to the appropriate build spec (only one) from the list, for example,
PPC32diab and click Finish.

14 Advanced Project Scenarios
14.4 Complex Project Structures

189

14

2. To create a new container Real-time Process project, right-click in the Project
Navigator and select New > VxWorks Real Time Process Project.

a. In the wizard that appears, in the Project name field, enter:
RTPs_playpen_ppc and click Next until you reach the wizard’s
Build Specs page.

b. In the Build Specs page, select Deselect All, then select the check box next
to the appropriate build spec (only one) from the list, for example,
PPC32diab_RTP and click Finish.

3. To create a new container Shared Library project, right-click in the Project
Navigator and select New > VxWorks Shared Library Project.

a. In the wizard that appears, in the Project name field, enter:
LIBs_playpen_ppc and click Next until you reach the wizard’s
Build Specs page.

b. In the Build Specs page, select Deselect All, then select the check box next
to the appropriate build spec (only one) from the list, for example,
PPCdiab and click Finish.

Figure 14-7 Select the Build Spec

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

190

4. To create a new container User-Defined project, right-click in the Project
Navigator and select New > User Defined Project.

a. In the wizard that appears, in the Project name field, enter:
UDPs_playpen_ppc and click Finish.

By definition, there can be no predefined build specs for User-Defined
projects. Workbench does not manage the build; it is up to you to know
what needs to be done with them to complete the porting.

Step 3: Drop all new container projects onto the VxWorks ROMFS File System project.

The VxWorks ROMFS File System project is a subproject of the VxWorks Image
project (see Step 1). The new containers you have just created, as well as the
headers_playpen project, should, in turn, be subprojects of this VxWorks ROMFS
File System project.

■ Select all the container projects you have just created and drop them onto the
FileSystem_playpen_ppc project you created under Step 1.

■ Select the headers_playpen subproject under playpen_sim and while holding
down CTRL, drag-and-drop it onto the FileSystem_playpen_ppc project. It
should now appear under both playpen_sim and FileSystem_playpen_ppc.

The infrastructure for the new board is now complete (see Figure 14-8).

Next, you have to create references to the source code projects.

Figure 14-8 Project Organization for Two Boards

14 Advanced Project Scenarios
14.4 Complex Project Structures

191

14

Step 4: Referencing source code subprojects.

Insert references from the source code subprojects from each per-type container
subproject under playpen_sim to the corresponding container under
playpen_ppc.

That is, while holding down CTRL, drag-and-drop it to create the references from
all source code subprojects under:

■ DKMs_playpen_sim to DKMs_playpen_ppc

■ LIBs_playpen_sim to LIBs_playpen_ppc

■ RTPs_playpen_sim to RTPs_playpen_ppc

■ UDPs_playpen_sim to UDPs_playpen_ppc

Step 5: Configure the VxWorks Image project and VxWorks ROMFS File System projects.

You will need to configure the VxWorks Image project (add initialization routines
and configure components) and the VxWorks ROMFS File System project.

For more information on this subject, see 5. Creating VxWorks Image Projects,
7. Creating VxWorks ROMFS File System Projects, and the VxWorks Kernel
Programmer’s Guide.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

192

193

PART II I

Development

15 Navigating and Editing 195

16 Building Projects .. 205

17 Building: Use Cases ... 221

18 RTPs and Shared Libraries from Host to Target 241

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

194

195

 15
Navigating and Editing

15.1 Introduction 195

15.2 Wind River Workbench Context Navigation 196

15.3 The Editor 198

15.4 Search and Replace 201

15.5 Static Analysis 201

15.1 Introduction

Workbench navigation views allow seamless cross-file navigation based on
symbol information. For example, if you know the name of a function, you can
navigate to that function without worrying about which file it is in. You can do this
either from an editing context, or starting from the Symbol Browser. On the other
hand, if you prefer navigating within and between files, you can use the File
Navigator. For more information about these views, open them then press the help
key for your host.

Static analysis is the parsing and analysis of source code symbol information. This
information is used to provide code editing assistance features such as
multi-language syntax highlighting, code completion, parameter hints,
definition/declaration navigation for files within your projects.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

196

Apart from the things you see directly in the Editor, static analysis also provides
the data for code comprehension and navigation features such as include
browsing, call trees, as well as resolving includes to provide the compiler with
include search paths.

15.2 Wind River Workbench Context Navigation

Various filters are available on each tool’s local toolbar. Hover the mouse over the
buttons to see a tooltip describing what these buttons do. At the top-right, a
pull-down menu provides additional filters, including working sets (if you have
defined any). An active working set is marked by a bullet next to its name in the
pull-down menu.

Generally, you will want to navigate to symbols, or analyze symbol-related
information, from an Editor context. The entry points are:

■ The right-click context menu of a symbol

■ Keyboard shortcuts that act on the current selection in the Editor:

F3 — Jump between associated code, for example, between
definition/declaration or function definition/call. There is no navigation
from workspace files to external files, i.e. files outside your projects.

F4 — Open the type hierarchy of the current selection (for details, open the
view and press the help key for your host).

CTRL+ALT+H — Open the call tree of the current selection (for details,
open the call tree and press the help key for your host).

CTRL+I — Open the include browser to view the includes of the current
selection (for details, open the browser and press the help key for your
host).

■ Keyboard shortcuts that open dialogs from which you can access symbols in
any of your projects:

SHIFT+F3 — Display the Open Symbol dialog.

NOTE: Syntax highlighting is provided for filesystem files that you open in the
Editor, but no other static analysis features are available for files that are outside
your projects.

15 Navigating and Editing
15.2 Wind River Workbench Context Navigation

197

15

SHIFT+F4 — Display the Open Type Hierarchy dialog.

ALT+SHIFT+H — Display the Open Call Tree dialog.

CTRL+SHIFT+R — Displays the Open Resource dialog.

These options are also available from the Navigate toolbar menu.

15.2.1 The Symbol Browser

By default, the Symbol Browser is a tab in the left pane of the main window,
together with the Project Navigator.

Use the Symbol Browser for global navigation. Because the Symbol Browser
presents a flat list of all the symbols in all the open projects in your workspace, you
might want to constrain the list by using Working Sets. You can configure and select
working sets using the Project Navigator’s local pull-down menu.

In addition, very large symbol loads can cause delays of up to several minutes
while Workbench loads the symbols. Loading smaller batches of symbols can
decrease this delay. Specify the size of the symbol batch using the Preferences
dialog. For more information, click in the Debug view and press the help key for
your host.

Text Filtering

The Name Filter field at the top of the view provides match-as-you-type filtering.
The field also supports wild cards: type a question mark (?) to match any single
letter; type an asterisk (*) to match any number of arbitrary letters. Selecting
Hide Matching next to the Name Filter field inverts the filter you entered in the
field, so you see only those entries that do not match your search criteria.

For a guide to the icons in the Symbol Browser, open the browser and press the
help key for your host.

15.2.2 The Outline View

The Outline view is to the right of the currently active Editor, and shows symbols
in the currently active file.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

198

Use the Outline view to sort, filter, and navigate the symbols in the context of the
file in the currently active Editor, as well as to navigate out of the current file
context by following call and reference relationships.

For a guide to the icons in the Outline view, open the view and press the help key
for your host.

15.2.3 The File Navigator

If you have never used the File Navigator, you can open it by choosing
Window > Show View > Other. In the dialog that opens, select
Wind River Workbench > File Navigator and click OK. After the first time you
open the File Navigator, a shortcut appears directly under the
Window > Show View menu. By default, the File Navigator appears as a tab at the
left of the Wind River Workbench window, along with the Project Navigator and
the Symbol Browser.

The File Navigator presents a flat list of all the files in the open projects in your
workspace, so you can constrain the list by using Working Sets. You can configure
and select working sets using the File Navigator’s local pull-down menu.

The left column of the File Navigator shows the file name, and is active;
double-clicking on a file name opens the file in the Editor, and right-clicking on a
file allows you to compile the file and build the project, among other tasks. The
right column displays the project path location of the file.

The File Filter field at the top of the view works in the same way as the Name
Filter field in the Symbol Browser, see 15.2.1 The Symbol Browser, p.197.

15.3 The Editor

The Editor is your primary view for editing and debugging source code. The
Editor is language-aware, can parse C, C++, Ada, and Assembler files. Many
Editor features are configurable in the Preferences (for details, click in the editor
and press the help key for your host).

15 Navigating and Editing
15.3 The Editor

199

15

15.3.1 Code Templates

The Editor uses templates to extend code assist (shortcut CTRL+SPACE) by
inserting recurring patterns of text.

In the case of source code, common patterns are for loops, if statements and
comment blocks. Those patterns can be parameterized with variable placeholders
that are resolved and substituted when the template is inserted into the text.
Unresolved variables can be link-edited after inserting the template, which means
that the first unresolved variable is selected, and all occurrences of this variable are
edited simultaneously when you enter the correct text.

An example template might look like the following:

 for (int ${var} = 0; ${var} < ${max}; ++${var}) {
 ${cursor}
 }

Provided Templates

Workbench provides the following templates. Auto-insert is turned on by default.

NOTE: You can specify that the Workbench editor emulate the vi or emacs editors
by clicking the appropriate icon on the title bar (or respectively). Refer to
additional editor preferences in Window > Preferences > General > Editor and
additional online information at http://help.eclipse.org.

Name Description

author author name

catch catch block

class class declaration

comment default multiline comment

do do while statement

else else block

elseif else if block

for for loop

for for loop with temporary variable

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

200

Many template options are configurable in the Preferences (for details, click in the
editor and press the help key for your host).

15.3.2 Configuring a Custom Editor

Workbench has a single global mapping between file types and associated editors.
This mapping dictates which editor will be opened when you double-click a file in
the Project Navigator, or when the debugger stops in a given file.

Configuring the custom editor through file associations will cause the correct
editor to be opened, and the instruction pointer to be painted in the editor gutter.
To view and modify the mappings, go to Window > Preferences > General >
Editors > File Associations.

if if statement

ifelse if else statement

main main method

namespace namespace declaration

new create new object

stderr print to standard error

stdout print to standard output

switch switch case statement

try try catch block

using using a namespace

Name Description

NOTE: Some debugger features require additional configuration; for details, see
24.5.4 Configuring Debug Settings for a Custom Editor, p.324.

15 Navigating and Editing
15.4 Search and Replace

201

15

15.4 Search and Replace

The Workbench search tool is a fast, index-based global text search/replace tool.
The scope of a search can be anything from a single file to all open projects in the
workspace. You can query for normal text strings, or regular expressions. Matches
can be filtered according to location context (for example, show only matches
occurring in comments). Text can be globally or individually replaced, and
restored if necessary. You can create working sets from matched files, and you can
save and reload existing queries.

15.4.1 Initiating Text Retrieval

Text retrieval is context sensitive to text selected in the Editor. If no text is selected
in the Editor, an empty search dialog opens. If text is selected in the Editor, the
retrieval is immediately initiated according to the criteria currently defined in the
dialog.

To open the search dialog, or to initiate a context sensitive search, use:

■ the keyboard shortcut CTRL+2.

■ from the global Search menu, choose one of the scoping options.

For more information, open the search dialog and press the help key for your host.

15.5 Static Analysis

Editing, navigating, and code comprehension rely on static analysis parsing of
source code.

You can enable static analysis in two ways: automatically, by leaving Enable Static
Analysis selected when you create your project, or manually, by right-clicking
your project in the Project Navigator and selecting Static Analysis > Enable.

For information about global and project-specific preferences, open the preferences
dialog and press the help key for your host.

NOTE: If this is your first use of static analysis, you may need to select Static
Analysis > Activate Plug-in before you can access other static analysis features.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

202

15.5.1 Sharing Static Analysis Data with a Team

Static analysis of a large project can take quite a bit of time, so once you have
parsed the source code of your project, you can share the generated data with your
team members using your group’s source control tool.

To share generated data with your team:

1. In the Project Navigator, right-click a project then select Static Analysis >
Export Shared Team Data1. The Team Data Export Options dialog appears,
where you can set export options and specify how to resolve file version
differences in other workspaces (for details about this dialog, open it and press
the help key for your host). Click Finish. Workbench exports the data to the file
system location you specified.

2. Using your team’s source control tool, make the generated data available to
other team members (for example, by checking it into ClearCase). After that,
when the project is imported into another workspace, Workbench will use the
shared data instead of parsing the project.

3. Changes to the source-code are not propagated to the shared data
automatically, they are stored local to the workspace. You must export the data
again to make these changes available to team-members.

4. Once you have made local changes to a project in your workspace, Workbench
uses that local data in preference to the shared data. To abandon your local
changes and go back to using shared data, right-click a project and select
Import Shared Team Data. Workbench launches a wizard that removes your
local data in favor of the shared data.

Comparing Local Data with Shared Team Data

The tricky part about working with shared team data is to figure out which of the
resources in your workspace have been changed relative to the shared data. In
other words, you need a technique to compare the version of the file in your
workspace with the one used to generate the shared data. Workbench comes with
several mechanisms to do that:

■ Compare Timestamps: In some setups (e.g. ClearCase dynamic views) a file of
a certain version will have the same timestamp no matter in which workspace
it appears. This makes it easy to check the version of a file against the shared

1. If this is your first use of Static Analysis, select Static Analysis > Activate Plug-in, then
select Static Analysis > Export Shared Team Data.

15 Navigating and Editing
15.5 Static Analysis

203

15

data. This technique is preferable because it is fast, but many setups do not
allow it (such as CVS and ClearCase snapshot views).

■ Use team data for all read-only files: In other setups, all files in a workspace
that are in sync with the repository of the source control tool are read-only. As
a heuristic, we can use the shared data for all files that are read-only. The fact
that a file of the workspace is in sync with the repository does not actually
guarantee that the file version is the same as the one used to generate the
shared data. If you update the shared data regularly though, the heuristic will
be good.

■ Use checksums as a fallback: If accessing the source code is reasonably fast
and doesn’t cause too much drag on the system (unlike in a ClearCase
dynamic view) computing and comparing checksums for each file is a
reasonable approach.

When you export shared data, you can specify in the dialog which of the
techniques described above can be used by team members using the shared data.
Compare time stamps and Use team data for all files will always be available to
them in the import wizard, but you can disable Use team data for all files and
Compare checksums by unchecking the corresponding checkboxes in the export
wizard.

When you import a project with shared data into your workspace, Workbench will
choose the best available comparison method.

Team-Shared Exclusion Filter

The project property page, accessible by right-clicking a project and selecting Static
Analysis > Edit Exclusion Filter now allows you to share filters with your team.

The filters are organized into a tree with two root nodes: one for shared filters and
one for workspace private ones. You can convert shared filters into
workspace-private ones if you would like to edit them, or you can share a private
filter with your team if you find it particularly useful. For details about exclusion
filters, open the dialog and press the help key for your host.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

204

205

 16
Building Projects

16.1 Introduction 205

16.2 Configuring Workbench Managed Builds 208

16.3 Configuring User-Defined Builds 214

16.4 Accessing Build Properties 214

16.5 Build Specs 216

16.6 Makefiles 217

16.1 Introduction

The process of building in Workbench starts during project creation, when you
select a build type for your projects, folders, and build targets. Individual build
settings can be changed later, and in some cases you can switch from a managed
build to a user-defined or disabled build, but if you want Workbench to manage
your builds, you must select Managed Build in the New Project wizard.

Workbench offers several levels of build support:

Managed Build
Workbench provides two types of managed build support—Standard and
Flexible—for all project types except VxWorks Image, VxWorks Boot Loader,
VxWorks ROMFS File System, and User-Defined projects.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

206

Workbench provides default build settings (that you can change as necessary),
creates makefiles, and controls all phases of the build.

There are advantages to each type of managed build, depending on many
things including how much control you need over your build output and what
your source tree looks like.

Table 16-1 shows a comparison of standard and flexible managed build
features.

User-Defined build
With User-Defined builds, you are responsible for setting up and maintaining
your own build system and Makefiles, but Workbench does provide minimal
build support.

■ It allows you to configure the build command used to launch your build
utility, so you can start builds from the Workbench GUI.

■ You can create build targets in the Project Navigator that reflect rules in
your makefiles, so you can select and build any of your make rules directly
from the Project Navigator.

■ Workbench displays build output in the Build Console.

Disabled build
If you select Disabled build for a project or folder, Workbench provides no
build support at all. This is useful for projects or folders that contain, for
example, only header or documentation files that do not need to be built.

Disabling the build for such folders or projects improves performance both
during makefile generation as well as during the build run itself.

NOTE: You cannot change from a lower level of build support to a managed build
once the project is created. If you later want Workbench to manage your build,
create a new project with the desired type of managed build support, either on top
of the existing sources, or import your sources into it.

16 Building Projects
16.1 Introduction

207

16

Table 16-1 Comparison of Standard and Flexible Managed Build Features

Standard Managed Build Flexible Managed Build

Build structure parallels the file
system structure.

Build structure can be defined
independently from the file system
structure.

Build order is determined by the
project and folder hierarchies as
displayed in the Project Navigator.

Build order is flexible, and you can
customize settings per build tool and
build target.

Project contains folders and files.
Project metadata and build
information is stored in the source
code location.

Project contains folders, files, and
information about how the build targets
of the project are built (stored in the
.wrproject file). No information is stored
in .wrfolder files in the source code
location.

Project can contain multiple build
targets, but the build options are the
same regardless of the build target the
file is built into.

Project can contain multiple build targets.
You can add the same file to multiple
build targets, and set specific options
depending on which build target the file is
built into.

Build target can contain only files
within the project.

Build targets can contain any file, folder,
project, or other build target in the
workspace, including linked resources.

Virtual folders allow you to group objects
from different sources and apply build
settings to them.

Build target contains all contents of
included folders.

Folders and files can be excluded from the
build target using regular expressions.

Workbench creates one Makefile per
folder with all build specs. Makefiles
are based on data you enter at project
creation time, or later in the Build
Properties dialog.

Workbench creates one Makefile per build
spec for the whole project.

Leveling chain is project > folder >
file.

Leveling chain is project > build target >
folder > file.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

208

16.2 Configuring Workbench Managed Builds

The process of configuring Workbench managed builds differs significantly
depending on whether you selected a standard or a flexible managed build.

16.2.1 Configuring Standard Managed Builds

Standard managed builds have not changed from previous versions of
Workbench. When you select Standard in the New Project wizard, your project is
created and contains a preliminary build target in addition to the usual project
files.

To create the build target, right-click your project in the Project Navigator and
select Build Project.

16.2.2 Configuring Flexible Managed Builds

When you select Flexible, your projects are created in the same way and also
contain the usual project files, but you must create your build targets manually.

Adding Build Targets to Flexible Managed Builds

Once your project is created, you will see a Build Targets node inside it.

Workbench generates include search
paths for header files that are visible
in the workspace.

Same

Build output is displayed in the Build
Console.

Same

Table 16-1 Comparison of Standard and Flexible Managed Build Features (cont’d)

Standard Managed Build Flexible Managed Build

16 Building Projects
16.2 Configuring Workbench Managed Builds

209

16

1. To add a build target to your project, right-click the Build Targets node and
select New Build Target. The New Build Target dialog appears.

2. By default the Build target name and Binary output name1 are the same as the
project name, but if you are going to create multiple build targets you will
want to type in more descriptive names. Choose the appropriate Build tool for
your project, then click Next. The Edit Content dialog appears.

3. To display files, folders, and other build targets from outside your current
project, select Show all projects. If you have created a Working Set, you can
restrict the display by selecting it from the pull-down list.

4. You can add contents to your build target in several ways:

a. You can select specific files, folders, projects, or other build targets in the
left column and click Add. What you can add depends on the build tool
you use; for example, you cannot add an executable build target to another
build target.

When choosing folders or projects, they can be added “flat” or with
recursive content.

– Clicking Add creates a “flat” structure, meaning that Workbench adds
the exact items you choose and skips any subfolders and files.

– Clicking Add Recursive creates a structure that includes subfolders
and files.

b. You can create a virtual folder within your build target by clicking Add
Virtual Folder, typing a descriptive name in the dialog, and clicking OK.
Virtual folders allow you to group objects within the build target so you
can apply the same build settings to them; they also provide a way to add
files with the same name from different locations.

1. Your build targets must have unique names, but you can use the same Binary output name
for each one. This allows you to deliver an output file with the same name in multiple
configurations. Workbench adds a build tool-appropriate file extension to the name you
type, so do not include the file extension in this field.

NOTE: Adding linked resources to a build target may cause problems within
a team if the linked resources are added using an absolute path instead of a
variable.

To define a path variable, select Window > Preferences > General >
Workspace > Linked Resources, click New, then enter a variable name and
location.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

210

i. To add contents to your virtual folder, right-click it in the Project
Navigator and select Edit Content.

ii. Select content as described in step a above, and click Finish.

5. To adjust the order of the build target contents, select items in the right column
and click Up, Down, or Remove.

6. When you have configured your build target, click Finish. It appears in the
Project Navigator under the Build Targets node of your project.

Modifying Build Targets

There are several ways to modify your build target once it has been created.

Editing Content

To add additional items, adjust the order, or make any other changes to your build
target, right-click it in the Project Navigator and select Edit Content. The Edit
Content dialog appears, with the build target content displayed in the right
column. Adjust the contents as necessary, then click Finish.

Renaming Build Targets and Virtual Folders

To rename your build target or virtual folder, select it in the Project Navigator,
press F2, and type a new name.

Copying Build Targets

To copy a build target, right-click the build target and select Copy, then right-click
the destination project’s Build Targets node and select Paste (if you are pasting
back into the original project, type a unique name for the new build target).

This is useful for setting up the same build targets in multiple projects with
different project types (for example, a library for a native application and a
downloadable kernel module will have the same contents but different flags).

NOTE: Folders appear in the specified place in the list, but the files within them
are added alphabetically.

NOTE: The build target and its contents are copied, but any overridden attributes
are not.

16 Building Projects
16.2 Configuring Workbench Managed Builds

211

16

Removing Content

To remove an item from the build target, right-click it in the Project Navigator and
select Remove from Build Target, or just select it and press Delete.

Depending on the item you selected, the menu item may change to Exclude from
Build Target if the item cannot be deleted (for example, recursive content cannot
be deleted). Pressing Delete also reinstates an item by removing the exclusion.

Excluding Content

To exclude a specific item from the build target that was included recursively,
right-click it in the Project Navigator and select Exclude from Build Target.

You can also use regular expressions to exclude groups of items.

1. To add a pattern to the excludes list, right-click a folder in the build target, then
select Properties, then select the Excludes tab.

2. Click Add File to define a pattern to exclude specific files or file types. For
example, type *_test.c to exclude any file named filename_test.c.

You can include additional parts of the path to better define the file you want
to exclude; for example, type lib/standard_test.c to exclude that specific file.

3. Click Add Folder to define a pattern to exclude folders within specific folders.
For example, type */lib/*_test.c to exclude any file located in a folder named
lib and named filename_test.c.

Dragging and Dropping Content

To modify build target contents without opening the Specify Content dialog,
you can drag and drop items in the Project Navigator.

■ You can drop resources onto build target nodes or virtual folders to add
them to a build. Workbench checks the validity of the action and reports
errors if the move is not allowed. Workbench also asks you if the resource
should be added “flat” or recursively.

■ You can reorder build target contents by dragging and dropping an item
on the same level.

■ You can drop a build target node onto other build targets to add the first
build target as a reference (for example, dropping a library onto an
executable, or dropping an executable onto an executable). Workbench
checks to make sure it is a valid operation before allowing you to complete
the action.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

212

Leveling Attributes

The leveling of build-specific settings in flexible managed builds is significantly
different from the leveling of standard managed build projects. The leveling chain
for flexible managed build projects is shown below.

Project > Target > Folder > File
Project > Target > Folder > Subfolder > File
Project > Target > Virtual folder > File
Project > Target > Virtual folder > Folder >
Project > Target > File

The folder level here is related to folders underneath a build target, as described in
Adding Build Targets to Flexible Managed Builds, p.208.

The information that can be leveled is equivalent to the current implementation of
standard managed build projects, plus additional information so that you can
enable files to be built on a per build-spec basis (standard managed build allows
this only on folder level).

You can now configure the build target with specific settings for all build tools on
a build target level (for example, you can set compiler options for the source files
related to that build target).

Target Passing and Project Structure

Passing build targets is only supported when passing to VxWorks kernel image
superprojects; it is not possible to pass flexible managed build targets to standard
managed build or other flexible managed build superprojects.

To reference other flexible managed build targets, add them to the contents of a
build target as described in Adding Build Targets to Flexible Managed Builds, p.208.

NOTE: If your build target contains projects or folders, any files you add to them
later will be automatically added to the build target as well. So you do not need to
manually update your build target in this case.

16 Building Projects
16.2 Configuring Workbench Managed Builds

213

16

Understanding Flexible Managed Build Output

The output of a flexible managed build is significantly different from the output of
a standard managed build.

Workbench does not create build redirection directories for each folder, as the
objects might be built differently when building them for specific targets. Instead,
Workbench creates a build-specific redirection directory, which you can configure
on the Build Properties > Build Paths tab, underneath the project root directory.

The redirection directory contains a directory for each build target; inside those are
directories named Debug or NonDebug depending on the debug mode you chose
for the build. Workbench generates the output files according to the structure you
defined in the build target, storing them in the debug mode directory.

In general, the build output is structured like this:

Project directory
Project dir/build specific redirection dir
Project dir/build specific redirection dir/target dir
Project dir/build specific redirection dir/target dir/debug mode dir
Project dir/build specific redirection dir/target dir/debug mode dir/binary output file of the
build target

All objects belonging to the build target are stored in an additional Objects
subfolder:

Project dir/build specific redirection dir/target dir/debug mode dir/Objects/structure of
object files

Example Build Target and Build Output Structure

To understand how the build target structure influences the build output, below is
an example of a project source tree.

proj1/
proj1/a.c
proj1/b.c
proj1/folder1/c.c
proj1/folder1/d.c

Target1 contains these two items:

a.c
folder1/*.c

Target2 contains these two items:

b.c
d.c

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

214

Configuring the project to use spec1 as the active build spec, naming the
redirection directory spec1, and turning debug-mode on produces the output
structure seen below.

proj1/spec1/Target1/Debug/Target1.out
proj1/spec1/Target1/Debug/Objects/a.o
proj1/spec1/Target1/Debug/Objects/folder1/c.o
proj1/spec1/Target1/Debug/Objects/folder1/d.o

proj1/spec1/Target2/Debug/Target2.out
proj1/spec1/Target2/Debug/Objects/b.o
proj1/spec1/Target2/Debug/Objects/d.o

16.3 Configuring User-Defined Builds

When you create a User-Defined project, you can configure the build command,
make rules, build target name, and build tool (for more information, see
11. Creating User-Defined Projects). To create the build target, right-click your project
in the Project Navigator and select Build Project.

To update the build settings, right-click your project in the Project Navigator and
select Properties, then select Build Properties.

For more information about the settings described on the build properties tabs,
open the build properties dialog and press the help key for your host.

16.4 Accessing Build Properties

There are two ways to set build properties: in the Workbench preferences, to be
automatically applied to all new projects of a specific type, and manually, on an
individual project, folder, or file basis. The properties displayed will differ
depending on the type of node and the type of project you selected, as well as the
type of build associated with the project.

For details, open the build properties dialog and press the help key for your host.

16 Building Projects
16.4 Accessing Build Properties

215

16

16.4.1 Workbench Global Build Properties

To access global build properties, select Window > Preferences and choose the
Build Properties node.

This node allows you to select a project type, then set default build properties to be
applied to all new projects of that type.

16.4.2 Project-specific Build Properties

To access build properties from the Project Navigator, right-click a project and
select Properties. In the Properties dialog, select the Build Properties node.

The project-specific Build Properties node has tabs that are practically identical to
the ones in the Workbench preferences, but these settings apply to an existing
project that is selected in the Project Navigator.

16.4.3 Folder, File, and Build Target Properties

Folders, files, and build-targets inherit (reference) project build properties where
these are appropriate and applicable. However, these properties can be overridden
at the folder/file level. Inherited properties are displayed in blue typeface,
overridden properties are displayed in black typeface.

Overridden settings are maintained in the .wrproject file (and also in .wrfolder
files in standard managed builds). These files should therefore also be version
controlled. Note that you can revert to the inherited settings by clicking the eraser
icon next to a field.

NOTE: Build properties for VxWorks Image Projects (VIPs) can differ substantially
from the general properties of other project types.

For details, open the build properties dialog and press the help key for your host,
and consult the VxWorks Kernel Programmer’s Guide for general information about
VIPs.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

216

16.4.4 Multiple Target Operating Systems and Versions

If you installed Workbench for multiple target operating systems and/or versions,
you can set a default target operating system/version for new projects in the
Workbench Preferences, under General > Target Operating Systems.

For existing projects, you can verify the target operating system (version) by
right-clicking the project in the Project Navigator, then selecting Properties, then
Project Info.

In the Project Navigator (and elsewhere), the target operating system and version
are displayed next to the project name by default. You can toggle the display of this
information in the Preferences, General > Appearance > Label Decorations, using
the Project Target Operating Systems checkbox.

If you have multiple versions of the same operating system installed, the New
Project wizard allows you to select which version to use when creating a new
project.

16.5 Build Specs

A build spec is a group of build-related settings that lets you build the same project
for different target architectures and/or different tool chains by simply switching
from one build spec to another. Note that the architecture/tool chain associations
are preconfigured examples; you can also create your own build specs (usually
from copies of existing ones, using the Copy button) for any constellation of the
many configurable properties that make up a spec (see also 17.8 A Build Spec for
New Compilers and Other Tools, p.233).

It is important to remember that the build spec used when you build must match
the target board; that is, it must match the VxWorks Image project that the
application project will be associated with.

NOTE: In most cases, it will not be possible to successfully migrate a project from
one target operating system or version to another simply by switching the selected
Target Operating System and Version.

16 Building Projects
16.6 Makefiles

217

16

16.6 Makefiles

The build system uses the build property settings to generate a self-contained
makefile named Makefile.

■ For standard managed builds, a Makefile is generated in each project and
folder at each build run. This allows you to build individual folders, projects,
and subtrees in a project structure.

■ For flexible managed builds, only one Makefile is created per build spec.

By default makefiles are stored in project directories; if you specified an absolute
Redirection Root Directory (for details, open the build paths tab and press the
help key for your host), they are stored there, in subdirectories that match the
project directory names.

The generated makefile is based on a template makefile named .wrmakefile that
is copied over at project creation time. If you want to use custom make rules, enter
these in .wrmakefile, not in Makefile, because this is regenerated for each build.
The template makefile, .wrmakefile, references the generated macros in the
placeholder %IDE_GENERATED%, so you can add custom rules either before or
after this placeholder. You can also add *.makefile files to the project directory.

For other ways of setting custom rules, see 17.7 User-Defined Build-Targets in the
Project Navigator, p.232.

16.6.1 Derived File Build Support

The Yacc Example

Workbench provides a sample project, yacc_example, that includes a makefile
extension showing how you can implement derived file build support. It is based
on yacc (Yet Another Compiler Compiler) which is not contained in the Workbench
or VxWorks installation. To actually do a build of the example you need to have
yacc or a compatible tool (like GNU’s bison) installed on your system, and you
should have extensive knowledge about make.

NOTE: If you configure your project for a remote build, the generated Makefile
contains paths for remote locations rather than local ones. For more information
about remote builds, see 17.9 Developing on Remote Hosts, p.235.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

218

The makefile, yacc.makefile, demonstrates how a yacc compiler can be integrated
with the managed build and contains information on how this works.

1. Create the example project by selecting New > Project > Example > Native
Sample Project > Yacc Demonstration Program.

2. Right-click the yacc_example project folder, then select New > Build Target.
The New Build Target dialog appears.

3. In the Build target name field, type pre_build.

4. From the Build tool drop-down list, select (User-defined), then click Finish to
create the build target.

5. In the Project Navigator, right-click pre_build and select Build Target. This
will use the makefile extension yacc.makefile to compile the yacc source file to
the corresponding C and header files. The build output appears in the Build
Console.

6. When the build is finished, right-click the yacc_example folder and select
Build Project.

Additional information on how you can extend the managed build is located in
yacc.makefile. It makes use of the extensions provided in the makefile template
.wrmakefile, which can also be adapted to specific needs.

General Approach

To implement derived file support for your own project, create a project-specific
makefile called name_of_your_choice.makefile. This file will automatically be used
by the managed build and its make-rules will be executed on builds.

It is possible to include multiple *.makefile files in the project, but they are
included in alphabetical order. So if multiple build steps must be done in a specific
order, it is suggested that you use one *.makefile and specify the order of the tools
to be called using appropriate make rules.

For example:

NOTE: It is necessary to execute this build step prior to the project build,
because the files generated by yacc will not be used by the managed build
otherwise. This is due to the fact that the managed build generates the
corresponding makefile before the build is started and all files that are part of
the project at this time are taken into account.

16 Building Projects
16.6 Makefiles

219

16

1. Execute a lex compiler.

2. Execute a yacc compiler (depending on lex output).

3. Execute a SQL C tool (depending on the yacc output).

Solution: (using the generate_sources make rule)

generate_sources :: do_lex do_yacc do_sql
do_lex:

@...

do_yacc:
@...

do_sql:
@...

or

generate_sources :: $(LEX_GENERATED_SOURCES) $(YACC_GENERATED_SOURCES)
$(SQL_GENERATED_SOURCES)

Add appropriate rules like those shown in the file yacc.makefile.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

220

221

 17
 Building: Use Cases

17.1 Introduction 221

17.2 Adding Compiler Flags 222

17.3 Building Applications for Different Boards 224

17.4 Creating Library Build-Targets for Testing and Release 225

17.5 Architecture-Specific Implementation of Functions 228

17.6 Executables that Dynamically Link to Shared Libraries 229

17.7 User-Defined Build-Targets in the Project Navigator 232

17.8 A Build Spec for New Compilers and Other Tools 233

17.9 Developing on Remote Hosts 235

17.1 Introduction

This chapter suggests some of the ways you can go about completing various
build-specific tasks in Wind River Workbench.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

222

17.2 Adding Compiler Flags

Let us assume:

1. You are working on a Real-time Process project (referred to in the following as
MyRTP), and you are using the build spec, SIMPENTIUMgnu_RTP.

2. You want to suppress compiler warnings, and you are familiar with the GNU
compiler (used by the given build spec) command line.

3. You later have to change the build spec to SIMPENTIUMdiab_RTP; that is
you have to use the Wind River Compiler tools, with which you are not
familiar, but you still want to suppress compiler warnings.

17.2.1 Add a Compiler Flag by Hand

According to assumption 2, above, you are familiar with the GNU compiler
command line, so you just want to know where to enter the -w option.

1. In the Project Navigator, right-click on the MyRTP project and select
Properties.

2. In the Properties dialog, select the Build Properties node.

3. In the Build Properties node, select the Build Tools tab.

4. In the Build Tools tab:

– Set the Build tool to C-compiler

– The Active build spec will, according to assumption 1, above, already be
set to SIMPENTIUMgnu_RTP.

– In the field next to the Tool Flags button, append a space and -w

The contents of this, the Tool Flags field you have just modified, is
expanded to the %ToolFlags% macro you see in the Command field above
it. Because you entered the -w in the Tool Flags field, rather than the
Debug or Non Debug mode fields, warnings will always be suppressed,
rather than only in either Debug or Non Debug mode.

17 Building: Use Cases
17.2 Adding Compiler Flags

223

17

17.2.2 Add a Compiler Flag with GUI Assistance

According to assumption 3, above, you have to change to the Wind River Compiler
tool chain used by the SIMPENTIUMdiab_RTP build spec, and you are not
familiar with the new command line tool options.

Step 1: Change the Active Build Spec

1. In the Project Navigator, right-click on the MyRTP project, and select
Set Active Build Spec.

If the SIMPENTIUMdiab_RTP build spec is enabled, you will see it listed in
the dialog that appears. In this case, all you would have to do is select
SIMPENTIUMdiab_RTP from the list and click OK.

However, we shall assume SIMPENTIUMdiab_RTP is not enabled, and
therefore not available in the list.

2. In the Project Navigator, right-click on the MyRTP project, and select
Properties.

3. In the Properties dialog, select the Build Specs node.

4. In the Build Specs node, select the SIMPENTIUMdiab_RTP build spec and
set both the Default build spec and the Active build spec to
SIMPENTIUMdiab_RTP.

Leave the Properties dialog open to complete Step 2, below.

Step 2: Use the GUI to Add a Compiler Flag

1. Select the Build Tools tab.

2. In the Build Tools tab:

– Set the Build tool to C-compiler

– The Active build spec will already be set to SIMPENTIUMdiab_RTP (see
4 above).

– We assumed you are unfamiliar with the Wind River compiler options so,
to open the Wind River Compiler Options dialog, click the Tool Flags
button.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

224

– In the Wind River Compiler Options dialog, click your way down the
navigation tree at the left of the dialog and take a look at the available
options.

When you get to the Compilation > Diagnostics node, select the check
box labelled Suppress all compiler warnings.

Notice that -Xsuppress-warnings now appears in the list of command line
options at the right of the dialog.

Click OK.

3. Back in the Build Tools node of the Properties dialog, you will see that the
option you selected now appears in the field next to the Tool Flags button.

The contents of this, the Tool Flags field, is expanded to the %ToolFlags%
macro you see in the Command field above it.

17.3 Building Applications for Different Boards

Generally, but not necessarily, you would have a VxWorks Image project (VIP) for
each architecture you support. If, however, you are developing applications
and/or libraries only, you might not have VIPs.

If you do have VIPs, you will probably only set the build spec once for the
application subprojects to match the VIP they are under. On the other hand, if you
do not have VIPs, you might switch the build spec to build projects for different
architectures.

The target nodes under projects in the Project Navigator display, in blue, the name
of the currently active build spec.

If, for example, you want to build an application for testing on a simulator, and
then build the same project to run on a real board, you would simply switch build
specs as follows:

1. Right-click the project or the target node and, from the context menu, select
Set Active Build Spec.

17 Building: Use Cases
17.4 Creating Library Build-Targets for Testing and Release

225

17

2. In the dialog that appears, select the build spec you want to change to and
specify whether or not you want debug information.

When you close the dialog, you will notice that the label of the target node has
changed. If you selected debug mode in the dialog, the build spec name is
suffixed with _DEBUG.

3. Build the project for the new architecture.

17.4 Creating Library Build-Targets for Testing and Release

Assume you have a library that consists of the files source1.c, source2.c, and test.c.
The file test.c implements a main() function and is required exclusively for testing,
and is not to be included in the release version of the library.

One way to handle this is to use different targets that are built with different tools
as described below.

1. Create a Real-time Process project to hold all the files mentioned above. Use
this project type, because you will need to use both the Linker and the
Librarian build tools later.

In the first page of the project creation wizard, name the project, for example,
LIB and click Finish. You will need to do some tweaking in the Project’s
Properties dialog anyway, so you might as well do everything there.

2. Right-click the newly created LIB project, and select Properties. In the
Properties dialog, select the Build Properties node, then the Build Targets
tab.

First create a build-target for the release version of your library.

– Change the Build tool to Librarian.
– Select Pass build target to next level.
– Clear the Use default contents and link order check box.
– Clear the check box next to test.c.
– Click Apply.

Figure 17-1 shows the results.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

226

3. Next, create a target for the test version of the library.

– Click New then enter, for example, LIB_test in the dialog that appears.

Notice that the Build Tool is set to Linker, this is because the Linker is the
default tool for Real-time Process Projects, and that the LIB (your previous
build-target) has been added to the Contents and link order list.

– Clear the Use default contents and link order check box.

– In the Contents and link order list, select only the check boxes next to LIB
and test.c; clear all other check boxes.

Figure 17-2 shows the results.

Figure 17-1 Release Version of the Library

17 Building: Use Cases
17.4 Creating Library Build-Targets for Testing and Release

227

17

After you close the Properties dialog, there will be two new build-target nodes in
the LIB project. If you build LIB_test, then LIB will automatically also be built if it
is out of date.

Figure 17-2 Test Version of the Library

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

228

17.5 Architecture-Specific Implementation of Functions

You can enable/disable build specs at the project as well as at the folder level. This
allows architecture-specific implementation of functions within same project.

Figure 17-3 shows a simplified project tree with two subprojects, arch 1 and arch2,
that each use code that is specific to different target architectures. This is how
projects could be set up to build a software target that requires the implementation
of a function that is specific to different target boards, where only the active build
spec in the topmost project has to be changed. The inner build spec relationships
are outlined in Table 17-1.

The function int arch_specific (void) is declared in arch.h and the file arch1.c
implements int arch_specific (void) for PENTIUM (the only build spec enabled
for the arch1 project), while the file arch2.c implements int arch_specific (void) for
PPC32 (the only build spec enabled for the arch2 project).

If the active build spec for project is set to PENTIUMdiab_RTP, the subproject
arch1 will be built, and its objects will be passed up to be linked into the project

Figure 17-3 Simple Project Structure for Architecture-Specific Functions

Table 17-1 Project Content and Build Spec Configuration of the Structure in Figure 17-3

Directories/Folders Files Enabled Build Specs

/project main.c, arch.h PENTIUMdiab_RTP and
PPC32diab_RTP

/project/arch1 arch1.c PENTIUMdiab_RTP only

/project/arch2 arch2.c PPC32diab_RTP only

17 Building: Use Cases
17.6 Executables that Dynamically Link to Shared Libraries

229

17

build-target. The arch2 subproject will not be built, and its objects will not be
passed up to be linked into the project build target because the
PENTIUMdiab_RTP build spec is not enabled for arch2.

The same applies if the PPC32diab_RTP is the active build spec for project: the
arch2 subproject will be built, but the arch1 subproject will not.

17.6 Executables that Dynamically Link to Shared Libraries

Only executables produced from RTP projects can dynamically link to shared
libraries. Note that you will need a VxWorks ROMFS File System project to hold
the library binary on the target. The compiled library must be located in the host
and target side directories you specify as described below.

Step 1: Modify the Real-time Process build-target build properties.

1. Right-click the RTP’s target node and select Properties.

2. In the Properties dialog, select the Build Properties node.

Step 2: Set up the Linker Build Tool for a dynamic executable and target-side run path.

1. Select the Build Tools tab.

2. In the field next to the Tool Flags button, enter the run path (-rpath) to the
directory that will hold the shared library on your target, for example,
-rpath /romfs/lib (romfs is the default root directory of the ROMFS created by
VxWorks ROMFS File System projects).

3. Click Tool Flags.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

230

4. In the Linker Options dialog that appears, select
Create a dynamic executable.

You will notice that the option, as used on the command line, appears in the
Selected Options list on the right. After you click OK to close the
Linker Options dialog, you will see the option again in the field next to the
Tool Flags button.

Figure 17-4 Build Options for Dynamic Executables

17 Building: Use Cases
17.6 Executables that Dynamically Link to Shared Libraries

231

17

Step 3: Define Build Macros for the host-side location and library binary.

1. Select the Build Macros tab.

2. In the list of Build spec specific settings, select the LIBS macro and click Edit.

In the dialog that appears, add a space after the existing value (-lstlstd),
followed by the basename of the shared library binary you want to link to, for
example, MySharedLibrary:

-l:MySharedLibrary.so

When you close the dialog you should see:

LIBATH -lstlstd -l:MySharedLibrary.so

3. In the list of Build spec specific settings, select for the LIBPATH macro and
click Edit.

In the dialog that appears, enter the host-side directory location of the library
binary you want to dynamically link to, for example:

-L../MySharedLibrary/$(OBJ_DIR)

Note that $(OBJ_DIR) expands to wherever the build output for
MySharedLibrary is generated to. Using $(OBJ_DIR) is generic and therefore
offers the advantage of not having to change the LIBPATH macro if you change
build specs.

Note further that the relative reference assumes the Shared Library project is
located in the same workspace as the Real-time Process project.

Click OK to close the project’s build-target Properties dialog.

The next time you build the project structure, a dynamic executable capable of
run-time linking to the shared library with the file basename and the
directories (host and target side) you specified above will be produced.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

232

17.7 User-Defined Build-Targets in the Project Navigator

In the Project Navigator you can create custom build-targets that reflect rules in
makefiles. This is especially useful if you have User-Defined projects, which are
projects where the build is not managed by Workbench. However, you might also
find this feature useful in other projects as well.

17.7.1 Custom Build-Targets in User-Defined Projects

Assuming you have two rules in a makefile, clean and all, you can define a custom
build-target for either or both of these rules. To do so:

1. Right-click a project or folder and select New > Build Target.

2. In the dialog that appears, enter the rule(s) you want to create a target for. If
you want to execute multiple rules, separate each one with a space.

In our example, enter clean all to have both these rules, which must exist in
your makefile(s), executed when you build your new user-defined target.

Click Finish. The new build-target node appears under the project or folder
you selected. The node icon has a superimposed M to identify it as a
user-defined make rule.

To execute the rule(s), right-click the new target node and select Build Target.

NOTE: If your application is not built as described in this section (17.6
Executables that Dynamically Link to Shared Libraries, p.229), you must set the
LD_LIBRARY_PATH environment variable.

Click Edit beside the Environment field, then click Add in the Edit
Environment dialog, then type LD_LIBRARY_PATH in the Name field and the
full path to your shared library file (using forward slashes and excluding the
filename itself) in the Value field. The path must be defined in terms of the file
system as seen on the target.

Click OK. The Edit Environment dialog should contain the new environment
variable; click OK.

17 Building: Use Cases
17.8 A Build Spec for New Compilers and Other Tools

233

17

17.7.2 Custom Build-Targets in Workbench Managed Projects

First write the make rules you need into the .wrmakefile file in the project
directory.

1. Right-click a project or folder and select New > Build Target.

2. In the dialog that appears, enter the rule name(s) you created in .wrmakefile.
If you want to execute multiple rules, separate each one with a space.

Set the Build tool to User-defined, click Finish.

The new build target node appears under the project or folder you selected.
The node icon has a superimposed M to identify it as a user-defined rule.

To execute the rule(s), right-click the new target node and select Build Target.

17.7.3 User Build Arguments

You can use the User Build Arguments view to execute any existing make rule, or
overwrite any macro, or anything else that is understood by make, at every build,
regardless of what is being built. The view is toggled by choosing User Build
Arguments view from the drop-down menu at the top right of the Project
Navigator, or by clicking the button in the Project Navigator’s toolbar.

If the User Build Arguments check box is selected, the rule, or rules separated by
a space, or macro re-definitions, and so on will override the makefile entries on the
fly at every build, regardless of context.

17.8 A Build Spec for New Compilers and Other Tools

The easiest way to define a build spec for a new compiler and other associated
tools (known as a tool chain) is to copy one of the pre-configured build specs of an
existing tool chain and architecture, and modify the copy.

Step 1: Copy an Existing Build Spec.

1. Open an application project’s, for example an RTP, build properties as
described under 16.4 Accessing Build Properties, p.214.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

234

Using an application project has the advantage that these have a fuller range
of generic build tools (Assembler, language-specific Compiler, Librarian, and
Linker).

2. Select the Build Specs tab and look at the existing specs. The pre-configured
build spec names follow an ArchitectureToolChain_ProjectType convention, for
example, PENTIUMgnu_RTP. This spec is configured for a Pentium target
board, using GNU tools to create an Real-time Process (RTP).

In the Build Specs tab, select the build spec that comes closest to your needs,
at least in terms of target architecture, or a tool chain that you are familiar with,
and click Copy.

You will be warned that build properties need to be saved before proceeding.
Click OK, then enter a name for the copy you are creating in the next dialog
and click OK again.

3. Still in the Build Specs tab, set the Active build spec to your newly created
copy (this is initially right at the bottom of the list of Available and enabled
build specs. Whatever you set here is also propagated to the Build Tools, Build
Macros, and Build Paths tabs (for details open the build properties dialog and
press the help key for your host).

Each of these tabs has a generic section at the top with
Build spec specific settings below. The generic section will normally be
correct, which is one advantage of copying an existing spec, rather than
creating a new spec from the beginning.

Step 2: Configure the Build Tool.

The build system uses generic build tools, for example, a C-Compiler. So if you are
adding a new, unsupported C compiler, you will have to configure a build spec
that understands this specific instance of the generic C-Compiler build tool. Using
the compiler as an example, proceed as follows:

1. Select the Build Tools tab and set the Build tool drop-down list to
C-Compiler.

The generic settings regarding Suffixes and Build output generation should
be correct, if not modify accordingly. (If you were adding a compiler for a new
language, foolanguage, you could first create a Copy of a generic C-Compiler
Build tool and name that, for example, Foo-Compiler, and then configure the
generic settings as required.)

2. In the Build spec specific settings you would configure the options that are
specific to your particular compiler.

17 Building: Use Cases
17.9 Developing on Remote Hosts

235

17

– The Active build spec should already be set to your newly created build
spec.

– The Derived suffix refers to the file suffix of the compiler’s output.

– The Command is the command line call to your compiler with all the
options you want to pass.

In theory, you could simply type a hard command in this field. However,
using the predefined macros of the form %MacroName% and macros (your
own and/or pre-defined) that are defined on the Macros tab and
referenced using $(MacroName) generally makes more sense, as does
separating common Tool Flags and Debug mode and Non Debug mode
flags. For more detailed information, open the build properties dialog,
press the help key for your host, and see the Build Tools section.

3. If you are using your own and/or pre-defined using macros in the Command
field, set these in the Build Macros tab.

For more detailed information, open the build properties dialog, press the help
key for your host, and see the Build Macros section.

4. In the Build Paths tab, configure the redirection directories for build output
and set the include search paths (if applicable; that is, if you are configuring a
build spec for a C/C++ compiler) using the Generate and Add buttons.

For more detailed information, open the build properties dialog, press the help
key for your host, and see the Build Paths section.

After you have configured the build spec for the first tool in the chain, for example,
the compiler, go back to the Build Tools tab (see Step 2, above) to configure any
additional tools, such as the Linker or Librarian.

17.9 Developing on Remote Hosts

The Workbench remote build feature allows you to develop, build and run your
applications on a local host running Workbench, using a workspace that is located
on a remote host as if it were on a local disk.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

236

In the case of a managed build (standard or flexible), Workbench generates the
makefiles on the local machine running Workbench using a path mapping of the
workspace root location, so that the generated makefiles will be correctly dumped
for a build that is executed on the remote machine. When launching the build, a
network connection (rlogin or SSH) is established to the build host, and the actual
build command is executed there by using an intermediate script to allow you to
set up the needed environment for the build process.

17.9.1 General Requirements

■ The workspace root directory has to be accessible from both machines.

■ Only Eclipse projects located underneath the workspace root can be remotely
built. In other words, linked resources are not supported for files outside the
workspace.

■ A rlogin or SSH remote connection to the build machine must be possible.

17.9.2 Remote Build Scenarios

Local Windows, Remote UNIX:

The workspace root directory should be located on the remote UNIX host and
mapped to a specific network drive on Windows. It may also be possible to locate
the root directory on the Windows machine, but then there is the need to mount
the Windows disk on the build host. This may lead to problems regarding

17 Building: Use Cases
17.9 Developing on Remote Hosts

237

17

permissions and performance, so a mapping of the workspace root-directory is
definitely needed.

Local UNIX, Remote UNIX:

As it is possible to access the workspace root directory on both machines with the
equivalent path (automount) it may be possible to skip the path mapping.

Local UNIX, Remote Windows:

This scenario is not supported, as you would need to execute the build command
on Windows from a UNIX host.

17.9.3 Setting Up a Remote Environment

To set up your environment on the remote machine prior to a build or run, use the
Edit remote command script button to include additional commands. It will open
the file workspaceDir/.metadata/.plugins/com.windriver.ide.core/remote_cmd.sh.

For example, to extend the path before a build, add the highlighted lines to the
default file:

#!/bin/sh

WORKSPACE_ROOT="%WorkspaceRoot%"
export WORKSPACE_ROOT
DISPLAY=%Display%
export DISPLAY

PATH=/MyTools/gmake_special/bin:$PATH
export PATH

cd $WORKSPACE_ROOT

cd "$1"
shift 1

exec "$@"

You can add any commands you need, but all commands must be in sh shell style.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

238

17.9.4 Building Projects Remotely

1. Switch to a workspace that contains existing projects by selecting File > Switch
Workspace. Type the path to the appropriate workspace, or click Browse and
navigate to it.

2. In the Project Navigator, right-click a project and select Build Options >
Remote Connection. The Remote Connections dialog appears.

3. Click Add and type a descriptive name for this remote connection. Click OK.

4. In the Connection Settings fields, add the following information to create a
remote connection:

Connection Type
Select Rlogin or SSH.

Hostname
The name of the build host (can also be an IP address).

Username
The username used to establish the connection (the remote user may differ
from the local user).

Remote Workspace Location
The root directory of the workspace as seen on the remote host.

Display (XServer)
IP address of the machine where the output should be displayed.

By clicking the Advanced button you can also access these fields:

Password request string
A string that will be recognized as a password request to prompt you for
the password. If you selected SSH, this field is not available.

Remember Password during Workbench sessions
A switch to specify whether the password entered should be remembered
during the current session. This is useful during a lengthy build/run
session.

5. Click Connect to connect immediately. Remote connection settings are stored,
and are specific to this workspace. They are not accessible from any other
workspace.

NOTE: This field must contain the absolute path to the directory; environment
variables are not supported.

17 Building: Use Cases
17.9 Developing on Remote Hosts

239

17

6. The build is executed on the remote host, with the build output listed in the
standard Workbench Build Console. The XServer (IP address listed in the
Display field) is used whenever any type of X application is started, either
during builds or runs.

7. To return to local development, select Local Host from the list of connections,
then click Connect.

17.9.5 Running Applications Remotely

This section provides information about running native applications only, as
running VxWorks projects remotely is handled differently.

Running native applications remotely is quite similar to running applications
locally: a Native Application launch configuration must be created that defines
the executable to be run, as well as remote execution settings for the launch. On the
Remote settings tab are:

Remote Program
Enter the command that is used to launch the application. This may be useful
for command-line applications that could then be launched within an xterm,
for instance.

Remote Working Directory
This setting is optional, but if a remote working directory is given, it overrides
the entry in the Working Directory field of the Arguments tab.

For remote runs, a new connection similar to the active connection will be
established to allow control of Eclipse process handling, as the new remote process
will be shown in the Debug view. The Remember password during Workbench
sessions feature is very useful here.

Command-line application’s output and input is redirected to the standard Eclipse
console unless the application is started within an external process that creates a
new window (such as xterm). The default for remote execution is a remote
command like xterm -e %Application%, therefore a local XServer (like Exceed or
Cygwin X) must be set up and running.

For more information about creating launch configurations, see 22. Launching
Programs.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

240

17.9.6 Rlogin Connection Description

The rlogin connection used in the Workbench remote build makes use of the
standard rlogin protocol and ports. It establishes a connection on port 513 on the
remote host, and the local port used must be in the range of 512 to 1023 per rlogin
protocol convention.

On Windows the rlogin connection is implemented directly from within
Workbench, so you do not need an existing rlogin client. The UNIX
implementation is different, because for security reasons the local port (range: 512
to 1023) is restricted to root access, which cannot be granted from within
Workbench. Therefore an external rlogin process is spawned using the
command-line:

rlogin -l username hostname

rlogin on UNIX platforms makes use of setUID root to ensure that the needed root
privileges are available.

The standard rlogin protocol doesn't support access to stderr of the remote
connection, to all output is treated as stdout. Coloring in the Build Console of
Workbench for stderr is therefore not available.

17.9.7 SSH Connection Description

The supported protocol is SSH2, and it establishes a connection on port 22 (the
default SSH port).

Strict host key checking is disabled. Workbench does not use a known hosts file, so
host key information is stored in memory, and you are not prompted if the host key
changes.

Only password authentication is supported.

NOTE: On Linux the rlogin client and server daemon can be switched off per
default. So if the machine is used as a Workbench (remote build client) host, the
rlogin executable must be enabled (or built) and if the machine is acting as build
server (remote build host) the rlogin daemon must be enabled. Details may be
found in the system documentation of the host.

241

 18
RTPs and Shared Libraries

from Host to Target

18.1 Introduction 241

18.2 A VxWorks Real-time Process from Host to Target 242

18.3 A VxWorks Shared Library from Real-time Process to Target 247

18.1 Introduction

This chapter uses hands-on examples to illustrate one of the ways you might set
up, build, and run VxWorks Real-time Processes and VxWorks Shared Libraries
from host to target. The target used will be a VxWorks Simulator.

The Shared Library example (18.3 A VxWorks Shared Library from Real-time Process
to Target, p.247) follows from the Real-time Process example, and therefore
assumes that you have completed the steps outlined under 18.2 A VxWorks
Real-time Process from Host to Target, p.242.

NOTE: Descriptions, screenshots, default values, and settings reflect working with
Workbench on a Windows host. If you are working on another host OS, defaults
might change but usually should work in a similar way. The default build spec for
Windows is SIMPENTIUMdiab_RTP_DEBUG.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

242

18.2 A VxWorks Real-time Process from Host to Target

This section describes how to set up a VxWorks Real-time Process. Although the
section is self-contained, you will also need to set up a VxWorks Real-time Process
with the infrastructure described here if you want to use a VxWorks Shared
Library.

18.2.1 Set Up the Project Structure for Real-time Processes

You will need a VxWorks Image project, a VxWorks ROMFS File System project,
and a VxWorks Real-time Process project to start with. When this is done, you will
need to add some code and to create a target connection to test the system.

Step 1: Set up a VxWorks image project.

1. In the Project Navigator, right-click and select New > VxWorks Image Project.

2. In the Project name field, type VxWorksSim. Click Next.

3. On the next wizard page, set A board support package to simpc and Tool
chain to diab. Click Finish.

Step 2: Set up a VxWorks ROMFS File System project.

1. In the Project Navigator, be sure the project you just created, VxWorksSim, is
selected so that the new VxWorks ROMFS File System project you are about to
create will automatically become a subproject of VxWorksSim.

2. In the Project Navigator, right-click and select New > VxWorks ROMFS File
System Project.

3. In the Project name field, type VxWorksSimFS, then click Finish.

4. In the Project Navigator, you will see that the VxWorksSimFS project you just
created is a subproject of VxWorksSim.

Step 3: Set up a VxWorks Real-time Process project.

1. Right-click in the Project Navigator and select
New > VxWorks Real Time Process Project.

2. In the Project name field, type MyRTP. Click Next a few times, then on the
Build Target page choose Linker from the Build Tool dropdown list. Click
Finish.

18 RTPs and Shared Libraries from Host to Target
18.2 A VxWorks Real-time Process from Host to Target

243

18

By default, the build spec SIMPENTIUMdiab_RTP_DEBUG is activated for the
project. This matches the board support package you set for the VxWorks
Image project in Step 1 above.

Step 4: Add the Real-time Process project to the VxWorks ROMFS File System project.

In the Project Navigator, drag-and-drop the MyRTP project onto the
VxWorksSimFS project (the VxWorksSim project must be expanded).

Figure 18-1 shows the project setup so far (note that .* files have been filtered out
by clicking the downward arrow on the Project Navigator toolbar, selecting Filters,
selecting the .* checkbox, then clicking OK).

18.2.2 Add Code to the Real-time Process Project

You need some code that will let you verify that everything works.

1. In the Project Navigator, right-click MyRTP and select
New > File from Template. In the File Name field, type MyRTP.c.

2. Click Finish; the file MyRTP.c opens in the Editor view.

3. In MyRTP.c, change the following lines (the results are also shown in
Figure 18-2):

Figure 18-1 Project Hierarchy for a VxWorks Real-time Process

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

244

Change:

#include “MyRTP.h”

to read:

#include <stdio.h>

4. Change the function:

void MyRTP()
{
}

to read:

int main()
{

printf("MyRTP called!\n”);
return 0;

}

Figure 18-2 shows the modified source file, MyRTP.c.

5. Save the file but leave it open. You will need it again if you intend to follow
18.3 A VxWorks Shared Library from Real-time Process to Target, p.247.

18.2.3 Add the Real-time Process to the VxWorks ROMFS Target File System

Although you do not have a Real-time Process binary yet, you can make provision
for the binary to be on the target file system once the system is built.

Figure 18-2 The MyRTP.c Source

18 RTPs and Shared Libraries from Host to Target
18.2 A VxWorks Real-time Process from Host to Target

245

18

1. In the Project Manager, under the VxWorksSimFS File System project you
created earlier, double-click the VxWorks ROMFS File System Contents
node to open the File System Contents Editor.

2. In the File System Contents Editor, click New Folder and type bin in the
Name field. Click OK. The bin folder appears in the Target Contents panel.

3. In the Target Contents panel select the bin node, then in the Host Contents
panel, expand the project nodes until you can see the target node that
represents the (future) Real-time Process binary, namely:
MyRTP.vxe (SIMPENTIUMdiab_RTP_DEBUG).

4. Select this node and click Add. The MyRTP.vxe binary (which does not yet
exist) appears in the Target Contents panel under the bin folder.

Figure 18-3 shows the results.

5. Leave the File System Contents Editor open. You will need it again if you
intend to follow 18.3 A VxWorks Shared Library from Real-time Process to Target,
p.247.

Figure 18-3 The Executable on the VxWorks ROMFS Target File System

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

246

18.2.4 Build the System

Now build the system and locate your VxWorks image.

1. In the Project Navigator, right-click the VxWorks Image project, VxWorksSim,
and select Build Project.

The structure is recursively built, starting in MyRTP, as you can see in the
Build Console. Next the VxWorks ROMFS File System project,
VxWorksSimFS, is built. The build finishes at the top, in VxWorksSim.

2. In the next step (Set up the Target Connection, p.246) you need to know the
location of the VxWorks kernel image you just built. Under VxWorksSim
expand vxWorks (default), right-click vxWorks, then select Properties.
Highlight the path next to Location, then right-click it and select Copy. Click
OK to close the dialog.

18.2.5 Set up the Target Connection

To test the system you have just built, you need to create a connection to the target.

1. In the Target Manager, right-click default(localhost) and select
New > Connection.

2. On the first wizard page, select Wind River VxWorks 6.x Simulator
Connection and click Next.

3. On the next wizard page, select Custom Simulator. You have to select
Custom Simulator because your image, unlike the Standard Simulator, has a
VxWorks ROMFS File System that holds a Real-time Process binary linked to
it.

■ If you copied the path to the VxWorks kernel image you just built (under
Build the System, p.246), paste it in this field.

■ Otherwise, click Browse and navigate to the image, then click Open.

In general terms, the location of the image is
WorkspaceDirectory/ProjectName/BuildSpecName/vxWorks.

In this example, the image is
installDir/workspace/VxWorksSim/default/vxWorks (the BuildSpecName
is default because you are using the simulator rather than a target board).

18 RTPs and Shared Libraries from Host to Target
18.3 A VxWorks Shared Library from Real-time Process to Target

247

18

4. Click Next until you reach the last wizard page (when the Finish button is
enabled). Type VxWorksSim in the Connection name field. Leave the
Immediately connect to target if possible check box selected. Click Finish.

The connection is immediately established and the kernel shell opens.

18.2.6 Run the Real-time Process on the Simulator

To test the system, run your RTP in the kernel shell.

1. At the kernel shell prompt, type:

cd "/romfs/bin"

2. Press ENTER and type:

rtpSpawn "MyRTP.vxe”

3. Press ENTER again. The output MyRTP called! should appear. Close the
kernel shell.

18.3 A VxWorks Shared Library from Real-time Process to Target

Much of the initial work required for using a VxWorks Shared Library project is
done under 18.2 A VxWorks Real-time Process from Host to Target, p.242. Complete
all the steps in that section; the procedures outlined below follow on from there.

18.3.1 Set Up the VxWorks Shared Library Project

First, create a new VxWorks Shared Library project to add to the project structure
you created under 18.2 A VxWorks Real-time Process from Host to Target, p.242.

1. Right-click in the Project Navigator and select
New > VxWorks Shared Library Project.

2. On the first wizard page, type MySharedLibrary in the Project name field and
click Next.

3. Click Next until you get to the Build Target screen. Select Pass build target to
next level, then click Finish.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

248

Note that if you add the Shared Library as a subproject beneath a Real-time
Process project, the Shared Library will automatically inherit the active build
spec of the Real-time Process during build, no matter which build spec is
active in the Shared Library. The active build spec of the Shared Library will be
taken only if you build the Shared Library directly.

18.3.2 Add Code to the Shared Library Project

You need some code that will let you verify that everything works.

1. In the Project Navigator, right-click MySharedLibrary, select
New > File from Template, and type MySharedLibrary.h in the File Name
field. Click Finish; the file MySharedLibrary.h opens in the Editor view.

2. In the Project Navigator, right-click MySharedLibrary, select
New > File from Template, and under File Name type MySharedLibrary.c.
Click Finish; the file MySharedLibrary.c opens in the Editor view.

3. In MySharedLibrary.c add the following line:

#include <stdio.h>

4. Insert the following line into the MySharedLibrary function:

printf("MySharedLibrary called!\n");

Figure 18-4 shows the modified source file, MySharedLibrary.c.

5. Save MySharedLibrary.c.

Figure 18-4 The MySharedLibrary.c Source

18 RTPs and Shared Libraries from Host to Target
18.3 A VxWorks Shared Library from Real-time Process to Target

249

18

18.3.3 Add the Shared Library to the Run-Time Process

The Shared Library must be built before the Real-time Process, so it is added as a
subproject. Furthermore, the library binary must be located in the host and target
side directories you specify as described below.

Step 1: Add the library as a subproject.

In the Project Navigator, drag-and-drop the MySharedLibrary project onto the
MyRTP project.

Step 2: Modify the Real-time Process build-target build properties.

1. Right-click the MyRTP project’s build target node,
MyRTP.vxe(SIMPENTIUMdiab_RTP_DEBUG), and select Properties.

2. In the project’s Properties dialog, select the Build Properties node.

Step 3: Set up the Linker Build Tool for a dynamic executable and target-side run path.

1. Select the Build Tools tab.

2. In the field next to the Tool Flags button, append the run path, in other words
the directory that will hold the shared library on your target.

■ If you are using the Wind River Compiler, type -rpath /romfs/lib (romfs is
the default root directory of the ROMFS created by the File System project
you set up earlier).

■ If you are using the Wind River GNU Compiler, type -Wl,-rpath
/romfs/lib instead.

3. Click the Tool Flags button. In the Linker Options dialog that appears, select
Create a dynamic executable.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

250

You will notice that the option as used on the command line (-Xdynamic)
appears in the Selected Options list on the right.

4. Click OK to close the Linker Options dialog. You will see the option again in
the field next to the Tool Flags button. Click OK to close the Build Properties
dialog.

Figure 18-5 Tool Flags for Dynamic Executables

18 RTPs and Shared Libraries from Host to Target
18.3 A VxWorks Shared Library from Real-time Process to Target

251

18

18.3.4 Modify the Code in the Real-time Process Project

You need some code that will let you verify that everything works.

1. Open MyRTP.c in the editor, if it is not already open.

2. In MyRTP.c, insert the line:

#include "MySharedLibrary.h"

3. Modify main() as follows:

int main()
{

printf("MyRTP calling MySharedLibrary!\n");
MySharedLibrary();
return 0;

}

Figure 18-6 shows the modified source file, MyRTP.c.

4. Save MyRTP.c.

18.3.5 Generate Include Search Paths

The file you included in MyRTP.c, MySharedLibrary.h, is not in the same
project (directory). So you need to resolve the include path for successful
compilation.

1. In the Project Navigator, right-click the MyRTP project and select Build
Options > Generate Include Search Paths.

Figure 18-6 The Modified MyRTP.c Source

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

252

2. In the dialog that appears, click Next, and on the next page click Resolve All.

Notice that the entry %Proj-MySharedLibrary% appears in the lower
Include Search Paths panel. Click Next, then Finish.

18.3.6 Add Libraries to the VxWorks ROMFS Target File System

Although you do not have a Shared Library binary yet, you can make provision for
the binary to be on the target file system once the system is built. You must also
include libc.so.1 (the RTP run-time shared library version of libc) so it is accessible
to the executable at run-time.

1. The File System Contents Editor should still be open. If not, in the Project
Navigator, under the VxWorksSimFS File System project you created earlier,
double-click the VxWorks File System Contents node to open it.

2. In the File System Contents Editor, make sure bin is not selected. Click
New Folder and type lib in the Name field, then click OK. The lib folder
appears at the same level as bin in the Target Contents panel1.

3. In the Target Contents panel select the lib node, and in the Host Contents
panel, expand the project nodes until you can see the target node that
represents the (future) Shared Library binary, namely:
MySharedLibrary.so (SIMPENTIUMdiab_RTP_DEBUG).

4. Select this node and click Add. The MySharedLibrary.so binary (which does
not yet exist) appears in the Target Contents panel under the lib folder.

5. To add libc.so.1 to the target contents, select lib, then click Add External and
navigate to installDir/vxworks-6.x/target/usr/root/cpuTool/bin. Select libc.so.1
and click Open.

Figure 18-3 shows the results. Notice that when you click on items in the
Target contents pane, their Target path and Host path information appears in
the fields at the bottom of the view.

1. If the lib folder is created under the bin folder, drag it to the left and away from bin, then
drop it.

18 RTPs and Shared Libraries from Host to Target
18.3 A VxWorks Shared Library from Real-time Process to Target

253

1818.3.7 Build the System Again

In the Project Navigator, right-click the VxWorks Image project, VxWorksSim, and
select Build Project.

The structure is recursively built, starting, as you can see in the Build Console, in
MySharedLibrary, followed by MyRTP, followed by the VxWorks ROMFS File
System project, VxWorksSimFS, and finishing at the top in VxWorksSim.

18.3.8 Run the RTP with the Shared Library on the Simulator

1. In the Target Manager, right-click VxWorksSim, the connection you created
under 18.2.5 Set up the Target Connection, p.246, and select Connect.

Once the connection has been established, the kernel shell appears.

Figure 18-7 The Library Binary on the Target File System

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

254

2. At the kernel shell prompt, type:

cd "/romfs/bin"

3. Press ENTER and type:

rtpSpawn "MyRTP.vxe"

4. Press ENTER again.

The following output should appear:

MyRTP calling MySharedLibrary!
MySharedLibrary called!

5. Close the kernel shell.

For more information about using shared libraries and romfs subdirectories, see
VxWorks Application Programmer’s Guide: Applications and Processes, specifically the
Developing Shared Libraries section.

255

PAR T IV

Target Management

19 Connecting to Targets 257

20 New Target Server Connections 265

21 New VxWorks Simulator Connections 277

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

256

257

 19
 Connecting to Targets

19.1 Introduction 257

19.2 The Target Manager View 258

19.3 Defining a New Connection 258

19.4 Establishing a Connection 259

19.5 The Registry 262

19.1 Introduction

A target connection manages communication between the Workbench host tools
and the target system. A connection must be configured and established before
host tools can interact with the target.

All host-side connection configuration work and connection-related activity is
done in the Target Manager view. Connections are registered and made accessible
to users by the Wind River Registry.

This chapter describes ways to configure, start, and manage target connections in
the Target Manager view. For detailed information about the Target Server and
Registry, see the tgtsvr and wtxregd API reference entries (see
Help > Help Contents > Wind River Documentation > References > Host API
and Command References > Wind River Host Tools API Reference).

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

258

19.2 The Target Manager View

A connection to a Target Server or a VxWorks Simulator must be defined and
established before tools can communicate with a target system.

All host-side connection configuration work and connection-related activity is
done in the Target Manager view. The target side (required for Target Server and
VxWorks Simulator connections) is configured in the Kernel Configuration Editor
(see 5.4.1 The Kernel Configuration Editor, p.94).

By default, the Target Manager view is on a tab at the bottom-left of Workbench. It
is available in the Application Development perspective and in the Device Debug
perspective. If the view is not visible, choose Window > Show View > Target
Manager (or, if it is not listed there, Window > Show View > Other).

The most import tasks in the Target Manager view are:

■ defining new connections
■ connecting to targets
■ disconnecting from targets

Once you have connected to a target, more commands are enabled on the
right-click context menu (see also 22. Launching Programs).

19.3 Defining a New Connection

All connections types are defined from the Target Manager view (see 19.2 The
Target Manager View, p.258).

To open the New Connection wizard, use the appropriate toolbar icon or
right-click in the Target Manager and select New > Connection.

The first thing the New Connection wizard asks you to do is to select one of the
following connection types:

■ Wind River Target Server Connection

See 20.2 Defining a New Target Server Connection, p.265.

■ Wind River VxWorks Simulator Connection

See 21.2 Defining a New Wind River VxWorks Simulator Connection, p.277.

19 Connecting to Targets
19.4 Establishing a Connection

259

19

Properties you set using the New Connection wizard can be modified later by
right-clicking the connection in the Target Manager and choosing Properties. In
most cases, you have to disconnect and reconnect for the changes to take effect.

19.4 Establishing a Connection

Once you have created your application projects and defined connections, you will
want to run, test, and debug the projects on your target or simulator. To do this,
you first need to connect to the target.

19.4.1 Assumptions

■ You are using a simulator (VxWorks Simulator or the on-chip debugging
simulator, ISS), or you are using a target board and your hardware connections
are set up and running.

■ If you are using a target board (not a simulator), you have correctly configured
your FTP service as described in 3. Setting Up Your Development Environment
and in the Wind River ICE for Wind River Workbench Hardware Reference and
Wind River Probe for Wind River Workbench Hardware Reference.

■ You have defined one or more host-target connections as described in 20. New
Target Server Connections and 21. New VxWorks Simulator Connections.

19.4.2 Connecting to the Target

The first step in running an application on the target is to establish a connection to
that target.

Connect to and disconnect from targets in the Target Manager by selecting a
connection node and then using the appropriate toolbar icon, or by right-clicking
and selecting Connect.

Once the connection has been established:

■ If the connection is to a simulator, the Kernel Shell appears (see 19.4.4 The
Kernel Shell, p.261, for more information).

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

260

■ On Windows, a registry icon appears (if it is not there already) in the Windows
system tray (the area at the right of the Windows taskbar) to indicate the
registry is running (see also 19.5 The Registry, p.262).

■ In the Target Manager:

– A blue check mark is superimposed on the top-left corner of the
connection node, the node is labeled ConnectionName [connected], and
new nodes appear under the connection node.

– A subnode appears under the connection node. This node’s label identifies
the connection type and the kernel. The node’s right-click context menu
offers a subset of the connection node’s context menu (restricted to the
most commonly used commands) as well as the Kernel Objects
command. The Kernel Objects command populates and opens the Kernel
Objects tab (by default located behind the Target Manager).

– A number of additional subnodes appear. These are described in
Table 19-1. For a full list of the icons that you might see in the Target
Manager, click in the Target Manager and press the help key for your host.

19.4.3 Specifying an Object File

If you are loading object code on the target using a custom loader, or associating
symbols with already loaded modules, you can specify the object file that you want
the debugger to use.

Table 19-1 VxWorks Connections

Node Description

Real Time Processes When you run RTPs, they will appear as subnodes
under this node.

Kernel Tasks When the connection is initially established, you see
the VxWorks tasks. When you download and run
DKMs, they will appear as additional subnodes under
this node.

VxWorks location The kernel node and its host location. A superimposed
red S at the top-right of the icon indicates that symbol
information has been downloaded.

19 Connecting to Targets
19.4 Establishing a Connection

261

19

1. Right-click a container in the Target Manager, then select Load/Add Symbols
to Debug Server. A dialog appears with your connection and core already
filled in.

2. To add a new object file to the Symbol Files and Order list, click Add.
Navigate to the file, then click Open.

3. In the Symbol Load Options section, select Specify base start address or
Specify start address for each section.

4. When you are finished, click OK.

For more information about the fields in this dialog, click in the Target Manager,
then press the help key for your host.

19.4.4 The Kernel Shell

The Kernel Shell1 that appears when you establish a connection displays output
generated by applications running on the kernel.

If you are using a VxWorks Simulator connection, shell components are included
in the kernel by default and the Kernel Shell also provides a prompt and accepts
input like the Host Shell (see the VxWorks Command-Line Tools User’s Guide). If you
are using a real board connection, the kernel shell does not provide an input
prompt by default; you can, however, include the necessary components in the
VxWorks kernel (see 5.4 Configuring Kernel Components, p.93 as well as the VxWorks
Kernel Programmer’s Guide and the VxWorks Application Programmer’s Guide).

For the most part, the Kernel Shell works the same as the Host Shell. For detailed
information about the Host Shell see the VxWorks Command-Line Tools User’s Guide.
For information about the differences between the Host and Kernel shells, see the
VxWorks API Reference entries for dbgLib, shellLib, and usrLib.

1. In versions of VxWorks prior to 6.0, the Kernel Shell was called the Target Shell.
The new name reflects the fact that the target-resident shell runs in the kernel and
not in a process.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

262

19.5 The Registry

The Wind River Registry is a database of target servers, boards, ports, and other
items used by Workbench to communicate with targets. For details about the
registry, see the wtxregd and wtxreg reference entries.

If Workbench finds an installed VxWorks platform on start-up, it creates a default
VxWorks Simulator connection. Before any target connections have been defined,
the default registry—which runs on the local host—appears as a single node in the
Target Manager. (Under Linux, the default registry is a target-server connection for
Linux user mode.) Additional registries can be established on remote hosts.

Registries serve a number of purposes:

■ The registry stores target connection configuration data. Once you have
defined a connection, this information is persistently stored across sessions
and is accessible from other computers.

You can also share connection configuration data that is stored in the registry.
This allows easy access to targets that have already been defined by other team
members.

■ The registry keeps track of the currently running target servers and
administrates access to them.

■ Workbench needs the registry to detect and launch target servers.

If Workbench does not detect a running default registry at start-up, it launches
one. After quitting, the registry is kept running in case it is needed by other
tools.

19.5.1 Launching the Registry

To launch the default registry, open the Target menu or right-click in the Target
Manager and select Launch Default Registry.

The registry stores its internal data in the file installDir/.wind/wtxregd.hostname. If
this file is not writable on launch, the registry attempts to write to

NOTE: Having connection configuration data does not yet mean that the target
is actually connected.

NOTE: These menu items are only available if the registry is not running, and the
default registry host is identical to the local host.

19 Connecting to Targets
19.5 The Registry

263

19

/var/tmp/wtxregd.hostname instead. If this file is also not writable, the registry
cannot start and an error message appears.

19.5.2 Remote Registries

If you have multiple target boards being used by multiple users, it makes sense to
maintain connection data in a central place (the remote registry) that is accessible
to everybody on the team. This saves everyone from having to remember
communications parameters such as IP addresses for every board that they might
need to use.

Creating a Remote Registry

You might want to create a new master registry on a networked remote host that is
accessible to everybody. To do so:

1. Workbench needs to be installed and the registry needs to be running on the
remote host. The easiest way to launch the registry is to start and quit
Workbench. However, you can also launch the wtxregd program from the
command line. (For more information about wtxregd, see
Help > Help Contents > Wind River Documentation > References > Host
API and Command References > Wind River Host Tools API Reference.)

2. Right-click in the Target Manager, (see 19.2 The Target Manager View, p.258),
then select New > Registry from the context menu.

3. In the dialog that appears, enter either the host name or the IP address of the
remote host.

Workbench immediately attempts to connect to the remote registry. If the host
is invalid, or if no registry is identified on the remote host, this information is
displayed in the Target Manager.

19.5.3 Shutting Down the Registry

Because other tools use the registry, it is not automatically shut down when you
quit Workbench. Before updating or uninstalling Workbench (or other products
that use the registry), it is advisable to shut down the registry so that the new one
starts with a fresh database. To shut down the registry:

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

264

■ On Windows, right-click the registry icon in the system tray, and choose
Shutdown.

■ On Linux and UNIX, execute wtxregd stop, or manually kill the wtxregd
process.

If you want to migrate your existing registry database and all of your existing
connection configurations to the new version, make a backup of the registry data
file installDir/.wind/wtxregd.hostname and copy it to the corresponding new
product installation location.

19.5.4 Changing the Default Registry

Normally, the default registry runs on the local computer. You can change this if
you want to force a default remote registry (see 19.5.2 Remote Registries, p.263). To
do this on Linux and UNIX, modify the WIND_REGISTRY environment variable.
To do this on Windows, under the Windows Registry HKEY_LOCAL_MACHINE
node, modify the field Software\Wind River Systems\Wtx\N.N\WIND
_REGISTRY.

265

 20
New Target Server

Connections

20.1 Introduction 265

20.2 Defining a New Target Server Connection 265

20.3 Kernel Configuration 275

20.1 Introduction

Target Server connections are defined in the Target Manager view (see
19. Connecting to Targets).

20.2 Defining a New Target Server Connection

To open the New Connection wizard, right-click in the Target Manager, then select
New > Connection.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

266

20.2.1 Wind River Target Server

On the initial page of the New Connection wizard, select Wind River Target Server
Connection for VxWorks and click Next.

20.2.2 Target Server Connection Page

Back End Settings

Back end
The Back end settings specify how a target server will communicate with a
target. Table 20-1 provides descriptions of the available options in the
Back end drop-down list.

Table 20-1 Communications Back Ends for Target Server

Back End Description

wdbrpc WDB RPC. This is the default. It supports any kind of IP connection
(for example, Ethernet). Polled-mode Ethernet drivers are
available for most BSPs to support system-mode debugging for
this type of connection.

wdbpipe WDB Pipe. The back end for VxWorks target simulators.

wdbserial WDB Serial. For serial hardware connections; does not require
SLIP on the host system. If you select this option, also choose a
Host serial device (port) and Serial device speed (bits per second).

wdbproxy WDB Proxy. The backend for UDP, TCP, and TIPC connections.

! CAUTION: The target server must be configured with the same communication
back end as the one built into the kernel image and used by the target agent. The
standard back end options are described in Table 20-1; the compatible kernel
components are listed in Table 20-4.

20 New Target Server Connections
20.2 Defining a New Target Server Connection

267

20

CPU
Workbench can correctly identify the target CPU. In rare cases, a close variant
might be misidentified, so you can manually set the CPU here.

Name/IP address
The Name/IP Address field specifies the network name or the IP address of
the target hardware for networked targets. If you are using a serial port, enter
either COM1 or COM2.

Kernel Image and Symbols

The Kernel Image and Symbols properties relate to a copy of the target kernel that
resides on the host.

File path from target (if available)
Select this option to search for an image of the software running on the target
using the target path.

File
If the run-time image file is not in the same location on the host that is
configured into the target (or if host and target have different views of the file
system), select this option and use the adjacent text box to specify the host
location of the kernel image.

For example, if you are using a target programmed with a vxWorks_rom.hex,
vxWorks_romCompressed.hex, or any other on-board VxWorks image, you
must use this option to identify the kernel file location; otherwise the target
server will not be able to identify the target symbols.

! CAUTION: Do not choose the TIPC WDB Proxy connection type unless you have
included the TIPC network stack (INCLUDE_TIPC_ONLY) component in your
VxWorks Image Project.

For more information about finding components to include in your VxWorks
Image Project, open the Kernel Configuration Editor and press the help key for
your host.

For more information about TIPC, see Wind River TIPC for VxWorks 6 Programmer’s
Guide: Building VxWorks to Include Wind River TIPC.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

268

Advanced Target Server Options

Please see the tgtsvr reference entry in the online API reference and the VxWorks
Programmer’s Guide for more detailed information about target server options in
the Target Manager, as well as on additional available options.

Options

These options are passed to the tgtsvr program on the command line. Enter these
options manually, or use the Edit button for GUI-assisted editing.

Advanced Target Server Options Dialog

The properties in the Advanced Target Server Options dialog that you open with
Edit on the main wizard page are subdivided into three tabbed groups: Common,
Memory, and Logging.

The Common Tab

Target Server File System

The Target Server File System (TSFS) is a full-featured VxWorks file system
that provides target access to files located on the host system. It is used by the
Wind River System Viewer. It also provides the most convenient way to boot a
target over a serial connection. Although somewhat slow, it is simple and easy
to use.

A target can access files on the host it is booted from, if booted via FTP or rsh.
However, if the target is booted from a remote host, you can use the TSFS as a
simple method to access files on the local host.

The TSFS is also the default method used by the System Viewer for uploading
event data from the target. The TSFS should therefore be enabled and writable
(default) when using the System Viewer.

Root

If the Enable File System check box is selected, you have to identify the root
of the host file system that will be made visible to target processes using the
TSFS. By default, this is the Workspace root directory. If you use the TSFS for

! CAUTION: To use the TSFS, you must include the
WDB target server file system component when you build the kernel image.
See 20.3 Kernel Configuration, p.275, below, and the VxWorks Kernel Application
Programmer’s Guide for more details.

20 New Target Server Connections
20.2 Defining a New Target Server Connection

269

20

booting a target, it is recommended that you use the default root directory. If
you do not use TSFS, you must use the Kernel Image and Symbols
configuration options to specify the location of the kernel image (see Kernel
Image and Symbols, p.267).

Make Target Server File System writable

To use the Wind River System Viewer, you must select this check box to allow
uploading of event data from the target. Because this also allows other users to
access your host file system, you may wish to set the TSFS option for your
target server to read-only when you are not using the System Viewer.

Timeout Options

Specify allowable spawn time (in seconds) for kernel tasks and RTPs, time (in
seconds) to wait for a response from the agent running on the target system,
how often to retry, and at what intervals.

The Memory Tab

Memory Cache Size

To avoid excessive data-transfer transactions with the target, the target server
maintains a cache on the host system. By default, this cache can grow up to a
size of 1 MB.

A larger maximum cache size may be desirable if the memory pool used by
host tools on the target is large, because transactions on memory outside the
cache are far slower.

The Logging Tab

Options on the Logging tab are used mainly for troubleshooting by Customer
Support.

A maximum size can be specified for each enabled log file. Files are rewritten
from the beginning when the maximum size is reached. If a file exists, it is
deleted when the target server restarts (for example, after a reboot).

For the WTX (Wind River Tool Exchange) log file, you can specify a filter, a
regular expression that limits the type of information logged. In the absence of
a filter, the log captures all WTX communication between host and target. Use
this option in consultation with Customer Support.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

270

20.2.3 Object Path Mappings Page

Object Path Mappings have two functions:

■ To allow the debugger to find symbol files for processes created on the target
by creating a correspondence between a path on the target and the appropriate
path on the host.

■ To calculate target paths for processes that you want to launch by browsing to
them with a host file-system browser.

By default, the debug server attempts to load all of a module’s symbols each time
a module is loaded. In the rare cases where you want to download a module or
start a process without loading the symbol file, uncheck Load module symbols to
debug server automatically if possible.

The simplest way to create Object Path Mappings for a module that does not have
symbols yet is to download the output file (or run the executable) manually. In the
Target Manager, right-click the file or executable and select Load/Add Symbols to
Debug Server. From the Load Symbols dialog, select Create path mappings for
the module based on the selected symbol file and click OK. Object path
mappings are created automatically, so that after the next disconnect/reconnect
sequence the symbols will be found.

Pathname Prefix Mappings

This maps target path prefixes to host paths. Always use full host paths, not
relative paths.

For example, mapping /tgtsvr/ to C:\workspace\ tells the debugger that files
accessible under /tgtsvr/ on the target can be found under C:\workspace\ on the
host.

If you launch the process host:/usr/hello.vxe on your target, Workbench needs to
know what host:/ corresponds to; in other words, where it can find the hello.vxe
ELF file in the host file system. With an object path mapping of host:/ to
C:\WindRiver\, Workbench knows that the host path to the file is
C:\WindRiver\usr\hello.vxe.

In most cases Workbench provides correct defaults. If necessary, click Add to add
new mappings, or select existing mappings and click Edit to modify existing
mappings. The supplied default mappings are not editable.

To disable any listed object path mapping, including default mappings, unselect
the checkbox to the left of that mapping. To re-enable it, select the checkbox again.

20 New Target Server Connections
20.2 Defining a New Target Server Connection

271

20

You can export your object path mappings to XML by clicking Export and
providing a descriptive filename. Likewise you can import mappings by clicking
Import and selecting an appropriate XML file.

Reverse Mapping

Sometimes host paths must be mapped to target paths. For example, if you want
to browse to the process C:\WindRiver\usr\hello.vxe and launch it on the target,
Workbench needs to know that the correct target path for this process is
host:/usr/hello.vxe.

Path Mappings for Working with Remote Hosts

You may need to edit object path mappings if your target boots from a remote host
or if your target server runs on a remote host.

Running the target server on a remote host (using a remote registry; see
19.5.2 Remote Registries, p.263 for details) allows you to:

■ Access targets using a serial line wdb connection even if the targets are
physically connected to a remote host.

■ Have different IP subnets for the targets in a lab and the client running
Workbench, with the target server being the intermediary to translate between
the separate subnets.

In this discussion, the target is the VxWorks target, the host is the remote registry
host that the target server is running on, and the client is the system on which
Workbench is running.

Prerequisites

To allow Workbench to access targets attached to a remote host, two prerequisites
must be met:

1. The VxWorks image must be visible to the target (for booting), the host (for the
target server), and the client (for the debugger and the host shell).

2. A file system must be shared between the target and client for running RTPs.

Example: Adding New Path Mappings

When the target server is running on a host that can see the same (networked) file
system that the client can, you do not need to adjust your object path mappings.
The remote target server connections can be used exactly like local connections.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

272

However, when the remote host and the client see different file systems, you need
to create new path mappings to tell the debugger where it can find the files seen by
the target server. In this case, the path to the kernel image is entered as seen on the
remote host; path mappings must be added to tell the debugger where these paths
are on the client.

When there are multiple clients with different file systems, you must add path
mappings for each client. The debugger tries them in the order in which they
appear.

For example, consider a scenario with two clients (one on Windows, one on UNIX)
accessing a common target server host. Table 20-2 shows how each client is set up;
this is the information you would have to work with when figuring out the object
path mappings for this scenario.

Based on this information, the host and target path mappings you would enter into
the Pathname Prefix Mappings fields are shown in Table 20-3.

Table 20-2 Clients Connected to a Common Target Server Host

Station Setup Description

target t100 Booted using rsh from moon:/export1/images/t100/vxWorks
TSFS enabled

host moon Kernel path from target, on /export1/images/t100/vxWorks
TSFS enabled, with rootdir /Net/shares/tsfs/t100
Tgtsvr command line: tgtsvr -R /Net/shares/tsfs/t100 -RW t100

client c-unix File system shared with host moon
Kernel seen on /Net/moon/export1/images/t100/vxWorks
TSFS path same as on moon

client c-win Kernel seen on \\moon\export1\images\t100\vxWorks
TSFS seen on L:\tsfs\t100

Table 20-3 Host and Target Paths Converted to Object Path Mappings

Target Path Host Path Comment

moon:/export1 /Net/moon/export1 Access to the boot file system for UNIX clients. Allows
Workbench to reverse-map for running RTPs, so when
running the RTP /Net/moon/export1/myrtp.vxe, the target
path will be computed as moon:/export1/myrtp.vxe

moon:/export1 \\moon\export1 Now the same for Windows clients.

20 New Target Server Connections
20.2 Defining a New Target Server Connection

273

20

If you do not run RTPs, only the mappings for the kernel image are required
(shown in the third and fourth rows of Table 20-3). None of the other mappings are
necessary, since a file system is not needed for debugging kernel modules.

Basename Mappings

Use square brackets to enclose each mapping of target file basenames (left element)
to host file basenames (right element), separated by a semi-colon (;). Mapping pairs
(in square brackets) are separated by commas. You can use an asterisk (*) as a
wildcard.

For example, if debug versions of files are identified by the extension *.unstripped,
the mapping [*;*.unstripped] will ensure that the debugger loads
yourApp.vxe.unstripped when yourApp.vxe is launched on the target.

20.2.4 Target State Refresh Page

Since retrieving status information from the target leads to considerable target
traffic, this page allows you to configure how often and under what conditions the
information displayed in the Target Manager is refreshed.

These settings can be changed later by right-clicking the target connection and
selecting Refresh Properties.

/export1 /Net/moon/export1 Allows Workbench to find the kernel path: sent by the
target server as /export1/..., this can be forward-mapped to
the common UNIX file system for clients.a

/export1 \\moon\export1 Now the same for Windows clients.

/tgtsvr /Net/shares/tsfs/t100 Allow reverse-mapping of the tgtsvr file system for UNIX
hosts.

/tgtsvr L:\tsfs\t100 Now the same for Windows hosts.

a. This mapping may be used only for forward-mapping the kernel image, so it must be listed after the
previous mappings, which are used for reverse-mapping as well.

Table 20-3 Host and Target Paths Converted to Object Path Mappings (cont’d)

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

274

Available CPU(s) on Target Board

Workbench can correctly identify the target CPU. In rare cases, a close variant
might be misidentified, so you can manually set the CPU here.

Initial Target State Query and Settings

Specify whether Workbench should query the target on connect, on stopped
events, and/or on running events. You can select all options if you like.

Target State Refresh Settings

Specify whether Workbench should refresh the target state only when you
manually choose to do so, or if (and how often) the display should be refreshed
automatically.

Listen to execution context life-cycle events

Specify whether Workbench should listen for life-cycle events or not.

20.2.5 Connection Summary Page

This page proposes a unique Connection name, which you can modify, and
displays a Summary of name and path mappings for review. To modify these
mappings, click Back.

Shared
This option, which is available only for certain connection types, serves a dual
purpose:

■ When you define a target connection configuration, this connection is
normally visible only for your user ID. If you define it as Shared, other
users can also see the configuration in your registry, provided that they
connect to your registry (by adding it as a remote registry on their
computer; see 19.5.2 Remote Registries, p.263).

NOTE: To prevent excessive delay in the update of the Target Manager display, do
not use this option when there are more than 100 contexts on the target.

20 New Target Server Connections
20.3 Kernel Configuration

275

20

■ Normally, when you terminate a target connection, the target server (and
simulator) are killed because they are no longer needed. In a connection
that is flagged as Shared, however, they are left running so that other users
can connect to them. In other words, you can flag a connection as shared
if you want to keep the target server (and simulator) running after you
disconnect or exit Workbench.

Immediately connect to target if possible
If you do not want to connect to the target immediately, you can connect to the
target later using one of the ways described in 24. Debugging Projects. If you
have applications ready to run using the connection(s) you just created, please
see 22. Launching Programs.

20.3 Kernel Configuration

Once you have defined a Target Server (or VxWorks Simulator) connection, you
may have to configure the kernel communication. The default configuration,
however, will normally work fine for getting started.

The target server and the simulator communicate with the target system through
the target agent. To communicate with the target agent, the target server uses a
communication back end that has to be configured for the same communication
protocol and transport layer as the target agent on the kernel.

When you create Target Server or VxWorks Simulator connections, you define host
back end communication in the Kernel Configuration Editor. For more information
about this topic, see 5.4.1 The Kernel Configuration Editor, p.94.

Table 20-4 shows an overview of target server back ends and the kernel
components that provide the required target-agent communication interface.

Table 20-4 Communications Back Ends for Target Server and Compatible Kernel Components

Back End Compatible Kernel Component

wdbrpc WDB END driver connection or WDB network connection

wdbpipe WDB simulator pipe connection

wdbserial WDB serial connection

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

276

Figure 20-1 shows where to find these kernel components in the Kernel
Configuration Editor.

These and other communication-related kernel components are described in detail
in the VxWorks Programmer’s Guide: Kernel Images, Components, and Configuration.

wdbproxy WDB network connection (for UDP/TCP) or
TIPC network stack (for TIPC)

Table 20-4 Communications Back Ends for Target Server and Compatible Kernel Components (cont’d)

Back End Compatible Kernel Component

Figure 20-1 Kernel Configuration Editor Showing WDB Connection Components

277

 21
New VxWorks Simulator

Connections

21.1 Introduction 277

21.2 Defining a New Wind River VxWorks Simulator Connection 277

21.1 Introduction

The Wind River VxWorks Simulator allows you to simulate a connection to a
standard or customized version of a VxWorks 6 kernel.

21.2 Defining a New Wind River VxWorks Simulator Connection

For VxWorks Simulator-specific information going beyond this description, please
see the Wind River VxWorks Simulator User’s Guide.

Target Server connections are defined in the Target Manager view (see 19.2 The
Target Manager View, p.258).

To open the New Connection wizard, right-click in the Target Manager and choose
New > Connection.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

278

On the initial page of the New Connection wizard, select
Wind River VxWorks Simulator Connection and click Next.

21.2.1 VxWorks Boot Parameters Page

Standard Simulator (Default)
Select this option to create a simulated connection to a standard VxWorks
kernel.

Custom Simulator
Select this option if you are using a customized VxWorks kernel.

VxWorks Kernel Image
This field is enabled only if you select Custom Simulator. Navigate to the
location of your customized kernel image.

Processor Number
Your system is automatically configured to run multiple simulators.
Workbench assigns each simulator a unique positive number, known as the
Processor number.

Advanced Boot Parameters
Please see the Wind River VxWorks Simulator User’s Guide for information on
the vxsim command-line options that can be set in this dialog.

21.2.2 VxSim Memory Options Page

These options allow you to manage your memory resources. Please see the Wind
River VxWorks Simulator User’s Guide for details.

21.2.3 VxWorks Simulator Miscellaneous Options Page

This page offers file-system location options (see the Wind River VxWorks Simulator
User’s Guide for details), the ability to influence the process priority of the
simulator, and a field for entering additional command-line options that are
passed as-is to vxsim.

21 New VxWorks Simulator Connections
21.2 Defining a New Wind River VxWorks Simulator Connection

279

21

21.2.4 Target Server Options Page

WDB back end type
This corresponds to the Back end, as described for the Target Server
connection; see Back End Settings, p.266. The VxWorks Simulator uses the
wdbpipe back end by default.

Name/IP Address
Available only if the wdbrpc back end is selected. Specifies the network name
or IP address of the target. If you are using a serial port, enter either COM1 or
COM2.

The remaining options in the wizard are the same as those outlined for the Target
Server connection settings. These are described starting from Advanced Target
Server Options Dialog, p.268.

If you have created a connection for a standard simulator, the default settings
should work. However, if you have defined a custom simulator connection, you
may have to configure the kernel-side communication, see 20.3 Kernel
Configuration, p.275.

If you have applications ready to run using the connection(s) you have just created,
please see 22. Launching Programs.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

280

281

PART V

Debugging

22 Launching Programs .. 283

23 Managing Breakpoints 305

24 Debugging Projects .. 313

25 Troubleshooting ... 337

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

282

283

 22
 Launching Programs

22.1 Introduction 283

22.2 Launching a Kernel Task or a Process 284

22.3 Reset & Download: Hardware Debugging Launches 289

22.4 Launching a Native Application 290

22.5 Relaunching Recently Run Programs 292

22.6 Controlling Multiple Launches 293

22.7 Launches and the Console View 298

22.8 Using Attach-to-Target Launches 300

22.9 Suggested Workflow 302

22.1 Introduction

A launch configuration is like a named script that captures the whole process of
building, connecting a target, downloading, running, and possibly attaching a
debugger. Whenever you run a process, task, or program from the Project
Navigator or the Target Manager, a Launch Configuration is automatically created
for you. Launch configurations are stored persistently, so you can rerun your
previous launches by clicking a single button, and you can share them with your
team.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

284

The same launch configuration can be executed in Run-mode and Debug-mode:

■ Run-mode connects to your target, then launches a task or process.

■ Debug-mode is like run-mode, but in addition to connecting to your target and
launching your process, it also attaches the debugger.

This chapter explains how to create, edit, and fine-tune your launch configurations
to provide a tight edit-compile-debug cycle, as well as how to manually attach the
debugger to tasks and processes.

For descriptions of the tabs in this dialog as well as a guide to the icons you will
see in the launch configuration wizard, open the launch configuration dialog and
press the help key for your host.

22.2 Launching a Kernel Task or a Process

Launch configurations that run kernel tasks, RTPs, and Linux processes are very
similar. Only a few options and settings differ between them.

To create a new launch configuration, select a build target in the Project Navigator
then select Run > Run or Run > Debug1. The Create, manage, and run
configurations dialog appears.

1. From the Configurations list, select the type of launch you want to create, then
click New.

2. The Name field will display a default name based on the type of configuration
you selected.

■ A new kernel task launch configuration is called noEntryPoint -
moduleName - connectionName2. As soon as you select an entry point for the
configuration, the name changes to entryPoint - moduleName -
connectionName. If you prefer, you can type a completely new name in the
Name field.

■ A new process or RTP configuration is called noExecPath -
connectionName. As soon as you select an Exec Path for the configuration

1. You can also create a launch configuration by right-clicking on the build target in the Project
Navigator and selecting the appropriate Run or Debug command from the context menu.

2. If no target is connected, the default name is noEntryPoint - moduleName - noDownload.

22 Launching Programs
22.2 Launching a Kernel Task or a Process

285

22

(when you specify the executable to run), the name changes to executable -
connectionName. Or, if you prefer, you can type a completely new name in
the Name field.

22.2.1 Defining the Target Connection

The default Connection to use is the target that is currently connected. If you have
more than one connection defined in the Target Manager, you can select a different
one from the drop-down list.

1. To change the properties of the target connection, including target server
options and object path mappings, click Properties.

2. To create a new connection definition, click Add.

3. To retrieve the connection-specific properties from the target, and adjust them
if necessary, click Connect.

For more information about target connections, click in the Target Manager and
press the help key for your host, and see 20. New Target Server Connections.

22.2.2 Defining the Kernel Task or Process to Run

The settings in this section can be changed only when you are connected to a target.

Once your target is connected, you can select the Entry Point of your program from
the drop-down list, click Browse next to the Exec Path on Target field and navigate
to the executable to run3 (if it does not already appear), or change any of the other
settings in this section.

For more information on the fields on the Main tab, open the dialog and press the
help key for your host.

3. Workbench automatically maps the pathname from your host file system into a pathname
that is valid on the target file system. To change the mappings, click Properties, scroll right
to the Object Path Mappings tab, highlight the mapping you want to change, click Edit,
then update and save your new settings.

NOTE: If your application is not built as described in 17.6 Executables that
Dynamically Link to Shared Libraries, p.229, you must set the LD_LIBRARY_PATH
environment variable. See that section for details.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

286

22.2.3 Specifying a Build Target to Download

If you want Workbench to download a particular build target each time this launch
is used, specify it on the Downloads tab (this is necessary only for kernel task
launches). If you highlighted a build target in the Project Navigator before opening
the launch dialog, the file appears in the Downloads list automatically.

1. To modify any of the settings of the output file that appears, click Edit.

To add a file or to specify additional files to be downloaded, click Add.

In both cases, the Download dialog appears. For details about the fields in this
dialog, open the dialog and press the help key for your host.

2. When you are finished adjusting the settings, click OK. The new information
appears in the Downloads list.

22.2.4 Specifying The Projects to Build

If you want Workbench to build a particular project or projects prior to launching
this configuration, specify them on the Projects to Build tab. If you selected a build
target in the Project Navigator, its project appears in the Projects to Build list
automatically.

1. To add another project to the list, click Add Project, select one or more projects,
then click OK.

2. To rearrange the build order in the list, select a project then click Up or Down.

3. If you do not want Workbench to build for this particular launch
configuration, such as when you are working with very large projects, select
all projects and select Remove to clear the list4.

NOTE: You can also create launches for kernel tasks that are already downloaded,
or are resident in Flash or are part of the kernel image. Those tasks do not require
an entry in the Downloads list since they do not need to be downloaded each time
the configuration is run.

4. To prevent Workbench from building prior to launching any of your programs, unselect
Window > Preferences > Run/Debug > Launching > Build (if required) before launching.

22 Launching Programs
22.2 Launching a Kernel Task or a Process

287

22

22.2.5 Defining Debug Behavior

Break on Entry

When creating debug-mode launches, Break on entry is selected by default.
Uncheck it if you want this program to run to the first breakpoint you set, rather
than breaking immediately after startup.

If Break on entry is selected when the launch is run, four things happen:

■ Workbench automatically switches to the Device Debug perspective (if it is not
already open).5

■ The task or process is displayed in the Debug view.

■ A temporary breakpoint is planted and appears in the Breakpoints view.

■ The program executes up to Entry Point and breaks.

Automatically Attach Spawned Kernel Tasks

For kernel task launches, select this option if you want Workbench to automatically
attach spawned kernel tasks.

NOTE: Workbench is aware of relationships between projects and subprojects.
So if myLib is a subproject of myProj and you choose to add myProj to the list,
you cannot add myLib to the list as well because it will be built automatically
when you build myProj. Adding myLib as well would be redundant and so is
disabled.

When you change the list of downloaded files for kernel task launches (see
Specifying a Build Target to Download, p.286) the projects containing those files
are automatically added to the Projects to Build list. You should always
review this list when you change the list of downloaded files.

5. From the View Management Preferences screen (Window > Preferences > Run/Debug
> View Management) you can control under what circumstances Workbench switches
views based on your selection.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

288

22.2.6 Specifying Where Workbench Should Look for Source Files

If your build target was compiled on the same host where you want to debug it,
you do not need to change anything on the Source tab.

However, if the build target was compiled on a different host, and Workbench
needs to find source files during debugging, it searches the locations listed on this
tab in the specified order.

1. On the Sources tab, click Add to configure the source lookup path.

2. Select the type of source to add, then click OK.

3. Most choices require that you select a specific project, folder, or path. Make
your selection, then click OK.

4. Click Up or Down to adjust the search order.

5. Check Search for duplicate source files on the path to have Workbench search
the entire source lookup path and offer you a choice of all the files it finds that
have the same filename, rather than automatically using the first file of that
name it encounters.

For more information about the source locator, see 24.6 Understanding Source
Lookup Path Settings, p.326, and open the dialog and press the help key for your
host.

22.2.7 Configuring Access Methods

Use the Common tab to specify whether this launch is local or shared, to add the
launch to the Workbench toolbar favorites menus, and to indicate whether the
program should be launched in the background or not.

1. By default this launch configuration is a local file available only to you. If you
want to share it with others on your team, click Shared, then type or browse to
the directory where you want to save the shared file.

2. If you want to be able to launch this program from the Run or Debug favorites
menus (the drop-down menus on the Workbench toolbar), select Run or
Debug in the Display in favorites menu box.

NOTE: If you do not specify a source lookup path, the debugger will ask for the
correct source path as soon as it encounters a source it cannot find. So if you prefer,
you can configure the source lookup manually as you go, rather than configuring
it when creating the launch.

22 Launching Programs
22.3 Reset & Download: Hardware Debugging Launches

289

22

22.2.8 Using Your Launch Configuration

When you are finished configuring the launch configuration for your program,
click Apply to save your settings but leave the dialog open, click Close to save
your launch configuration for later use, or click Run or Debug to launch it now.

Running Your Program

If you select Run to launch your program, the output file or executable is loaded
into target memory and its name and host location appear below your target
connection in the Target Manager (RTPs appear under Real-time Processes). A red
S over the output file icon indicates that symbol information has been downloaded
to the debugger.

Debugging Your Program

If you select Debug to launch your program, in addition to loading the output file
or executable into target memory and downloading symbol information, the
debugger attaches to the task or process that then appears in the Debug view. For
more information about debugging your programs, see 24. Debugging Projects and
open the Debug view and press the help key for your host.

22.3 Reset & Download: Hardware Debugging Launches

For information about creating a Reset and Download launch configuration, see
Wind River ICE SX for Wind River Workbench Hardware Reference: Establishing
Communications or Wind River Probe for Wind River Workbench Hardware Reference:
Establishing Communications, depending on whether you are using a Wind River
ICE SX or Wind River Probe for your OCD connection.

NOTE: If no symbol information was found, right-click the module and select Load
Symbols to load the symbols for your module from an alternate location.

You can also match module paths with symbol information by selecting the Create
path mappings based on selection checkbox in the Load Symbols dialog.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

290

22.4 Launching a Native Application

1. To create a new launch configuration that will run a native application on your
local host or remote host, select your application’s executable in the Project
Navigator then select Run > Run. The Create, manage, and run
configurations dialog appears.

2. From the Configurations list, select Native Application, then click New.

3. The default name of the new configuration is New_configuration. Type a
descriptive name in the Name field.

22.4.1 Specifying the Location and Arguments for Your Application

1. To specify the location of your application’s executable file, click Browse
Workspace near the Location field. The Select an application dialog opens.

2. Select the executable and click OK. The executable appears in the Location
field.

3. To specify the working directory for your application, click Browse
Workspace to open the Select a working directory dialog, or Browse File
System to open the Browse for Folder dialog.

4. Select a working directory, then click OK. The directory appears in the
Working Directory field.

5. Type the arguments your application requires into the Arguments field, or
click Variables to open the Select Variable dialog. Double-click the variable
you want to use, or select it and click OK to add it to the Arguments field.

22.4.2 Specifying Remote Settings

These settings are optional, and are required only if you are running your
application on a remote host. For more information about working with remote
hosts, see 17.9.5 Running Applications Remotely, p.239.

Command-line application’s output and input will be redirected to the standard
Eclipse console unless the application is started within an external process that
creates a new window, such as xterm.

1. If your application requires an interactive shell, type the program and
arguments in the Remote Program field. The default for remote execution is a

22 Launching Programs
22.4 Launching a Native Application

291

22

remote command like xterm -e %Application%, so a local X-server like Exceed
or Cygwin X must be running.

2. If you want to use a different working directory than the one specified on the
Arguments tab, type the path to the desired directory (as seen on the remote
host).

22.4.3 Setting Environment Variables

These settings define the environment variable values to use when running a Java
application. By default, the environment is inherited from the Eclipse run time.
You may override or append to the inherited environment.

1. To set a new environment variable, or to change or extend variables from the
existing environment, click New. The New Environment Variable dialog
opens.

2. Type a descriptive name for the variable.

3. Type the value for the variable, or click Variables and select the desired
variable, add any required arguments, then click OK.

4. To include an existing environment variable, click Select. The Select
Environment Variables dialog opens.

5. Select the checkbox next to the desired variable, then click OK.

6. For each variable, choose whether to append it to the native environment or
substitute it for the native environment.

22.4.4 Configuring Access Methods

Use the Common tab to specify whether this launch is local or shared, to add the
launch to the Workbench toolbar favorites menus, and to indicate whether the
program should be launched in the background or not.

1. By default this launch configuration is a local file available only to you. If you
want to share it with others on your team, click Shared, then type or browse to
the directory where you want to save the shared file.

NOTE: These settings apply to applications that run locally, not to remote
applications.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

292

2. If you want to be able to launch this program from the Run favorites menu (the
drop-down menu on the Workbench toolbar), select Run in the Display in
favorites menu box.

22.4.5 Running Your Native Application

When you are finished configuring the launch configuration for your application,
click Apply to save your settings but leave the dialog open, click Close to save
your launch configuration for later use, or click Run to launch it now.

22.5 Relaunching Recently Run Programs

In a typical development scenario, you will run the same application many times
in a single debugging session. After creating a launch configuration, you can click
the Run or Debug icon or use a keyboard shortcut to run a process and attach the
debugger in a few seconds.

To relaunch a recently run program:

■ Press CTRL+F11 to launch the last run-mode configuration you used, or F11
to launch the last debug-mode configuration you used.

■ Click the drop-down arrow next to the Run or Debug icon and select the
configuration from the list. If you ran the configuration recently, it will appear
on the menu. If you selected Run or Debug from the
Display in favorites menu list (see Configuring Access Methods, p.288) it will
always appear on the list, whether you have run it recently or not.

22 Launching Programs
22.6 Controlling Multiple Launches

293

22

■ To run a configuration not listed on the favorites menu, click Run > Run or
Run > Debug, then choose the configuration from the Configurations list and
click Run or Debug.

22.5.1 Increasing the Size of the Launch History List

Workbench stores a history of previously launched configurations. The default
length of the launch history is 10, but you can increase the history length by
selecting Window > Preferences > Run/Debug > Launching and increasing the
number in the Size of recently launched applications list field.

22.6 Controlling Multiple Launches

You can create a Launch Control launch, consisting of a sequence of your launch
configurations, each one of which is then considered a sub-launch. You can even
add other Launch Control launches to a Launch Control configuration, the only
restriction being that a Launch Control configuration cannot contain itself.

For detailed information on launch control settings, open the dialog and press the
help key for your host.

Terminology

A launch is a specific instance of a launch configuration, and a launch configuration
is a specific instance of a launch type. The launch is what occurs when you initiate
a run or debug session.

A launch configuration is your definition of how the launch will occur, for
example, what program will be run, what target it will run on, and what the
arguments are.

A launch type defines the kind of launches that are supported by Workbench.
There are several different kinds of launch types, for example, Kernel Task or RTP
on Target. The launch type includes GUI elements that specify attributes specific
to it.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

294

You create a launch configuration based on a launch type, specifying the
appropriate attribute values. You then initiate a launch based on a launch
configuration. Launches also have a mode, the two standard modes being Run and
Debug. A launch may be initiated by the Run or Debug buttons in Workbench
(launches may be initiated other ways too).

Configuring a Launch Sequence

The following procedure assumes you have two or more launch configurations
already defined.

1. Select Run > Debug and the Debug dialog opens.

2. Select Launch Control from the Configurations list on the left, and then click
New at the bottom. A new launch control configuration with the default name
New Configuration appears. Change the name as desired.

3. Select the Launch Control tab. Note that your current launch configurations
are listed under Available Configurations on the left, and a space on the right
is labeled Configurations to Launch.

4. Select each launch that you want to add to your new launch configuration and
click Add to add it to the list of configurations to launch. When you have a list
of configurations to launch, you can organize them in the order you want them
to launch by selecting a configuration and clicking Move Up or Move Down.
The sub-launch at the top of the list will come first and the one at the bottom
last. You can remove any sub-launch from the Launch Control configuration
by selecting it and clicking Remove.

You now have a Launch Control configuration that will launch a sequence of
sub-launches in the order specified in the Configurations to Launch list. You can
also specify commands to perform before launches, after launches, and in response
to a launch failure or an application error report as discussed in the next section.

Each launch in a Launch Control will open a Console view for I/O and error
messages as described in 22.7 Launches and the Console View, p.298.

Pre-Launch, Post-Launch, and Error Condition Commands

To access the launch configuration commands, select a sub-launch in your
Configurations to Launch list and click Properties (or double-click the
sub-launch). A properties page containing command information is displayed.
Here you can specify pre-launch, post-launch, and error condition commands,

22 Launching Programs
22.6 Controlling Multiple Launches

295

22

which will inherit the environment variables shown below them unless you
change them in the command. Your changes affect the launch you are working
with only—other launches using the same configuration get the default values for
the environment variables. Also, the set of environment variables differs for each
launch configuration (see Understanding the Command Environment, p.296 for more
on environment variables).

Preparing a Launch with a Pre-Launch Command

An example of the use of a pre-launch command is to prepare a target for use. For
example, in a development environment you might have to reserve a target, and
you would not want to attempt a launch without being sure you had a target to
launch on. So a pre-launch command might be a script that reserves the board and
then reboots it.

If the pre-launch command returns a non-zero return code then the launch is
aborted and the error condition command is executed for each sub-launch
previous to the failed sub-launch.

Using a Post-Launch Command

If your application requires additional set up after it has been launched, or if you
would like to verify that it has launched correctly before proceeding to the next
launch, use a post-launch command.

If the post-launch command returns a non-zero return code then the launch is
aborted and the error condition command is executed for each sub-launch
previous to the failed sub-launch as well as for the failed sub-launch.

Using the Error Condition Command

The error condition command of a launch is run when a launch fails, or a
pre-launch or post-launch command returns a non-zero error code. This causes the
error command of the current launch to run, and then each error command of any
preceding launches to run. The error condition commands are executed in reverse
order of the sequence in which the launches occurred. For example, if the fourth
launch fails, the error condition command of the fourth launch is performed, then
the error condition of the third launch, and so on. This is to deal with situations in
which previous commands may have acquired locked resources--unlocking them
in reverse order is important to prevent potential deadlock.

NOTE: To be precise, error commands are called in the reverse order that the
pre-launch commands were called. An error command will never be called for a
sub-launch that did not pass the pre-launch command step.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

296

Inserting Commands using an Empty Sub-Launch

You can place a command into your Launch Control that is not associated with any
particular sub-launch by adding an empty Launch Control to hold the command.
Select Launch Control and click New and then specify a name for the dummy
launch, for example, Empty Launch. Add the empty launch to the Launch Control
and use the properties page to insert commands into the launch which aren't
associated with any particular sub-launch.

Running All Pre-Launch Commands First

If you want to run each of the pre-launch commands for each launch first, check
Run Pre-Launch command for all launches first on the main launch control page.
The pre-launch commands will be executed in order, and only after they are all
successfully completed will the first launch take place, followed by the second
launch and so on. This provides for situations in which you do not want to
continue with a complete launch Control sequence if any of the sub-launches
cannot take place because, for example, a target is not available.

Launch Controls as Sub-Launches

You can use an existing Launch Control as a sub-launch, but do not attempt to
create recursive launch controls in this way, as they will not run.

If the parent Launch Control's pre-initialize check box (Run Pre-Launch command
for all launches first) is selected and the pre-initialize check box is set for the child
Launch Control, the child will pre-initialize all of its sub-launches before operation
continues on to the next sub-launch of the parent Launch Control. Otherwise, the
child Launch Control will have its sub-launches initialize at the time that it is
launched.

Understanding the Command Environment

The environment variables are collected from multiple locations and then
provided on the Properties page as a convenience. Typically you will only read
variable values, but you may want to change them in your pre-launch command.
Your changes affect the launch you are working with only—other launches using
the same configuration get the default values for the environment variables.

Environment variables are gathered from four different sources. First, variables
may be defined on the Launch Control's Environment tab. These variables are not
displayed on a sub-launch’s Properties page because the information is readily
available on the Environment tab. The next source for environment variables is
from the sub-launch’s Environment tab (if it has one). The third source for the list
of environment variables is defined by the sub-launch’s configuration type

22 Launching Programs
22.6 Controlling Multiple Launches

297

22

attributes. Each sub-launch configuration type defines its own set of attributes
(further documentation on sub-launch attributes can be found in the Eclipse
documentation for Launch Configuration). The final source of environment
variables are defined by Launch Control and provide general support for the
launch. The variables defined by Launch Control for each sub-launch are:

■ com_windriver_ide_launchcontrol_launch_mode

■ com_windriver_ide_launchcontrol_env_file

■ com_windriver_ide_launchcontrol_skip_next

The environment variable com_windriver_ide_launchcontrol_launch_mode
identifies the mode of a launch. The mode may be either debug or run, depending
on how a launch is initiated (for example selecting the Run > Debug dialog to
initiate a debug mode launch and Run->Run to initiate a run mode launch).
Changing com_windriver_ide_launchcontrol_launch_mode has no effect—it is
only provided for information about a current launch.

Since the command’s environment terminates after the command completes any
variables which need to be changed for a launch must be written to a file. The name
of this file is provided in the environment variable
com_windriver_ide_launchcontrol_env_file. The format of this file is a list of key
value pairs on separate lines. Each key and value is separated by an = and the key
identifies the variable name (this is a standard Java properties file). After a
command is completed Launch Control will read this file and update any variables
as specified in the file.

Launch control also defines the com_windriver_ide_launchcontrol_skip_next
variable. Setting this variable to true in the Pre-Launch command causes the
remainder of the sub-launch to be skipped. Setting this variable in post-launch or
error commands has no effect.

An example of how this could be used is to check for the existence of a server
application in a pre-launch command. If the application is already running then
specifying com_windriver_ide_launchcontrol_skip_next=true in the
com_windriver_ide_launchcontrol_env_file will cause the launch of the
application to be skipped without invoking an error.

NOTE: Note that the Wind River environment variables for individual launches are
subject to change and you should not count on them being maintained across
releases. For details on variables beginning with the string org_eclipse refer to the
documentation available at http://help.eclipse.org.

http://help.eclipse.org

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

298

22.7 Launches and the Console View

Workbench supports the Eclipse Console view with Virtual IO (VIO) features that
allow you to monitor the standard output and error output of your applications
and to enter standard input. VIO connects the Console view to a particular context
(process or task). You can also have multiple Console views and “pin” them to a
particular context. Most Console view settings are available in the Common tab of
your launch configuration, and you can specify Console view preferences in your
Workbench preferences.

Note that Console view VIO is tied to the debugger and cannot always serve the
same purposes as a terminal connection to the target. You cannot use it, for
example, to monitor the boot loader or set boot parameters. The Console view is
associated with a particular debugger context and is not a general purpose
terminal connection.

Launches and the Console View

Each launch opens a Console view for I/O and error messages, provided the
Allocate Console check box is selected in the Common tab of the launch (the
default setting).

In the Common tab you can also specify a file where console output is appended
or overwritten with each launch. The Console view itself offers several controls as
described in the next section.

Note that you can also modify Console view settings such as buffer size and text
colors by selecting your preferences at
Window > Preferences > Run/Debug > Console.

Console View Output

To open a Console view select Window > Show View > Other > Basic > Console.
An example view is shown below.

NOTE: This refers to the Common tab of each individual launch configuration, not
the Common tab of the Launch Control configuration.

22 Launching Programs
22.7 Launches and the Console View

299

22

The highlights of the view shown include the following:

■ A title indicates which context (process or task) this view applies to.

■ A comment indicates that in this case console file logging is occurring and
identifies the log file location. Click on the filename to display it in the Editor.

■ The standard output shown in the example is Hello World! and Bye for now!
and is in black, the default color for standard output.

■ The standard error outputs shown in the example are the Show me error
messages which are in red, the default color for standard error output.

Along with other standard functions, icons in the Console view toolbar allow you
to pin the context to a Console view, select among different Console views, and
create new Console views.

Select a specific process or task for a Console view by clicking the down arrow next
to the Display Selected Console icon and making your selection. Click
Pin Console to keep the Console view associated with that context. Select
Open Console > New Console View to create additional Console views.

Refer to http://help.eclipse.org for further details on the Console view, or open the
Console view and press the help key for your host.

Figure 22-1 Example Console View

NOTE: The output appearing in the Console View can appear in a different order
than the order the output was produced if both output and error output are
present. The data from these two output types go through different channels and
their transit times can be different.

http://help.eclipse.org

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

300

22.8 Using Attach-to-Target Launches

Workbench automatically creates Attach to Target launch configurations when
you attach to an individual process or kernel task from the Target Manager. They
do not actually run an application, they just connect to your target and attach the
debugger to the specified task or process that already exists. These configurations
are visible only in Debug mode.

Once Attach to Target launches are created, you can:

■ Review them and delete those that you no longer need.

■ Change which target connection should be used to run the process.

■ Rename your launch configurations, and if you think they are valuable, put
them into your Favorites menu using the Common tab.

■ Change the mapping between source paths compiled into your objects and
source paths in your workspace by editing the Source Locator information in
the Sources tab.

■ Change the Projects to Build settings for the launch. This is particularly
valuable for Attach to Kernel launches on the VxWorks simulator: you can
disconnect your simulator, rebuild your kernel as part of the launch, and then
let the launch automatically restart and reconnect the simulator. Automatically
rebuilding shared libraries is another use of Build before launching.

NOTE: When you attach to a process or task with the same name using the same
connection, Workbench automatically reuses all the settings from the previous
launch.

However, Workbench creates a new launch (requiring you to reconfigure the
settings) when it detects that the properties of the connection have changed: for
example, if the connection was renamed, a different kernel image was used, or the
target server arguments or other connection properties were changed.

One way to avoid accumulating many similar launches is to make your
configuration changes in the launch itself, rather than right-clicking a process in
the Target Manager and selecting Attach. That way Workbench will always have
the correct settings for the process you want to run.

22 Launching Programs
22.8 Using Attach-to-Target Launches

301

22

22.8.1 Attaching the Debugger to a Running Task or Process

To attach the debugger to a task or RTP that is already running, right-click it in the
Target Manager and select:

■ Attach to Real-time Process to attach to a Real-time Process on VxWorks.

■ Attach to Kernel Task to attach to a kernel task on VxWorks.

■ Attach to Process to attach to a process on Linux.

Whenever you manually attach an individual process or task, Workbench
automatically switches to the Device Debug perspective (if it is not already open)
and displays the task or process in the Debug view, the debugger attaches without
stopping the program, and Workbench automatically creates a corresponding
Attach-to-Target launch configuration with those properties. For more
information about how to use Attach-to-Target configurations, see 22.8 Using
Attach-to-Target Launches, p.300.

Comparing Definitions: Running, Suspended, and Stopped Tasks

VxWorks and the Workbench Debug view both make a distinction between
running, suspended, or stopped tasks, but their definitions are not identical.

22.8.2 Attaching the Debugger to the Kernel

The debugger functions differently depending on whether you attach to the kernel
in task mode or system mode.

22.8.3 Attaching the Kernel in Task Mode

To attach to the kernel in Task Mode6 (VxWorks), right-click the Kernel Tasks node
in the Target Manager and select Attach All Kernel Tasks.

VxWorks Workbench Debug View Definition

Running Running Task is active, and has focus.

Suspended Running Task is waiting while another task runs.

Stopped Suspended Task stopped at a breakpoint or other
event, or was stopped by user.

6. Task mode is also known as user mode.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

302

The debugger will automatically track added and removed kernel tasks so that you
can always debug the entire system. You can also stop (suspend) individual kernel
tasks, unless they have the VX_UNBREAKABLE option set. When you stop a
kernel task, the rest of the system will continue to run.

22.8.4 Attaching the Kernel in System Mode

To attach the kernel in System Mode (VxWorks and Linux dual-mode agent),
right-click the CPU icon below the Connection icon and select Attach-to-Kernel.

This will create an Attach-to-Target launch configuration that automatically
switches your target into System Mode before attaching the debugger. The
Debugger will show a single node labelled System Context that represents the
code that the CPU is currently executing. When you stop (suspend) the System
Context, your entire System is stopped, including all the tasks, processes, and
interrupt service routines. You can now also set breakpoints that will suspend the
entire system when they are hit.

In addition to the single System Context node in the debugger, you can also attach
to individual kernel tasks. This will create separate debug sessions. You can also
set breakpoints that are specific to the task that is currently executing by selecting
restrict breakpoint scope to task on the Scope tab of the breakpoint dialogs (for
more information, open the line, expression, and hardware breakpoint dialogs and
press the help key for your host).

Note that System Mode breakpoints (breakpoints that are planted while a System
Mode attach is active) will only be active when your target is in System Mode. You
can switch your target between System Mode and User Mode by choosing the
gear-wheel icon in the Target Manager, or by ticking the Debug Mode menu items
in the Debugger. For more information about Debug Mode functionality, see
24.5 Using Debug Modes, p.320.

22.9 Suggested Workflow

Launch Configurations allow for a very tight Edit-Compile-Debug cycle when you
need to repeatedly change your code, build and run it. You can use the F11 (Debug
Last Launched) key to build the projects you have specified, connect your target

22 Launching Programs
22.9 Suggested Workflow

303

22

(unless it is already connected), download, and run your most important program
over and over again.

The only thing to keep in mind is that it may not be possible to rebuild your
program or kernel while it is still being debugged (or its debug info is still loaded
into the debugger). Workbench will warn you with a dialog and suggest proper
actions in case a problem of such simultaneous usage is detected. Depending on
the size of the modules you run and debug, it can be the case that the debug server
cannot load all the symbolic information for your modules into memory. By
default, the size limit is set to 60MB (this can be changed by selecting Preferences
> Target Manager > Debug Server Settings > Symbol File Handling Settings.)

If a module is bigger than this limit, it will be locked against overwriting as long
as the debugger has symbols loaded. This means that when you try to rebuild this
module, you will see a dialog asking you to unload the module’s symbol
information from the debugger before you continue building. You can usually
unload symbolic information without problems, provided that you do not have a
debug session open in the affected module. If you have a module open, you should
terminate your debug session before continuing the new build and launch process.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

304

305

 23
 Managing Breakpoints

23.1 Introduction 305

23.2 Types of Breakpoints 305

23.3 Manipulating Breakpoints 309

23.1 Introduction

Breakpoints allow you to stop a running program at particular places in the code
or when specific conditions exist. This chapter shows how you can use the
Breakpoints view to keep track of all breakpoints, along with any conditions.

You can create breakpoints in different ways: by double-clicking or right-clicking
in the Editor’s left overview ruler (also known as the gutter), by opening the
various breakpoint dialogs from the pull-down menu in the Breakpoints view
itself, or by selecting one of the breakpoint options from the Run menu.

23.2 Types of Breakpoints

Figure 23-1 shows the Breakpoints view with various types of breakpoints set.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

306

See the sections below for when and how to use each type of breakpoint. For a
guide to the icons you will see in the Breakpoints view, open the view and press
the help key for your host.

23.2.1 Line Breakpoints

Set a line breakpoint to stop your program at a particular line of source code.

Creating Line Breakpoints

To set a line breakpoint with an unrestricted scope (that will be hit by any process
or task running on your target), double-click in the left gutter next to the line on
which you want to set the breakpoint. A solid dot appears in the gutter, and the
Breakpoints view displays the file and the line number of the breakpoint. You can
also right-click in the gutter and select Add Global Line Breakpoint.

To set a line breakpoint that is restricted to just one task or process, right-click in
the Editor gutter and select Add Breakpoint for selected thread. If the selected
thread has a color in the Debug view, a dot with the same color will appear in the
Editor gutter, with the number of the thread inscribed inside it.

Right-clicking in the Editor’s gutter and selecting Add Line Breakpoint, or
selecting Add Line Breakpoint from the Breakpoints view’s pull-down menu will
open the Line Breakpoint dialog, where you can create and adjust the properties
of the breakpoint.

Figure 23-1 Breakpoints View

23 Managing Breakpoints
23.2 Types of Breakpoints

307

23

For more information about the settings in this dialog, open the dialog and press
the help key for your host.

23.2.2 Expression Breakpoints

Set an expression breakpoint using any C expression that will evaluate to a
memory address. This could be a function name, a function name plus a constant,
a global variable, a line of assembly code, or just a memory address. Expression
breakpoints appear in the Editor’s gutter only when you are connected to a task.

Breakpoint conditions are evaluated after a breakpoint is triggered, in the context
of the stopped task or process. Functions in the condition string are evaluated as
addresses and are not executed. Other restrictions are similar to the C/C++
restrictions for calculating the address of a breakpoint using the Expression
Breakpoint dialog.

Select Add Expression Breakpoint from the Breakpoints view’s pull-down menu
to open the Expression Breakpoint dialog, where you can create and adjust the
properties for the breakpoint.

For more information about the settings in this dialog, open the dialog and press
the help key for your host.

23.2.3 Hardware Breakpoints

Some processors provide specialized registers, called debug registers, which can
be used to specify an area of memory to be monitored. For instance, IA-32
processors have four debug address registers, which can be used to set data
breakpoints or control breakpoints.

Hardware breakpoints are particularly useful if you want to stop a process when a
specific variable is written or read. For example, with hardware data breakpoints,
a hardware trap is generated when a write or read occurs in a monitored area of
memory. Hardware breakpoints are fast, but their availability is
machine-dependent. On most CPUs that do support them, only four debug
registers are provided, so only a maximum of four memory locations can be
watched in this way.

There are two types of hardware breakpoints:

■ A hardware data breakpoint occurs when a specific variable is read or written.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

308

■ A hardware instruction breakpoint or code breakpoint occurs when a specific
instruction is read for execution.

Once a hardware breakpoint is trapped—either an instruction breakpoint or a data
breakpoint—the debugger will behave in the same way as for a standard
breakpoint and stop for user interaction.

Adding Hardware Instruction Breakpoints

There two ways to add a new hardware instruction breakpoint:

In the gutter (grey column) on the left of the source file, right-click and select
Add Hardware Code Breakpoint. Or, double-click in the gutter to add a standard
breakpoint and then, in the Breakpoints view, right-click the breakpoint you've just
added and select Properties. In the last pane (Hardware) of the Properties dialog
select Enable Hardware Breakpoint.

Adding Hardware Data Breakpoints

Set a hardware data breakpoint when:

■ The debugger should break when an event (such as a read or write of a specific
memory address) or a situation (such as data at one address matching data at
another address) occurs.

■ Threads are interfering with each other, or memory is being accessed
improperly, or whenever the sequence or timing of runtime events is critical
(hardware breakpoints are faster than software breakpoints).

Select Add Data Breakpoint from the Breakpoints view’s pull-down menu to open
the Hardware Data Breakpoint dialog, where you can create and adjust the
properties for the breakpoint.

For more information about the settings in this dialog, open the dialog and press
the help key for your host.

Converting Line or Expression Breakpoints Into Hardware Code Breakpoints

To cause the debugger to request that a line or expression breakpoint be a
hardware code breakpoint, select the Hardware check box on the Hardware tab of
the Line Breakpoint or Expression Breakpoint dialogs.

23 Managing Breakpoints
23.3 Manipulating Breakpoints

309

23

This request does not guarantee that the hardware code breakpoint will be planted;
that depends on whether the target supports hardware breakpoints, and if so,
whether or not the total number supported by the target have already been
planted. If the target does not support hardware code breakpoints, an error
message will appear when the debugger tries to plant the breakpoint.

Comparing Software and Hardware Breakpoints

Software breakpoints work by replacing the destination instruction with a
software interrupt. Therefore it is impossible to debug code in ROM using software
breakpoints.

Hardware breakpoints work by comparing the break condition against the
execution stream. Therefore they work in RAM, ROM or flash.

Complex breakpoints involve conditions. An example might be, “Break if the
program writes value to variable if and only if function_name was called first.”

23.3 Manipulating Breakpoints

Now that you have an understanding of the different types of breakpoints, this
section will show you how to work with them.

23.3.1 Importing Breakpoints

To import breakpoint properties from a file:

NOTE: Workbench will set only the number of code breakpoints, with the specific
capabilities, supported by your hardware.

NOTE: If you create a breakpoint on a line that does not have any corresponding
code, the debugger will plant the breakpoint on the next line that does have code.
The breakpoint will appear on the new line in the Editor gutter.

In the Breakpoints view, the original line number will appear, with the new line
number in square brackets [] after it. See the third breakpoint in Figure 23-1.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

310

1. Select File > Import > Import Breakpoints, then click Next. The Import
Breakpoints dialog appears.

2. Select the breakpoint file you want to import, then click Next. The Select
Breakpoints dialog appears.

3. Select one or more breakpoints to import, then click Finish. The breakpoint
information will appear in the Breakpoints view, and the next time the context
for that breakpoint is active in the Debug view, the breakpoint will be planted.

23.3.2 Exporting Breakpoints

To export breakpoint properties to a file:

1. Select File > Export > Export Breakpoints, then click Next. The Export
Breakpoints dialog appears.

2. Select the breakpoint whose properties you want to export, and type in a file
name for the exported file. Click Finish.

23.3.3 Refreshing Breakpoints

Right-clicking a breakpoint in the Breakpoints view and selecting
Refresh Breakpoint causes the breakpoint to be removed and reinserted on the
target. This is useful if something has changed on the target (for example, a new
module was downloaded) and the breakpoint is not automatically updated.

To refresh all breakpoints in this way, select Refresh All Breakpoints from the
Breakpoints view toolbar drop-down menu.

23.3.4 Disabling Breakpoints

To disable a breakpoint, clear its check box in the Breakpoints view. This retains all
breakpoint properties, but ensures that it will not stop the running process. To
re-enable the breakpoint, select the box again.

23.3.5 Removing Breakpoints

There are several ways to remove a breakpoint:

■ right-click it in the Editor gutter and select Remove Breakpoint

23 Managing Breakpoints
23.3 Manipulating Breakpoints

311

23

■ select it in the Breakpoints view and click the Remove icon

■ right-click it in the Breakpoints view and select Remove

For more information about the Breakpoints view or any of the breakpoint dialogs,
open the dialogs and press the help key for your host.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

312

313

 24
 Debugging Projects

24.1 Introduction 313

24.2 Using the Debug View 314

24.3 Coloring Views 318

24.4 Stepping Through a Program 319

24.5 Using Debug Modes 320

24.6 Understanding Source Lookup Path Settings 326

24.7 Using the Disassembly View 326

24.8 Using the Kernel Objects View 328

24.9 Remote Kernel Metrics 331

24.10 Run/Debug Preferences 336

24.1 Introduction

Like other debuggers you may have used, the Wind River Workbench debugger
allows you to download object modules, launch new processes, and take control of
processes already running on the target.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

314

Unlike other debuggers, it allows you to attach to multiple processes
simultaneously, without affecting the state of the items you are attaching to or
requiring you to disconnect from one process in order to attach to another.

This chapter shows you how to use the Debug, Disassembly, and Kernel Objects
views to debug your programs. For a guide to the dialogs and icons you will see
while using them, open the views and press the help key for your host.

24.2 Using the Debug View

Use the Debug view to monitor, control, and manipulate the processes and tasks
that you are actively debugging. Unlike the Target Manager, which shows all the
processes that exist on the target, the Debug view shows only the ones that are
currently under debugger control or were launched by Workbench.

To put a process or task under the control of the debugger and thus see it in the
Debug view:

1. Connect to your target in the Target Manager view (see Connecting to the Target,
p.259).

2. Launch one or more processes:

■ Using a launch configuration as described in Relaunching Recently Run
Programs, p.292.

■ By attaching to an already running process, as described in Attaching the
Debugger to a Running Task or Process, p.301

3. Once the debugger has attached to your process, it will appear in the Debug
view as shown in Figure 24-1.

24 Debugging Projects
24.2 Using the Debug View

315

24

Additionally, the Debug view shows processes that were launched on the target
using Workbench, but which were not attached by the debugger. These launches
have a special entry in the Debug view, as shown in Figure 24-2, and are only
available to help you locate and terminate the process.

24.2.1 Understanding the Debug View Display

When using the Debug view, it is crucial that you understand what is represented
by each level in the hierarchical tree of the process you are debugging. This is
because the level of the current selection in the Debug view affects the activities
that you can perform on it and controls the information displayed in other views.

Below are examples from the kernel task in Figure 24-1 for what might appear at
each level of the tree, with a general description of each level.

main -ball.out - vxsim0 [Kernel task] = launch level
launch name [launch type]

SIMNT: vxWorks 6.x (Task Mode) = debug target level
core name:OS name OS version (debug mode), can also be process name

Figure 24-1 Debug View

Figure 24-2 Debug View Showing Process Not Under Debugger Control

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

316

tMain (Stopped - Breakpoint Hit) = thread level
thread name (state - reason for state change)

main() - main.c:59 = stack frame level
function(args) - file : line #, can also be address

In Workbench 2.6, stack arguments and argument values are not displayed in the
Debug view by default. This default setting was implemented to improve
debugging performance.

To activate stack-level arguments in the Debug view, select Window > Preferences
> Run/Debug > Performance, then select the Retrieve stack arguments for stack
frames in Debug View and Retrieve stack argument values for stack frames in
Debug View checkboxes. Click OK.

How the Selection in the Debug View Affects Activities

Choosing a specific level of your debug target controls what you can do with it.

NOTE: The stack arguments reflect the current value of the stack argument
variables, not the initial value of the stack arguments immediately after entering
the function call.

Selected Level Action Allowed

launch Terminate or disconnect from all processes/cores for the launch
debug target.

debug target Terminate or disconnect from the debug target.

Perform run control that applies to the whole process:
suspend/resume all threads.

Assign color to the debug target and all its threads/tasks.

thread Terminate or disconnect; terminates individual tasks/threads, if
supported by process/core.

Run control for thread: resume/suspend/step.

Assign color to thread.

stack frame Select of the stack frame causes the editor to display instruction
pointer and source for stack frame.

Perform same run control as on the thread.

24 Debugging Projects
24.2 Using the Debug View

317

24

Monitoring Multiple Processes

When you start processes under debugger control, or attach the debugger to
running processes, they appear in the Debug view labeled with unique colors and
numbers. Likewise, breakpoints that are restricted to a particular process display
that process’s color/number context in the Breakpoints and Editor views.

For example, in Figure 24-3:

■ The first breakpoint in main.c (a blue circle containing a 0) is restricted to ball,
the blue process numbered 0 in the Debug view.

■ The second breakpoint (a solid blue-green circle) is unrestricted.

■ The breakpoint in cobble.c (a red circle containing a 1) is restricted to cobble,
the red process numbered 1 in the Debug view.

The color assigned to a process or thread can be changed by right-clicking the
process or thread and selecting Color > specific color.

Assign color to thread.

Assign corresponding color for parent thread.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

318

The Program Counter (the arrow in the left gutter in main.c) indicates the
statement that will execute when the process resumes.

24.3 Coloring Views

The color context you assign to a process also carries through to other views whose
scope is determined by the contents of the Debug view.

The data views that appear in the Device Debug perspective (such as the Threads
or Stack Trace view) usually update to reflect whatever is currently selected in the
Debug view. If you prefer, you can start colored views that are associated with a
process of a particular color and update only when that process changes.

To open a view of a particular color, select
Window > Show View > Other > Device Debug - color > view.

Figure 24-3 Debug View with Breakpoint and Editor Views

24 Debugging Projects
24.4 Stepping Through a Program

319

24

For more information about data views in the Device Debug perspective, open the
views and press the help key for your host.

24.4 Stepping Through a Program

Once a process has stopped under debugger control (most often, at a breakpoint),
you can single-step through the code, jump over subroutine calls, or resume
execution. What you can do depends on what you selected in the Debug view.

When the program is stopped, you can resume operation by clicking Resume on
the toolbar of the Debug view. If there are no more remaining breakpoints,
interrupts, or signals, the program will run to completion (unless you click
Suspend).

To step through the code one line at a time, in the Debug view, click Step Into. If
you have other data views open, such as the Registers or Local Variables views,
they will update with current values as you step through the code.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

320

The effect of Step Into is somewhat different if you click
Toggle Disassembly/Instruction Step Mode in the Debug view, or when the
current routine has no debugging information. When this mode is set, the step
buttons cause instruction-level steps to be executed instead of source-level steps.
Also, the Disassembly view will appear instead of the Editor view.

To single-step without going into other subroutines, click Step Over instead of
Step Into.

While stepping through a program, you may conclude that the problem you are
interested in lies in the current subroutine’s caller, rather than at the stack level
where your process is suspended. In this situation, if you click Step Return in
Debug, execution continues until the current subroutine completes, then the
debugger regains control in the calling statement.

These run control options, as well as others, are available from the Run menu as
well as from the Debug view toolbar. For more information, open the Debug view
and press the help key for your host.

24.5 Using Debug Modes

Depending on the type of connection you created between the debugger and the
target, you may be able to operate the debugger in different modes. Different
debug modes have different capabilities and limitations, which are mostly related
to how the debugger interacts with the target and the processes that are being
debugged. You can also create multiple debug connections to the same target,
allowing you to debug in multiple modes simultaneously.

Target
Connection Type Supported Modes

WDB agent on
VxWorks

System Mode

■ Supports debugging the entire system using a single
execution context.

■ Supports limited debugging of individual kernel tasks. The
debugger can retrieve stack traces for individual tasks, but
if any of the tasks is resumed and suspended, even when
stepping, the entire system is resumed and suspended.

24 Debugging Projects
24.5 Using Debug Modes

321

24

Task Mode

■ Supports debugging of kernel tasks. It allows suspending,
resuming, and stepping kernel tasks individually, without
affecting other kernel tasks.

■ Supports debugging of RTPs.

kgdb on Linux Kernel Mode

■ Only supports debugging the kernel using a single
execution context. When the system context is suspended,
the kernel, kernel threads, and user processes are
suspended also.

ptrace agent on
Linux

User Mode

■ Supports debugging user processes. Processes and threads
within processes are suspended and resumed
independently of each other.

Dual Mode on
Linux

In dual mode, you must toggle between user and kernel mode
depending on your debugging needs.

Kernel Mode (also called System Mode)

■ Only supports debugging the kernel using a single
execution context. When the system context is suspended,
the kernel, kernel threads, and user processes are
suspended also.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

322

As a general rule, when you are debugging the target in user mode or task mode,
the debugger interacts only with the process or processes being debugged. If you
suspend this process, other processes keep running. This mode is less intrusive, as
it allows you to control the selected process or thread while the rest of the system
can continue to operate normally.

When you are debugging in system mode, the debugger interacts with the entire
system at once, so if you suspend one task, all processes and kernel tasks running
on the system are suspended as well. This gives you increased control and
visibility into what is happening on the system, but it is also very disruptive.

User Mode

■ Supports debugging user processes. Processes and threads
within processes are suspended and resumed
independently of each other.

OCD System Mode

■ Supports debugging the entire system using a single
execution context.

OCD with OS
Awareness for
VxWorks

System Mode

■ Supports debugging entire system using a single execution
context, including retrieving the full stack trace when the
system is suspended.

■ Supports limited debugging of individual kernel tasks. The
debugger can retrieve stack traces for individual tasks, but
if any of the tasks is resumed and suspended, even when
stepping, the entire system is resumed and suspended.

■ Supports viewing of individual RTPs, but does not provide
run control unless the target has been configured for
one-to-one MMU virtual page mapping.

OCD with OS
Awareness for
Linux

System Mode

■ Only supports debugging the kernel and kernel modules
using a single execution context.

■ Supports viewing of processes, but the debugger cannot be
attached to them.

■ Kernel objects are not available.

24 Debugging Projects
24.5 Using Debug Modes

323

24

For example, if the system maintains network connections with other systems,
suspending it will cause the others to lose their network connections with the
debugged system.

24.5.1 Setting and Recognizing the Debug Mode of a Connection

Right-clicking on a connection in the Target Manager or the Debug view and
selecting Target Mode allows you to specify a debug mode for the connection. The
currently active mode is indicated by a checkmark.

When you create a new debug connection through a launch, the connection debug
mode (either system or task mode) is saved as a property of the launch. This mode
is listed in parentheses at the end of the label of the target node in the Debug view.

Switching Debug Modes

For target connections that support switching between modes, if you switch the
debug mode while a debug connection is active, this debug connection will
become unavailable in the Debug view, as shown in Figure 24-4. When a debug
connection is unavailable, no operations can be performed on it, except for
disconnecting the debug connection.

Figure 24-4 Debug View Showing Unavailable Connections

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

324

In the Target Manager, if you switch the target to system mode, every node in the
tree will have a system mode icon painted on top. If the system mode icon does not
appear, then the node and processes are in task or user mode.

24.5.2 Debugging Multiple Target Connections

You can debug processes on the same target using multiple target connections
simultaneously. An example of this setup is a Linux target that has a user mode
ptrace agent installed for debugging processes, and an OCD connection for halting
the system and debugging the kernel.

In this situation, if the system is halted using the OCD (system mode) target
connection, the user mode ptrace agent will also be halted, and the user mode
target connection will be lost. When the system is resumed, the user mode target
connection will be re-established.

The Target Manager and the Debug view (if a debug session is active) both provide
feedback in this scenario. The Target Manager hides all the process information
that was visible for the target, and displays a label back-end connection lost next
to the target node. The Debug view does not end the active debug session, but it
shows it as being unavailable, in the same manner as if the debug mode was
switched.

24.5.3 Disconnecting and Terminating Processes

Disconnecting from a process or core detaches the debugger, but leaves the process
or core in its current state.

Terminating a process actually kills the process on the target.

24.5.4 Configuring Debug Settings for a Custom Editor

By default, the Workbench Editor opens when the debugger stops in a given file.
To cause a different editor to open for particular file types, modify the mappings
in Window > Preferences > General > Editor > File Associations.

NOTE: If the selected target supports terminating individual threads, you can
select a thread and terminate only that thread.

24 Debugging Projects
24.5 Using Debug Modes

325

24

Modifying these mappings takes care of editor selection and painting of the
instruction pointer in the editor gutter. However, to associate other debugging
actions with the new editor, you must modify the Eclipse extension point
org.eclipse.ui.editorActions.

For example, the breakpoint double-click action associated with the Workbench
Editor looks like this:

<extension point="org.eclipse.ui.editorActions">
<editorContribution

targetID="com.windriver.ide.editor.c"
id="com.windriver.ide.debug.CSourceFileEditor.BreakpointRulerActions">

<action
label="Dummy.label"
class="com.windriver.ide.debug.internal.ui.breakpoints.actions.ToggleB

reakpointRulerAction"
actionID="RulerDoubleClick"
id="com.windriver.ide.debug.ui.actions.toggleBreakpointRulerAction.c">

</action>
</editorContribution>

Other features that are by default configured to work only with the Workbench
Editor are Run to line, Set PC to here, and Watch. These features are configured
through following extensions:

<viewerContribution
targetID="#WREditorContext"
id="com.windriver.ide.debug.ui.editprPopup.actions">

<visibility>
<and>

<systemProperty
name="com.windriver.ide.debug.ui.debuggerActive"
value="true"/>

<pluginState value="activated" id="com.windriver.ide.debug.ui"/>
</and>

</visibility>
<action

label="%WatchAction.label"
icon="icons/actions/hover/watch_exp.gif"
menubarPath="group.debug"
helpContextId="com.windriver.ide.debug.ui.watchAction_context"
class="com.windriver.ide.debug.internal.ui.actions.WatchAction"
id="com.windriver.ide.debug.ui.editor.watchAction">

<enablement>
<systemProperty

name="com.windriver.ide.debug.ui.debuggerActive"
value="true">

</systemProperty>
</enablement>

</action>
<action

label="%SetPcToHereAction.label"
menubarPath="group.debug"

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

326

helpContextId="com.windriver.ide.debug.ui.setPcToHereAction_context"
class="com.windriver.ide.debug.internal.ui.actions.SetPcToHereAction"
id="com.windriver.ide.debug.ui.editor.setPcToHereAction">

</action>
<action

label="%RunToLineAction.label"
icon="icons/actions/hover/run_to_line.gif"
menubarPath="group.debug"
helpContextId="com.windriver.ide.debug.ui.runToLineAction_context"
definitionId="org.eclipse.debug.ui.commands.RunToLine"
class="org.eclipse.debug.ui.actions.RunToLineActionDelegate"
id="com.windriver.ide.debug.ui.editor.runToLineAction">

</action>
</viewerContribution>

Please refer to Eclipse SDK documentation for more information on these
extension points.

24.6 Understanding Source Lookup Path Settings

Source Lookup Path settings allow you to map source file paths that the debugger
retrieves from an executable's symbol data (also known as the debugger path) to
the correct location of the source files on the host file system and in your
workspace.

The compiler generated these paths when the executable was built, but if you are
debugging the executable on a different machine, then the paths to those files are
no longer valid.

For information about how to set Source Lookup Path settings, open the source
lookup dialog and press the help key for your host.

24.7 Using the Disassembly View

Use the Disassembly view:

■ To examine a program when you do not have full source code for it (such as
when your code calls external libraries).

24 Debugging Projects
24.7 Using the Disassembly View

327

24

■ To examine a program that was compiled without debug information.

■ When you suspect that your compiler is generating bad code (the view
displays exactly what the compiler generated for each block of code).

24.7.1 Opening the Disassembly View

Unlike other Wind River Workbench views, you cannot access the Disassembly
view from the Window > Show View menu—it appears automatically if the
Debug view cannot display the appropriate source code file in the Editor (it
appears as a tab in the Editor, labeled with the target connection being debugged).

You can open the Disassembly view manually by clicking the Debug view’s
Toggle Assembly Stepping Mode toolbar icon, and by right-clicking in the Stack
Trace view, then selecting Go To Code.

24.7.2 Understanding the Disassembly View Display

The Disassembly view shows source code from your file (when available),
interspersed with instructions generated by the compiler. As you step through
your code, the Disassembly view keeps track of the last four instructions where the
process was suspended. The current instruction is highlighted in the strongest
color, with each previous step fading in color intensity.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

328

If the Disassembly view displays a color band at the top and bottom (here, the band
is blue), then it is associated with the process with that color context in the Debug
view; if no color band is displayed, then the view will update as you select different
processes in the Debug view.

For more information, open the view and press the help key for your host.

24.8 Using the Kernel Objects View

Use the Kernel Objects view to monitor data structures such as kernel tasks, RTPs,
message queues, semaphores, and other resources.

During multi-process debugging, you can use the Kernel Objects view to monitor
a semaphore used to control a device that two processes are using. Or you can set
an RTP that uses a system resource to watch that resource during Step Over
system calls.

Figure 24-5 Disassembly View

24 Debugging Projects
24.8 Using the Kernel Objects View

329

24

To open the Kernel Objects view:

1. Connect to your target in the Target Manager (see 19.4.2 Connecting to the
Target, p.259).

2. Click the Kernel Objects tab to bring it to the foreground, then click the
pull-down arrow and select your target connection.

3. The Kernel Objects view appears.

24.8.1 Understanding the Kernel Objects View Display

System resources are displayed in a hierarchical tree.

1. To see specific instances of each type of resource, or to display which tasks
belong to which executable, click the plus sign to expand the tree.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

330

2. To examine a resource in the Kernel Objects view, double-click it. Properties
and their current values are displayed in the Properties view.

3. To copy a value to another view, right-click it and select Copy.

To change a value, select it and type in a new value. If you have copied a value
from another view, right-click the value in the Properties view and select Paste.

4. If you change the processes or tasks running on the target, select Refresh
Selected or Refresh All to update the display in the Kernel Objects view.

5. If you want to remove some types of resources from the display, right-click
them and select Add to Filter. Then when you toggle the Filter toolbar icon,
these resources will appear or disappear so you can restrict the list to only the
resources you want to monitor.

For a guide to the icons in the Kernel Objects view, open the view and press the
help key for your host.

NOTE: To improve responsiveness, the Kernel Objects view updates the
display or fetches information only when you specifically request it.

24 Debugging Projects
24.9 Remote Kernel Metrics

331

24

24.9 Remote Kernel Metrics

Remote kernel metrics (RKMs) are operating system signals (metrics) that are
dynamically collected by the RKM_monitor target agent. The metrics can be
displayed in real-time utilizing the full-color features of the StethoScope GUI
included with Workbench.

The RKM monitor for VxWorks supports two types of connections: TCP/IP and
WTX. Typically you would use the TCP/IP connection unless you are using the
VxSim simulator, in which case you should use the WTX connection. Actual
VxWorks target connections can use either connection but TCP/IP is faster and
does not require the debug server to be running.

Building the RKM Monitor for VxSim

The following procedure uses VxSim and the WTX connection type to demonstrate
RKM monitor usage under VxWorks.

1. Start Workbench.

2. Select File > New > Example from the main menu bar.

3. In the New Example dialog, select Examples > VxWorks Downloadable
Kernel Module Sample Project and click Next.

4. Under Available Examples, you have two choices:

■ The RKM (Remote Kernel Metrics) Monitor Program (TCP/IP)

■ The RKM (Remote Kernel Metrics) Monitor Program (WTX)

Select The RKM (Remote Kernel Metrics) Monitor Program (WTX) for this
procedure because we will use VxSim as our target.

Click Finish.

A new rkm_monitor_wtx (Wind River VxWorks 6.x) project is created.

5. Select the project and set the active build spec to either SIMNTdiab or
SIMNTgnu depending on your compiler and build the project.

Downloading the RKM Monitor and Libraries

The VxWorks RKM Monitor requires two StethoScope shared libraries in order to
run. These libraries are scopeutils.so and libscope*wtx.so, located in the

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

332

installDir/scopetools-stdone-5.5/target/arch/simntVx6.2gcc3.3.2/ directory, where
the * wildcard is a version number, for example 710.

Download both of these files before downloading the RKM monitor.

One way to download the libraries is as follows:

1. Start a VxSim connection.

2. Select ScopeTools > StethoScope from the main menu.

3. Select VxWorks for the target type and click OK.

4. Set the options in the StethoScope Setup Options dialog box as follows:

a. Select Load libraries only under Execution Mode.

b. If you wanted to start the StethoScope GUI, you would check Start
StethoScope GUI on the host at the top of the dialog box. In this case we
are only downloading the libraries, so leave it unchecked.

c. Set Scope index to the default, 127.

d. Set Connection type to WTX, the connection type used for VxSim.

Click on OK to automatically download the above libraries (if they are not
already loaded). The StethoScope GUI will not be launched (unless you
checked the Start the StethoScope GUI on the host box).

You may now download RKM_monitor. One way of doing that, which is also an
alternate way of downloading the libraries, is discussed next.

Another way of downloading the libraries in Workbench is as follows:

1. Start a VxSim connection.

2. In the Target Manager View, select the target and right-click to bring up the
context menu. Select Download.

3. Specify the full pathname of the scopeutils.so library and click OK.

4. Repeat the process for both the libscope*wtx.so library and
rlm_monitor_wtx.out.

The libraries will appear in your Target Manager view if you expand SIMNT, and
the monitor will appear if you expand Kernel Tasks. Once you have downloaded
the libraries and the monitor, you can start the monitor as discussed next.

24 Debugging Projects
24.9 Remote Kernel Metrics

333

24

Starting the RKM Monitor

Starting the RKM Monitor Using Workbench Using Workbench

Once you have built the RKM monitor project as discussed in Building the RKM
Monitor for VxSim, p.331, and have VxSim running (by creating a VxSim target
connection), you can start the monitor as follows.

In the Project Navigator, expand rkm_monitor_wtx.out, right-click on the
rkm_monitor_wtx.out executable, and select Run Kernel Task from the context
menu. Select the VxSim connection in the Connection to use drop-down menu,
and enter RKM_monitor for Entry Point. Click Run.

In the Target Manager, expand Kernel Tasks under SIMNT. You should see the
RKM_monitor kernel task running.

Controlling the RKM Monitor Using VxSim

In the VxSim window, you can use the following commands to control the RKM
monitor:

■ RKM_monitor—Starts an RKM monitor with the default options.

■ RKM_list—Lists all monitors which are currently running.

■ RKM_shutdown—Stops all RKM monitors.

■ RKM_stop index—Stops the RKM monitor using index number index, where
index is a number from 0 to 127 (the default).

■ RKM_monitor options—starts an RKM monitor with the specified options.
Enter options within double-quotes.

■ RKM_monitor “-help”—Displays the RKM monitor options.

For example, the following sequence of commands starts an RKM monitor with
with a non-default port, shows that it is running, and then stops it.

-> RKM_list
value = 0 = 0x0
-> RKM_monitor “-index=125”
value = 0 = 0x0
-> RKM_list
Monitor[125] is running
value = 0 = 0x0
-> RKM_stop 125
value = 0 = 0x0
-> RKM_list
value = 0 = 0x0
->

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

334

Note that the RKM_monitor was started with a specific index number. In this way
you can run multiple monitors on your target, which has several advantages. You
might want to configure one monitor, for example, to collect a few signals for all
processes at a low sampling frequency, and configure another to sample a
complete set of metrics for a few processes at a high frequency.

By specifically selecting the signals you want to monitor, you can reduce the
memory, CPU, and network resources required to monitor the large set of signals
selected by default. In addition, the source for the RKM monitor is included so you
can create versions that monitor specific signals that are not made available by the
default configuration, or even monitor specific portions of your application.

For example, to start an RKM monitor with index 125 to monitor only the system
metric tracking the number of tasks on the system, taking 10 samples every second:

->RKM_monitor “-index=125 -sysmetrics tasks -samples=10”

When you attach StethoScope to the RKM monitor invoked for specific metrics,
you will be able to view only those metrics in StethoScope.

Starting the StethoScope GUI with a WTX Connection

You can start the StethoScope GUI using the Workbench main menu as described
in Using StethoScope to View Remote Kernel Metrics, p.334, or you can create a
desktop icon to start the StethoScope GUI and connect it to the target. Because the
WTX version requires some VxWorks environment variables to be configured, it is
easiest to create an icon which invokes the StethoScope program using the
VxWorks Development shell. For example:

C:\PATH\wrenv.exe -p vxworks-6.3 scope.exe -index 127 -verbosity 0 -tgtsvr
vxsim0@HOST -wtxMode

Note that you have to enter the correct information for your path to wrenv.exe and
also your host information.

Using StethoScope to View Remote Kernel Metrics

Your main navigation tool for StethoScope is the Signals Tree in the upper-left
corner. As an example of how to use StethoScope with remote kernel metrics,
expand vxsim, expand vxKernel, expand System, and then expand Tasks.
Check the Tasks group to automatically check all of the metrics under Tasks
(tasks, ready, suspended, stopped, pending, delayed).

Hover your mouse over the StethoScope toolbar to find the Zoom to Fit icon.
Click on it to contain all the signals in the graph window. Note that each signal

24 Debugging Projects
24.9 Remote Kernel Metrics

335

24

has a unique color associated with it and this color is used for the lines in the
graph. The MiniMonitor view lists the current values of monitored signals and
the MiniDump view lists the value of each signal at each sampling.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

336

By default, when any new processes are started they are added to the monitor.
Note, however, that the buffer is reset when new signals are added, so you lose
the history of what you had been monitoring. You can avoid this by, for
example, monitoring only your own processes with appropriate command
line options as described in Controlling the RKM Monitor Using VxSim, p.333.

For more information on the use of StethoScope, see your StethoScope
documentation.

24.10 Run/Debug Preferences

For information about how to set debug and run control preferences, open the
Debug view and press the help key for your host.

337

 25
 Troubleshooting

25.1 Introduction 337

25.2 Startup Problems 338

25.3 General Problems 341

25.4 Error Messages 343

25.5 Troubleshooting VxWorks Configuration Problems 355

25.6 Error Log View 358

25.7 Error Logs Generated by Workbench 358

25.8 Technical Support 365

25.1 Introduction

This chapter displays some of the errors or problems that may occur at different
points in the development process, and what steps you can take to correct them. It
also provides information about the log files that Workbench can collect, and how
you can create a ZIP file of those logs to send to Wind River support.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

338

25.2 Startup Problems

This section discusses some of the problems that might cause Workbench to have
trouble starting.

Workspace Metadata is Corrupted

If Workbench crashes, some of your settings could get corrupted, preventing
Workbench from restarting properly.

1. To test if your workspace is the source of the problem, start Workbench,
specifying a different workspace name.

On Windows

Select Start > Programs > Wind River > Wind River Workbench 2.x > Wind
River Workbench 2.x, then when Workbench asks you to choose a workspace,
enter a new name (workspace2 or whatever you prefer).

Or, if the Workbench startup process does not get all the way to the Workspace
Launcher dialog, or does not start at all, start it from a terminal window:

> installDir\workbench-2.x\wrwb\2.x\x86-win32\bin\wrwb.exe -data newWorkspace

On Linux or Solaris

Start Workbench from a terminal window, specifying a new workspace name:

> ./startWorkbench.sh -data newWorkspace

2. If Workbench starts successfully with a new workspace, exit Workbench, then
delete the .metadata directory in your original Workbench installation
(installDir/workspace/.metadata).

3. Restart Workbench using your original workspace. The .metadata directory
will be recreated and should work correctly.

4. Because the .metadata directory contains project information, that information
will be lost when you delete the directory.

To recreate your project settings, reimport your projects into Workbench
(File > Import > Existing Project into Workspace). For more information
about importing projects, open the Import File dialog and press the help key
for your host.

25 Troubleshooting
25.2 Startup Problems

339

25

.workbench-2.x Directory is Corrupted

1. To test if your %USERPROFILE%/.workbench-2.x directory is the source of
the problem, rename it to a different name, then restart Workbench.

2. If Workbench starts successfully, exit Workbench, then delete the old version
of your %USERPROFILE%/.workbench-2.x directory (the one you renamed).

3. Restart Workbench. The %USERPROFILE%/.workbench-2.x will be recreated
and should work correctly.

4. Because the .workbench-2.x directory contains Eclipse configuration
information, any information about manually configured Eclipse extensions
or plug-ins will be lost when you delete the directory.

To make them available again within Workbench, you must re-register them
(Help > Software Updates > Manage Configuration). For more information
about registering plug-ins, see Adding Plug-in Functionality to Workbench, p.372.

Registry Unreachable (Windows)

When Workbench starts and it does not detect a default Wind River registry, it
launches one. After you quit Workbench, the registry is kept running since it is
needed by all Wind River tools. You do not need to ever kill the registry.

If you do stop it, however, it stores its internal database in the file
installDir/.wind/wtxregd.hostname.

If this file later becomes unwritable, the registry cannot start, and Workbench will
display an error.

NOTE: Make sure you rename the %USERPROFILE%/.workbench-2.x
directory (for example, on Windows XP it could be C:\Documents and
Settings\username\.workbench-2.x).

Do not rename the installDir/workbench-2.x directory.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

340

This error may also occur if you install Workbench to a directory to which you do
not have write access, such as installing Workbench as an administrator and then
trying to run it as yourself.

Workspace Cannot be Locked (Linux and Solaris)

If you start Workbench and select a workspace, you may see a Workspace Cannot
be Locked error.

There are three possible causes for this error:

1. Another user has opened the same workspace. A workspace can only be used
by one user at a time.

2. You installed Workbench on a file system that does not support locking.

Use the following command at a terminal prompt to start Workbench so that
it creates your workspace on a file system which does allow locking, such as a
directory on a local disk:

./startWorkbench.sh -configuration directory that allows locking

For example:

25 Troubleshooting
25.3 General Problems

341

25

./startWorkbench.sh -configuration /usr/local/yourName

3. On some window managers (e.g. gnome) you can close the window without
closing the program itself and deleting all running processes. This results in
running processes maintaining a lock on special files in the workspace that
mark a workspace as open.

To solve the problem, kill all Workbench and Java processes that have open file
handles in your workspace directory.

25.2.1 Pango Error on Linux

If the file pango.modules is not world readable for some reason, Workbench will
not start and you may see an error in a terminal window similar to

** (<unknown>:21465): WARNING **: No builtin or dynamically loaded modules
were found. Pango will not work correctly. This probably means there was an
error in the creation of:

'/etc/pango/pango.modules'
You may be able to recreate this file by running pango-querymodules.

Changing the file’s permissions to 644 will cause Workbench to launch properly.

25.3 General Problems

This section describes problems that are not associated with any particular
Workbench component.

25.3.1 Java Development Tools (JDT) Dependency

Some third party plug-ins are dependent on JDT. If a plug-in you are interested in
requires JDT, you should download it from the official Eclipse Web site:

http://download.eclipse.org/eclipse/downloads/drops/R-3.0.1-200409161125/ecli
pse-JDT-3.0.1.zip

A list of official mirror sites is here:

http://www.eclipse.org/downloads

http://www.eclipse.org/downloads
http://download.eclipse.org/eclipse/downloads/drops/R-3.0.1-200409161125/eclipse-JDT-3.0.1.zip

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

342

25.3.2 Help System Does Not Display on Solaris or Linux

Eclipse comes preconfigured to use Mozilla on Solaris and Linux, and it expects it
to be in your path. If Mozilla is not installed, or is not in your path, you must set
the correct path to the browser or Workbench will not display help or other
documentation.

To manually set the browser path in Workbench:

1. Select Window > Preferences > Help.

2. Click Custom Browser (user defined program), then in the
Custom Browser command field type or browse to your browser launch
program. Click OK.

■ On Solaris, a sample Netscape browser launch command is
"/usr/dt/bin/netscape" %1, though you should enter the command line
that is appropriate for your browser.

■ On Linux, sample Mozilla browser launch commands are
“/usr/bin/mozilla” %1 and kfmclient openURL %1, though you should
enter the command line that is appropriate for your browser.

25.3.3 Help System Does Not Display on Windows

The help system can sometimes fail to display help or other documentation due to
a problem in McAfee VirusScan 8.0.0i (and possibly other virus scanners as well).

For McAfee VirusScan 8.0.0i, the problem is known to be resolved with patch10
which can be obtained from Network Associates. As a workaround, the problem
can be avoided by making sure that McAfee on-access-scan is turned on and
allowed to scan the TEMP directory as well as *.jar files.

More details regarding this issue have been collected by Eclipse Bugzilla #87371 at
https://bugs.eclipse.org/bugs/show_bug.cgi?id=87371.

25.3.4 Removing Unwanted Target Connections

If you have trouble deleting a target connection session for any reason, use wtxtcl.

1. Start wtxtcl from a terminal window.

% wtxtcl

https://bugs.eclipse.org/bugs/show_bug.cgi?id=87371

25 Troubleshooting
25.4 Error Messages

343

25

2. List all entries in the registry.

wtxtcl> wtxInfo

3. Unregister the offending entry or entries (the full entry name must be used).

wtxtcl> wtxUnregister tgt_localhost@manebogad

25.4 Error Messages

Some errors display an error dialog directly on the screen, while others that
occurred during background processing only display this icon in the lower right
corner of Workbench window.

Hovering your mouse over the icon displays a pop-up with a synopsis of the error.
Later, if you closed the error dialog but want to see the entire error message again,
double-click the icon to display the error dialog or look in the Eclipse Log, p.359.

This section explains error messages that appear in each Workbench component.

25.4.1 Project System Errors

For general information about the Project System, see 4. Projects Overview.

Project Already Exists

If you deleted a project from the Project Navigator but chose not to delete the
project contents from your workspace, then you try to create a new project with the
same name as the old project, you will see this error:

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

344

If you click Yes, your old project contents will be overwritten with the new project.
If you want to recreate the old project in Wind River Workbench, click No, then
right-click in the Project Navigator, select Import, then select
Existing Project into Workspace.

Type the name of your old project or browse to the old project directory in your
workspace, click OK, then click Finish. Your old project will appear in the Project
Navigator.

Cannot Create Project Files in Read-only Location

When Workbench creates a project, it creates a .wrproject file and other metadata
files it needs to track settings, preferences, and other project-specific information.
So if your source files are in a read-only location, Workbench cannot create your
project there.

To work around this problem, you must create a new project in your workspace,
link in your source files using one of the following options:

Option 1—Use the Eclipse linked resource mechanism.

1. Create a project in your workspace (user-defined or flexible managed build1)
by selecting File > New > project type.

2. Type in a name for your project, select Create project in workspace, then click
Next.

3. Click Next to accept the default settings in the next dialogs, then click Finish
to create your project.

1. Project types that offer a flexible managed build option are VxWorks Downloadable Kernel
Module, Native Application, VxWorks Real-time Process, VxWorks Shared Library, and
Standalone Application projects.

25 Troubleshooting
25.4 Error Messages

345

25

4. In the Project Navigator, right-click your new project and select New > Folder.
The Folder dialog appears.

5. Type in a name for your folder, then click Advanced and select the
Link to folder in the file system checkbox.

6. Type the path or click Browse and navigate to your source root directory, then
click OK to create the new folder.

7. Click the plus next to the folder to open it, and you will see the source files
from your read-only source directory. Eclipse calls items incorporated into
projects in this way linked resources.

Option 2—Use Symbolic Links (Linux/Solaris only)

1. Create a new project in your workspace (any project type supports this).

2. In a command shell, create a symbolic link to the read-only directory in the
project root directory.

3. In the Project Navigator, press F5 to refresh the display. The directory and all
sources in it appear.

25.4.2 Build System Errors

For general information about the Build System, see 16. Building Projects.

Building Projects While Connected to a Target

If you try to build a project while you have a target connection active in the Target
Manager, you may see an error. This happens when any of the files that need to be
built contain symbol information, and therefore have been locked by the debugger.

You can continue your build by clicking OK, but be advised that you will need to
disconnect your target and restart the build if you see an Build Console error
message similar to dld: Can’t create file XXX: Permission denied.

To avoid this problem, Workbench loads files up to a certain size completely into
memory so no file lock is needed. To specify the largest symbol file that can be
loaded into memory, select Window > Preferences > Target Manager > Debug
Server Settings > Symbol File Handling Settings and specify a file size up to 60M.

NOTE: This mechanism cannot be used for standard managed-build projects.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

346

Workflow for Cases Where You Need to Continually Rebuild Objects in Use by Your Target

1. Create a launch configuration for your debugging task. When you need to
disconnect your target in order to free your images for the build process, the
launch configuration allows you to automatically connect, build, download,
and run your process with a single click.

You can even specify that your project should be rebuilt before it is launched
by selecting Window > Preferences > Run/Debug > Launching, and then
selecting Build (if necessary) before launching. For more information about
launch configurations, see 22. Launching Programs.

■ When you work with processes or RTPs, make sure that your process is
terminated before you rebuild or relaunch. You can then safely ignore the
warning (and check the Do not show this dialog again box).

■ When you work with Downloadable Kernel Modules or user-built kernel
images, just let the build proceed. If the Link error message appears, either
disconnect your target or unload all modules, then rebuild or relaunch.

Workflow for Using On-Chip Debugging to Debug Standalone Modules Loaded on Your Target

1. Create a Reset & Download-type launch configuration for your application,
and enable the Build before launch option (by selecting Window >
Preferences > Run/Debug > Launching > Build (if required) before
launching).

2. Run the launch configuration to debug your code. Make any changes to the
source files and save them. Note that saving before unloading the symbols
allows the debugger to track your breakpoints.

3. Before relaunching or rebuilding, unload the modules from the target by
selecting them in the Target Manager and pressing the Delete key (you can
multi-select if there are multiple modules).

4. Press the Debug button to relaunch your application. It will automatically
rebuild, redownload, reset, and attach the debugger.

Problems Building Workbench 2.x Projects Imported Into Workbench 2.6

If you have trouble building projects that you imported from a previous version of
Workbench, check if the .wrproject file contains an entry for platform. If not, the
project is not compatible and has to be patched to work with the newest version of
Workbench.

25 Troubleshooting
25.4 Error Messages

347

25

To patch the .wrproject file:

1. Open the file with the Workbench text editor by right-clicking the file in the
Project Navigator, then selecting Open With > Text Editor.

If the .wrproject file is not visible in the Project Navigator, click the downward
arrow on the right side of the Project Navigator toolbar and select Filters to
open the Project Navigator Filters dialog.

Select the checkbox next to .wr*, then click OK. The .wrproject file should now
appear in the Project Navigator.

2. Locate the line at the beginning of the file similar to:

<properties root="1" type="RealTimeProcessProject"/>

3. Add platform="projectplatform" to the end of the line, with projectplatform
replaced by one of VxWorks, Linux, or Standalone, depending on the
platform to which the project type belongs.

4. The result should appear similar to the following:

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

348

5. Save and close the .wrproject file. Your project should now build properly.

Build All Command Builds Projects Whose Resources have not Changed

Workbench may enter a state where selecting Project > Build All builds projects
whose resources have not changed since the last build.

This happens only if Auto-Build (Project > Build Automatically) was previously
enabled. If you switch this feature off, you must do a manual clean for all projects
(Project > Clean) in order to re-enable building for previously built projects.

25.4.3 Target Manager Errors

For general information about the Target Manager, see 19. Connecting to Targets.

Troubleshooting Connecting to a Target

If you see the following error:

25 Troubleshooting
25.4 Error Messages

349

25

Or if you have other trouble connecting to your target, try these steps:

1. Check that the target is switched on and the network connection is active. In a
terminal window on the host, type:

ping n.n.n.n

where n.n.n.n is the IP address of your target.

2. Verify the target Name/IP address in the Edit the Target Connection dialog
(right-click the target connection in the Target Manager then select Properties.)

3. Choose the actual target CPU type from the drop-down list if the CPU type in
the Edit the Target Connection dialog is set to default from target.

4. Verify that a target server is running. If it is not:

a. Open the Error Log view, then find and copy the message containing the
command line used to launch the target server.

b. Paste the target server command line into a terminal window, then hit
ENTER.

c. Check to see if the target server is now running. If not, check the Error Log
view for any error messages.

5. Check if the dfwserver is running (on Linux and Solaris, use the ps command
from a terminal window; on Windows, check the Windows Task Manager). If
multiple dfwservers are running, kill them all, then try to reconnect.

6. When starting the VxWorks simulator on Solaris, the path environment
variable must include /usr/openwin/bin so that it can find xterm. If xterm is
not in the path, the simulator connection will fail.

7. Check that the WDB connection to the target is fully operational by
right-clicking a target in the Target Manager and selecting
Target Tools > Run WTX Connection Test. This tool will verify that the
communication link is correct. If there are errors, you can use the WTX and
WDB logs to better track down what is wrong with the target.

Exception on Attach Errors

If you try to run a task or launch an RTP and the Target Manager is unable to
comply, it will display an Exception on Attach error containing useful
information.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

350

Build errors can lead to a problem launching your task or process; if one of the
following suggestions does not solve the problem, try launching one of the
pre-built example projects delivered with Workbench.

If the host shell was running when you tried to launch your task or process, try
closing the host shell and launching again.

Error Launching a VxWorks Real-time Process on Linux

If you get an error when launching a VxWorks RTP from a Red Hat Workstation,
update 3 host system, try these steps:

1. Delete boothost: from the beginning of the Exec Path on Target field of the
Run Real-time Process dialog.

2. Add a new object path mapping to the target server connection properties that
does not have boothost: in the host path.

Error When Running a Task Without Downloading First

You will see the following error if you try to run a kernel task without first
downloading it to your target:

Processes can be run directly from the Project Navigator, but kernel tasks must be
downloaded before running. Right-click the output file, select Download, fill in
the Download dialog, then click OK.

If you see this error and you did download the file, open a host shell for your
connection, and try to run the task from the host shell. Type:

lkup entrypoint

to see if your entry point is there.

25 Troubleshooting
25.4 Error Messages

351

25

Downloading an Output File Built with the Wrong Build Spec

If you built a project with a build spec for one target, then try to download the
output file to a different target (for example, you build the project for the simulator,
but now you want to run it on a hardware target), you will see this error:

To select the correct build spec, right-click the output file in the Project Navigator,
select Set Active Build Spec, select the appropriate build spec from the dialog,
then rebuild your project.

Your project should now download properly.

Error if Exec Path on Target is Incorrect

If the Exec Path on Target field of the Run Real-time Processes dialog does not
contain the correct target-side path to the executable file (if, for example, it contains
the equivalent host-side path instead) you will see this error:

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

352

1. If the target-side path looks correct but you still get this error, check the
following:

a. Recheck the path you gave.
Even if you used the Browse button to locate the file, it will be located in
the host file system. The Object Path Mapping that is defined for your
target connection will translate it to a path in the target file system, which
is then visible in the Exec Path edit field. If your Object Path Mapping is
wrong, the Exec Path will be wrong, so it is important to check.

Troubleshooting Running a Process

If you have trouble running your process from the Run Process or
Run Real-time Process dialog, try these steps:

1. If the error Cannot create context appears, verify that the Exec Path on Target
is a path that is actually visible on the target (and doesn’t contain the
equivalent host-side path instead).

a. Right-click the process executable in the Project Navigator or right-click
Processes or Real-time Processes in the Target Manager and select
Run Real-time Process.

b. Copy the exec path and paste it into the Output View > Target
Console Tab (at the bottom of the view). Verify that the program runs
directly on the target.

2. If the program runs but symbols are not found, manually load the symbols by
right-clicking the process and selecting Load Symbols.

3. Check your Object Path Mappings to be sure that target paths are mapped to
the correct host paths. See 20.2.3 Object Path Mappings Page, p.270 for details on
setting up your Object Path Mappings.

a. Open a host shell and type:
ls execpath

If you have a target shell, type the same command.

b. In the host shell, type:
devs

to see if the prefix of the Exec Path (for example, host:) is correct.

4. If the Exec Path is correct, try increasing the back-end timeout value of your
target server connection (see Advanced Target Server Options, p.268 for details).

25 Troubleshooting
25.4 Error Messages

353

25

5. From a target shell or Linux console, try to launch the RTP or process.

6. Verify that the vxWorks node in the Target Manager view has a small S added
to the icon, indicating that symbols have been loaded for the Kernel.

a. If not, verify that the last line of your Object Path Mappings table
displays a target path of <any> corresponding to a host path of
<leave path unchanged>.

25.4.4 Launch Configuration Errors

If a launch configuration is not working properly, delete it by clicking Delete
below the Debug dialog Configurations list.

If you cannot delete the launch configuration using the Delete button, navigate to
installDir/workspace/.metadata/.plugins/org.eclipse.debug.core/.launches and
delete the .launch file with the exact name of the problematic launch configuration

.

Troubleshooting Launch Configurations

If you click the Debug icon (or click the Debug button from the
Launch Configuration dialog) and get a “Cannot create context” error, check the
Exec Path on the Main tab of the Debug dialog to be sure it is correct. Also check
your Object Path Mappings (see 20.2.3 Object Path Mappings Page, p.270 for
information about Object Path Mappings).

If you still get the error, check to be sure that the process you are trying to run is a
Real-time Process, and not a Downloadable Kernel Module or some other type of
executable.

For general information about launch configurations, see 22. Launching Programs.

! WARNING: Do not delete any of the com.windriver.ide.*.launch files.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

354

25.4.5 Debugger Errors

Shared Library Problems

If you are having trouble working with shared libraries, try these steps:

1. If you are trying to run an executable and shared libraries located on your host
machine's disk, make sure you can see the host machine's disk and the location
of the shared libraries from the target.

Use a target shell, or the @ls command from a host shell, to check this.

2. Set SHAREDLIB_VERSION to 1 in order to generate the proper versioned
shared object.

3. Make sure that a copy of libc.so.1 is located in a place where the RTP has access
to it. By default it should be located with the executable files, but you may
locate it elsewhere as long as you use the compiler's -rpath option or the
environment variable LD_LIBRARY_PATH.

25.4.6 Static Analysis Errors

If at any point Workbench is unable to open the cross reference database, you will
see this error:

There are many reasons the cross reference database may be inaccessible,
including:

■ The database was not closed properly at the end of the last Workbench session
running within the same workspace. This happens if the process running
Workbench crashed or was killed.

■ Various problems with the file system, including wrong permissions, a
network drive that is unavailable, or a disk that is full.

25 Troubleshooting
25.5 Troubleshooting VxWorks Configuration Problems

355

25

You have several choices for how to respond to this error dialog:

■ Retry—the same operation is performed again, possibly with the same failure
again.

■ Recover—the database is opened and a repair operation is attempted. This
may take some time but you may recover your cross reference data.

■ Clear Database—the database is deleted and a new one is created. All your
cross reference data is lost and your workspace will be reparsed the next time
you open the call tree.

■ Close—the database is closed. No cross reference data is available, nor will it
be generated. At the beginning of the next Workbench session, an attempt to
open the database will be made again.

25.5 Troubleshooting VxWorks Configuration Problems

If you encountered problems booting or exercising VxWorks, there are many
possible causes. This section discusses the most common sources of error. Please
read 25.5.1 What to Check, p.355 before contacting Wind River customer support.
Often, you can locate the problem just by re-checking the installation steps, your
hardware configuration, and so forth.

25.5.1 What to Check

Most often, a problem with running VxWorks can be traced to configuration errors
in hardware or software. Consult the following checklist to locate a problem.

Hardware Configuration

■ If you are using an emulator

See the Wind River ICE for Wind River Workbench Hardware Reference or the Wind
River Probe for Wind River Workbench Hardware Reference for information on
troubleshooting those connections.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

356

■ Limit the number of variables

Start with a minimal configuration of a single target.

■ Check that the RS-232 cables are correctly constructed

In most cases, the documentation accompanying your target system describes
its cabling requirements. A common problem—make sure your serial cable is
a NULL modem cable, if that is what your target requires.

■ Check the boot ROM(s) for correct insertion

If the target seems completely dead when applying power (some have front
panel LEDs) or shows some error condition (for example, red lights), the boot
ROMs may be inserted incorrectly.

■ Press the RESET button if required

Some system controller boards do not reset completely on power-on; you must
reset them manually. Consult the target documentation if necessary.

■ Make sure all boards are jumpered properly

Refer to the target information reference for your BSP and the target
documentation to determine the correct dip switch and jumper settings for
your target and Ethernet boards.

Booting Problems

■ Check the Ethernet transceiver site

For example, connect a known working system to the Ethernet cable and check
whether the network functions.

■ Verify IP addresses

An IP address consists of a network number and a host number. There are
several different classes of Internet addresses that assign different parts of the
32-bit Internet address to these two parts, but in all cases, the network number
is given in the most significant bits and the host number is given in the least

NOTE: If you need to use a gender converter to connect your serial cable, it is
most likely not the right kind of cable. NULL modem cables tend to have same
gender connectors on each end, such as both female or both male. Straight
through cables tend to have one male and one female connector. Changing the
gender of a cable rarely has the desired results.

25 Troubleshooting
25.5 Troubleshooting VxWorks Configuration Problems

357

25

significant bits. The simple configuration described in 3.4 Booting VxWorks,
p.50 assumes that the host and target are on the same network—they have the
same network number. If the target Internet address is not on the same
network as the host, the VxWorks boot program displays the following
message:

Error loading file: errno = 0x33.

See the errnoLib reference entry for a discussion of VxWorks error status
values.

■ Verify FTP server permissions

Check the FTP server configuration. See Configuring FTP on Windows, p.41 for
more information on configuring the FTP server if you are using WFTPD
(shipped by Wind River). Otherwise, consult your system documentation on
the FTP Server shipped with it.

■ Helpful troubleshooting tools

When tracking down configuration problems, ping, arp -a, and netstat -r are
useful tools. For more information, see D. Glossary.

Target Server Problems

■ Check back end serial port

If you use a WDB Serial connection to the target, make sure you have
connected the serial cable to a port on the target system that matches your
target-agent configuration. The agent uses serial channel 1 by default, which is
different from the channel used by VxWorks as a default console (channel 0).
Your target’s ports may be numbered starting at one; in that situation,
VxWorks channel one corresponds to the port labeled “serial 2.”

■ Verify path to VxWorks image

The target server requires a host-resident image of the VxWorks run-time
system. By default, it obtains a path for this image from the target agent (as
recorded in the target boot parameters). In some cases (for example, if the
target boots from a local device), this default is not useful.

In that situation, create a new Target Server Connection definition in the Target
Manager, and use the -c filename option in the Advanced Target Server
Options field to specify the path to a host-resident copy of the VxWorks image.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

358

Check the WFTPD Server Log

The WFTPD server log displays very helpful plain text messages. For information
about how to enable logging FTP activities, see Configuring FTP on Windows, p.41.

25.6 Error Log View

Some errors direct you to the Error Log view, which displays internal errors
thrown by the platform or your code. For more information about the Error Log,
open the view and press the help key for your host.

25.7 Error Logs Generated by Workbench

Workbench has the ability to generate a variety of useful log files. Some Workbench
logs are always enabled, some can be enabled using options within Workbench,
and some must be enabled by adding options to the executable command when
you start Workbench.

This section describes the logs, tells you how to enable them (if necessary), and
how to collect them into a ZIP file you can send to Wind River support
representatives.

25.7.1 Creating a ZIP file of Logs

Once all the logs you are interested in have been enabled, Workbench
automatically collects the information as you work.

To create a ZIP file to send to a Wind River support representative:

1. Select Help > Collect Log Files. The dialog opens.

25 Troubleshooting
25.7 Error Logs Generated by Workbench

359

25

2. Type the full path and filename of the ZIP file you want to create (or browse to
a location and enter a filename) then click Finish. The ZIP file is created in the
specified location, and contains all information collected to that point.

3. To discontinue logging (for those logs that are not always enabled) uncheck the
boxes on the Target Server Options tab, or restart Workbench without the
additional options.

25.7.2 Eclipse Log

The information displayed in the Error Log view is a subset of this log’s contents.

How to Enable Log

This log is always enabled.

What is Logged

■ All uncaught exceptions thrown by Eclipse Java code.

■ Most errors and warnings that display an error dialog in Workbench.

■ Additional warnings and informational messages.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

360

What it Can Help Troubleshoot

■ Unexpected error popups.

■ Bugs in Workbench Java code.

■ Bugs involving inter-component communication.

25.7.3 DFW GDB/MI and Debug Tracing Logs

The DFW logs are a record of all communication and state changes between the
debugger back end (the “debugger framework”, or DFW) and other views within
Workbench, including the Target Manager, debugger views, and OCD views.

How to Enable Log

These logs are always enabled.

To change the maximum debug server log file size, select Window > Preferences
> Target Manager > Debug Server Settings. In the Maximum Debug Server Log
File Size field, change the default size to the size you prefer (or to the size
requested by a Wind River support representative).

Changing this field to 0 disables the collecting of dfwserver.log information.

What is Logged

Internal exceptions in the debugger back end, as well as all commands sent
between Workbench and the debugger back end.

What it Can Help Troubleshoot

Debugger, Target Manager, and debugger back end-related bugs.

25.7.4 Debugger Views GDB/MI Log

This log shows the same information as reported in the DFW GDB/MI and Debug
Tracing Logs, p.360.

How to Enable Log

You must enable this log before you start Workbench. Do this by adding these
parameters to the Workbench executable command:

-vmargs -DDFE.Debug=true

25 Troubleshooting
25.7 Error Logs Generated by Workbench

361

25

What is Logged

Same as DFW GDB/MI and Debug Tracing Logs, p.360, except with Workbench
time-stamps.

What it Can Help Troubleshoot

Debugger and Target Manager-related bugs.

25.7.5 Debugger Views Internal Errors Log

How to Enable Log

You must enable this log before you start Workbench. Do this by adding these
parameters to the Workbench executable command:

-vmargs -DDFE.Debug=true

What is Logged

Exceptions caught by the Debugger views messaging framework.

What it Can Help Troubleshoot

Debugger views bugs.

25.7.6 Debugger Views Broadcast Message Debug Tracing Log

How to Enable Log

You must enable this log before you start Workbench. Do this by adding these
parameters to the Workbench executable command:

-vmargs -DDFE.Debug=true

What is Logged

Debugger views internal broadcast messages.

What it Can Help Troubleshoot

Debugger views bugs.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

362

25.7.7 Target Server Output Log

This log contains the messages printed by the target server while running. These
messages typically indicate errors during various requests sent to it, such as load
operations. Upon startup, if a fatal error occurs (such as a corefile checksum
mismatch) then this error will be printed before the target server exits.

How to Enable Log

■ Enable this log from the Target Manager by right-clicking the target
connection, selecting Properties, selecting the Target Server Options tab, then
clicking Edit.

Select the Logging tab, then check the box next to Enable output logging and
provide a filename and maximum file size for the log. Click OK.

■ Enable this log from the command line using the -l path/filename and -lm
maximumFileSize options to the target server executable. For more information
about target server commands, see Wind
River Documentation > References > Host API and Command References
> Wind River Host Tools API Reference > tgtsvr.

What is Logged

■ Fatal errors on startup, such as library mismatches and errors during exchange
with the registry.

■ Standard errors, such as load failure and RPC timeout.

What it Can Help Troubleshoot

■ Debugger back end

■ Target Server

■ Target Agent

25.7.8 Target Server Back End Log

This log records all requests sent to the WDB agent.

25 Troubleshooting
25.7 Error Logs Generated by Workbench

363

25

How to Enable Log

■ Enable this log from the Target Manager by right-clicking the target
connection, selecting Properties, selecting the Target Server Options tab, then
clicking Edit.

Select the Logging tab, then check the box next to Enable backend logging
and provide a filename and maximum file size for the log. Click OK.

■ Enable this log from the command line using the -Bd path/filename and -Bm
maximumFileSize options to the target server executable. For more information
about target server commands, see Wind
River Documentation > References > Host API and Command References
> Wind River Host Tools API Reference > tgtsvr.

What is Logged

Each WDB request sent to the agent. For more information about WDB services,
see Wind
River Documentation > References > Host API and Command References > Wi
nd River WDB Protocol API Reference.

What it Can Help Troubleshoot

■ Debugger back end

■ Target Server

■ Target Agent

25.7.9 Target Server WTX Log

This log records all requests sent to the target server.

How to Enable Log

■ Enable this log from the Target Manager by right-clicking the target
connection, selecting Properties, selecting the Target Server Options tab, then
clicking Edit.

Select the Logging tab, then check the box next to Enable WTX logging and
provide a filename and maximum file size for the log. Click OK.

■ Enable this log from the command line using the -Wd path/filename and -Wm
maximumFileSize options to the target server executable. For more information
about target server commands, see Wind

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

364

River Documentation > References > Host API and Command References
> Wind River Host Tools API Reference > tgtsvr.

What is Logged

Each WTX request sent to the target server. For more information about WTX
services, see Wind River Documentation > References > Host API and Command
References > WTX C Library Reference > wtxMsg.

What it Can Help Troubleshoot

■ Debugger back end

■ Target Server

■ Target Agent

25.7.10 Target Manager Debug Tracing Log

This log prints useful information about creation and modification of Target
Manager internal structures, as well as inconsistencies or warning conditions in
the subsystems the Target Manager interoperates with.

How to Enable Log

You must enable this log before you start Workbench. Do this by adding these
parameters to the Workbench executable command:

-debug -vmargs -Dcom.windriver.ide.target.DEBUG=1.

What is Logged

Target Manager internal debug errors.

What it Can Help Troubleshoot

Inconsistencies in the debugger back end.

25.7.11 Static Analysis Parser Logs

These logs contain information that can help a Wind River technical support
representative to resolve problems with the source code parsers.

25 Troubleshooting
25.8 Technical Support

365

25

How to Enable Logs

Enable these logs by right-clicking a resource or resources in the Project Navigator
or the Editor and selecting Static Analysis > Generate Parser Logs. From the list
of logs that appears, select the logs that were requested by a technical support
representative (the jobs log and the performance log are selected by default). Click
OK.

What is Logged

■ The jobs log describes what the parsers were instructed to do.

■ The performance log lists the source files the parsers spent the most time with.

■ The PI4 interface and symbols logs contains the result of parsing.

■ The debug log shows how the cpp-parser uses internal caching strategies.

■ The tokens log lists every token processed by the cpp-parser.

What it Can Help Troubleshoot

Problems related to excessive parsing time. The performance log can help pinpoint
if there are single files that require more parsing time, or if there are simply many
resources to parse.

In a case where results of the analysis are different from what you expect but Wind
River support cannot reproduce the problem, the PI4 and symbol logs are crucial
in helping support representatives see the raw data the parsers are generating.

The debug and tokens logs are needed very seldom, but are useful to Wind River
developers working on the parsers themselves.

25.8 Technical Support

If you have questions or problems with Workbench or with VxWorks after
completing the above troubleshooting section, or if you think you have found an
error in the software, please see the Wind River Workbench Release Notes for your
platform for any additional information. Contact information for the Wind River
Technical Support organization is also listed in the release notes. Your comments
and suggestions are welcome.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

366

367

PAR T VI

Using Workbench with Other
Tools

26 Integrating Plug-ins .. 369

27 Using Workbench in an Eclipse Environment . 375

28 Using Workbench with Version Control 381

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

368

369

 26
 Integrating Plug-ins

26.1 Introduction 369

26.2 Finding New Plug-ins 370

26.3 Incorporating New Plug-ins into Workbench 370

26.4 Disabling Plug-in Functionality 373

26.5 Managing Multiple Plug-in Configurations 373

26.1 Introduction

Because Wind River Workbench is based on Eclipse, you can incorporate new
modules into Workbench without having to recompile or reinstall it. These new
modules are called plug-ins, and they can deliver new functionality and tools to
your copy of Wind River Workbench.

Many developers enjoy creating new plug-ins and sharing their creations with
other Eclipse users, so you will find many Web sites with interesting tools and
programs available for you to download and incorporate into your Workbench
installation.

Some plug-ins are dependent on Java Development Tools (JDT), which is
automatically installed when you install Workbench (the install option is called
Wind River Java Development Tools).

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

370

26.2 Finding New Plug-ins

In addition to the Eclipse Web site, http://www.eclipse.org, many other Web sites
offer a wide variety of Eclipse plug-ins. Here are a few:

http://www.eclipse-plugins.info/eclipse/plugins.jsp

http://www.eclipseplugincentral.com/

http://eclipse-plugins.2y.net/eclipse/

http://www.sourceforge.net/

26.3 Incorporating New Plug-ins into Workbench

Many developers who download plug-ins prefer to create a new directory for each
one, rather than unzipping the files directly into their Workbench installation
directory. There are many advantages to this approach:

■ The default Workbench installation does not change.

■ You do not lose any of your plug-ins if you update or reinstall Workbench.

■ Plug-ins do not overwrite each other’s files.

■ You know which files to replace when an update to the plug-in is available.

26.3.1 Creating a Plug-in Directory Structure

To make your plug-ins easier to manage, create a directory structure for them
outside your Workbench installation directory.

1. Create a directory to hold your plug-ins. It can have any descriptive name you
want, for example, eclipseplugins.

2. Inside this directory, create a directory for each plug-in you want to install.
These directories can also have any descriptive name you want, for example,
clearcase.

http://www.eclipse.org
http://www.eclipse-plugins.info/eclipse/plugins.jsp
http://www.eclipseplugincentral.com/
http://eclipse-plugins.2y.net/eclipse/
http://www.sourceforge.net/

26 Integrating Plug-ins
26.3 Incorporating New Plug-ins into Workbench

371

26

3. Inside each plug-in directory, create a directory named eclipse. This directory
must be named eclipse, and a separate eclipse directory is required inside each
plug-in directory.

4. Inside each eclipse directory, create an empty file named .eclipseextension.
This file must be named .eclipseextension (with no .txt or any other file
extension), and a separate .eclipseextension file is required inside each eclipse
directory.

5. Extract your plug-in into the eclipse directory. Two directories, called features
and plugins, appear in the directory alongside the .eclipseextension file.

26.3.2 Installing a ClearCase Plug-in

Once you have created a plug-in directory structure and have found a plug-in you
want to use with Workbench, download and install it according to the instructions
provided by the plug-in’s developer (almost every plug-in comes with release
notes containing installation instructions).

This section will show you how to download and install a plug-in on Windows.

Downloading the IBM Rational ClearCase Plug-in

Wind River recommends the IBM Rational ClearCase plug-in.

NOTE: Before continuing, download the plug-in’s .zip or other archive file and
look at its contents. Some plug-ins provide the eclipse directory structure and
the .eclipseextension file for you, others do not.

■ If the destination path for the files begins with eclipse, and you see an
.eclipseextension file in the list, you may skip the rest of this section and
extract the plug-in’s files into the directory you created in step 2.

■ If the destination path begins with plugins and features, then you must
complete the rest of the steps in this section.

NOTE: For any plug-in to work properly, its features and plugins directories
as well as an empty file called .eclipseextension must be located inside a
directory called eclipse.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

372

1. Follow steps 1 and 2 in 26.3.1 Creating a Plug-in Directory Structure, p.370 (the
IBM ClearCase plug-in creates the eclipse directory and the .eclipseextension
file for you.)

For the purposes of this example, name the top-level directory eclipseplugins,
and name the plug-in directory clearcaseIBM.

2. Navigate to
http://www-128.ibm.com/developerworks/rational/library/1376.html and
click the Plug-ins link under ClearCase. The Rational ClearCase Plug-ins page
opens.

3. Click the Download link to the right of the appropriate version of the package
file. For this example, select IBM Rational ClearCase SCM adapter for Eclipse
3.1: Windows (this file works for Eclipse 3.2 as well).

4. Extract the .zip file to your /eclipseplugins/clearcaseIBM directory. The
eclipse directory is created for you, and inside are two directories, called
features and plugins, alongside the .eclipseextension file.

Adding Plug-in Functionality to Workbench

1. Before starting Workbench, make sure that /usr/atria/bin (where the ClearCase
tools are installed) is in your path.

2. Start Workbench, then select Help > Software Updates > Manage
Configuration. The Product Configuration dialog appears.

3. Select Add an Extension Location in the Wind River Workbench pane.

4. Navigate to your eclipseplugins/plug-in/eclipse directory. Click OK.

5. Workbench will ask if you want to restart. To properly incorporate ClearCase
functionality, click Yes.

Incorporating the IBM Rational Plug-in

1. When Workbench restarts, activate the plug-in by selecting Window >
Customize Perspective.

2. In the Customize Perspective dialog, switch to the Commands tab.

3. Select the ClearCase option in the Available command groups column, then
click OK. A new ClearCase menu and icons appear on the main Workbench
toolbar.

http://www-128.ibm.com/developerworks/rational/library/1376.html

26 Integrating Plug-ins
26.4 Disabling Plug-in Functionality

373

26

4. From the ClearCase menu, select Connect to Rational ClearCase to activate
ClearCase functionality.

To configure the ClearCase plug-in, select Window > Preferences > Team >
ClearCase SCM Adapter.

For more information about using the ClearCase plug-in, see Help > Help
Contents > Rational ClearCase SCM Adapter.

For more information about ClearCase functionality, refer to your ClearCase
product documentation.

26.4 Disabling Plug-in Functionality

You can disable plug-in functionality without uninstalling the downloaded files.
This gives you the opportunity to re-enable them at a later time if you want.

1. To disable a plug-in, select Help > Software Updates > Manage
Configuration. The Product Configuration dialog appears.

2. In the left column, open the folder of the plug-in you want to uninstall, select
the plug-in itself, then click Disable.

3. Workbench will ask if you want to restart. To properly disable the plug-in’s
functionality, click Yes.

26.5 Managing Multiple Plug-in Configurations

If you have many plug-ins installed, you may find it useful to create different
configurations that include or exclude specific plug-ins.

When you make a plug-in available to Workbench using the process shown in
Adding Plug-in Functionality to Workbench, p.372, its extension location is stored in
the Eclipse configuration area.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

374

When starting Workbench, you can specify which configuration you want to start
by using the -configuration path option, where path represents your Eclipse
configuration directory.

On Windows:

From a shell, type:

% cd installdir\workbench-2.x\wrwb\platform\eclipse\x86-win32\bin
% .\wrwb.exe -configuration path

On Linux and Solaris:

Use the option as a parameter to the startWorkbench.sh script:

% ./startWorkbench.sh -configuration path &

For more information about using -configuration and other Eclipse startup
parameters, see Help > Help Contents > Wind River Partners Documentation >
Eclipse Workbench User Guide > Tasks > Running Eclipse.

375

 27
 Using Workbench in an

Eclipse Environment

27.1 Introduction 375

27.2 Recommended Software Versions and Limitations 375

27.3 Setting Up Workbench 376

27.4 Using CDT and Workbench in an Eclipse Environment 377

27.1 Introduction

It is possible to install Workbench in a standard Eclipse environment, though some
fixes and improvements that Wind River has made to Workbench will not be
available.

27.2 Recommended Software Versions and Limitations

Java Runtime Version

Wind River tests, supports, and recommends using the JRE 1.5.0_08 for Workbench
plug-ins.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

376

Wind River adds a package to that JRE version, and not having that package will
make the Terminal view inoperable.

Eclipse Version

Workbench 2.6 is based on Eclipse 3.2. Wind River patches Eclipse to fix some
Eclipse debugger bugs. These fixes will be lost when using a standard Eclipse
environment.

See the getting started for your platform for supported and recommended host
requirements for Workbench 2.6.

Defaults and Branding

Eclipse uses different default preferences from those set by Workbench. The dialog
described in 27.3 Setting Up Workbench, p.376 allows you to select whether to use
Workbench preferences or existing Eclipse preferences.

In a standard Eclipse environment, the Eclipse branding (splash screen, welcome
screen, etc.) is used instead of the Wind River branding.

27.3 Setting Up Workbench

This setup requires a complete Eclipse and Workbench installation. Follow the
respective installation instructions for each product.

1. From within Workbench, select Help > Register into Eclipse. The Register into
Eclipse dialog appears.

2. In the Directory field, type in or Browse to your Eclipse 3.2 directory.

3. In the Registration Options section, select Use Wind River default
preferences, or leave it unselected to maintain existing Eclipse preferences.

If you decide to use Wind River default preferences, some changes you will
notice are that autobuild is disabled, and the Workbench Application
Development perspective and help home become the defaults.

27 Using Workbench in an Eclipse Environment
27.4 Using CDT and Workbench in an Eclipse Environment

377

27

4. If you decided to maintain existing Eclipse preferences you can still use the
much faster Wind River (index based) search engine by leaving Use Wind
River search engine selected. To use the Eclipse default search engine,
unselect it.

5. If you want to track the installation process, leave Log installation process
selected (click Browse to change the path where the file should be created).
Uncheck it if you do not want Workbench to create a log file.

6. When you are done, click Finish. Workbench will be available the next time
you launch Eclipse. No special steps are necessary to launch Eclipse.

27.4 Using CDT and Workbench in an Eclipse Environment

The following tips will help you understand how to use Eclipse C/C++
Development Tooling (CDT) and Workbench together in the same Eclipse
environment.

27.4.1 Workflow in the Project Navigator

Some menus and actions are slightly different when using CDT and Workbench
together.

Application Development Perspective (Workbench)

CDT projects appear in this perspective along with Workbench projects.

NOTE: Any errors discovered during installation appear in the Error Log view.

NOTE: When starting Eclipse after registering Workbench, you will see three errors
in the Error Log.

These errors are not a problem. They appear because Workbench ships some CDT
plug-ins that are already on your system, and Eclipse is reporting that the new
ones will not be installed over the existing ones.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

378

Building CDT Projects

The context menu of the Project Navigator contains entries for Build Project and
Rebuild Project, but the Rebuild Project entry executes a normal build for CDT
projects. The Clean Project entry is missing for CDT projects.

Running Native Applications

The Run Native Application menu is enabled for CDT projects. When executed, it
creates a Workbench Native Application launch with correct parameters. Because
Workbench Native Application launches do not support debugging, to debug your
application you must create a CDT Local C/C++ Application launch from the
Run > Run As menu.

Selecting Projects to Build

When selecting multiple projects (including Workbench and CDT projects) and
executing any build action, the build action is only executed on Workbench
projects.

Displaying File and Editor Associations

The Workbench Project Navigator displays icons for the default editor of a file, if
file associations have been defined. If CDT is the default editor, the corresponding
icons will also show up in the Application Development perspective.

C/C++ Perspective (CDT)

Static Analysis

Static analysis is available from the context menu of the Project Navigator.

Building Workbench Projects

CDT Build Project and Clean Project actions are enabled for Workbench projects,
and they execute the appropriate build commands correctly.

Working with Workbench Binary Targets

There are no actions to directly run, debug or download a Workbench project’s
binary target in this perspective.

27 Using Workbench in an Eclipse Environment
27.4 Using CDT and Workbench in an Eclipse Environment

379

27

27.4.2 Workflow in the Build Console

Application Development Perspective (Workbench)

When adding a CDT project as a sub-project (project reference) to a Workbench
project, the Clear Build Console flag is ignored when executing a build on this
project.

C/C++ Perspective (CDT)

Executing a build on a Workbench project from this perspective correctly opens the
Workbench Build Console.

General

When navigating to errors from the Workbench Build Console or the Problems
view, the file containing the error opens in the assigned editor.

27.4.3 Workflow in the Editor

Opening Files in an Editor

The editor that should be used for files cannot be determined. It depends on the
settings defined in the appropriate plugin.xml files, and on the order in which the
Workbench and CDT plug-ins are loaded.

Only one default editor can be associated with each file type, and it is the same for
both perspectives. Files can be opened with the Open With menu, allowing you to
select the editor. When executed, that editor is associated with, and becomes the
default for, this specific file.

NOTE: To assign a default editor for all files with a given signature, you must
define a file association in the preferences by selecting Window > Preferences,
then choosing General > Editors > File Associations.

For example, to add a default editor for all *.c files, click Add and enter *.c. The list
of available editors appears. Select one, then click Default.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

380

27.4.4 Workflow for Debugging

Workbench and CDT Perspectives

Regardless of any direct file association created using the Open With command,
the default editor opens when debugging a file.

For example, associating *.c files with the default Workbench editor opens the
Workbench editor in the CDT Debug and the Workbench Device Debug
perspectives.

The reverse is also true: if you associate a file type with the CDT editor, it will open
when those files are debugged even if you have made an association with a
different editor using Open With.

381

 28
 Using Workbench with Version

Control

28.1 Introduction 381

28.2 Using Workbench with ClearCase Views 381

28.1 Introduction

This chapter provides tips on using Workbench with version-controlled files,
which Workbench project files you should add to version control when archiving
your projects, and how to manage build output when your sources are version
controlled.

28.2 Using Workbench with ClearCase Views

When using Workbench with ClearCase dynamic views, create your workspace on
your local file system for best performance. For recommendations about setting up
your workspaces and views, see Help > Help Contents > Rational ClearCase
SCM Adapter > Concepts > Managing workspaces.

Wind River does not recommend that you place the Eclipse workspace directory
in a view-private directory. If you create projects in the default location under the

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

382

workspace directory, ClearCase prompts you to add the project to source control.
This process requires all parent directories to be under source control, including
the workspace directory.

Instead, create workspace directories outside of a ClearCase view. If you want to
create projects under source control, you should unselect the Create project in
workspace checkbox in the project creation dialog and then navigate to a path in a
VOB.

In addition, you should also redirect all build output files to the local file system
by changing the Redirection root directory in the Build Properties > Build Paths
tab of your product. All build output files such as object files and generated
Makefiles will be redirected.

For more information about the redirecting build output and the redirection root
directory, open the build properties dialog, press the help key for your host, and
see the Build Paths section.

28.2.1 Adding Workbench Project Files to Version Control

To add Workbench project files to version control without putting your workspace
into a ClearCase view, check-in the following automatically generated files along
with your source files:

For user-defined projects, all Makefile files need to be version controlled, too.

Project File Description

.project Eclipse platform project file containing general information
about the project.

.wrproject Workbench project file containing mostly general build
properties.

.wrfolder Workbench project file containing folder-level build properties
(located in subfolders of your projects).

.wrmakefile Workbench managed build makefile template used to generate
Makefiles.

*.makefile Workbench managed build extension makefile fragments (e.g. for
VxWorks Image projects or some Platform projects)

*.wpj VxWorks Image project file containing specific data not
managed directly by Workbench but by the TCL engine.

28 Using Workbench with Version Control
28.2 Using Workbench with ClearCase Views

383

28

For VxWorks Image projects, it could occur that absolute paths are stored in the
.wpj file, which breaks any team support. You should avoid manually adding
source files to a VxWorks Image project that are referenced by absolute paths. The
same is true for any build macro in any project type containing absolute paths—
they should be substituted by environment variables (provided by wrenv for
example) wherever possible.

For more information about IBM Rational ClearCase, see
http://www-130.ibm.com/developerworks/rational/products/clearcase.

Choosing Not to Add Build Output Files to ClearCase

After installing the ClearCase plugin, you may be prompted to add any build
output files to ClearCase.

There are two ways to avoid this if you wish:

1. Using Workbench Preferences.

a. Open the Window > Preferences > Team > ClearCase SCM Adapter
preferences page.

b. From the When new resources are added pull-down list, select Do
nothing.

2. Using Derived Resource option.

a. Configure your build so the build output goes into one (or a few)
well-known directories such as bin or output.

b. Check in the empty bin or output directories into ClearCase.

c. In the Project Navigator, right-click the directory you checked in, select
Properties, and on the Info page, select Derived.

d. From now on, the Clearcase plug-in will not prompt you about Derived
resources.

NOTE: The .metadata directory should not be version controlled, as it contains
mostly user- and workspace-specific information with absolute paths in it.

NOTE: If you use Workbench managed builds, they will automatically mark
the build output directories as derived so ClearCase will not try to add the
build output files to source control. If you use a different builder, you may
have to configure it to mark resources as derived.

http://www-130.ibm.com/developerworks/rational/products/clearcase

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

384

385

PAR T VII

Reference

A Command-line Updating of Workspaces 387

B Command-line Importing of Projects 391

C Configuring a Wind River Proxy Host 395

D Glossary .. 403

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

386

387

 A
Command-line Updating of

Workspaces

A.1 Overview 387

A.2 wrws_update Reference 388

A.1 Overview

The Workbench installation includes a wrws_update script that allows you to
update workspaces from the command-line. This can be used, for example, to
update workspaces in a nightly build script. The following section provides a
reference page for the command.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

388

A.2 wrws_update Reference

A script for updating an existing workspace is available in the Workbench
installation and is named:

wrws_update.bat (Windows only)

wrws_update.sh (Windows, Linux, and Solaris)

This script launches a GUI-less Eclipse application that can be used to update
makefiles, symbols (static analysis), and the search index.

Execution

Specify the location of the wrws_update script or add it to your path and execute
it with optional parameters, for example:

$ wrws_update.sh -data workspace_dir

The workspace must be closed for the command to execute. If you do not specify
any options to the command, all update operations are performed (-all projects,
-generate makefiles, --update symbols, -update index).

Options

General Options

-h, --help
Print command help.

-q, --quiet
Do not produce standard output.

Eclipse Options

-data workspace_dir
The script uses the default workspace (if known), but it can also update other
workspaces by specifying the -data workspace_dir option, just as Workbench
does. (The script accepts the same command-line options as Workbench. For
example, to increase virtual memory specify -vmargs -Xmxmem_size.)

A Command-line Updating of Workspaces
A.2 wrws_update Reference

389

A
Global Options

-a, --all-projects

Update all projects, this option will force all closed projects to be opened.
Opened projects will be closed after finishing the update.

-l, --specify-list-of-projects argument
Specify a list of projects to be updated. This option reduces the scope of the
nightly update to the specified list of projects. Needed closed projects will be
opened and unneeded opened ones closed. After finishing the update the
previous state is restored. Separate the list with "," for example:
cobble,helloWorld.

Build Options

-b, --build-projects argument
Launch build for projects. Several strings are valid as arguments, including:
build (default), clean, and rebuild.

-e, --enableTraceBuild
Enable trace build output.

-f, --debugMode argument
Build using specific debug or non-debug mode where applicable. The
argument, if specified, can be 0 or 1, otherwise the current mode is used per
project.

-u, --buildArgs argument
Specify a list of additional build options. Separate the list with "," for example:
-i,MY_VAR=value.

Nightly Update Options

-i, --update-index
Update search-database index.

-m, --generate-makefiles
Regenerate Makefiles where necessary.

-s, --update-symbols argument
Update symbol database (static analysis). To create the data from scratch, you
can supply 'rebuild' as argument.

-t, --create-team-symbols argument
Export symbol databases for shared use in a team. The argument is a quoted
comma-separated list of options. Valid options are timestamp, readonly, and

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

390

checksum. The default is timestamp,readonly,checksum. See the online
documentation for details on these options.

-x, --update-xref argument
Update cross references (static analysis). To create the data from scratch, you
can supply 'rebuild' as argument.

Output

Any errors that might occur during the updates are printed out to standard error
output. Other information (for example, status, what has been done, and so on) are
printed out to standard output.

NOTE: No configuration management-specific actions or commands are executed
within this script and the launched application. Configuration management
specific synchronizations or updates relevant to the workspace (for example,
cvs-update, ClearCase view synchronization, and so on) have to be done before
this script is started.

391

 B
Command-line Importing of

Projects

B.1 Overview 391

B.2 wrws_import Reference 392

B.1 Overview

The Workbench installation includes a wrws_import script that allows you to
import existing projects into workspaces from the command-line. The following
section provides a reference page for the command.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

392

B.2 wrws_import Reference

A script for launching a GUI-less Eclipse application that can be used to import
existing projects into the workspace is available in the Workbench installation and
is named:

wrws_import.bat (Windows only)

wrws_import.sh (Windows, Linux, and Solaris)

Execution

Specify the location of the wrws_import script or add it to your path and execute
it with optional parameters, for example:

$ wrws_import.sh -data workspace_dir

Options

General Options

-d, --debug argument
Provide more information. The argument, if given, specifies the level of
verbosity. Default is 2, the possible options are: [2, 3, 4].

-h, --help
Print command help.

-q, --quiet
Do not produce standard output.

Eclipse Options

-data workspace_dir
Specify the Eclipse workspace with this option.

Import Project Options

-f, --files argument

Specify a list of project files to be imported. Separate the items in the list with
commas (,). For example: dir1/.project,dir2/.project.

-r, --recurse-directory argument
Specify a directory to recursively search for projects to be imported.

B Command-line Importing of Projects
B.2 wrws_import Reference

393

B

NOTE: This script will not stop or fail if some projects already exist in the
Workspace, the way the Import existing projects into workspace wizard does. It
will just print out the information and continue.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

394

395

 C
Configuring a Wind River Proxy

Host

C.1 Overview 395

C.2 Configuring wrproxy 397

C.3 wrproxy Command Summary 399

C.1 Overview

The Wind River proxy allows you to access targets not directly accessible to your
Workbench host. For example, you might run the proxy server on a firewall and
use it to access multiple targets behind the firewall.

The proxy supports TCP, UDP, and TIPC (Linux only) connections with targets.
Many different host tools and target agents can be connected. A simple illustration
of this is shown in Figure C-1.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

396

The proxy host itself can be one that runs any operating system supported for
Workbench hosts or any host running Wind River Linux. You run the wrproxy
command supplied with Workbench on the proxy host and configure it to route
access from various tools to specific targets. The mapping is done by TCP/IP port
number, so that access to a particular port on the proxy host is directed to a
pre-defined target. You can start wrproxy and then manually configure it, or you
can create a configuration script that wrproxy reads at startup.

Figure C-1 Wind River Proxy Example

Workbench Host

 Proxy Host

with Target Server

running wrproxy

Target running

Telnet Client

Workbench Host
with StethoScope

Target running

usermode-agent

telnetd

Target supplying
remote kernel
metrics to
StethoScope

Node on TIPC
Network

Target with
Serial
Connection

C Configuring a Wind River Proxy Host
C.2 Configuring wrproxy

397

C

C.2 Configuring wrproxy

The wrproxy command (or wrproxy.exe on Windows) is located in
installDir/workbench-version/foundation/version/x86-version/bin/. Copy it to the
host that will serve as your proxy host. The following discussion assumes you have
copied wrproxy to your proxy host and are configuring it from the proxy host.

Configuring wrproxy Manually

To configure wrproxy manually, start it with a TCP/IP port number that you will
use as the proxy control port, for example:

$./wrproxy -p 1234 &

You can now configure wrproxy by connecting to it at the specified port.

Use the create command to configure wrproxy to map client (host tool) accesses on
a proxy port to a particular target. The following example configures accesses to
the proxy port 1235 to connect to the Telnet port of the host my_target:

$ telnet localhost 1234
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
create type=tcpsock;port=23;tgt=my_target;pport=1235
ok pport=1235

Refer to create, p.401 for details on create command arguments.

If you now connect to the proxy host at port 1235, you are connected to the Telnet
port of my_target:

$ telnet localhost 1235
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

my_target login:

Creating a wrproxy Configuration Script

If you are typically using the same Wind River proxy configurations over time, it
can be useful to use a startup script to configure it rather than doing it manually
each time. You can cause wrproxy to read a startup script by invoking it as
wrproxy -s startupscript. The script contains the commands that configure wrproxy
as well as comments that begin with the # character. A simple startup script that

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

398

configures the same port setup performed manually in the previous example
might look like this:

This is an example of a wrproxy startup script

Configure the proxy host port 1235 to connect to my_target Telnet

create type=tcpsock;port=23;tgt=my_target;pport=1235

list the port configuration

list

end of script

When you start wrproxy with this script, it gets configured as in the previous
example and sends input and output to standard output:

$./wrproxy -s wrproxy_startup &
[2] 6660
Executing startup script...

create type=tcpsock;port=23;tgt=my_target;pport=1235
ok pport=1235
list
ok pport=1235;type=tcpsock;port=23;tgt=my_target
$

Since no control port was specified with the -p option at startup, the default port
17476 is used.

The startup script accepts the create, list, and delete commands as described in
Configuration Commands, p.399.

NOTE: There is no password management in wrproxy. If you want to be sure that
no new connections (tunnels) are made remotely using the control port, use the
-nocontrol option with the -s startupscript option which will disable the proxy
control port.

C Configuring a Wind River Proxy Host
C.3 wrproxy Command Summary

399

C

C.3 wrproxy Command Summary

The following section summarizes all of the Wind River proxy commands.

Invocation Commands

The wrproxy command accepts the following startup options:

■ -p[ort]—specify TCP control port. If not specified, the default of 0x4444 (17476)
is used. This should be a unique number less than 65536 not used as a port by
any other application, and it should be greater than 1024 which is the last of
the reserved port numbers.

■ -V—enable verbose mode.

■ -v[ersion]—print wrproxy command version number.

■ -s startupscript—specify a startup script that contains wrproxy configuration
commands.

■ -h[elp]—print wrproxy command help.

■ -nocontrol—disable control port.

Configuration Commands

You can use the following commands interactively, and all except the connect
command in a Wind River proxy startup script.

connect

Create a new Wind River proxy connection and automatically connect to it. Unlike
the create command (see create, p.401) the connection is established immediately
and all packets sent to the connection are immediately routed between the target
and host.

NOTE: For all commands, unknown parameters are ignored; they are not
considered errors. In addition, the client should not make any assumption on the
number of values returned by the command as this could be changed in the future.
For example, the create command will always return the value for pport but
additional information may be returned in a future version of the Wind River
proxy.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

400

Usage

connect type=type;mode=mode;proto=proto; connection_specific_parameters

Where the arguments to the connect command are as follows:

type is:

■ udpsock—UDP socket connection.

■ tcpsock—TCP socket connection.

■ tipcsock—TIPC socket connection (Linux only).

mode describes how the connection is handled between the proxy and the
client (for example the Workbench host) and is:

■ raw—raw mode (default).

■ packet—packet size is sent first followed by packet content; the packet is
handled only when fully received.

proto describes how the connection is handled between the proxy and the
target and is:

■ raw—proxy does not handle any protocol (default).

■ wdbserial—(VxWorks targets only) proxy converts packet to wdbserial.
When proto is wdbserial, some control characters are inserted by the
proxy in the packet sent to the target so that the generated packet will be
understood correctly by the target using a WDB serial backend. This is
typically used to connect to a WDB agent running on a target through a
serial line that is connected to the serial port of a port server (this serial line
is then accessible by the proxy using a well-known TCP port of the port
server).

Connection-specific Parameters

■ udpsock and tcpsock connection:

port=port;tgt=tgtAddr

Where port is the TCP/UDP port number and tgtAddr is the target IP
address.

■ tipcsock connection (Linux only):

tipcpt=tipcPortType;tipcpi=tipcPortInstance;tgt=tgtAddr

Where tipcPortType is the TIPC port type, tipcPortInstance is the TIPC port
instance and tgtAddr is the TIPC target address.

C Configuring a Wind River Proxy Host
C.3 wrproxy Command Summary

401

C

The response of the Wind River proxy to the connect command is a string as
follows:

ok

or

error errorString

where errorString describes the cause of the error.

create

Create a new proxy port mapping to a target. The connection is not established
immediately as with the connect command (see connect, p.399) but only when a
client connects to the specified port number.

Usage

create type=type;port=port;tgt=target;pport=pport

where the arguments to the create command are as follows:

type=type is:

■ udpsock—UDP socket connection.

■ tcpsock—TCP socket connection. (Only tcpsock is allowed for a VxWorks
proxy host.)

■ tipcsock—TIPC socket connection.

port—this is the port to connect to on the target.

tgt=target—is the host name or IP address of the target when type is tcpsock
or udpsock, and port provides the UDP or TCP port number. When type is
tipcsock this is the target TIPC address, and tipcpi provides the TIPC port
instance and tipcpt provides the TIPC port type.

pport=proxy_TCP_port_number—specify the TCP port number that clients
(host tools) should connect to for connection to target_host. This should be a
unique number less than 65536 not used as a port by any other application, and
it should be greater than 1024 which is the last of the reserved port numbers.

NOTE: If you do not assign a port number, the default value of 0x4444 is used.

NOTE: If you do not specify a pport value, one will be assigned automatically
and returned in the command output.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

402

port=target_TCP_port_number—specify the TCP port to connect to on the
target. This should be a unique number less than 65536 not used as a port by
any other application, and it should be greater than 1024 which is the last of
the reserved port numbers.

A simple example of using the create command to configure a Telnet server port
connection is given in C.2 Configuring wrproxy, p.397.

delete

Delete the proxy configuration for a specific port.

Usage

delete pport=port_number

To delete the proxy configuration of a specific port, use the delete command with
the port number, for example:

$ telnet localhost 1234
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
delete pport=1235
ok^]
telnet> q
Connection closed.

list

List your current configuration with the list command.

Usage

list

For example, to list your current configuration, connect to the proxy control port
and enter the list command:

$ telnet localhost 1234
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
list
ok pport=1235;type=tcpsock;port=23;tgt=my_target

403

 D
 Glossary

D.1 Introduction 403

D.2 Terms 404

D.1 Introduction

This glossary contains terms used in Wind River Workbench.

If the term you want is not listed here, you can search for it throughout all installed
documentation.

1. At the top of the Help > Help Contents window, type your term into the
Search field.

2. Click Go. Topics containing the term will appear in the Search Results list.

3. To open a topic in the list, click it.

To switch from the Search Results list back to the help Table of Contents, click
the Show in Table of Contents icon in the upper right corner of the help view.

D.1.1 Refining a Search

If the result set is very large, the information you are looking for might not appear
in the top 10 or 15 results.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

404

To refine a search to reduce the number of results:

1. Click the Search Scope link to open the search scope dialog.

2. Select Search only the following topics then click New.

3. In the working set content tree, select the topics to which you want to narrow
the search, for instance Wind River Documentation > References.

4. Type a descriptive name in the List name field (such as WR References) then
click OK.

5. Click OK to return to the help browser, where your new search scope appears
next to the Search scope link.

6. Click Go. The results will be shown in the Search Results list.

For more information about online help, see Help > Help Contents > Wind River
Partner Documentation > Eclipse Workbench User Guide > Tasks > Using the
help system.

D.2 Terms

active view

The view that is currently selected, as shown by its highlighted title bar. Many
menus change based on which is the active view, and the active view is the focus
of keyboard and mouse input.

back end

Functionality configured into a target server on the host determines how it will
communicate with a particular target agent on the target (for example, you use a
wdbrpc back end for Ethernet connections, wdbpipe for VxWorks simulators,
wdbserial for serial connections, and wdbproxy for UDP, TCP, and TIPC
connections).

The target server must be configured with a back end that matches the target agent
interface with which VxWorks has been configured and built.

D Glossary
D.2 Terms

405

D

board support package (BSP)

A Board Support Package (BSP) consists primarily of the hardware-specific VxWorks
code for a particular target board. A BSP includes facilities for hardware
initialization, interrupt handling and generation, hardware clock and timer
management, mapping of local and bus memory space, and so on.

build spec

A particular set of build settings appropriate for a specific target board.

color context

The color assigned to a particular process in the Debug view; this color carries over
to breakpoints in the Editor and to other views that derive their context from the
Debug view.

cross-development

The process of writing code on one system, known as the host, that will run on
another system, known as the target.

DKM

VxWorks Downloadable Kernel Module.

editor

An editor is a special type of view that is used to edit or browse a file or other
resource. Each Workbench perspective displays an editor area even when no files
are open.

Modifications made in an Editor follow an open-save-close life cycle model.
Multiple instances of an editor type may exist within a Workbench window.

gutter

The left vertical border of the editor view where breakpoints and the program
counter appear.

help key

The help key (or combination of keys) is determined by your host platform: press
F1 on Windows, Ctrl-F1 on Linux, and HELP on Solaris.

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

406

kernel configuration editor

The editor that allows you to configure the kernel of a VxWorks Image project.

kernel module

A piece of code, such as a device driver, that can be loaded and unloaded without
the need to rebuild and reboot the kernel.

launch configuration

A run-mode launch configuration is a set of instructions that causes Workbench to
connect to your target and launch a process or application. A debug-mode launch
configuration completes these actions and then attaches the debugger.

overview ruler

The right vertical border of the editor view where bookmarks and other indicators
appear.

perspective

A perspective is a specific grouping of an editor and views that are useful when
working on a particular task.

Default Workbench perspectives include the Application Development and
Device Debug perspectives, but if you click Window > Open Perspective > Other,
additional perspectives (such as those installed with ScopeTools) are available to
you.

plug-in

An independent module, available from Wind River, the Eclipse Foundation, or
from many Internet Web sites, that delivers new functionality to Workbench
without the need to recompile or reinstall it.

program counter

The address of the current instruction when a process is suspended.

project

A collection of source code files, build settings, and binaries that are used to create
a VxWorks system image, a kernel or RTP application, and so on.

Projects can be linked together in a hierarchical structure (displayed as a
project/subproject tree in the Project Navigator) that reflects their inner

D Glossary
D.2 Terms

407

D

dependencies, and therefore the order in which they should be compiled and
linked.

real-time process (RTP)

A VxWorks process that is specifically designed for real-time systems.

registry

The registry associates a target server’s name with the network address needed to
connect to that target server, thereby allowing you to select a target server by a
convenient name.

system mode

When in system mode, the debugger is focused on kernel processes and threads.
When a process is suspended, all processes stop. Compare with user mode.

target agent

The target agent runs on the target, and is the interface between VxWorks and all
other Wind River Workbench tools running on the host or target.

target server

The target server runs on the host, and connects Wind River Workbench tools to
the target agent. There is one server for each target; all host tools access the target
through this server.

title bar

A view’s title bar contains the view name, its icon, and the view toolbar. A
highlighted title bar denotes the active view.

toolbar

A view’s toolbar contains actions that apply only to that view (e.g. Step Over in
the Debug view). The toolbar also contains a context menu that contains other
actions for that view.

The main Workbench toolbar contains actions that apply to Workbench as a whole
(e.g. Search) or that reflect the components that are installed (e.g. Launch
TraceScope).

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

408

user mode

When in user mode, the debugger is focused on user applications and processes.
When a process is suspended, other processes continue to run. Compare with
system mode.

view

A view is a pane within the Workbench window that allows you to display,
navigate, and manipulate the resources in your workspace. Only one view has
focus (is active) at a time.

VIP

VxWorks Image Project.

window

The term window refers to the desktop development environment as a whole—the
space Workbench takes up on your screen. A Workbench window can contain
more than one perspective, but only one is displayed at a time.

working set

A working set is a group of resources you select because you want to view them or
perform an operation on them as a group. For example, creating a working set
allows you to speed up a search by restricting its scope. A working set can also help
you focus by reducing the number of projects visible in the Project Navigator, the
number of symbols displayed in the Outline view, and so on.

workspace

A workspace is the central location for all the resources you see in Workbench:
your projects, folders, and files.

Workbench also uses the workspace to store settings that describe your working
environment: which projects and views are currently open, how you have your
views arranged within the perspective, whether you have breakpoints set, and so
on.

The default location of the workspace is installDir/workspace, but it can be located
anywhere. To keep your projects completely isolated from each other, you can
create more than one workspace.

409

Index

A
adding

application code to projects 162
application initialization routines to VIPs 99
applications to VIPs 99
new files to projects 163
subprojects 80

applications
adding to VIPs 99
initialization stubs 97
projects, configuring 132

Attach to Target launches 300

B
back end, target server 266
ball sample program 15
basename mappings 273
board support package 100

creating 100
customizing manually 101
migrating 100
simulator 100
Wind River Workbench 100

Bookmarks view 27
boot

loader project 103

build specs 107
creating 104
makefile 107
overview 76
project nodes 106
target nodes 107

mechanism, setting up 49
programs

creating new 60
serial connection, configuring for 65

ROMs
emulators, substituting ROM 50

booting
command line parameters 59
parameters

displaying current, at boot time 52
nonvolatile RAM, effect of 60
setting 52
VxWorks 58

rebooting VxWorks 60
TFTP, requiring 60
troubleshooting 356
VxWorks

commands 53
breakpoints

conditional 307
converting to hardware 308
creating

expression 307
hardware 308

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

410

line 306
data 307
disabling 310
exporting 310
expression 307
hardware 307
importing 309
line 306
refreshing 310
removing 310
restricted 306
unrestricted 306

Breakpoints view 305
BSP

See board support package
build

applications for different boards 224
architecture-specific functions 228
complete product image 176
executables to dynamically link to shared

libraries 229
failure due to locked files 345
flexible managed 205

adding build targets 208
build output 213
configuring 208

library for test and release 225
make rule in Project Navigator 232
managed

comparison of standard and flexible 207
flexible, using with linked resources 344

management 205
output

disabling prompt to add to ClearCase 383
folders 96

properties
accessing 214
dialog 214
global 215
project-specific 215

redirection root directory 118, 128, 138, 156
remote 238

connection 238
setting up environment 237

spec 216

creating 233
customizing 83
for new compilers, other tools 233

standard managed 205
configuring 208

support 205
disabled 206

target
excluding with regular expressions 211

troubleshooting
imported projects 346

user-defined 206

C
cables, connecting 46
ClearCase

disabling prompt to add build output files 383
installing plug-ins 371
using with Workbench 381

colored views 318
command line

import projects (wrws_import) 391
parameters 59
registry 257
update workspaces (wrws_update) 387

compiler
flags, add 222
new build spec 233

complex project structures 174
conditional breakpoints 307
configuring

application projects 132
file system project 191
flexible managed build 208
jumpers 46
kernel components 93
standard managed build 208
target

file system 110
hardware 46

VxWorks image project 99, 191
Console view 298

 Index

411

Index

container
project

creating 177
per project type and external headers 178

subprojects 188
controlling multiple launches 293
core dump

connecting to a VxWorks 5.5.x 32
customize build specs, shared subprojects 83

D
data breakpoints 307
debug modes 320
debug server

loading symbols 260, 270
Debug view 314
debugger

debugging a VxWorks 5.5 application 29
disconnecting and terminating processes 324
single-stepping through code 319

deleting
breakpoints 310
flexible build targets 211
nodes

project 168
target 168

derived resource, not adding to ClearCase 383
development 181
disabled build support 206
Disassembly view 326

opening automatically 327
opening manually 327

Domain Name Service (DNS) 40
downloadable kernel module

application code 142
in Project Navigator 140
project

build specs 140
creating 134
files 141
nodes 140
target nodes 140

dual mode 39

E
Eclipse

basic concepts 7
log 359
using Workbench in 375

Editor 198
Kernel 94
program counter 318

environment commands (Launch Control) 296
environment variables

LD_LIBRARY_PATH 232
redirection root directory 118, 128, 138, 156

error condition command (Launch Control) 294
Error Log view 358
Exec Path on Target, troubleshooting

Linux 350
RTPs 351

execution environments, project-specific 83
exporting

breakpoints 310
object path mappings 271

expression
breakpoints 307

external headers 185

F
file

system
configuring the target 110
project files 112
project nodes 111
project, VxWorks 78

File Navigator view 198
File Transfer Protocol

See FTP server
files

manipulating 167
find and replace 201
flexible managed build

using with linked resources 344
folders, build output 96

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

412

FTP server
configuring 41
WFTPD 41

G
go into project 164

H
hardware breakpoints 307
headers, external 185
help system

accessing 12
display problems

Linux 342
Solaris 342
Windows 342

I
importing

breakpoints 309
build settings 163
object path mappings 271
resources 162
VxWorks image project 92

Include Browser view 196
initialization stubs, application 97

J
jumpers 46

K
kernel

configuration 95, 111

back ends 275
editor 94
image and symbols 267
shell 261

Kernel Configuration Editor 94
kernel metrics 331
Kernel Objects view 328

multi-process debugging 328
kernel signals 331

L
launch (terminology) 293
launch configurations

creating 284
native applications 290

Launch Control 293
launch sequence 294
LD_LIBRARY_PATH environment variable 232
library, shared

project structure 183
line breakpoints 306
linked resources, path variable 209
linking project nodes, moving and 167
linking to external sources

projects for read-only file locations 344
loading symbols to debug server 270

specifying an object file 260
location, resource 172
logical nodes 166
logs

creating a ZIP of 358
debugger back end

debug tracing 360
GDB/MI 360

debugger views
broadcast message debug tracing 361
GDB/MI 360
internal errors 361

Eclipse 359
static analysis parser 364
target manager debug tracing 364

 Index

413

Index

target server
back end 362
output 362
WTX 363

M
make rule in Project Navigator 232
makefile

boot loader project 107
build properties 217
nodes

downloadable kernel modules 141
native application 159
RTP 121
shared libraries 130
VIP 97

managed build
flexible 205

configuring 208
using with linked resources 344

standard 205
configuring 208

memory
target server cache size 269

menu, Navigate 165
multiple

processes, monitoring 317
software systems 173
target operating systems or versions 216

multiple launch control 293
multi-process debugging

Kernel Objects view 328

N
native application

launching 290
project 151

application code 160
build specs 158
creating 152

files 159
nodes 158
target nodes 158

Navigate menu 165
navigation 164
New Connection wizard 258
nodes

moving and (un-)linking project 167
resources and logical 166

O
object path mappings

creating automatically 270
examples 271
exporting 271
for remote hosts 271
importing 271
why they are required 270

opening
build properties dialog 214
new window 165
project, in new window 164

operating systems, multiple 216
output folders, build 96

P
pango error 341
path variable 209
pathname prefix mappings 270
plug-ins

activating 373
adding an extension location 372
creating a directory structure 370
creating a Workbench plug-in for Eclipse 375
installing ClearCase 371
web sites 370

polled mode 39
post-launch command (Launch Control) 294
preconfigured project types, overview 74
pre-launch command (Launch Control) 294

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

414

processes
Attach to Target launches 300
disconnecting debugger 324
RTPs, running 289

profiles 90
VxWorks 5.5 compatible 91
VxWorks scalability levels 90

program counter 318
project

application code 74
boot loader 76, 103

creating 104
bsp, getting a functioning 100
build

properties, accessing 214
remote 238
system 82

closing 163, 164
configuring application 132
creating 162

for read-only sources 344
creating new 73
creating, boot loader 104
customizing VxWorks image 95
execution environment 83
files, version control of 382
go into 164
headers 178
importing Tornado 2 32
infrastructure design 176
linking application projects to VxWorks

image 99
native application 151
nodes

manipulating 167
moving and (un-)linking 167

opening 163
preconfigured, overview 74
project structures 80
properties

creating project.properties file 84
limitations of project.properties files 85
using from the command line 85
using with a shell 85
wrenv syntax 84

real-time process 77
sample 75
scoping 164
shared library 78
sharing subprojects 83
structure

and build system 82
and host directory structure 81

structures, complex 174
troubleshooting imported 346
user-defined 206
VxWorks

file system 78
image 75
kernel configuration profiles 90
scalable 89

Project Navigator
boot loader projects 106
DOSFS file system projects 111
move, copy, delete 166
moving and (un-)linking project nodes 167
native application projects 158
real-time process projects 120
shared libraries 130
target nodes, manipulating 168
user-defined build-targets 232
VxWorks image projects 94

project.properties
creating 84
limitations 85
using from the command line 85
using with a shell 85
wrenv syntax 84

R
read-only sources

creating projects for 344
real-time process

and shared library 241
project 77

application code 122
build specs 120
creating 114

 Index

415

Index

files 121
nodes 120
target nodes 120

See also RTPs
rebooting VxWorks 60
redirection root directory 118, 128, 138, 156

with ClearCase 382
registry 262

changing daemon default behavior 44
changing default 264
command line 257
data storage 263
error, unreachable 339
launching the default 262
remote, creating 263
shutting down 263
wtxregd 263

changing default options 44
regular expressions

to exclude contents of build target 211
remote

build 238
setting up environment 237

connection 238
rlogin 240
SSH 240

remote kernel metrics (RKM) 331
removing breakpoints 310
replacing text 201
resource locations 172
resources and logical nodes 166
RKM

See remote kernel metrics (RKM)
rlogin remote build connection 240
RTPs

and shared library 241
attaching to running 301
running 289

S
sample

ball program 15
projects 75

searching for text 201
serial lines

target server back end connection, as 64
testing 65

set, working 165
setting breakpoints

restricted 306
unrestricted 306

shared library 183
and real-time process 241
LD_LIBRARY_PATH environment

variable 232
project

creating 124
nodes 130

project file 131
troubleshooting problems 354

simulator
adjusting priority of 278
establishing a new connection 277
VxWorks 100

software systems, multiple 173
source lookup path

adding sources 288
editing 326

source mode build 89
spec, build 216
SSH remote build connection 240
static analysis, description 195
StethoScope 334
structures, complex project 174
stubs, application initialization 97
sub-launch 293
subprojects 191

adding 80
container 188

symbol
file, specifying maximum size 345
table

configuring target server 267
Symbol Browser 197
symbols and kernel image 267
system mode 39

compared with task mode 320

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

416

T
target

agent
communication modes 38
introduction 37

board
configuring 46
establishing a connection 259
jumpers, setting 46
serial port 46
Terminal view 46

file system 110
name (tn) (boot parameter) 57
operating systems, multiple versions 216
server

back end settings 266
connecting

ethernet 61
serial 66

connections
establishing new 265
network 61
serial line 64
Tornado 29

core file 267
file system (TSFS) 268

making writable 269
introduction 37
kernel configuration back ends 275
memory cache size 269
symbol table 267
timeout options 269
troubleshooting 357
WDB Pipe back end 266
WDB Proxy back end 266
WDB Serial back end 266

Target Manager view 258
basename mappings 273
defining a VxWorks Simulator connection 277
New Connection wizard 258
object path mappings 270

examples 271
for remote hosts 271

pathname prefix mappings 270

shared connection configuration 274
tasks

attaching to running 301
state 301

team
sharing project.properties file 84

team, defining a path variable 209
Terminal view 46
text search 201
tgtsvr options 268
TIPC target server backend 266
Tornado

creating a target server connection 29
importing Tornado 2 projects 32
Workbench finding an installation of 28

troubleshooting
booting problems 356
building imported projects 346
creating a ZIP of log files 358
downloading 351
exception on attach 349
Exec Path on Target 351
hardware configuration 355
help system display problems

Linux 342
Solaris 342
Windows 342

Java Development Tools (JDT)
dependency 341

launch configurations 353
logs

debugger back end 360
debugger views

broadcast message debug tracing 361
GDB/MI 360
internal errors 361

Eclipse 359
Error Log 358
generated by Workbench 358
static analysis parser 364
target manager debug tracing 364
target server

back end 362
output 362
WTX 363

 Index

417

Index

pango error 341
registry unreachable 339
removing unwanted target connections 342
running a process 352
shared library problems 354
startup errors 338
target connection 348
target server problems 357
VxWorks 355
workspace cannot be locked 340

TSFS
See target server, file system 268

tutorial
ball sample program 15
debugging a VxWorks 5.5 target 27
editing and debugging source files 22
Editor code assist 24

Type Hierarchy view 196

U
user mode 39
user-defined

build 206
project

creating 144
usrappinit.c 97
usrrtpappinit.c 98

V
version control, adding Workbench project files

to 382
views

See Workbench views
VIO

See virtual I/O (VIO)
VIP

See VxWorks image project
virtual I/O (VIO) 298
VxWorks

boot loader project 76

booting 50
core dump, connecting to a VxWorks 5.5 32
file system project 78

creating 110
image

customizing 95
pre-built 52

image project 75
build specs 95
creating 88
files 97
in Project Navigator 94
kernel configuration profiles 90
linking application projects to 99
project nodes 95
source mode build 89
target nodes 95

rebooting 60
shared library project 78
simulator 100

defining a new connection 277
target server connection, 5.5.x 29
tutorial, VxWorks 5.5 27

W
WDB back end

Pipe 266
Proxy 266
Serial 266

WFTPD FTP server 41
Wind River

System Viewer
support libraries, excluding 89
writable target server file system 269

Workbench
Application Development perspective 15
bookmarks

creating 26
viewing 27

breakpoints
modifying 21
running to 20
setting 20

Wind River Workbench
User’s Guide, 2.6 (VxWorks Version)

418

build errors 22
comparing files 23
connection definition, creating 17
creating a project 15
Editor

bracket matching 25
code completion 24
Eclipse functionality 11
parameter hints 25

finding a Tornado installation 28
help system

accessing 12
display problems

Linux 342
Solaris 342
Windows 342

moving and sizing views 10
perspectives 8
project files, adding to version control 382
project source

bookmarks
creating 26
viewing 27

bracket matching 25
breakpoints

modifying 21
running to 20
setting 20

code completion 24
file history, viewing 23
parameter hints 25

running ball sample program from build
output 18

starting 14
target, connecting to

connection definition 17
using in an Eclipse environment 375
using with ClearCase 381
views 10

Breakpoints 305
colored 318
Debug 314
Disassembly 326
Editor 198
Error Log 358

File Navigator 198
Include Browser 196
Kernel Objects 328
Symbol Browser 197
Type Hierarchy 196

working sets 196
using 165

workspace
project location 72
starting Workbench with a new 338
switching to a different 173
using one for multiple projects 174

wrenv
syntax of project.properties file 84

wrws_import
reference page 392
script 391

wrws_update
reference page 388
script 387

wtxregd
changing default options 44
how to find API 257
using a remote registry 263

	Wind River Workbench User's Guide
	Contents

	Part I Introduction
	1 Overview
	1.1 Introduction
	1.2 Wind River Documentation
	1.3 Road Map to the Wind River Workbench User’s Guide
	1.4 Understanding Cross-Development Concepts
	1.4.1 Hardware in a Cross-Development Environment

	1.5 Basic Eclipse Concepts
	1.5.1 Window
	1.5.2 Workspace
	1.5.3 Perspectives
	1.5.4 Views
	1.5.5 Editors
	1.5.6 Projects

	1.6 Accessing Additional Interface Information

	2 Wind River Workbench Tutorials
	2.1 Introduction
	2.2 Starting Wind River Workbench
	2.3 Tutorial: Creating a Project and Running a Program
	2.3.1 Before You Begin
	2.3.2 Creating a Project
	2.3.3 Importing Source Files Into Your Project
	2.3.4 Building Your Project
	2.3.5 Creating a Connection Definition to the VxWorks simulator
	2.3.6 Downloading the Program and Attaching the Debugger
	2.3.7 Setting Up the Device Debug Perspective
	2.3.8 Setting and Running to a Breakpoint.
	2.3.9 Modifying the Breakpoint

	2.4 Tutorial: Editing and Debugging Source Files
	2.4.1 Before You Begin
	2.4.2 Introducing an Error into the Source Code
	2.4.3 Tracking Down a Build Failure
	2.4.4 Displaying File History
	2.4.5 Rebuilding the Project

	2.5 Tutorial: Using the Editor’s Code Development Features
	2.5.1 Using Code Completion to Add Symbols to Your File
	2.5.2 Using Parameter Hints
	2.5.3 Using Bracket Matching to Clarify Syntax
	2.5.4 Finding Symbols in Source Files

	2.6 Tutorial: Tracking Items of Interest in Your Files
	2.6.1 Creating a Bookmark on a Source Line in a File
	2.6.2 Creating a Bookmark for an Entire File
	2.6.3 Locating and Viewing Your Bookmarks

	2.7 Tutorial: Using Workbench to Debug a VxWorks 5.5.x Target
	2.7.1 Before You Begin
	2.7.2 Creating a Project
	2.7.3 Creating a VxWorks 5.5.x Target Server Connection
	2.7.4 Launching a Kernel Task and Attaching the Debugger
	2.7.5 Setting and Running to a Breakpoint
	2.7.6 System Mode Debugging
	2.7.7 Using Core Dump Files
	2.7.8 Using Already Available Tornado 2 Projects

	3 Setting Up Your Development Environment
	3.1 Introduction
	3.1.1 Overview of Host and Target Configuration Tasks
	3.1.2 Understanding Target Servers and Target Agents

	3.2 Configuring Your Cross-Development System
	3.2.1 Configuring Host Software
	3.2.2 Verifying Serial Setup and Power

	3.3 Setting Up a Boot Mechanism
	3.4 Booting VxWorks
	3.4.1 Default Boot Process
	3.4.2 Entering New Boot Parameters
	3.4.3 Boot Program Commands
	3.4.4 Description of Boot Parameters
	3.4.5 Booting With New Parameters
	3.4.6 Alternate Boot Methods
	3.4.7 Rebooting VxWorks

	3.5 Configuring Host-Target Communication for Workbench
	3.5.1 Ethernet Connections
	3.5.2 Serial-Line Connections

	3.6 Troubleshooting VxWorks Problems

	Part II Projects
	4 Projects Overview
	4.1 Introduction
	4.2 Workspace/Project Location
	4.3 Creating New Projects
	4.3.1 Subsequent Modification of Project Creation Wizard Settings
	4.3.2 Projects and Application Code

	4.4 Overview of Preconfigured Project Types
	4.4.1 Workbench Sample Projects
	4.4.2 VxWorks Image Project
	4.4.3 VxWorks Boot Loader Project
	4.4.4 VxWorks Downloadable Kernel Module Project
	4.4.5 VxWorks Real-time Process Project
	4.4.6 VxWorks Shared Library Project
	4.4.7 VxWorks ROMFS File System Project
	4.4.8 User-Defined Projects
	4.4.9 Native Application Project

	4.5 Projects and Project Structures
	4.5.1 Adding Subprojects to a Project
	4.5.2 Project Structures and Host File System Directory Structure
	4.5.3 Project Structures and the Build System
	4.5.4 Project Structures and Sharing Subprojects
	4.5.5 Customizing Build Settings for Shared Subprojects

	4.6 Project-Specific Execution Environments
	4.6.1 Using a project.properties file with a Shell
	4.6.2 Limitations When Using project.properties Files

	5 Creating VxWorks Image Projects
	5.1 Introduction
	5.2 Creating a VxWorks Image Project
	5.2.1 Specifying a Non-Default Driver

	5.3 Importing a VxWorks Image Project
	5.3.1 Migrating a VxWorks Image Project

	5.4 Configuring Kernel Components
	5.4.1 The Kernel Configuration Editor

	5.5 VxWorks Image Projects in the Project Navigator
	5.5.1 Global Project Nodes
	5.5.2 Project Build Specs and Target Nodes
	5.5.3 Build Output Folders
	5.5.4 Makefile Nodes
	5.5.5 Project File Nodes

	5.6 Adding Application Projects to the VxWorks Image Project
	5.7 Notes on Board Support Packages (BSPs)
	5.7.1 Using the Simulator BSP
	5.7.2 Using a Wind River BSP
	5.7.3 Using a Custom BSP for Custom Hardware

	6 Creating Boot Loader Projects
	6.1 Introduction
	6.2 Creating a Boot Loader Project
	6.3 Creating a Customized Boot Loader
	6.3.1 Selecting Boot Loader Drivers

	6.4 Boot Loader Projects in the Project Navigator
	6.4.1 Global Project Nodes
	6.4.2 Project Build Specs and Target Nodes
	6.4.3 Makefile Nodes
	6.4.4 Other Project Files

	7 Creating VxWorks ROMFS File System Projects
	7.1 Introduction
	7.2 Creating a VxWorks ROMFS File System Project
	7.3 Configuring the VxWorks ROMFS File System
	7.4 VxWorks ROMFS File System Projects in the Project Navigator
	7.4.1 Global Project Nodes
	7.4.2 Project File Nodes

	8 Creating VxWorks Real-time Process Projects
	8.1 Introduction
	8.2 Creating a VxWorks Real-time Process Project
	8.3 Configuring VxWorks Real-time Process Projects
	8.3.1 Configuring Build Support and Specs
	8.3.2 Configuring Build Tools
	8.3.3 Configuring Build Macros
	8.3.4 Configuring Build Paths

	8.4 VxWorks Real-time Process Projects in the Project Navigator
	8.4.1 Global Project Nodes
	8.4.2 Project Build Specs and Target Nodes
	8.4.3 Makefile Nodes
	8.4.4 Project File Nodes

	8.5 Application Code for a VxWorks Real-time Process Project
	8.6 Linking to VxWorks and Using Shared Libraries

	9 Creating VxWorks Shared Library Projects
	9.1 Introduction
	9.2 Creating a VxWorks Shared Library Project
	9.3 Configuring VxWorks Shared Library Projects
	9.3.1 Configuring Build Support and Specs
	9.3.2 Configuring Build Tools
	9.3.3 Configuring Build Macros
	9.3.4 Configuring Build Paths

	9.4 Shared Libraries in the Project Navigator
	9.4.1 Global Project Nodes
	9.4.2 Target Node
	9.4.3 Makefile Nodes
	9.4.4 Project File Nodes

	9.5 Source Code for the Shared Library
	9.6 Making Shared Libraries Available to Applications
	9.6.1 Configuring the Application Projects

	10 Creating VxWorks Downloadable Kernel Module Projects
	10.1 Introduction
	10.2 Creating a VxWorks Downloadable Kernel Module Project
	10.3 Configuring VxWorks Downloadable Kernel Module Projects
	10.3.1 Configuring Build Support and Specs
	10.3.2 Configuring Build Tools
	10.3.3 Configuring Build Macros
	10.3.4 Configuring Build Paths

	10.4 Downloadable Kernel Modules in the Project Navigator
	10.4.1 Global Project Nodes
	10.4.2 Project Build Specs and Target Nodes
	10.4.3 Makefile Nodes
	10.4.4 Project File Nodes

	10.5 Application Code for a VxWorks DKM Project

	11 Creating User-Defined Projects
	11.1 Introduction
	11.2 Creating and Maintaining Makefiles
	11.3 Creating a User-Defined Project
	11.4 Configuring a User-Defined Project
	11.4.1 Configuring Build Support
	11.4.2 Configuring Build Targets
	11.4.3 Configuring Build Specs
	11.4.4 Configuring Build Macros

	11.5 Creating an Application for VxWorks

	12 Creating Native Application Projects
	12.1 Introduction
	12.2 Creating a Native Application Project
	12.3 Configuring Native Application Projects
	12.3.1 Configuring Build Support and Specs
	12.3.2 Configuring Build Tools
	12.3.3 Configuring Build Macros
	12.3.4 Configuring Build Paths

	12.4 Native Applications in the Project Navigator
	12.4.1 Global Project Nodes
	12.4.2 Project Build Specs and Target Nodes
	12.4.3 Makefile Nodes
	12.4.4 Project File Nodes

	12.5 Application Code for a Native Application Project

	13 Working in the Project Navigator
	13.1 Introduction
	13.2 Creating Projects
	13.3 Adding Application Code to Projects
	13.3.1 Importing Resources
	13.3.2 Adding New Files to Projects

	13.4 Opening and Closing Projects
	13.4.1 Closing a Project

	13.5 Scoping and Navigation
	13.6 Moving, Copying, and Deleting Resources and Nodes
	13.6.1 Resources and Logical Nodes
	13.6.2 Manipulating Files
	13.6.3 Manipulating Project Nodes
	13.6.4 Manipulating Target Nodes

	14 Advanced Project Scenarios
	14.1 Introduction
	14.2 Resource Locations
	14.3 Multiple, Unrelated Software Systems
	14.3.1 Using Different Workspaces for Different Systems
	14.3.2 Using the Same Workspace for Different Software Systems

	14.4 Complex Project Structures
	14.4.1 Project Assumptions
	14.4.2 Infrastructure Design
	14.4.3 Development
	14.4.4 Finalization

	Part III Development
	15 Navigating and Editing
	15.1 Introduction
	15.2 Wind River Workbench Context Navigation
	15.2.1 The Symbol Browser
	15.2.2 The Outline View
	15.2.3 The File Navigator

	15.3 The Editor
	15.3.1 Code Templates
	15.3.2 Configuring a Custom Editor

	15.4 Search and Replace
	15.4.1 Initiating Text Retrieval

	15.5 Static Analysis
	15.5.1 Sharing Static Analysis Data with a Team

	16 Building Projects
	16.1 Introduction
	16.2 Configuring Workbench Managed Builds
	16.2.1 Configuring Standard Managed Builds
	16.2.2 Configuring Flexible Managed Builds

	16.3 Configuring User-Defined Builds
	16.4 Accessing Build Properties
	16.4.1 Workbench Global Build Properties
	16.4.2 Project-specific Build Properties
	16.4.3 Folder, File, and Build Target Properties
	16.4.4 Multiple Target Operating Systems and Versions

	16.5 Build Specs
	16.6 Makefiles
	16.6.1 Derived File Build Support

	17 Building: Use Cases
	17.1 Introduction
	17.2 Adding Compiler Flags
	17.2.1 Add a Compiler Flag by Hand
	17.2.2 Add a Compiler Flag with GUI Assistance

	17.3 Building Applications for Different Boards
	17.4 Creating Library Build-Targets for Testing and Release
	17.5 Architecture-Specific Implementation of Functions
	17.6 Executables that Dynamically Link to Shared Libraries
	17.7 User-Defined Build-Targets in the Project Navigator
	17.7.1 Custom Build-Targets in User-Defined Projects
	17.7.2 Custom Build-Targets in Workbench Managed Projects
	17.7.3 User Build Arguments

	17.8 A Build Spec for New Compilers and Other Tools
	17.9 Developing on Remote Hosts
	17.9.1 General Requirements
	17.9.2 Remote Build Scenarios
	17.9.3 Setting Up a Remote Environment
	17.9.4 Building Projects Remotely
	17.9.5 Running Applications Remotely
	17.9.6 Rlogin Connection Description
	17.9.7 SSH Connection Description

	18 RTPs and Shared Libraries from Host to Target
	18.1 Introduction
	18.2 A VxWorks Real-time Process from Host to Target
	18.2.1 Set Up the Project Structure for Real-time Processes
	18.2.2 Add Code to the Real-time Process Project
	18.2.3 Add the Real-time Process to the VxWorks ROMFS Target File System
	18.2.4 Build the System
	18.2.5 Set up the Target Connection
	18.2.6 Run the Real-time Process on the Simulator

	18.3 A VxWorks Shared Library from Real-time Process to Target
	18.3.1 Set Up the VxWorks Shared Library Project
	18.3.2 Add Code to the Shared Library Project
	18.3.3 Add the Shared Library to the Run-Time Process
	18.3.4 Modify the Code in the Real-time Process Project
	18.3.5 Generate Include Search Paths
	18.3.6 Add Libraries to the VxWorks ROMFS Target File System
	18.3.7 Build the System Again
	18.3.8 Run the RTP with the Shared Library on the Simulator

	Part IV Target Management
	19 Connecting to Targets
	19.1 Introduction
	19.2 The Target Manager View
	19.3 Defining a New Connection
	19.4 Establishing a Connection
	19.4.1 Assumptions
	19.4.2 Connecting to the Target
	19.4.3 Specifying an Object File
	19.4.4 The Kernel Shell

	19.5 The Registry
	19.5.1 Launching the Registry
	19.5.2 Remote Registries
	19.5.3 Shutting Down the Registry
	19.5.4 Changing the Default Registry

	20 New Target Server Connections
	20.1 Introduction
	20.2 Defining a New Target Server Connection
	20.2.1 Wind River Target Server
	20.2.2 Target Server Connection Page
	20.2.3 Object Path Mappings Page
	20.2.4 Target State Refresh Page
	20.2.5 Connection Summary Page

	20.3 Kernel Configuration

	21 New VxWorks Simulator Connections
	21.1 Introduction
	21.2 Defining a New Wind River VxWorks Simulator Connection
	21.2.1 VxWorks Boot Parameters Page
	21.2.2 VxSim Memory Options Page
	21.2.3 VxWorks Simulator Miscellaneous Options Page
	21.2.4 Target Server Options Page

	Part V Debugging
	22 Launching Programs
	22.1 Introduction
	22.2 Launching a Kernel Task or a Process
	22.2.1 Defining the Target Connection
	22.2.2 Defining the Kernel Task or Process to Run
	22.2.3 Specifying a Build Target to Download
	22.2.4 Specifying The Projects to Build
	22.2.5 Defining Debug Behavior
	22.2.6 Specifying Where Workbench Should Look for Source Files
	22.2.7 Configuring Access Methods
	22.2.8 Using Your Launch Configuration

	22.3 Reset & Download: Hardware Debugging Launches
	22.4 Launching a Native Application
	22.4.1 Specifying the Location and Arguments for Your Application
	22.4.2 Specifying Remote Settings
	22.4.3 Setting Environment Variables
	22.4.4 Configuring Access Methods
	22.4.5 Running Your Native Application

	22.5 Relaunching Recently Run Programs
	22.5.1 Increasing the Size of the Launch History List

	22.6 Controlling Multiple Launches
	22.7 Launches and the Console View
	22.8 Using Attach-to-Target Launches
	22.8.1 Attaching the Debugger to a Running Task or Process
	22.8.2 Attaching the Debugger to the Kernel
	22.8.3 Attaching the Kernel in Task Mode
	22.8.4 Attaching the Kernel in System Mode

	22.9 Suggested Workflow

	23 Managing Breakpoints
	23.1 Introduction
	23.2 Types of Breakpoints
	23.2.1 Line Breakpoints
	23.2.2 Expression Breakpoints
	23.2.3 Hardware Breakpoints

	23.3 Manipulating Breakpoints
	23.3.1 Importing Breakpoints
	23.3.2 Exporting Breakpoints
	23.3.3 Refreshing Breakpoints
	23.3.4 Disabling Breakpoints
	23.3.5 Removing Breakpoints

	24 Debugging Projects
	24.1 Introduction
	24.2 Using the Debug View
	24.2.1 Understanding the Debug View Display

	24.3 Coloring Views
	24.4 Stepping Through a Program
	24.5 Using Debug Modes
	24.5.1 Setting and Recognizing the Debug Mode of a Connection
	24.5.2 Debugging Multiple Target Connections
	24.5.3 Disconnecting and Terminating Processes
	24.5.4 Configuring Debug Settings for a Custom Editor

	24.6 Understanding Source Lookup Path Settings
	24.7 Using the Disassembly View
	24.7.1 Opening the Disassembly View
	24.7.2 Understanding the Disassembly View Display

	24.8 Using the Kernel Objects View
	24.8.1 Understanding the Kernel Objects View Display

	24.9 Remote Kernel Metrics
	24.10 Run/Debug Preferences

	25 Troubleshooting
	25.1 Introduction
	25.2 Startup Problems
	25.2.1 Pango Error on Linux

	25.3 General Problems
	25.3.1 Java Development Tools (JDT) Dependency
	25.3.2 Help System Does Not Display on Solaris or Linux
	25.3.3 Help System Does Not Display on Windows
	25.3.4 Removing Unwanted Target Connections

	25.4 Error Messages
	25.4.1 Project System Errors
	25.4.2 Build System Errors
	25.4.3 Target Manager Errors
	25.4.4 Launch Configuration Errors
	25.4.5 Debugger Errors
	25.4.6 Static Analysis Errors

	25.5 Troubleshooting VxWorks Configuration Problems
	25.5.1 What to Check

	25.6 Error Log View
	25.7 Error Logs Generated by Workbench
	25.7.1 Creating a ZIP file of Logs
	25.7.2 Eclipse Log
	25.7.3 DFW GDB/MI and Debug Tracing Logs
	25.7.4 Debugger Views GDB/MI Log
	25.7.5 Debugger Views Internal Errors Log
	25.7.6 Debugger Views Broadcast Message Debug Tracing Log
	25.7.7 Target Server Output Log
	25.7.8 Target Server Back End Log
	25.7.9 Target Server WTX Log
	25.7.10 Target Manager Debug Tracing Log
	25.7.11 Static Analysis Parser Logs

	25.8 Technical Support

	Part VI Using Workbench with Other Tools
	26 Integrating Plug-ins
	26.1 Introduction
	26.2 Finding New Plug-ins
	26.3 Incorporating New Plug-ins into Workbench
	26.3.1 Creating a Plug-in Directory Structure
	26.3.2 Installing a ClearCase Plug-in

	26.4 Disabling Plug-in Functionality
	26.5 Managing Multiple Plug-in Configurations

	27 Using Workbench in an Eclipse Environment
	27.1 Introduction
	27.2 Recommended Software Versions and Limitations
	27.3 Setting Up Workbench
	27.4 Using CDT and Workbench in an Eclipse Environment
	27.4.1 Workflow in the Project Navigator
	27.4.2 Workflow in the Build Console
	27.4.3 Workflow in the Editor
	27.4.4 Workflow for Debugging

	28 Using Workbench with Version Control
	28.1 Introduction
	28.2 Using Workbench with ClearCase Views
	28.2.1 Adding Workbench Project Files to Version Control

	Part VII Reference
	A Command-line Updating of Workspaces
	A.1 Overview
	A.2 wrws_update Reference

	B Command-line Importing of Projects
	B.1 Overview
	B.2 wrws_import Reference

	C Configuring a Wind River Proxy Host
	C.1 Overview
	C.2 Configuring wrproxy
	Configuring wrproxy Manually
	Creating a wrproxy Configuration Script

	C.3 wrproxy Command Summary
	Invocation Commands
	Configuration Commands

	D Glossary
	D.1 Introduction
	D.1.1 Refining a Search

	D.2 Terms

	Index

