
Wind River Workbench
for On-Chip Debugging

USER TUTORIALS

®

2.6.1

Wind River Workbench for On-Chip Debugging User Tutorials

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation under the following directory:
installDir/product_name/3rd_party_licensor_notice.pdf.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Workbench for On-Chip Debugging User Tutorials, 2.6.1

19 Mar 07
Part #: DOC-15984-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

1 Introduction .. 1

1.1 Document Overview .. 1

1.2 Other Resources .. 2

2 Basic Operation: Debugging with a Project 5

2.1 Introduction ... 5

2.2 Connecting to the Target ... 6

2.3 Creating a Project ... 18

2.3.1 Downloading the Sample Code ... 23

2.4 Debugging Code ... 25

2.4.1 Monitoring Processes ... 25

2.4.2 Stepping Through Code .. 25

2.4.3 Setting a Software Breakpoint .. 27

2.4.4 Running a Program .. 28

2.4.5 Stepping Through a Program ... 29

2.4.6 Setting a Hardware Breakpoint .. 29

2.4.7 Disconnecting and Terminating Processes ... 32

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

iv

2.5 Moving On ... 32

3 Basic Operation: Debugging Without a Project 33

3.1 Introduction ... 33

3.2 Connecting to the Target ... 34

3.3 Downloading Code .. 46

3.4 Debugging Code ... 53

3.4.1 Monitoring Processes ... 54

3.4.2 Stepping Through Code .. 54

3.4.3 Setting a Software Breakpoint .. 55

3.4.4 Running a Program .. 56

3.4.5 Stepping Through a Program ... 57

3.4.6 Setting a Hardware Breakpoint .. 58

3.4.7 Disconnecting and Terminating Processes ... 61

3.5 Moving On ... 61

4 Using the OCD Standalone Project Wizard .. 63

4.1 Introduction ... 63

4.2 Creating an OCD Standalone Project ... 64

4.3 Building an OCD Standalone Project .. 71

4.4 Setting Standalone Project Defaults ... 72

5 Defining a Launch Configuration ... 75

5.1 Introduction ... 75

5.2 Creating a Launch Configuration .. 76

5.2.1 Specifying Files ... 78

 Contents

v

5.3 Other Options ... 85

6 Using Board Descriptor Files .. 87

6.1 Introduction ... 87

6.2 Board Descriptor Files ... 88

6.3 Creating a New Board Descriptor File ... 89

Using the Predefined Layouts in JTAG Editor 91
Using the Custom Option in the JTAG Editor View 95
Editing Your Board Layout ... 97

6.4 XML Board Files ... 98

6.4.1 XML Board File Fields ... 100

<DEVICE_TABLE> Fields ... 100
<DEVICE> Fields ... 100

6.5 Manually Creating XML Board Files .. 101

7 Debugging Multi-Core Targets .. 105

7.1 Introduction ... 105

7.2 JTAG Server ... 106

7.3 Multi-Core Debugging .. 107

7.3.1 Establishing Communications with Multiple Devices 107

Configuring Communication Settings Manually 110

7.4 Initializing the Targets .. 119

7.5 Creating a Project ... 125

7.5.1 Downloading the Sample Code ... 130

7.6 Configuring Options for Multi-Core Debugging .. 131

CF HRESET .. 133
CF CMDRST .. 133

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

vi

7.7 Commands for Multi-Core Debugging .. 134

8 Configuring Target Registers .. 137

8.1 Introduction ... 137

8.2 Downloading a Register File .. 138

8.3 Saving Register Settings from a Target .. 139

8.4 Enabling and Disabling Register Groups ... 141

Enabling and Disabling Register Groups with Low-Level Commands
142

8.5 Configuring Registers Manually ... 143

8.6 Working With Custom Register Groups .. 147

Creating a New Set of Registers ... 147
Creating New Registers With Low-Level Commands 149
SCGA Options .. 151
Using Your New Register File .. 153
Modifying an Existing Register File .. 154

8.7 System Configuration (SC) Commands ... 155

9 Programming Flash Memory ... 157

9.1 Introduction ... 157

9.2 Connecting to a Target ... 158

9.3 Testing Flash Workspace ... 163

Reading and Writing Memory .. 163

9.4 Configuring Registers ... 164

9.5 Using the Flash Programmer View ... 165

9.6 Flash Configuration Tab .. 166

9.6.1 Selecting a Flash Driver ... 166

 Contents

vii

9.6.2 Configuring Flash Memory Bounds .. 167

9.6.3 Configuring RAM Workspace .. 168

9.6.4 Setting Timeouts ... 168

9.7 Flash Programming Tab .. 168

9.7.1 Erasing and Programming Flash ... 169

9.7.2 Verifying Flash Contents ... 169

9.7.3 Running a Pre- or Post-Flash Script ... 170

9.7.4 Selecting Flash Sectors for Erasure .. 170

9.7.5 Manually Configuring Flash Memory Erasure Bounds 170

9.7.6 Adding Files .. 170

9.7.7 Removing Files ... 171

9.7.8 Converting Files To Wind River Flash Binary Format 171

9.7.9 Setting The Download Offset Of A File .. 173

9.7.10 Enabling A File For Download ... 174

9.8 Flash Memory/Diagnostics Tab ... 174

9.8.1 Viewing Memory .. 175

9.8.2 Running Diagnostic Tests .. 175

10 On-Chip Debugging for Linux .. 177

10.1 Introduction ... 177

10.2 Linux Virtual Memory Management Architecture .. 178

10.3 Connection Parameters .. 179

10.4 Emulator Configuration .. 183

10.5 MMUL Settings .. 183

10.6 Booting a Linux System with OCD .. 185

10.6.1 Standard Boot ... 185

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

viii

10.6.2 OCD Boot ... 189

10.7 Boot Line Commands .. 192

10.8 Reverse-Engineering the Boot Line Parameters ... 195

10.9 Debugging the Linux Kernel ... 196

10.9.1 Debugging Linux Kernel Modules .. 196

Kernel Module Detection .. 196
Debugging the init() Function of a Module .. 197

10.10 Kernel Configuration ... 198

10.11 Debugging User Space Applications with OCD .. 198

10.11.1 Attaching to a Process .. 199

10.11.2 Debugging a Process .. 199

10.11.3 Setting Breakpoints .. 200

10.11.4 Thread-Qualified Breakpoints .. 200

10.11.5 Debugging the Beginning of a Process .. 200

10.11.6 Limitations .. 200

10.12 Linux Troubleshooting .. 201

11 Using the WDB Transparent Mode Driver .. 203

11.1 Introduction ... 203

11.2 Connecting Through the Transparent Mode Driver .. 204

11.3 Using the TMD With the Wind River ICE SX .. 206

11.3.1 Configuring Wind River ICE SX .. 206

11.3.2 Configuration Options ... 207

Setting CF Options in the CF Options View ... 207
Setting CF Options with Low-Level Commands 208

11.4 Configuring the Target Server ... 209

 Contents

ix

11.5 Moving On ... 218

12 Internal Software Trace .. 219

12.1 Overview .. 219

12.2 The Trace View .. 220

12.2.1 Trace View Buttons ... 220

Collapsing and Expanding Fields .. 220
Toggle Trace/Source view Auto-Sync ... 221
Clear Trace Buffer ... 221
Refresh Trace View ... 222
Open Trace Rules Dialog ... 222
Filter Visible Trace Events ... 224
Save Output to File .. 224

12.3 Configuring Trace ... 225

12.3.1 PowerPC Trace Configuration Options .. 225

12.3.2 PA Semi Trace Configuration ... 228

12.4 Tracing Execution ... 231

12.4.1 Setting a Tracepoint .. 231

12.4.2 Tracing Execution ... 231

13 Using the CF Options View .. 233

13.1 Introduction ... 233

13.2 Connecting to a Target ... 234

13.3 Configuring the Target Connection .. 238

13.4 Changing CF Options in the CF Options View .. 240

13.5 Changing CF Options With Low-Level Commands .. 241

13.6 Resetting CF Options ... 242

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

x

14 Using Hardware Diagnostics .. 243

14.1 Introduction ... 243

14.2 Connecting to Your Target .. 244

14.3 Setting a Workspace ... 248

14.4 Hardware Diagnostic Tests ... 249

14.4.1 Simple RAM Test .. 249

14.4.2 Full RAM Tests .. 251

14.4.3 CRC Calculation ... 251

14.4.4 Scope Tests ... 253

Read From Location ... 253
Write To Location ... 253
Write and Complement ... 253
Write Rotating Value .. 253
Write Then Read ... 253

14.4.5 Bus Tests ... 253

Address Bus Test .. 253
Data Bus Test ... 254

15 OCD Statistical Code Profiling ... 255

15.1 Introduction ... 255

15.2 Connecting to the Target ... 256

15.3 Creating a Project .. 266

15.3.1 Downloading the Sample Code ... 271

15.4 Profiling Your Code ... 272

15.4.1 Profiling Selected Functions ... 278

15.4.2 Browsing Functions in Source .. 279

15.4.3 Updating the Profile Data ... 279

15.4.4 Removing Functions .. 279

 Contents

xi

16 Using the Cache View ... 281

16.1 Introduction ... 281

16.2 Connecting to the Target ... 282

16.3 Creating a Project ... 293

16.3.1 Downloading the Sample Code ... 298

16.4 Examining Cache .. 299

16.4.1 Instruction Cache ... 299

16.4.2 Data Cache .. 301

16.4.3 Interpreting the Cache View ... 301

16.5 Viewing Cache Source ... 303

16.6 Comparing Memory ... 303

16.7 Reconfiguring the Cache ... 305

16.8 Exporting Cache Information ... 305

16.9 Using Processors Without Cache Lines .. 306

Instruction Cache ... 306
Data Cache .. 307

17 Uploading Target Memory to a Binary File .. 309

17.1 Introduction ... 309

17.2 Uploading Memory .. 309

17.3 Comparing Memory ... 311

18 Using the Instruction Set Simulator ... 313

18.1 Introduction ... 313

18.2 Connecting to the Simulator .. 314

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

xii

19 Programming a VxWorks Boot ROM into Flash Memory 321

19.1 Introduction ... 321

19.2 Configuring The Target ... 322

19.2.1 Making Physical Connections ... 322

19.2.2 Testing Memory and Breakpoints .. 323

Reading and Writing Memory .. 323
Testing Breakpoints .. 324

19.3 Flashing the Boot ROM ... 324

19.3.1 Playing a Register File ... 325

19.3.2 Setting Up Chip Select 0 and Programming the Reset Configuration
Word .. 325

19.3.3 Unlocking Flash .. 326

19.3.4 Programming Flash .. 326

20 Programming a Linux Bootloader into Flash Memory 333

20.1 Introduction ... 333

20.2 Installing the Bootloader .. 334

20.3 Configuring and Building the Bootloader .. 334

20.3.1 Configuring and Building the Bootloader Manually 335

Modifying the boardConfig.h File ... 335
Building a Downloadable U-Boot File .. 336

20.4 Configuring the Target .. 338

20.4.1 Making Physical Connections .. 338

20.4.2 Testing Memory and Breakpoints .. 339

Reading and Writing Memory .. 339
Testing Breakpoints .. 339

20.5 Flashing the Bootloader .. 340

20.5.1 Playing a Register File ... 340

 Contents

xiii

20.5.2 Setting Up Chip Select 0 and Programming the Reset Configuration
Word .. 341

20.5.3 Unlocking Flash .. 341

20.5.4 Programming Flash .. 342

21 Downloading a Kernel Image Using a JTAG Connection 345

21.1 Introduction ... 345

21.2 Bypassing the Boot Line Address -- VxWorks .. 347

21.2.1 Manually Setting the BOOT_LINE_ADRS Location 348

21.2.2 Forcing the DEFAULT_BOOT_LINE ... 348

21.3 Bypassing the Boot Line Setup -- Linux ... 349

21.4 Downloading the Kernel Image .. 351

22 Kernel-Aware Debugging .. 357

22.1 Introduction ... 357

22.1.1 VxWorks 5.5 .. 357

22.1.2 Linux .. 357

22.1.3 ThreadX ... 358

Index .. 359

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

xiv

1

 1
Introduction

1.1 Document Overview 1

1.2 Other Resources 2

1.1 Document Overview

This document is designed to help you understand the Wind River On-Chip
Debugging solution. For On-Chip Debugging, Wind River provides the
Wind River ICE SX and Wind River Probe emulators and the Wind River
Workbench development suite. Together, these products provide a fully integrated
hardware and software solution for board bring-up, flash programming,
production, and testing.

Wind River emulators allow you to perform source-level debug activities such as
watching memory and controlling large numbers of registers.

Wind River emulators let you control a target by using the On-Chip Debugging
(OCD) services embedded in the microprocessor of that target. An emulator
operates effectively as a standalone system, communicating with the OCD services
resident in the microcode of the chip.

When you access the OCD services in a chip, you gain complete control of the
microprocessor, and all interaction between the emulator and the target runs
exclusively through the OCD connection. This means that the emulation system is

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

2

effective for the entire development process, even before board-level peripherals
are stable.

This document describes common use cases for the Wind River ICE SX and
Wind River Probe emulators, including:

■ Setting up OS-independent projects.

■ Debugging Linux targets.

■ Working with registers and register groups.

■ Programming flash memory.

■ Creating, editing, and using board descriptor files.

■ Debugging multiple cores.

■ Tracing executing code.

■ Performing statistical profiling analysis on executing code.

■ Examining cache on your target.

■ Flashing a Linux boot loader on your target.

■ Flashing a VxWorks boot ROM on your target.

■ Downloading an image to your target without using a boot ROM or boot
loader.

This document provides a collection of tutorials for the operations described
above, and provides step-by-step instructions on how to perform them using
Wind River Workbench.

1.2 Other Resources

For information on the Wind River ICE SX and Wind River Probe, including
hardware information, establishing communications with Wind River Workbench,
and defining launch configurations, see the Wind River ICE SX for Wind River
Workbench Hardware Reference or the Wind River Probe for Wind River Workbench
Hardware Reference.

1 Introduction
1.2 Other Resources

3

1For information on low-level commands available for the Wind River ICE SX and
Wind River Probe, see the Wind River Workbench for On-Chip Debugging Command
Reference.

For information on configuration options for the Wind River ICE SX and
Wind River Probe, see the Wind River Workbench for On-Chip Debugging
Configuration Options Reference.

For information on Wind River Workbench, see the Wind River Workbench User’s
Guide.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

4

5

 2
Basic Operation: Debugging

with a Project

2.1 Introduction 5

2.2 Connecting to the Target 6

2.3 Creating a Project 18

2.4 Debugging Code 25

2.5 Moving On 32

2.1 Introduction

This chapter provides a tutorial on basic operation of Wind River Workbench for
On-Chip Debugging (OCD).

You can use Wind River Workbench to run and debug code either in combination
with the Workbench project management utility, or without a project. This chapter
assumes you are debugging with a Workbench project. For a tutorial on debugging
without a Workbench project, see 3. Basic Operation: Debugging Without a Project.

This tutorial includes the following topics:

■ Launching Wind River Workbench.

■ Connecting to a Wind River emulator and a target processor.

■ Creating a sample project.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

6

■ Building a sample project.

■ Downloading code to the target.

■ Debugging code running on the target.

2.2 Connecting to the Target

First, open Workbench according to the method for your host computer.

Linux/Solaris Hosts

From your installation directory, issue the command

$./startWorkbench.sh

Windows Hosts

Select Start > All Programs > Wind River > Wind River Workbench version.

On Windows hosts, Workbench prompts you to specify a workspace location.
Linux and Solaris hosts use the default location installDir/workspace.

The Welcome screen appears.

2 Basic Operation: Debugging with a Project
2.2 Connecting to the Target

7

2

1. Click Workbench.

Workbench opens, displaying the Quick Target Launch dialog.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

8

Workbench saves all information regarding a particular emulator-target
connection in a launch configuration. The launch configuration includes such
configuration information as emulator type, target processor family, target
CPU, and host-PC interface port, plus any port parameters such as IP address
(if using a Wind River ICE SX), serial number (if using a Wind River Probe) or
baudrate.

Once you have defined an emulator-target connection, Workbench saves it in
the workspace folder. The next time you open Workbench, that launch
configuration will appear in the Defined Launches area of the Quick Target
Launch dialog, and you can return to it by highlighting it and clicking
Connect, Attach, Reset and Download.

The Quick Target Launch dialog opens automatically any time you launch
Workbench. If you do not want to use the Quick Target Launch, select the Do
not show this dialog on startup checkbox and click Close. You can open the
Quick Target launch dialog at any time by clicking the OCD Quick Launch
button in the Workbench toolbar.

Since this is the first time you have opened Workbench, there are no existing
launch configurations, and you must create one.

2. Select Create a new launch configuration.

The Connection Type dialog appears.

2 Basic Operation: Debugging with a Project
2.2 Connecting to the Target

9

2

3. Select your connection type (Wind River ICE SX, Wind River Probe, or Wind
River Instruction Set Simulator) and click Next.

For instance, the examples in this tutorial show a Wind River Probe emulator
connected to a Wind River PPMC750FX target, so you would select Wind
River OCD Probe connection.

The Processor Selection dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

10

4. Click Select. From the list that appears, expand MPC7xx and select PPC750FX.

2 Basic Operation: Debugging with a Project
2.2 Connecting to the Target

11

2

5. Make sure the Auto-attach to connected designators checkbox is selected and
click OK.

You are returned to the Processor Selection dialog.

6. Click Next.

The Target Operating System Settings dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

12

7. In the Booted Target OS on selected CPU field, select the operating system
that is running on your target processor. The default is None.

8. Next to the Kernel Image field, click Browse to navigate to the kernel image
you wish to specify. If you selected None in the previous step, you do not need
to specify a kernel image.

9. If you are using a Linux plug-in, specify the pass-through options in the Target
OS Pass-Through Options field. If you are not using a Linux plug-in, skip this
step.

Options are passed as pairs in the format name=’value’. Separate options with
a comma. The following options are available:

■ notasklist=1 : Never fetch process list.

■ noautomodules=1 : Do not plant internal breakpoints to do automatic
kernel module load/unload detection. When this option is specified, you
must manually refresh to see an updated module list.

2 Basic Operation: Debugging with a Project
2.2 Connecting to the Target

13

2

■ noloadcheck=1 : Do not issue gophers until the hardware breakpoint is
used to detect kernel load triggers. This option is for “sensitive” boards
that don’t accept access until the kernel loads and sets up memory
mapping.

■ loaddetectloc=symbol or address: Set the hardware breakpoint used to
detect kernel load at symbol (for example, loaddetectloc=start_kernel) or
address (for example, loaddetectloc=0x1000). If you do not specify a
symbol or address, Workbench uses a default. For most architectures the
default is start_kernel; for PowerPC targets, the default is 0x0.

10. Click Next.

The Memory Options dialog appears.

Use the Memory Options dialog to specify how memory on the target is
partitioned, and what the attributes of the particular memory regions are.

NOTE: The Memory Options dialog is only necessary for Linux or other
non-VxWorks target operating systems.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

14

To specify an area of memory, click Add.

The Set Memory Map dialog appears.

Use the Set Memory Map dialog to specify which memory areas are read-only,
read-write, or write-only, and to specify the access width Workbench should
use to read the data from those regions.

11. Click Next.

The Object Path Mappings dialog appears.

2 Basic Operation: Debugging with a Project
2.2 Connecting to the Target

15

2

Use the Object Path Mappings dialog to specify how files in the target file
system are visible in the host file system.

12. To add a host or target path, click Add... and type the path in the dialog that
appears.

13. Click Next.

The Target State Refresh dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

16

Use the Target State Refresh dialog to configure the target state query and
target state refresh settings on your target processor.

14. Click Next.

The Default Breakpoint Options dialog appears.

2 Basic Operation: Debugging with a Project
2.2 Connecting to the Target

17

2

Use this dialog to set default breakpoint options for newly created
breakpoints.

15. Click Next.

The Connection Summary dialog appears. Inspect the displayed values to
make sure they are correct.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

18

16. Make sure that the Immediately connect to target if possible checkbox is
selected and click Finish.

Workbench creates a target connection called WRProbe_PPC750FX in the
Target Manager view.

The Reset and Download view appears.

17. Click Close in the Reset and Download view.

2.3 Creating a Project

This tutorial uses the C Demonstration Program, which is included in your
Workbench installation.

1. In the Workbench toolbar, select File > New > Project.

2 Basic Operation: Debugging with a Project
2.3 Creating a Project

19

2

The New Project wizard appears.

2. Expand the Examples folder and select Standalone Sample Project.

3. Click Next.

A sample project template appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

20

4. Select C Demonstration Program and click Finish.

Workbench creates the sample project in the default workspace folder and
opens the Application Development perspective.

5. In the Project Navigator view, expand the c_demo_sa project.

2 Basic Operation: Debugging with a Project
2.3 Creating a Project

21

2

6. To build the sample project for use with a PowerPC target, right-click on the
c_demo_sa top-level folder and select Build Options > Set Active Build Spec.

The Set Active Build Spec and Debug Mode dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

22

7. Scroll to the top and highlight PPC603diab.

8. Select Debug mode (use debug mode flags) so Workbench will generate
symbolic debug information.

9. Click OK.

10. Right-click on the project name and select Rebuild Project.

Workbench builds the sample project. The results of the project build appear
in the Build Console view.

2 Basic Operation: Debugging with a Project
2.3 Creating a Project

23

2

2.3.1 Downloading the Sample Code

To run the sample code, use the following steps:

1. In the Target Manager, highlight the target connection name
WRProbe_PPC750FX.

2. In the Project Navigator view, right-click on cdemo.elf and select Reset and
Download.

The Reset and Download view appears.

3. Leave all settings at their defaults and click Debug.

The OCD Console view opens.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

24

The OCD Console view shows the progress of the download operation.

The Editor opens showing the Program Counter set at the beginning of the
application code.

2 Basic Operation: Debugging with a Project
2.4 Debugging Code

25

2

You are now ready to run and debug the application.

2.4 Debugging Code

Use the Debug view to monitor, control, and manipulate the processes and tasks
that you are actively debugging. The Debug view shows only the processes that
are currently under debugger control.

2.4.1 Monitoring Processes

When you start processes under debugger control, or attach the debugger to
running processes, they appear in the Debug view labeled with unique colors and
numbers. You can change the color assigned to a process or thread by right-clicking
the process or thread and selecting Color > specific color.

2.4.2 Stepping Through Code

The Editor shows the source file diabasm.s, showing the C Demonstration Project
initialization assembly.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

26

In the Debug view, click the Step Into button.

The Program Counter moves to the second assembly instruction. If you open the
Memory view or the Registers view, you can see them update memory and
register values as you step through instructions.

Click the Step Into button seven more times, to step through all the initialization
code and reach the first branch instruction:

bl main

This is where the application branches out of assembly into C code.

Click the Step Into button again.

The application branches into main() and the Editor opens the source file cdemo.c.

2 Basic Operation: Debugging with a Project
2.4 Debugging Code

27

2

2.4.3 Setting a Software Breakpoint

Breakpoints allow you to stop a running program at particular places in the code
or when specific conditions exist.

In the left ruler of the Editor (the gutter), double-click to the left of the source line

globalstring[2] = “two”;

This sets a software breakpoint on that source line. The breakpoint appears in the
Breakpoints view.

In the Debug view, click the Resume button. The program runs until it hits the
breakpoint. The System Context changes to Stopped -- Breakpoint Hit.

Breakpoint information also appears in the OCD Command Shell:

>RUN>

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

28

!BREAK! - [msg12000] Software breakpoint; PC = 0x00014074 [EVENT Taken]
>BKM>

2.4.4 Running a Program

To run your downloaded program, click Resume in the Debug view. The program
will run until it hits a breakpoint. If there are no breakpoints or interrupts, the
program will run to completion or until you click Suspend.

When the program is running, the System Context changes to Running, and a
>RUN> prompt appears in the OCD Command Shell.

If there are no breakpoints, you can stop the program by clicking the Suspend
button in the Debug view or by entering the HA command at the >RUN> prompt
in the OCD Command Shell.

The Editor updates to show the current location of the Program Counter and the
System Context in the Debug view changes to Stopped -- User Request.

2 Basic Operation: Debugging with a Project
2.4 Debugging Code

29

2

2.4.5 Stepping Through a Program

To single-step without going into other subroutines, click Step Over instead of
Step Into.

While stepping through a program, you may conclude that the problem you are
interested in lies in the current subroutine’s caller, rather than at the stack level
where your process is suspended. In this situation, if you click Step Return,
execution continues until the current subroutine completes, then the debugger
regains control in the calling statement.

2.4.6 Setting a Hardware Breakpoint

The availability of hardware breakpoints varies by architecture. You can only set
as many hardware breakpoints as there are debug registers available on your
target.

Once a hardware breakpoint is trapped, the debugger will behave in the same way
as for a standard breakpoint and stop for user interaction.

In the Breakpoints view, click on the Menu button and select Add Data
Breakpoint.

The Data Breakpoint dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

30

If an error message appears, you may have exceeded the number of allowed
hardware breakpoints (four for most targets). Right-click in the Breakpoints view
and select Remove All. Then select Menu > Add Data Breakpoint again.

If an error message still appears, your target may not support hardware
breakpoints.

You can use data hardware breakpoints to find out which routines are modifying
a specific variable.

The Address Expression can be a symbol or a specific address in hex. You can use
the address 0x0 in the Address Expression field to set a data hardware breakpoint
to catch null pointers. You can set the Address Expression field to an address in
the stack area to set a data hardware breakpoint to find out if the stack grew to that
point.

The following example sets a symbol in the Address Expression field.

1. Click Browse.

2 Basic Operation: Debugging with a Project
2.4 Debugging Code

31

2

The Select Symbol dialog appears, showing a list of available symbols that can
take a hardware breakpoint.

2. Scroll down and highlight the symbol wait_index.

3. Click OK.

The global variable wait_index is now the address for the data hardware
breakpoint.

The hardware breakpoint on wait_index appears in the Breakpoints view.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

32

In the Debug view, click Resume.

The program runs until it hits the hardware breakpoint. Workbench halts the
processor when it locates wait_index and displays that source line in the Editor.

2.4.7 Disconnecting and Terminating Processes

Disconnecting from a process or core detaches the debugger, but leaves the process
or core in its current state.

Terminating a process actually kills the process on the target.

2.5 Moving On

For descriptions of other features of Wind River Workbench for On-Chip
Debugging, such as code profiling, code tracing, and so on, see the relevant
chapters in this document.

NOTE: If the selected target supports terminating individual threads, you can
select a thread and terminate only that thread.

33

 3
Basic Operation: Debugging

Without a Project

3.1 Introduction 33

3.2 Connecting to the Target 34

3.3 Downloading Code 46

3.4 Debugging Code 53

3.5 Moving On 61

3.1 Introduction

This chapter provides a tutorial on basic operation of Wind River Workbench for
On-Chip Debugging (OCD).

You can use Wind River Workbench to run and debug code either in combination
with the Workbench project management utility, or without a project. This chapter
assumes you are debugging without using a Workbench project. For a tutorial on
debugging without a Workbench project, see 2. Basic Operation: Debugging with a
Project.

This tutorial includes the following topics:

■ Launching Wind River Workbench.

■ Connecting to a Wind River emulator and a target processor.

■ Downloading code to the target.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

34

■ Debugging code running on the target.

3.2 Connecting to the Target

First, open Workbench according to the method for your host computer.

Linux/Solaris Hosts

From your installation directory, issue the command

$./startWorkbench.sh

Windows Hosts

Select Start > All Programs > Wind River > Wind River Workbench version.

On Windows hosts, Workbench prompts you to specify a workspace location.
Linux and Solaris hosts use the default location installDir/workspace.

The Welcome screen appears.

3 Basic Operation: Debugging Without a Project
3.2 Connecting to the Target

35

3

1. Click Workbench.

Workbench opens, displaying the Quick Target Launch dialog.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

36

Workbench saves all information regarding a particular emulator-target
connection in a launch configuration. The launch configuration includes such
configuration information as emulator type, target processor family, target
CPU, and host-PC interface port, plus any port parameters such as IP address
(if using a Wind River ICE SX), serial number (if using a Wind River Probe) or
baudrate.

Once you have defined an emulator-target connection, Workbench saves it in
the workspace folder. The next time you open Workbench, that launch
configuration will appear in the Defined Launches area of the Quick Target
Launch dialog, and you can return to it by highlighting it and clicking
Connect, Attach, Reset and Download.

The Quick Target Launch dialog opens automatically any time you launch
Workbench. If you do not want to use the Quick Target Launch, select the Do
not show this dialog on startup checkbox and click Close. You can open the
Quick Target launch dialog at any time by clicking the OCD Quick Launch
button in the Workbench toolbar.

Since this is the first time you have opened Workbench, there are no existing
launch configurations, and you must create one.

2. Select Create a new launch configuration.

The Connection Type dialog appears.

3 Basic Operation: Debugging Without a Project
3.2 Connecting to the Target

37

3

3. Select your connection type (Wind River ICE SX, Wind River Probe, or Wind
River Instruction Set Simulator) and click Next.

For instance, the examples in this tutorial show a Wind River Probe emulator
connected to a Wind River PPMC750FX target, so you would select Wind
River OCD Probe connection.

The Processor Selection dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

38

4. Click Select. From the list that appears, expand MPC7xx and select PPC750FX.

3 Basic Operation: Debugging Without a Project
3.2 Connecting to the Target

39

3

5. Make sure the Auto-attach to connected designators checkbox is selected and
click OK.

You are returned to the Processor Selection dialog.

6. Click Next.

The Target Operating System Settings dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

40

7. In the Booted Target OS on selected CPU field, select the operating system
that is running on your target processor. The default is None.

8. Next to the Kernel Image field, click Browse to navigate to the kernel image
you wish to specify. If you selected None in the previous step, you do not need
to specify a kernel image.

9. If you are using a Linux plug-in, specify the pass-through options in the Target
OS Pass-Through Options field. If you are not using a Linux plug-in, skip this
step.

Options are passed as pairs in the format name=’value’. Separate options with
a comma. The following options are available:

■ notasklist=1 : Never fetch process list.

■ noautomodules=1 : Do not plant internal breakpoints to do automatic
kernel module load/unload detection. When this option is specified, you
must manually refresh to see an updated module list.

3 Basic Operation: Debugging Without a Project
3.2 Connecting to the Target

41

3

■ noloadcheck=1 : Do not issue gophers until the hardware breakpoint is
used to detect kernel load triggers. This option is for “sensitive” boards
that don’t accept access until the kernel loads and sets up memory
mapping.

■ loaddetectloc=symbol or address: Set the hardware breakpoint used to
detect kernel load at symbol (for example, loaddetectloc=start_kernel) or
address (for example, loaddetectloc=0x1000). If you do not specify a
symbol or address, Workbench uses a default. For most architectures the
default is start_kernel; for PowerPC targets, the default is 0x0.

10. Click Next.

The Memory Options dialog appears.

Use the Memory Options dialog to specify how memory on the target is
partitioned, and what the attributes of the particular memory regions are.

NOTE: The Memory Options dialog is only necessary for Linux or other
non-VxWorks target operating systems.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

42

To specify an area of memory, click Add.

The Set Memory Map dialog appears.

Use the Set Memory Map dialog to specify which memory areas are read-only,
read-write, or write-only, and to specify the access width Workbench should
use to read the data from those regions.

11. Click Next.

The Object Path Mappings dialog appears.

3 Basic Operation: Debugging Without a Project
3.2 Connecting to the Target

43

3

Use the Object Path Mappings dialog to specify how files in the target file
system are visible in the host file system.

12. To add a host or target path, click Add... and type the path in the dialog that
appears.

13. Click Next.

The Target State Refresh dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

44

Use the Target State Refresh dialog to configure the target state query and
target state refresh settings on your target processor.

14. Click Next.

The Default Breakpoint Options dialog appears.

3 Basic Operation: Debugging Without a Project
3.2 Connecting to the Target

45

3

Use this dialog to set default breakpoint options for newly created
breakpoints.

15. Click Next.

The Connection Summary dialog appears. Inspect the displayed values to
make sure they are correct.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

46

16. Make sure that the Immediately connect to target if possible checkbox is
selected and click Finish.

Workbench creates a target connection called WRProbe_PPC750FX in the
Target Manager view.

The Reset and Download view appears.

3.3 Downloading Code

Use the steps in this section to download symbols and code to your target.

1. In the Reset and Download view, select the Reset tab.

3 Basic Operation: Debugging Without a Project
3.3 Downloading Code

47

3

2. If you want to configure the target register values with a register file, select
Play Register File and browse for the file you want to use.

Register files for many Wind River-supported targets are located in
installDir/workbench-2.x/dfw/build/host/registers.

If you do not want to reconfigure your target registers, leave this box
unchecked.

3. Choose the type of reset initialization you want to perform.

You can use the IN or INN initialization commands. For a full discussion of
these two commands, see the Wind River Workbench for On-Chip Debugging
Command Reference.

You can also choose not to perform an initialization by clearing the Reset box.

4. Select the Download tab.

! CAUTION: If you are manually changing registers on your target, be aware that
issuing an IN or INN initialization command will overwrite your changes.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

48

5. Click Add Files.

In the browser window that appears, navigate to the executable file you want
to run.

The file you select appears in the Filename field. Repeat this process as many
times as necessary.

The file at the top of the list will download to the target first, followed by the
others from the top down. You can edit the order of the list by clicking on any
filename to highlight it and using the Up, Down, and Delete buttons.

6. Use the other fields to configure the download.

Download

The Download field is checked by default. If you clear it, the file will remain
on the list but will not download data to the target. This is useful if, for
example, you only want to download symbol information and not data.

Verify

The Verify field configures the extent to which the file you are downloading
will be compared to a file that may already be on the target. There are three
options: Full, Compare, and None.

When this field is set to Full, a write/read verify will occur for every
download. Workbench writes to the target and then verifies that the write to
the target and the read from the target are identical. This is slower than a
normal download, but it is a useful security option.

When the field is set to Compare, Workbench will verify that the image has
been downloaded correctly (that is, that the image on the host is the same as
the image on the target.) This is useful for programming flash.

When the field is set to None, Workbench will perform no verification.

The Verify field is set to None by default.

NOTE: You should only set the Verify field to Compare if an image already
exists on the target. If you set the field to Compare when there is no image on
the target, Workbench will look for a file to compare and not find one, and the
reset and download operation will fail.

3 Basic Operation: Debugging Without a Project
3.3 Downloading Code

49

3

Load Symbols

The Load Symbols field, which is checked by default, determines whether the
file’s symbol information is downloaded to the target.

Offset

In the Offset field, you can enter a value in hex to set a memory offset bias for
your application file. If you do not enter a value, Workbench uses the default
value 0x00000000.

7. Select the Instruction Pointer tab.

8. Set the starting point for your file.

By default, the instruction pointer is set to use the starting address from the
download file.

You can set the instruction pointer to start the file from the first occurrence of
a particular symbol (for example, main) or you can just specify a starting
address by entering the address value in hex in the Use Specified Start
Address field.

If you do not want to set a starting point, clear the Set Instruction Pointer
After Download box.

9. Select the Run Options tab.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

50

10. Determine how you want your file to run.

By default, the Reset and Download view is set not to run the file after
downloading. If you want the file to run, you have several options to
determine where it should break:

■ You can set it to break at the first occurrence of a symbol (for example,
main) by selecting Run to Symbol and entering the symbol in that field.

■ You can set it to break at the end of your program by selecting Run to end
of program.

■ You can set it to break at a given memory address by selecting the Run to
Address box and entering the address in hex in that field.

■ You can set it to break at an _exit routine by selecting the Break at Exit box.

If you need to perform a post-initialization, you can define it here. Select the
Play post download script box and click Browse. In the browser window that
appears, navigate to your initialization file.

11. Select the Source tab.

12. Use the Source tab to configure the source path of your file.

3 Basic Operation: Debugging Without a Project
3.3 Downloading Code

51

3

Workbench uses the input path of the local file system by default. Unless you
need to use a different path, you do not need to do anything in the Source tab.

If you need to use a different path, click Add... and use the Add Source dialog
to configure the appropriate search path for your project.

13. Select the Common tab.

14. Specify whether your launch configuration is local or shared.

The configuration is local by default. To make it shared, click Shared file: and
browse to the shared directory where you want the configuration to be located.

You have now fully defined your reset and download operation.

15. Click Debug.

Workbench initializes the target board, then downloads the file, then runs the
file.

The OCD Console view opens to show the progress of the reset and download
operation.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

52

The Editor opens showing the Program Counter set at the beginning of the
application code.

3 Basic Operation: Debugging Without a Project
3.4 Debugging Code

53

3

You are now ready to run and debug the application.

3.4 Debugging Code

Use the Debug view to monitor, control, and manipulate the processes and tasks
that you are actively debugging. The Debug view shows only the processes that
are currently under debugger control.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

54

3.4.1 Monitoring Processes

When you start processes under debugger control, or attach the debugger to
running processes, they appear in the Debug view labeled with unique colors and
numbers. You can change the color assigned to a process or thread by right-clicking
the process or thread and selecting Color > specific color.

3.4.2 Stepping Through Code

The Editor shows the source file diabasm.s, showing the C Demonstration Project
initialization assembly.

In the Debug view, click the Step Into button.

The Program Counter moves to the second assembly instruction. If you open the
Memory view or the Registers view, you can see them update memory and
register values as you step through instructions.

Click the Step Into button seven more times, to step through all the initialization
code and reach the first branch instruction:

bl main

This is where the application branches out of assembly into C code.

Click the Step Into button again.

3 Basic Operation: Debugging Without a Project
3.4 Debugging Code

55

3

The application branches into main() and the Editor opens the source file cdemo.c.

3.4.3 Setting a Software Breakpoint

Breakpoints allow you to stop a running program at particular places in the code
or when specific conditions exist.

In the left ruler of the Editor (the gutter), double-click to the left of the source line

globalstring[2] = “two”;

This sets a software breakpoint on that source line. The breakpoint appears in the
Breakpoints view.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

56

In the Debug view, click the Resume button. The program runs until it hits the
breakpoint. The System Context changes to Stopped -- Breakpoint Hit.

Breakpoint information also appears in the OCD Command Shell:

>RUN>

!BREAK! - [msg12000] Software breakpoint; PC = 0x00014074 [EVENT Taken]
>BKM>

3.4.4 Running a Program

To run your downloaded program, click Resume in the Debug view. The program
will run until it hits a breakpoint. If there are no breakpoints or interrupts, the
program will run to completion or until you click Suspend.

3 Basic Operation: Debugging Without a Project
3.4 Debugging Code

57

3

When the program is running, the System Context changes to Running, and a
>RUN> prompt appears in the OCD Command Shell.

If there are no breakpoints, you can stop the program by clicking the Suspend
button in the Debug view or by entering the HA command at the >RUN> prompt
in the OCD Command Shell.

The Editor updates to show the current location of the Program Counter and the
System Context in the Debug view changes to Stopped -- User Request.

3.4.5 Stepping Through a Program

To single-step without going into other subroutines, click Step Over instead of
Step Into.

While stepping through a program, you may conclude that the problem you are
interested in lies in the current subroutine’s caller, rather than at the stack level

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

58

where your process is suspended. In this situation, if you click Step Return,
execution continues until the current subroutine completes, then the debugger
regains control in the calling statement.

3.4.6 Setting a Hardware Breakpoint

The availability of hardware breakpoints varies by architecture. You can only set
as many hardware breakpoints as there are debug registers available on your
target.

Once a hardware breakpoint is trapped, the debugger will behave in the same way
as for a standard breakpoint and stop for user interaction.

In the Breakpoints view, click on the Menu button and select Add Data
Breakpoint.

The Data Breakpoint dialog appears.

3 Basic Operation: Debugging Without a Project
3.4 Debugging Code

59

3

If an error message appears, you may have exceeded the number of allowed
hardware breakpoints (four for most targets). Right-click in the Breakpoints view
and select Remove All. Then select Menu > Add Data Breakpoint again.

If an error message still appears, your target may not support hardware
breakpoints.

You can use data hardware breakpoints to find out which routines are modifying
a specific variable.

The Address Expression can be a symbol or a specific address in hex. You can use
the address 0x0 in the Address Expression field to set a data hardware breakpoint
to catch null pointers. You can set the Address Expression field to an address in
the stack area to set a data hardware breakpoint to find out if the stack grew to that
point.

The following example sets a symbol in the Address Expression field.

1. Click Browse.

The Select Symbol dialog appears, showing a list of available symbols that can
take a hardware breakpoint.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

60

2. Scroll down and highlight the symbol wait_index.

3. Click OK.

The global variable wait_index is now the address for the data hardware
breakpoint.

The hardware breakpoint on wait_index appears in the Breakpoints view.

3 Basic Operation: Debugging Without a Project
3.5 Moving On

61

3

In the Debug view, click Resume.

The program runs until it hits the hardware breakpoint. Workbench halts the
processor when it locates wait_index and displays that source line in the Editor.

3.4.7 Disconnecting and Terminating Processes

Disconnecting from a process or core detaches the debugger, but leaves the process
or core in its current state.

Terminating a process actually kills the process on the target.

3.5 Moving On

For descriptions of other features of Wind River Workbench for On-Chip
Debugging, such as code profiling, code tracing, and so on, see the relevant
chapters in this document.

NOTE: If the selected target supports terminating individual threads, you can
select a thread and terminate only that thread.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

62

63

 4
Using the OCD Standalone

Project Wizard

4.1 Introduction 63

4.2 Creating an OCD Standalone Project 64

4.3 Building an OCD Standalone Project 71

4.4 Setting Standalone Project Defaults 72

4.1 Introduction

Every Workbench project has a set of build specs from which you can select,
depending on your target processor. For example, there may be a build spec for a
PowerPC 603 target and a different build spec for an ARM 920T target, as well as
many other variations.

For operating system-independent (standalone) applications, rather than simply
providing all possible variations, Workbench provides a Standalone Project
Wizard, from which you can create a build spec dynamically.

Standalone application projects can only be debugged using OCD functionality.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

64

4.2 Creating an OCD Standalone Project

To create a standalone project:

1. In Workbench, select File > New > Standalone Application Project.

The Standalone Project wizard appears, as shown in Figure 4-1.

2. In the Project Name field, assign a name to your project. In the example shown
in Figure 4-1, the project name is Test_OCD_Project.

3. Click Next.

Figure 4-1 Standalone Wizard -- Project Name

4 Using the OCD Standalone Project Wizard
4.2 Creating an OCD Standalone Project

65

4

4. Specify the build defaults for your project.

If your build structure is similar to the filesystem structure, select Standard.

If your build targets contain files from any project in your workspace, select
Flexible.

5. Click Next.

Figure 4-2 Standalone Wizard -- Build Defaults

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

66

6. Specify the build support for your project.

You can also use this step to determine how build output is passed.

7. Click Next.

The Build Spec wizard appears, as shown in Figure 4-4.

Figure 4-3 Standalone Wizard -- Build Support

4 Using the OCD Standalone Project Wizard
4.2 Creating an OCD Standalone Project

67

4

Use the Build Spec wizard to create a set of build tool commands for a specific
target environment. You will need to create a build spec for each target you
want to build for.

To complete the wizard you must fully expand at least one node of the tree and
select an innermost node, as shown in Figure 4-5.

Figure 4-4 Build Spec Wizard

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

68

8. Click Next.

Figure 4-5 Build Spec Wizard -- Innermost Node

4 Using the OCD Standalone Project Wizard
4.2 Creating an OCD Standalone Project

69

4

Specify the build tool for your project.

The Build Tool: field has five options: Linker, C-Linker, C++Linker,
Librarian, or (User-Defined). You can switch the build tool to build static
libraries with this project type, or to use the C or C++ compiler for linking.

If the project is created as a root project, the default is Linker.

If the project is created as a subproject, the default is Librarian.

9. Click Next.

Figure 4-6 Standalone Wizard -- Build Target

NOTE: If you selected an existing project before starting the wizard, you may
select a superproject for the new project.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

70

Configure the process of analyzing your source code.

By default, the wizard is set to enable static analysis and to generate
cross-reference information. To disable either of these options, clear the
checkbox in the wizard.

10. Click Finish.

Your project appears in the Project Navigator view, as shown in Figure 4-8.

Figure 4-7 Standalone Wizard -- Static Analysis

4 Using the OCD Standalone Project Wizard
4.3 Building an OCD Standalone Project

71

4

4.3 Building an OCD Standalone Project

To build your project, right-click on the test name in the Project Navigator view
and select Build Project. Build output is displayed in the Build Console view, as
shown in Figure 4-9.

You can now run and debug your standalone project.

Figure 4-8 Test Project

Figure 4-9 Build Console View

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

72

4.4 Setting Standalone Project Defaults

You can set workspace build defaults in Workbench and specify default build
specs for all new standalone projects.

To set standalone project defaults:

1. In Workbench, select Window > Preferences.

The Preferences dialog appears, as shown in Figure 4-10.

2. Select Build Properties.

NOTE: Setting new standalone defaults will not affect already-existing standalone
projects.

Figure 4-10 Preferences Dialog

4 Using the OCD Standalone Project Wizard
4.4 Setting Standalone Project Defaults

73

4

3. In the Specify Default Build Properties for New: field, select Standalone
Application Project (Wind River Standalone (No Operating System)
Platform 1.0).

4. Select the Build Support tab.

5. Use the settings in the Build Support tab to configure the build support for
standalone projects and click Apply.

6. Repeat this procedure for the Build Specs, Build Tools, Build Macros, and
Build Paths tabs.

7. Click OK.

Figure 4-11 Build Properties

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

74

Any new standalone projects you create will now use the settings you specified in
the Preferences dialog as defaults.

75

 5
Defining a Launch

Configuration

5.1 Introduction 75

5.2 Creating a Launch Configuration 76

5.3 Other Options 85

5.1 Introduction

Use the Launch Configuration dialog to edit your defined emulator-target
connections and their associated actions, such as initializing your target board and
downloading a file to run on your target.

The Launch Configuration dialog is very similar to the Reset and Download
view, which is described in the Establishing Communications chapter of your
emulator’s Hardware Reference. The difference is that the Launch Configuration,
once defined, is persistent, and you can launch it at any time with one click without
having to re-enter your values.

The values you enter in the Reset and Download view are not persistent to the
Launch Configuration you defined for your emulator and target, so using the
Reset and Download view will not affect your Launch Configuration.

In the Workbench toolbar, select Run > Debug.

The Launch Configuration dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

76

You can use the Launch Configuration dialog to create a new launch configuration
or to edit, delete, or duplicate an existing launch configuration.

5.2 Creating a Launch Configuration

To create a new OCD launch configuration, use the following steps.

1. Highlight the configuration type OCD Reset and Download and click the
New button.

The Main tab appears.

5 Defining a Launch Configuration
5.2 Creating a Launch Configuration

77

5

2. Assign a name to the launch configuration.

By default, the Name field will populate with the name of the most recently
used target connection. If you want to use a different name, select the Name
field and enter a name.

The connection registry is set to localhost by default.

3. Connect to an emulator and target.

To connect using the default target connection, click Connect.

If you want to create a new target connection, click Create a New Target
Connection to open the New Connection wizard. Create a target connection
following the procedure described in 2.2 Connecting to the Target, p.6.

If you decide you want to change your emulator settings, you can return to the
Settings dialog box by clicking Properties.

Your emulator is now connected to the host computer and your target.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

78

5.2.1 Specifying Files

To download and run a file on your target, use the other tabs on the Launch
Configuration dialog.

1. Select the Projects to Build tab.

By default, the project you specify will build before the configuration is
launched. If you do not want the project to build first, select
Window > Preferences > Launching and clear the Build (if required) before
launching check box.

2. To specify a project to build, click Add Project... and select the project name
from the list of available projects in the dialog that appears.

You can add more than one project. Edit your project list with the Up, Down,
and Remove buttons.

3. Select the Reset tab.

5 Defining a Launch Configuration
5.2 Creating a Launch Configuration

79

5

4. If you want to play a register file, select Play Register File and browse for the
register file you want to use.

This example shows a Wind River PPMC750FX target; the Wind River register
file for this target is ppmc750fx.reg, located in
installDir/workbench-2.x/dfw/build/host/registers in the directory
PowerPC/7xx/WindRiver_PPMC.

If you do not want to reconfigure your target registers, leave this box
unchecked.

5. Choose the type of reset initialization you want to perform.

You can use the IN or INN initialization commands. For a full discussion of
these two commands, see the Wind River Workbench for On-Chip debugging
Command Reference.

You can also choose not to perform an initialization by clearing the Reset box.

6. Select Specified Core.

In the Cores Tied on Reset field, you will see a list of all the cores on your JTAG
scan chain. If you want your reset and download to affect only one core, click
on that core in the Cores Tied on Reset field and check Specified Core. If you

! CAUTION: If you are manually changing registers on your target, be aware that
issuing an IN or INN initialization command will overwrite your changes.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

80

want your reset and download to affect all your target boards, click on All
Cores.

The Wind River Probe does not support multi-core debugging, so if you are
using a Wind River Probe, you do not need to set the Cores Tied on Reset field.

7. Select the Download tab.

8. Click Add Files.

In the browser window that appears, navigate to the executable file you want
to run. This example shows the PowerPC version of the executable cdemo.elf
file from the sample C Demonstration Project.

The file you select appears in the Filename field. Repeat this process as many
times as necessary.

The file at the top of the list will download to the target first, followed by the
others from the top down. You can edit the order of the list by clicking on any
filename to highlight it and using the Up, Down and Delete buttons.

9. Use the other fields to configure the download.

The Download field is selected by default. If you clear it, the file will remain
on the list but will not download data to the target. This is useful if, for
example, you only want to download symbol information and not data.

Figure 5-1 Download Tab

5 Defining a Launch Configuration
5.2 Creating a Launch Configuration

81

5

The Verify field configures the extent to which the file you are downloading
will be compared to a file that may already be on the target. By default this
field is set to None.

The Load Symbol field, which is selected by default, determines whether the
symbol information from the file is downloaded to the target.

In the Offset field, you can enter a value in hex to set a memory offset bias for
your application file. If you do not enter a value, Workbench will use the
default value 0x00000000.

10. Select the Instruction Pointer tab.

11. Set the starting point for your file.

By default, the instruction pointer is set to use the starting address from the
download file. However, you can set it to start the file from the first occurrence
of a particular symbol (for example, main) or you can just specify a starting
address by typing the address value in hex in the Use Specified Start Address
field.

If you do not want to set a starting point, clear the Set Instruction Pointer
After Download box.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

82

12. Select the Run Options tab.

13. Determine how you want your file to run.

By default, the launch configuration is set not to run the file after
downloading. If you want the file to run, you have several options to
determine where it should break:

■ You can set it to break at the first occurrence of a symbol (for example,
main) by checking the Run to Symbol box and entering the symbol in that
field.

■ You can set it to break at a given memory address by checking the Run to
Address box and entering the address in hex in that field.

■ You can set it to break at an _exit routine by checking the Break at Exit box.

If you need to perform a post-initialization, you can define it here. Select the
Play Post Download Script box and click Browse. In the browser window that
appears, navigate to your initialization file.

14. Select the Source tab.

5 Defining a Launch Configuration
5.2 Creating a Launch Configuration

83

5

15. Use the Source tab to configure the source path of your file.

Workbench uses the input path of the local file system by default. Unless you
need to use a different path, you do not need to do anything in the Source tab.

If you need to use a different path, click Add... and use the Add Source dialog
to configure the appropriate search path for your project.

16. Select the Common tab.

Figure 5-2 Source Tab

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

84

17. Specify whether your launch configuration is local or shared.

The configuration is local by default. To make it shared, click Shared and
browse to the shared directory where you want the configuration to be located.

18. Select Debug.

This will make this launch configuration visible in the Debug menu in the
Workbench toolbar, so you can return to it and launch it at any time.

You have now fully defined your launch configuration.

19. Launch or close the configuration.

To launch the reset and download operation now, click Debug.

Workbench will first initialize the target board, then download the file, then
run the file. You can proceed to step through instructions and debug the file as
explained in the Wind River Workbench User’s Guide.

To save the launch configuration without downloading and running the file,
click Close.

The name you gave this configuration is now visible in the Debug menu in the
Workbench toolbar. To launch it at any time, click the menu arrow next to the
Debug icon. A list of launch configurations will appear; choose the one you
want to launch.

Figure 5-3 Common Tab

5 Defining a Launch Configuration
5.3 Other Options

85

5

5.3 Other Options

To create a duplicate of an existing launch configuration, highlight the
configuration name and click the Duplicate button.

To delete an existing launch configuration, highlight the configuration name and
click the Delete button.

To set which launch configurations the Launch Configuration dialog shows, click
the Filter button.

NOTE: Clicking on the Debug icon itself will automatically launch the most
recently used launch configuration.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

86

87

 6
Using Board Descriptor Files

6.1 Introduction 87

6.2 Board Descriptor Files 88

6.3 Creating a New Board Descriptor File 89

6.4 XML Board Files 98

6.5 Manually Creating XML Board Files 101

6.1 Introduction

Wind River emulators use the Joint Test Action Group (JTAG) interface to
communicate to the target microprocessor, and share this interface with
boundary-scan board-circuit testing. The JTAG interface follows the IEEE 1149.1
boundary-scan (JTAG/Test Interface) specification.

The JTAG interface consists of a set of five signals, three JTAG registers, and a test
access port (TAP) controller. The TAP controller is typically embedded in the target
microprocessor or device. The information related signals are TDI (Test Data In)

NOTE: This chapter applies only to applications that involve multi-core
debugging. For single-core debugging, you do not need to use a board descriptor
file. Multi-core debugging is not supported for the Wind River Probe. This chapter
applies only to the Wind River ICE SX.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

88

and TDO (Test Data Out). The boundary-scan register chain (data) includes
registers controlling the direction of the input/output drivers, as well as registers
reflecting the signal value received or driven. The expectation and details of
particular CPU chains are encoded directly into the emulator firmware.

Each device sharing the JTAG interface employs a serial stream of relative data.
The data streams for all devices can be chained together. An associated process can
scan the combined chain to extract any particular device’s information.

For additional information about JTAG operations, refer to the IEEE 1149.1
specification at http://standards.ieee.org.

6.2 Board Descriptor Files

In most cases you do not need to concern yourself with the JTAG board file.
However, when performing multi-core debugging, or when debugging a target
that has other devices besides the processor on the scan chain, your
Wind River ICE SX requires a board descriptor file to correctly set up the JTAG
scan chain for your target.

The board file provides a description of each of the devices that are included in the
scan chain, and provides information about each device.

All Wind River target boards are shipped with a board descriptor file that works
for that target board. If you are using a Wind River target board, you can specify
the default board descriptor file for that target in the New Connection Wizard in
Wind River Workbench, as described in the Wind River ICE SX Hardware Reference:
Establishing Communications.

Board descriptor files are written in extensible Markup Language (XML).
However, it is easiest to create or modify board files using Workbench. The
software allows you to create and catalog scan chain devices such as processors,
complex programmable logic devices (CPLDs), field-programmable gate arrays
(FPGAs), and application-specific integrated circuits (ASICs), and from that
catalog create a board file that properly describes the scan chain on your target.

NOTE: If you choose to modify a board descriptor file that was shipped with
Wind River Workbench, save your modified file with a different name to prevent
overwriting the default file.

6 Using Board Descriptor Files
6.3 Creating a New Board Descriptor File

89

6
6.3 Creating a New Board Descriptor File

Workbench uses JTAG Editor to create and modify board files. To use the JTAG
Editor view, you must first have an active project running. For information on
creating projects, see the Wind River Workbench User’s Guide.

To create a new board file:

1. Open your project in Workbench.

2. Select File > New > JTAG Board Layout.

The Create Board File dialog appears, as shown in Figure 6-1.

! CAUTION: Your board file must list the devices included on your scan chain in the
same order as they are physically laid out on the target. If the board file and the
physical scan chain do not match, the board file for your target will not work.

Figure 6-1 Create Board File Dialog

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

90

Wind River Workbench automatically populates the Parent Folder field with
your active project. In the File Name field, type a name for your board file. This
creates a .layout file, which JTAG Editor will use to create a .brd file in the next
step.

The example shown in Figure 6-1 creates a file called debug1.layout for the
project debug1.

3. Click Finish.

This opens the JTAG Editor view, as shown in Figure 6-2.

NOTE: JTAG Editor edits a .layout file, which is a graphic representation of the
board layout. A .brd file cannot be created until you have created a JTAG
layout, such as the one shown in Figure 6-4.

Figure 6-2 JTAG Editor

6 Using Board Descriptor Files
6.3 Creating a New Board Descriptor File

91

6

Using the Predefined Layouts in JTAG Editor

JTAG Editor includes predefined graphic layouts for one, two, three, and four
cores, which are displayed in the Editor toolbar to the left of the editing field,
as shown in Figure 6-3.

In the rare case where you need to debug more than four cores at the same
time, the JTAG Editor also includes a Custom option. See Using the Custom
Option in the JTAG Editor View, p.95, for more information.

4. In the JTAG toolbar, click Select.

5. Under Scan Chain, pick the number of cores you need to debug.

For example, if the debug1 project has two cores, click on Dual Core under the
Scan Chain heading and drag it into the editing field, as shown in Figure 6-4.

Figure 6-3 JTAG Editor Toolbar

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

92

The editing field now shows a graphic representation of the scan chain. Notice
that the two cores are labelled Undefined. They have no properties until you
assign them in the next step.

6. Double-click on the first core.

The Device Setup dialog appears, as shown in Figure 6-5.

NOTE: The core icon must be clicked and dragged into the editing field. Just
clicking on it will not do anything.

Figure 6-4 Dual Core Layout

NOTE: You can only drag one predefined layout into the editing field at a time.
If you drag in a second layout, it will overlay the first, causing confusion.

6 Using Board Descriptor Files
6.3 Creating a New Board Descriptor File

93

6

Use the dialog to select your processor type. The example in Figure 6-5 shows
a PPC750FX processor.

7. Click OK.

You are returned to the Device Debug Perspective. The first core is now
defined as a PPC750FX, and the Properties view is displayed.

Figure 6-5 Device Setup

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

94

You can use the Properties view to finish defining the first core.

Figure 6-6 Defining the Core

Figure 6-7 Properties View

6 Using Board Descriptor Files
6.3 Creating a New Board Descriptor File

95

6

8. Click on any property to modify it.

Clicking on the Register File property will open a browser window; use the
browser to navigate to the register file you want to use.

Your first core is now defined. To define your second core, double-click on it and
repeat Steps 6 through 8.

If both cores use the same processor type, make sure you edit the Designator value
in the Properties view. Workbench does not allow two cores to have the same
unique designator. For example, in Figure 6-7 the first core’s designator is
DES_7XX_04. If your second core is the same processor type as the first, the same
designator will appear in the Properties window. Click on the Designator value to
change it to (for instance) DES_7XX_05.

Once you have defined all your cores, you can create your board file.

9. Right-click on the editing area. In the dialog that appears, choose Export Board
File.

A browser window appears. Choose the folder you want to save your board
file in.

10. In the File Name field, type the name you wish to assign to your board file.

In the example, the board file name is debug1.brd.

11. Click Save.

Using the Custom Option in the JTAG Editor View

In the rare case where you need to debug more than four cores at the same time,
JTAG Editor uses a Custom option to create a new board file piece by piece.

1. In the JTAG toolbar (Figure 6-3), click Custom.

2. Construct your layout using the elements under the Custom heading.

The elements available are an input node (TDI) and a termination node (TDO),
as well as CPUs, ASICs, FPGAs, and peripherals. To add an element, click on
its icon and drag it into the editing field.

Figure 6-8 shows a partially completed layout with an input, a terminator,
three CPUs, and a peripheral device.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

96

Once you have your terminating nodes and devices laid out, you need to
connect them.

3. In the JTAG toolbar, click Connections.

When you move the cursor back into the editing field, it now looks like a
power cord.

4. Click on the input node.

5. Move the cursor to your first processor and click again.

A connection line joins the input node and the processor.

6. Click on the first processor, move the cursor to the second processor, and click
on it.

A connection line joins the two processors.

7. Continue this process until you complete the circuit by clicking on the
terminator node.

Figure 6-8 Partial Custom Layout

Input

Output

6 Using Board Descriptor Files
6.3 Creating a New Board Descriptor File

97

6

8. When you have connected all devices and nodes, click Connections again. The
cursor returns to normal.

Your custom board is now laid out. Define its properties and generate your .brd
file by following Steps 6-11 in Using the Predefined Layouts in JTAG Editor, p.91.

Editing Your Board Layout

To remove a device, node, or connection from your layout, use the Select button or
the Marquee button in the JTAG toolbar.

To use the Select button, click Select in the toolbar. Then click on any device, node,
or connection to highlight it and press Delete.

To use the Marquee button, click Marquee in the toolbar. You will see that the
cursor now appears as a crosshair in the editing field. Hold the mouse button
down and drag the cursor to create a box around the device you wish to highlight,
then press Delete.

Figure 6-9 Completed Custom Layout

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

98

You can also edit your layout using the Outline view in Workbench. In the
Workbench toolbar, click on Window. Select Show View > Outline.

The Outline view appears as shown in Figure 6-10.

The Outline view displays the elements of your layout in the order they were
added. Click on any element to highlight it and press Delete.

Using the Outline view in this way is handy if you have accidentally overlaid one
layout on top of another, or if you want to back up and start again. Use the list in
the Outline window to delete any or all of the contents of the JTAG editing field.

6.4 XML Board Files

Board descriptor files are created in extensible Markup Language (XML). You can
view the XML version of your board file by opening your .brd file in a text editor,
or by selecting File > Open in Workbench and navigating to the .brd file in the

NOTE: The Marquee button can only highlight devices, not nodes or connections.

Figure 6-10 Outline View

6 Using Board Descriptor Files
6.4 XML Board Files

99

6

browser window that appears. The XML text will appear in the Workbench Editor.
An example board descriptor file is shown below.

This is the debug1.brd board file created in Using the Predefined Layouts in JTAG
Editor, p.91. The first block of code contains comments that describe what the target
reference design is set for; the next blocks of code define the devices included in
the file.

For information on board file fields, see 6.4.1 XML Board File Fields, p.100.

Figure 6-11 Board File XML version

NOTE: If you choose to modify a board descriptor file shipped with your system,
it is best to save your modified file with a different name to prevent overwriting
the default file.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

100

6.4.1 XML Board File Fields

The board descriptor file contains comments, <DEVICE_TABLE >fields, and one
or more <DEVICE> field-sets. A <DEVICE_TABLE> specifies common and
rudimentary scan-chain (signal) operational functions and provides a list of
<DEVICE> descriptions for each device sharing the JTAG interface.

<DEVICE_TABLE> Fields

<TABLE_MODE>

This field designates the scan-chain characteristics applicable to the devices on the
chain. It can be set to FAST or SLOW. This also relates to the optimization
implementation on the emulator. When in doubt, set it to SLOW.

<TABLE_CLOCK>

This field specifies the JTAG strobe rate, in MHz, for the information signals Test
Data In (TDI) and Test Data Out (TDO). This is analogous to the emulator
configuration option CF CLK clock_rate. They are not always automatically
synchronized, so check your emulator to make sure you have the CF CLK option
set to the same clock rate specified in the board file. The fastest JTAG clock rate is
16 MHz.

<TABLE_MULTI>

Set this field to ENABLE if you are debugging multiple targets on the same JTAG
interface. Otherwise set it to DISABLE.

<TABLE_TIED_RESET>

Set this field to ON only if your target board’s RESET and TRST signals on the JTAG
interface are physically connected (tied together.)

<DEVICE> Fields

<NAME>

A reference name for the target device.

<DESCRIPTION>

A reference description of the target device.

6 Using Board Descriptor Files
6.5 Manually Creating XML Board Files

101

6

<TYPE>

The valid types are MICROPROCESSOR, CPLD, FPGA, INTERFACE, and
OTHER.

<TARGET>

The CPU type. The run-time processes on Wind River emulators require this
information in order to match the exact JTAG scan chain and JTAG-specific
characteristics.

<DESIGNATOR>

A mandatory field that Workbench uses to distinguish between devices. Typically
this is set to U0, U1, U2....

Make sure you use a unique <DESIGNATOR> tag for each target device.
Workbench does not allow two devices to use the same designator.

<IR_LENGTH>

Use this field to specify the length, in bits, of the target device’s JTAG Instruction
Register. To find this information, consult the manufacturer’s specification for the
target device.

6.5 Manually Creating XML Board Files

If you need a custom board file, it is usually easiest to take one of the generic board
files from installDir/workbench-version/dfw/build/host/boardfiles and modify it to
suit your needs. Remember to save it with a different name if you want to preserve the
original file.

To create a board file that properly describes the scan chain on your target:

1. Open a text editor.

2. Begin the board file with the tag <DEVICE_TABLE>.

3. Lay out the header block.

The first block of XML defines mode, clock speed, and status of multi-core
debugging. An example would look like:

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

102

<TABLE_MODE>SLOW</TABLE_MODE>

<TABLE_CLOCK>16Mhz</TABLE_CLOCK>

<TABLE_MULTI>ENABLE</TABLE_MULTI>

<TABLE_TIED_RESET>ON</TABLE_TIED_RESET>

This example is set for slow mode, with a clock speed of 16 MHz; it is enabled
for multi-core debugging, and it is set to issue RST reset commands (which
affect all cores) rather than IN reset commands (which affect only one core.)

The next blocks of XML define the devices included in the file. Workbench needs
this information so that it can position the devices in the correct location in the
25-bit data stream. The physical location of each device can also be determined by
its position in the board descriptor file.

4. Lay out the block for the first device.

A device block begins with the tag <DEVICE>. An example would look like:

<DEVICE>

<NAME>MPC8260</NAME>

<DESCRIPTION>Motorola Power PC 8260 Processor</DESCRIPTION>

<TYPE>MICROPROCESSOR</TYPE>

<TARGET>MPC8260</TARGET>

<DESIGNATOR>U0</DESIGNATOR>

<IR_LEN>8</IR_LEN>

</DEVICE>

This example describes a PowerPC 8260 target.

5. Repeat Step 4 for every device on the JTAG scan chain.

Your board file must list the devices included on your scan chain in the same
order as they are physically laid out on the target. If the board file and the
physical scan chain do not match, the board file for your target will not work.

When you are finished, your board file should look something like this:

<DEVICE_TABLE>

<TABLE_MODE>SLOW</TABLE_MODE>

<TABLE_CLOCK>16Mhz</TABLE_CLOCK>

6 Using Board Descriptor Files
6.5 Manually Creating XML Board Files

103

6

<TABLE_MULTI>ENABLE</TABLE_MULTI>

<TABLE_TIED_RESET>OFF</TABLE_TIED_RESET>

<DEVICE>

<NAME>MPC8260</NAME>

<DESCRIPTION>Motorola Power PC 8260 Processor</DESCRIPTION>

<TYPE>MICROPROCESSOR</TYPE>

<TARGET>MPC8260</TARGET>

<DESIGNATOR>U0</DESIGNATOR>

<IR_LEN>8</IR_LEN>

</DEVICE>

<DEVICE>

<NAME>PPC750FX</NAME>

<DESCRIPTION>IBM Power PC 750FX Processor</DESCRIPTION>

<TYPE>MICROPROCESSOR</TYPE>

<TARGET>PPC750FX</TARGET>

<DESIGNATOR>U1</DESIGNATOR>

<IR_LEN>8</IR_LEN>

</DEVICE>

</DEVICE_TABLE>

This example describes two targets, but you can add as many <DEVICE>
blocks as you need to describe your JTAG scan chain.

6. When you are finished, save the file with the extension .brd.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

104

105

 7
Debugging Multi-Core Targets

7.1 Introduction 105

7.2 JTAG Server 106

7.3 Multi-Core Debugging 107

7.4 Initializing the Targets 119

7.5 Creating a Project 125

7.6 Configuring Options for Multi-Core Debugging 131

7.7 Commands for Multi-Core Debugging 134

7.1 Introduction

The Wind River ICE SX emulator allows you to control and manipulate multiple
devices on a single scan chain ring. The devices included on the JTAG scan chain
can be CPUs, EPLDs, CPLDs, FPGAs, and ASICs, as well as various other devices.
Wind River ICE SX manages all of the devices on a scan chain through the use of
JTAG Server, which resides on the ICE unit and works via the OCD link on the
target.

NOTE: This chapter applies only to the Wind River ICE SX. Multi-core debugging
is not supported for the Wind River Probe.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

106

Using the Wind River Workbench software and a Wind River ICE SX, users can
have multiple debug sessions active at the same time, allowing developers to
debug multiple devices at once.

JTAG Server is the software layer that allows ICE to handle multi-core debugging.
JTAG Server is set up by a board descriptor file, which identifies the devices that
are included in the scan chain on your target. Board descriptor files are highly
specific to your target since they clearly describe the scan chain, so if you do not
have a board file already available for your specific target, you must write one. For
information on creating board files for your target, see 6. Using Board Descriptor
Files.

7.2 JTAG Server

JTAG Server is a multi-core debugging solution that uses the On-Chip Debugging
(OCD) link on your target reference design to connect to one or more CPUs, with
or without other devices in the scan chain. JTAG Server is what allows ICE to
connect to multiple devices on a single JTAG scan chain at once.

Wind River ICE SX is networked, and JTAG Server resides on the ICE unit. This
means that in addition to being able to have multiple debug sessions with the
target from a single host computer, you can also have multiple debug sessions
running on multiple host computers, all accessing ICE over the network.

JTAG Server is a software layer that resides between the low-level JTAG drivers
and the high-level user interfaces on Wind River ICE SX. This layer provides all of
the control that is needed to position data correctly on the scan chain (this is a
requirement for compliance with the IEEE 1149.1 specification for multiple devices
on a single scan chain ring).

There are hardware optimizations included in JTAG Server that allow the
utilization of the entire available JTAG bandwidth. This is a key element of high
performance multi-core debugging; the peak clock speed is not as important as the
aggregate data transfer, which is maximized in JTAG Server.

JTAG Server requires a board descriptor file that clearly describes your target scan
chain layout. This file is what tells JTAG Server how to correctly position devices
on the scan chain. Information on board descriptor files, including information
about creating your own is available in 6. Using Board Descriptor Files.

7 Debugging Multi-Core Targets
7.3 Multi-Core Debugging

107

7

7.3 Multi-Core Debugging

This section describes how to work with multiple devices on your scan chain at
once. Before beginning, please make sure that you have obtained or created a
board descriptor file for your target that accurately reflects your target’s scan
chain.

7.3.1 Establishing Communications with Multiple Devices

The following steps describe how to connect to multiple devices at once using the
Wind River Workbench software.

1. First, open Workbench according to the method for your host computer.

Linux/Solaris Hosts

From your installation directory, issue the command

$./startWorkbench.sh

Windows Hosts

Select Start > All Programs > Wind River > Wind River Workbench version.

On Windows hosts, Workbench prompts you to specify a workspace location.
Linux/Solaris hosts use the default location installDir/workspace.

When Workbench opens, the Quick Target Launch dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

108

2. Select Create a new launch configuration.

The Connection Type dialog appears.

7 Debugging Multi-Core Targets
7.3 Multi-Core Debugging

109

7

3. Choose Wind River OCD ICE Connection from the list of options and click
Next.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

110

The Communication Settings dialog appears.

Configuring Communication Settings Manually

4. Select Configure communication settings manually and click Next.

The Emulator Settings dialog appears.

5. In the Designators area, select Board File and click Browse to navigate to the
board file that describes your multi-core setup. For information on board files,
see 6. Using Board Descriptor Files.

The field below the Board File field will populate with a summary description
of your board.

NOTE: To use this option you will need to know either the network name of the
emulator or its IP address. For information on assigning these values, see the
Wind River ICE SX for Wind River Workbench Hardware Reference.

7 Debugging Multi-Core Targets
7.3 Multi-Core Debugging

111

7

6. In the Communications area, fill in the IP Address field with the IP address
you have assigned to your ICE unit.

This example shows the emulator settings dialog box with the board file for a
Wind River SBC PowerQUICC II 8270 selected.

7. When you have entered the correct processor or board file and IP address, click
Next.

The Target Operating System Settings dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

112

8. In the Booted Target OS on selected CPU field, select the operating system
that is running on your target processor. The default is None.

9. Next to the Kernel Image field, click Browse to navigate to the kernel image
you wish to specify. If you selected None in the previous step, you do not need
to specify a kernel image.

10. If you are using a Linux plug-in specify the pass-through options in the Target
OS Pass-Through Options field. If you are not using a Linux plug-in, skip this
step.

Options are passed as pairs in the format name=value. Separate options with a
comma. The following options are available:

■ notasklist=1 : Never fetch process list.

■ noautomodules=1 : Do not plant internal breakpoints to do automatic
kernel module load/unload detection. When this option is specified, you
must manually refresh to see an updated module list.

7 Debugging Multi-Core Targets
7.3 Multi-Core Debugging

113

7

■ noloadcheck=1 : Do not issue gophers until the hardware breakpoint is
used to detect kernel load triggers. This option is for “sensitive” boards
that don’t accept access until the kernel loads and sets up memory
mapping.

■ loaddetectloc=symbol or address: Set the hardware breakpoint used to
detect kernel load at symbol (for example, loaddetectloc=start_kernel) or
address (for example, loaddetectloc=0x1000). If you do not specify a
symbol or address, Workbench uses a default. For most architectures the
default is start_kernel; for PowerPC targets, the default is 0x0.

11. Click Next.

The Memory Options dialog appears.

Use the Memory Options dialog to specify how memory on the target is
partitioned, and what the attributes of the particular memory regions are.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

114

To specify an area of memory, click Add.

The Set Memory Map dialog appears.

Use the Set Memory Map dialog to specify which memory areas are read-only,
read-write, or write-only, and to specify the access width Workbench should
use to read the data from those regions.

NOTE: The Memory Options dialog is only necessary for Linux or other
non-VxWorks target operating systems.

7 Debugging Multi-Core Targets
7.3 Multi-Core Debugging

115

7

12. Click Next.

The Object Path Mappings dialog appears.

Use the Object Path Mappings dialog to specify how files in the target file
system are visible in the host file system.

13. To add a host or target path, click Add and type the path in the dialog that
appears.

14. Click Next.

The Target State Refresh dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

116

Use the Target State Refresh dialog to configure the target state query and
target state refresh settings on your target processor.

15. Click Next.

The Default Breakpoints dialog appears.

7 Debugging Multi-Core Targets
7.3 Multi-Core Debugging

117

7

Use this dialog to set default breakpoint options for newly created
breakpoints.

16. Click Next.

The Connection Summary dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

118

17. Verify that the displayed values are correct.

If you want to connect to your target now, select Immediately connect to
target if possible. If you do not wish to connect to your target now, leave the
Immediately connect to target if possible box unchecked. You can connect at
any time by clicking the Connect button in the Launch Configuration dialog.

18. If you want to share your target connection, select Shared.

This option serves a dual purpose:

■ When you define a target connection configuration, this connection is
normally only visible for your user-id. If you define it as Shared, other users
can also see the configuration in your registry, provided that they connect to
your registry by adding it as a remote registry on their computer.

■ Normally, when you disconnect a target connection, the target server (and
simulator) are killed because they are no longer needed. In a connection that is
flagged as Shared, however, they are left running so that other users can

7 Debugging Multi-Core Targets
7.4 Initializing the Targets

119

7

connect to them. In other words, you can flag a connection as shared if you
want to keep the target server (and simulator) running after you disconnect or
exit Workbench.

19. Click Finish.

Workbench creates the connection name in the Target Manager view.

If you decide you want to change your emulator settings, you can return to the
Emulator Settings dialog box by right-clicking on the connection name in the
Target Manager and clicking Properties.

Your Wind River ICE SX is now connected to the host computer and your
target.

7.4 Initializing the Targets

After Workbench connects to the Wind River ICE SX, the Reset and Download
view opens.

20. Choose how you want to proceed:

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

120

a. If you want to create a project in which to run and debug your code, skip
the rest of this section and proceed to 7.5 Creating a Project, p.125.

b. If you want to run and debug your code without creating a project,
continue with this section.

21. In the Reset and Download view, select the Reset tab.

22. If you want to configure the target register values with a register file, select
Play Register File and browse for the file you want to use.

Register files for many Wind River-supported targets are located in
installDir/workbench-2.x/dfw/build/host/registers.

If you do not want to reconfigure your target registers, leave this box
unchecked.

23. Choose the type of reset initialization you want to perform.

You can use the IN or INN initialization commands. For a full discussion of
these two commands, see the Wind River Workbench for On-Chip Debugging
Command Reference.

You can also choose not to perform an initialization by clearing the Reset box.

24. By default, the reset and download affects only the first core. If you want the
reset and download to affect all connected cores, select the All Cores radio
button and click Apply.

25. Select the Download tab.

! CAUTION: If you are manually changing registers on your target, be aware that
issuing an IN or INN initialization command will overwrite your changes.

7 Debugging Multi-Core Targets
7.4 Initializing the Targets

121

7

26. Click Add Files.

In the browser window that appears, navigate to the executable file you want
to run.

The file you select appears in the Filename field. Repeat this process as many
times as necessary.

The file at the top of the list will download to the target first, followed by the
others from the top down. You can edit the order of the list by clicking on any
filename to highlight it and using the Up, Down, and Delete buttons.

27. Use the other fields to configure the download.

Download

The Download field is checked by default. If you clear it, the file will remain
on the list but will not download data to the target. This is useful if, for
example, you only want to download symbol information and not data.

Verify

The Verify field configures the extent to which the file you are downloading
will be compared to a file that may already be on the target. There are three
options: Full, Compare, and None.

When this field is set to Full, a write/read verify will occur for every
download. Workbench will write to the target and then verify that the write to
the target and the read from the target are identical. This is slower than a
normal download, but it is a useful security option.

When the field is set to Compare, Workbench will verify that the image has
been downloaded correctly (that is, that the image on the host is the same as
the image on the target.) This is useful for programming flash.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

122

When the field is set to None, Workbench will perform no verification.

The Verify field is set to None by default.

Load Symbol

The Load Symbol field, which is checked by default, determines whether the
file’s symbol information is downloaded to the target.

Offset

In the Offset field, you can enter a value in hex to set a memory offset bias for
your application file. If you do not enter a value, Workbench uses the default
value 0x00000000.

28. Select the Instruction Pointer tab.

29. Set the starting point for your file.

By default, the instruction pointer is set to use the starting address from the
download file.

You can set the instruction pointer to start the file from the first occurrence of
a particular symbol (for example, main) or you can just specify a starting
address by entering the address value in hex in the Use Specified Start
Address field.

NOTE: You should only set the Verify field to Compare if an image already
exists on the target. If you set the field to Compare when there is no image on
the target, Workbench will look for a file to compare and not find one, and the
reset and download operation will fail.

7 Debugging Multi-Core Targets
7.4 Initializing the Targets

123

7

If you do not want to set a starting point, clear the Set Instruction Pointer
After Download box.

30. Select the Run Options tab.

31. Determine how you want your file to run.

By default, the Reset and Download view is set not to run the file after
downloading. If you want the file to run, you have several options to
determine where it should break:

■ You can set it to break at the first occurrence of a symbol (for example,
main) by selecting Run to Symbol and entering the symbol in that field.

■ You can set it to break at the end of your program by selecting Run to end
of program.

■ You can set it to break at a given memory address by selecting the Run to
Address box and entering the address in hex in that field.

■ You can set it to break at an _exit routine by selecting the Break at Exit box.

If you need to perform a post-initialization, you can define it here. Select the
Play post download script box and click Browse. In the browser window that
appears, navigate to your initialization file.

32. Select the Source tab.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

124

33. Use the Source tab to configure the source path of your file.

Workbench uses the input path of the local file system by default. Unless you
need to use a different path, you do not need to do anything in the Source tab.

If you need to use a different path, click Add... and use the Add Source dialog
to configure the appropriate search path for your project.

34. Select the Common tab.

35. Specify whether your launch configuration is local or shared.

The configuration is local by default. To make it shared, click Shared file: and
browse to the shared directory where you want the configuration to be located.

You have now fully defined your reset and download operation.

36. Click Debug.

Workbench initializes the target board, then downloads the file, then runs the
file.

7 Debugging Multi-Core Targets
7.5 Creating a Project

125

7

The OCD Console view opens to show the progress of the reset and download
operation.

At this point, all of your devices should be in background mode and you are ready
to begin debugging all of the devices.

Proceed to 7.6 Configuring Options for Multi-Core Debugging, p.131.

7.5 Creating a Project

If you do not plan to build or edit your source files within Workbench, skip this
section and proceed to 7.6 Configuring Options for Multi-Core Debugging, p.131.

Click Close in the Reset and Download view.

NOTE: If you cannot get into background mode with any of your devices, first
make sure your board file is correct for your target. Then see the Wind River ICE SX
for Wind River Workbench Hardware Reference for troubleshooting tips.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

126

This tutorial uses the C Demonstration Program, which is included in your
Workbench installation.

1. In the Workbench toolbar, select File > New > Project.

The New Project wizard appears.

2. Expand the Examples folder and select Standalone Sample Project.

3. Click Next.

A sample project template appears.

7 Debugging Multi-Core Targets
7.5 Creating a Project

127

7

4. Select C Demonstration Program and click Finish.

Workbench creates the sample project in the default workspace folder and
opens the Application Development perspective.

5. In the Project Navigator view, expand the c_demo_sa project.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

128

6. To build the sample project for use with PowerPC targets, right-click on the
c_demo_sa top-level folder and select Build Options > Set Active Build Spec.

The Set Active Build Spec and Debug Mode dialog appears.

7 Debugging Multi-Core Targets
7.5 Creating a Project

129

7

7. Scroll to the top and highlight PPC603diab.

8. Select Debug mode (use debug mode flags) so Workbench will generate
symbolic debug information.

9. Click OK.

10. Right-click on the project name and select Rebuild Project.

Workbench builds the sample project. The results of the project build appear
in the Build Console view.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

130

7.5.1 Downloading the Sample Code

To run the sample code, use the following steps:

1. In the Target Manager, highlight the target connection name.

2. In the Project Navigator view, right-click on cdemo.elf and select Reset and
Download.

The Reset and Download view appears.

3. Leave all settings at their defaults and click Debug.

The OCD Console view opens.

7 Debugging Multi-Core Targets
7.6 Configuring Options for Multi-Core Debugging

131

7

The OCD Console view shows the progress of the download operation, as
Workbench downloads the sample code to the Wind River Instruction Set
Simulator.

7.6 Configuring Options for Multi-Core Debugging

For multi-core debugging, the Reset and Download options will detect if the
<TABLE_TIED_RESET> tag in the board file is set to ON; if it is, the Reset and
Download options will issue RST commands (which affect all cores) rather than IN
commands (which affect only one core.) You can use the JTAG Editor to set this
option in your XML board file.

In conjunction, there are two configuration options that you may want to change
if you are debugging multiple devices on your target: HRESET and CMDRST. These
must be set correctly for each core you are debugging. For explanations of these
options, see CF HRESET, p.133, and CF CMDRST, p.133.

To configure for multi-core debugging:

1. In the Workbench toolbar, select File > Open > yourBoardFile.

Figure 7-1 shows the example board file debug1.brd. Notice that the
<TABLE_TIED_RESET> tag is set to OFF.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

132

2. Edit your board file to set <TABLE_TIED_RESET> to ON.

3. Right-click on your board file and select Save.

4. In the Workbench toolbar, select Window > Show View > CF Options.

5. Under the Command Name heading in the CF Options view, scroll down to
HRESET.

6. Double-click on the value under the Current Setting heading to bring up a list
of parameters. Set the option to ENABLE or DISABLE, depending on your
application (see CF HRESET, p.133.)

7. Under the Command Name heading in the CF Options view, scroll down to
CMDRST.

Figure 7-1 debug1.brd

7 Debugging Multi-Core Targets
7.6 Configuring Options for Multi-Core Debugging

133

7

8. Double-click on the value under the Current Setting heading to bring up a list
of parameters. Set the option to ENABLE or DISABLE, depending on your
application (see CF CMDRST, p.133.)

9. Repeat Steps 5 through 8 for each core you are debugging.

CF HRESET

If HRESET is set to ENABLE, then every time an IN command is issued the
HRESET line will be pulled. Because the HRESET line is a physical line that is
accessed through a single OCD connector on your target, all of the devices on your
scan chain will be reset when an IN command is issued.

In the example described previously, in which there is a target with two processors
(A and B), consider the case where Processor A is running correctly and you want
to initialize Processor B. If the CF HRESET option is set to ENABLE and you issue
an IN command in the view of Wind River Workbench pertaining to Processor B,
both processors are reset, even though Processor A was already running correctly,
because the HRESET line on your target runs through both processors.

If you set the CF HRESET option to DISABLE, the HRESET line will not be pulled
when an IN command is issued. In the case described above, where Processor A is
running correctly, if the CF HRESET option is disabled and you issue an IN
command on Processor B, the HRESET line will not be pulled, and only Processor
B is reset. Processor A remains running correctly without interruption.

CF CMDRST

This option controls the HRESET line into the target, and it affects the RST
command. The RST command simply issues an IN command to all devices in your
scan chain simultaneously. If this option is set to ENABLE then the HRESET line is
pulled when an RST command is issued. If you DISABLE this option, then all of
the devices on the scan chain are synchronized, and the HRESET line will not be
pulled. With the RST command, all of the devices are reset anyway, so choosing to
enable or disable the CMDRST depends on the hardware on your target.

Be aware of these two CF options, and make sure you have set them correctly for
your system before you begin debugging. Failure to do so could cause you to
accidentally reset a device that was already running correctly.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

134

7.7 Commands for Multi-Core Debugging

When you are working with multiple devices in your scan chain simultaneously,
any one device can be controlled and manipulated by going to the view of
Wind River Workbench pertaining to that device and working with it as you
would a single core target.

There are a few commands available that allow you to control all of the devices on
your scan chain simultaneously. For a guide to all low-level commands, see the
Wind River Workbench On-Chip Debugging Command Reference.

RST and RSTINN

The RST command is a way to issue an IN command to every device on your scan
chain simultaneously. It behaves in an identical fashion to the IN command, in that
it attempts to initialize Background Mode communications for each device and it
transfers the chip-select table and any stored register settings to your target via the
OCD link.

Similarly, the RSTINN command is a way to issue an INN command to every
device on your scan chain simultaneously. As with the INN command, the RSTINN
command merely places every device on your scan chain into background mode
without affecting your target’s register or chip select settings.

When you issue an RST or RSTINN command in one view of Wind River
Workbench, a message appears in the other views that a synchronous reset is in
progress.

GO ALL and HALT ALL

These are two additional commands that can be used to affect all of the devices on
your scan chain simultaneously. To use these commands, first download code to
your target in each of the perspectives of Wind River Workbench. The demo

NOTE: Make sure you set the CF options correctly in each instance of Wind River
Workbench that you have running. In the example used above, if you had set the
options correctly for Processor A but had not set them in Processor B, working in
the instance of Wind River Workbench pertaining to Processor B could cause you
to reset a device unintentionally.

7 Debugging Multi-Core Targets
7.7 Commands for Multi-Core Debugging

135

7

programs provided may be used for this purpose; for information on downloading
code to your target please see the Wind River Workbench User’s Guide.

Once code is successfully downloaded to each device, the GO ALL command can
be issued from any of the instances of Wind River Workbench that you have open.
All of the code is started running on each of your devices simultaneously. Similarly,
the HALT ALL command stops the code running on all your devices at once.

NOTE: If you start all the devices running simultaneously, and then use the
standard HA command to stop one of the devices, the other devices will continue
to run.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

136

137

 8
Configuring Target Registers

8.1 Introduction 137

8.2 Downloading a Register File 138

8.3 Saving Register Settings from a Target 139

8.4 Enabling and Disabling Register Groups 141

8.5 Configuring Registers Manually 143

8.6 Working With Custom Register Groups 147

8.7 System Configuration (SC) Commands 155

8.1 Introduction

Regardless of how you plan to initialize and configure your system, you must
program and configure the internal registers on your target at least to the point
where you are able to download any boot and application code.

This is done in two steps: first, configure register settings in the emulator’s
non-volatile RAM (NVRAM); second, copy the register settings from the emulator
to the target.

Your emulator includes an area of NVRAM where you can store register settings
for a target. Once you store register settings in NVRAM, you can load the register
settings to and from the target.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

138

Once the register values are present in NVRAM, the emulator automatically loads
them to the target after each cold start, warm start, or target IN initialization
command. To select which register values are written to the target, enable or
disable the appropriate register groups.

Wind River emulators use low-level commands to configure register settings.
These low-level commands are stored in a script called a register file, a text file with
the extension *.reg.

If your target already has register values set and configured, you can upload these
values to the emulator NVRAM. From there, you can save the register settings to a
register file and store it on your host computer for use on other targets.

You can work with registers for your target using a Wind River Probe or a
Wind River ICE SX with Wind River Workbench, or by using low-level commands
in the OCD Command Shell in Workbench.

8.2 Downloading a Register File

Wind River supplies register files for Wind River evaluation boards, as well as for
many third-party target boards.

All Wind River hardware reference designs are shipped with a register file that you
can use to initialize the target registers, so that code can be downloaded to the
board. To use a register file to initialize your target registers, you must first
download the file to the emulator NVRAM, then from the NVRAM to the target.

To download a register file, use the following steps.

1. In the Workbench toolbar, select
Window > Show View > OCD Command Shell.

2. In the OCD Command Shell, click Playback File.

The OCD Command Shell Settings dialog appears.

8 Configuring Target Registers
8.3 Saving Register Settings from a Target

139

8

3. Next to the PlayBack File field, click Browse.

4. Navigate to the register file you wish to use and click Open.

Register files for Wind River hardware reference designs are located in
installDir/workbench-2.x/dfw/build/host/registers.

5. Click OK.

6. In the OCD Command Shell, click the Playback File icon again.

Workbench downloads the register values from the register file you selected to
your emulator NVRAM.

7. In the OCD Command Shell, enter the command IN.

The emulator initializes the target and copies the register values from its
NVRAM down to the target.

8.3 Saving Register Settings from a Target

If you are working with a target that already has its registers correctly initialized,
you can upload those register settings to a file and save them on your host
computer.

It is useful to save register settings to a file if you have received a target with
registers already initialized, or if you have manually programmed registers on

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

140

your target one by one and wish to use those settings again on another target. After
you save the settings to a register file, you can download the settings to a new
target.

To save the register settings from a target, complete the following steps:

1. Select Window > Show View > Registers.

The Registers view appears.

2. Right-click in the Registers view and select Save Target Register Values to
File.

The Save Target Registers dialog appears.

3. Click Save.

Use the browser window that appears to specify a file. Workbench saves the
file in the location you specify with the extension *.reg.

Saving Register Settings Using Low-level Commands

Alternatively, you can save the register values using low-level commands in the
OCD Command Shell.

First, copy the register settings to the emulator configuration file from the target
using the low level command SCT COPY.

8 Configuring Target Registers
8.4 Enabling and Disabling Register Groups

141

8

Next, copy the register settings from the emulator to a register file.

Upload register settings from the emulator to a file using the PJ UPLOAD
command as described in the Wind River Workbench On-Chip Debugging Command
Reference.

8.4 Enabling and Disabling Register Groups

Workbench stores registers in logical register groups. You can enable or disable any
register group using the Registers view.

When you initialize your target using the IN command, the register values that are
stored by the emulator are copied down to the target. However, the emulator only
copies the register settings for the register groups that are enabled. Register groups
that are disabled on your target do not have register data transferred. Disabling a
register group enables you to view the target register value, but prevents it from
being overwritten during target initialization.

The following steps describe how to enable or disable a register group on your
target.

1. In the Workbench toolbar, select Window > Show View > Registers.

2. Right-click in the Registers view and select Show Emulator Settings.

NOTE: Only registers in enabled register groups are copied up from the target
during an SCT COPY operation.

NOTE: Although you could just copy the register settings to the emulator
configuration file and not create a register file, Wind River recommends that you
create one anyway. If you change targets, or if the emulator configuration file were
to get corrupted or overwritten, a register file is the easiest way to fix it.

NOTE: If you change a register value directly on the target of a register group that
is disabled, that register does not get overwritten by the emulator during an
initialization. Note, however, that the processor may still reset that register value
to the processor default during a target initialization.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

142

The Registers view now shows a check box next to each register group, under
the heading Enabled.

3. Select or clear the box next to any register group to enable or disable that
group.

Enabling and Disabling Register Groups with Low-Level Commands

You can also enable and disable register groups with the command CF GRP in the
OCD Command Shell in Workbench.

To use the CF GRP command, use the following steps.

1. In the Workbench toolbar, select Window > Show View > OCD Command
Shell.

2. At the >BKM> prompt, type the command CF GRP.

The first register group appears, as shown below:

>BKM>cf grp
Group (CF GRP (M/S) Name = ENABLED/DISABLED

8 Configuring Target Registers
8.5 Configuring Registers Manually

143

8

CUSTOM (0=Disable 1=Enable) Enabled >

The name of the register group is displayed, along with its current status
(either ENABLED or DISABLED).

3. Type 0 to disable the group or 1 to enable it.

4. To leave the setting as it is and advance to the next register group, press the
ENTER key without typing 0 or 1.

5. Continue through the list of register groups enabling and disabling them as
required.

6. When you have enabled or disabled all groups, type CF UPLOAD GROUP at
the >BKM> prompt.

This displays a list of all of the register groups on your target with their current
settings.

>BKM>cf upload group
CF GRP GT64260_CPU ENABLED ; GROUP
CF GRP GT64260_SDRAM ENABLED ; GROUP
CF GRP GT64260_DEVICE ENABLED ; GROUP
CF GRP GT64260_GPP ENABLED ; GROUP
CF GRP GT64260_MPP ENABLED ; GROUP

>BKM>

8.5 Configuring Registers Manually

If you are using a target for which Wind River does not supply a register file, you
may have to modify an existing one (see Modifying an Existing Register File, p.154);
or, if your target has default register settings, you may modify them manually.

Remember that the register file sets the register values in the emulator NVRAM,
not on the target. The emulator copies the values you set in its NVRAM down to
the target when you initialize the target with an IN command. Without a register
file, the NVRAM contains default register values, typically made for a Wind River
evaluation board, which most likely are not suitable for your target. So the IN
command will not set the target registers properly.

Some target processors, for instance most PowerPC targets, come with default
register settings. If your target has default register settings, you can modify the

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

144

registers directly on your on your target manually, at least to the point where you
can download your boot ROM application code.

Remember that if you modify your registers manually, an IN command or target
reset will overwrite your changes.

To modify registers manually, use the Registers view in Workbench. The Registers
view lets you view the bit-level detail for each register. The following sections
describe the Registers view and the bit-level detail provided.

The Registers View

When the Registers view is open in Workbench, all of the register groups for your
target are displayed with + signs beside them. Clicking on a + sign expands the
register group, showing all of the registers that are included in that register group
along with the value that they are currently set to. An example of an expanded
register group is shown in Figure 8-1.

Figure 8-1 Expanded Register Group

8 Configuring Target Registers
8.5 Configuring Registers Manually

145

8

Bit-Level Detail

You can view the bit-level detail for any register by clicking on the + sign beside
the register in the register group.

You can make changes to any of the register settings by modifying each of the
bit-level settings for any register.

To modify bit-level values for your target, complete the following steps:

1. In the Registers view, double-click on the name of the register you wish to edit.

Figure 8-2 shows the Registers view with the TBU register selected.

NOTE: Figure 8-1 is only an example of an expanded register group. The groups
and the register values vary widely depending on your target architecture.

NOTE: Before you can make any changes to your register settings, you need to
enable the register group that contains the register you want to modify, so that the
values download to the target when you initialize your system. If you do not
enable the register group, you can still modify the settings in the emulator but not
on the target. For more information, see 8.4 Enabling and Disabling Register Groups,
p.141.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

146

This opens the Properties view, which shows the name of the register you have
selected under the Property heading and its current setting under the Value
heading, as shown in Figure 8-3.

Figure 8-2 Selecting a Register

Figure 8-3 Properties View

8 Configuring Target Registers
8.6 Working With Custom Register Groups

147

8

2. Select the value under the Value heading and edit it as necessary.

3. In the Registers view, click the Refresh Values button. The register
information reappears with your changes.

8.6 Working With Custom Register Groups

You can create custom register groups to perform various tasks, such as initializing
peripheral memory.

This section presents two scenarios to describe how to add custom registers or
register groups to your target, depending on what you want to do:

■ Creating a new set of registers for your target

■ Modifying an existing register file

Creating a New Set of Registers

To create new registers using the Registers view, complete the following steps:

1. Right-click in the Registers view and select Define Memory Mapped
Register...

The Define Register dialog appears, as shown in Figure 8-4.

NOTE: Some registers are write-protected and cannot be edited.

NOTE: Only memory mapped registers can be created with this dialog. To
create a non-memory mapped register, see Creating New Registers With
Low-Level Commands, p.149.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

148

2. In the dialog text fields, specify the details of your new register as follows:

■ In the Register Group field, specify the register group to which the new
register will be added.

■ In the Register Name field, specify the name of the new register.

Figure 8-4 Define Register Dialog

8 Configuring Target Registers
8.6 Working With Custom Register Groups

149

8

■ In the Address field, specify the address at which the new register will be
located.

■ In the Data field, specify the data to be stored in the new register.

The example in Figure 8-4 shows a new register called SCCR that will be
placed in the register group CLOCKS, located at address 0xFFFF0000, and has
the value 4104.

3. Set the following options:

■ Set the register to be read/write, read-only, or write-only.

■ Set the register to store data as Byte, Word, Long, or Double.

■ Set the register as little-endian. (This only applies if your target CPU is able
to switch between big-endian and little-endian modes.)

■ Specify whether the register will be set on the target during an
initialization sequence.

The example in Figure 8-4 shows the register set to read/write and size B
(byte).

There are advanced options not available from the Define Register dialog;
these options must be set using low-level commands in the OCD Command
Shell. For information about these options, see SCGA Options, p.151.

4. Click OK to create the register.

Creating New Registers With Low-Level Commands

To create a new set of custom registers for your target, create an ASCII text file with
the extension *.reg. Then load that file to your emulator and the target, thus setting
up register groups as required for your system.

Prior to creating your own register file, look at one of the default register groups
that was included with your Wind River Workbench software to learn more about
ho w register files are laid out. The following is an example of a register file:

SC GRP ERASE

SCGA GEN SCR FFB00000 4006A300 /r
SCGA GEN SSR FFB00004 0A80042F
SCGA GEN PLLCR FFB00008 06000000
SCGA GEN SOFTSR FFB0000C 00000000 /no_in

SCGA MPC107_PCI VENDOR 00000000 1057 /r(nwf) /w(nwf) /r /ua:1 /lendian
SCGA MPC107_PCI ADDR_00 00000000 80000000 /wo /hide /w /ua:0 /lendian

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

150

SCGA MPC107_PCI ID 00000002 0004 /r(nwf) /w(nwf) /r /ua:1 /lendian
SCGA MPC107_PCI ADDR_02 00000000 80000002 /wo /hide /w /ua:0 /lendian
SCGA MPC107_PCI PCICMD 00000000 0004 /r(nwf) /w(nwf) /ua:1 /lendian
SCGA MPC107_PCI ADDR_04 00000000 80000004 /wo /hide /w /ua:0 /lendian

The register file you create for your target depends entirely on the information that
you need to set up for your system, so your file may look similar to the default
register groups or it may look completely different. The list below describes some
of the items that you must include in your file.

■ Include the line SC GRP ERASE

Include the line SC GRP ERASE in your register file to erase any existing
register groups and settings that might be set up by default on your target or
in the emulator file. Since you are creating an entirely new register set for your
target, you need to make sure that any residual information on the target or in
the emulator is removed prior to adding new information.

■ Include any configuration options

Use CF commands to include any configuration options required for your
target. Always include a CF TAR target_processor configuration line in this
section to make sure that your register file matches the target that you are
working with. target_processor must match the processor you selected when
you made your connection to the emulator.

Including this line also makes it clear to anyone else who plans to use your
register file which target your file is intended for. Include this line, and any
other configuration options that are required for your target, in your register
file. For more information on the available configuration options for your
architecture, and for syntax information, see the Wind River Workbench for
On-Chip Debugging Configuration Options Reference.

■ Set up register groups for your target

New registers and register groups are created using SCGA commands. The
syntax for adding a new register in a register group is:

SCGA GroupName RegisterName Address Data Options

This command adds the register RegisterName to the register group
GroupName.

GroupName — This is the name of the existing register group that the new
register is added to.

RegisterName — This is the name of the register that you are creating.

8 Configuring Target Registers
8.6 Working With Custom Register Groups

151

8

Address — This is the address where the new register is located.

Data — This is the data that is stored in the register you are creating.

Options — There are many options associated with the SCGA command.
These are described in SCGA Options, p.151.

Continue adding all of the new registers for your target. When you finish adding
the required registers, save the file with the extension*.reg.

You are now finished creating a register file for your target. You can download the
file to the emulator and your target as described in 8.2 Downloading a Register File,
p.138. When you have downloaded the file and issued an IN command, all of the
new register settings become visible in the Registers view in Workbench.

SCGA Options

/cpur

This option specifies that the register you are creating is a CPU core register (that
is, SPR, or other non-memory-mapped register.)

Example:

SCGA SIM_MMU SIM_IBATOL 4014 00000004 /cpur

This example creates a new register group called SIM_MMU, with a core register
called SIM_IBATOL embedded in it.

/hide

This option specifies that the register will not be visible when an SC or DR
command is issued. It will only be visible when an SC UPLOAD or SCG UPLOAD
command is issued.

/lendian

This option specifies that the register you are creating is little-endian. This option
only applies if your target CPU can switch between little-endian and big-endian
modes.

NOTE: Newly created groups are disabled by default. To enable the register group,
see 8.4 Enabling and Disabling Register Groups, p.141.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

152

/memr

This option specifies that the register you are creating is a memory-mapped
register. This is the default for all self-defined registers and all registers created in
the Define Register dialog.

/no_in

This option specifies that the register you are creating will not be set on the target
during an IN initialization sequence.

/r, /w, /rw

These options are read-only, write-only, and read/write flags. Registers are set to
/rw by default.

/Sz:B, /Sz:W, /Sz:L, /Sz:D

These options force the size of the register to either Byte (8 bits), Word (16 bits),
Long (32 bits), or Double (64 bits).The default register size is determined by the
amount of characters used to specify the default value. (In the Define Register
dialog this is the value you enter in the Data field.)

/va_dr

This option is used on anchor registers to make them available on a DR command.
(For PowerPC, on an IMMR command.)

/wo

This option defines a fixed-value register. A register created with this option will
not be affected by an SCT COPY command.

/w(nwf)

This option specifies a write cycle (next write first.) It indicates that in order to
write a value to this register, you first need to write the following register value to
the target.

Example:

SCGA MPC_PCI PCICMD 80000CFC 0600 /w(nwf) /r(nwf)
SCGA MPC_PCI ADDR_04 80000CF8 04000080 /wo /hide

In this example, you create a register called PCICMD in the register group
MPC_PCI. The option specifies that the register PCICMD cannot be written to

8 Configuring Target Registers
8.6 Working With Custom Register Groups

153

8

unless a write to the register ADDR_04, in the same register group, is performed
first.

/r(nwf)

Similar to the /w(nwf) option, this option specifies a read cycle (next write first.) It
indicates that in order to read a register, you first need to write the following
register value to the target.

/w(nwa)

This option specifies a write cycle (next write after.) It indicates that if you write a
value to this register, you need to write the next register value to the target
afterwards.

For more information on the SCGA and SCGD commands and their options, see
the Wind River Workbench for On-Chip Debugging Command Reference.

Using Your New Register File

The register file you created is designed to erase all of your register groups and
recreate them every time you play back the file. Since all of the settings are stored
in the emulator file, it is likely that you will not have to play back the register file
very frequently, and therefore having the file configured to erase all of the settings
each time is acceptable in most cases.

If you prefer that your register settings are not erased and recreated each time you
play back the file, complete the following steps:

1. Create your register file as described in the steps above using SCGA
commands.

2. Play back that file once, to make sure all of the required register groups are
created in the emulator and on your target.

3. Next, remove the SC GRP ERASE line from your file, which prevents all of the
groups from being erased each time the file is loaded.

4. Change all of the SCGA commands to SC commands.

For example, a line such as:

SCGA SYSMGR SYSCFG 03FF0000 87FFFFA0

would be changed to:

SC SYSCFG 87FFFFA0

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

154

Note that the syntax for the SC commands is different than for the SCGA
commands. See the Wind River Workbench for On-Chip Debugging Command
Reference for more information. The syntax is different because SCGA commands
are used to create new registers, whereas SC commands are used to change the
values of existing registers. Using SCGA commands for registers that already exist
results in a syntax error. Using SC commands for registers that do not exist also
results in a syntax error.

After you replace all of the SCGA commands with SC commands, playing back the
register file only updates the registers that already exist on your target and does
not erase anything.

Modifying an Existing Register File

If you have a register file that you are satisfied with, but you want to add some
additional groups of registers to it, it is easiest to modify your existing register file
rather than create an entirely new one.

You can either add registers to an existing group or add a new group of registers
to an existing file.

Adding Registers to an Existing Register Group

To add registers to an existing register group, open the register file you want to
modify in a text editor and erase the existing group using the SC GRP ERASE
GroupName command. Then add back all of the registers that were previously
included in that group, as well as any new ones you want to add, using the syntax
shown below:

SCGA GroupName RegisterName Address Data Options...

GroupName — The name of the existing register group that the new register is
added to.

RegisterName — The name of the register that you are creating.

Address — The address where the new register is located.

Data — The data that is stored in the register you are creating.

Options — There are many options associated with the SCGA command. A full
description of all of the available options is available in the Wind River Workbench
for On-Chip Debugging Command Reference.

8 Configuring Target Registers
8.7 System Configuration (SC) Commands

155

8

Adding a New Group of Registers to an Existing File

To add a new group of registers to an existing file, open the register file you want
to modify in a text editor and include the command SC GRP ERASE GroupName.
Then add each of the registers to be included in the group using the following
syntax:

SCGA GroupName RegisterName Address Data Options...

GroupName — The name of the existing register group that the new register is
added to.

RegisterName — The name of the register that you are creating.

Address — The address where the new register is located.

Data — The data that is stored in the register you are creating.

Options — There are many options associated with the SCGA command. A full
description of all of the available options is available in the Wind River Workbench
On-Chip Debugging Command Reference.

As described in Creating a New Set of Registers, p.147, you can change your register
file after you play it back the first time so that the register groups that you have
added or made changes to are not erased each time you play back the register file.
To do this, first make sure that you play back the register file once to create the
register groups in the emulator and on the target. Then open your register file and
remove the SC GRP ERASE GroupName line from the file and everywhere that you
have included SCGA commands, replace them with SC commands using the
syntax described in the Wind River Workbench for On-Chip Debugging Command
Reference. Doing this updates the registers every time you play back the register file
instead of deleting and recreating them.

8.7 System Configuration (SC) Commands

The SC commands allow you to edit any of the internal peripheral registers for
your target processor. They allow you to modify non-volatile values and store
them in your host computer. The values are loaded into the emulator file and
downloaded to your target any time it is initialized. The SC commands also let you
view and edit any of the current target values.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

156

For information on all of the available SC commands, see the Wind River Workbench
for On-Chip Debugging Command Reference.

157

 9
Programming Flash Memory

9.1 Introduction 157

9.2 Connecting to a Target 158

9.3 Testing Flash Workspace 163

9.4 Configuring Registers 164

9.5 Using the Flash Programmer View 165

9.6 Flash Configuration Tab 166

9.7 Flash Programming Tab 168

9.8 Flash Memory/Diagnostics Tab 174

9.1 Introduction

The Flash Programmer view provides the ability to flash images into flash chips
present on your target board.

To program flash correctly you need to know the physical characteristics of your
flash bank. For instance, your board may have one flash device connected to a
64-bit bus. Or it may have a bank of several flash devices, for example two flash
devices, each wired at 16 bits, connected along a 32-bit bus.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

158

If you are using a Wind River-supported board, this information can be found in
the file installDir/vxworks-6.x/target/config/yourTargetBoard/target.ref.

If you are not using a Wind River-supported target, consult your target’s
documentation. The design primitives of your target board should be included in
its board specification and schematics.

To program target flash, you must create an active target connection and configure
your target registers.

9.2 Connecting to a Target

This tutorial uses a Wind River Probe emulator connected to a Wind River
PPMC750FX target.

To connect to your target, use the following steps:

1. Launch Wind River Workbench according to the method for your host.

Linux/Solaris Hosts

From your installation directory, issue the command

$./startWorkbench.sh

Windows Hosts

Select Start > All Programs > Wind River > Wind River Workbench version.

On Windows hosts, Workbench prompts you to specify a workspace location.
Linux/Solaris hosts use the default location installDir/workspace.

When Workbench opens, he Quick Target Launch dialog appears.

9 Programming Flash Memory
9.2 Connecting to a Target

159

9

2. Select Create a new launch Configuration.

The Connection Type dialog appears.

3. Select Wind River OCD Probe Connection and click Next.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

160

The Processor Selection dialog appears.

4. Click Select. From the list that appears, expand MPC7xx and select PPC750FX.

9 Programming Flash Memory
9.2 Connecting to a Target

161

9

5. Make sure the Auto-attach to connected designators checkbox is selected and
click OK.

You are returned to the Processor Selection dialog.

6. Click Next.

7. The connection wizard passes through a number of screens that you do not
need to configure for this tutorial. Leave all settings at their defaults and click
Next until you come to the Connection Summary.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

162

8. Make sure that the Immediately connect to target if possible checkbox is
selected and click Finish.

Workbench creates a target connection called WRProbe_PPC750FX in the
Target Manager view and opens the Reset and Download view.

You do not need to download code to program flash memory, so click Close to
close the Reset and Download view.

9 Programming Flash Memory
9.3 Testing Flash Workspace

163

9

9.3 Testing Flash Workspace

The flash programming algorithm needs to run on the target. This requires a RAM
workspace, to which the algorithm will download, and breakpoints, which are
used to stop an erase and program operation at completion.

Reading and Writing Memory

Once you have established communications with the target, use the following
procedure to make sure you can write to and read from the target. In this example
we assume that the RAM workspace is 0x00F00200.

At the >BKM> prompt, enter dm 00F00200 and press ENTER. Doing so displays the
memory on your target at address 0.

Next, enter sm 00F00200 1234 and press ENTER to set the memory at address 0 to
the value 1234. Enter dm 00F00200 to display the memory at that address again.

If you are communicating properly with your target, output is similar to that
shown below:

>BKM>dm 00f00200
00F00200: FF7C EFFE FEFF E3FE 0D01 0FBE F0FD BFB6 .|.............
>BKM>sm 00f00200 1234
>BKM>dm 00f00200
00F00200: 1234 EFFE FEFF E3FE 0D01 0FBE F0FD BFB6 .4.............
>BKM>

Occasionally, you may have difficulty programming flash memory on your target
if software breakpoints are not being hit properly. Test this functionality before you
continue.

To use the test, enter the following commands at the >BKM> prompt in the OCD
Command Shell:

>BKM>df e 0

>BKM>di 0 6

NOTE: A RAM workspace address of 0x00F00200 is not appropriate for all targets.
For Wind River-supported targets, you can find the necessary RAM workspace in
your target’s target.ref file, located in
installDir/vxworks-6.x/target/config/yourTarget/target.ref.

Wherever the RAM workspace is located on your target, you must make sure that
memory is writable there.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

164

$00000000 : 0x60000000 :ppc nop
$00000004 : 0x60000000 :ppc nop
$00000008 : 0x60000000 :ppc nop
$0000000C : 0x60000000 :ppc nop
$00000010 : 0x7C0004AC :ppc sync
$00000014 : 0x4BFFFFF0 :ppc b 0x4
>BKM>go 0
>RUN>dr pc
PC = 00000004
>RUN>dr pc
PC = 00000010
>RUN>sb 8

>RUN>

!BREAK! - [msg12000] Software breakpoint; PC = 0x00000008 [EVENT Taken]
>BKM>
>BKM>rb

>BKM>

9.4 Configuring Registers

Before you can program target flash, you must configure your target registers. This
is done in two steps: first, configure register settings in the emulator’s non-volatile
RAM (NVRAM); second, copy the register settings from the emulator to the target
by issuing an IN initialization command.

Wind River emulators use low-level SCGA commands to configure register
settings. These low-level commands are stored in a script called a register file, a text
file with the extension *.reg. Register files for Wind River hardware reference
designs are located in installDir/workbench-2.x/dfw/build/host/registers.

To configure target registers for a Wind River PPMC750FX, use the following steps:

1. In the Workbench toolbar, select Window > Show View > OCD Command
Shell.

2. In the OCD Command Shell, select Settings.

The OCD Command Shell Settings dialog appears.

3. Next to the PlayBack File field, click Browse.

4. Navigate to the file you wish to use and click Open.

9 Programming Flash Memory
9.5 Using the Flash Programmer View

165

9

The register file for the Wind River PPMC750FX is ppmc750fx.reg, located in
the folder WindRiver_PPMC in the directory
installDir/workbench-2.x/dfw/build/host/registers/PowerPC/7xx.

5. Click OK.

You are returned to the OCD Command Shell.

6. Click Playback File.

Workbench plays the register file and configures the emulator NVRAM.

7. At the >BKM> prompt in the OCD Command Shell, enter the command IN.

Workbench initializes the target and configures the target registers with the
values from the emulator NVRAM.

You have now configured the target registers. For more information on registers,
see 8. Configuring Target Registers.

9.5 Using the Flash Programmer View

Once you have connected to Wind River Workbench, and configured your target
registers, you are ready to begin programming flash.

In the Workbench toolbar, select Window > Show View > Flash Programmer.

The Flash Programmer view appears.

The Flash Programmer view has three tabs: Configuration, Programming, and
Memory/Diagnostics. Use these tabs to configure your flash address and RAM
workspace, choose files for download, execute erase and program operations, and
check the results of your operations.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

166

9.6 Flash Configuration Tab

Use the Configuration tab to configure the base address and workspace address
for flash memory erase operations. You can also enter the physical description of
your flash devices.

9.6.1 Selecting a Flash Driver

In the Device Selection field, browse to a description of your flash bank. Figure 9-1
shows an example of a flash bank consisting of four 8-bit AMD 29F0808 devices.

If you attempt to move on to the Programming tab without selecting a flash bank
description in the Configuration tab, Workbench displays an Invalid Flash Bank
error and returns you to the Configuration tab.

Figure 9-1 Configuration Tab

NOTE: For AMD flash devices, “F” and “LV” devices are interchangeable in
Workbench.

9 Programming Flash Memory
9.6 Flash Configuration Tab

167

9

9.6.2 Configuring Flash Memory Bounds

In the Configuration field, enter the Base value for the area of flash memory you
wish to erase. In Figure 9-1 the address used is 0xe0000000. The Last field
populates automatically.

If Workbench detects that the address you entered in the Base field is not correctly
aligned with the flash sector boundary, it displays the following warning message:

■ To have Workbench align your base address, click Align. Workbench aligns the
base address with the nearest preceding sector boundary.

■ To go back to the Configuration tab and re-enter the address manually, click
Cancel.

■ To use the base address as you entered it, without aligning it with the flash
boundary, click Continue.

NOTE: Workbench erases flash memory sector by sector. That means that no matter
where the address you enter in the Base field is located within the flash sector,
Workbench will still erase the entire sector.

Figure 9-2 Incorrect Flash Base Address

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

168

9.6.3 Configuring RAM Workspace

The flash programming algorithm needs to run on the target. This requires a RAM
workspace, to which the algorithm will download.

In the RAM Workspace field, enter the Start value for the area of RAM you wish
to use as the workspace. In the Size field, enter the desired size of the workspace
in bytes. In Figure 9-1 the starting address used is 0x00F00200 and the workspace
size is 3992. The End field populates automatically.

9.6.4 Setting Timeouts

To set a program or erase timeout, use the Program or Erase fields in the Set/Edit
Timeouts area. Enter a timeout value in seconds. If you enter an invalid number,
Workbench resets the timeout to its default setting.

9.7 Flash Programming Tab

Use the Programming tab to execute erase and program operations in flash and to
specify files for download.

! CAUTION: Choosing Continue may cause unpredictable results in your flash
programming operations. Wind River recommends that you align the base
address with the flash sector boundary.

NOTE: A RAM workspace address of 0x00F00200 is not appropriate for all targets.
For Wind River-supported targets, you can find the necessary RAM workspace in
your processor’s target.ref file, located in
installDir/vxworks-6.x/target/config/yourTargetBoard/target.ref, or target.ref.linux
file, located at http://www.windriver.com/support.

9 Programming Flash Memory
9.7 Flash Programming Tab

169

9

9.7.1 Erasing and Programming Flash

To issue an IN initialization command before erase or program operations, select
the Send “IN” before each operation checkbox.

Click Erase to erase the contents of the flash memory sectors you selected in the
Configuration tab.

Click Program to program the flash memory with the files you selected in the
Add/Remove Files area of the Programming tab.

Click Erase/Program to perform both operations. Workbench will erase all selected
flash sectors before programming.

Click Abort to stop the erase or program operation.

9.7.2 Verifying Flash Contents

Click Verify to execute a byte-by-byte comparison between the file you just
downloaded and the file already in memory. If there is a discrepancy, Workbench
will break at that address and deliver an error message.

Figure 9-3 Programming Tab

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

170

9.7.3 Running a Pre- or Post-Flash Script

You can specify a script to run before or after an erase or program operation. Select
the Enable pre-flash or Enable post-flash checkboxes (you can select either or
both for any operation). Next to the checkbox, click Browse and navigate to the
script you wish to run.

9.7.4 Selecting Flash Sectors for Erasure

The Sectors field automatically populates with the starting addresses of sectors of
flash memory, depending on which flash device you specified in the
Configuration tab. Click on a sector to select it. You can select all sectors by
clicking Select All. Click Clear All to deselect all sectors.

Before you erase all sectors, make sure you know what resides in the flash. For
example, PowerPC 82xx processors read their reset configuration word from
FE000000 out of the flash device, so for 82xx processors, erasing the entire device
may cause problems with resetting the board.

9.7.5 Manually Configuring Flash Memory Erasure Bounds

Workbench allows greater user control by allowing manual configuration of the
flash memory bounds for erase operations.

You can manually configure the flash memory bounds by checking the Override
erase sector selection checkbox. When this box is checked, Workbench will allow
you to enter any addresses in the Lower boundary address and Upper boundary
address fields.

9.7.6 Adding Files

To add a .bin file, click Add File. This opens the Choose File for Flash Download
browser window. Workbench automatically looks for a folder labeled firmware,
located in installDir/workbench-2.x/dfw/version/host/firmware, where version is
the installed version of the debugger middleware. If your .bin files are stored in

NOTE: If the values you enter result in a memory address range that is outside
your target board’s flash programming area, erase operations will not perform
correctly.

9 Programming Flash Memory
9.7 Flash Programming Tab

171

9

another folder, use the browser to navigate to it. Select the file you want and click
Open. The file will appear in the File Path field.

9.7.7 Removing Files

To remove a file from the list, highlight it and then click Remove File.

9.7.8 Converting Files To Wind River Flash Binary Format

In order to use a file to program flash, you must convert it to a Wind River binary
format that the Flash Programmer can use. Workbench can convert any of the
following file types to Wind River binary format:

■ elf files
■ hex files
■ srec files
■ any headerless flat binary (RAWBIN) file

To convert a file to Wind River binary format, use the following steps:

1. In the Programming tab, select Convert File.

2. In the browser window that opens, navigate to the file you want to convert and
click Open.

The Convert utility appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

172

Converting the file to Wind River binary format does not delete the original
file.

By default, Workbench stores the new binary file in the same location as the
original file. If you want the new binary file stored somewhere else, enter the
path to the desired location in the Output path field.

3. Select Convert and Add File.

Workbench converts the selected file to Wind River binary format and adds it
to the file list in the Programming tab.

9 Programming Flash Memory
9.7 Flash Programming Tab

173

9

4. Click OK.

You are returned to the Programming tab. The file you just converted now
appears in the File Path field.

9.7.9 Setting The Download Offset Of A File

In some cases, before you program the file into flash, you may need to set a
memory offset bias to divert the data to other areas of the flash bank.

Each file is built with a start address. This start address may or may not be the
address where you want the image to reside on the board. If you subtract the start
address of the image from the address where you want the image to reside on the
board, then you end up with the proper bias address.

NOTE: To convert the selected file to Wind River binary format without adding
it to the file list in the Programming tab, select Convert File.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

174

For example, if the image was built with a start address of 0x00 and you wanted
the image to reside at the reset vector 0xFFF00100, then the offset bias would be
FFF00100.

You can use the Add/Remove Files area to edit the starting address of a .bin file to
offset the file into flash. Click on the value under the Start Address heading to
highlight it. Edit the value as needed.

9.7.10 Enabling A File For Download

Enable a file by clicking on the checkbox under the Enabled heading. If the file
address is outside your specified address range, an error message appears:

Cannot enable for download.
Part of this file falls outside your flash address range.

To correct this error, you must either change the start address of your file or use the
Configuration tab to change your flash address range.

9.8 Flash Memory/Diagnostics Tab

Use the Memory/Diagnostics tab to view the contents of flash memory and to run
diagnostic tests to verify your ability to write and erase flash.

You must set up the Configuration tab before using the Memory/Diagnostics tab.

9 Programming Flash Memory
9.8 Flash Memory/Diagnostics Tab

175

9

9.8.1 Viewing Memory

Enter the address you wish to view in the View Address field. The area below
displays the bit-level detail. To change the view, edit the address in the View
Address field and click Refresh. You can also use the scrollbar on the right to scroll
up and down from the starting address to the end address.

9.8.2 Running Diagnostic Tests

To test your ability to write to flash memory, click the Start Program Diagnostic
button. This writes a bit pattern to flash.

You may see a Target Exception message. This requires no action.

If the write operation is successful, you should see the pattern *WRS_FLASH*
repeated under the ASCII heading in the Memory/Diagnostics tab, as shown in
Figure 9-5.

Figure 9-4 Memory/Diagnostics Tab

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

176

If the write operation is unsuccessful, the diagnostic will never complete. You will
need to click the Abort Diagnostic button to stop the write operation. Check to
make sure that you have the right flash device selected in the Device Selection
area in the Configuration tab, and that you are using the correct base address.

To test your ability to erase flash memory, click the Start Erase Diagnostic button.
This will erase the selected flash sectors.

You may see a Target Exception message. This requires no action.

If the erase operation is successful, the selected sectors will be erased and the space
under the ASCII heading in the Memory/Diagnostics view will be empty.

If the erase operation is unsuccessful, the diagnostic will never complete. You will
need to click the Abort Diagnostic button to stop the erase operation. Check to
make sure that you have the right flash device selected in the Device Selection
area in the Configuration tab, and that you are using the correct base address.

Figure 9-5 Successful Program Diagnostic

177

 10
 On-Chip Debugging for Linux

10.1 Introduction 177

10.2 Linux Virtual Memory Management Architecture 178

10.3 Connection Parameters 179

10.4 Emulator Configuration 183

10.5 MMUL Settings 183

10.6 Booting a Linux System with OCD 185

10.7 Boot Line Commands 192

10.8 Reverse-Engineering the Boot Line Parameters 195

10.9 Debugging the Linux Kernel 196

10.10 Kernel Configuration 198

10.11 Debugging User Space Applications with OCD 198

10.12 Linux Troubleshooting 201

10.1 Introduction

This chapter describes the basic concepts required to use Wind River On-Chip
Debugging (OCD) tools to debug a Linux system.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

178

Wind River OCD tools for kernel and kernel module debugging allow you to
develop Linux board-support code, such as LSP, drivers, stacks, I/O, and kernel
priorities.

For general Workbench information, see the Wind River Workbench for Linux User’s
Guide.

10.2 Linux Virtual Memory Management Architecture

Since Wind River OCD tools typically access the entire physical address space
(memory, devices, and peripherals), it’s important to know how Linux manages
the virtual memory space and translates to an OCD memory access.

The Linux memory architecture consists of three identified spaces:

■ Kernel Space - Virtual and partially linear (generally fixed and not paged.)
OCD Kernel Mode supports static translation and paged translation.

■ Static translation covers all areas statically linked to the kernel.

■ Paged translation covers all dynamically allocated areas, such as kernel
modules, insmod and kmalloc.

■ Exception Space - Fixed and linear (component of kernel space, architecture
dependent.) Used for Real Mode.

Real Mode is the mode of debugging of an application that is executing in the
target when the Linux memory management unit (MMU) is disabled. In this
mode the CPU is not translating addresses.It usually covers the startup of the
kernel until the MMU is initialized and the exception vector.

■ User Space - Virtual but not linear (demand paged). User space is the memory
area where all User Mode application work can be swapped out when
necessary.

Pages currently swapped out of these spaces to a filesystem cannot be accessed.

NOTE: Linux memory management is not supported for all processor families.

10 On-Chip Debugging for Linux
10.3 Connection Parameters

179

10

10.3 Connection Parameters

To use the Target Operating System (TOS) awareness for Linux, some
configuration is necessary in the connection definition you create in the Target
Manager view in Workbench.

1. Having selected your emulator type and target processor, click Next.

The Target Operating System Settings dialog appears, as shown in
Figure 10-1.

2. In the Booted Target OS on selected CPU: field, point to the kernel image that
you are using. Workbench uses this kernel image only to load the symbols
automatically, and not to download them physically to the target.

Figure 10-1 Target Operating System Settings

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

180

3. Click Next.

The Memory Options dialog appears, as shown in Figure 10-2.

Use this dialog to specify the base address and size of the physical RAM that
is allocated to the Linux system.

4. Click Next.

The Object Path Mappings dialog appears, as shown in Figure 10-3.

5. Select Load module symbols to debug server automatically if possible.

6. Define the path substitution required between your target filesystem and host
filesystem. If your system loads a large number of modules automatically, you
may want to load the symbols manually for only the subset wanted.

Figure 10-2 Memory Options

10 On-Chip Debugging for Linux
10.3 Connection Parameters

181

10

7. Click Next.

The Target State Refresh dialog appears, as shown in Figure 10-4.

Figure 10-3 Object Path Mappings

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

182

8. Select your desired refresh method.

The default setting is Refresh the target state manually only. Retrieving target
memory through OCD is very time-consuming, so if you select Auto-refresh
the target state periodically, it can slow your project significantly.

The change of state (running or stopped) is event driven, and does not require
auto-refresh to update Workbench on these events.

9. Click Next to bring up the connection summary.

10. Click Finish.

Figure 10-4 Target State Refresh

10 On-Chip Debugging for Linux
10.4 Emulator Configuration

183

10

10.4 Emulator Configuration

Once you have connected to your emulator, you must enable the MMU
configuration.

In the CF Options view, set the Memory Management Unit Mode (MMU) option
to ENABLED, or enter the command

>BKM>cf mmu enable

at the >BKM> prompt in the OCD Command Shell.

This will enable the translation mechanism required to debug a Linux kernel with
an OCD connection.

If you plan to use OCD to transfer the boot line to the kernel (see 10.6 Booting a
Linux System with OCD, p.185):

In the CF Options view, set the Load Boot Table on IN (BL) option to ENABLED,
or enter the command

>BKM>cf bl enable

at the >BKM> prompt in the OCD Command Shell.

Enabling this option will cause the boot line to be written into memory upon every
target reset.

10.5 MMUL Settings

Linux has address locations that are defined and translated before runtime. For
instance, the Linux image may be compiled at an effective address of 0xC0000000,
loaded into the target at RAM location 0, and run from location 0 until the Memory
Management Unit is initialized and turned on. Other locations may be I/O, DMA,
or other fixed and linearly mapped locations, such as the address locations of
exceptions that run in Real Mode. The MMU commands allow you to pre-map
these locations for facilitating downloads and improving performance.

MMU commands:

■ MMUL: List the pre mapped translation(s)

■ MMUA: add a translation

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

184

■ MMUD: remove one or all translations

In most cases, only one MMUL translation needs to be defined: the one that maps
the entire physical address space into the kernel space.

Syntax

MMUL logical_address physical_address mask Mode Process_ID

Example 1

For a board that has 512 MB of RAM and the kernel linked at 0xC0000000, the
following MMUL is required:

Logical address: 0xC0000000

Physical Address: 0

Mask: 0xe0000000 // mask a region of 512 MB

Mode and Process ID (PID) can be set to 0, as they are reserved for future use.

At the >BKM> prompt in the OCD Command Shell, enter

>BKM>mmua C0000000 0 E0000000 0 0

Example 2

To map direct access to a 64 KB I/O region located at FE0000000 and 64KB:

At the >BKM> prompt in the OCD Command Shell, enter

>BKM>mmua fe000000 fe000000 ffff0000 0 0

Example 3

Some PowerPC architectures (such as PPC6xx, PPC7xx, and PPC82xx) disable
their MMU entirely when entering an exception. These architectures require a
translation to map the bottom of the memory so the tools can debug exception
handler (64K in this example):

>BKM> mmua 0 0 ffff0000 0 0

These settings are persistent, and need to be entered only once.

NOTE: The Workbench Linux plug-in automatically sets the MMUA to
0xC0000000 based on the memory settings you enter in the Memory Options page
in the New Connection wizard.

10 On-Chip Debugging for Linux
10.6 Booting a Linux System with OCD

185

10

10.6 Booting a Linux System with OCD

There are two main methods to boot a Linux target with OCD tools:

■ Rely on the existing boot loader, such as redboot, uboot, or yamon, to boot the
system as if the OCD tools were not connected to the target.

■ Use the OCD tools’ boot line capabilities to download and boot a Linux kernel
image without using a boot loader.

10.6.1 Standard Boot

If a boot loader is already developed for your target, this is probably the easiest
way to start debugging a Linux System with OCD tools.

You need to reset the target, let the target resume from its reset vector, and let the
boot loader load and boot the Linux image.

If a boot loader is resident and configured to boot Linux, you do not need a register
file.

Workbench automatically installs a hardware breakpoint at the start of the Linux
kernel to detect that the kernel has been loaded. This enables the TOS awareness
features (such as the List of Processes), as well as all the breakpoints you have
already defined.

For a standard boot, use the following steps:

1. In the Target Manager view, select Reset and Download.

The Reset and Download view appears, as shown in Figure 10-5.

NOTE: After every reset, all user breakpoints are automatically disabled until the
kernel has started.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

186

2. In the Reset tab, check the Reset box and select INN -- Reset.

On an INN command, the tools will reset the target without initializing any of
the peripherals.

3. Select the Download tab.

Figure 10-5 Reset Tab

10 On-Chip Debugging for Linux
10.6 Booting a Linux System with OCD

187

10

If you entered a kernel image name in the Target Operating System Settings
dialog (see 10.3 Connection Parameters, p.179), you do not need to specify a
download file.

If not, select your Linux image (vmlinux) and select the checkbox in the
Download field. Set the Verify field to None and leave the Load Symbols field
unchecked.

4. Select the Instruction Pointer tab.

Figure 10-6 Download Tab

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

188

5. Uncheck Set instruction pointer after download. The INN reset will leave the
instruction pointer already at the reset vector.

6. Select the Run Options tab.

Figure 10-7 Instruction Pointer Tab

10 On-Chip Debugging for Linux
10.6 Booting a Linux System with OCD

189

10

7. Select Run to end of program. This automatically starts the target after the
reset is completed. (Optional, but recommended for targets running a
Watchdog timer by default to reduce the time elapsed between INN and GO.)

8. Click Debug.

10.6.2 OCD Boot

OCD tools can download the kernel image directly into memory, allowing you to
start the kernel without boot loader involvement.

Figure 10-8 Run Options Tab

NOTE: AMCC 40X and 44X processors have a debug control register (DBCR0) that
controls debug event conditions, which can affect the operation of any emulator.
By default, uboot clears this register, which disables the breakpoint mechanism.
Either use a version of uboot that does not clear this register, or select Play post
download script and specify a script to issue the command DR DBCR0 81000001 to
the target, thereby re-initializing the DBCR0 register for emulator debugging.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

190

If you are loading and starting the Linux kernel directly through JTAG, without a
boot loader, you need a register file. The register file needs to initialize the registers
for correct memory access as well as the boot line.

No MMUL or MMUOS settings should be part of the register file; these parameters
are initialized upon connection to the target, when a symbol file is loaded (or
reloaded.)

The OCD tools will reset the target, initialize the required target peripherals
according to the values defined in the register file, and initialize the required boot
parameters into memory as defined in the BL command.

To perform an OCD boot, use the following steps:

1. In the Target Manager view, select OCD Reset and Download.

The Reset and Download view appears, as shown in Figure 10-9.

2. In the Reset tab, check the Reset box and select IN -- Reset/setup regs.

On an IN command, the tools will reset the target, initialize peripherals with
the register file value, and initialize the boot line.

Figure 10-9 Reset Tab

10 On-Chip Debugging for Linux
10.6 Booting a Linux System with OCD

191

10

3. Select the Download tab.

4. Click Add Files to specify the kernel image to download. Select both
Download and Load Symbols. Set the Verify field to None.

5. Select the Instruction Pointer tab.

Figure 10-10 Download Tab

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

192

6. Select Set instruction pointer after download.

7. Select Use specified start address and set the instruction pointer to the start of
the kernel.

8. Click Reset and Download.

10.7 Boot Line Commands

Wind River emulators support various low-level commands and configuration
options that allow you to create, define, pre-set, and manage the Linux boot line
parameters and Linux kernel paging mechanism.

Figure 10-11 Instruction Pointer Tab

NOTE: For all architectures that start with the MMU disabled, the start address is
not the one defined in the *.elf file, but the translated one to the real space. For
example, 82xx vmlinux reports a start address at 0xC0000000, but the real start
address is 0.

10 On-Chip Debugging for Linux
10.7 Boot Line Commands

193

10

The following table gives an overview of the low-level commands and
configuration options that are specific to Linux boot line configuration. For full
descriptions, see the Wind River Workbench On-Chip Debugging Command Reference
and the Wind River Workbench for On-Chip Debugging Configuration Options
Reference.

Like other operating systems, Linux requires parametric information about its
network, file system, and target board environment. In some cases, these boot line
parameters may be compiled into the Linux image as default parameters; or Linux
may acquire these parameters from the boot loader for more versatility.
Consequently, Linux must be customized to accept the parameter format of the
boot loader (for example, uboot). Generally, Linux retrieves pointers or values to
boot line parameters by using registers. Boot line parameters include memory
information, IP address information, and so on. Incorrect boot line parameters are
an obstacle to the successful bring-up of Linux.

The various BL commands allow you to create any number of structures, which are
appropriate for virtually any Linux startup. The structures may reflect the fields of
the Linux architecture-specific structure bd_info bd_t; the Linux boot line; or even
the MAC address assigned to the board.

Pointers to the structures are generally passed using a group of registers. The
structures and their registers can be entered and held by the emulator using a BL
command and passed on a GO command. Once both tables (Structure and
Register) are configured with the BL commands, Linux boot loader code is no
longer required to be pre-installed-embedded into the target and/or included
within the downloaded application. Those tables are retained in the emulator's
NVRAM, so their contents are persistent from one session to another.

Table 10-1 Low-Level Boot Line Commands

Command Examples Description

BL BL ADD
BL DELETE
BL MODIFY
BL DISPLAY
BL UPLOAD

These commands allow you to customize the
location and values for the Linux boot line, which
are automatically passed to Linux through a
register group. Available only when the
configuration options MMU and BL are set to
ENABLED.

NOTE: In addition, these commands may require other resources, such as target
workspace (RAM). For instance, the BL command requires you to allocate target
memory using the CF WSPACE configuration option.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

194

The following example displays a customized set of boot line parameters for a
particular distribution of Linux that have been generated by the BL command and
stored in the emulator’s NVRAM. On a GO command, these parameters will be
loaded into the target memory and passed to Linux via a set of register pointers.
This process is controlled by the emulator's run-time firmware DLL.

Example:

Dynamic Boot Table: structure configuration

Entry	Description	Value/String
00 | MemStartAdd | 0x00000000
01 | MemSize | 0x04000000
02 | FlashStart | 0x40000000
03 | FlashSize | 0x00400000
04 | FlashOffset | 0x00040000
05 | SRAMStart | 0x00000000
06 | SRAMSize | 0x00000000
07 | IMMR_Base | 0xf0000000
08 | BOOTFlags | 0x00000001
09 | IP_ADDR | 0x00000000
10 | ENETADDR[6] | 0x00a01ea87bcb
11 | ETHSPEED | 0x6c79
12 | INTFREQ | 0x0bcd3d80
13 | vBUSFREQ | 0x01f78a40
14 | CPMFREQ | 0x03ef1480
15 | BRGFREQ | 0x01f78a40
16 | SCCFREQ | 0x01f78a40
17 | VCO | 0x07de2900
18 | BAUDRATE | 0x00002580
19 | bi_mon_fnc | 0x0fffffff
20 | CmdStrg | ->console=ttyS0,9600 root=/<-

| | ->dev/ram0 rw

The Entry field is a sequential reference for each line item.

The Description field is an ASCII field only used for comment.

The Value/String field can contain a char, byte, unsigned long, or unsigned short
value.

■ Unsigned long values are displayed in hex using 8 digits, as shown in Entry 01.
■ Unsigned short values are displayed in hex using 4 digits, as shown in Entry

11.
■ Char values are displayed as shown in Entry 20. (Char strings greater than 20

characters are displayed on several lines, using arrows.)
■ Byte values are displayed as shown in Entry 10.

10 On-Chip Debugging for Linux
10.8 Reverse-Engineering the Boot Line Parameters

195

10

Examples of boot lines for various architectures and boot loaders are provided as
part of the Linux register files distributed with Wind River Workbench.

10.8 Reverse-Engineering the Boot Line Parameters

The boot line parameters change with the target architecture, the Linux
architecture, and the developer. You may desire the boot line parameter
information without knowing the low-level details in order to set up a boot line
script. In most cases, this is possible by acquiring an operational target board with
startup/bootstrap firmware and doing the following:

1. Set up the target with your Wind River emulator.

2. Allow the boot ROM to run from ROM by issuing the INN and GO commands.
(Assuming you have set up the MMUL properly.)

3. Download your image using Tftpboot.

4. Halt the emulator by issuing a HA command, and set a hardware breakpoint
at the beginning of where your Linux image will start. This start location can
be retrieved from the System.map of the vmlinux build.

5. Uncompress and boot your image using bootm.

6. After hitting the hardware breakpoint, issue a DR command to display the
register setup before Linux starts.

The registers contain pointers to the boot information structures. For uboot,
consider r2, r3, r6, and r7 (r4 and r5 are generally the RAMdisk pointers and
should be set to zero if there is no RAMdisk).

7. At the >BKM> prompt, enter DML (r3) and press ENTER several times. This
displays the boot information. Do not make any changes at this time. This is
only to understand what your boot flash put into memory for Linux boot
information.

NOTE: Some processors have debug control registers that are essential for
emulator function, and which may be manipulated by the boot ROM. Halting
after Tftpboot may allow the emulator to reacquire control of these debug
control registers.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

196

Now you should be able to download your Linux image (as before, but
without a reset or register load) and run the image as if it were booted from
ROM. If the boot ROM successfully boots the Linux image, then your Linux
image is compatible with your boot ROM and the image of the boot
information structure can be retrieved by the emulator. If not, you must set up
the boot line in a register file in accordance for Linux. To do this, you need to
know what your Linux image expects for boot information (in memory).

8. The downloaded image (via the emulator) is now functioning properly and
has the proper boot line and register setup from ROM. Next, repeat Steps 2
through 5 and capture/duplicate the register setup (as in Step 6) and memory
storage with the boot line facility.

10.9 Debugging the Linux Kernel

Wind River Workbench OCD Edition allows you to debug every part of the kernel,
starting at the very first opcode, as if it were any standalone application. It is
possible to debug the early initialization routines, as well as the entire boot
sequence.

Wind River recommends that the kernel be built with -gdwarf2 to optimize the
symbol reading performances in Workbench.

10.9.1 Debugging Linux Kernel Modules

Linux kernel modules are dynamically allocated in the kernel space when an
insmod is performed.

Kernel Module Detection

Workbench automatically detects that a module was installed and lists the module
name in the Target Manager view.

NOTE: Due to the required optimization level used to build the Linux kernel, some
of the source level single stepping operation seems to not follow the code flow, and
steps out of order.

10 On-Chip Debugging for Linux
10.9 Debugging the Linux Kernel

197

10

Workbench transparently installs breakpoints in the sys_init_module and
free_module functions to keep track of the module loading and unloading in the
system.

If you defined the target RootFileSytem path in the connection wizard (see
10.3 Connection Parameters, p.179), Workbench can automatically read the symbol
file and relocate the different sections according to where the module has been
allocated, to allow debugging of the module. (You can also manually load the
symbol file by right-clicking the module name and selecting Load Symbol File.)

Debugging the init() Function of a Module

To debug the init() function of a module, use the following steps:

1. Place a breakpoint in the sys_init_module function where the mod->init() is
called.

2. In the Linux shell, enter the command insmod module_name.

3. When the breakpoint is hit, step in the init() function.

Note that Workbench automatically detects the module when sys_init_module is
exited.

To see the module appear in the Target Manager view while stopped in the middle
of sys_init_module, select the target that needs to be refreshed in the Target
Manager view and press the Refresh button in the top right of the view.

Figure 10-12 Target Manager View

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

198

10.10 Kernel Configuration

For the Linux 2.6 kernel, the kernel module section link information is not
persistent in the kernel structures by default. For Workbench to properly relocate
the different modules’ symbol files, this information must be made persistent
using one of the following methods.

■ For kernel versions 2.6.12 and above, set CONFIG_KGDB.

■ For kernel versions 2.6.11 and below, you must both set CONFIG_KGDB and
apply a patch to the kernel. The necessary patch is named module.patch and
is located in installDir/wrwb_2.x_50/linux-2.x/kgdb/wrs-2.2.1/linux-2.6.10.

If turning on KGDB is an issue, the equivalent functionality can be obtained by
enabling the code conditionally compiled for CONFIG_KGDB in the
/kernel/module.c and /include/linux/module.h files.

In both module.c and module.h, replace

#ifdef CONFIG_KGDB

with

#if defined (CONFIG_KGDB) || defined (CONFIG_WINDRIVER_OCD)

In module.h, add

#define CONFIG_WINDRIVER_OCD

(There are four instances in module.c and one in module.h.)

10.11 Debugging User Space Applications with OCD

You can use the Target Manager in Workbench to attach to a running process or a
particular thread of a process. This creates a debug context to see the state of a
particular process and debug it. The debug context thus created represents the User
Mode context of the attached process.

Every Linux application has two contexts: User Mode and Kernel Mode. Both
modes use the same process ID (PID.)

Workbench can attach only to threads that have a User Mode context. Workbench
cannot currently attach to kernel threads.

10 On-Chip Debugging for Linux
10.11 Debugging User Space Applications with OCD

199

10

The User Mode context can make system calls to the Kernel Mode context, but you
can see Kernel Mode context only in the system context.

OCD allows full debug capabilities within the user space application and its
shared libraries.

10.11.1 Attaching to a Process

You cannot create a process with OCD; you can only attach to one that is already
existing.

To attach to a running process, use the following steps:

1. In the Target Manager, click the Refresh View button.

2. Right-click on the process you want to attach to and select Attach to Process.

This option is only available for User Mode processes. For processes where it
is not available, the option will be greyed out.

3. Currently there is no way to auto-resolve a symbol file for the application, so
you must load symbols manually. Right-click on the attached process and
select Load/Add Symbols to Debug Server.

The Load/Add Symbols dialog appears.

4. Click Add.

5. In the browser window that opens, navigate to the symbol file you wish to use
and click Open.

You are returned to the Load/Add Symbols dialog.

6. Click OK.

10.11.2 Debugging a Process

Use the Debug view to run, step, and set breakpoints in process threads.

NOTE: You cannot stop only one thread. Whenever a breakpoint is hit in any
thread, the whole system stops.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

200

10.11.3 Setting Breakpoints

Linux uses on-demand memory allocation; memory is not allocated to an
application until it needs it. You cannot set software breakpoints in areas of
memory that are not yet allocated. Attempting to set a software breakpoint in
unallocated memory returns an error:

!ERROR! [msg 170000] : Unable to map virtual address

However, you can always set hardware breakpoints in the entire address space.

10.11.4 Thread-Qualified Breakpoints

By default, a set breakpoint goes to the parent; but Workbench allows you to set the
scope of a breakpoint to a single thread by selecting the drop-down menu in the
Breakpoints view and selecting Breakpoint Preferences.

However, whenever the breakpoint is hit, Workbench will stop the target,
determine if the breakpoint was hit in the correct thread, and if not, restart the
target. This transparent restart of the target can have an impact on the real-time
aspect of the application.

This is also true of processes. If you run the same process several times, the code
section of the application is not replicated; all the processes use the same area of
user space. So if a breakpoint is hit in one process, all other processes will stop to
check if the breakpoint was hit in the correct process and then resume.

10.11.5 Debugging the Beginning of a Process

To debug the beginning of a process, use an internal hardware breakpoint.

Set an expression hardware breakpoint from the system debug context at the start
address of the application. Then start your process.

10.11.6 Limitations

■ You cannot start a process using OCD; you can only attach to an already
existing process, started from the shell or elsewhere.

■ There is no notification when a process dies. You must detach from the process
manually.

10 On-Chip Debugging for Linux
10.12 Linux Troubleshooting

201

10

■ Workbench cannot currently attach to kernel threads. You can debug kernel
threads through the system context.

10.12 Linux Troubleshooting

If you are having trouble, check the following:

■ Make sure the kernel symbol file has debug information.

■ Make sure the MMUL command returns 1 translation of type PHY-KERN to
match the Linux kernel translation.

■ Make sure the MMUOS command returns a list of parameters consistent with
the Linux kernel version you are using.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

202

203

 11
Using the WDB Transparent

Mode Driver

11.1 Introduction 203

11.2 Connecting Through the Transparent Mode Driver 204

11.3 Using the TMD With the Wind River ICE SX 206

11.4 Configuring the Target Server 209

11.5 Moving On 218

11.1 Introduction

In VxWorks debugging, a Wind River Debug (WDB) agent runs on the target as a
kernel task to provide debugging support. You can use the WDB agent to debug
kernel tasks and real-time processes on the target. The WDB agent specifies how
the target server on the host communicates with the target agent on the board.
Typically, Workbench communicates with the WDB agent using an Ethernet or
serial connection.

In some cases an Ethernet or serial connection may not be available for use; for
example, if your target does not have an Ethernet or a serial port on it, or if you are

NOTE: The Transparent Mode Driver is not supported for Wind River Probe. This
chapter applies only to the Wind River ICE SX.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

204

using those ports for some other purpose. In this case you can use the Wind River
Transparent Mode Driver.

The Transparent Mode Driver provides an alternate communications channel for
allowing Workbench to talk to the WDB agent. The Transparent Mode Driver
works through the Wind River ICE SX, implementing communication over the
BDM/JTAG/EJTAG connection. The connection to the target operates entirely
through the standard BDM or JTAG debug link.

The Wind River Transparent Mode Driver supports all of the debug capabilities of
the WDB agent, including system mode, task mode, and virtual I/O. When
connected through the Transparent Mode Driver, the Wind River ICE SX also
functions as a second on-chip debug channel. This allows you to use the ICE to
download VxWorks images, set breakpoints in the kernel, debug device drivers,
and so on, in addition to using the WDB agent for task and process debugging.

In order to use the Transparent Mode Driver, you must set your Wind River ICE SX
to TMD mode, as described in TMD Mode, p.207.

You must also incorporate the Transparent Mode Driver into your Workbench
build. For information doing this, and for general information on the WDB agent,
please see the Wind River Workbench User’s Guide: Setting Up Hardware.

11.2 Connecting Through the Transparent Mode Driver

The most common use of the Transparent Mode Driver is to act as a WDBRPC
connection mechanism to the WDB target agent.

This section briefly explains some of the technical details regarding how the
Transparent Mode Driver works when it is being used as the link connecting the
WDB agent on the target and the target server on the host.

When the Transparent Mode Driver is not being used, the host to target agent
connection consists of either a network or a serial connection, as shown in
Figure 11-1.

11 Using the WDB Transparent Mode Driver
11.2 Connecting Through the Transparent Mode Driver

205

11

For this connection scheme to work, you need a fully functional Board Support
Package (BSP), along with known good hardware, as well as network and/or serial
drivers.

When you use the Transparent Mode Driver, the connection scheme is simplified,
as shown in Figure 11-2.

Figure 11-1 Typical Host to Target Agent Connection

Workbench

Target Server

WDBRPC Backend

HOST TARGET
Application

WDB Agent

Serial or Network
WDB Protocol Driver

Network or serial connection

Figure 11-2 Connection Using the Transparent Mode Driver

HOST

Workbench

Target Server

WDBRPC Backend

TARGET

Application

WDB Agent

Transparent Mode Driver

Network
Connection

JTAG
Connection

Wind River ICE

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

206

In this scenario, the Wind River ICE SX provides the link between the backend and
the target agent. From the perspective of the host tools, the Transparent Mode
Driver appears to be identical to the standard supplied connection (either an
Ethernet or a serial connection).

When you are using the Transparent Mode Driver, the only difference when setting
up the target server is that the IP address of the Wind River ICE SX is listed in the
target server configuration dialog box instead of the IP address of the target.

Information on configuring a target server is available in 11.4 Configuring the Target
Server, p.209.

11.3 Using the TMD With the Wind River ICE SX

You may need to configure your Wind River ICE SX before you can use it with the
Transparent Mode Driver.

11.3.1 Configuring Wind River ICE SX

Information on configuring Wind River ICE SX for network operation is available
in the Wind River ICE SX for Wind River Workbench Hardware Reference. Follow the
instructions provided in that document to configure your Wind River ICE SX for
network operation.

There is one additional option that must be set when you are using the Transparent
Mode Driver; the UDP Console Port must be set to 17185. The following steps
explain how to do this.

1. In the ethsetup menu, accessible from the >NET> prompt (as described in the
Wind River ICE SX for Wind River Workbench Hardware Reference), select Option
5 to view the current port settings.

2. If UDPCNSL is already set to 17185, no modifications are necessary, and you
should exit the ethsetup menu.

3. If UDPCNSL is not set to 17185, type 6 to allow the port values to be changed.

A list of port settings appears.

11 Using the WDB Transparent Mode Driver
11.3 Using the TMD With the Wind River ICE SX

207

11

4. Type the number assigned to the UDPCNSL port, which will allow the
UDPCNSL port setting to be changed, and change it to 17185.

5. Type 0 to exit the Change Port Settings menu.

You are returned to the main ethsetup menu.

6. To save the changes in the ICE unit’s NV-RAM, select Option 8 and press
ENTER.

7. Select Option 9 to exit the ethsetup menu.

You are returned to a >NET> prompt in the Terminal view.

8. Power cycle the Wind River ICE SX unit so these changes take effect.

The ICE unit runs through the same series of internal tests as on initial startup,
making sure that all the hardware and firmware in the unit is functioning
correctly. These tests are again displayed in the Terminal view in Wind River
Workbench, and when they conclude, the > NET > prompt is again visible in
the view.

11.3.2 Configuration Options

For some processors, you may also need to change some of the configuration
options on your Wind River ICE SX.

Setting CF Options in the CF Options View

In the Workbench toolbar, click on Window and select Show View > CF Options.

TMD Mode

1. Under the Command Name heading in the CF Options view, scroll down to
TMD.

2. Double-click on the value under the Current Setting heading to bring up a list
of options.

3. Select ENABLE.

NOTE: For Freescale ColdFire processors, setting the CF options TMD Mode and
Trap Exception is not necessary. For ColdFire processors you only need to set the
CF option Target Console Redirection.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

208

4. Click on the Send All CF Options to Target icon.

Trap Exception

1. Under the Command Name heading in the CF Options view, scroll down to
TRPEXP.

2. Double-click on the value under the Current Setting heading to bring up a list
of options.

3. Select BREAKPOINTONLY.

If BREAKPOINTONLY is not available for your target board, set TRPEXP to NO.

4. Click on the Send All CF Options to Target icon.

Target Console Redirection

1. Under the Command Name heading in the CF Options view, scroll down to
TGTCONS.

2. Double-click on the value under the Current Setting heading to bring up a list
of options.

3. Select BDM.

4. Click on the Send All CF Options to Target icon.

Setting CF Options with Low-Level Commands

You can also set these options using low-level commands.

1. In the Workbench toolbar, click on Window and select
Show View > OCD Command Shell.

2. At the >BKM> prompt in the OCD Command Shell, type CF.

A list of the current settings for the CF options on your Wind River ICE SX will
appear.

3. At the >BKM> prompt, type CF TMD ENABLE and press ENTER.

4. Type CF TRPEXP BREAKPOINTONLY and press ENTER.

If BREAKPOINTONLY is not available for your target board, set TRPEXP to NO.

5. Type CF TGTCONS BDM and press ENTER.

6. Type CF again.

11 Using the WDB Transparent Mode Driver
11.4 Configuring the Target Server

209

11

The CF options now show the values you entered.

7. Type the command IN or INN to reset the processor. Your changes will not take
effect until you reset the processor.

11.4 Configuring the Target Server

If an image is running on your target, your host will be able to communicate with
the running WDB agent. To do this, you must configure and activate a Target
Server. To configure a Target Server, use the following steps.

First, open Workbench according to the method for your host computer.

Linux/Solaris Hosts

From your installation directory, issue the command

$./startWorkbench.sh

Windows Hosts

Select Start > All Programs > Wind River > Wind River Workbench version.

On Windows hosts, Workbench prompts you to specify a workspace location.
Linux hosts use the default location installDir/workspace.

When Workbench opens, the Quick Target Launch dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

210

1. Select Create a new launch configuration.

The Connection Type dialog appears.

11 Using the WDB Transparent Mode Driver
11.4 Configuring the Target Server

211

11

2. Choose Wind River VxWorks 6.x Target Server Connection.

3. Click Next.

The Connection Settings dialog appears.

NOTE: The Transparent Mode Driver is not currently supported for Linux.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

212

4. Set the Back End field to wdbrpc.

5. In the Name/IP Address field, enter the IP address of your Wind River ICE SX
unit. (Make sure you use the IP address of the ICE, and not the IP address of
your target.)

For information on assigning an IP address to your ICE unit, see the
Wind River ICE SX for Wind River Workbench Hardware Reference.

6. Click Next.

The Memory Options dialog appears.

11 Using the WDB Transparent Mode Driver
11.4 Configuring the Target Server

213

11

The Memory Options dialog is only necessary for Linux or other
non-VxWorks target operating systems, so leave the settings at their defaults
and click Next.

The Object Path Mappings dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

214

Use this dialog to make sure your pathnames are mapped correctly. To change
the pathname mappings, use the Add, Edit and Remove buttons.

7. Click Next.

The Target State Refresh dialog appears.

11 Using the WDB Transparent Mode Driver
11.4 Configuring the Target Server

215

11

8. Use this dialog to specify the target state query and target state refresh
parameters.

9. Click Next.

The Default Breakpoint Options dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

216

Use this dialog to set default breakpoint options for newly created
breakpoints.

10. Click Next.

A connection summary appears.

11 Using the WDB Transparent Mode Driver
11.4 Configuring the Target Server

217

11

11. Check the summary to be sure your settings are correct and click Finish.

You are returned to the Device Debug perspective. The target server
connection is now visible as a target name in the Target Manager view.

NOTE: If you do not want to connect to your target now, uncheck the Immediately
connect to target if possible box. You can connect to your target at any time by
right-clicking on the target name in the Target Manager view and selecting
Connect.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

218

11.5 Moving On

Once the target server has been launched successfully, you can use any of the
Wind River Workbench tools. Workbench operates in the same fashion regardless
of whether the WDB connection is serial, Ethernet, or the Transparent Mode
Driver. The only difference you may notice when the Transparent Mode Driver is
in use is the speed, which is due to limitations on the BDM/JTAG/EJTAG
connection type.

For information on Workbench tools, see the Wind River Workbench User’s Guide.

219

 12
Internal Software Trace

12.1 Overview 219

12.2 The Trace View 220

12.3 Configuring Trace 225

12.4 Tracing Execution 231

12.1 Overview

Internal software trace is only supported for PowerPC 85xx, PowerPC 86xx, and
PA Semi PA6T-1682M processors. This chapter applies only to the PowerPC 85xx
and 86xx and the PA Semi PA6T-1682M.

Internal trace captures a snapshot of your executing code to a memory array, at full
speed. It saves up to hundreds of thousands of machine cycles, displaying
addresses and instructions; PPC 85xx and 86xx also display transferred data.
Wind River Workbench translates raw machine cycles to assembly code or C/C++
statements, and displays them in the Trace view.

Workbench captures only memory cycles, and may not reflect what the core
actually executes, especially if cache is enabled.

Wind River Workbench starts and stops trace collection based on user-defined
triggering mechanisms.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

220

12.2 The Trace View

To open the Trace view, select Window > Show View > Trace View.

The Trace view appears, unpopulated.

The Trace view has two fields: the Events field and the Trace field.

The Events field shows the trace buffer. When code runs, the Events field shows
the start of trace and the end of trace. It also displays the type of trace event.

For PPC 85xx and 86xx processors, the Trace field has five columns, from left to
right: Event Occurrences (unlabeled), Address, Abs Time, DEL Time, and
Instruction (unlabeled.) For PA Semi PA6T-1682M processors, the Trace field is the
same except that it does not use the Abs Time and DEL Time columns.

The Event Occurrences column shows the type of trace event.

The Address column shows the address or line number of the trace event.

The Abs Time column shows the absolute time, that is, the elapsed time since the
beginning of trace.

The DEL Time column shows the delta time, that is, the change in absolute time
since the last trace entry.

The Instruction column shows the executed instructions. To set the code display,
right-click in the Instruction field and select Show Code Level. From the list of
options, select Functions, Source, or Disassembly.

12.2.1 Trace View Buttons

The buttons in the Trace view have the following functions:

Collapsing and Expanding Fields

The first four columns in the Trace field (or the first two columns for PA Semi
PA6T-1682M processors, which do not use the Abs Time and DEL Time columns)
can be collapsed or expanded using the four toggle buttons in the Trace view, as
shown in Figure 12-1.

12 Internal Software Trace
12.2 The Trace View

221

12

To collapse any column, click on the toggle button for that field. To re-expand it,
click on the toggle button again.

The Instruction column cannot be collapsed.

Toggle Trace/Source view Auto-Sync

Click this button to set the Workbench editor to align itself with any highlighted
instruction in the instruction field in the Trace view. With this button toggled,
clicking on a function in the Trace view will cause the editor to jump to that
function. To un-sync the Trace view and the editor, click the button again.

Clear Trace Buffer

Clear the trace buffer so that previously stored trace data is not included in the next
trace that appears. Whenever you add new code, or manually alter the Program
Counter value, you should clear the trace buffer before running or stepping, to
prevent errors from occurring due to old trace data in the buffer. The button can
also be used to trace individual functions by clearing the buffer and then stepping
over the function.

The button does not actually flush the trace buffer; it just moves the pointer to the
beginning of the buffer, so any previous data is overwritten.

Figure 12-1 Trace Toggle Buttons

Toggle Event Bar

Toggle Address Bar

Toggle Absolute Timestamp Bar

Toggle Delta Timestamp Bar

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

222

Refresh Trace View

Click this button to refresh the entire Trace view, including the Events field.
Refresh the Trace view to display the newest good information.

Open Trace Rules Dialog

Click this button to open the Trace Rules dialog, as shown in Figure 12-2.

Figure 12-2 Trace Rules Dialog

12 Internal Software Trace
12.2 The Trace View

223

12

Use the Trace Rules dialog to create a trace rules file, for cases where the code is
not running in the address range of the download file specified in the Reset and
Download view, such as an interrupt service routine in flash.

To create a trace rules file, use the following steps:

1. Click Add Rule.

2. In the Memory Type field, select CODE (for executable code) or DATA.

3. In the Start Address field, enter the memory address you want trace to begin.

4. In the End Address field, enter the memory address you want trace to end.

5. Click Save Rules.

In the browser window that opens, specify a location and name for your rules
file. Rules files must be saved as ASCII files with the extension .rulesconf.

Next, use the ASCII file you have just created to generate a binary file using the
following steps:

1. Click Upload File.

2. In the browser window that opens, specify a location and name for your binary
file and click Open. Workbench will save the binary file with the extension .elf.

If you already have an existing trace.elf file, you can click Upload/Append
File to append the new rule you just created to the end of the existing file.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

224

3. Click OK to close the Trace Rules dialog.

4. In the Target Manager view, right-click on your target connection name and
select OCD Reset and Download.

5. The Reset and Download view appears.

6. Select the Files tab.

7. Click Add Files.

8. In the browser window that appears, navigate to the trace.elf file you have just
created and click Open.

9. The trace.elf file appears in the file list.

10. Uncheck the Download and Load Symbols fields. Leave the Verify field set to
None.

11. Click Debug.

The trace rules are now added to your project.

Filter Visible Trace Events

Filtered trace is not supported for internal software trace.

Save Output to File

This button opens a browser window. Use the browser to specify a file to which
you can save the information in the Trace view.

This button saves the information from all columns in the Trace field (three or five,
depending on which processor family you are connected to). It does not save
information from the Events field.

12 Internal Software Trace
12.3 Configuring Trace

225

12

12.3 Configuring Trace

To configure trace-specific configuration options, click the Configure Trace button.
The Configure Trace dialog opens, showing the available options for your target
processor.

12.3.1 PowerPC Trace Configuration Options

If you are connected to a PPC 85xx or 86xx processor, the Configure Trace dialog
opens showing the following options.

Figure 12-3 Internal Trace Options for PowerPC

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

226

Trace Configuration

Trace Mode

Select the Trace Mode to determine whether to trace every valid cycle, or only trace
when the event is matched:

■ All Valid Cycles -- Capture any valid bus cycle regardless of what the Match
Criteria is set to.

■ Trace Event is detected -- Capture only those cycles that match the Match
Criteria.

If you set up any of the fields in the Match Criteria, use Trace Event is detected.

Start Condition

Select the start condition to determine when to start the Trace Buffer capture:

■ Arm Immediately -- This option starts trace captures as soon as the target
starts.

■ Watchpoint Monitor event is detected -- Start trace capture only when a
Watchpoint Monitor event occurs.

■ Trace Buffer Event is detected -- Start trace capture only when a Trace Buffer
Event occurs.

■ Performance Monitor signal overflow -- Start trace capture when
performance monitors overflow (an internal signal indicates that a counter
overflow has happened).

■ TRIG_IN transitions from 0 to 1 -- Start capture when TRIG_IN signal goes
from 0 to 1.

■ TRIG_IN transitions from 1 to 0 -- Start capture when TRIG_IN signal goes
from 1 to 0.

■ Current context ID = Programmed context ID -- Start trace capture when the
programmed context ID register is equal to the current context ID.

■ Current context ID != Programmed context ID -- Start trace capture when the
programmed context ID register is not equal to the current context ID.

Stop Condition

Select a Stop Condition to determine when to stop capturing trace.

■ Trace Buffer is Full -- Stop trace capture when it reaches the end of the buffer.

12 Internal Software Trace
12.3 Configuring Trace

227

12

■ Watchpoint monitor event is detected -- Stop capturing any trace when the
Watchpoint monitor event is matched.

■ Trace Buffer Event is detected -- Stop capturing trace when a trace buffer
event is matched.

■ Performance Monitor signal overflow -- Stop capturing trace when
performance monitors overflow (an internal signal indicates that a counter
overflow has happened).

■ TRIG_IN transitions from 0 to 1 -- Stop capture when TRIG_IN signal goes
from 0 to 1.

■ TRIG_IN transitions from 1 to 0 -- Stop capture when TRIG_IN signal goes
from 1 to 0.

■ Current context ID = Programmed context ID -- Stop trace capture when the
programmed context ID register is equal to the current context ID.

■ Current context ID != Programmed context ID -- Stop trace capture when the
programmed context ID register is not equal to the current context ID.

Clear Trace On GO

Use this parameter to control where to start saving trace data in the trace memory
on a GO command. The trace clear settings YES and NO determine where to start
saving the trace data in the trace memory, as explained below.

■ YES — When a GO command is issued, the trace data will be stored in trace
memory starting at the first trace memory location. All previously stored trace
data will be overwritten and lost. All newly captured trace data will be stored
starting at the beginning of the trace memory.

■ NO — When GO command is issued, the trace data will be stored in trace
memory starting at the next trace memory location. All previously stored trace
data will not be overwritten. All newly captured trace data will be stored
starting at the next trace memory location.

Source Type

■ Coherency Module -- This is the default trace source after the processor reset.
It provides all the activities on the local bus and the snoop cycles between the
core and the L2 cache.

■ DDR SDRAM -- This is similar to the Coherency Module, except without
snoop cycles.

■ PCI -- Select the trace source of the PCI/PCI-X output interface.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

228

■ Rapid IO -- Select the internal Rapid I/O outbound interface for the trace
source.

Trace System Status

Use this parameter to control the acquiring of trace data to the trace memory on a
GO command. The trace data will also be acquired when stepping, running to a PC
value, or running back to a calling function. The trace acquire settings ENABLE and
DISABLE determine when the trace memory will acquire trace data on a GO
command, as follows:

■ ENABLE — When a GO command is issued, all trace data will be acquired and
saved in the trace memory.

■ DISABLE — When a GO command is issued, no trace data will be acquired and
saved in the trace memory.

Match Criteria

■ Address with Mask -- This option will filter the Trace Buffer by matching only
the correct address with the address mask. For an instruction fetch bus cycle,
the address will appears in the form 0x0, 0x20, 0x40 and the memory variable
address will shows up as it is. In order to capture the correct address (with
mask), an instruction fetch address has to be entered as 0x0, 0x20, 0x40 and the
memory cycle’s address can be entered without any adjustment.

■ Transaction Type -- This option will filter trace capture by matching only the
correct transaction type. The transaction types are different when the trace
source changes. A different set of drop down menu will appear when the trace
source changes.

■ Source ID -- Selecting the Source ID field will capture only the matched cycle
with the same Source ID. This ID indicates the source of this cycle.

■ Target ID -- Selecting the Target ID field will capture only the matched cycle
with the same Target ID. This ID indicates the destination of this cycle.

12.3.2 PA Semi Trace Configuration

If you are connected to a PA Semi PA6T-1682M processor, the Configure Trace
dialog opens showing the following options.

12 Internal Software Trace
12.3 Configuring Trace

229

12

Available Trace Subsystems

The only available trace subsystem is Internal Trace.

Filter on Execution

Use this field to set Workbench to enable or disable trace when a particular
instruction is executed. By default this field is set to No Filter on Instruction. If you
set it to Enable on Instruction or Disable on Instruction, you must enter the
address of the instruction in the Value to Filter On field.

Value to Filter On

If you have set the Filter on Execution field to No Filter on Instruction, ignore this
field. If you have set the Filter on Execution field to Enable on Instruction or
Disable on Instruction, use this field to specify the address of the instruction you
want to use.

Figure 12-4 Internal Trace Configuration for PA Semi

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

230

PC Capture Mode

Use this field to specify whether Workbench should output captured trace as 32-bit
or 64-bit values.

Trace System Status

Use this field to control the acquiring of trace data to the trace memory on a GO
command. The trace data will also be acquired when stepping, running to a PC
value, or running back to a calling function. The trace acquire settings Enabled and
Disabled determine when the trace memory will acquire trace data on a GO
command, as follows:

■ Enabled — When a GO command is issued, all trace data will be acquired and
saved in the trace memory.

■ Disabled — When a GO command is issued, no trace data will be acquired and
saved in the trace memory.

Trace Until Buffer Full

Set this option to On to set Workbench to stop capturing trace when the trace buffer
is full. If this option is set to Off, Workbench continues to capture trace when the
trace buffer is full, overwriting the contents of the trace buffer with the newly
captured trace.

Trace Source

■ PC Retire Trace - Select the PCI/PCI-X output interface for the trace source.

■ Connexium Bus Trace - Select the Pa Semi Connexium bus for the trace source

■ Rapid IO Trace - Select the internal Rapid I/O outbound interface for the trace
source.

Log Branches Only

When this option is set to Off (the default) the processor outputs all instructions.
When this option is set to On, the processor outputs only on branch instructions.

12 Internal Software Trace
12.4 Tracing Execution

231

12

12.4 Tracing Execution

You must have downloaded your code to Workbench, either by using the
Workbench project management facility or by using the Reset and Download
view, before you can begin to trace code.

12.4.1 Setting a Tracepoint

Next, set a tracepoint in your code.

If no tracepoints are set, The trace will contain all code up to the point where the
target was suspended, either manually or by hitting a breakpoint.

To set a tracepoint, right-click to the left of the editor (in the gutter) and select
Tracepoints > Add Tracepoint.

The Line Tracepoint dialog appears. The options shown in the Line Tracepoint
dialog (After Trace Counter, Post Trigger Counter, and so on) are not supported for
internal trace.

12.4.2 Tracing Execution

Having specified your tracepoint in the Line Tracepoint dialog, click OK.

Workbench sets the tracepoint in your code, placing a trace icon in the editor. An
entry for the tracepoint appears in the Breakpoints view.

In the Debug view, click Resume. Let some code execute and then click Suspend.

In the Trace view, click Refresh View.

Trace information appears in the Trace view, as shown in Figure 12-5.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

232

(In Figure 12-5, the Event Occurrences column is collapsed to make it easier to read
the information in the Instruction field.)

Figure 12-5 Trace View

233

 13
 Using the CF Options View

13.1 Introduction 233

13.2 Connecting to a Target 234

13.3 Configuring the Target Connection 238

13.4 Changing CF Options in the CF Options View 240

13.5 Changing CF Options With Low-Level Commands 241

13.6 Resetting CF Options 242

13.1 Introduction

Wind River emulators can be configured in several different ways to specify
various settings such as electrical properties, connection logic, and clock rate. To
configure these settings Workbench uses configuration options, or CF options, which
you can set in the CF Options view.

This chapter provides a tutorial for configuring a target connection using CF
options.

What CF options are available depends on the target processor, and also on
whether you connect with a Wind River Probe or Wind River ICE SX. For a full
description of all Wind River CF options sorted by processor family, see the Wind
River Workbench for On-Chip Debugging Configuration Options Reference.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

234

13.2 Connecting to a Target

In order to configure CF options, you must have an active target connection.

This tutorial uses a Wind River Probe emulator connected to a Wind River
PPMC750FX target.

To connect to your target, use the following steps:

1. Launch Wind River Workbench according to the method for your host.

Linux/Solaris Hosts

From your installation directory, issue the command

$./startWorkbench.sh

Windows Hosts

Select Start > All Programs > Wind River > Wind River Workbench version.

On Windows hosts, Workbench prompts you to specify a workspace location.
Linux/Solaris hosts use the default location installDir/workspace.

When Workbench opens, he Quick Target Launch dialog appears.

2. Select Create a new launch Configuration.

13 Using the CF Options View
13.2 Connecting to a Target

235

13

The Connection Type dialog appears.

3. Select Wind River OCD Probe Connection and click Next.

The Processor Selection dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

236

4. Click Select. From the list that appears, expand MPC7xx and select PPC750FX.

13 Using the CF Options View
13.2 Connecting to a Target

237

13

5. Make sure the Auto-attach to connected designators checkbox is selected and
click OK.

You are returned to the Processor Selection dialog.

6. Click Next.

7. The connection wizard passes through a number of screens that you do not
need to configure for this tutorial. Leave all settings at their defaults and click
Next until you come to the Connection Summary.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

238

8. Make sure that the Immediately connect to target if possible checkbox is
selected and click Finish.

Workbench creates a target connection called WRProbe_PPC750FX in the
Target Manager view and opens the Reset and Download view.

9. You do not need to download code to configure the target connection, so click
Close to close the Reset and Download view.

13.3 Configuring the Target Connection

In the Workbench toolbar, select Window > Show View > CF Options.

13 Using the CF Options View
13.3 Configuring the Target Connection

239

13

The CF Options view opens, populated with the available CF options for your
emulator and target processor.

The CF Options view has four columns: Command Name, Current Setting,
Parameters, and Description. An example entry is shown below:

Command Name shows the argument associated with this option for the low-level
CF command in the OCD Command Shell.

Current Settings shows the value to which the option is currently set.

Parameters shows the available range of values to which you can set the option.

Description shows a description of the configuration option.

Command Name Current Setting Parameters Description

INCOLD NO [YES, NO] Issue an IN on coldstart

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

240

13.4 Changing CF Options in the CF Options View

To change the value of a CF option in the CF Options view, use the following steps.

1. Highlight any CF option and click on its entry in the Current Settings column.

A drop-down list appears.

2. In the drop-down list, choose the value you want and click on it to reset the CF
option.

For example, suppose you want the emulator to send an IN initialization
command to the target on every cold start. By default this option is set to NO.

a. In the Description column, find Issue an IN on coldstart.

b. Highlight that CF option and click the Current Settings column.

c. A drop-down list of available values (in this case NO and YES) appears.

d. Select YES to enable the option.

3. Repeat these steps for any CF options you wish to change.

13 Using the CF Options View
13.5 Changing CF Options With Low-Level Commands

241

13

4. After you have set all the CF options you want to set, click the Send All CF
Options to Target button.

13.5 Changing CF Options With Low-Level Commands

You can also work with configuration options by using the CF command in the
OCD Command Shell. At a >BKM> or >ERR> prompt, enter the command CF. This
will bring up a list of your emulator’s configuration options.

>BKM>cf
Set BreakPoint SB[SB,IHBC] = SB
Vector Table Location VECTOR[HIGH,LOW,IGNORE] = LOW
Monitor Target reset RST[YES,NO,HALT,RUN] = YES
Target CPU TAR[AUTO,603E,EC603E,603P,603R,740,745,

750,750CX,750CXE,750FX,750GX,755,7400,7410] = 750FX
Target CPU(SLAVE) SLAVE[NONE,8260] = NONE
Slave IMMR reset value SLIMMRVAL[AUTO,VALUE] = AUTO
JTAG clock rate (MHz) CLK[0.025...100,AUTO] = 16
Application IMMR Exclusion Range AIMMRER[OFF,START and END] = OFF
Application IMMR Value AIMMRVAL[VALUE] = 0e000000
Real time Preservation RTP[YES,NO] = NO
Little Endian Mode LENDIAN[YES,NO] = NO
Processor Mode MODE[32,64] = 64
Download Mode DLD[NORMAL,8] = NORMAL
Emulator HRESET Control HRESET[ENABLE,DISABLE] = ENABLE
Data Parity Checking PAR[YES,NO] = NO
Set Work Space WSPACE[BASE and SIZE] = 00000000 174c
Set Stack Range STACK[OFF / LOWER and UPPER] = OFF
Target Console Redirection TGTCONS[BDM,COM1,COM2] = BDM
Drive TReset line TRESET[OPENC,ACTIVE] = ACTIVE
Invalidate Instruction Cache on GO INVCI[YES,NO] = YES
Reset Pulse Length N*1ms RPL[1..2000] = 1
Sense Power via HRESET SPOWER[YES,NO] = YES
Power On Reset Length N*1ms PONR[0..500] = 0
CPU Reset Type RESET[HRESET,SRESET,HRESET_UNFILTER,SRESET_UNFILTER] = HRESET
Trap exception TRPEXP[YES,NO,SOI,BREAKPOINTONLY] = YES
Issue an IN on coldstart INCOLD[YES,NO] = NO
Display L2 Data Cache Warning L2WARNING[YES,NO] = NO
Memory Management Unit Mode MMU[ENABLE,DISABLE] = DISABLE
Load Boot Table On IN BL[ENABLE,DISABLE] = DISABLE
Trigger In Report Mode BRKREP[REPONLY,BRKREP] = BRKREP

NOTE: Setting CF options in the CF options view does not immediately make
changes to the target connection. Your changes do not take effect until you issue a
target reset, either by using the Send All CF Options to Target button in the CF
Options view or by issuing an IN or INN command in the OCD Command Shell.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

242

TMD Mode TMD[ENABLE,DISABLE] = DISABLE
Run Counter Length RCL[1000..FFFF] = 1000
Delay after Reset Nms DRST[0..10000] = 25
>BKM>

Change any CF option using the syntax

CF CommandName Value

CommandName is the name given in the Command Name column in the CF
Options view.

Value is the value you wish to change to.

For example, to set the emulator to send an IN initialization command to the target
on every cold start, enter the command

>BKM>cf incold yes

Enter the CF command again to see your changes.

13.6 Resetting CF Options

To restore all CF options to their target defaults, use the Reset to default target
settings button in the CF Options view.

NOTE: Setting CF options with the CF command does not immediately make
changes to the target connection. Your changes do not take effect until you issue a
target reset, either by using the Send All CF Options to Target button in the CF
Options view or by issuing an IN or INN command in the OCD Command Shell.

243

 14
 Using Hardware Diagnostics

14.1 Introduction 243

14.2 Connecting to Your Target 244

14.3 Setting a Workspace 248

14.4 Hardware Diagnostic Tests 249

14.1 Introduction

The Hardware Diagnostic view provides a set of RAM and bus diagnostics and
utilities that can be controlled by the emulator or run on the target. For some of the
tests, you can run code directly on the target instead of through the emulator by
selecting the Run on Target checkbox. This allows the test to run at the execution
speed of the target processor.

This tutorial uses a Wind River Probe emulator connected to a Wind River
PPMC750FX target.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

244

14.2 Connecting to Your Target

To connect to your target, use the following steps:

1. Launch Wind River Workbench according to the method for your host.

Linux/Solaris Hosts

From your installation directory, issue the command

$./startWorkbench.sh

Windows Hosts

Select Start > All Programs > Wind River > Wind River Workbench version.

On Windows hosts, Workbench prompts you to specify a workspace location.
Linux/Solaris hosts use the default location installDir/workspace.

The Quick Target Launch dialog appears.

2. In the Target Manager view, right-click default(localhost) and select
New > Connection.

The Connection Type dialog appears.

14 Using Hardware Diagnostics
14.2 Connecting to Your Target

245

14
3. Select Wind River OCD Probe Connection and click Next.

The Processor Selection dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

246

4. Click Select. From the list that appears, expand MPC7xx and select PPC750FX.

5. Make sure the Auto-attach to connected designators checkbox is selected and
click OK.

You are returned to the Processor Selection dialog.

6. Click Next.

7. The connection wizard passes through a number of screens that you do not
need to configure for this tutorial. Leave all settings at their defaults and click
Next until you come to the Connection Summary.

14 Using Hardware Diagnostics
14.2 Connecting to Your Target

247

14

8. Make sure that the Immediately connect to target if possible checkbox is
selected and click Finish.

Workbench creates a target connection called WRProbe_PPC750FX in the
Target Manager view and opens the Reset and Download view.

9. You do not need to download code in order to run hardware diagnostics, so
click Close to close the Reset and Download view.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

248

14.3 Setting a Workspace

The RAM workspace is an area of RAM on the target that the emulator uses to
download the hardware diagnostic routines and flash programming algorithms.
You must tell your emulator where writable RAM is located on your target for this
purpose.

Depending on the device family and type, this space is limited to under 2 KB. Note
that more memory improves the speed of programming.

To configure the workspace, enter the parameters in the OCD Command Shell,
using the syntax

CF WSPACE base size

where base is the start address, and size is the minimum number of bytes of target
RAM required.

To find the base and size values for a Wind River-supported target, consult your
target’s target.ref file, located in installDir/vxworks-6.x/target/config/yourTarget.
Alternatively, consult your processor documentation.

For example, on a Wind River PPC750FX target, the base of the workspace is
00000000 and the size is 1770. To set the workspace, in the OCD Command Shell
enter the command

>BKM>cf wspace 0 1770

This sets the workspace at address 0 with a size of 1770 bytes.

NOTE: The RAM workspace has no relation to the workspace that Workbench uses
to store project information.

NOTE: Setting a RAM workspace is only necessary if you are running the
diagnostics on the target. If you do not select the Run on Target checkbox, you do
not need to set a RAM workspace. Tests run on the target are slower, so if you select
the Run on Target checkbox, make sure you specify a small area of memory to be
tested.

14 Using Hardware Diagnostics
14.4 Hardware Diagnostic Tests

249

14

14.4 Hardware Diagnostic Tests

To run diagnostic tests on your target, use the following steps.

14.4.1 Simple RAM Test

This test writes and reads back a simple pattern to the memory bounded by the
starting and ending addresses entered in the Start Address and End Address
fields. If an error occurs, the test stops and the error type and address are displayed
in the Output field.

The first diagnostic to be run is a Simple Ram Test on the area of memory used by
the workspace.

1. In the Workbench toolbar, select Window > Show View > Hardware
Diagnostics.

2. In the Diagnostic field, select Simple RAM Test – Single Pass.

3. The workspace cannot be used to test itself, so make sure the Run on target
checkbox is unchecked.

4. In the Start Address field, enter 0.

5. In the End Address field, enter 1770.

6. In the Units field, select LONG.

7. Click Run.

Workbench displays the test result in the Output field. The output of a successful
test will resemble that in Figure 14-1.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

250

If the test fails, the Address Bus Test diagnostic and the Data Bus Test diagnostic
may determine the cause of the failure; see 14.4.5 Bus Tests, p.253.

If the RAM test of the memory used by the workspace passed, you can now test the
rest of the memory in the target system at full bus speed.

1. In the Diagnostic field, select Simple RAM Test – Single Pass.

2. Select the Run on Target checkbox.

3. In the Start Address field, enter 14000.

4. In the End Address field, enter 20000000.

5. In the Units field, select LONG.

6. Click Run.

Workbench displays the test result in the Output field.

If the message Test Complete appears, then the diagnostic passed.

If the test fails, try re-seating the SDRAM module and repeat the test. If the test still
fails, then run the Address Bus Test diagnostic and the Data Bus Test diagnostic
to determine the cause of the failure. See 14.4.5 Bus Tests, p.253.

Figure 14-1 Successful Simple RAM Test

14 Using Hardware Diagnostics
14.4 Hardware Diagnostic Tests

251

14

14.4.2 Full RAM Tests

A Full RAM test writes a “walking” 1 on each bit of RAM and reads it back. This
is a very lengthy test and can detect bus configuration errors, typically on a new
printed circuit board.

This test sets and then clears each bit to try to locate memory defects bounded by
the starting and ending addresses entered in the Start Address and End Address
fields. If an error occurs, the test stops and the error type and address are displayed
in the Output field.

Full RAM tests are designed to check for cell disturbance and addressing
problems. These tests perform the following actions:

A Single Pass test will run the test only once. A Continuous test will repeat the test
over the same address until you click Stop.

1. In the Diagnostic field, select Full RAM Test – Single Pass.

2. Select the Run on Target checkbox.

3. In the Start Address field, enter 14000.

4. In the End Address field, enter 00014100.

5. In the Units field, select LONG.

6. Click Run.

Workbench displays the test result in the Output field.

If the message Test Complete appears, then the diagnostics passed.

If the test fails, try re-seating the SDRAM module and repeat the test. If the test still
fails, then run the Address Bus Test diagnostic and the Data Bus Test diagnostic
to determine the cause of the failure. See 14.4.5 Bus Tests, p.253.

14.4.3 CRC Calculation

Workbench and the emulator support the calculation of a Cyclic Redundancy
Check (CRC) on all addresses in the range specified. The CRC test will checksum
a block of data on the target for the address range you specify in the CRC
Calculation dialog. The CRC algorithm is based on the following polynomial:

NOTE: A complete Full RAM test would take several years to finish, so make sure
you specify a very small region of memory to be tested.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

252

x^16 + x^15 + x^2 + 1

Workbench uses this polynomial as follows:

Workbench reads a location and uses the value read, x, to calculate the CRC. Then
Workbench adds the result to the value calculated for the previous address. This
process continues until Workbench has checked the entire specified memory
range.

1. In the Diagnostic field, select CRC Calculation.

2. In the Start Address field, enter the starting address, for example 20000.

3. In the End Address field, enter the ending address, for example 21000.

4. Set the Units field to BYTE.

5. Click Run.

To interrupt the test, click Stop.

If communications with the emulator and target are working, Workbench returns
the CRC sum.

14 Using Hardware Diagnostics
14.4 Hardware Diagnostic Tests

253

14

14.4.4 Scope Tests

Read From Location

The Read From Location Scope Test performs a memory read of designated length
from the address entered in the From Address field.

Write To Location

The Write To Location Scope Test performs a memory write of designated length
of the value entered in the Data Value field to the address in the To Address field.

Write and Complement

The Write and Complement Scope Test performs a memory write of designated
length of the value entered in the Data Value field to the address in the To Address
field; the value is then complemented.

Write Rotating Value

The Write Rotating Value Scope Test performs a memory write of the value
entered in the Data Value field to the address in the To Address field. The value is
then rotated through all of the bit positions with respect to the designated length
of the memory address.

Write Then Read

The Write then Read Scope Test performs a memory write of designated length of
the value entered in the Data Value field to the address in the To Address field; the
value is then read back.

14.4.5 Bus Tests

Address Bus Test

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

254

This test detects faults in the address bus over the range bounded by the starting
and ending addresses entered in the Start Address and End Address fields. This
test can be interrupted by clicking the Abort button.

Data Bus Test

This test detects faults in the data bus over the range bounded by the starting and
ending addresses entered in the Start Address and End Address fields. This test
can be interrupted by clicking the Abort button.

255

 15
 OCD Statistical Code Profiling

15.1 Introduction 255

15.2 Connecting to the Target 256

15.3 Creating a Project 266

15.4 Profiling Your Code 272

15.1 Introduction

The OCD Statistical Code Profiling view provides built-in performance analysis
and code coverage features that allow you to profile your software’s performance
and view a symbolic display in chart or histogram format. These features help
identify system bottlenecks and let you optimize your application software.

This chapter provides a tutorial for using the OCD Statistical Code Profiling view
to profile your code.

To populate the OCD Statistical Code Profiling view, you must have an active
project and an active target connection.

This tutorial uses the Wind River Instruction Set Simulator and the C
Demonstration Program, both of which are included in your Workbench
installation.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

256

15.2 Connecting to the Target

First, open Workbench according to the method for your host computer.

Linux/Solaris Hosts

From your installation directory, issue the command

$./startWorkbench.sh

Windows Hosts

Select Start > All Programs > Wind River > Wind River Workbench version.

On Windows hosts, Workbench prompts you to specify a workspace location.
Linux/Solaris hosts use the default location installDir/workspace.

When Workbench opens, the Quick Target Launch dialog appears.

1. Select Create a new launch configuration.

The Connection Type dialog appears.

15 OCD Statistical Code Profiling
15.2 Connecting to the Target

257

15
2. Select Wind River OCD ISS Connection and click Next.

The Processor Selection dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

258

3. Click Select. From the list that appears, expand MPC82xx and select
MPC8260.

15 OCD Statistical Code Profiling
15.2 Connecting to the Target

259

154. Make sure the Auto-attach to connected designators checkbox is selected and
click OK.

You are returned to the Processor Selection dialog.

5. Click Next.

6. The connection wizard passes through a number of screens that you do not
need to configure for this tutorial. Leave all settings at their defaults and click
Next until you come to the Connection Summary.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

260

7. Make sure that the Immediately connect to target if possible checkbox is
selected and click Finish.

Workbench creates a target connection called WRISS_MPC8260 in the Target
Manager view.

The Reset and Download view appears.

8. Choose how you want to proceed:

a. If you want to create a project in which to run and debug your code, skip
the rest of this section and proceed to 15.3 Creating a Project, p.266.

NOTE: On Windows hosts, Workbench starts WindISS.exe and opens a
command shell. Do not close this shell or terminate WindISS.exe while your
target connection is running. Workbench automatically terminates
WindISS.exe and closes the shell when you disconnect from the target
connection.

15 OCD Statistical Code Profiling
15.2 Connecting to the Target

261

15

b. If you want to run and debug your code without creating a project,
continue with this section.

9. In the Reset and Download view, select the Reset tab.

10. If you want to configure the target register values with a register file, select
Play Register File and browse for the file you want to use.

Register files for many Wind River-supported targets are located in
installDir/workbench-2.x/dfw/build/host/registers.

If you do not want to reconfigure your target registers, leave this box
unchecked.

11. Choose the type of reset initialization you want to perform.

You can use the IN or INN initialization commands. For a full discussion of
these two commands, see the Wind River Workbench for On-Chip Debugging
Command Reference.

You can also choose not to perform an initialization by clearing the Reset box.

12. Select the Download tab.

! CAUTION: If you are manually changing registers on your target, be aware that
issuing an IN or INN initialization command will overwrite your changes.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

262

13. Click Add Files.

In the browser window that appears, navigate to the executable file you want
to run.

The file you select appears in the Filename field. Repeat this process as many
times as necessary.

The file at the top of the list will download to the target first, followed by the
others from the top down. You can edit the order of the list by clicking on any
filename to highlight it and using the Up, Down, and Delete buttons.

14. Use the other fields to configure the download.

Download

The Download field is checked by default. If you clear it, the file will remain
on the list but will not download data to the target. This is useful if, for
example, you only want to download symbol information and not data.

Verify

The Verify field configures the extent to which the file you are downloading
will be compared to a file that may already be on the target. There are three
options: Full, Compare, and None.

When this field is set to Full, a write/read verify will occur for every
download. Workbench writes to the target and then verifies that the write to
the target and the read from the target are identical. This is slower than a
normal download, but it is a useful security option.

15 OCD Statistical Code Profiling
15.2 Connecting to the Target

263

15

When the field is set to Compare, Workbench will verify that the image has
been downloaded correctly (that is, that the image on the host is the same as
the image on the target.) This is useful for programming flash.

When the field is set to None, Workbench will perform no verification.

The Verify field is set to None by default.

Load Symbol

The Load Symbol field, which is checked by default, determines whether the
file’s symbol information is downloaded to the target.

Offset

In the Offset field, you can enter a value in hex to set a memory offset bias for
your application file. If you do not enter a value, Workbench uses the default
value 0x00000000.

15. Select the Instruction Pointer tab.

16. Set the starting point for your file.

By default, the instruction pointer is set to use the starting address from the
download file.

You can set the instruction pointer to start the file from the first occurrence of
a particular symbol (for example, main) or you can just specify a starting

NOTE: You should only set the Verify field to Compare if an image already
exists on the target. If you set the field to Compare when there is no image on
the target, Workbench will look for a file to compare and not find one, and the
reset and download operation will fail.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

264

address by entering the address value in hex in the Use Specified Start
Address field.

If you do not want to set a starting point, clear the Set Instruction Pointer
After Download box.

17. Select the Run Options tab.

18. Determine how you want your file to run.

By default, the Reset and Download view is set not to run the file after
downloading. If you want the file to run, you have several options to
determine where it should break:

■ You can set it to break at the first occurrence of a symbol (for example,
main) by selecting Run to Symbol and entering the symbol in that field.

■ You can set it to break at the end of your program by selecting Run to end
of program.

■ You can set it to break at a given memory address by selecting the Run to
Address box and entering the address in hex in that field.

■ You can set it to break at an _exit routine by selecting the Break at Exit box.

If you need to perform a post-initialization, you can define it here. Select the
Play post download script box and click Browse. In the browser window that
appears, navigate to your initialization file.

19. Select the Source tab.

15 OCD Statistical Code Profiling
15.2 Connecting to the Target

265

15

20. Use the Source tab to configure the source path of your file.

Workbench uses the input path of the local file system by default. Unless you
need to use a different path, you do not need to do anything in the Source tab.

If you need to use a different path, click Add... and use the Add Source dialog
to configure the appropriate search path for your project.

21. Select the Common tab.

22. Specify whether your launch configuration is local or shared.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

266

The configuration is local by default. To make it shared, click Shared file: and
browse to the shared directory where you want the configuration to be located.

You have now fully defined your reset and download operation.

23. Click Debug.

Workbench initializes the target board, then downloads the file, then runs the
file.

The OCD Console view opens to show the progress of the reset and download
operation.

Proceed to 15.4 Profiling Your Code, p.272.

15.3 Creating a Project

In the Reset and Download view, click Close.

NOTE: If you do not plan to build or edit your source files within Workbench, skip
this section and proceed to 15.4 Profiling Your Code, p.272.

15 OCD Statistical Code Profiling
15.3 Creating a Project

267

15

To create the C Demonstration Project, use the following steps.

1. In the Workbench toolbar, select File > New > Project.

The New Project wizard appears.

2. Expand the Examples folder and select Standalone Sample Project.

3. Click Next.

A sample project template appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

268

4. Select C Demonstration Program and click Finish.

Workbench creates the sample project in the default workspace folder and
opens the Application Development perspective.

5. In the Project Navigator view, expand the c_demo_sa project.

15 OCD Statistical Code Profiling
15.3 Creating a Project

269

15

6. To build the sample project for use with the Wind River Instruction Set
Simulator (WISS), right-click on the c_demo_sa top-level folder and select
Build Options > Set Active Build Spec.

The Set Active Build Spec and Debug Mode dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

270

7. Scroll to the top and highlight PPC603diab-WISS.

8. Select Debug mode (use debug mode flags) so Workbench will generate
symbolic debug information.

9. Click OK.

10. Right-click on the project name and select Rebuild Project.

Workbench builds the sample project. The results of the project build appear
in the Build Console view.

15 OCD Statistical Code Profiling
15.3 Creating a Project

271

15

15.3.1 Downloading the Sample Code

To run the sample code, use the following steps:

1. In the Target Manager, highlight the target connection name
WRISS_MPC8260.

2. In the Project Navigator view, right-click on cdemo.elf and select Reset and
Download.

The Reset and Download view appears.

3. Leave all settings at their defaults and click Debug.

The OCD Console view opens.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

272

The OCD Console view shows the progress of the download operation, as
Workbench downloads the sample code to the Wind River Instruction Set
Simulator.

Proceed to 15.4 Profiling Your Code, p.272.

15.4 Profiling Your Code

To perform statistical profiling analysis on your code, use the following steps:

1. In the Workbench toolbar, select
Window > Show View > OCD Statistical Code Profiling.

The OCD Statistical Code Profiling view opens.

15 OCD Statistical Code Profiling
15.4 Profiling Your Code

273

15

The view populates with the functions from your code. (Note that the view
only populates when there is code on the target. If you opened the view
without downloading code as described above, the view would be empty.)

The functions are arranged in five columns, listing the function name, the full
path to the function, the start and end addresses of the function, and the
percentage of CPU time each function used. Since you have not yet run the
code, the CPU Percentage column just reads 0.00.

To sort the functions, click on a column heading. In the above image, the arrow
in the heading of the Start Address column shows that the functions are sorted
by lowest starting address.

2. In the OCD Statistical Code Profiling view, click Configure PFA Code Range.

The Profile Code Range dialog appears.

NOTE: By default, the Module Name field shows the path to where the
function was built. If you have a function that is not physically located where
it was built, then in the OCD Statistical Code Profiling view you can click
Toggle local build/source paths in table to make the Module Name field
show the full path to the file’s physical location.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

274

3. Use the Start Address and End Address fields to set the desired code range.

To obtain the start address, click the heading of the Start Address column. (The
arrow in the heading of the Start Address column should be pointing down,
to show that the first address is at the top of the column. If it is pointing up,
click the Start Address column heading again.) For the C demonstration
program, the first address is the start of the function main at 0x00014030.

To obtain the end address, click the heading of the End Address column. (The
arrow in the heading of the Start Address column should be pointing up, to
show that the last address is at the top of the column. If it is pointing down,
click the End Address column heading again.) For the C demonstration
program, the last address is the end of the function abs at 0x00014f64.

4. In the Start Address field, enter 0x00014030.

5. In the End Address field, enter 0x00014f64.

6. Click Modify.

7. Click OK.

NOTE: You can set the Profile Code Range dialog to populate with the
beginning of your downloaded code automatically, by clicking the Show PFA
preference page button and selecting the Set profile range to beginning of
downloaded code checkbox in the dialog that appears.

15 OCD Statistical Code Profiling
15.4 Profiling Your Code

275

15

8. In the OCD Statistical Code Profiling view, click Start PFA Profiling.

This starts your code running in PFA mode. A >PFA> prompt appears in the
OCD Command Shell.

9. In the OCD Statistical Code Profiling view, click Stop PFA Profiling.

This returns the target to Background Mode. The OCD Statistical Code
Profiling view is now populated with a list of the functions called while the
code was running, showing the percentage of run time for each function.

To see graphic representations of the code profile, click the Profile Plot tab.

The OCD Statistical Code Profiling view can display information in any of four
graph types. To cycle between these graph types, use the Show next graph type
and Show previous graph type buttons.

To change the color assigned to each function, use the Change graph colors button.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

276

Figure 15-1 Two-dimensional Bar Graph

Figure 15-2 Three-dimensional Bar Graph

15 OCD Statistical Code Profiling
15.4 Profiling Your Code

277

15

By default, these graphs show only functions that used CPU time while your code
was running. You can also set the bar graphs (though not the pie graphs) to show

Figure 15-3 Two-dimensional Pie Graph

Figure 15-4 Three-dimensional Pie Graph

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

278

all functions, whether they were called or not, by clicking the Show PFA
preference page button, setting the Set number of functions to display field to 25
(the maximum), selecting the Display functions with 0% time in bar graphs
checkbox, and clicking Apply.

15.4.1 Profiling Selected Functions

You can also set the OCD Statistical Code Profiling view to profile only selected
functions. For example, say you are only interested in the function calendar. In the
Start Address and End Address columns you can see that the function calendar
starts at 0x00014740 and ends at 0x00014938. Enter those values in the Start
Address and End Address fields in the Profile Code Range dialog, and click
Modify and then OK. Now when you click Start PFA Profiling, the OCD
Statistical Code Profiling view returns data only for the function calendar.

Figure 15-5 OCD Statistical Code Profiling Preferences Dialog

15 OCD Statistical Code Profiling
15.4 Profiling Your Code

279

15

15.4.2 Browsing Functions in Source

To see the source for any function, highlight the function in the Profile Data tab
and click Browse PFA function in source. The selected function is displayed in the
Workbench editor.

15.4.3 Updating the Profile Data

To update profile data, use the Refresh/Update PFA grid data button. You can see
the output for each function in the OCD Command Shell.

15.4.4 Removing Functions

To delete a function from the Profile Data tab, highlight the function and click
Remove selected function.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

280

281

 16
 Using the Cache View

16.1 Introduction 281

16.2 Connecting to the Target 282

16.3 Creating a Project 293

16.4 Examining Cache 299

16.5 Viewing Cache Source 303

16.6 Comparing Memory 303

16.7 Reconfiguring the Cache 305

16.8 Exporting Cache Information 305

16.9 Using Processors Without Cache Lines 306

16.1 Introduction

Use the Cache view to view instructions and data stored in cache.

The Cache view has two tabs: Cache Lines and Advanced Control and Status.
Cache Lines is the default tab, for processors (the majority) that organize their
cache memory in logical blocks, each of which contains an address index, an
address tag, and a given number of bytes of data; each such block of memory is
called a cache line.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

282

For targets that do not use cache lines, such as Freescale ColdFire, the Cache view
cannot display cache information. However, the Advanced Control and Status tab
provides cache control options for these targets.

In either case, the Cache view displays tabs for the Instruction Cache and the Data
Cache. (If your target processor uses a multi-level cache, there may be additional
tabs visible, such as L2 Data Cache, L2 Instr Cache, and so on.) Before you perform
any operation in the Cache view, make sure you are in the appropriate tab.

To populate the Cache view, you must have an active target connection.

16.2 Connecting to the Target

First, open Workbench according to the method for your host computer.

Linux/Solaris Hosts

From your installation directory, issue the command

$./startWorkbench.sh

Windows Hosts

Select Start > All Programs > Wind River > Wind River Workbench version.

On Windows hosts, Workbench prompts you to specify a workspace location.
Linux hosts use the default location installDir/workspace.

When Workbench opens, the Quick Target Launch dialog appears.

16 Using the Cache View
16.2 Connecting to the Target

283

16

1. Select Create a new launch configuration.

The Connection Type dialog appears.

This tutorial uses a Wind River Probe emulator connected to a Wind River
PPMC750FX target.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

284

2. Select Wind River OCD Probe Connection and click Next.

The Processor Selection dialog appears.

16 Using the Cache View
16.2 Connecting to the Target

285

16
3. Click Select. From the list that appears, expand MPC7xx and select PPC750FX.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

286

4. Make sure the Auto-attach to connected designators checkbox is selected and
click OK.

You are returned to the Processor Selection dialog.

5. Click Next.

6. The connection wizard passes through a number of screens that you do not
need to configure for this tutorial. Leave all settings at their defaults and click
Next until you come to the Connection Summary.

16 Using the Cache View
16.2 Connecting to the Target

287

16
7. Make sure that the Immediately connect to target if possible checkbox is

selected and click Finish.

Workbench creates a target connection called WRProbe_PPC750FX in the
Target Manager view.

The Reset and Download view appears.

8. Choose how you want to proceed:

a. If you want to create a project in which to run and debug your code, skip
the rest of this section and proceed to 16.3 Creating a Project, p.293.

b. If you want to run and debug your code without creating a project,
continue with this section.

9. In the Reset and Download view, select the Reset tab.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

288

10. If you want to configure the target register values with a register file, select
Play Register File and browse for the file you want to use.

Register files for many Wind River-supported targets are located in
installDir/workbench-2.x/dfw/build/host/registers.

If you do not want to reconfigure your target registers, leave this box
unchecked.

11. Choose the type of reset initialization you want to perform.

You can use the IN or INN initialization commands. For a full discussion of
these two commands, see the Wind River Workbench for On-Chip Debugging
Command Reference.

You can also choose not to perform an initialization by clearing the Reset box.

12. Select the Download tab.

! CAUTION: If you are manually changing registers on your target, be aware that
issuing an IN or INN initialization command will overwrite your changes.

16 Using the Cache View
16.2 Connecting to the Target

289

16

13. Click Add Files.

In the browser window that appears, navigate to the executable file you want
to run.

The file you select appears in the Filename field. Repeat this process as many
times as necessary.

The file at the top of the list will download to the target first, followed by the
others from the top down. You can edit the order of the list by clicking on any
filename to highlight it and using the Up, Down, and Delete buttons.

14. Use the other fields to configure the download.

Download

The Download field is checked by default. If you clear it, the file will remain
on the list but will not download data to the target. This is useful if, for
example, you only want to download symbol information and not data.

Verify

The Verify field configures the extent to which the file you are downloading
will be compared to a file that may already be on the target. There are three
options: Full, Compare, and None.

When this field is set to Full, a write/read verify will occur for every
download. Workbench writes to the target and then verifies that the write to
the target and the read from the target are identical. This is slower than a
normal download, but it is a useful security option.

When the field is set to Compare, Workbench will verify that the image has
been downloaded correctly (that is, that the image on the host is the same as
the image on the target.) This is useful for programming flash.

When the field is set to None, Workbench will perform no verification.

The Verify field is set to None by default.

NOTE: You should only set the Verify field to Compare if an image already
exists on the target. If you set the field to Compare when there is no image on
the target, Workbench will look for a file to compare and not find one, and the
reset and download operation will fail.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

290

Load Symbol

The Load Symbol field, which is checked by default, determines whether the
file’s symbol information is downloaded to the target.

Offset

In the Offset field, you can enter a value in hex to set a memory offset bias for
your application file. If you do not enter a value, Workbench uses the default
value 0x00000000.

15. Select the Instruction Pointer tab.

16. Set the starting point for your file.

By default, the instruction pointer is set to use the starting address from the
download file.

You can set the instruction pointer to start the file from the first occurrence of
a particular symbol (for example, main) or you can just specify a starting
address by entering the address value in hex in the Use Specified Start
Address field.

If you do not want to set a starting point, clear the Set Instruction Pointer
After Download box.

17. Select the Run Options tab.

16 Using the Cache View
16.2 Connecting to the Target

291

16

18. Determine how you want your file to run.

By default, the Reset and Download view is set not to run the file after
downloading. If you want the file to run, you have several options to
determine where it should break:

■ You can set it to break at the first occurrence of a symbol (for example,
main) by selecting Run to Symbol and entering the symbol in that field.

■ You can set it to break at the end of your program by selecting Run to end
of program.

■ You can set it to break at a given memory address by selecting the Run to
Address box and entering the address in hex in that field.

■ You can set it to break at an _exit routine by selecting the Break at Exit box.

If you need to perform a post-initialization, you can define it here. Select the
Play post download script box and click Browse. In the browser window that
appears, navigate to your initialization file.

19. Select the Source tab.

20. Use the Source tab to configure the source path of your file.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

292

Workbench uses the input path of the local file system by default. Unless you
need to use a different path, you do not need to do anything in the Source tab.

If you need to use a different path, click Add... and use the Add Source dialog
to configure the appropriate search path for your project.

21. Select the Common tab.

22. Specify whether your launch configuration is local or shared.

The configuration is local by default. To make it shared, click Shared file: and
browse to the shared directory where you want the configuration to be located.

You have now fully defined your reset and download operation.

23. Click Debug.

Workbench initializes the target board, then downloads the file, then runs the
file.

The OCD Console view opens to show the progress of the reset and download
operation.

16 Using the Cache View
16.3 Creating a Project

293

16

Proceed to 16.4 Examining Cache, p.299.

16.3 Creating a Project

Click Close in the Reset and Download view.

This tutorial uses the C Demonstration Program, which is included in your
Workbench installation.

1. In the Workbench toolbar, select File > New > Project.

The New Project wizard appears.

NOTE: If you do not plan to build or edit your source files within Workbench, skip
this section and proceed to 16.4 Examining Cache, p.299.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

294

2. Expand the Examples folder and select Standalone Sample Project.

3. Click Next.

A sample project template appears.

Enable/disable toggle button

16 Using the Cache View
16.3 Creating a Project

295

16

4. Select C Demonstration Program and click Finish.

Workbench creates the sample project in the default workspace folder and
opens the Application Development perspective.

5. In the Project Navigator view, expand the c_demo_sa project.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

296

6. To build the sample project for use with a PowerPC target, right-click on the
c_demo_sa top-level folder and select Build Options > Set Active Build Spec.

The Set Active Build Spec and Debug Mode dialog appears.

16 Using the Cache View
16.3 Creating a Project

297

16

7. Scroll to the top and highlight PPC603diab.

8. Select Debug mode (use debug mode flags) so Workbench will generate
symbolic debug information.

9. Click OK.

10. Right-click on the project name and select Rebuild Project.

Workbench builds the sample project. The results of the project build appear
in the Build Console view.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

298

16.3.1 Downloading the Sample Code

To run the sample code, use the following steps:

1. In the Target Manager, highlight the target connection name
WRProbe_PPC750FX.

2. In the Project Navigator view, right-click on cdemo.elf and select Reset and
Download.

The Reset and Download view appears.

3. Leave all settings at their defaults and click Debug.

The OCD Console view opens.

16 Using the Cache View
16.4 Examining Cache

299

16

The OCD Console view shows the progress of the download operation.

16.4 Examining Cache

Use the instructions in this section to examine cache.

16.4.1 Instruction Cache

1. In the Workbench toolbar, select Window > Show View > Cache.

2. Click on the Instr Cache tab.

3. Click the Enable Instr Cache toggle button.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

300

4. In the Debug view, click Resume.

5. Let the code run and then click Suspend.

6. In the Cache view, click Refresh.

The Cache view populates with the instructions stored in cache while your
code was running.

NOTE: The cache view has two refresh buttons: Refresh and Refresh All.
Refresh updates the cache with only the 100 most recent instructions. Refresh
All updates the entire cache. A Refresh All operation may take significantly
longer.

16 Using the Cache View
16.4 Examining Cache

301

16

16.4.2 Data Cache

1. In the Workbench toolbar, select Window > Show View > Cache.

2. Click on the Data Cache tab.

3. Click the Enable Data Cache toggle button.

4. In the Debug view, click Resume.

5. Let the code run and then click Suspend.

6. In the Cache view, click Refresh.

The Cache view populates with the data stored in cache while your code was
running.

16.4.3 Interpreting the Cache View

The Cache view displays information in the following columns:

Set-Way

A Set-Way is a logical grouping of cache lines. This column displays the
number of the Set-Way to which the following cache lines belong.

Status

This column displays the status of the given cache line, whether valid (V) or
invalid (I). By default, the Cache view shows all available information,

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

302

whether valid or invalid. To see only valid instructions and data, click the
Valid button in the Cache view. This flushes all invalid information and shows
only valid instructions and data.

To mark all instructions or data currently in the cache as invalid, click the
Invalidate button in the Cache view. This does not disable the cache.

This column also shows the algorithm the cache uses to return cached
information to RAM. If a cache has limited storage, which it usually does,
information will have to be periodically ejected to make room for a new entry.
The decision on what to eject is handled by a heuristic algorithm, the
replacement policy. A popular replacement policy is LRU, which replaces the
Least Recently Used entry.

Address

This column displays the address in RAM to which this cache line corresponds.

Data

This column displays the bits of data the cache line contains. This column only
populates if you select Data Mode by clicking the Data button in the Cache view.

Disassembly

This column displays the operation codes that the data in the Data column
represent (if any.) This column only populates if you select Data Mode by clicking
the Data button in the Cache view.

Function

This column displays the associated function for each instruction in the Cache
view. This column is only visible in the instruction cache. It only populates if you
select Source Mode by clicking the Source button in the Cache view.

Source

This column displays the source for each instruction in the Cache view. This
column is only visible in the instruction cache. It only populates if you select
Source Mode by clicking the Source button in the Cache view.

Text

This column displays ASCII strings that the data in the Data column represent (if
any.)

16 Using the Cache View
16.5 Viewing Cache Source

303

16

To disable the cache, select the Instr Cache tab or the Data Cache tab and click the
Enable/Disable toggle button again.

To clear the contents of the Cache view, click the Clear button.

16.5 Viewing Cache Source

Source Mode is only available in the instruction cache.

With Source Mode enabled, the instruction cache shows the function and source of
each instruction in the Cache view, under the headings Function and Source.

To see the contents of a cache line in source, use the following steps:

1. Select the Instruction Cache tab.

2. Click the Source button to enable Source Mode.

3. Right-click on an instruction and select Go To.

Workbench brings up the source of the instruction in the editor.

16.6 Comparing Memory

The Cache view allows you to compare the information in the cache to information
stored in RAM.

1. Right-click in the Cache view and select Display Cache Properties.

The Preferences dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

304

Use the Preferences dialog to set the color of the data stored in cache.

1. Click on Unchanged cache values color.

2. Click the Color button.

3. On the color palette, choose the color black.

4. Click on Unchanged memory values color.

5. On the color palette, choose the color blue.

6. Click on Difference color.

7. On the color palette, choose the color red.

8. Click OK.

9. Open the drop-down menu in the upper right corner of the Cache view and
select Compare Memory.

Workbench displays any differences between cache and memory in red.

16 Using the Cache View
16.7 Reconfiguring the Cache

305

16

16.7 Reconfiguring the Cache

If you are using a target board that has programmable variable cache, you can
specify changes in the Cache view.

1. Program the cache with a user-supplied file or program.

2. Open the drop-down menu in the upper right corner of the Cache view and
select Reconfigure for your changes to take effect.

16.8 Exporting Cache Information

To export the information in the Cache view to a text file, right-click in the Cache
view and select Export.

NOTE: If you are using a target board with fixed cache, choosing the
Reconfigure option will have no visible results.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

306

You can also export only selected parts of the information in the Cache view by
highlighting the information you choose, right-clicking in the Cache view, and
selecting Export Selected.

16.9 Using Processors Without Cache Lines

If you are connected to a processor that does not organize its cache in cache lines,
you can manipulate cache using the Advanced Control and Status tab. The
Advanced Control and Status tab does not display the contents of cache; it only
allows you to perform operations on it. What operations are available varies by
target processor.

Instruction Cache

1. In the Workbench toolbar, select Window > Show View > Cache.

2. Select the Instr Cache tab.

3. Select the Advanced Control and Status tab.

16 Using the Cache View
16.9 Using Processors Without Cache Lines

307

16

The Advanced Control and Status tab shows available cache operations for
the connected processor. This example shows the available instruction cache
operations for a ColdFire MCF5208 processor.

Data Cache

1. Select the Data Cache tab.

2. Select the Advanced Control and Status tab.

This example shows the available data cache operations for a ColdFire
MCF5208 processor.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

308

309

 17
Uploading Target Memory to a

Binary File

17.1 Introduction 309

17.2 Uploading Memory 309

17.3 Comparing Memory 311

17.1 Introduction

The Binary Upload view allows you to upload segments of target memory into a
raw binary file. For example, you can use this view to back up your boot loader
parameters to a file so they can be reflashed on other boards, or to back up a
running boot loader prior to an upgrade. You can also use the view to compare the
contents of a raw binary file with target memory.

17.2 Uploading Memory

To use the Binary Upload view, use the following steps:

1. In the Workbench toolbar, select Window > Open Perspective > On Chip
Debug.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

310

2. In the Workbench toolbar, select Window > Show View > Binary Upload.

The Binary Upload view appears.

3. In the File Name field, specify the file to which you want the data to be
uploaded.

If the file does not already exist, Workbench creates it in the location you
specify.

4. In the Start Address Location field, enter the start address of the memory
segment you want to upload.

5. In the End Address Location field, enter the end address of the memory
segment you want to upload.

6. In the Data Width field, specify the data bus width for the upload operation.

For example, if you select 32 bits, Workbench uploads the data to your file in
a series of 32-bit memory reads.

7. Click Upload.

This uploads the specified memory segment to your binary file. To cancel the
upload, click Cancel.

By default, Workbench overwrites data in your binary file every time you click
Upload. To append data to the file instead of overwriting it, select the Append
uploaded data to file checkbox before you click Upload.

17 Uploading Target Memory to a Binary File
17.3 Comparing Memory

311

17

17.3 Comparing Memory

You can use the Binary Upload view to compare the contents of a raw binary file
with memory, in order to detect memory corruption; for example, to check that a
region of flash memory has not been modified by incorrect execution.

1. Make sure the Start Address and End Address locations are the same locations
you specified for the upload.

2. Click Compare.

Workbench compares the contents of the file with the memory at the specified
location. Any mismatches are displayed below the progress bar in the Binary
Upload view.

If the contents of memory and your file are the same, Workbench shows the
following result:

Suppose the value at 0x00000100 has changed since you uploaded the file.
Workbench shows the following result:

3. If you want Workbench to stop the compare operation the first time it finds a
mismatch, select the Check to stop on first error encountered checkbox.

4. To see the difference between the memory and your file, click Display error
log in editor.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

312

If you specify a different start or end address for your compare operation,
Workbench returns one of the following results.

If the memory area you specify is smaller than the binary file:

If the memory area you specify is greater than the binary file:

313

 18
Using the Instruction Set

Simulator

18.1 Introduction 313

18.2 Connecting to the Simulator 314

18.1 Introduction

The Wind River Instruction Set Simulator (ISS) is a simulated hardware target for
use in testing and prototyping. The simulator allows you to develop, run, and test
applications on your host system, reducing the need for target hardware during
development.

The ISS is also useful for demonstrations, as it allows you to run applications on
your host system without needing an emulator or target processor.

The ISS has no input/output functionality, so certain Workbench views are not
accessible when using it. The Cache view, for example, since the simulation has no
cache; also the Flash Programmer view, since the simulation has no flash memory.

The Instruction Set Simulator runs a program by simulating the effects of each
instruction on a target processor, one instruction at a time. Instead of generating an
ordinary executable file, the ISS executes the entire instruction set.

NOTE: Wind River Workbench supports the Instruction Set Simulator only for
On-Chip Debugging functionality.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

314

The Instruction Set Simulator is not currently supported for ARM targets.

18.2 Connecting to the Simulator

To define a Wind River ISS connection, use the following steps:

First, open Workbench according to the method for your host computer.

Linux/Solaris Hosts

From your installation directory, issue the command

$./startWorkbench.sh

Windows Hosts

Select Start > All Programs > Wind River > Wind River Workbench version.

On Windows hosts, Workbench prompts you to specify a workspace location.
Linux/Solaris hosts use the default location installDir/workspace.

When Workbench opens, the Quick Target Launch dialog appears.

18 Using the Instruction Set Simulator
18.2 Connecting to the Simulator

315

18

1. Select Create a new launch configuration.

The Connection Type dialog appears.

2. Select Wind River OCD ISS Connection and click Next.

The Processor Selection dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

316

3. Click Select. From the list that appears, expand MPC82xx and select
MPC8260.

18 Using the Instruction Set Simulator
18.2 Connecting to the Simulator

317

18

4. Make sure the Auto-attach to connected designators checkbox is selected and
click OK.

You are returned to the Processor Selection dialog.

5. Click Next.

6. The connection wizard passes through a number of screens that you do not
need to configure, since you are not connecting to a real target. Leave all
settings at their defaults and click Next until you come to the Connection
Summary.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

318

7. Make sure that the Immediately connect to target if possible checkbox is
selected and click Finish.

Workbench creates a target connection called WRISS_MPC8260 in the Target
Manager view.

Your connection is now visible in the Target Manager, as shown in Figure 18-1.

NOTE: On Windows hosts, Workbench starts WindISS.exe and opens a
command shell. Do not close this shell or terminate WindISS.exe while your
target connection is running. Workbench automatically terminates
WindISS.exe and closes the shell when you disconnect from the target
connection.

18 Using the Instruction Set Simulator
18.2 Connecting to the Simulator

319

18

You can now download files and run application code through the simulator as
you would if you were connected to a target.

Figure 18-1 ISS Connection

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

320

321

 19
Programming a VxWorks Boot

ROM into Flash Memory

19.1 Introduction 321

19.2 Configuring The Target 322

19.3 Flashing the Boot ROM 324

19.1 Introduction

This chapter describes how to use Wind River Workbench and your
Wind River ICE SX or Wind River Probe to program a boot ROM into the flash
memory on your target board.

The purpose of a boot ROM is to load a kernel image, set boot parameters, and pass
control to the loaded kernel image.

Programming flash can be a complicated process, and is specific to your target
board. If you are using a Wind River-supported target, all of the target-specific
information is included in a file that is specific to your target. The file is located in
your Workbench installation directory under the path

installDir/vxworks-6.x/target/config/yourTargetBoard/target.ref

The file includes flash addressing information, switch and jumper settings, and
any other information that is specific to your target. If you are using a custom
target, make sure you have detailed specifications about your target board. You

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

322

will need to know the size of your RAM workspace, where it is located, what type
of flash device is on your target, and where it is located.

19.2 Configuring The Target

Make sure you have the following:

■ A working Wind River ICE SX or Wind River Probe with all required cables.

■ A target with a power supply (make sure the target is turned off before
attaching the power supply).

■ An Ethernet cable to connect your target to a LAN.

■ A serial cable to connect your target to a host computer.

■ Wind River Workbench installed on your host computer.

Depending on which target you are using, you may need to modify several
switches and jumpers so that your board will work correctly. These switch and
jumper settings are specific to the target you are using.

Hardware-specific information for each of the boards supported in this release is
included in the file target.nr or target.ref, located in
installDir/vxworks-6.x/target/config/yourTargetBoard. It includes all the switch and
jumper settings that are required to flash and run the boot ROM. Familiarize
yourself with the board-specific information and use the information provided in
that section to configure the switches and jumpers on your target correctly.

If you are not using a Wind River-supported target board, make sure that the
switches and jumpers are set to choose the flash device that you want to use and
to use the proper clock frequency. If your target board has a switch that controls
whether a debugger can attach to it, make sure that it is set to allow debugger
control.

19.2.1 Making Physical Connections

The documentation for your Wind River ICE SX or Wind River Probe debugging
tool explains how to make all physical connections correctly. For information
about making the connection, and about applying power and establishing

19 Programming a VxWorks Boot ROM into Flash Memory
19.2 Configuring The Target

323

19

communications with your target board, see the Wind River ICE SX for Wind River
Workbench Hardware Reference or Wind River Probe for Wind River Workbench
Hardware Reference.

In the Workbench toolbar, click Window and select
Show View > OCD Command Shell.

If you have followed the instructions in your emulator’s Hardware Reference, you
should see a Background Mode (>BKM>) prompt appear in the OCD Command
Shell once you have successfully established communications.

19.2.2 Testing Memory and Breakpoints

The flash programming algorithm needs to run on the target. This requires a RAM
workspace, to which the algorithm will download, and breakpoints, which are
used to stop an erase and program operation at completion.

Reading and Writing Memory

Once you have established communications with the target, use the following
procedure to make sure you can write to and read from the target. In this example
we assume that the RAM workspace is 0x00000000.

At the >BKM> prompt, enter dm 00000000 and press ENTER. Doing so displays the
memory on your target at address 0.

Next, enter sm 00000000 1234 and press ENTER to set the memory at address 0 to
the value 1234. Enter dm 00000000 to display the memory at that address again.

If you are communicating properly with your target, output is similar to that
shown below:

NOTE: A RAM workspace address of 0x00000000 is not appropriate for all targets.
For Wind River-supported targets, you can find the necessary RAM workspace in
your target’s target.ref file, located in
installDir/vxworks-6.x/target/config/yourTargetBoard/target.ref.

Wherever the RAM workspace is located on your target, you must make sure that
memory is writable there.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

324

>BKM>dm 00000000
00000000: FF7C EFFE FEFF E3FE 0D01 0FBE F0FD BFB6 .|.............
>BKM>sm 00000000 1234
>BKM>dm 00000000
00000000: 1234 EFFE FEFF E3FE 0D01 0FBE F0FD BFB6 .4.............
>BKM>

Testing Breakpoints

Occasionally, you may have difficulty programming flash memory on your target
if software breakpoints are not being hit properly. Test this functionality before you
continue. Some basic tests are provided with Wind River tools to test this
functionality.

To use the test, enter the following commands at the >BKM> prompt in the OCD
Command Shell:

>BKM>df e 0

>BKM>di 0 6
$00000000 : 0x60000000 :ppc nop
$00000004 : 0x60000000 :ppc nop
$00000008 : 0x60000000 :ppc nop
$0000000C : 0x60000000 :ppc nop
$00000010 : 0x7C0004AC :ppc sync
$00000014 : 0x4BFFFFF0 :ppc b 0x4
>BKM>go 0
>RUN>dr pc
PC = 00000004
>RUN>dr pc
PC = 00000010
>RUN>sb 8

>RUN>

!BREAK! - [msg12000] Software breakpoint; PC = 0x00000008 [EVENT Taken]
>BKM>
>BKM>rb
>BKM>

19.3 Flashing the Boot ROM

Before you begin, make sure that a >BKM> prompt is visible in the OCD
Command Shell in Workbench.

19 Programming a VxWorks Boot ROM into Flash Memory
19.3 Flashing the Boot ROM

325

19

19.3.1 Playing a Register File

Play back the register file for your target board. The register file sets up access to
memory and sets configuration options correctly (this can affect the setting of
breakpoints). In some cases it also sets up the default flash algorithm.

Click on the Playback icon in the OCD Command Shell.

The OCD Command Shell Settings dialog appears, as shown in Figure 19-1.

Next to the PlayBack File field, click Browse.

Browse for the appropriate register file for your target and click OK.

19.3.2 Setting Up Chip Select 0 and Programming the Reset Configuration Word

Depending on the target board you are using, you may need to program the reset
configuration word and set up chip select 0 for your target. For example, most 82xx
targets need to have the reset configuration word set correctly.

Not all targets use the reset configuration word and chip selects. Check
installDir/vxworks-6.x/target/config/yourTargetBoard/target.ref for information
about whether these are necessary for your target.

If you are not using a Wind River-supported target, you must determine the correct
reset configuration word for the boot ROM. The reset configuration word is
determined by the way you configure the boot ROM. Use a hex editor to open your
boot ROM file and read the reset configuration word from that file. Your processor
documentation should provide information about how to read the reset
configuration word from that file.

Figure 19-1 OCD Command Shell Settings

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

326

19.3.3 Unlocking Flash

On some target boards, you may need to unlock Sector 0 of the flash memory
before you can program flash. Some targets do this with a series of commands;
some use jumpers or on-board switches; and some do not need to be unlocked. The
data sheet for the flash device on your target board should tell you whether
unlocking is necessary, and also supply the necessary settings or commands.

To run commands, click Window in the toolbar and select
Show View > OCD Command Shell. Make sure a >BKM> prompt is visible in the
OCD Command Shell.

For example, to unlock the flash chip on a Sandpoint 8245 target, you would type
the following commands:

>BKM>sct picr1 fee00000 ff041a88
>BKM>sct errdr1 feee00003 00
>BKM>mml fec00000 4c580080
>BKM>mml fee00000 00130400
>BKM>mml fec00000 4c580080
>BKM>dml fee00000 1
FEE00000: 00130400
>BKM>

Once you enter these commands, Sector 0 is unlocked and you can program the
flash memory.

19.3.4 Programming Flash

Once your target is set up, you can program the boot ROM into flash memory on
your target.

1. Open Wind River Workbench.

2. In the toolbar, select Window > Open Perspective > Device Debug.

3. In the toolbar, select Window > Show View > Flash Programmer.

The Flash Programmer view appears, as shown in Figure 19-2.

19 Programming a VxWorks Boot ROM into Flash Memory
19.3 Flashing the Boot ROM

327

19

4. Select the Configuration tab.

Use the Configuration tab to set the base address and workspace for your
target board.

5. In the Device Selection area, select the correct flash device for your target.

The physical characteristics of your flash bank should be included in the board
specification and schematics that came with your target board.

6. In the Configuration area, enter the base register for your target.

7. In the RAM Workspace area, set the Start and Size fields to the correct value
for your target, as described in 9. Programming Flash Memory.

8. Select the Programming tab.

The Programming tab appears, as shown in Figure 19-3.

Figure 19-2 Flash Programmer View

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

328

9. Click Add File.

A browser window appears.

10. Navigate to the boot ROM file for your target board.

The boot ROM files for Wind River-supported targets are located in
installDir/vxworks-6.x/target/config.

11. In installDir/vxworks-6.x/target/config, find the directory for your target
board.

This directory contains the bootrom.bin or bootrom.hex file for your target
board.

12. Select the bootrom.bin file for your board and click Open. The filename
appears in the Add/Remove Files area.

Workbench needs a .bin file to program flash. If your directory only contains
a .hex file, you will need to convert it to .bin format by following Steps a
through d. Otherwise, proceed to Step 13.

a. Return to the Programming tab and click Convert File.

Figure 19-3 Programming Tab

19 Programming a VxWorks Boot ROM into Flash Memory
19.3 Flashing the Boot ROM

329

19

b. Navigate to the folder for your target board and select the bootrom.hex
file.

The File Conversion Utility dialog appears. Figure 19-4 shows the
bootrom.hex file for a PowerQUICC II board.

c. Click Convert and Add File.

The conversion output appears in the Conversion Output field.

Figure 19-4 File Conversion Utility

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

330

d. Click OK.

The converted file appears in the Add/Remove Files tab.

13. Click on the value under the Start Address heading to highlight it.

Before you program the file into flash, you need to set a memory offset bias so
the boot ROM will begin at the base address of your flash bank.

Figure 19-5 Conversion Output

Figure 19-6 File Added to Add/Remove Files Tab

19 Programming a VxWorks Boot ROM into Flash Memory
19.3 Flashing the Boot ROM

331

19

The necessary bias can be found in
installDir/vxworks-6.x/target/config/yourTargetBoard/target.ref.

14. Select the check box under the Enabled heading to enable the file.

15. Click on the Configuration tab.

16. In the Configuration tab, click Select All.

This selects all memory sectors for erasure. Wind River recommends that you
do a full erase when programming a boot ROM.

17. Click on the Programming tab.

18. Verify that the Flash Driver, Flash Bank, and Workspace fields in the Flash
Settings area of the Programming tab are set to the correct values.

19. Click Erase/Program.

Workbench erases the flash memory on your target and programs the flash
with your boot ROM image. When it completes, the status bar at the bottom of
the Programming tab shows that the download is complete.

20. Click the Memory/Diagnostics tab.

21. Click Refresh.

The contents of the flash memory with the boot ROM image loaded appear.

At this point, your boot ROM image is successfully programmed into the flash
memory on your target.

After you have programmed the boot ROM into flash, set the program counter at
the first instruction and run and debug it as you would any other program. For
information on how do this, see the Wind River Workbench User’s Guide.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

332

333

 20
Programming a Linux

Bootloader into Flash Memory

20.1 Introduction 333

20.2 Installing the Bootloader 334

20.3 Configuring and Building the Bootloader 334

20.4 Configuring the Target 338

20.5 Flashing the Bootloader 340

20.1 Introduction

This chapter describes how to use Wind River Workbench and your emulator to
program a Linux bootloader into the flash memory on your target board.

The purpose of a bootloader is to initialize target hardware, load the Linux kernel
image, set boot parameters, and pass control to the loaded Linux image.

There are many different bootloaders available, and different bootloaders (and
different versions of the same bootloader) support different target boards. For
demonstration purposes this chapter uses uboot, a bootloader commonly used for
PowerPC targets.

Programming flash can be a complicated process, and is specific to your target
board. If you are using a Wind River-supported target, all of the target-specific
information is included in a target.ref.linux file that is specific to your target. The
file includes flash addressing information, switch and jumper settings, and any

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

334

other information that is specific to your target. To find the target.ref.linux file for
your target, go to http://www.windriver.com/support.

If you are using a custom target, make sure you have detailed specifications about
your target board. You will need to know the size of your RAM workspace, where
it is located, what type of flash device is on your target, and where it is located.

This chapter provides detailed instructions about programming uboot into the
flash memory on your target board using Workbench.

20.2 Installing the Bootloader

Download the bootloader you wish to use. For example, uboot is available for
download at http://sourceforge.net/projects/u-boot/.

To unpack the file and install the bootloader on your host, enter the following
commands:

$ tar xjf bootloader_file

For example, if you downloaded u-boot-1.1.1.tar.bz2, type:

$ tar xjf u-boot-1.1.1.tar.bz2

This command unpacks the files and creates the bootloader directory structure.

Change directories so that you are in the new bootloader directory.

20.3 Configuring and Building the Bootloader

Wind River provides a website with detailed information about building and
configuring a bootloader. This section provides a brief overview about how to

NOTE: Different versions of U-Boot are supported for different kernel versions and
architecture types. Make sure you download the correct version of uboot for your
target board.

20 Programming a Linux Bootloader into Flash Memory
20.3 Configuring and Building the Bootloader

335

20

configure and build uboot. For more detailed information, go to
http://www.windriver.com/support.

Wind River Workbench supports the bootloader in two different ways.

■ Patching the Standard Installation

Wind River includes uboot patches for some of the supported targets at
http://www.windriver.com/support. To configure and build a bootloader
using a Wind River patch, follow the instructions provided there.

■ Manually Modifying the boardConfig.h file

Some of the supported targets require only minor modification to the standard
bootloader configuration files.

For boards supported in this manner, the following section describes how to
modify the configuration file in a standard installation for your target.

20.3.1 Configuring and Building the Bootloader Manually

Modifying the boardConfig.h File

To create a uboot image that you can download to your target, uboot uses a
boardConfig.h file, which contains specific hardware settings. The name of the
boardConfig.h file is specific to your target and is located in the
ubootInstallDir/include/configs directory.

If your specific board settings do not match the defaults in the boardConfig.h file,
edit the file appropriately.

The steps in this section describe how to edit the file for your target.

1. From the top level of the U-Boot directory, type the following:

$ cd include/configs

2. Open the boardConfig.h file for your target.

All hardware options in this file must match your target. The next steps
describe specific items that may need to change for your target.

NOTE: The bootloader initializes your target to run a Linux kernel. Any errors in
uboot configuration may prevent the kernel from booting correctly or may cause
it to fail later.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

336

■ Clock Speed

Verify that the configuration information pertaining to clock speed (oscillator
frequency) is correct for your target.

For example, the sbc8260.h file contains the following two lines:

#define CONFIG_8260_CLKIN (66 * 1000 * 1000)

and

#define CFG_SBC_MODCK_H 0x05

These values are correct for a 66 MHz target. If you are using a 33 MHz target,
change the lines to read:

#define CONFIG_8260_CLKIN (33 * 1000 * 1000)

and

#define CFG_SBC_MODCK_H 0x01

■ Baud Rate

Configure the baud rate to a value that works for your system. The console will
run faster with a higher baud rate.

■ Ethernet MAC Address

Change the Ethernet MAC address to the address of the Ethernet port on your
target board.

After you have examined the options and verified that they are correct for your
target board, you can build a downloadable bootloader file for your target.

Building a Downloadable U-Boot File

Follow these steps to build a downloadable U-Boot file for your target:

1. Change directories until you are at the top level of your uboot directory.

2. Type the following command:

NOTE: The items described are not a comprehensive list. Review the contents of
the entire file carefully and make any changes that are required for your target.

! CAUTION: Make sure that the Ethernet MAC address you choose is unique on
your network. Duplicate Ethernet MAC addresses on the same network will
cause problems when you try to load the kernel onto your target.

20 Programming a Linux Bootloader into Flash Memory
20.3 Configuring and Building the Bootloader

337

20

$ make distclean

This ensures that there are no build results remaining from any previous
configurations.

3. Configure U-Boot for your target.

$ make ARCH=ppc CROSS_COMPILE=CrossCompilePrefix yourConfigString

The values of CrossCompilePrefix and yourConfigString are based on your
processor and flash device.

For example, if you want to configure U-Boot to use the Wind River SBC 8260
target, enter the following:

$ make ARCH=ppc CROSS_COMPILE=ppc_82xx- sbc8260_config

4. Make the U-Boot downloadable image.

$ make ARCH=ppc CROSS_COMPILE=CrossCompilePrefix dep
$ make ARCH=ppc CROSS_COMPILE=CrossCompilePrefix all

For example, using the Wind River SBC 8260 target, enter the following:

$ make ARCH=ppc CROSS_COMPILE=ppc_82xx- dep
$ make ARCH=ppc CROSS_COMPILE=ppc_82xx- all

Once these commands finish executing, three new files are included in the
uboot directory, as shown in:

■ u-boot
■ u-boot.bin
■ u-boot.srec

The files generated during the build process are described in Table 20-1.

u-boot, u-boot.bin, and u-boot.srec can be used to program the flash memory
on your target. Use the file that works with Workbench and your emulator.

Table 20-1 U-Boot Files

File Name Description

u-boot A .elf file image of uboot.

u-boot.bin A flat binary executable image of uboot.

u-boot.srec A standard Motorola format of uboot for flash programming.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

338

20.4 Configuring the Target

Make sure you have the following:

■ A working emulator with all required cables.

■ A target with a power supply (make sure the target is turned off before
attaching the power supply).

■ An Ethernet cable to connect your target to a LAN.

■ A serial cable to connect your target to a host computer.

■ Wind River Workbench installed on your host computer.

Depending on which target you are using, you may need to modify several
switches and jumpers so that your board will work correctly. These switch and
jumper settings are specific to the target you are using.

Hardware-specific information for each of the Wind River-supported boards in
this release is included in the file target.ref.linux. Find the file specific to your
board at http://www.windriver.com/support. It includes all the switch and jumper
settings that are required to flash and run the bootloader. Familiarize yourself with
the board-specific information and use the information provided in that section to
configure the switches and jumpers on your target correctly.

If you are not using a supported target board, make sure that the switches and
jumpers are set to choose the flash device that you want to use and to use the
proper clock frequency. If your target board has a switch that controls whether a
debugger can attach to it, make sure that it is set to allow debugger control.

20.4.1 Making Physical Connections

The documentation for your Wind River ICE SX or Wind River Probe debugging
tool explains how to make all physical connections correctly. For information
about making the connection, and about applying power and establishing
communications with your target board, see the Wind River ICE SX for Wind River
Workbench Hardware Reference or Wind River Probe for Wind River Workbench
Hardware Reference.

In the Workbench toolbar, select Window > Show View > OCD Command Shell.

If you have followed the instructions in your emulator’s Hardware Reference, you
will see a Background Mode (>BKM>) prompt appear in the OCD Command Shell
once you have successfully established communications.

20 Programming a Linux Bootloader into Flash Memory
20.4 Configuring the Target

339

20

20.4.2 Testing Memory and Breakpoints

The flash programming algorithm needs to run on the target. This requires a RAM
workspace, to which the algorithm will download, and breakpoints, which are
used to stop an erase and program operation at completion.

Reading and Writing Memory

Once you have established communications with the target, use the following
procedure to make sure you can write to and read from the target. In this example
we assume that the RAM workspace is 0x00000000.

At the >BKM> prompt, enter dm 00000000 and press ENTER. Doing so displays the
memory on your target at address 0.

Next, enter sm 00000000 1234 and press ENTER to set the memory at address 0 to
the value 1234. Enter dm 00000000 to display the memory at that address again.

If you are communicating properly with your target, output is similar to that
shown below:

>BKM>dm 00000000
00000000: FF7C EFFE FEFF E3FE 0D01 0FBE F0FD BFB6 .|.............
>BKM>sm 00000000 1234
>BKM>dm 00000000
00000000: 1234 EFFE FEFF E3FE 0D01 0FBE F0FD BFB6 .4.............
>BKM>

Testing Breakpoints

Occasionally, you may have difficulty programming flash memory on your target
if software breakpoints are not being hit properly. Test this functionality before you
continue. Some basic tests are provided with Wind River tools to test this
functionality.

To use the test, enter the following commands at the >BKM> prompt in the OCD
Command Shell:

NOTE: A RAM workspace address of 0x00000000 is not appropriate for all targets.
For Wind River-supported targets, you can find the necessary RAM workspace in
your target’s target.ref.linux file, located at http://www.windriver.com/support.

Wherever the RAM workspace is located on your target, you must make sure that
memory is writable there.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

340

>BKM>sy prog1 0

>BKM>di 0 6
$00000000 : 0x60000000 :ppc nop
$00000004 : 0x60000000 :ppc nop
$00000008 : 0x60000000 :ppc nop
$0000000C : 0x60000000 :ppc nop
$00000010 : 0x7C0004AC :ppc sync
$00000014 : 0x4BFFFFF0 :ppc b 0x4
>BKM>go 0
>RUN>dr pc
PC = 00000004
>RUN>dr pc
PC = 00000010
>RUN>sb 8

>RUN>

!BREAK! - [msg12000] Software breakpoint; PC = 0x00000008 [EVENT Taken]
>BKM>
>BKM>rb
>BKM>

20.5 Flashing the Bootloader

Before you begin:

■ Copy the u-boot.bin file to your host computer.

■ Make sure that a >BKM> prompt is visible in the OCD Command Shell in
Workbench.

20.5.1 Playing a Register File

Play back the register file for your target board. The register file sets up access to
memory and sets configuration options correctly (this can affect the setting of
breakpoints.) In some cases it also sets up the default flash algorithm.

In the OCD Command Shell, click Playback.

The OCD Command Shell Settings dialog appears, as shown in Figure 20-1.

20 Programming a Linux Bootloader into Flash Memory
20.5 Flashing the Bootloader

341

20

Next to the PlayBack File field, click Browse.

Browse for the appropriate register file for your target and click OK.

20.5.2 Setting Up Chip Select 0 and Programming the Reset Configuration Word

Depending on the target board you are using, you may need to program the reset
configuration word and set up chip select 0 for your target. For example, most 82xx
targets need to have the reset configuration word set correctly. Check your
target.ref.linux file for information about the reset configuration word.

If you are not using a Wind River-supported target, you must determine the correct
reset configuration word for the bootloader. The reset configuration word is
determined by the way you configure the bootloader. Use a hex editor to open the
u-boot.bin file that you generated, and read the reset configuration word from that
file. Your Motorola processor documentation provides information about how to
read the reset configuration word from that file.

20.5.3 Unlocking Flash

On some target boards, you may need to unlock Sector 0 of the flash memory
before you can program flash. Some targets do this with a series of commands;
some use jumpers or on-board switches; and some do not need to be unlocked. The
data sheet for the flash device on your target board should tell you whether
unlocking is necessary, and also supply the necessary settings or commands.

To run commands, select Window > Show View > OCD Command Shell. Make
sure a >BKM> prompt is visible in the OCD Command Shell.

Figure 20-1 OCD Command Shell Settings

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

342

For example, on a Sandpoint 8245 target, you would type the following
commands:

>BKM>sct picr1 fee00000 ff041a88
>BKM>sct errdr1 feee00003 00
>BKM>mml fec00000 4c580080
>BKM>mml fee00000 00130400
>BKM>mml fec00000 4c580080
>BKM>dml fee00000 1
FEE00000: 00130400
>BKM>

Once you enter these commands, Sector 0 is unlocked and you can program the
flash memory.

20.5.4 Programming Flash

Once your target is set up, you can program the flash memory on your target with
the bootloader.

1. In the toolbar, select Window > Show View > Flash Programmer.

The Flash Programmer view appears.

2. Select the Configuration tab.

Use the Configuration tab to set the base address and workspace for your
target board.

3. In the Device Selection area, select the flash device that is on your target.

Figure 20-2 Flash Programmer View

20 Programming a Linux Bootloader into Flash Memory
20.5 Flashing the Bootloader

343

20

4. In the Configuration area, enter the base register for your target.

5. In the RAM Workspace area, set the Start and Size fields to the correct value
for your target, as described in 9. Programming Flash Memory.

6. Click on the Programming tab.

The Programming tab appears, as shown in Figure 20-3.

7. Click Add Files.

A browser window appears. Browse for the u-boot.bin file and click Open.
The file appears in the Add/Remove Files area of the Programming tab.

8. Click under the Enable heading to enable the file for downloading.

9. Verify that the Flash Driver, Flash Bank, and Workspace fields in the Flash
Settings area of the Programming tab are set to the correct values.

10. Click Erase/Program.

Workbench erases the flash memory on your target and programs the flash
with your uboot image. When it completes, the status bar at the bottom of the
Programming view states that the download is complete.

Figure 20-3 Programming Tab

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

344

11. Click the Memory/Diagnostics tab.

12. Click Refresh.

The contents of the flash memory with the U-Boot image loaded appear.

At this point, your uboot image is successfully programmed into the flash memory
on your target.

345

 21
Downloading a Kernel Image

Using a JTAG Connection

21.1 Introduction 345

21.2 Bypassing the Boot Line Address -- VxWorks 347

21.3 Bypassing the Boot Line Setup -- Linux 349

21.4 Downloading the Kernel Image 351

21.1 Introduction

The function of a boot loader, whether a boot ROM for VxWorks or uboot or grub
for Linux, is to initialize the hardware, set boot parameters, load a kernel image
into RAM, and pass control to the loaded kernel image, as shown in Figure 21-1.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

346

The Wind River ICE SX and Wind River Probe tools can also perform these
functions through the JTAG port, as shown in Figure 21-2. This can be useful for
BSP or driver developers who may not have a boot ROM available or may be in the
process of developing one.

Figure 21-1 Loading a Kernel Image with a Boot Loader

TARGET

TFTP Server

OS Image

Boot ROM

RAM

OS Image

BOOT_LINE_ADRS

Serial or network connection

Flash

HOST

21 Downloading a Kernel Image Using a JTAG Connection
21.2 Bypassing the Boot Line Address -- VxWorks

347

21

21.2 Bypassing the Boot Line Address -- VxWorks

Ordinarily, the boot ROM passes the boot parameters to the kernel image using an
agreed-upon BOOT_LINE_ADRS memory location. For example, most PowerPC
targets use the address 0x4200.

When the boot ROM retrieves and starts the kernel image through a TFTP server,
the loaded image runs and uses the memory string at the BOOT_LINE_ADRS
memory location as its boot parameters.

However, when an emulator loads the kernel image instead of a boot ROM, it does
not set the boot parameters, and the BOOT_LINE_ADRS memory location probably
contains uninitialized memory. The cracking of the bootline reads the random
values until it finds a 0x00/null string termination. This usually results in a
message about an invalid boot line.

Figure 21-2 Loading a Kernel Image with an Emulator

TARGET

RAM

OS Image

Flash

Wind River ICE
or

Wind River Probe

JTAG port

OS Image

HOST

BOOT_LINE_ADRS

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

348

There are two ways of solving this problem:

■ Manually setting the BOOT_LINE_ADRS location.

■ Forcing the DEFAULT_BOOT_LINE.

21.2.1 Manually Setting the BOOT_LINE_ADRS Location

When setting up the boot parameters, the board looks at the beginning of the boot
line memory location to crack the boot line, that is, to decode the boot parameter
string into its individual fields: hostname, IP address, and so on.

When the value at the beginning of the boot line memory location is zero, the boot
line cracking function will use the DEFAULT_BOOT_LINE value specified in the
config.h file in the BSP.

Using a Wind River ICE SX or Wind River Probe, you can manually set the boot
line memory location to zero before running the image, so the boot line cracking
function will use the DEFAULT_BOOT_LINE value.

To manually set the boot line address to zero, do the following:

1. Make sure you have a >BKM> prompt in the OCD Command Shell.

2. At the >BKM> prompt, type SM 4200 0 and press ENTER.

21.2.2 Forcing the DEFAULT_BOOT_LINE

The other method is to force the default boot line by conditionally compiling in the
FORCE_DEFAULT_BOOT_LINE construct. This construct is only available in
certain Wind River-specific BSPs.

NOTE: 0x4200 is only one example; it is the standard address for PowerPC targets.
To find the correct BOOT_LINE_ADRS memory location for your target, consult the
manufacturer’s documentation for your target processor.

21 Downloading a Kernel Image Using a JTAG Connection
21.3 Bypassing the Boot Line Setup -- Linux

349

21

If the FORCE_DEFAULT_BOOT_LINE construct is available on your BSP, the
config.h file will contain the following:

/*
* If the FORCE_DEFAULT_BOOT_LINE is defined then the
* DEFAULT_BOOT_LINE parameters are always used regardless of NVRAM
* values specified at bootrom time. See target.nr for details.
* This is usually used to debug downloaded images without a bootrom present.
*/

#define FORCE_DEFAULT_BOOT_LINE

Defining the FORCE_DEFAULT_BOOT_LINE construct informs the loaded kernel
image that the DEFAULT_BOOT_LINE from the config.h file in the BSP should be
used, regardless of the value at the BOOT_LINE_ADRS memory location.

In the sysHwInit() sysLib.c file, the FORCE_DEFAULT_BOOT_LINE value is used
to copy the default boot line information into the BOOT_LINE_ADRS location.
The value of DEFAULT_BOOT_LINE is also specified in the config.h file.

#define FORCE_DEFAULT_BOOT_LINE
#ifdef FORCE_DEFAULT_BOOT_LINE

strncpy (sysBootLine,DEFAULT_BOOT_LINE,strlen(DEFAULT_BOOT_LINE)+1);
#endif /* FORCE_DEFAULT_BOOT_LINE */

21.3 Bypassing the Boot Line Setup -- Linux

You can create, define, pre-set, and manage the Linux boot line (BL) parameters for
your target board using low-level commands from the OCD Command Shell. This
will allow you to define a new set of boot line parameters without re-compilation
or rebooting from on-board ROM.

The boot line commands are BL ADD, BL DELETE, BL DISPLAY, BL MODIFY, and BL
UPLOAD. For a detailed description of all these commands, see the Wind River
Workbench On-Chip Debugging Command Reference.

! CAUTION: Make sure you undefine the FORCE_DEFAULT_BOOT_LINE construct
before you ship your product.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

350

You can only use the BL commands in the OCD Command Shell. There is no
BL-specific GUI for setting up boot parameters.

The following example displays a customized set of boot line parameters for a
particular distribution of Linux that have been generated by the BL commands and
stored in the emulator’s NVRAM. On a GO command, these parameters will be
loaded into the target memory and passed to Linux via a set of register pointers.
This process is controlled by the emulator's run-time firmware DLL.

Dynamic Boot Table: structure configuration
Entry	Description	Value/String
00	MemStartAdd	0x00000000
01	MemSize	0x04000000
02	FlashStart	0x40000000
03	FlashSize	0x00400000
04	FlashOffset	0x00040000
05	SRAMStart	0x00000000
06	SRAMSize	0x00000000
07	IMMR_Base	0xf0000000
08	BOOTFlags	0x00000001
09	IP_ADDR	0x00000000
10	ENETADDR[6]	0x00a01ea87bcb
11	ETHSPEED	0x6c79
12	INTFREQ	0x0bcd3d80
13	vBUSFREQ	0x01f78a40
14	CPMFREQ	0x03ef1480
15	BRGFREQ	0x01f78a40
16	SCCFREQ	0x01f78a40
17	VCO	0x07de2900
18	BAUDRATE	0x00002580
19	bi_mon_fnc	0x0fffffff
20	CmdStrg	->console=ttyS0,9600 root=/<-
	->dev/ram0 rw	

■ The Entry field is a sequential reference for each line item.

■ The Description field is an ASCII field only used for comment.

■ The Value/String field can contain a char, unsigned long or unsigned short
value.

■ Unsigned long values are displayed in hexadecimal using 8 digits, as in Entry
#1.

■ Unsigned short values are displayed in hexadecimal using 4 digits, as in Entry
#11.

NOTE: To use the BL commands you must set both the CF BL and CF MMU
configuration options to ENABLE.

21 Downloading a Kernel Image Using a JTAG Connection
21.4 Downloading the Kernel Image

351

21

■ Char values are displayed as in Entry #20.

■ Char string greater than 20 characters will be displayed on several lines, using
arrows.

■ Byte values are displayed as in Entry #10.

21.4 Downloading the Kernel Image

Once you have bypassed the boot setup, initialize your target board and download
your kernel image using the Reset and Download view.

1. Build your image using a VxWorks Image Project or a Linux Kernel Project.

For information on building projects, see the Wind River Workbench User’s
Guide.

2. Connect to your Wind River ICE SX or Wind River Probe.

For instructions on connecting to your emulator, see the Wind River ICE SX for
Wind River Workbench Hardware Reference or the Wind River Probe for Wind River
Workbench Hardware Reference.

3. In the Target Manager view, click the OCD Reset and Download icon to bring
up the Reset and Download view, and click under the Settings heading to
configure it.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

352

4. In the Reset tab, choose your register file.

Check the Play Register File box and click Browse. Navigate to the register file
for your target board.

For more information on register files, see 8. Configuring Target Registers.

5. Still in the Reset tab, choose the type of initialization you wish to perform,
using the IN or INN command.

For more information on the IN and INN commands, see the Wind River
Workbench On-Chip Debugging Command Reference.

Figure 21-3 Reset and Download View

21 Downloading a Kernel Image Using a JTAG Connection
21.4 Downloading the Kernel Image

353

21

Figure 21-4 shows the Reset tab set to play the register file for a Wind River
PowerQUICC II 8260 target and issue the IN initialization command.

6. In the Download tab, click Add Files... and navigate to the kernel image from
your VxWorks Image Project or Linux Kernel Project.

Figure 21-5 shows the Download tab set to download the vmlinux.elf file
from a Linux Kernel Project.

Figure 21-4 Reset Tab

Figure 21-5 Download Tab

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

354

7. In the Instruction Pointer tab, set the start address for your file.

Figure 21-6 shows the Instruction Pointer tab set to use the start address from
the download file. It also has the Set Instruction Pointer After Download box
checked.

You can also select the Use Start Address From Symbol field and specify a
symbol. For example, in VxWorks you would use the symbol sysInit. Or you
can just specify a start address in hex.

8. In the Run Options tab, specify the memory location to where you want the
download file to run. By default it is set not to run after download, as in
Figure 21-7.

Figure 21-6 Instruction Pointer Tab

21 Downloading a Kernel Image Using a JTAG Connection
21.4 Downloading the Kernel Image

355

21

For more information on the Reset and Download view, see the Establishing
Communications chapter of your emulator’s Hardware Reference.

9. Once you have entered the values you want, click Debug.

The emulator initializes your target and downloads the kernel image.The
OCD Console view opens to show the progress of the download, as shown in
Figure 21-8.

Figure 21-7 Run Options Tab

Figure 21-8 OCD Console View

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

356

The kernel image is now downloaded to your target. Run and debug it as you
would any other file. For information on running and debugging files, see the
Wind River Workbench User’s Guide.

357

 22
Kernel-Aware Debugging

22.1 Introduction

Wind River Workbench supports kernel-aware debugging for several operating
systems other than VxWorks 6.x. Run control and data visibility for these operating
systems are outlined in this chapter.

22.1.1 VxWorks 5.5

The following VxWorks 5.5 kernel objects are viewable in Workbench:

■ Tasks

22.1.2 Linux

The following Linux kernel objects are viewable in Workbench:

■ Processes
■ Threads

The following Linux processor architectures are supported in Workbench:

■ MIPS
■ ARM9
■ ARM11
■ PowerPC

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

358

22.1.3 ThreadX

The following ThreadX kernel objects are viewable in Workbench:

■ Threads
■ Timers
■ Mutexes
■ Semaphores
■ Memory Byte Pools
■ Memory Block Pools
■ Message Queues
■ Event Flag Groups

The following ThreadX processor architectures are supported in Workbench:

■ PowerPC 821
■ PowerPC 823
■ PowerPC 860
■ PowerPC 8240
■ PowerPC 8260
■ PowerPC 60x
■ PowerPC 44x
■ PowerPC 405
■ MIPS32 4kx

Additional processor support may be available from Express Logic at
http://www.expresslogic.com/windriver_wb23.asp.

359

Index

A
Adding a new group of registers to an existing .reg

file 155
Adding Files 170
Adding registers to a register group 154
Address Bus Test 253
attach to user mode threads 199
Attaching to a Process 199

B
Basic Operation

Debugging with a Project 5
Debugging without a Project 33

Bit-Level Detail 145
Board Descriptor Files 88
board files 89, 91

creating new 89
.XML 98

boot line
address

bypassing with Linux 349
bypassing with VxWorks 347
forcing the default boot line 348
setting manually 347, 348

commands 349
configuration options 350

Boot Line Commands 192
boot parameters 347
boot ROM 321
Booting a Linux System with OCD 185
bootloader 333, 345

U-Boot
downloading 334
generated files 337
installing 334
manually 335

breakpoints
verifying with target 163, 324, 339

Browsing Functions in Source 279
Build Spec Wizard 67
Build Tools 69
Building a Downloadable U-Boot File 336
Building an OCD Standalone Project 71
Bus Tests 253
Bypassing the Boot Line Address -- VxWorks 347
Bypassing the Boot Line Setup -- Linux 349

C
CF CMDRST 133
CF HRESET 133
changing CF options

with low-level commands 241
with the GUI 240

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

360

Changing CF Options in the CF Options View 240
Changing CF Options With Low-Level

Commands 241
Clear Trace Buffer 221
Clear Trace Buffer on GO (TRCCLR) 227
code profiling 255
Collapsing and Expanding Fields 220
commands

for multi-core debugging 134
Commands for Multi-Core Debugging 134
communications

with multiple devices 107
Comparing Memory 303, 311
Configuration Options 207
configuration options

for multi-core debugging 131
Configure Trace 225
Configuring and Building the Bootloader 334
Configuring and Building the Bootloader

Manually 335
configuring communication settings

manually 110
Configuring Communication Settings

Manually 110
Configuring Flash Memory Bounds 167
Configuring Options for Multi-Core

Debugging 131
Configuring RAM Workspace 168
Configuring Registers 164
Configuring Registers Manually 143
Configuring Target Registers 137
Configuring target registers 137
Configuring The Target 322
Configuring the Target 338
Configuring the Target Connection 238
Configuring the Target Server 209
Configuring Trace 225
Configuring Wind River ICE SX 206
Connecting Through the Transparent Mode

Driver 204
Connecting to a Target 158, 234
Connecting to the Simulator 314
Connecting to the Target 6, 34, 256, 282, 314
Connecting to Your Target 244
Connection Parameters 179

Converting Files To .bin Format 171
Converting Files To Wind River Flash Binary

Format 171
CRC Calculation 251
creating

new board files 89
Creating a Launch Configuration 76
Creating a New Board Descriptor File 89
Creating a New Set of Registers 147
Creating a Project 18, 125, 266, 293
Creating an OCD Standalone Project 64
Creating New Registers With Low-Level

Commands 149

D
Data Bus Test 254
Data Cache 301, 307
debugger

disconnecting and terminating processes 32,
61

Debugging a Process 199
Debugging Code 25, 53
Debugging Code in RAM 25, 53
Debugging Linux Kernel Modules 196
Debugging Multi-Core Targets 105
Debugging the Beginning of a Process 200
Debugging the init() Function of a Module 197
Debugging the Linux Kernel 196
Debugging User Space Applications with OCD 198
Defining a Launch Configuration 75
Disconnecting and Terminating Processes 32, 61
Document Overview 1
document overview 1
downloading

register files 138
Downloading a .REG File 138
Downloading a Kernel Image Using a JTAG

Connection 345
Downloading a Register File 138
downloading an OS image using a JTAG

connection 345
Downloading Code 46
Downloading the Kernel Image 351

 Index

361

Index

Downloading the Sample Code 23, 130, 271, 298

E
Editing Your Board Layout 97
Emulator Configuration 183
Enabling A File For Download 174
Enabling and Disabling Register Groups 141
Enabling and Disabling Register Groups with Low-

Level Commands 142
Erasing and Programming Flash 169
Establishing Communications with Multiple

Devices 107
Examining Cache 299
Examining the Cache 299
Exporting Cache Information 305

F
file conversion utility 329
files

.REG 138
Filter Visible Trace Events 224
Flash Configuration Tab 166
flash memory 321, 333

programming
requirements 321, 333

Flash Memory/Diagnostics Tab 174
Flash Programmer view 168

Configuration tab 166
getting started 165
Memory/Diagnostics tab 174

Flash programming
erasing flash 169
setting timeouts 168
verifying flash contents 169

flash programming 321, 324, 326, 333
configuring the target 322
reset configuration word 325
setting chip selects 325
testing breakpoints 324, 339
unlocking flash 326

Flash Programming Tab 168
Flash Programming view 326, 342

Configuration view 327, 342
file conversion utility 329
Files view 327, 343
Memory/Diagnostics view 331

flashing a boot ROM 321, 324
flashing a Linux bootloader 333
Flashing the Boot ROM 324
Flashing the Bootloader 340
Forcing the DEFAULT_BOOT_LINE 348
Full RAM Tests 251

G
Getting Started 165
GO ALL command 134

H
HALT ALL command 134
Hardware Diagnostic Tests 249
Hardware Diagnostic view

tests 249

I
Initializing the Targets 119
Installing the Bootloader 334
Instruction Cache 299, 306
Instruction Set Simulator 313
Internal Software Trace 219
Interpreting the Cache View 301
Introduction 1, 5, 33, 63, 75, 87, 105, 137, 157, 177,

203, 233, 243, 255, 281, 309, 313, 321, 333,
345, 357

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

362

J
JTAG 345
JTAG Editor

defining a core 94
defining a graphic layout in 91
editing a board layout 97
JTAG Editor view 89
selecting a processor type 93
toolbar 91
using the custom option 95

JTAG editor 89
JTAG Server 106
JTAG server 106

K
Kernel Configuration 198
Kernel Module Detection 196
Kernel-Aware Debugging 357

L
Launch Configuration

Add Source dialog 83
common tab 84
Download tab 80

Adding files 80
Configuring download 80
Download field 80
Load Symbol field 81
Offset field 81
Verify field 81

Setting the instruction pointer 81
source tab 83

Launch configuration ??–125
common tab 51, 124, 265, 292
source tab 50, 123, 264, 291

Limitations 200
Linux 357
linux

troubleshooting 201

user space applications 198
Linux Troubleshooting 201
Linux Virtual Memory Management

Architecture 178

M
Making Physical Connections 338
Making Physical Connections 322
Manually Configuring Flash Memory Erasure

Bounds 170
Manually Creating XML Board Files 101
Manually Setting the BOOT_LINE_ADRS

Location 348
MMUL Settings 183
Modifying an Existing Register File 154
Modifying the boardConfig.h File 335
Monitoring Processes 25, 54
Moving On 32, 61, 218
Multi-Core Debugging 107
multi-core debugging 107

commands for 134
configuration options 131

N
NV-RAM 137

O
OCD 1
OCD Boot 189
OCD Statistical Code Profiling 255
on-chip debugging 1
On-Chip Debugging for Linux 177
Open Trace Rules Dialog 222
Other Options 85
Other Resources 2
Overview 219
overview

document 1

 Index

363

Index

P
PA Semi Trace Configuration 228
PFA profiling 255
play a register file 47, 120, 138, 261, 288, 325
Playing a Register File 325, 340
PowerPC Trace Configuration Options 225
processes

disconnecting debugger 32, 61
Profiling Selected Functions 278
Profiling Your Code 272
Programming a Linux Bootloader into Flash

Memory 333
Programming a VxWorks Boot ROM into Flash

Memory 321
Programming Flash 326, 342
programming flash 321, 333
Programming Flash Memory 157

R
Read From Location 253
Reading and Writing Memory 163, 323, 339
Reconfiguring the Cache 305
Refresh Trace View 222
.REG files 138
register groups

disabling 141
enabling 141

Registers view 144
Removing Files 171
Removing Functions 279
requirements

for flash programming 321, 333
reset configuration word 325

programming with Wind River Workbench
u-boot.bin file 341

Resetting CF Options 242
Reverse-Engineering the Boot Line Parameters 195
RST command 134
RSTINN command 134
Running a Pre- or Post-Flash Script 170
Running a Program 28, 56
Running Diagnostic Tests 175

S
Save Output to File 224, 228
Saving Register Settings from a Target 139
SC Commands 155
SCGA Options 151
Scope Tests 253
Selecting a Flash Driver 166
Selecting Flash Sectors for Erasure 170
Setting a Hardware Breakpoint 29, 58
Setting a Software Breakpoint 27, 55
Setting a Tracepoint 231
Setting a Workspace 248
Setting Breakpoints 200
Setting CF Options in the CF Options View 207
Setting CF Options with Low-Level

Commands 207, 208
setting chip selects 325
Setting Standalone Project Defaults 72
Setting The Download Offset Of A File 173
Setting Timeouts 168
Setting Up Chip Select 0 and Programming the Reset

Configuration Word 325, 341
Simple RAM Test 249
Source Mode 303
Specifying Files 78
Standalone Project Wizard 63

Default Settings 72
Standard Boot 185
Stepping Through a Program 29, 57
Stepping Through Code 25, 54
System Configuration (SC) Commands 155

T
target

jumper settings 322, 338
physical connections to 322, 338
software breakpoints, verifying 163, 324, 339
switch settings 322, 338

Target Console Redirection 208
Testing Breakpoints 324, 339
testing breakpoints 324, 339
Testing Flash Workspace 163

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

364

Testing Memory and Breakpoints 323, 339
The Trace View 220
Thread-Qualified Breakpoints 200
ThreadX 358
TMD Mode 207
Toggle Trace/Source view Auto-Sync 221
Trace View Buttons 220
Tracing Execution 231
Transparent Mode Driver 203

configuring the target server 209
connecting 204
using with an emulator 206

Trap Exception 208

U
U-Boot

building
manually 335

configuring
manually 335

downloading 334
generated files 337
installing 334
u-boot file 337

Unlocking Flash 326, 341
unlocking flash memory 326, 341
Updating the Profile Data 279
Uploading Memory 309
Uploading Target Memory to a Binary File 309
user mode 199

breakpoints 200
thread-qualified 200

processes 200
user space applications 198
Using Board Descriptor Files 87
Using Hardware Diagnostics 243
Using Processors Without Cache Lines 306
Using the Cache View 281
Using the CF Options View 233
Using the Custom Option in the JTAG Editor

View 95
Using the Flash Programmer View 165
Using the Instruction Set Simulator 313

Using the OCD Standalone Project Wizard 63
Using the Predefined Layouts in JTAG Editor 91
Using the TMD With the Wind River ICE SX 206
Using the WDB Transparent Mode Driver 203
Using Your New Register File 153

V
Verifying Flash Contents 169
Viewing Cache Source 303
Viewing Memory 175
VxWorks 5.5 357

W
WDB 203
Wind River DeBug 203
Wind River ICE SX

Configuring for Transparent Mode 206
Working With Custom Register Groups 147
Write and Complement 253
Write Rotating Value 253
Write Then Read 253
Write To Location 253

X
XML Board File Fields 100
.XML board files 98
XML Board Files 98

	Wind River Workbench for On-Chip Debugging User Tutorials
	Contents
	1 Introduction
	1.1 Document Overview
	1.2 Other Resources

	2 Basic Operation: Debugging with a Project
	2.1 Introduction
	2.2 Connecting to the Target
	2.3 Creating a Project
	2.3.1 Downloading the Sample Code

	2.4 Debugging Code
	2.4.1 Monitoring Processes
	2.4.2 Stepping Through Code
	2.4.3 Setting a Software Breakpoint
	2.4.4 Running a Program
	2.4.5 Stepping Through a Program
	2.4.6 Setting a Hardware Breakpoint
	2.4.7 Disconnecting and Terminating Processes

	2.5 Moving On

	3 Basic Operation: Debugging Without a Project
	3.1 Introduction
	3.2 Connecting to the Target
	3.3 Downloading Code
	3.4 Debugging Code
	3.4.1 Monitoring Processes
	3.4.2 Stepping Through Code
	3.4.3 Setting a Software Breakpoint
	3.4.4 Running a Program
	3.4.5 Stepping Through a Program
	3.4.6 Setting a Hardware Breakpoint
	3.4.7 Disconnecting and Terminating Processes

	3.5 Moving On

	4 Using the OCD Standalone Project Wizard
	4.1 Introduction
	4.2 Creating an OCD Standalone Project
	4.3 Building an OCD Standalone Project
	4.4 Setting Standalone Project Defaults

	5 Defining a Launch Configuration
	5.1 Introduction
	5.2 Creating a Launch Configuration
	5.2.1 Specifying Files

	5.3 Other Options

	6 Using Board Descriptor Files
	6.1 Introduction
	6.2 Board Descriptor Files
	6.3 Creating a New Board Descriptor File
	Using the Predefined Layouts in JTAG Editor
	Using the Custom Option in the JTAG Editor View
	Editing Your Board Layout

	6.4 XML Board Files
	6.4.1 XML Board File Fields
	<DEVICE_TABLE> Fields
	<DEVICE> Fields

	6.5 Manually Creating XML Board Files

	7 Debugging Multi-Core Targets
	7.1 Introduction
	7.2 JTAG Server
	7.3 Multi-Core Debugging
	7.3.1 Establishing Communications with Multiple Devices
	Configuring Communication Settings Manually

	7.4 Initializing the Targets
	7.5 Creating a Project
	7.5.1 Downloading the Sample Code

	7.6 Configuring Options for Multi-Core Debugging
	CF HRESET
	CF CMDRST

	7.7 Commands for Multi-Core Debugging

	8 Configuring Target Registers
	8.1 Introduction
	8.2 Downloading a Register File
	8.3 Saving Register Settings from a Target
	8.4 Enabling and Disabling Register Groups
	Enabling and Disabling Register Groups with Low-Level Commands

	8.5 Configuring Registers Manually
	8.6 Working With Custom Register Groups
	Creating a New Set of Registers
	Creating New Registers With Low-Level Commands
	SCGA Options
	Using Your New Register File
	Modifying an Existing Register File

	8.7 System Configuration (SC) Commands

	9 Programming Flash Memory
	9.1 Introduction
	9.2 Connecting to a Target
	9.3 Testing Flash Workspace
	Reading and Writing Memory

	9.4 Configuring Registers
	9.5 Using the Flash Programmer View
	9.6 Flash Configuration Tab
	9.6.1 Selecting a Flash Driver
	9.6.2 Configuring Flash Memory Bounds
	9.6.3 Configuring RAM Workspace
	9.6.4 Setting Timeouts

	9.7 Flash Programming Tab
	9.7.1 Erasing and Programming Flash
	9.7.2 Verifying Flash Contents
	9.7.3 Running a Pre- or Post-Flash Script
	9.7.4 Selecting Flash Sectors for Erasure
	9.7.5 Manually Configuring Flash Memory Erasure Bounds
	9.7.6 Adding Files
	9.7.7 Removing Files
	9.7.8 Converting Files To Wind River Flash Binary Format
	9.7.9 Setting The Download Offset Of A File
	9.7.10 Enabling A File For Download

	9.8 Flash Memory/Diagnostics Tab
	9.8.1 Viewing Memory
	9.8.2 Running Diagnostic Tests

	10 On-Chip Debugging for Linux
	10.1 Introduction
	10.2 Linux Virtual Memory Management Architecture
	10.3 Connection Parameters
	10.4 Emulator Configuration
	10.5 MMUL Settings
	10.6 Booting a Linux System with OCD
	10.6.1 Standard Boot
	10.6.2 OCD Boot

	10.7 Boot Line Commands
	10.8 Reverse-Engineering the Boot Line Parameters
	10.9 Debugging the Linux Kernel
	10.9.1 Debugging Linux Kernel Modules
	Kernel Module Detection
	Debugging the init() Function of a Module

	10.10 Kernel Configuration
	10.11 Debugging User Space Applications with OCD
	10.11.1 Attaching to a Process
	10.11.2 Debugging a Process
	10.11.3 Setting Breakpoints
	10.11.4 Thread-Qualified Breakpoints
	10.11.5 Debugging the Beginning of a Process
	10.11.6 Limitations

	10.12 Linux Troubleshooting

	11 Using the WDB Transparent Mode Driver
	11.1 Introduction
	11.2 Connecting Through the Transparent Mode Driver
	11.3 Using the TMD With the Wind River ICE SX
	11.3.1 Configuring Wind River ICE SX
	11.3.2 Configuration Options
	Setting CF Options in the CF Options View
	Setting CF Options with Low-Level Commands

	11.4 Configuring the Target Server
	11.5 Moving On

	12 Internal Software Trace
	12.1 Overview
	12.2 The Trace View
	12.2.1 Trace View Buttons
	Collapsing and Expanding Fields
	Toggle Trace/Source view Auto-Sync
	Clear Trace Buffer
	Refresh Trace View
	Open Trace Rules Dialog
	Filter Visible Trace Events
	Save Output to File

	12.3 Configuring Trace
	12.3.1 PowerPC Trace Configuration Options
	12.3.2 PA Semi Trace Configuration

	12.4 Tracing Execution
	12.4.1 Setting a Tracepoint
	12.4.2 Tracing Execution

	13 Using the CF Options View
	13.1 Introduction
	13.2 Connecting to a Target
	13.3 Configuring the Target Connection
	13.4 Changing CF Options in the CF Options View
	13.5 Changing CF Options With Low-Level Commands
	13.6 Resetting CF Options

	14 Using Hardware Diagnostics
	14.1 Introduction
	14.2 Connecting to Your Target
	14.3 Setting a Workspace
	14.4 Hardware Diagnostic Tests
	14.4.1 Simple RAM Test
	14.4.2 Full RAM Tests
	14.4.3 CRC Calculation
	14.4.4 Scope Tests
	Read From Location
	Write To Location
	Write and Complement
	Write Rotating Value
	Write Then Read

	14.4.5 Bus Tests
	Address Bus Test
	Data Bus Test

	15 OCD Statistical Code Profiling
	15.1 Introduction
	15.2 Connecting to the Target
	15.3 Creating a Project
	15.3.1 Downloading the Sample Code

	15.4 Profiling Your Code
	15.4.1 Profiling Selected Functions
	15.4.2 Browsing Functions in Source
	15.4.3 Updating the Profile Data
	15.4.4 Removing Functions

	16 Using the Cache View
	16.1 Introduction
	16.2 Connecting to the Target
	16.3 Creating a Project
	16.3.1 Downloading the Sample Code

	16.4 Examining Cache
	16.4.1 Instruction Cache
	16.4.2 Data Cache
	16.4.3 Interpreting the Cache View

	16.5 Viewing Cache Source
	16.6 Comparing Memory
	16.7 Reconfiguring the Cache
	16.8 Exporting Cache Information
	16.9 Using Processors Without Cache Lines
	Instruction Cache
	Data Cache

	17 Uploading Target Memory to a Binary File
	17.1 Introduction
	17.2 Uploading Memory
	17.3 Comparing Memory

	18 Using the Instruction Set Simulator
	18.1 Introduction
	18.2 Connecting to the Simulator

	19 Programming a VxWorks Boot ROM into Flash Memory
	19.1 Introduction
	19.2 Configuring The Target
	19.2.1 Making Physical Connections
	19.2.2 Testing Memory and Breakpoints
	Reading and Writing Memory
	Testing Breakpoints

	19.3 Flashing the Boot ROM
	19.3.1 Playing a Register File
	19.3.2 Setting Up Chip Select 0 and Programming the Reset Configuration Word
	19.3.3 Unlocking Flash
	19.3.4 Programming Flash

	20 Programming a Linux Bootloader into Flash Memory
	20.1 Introduction
	20.2 Installing the Bootloader
	20.3 Configuring and Building the Bootloader
	20.3.1 Configuring and Building the Bootloader Manually
	Modifying the boardConfig.h File
	Building a Downloadable U-Boot File

	20.4 Configuring the Target
	20.4.1 Making Physical Connections
	20.4.2 Testing Memory and Breakpoints
	Reading and Writing Memory
	Testing Breakpoints

	20.5 Flashing the Bootloader
	20.5.1 Playing a Register File
	20.5.2 Setting Up Chip Select 0 and Programming the Reset Configuration Word
	20.5.3 Unlocking Flash
	20.5.4 Programming Flash

	21 Downloading a Kernel Image Using a JTAG Connection
	21.1 Introduction
	21.2 Bypassing the Boot Line Address -- VxWorks
	21.2.1 Manually Setting the BOOT_LINE_ADRS Location
	21.2.2 Forcing the DEFAULT_BOOT_LINE

	21.3 Bypassing the Boot Line Setup -- Linux
	21.4 Downloading the Kernel Image

	22 Kernel-Aware Debugging
	22.1 Introduction
	22.1.1 VxWorks 5.5
	22.1.2 Linux
	22.1.3 ThreadX

	Index

