WIND RIVER

Wind River"Workbench
for On-Chip Debugging

USER TUTORIALS

2.6.1

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation under the following directory:
installDirlproduct_namel/3rd_party_licensor_notice.pdf.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com
For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Workbench for On-Chip Debugging User Tutorials, 2.6.1

19 Mar 07
Part #: DOC-15984-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Contents

INtrodUCioN ... ———— 1
1.1 Document Overview 1
1.2 Other Resources 2
Basic Operation: Debugging with a Projectcccccviiieiniiccnniiinns 5
21 Introduction 5
2.2 Connecting to the Target 6
2.3 Creating a Project 18
231 Downloading the Sample Codeccccooviriiiniiiniinicecce 23
24 Debugging Code 25
241 Monitoring ProCesSesccooeueieiiieiiiiiiicieieicce 25
242 Stepping Through Code ... 25
243 Setting a Software Breakpointc..cccoovvriiiiiciniininiiccece 27
244 Running a Program ... 28
245 Stepping Through a Program ..., 29
246 Setting a Hardware Breakpoint ..o, 29
2.4.7 Disconnecting and Terminating Processescccccocevvirriirucniuennne 32

fii

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

2.5 Moving On 32
Basic Operation: Debugging Without a Projectcccceeicccennnnnnnn. 33
3.1 Introduction 33
3.2 Connecting to the Target 34
3.3 Downloading Code 46
34 Debugging Code 53
3.41 Monitoring ProCessesccccooiiiieieiiiiiiiiciciciee i 54
342 Stepping Through Code ... 54
343 Setting a Software Breakpointcccoooovreiicniininiccc 55
344 Running a Program ... 56
3.45 Stepping Through a Program ..., 57
3.4.6 Setting a Hardware Breakpoint ..o, 58
3.4.7 Disconnecting and Terminating Processesccccoeveicvvniccrininnnne 61
3.5 Moving On 61
Using the OCD Standalone Project Wizardcccccemiiiemnrrnicnnnnnnns 63
41 Introduction 63
4.2 Creating an OCD Standalone Project 64
4.3 Building an OCD Standalone Project 71
44 Setting Standalone Project Defaults 72
Defining a Launch Configuration ... e eereeeeeeees 75
51 Introduction 75
5.2 Creating a Launch Configuration 76
52.1 Specifying Files ... 78

Contents

53 Other Options 85
Using Board Descriptor Filesccoocmimimmniiiissemmnnnnsssssssssssssnnes 87
6.1 Introduction 87
6.2 Board Descriptor Files 88
6.3 Creating a New Board Descriptor File 89
Using the Predefined Layouts in JTAG Editorcccocoovveveiiininnnn 91

Using the Custom Option in the JTAG Editor Viewcccccocevueeeen. 95

Editing Your Board Layout ..o 97

6.4 XML Board Files 98
6.41 XML Board File Fieldscccccooviiniiiiiiiiiiccc 100
<DEVICE_TABLE> Fieldscccccouviiiiiinniiiiiicceca 100

<DEVICE> Fieldscccooiiiiiiiiiiiiiiceeca 100

6.5 Manually Creating XML Board Files 101
Debugging Multi-Core Targetsccccevcmrrmrsernnnrsnssssnsssessneaenes 105
71 Introduction 105
7.2 JTAG Server 106
7.3 Multi-Core Debugging 107
7.3.1 Establishing Communications with Multiple Devices 107
Configuring Communication Settings Manuallyc.ccccccoevninnnnnnn 110

7.4 Initializing the Targets 119
7.5 Creating a Project 125
751 Downloading the Sample Codeccccoooviiiiiiiiiiiice, 130

7.6 Configuring Options for Multi-Core Debugging 131
CEHRESETcoiiiiiiiiiiiiiiicic e 133

CEF CMDRST ...t 133

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

7.7 ~ Commands for Multi-Core Debugging

Configuring Target RegiSterscccociiiiimirniismsnnncsss s

8.1 Introduction

8.2 Downloading a Register File

8.3 Saving Register Settings from a Target

8.4 Enabling and Disabling Register Groups

139

141

Enabling and Disabling Register Groups with Low-Level Commands

142

8.5 Configuring Registers Manually

8.6 Working With Custom Register Groups

Creating a New Set of Registersccccovvviiiiiiiinniiinne,
Creating New Registers With Low-Level Commandscc...c.......
SCGA OPLIONS ..oeviiiiiiciiici s
Using Your New Register Fileccccooooiiiiii,
Modifying an Existing Register Fileccccccoooioceinnnncccccennnne

8.7 System Configuration (SC) Commands

Programming Flash Memory ...

9.1 Introduction

9.2 Connecting to a Target

9.3 Testing Flash Workspace
Reading and Writing MemOTYccccoovueuiiiiiiiiiiiiicccceeaee

9.4 Configuring Registers

9.5 Using the Flash Programmer View

9.6 Flash Configuration Tab

9.6.1 Selecting a Flash DIIVerccccocviiiniiiiiiiiiiniiccccccces

Vi

158

163
163

164

165

166

10

Contents

9.6.2 Configuring Flash Memory Boundscccccecevncccnnnnccccrenn. 167

9.6.3 Configuring RAM WOrkSpacecccocceoeeuerrninincciiennrcccceeeeenee 168

9.6.4 Setting TIMEOULScocvvvviiiiiiiiiiiiiiiicc s 168

9.7 Flash Programming Tab 168
9.71 Erasing and Programming Flashcccccccocoiiiiiiiicicics 169

9.7.2 Verifying Flash CONteNntsccccocoevvmieviicniicniniicciccececaes 169

9.7.3 Running a Pre- or Post-Flash Scriptccccocovriiniiiciiiiccce 170

9.7.4 Selecting Flash Sectors for Erasurecccccoevorinimeiniciniicciiicenes 170

9.7.5 Manually Configuring Flash Memory Erasure Bounds 170

9.76 AddIng Filesccoovoiiiiiii e 170

9.7.7 Removing Files ..o 171

9.7.8 Converting Files To Wind River Flash Binary Format 171

9.79 Setting The Download Offset Of A Filecccccccoovvviiiiniiiine, 173

9.7.10 Enabling A File For Downloadccccccceiiininiiniiiiiiiicce, 174

9.8 Flash Memory/Diagnostics Tab 174
9.81 Viewing MEeMOTYcccceciviiiiiiiiiiiiiiiiicciccc e 175

9.82 Running Diagnostic Testsccccoeeiiiiiiiiiiiiiicci 175
On-Chip Debugging for LiNUXccccormrrsmmmmmnsssssmmssssssssssssssssssssessnns 177
10.1 Introduction 177
10.2 Linux Virtual Memory Management Architecture 178
10.3 Connection Parameters 179
10.4 Emulator Configuration 183
10.5 MMUL Settings 183
10.6 Booting a Linux System with OCD 185
10.6.1 Standard BoOotccooviiiiiiiiiiiiiie 185

vii

11

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

10.6.2 OCD BOOL «..ovuiiiiiicieerireccicieie e 189

10.7 Boot Line Commands 192
10.8 Reverse-Engineering the Boot Line Parameters 195
10.9 Debugging the Linux Kernel 196
10.9.1 Debugging Linux Kernel Modulesc.ccccovviiiiiinnniniiccene, 196
Kernel Module Detection ... 196

Debugging the init() Function of a Modulec..ccoooviiiiniininnnn. 197

10.10 Kernel Configuration 198
10.11 Debugging User Space Applications with OCD 198
10.11.1 Attaching t0 @ PTOCESSccoovvveueiiiieiiicieiiciceecc e 199
10.11.2 Debugging a Processcccocoviininiiiiiiiiinceeescceees 199
10.11.3 Setting Breakpointscccocoviiiiiiniiiiiiiiincccc 200
10.11.4 Thread-Qualified Breakpointscccocoevvinininniiiiniice, 200
10.11.5 Debugging the Beginning of a Processccccocoecccuerennniccrcrenennn. 200
10.11.6 Limitationsccccoeiiiiiiiiiiiiinicciiccecc s 200

10.12 Linux Troubleshooting 201
Using the WDB Transparent Mode Driverccccccmmmminniiisnmmenennnnnans 203
11.1 Introduction 203
11.2 Connecting Through the Transparent Mode Driver 204
11.3 Using the TMD With the Wind River ICE SX 206
11.3.1 Configuring Wind River ICE SXcccccooiiiiriniiiiicceccce 206

11.3.2 Configuration OPtionscccccoeviiiiinininiiiiicc 207
Setting CF Options in the CF Options VIewWcccccovviviiiiinininnnn. 207

Setting CF Options with Low-Level Commandscccccocevniiiinnee. 208

11.4 Configuring the Target Server 209

viii

Contents

11.5 Moving On 218
Internal Software Traceccccoceverrrrrsnen s 219
12.1 Overview 219
12.2 The Trace View 220
1221 Trace View BUttONS ... 220
Collapsing and Expanding Fieldsccccooooinnnniiinicncc 220

Toggle Trace/Source view AUtO-SYNCcccocevverueviciniiceiiceciees 221

Clear Trace Buffer ... 221

Refresh Trace VIEW ... 222

Open Trace Rules Dialogccooviiiiiiiiiiiiiiicccccs 222

Filter Visible Trace EVentscccccooviiiniiiiiniiiiiccce 224

Save Output to Filecccocoiviiiiiiiiiiiiicc 224

12.3 Configuring Trace 225
12.3.1 PowerPC Trace Configuration Optionscccccceeiiicivnnvinncienenee 225

12.32 PA Semi Trace CONfigurationc.cccccceururereiccmememnnenecceneneeeeeneee 228

12.4 Tracing Execution 231
1241 Setting @ TracepPOintccoooeeruiieieiiiiiiiiccee 231

1242 Tracing EXeCUtiONcccooiiiiiiiicc 231
Using the CF Options VIEeWcccccimiiimemmiimssinsss s ssssssssssnsnns 233
13.1 Introduction 233
13.2 Connecting to a Target 234
13.3 Configuring the Target Connection 238
13.4 Changing CF Options in the CF Options View 240
13.5 Changing CF Options With Low-Level Commands 241
13.6 Resetting CF Options 242

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

14 Using Hardware DiagnOStICSccvvrrirrieisiressscssssssesssesssssssssssssens s 243
141 Introduction 243
14.2 Connecting to Your Target 244
14.3 Setting a Workspace 248
14.4 Hardware Diagnostic Tests 249

1441 Simple RAM TeSt ...ocoovviiiiiiiiiiiiiiiccccc e 249
1442 Full RAM TESES ..ocuiiiiiiiiicicice e 251
14.4.3 CRC Calculation ... 251
1444 SCOPE TESES wooeeieiiii e 253
Read From LOCationcccccceuiiiiiiiiiiciiiiiiicce s
Write To LOCAtiONcoviiiiiiiiiiiccccccccce
Write and Complement
Write Rotating Value ...,
Write Then Readcccoooiiiiiiiiiie
14.45 BUS TESS ..coovveiciccce s 253
Address Bus Testccccouiiiiiiiiiiiiii s 253
Data Bus Testccociiiiiiiiiiiiiiiicccccce e 254

15 OCD Statistical Code Profilingccccceecmmmiiiimmrnisssrinsss e 255
151 Introduction 255
15.2 Connecting to the Target 256
15.3 Creating a Project 266

15.3.1 Downloading the Sample Codeccccoooreiiiriiiiniiicc 271
15.4 Profiling Your Code 272
15.4.1 Profiling Selected FUNCHONSccovrueviieiiiiiicieccc e 278
1542 Browsing Functions in SOUICe ..o, 279
1543 Updating the Profile Datacccccoooviviiiiiiiinic, 279
1544 Removing FUNCHONScccooooiiiiiiiiiiiccc 279

Contents

16 Using the Cache VIieWccieiiiciircscsssssssssss s sssssssssnnnns 281
16.1 Introduction 281

16.2 Connecting to the Target 282

16.3 Creating a Project 293
16.3.1 Downloading the Sample Codecccccceoiiviviviniiniiiiiiiiie, 298

16.4 Examining Cache 299
16.4.1 Instruction Cache ... 299

16.4.2 Data Cache ..o 301

16.4.3 Interpreting the Cache VIEWccccoovviiiiiiiiiiiiccccc 301

16.5 Viewing Cache Source 303

16.6 Comparing Memory 303

16.7 Reconfiguring the Cache 305

16.8 Exporting Cache Information 305

16.9 Using Processors Without Cache Lines 306
Instruction Cache ... 306

Data Cache ... 307

17 Uploading Target Memory to a Binary Filecccooommiiiiiiiicceennnnnnnnne 309
17.1 Introduction 309

17.2 Uploading Memory 309

17.3 Comparing Memory 311

18 Using the Instruction Set Simulatorccccocimiiiiiinnncscee s 313
18.1 Introduction 313

18.2 Connecting to the Simulator 314

Xi

19

20

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Programming a VxWorks Boot ROM into Flash Memory 321
19.1 Introduction 321
19.2 Configuring The Target 322
19.2.1 Making Physical Connectionsccccoeoivivivniiniiiiciciiniecene, 322
19.2.2 Testing Memory and Breakpointscccccoeiviviiiiiiicniiinniinicinnee, 323
Reading and Writing MeMOIYcccceeueuiiiicininininiiicccccccnnens 323
Testing Breakpointsccoooveviiceiiinieiicccc s 324
19.3 Flashing the Boot ROM 324
19.3.1 Playing a Register File ..o 325

19.3.2 Setting Up Chip Select 0 and Programming the Reset Configuration
WOTA 325
19.3.3 Unlocking FIashccooiiiiiiiiiniiiieccc 326
19.3.4 Programming Flashcccooiiiiinnincece 326
Programming a Linux Bootloader into Flash Memory 333
20.1 Introduction 333
20.2 Installing the Bootloader 334
20.3 Configuring and Building the Bootloader 334
20.3.1 Configuring and Building the Bootloader Manuallycccccecuuee 335
Modifying the boardConfig.h Filecccooviiiiiiiiiicce 335
Building a Downloadable U-Boot Filec.ccccccoiiiiiinciicine, 336
20.4 Configuring the Target 338
20.4.1 Making Physical Connectionscc.cccoeeeevriceinicieiiccce s 338
20.4.2 Testing Memory and Breakpointsccccoovevicinicniicnniceces 339
Reading and Writing MeMOIYcccccovevniriiiieiniceccccce e 339
Testing Breakpointscccooeiiiiiiiiiiiiiiccces 339
20.5 Flashing the Bootloader 340
20.5.1 Playing a Register Filec.ccccccooiiiiniiiic, 340

Xii

Contents

20.5.2 Setting Up Chip Select 0 and Programming the Reset Configuration

TWOTA ettt ettt 341

20.5.3 Unlocking Flashccccccoooiviiiiniiiiiiiiiiiicccccccccnes 341

20.5.4 Programming Flash ... 342

21 Downloading a Kernel Image Using a JTAG Connection 345
211 Introduction 345

21.2 Bypassing the Boot Line Address -- VxWorks 347
21.2.1 Manually Setting the BOOT_LINE_ADRS Locationccccceuecucee. 348

21.2.2 Forcing the DEFAULT_BOOT_LINEcccccccooviviniiiiiniiiiiine, 348

21.3 Bypassing the Boot Line Setup -- Linux 349

214 Downloading the Kernel Image 351

22 Kernel-Aware Debuggingccccccrvcmmmmmmmnninisssssnsssrnnsssssssss s ssssnnnes 357
221 Introduction 357
2211 VXWOTIKS 5.5 oot 357

2212 LANUX i 357

2213 ThreadX ... 358

INAEX e 359

Xiii

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Xiv

Introduction

1.1 Document Overview 1

1.2 Other Resources 2

1.1 Document Overview

This document is designed to help you understand the Wind River On-Chip
Debugging solution. For On-Chip Debugging, Wind River provides the

Wind River ICE SX and Wind River Probe emulators and the Wind River
Workbench development suite. Together, these products provide a fully integrated
hardware and software solution for board bring-up, flash programming,
production, and testing.

Wind River emulators allow you to perform source-level debug activities such as
watching memory and controlling large numbers of registers.

Wind River emulators let you control a target by using the On-Chip Debugging
(OCD) services embedded in the microprocessor of that target. An emulator
operates effectively as a standalone system, communicating with the OCD services
resident in the microcode of the chip.

When you access the OCD services in a chip, you gain complete control of the
microprocessor, and all interaction between the emulator and the target runs
exclusively through the OCD connection. This means that the emulation system is

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

effective for the entire development process, even before board-level peripherals
are stable.

This document describes common use cases for the Wind River ICE SX and
Wind River Probe emulators, including:

» Setting up OS-independent projects.

= Debugging Linux targets.

= Working with registers and register groups.

* Programming flash memory.

= Creating, editing, and using board descriptor files.
* Debugging multiple cores.

» Tracing executing code.

= Performing statistical profiling analysis on executing code.
= Examining cache on your target.

= Flashing a Linux boot loader on your target.

= Flashing a VxWorks boot ROM on your target.

= Downloading an image to your target without using a boot ROM or boot
loader.

This document provides a collection of tutorials for the operations described
above, and provides step-by-step instructions on how to perform them using
Wind River Workbench.

1.2 Other Resources

For information on the Wind River ICE SX and Wind River Probe, including
hardware information, establishing communications with Wind River Workbench,
and defining launch configurations, see the Wind River ICE SX for Wind River
Workbench Hardware Reference or the Wind River Probe for Wind River Workbench
Hardware Reference.

1 Introduction
1.2 Other Resources

For information on low-level commands available for the Wind River ICE SX and
Wind River Probe, see the Wind River Workbench for On-Chip Debugging Command
Reference.

For information on configuration options for the Wind River ICE SX and
Wind River Probe, see the Wind River Workbench for On-Chip Debugging
Configuration Options Reference.

For information on Wind River Workbench, see the Wind River Workbench User’s
Guide.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Basic Operation: Debugging
with a Project

2.1 Introduction 5

2.2 Connecting to the Target 6
2.3 Creating a Project 18

2.4 Debugging Code 25

2.5 Moving On 32

2.1 Introduction
This chapter provides a tutorial on basic operation of Wind River Workbench for
On-Chip Debugging (OCD).

You can use Wind River Workbench to run and debug code either in combination
with the Workbench project management utility, or without a project. This chapter
assumes you are debugging with a Workbench project. For a tutorial on debugging
without a Workbench project, see 3. Basic Operation: Debugging Without a Project.

This tutorial includes the following topics:
* Launching Wind River Workbench.
» Connecting to a Wind River emulator and a target processor.

» Creating a sample project.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

* Building a sample project.
= Downloading code to the target.

* Debugging code running on the target.

2.2 Connecting to the Target

First, open Workbench according to the method for your host computer.

Linux/Solaris Hosts
From your installation directory, issue the command

$./startWorkbench.sh

Windows Hosts
Select Start > All Programs > Wind River > Wind River Workbench version.

On Windows hosts, Workbench prompts you to specify a workspace location.
Linux and Solaris hosts use the default location installDir/workspace.

The Welcome screen appears.

2 Basic Operation: Debugging with a Project
2.2 Connecting to the Target

Welcome to Wind River Workbench 2.6

WIND RIVER

WWW.WINDRIVER.COM

0 | %

.
=l

Warkbanch

@D

1.

Click Workbench.
Workbench opens, displaying the Quick Target Launch dialog.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Wind River On Chip Debugging
@ Chioose How You Wank to Start

Defined Launches
| Create a new launch configuration

Edit an existing launch configuration

Connect, Attach, Reset and Download

Sync with target and download symbols

l‘:7l [[10o not show this dislog on skartup [Close]

Workbench saves all information regarding a particular emulator-target
connection in a launch configuration. The launch configuration includes such
configuration information as emulator type, target processor family, target
CPU, and host-PC interface port, plus any port parameters such as IP address
(if using a Wind River ICE SX), serial number (if using a Wind River Probe) or
baudrate.

Once you have defined an emulator-target connection, Workbench saves it in
the workspace folder. The next time you open Workbench, that launch
configuration will appear in the Defined Launches area of the Quick Target
Launch dialog, and you can return to it by highlighting it and clicking
Connect, Attach, Reset and Download.

The Quick Target Launch dialog opens automatically any time you launch
Workbench. If you do not want to use the Quick Target Launch, select the Do
not show this dialog on startup checkbox and click Close. You can open the
Quick Target launch dialog at any time by clicking the OCD Quick Launch
button in the Workbench toolbar.

Since this is the first time you have opened Workbench, there are no existing
launch configurations, and you must create one.

2. Select Create a new launch configuration.

The Connection Type dialog appears.

2 Basic Operation: Debugging with a Project
2.2 Connecting to the Target

“ New Connection

Connection Type

Flease select connection bvpe,

Wind River OCD ICE Connection
‘Wind River OCD I55 Connection

‘Wind Ri e onneckion

WWind River Wowtorks 6.x Core Dump Connection
Wind River YeWarks 6. Simulator Connection
WWind River Wowlorks 6.x Target Server Conneckion

3. Select your connection type (Wind River ICE SX, Wind River Probe, or Wind
River Instruction Set Simulator) and click Next.

For instance, the examples in this tutorial show a Wind River Probe emulator
connected to a Wind River PPMC750FX target, so you would select Wind
River OCD Probe connection.

The Processor Selection dialog appears.

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

New Connection

Wind River Probe Settings

Configure the designator settings for the emulator,

Designatars

(%) Processor: | PRCTSOFY | [Seleck. .. l

() Board File: Br

v Designator Processar Processor Plugin
PPC7S0F: PPRC7SOFY PowerPC 7w Family Process, ..

Auko-attach to connected designatars

Cormmunications

|JSE Device Mame: | PRO40310 £V

Zancel

7 I < Back l[Mext =]

4. Click Select. From the list that appears, expand MPC7xx and select PPC750FX.

10

2 Basic Operation: Debugging with a Project
2.2 Connecting to the Target

% Processor Selection

Current Connection - Wind River Probe : PPC750F

MPCExRx ~

MPC7 4

= MPCT=x
MPC740
MPZ745
MPC750
MPCZ755
PRC740
PRC745
PRC7S0
PPC730CR
PRC7S0OCEE
PRC7S0OCRR

PPC7S0FY

PRC7S0G:
=]=Tur Ty | b

(7 [oK H Cancel]

5. Make sure the Auto-attach to connected designators checkbox is selected and
click OK.

You are returned to the Processor Selection dialog.
6. Click Next.
The Target Operating System Settings dialog appears.

11

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

':; New Connection

Target Operating System Settings

Select the target operating swstem which is currently booted on the
configured target,

Available CPU(s) on karget board:

Target operating system settings

Baooted Target 05 on selected CPU: | Mone w

Drescripkion:
Providing plugin:

Kernel image: Erowse. ..

Kernel image is optional For Mone

Target O35 plugin pass-through options: w

[Help H < Back " Mexk =]

7. In the Booted Target OS on selected CPU field, select the operating system
that is running on your target processor. The default is None.

8. Next to the Kernel Image field, click Browse to navigate to the kernel image
you wish to specify. If you selected None in the previous step, you do not need
to specify a kernel image.

9. Ifyouare using a Linux plug-in, specify the pass-through options in the Target
OS Pass-Through Options field. If you are not using a Linux plug-in, skip this
step.

Options are passed as pairs in the format name="value’. Separate options with
a comma. The following options are available:

» notasklist=1: Never fetch process list.

* noautomodules=1: Do not plant internal breakpoints to do automatic
kernel module load /unload detection. When this option is specified, you
must manually refresh to see an updated module list.

12

2 Basic Operation: Debugging with a Project
2.2 Connecting to the Target

* noloadcheck=1: Do not issue gophers until the hardware breakpoint is
used to detect kernel load triggers. This option is for “sensitive” boards
that don’t accept access until the kernel loads and sets up memory
mapping.

» loaddetectloc=symbol or address: Set the hardware breakpoint used to
detect kernel load at symbol (for example, loaddetectloc=start_kernel) or
address (for example, loaddetectloc=0x1000). If you do not specify a
symbol or address, Workbench uses a default. For most architectures the
default is start_kernel; for PowerPC targets, the default is 0x0.

10. Click Next.
The Memory Options dialog appears.

% New Connection

Memory Options

Specify the memary options for the target cpu.

Available CPU{s) on target board:

Memory mapping

Offset Size Attributes

Undefined memary areas accessible

@ [< Back][Mext =]

Use the Memory Options dialog to specify how memory on the target is
partitioned, and what the attributes of the particular memory regions are.

NOTE: The Memory Options dialog is only necessary for Linux or other
non-VxWorks target operating systems.

13

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

To specify an area of memory, click Add.

The Set Memory Map dialog appears.

- g
") Memory mapping

Please specify the offset, size and attributes For the memary mapping.

Offsek: 500000000
Size: 000000000
Attributes

Invalid

[Jread

Access size (bit):

Defaulk access size (bit):
i

Access size (bit):

Defaulk access size (bit):

[readwrite
Access size (bit):

Defaulk access size (bit):

[Ok H Cancel]

11.

14

Use the Set Memory Map dialog to specify which memory areas are read-only,

read-write, or write-only, and to specify the access width Workbench should
use to read the data from those regions.

Click Next.
The Object Path Mappings dialog appears.

2 Basic Operation: Debugging with a Project
2.2 Connecting to the Target

-

) New Connection

Object Path Mappings
Specify how files in the target File system are visible in the host file system.
Available CPU(s) on target board:

Load module symbols to debug server automatically iF possible

Pathname prefix mappings:

« | Target Path Host Path Add...
any > =lgave path unchanged =

Expart...

<

-

EBasename mappings:
| [*;*.unstripped],[*;*]

[Help H < Back.][Mext =]

12.

13.

Use the Object Path Mappings dialog to specify how files in the target file

system are visible in the host file system.

appears.
Click Next.
The Target State Refresh dialog appears.

To add a host or target path, click Add... and type the path in the dialog that

15

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

New Connection

Target State Refresh

Configure the core(s) target states refresh settings,

Available CPUCS) on target board:

Initial target state query settings
[uery target object lists and target object states on connect
[uery target object stateis) on stopped events

[uery target object state(s) on running events {receiving objsct only)

Target state refresh settings
(%) Refresh the target state manually only
() Auto-refresh the target skate periodically

[CListen to execution context Fe-cycle events (context-start, context-exit)

1t is not known if life-cycle events for execution contexts are provided.

[Help H < Back “ Mext =]

Use the Target State Refresh dialog to configure the target state query and
target state refresh settings on your target processor.

14. Click Next.
The Default Breakpoint Options dialog appears.

16

2 Basic Operation: Debugging with a Project
2.2 Connecting to the Target

', New Connection

Default Breakpoint Options

Select the defaulk breakpaint options For newly created breakpoints.

Awailable CPL{s) on target board:

Defaulk Breakpoint Stop Scope
() 5top al
() Stop triggeting thread

@ [< Back ” Mexk > l

Use this dialog to set default breakpoint options for newly created
breakpoints.

15. Click Next.

The Connection Summary dialog appears. Inspect the displayed values to
make sure they are correct.

17

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

":, Mew Connection

Connection Summary

Please review the connection information

Conneckion name: | WRProbe_PPCTSOFX_0

Summary

Property Yalue
ADDR. PRO40310
AutoAttachConnectedCor trus

DESIGMATORMAR
CEVICE ‘Wind River Probe
MAME_MAPPIMNG [*i*. unstripped],[*;*]
PATH_MAPPING [:1d
STYLE USBDEYICE

Immediately connect to target if possible

@ [Finish H Cancel]

16. Make sure that the Immediately connect to target if possible checkbox is
selected and click Finish.

Workbench creates a target connection called WRProbe_PPC750FX in the
Target Manager view.

The Reset and Download view appears.

17. Click Close in the Reset and Download view.

2.3 Creating a Project

This tutorial uses the C Demonstration Program, which is included in your
Workbench installation.

1. In the Workbench toolbar, select File > New > Project.

18

2 Basic Operation: Debugging with a Project
2.3 Creating a Project

The New Project wizard appears.

New Project

Select a wizard

Creates a new O5-agnostic sample project |

Yizards:

| tyvpe filker ket

(= Wiwvorks 5.5 -~
(= Wavarks 6.x
(= WxWrarks 653
(= wind River Linux
[=-[= Examples
179 Mative Sample Project
] Standalo N £
185 wxWorks 5.5 Downloadable application Sample Project
1 WxWwarks Downloadable Kernel Madule Sample Project
184 WxWorks Real Time Process Sample Project
5% wind River Linux &pplication Sample Project
1% wind River Linux User-Defined Sample Project =
w

[1show all wizards.

2. Expand the Examples folder and select Standalone Sample Project.

3. Click Next.

A sample project template appears.

19

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

New Project Sample

Sample Project Template
Select a sample project termplate, @

Available Examples; Information:
b= C Demonskration Program C Demonstration Program A
1= C++ Demonstration Program This program demonstrates various C
1=+ The Ball Demanstration Program language features including structures,

character arrays, linked lists, and

1=F The Panel Demaonstration Pragram recLrSion,

You can build and download this program
to wour simulator ar karget board, The
default RAM location For the program is
000014000, To change the default
memory address, edit the simple.lk linker
command File,

Features

The Follmwing Features are demonstrated
Fram main):

® Factorials: The FactorialDemol)
function oenerates a Factorial table

':?:' Mext = I Finish l [Cancel

4. Select C Demonstration Program and click Finish.

Workbench creates the sample project in the default workspace folder and
opens the Application Development perspective.

5. In the Project Navigator view, expand the c_demo_sa project.

20

2 Basic Operation: Debugging with a Project
2.3 Creating a Project

.} c_dem

[cdema.elf (MCF-0:00000000-EE-diab_DEBUG)
(M ARM-0x00000000-BE-diab_DEBLG
% ARM-000000000-LE-dish_DEBUG
(M ARM-0x04000000-BE-diab_DEBLG
(M ARM-0x04000000-LE-dish_DEBUIG
(M ARM-0%05000000-EE-disb_DEBUG
(™ ARM-0505000000-LE-dish_DEEUG
(0 1 F-0x00000000-BE-dish_DEBUG
(M 1 F-0x20000000-BE-dish_DEBUG
(2 MCF-0x40000000-EE-dish_DEEUG
(M MIPS32-4KEC-BE-1 6hit-diab_DEBUG
(M MIPS32-4KEC-BE-32hit-disb_DEBUG
(2 MIPS32-4KEc-LE-16hit-dish_DEBUG
(M MIPS32-4KEc-LE-32hit-dish_DEBUIG
(M MIPS32-4¥x-BE-32bit-disb_DEBLUG
(2 MIPS32-4kx-LE-32bit-dish_DEBUG
(M MIPS32-BCM-BE-32bit-diab_DEBLG
(M IPS32-BCM-LE-32bit-diab_DEBUIG
(™ MIPS32-IDT-BE-32bit-dish_DEBUG
(M MIPS32-10T-LE-32bit-diab_DEBUG
(M 1IPS32-PHI-BE-32hit-dish_DEBUIG
(™ MIPS32-PHI-LE-32bit-diab_DEBUG v

6. To build the sample project for use with a PowerPC target, right-click on the
c_demo_sa top-level folder and select Build Options > Set Active Build Spec.

The Set Active Build Spec and Debug Mode dialog appears.

21

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Set Active Build Spec and Debug Mode E|

PPCE03diab-WISS
MIP532-4KEc-BE-16bit-diab
MIPS32-4KEC-LE-16bit-diab
MIPS32-4KEc-BE-32Zbit-diab
MIPS32-4KEc-LE-32bit-diab
MIP532-4kx-BE-32hit-diab
MIPS32-4Kx-LE-32bit-diab
MIPS32-BCM-EE-32bit-disb
MIPS32-BCM-LE-32bit-diab
MIP532-1DT-BE-32bit-disb
MIPS32-IDT-LE-32bit-diab
MIPS32-PHI-EE-32bit-diab
MIPS32-PHI-LE-32hit-diab
MIP532-PM=-BE-16bit-diab -

Debug mode (use debug mode Flags)

)] [Ok H Cancel]

7. Scroll to the top and highlight PPC603diab.

8. Select Debug mode (use debug mode flags) so Workbench will generate
symbolic debug information.

9. Click OK.
10. Right-click on the project name and select Rebuild Project.

Workbench builds the sample project. The results of the project build appear
in the Build Console view.

=08

=] & 4 EBRE T
e e B T B R e e T P e PR T R B e e T
5_DEBUG/date.o" -t "date.c" A
building PPC603diab-WISS_DEBUG/date.o

echo "building PPC&03diab-WISS_DEELIG/math.o";dee -g -Xdebug-dwarf2 -tPRPCE03ESiwindiss -DTOOL_FAMILY=diab -DTOOL=diat
5_DEBUG/math.o" -c "math.c”

building PPC603diab-WISS_DEBUG /math.o

echo "building PPCa03diab-WIs5_DEEUG/addone . o";das -tPPCA03ES: windiss -DTOOL_FAMILY=diab -DTCOOL=diab -DPowerPC -DP
building PPC603diab-WISS_DEBUG/addone.o

echo "building PPCA0Ediab-WI55_DEELUG/cdemo.elf”; did -o "PPCAN3diab-wissS_DEEUG/cdemo.elf” -tPPCA0ZES windiss cdemo-POn
S_DEBUG/cdemo .o PPCA03diab-wISS _DEBUG strutils. o PPC603diab-WIS5_DEBUG/engineer .o PPC603diab-wIS5_DEBIG calendar
ath.o PPCE03diab-WISS_DEEUG addone.a if ["0" ="1"]; then echo "building Run plink utility"; plink PPCE03diab-wWISS_DEEUG)
building PPC6D3diab-WISS_DEBUG/cdemo.elf

make: built targets of C:fWindRiverjworkspace/c_dermo_sa

< >

Error Log | Tasks | Problems | Properties Terminal | Console

|~

22

2.3.1 Downloa

2 Basic Operation: Debugging with a Project
2.3 Creating a Project

ding the Sample Code

To run the sample code, use the following steps:

1.

In the Target Manager, highlight the target connection name
WRProbe_PPC750FX.

2. In the Project Navigator view, right-click on cdemo.elf and select Reset and

Download.

The Reset and Download view appears.

%) WRProbe_PPC750FX - PPC750FX

Modify attributes and launch.

Mame: | WhProbe_PPCTSOFY - PPCTS0FK

m@ Fieset | # Dowrload | #® Instruction Pointer | #® Run Opions | % Projects to Build EV Source | =] Common

Connection

[Create a Mew Target Connection]

Connection to use: |WRPr0be_PPC?SDFX {localhost) v | []Hide unconnected

“orrect | WRProbe_PPCTSOFY - WRProbe_PPCTSOFY is connected.

Core: |PPCTSORK v|

[Apply] [Revert]

e [Debug] [Close]

3. Leave all settings at their defaults and click Debug.

The OCD Console view opens.

23

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Error Log | Tasks | Problems | Properties | Build Console | Terminal | Console B =0
Testing ITAG Communication. oo Passed
Attempting to restore CPU context, oo, Passed
CiwindRiveriworkspacelc_demo_salPPCE03diab-'WIS5_DEBUG cdema.elf [T
Loading symbals. .. Completed at Default OFfset (<1 sec)
Specified not to Run
* Reset and Download Completed *
¢ ' >

The OCD Console view shows the progress of the download operation.

The Editor opens showing the Program Counter set at the beginning of the
application code.

\a| diabasm.s % |C| calendar.c == WRProbe_PPC7SOFY =8
START: »
EHTEY: —

=_start:

03 addi= rll,rD,_SP_INIT@ha # Initi=al Stack Pointer

addi ril,r1l, SP_INITEL
addis r13,r0, 5DA BASE Bha # 2mall Data Area
addi r13,ri3, SDA BASE Bl
addis rZ,r0, ZDAZ EBASE Bha # Small Data Area 2
addi rz,r2, 5DAZ BASE Rl
addi rd,r0,0 # Push 0 onto stack
sty ro,-64(rl)

.@.*D
hl main

.+.x|:|

deadloop :

I deadloop

.*:,.ﬁD
.globl addone
~addone :
addi r3,r3,1 # increment parsmeter...
heolr 20,0 # go back

end FPowerPC

.endif =
<

.4

24

2 Basic Operation: Debugging with a Project
2.4 Debugging Code

You are now ready to run and debug the application.

2.4 Debugging Code

Use the Debug view to monitor, control, and manipulate the processes and tasks

that you are actively debugging. The Debug view shows only the processes that
are currently under debugger control.

PN =

O IR ES

=] @ WRProbe_PPCFS0FY [Attach to Target]
=4 PPCTSOFY (System Mode)
= %‘ﬁj Sw;.-'ustem Context {Stopped)
=B start() - diabasm.s:44

2.4.1 Monitoring Processes
When you start processes under debugger control, or attach the debugger to
running processes, they appear in the Debug view labeled with unique colors and

numbers. You can change the color assigned to a process or thread by right-clicking
the process or thread and selecting Color > specific color.

2.4.2 Stepping Through Code

The Editor shows the source file diabasm.s, showing the C Demonstration Project
initialization assembly.

25

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

In the Debug view, click the Step Into button.

The Program Counter moves to the second assembly instruction. If you open the
Memory view or the Registers view, you can see them update memory and
register values as you step through instructions.

Click the Step Into button seven more times, to step through all the initialization
code and reach the first branch instruction:

bl main
This is where the application branches out of assembly into C code.

Click the Step Into button again.

The application branches into main() and the Editor opens the source file cdemo.c.

\a| diabasm.s =8
char *globalstring[3]: /% Uninitializeded array of string pointeras /7 &
char bell[2] = {BELL CHAR, '“0'};

--j--/-xw-xww-xw-xww-xx-xwxwa—-xw-xww-xw-xwxww-xwxww-xx-xwxwa—xwa—ww-xw-xwx-xw-xwwwx-xwxwx-xwxwwwwxw
—int main)
i
volatile long demo counter;

3 rolatile int pfa_dewmo=0;
int sum = 0O;
rolatile char cwvar: /% sample char wvariahle */
REC_TYFE1l q:
rolatile int localIntl;

volatile long locallongl:;

f* ZJetup the global string array */

glohalstring[0] = "zero';
globhalstring[l] = "ones";
glohalstring[2] = "cwo™:

/% Initialize the rectest structure *f
rectest. long integer = OxFFFFEEEE;

regtest.short_integer = 5555;

rectest.integer array[0] = 0;

FECLEST. integer array[1] = 10;

rectest.integer_array[2] = 20;

FECLEST. integer array[3] = 30;

rectest.string pointer = "Wind Riwver's Tool Product Family™;

W
< >

26

2 Basic Operation: Debugging with a Project
2.4 Debugging Code

2.4.3 Setting a Software Breakpoint

Breakpoints allow you to stop a running program at particular places in the code
or when specific conditions exist.

In the left ruler of the Editor (the gutter), double-click to the left of the source line
globalstring[2] = “two”;

This sets a software breakpoint on that source line. The breakpoint appears in the
Breakpoints view.

Project Ma... | Symbol Bro... | Watch Bt et 4

% w2 BESE[NT
@, fc_demao_sajcdemo.ci113 (*Planted™®, Restricked Scape)

In the Debug view, click the Resume button. The program runs until it hits the
breakpoint. The System Context changes to Stopped -- Breakpoint Hit.

* e X \§ s
(= &7 Sh L % = =
= @ WRProbe_PPCTS0FY [Attach o Target)]
=42 PPCTSOFY (System Mods)
= f:'ﬁﬂ Syskem Context (Stopped - Breakpoink Hik)
. main() - cdemo,c;113
=" diabasm.5:58

Breakpoint information also appears in the OCD Command Shell:

>RUN>

27

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

IBREAK! - [msgl2000] Software breakpoint; PC = 0x00014074 [EVENT Taken]
>BKM>

2.4.4 Running a Program

To run your downloaded program, click Resume in the Debug view. The program
will run until it hits a breakpoint. If there are no breakpoints or interrupts, the
program will run to completion or until you click Suspend.

When the program is running, the System Context changes to Running, and a
>RUN> prompt appears in the OCD Command Shell.

* peiug % N — 0
1N & = ~
= & WRProbe PPC7S0FY [Attach to Target]
= ;{g PPC750FY (Swstem Mode)
System Conkexk (Running)

If there are no breakpoints, you can stop the program by clicking the Suspend
button in the Debug view or by entering the HA command at the >RUN> prompt
in the OCD Command Shell.

The Editor updates to show the current location of the Program Counter and the
System Context in the Debug view changes to Stopped -- User Request.

28

2 Basic Operation: Debugging with a Project
2.4 Debugging Code

< oebua x N - C
1 2 & e =
= % WRProbe PPC7PS0FY [Attach to Target]

=4 PPCTE0FY (System Mode)
= 'ﬁ.‘ﬁj System Cuntext (Stupped User Request}

= calendar(} calendar 0122
=" maini} - cderma.c; 184
=" diabasm.s:55

2.4.5 Stepping Through a Program

To single-step without going into other subroutines, click Step Over instead of
Step Into.

While stepping through a program, you may conclude that the problem you are
interested in lies in the current subroutine’s caller, rather than at the stack level
where your process is suspended. In this situation, if you click Step Return,
execution continues until the current subroutine completes, then the debugger
regains control in the calling statement.

2.4.6 Setting a Hardware Breakpoint

The availability of hardware breakpoints varies by architecture. You can only set
as many hardware breakpoints as there are debug registers available on your
target.

Once a hardware breakpoint is trapped, the debugger will behave in the same way
as for a standard breakpoint and stop for user interaction.

In the Breakpoints view, click on the Menu button and select Add Data
Breakpoint.

The Data Breakpoint dialog appears.

29

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

% Data Breakpoint Properties

Breakpoint Address and General Attributes sflqggﬁu,wg_f{.'ugl:
3 Please specify Address Expression L".'E :IEE!"-n'u‘l":‘;‘:}u-'ﬁl
L1

Select debug karget For karget-spedific information
& PRCTSORY
Mone - preserve current settings

@ General Skatus Scope @ Hardware

Address Expression | |

[]continue on Break

Continue Delay (ms)

Cancel

If an error message appears, you may have exceeded the number of allowed
hardware breakpoints (four for most targets). Right-click in the Breakpoints view
and select Remove All. Then select Menu > Add Data Breakpoint again.

If an error message still appears, your target may not support hardware
breakpoints.

You can use data hardware breakpoints to find out which routines are modifying
a specific variable.

The Address Expression can be a symbol or a specific address in hex. You can use
the address 0x0 in the Address Expression field to set a data hardware breakpoint
to catch null pointers. You can set the Address Expression field to an address in
the stack area to set a data hardware breakpoint to find out if the stack grew to that
point.

The following example sets a symbol in the Address Expression field.

1. Click Browse.

30

2 Basic Operation: Debugging with a Project
2.4 Debugging Code

The Select Symbol dialog appears, showing a list of available symbols that can
take a hardware breakpoint.

") Select a symbol

Choose the symbaol from the list. Debug symbaols can only be
retrieved if there is an active debug session

Debug target

& PPCTSORY

Filter {regular expression)

Matching symbols

send_month - globalfunction -~
Senior TestEngineer - globalvariable

status - globalvariable

strcmp - globalfunction

strepy - globalfunction

swap_ells - globalfunction

test_engineer - globalvariable

testEits - globalvariable

TestEnginzer - globalvarisble

wait_count - globalvariable

lobalvariable

year1997 - globalvariable

[0K H Cancel]

2. Scroll down and highlight the symbol wait_index.
3. Click OK.

The global variable wait_index is now the address for the data hardware
breakpoint.

The hardware breakpoint on wait_index appears in the Breakpoints view.

31

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

=5
REP-w Je @EERT

In the Debug view, click Resume.

The program runs until it hits the hardware breakpoint. Workbench halts the
processor when it locates wait_index and displays that source line in the Editor.

2.4.7 Disconnecting and Terminating Processes

Disconnecting from a process or core detaches the debugger, but leaves the process
or core in its current state.

Terminating a process actually kills the process on the target.

NOTE: If the selected target supports terminating individual threads, you can
select a thread and terminate only that thread.

2.5 Moving On

For descriptions of other features of Wind River Workbench for On-Chip
Debugging, such as code profiling, code tracing, and so on, see the relevant
chapters in this document.

32

Basic Operation: Debugging
Without a Project

3.1 Introduction 33

3.2 Connecting to the Target 34
3.3 Downloading Code 46

3.4 Debugging Code 53

3.5 Moving On 61

3.1 Introduction
This chapter provides a tutorial on basic operation of Wind River Workbench for
On-Chip Debugging (OCD).

You can use Wind River Workbench to run and debug code either in combination
with the Workbench project management utility, or without a project. This chapter
assumes you are debugging without using a Workbench project. For a tutorial on
debugging without a Workbench project, see 2. Basic Operation: Debugging with a
Project.

This tutorial includes the following topics:
* Launching Wind River Workbench.
» Connecting to a Wind River emulator and a target processor.

* Downloading code to the target.

33

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

* Debugging code running on the target.

3.2 Connecting to the Target
First, open Workbench according to the method for your host computer.

Linux/Solaris Hosts
From your installation directory, issue the command
$./startWorkbench.sh
Windows Hosts
Select Start > All Programs > Wind River > Wind River Workbench version.

On Windows hosts, Workbench prompts you to specify a workspace location.
Linux and Solaris hosts use the default location installDir/workspace.

The Welcome screen appears.

34

3 Basic Operation: Debugging Without a Project
3.2 Connecting to the Target

Welcome to Wind River Workbench 2.6

WIND RIVER

WWW.WINDRIVER.COM

0 | %

i
=l

Warkbanch

@D

1.

Click Workbench.

Workbench opens, displaying the Quick Target Launch dialog.

35

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Wind River On Chip Debugging
@ Chioose How You Wank to Start

l‘:7l [[10o not show this dislog on skartup [Close]

Defined Launches
| Create a new launch configuration

Edit an existing launch configuration

Connect, Attach, Reset and Download

Sync with target and download symbols

36

Workbench saves all information regarding a particular emulator-target
connection in a launch configuration. The launch configuration includes such
configuration information as emulator type, target processor family, target
CPU, and host-PC interface port, plus any port parameters such as IP address
(if using a Wind River ICE SX), serial number (if using a Wind River Probe) or
baudrate.

Once you have defined an emulator-target connection, Workbench saves it in
the workspace folder. The next time you open Workbench, that launch
configuration will appear in the Defined Launches area of the Quick Target
Launch dialog, and you can return to it by highlighting it and clicking
Connect, Attach, Reset and Download.

The Quick Target Launch dialog opens automatically any time you launch
Workbench. If you do not want to use the Quick Target Launch, select the Do
not show this dialog on startup checkbox and click Close. You can open the
Quick Target launch dialog at any time by clicking the OCD Quick Launch
button in the Workbench toolbar.

Since this is the first time you have opened Workbench, there are no existing
launch configurations, and you must create one.

Select Create a new launch configuration.

The Connection Type dialog appears.

3 Basic Operation: Debugging Without a Project
3.2 Connecting to the Target

New Connection

Connection Type

Flease select connection bvpe,

Wind River OCD ICE Connection
‘Wind River OCD I55 Connection

‘Wind Ri e onneckion

WWind River Wowtorks 6.x Core Dump Connection
Wind River YeWarks 6. Simulator Connection
WWind River Wowlorks 6.x Target Server Conneckion

3. Select your connection type (Wind River ICE SX, Wind River Probe, or Wind
River Instruction Set Simulator) and click Next.

For instance, the examples in this tutorial show a Wind River Probe emulator
connected to a Wind River PPMC750FX target, so you would select Wind
River OCD Probe connection.

The Processor Selection dialog appears.

37

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

New Connection

Wind River Probe Settings

Configure the designator settings for the emulator,

Designatars

(%) Processor: | PRCTSOFY | [Seleck. .. l

() Board File: Br

v Designator Processar Processor Plugin
PPC7S0F: PPRC7SOFY PowerPC 7w Family Process, ..

Auko-attach to connected designatars

Cormmunications

|JSE Device Mame: | PRO40310 £V

Zancel

7 I < Back l[Mext =]

4. Click Select. From the list that appears, expand MPC7xx and select PPC750FX.

38

3 Basic Operation: Debugging Without a Project
3.2 Connecting to the Target

% Processor Selection

Current Connection - Wind River Probe : PPC750F

MPCExRx ~

MPC7 4

= MPCT=x
MPC740
MPZ745
MPC750
MPCZ755
PRC740
PRC745
PRC7S0
PPC730CR
PRC7S0OCEE
PRC7S0OCRR

PPC7S0FY

PRC7S0G:
=]=Tur Ty | b

(7 [oK H Cancel]

5. Make sure the Auto-attach to connected designators checkbox is selected and
click OK.

You are returned to the Processor Selection dialog.
6. Click Next.
The Target Operating System Settings dialog appears.

39

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

':; New Connection

Target Operating System Settings

Select the target operating swstem which is currently booted on the
configured target,

Available CPU(s) on karget board:

Target operating system settings

Baooted Target 05 on selected CPU: | Mone w

Drescripkion:
Providing plugin:

Kernel image: Erowse. ..

Kernel image is optional For Mone

Target O35 plugin pass-through options: w

[Help H < Back " Mexk =]

7. In the Booted Target OS on selected CPU field, select the operating system
that is running on your target processor. The default is None.

8. Next to the Kernel Image field, click Browse to navigate to the kernel image
you wish to specify. If you selected None in the previous step, you do not need
to specify a kernel image.

9. Ifyouare using a Linux plug-in, specify the pass-through options in the Target
OS Pass-Through Options field. If you are not using a Linux plug-in, skip this
step.

Options are passed as pairs in the format name="value’. Separate options with
a comma. The following options are available:

» notasklist=1: Never fetch process list.

* noautomodules=1: Do not plant internal breakpoints to do automatic
kernel module load /unload detection. When this option is specified, you
must manually refresh to see an updated module list.

40

3 Basic Operation: Debugging Without a Project
3.2 Connecting to the Target

* noloadcheck=1: Do not issue gophers until the hardware breakpoint is
used to detect kernel load triggers. This option is for “sensitive” boards
that don’t accept access until the kernel loads and sets up memory
mapping.

» loaddetectloc=symbol or address: Set the hardware breakpoint used to
detect kernel load at symbol (for example, loaddetectloc=start_kernel) or
address (for example, loaddetectloc=0x1000). If you do not specify a
symbol or address, Workbench uses a default. For most architectures the
default is start_kernel; for PowerPC targets, the default is 0x0.

10. Click Next.
The Memory Options dialog appears.

% New Connection

Memory Options

Specify the memary options for the target cpu.

Available CPU{s) on target board:

Memory mapping

Offset Size Attributes

Undefined memary areas accessible

@ [< Back][Mext =]

Use the Memory Options dialog to specify how memory on the target is
partitioned, and what the attributes of the particular memory regions are.

NOTE: The Memory Options dialog is only necessary for Linux or other
non-VxWorks target operating systems.

41

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

To specify an area of memory, click Add.

The Set Memory Map dialog appears.

- g
") Memory mapping

Please specify the offset, size and attributes For the memary mapping.

Offsek: 500000000
Size: 000000000
Attributes

Invalid

[Jread

Access size (bit):

Defaulk access size (bit):
i

Access size (bit):

Defaulk access size (bit):

[readwrite
Access size (bit):

Defaulk access size (bit):

[Ok H Cancel]

11.

42

Use the Set Memory Map dialog to specify which memory areas are read-only,

read-write, or write-only, and to specify the access width Workbench should
use to read the data from those regions.

Click Next.
The Object Path Mappings dialog appears.

3 Basic Operation: Debugging Without a Project
3.2 Connecting to the Target

-

) New Connection

Object Path Mappings
Specify how files in the target File system are visible in the host file system.
Available CPU(s) on target board:

Load module symbols to debug server automatically iF possible

Pathname prefix mappings:

« | Target Path Host Path Add...
any > =lgave path unchanged =

Expart...

<

-

EBasename mappings:
| [*;*.unstripped],[*;*]

[Help H < Back.][Mext =]

12.

13.

Use the Object Path Mappings dialog to specify how files in the target file
system are visible in the host file system.

To add a host or target path, click Add... and type the path in the dialog that
appears.

Click Next.
The Target State Refresh dialog appears.

43

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

New Connection

Target State Refresh

Configure the core(s) target states refresh settings,

Available CPUCS) on target board:

Initial target state query settings
[uery target object lists and target object states on connect
[uery target object stateis) on stopped events

[uery target object state(s) on running events {receiving objsct only)

Target state refresh settings
(%) Refresh the target state manually only
() Auto-refresh the target skate periodically

[CListen to execution context Fe-cycle events (context-start, context-exit)

1t is not known if life-cycle events for execution contexts are provided.

[Help H < Back “ Mext =]

Use the Target State Refresh dialog to configure the target state query and
target state refresh settings on your target processor.

14. Click Next.
The Default Breakpoint Options dialog appears.

44

3 Basic Operation: Debugging Without a Project
3.2 Connecting to the Target

', New Connection

Default Breakpoint Options

Select the defaulk breakpaint options For newly created breakpoints.

Awailable CPL{s) on target board:

Defaulk Breakpoint Stop Scope
() 5top al
() Stop triggeting thread

@ [< Back ” Mexk > l

Use this dialog to set default breakpoint options for newly created
breakpoints.

15. Click Next.

The Connection Summary dialog appears. Inspect the displayed values to
make sure they are correct.

45

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

', Mew Connection

Connection Summary

Please review the connection information

Conneckion name: | WRProbe_PPCTSOFX_0

Summary
Property Value
ADDR. PRO40310

AutoAttachConnectedCor trus
DESIGMATORMAR

CEVICE ‘Wind River Probe
MAME_MAPPIMNG [*i*. unstripped],[*;*]
PATH_MAPPING [:1d

STYLE USBDEYICE

Immediately connect to target if possible

@ Mext = [Finish H Cancel]

16. Make sure that the Immediately connect to target if possible checkbox is
selected and click Finish.

Workbench creates a target connection called WRProbe_PPC750FX in the
Target Manager view.

The Reset and Download view appears.

3.3 Downloading Code

Use the steps in this section to download symbols and code to your target.

1. In the Reset and Download view, select the Reset tab.

46

3 Basic Operation: Debugging Without a Project
3.3 Downloading Code

Mame: | WRProbe_PPC7SOFY - PPC7SOFY

. Main m@ Download . Instruction Pointer | 4® Run Options | #* Projects ko Build T§¢ Source | =] Common

PPC7SOFX
[FIPlay register fils CHiwindRiveriworkbench-2,64dfw\ 01 60gihostiregisters\PowerPCl 7xWindRiver_PPMC\ppmc?50fx.reg hd
RBSE'Z I - Resetfsetup regs | | Query Target
(=) Specified core
O all cores

Cores tied on reset:

2. If you want to configure the target register values with a register file, select
Play Register File and browse for the file you want to use.

Register files for many Wind River-supported targets are located in
installDir/fworkbench-2.x/dfw/build/host/registers.

If you do not want to reconfigure your target registers, leave this box
unchecked.

3. Choose the type of reset initialization you want to perform.

You can use the IN or INN initialization commands. For a full discussion of
these two commands, see the Wind River Workbench for On-Chip Debugging
Command Reference.

You can also choose not to perform an initialization by clearing the Reset box.

CAUTION: If you are manually changing registers on your target, be aware that
issuing an IN or INN initialization command will overwrite your changes.

4. Select the Download tab.

Mame: | WRProbe PPC7SOF: - PRPCTSOFY

@ Main | ¥ Reset m@ Instruction Poinker | #® Run Options | ¥% Projects to Build | B, Source | =1 Common
PPCFS0FY

File: Download Werify Load Symbols | OFfset
cdemn. elf - C:fwindRiverfstandalone-1.0fsamplesc_demd .. Mone L7

47

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

6.

Click Add Files.

In the browser window that appears, navigate to the executable file you want
to run.

The file you select appears in the Filename field. Repeat this process as many
times as necessary.

The file at the top of the list will download to the target first, followed by the
others from the top down. You can edit the order of the list by clicking on any
filename to highlight it and using the Up, Down, and Delete buttons.

Use the other fields to configure the download.

Download

The Download field is checked by default. If you clear it, the file will remain
on the list but will not download data to the target. This is useful if, for
example, you only want to download symbol information and not data.

Verify

48

The Verify field configures the extent to which the file you are downloading
will be compared to a file that may already be on the target. There are three
options: Full, Compare, and None.

When this field is set to Full, a write/read verify will occur for every
download. Workbench writes to the target and then verifies that the write to
the target and the read from the target are identical. This is slower than a
normal download, but it is a useful security option.

When the field is set to Compare, Workbench will verify that the image has
been downloaded correctly (that is, that the image on the host is the same as
the image on the target.) This is useful for programming flash.

NOTE: You should only set the Verify field to Compare if an image already
exists on the target. If you set the field to Compare when there is no image on
the target, Workbench will look for a file to compare and not find one, and the
reset and download operation will fail.

When the field is set to None, Workbench will perform no verification.

The Verify field is set to None by default.

3 Basic Operation: Debugging Without a Project
3.3 Downloading Code

Load Symbols
The Load Symbols field, which is checked by default, determines whether the
file’s symbol information is downloaded to the target.

Offset

In the Offset field, you can enter a value in hex to set a memory offset bias for
your application file. If you do not enter a value, Workbench uses the default
value 0x00000000.

7. Select the Instruction Pointer tab.

Mame: | WRProbe_PPCTSOFY - PPCTS0FS

o Main | ¥ Reset | ¥ Download FEENTETTESINENTE N @ Run Options | ## Projects to Build T§¢ Source | =] Common
PPCFSOF

[¥]5et instruction pointer after download
() Use start address From download File

(O Use start address From symbaol

() Use specified start address |

8. Set the starting point for your file.

By default, the instruction pointer is set to use the starting address from the
download file.

You can set the instruction pointer to start the file from the first occurrence of
a particular symbol (for example, main) or you can just specify a starting
address by entering the address value in hex in the Use Specified Start
Address field.

If you do not want to set a starting point, clear the Set Instruction Pointer
After Download box.

9. Select the Run Options tab.

49

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Mame: | WRProbe_PPC7SOFY - PPCTSOF:

Main | ¥ Reset ¥ Download | #® Instruction Pointer m” Projects to Build T‘y Source | =] Comman
PPCFS0FR

@ Do not run

() Run to symbol

(RuN ko address

()Run ko end of program
[Cereak at Exit

[IPlay post download script

10.

11.

Determine how you want your file to run.

By default, the Reset and Download view is set not to run the file after
downloading. If you want the file to run, you have several options to
determine where it should break:

* You can set it to break at the first occurrence of a symbol (for example,
main) by selecting Run to Symbol and entering the symbol in that field.

* You can set it to break at the end of your program by selecting Run to end
of program.

* You can set it to break at a given memory address by selecting the Run to
Address box and entering the address in hex in that field.

* Youcanset it to break at an _exit routine by selecting the Break at Exit box.

If you need to perform a post-initialization, you can define it here. Select the
Play post download script box and click Browse. In the browser window that
appears, navigate to your initialization file.

Select the Source tab.

Mame: | WRProbe_PPC7SOFY - PPC7S0FR

4 Main | ¥ Resct| ¥ Download | @ Instruction Pointer | #® Run Options | % Projects to Build m:. Common
Source Lookup Path:

- o

12.

50

Use the Source tab to configure the source path of your file.

13.

3 Basic Operation: Debugging Without a Project
3.3 Downloading Code

Workbench uses the input path of the local file system by default. Unless you

need to use a different path, you do not need to do anything in the Source tab.

If you need to use a different path, click Add... and use the Add Source dialog
to configure the appropriate search path for your project.

Select the Common tab.

ain (=1 (allpl(als] nstruction Pointer un Qptions ro)ects to Buil] OUFCE
#* Main | #* Resct | #® Download | #® Instruction Pointer | #® Run Opti ** Projects ko Build 5

14.

15.

Save a5
(®) Local file

() shared file:

Standard Input and Cutput
Allocate Console {necessary For input)

[CIFile:

Specify whether your launch configuration is local or shared.

The configuration is local by default. To make it shared, click Shared file: and

browse to the shared directory where you want the configuration to be located.

You have now fully defined your reset and download operation.
Click Debug.

Workbench initializes the target board, then downloads the file, then runs the
file.

The OCD Console view opens to show the progress of the reset and download
operation.

51

Wind River Workbench for On-Chip Debugging

User Tutorials, 2.6.1

Tasks | Problems | Properties | Build Console | Error Log | Terminal 0 | Trace | OCD Command Shell B

Reset and Download

Testing Communications to Hardware Interface. ...
Driving HRESET ta be High,
Driving HRESET ko be Low.,....
\Waiting HRESET Low Acknowledge. .
Attempting JTAG communication........ooe,
waiting For HReset to be released...............
Testing for target STOP State.......
Comparing karget CPU with CF setting
‘Waiting For HRESET High Acknowledge..
Testing ITAG Communication........
Loading Internal Registers. ..
Testing ITAG Communication. ..o,
Getting value of cf mmu option ...
Atternpting ko restore CPU context, oo,

CiwindRiveriwarkspacelc_demo_sa\PPCe03diab_DEEUGcdema.elf

Loading symbals. ..

Specified not to Run

* Reset and Download Completed *
<

Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed

(NES NN NRRANRRARRNRANRRARRNNRRRRE)

Completed at Default Offset {1 sec)

|

52

The Editor opens showing the Program Counter set at the beginning of the

application code.

a| diabasm.s 2

START :
EHTRY:
_start:

B addis
addi
addis
addi
addis
addi
addi
St

(] ﬂ'D
hl
[57] RD
deadloop :

3 Basic Operation: Debugging Without a Project

3.4 Debugging Code

C| calendar.c 22 WRProbe_PRCTSOFY =0

rii,r0, &P INITBha
ri,ril, SF_INITRL

£13,r0, SDi BASE Rha
r13,r13, SDA BASE Bl

rz,r0, _5Diz_BASE Rha
rz,r2, SDAZ BASE Rl

ro,c0,0
rd,-64 (rl)

main

I deadloop

@[]

.globl addone

addone :
addi
bolre

Initial Stack Pointer

Smwall Data Areas

Swall Data Area 2

Push 0 onto stack

r3,r3,1 # increment parsmeter...

20,0 # go back

end FPowerPC

.endif
£

You are now ready to run and debug the application.

3.4 Debugging Code

Use the Debug view to monitor, control, and manipulate the processes and tasks
that you are actively debugging. The Debug view shows only the processes that

are currently under debugger control.

53

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

PN =

O B 323 RES

=] @ WRProbe_PPCFS0FY [Attach to Target]
=4 PPCTSOFY (System Mode)
= %‘ﬁj Sw;.-'ustem Context {Stopped)

=@ =tart() - diabasm,s;44

3.4.1 Monitoring Processes

When you start processes under debugger control, or attach the debugger to
running processes, they appear in the Debug view labeled with unique colors and
numbers. You can change the color assigned to a process or thread by right-clicking
the process or thread and selecting Color > specific color.

3.4.2 Stepping Through Code
The Editor shows the source file diabasm.s, showing the C Demonstration Project
initialization assembly.
In the Debug view, click the Step Into button.

The Program Counter moves to the second assembly instruction. If you open the
Memory view or the Registers view, you can see them update memory and
register values as you step through instructions.

Click the Step Into button seven more times, to step through all the initialization
code and reach the first branch instruction:

bl main
This is where the application branches out of assembly into C code.

Click the Step Into button again.

54

3 Basic Operation: Debugging Without a Project
3.4 Debugging Code

The application branches into main() and the Editor opens the source file cdemo.c.

\a disbasm.s =0
char *globalstring[3]: /% Uninitializeded array of string pointers */#
char bell[2] = {BELL_CHAR, O

-1—-',."1;*1;ﬂ'ﬂ'1;ﬂ'1fﬂ'ﬂ'*ﬂ'1;*1fﬂ'ﬂ'1;*1;ﬂ'ﬂ'1;ﬂ'1;ﬂ'ﬂ'ﬂ'ﬂ'1f*1fﬂ'ﬂ'1;ﬂ'1;ﬂ'ﬂ'1‘ﬂ'1f*ﬂ'ﬂ'ﬂ'1;*1;#*******ﬁ**##ﬁ***#**ﬁ**
=int maini()
i
rolatile long demo counter;

3 volatile int pfa demo=0;
int sSum = 0;
volatile char cwvar; £ zample char variskhle */
REC_TYFE1l g
rvolatile int locallntl;

vrolatile long localLongl;

/% Setup the glokal string array */

glohalstring[0] = "zero';
globhalstring[1l] = "one™:
globhalstring[2] = "two™;

/% Initialize the rectest structure */
rectest. lony integer = OXFFFFEEEE;
rectest.short_integer = 5555;

rectest.integer array[0] = 0}
rectest.integer_array[l] = 10;
FECLEST. integer array[2] = 20;
rectest.integer_array[3] = 30;
rectest.string pointer = "Wind Riwver's Tool Product Family™;
W
< >

3.4.3 Setting a Software Breakpoint

Breakpoints allow you to stop a running program at particular places in the code
or when specific conditions exist.

In the left ruler of the Editor (the gutter), double-click to the left of the source line
globalstring[2] = “two”;

This sets a software breakpoint on that source line. The breakpoint appears in the
Breakpoints view.

55

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Project Ma... | Symbal Bro,.. | Watch [reakpoints X

KRB w | Je BEG DT
@, fc_demo_sajcdemo,c:113 (*Planted™®, Restricted Scope)

In the Debug view, click the Resume button. The program runs until it hits the
breakpoint. The System Context changes to Stopped -- Breakpoint Hit.

ErEN =
O= & I -

= & WRProbe_PPCTSOFY [Attach o Target)
=42 PPCTSOFY (System Mods)
= Syskem Context (Stopped - Breakpoink Hik)
=’ maing) - cdemo.c: 113
=" diabasm.5:58

Breakpoint information also appears in the OCD Command Shell:
>RUN>

IBREAK! - [msgl2000] Software breakpoint; PC = 0x00014074 [EVENT Taken]
>BKM>

3.4.4 Running a Program
To run your downloaded program, click Resume in the Debug view. The program

will run until it hits a breakpoint. If there are no breakpoints or interrupts, the
program will run to completion or until you click Suspend.

56

3 Basic Operation: Debugging Without a Project
3.4 Debugging Code

When the program is running, the System Context changes to Running, and a
>RUN> prompt appears in the OCD Command Shell.

[* et X \§ -C
1l & == -
= & WRProbe PPC7S0FY [Attach to Target]
[= .Q‘"D PPC7S0FY (Syskem Mode)
System Conkexk (Running)

If there are no breakpoints, you can stop the program by clicking the Suspend
button in the Debug view or by entering the HA command at the >SRUN> prompt
in the OCD Command Shell.

The Editor updates to show the current location of the Program Counter and the
System Context in the Debug view changes to Stopped -- User Request.

L 0us x NS ~C
i3 & LI I % L =
[=l @ wRProbe_PPC7S0FY [Attach to Target]

=" PPCTSOFE (System Mode)
= "Eﬂ System Context (Stopped - User Request)
el

=l daryOfvear() - calendar.ci213
=" calendar() - calendar.c:122
=" maing} - cdemo.c: 184

=" diabasm.s:55

3.4.5 Stepping Through a Program

To single-step without going into other subroutines, click Step Over instead of
Step Into.

While stepping through a program, you may conclude that the problem you are
interested in lies in the current subroutine’s caller, rather than at the stack level

57

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

where your process is suspended. In this situation, if you click Step Return,
execution continues until the current subroutine completes, then the debugger
regains control in the calling statement.

3.4.6 Setting a Hardware Breakpoint

The availability of hardware breakpoints varies by architecture. You can only set
as many hardware breakpoints as there are debug registers available on your
target.

Once a hardware breakpoint is trapped, the debugger will behave in the same way
as for a standard breakpoint and stop for user interaction.

In the Breakpoints view, click on the Menu button and select Add Data
Breakpoint.

The Data Breakpoint dialog appears.

% Data Breakpoint Properties

Breakpoint Address and General Attributes

@ Please specify Address Expression

Select debug karget For karget-spedific information
& PRCTSORY
Mone - preserve current settings

@ General Skatus Scope @ Hardware

Address Expression | |

[]continue on Break

Continue Delay (ms)

Cancel

58

3 Basic Operation: Debugging Without a Project
3.4 Debugging Code

If an error message appears, you may have exceeded the number of allowed
hardware breakpoints (four for most targets). Right-click in the Breakpoints view
and select Remove All. Then select Menu > Add Data Breakpoint again.

If an error message still appears, your target may not support hardware
breakpoints.

You can use data hardware breakpoints to find out which routines are modifying
a specific variable.

The Address Expression can be a symbol or a specific address in hex. You can use
the address 0x0 in the Address Expression field to set a data hardware breakpoint
to catch null pointers. You can set the Address Expression field to an address in
the stack area to set a data hardware breakpoint to find out if the stack grew to that
point.

The following example sets a symbol in the Address Expression field.
1. Click Browse.

The Select Symbol dialog appears, showing a list of available symbols that can
take a hardware breakpoint.

59

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Choose the symbaol from the list. Debug symbaols can only be
retrieved if there is an active debug session

Debug target

& PPCTSORY

Filter {regular expression)

Matching symbols

send_month - globalfunction -~
Senior TestEngineer - globalvariable

status - globalvariable

strcmp - globalfunction

strepy - globalfunction

swap_ells - globalfunction

test_engineer - globalvariable

testEits - globalvariable

TestEnginzer - globalvarisble

4|

[0K H Cancel]

2. Scroll down and highlight the symbol wait_index.
3. Click OK.

The global variable wait_index is now the address for the data hardware
breakpoint.

The hardware breakpoint on wait_index appears in the Breakpoints view.

60

3 Basic Operation: Debugging Without a Project
3.5 Moving On

2 Breakpoints X =8
® % |2 @mEST

M wait_index (*Flanted®, Restricted Scope)

In the Debug view, click Resume.

The program runs until it hits the hardware breakpoint. Workbench halts the
processor when it locates wait_index and displays that source line in the Editor.

3.4.7 Disconnecting and Terminating Processes

Disconnecting from a process or core detaches the debugger, but leaves the process
or core in its current state.

Terminating a process actually kills the process on the target.

NOTE: If the selected target supports terminating individual threads, you can
select a thread and terminate only that thread.

3.5 Moving On

For descriptions of other features of Wind River Workbench for On-Chip
Debugging, such as code profiling, code tracing, and so on, see the relevant
chapters in this document.

61

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

62

Using the OCD Standalone
Project Wizard

4.1
4.2
4.3
4.4

Introduction 63

Creating an OCD Standalone Project 64
Building an OCD Standalone Project 71
Setting Standalone Project Defaults 72

4.1 Introduction

Every Workbench project has a set of build specs from which you can select,

depending on your target processor. For example, there may be a build spec for a
PowerPC 603 target and a different build spec for an ARM 920T target, as well as
many other variations.

For operating system-independent (standalone) applications, rather than simply
providing all possible variations, Workbench provides a Standalone Project

Wizard, from which you can create a build spec dynamically.

Standalone application projects can only be debugged using OCD functionality.

63

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

4.2 Creating an OCD Standalone Project

To create a standalone project:
1. In Workbench, select File > New > Standalone Application Project.

The Standalone Project wizard appears, as shown in Figure 4-1.

Figure 4-1 Standalone Wizard -- Project Name

% New Standalone Application Project

Project

Create a new standalone application project From a selected i’
execution environment,

Praject namme: Test_OCD_Project|

Location
@ Create project in workspace

() Create project at external location

2. Inthe Project Name field, assign a name to your project. In the example shown
in Figure 4-1, the project name is Test_OCD_Project.

3. Click Next.

64

4 Using the OCD Standalone Project Wizard
4.2 Creating an OCD Standalone Project

Figure 4-2 Standalone Wizard -- Build Defaults

%) New Standalone Application Project

Build Setup and Defaults =
Choose the managed build type and specify the build defaults i

SOUFCe,

Managed build type
(%) Standard
) Flexible

MNote: Use Standard managed build if vour build structure is similar to
the Filesystem structure, Select Flexible managed build iF your
build kargets contain files From ary praject in wour workspace.

Build defaults source

[< Back ” Mesxt =] Finisk

4. Specify the build defaults for your project.
If your build structure is similar to the filesystem structure, select Standard.

If your build targets contain files from any project in your workspace, select
Flexible.

5. Click Next.

65

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Figure 4-3 Standalone Wizard -- Build Support

ew Standalone Application Project

Build Support =
Choose the build support and specify the build command, @

Build command: | make --na-print-directory

Make Rules For User-defined build

Build output passing
[[]Pass received and current objects to next level
[JPass received buid targets o next level

Mote: If no build targets are defined at the current level and the "Pass
received and current objects ko next level” option is disabled, no
objects will be built at the current level,

Build path

Redirection root directory: | | [Brnwse...]

Note: Leave this field Blank o store build oukpuk together with the sources,
or enter an absolute path {environment variables are permissible) to

redirect the oukput,

l < Back, ” Mesxt = l

6. Specify the build support for your project.

You can also use this step to determine how build output is passed.

7. Click Next.

The Build Spec wizard appears, as shown in Figure 4-4.

66

4 Using the OCD Standalone Project Wizard
4.2 Creating an OCD Standalone Project

Figure 4-4 Build Spec Wizard

% New Standalone Application Project

Execution Environment =
Select an execution environment ko create a new build spec, @

Available execution environments:

ARM

ColdFire

MIPS

MIPS-IY

Pernkiurm

FPawerPic

PowerPC Compressed
SH

SPARC

5 R R R~ B RS

Use the Build Spec wizard to create a set of build tool commands for a specific
target environment. You will need to create a build spec for each target you
want to build for.

To complete the wizard you must fully expand at least one node of the tree and
select an innermost node, as shown in Figure 4-5.

67

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Figure 4-5 Build Spec Wizard -- Innermost Node

New Standalone Application Project

Execution Environment =
Resulting build spec: ¥86LHsimplediab B

Available execution environments:

ARM

ColdFire

MIPS

MIPS-IY

(=] Pentiurm

= =86
[=)- %&6 EIF little-endian Object Format
= Hardware Floating Poink
cross - Use Ram Disk for 10
simple - ¢ 0
wrworksgd - Interface with WaxWworks 6.0
waworkstl - Interface with WaWworks 6.1
waworkst2 - Interface with WxWorks 6.2
waworkst3 - Interface with WxWorks 6.3
tkp - Real Time Process For WaWorks 6.x
Mo Floating Point

PowerPC

PowerPC Compressed

SH

SPARC

[< Back ” Mexk =]I Finish H Cancel

8. Click Next.

68

Figure 4-6

4 Using the OCD Standalone Project Wizard
4.2 Creating an OCD Standalone Project

Standalone Wizard -- Build Target

% New Standalone Application Project

Build Target i
Specify a build target, i‘

Build target name: | Test_0CD_Project |

Build tool:

Build output passing

[< Back][ezt =]I Finish l[Cancel

Specify the build tool for your project.

The Build Tool: field has five options: Linker, C-Linker, C++Linker,
Librarian, or (User-Defined). You can switch the build tool to build static
libraries with this project type, or to use the C or C++ compiler for linking.

If the project is created as a root project, the default is Linker.

If the project is created as a subproject, the default is Librarian.

NOTE: If you selected an existing project before starting the wizard, you may
select a superproject for the new project.

9. C(lick Next.

69

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Figure 4-7 Standalone Wizard -- Static Analysis

%) New Standalone Application Project

Static Analysis _
Configure the process of analyzing vour source code, ::'

Biasic Configuration
Enable Static Analysis

Generate cross reference information

ek = [Finish ” Cancel]

Configure the process of analyzing your source code.

By default, the wizard is set to enable static analysis and to generate
cross-reference information. To disable either of these options, clear the
checkbox in the wizard.

10. Click Finish.

Your project appears in the Project Navigator view, as shown in Figure 4-8.

70

4 Using the OCD Standalone Project Wizard
4.3 Building an OCD Standalone Project

4.3 Building an OCD Standalone Project

Figure 4-8 Test Project

i Test_OCD_Project. el (486LHsimplediab_DEBLIC
(2 w561 Hsimplediab_DEBUG

= .project

M| wrmakefils

=] wrprojeck

| Makefile

To build your project, right-click on the test name in the Project Navigator view
and select Build Project. Build output is displayed in the Build Console view, as
shown in Figure 4-9.

Figure 4-9 Build Console View

Errar Log | Tasks | Prablems | Properties Retriever | Terminal 0 A Eﬁ [c"':] ¥ =0

Build Started in Project 'Test_OCD_Project: 2006-04-24 14:15:34

Platfornn: Wind River Standalone {No Dperating System) Platform 1.0

Command: make --no-print-directory BUILD_SPEC=X86LHsimplediab DEBUG_MODE=1 TRACE=1

Working Directory: C:/WindRiver,/'workspace/Test_0CD_Project

echo "building ¥&6LHsimplediab_DEBIG Test_OCD_Project. elf;if ["1" ="1"]; then MAP_OPTICOKN=-W, -mé&; MAP_MAME="-i,-@
ILE_OPTIOMN="-Wrm";fi; dplus -tXS6LH:simple -0 "¥86LHsimpladiab_DEBUG Test_OCD_Project.elf* -lc -Istl -Id $LINK_FILE_OF
_DEBEUG) Test_OCD_Project elf";fi

building X86LHsimplediab_DEBUG,/Test_0CD_Project.elf

make; built targets of O MWindRiver fworkspace Test_OCD_Project

Build Finished in Project "Test_0OCD_Project’: 2006-04-24 14:15:35 (Elapsed Time: 00:01)

You can now run and debug your standalone project.

71

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

4.4 Setting Standalone Project Defaults

You can set workspace build defaults in Workbench and specify default build
specs for all new standalone projects.

NOTE: Setting new standalone defaults will not affect already-existing standalone
projects.

To set standalone project defaults:
1. In Workbench, select Window > Preferences.

The Preferences dialog appears, as shown in Figure 4-10.

Figure 4-10 Preferences Dialog

', Preferences

tvpe filber bext - General & -

[always run in background

Build Extensions

Build Praperties [keep nextiprevious part dislog open

Help Open mods
Install{/Update () Double click

OCD Cammand Shell O Single click,
Run/Debug o
ScopeTools
Skatic Analysis
Syskem Yiewer
Target Manager
Tearn
Terminal

Note: This preference may not take effect on all views

[Restore DeFauIts] [Apply]

[o8 H Cancel]

2. Select Build Properties.

72

Figure 4-11

Build Properties

4 Using the OCD Standalone Project Wizard
4.4 Setting Standalone Project Defaults

type filter text Build Properties =
- General
Build Console . , .
S — Specify default Build Properties Far new:
Euild Propetties Ernbedded Linu: Application Project (General Linux Kernel 2.5 “
& Hel
Eﬁ: I:stpallll’UDdate MNote: These settings are the defaults For creating new projects, They have no effect on existing projects,
0CD Cormand Shell Mote: The build properties For all Wind River Linux project bypes are provided by the platfarm during project
A FeunyDebug creation. Build property preferences are therefore not available For this platForm.
#-ScopeTools Build Support | Build Specs || Build Tools | Build Macros | Build Paths
[Static Analysis Bui a 2
Swskern Viewer [Pt
- Target Manager (®)Managed build (makefiles generated by the IDE)
[+~ Team () ser-defined build — (based on existing makefiles)
Terminal () Disabled
Build command: | make --no-print-directary
Make Rules for User-defined build
Build autput passing
& [JPass received and current objects ko next level
& [Prass received buid targets to nest level
Note: IF nobuild kargets are defined at the current level and the "Pass received and current objects
to next level” option is disabled, no objects will be built at the current level.
[Restore DeFauIts] [Apply]
[Ok] [Cancel]
3. In the Specify Default Build Properties for New: field, select Standalone
Application Project (Wind River Standalone (No Operating System)
Platform 1.0).
4. Select the Build Support tab.
5. Use the settings in the Build Support tab to configure the build support for
standalone projects and click Apply.
6. Repeat this procedure for the Build Specs, Build Tools, Build Macros, and
Build Paths tabs.
7. Click OK.

73

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Any new standalone projects you create will now use the settings you specified in
the Preferences dialog as defaults.

74

Defining a Launch
Configuration

5.1 Introduction 75
5.2 Creating a Launch Configuration 76
5.3 Other Options 85

5.1 Introduction

Use the Launch Configuration dialog to edit your defined emulator-target
connections and their associated actions, such as initializing your target board and
downloading a file to run on your target.

The Launch Configuration dialog is very similar to the Reset and Download
view, which is described in the Establishing Communications chapter of your
emulator’s Hardware Reference. The difference is that the Launch Configuration,
once defined, is persistent, and you can launch it at any time with one click without
having to re-enter your values.

The values you enter in the Reset and Download view are not persistent to the
Launch Configuration you defined for your emulator and target, so using the
Reset and Download view will not affect your Launch Configuration.

In the Workbench toolbar, select Run > Debug.
The Launch Configuration dialog appears.

75

User Tutorials, 2.6.1

Wind River Workbench for On-Chip Debugging

; Y
h S

type filter text

£ Attach to Target
¥ Batch Launch
] Java Applet
[Java Application
Ju Uit
% Kernel Task
% Launch Cartral
OCD Reset and Download
Process on Target
E Remote Java Application
Remote Java Launch and Con
RTP on Target

Create, manage, and run configurations

Configure launch settings from this dialog:

" - Press the 'New' button to create a configuration of the selected type,

=| - Press the 'Duplicate’ button to copy the selected configuration.

¥ - Press the 'Delete’ button to remave the selected configuration.
B,

5
T

- Press the 'Filker' button ta configure filkering options,

- Edit ar wiew an existing configuration by selecting it

Configure launch perspective settings from the Perspectives preference page.

Close

You can use the Launch Configuration dialog to create a new launch configuration
or to edit, delete, or duplicate an existing launch configuration.

5.2 Creating a Launch Configuration

To create a new OCD launch configuration, use the following steps.

1. Highlight the configuration type OCD Reset and Download and click the

New button.

The Main tab appears.

76

5 Defining a Launch Configuration
5.2 Creating a Launch Configuration

Mame: | Mew_configuration

mﬁ Reset | # Download | ¥ Instruction Pointer | #® Run Options | #¥ Projects to Build E;y Source | =] Common

Connection

[Create a Mew Target Conneckion]

Connection to use: | IR o e calhost) w | []Hide unconnected

[Properties][Add...] [Conneck] Mot Connected

Care;

2. Assign a name to the launch configuration.

By default, the Name field will populate with the name of the most recently
used target connection. If you want to use a different name, select the Name
field and enter a name.

The connection registry is set to localhost by default.
3. Connect to an emulator and target.
To connect using the default target connection, click Connect.

If you want to create a new target connection, click Create a New Target
Connection to open the New Connection wizard. Create a target connection
following the procedure described in 2.2 Connecting to the Target, p.6.

If you decide you want to change your emulator settings, you can return to the
Settings dialog box by clicking Properties.

Your emulator is now connected to the host computer and your target.

77

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

5.2.1 Specifying Files
To download and run a file on your target, use the other tabs on the Launch
Configuration dialog.

1. Select the Projects to Build tab.

Main | ¥ Projects to Buld | @ Reset | #® Download | #® Instruction Pointer | #® Run Options 2 source | & Common

Projects will be built before this Launch in the order given below,
when "Build before Launch” is enabled in the Preferences.

Projects to Build:

c_demo_sa

By default, the project you specify will build before the configuration is
launched. If you do not want the project to build first, select

Window > Preferences > Launching and clear the Build (if required) before
launching check box.

2. To specify a project to build, click Add Project... and select the project name
from the list of available projects in the dialog that appears.

You can add more than one project. Edit your project list with the Up, Down,
and Remove buttons.

3. Select the Reset tab.

78

5 Defining a Launch Configuration
5.2 Creating a Launch Configuration

Main | ** Projects to Build ® Reset | Dowrload | #® Instruction Pointer | # Run Cptions ﬁy Source | £ Common
PPCTS0R:

Play register file | C:\\WindRiver\workbench-2.5dFw0141host\registers\PowerPCY P WindRiver_PPMCippmc’ v
Reset IM - Reselfsetup regs w
(%) Specified core
Cral cores
Cares tied on reset:
PPC7S0F.

If you want to play a register file, select Play Register File and browse for the
register file you want to use.

This example shows a Wind River PPMC750FX target; the Wind River register
file for this target is ppmc750fx.reg, located in
installDir/workbench-2.x/dfw/build/host/registers in the directory
PowerPC/7xx/WindRiver PPMC.

If you do not want to reconfigure your target registers, leave this box
unchecked.

Choose the type of reset initialization you want to perform.

You can use the IN or INN initialization commands. For a full discussion of
these two commands, see the Wind River Workbench for On-Chip debugging
Command Reference.

You can also choose not to perform an initialization by clearing the Reset box.

CAUTION: If you are manually changing registers on your target, be aware that
issuing an IN or INN initialization command will overwrite your changes.

Select Specified Core.

In the Cores Tied on Reset field, you will see a list of all the cores on your JTAG
scan chain. If you want your reset and download to affect only one core, click
on that core in the Cores Tied on Reset field and check Specified Core. If you

79

Wind River Workbench for On-Chip Debugging

User Tutorials, 2.6.1

7.

want your reset and download to affect all your target boards, click on All
Cores.

The Wind River Probe does not support multi-core debugging, so if you are
using a Wind River Probe, you do not need to set the Cores Tied on Reset field.

Select the Download tab.

Figure 5-1 Download Tab

* Main | &Y Projects to Build * Recet # Dowrload . Instruction Poinker | ¥ Run Options 'Eiy Source | =1 Common
PPC7S0FR

Filename Download Verify Load Symbols | Offset
cdema.elf - C:fwindRiver/standalone-1.0/samples/c_demd__.. Mone ¥

80

Click Add Files.

In the browser window that appears, navigate to the executable file you want
to run. This example shows the PowerPC version of the executable cdemo.elf
file from the sample C Demonstration Project.

The file you select appears in the Filename field. Repeat this process as many
times as necessary.

The file at the top of the list will download to the target first, followed by the
others from the top down. You can edit the order of the list by clicking on any
filename to highlight it and using the Up, Down and Delete buttons.

Use the other fields to configure the download.

The Download field is selected by default. If you clear it, the file will remain
on the list but will not download data to the target. This is useful if, for
example, you only want to download symbol information and not data.

10.

5 Defining a Launch Configuration
5.2 Creating a Launch Configuration

The Verify field configures the extent to which the file you are downloading
will be compared to a file that may already be on the target. By default this
field is set to None.

The Load Symbol field, which is selected by default, determines whether the
symbol information from the file is downloaded to the target.

In the Offset field, you can enter a value in hex to set a memory offset bias for
your application file. If you do not enter a value, Workbench will use the
default value 0x00000000.

Select the Instruction Pointer tab.

Main | # Reset| ¥ Download [SESUETIEEGTEL R, #* Run Options | *% Projects to Buld | B Source | =] Comman

11.

MPCE2a0

Set instruction pointer after download

() Use specified start address |

Set the starting point for your file.

By default, the instruction pointer is set to use the starting address from the
download file. However, you can set it to start the file from the first occurrence
of a particular symbol (for example, main) or you can just specify a starting
address by typing the address value in hex in the Use Specified Start Address
field.

If you do not want to set a starting point, clear the Set Instruction Pointer
After Download box.

81

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

12.

Select the Run Options tab.

. Main | ** Projects to Build | # Reset | # Download | # Instruckion Pointer | #® Run Options | &2 Source | B Comman
PPC7S0F:

@ Do not run
) Fun b symbol

() Pun to address

Oy Run to end of program
[CBreak at Exit

[CIrlay post download scripk

13.

14.

82

Determine how you want your file to run.

By default, the launch configuration is set not to run the file after
downloading. If you want the file to run, you have several options to
determine where it should break:

* You can set it to break at the first occurrence of a symbol (for example,
main) by checking the Run to Symbol box and entering the symbol in that
field.

* You can set it to break at a given memory address by checking the Run to
Address box and entering the address in hex in that field.

* Youcansetit tobreak at an _exit routine by checking the Break at Exit box.

If you need to perform a post-initialization, you can define it here. Select the
Play Post Download Script box and click Browse. In the browser window that
appears, navigate to your initialization file.

Select the Source tab.

5 Defining a Launch Configuration
5.2 Creating a Launch Configuration

Figure 5-2 Source Tab

Main | *¥ Projects to Build | #® Reset | #* Dowrload | #® Instruction Pointer | #® Run Options EV Source | =] Common
Source Lookup Path:

- o
“; Debugger Path in Filesyskem

[5earch for duplicate source files on the path

15. Use the Source tab to configure the source path of your file.

Workbench uses the input path of the local file system by default. Unless you
need to use a different path, you do not need to do anything in the Source tab.

If you need to use a different path, click Add... and use the Add Source dialog
to configure the appropriate search path for your project.

16. Select the Common tab.

83

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Figure 5-3 Common Tab

#® Main | ** Projects to Build | #® Reset | #® Download | #® Instruction Pointer | #® Run Options Ey Source | =) Comman

Save as

(%) Local File

() shared file:

Display in Favorites menu Console Encoding
[1@run () Default (Cp1252)
O ﬁDebug () Other

Standard Input and Cukput
Allocate Console (necessary for input)

CIFile:

Launch in background

17. Specify whether your launch configuration is local or shared.

The configuration is local by default. To make it shared, click Shared and
browse to the shared directory where you want the configuration to be located.

18. Select Debug.

This will make this launch configuration visible in the Debug menu in the
Workbench toolbar, so you can return to it and launch it at any time.

You have now fully defined your launch configuration.
19. Launch or close the configuration.
To launch the reset and download operation now, click Debug.

Workbench will first initialize the target board, then download the file, then
run the file. You can proceed to step through instructions and debug the file as
explained in the Wind River Workbench User’s Guide.

To save the launch configuration without downloading and running the file,
click Close.

The name you gave this configuration is now visible in the Debug menu in the
Workbench toolbar. To launch it at any time, click the menu arrow next to the
Debug icon. A list of launch configurations will appear; choose the one you
want to launch.

84

5 Defining a Launch Configuration
5.3 Other Options

NOTE: Clicking on the Debug icon itself will automatically launch the most
recently used launch configuration.

5.3 Other Options
To create a duplicate of an existing launch configuration, highlight the
configuration name and click the Duplicate button.

To delete an existing launch configuration, highlight the configuration name and
click the Delete button.

To set which launch configurations the Launch Configuration dialog shows, click
the Filter button.

85

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

86

Using Board Descriptor Files

6.1 Introduction 87

6.2 Board Descriptor Files 88

6.3 Creating a New Board Descriptor File 89
6.4 XML Board Files 98

6.5 Manually Creating XML Board Files 101

NOTE: This chapter applies only to applications that involve multi-core
debugging. For single-core debugging, you do not need to use a board descriptor
file. Multi-core debugging is not supported for the Wind River Probe. This chapter
applies only to the Wind River ICE SX.

6.1 Introduction

Wind River emulators use the Joint Test Action Group (JTAG) interface to
communicate to the target microprocessor, and share this interface with
boundary-scan board-circuit testing. The JTAG interface follows the IEEE 1149.1
boundary-scan (JTAG/Test Interface) specification.

The JTAG interface consists of a set of five signals, three JTAG registers, and a test
access port (TAP) controller. The TAP controller is typically embedded in the target
microprocessor or device. The information related signals are TDI (Test Data In)

87

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

and TDO (Test Data Out). The boundary-scan register chain (data) includes
registers controlling the direction of the input/output drivers, as well as registers
reflecting the signal value received or driven. The expectation and details of
particular CPU chains are encoded directly into the emulator firmware.

Each device sharing the JTAG interface employs a serial stream of relative data.
The data streams for all devices can be chained together. An associated process can
scan the combined chain to extract any particular device’s information.

For additional information about JTAG operations, refer to the IEEE 1149.1
specification at http://standards.ieee.org.

6.2 Board Descriptor Files

In most cases you do not need to concern yourself with the JTAG board file.
However, when performing multi-core debugging, or when debugging a target
that has other devices besides the processor on the scan chain, your

Wind River ICE SX requires a board descriptor file to correctly set up the JTAG
scan chain for your target.

The board file provides a description of each of the devices that are included in the
scan chain, and provides information about each device.

All Wind River target boards are shipped with a board descriptor file that works

for that target board. If you are using a Wind River target board, you can specify

the default board descriptor file for that target in the New Connection Wizard in
Wind River Workbench, as described in the Wind River ICE SX Hardware Reference:
Establishing Communications.

NOTE: If you choose to modify a board descriptor file that was shipped with
Wind River Workbench, save your modified file with a different name to prevent
overwriting the default file.

Board descriptor files are written in extensible Markup Language (XML).
However, it is easiest to create or modify board files using Workbench. The
software allows you to create and catalog scan chain devices such as processors,
complex programmable logic devices (CPLDs), field-programmable gate arrays
(FPGAs), and application-specific integrated circuits (ASICs), and from that
catalog create a board file that properly describes the scan chain on your target.

88

6 Using Board Descriptor Files
6.3 Creating a New Board Descriptor File

A CAUTION: Your board file must list the devices included on your scan chain in the
same order as they are physically laid out on the target. If the board file and the
physical scan chain do not match, the board file for your target will not work.

6.3 Creating a New Board Descriptor File

Workbench uses JTAG Editor to create and modify board files. To use the JTAG
Editor view, you must first have an active project running. For information on
creating projects, see the Wind River Workbench User’s Guide.

To create a new board file:
1. Open your project in Workbench.
2. Select File > New > JTAG Board Layout.
The Create Board File dialog appears, as shown in Figure 6-1.

Figure 6-1 Create Board File Dialog

Create Board File
The folder is empty,

Enter or select the parent folder:

1= Test_OCD_Project {Wwind River Standalone (Mo Operating System) Pla

S b

File name: | debugl.layout

Cancel

89

Figure 6-2

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Wind River Workbench automatically populates the Parent Folder field with
your active project. In the File Name field, type a name for your board file. This
creates a .layout file, which JTAG Editor will use to create a .brd file in the next
step.

The example shown in Figure 6-1 creates a file called debugl.layout for the
project debugl.

Click Finish.
This opens the JTAG Editor view, as shown in Figure 6-2.

NOTE: JTAG Editor edits a .layout file, which is a graphic representation of the
board layout. A .brd file cannot be created until you have created a JTAG
layout, such as the one shown in Figure 6-4.

JTAG Editor

AFMPCaZED: ﬁ;._!.," debugl . layout 23 =

| [select

T3 Marquee

#—a Conneckion

g’ Scan Chain

Single Cars
Dual Care
3 Core

4 Core

= Cuskom

{45 TDI
(0 TO
[cru

[] asiciFPaa
[:I Peripheral

90

6 Using Board Descriptor Files
6.3 Creating a New Board Descriptor File

Using the Predefined Layouts in JTAG Editor

JTAG Editor includes predefined graphic layouts for one, two, three, and four
cores, which are displayed in the Editor toolbar to the left of the editing field,
as shown in Figure 6-3.

Figure 6-3 JTAG Editor Toolbar

| [:S Select

L.i Marguee

s Conneckion
g’ Scan Chain Lo

Single Core
Dual Core
3 Core

4 Care

S Cuskom >

(4 TDI
(%) TDO
[]cPu

[] asiciFrza
m Peripheral

In the rare case where you need to debug more than four cores at the same
time, the JTAG Editor also includes a Custom option. See Using the Custom
Option in the [TAG Editor View, p.95, for more information.

4. In the JTAG toolbar, click Select.
5. Under Scan Chain, pick the number of cores you need to debug.

For example, if the debug1 project has two cores, click on Dual Core under the
Scan Chain heading and drag it into the editing field, as shown in Figure 6-4.

91

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

NOTE: The core icon must be clicked and dragged into the editing field. Just
clicking on it will not do anything.

Figure 6-4 Dual Core Layout

AEMPCEZED:

| [Ig Select

7 Marquee

s Conneckion

‘ Scan Chain

Single Care
Dual Core
3 Core

4 Core

-‘ Cuskom

{%) TOI
{3 0O
[cru

[] asiciFPaa
u Peripheral

Kl

i
1

CPrU
Undefined

101

1
CPrU
Undefined

[+ | O

ol

NOTE: You can only drag one predefined layout into the editing field at a time.
If you drag in a second layout, it will overlay the first, causing confusion.

The editing field now shows a graphic representation of the scan chain. Notice
that the two cores are labelled Undefined. They have no properties until you

assign them in the next step.

The Device Setup dialog appears, as shown in Figure 6-5.

92

Double-click on the first core.

Figure 6-5 Device Setup

6 Using Board Descriptor Files

6.3 Creating a New Board Descriptor File

Device Setup

! MPCESx
MIPS

Hame | Description | Designator [
MPC740 Motorola Power PC 740 Processor DES_7x¥_00
MPCTFS0 Motorola Power PC 750 Processar DES_7¥¥_01
PPC7S0CE IEM Power PC 730CK Processor DES_F¥e_0z2
PPC7S0CKE IEM Power PC 7S0CKE Processor DES_7i#k_03

P i

PPC7E0GE IEM Power PC 750GK Processor DES_7«¥_05
MPCTES Motorola Power PC 755 Processor DES_7x¥_06

Ok I Cancel |

Use the dialog to select your processor type. The example in Figure 6-5 shows
a PPC750FX processor.

7. Click OK.

You are returned to the Device Debug Perspective. The first core is now
defined as a PPC750FX, and the Properties view is displayed.

93

Figure 6-6

Figure 6-7

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Defining the Core

‘mbedded Debug - JTAG Board Editor - Wind River Workbench 2.2 : I [=]
File Edt Wiew Novigate Search Project Run Target Window Help
If-Halm|3-0- - |28 | &0 -t 5 | BREmbedded pe...
<200 | o g 8 o o8 | o6 o ip ([1oow = D applcation ...
T Project Navigatar 52 = O|[Zxppcrsor: 0 || #¥Debug 52 Lt
v [l Selest W 'y H%|3 2R -
&) | ==Y \ o= ‘ £, Marques 5] PPnUsan-WRthe_PPUsan [Attach to Care(s) on Tz
- Connection =9 PPCrSOF:
cru =48] System Context (Stopped)
=l Sean Chain & PPC7SOFR Undefined =" OxFFFO0100
- H] Makeflle
< Il
P Breakpoints &3 R =]
[ssiciFrea
[Peripheral
B 1arget Ma... £ Kernel ob.u‘ i
-
Bloelc¥ oz
ulflocalhost) — % i
WRErche_PPCTSOFX [connected] || Tsks | Froblems | ElProperties &2 Bu\IdC.H|Ermr Lr.u;|CF Optmns| 2 O (%52 Registers 52 =5
%l PPC7S0FX [stopped] 5l b S T
Propert | value + GPR
ASF Flle . ;IE
Description IEM Power P 750K Pracessor || =
Designator DES_7X_04 o
TR Length S
Memary Map DEFALLT : ﬁ{é:mﬁ
Hams PPC7SOF
Register File
Target PPC7SOFR
Type MICROPROCESSOR
| | ol | i

You can use the Properties view to finish defining the first core.

Properties View

Tasks | Problems | B Properties 2 Build ... | Error Log | CF Options | e ot |
[= 3 >
Properk I walue
ASF File
Crescripkion IEM Foweer PIZ FS0OFX Processar
Cresignakor DES_Fxx_04
IR Length S
MMermory Map DEFSLLT
Mame FPPZ7FSOFR
Feqgister File
Targek PPCZ7S0OFS
Twpe MICROPROCESSOR.
4| | |

94

8.

6 Using Board Descriptor Files
6.3 Creating a New Board Descriptor File

Click on any property to modify it.

Clicking on the Register File property will open a browser window; use the
browser to navigate to the register file you want to use.

Your first core is now defined. To define your second core, double-click on it and
repeat Steps 6 through 8.

If both cores use the same processor type, make sure you edit the Designator value
in the Properties view. Workbench does not allow two cores to have the same
unique designator. For example, in Figure 6-7 the first core’s designator is
DES_7XX_04. If your second core is the same processor type as the first, the same
designator will appear in the Properties window. Click on the Designator value to
change it to (for instance) DES_7XX_05.

Once you have defined all your cores, you can create your board file.

9.

10.

11.

Right-click on the editing area. In the dialog that appears, choose Export Board
File.

A browser window appears. Choose the folder you want to save your board
file in.

In the File Name field, type the name you wish to assign to your board file.
In the example, the board file name is debugl.brd.
Click Save.

Using the Custom Option in the JTAG Editor View

In the rare case where you need to debug more than four cores at the same time,
JTAG Editor uses a Custom option to create a new board file piece by piece.

1.
2.

In the JTAG toolbar (Figure 6-3), click Custom.
Construct your layout using the elements under the Custom heading.

The elements available are an input node (TDI) and a termination node (TDO),
as well as CPUs, ASICs, FPGAs, and peripherals. To add an element, click on
its icon and drag it into the editing field.

Figure 6-8 shows a partially completed layout with an input, a terminator,
three CPUs, and a peripheral device.

95

Wind River Workbench for On-Chip Debugging

User Tutorials, 2.6.1

Figure 6-8 Partial Custom Layout

@

96

Input

0
¥
CPU
Undefined

an
1

cPU
= Undefined
Output g ¥
CPU
Undefined

KA

Undefined

Once you have your terminating nodes and devices laid out, you need to
connect them.

In the JTAG toolbar, click Connections.

When you move the cursor back into the editing field, it now looks like a
power cord.

Click on the input node.
Move the cursor to your first processor and click again.
A connection line joins the input node and the processor.

Click on the first processor, move the cursor to the second processor, and click
on it.

A connection line joins the two processors.

Continue this process until you complete the circuit by clicking on the
terminator node.

6 Using Board Descriptor Files
6.3 Creating a New Board Descriptor File

Figure 6-9 Completed Custom Layout

I

0 1_
|
]
Undefined T_,—l 'h'
¥ . CPU
Undefired
1‘“
cPU
Undefined
j

OTHER
Undefined

8. When you have connected all devices and nodes, click Connections again. The
cursor returns to normal.

Your custom board is now laid out. Define its properties and generate your .brd
file by following Steps 6-11 in Using the Predefined Layouts in [TAG Editor, p.91.

Editing Your Board Layout

To remove a device, node, or connection from your layout, use the Select button or
the Marquee button in the JTAG toolbar.

To use the Select button, click Select in the toolbar. Then click on any device, node,
or connection to highlight it and press Delete.

To use the Marquee button, click Marquee in the toolbar. You will see that the
cursor now appears as a crosshair in the editing field. Hold the mouse button
down and drag the cursor to create a box around the device you wish to highlight,
then press Delete.

97

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

NOTE: The Marquee button can only highlight devices, not nodes or connections.

You can also edit your layout using the Outline view in Workbench. In the
Workbench toolbar, click on Window. Select Show View > Outline.

The Outline view appears as shown in Figure 6-10.

Figure 6-10 Outline View

5= outline £2 Flash F... | % |

= m Undefined
TDI

The Outline view displays the elements of your layout in the order they were
added. Click on any element to highlight it and press Delete.

Using the Outline view in this way is handy if you have accidentally overlaid one
layout on top of another, or if you want to back up and start again. Use the list in
the Outline window to delete any or all of the contents of the JTAG editing field.

6.4 XML Board Files

Board descriptor files are created in extensible Markup Language (XML). You can
view the XML version of your board file by opening your .brd file in a text editor,
or by selecting File > Open in Workbench and navigating to the .brd file in the

98

6 Using Board Descriptor Files
6.4 XML Board Files

browser window that appears. The XML text will appear in the Workbench Editor.
An example board descriptor file is shown below.

Figure 6-11 Board File XML version

AR PPCTSORA: | P& 1T AG Board Editar W [}

<DEVICE_TAELE>
<TABLE_MODE»3LOW</TABLE_ MODE>
<TABLE_CLOCE>16Mhz</TABLE CLOCE:>
«<TABLE_MULTI>ENABLE</TABLE_MULTI>
<TABLE_TIED RESET>OFF</TABLE_TIED REZET>
<DEVICE>
<NAME>PPC750FE</NAME>
<DESCRIPTION>IEM Fower PC 750FX Processor</DESCRIPTICHN:
<TYPE>MICROPROCESIOR</ TYFE>
<TARGET>PPC7S50FE</ TARGET>
<SELREG FILE></SELREG_FILE>
<DE3IGNATOR>DES_7XX 04</DEIIGNATOR>
<IR_LEN>8</IR_LEN>
<ASF_FILE»</ASF_FILE>
<REG_FILES>
«</REG_FILES:>
<MEMORY MAP>
<MEMORY MODE>DEFAULT</MEMORY MODE:
</MEMORY MAP>
</DEVICE>
<DEVICE:>
<HNAME>FPC750FE</NAHME>
<DESCRIFTION>IBM Fower FC 750FX Processor</DESCRIPTICN:
<TYPE>MICROPROCESSOR</ TYPE>
<TARGET>PPCT7E50FE</ TARGET>
<3ELREG_FILE></SELREG_FILE>
<DESIGMATOR>DES_7XX 05</DESIGNATOR>
«<IR_LEN»8</IF_LEN»>
<A3F_FILE»</L3F_FILE>
<REG_FILES>
</REG_FILES:>
<MEMORY MAP>
<MEMORY_MODE>DEFAULT</MEMORY_ MODE:
</ MEMORY MAP>
</ DEVICE>
</DEVICE TAELE>

4 o

This is the debugl.brd board file created in Using the Predefined Layouts in JTAG
Editor, p.91. The first block of code contains comments that describe what the target
reference design is set for; the next blocks of code define the devices included in
the file.

For information on board file fields, see 6.4.1 XML Board File Fields, p.100.

|»

NOTE: If you choose to modify a board descriptor file shipped with your system,
it is best to save your modified file with a different name to prevent overwriting
the default file.

99

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

6.4.1 XML Board File Fields

The board descriptor file contains comments, <DEVICE_TABLE >fields, and one
or more <DEVICE> field-sets. A <DEVICE_TABLE> specifies common and
rudimentary scan-chain (signal) operational functions and provides a list of
<DEVICE> descriptions for each device sharing the JTAG interface.

<DEVICE_TABLE> Fields

<TABLE_MODE>

This field designates the scan-chain characteristics applicable to the devices on the
chain. It can be set to FAST or SLOW. This also relates to the optimization
implementation on the emulator. When in doubt, set it to SLOW.

<TABLE_CLOCK>

This field specifies the JTAG strobe rate, in MHz, for the information signals Test
Data In (TDI) and Test Data Out (TDO). This is analogous to the emulator
configuration option CF CLK clock_rate. They are not always automatically
synchronized, so check your emulator to make sure you have the CF CLK option
set to the same clock rate specified in the board file. The fastest JTAG clock rate is
16 MHz.

<TABLE_MULTI>

Set this field to ENABLE if you are debugging multiple targets on the same JTAG
interface. Otherwise set it to DISABLE.

<TABLE_TIED_RESET>

Set this field to ON only if your target board’s RESET and TRST signals on the JTAG
interface are physically connected (tied together.)
<DEVICE> Fields

<NAME>

A reference name for the target device.

<DESCRIPTION>

A reference description of the target device.

100

6 Using Board Descriptor Files
6.5 Manually Creating XML Board Files

<TYPE>

The valid types are MICROPROCESSOR, CPLD, FPGA, INTERFACE, and
OTHER.

<TARGET>

The CPU type. The run-time processes on Wind River emulators require this
information in order to match the exact JTAG scan chain and JTAG-specific
characteristics.

<DESIGNATOR>

A mandatory field that Workbench uses to distinguish between devices. Typically
this is set to U0, U1, U2....

Make sure you use a unique <DESIGNATOR> tag for each target device.
Workbench does not allow two devices to use the same designator.

<IR_LENGTH>

Use this field to specify the length, in bits, of the target device’s JTAG Instruction
Register. To find this information, consult the manufacturer’s specification for the
target device.

6.5 Manually Creating XML Board Files

If you need a custom board file, it is usually easiest to take one of the generic board
files from installDir/workbench-version/dfw/build/host/boardfiles and modify it to
suit your needs. Remember to save it with a different name if you want to preserve the
original file.

To create a board file that properly describes the scan chain on your target:
1. Open a text editor.

2. Begin the board file with the tag <DEVICE_TABLE>.

3. Lay out the header block.

The first block of XML defines mode, clock speed, and status of multi-core
debugging. An example would look like:

101

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

The
this

<TABLE_MODE>SLOW</TABLE_MODE>
<TABLE_CLOCK>16Mhz</TABLE_CLOCK>
<TABLE_MULTI>ENABLE</TABLE_MULTI>
<TABLE_TIED RESET>ON</TABLE_TIED_RESET>

This example is set for slow mode, with a clock speed of 16 MHz; it is enabled
for multi-core debugging, and it is set to issue RST reset commands (which
affect all cores) rather than IN reset commands (which affect only one core.)

next blocks of XML define the devices included in the file. Workbench needs
information so that it can position the devices in the correct location in the

25-bit data stream. The physical location of each device can also be determined by
its position in the board descriptor file.

4.

102

Lay out the block for the first device.

A device block begins with the tag <DEVICE>. An example would look like:

<DEVICE>
<NAME>MPC8260</NAME>
<DESCRIPTION>Motorola Power PC 8260 Processor</DESCRIPTION>
<TYPE>MICROPROCESSOR</TYPE>
<TARGET>MPC8260</TARGET>
<DESIGNATOR>UO</DESIGNATOR>
<IR_LEN>8</IR_LEN>

</DEVICE>

This example describes a PowerPC 8260 target.

Repeat Step 4 for every device on the JTAG scan chain.

Your board file must list the devices included on your scan chain in the same
order as they are physically laid out on the target. If the board file and the
physical scan chain do not match, the board file for your target will not work.

When you are finished, your board file should look something like this:
<DEVICE_TABLE>
<TABLE_MODE>SLOW</TABLE_MODE>
<TABLE_CLOCK>16Mhz</TABLE_CLOCK>

6 Using Board Descriptor Files
6.5 Manually Creating XML Board Files

<TABLE_MULTI>ENABLE</TABLE_MULTI>

<TABLE_TIED_RESET>OFF</TABLE_TIED_RESET>

<DEVICE>
<NAME>MPC8260</NAME>
<DESCRIPTION>Motorola Power PC 8260 Processor</DESCRIPTION>
<TYPE>MICROPROCESSOR</TYPE>
<TARGET>MPC8260</TARGET>
<DESIGNATOR>UO</DESIGNATOR>
<IR_LEN>8</IR_LEN>

</DEVICE>

<DEVICE>
<NAME>PPC750FX</NAME>
<DESCRIPTION>IBM Power PC 750FX Processor</DESCRIPTION>
<TYPE>MICROPROCESSOR</TYPE>
<TARGET>PPC750FX</TARGET>
<DESIGNATOR>U1</DESIGNATOR>
<IR_LEN>8</IR_LEN>

</DEVICE>

</DEVICE_TABLE>

This example describes two targets, but you can add as many <DEVICE>
blocks as you need to describe your JTAG scan chain.

When you are finished, save the file with the extension .brd.

103

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

104

Debugging Multi-Core Targets

7.1 Introduction 105

7.2 JTAG Server 106

7.3 Multi-Core Debugging 107

7.4 Initializing the Targets 119

7.5 Creating a Project 125

7.6 Configuring Options for Multi-Core Debugging 131
7.7 Commands for Multi-Core Debugging 134

7.1 Introduction

NOTE: This chapter applies only to the Wind River ICE SX. Multi-core debugging
is not supported for the Wind River Probe.

The Wind River ICE SX emulator allows you to control and manipulate multiple
devices on a single scan chain ring. The devices included on the JTAG scan chain
can be CPUs, EPLDs, CPLDs, FPGAs, and ASICs, as well as various other devices.
Wind River ICE SX manages all of the devices on a scan chain through the use of
JTAG Server, which resides on the ICE unit and works via the OCD link on the
target.

105

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Using the Wind River Workbench software and a Wind River ICE SX, users can
have multiple debug sessions active at the same time, allowing developers to
debug multiple devices at once.

JTAG Server is the software layer that allows ICE to handle multi-core debugging.
JTAG Server is set up by a board descriptor file, which identifies the devices that
are included in the scan chain on your target. Board descriptor files are highly
specific to your target since they clearly describe the scan chain, so if you do not
have a board file already available for your specific target, you must write one. For
information on creating board files for your target, see 6. Using Board Descriptor
Files.

7.2 JTAG Server

JTAG Server is a multi-core debugging solution that uses the On-Chip Debugging
(OCD) link on your target reference design to connect to one or more CPUs, with
or without other devices in the scan chain. JTAG Server is what allows ICE to
connect to multiple devices on a single JTAG scan chain at once.

Wind River ICE SX is networked, and JTAG Server resides on the ICE unit. This
means that in addition to being able to have multiple debug sessions with the
target from a single host computer, you can also have multiple debug sessions
running on multiple host computers, all accessing ICE over the network.

JTAG Server is a software layer that resides between the low-level JTAG drivers
and the high-level user interfaces on Wind River ICE SX. This layer provides all of
the control that is needed to position data correctly on the scan chain (this is a
requirement for compliance with the IEEE 1149.1 specification for multiple devices
on a single scan chain ring).

There are hardware optimizations included in JTAG Server that allow the
utilization of the entire available JTAG bandwidth. This is a key element of high
performance multi-core debugging; the peak clock speed is not as important as the
aggregate data transfer, which is maximized in JTAG Server.

JTAG Server requires a board descriptor file that clearly describes your target scan
chain layout. This file is what tells JTAG Server how to correctly position devices
on the scan chain. Information on board descriptor files, including information
about creating your own is available in 6. Using Board Descriptor Files.

106

7 Debugging Multi-Core Targets
7.3 Multi-Core Debugging

7.3 Multi-Core Debugging

This section describes how to work with multiple devices on your scan chain at
once. Before beginning, please make sure that you have obtained or created a
board descriptor file for your target that accurately reflects your target’s scan
chain.

7.3.1 Establishing Communications with Multiple Devices

The following steps describe how to connect to multiple devices at once using the
Wind River Workbench software.

1. First, open Workbench according to the method for your host computer.

Linux/Solaris Hosts
From your installation directory, issue the command
$./startWorkbench.sh
Windows Hosts
Select Start > All Programs > Wind River > Wind River Workbench version.

On Windows hosts, Workbench prompts you to specify a workspace location.
Linux/Solaris hosts use the default location installDir/workspace.

When Workbench opens, the Quick Target Launch dialog appears.

107

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Wind River On Chip Debugging
@ Chioose How You Wank to Start
Defined Launches
4F| Create anewlaunch configuration
=
Edit an existing launch configuration
Connect, Attach, Reset and Download
Sync with target and download symbols
(#) [Joo not show this dialog on startup Close

2. Select Create a new launch configuration.

The Connection Type dialog appears.

108

7 Debugging Multi-Core Targets
7.3 Multi-Core Debugging

MNew Connection

Connection Type

Please select connection kype,

Wwind River OCD Probe Connection

‘Wind River YxWorks 6.x Core Dump Connection
‘Wind River WxWorks 6,x Simulator Connection
Wind River Yaworks 6.x Target Server Connection

Cancel

3. Choose Wind River OCD ICE Connection from the list of options and click
Next.

109

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

The Communication Settings dialog appears.

% New Connection

Wind River ICE Communication Settings

Please select the communication settings For the emulator

(%) Configure communication settings manually

() Configure communication settings through a serial port

Help ” < Back ” Mext = Cancel

Configuring Communication Settings Manually

NOTE: To use this option you will need to know either the network name of the
emulator or its IP address. For information on assigning these values, see the
Wind River ICE SX for Wind River Workbench Hardware Reference.

4. Select Configure communication settings manually and click Next.
The Emulator Settings dialog appears.

5. In the Designators area, select Board File and click Browse to navigate to the
board file that describes your multi-core setup. For information on board files,
see 6. Using Board Descriptor Files.

The field below the Board File field will populate with a summary description
of your board.

110

7 Debugging Multi-Core Targets
7.3 Multi-Core Debugging

6. In the Communications area, fill in the IP Address field with the IP address
you have assigned to your ICE unit.

This example shows the emulator settings dialog box with the board file for a
Wind River SBC PowerQUICC II 8270 selected.

% New Connection

wind River ICE Settings

Configure the designatar settings for the emulator,

Designatars
O Processar: | | ct
(%) Board File: | e SECIWindRiver SECPowerQOUICC]
¥ Designatar Processaor Processor Plugin

U1 MPCEZF0 PowerPC 520 Family Processor Plugi
|< | 3
Zormmunications

v

Ernulator Hostname [IP Address:

’ Help ” < Back “ Mexk = l Finish

7. When you have entered the correct processor or board file and IP address, click
Next.

The Target Operating System Settings dialog appears.

111

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

:_; New Connection

Target Operating System Settings

Select the target operating syskem which is currently booted on the
configured target,

fnvailable CPILs) on target board:

Target operating system settings

Booted Target &5 on selected CPL: | Mone w

Description:
Prowiding plugin:

kernel image: EBrowse,,,

Kernel image is optional for Mone

Target O35 plugin pass-through options: w

[Help]l < Back l[Mext =]

8. In the Booted Target OS on selected CPU field, select the operating system
that is running on your target processor. The default is None.

9. Next to the Kernel Image field, click Browse to navigate to the kernel image
you wish to specify. If you selected None in the previous step, you do not need
to specify a kernel image.

10. If you are using a Linux plug-in specify the pass-through options in the Target
OS Pass-Through Options field. If you are not using a Linux plug-in, skip this
step.

Options are passed as pairs in the format name=value. Separate options with a
comma. The following options are available:

» notasklist=1: Never fetch process list.

* noautomodules=1: Do not plant internal breakpoints to do automatic
kernel module load /unload detection. When this option is specified, you
must manually refresh to see an updated module list.

112

11.

7 Debugging Multi-Core Targets
7.3 Multi-Core Debugging

= noloadcheck=1: Do not issue gophers until the hardware breakpoint is
used to detect kernel load triggers. This option is for “sensitive” boards
that don’t accept access until the kernel loads and sets up memory
mapping.

* loaddetectloc=symbol or address: Set the hardware breakpoint used to
detect kernel load at symbol (for example, loaddetectloc=start_kernel) or
address (for example, loaddetectloc=0x1000). If you do not specify a
symbol or address, Workbench uses a default. For most architectures the
default is start_kernel; for PowerPC targets, the default is 0x0.

Click Next.
The Memory Options dialog appears.

%) New Connection

Memory Options

Specify the memary options for the target cpu.

Awailable CPUCS) on target board:

Memory mapping

Offset Size Attributes

Undefined memoty areas accessible

@ [< Back “ Mext =]

Use the Memory Options dialog to specify how memory on the target is
partitioned, and what the attributes of the particular memory regions are.

113

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

NOTE: The Memory Options dialog is only necessary for Linux or other
non-VxWorks target operating systems.

To specify an area of memory, click Add.

The Set Memory Map dialog appears.

- M
%) Memory mapping

Please specify the offset, size and attributes Far the memory mapping.

Offset: 900000000
Size! 0300000000
Attributes
Inwalid
[read

Access size (hit):

Default access size (bit):
[]werite
Arcess size (hit):

Default access size (bit):

[Ireadfrite
Arcess size (hit):

Default access size (bit):

[0K H Cancel]

Use the Set Memory Map dialog to specify which memory areas are read-only,
read-write, or write-only, and to specify the access width Workbench should

use to read the data from those regions.

114

7 Debugging Multi-Core Targets
7.3 Multi-Core Debugging

12. Click Next.

The Object Path Mappings dialog appears.

', New Connection

Object Path Mappings
specify how files in the target file syskem are visible in the host file system.
Awailable CPU{s) on target board:

Load module symbols to debug server automatically if possible

Pathnarme prefix mappings:

+ | Target Path Host Path Add...
“any = <leave path unchanged:>

< > Export. ..
Basenare mappings:
[** unstripped],[*;#] |
[Help] [= Back][Mext =] Finish

13.

14.

Use the Object Path Mappings dialog to specify how files in the target file
system are visible in the host file system.

To add a host or target path, click Add and type the path in the dialog that
appears.

Click Next.
The Target State Refresh dialog appears.

115

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

New Connection

Target State Refresh

Configure the coreis) target states refresh settings,

Available CPUCs) on target board:

Initial barget stake query sektings
[uery target ohject lists and target object states on connect

] Guuery target object statefs) on stopped events

] Guery target object statefs) on running events (receiving object only)

Target state refresh settings
(*) Refresh the target skate manually only
() Auto-refresh the target state periodically

[Listen ko execution context ife-cycle events {contesxt-start, context-gxit)

It is mokt known if life-cycle events for execution contexts are provided.

[Help H < Back ” Mext =]

Use the Target State Refresh dialog to configure the target state query and
target state refresh settings on your target processor.

15. Click Next.
The Default Breakpoints dialog appears.

116

7 Debugging Multi-Core Targets
7.3 Multi-Core Debugging

',. New Connection

Default Breakpoint Options

Select the default breakpoint options For newly created breakpoints,

Available CPUS) on target board:

Default Breakpoint Stop Scope

() stop al
(%) Stop triggering thread

@ [< Back “ Mext = l

Use this dialog to set default breakpoint options for newly created
breakpoints.

16. Click Next.

The Connection Summary dialog appears.

117

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

% Mew Connection

Connection Summary

Please review the connection information

Connection name: | YWRICE_WindRiver _SECPowerQUICCII_8270 Shared: |:|
Summary
Property Walue 5
ADDR 295.17.0.29
BFTAME C: fworkbenchz . 4 /workbench-2 . 4/dfwf0121/hos
EFMAMETIMESTAMP 1127225021000
+| DESIGNATCORMAP
DEVICE Wind River ICE
MAME_MAPPING [*:*. unstripped],[*;*]
FATH_MAPPING L
STYLE ETHERMET
w
< >

Irmediately conmect ta target if possible

[Help H = Back l [Finish][Cancel

17.

18.

118

Verify that the displayed values are correct.

If you want to connect to your target now, select Inmediately connect to

target if possible. If you do not wish to connect to your target now, leave the
Immediately connect to target if possible box unchecked. You can connect at
any time by clicking the Connect button in the Launch Configuration dialog.

If you want to share your target connection, select Shared.
This option serves a dual purpose:

When you define a target connection configuration, this connection is
normally only visible for your user-id. If you define it as Shared, other users
can also see the configuration in your registry, provided that they connect to
your registry by adding it as a remote registry on their computer.

Normally, when you disconnect a target connection, the target server (and
simulator) are killed because they are no longer needed. In a connection that is
flagged as Shared, however, they are left running so that other users can

7 Debugging Multi-Core Targets
7.4 Initializing the Targets

connect to them. In other words, you can flag a connection as shared if you
want to keep the target server (and simulator) running after you disconnect or
exit Workbench.

19. Click Finish.
Workbench creates the connection name in the Target Manager view.

If you decide you want to change your emulator settings, you can return to the
Emulator Settings dialog box by right-clicking on the connection name in the
Target Manager and clicking Properties.

Your Wind River ICE SX is now connected to the host computer and your
target.

7.4 Initializing the Targets

After Workbench connects to the Wind River ICE SX, the Reset and Download
view opens.

%) WRICE_WindRiver_SBCPowerQUICCII_B270 - U1

Modify attributes and launch.

Mame: | i\NRICE_WlndR\ver_SBCinerQLIICCH_EZ?D -u1

m@ Reset | ¥ Download | #® Instruction Pointer | # Run Options | #% Projects to Build T‘Ey Source | =] Comman

Connection

[Create a Mew Target Connection]

Connection ko use; |WRICE?Win:IRweerCPowerQUICCIIjZ?O ({localhost) ~ ‘ ["Hide unconnected

WRICE WindRiver SECPowerQUICCII 8270 - WRICE WindRiver_SECPowerQUICCII G270 is connected.

Core: |U1 v|

20. Choose how you want to proceed:

119

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

21.

Mame:;

a. If you want to create a project in which to run and debug your code, skip
the rest of this section and proceed to 7.5 Creating a Project, p.125.

b. If you want to run and debug your code without creating a project,
continue with this section.

In the Reset and Download view, select the Reset tab.

WRICE_‘WindRiver_SECPowerQUICCTI_8270 - UL

Main m@ Download | 4 Instruction Painter | #® Run Cptions | *% Projects to Build | B, Source |] Common

Ut

[CIFlay register file

[“]Resat IM - Reset/setup regs v
(%) Specified care
O all cares
Cores tied on reset:
22. If you want to configure the target register values with a register file, select

23.

24.

25.

120

Play Register File and browse for the file you want to use.

Register files for many Wind River-supported targets are located in
installDir/workbench-2.x/dfw/build/host/registers.

If you do not want to reconfigure your target registers, leave this box
unchecked.

Choose the type of reset initialization you want to perform.

You can use the IN or INN initialization commands. For a full discussion of
these two commands, see the Wind River Workbench for On-Chip Debugging
Command Reference.

You can also choose not to perform an initialization by clearing the Reset box.

CAUTION: If you are manually changing registers on your target, be aware that
issuing an IN or INN initialization command will overwrite your changes.

By default, the reset and download affects only the first core. If you want the
reset and download to affect all connected cores, select the All Cores radio
button and click Apply.

Select the Download tab.

7 Debugging Multi-Core Targets
7.4 Initializing the Targets

Mame: | WRICE_WindRiver SBCPowerQIJICCIT G270 - U1

4 Main | ¥ Reset m@ Instruction Painter | #® Run Options | % Projects ko Build T’V Source | =] Comman

File Dowrload Werify Load Symbols | Offset
26. Click Add Files.
In the browser window that appears, navigate to the executable file you want
to run.
The file you select appears in the Filename field. Repeat this process as many
times as necessary.
The file at the top of the list will download to the target first, followed by the
others from the top down. You can edit the order of the list by clicking on any
filename to highlight it and using the Up, Down, and Delete buttons.
27. Use the other fields to configure the download.
Download
The Download field is checked by default. If you clear it, the file will remain
on the list but will not download data to the target. This is useful if, for
example, you only want to download symbol information and not data.
Verify

The Verify field configures the extent to which the file you are downloading
will be compared to a file that may already be on the target. There are three
options: Full, Compare, and None.

When this field is set to Full, a write/read verify will occur for every
download. Workbench will write to the target and then verify that the write to
the target and the read from the target are identical. This is slower than a
normal download, but it is a useful security option.

When the field is set to Compare, Workbench will verify that the image has
been downloaded correctly (that is, that the image on the host is the same as
the image on the target.) This is useful for programming flash.

121

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

NOTE: You should only set the Verify field to Compare if an image already
exists on the target. If you set the field to Compare when there is no image on
the target, Workbench will look for a file to compare and not find one, and the
reset and download operation will fail.

When the field is set to None, Workbench will perform no verification.

The Verify field is set to None by default.

Load Symbol

The Load Symbol field, which is checked by default, determines whether the
file’s symbol information is downloaded to the target.

Offset

In the Offset field, you can enter a value in hex to set a memory offset bias for
your application file. If you do not enter a value, Workbench uses the default
value 0x00000000.

28. Select the Instruction Pointer tab.
Mame: | WRICE_WindRiver _SECPowerQUICCII_S270 - U1
4 Main | ¥ Reset | #® Download FERGETTENEETIEM @ Run Options | *% Projects to Build Tf% Source | =] Comman

Ui

Set instruction pointer after download

() Use specified start addrass T

29.

122

Set the starting point for your file.

By default, the instruction pointer is set to use the starting address from the
download file.

You can set the instruction pointer to start the file from the first occurrence of
a particular symbol (for example, main) or you can just specify a starting
address by entering the address value in hex in the Use Specified Start
Address field.

30

7 Debugging Multi-Core Targets
7.4 Initializing the Targets

If you do not want to set a starting point, clear the Set Instruction Pointer
After Download box.

. Select the Run Options tab.

Mame: | WRICE_WindRiver SBCPowerQIJICCIT G270 - U1

#® Main | ¥ Reset | # Download #® Instruction Pointer m"’ Prajects to Build | B Source |] Camman

31.

32.

Ut

@ Do ok run
() Run to address

()Run to end of program

[C]Play post download script

Determine how you want your file to run.

By default, the Reset and Download view is set not to run the file after
downloading. If you want the file to run, you have several options to
determine where it should break:

* You can set it to break at the first occurrence of a symbol (for example,
main) by selecting Run to Symbol and entering the symbol in that field.

* Youcan set it to break at the end of your program by selecting Run to end
of program.

* You can set it to break at a given memory address by selecting the Run to
Address box and entering the address in hex in that field.

* Youcanset it to break at an _exit routine by selecting the Break at Exit box.

If you need to perform a post-initialization, you can define it here. Select the
Play post download script box and click Browse. In the browser window that
appears, navigate to your initialization file.

Select the Source tab.

123

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Mame:;

‘WRICE _WindRiver_SBCPowerQUICCII_S270 - U1

#® Main | ¥ Reset | ¥ Download | #® Instruction Pointer | ¥ Run Options % Projects to Build m:. Common
Source Lookup Path:

= Default
33. Use the Source tab to configure the source path of your file.

34.

Mame:;

Workbench uses the input path of the local file system by default. Unless you
need to use a different path, you do not need to do anything in the Source tab.

If you need to use a different path, click Add... and use the Add Source dialog
to configure the appropriate search path for your project.

Select the Common tab.

WRICE _WindRiver_SECPowerQUICCII_8270 - U1

Main | # Resst| # Download | #® Instruction Pointer | #® Run Cptions | ** Projects ta Build | 15 Saurce m
Save as
() Local file

() shared File:

Standard Input and Cutput

Allocate Console {necessary For input)

[CIFile:

35.

36.

124

Specify whether your launch configuration is local or shared.

The configuration is local by default. To make it shared, click Shared file: and
browse to the shared directory where you want the configuration to be located.

You have now fully defined your reset and download operation.
Click Debug.

Workbench initializes the target board, then downloads the file, then runs the
file.

7 Debugging Multi-Core Targets
7.5 Creating a Project

The OCD Console view opens to show the progress of the reset and download
operation.

Tasks | Problems | Properties | Build Console | Error Log | Terminal 0 | Trace | OCD Command Shell

Reset and Download
Testing Communications to Hardware Interface. ... Passed
Driving HRESET tabe High. oo Passed
Driving HRESET ko be Low..... Passed
‘Waiting HRESET Low Acknowledge. Passed
Attempting JTAG communication. ... Passed
Waiting For HReset to be released.. Passed
Testing for target STOP State.......... Passed
Comparing karget CPU with CF setking... Passed
‘Waiting For HRESET High Acknowledge... Passed
Testing ITAG Communication. ..o, Passed
Loading Internal Registers. Passed
Testing ITAG Communication. ..o, Passed
Getting walue of cf mmu option ... Passed
Atternpting ko restore CPU context, oo, Passed
CwindRiveriworkspacelc_demo_sa\PPCE03diab_DEBUG\cdema. elf (5151]
Loading symbals. .. Completed at Default Offset {1 sec)
Specified not to Run
* Reset and Download Completed *
< >

At this point, all of your devices should be in background mode and you are ready
to begin debugging all of the devices.

NOTE: If you cannot get into background mode with any of your devices, first
make sure your board file is correct for your target. Then see the Wind River ICE SX
for Wind River Workbench Hardware Reference for troubleshooting tips.

Proceed to 7.6 Configquring Options for Multi-Core Debugging, p.131.

7.5 Creating a Project

If you do not plan to build or edit your source files within Workbench, skip this
section and proceed to 7.6 Configuring Options for Multi-Core Debugging, p.131.

Click Close in the Reset and Download view.

125

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

This tutorial uses the C Demonstration Program, which is included in your
Workbench installation.

1. In the Workbench toolbar, select File > New > Project.

The New Project wizard appears.

New Project

Select a wizard —

Creates a new O5-agnostic sample project |

Yizards:
| tyvpe filker ket

(= Wiwvorks 5.5 ~
(= Wavarks 6.x
(= WxWrarks 653
(= wind River Linux
[=-[= Examples
179 Mative Sample Project

Standalone Sarmple Project
18 WxWorks 5.5 Downloadable Application Sample Project
1 WxWwarks Downloadable Kernel Madule Sample Project
184 WxWorks Real Time Process Sample Project
5% wind River Linux &pplication Sample Project
1% wind River Linux User-Defined Sample Project

E4]

[1show all wizards.

2. Expand the Examples folder and select Standalone Sample Project.

3. Click Next.

A sample project template appears.

126

7 Debugging Multi-Core Targets
7.5 Creating a Project

New Project Sample

Sample Project Template

Select a sample project termplate,

Available Examples;

Information:

E=, C Demonstration Program

1= C++ Demonstration Program

1= The Ball Demonstration Program
1=+ The Panel Demaonstration Program

C Demonstration Program A

This program deronstrates various C
language Features including structures,
character arrays, linked lists, and
recursion,

You can build and download this program
to wour simulator ar karget board, The
default RAM location For the program is
000014000, To change the default
memory address, edit the simple.lk linker
command File,

Features

The Follmwing Features are demonstrated
Fram main):

® Factorials: The FactorialDemol)
function oenerates a Factorial table

®

I Finish l [Cancel

4. Select C Demonstration Program and click Finish.

Workbench creates the sample project in the default workspace folder and
opens the Application Development perspective.

5. In the Project Navigator view, expand the c_demo_sa project.

127

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

fa]

B & c_demo d R randalo Ef
1y cdemo.elf {MCF-0:00000000-BE-diab_DEEBUG)
e ARM-0x00000000-BE-diab_DEBUG
[ARM-0:00000000-LE-disb_DEEUG
e ARM-0x04000000-BE-diab_DEBUG
e ARM-0:x04000000-LE-diab_DEBIUG
[ARM-0:x03000000-EE-diab_DEBUG
[ARM-0:03000000-LE-disb_DEEUG
[MCF-0x00000000-BE-diab_DEBIG
[MCF-0x20000000-BE-disb_DEELG
[MCF-0:40000000-BE-disb_DEEUG
[MIPS52-4KEc-BE- 1 6hit-diab_DEBLUG
[MIPS3Z2-4KEc-BE-32bit-diab_DEBLG
[MIPS3Z2-4KEC-LE- 16hit-disb_DEEUG
[MIPS52-4KEc-LE-32hit-disb_DEBUG
[MIPS32-4Kx-BE-32hit-diab_DEBUG
[MIPS3Z2-4k-LE-32hit-disb _DEEUG
[MIPS52-BCM-BE-32bit-diab_DEBUG
[MIPS32-BCM-LE-32bit-diab_DEBUIG
[MIPS32-10T-BE-32hit-disb_DEEUG
e MIPSZ2-1DT-LE-32bit-diab_DEBUG
e MIP532-PHI-BE-32bit-diab_DEBLG
[MIPS32-PHI-LE-32bit-diab_DEEUG b

6. To build the sample project for use with PowerPC targets, right-click on the
c_demo_sa top-level folder and select Build Options > Set Active Build Spec.

The Set Active Build Spec and Debug Mode dialog appears.

128

7 Debugging Multi-Core Targets
7.5 Creating a Project

Set Active Build Spec and Debug Mode g|

PPCED3diab-WISS
MIP532-4KEC-BE-16bit-diab
MIPS32-4KEc-LE-16bit-diab
MIPS32-4KEc-BE-32bit-diab
MIPS32-4KEc-LE-32bit-diab
MIP532-4kx-BE-32bit-diab
MIPS32-4Kx-LE-32bit-diab
MIPS32-BCM-BE-32bit-diab
MIPS32-BCM-LE-32bit-diab
MIP532-1DT-BE-32kit-disb
MIPS32-1DT-LE-32bit-diab
MIPS32-PHI-EE-32bit-diab
MIPS32-PHI-LE-32hit-diab
MIP532-PM=-BE-16bit-diab w

Debug mode (use debug mode Flags)

@ [K] [Cancel]

7. Scroll to the top and highlight PPC603diab.

8. Select Debug mode (use debug mode flags) so Workbench will generate
symbolic debug information.

9. Click OK.
10. Right-click on the project name and select Rebuild Project.

Workbench builds the sample project. The results of the project build appear
in the Build Console view.

Error Log | Tasks | Problems | Properties Terminal | Console =0

=] & 4 EBRE T
e e B T B R e e T P e PR T R B e e T
5_DEBUG/date.o" -t "date.c" A
building PPC603diab-WISS_DEBUG/date.o
echo "building PPC&03diab-WISS_DEELIG/math.o";dee -g -Xdebug-dwarf2 -tPRPCE03ESiwindiss -DTOOL_FAMILY=diab -DTOOL=diat
5_DEBUG/math.o" -c "math.c”
building PPC603diab-WISS_DEBUG /math.o
echo "building PPCa03diab-WIs5_DEEUG/addone . o";das -tPPCA03ES: windiss -DTOOL_FAMILY=diab -DTCOOL=diab -DPowerPC -DP
building PPC603diab-WISS_DEBUG/addone.o
echo "building PPCA0Ediab-WI55_DEELUG/cdemo.elf”; did -o "PPCAN3diab-wissS_DEEUG/cdemo.elf” -tPPCA0ZES windiss cdemo-POn
S_DEBUG/cdemo .o PPCA03diab-wISS _DEBUG strutils. o PPC603diab-WIS5_DEBUG/engineer .o PPC603diab-wIS5_DEBIG calendar
ath.o PPCE03diab-WISS_DEEUG addone.a if ["0" ="1"]; then echo "building Run plink utility"; plink PPCE03diab-wWISS_DEEUG)
building PPC6D3diab-WISS_DEBUG/cdemo.elf
make: built targets of C:fWindRiverjworkspace/c_dermo_sa £

< >

129

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

7.5.1 Downloading the Sample Code

To run the sample code, use the following steps:
1. Inthe Target Manager, highlight the target connection name.

2. In the Project Navigator view, right-click on cdemo.elf and select Reset and
Download.

The Reset and Download view appears.

WRICE_WindRiver_SBCPowerQUICCII_B270 - U1

Modify attributes and launch.

Marne: | WRICE _MWindRiver_SECPowerQUICCTT_S270 - U1

m@ Reset | # Download | #® Instruction Pointer | #® Run Cptions *% Projects to Build | B2 Source | E| Comman

Connection

[Create a Mew Target Connection]

Connection to use: |WRICE_WindRiver_SBCPowerQUICCII_SZ?D {locahost) w | [Hide uncornected

() (a0]

WRICE_WindRiver _SBCPowerQUICCII 8270 - WRICE_WindRiver_SBCPowerQUICCII_8270 is connec

Core: |U1 -

@ Debug] [Close

3. Leave all settings at their defaults and click Debug.
The OCD Console view opens.

130

7 Debugging Multi-Core Targets
7.6 Configuring Options for Multi-Core Debugging

Errar Log | Tasks | Problems | Properties | Build Consale | Terminal | Console [ESRsTastae 0 4 =0
Testing ITAG Communication. oo Passed
Attempting to restore CPU context, oo, Passed
CiwindRiveriworkspacsc_demo_salPPCE03diab-W IS5 _DEBLUG cdema. elf (FEEE SRR R . N
Loading symbals. .. Completed at Default OFfset (<1 sec)
Specified not to Run
* Reset and Download Completed *
< >

The OCD Console view shows the progress of the download operation, as
Workbench downloads the sample code to the Wind River Instruction Set
Simulator.

7.6 Configuring Options for Multi-Core Debugging

For multi-core debugging, the Reset and Download options will detect if the
<TABLE_TIED_RESET> tag in the board file is set to ON; if it is, the Reset and
Download options will issue RST commands (which affect all cores) rather than IN
commands (which affect only one core.) You can use the JTAG Editor to set this
option in your XML board file.

In conjunction, there are two configuration options that you may want to change
if you are debugging multiple devices on your target: HRESET and CMDRST. These
must be set correctly for each core you are debugging. For explanations of these
options, see CF HRESET, p.133, and CF CMDRST, p.133.

To configure for multi-core debugging:
1. In the Workbench toolbar, select File > Open > yourBoardFile.

Figure 7-1 shows the example board file debugl.brd. Notice that the
<TABLE_TIED_RESET> tag is set to OFF.

131

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Figure 7-1 debug1.brd

AEPPCTSORR: ‘ B8+ 174G Board Editor !M m|

<DEVICE TAELE> -
<TAELE_MODE>3LOW</TAELE_MODE:
<TABLE_CLOCK»16Mhz</TAELE_CLOCE>
<TABLE_MULTI>ENABLE</TAELE MULTI>
<TABLE_TIED_RESET>OFF</TABLE_TIED_RESET>
<DEVICE>
<HAME>PPCTSOFE</HANE>
<DESCRIPTICN:TEM Power PC 7S0FX Processor</DESCRIPTICN:
<TYPEMICROPROCESZOR</ TYPE>
<TARGET>PPC7S0F Z</ TARGET>
<HELREG_FILE></ZELREG_FILE>
<DEZIGNATOR>DEZ_7XE D4</DESIGNATOR>
<IR_LEN»8</IR_LEN>
<REF_FILE></RSF_FILE»
<REG_FILES>
</REG_FILES>
<MEMORY_MAP>
<MEMORY_MODE>DEF ATLT</MEMORY_MODE:>
</MEMORY_MAP>
</DEVICE>
<DEVICE>
<HAME>PPCTSOFE</HANE>
<DEZCRIPTION>IEM Power PC 7SO0FX Processor</DEZCRIPTICN:
<TYPE>MICROPROCESSORS/ TYPE>
<TARGET>PPC7S0FE</ TARGET>
<SELREG_FILE></SELREG_FILE>
<DESTGNATOR>DES_7XX 05</DESIGNATOR:
<IR_LEN»8</IR_LEN>
<LEF_FILE></RSF_FILE>
<REG_FILES>
</REG_FILES>
<MEMORY_MAP>
<MEMORY_MODE>DEFATULT</MEMORY MODE>
</MEMORY_MAP>
</ DEVICE:
</DEVICE_TABLE>

4 of

Edit your board file to set <TABLE_TIED_RESET> to ON.
Right-click on your board file and select Save.
In the Workbench toolbar, select Window > Show View > CF Options.

AR

Under the Command Name heading in the CF Options view, scroll down to
HRESET.

6. Double-click on the value under the Current Setting heading to bring up a list
of parameters. Set the option to ENABLE or DISABLE, depending on your
application (see CF HRESET, p.133.)

7. Under the Command Name heading in the CF Options view, scroll down to
CMDRST.

132

CF HRESET

CF CMDRST

7 Debugging Multi-Core Targets
7.6 Configuring Options for Multi-Core Debugging

8. Double-click on the value under the Current Setting heading to bring up a list
of parameters. Set the option to ENABLE or DISABLE, depending on your
application (see CF CMDRST, p.133.)

9. Repeat Steps 5 through 8 for each core you are debugging.

If HRESET is set to ENABLE, then every time an IN command is issued the
HRESET line will be pulled. Because the HRESET line is a physical line that is
accessed through a single OCD connector on your target, all of the devices on your
scan chain will be reset when an IN command is issued.

In the example described previously, in which there is a target with two processors
(A and B), consider the case where Processor A is running correctly and you want
to initialize Processor B. If the CF HRESET option is set to ENABLE and you issue
an IN command in the view of Wind River Workbench pertaining to Processor B,
both processors are reset, even though Processor A was already running correctly,
because the HRESET line on your target runs through both processors.

If you set the CF HRESET option to DISABLE, the HRESET line will not be pulled
when an IN command is issued. In the case described above, where Processor A is
running correctly, if the CF HRESET option is disabled and you issue an IN
command on Processor B, the HRESET line will not be pulled, and only Processor
B is reset. Processor A remains running correctly without interruption.

This option controls the HRESET line into the target, and it affects the RST
command. The RST command simply issues an IN command to all devices in your
scan chain simultaneously. If this option is set to ENABLE then the HRESET line is
pulled when an RST command is issued. If you DISABLE this option, then all of
the devices on the scan chain are synchronized, and the HRESET line will not be
pulled. With the RST command, all of the devices are reset anyway, so choosing to
enable or disable the CMDRST depends on the hardware on your target.

Be aware of these two CF options, and make sure you have set them correctly for
your system before you begin debugging. Failure to do so could cause you to
accidentally reset a device that was already running correctly.

133

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

NOTE: Make sure you set the CF options correctly in each instance of Wind River
Workbench that you have running. In the example used above, if you had set the
options correctly for Processor A but had not set them in Processor B, working in
the instance of Wind River Workbench pertaining to Processor B could cause you
to reset a device unintentionally.

7.7 Commands for Multi-Core Debugging

When you are working with multiple devices in your scan chain simultaneously,
any one device can be controlled and manipulated by going to the view of

Wind River Workbench pertaining to that device and working with it as you
would a single core target.

There are a few commands available that allow you to control all of the devices on
your scan chain simultaneously. For a guide to all low-level commands, see the
Wind River Workbench On-Chip Debugging Command Reference.

RST and RSTINN

The RST command is a way to issue an IN command to every device on your scan
chain simultaneously. It behaves in an identical fashion to the IN command, in that
it attempts to initialize Background Mode communications for each device and it
transfers the chip-select table and any stored register settings to your target via the
OCD link.

Similarly, the RSTINN command is a way to issue an INN command to every
device on your scan chain simultaneously. As with the INN command, the RSTINN
command merely places every device on your scan chain into background mode
without affecting your target’s register or chip select settings.

When you issue an RST or RSTINN command in one view of Wind River
Workbench, a message appears in the other views that a synchronous reset is in
progress.

GO ALL and HALT ALL

These are two additional commands that can be used to affect all of the devices on
your scan chain simultaneously. To use these commands, first download code to
your target in each of the perspectives of Wind River Workbench. The demo

134

7 Debugging Multi-Core Targets
7.7 Commands for Multi-Core Debugging

programs provided may be used for this purpose; for information on downloading
code to your target please see the Wind River Workbench User’s Guide.

Once code is successfully downloaded to each device, the GO ALL command can
be issued from any of the instances of Wind River Workbench that you have open.
All of the code is started running on each of your devices simultaneously. Similarly,
the HALT ALL command stops the code running on all your devices at once.

NOTE: If you start all the devices running simultaneously, and then use the
standard HA command to stop one of the devices, the other devices will continue
to run.

135

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

136

Configuring Target Registers

8.1 Introduction 137

8.2 Downloading a Register File 138

8.3 Saving Register Settings from a Target 139
8.4 Enabling and Disabling Register Groups 141
8.5 Configuring Registers Manually 143

8.6 Working With Custom Register Groups 147
8.7 System Configuration (SC) Commands 155

8.1 Introduction

Regardless of how you plan to initialize and configure your system, you must
program and configure the internal registers on your target at least to the point
where you are able to download any boot and application code.

This is done in two steps: first, configure register settings in the emulator’s
non-volatile RAM (NVRAM); second, copy the register settings from the emulator
to the target.

Your emulator includes an area of NVRAM where you can store register settings
for a target. Once you store register settings in NVRAM, you can load the register
settings to and from the target.

137

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Once the register values are present in NVRAM, the emulator automatically loads
them to the target after each cold start, warm start, or target IN initialization
command. To select which register values are written to the target, enable or
disable the appropriate register groups.

Wind River emulators use low-level commands to configure register settings.
These low-level commands are stored in a script called a register file, a text file with
the extension *.reg.

If your target already has register values set and configured, you can upload these
values to the emulator NVRAM. From there, you can save the register settings to a
register file and store it on your host computer for use on other targets.

You can work with registers for your target using a Wind River Probe or a
Wind River ICE SX with Wind River Workbench, or by using low-level commands
in the OCD Command Shell in Workbench.

8.2 Downloading a Register File
Wind River supplies register files for Wind River evaluation boards, as well as for
many third-party target boards.

All Wind River hardware reference designs are shipped with a register file that you
can use to initialize the target registers, so that code can be downloaded to the
board. To use a register file to initialize your target registers, you must first
download the file to the emulator NVRAM, then from the NVRAM to the target.

To download a register file, use the following steps.

1. In the Workbench toolbar, select
Window > Show View > OCD Command Shell.

2. In the OCD Command Shell, click Playback File.
The OCD Command Shell Settings dialog appears.

138

8 Configuring Target Registers
8.3 Saving Register Settings from a Target

% 0CD Command Shell Settings

0CD Command Shell Settings

MPCE540

FlayBack File w [#] Display Background Communications
Input Log File - anpend

Full Log File v [Jappend

[Ok l [Caneel

3. Next to the PlayBack File field, click Browse.
4. Navigate to the register file you wish to use and click Open.

Register files for Wind River hardware reference designs are located in
installDir/workbench-2.x/dfw/build/host/registers.

5. Click OK.
6. Inthe OCD Command Shell, click the Playback File icon again.

Workbench downloads the register values from the register file you selected to
your emulator NVRAM.

7. Inthe OCD Command Shell, enter the command IN.

The emulator initializes the target and copies the register values from its
NVRAM down to the target.

8.3 Saving Register Settings from a Target

If you are working with a target that already has its registers correctly initialized,
you can upload those register settings to a file and save them on your host
computer.

It is useful to save register settings to a file if you have received a target with
registers already initialized, or if you have manually programmed registers on

139

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

your target one by one and wish to use those settings again on another target. After
you save the settings to a register file, you can download the settings to a new
target.

To save the register settings from a target, complete the following steps:
1. Select Window > Show View > Registers.

The Registers view appears.

Local Yariables | Watch

D O G
MName Yalue Description -~
+ GPR.
+ EVREG
S| CTRL
+ pvr Q00000000 Processor Version Reagister
+ pir Q00000000 Processor ID Reqgister
dec 0x00000000
decar 000000000
tbu Cex00000000
kbl 0x00000000
+ kcr Q00000000 Timer Conkrol Register
+ ksr Q00000000 Timer Staktus Register
+ hido 000000000 Hardware Implementation-
+ hid1 000000000 Hardware Implementation-
+ |1csrD 000000000 L1 Cache Control and Stat
+ 1csrl 0x00000000 L1 Cache Control and Stak
+ 11cfgi 000000000 L1 Cache Configuration Re
+ [1cFgl Q00000000 L1 Zache Configuration Re
ace 000000000
csrrld 0x00000000
csrrl 000000000
rcsrrd 000000000 s
< >

2. Right-click in the Registers view and select Save Target Register Values to
File.

The Save Target Registers dialog appears.
3. Click Save.

Use the browser window that appears to specify a file. Workbench saves the
file in the location you specify with the extension *.reg.

Saving Register Settings Using Low-level Commands

Alternatively, you can save the register values using low-level commands in the
OCD Command Shell.

First, copy the register settings to the emulator configuration file from the target
using the low level command SCT COPY.

140

8 Configuring Target Registers
8.4 Enabling and Disabling Register Groups

NOTE: Only registers in enabled register groups are copied up from the target
during an SCT COPY operation.

Next, copy the register settings from the emulator to a register file.

NOTE: Although you could just copy the register settings to the emulator
configuration file and not create a register file, Wind River recommends that you
create one anyway. If you change targets, or if the emulator configuration file were
to get corrupted or overwritten, a register file is the easiest way to fix it.

Upload register settings from the emulator to a file using the P UPLOAD
command as described in the Wind River Workbench On-Chip Debugging Command
Reference.

8.4 Enabling and Disabling Register Groups

Workbench stores registers in logical register groups. You can enable or disable any
register group using the Registers view.

When you initialize your target using the IN command, the register values that are
stored by the emulator are copied down to the target. However, the emulator only
copies the register settings for the register groups that are enabled. Register groups
that are disabled on your target do not have register data transferred. Disabling a
register group enables you to view the target register value, but prevents it from
being overwritten during target initialization.

NOTE: If you change a register value directly on the target of a register group that
is disabled, that register does not get overwritten by the emulator during an
initialization. Note, however, that the processor may still reset that register value
to the processor default during a target initialization.

The following steps describe how to enable or disable a register group on your
target.

1. In the Workbench toolbar, select Window > Show View > Registers.

2. Right-click in the Registers view and select Show Emulator Settings.

141

Wind River Workbench for On-Chip Debugging

User Tutorials, 2.6.1

<

Local variables | Watch F....

Marne Enabled Walue Erulate #

+ INTERRLUPT
+ PMON

+ LA

| ECM

| LB

+ 12C

+ DUART
| DDRMC
A

+ PCI

+ LZSRAM
+ DA

+ TSEC

+ EC

+ PIC

| LPMA
+ LPME
+ LPMC
| RIO

| GLOEBL

The Registers view now shows a check box next to each register group, under
the heading Enabled.

=8
@2 6% G 7

SPEF

oot OEMMDO O RO &

3.

Select or clear the box next to any register group to enable or disable that
group.

Enabling and Disabling Register Groups with Low-Level Commands

You can also enable and disable register groups with the command CF GRP in the
OCD Command Shell in Workbench.

To use the CF GRP command, use the following steps.

1.

In the Workbench toolbar, select Window > Show View > OCD Command
Shell.

At the >BKM> prompt, type the command CF GRP.
The first register group appears, as shown below:

>BKM>cf grp
Group (CF GRP (M/S) Name = ENABLED/DISABLED

142

8 Configuring Target Registers
8.5 Configuring Registers Manually

CUSTOM (0=Disable 1=Enable) Enabled >

The name of the register group is displayed, along with its current status
(either ENABLED or DISABLED).

3. Type 0 to disable the group or 1 to enable it.

4. To leave the setting as it is and advance to the next register group, press the
ENTER key without typing 0 or 1.

5. Continue through the list of register groups enabling and disabling them as
required.

6. When you have enabled or disabled all groups, type CF UPLOAD GROUP at
the >BKM> prompt.

This displays a list of all of the register groups on your target with their current

settings.

>BKM>cf upload group

CF GRP GT64260_CPU ENABLED ; GROUP
CF GRP GT64260_SDRAM ENABLED ; GROUP
CF GRP GT64260_DEVICE ENABLED ; GROUP
CF GRP GT64260_GPP ENABLED ; GROUP
CF GRP GT64260_MPP ENABLED ; GROUP
>BKM>

8.5 Configuring Registers Manually

If you are using a target for which Wind River does not supply a register file, you
may have to modify an existing one (see Modifying an Existing Register File, p.154);
or, if your target has default register settings, you may modify them manually.

Remember that the register file sets the register values in the emulator NVRAM,
not on the target. The emulator copies the values you set in its NVRAM down to
the target when you initialize the target with an IN command. Without a register
file, the NVRAM contains default register values, typically made for a Wind River
evaluation board, which most likely are not suitable for your target. So the IN
command will not set the target registers properly.

Some target processors, for instance most PowerPC targets, come with default
register settings. If your target has default register settings, you can modify the

143

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

registers directly on your on your target manually, at least to the point where you
can download your boot ROM application code.

Remember that if you modify your registers manually, an IN command or target
reset will overwrite your changes.

To modify registers manually, use the Registers view in Workbench. The Registers
view lets you view the bit-level detail for each register. The following sections
describe the Registers view and the bit-level detail provided.

The Registers View

Figure 8-1

When the Registers view is open in Workbench, all of the register groups for your
target are displayed with + signs beside them. Clicking on a + sign expands the
register group, showing all of the registers that are included in that register group
along with the value that they are currently set to. An example of an expanded
register group is shown in Figure 8-1.

Expanded Register Group

Local Variables | Watch = O
% 6 G ©
Marme Walue Description il
+ GPR
+ EVREG
sfcpl |
+ pvr (00000000 Processor Version Register
+| pir O 00000000 Processor ID Register
dec O 00000000
decar 000000000
thu (00000000
thl (00000000
+| bcr (00000000 Timer Control Regisker
+| b (00000000 Timer Status Register
+ hid0 000000000 Hardware Inplementation-
+ hidl 000000000 Hardware Irplementation-
+ |1csr0 Q00000000 L1 Cache Contral and Statb
+ [1csrl 000000000 L1 Cache Contral and Skat
+ [1cfgd 00020000 L1 Cache Configuration Re
+ [1cfgl Dx00000000 L1 Cache Configuration Re
acc (00000000
csrrQ (00000000
csrrl 000000000
mcsrrd 000000000 hd
< >

144

8 Configuring Target Registers
8.5 Configuring Registers Manually

NOTE: Figure 8-1 is only an example of an expanded register group. The groups
and the register values vary widely depending on your target architecture.

Bit-Level Detail

You can view the bit-level detail for any register by clicking on the + sign beside
the register in the register group.

NOTE: Before you can make any changes to your register settings, you need to
enable the register group that contains the register you want to modify, so that the
values download to the target when you initialize your system. If you do not
enable the register group, you can still modify the settings in the emulator but not
on the target. For more information, see 8.4 Enabling and Disabling Register Groups,
p-141.

You can make changes to any of the register settings by modifying each of the
bit-level settings for any register.

To modify bit-level values for your target, complete the following steps:
1. Inthe Registers view, double-click on the name of the register you wish to edit.

Figure 8-2 shows the Registers view with the TBU register selected.

145

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Figure 8-2 Selecting a Register

Local wariables Wakch E] =8
D ok Ga 7
Marne Walue Description =
+ GPR
+ EYREG
- CTRL
+ pwr 0=00000000 Processar Yersion Register
+ pir 000000000 Processor ID Regisker
dec 0=00000000
decar 0x00000000
thl 0=00000000
+ by 0=00000000 Timer Control Reqister
+ tsr 0=00000000 Timer Status Register
+ hidd 0x00000000 Hardware Implementation-
+ hidl x00000000 Hardware Implementation-
+ |1ecsrd 000000000 L1 Cache Control and Stab
+ |1csrl 0x00000000 L1 Cache Control and Skat
+ [1cfgd 0x00000000 L1 Cache Configuration Re
+ |1cfgl x00000000 L1 ache Configuration Re
ace 0x=00000000
csrrl 000000000
csrrl 0x=00000000
mesrrd 000000000 b

| #

X

This opens the Properties view, which shows the name of the register you have
selected under the Property heading and its current setting under the Value
heading, as shown in Figure 8-3.

Figure 8-3 Properties View

Tasks | Problems Build Console | Error Log | Terminal 0 Trace | CD Command Shell » =0

BEEEN
Property Walue il
b Joooooowm =
tbu bin abo
thu dec 0
tbu ot Juli]
b
< |

146

8 Configuring Target Registers
8.6 Working With Custom Register Groups

2. Select the value under the Value heading and edit it as necessary.

3. Inthe Registers view, click the Refresh Values button. The register
information reappears with your changes.

NOTE: Some registers are write-protected and cannot be edited.

8.6 Working With Custom Register Groups B
You can create custom register groups to perform various tasks, such as initializing
peripheral memory.

This section presents two scenarios to describe how to add custom registers or
register groups to your target, depending on what you want to do:

» Creating a new set of registers for your target

» Modifying an existing register file

Creating a New Set of Registers

To create new registers using the Registers view, complete the following steps:

1. Right-click in the Registers view and select Define Memory Mapped
Register...

The Define Register dialog appears, as shown in Figure 8-4.

NOTE: Only memory mapped registers can be created with this dialog. To
create a non-memory mapped register, see Creating New Registers With
Low-Level Commands, p.149.

147

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Figure 8-4 Define Register Dialog

% Define Memory Mapped Register...

Reqister Eroup: | CLOCKS v|
Reqister Mamne: | SCCR |
Address: | oxFFFFODOD |
Data: | 4104 |
Readwrite
(%) frw ReadMrite
Oijr Read Only
O fw Write Only
Size
) automatic determine from default data size
() 528 Bivte (8 bits)
) 5z Word {16 bits)
szl Long (32 bits)
) iszD Double {64 bits)
Opkions
[flendian little endian register (if CPU support available)
ino_in do not set on karget during emulator IM sequence
|:| extra |
SCGEA CLOCKS SCCR 0xFFFFO000 4104 fmemr frw [S2:6
[Ok l [Cancel]

2. In the dialog text fields, specify the details of your new register as follows:

= In the Register Group field, specify the register group to which the new
register will be added.

= In the Register Name field, specify the name of the new register.

148

8 Configuring Target Registers
8.6 Working With Custom Register Groups

* Inthe Address field, specify the address at which the new register will be
located.

* In the Data field, specify the data to be stored in the new register.

The example in Figure 8-4 shows a new register called SCCR that will be
placed in the register group CLOCKS, located at address 0XFFFF0000, and has
the value 4104.

Set the following options:

Set the register to be read/write, read-only, or write-only.

Set the register to store data as Byte, Word, Long, or Double.

Set the register as little-endian. (This only applies if your target CPU is able
to switch between big-endian and little-endian modes.)

Specify whether the register will be set on the target during an

initialization sequence.

The example in Figure 8-4 shows the register set to read/write and size B

(byte).

There are advanced options not available from the Define Register dialog;
these options must be set using low-level commands in the OCD Command
Shell. For information about these options, see SCGA Options, p.151.

4. Click OK to create the register.

Creating New Registers With Low-Level Commands

To create a new set of custom registers for your target, create an ASCII text file with
the extension *.reg. Then load that file to your emulator and the target, thus setting
up register groups as required for your system.

Prior to creating your own register file, look at one of the default register groups
that was included with your Wind River Workbench software to learn more about
ho w register files are laid out. The following is an example of a register file:

SC GRP ERASE

SCGA GEN SCR FFB00000 4006A300 /r

SCGA GEN SSR FFB00004 O0A80042F

SCGA GEN PLLCR FFB00008 06000000

SCGA GEN SOFTSR FFB0000C 00000000 /no_in

SCGA MPC107_PCI VENDOR 00000000 1057 /r(nwf) /w(nwf) /r /ua:l /lendian

SCGA

MPC107_PCI ADDR 00 00000000

80000000 /wo /hide /w /ua:0 /lendian

149

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

SCGA MPC107_PCI ID 00000002 0004 /r(nwf) /w(nwf) /r /ua:l /lendian
SCGA MPC107_PCI ADDR 02 00000000 80000002 /wo /hide /w /ua:0 /lendian
SCGA MPC107_PCI PCICMD 00000000 0004 /r(nwf) /w(nwf) /ua:l /lendian

SCGA MPC107_PCI ADDR 04 00000000 80000004 /wo /hide /w /ua:0 /lendian

The register file you create for your target depends entirely on the information that
you need to set up for your system, so your file may look similar to the default
register groups or it may look completely different. The list below describes some
of the items that you must include in your file.

150

Include the line SC GRP ERASE

Include the line SC GRP ERASE in your register file to erase any existing
register groups and settings that might be set up by default on your target or
in the emulator file. Since you are creating an entirely new register set for your
target, you need to make sure that any residual information on the target or in
the emulator is removed prior to adding new information.

Include any configuration options

Use CF commands to include any configuration options required for your
target. Always include a CF TAR target_processor configuration line in this
section to make sure that your register file matches the target that you are
working with. target_processor must match the processor you selected when
you made your connection to the emulator.

Including this line also makes it clear to anyone else who plans to use your
register file which target your file is intended for. Include this line, and any
other configuration options that are required for your target, in your register
file. For more information on the available configuration options for your
architecture, and for syntax information, see the Wind River Workbench for
On-Chip Debugging Configuration Options Reference.

Set up register groups for your target

New registers and register groups are created using SCGA commands. The
syntax for adding a new register in a register group is:

SCGA GroupName RegisterName Address Data Options

This command adds the register RegisterName to the register group
GroupName.

GroupName — This is the name of the existing register group that the new
register is added to.

RegisterName — This is the name of the register that you are creating.

8 Configuring Target Registers
8.6 Working With Custom Register Groups

Address — This is the address where the new register is located.
Data — This is the data that is stored in the register you are creating.

Options — There are many options associated with the SCGA command.
These are described in SCGA Options, p.151.

Continue adding all of the new registers for your target. When you finish adding
the required registers, save the file with the extension*.reg.

You are now finished creating a register file for your target. You can download the
file to the emulator and your target as described in 8.2 Downloading a Register File,
p-138. When you have downloaded the file and issued an IN command, all of the
new register settings become visible in the Registers view in Workbench.

SCGA Options

lcpur
This option specifies that the register you are creating is a CPU core register (that
is, SPR, or other non-memory-mapped register.)
Example:
SCGA SIM MMU SIM_IBATOL 4014 00000004 /cpur

This example creates a new register group called SIM_MMU, with a core register
called SIM_IBATOL embedded in it.

NOTE: Newly created groups are disabled by default. To enable the register group,
see 8.4 Enabling and Disabling Register Groups, p.141.

/hide

This option specifies that the register will not be visible when an SC or DR
command is issued. It will only be visible when an SC UPLOAD or SCG UPLOAD
command is issued.

/lendian

This option specifies that the register you are creating is little-endian. This option
only applies if your target CPU can switch between little-endian and big-endian
modes.

151

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

/memr
This option specifies that the register you are creating is a memory-mapped
register. This is the default for all self-defined registers and all registers created in
the Define Register dialog.

/no_in
This option specifies that the register you are creating will not be set on the target
during an IN initialization sequence.

Ir, Iw, frw

These options are read-only, write-only, and read /write flags. Registers are set to
/rw by default.
/Sz:B, /Sz:W, /Sz:L, /Sz:D

These options force the size of the register to either Byte (8 bits), Word (16 bits),
Long (32 bits), or Double (64 bits). The default register size is determined by the
amount of characters used to specify the default value. (In the Define Register
dialog this is the value you enter in the Data field.)

Iva_dr
This option is used on anchor registers to make them available on a DR command.
(For PowerPC, on an IMMR command.)

/wo
This option defines a fixed-value register. A register created with this option will
not be affected by an SCT COPY command.

Iw(nwf)

This option specifies a write cycle (next write first.) It indicates that in order to
write a value to this register, you first need to write the following register value to
the target.

Example:

SCGA MPC_PCI PCICMD 80000CFC 0600 /w(nwf) /r(nwf)
SCGA MPC_PCI ADDR 04 80000CF8 04000080 /wo /hide

In this example, you create a register called PCICMD in the register group
MPC_PCI. The option specifies that the register PCICMD cannot be written to

152

8 Configuring Target Registers
8.6 Working With Custom Register Groups

unless a write to the register ADDR_04, in the same register group, is performed
first.
Ir(nwf)

Similar to the /w(nwf) option, this option specifies a read cycle (next write first.) It
indicates that in order to read a register, you first need to write the following
register value to the target.

Iw(nwa)

This option specifies a write cycle (next write after.) It indicates that if you write a
value to this register, you need to write the next register value to the target
afterwards.

For more information on the SCGA and SCGD commands and their options, see
the Wind River Workbench for On-Chip Debugging Command Reference.

Using Your New Register File

The register file you created is designed to erase all of your register groups and
recreate them every time you play back the file. Since all of the settings are stored
in the emulator file, it is likely that you will not have to play back the register file
very frequently, and therefore having the file configured to erase all of the settings
each time is acceptable in most cases.

If you prefer that your register settings are not erased and recreated each time you
play back the file, complete the following steps:

1. Create your register file as described in the steps above using SCGA
commands.

2. Play back that file once, to make sure all of the required register groups are
created in the emulator and on your target.

3. Next, remove the SC GRP ERASE line from your file, which prevents all of the
groups from being erased each time the file is loaded.

4. Change all of the SCGA commands to SC commands.
For example, a line such as:
SCGA SYSMGR SYSCFG 03FF0000 87FFFFAQ
would be changed to:

SC SYSCFG 87FFFFAQ0

153

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Note that the syntax for the SC commands is different than for the SCGA
commands. See the Wind River Workbench for On-Chip Debugging Command
Reference for more information. The syntax is different because SCGA commands
are used to create new registers, whereas SC commands are used to change the
values of existing registers. Using SCGA commands for registers that already exist
results in a syntax error. Using SC commands for registers that do not exist also
results in a syntax error.

After you replace all of the SCGA commands with SC commands, playing back the
register file only updates the registers that already exist on your target and does
not erase anything.

Modifying an Existing Register File

If you have a register file that you are satisfied with, but you want to add some
additional groups of registers to it, it is easiest to modify your existing register file
rather than create an entirely new one.

You can either add registers to an existing group or add a new group of registers

to an existing file.

Adding Registers to an Existing Register Group

To add registers to an existing register group, open the register file you want to
modify in a text editor and erase the existing group using the SC GRP ERASE
GroupName command. Then add back all of the registers that were previously
included in that group, as well as any new ones you want to add, using the syntax
shown below:

SCGA GroupName RegisterName Address Data Options . . .

GroupName — The name of the existing register group that the new register is
added to.

RegisterName — The name of the register that you are creating.
Address — The address where the new register is located.
Data — The data that is stored in the register you are creating.

Options — There are many options associated with the SCGA command. A full
description of all of the available options is available in the Wind River Workbench
for On-Chip Debugging Command Reference.

154

8 Configuring Target Registers
8.7 System Configuration (SC) Commands

Adding a New Group of Registers to an Existing File

To add a new group of registers to an existing file, open the register file you want
to modify in a text editor and include the command SC GRP ERASE GroupName.
Then add each of the registers to be included in the group using the following
syntax:

SCGA GroupName RegisterName Address Data Options...

GroupName — The name of the existing register group that the new register is
added to.

RegisterName — The name of the register that you are creating.
Address — The address where the new register is located.
Data — The data that is stored in the register you are creating.

Options — There are many options associated with the SCGA command. A full
description of all of the available options is available in the Wind River Workbench
On-Chip Debugging Command Reference.

As described in Creating a New Set of Registers, p.147, you can change your register
file after you play it back the first time so that the register groups that you have
added or made changes to are not erased each time you play back the register file.
To do this, first make sure that you play back the register file once to create the
register groups in the emulator and on the target. Then open your register file and
remove the SC GRP ERASE GroupName line from the file and everywhere that you
have included SCGA commands, replace them with SC commands using the
syntax described in the Wind River Workbench for On-Chip Debugging Command
Reference. Doing this updates the registers every time you play back the register file
instead of deleting and recreating them.

8.7 System Configuration (SC) Commands

The SC commands allow you to edit any of the internal peripheral registers for
your target processor. They allow you to modify non-volatile values and store
them in your host computer. The values are loaded into the emulator file and
downloaded to your target any time it is initialized. The SC commands also let you
view and edit any of the current target values.

155

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

For information on all of the available SC commands, see the Wind River Workbench
for On-Chip Debugging Command Reference.

156

Programming Flash Memory

9.1 Introduction 157

9.2 Connecting to a Target 158

9.3 Testing Flash Workspace 163

9.4 Configuring Registers 164

9.5 Using the Flash Programmer View 165
9.6 Flash Configuration Tab 166

9.7 Flash Programming Tab 168

9.8 Flash Memory/Diagnostics Tab 174

9.1 Introduction

The Flash Programmer view provides the ability to flash images into flash chips
present on your target board.

To program flash correctly you need to know the physical characteristics of your
flash bank. For instance, your board may have one flash device connected to a
64-bit bus. Or it may have a bank of several flash devices, for example two flash
devices, each wired at 16 bits, connected along a 32-bit bus.

157

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

If you are using a Wind River-supported board, this information can be found in
the file installDirfvxworks-6.x/target/config/yourTargetBoard/target.ref.

If you are not using a Wind River-supported target, consult your target’s
documentation. The design primitives of your target board should be included in
its board specification and schematics.

To program target flash, you must create an active target connection and configure
your target registers.

9.2 Connecting to a Target

This tutorial uses a Wind River Probe emulator connected to a Wind River
PPMC750FX target.

To connect to your target, use the following steps:

1. Launch Wind River Workbench according to the method for your host.

Linux/Solaris Hosts
From your installation directory, issue the command

$./startWorkbench.sh

Windows Hosts
Select Start > All Programs > Wind River > Wind River Workbench version.

On Windows hosts, Workbench prompts you to specify a workspace location.
Linux/Solaris hosts use the default location installDir/workspace.

When Workbench opens, he Quick Target Launch dialog appears.

158

9 Programming Flash Memory
9.2 Connecting to a Target

Wind River On Chip Debugging
@ Choose How You Wank to Start

Defined Launches
Create a new launch configuration

Edit an existing launch configuration

Connect, Attach, Reset and Download

Sync with target and download symbols

(2) []Do not show this dislog on startup

Close

2. Select Create a new launch Configuration.

The Connection Type dialog appears.

New Connection

Connection Type

Please select connection type.

Wind River OCD ICE Connection
i i DI chi

an
‘Wind River ¥xMWorks 6. Core Dump Conneckion
WWind River Wxworks 6.x Simulator Connection
wind River YxWorks 6. Target Server Connection

@

3. Select Wind River OCD Probe Connection and click Next.

159

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

The Processor Selection dialog appears.

New Connection

Wind River Probe Settings

Configure the designator settings for the emulator,

Designators
(%) Processor: | PPCTSOFY | [Select...]
() Board file:

v | Designatar Pracessor Pracessor Plugin

PPC7S0FA PPC7S0FS PawerPC 7ixx Family Process...

Auta-attach to connecked designators

Communications
USE Device Mame: | PRO40310 w

© [Comdlme]l

4. Click Select. From the list that appears, expand MPC7xx and select PPC750FX.

160

9 Programming Flash Memory
9.2 Connecting to a Target

% Processor Selection

Current Connection - Wind River Probe : PPC750F

MPChix ~
MPC 7
[=) MPC T

MPC740

MPC745

MPC750

MPC755

PPCP40

PPCP45

PPCFSO0

PPCFS0CH

PPCFS0CKE
PPCFS0CHR
PPC7S0FX
PPCFE0GH
pR-TEN

NG

'\?,' [[o]4 H Cancel]

5. Make sure the Auto-attach to connected designators checkbox is selected and
click OK.

You are returned to the Processor Selection dialog.
6. Click Next.

7. The connection wizard passes through a number of screens that you do not
need to configure for this tutorial. Leave all settings at their defaults and click
Next until you come to the Connection Summary.

161

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

New Connection

Connection Summary

Please review the connection information

Connection name: | WRProbe_PPCTS0FX_D

SURRArY
Property Yalue
ADDR. PRO40310

AutoattachConnectedCon true
DESIGNATORMAP

DEWICE Wind River Probe
MAME_MMAPPING [*:* . unstripped],[*;*]
PATH_MAPFING L
STYLE LUSEDEVICE
£ 2

Immediately connect to karget if possible

7 Next > ’ Finish ” Cancel]

8. Make sure that the Immediately connect to target if possible checkbox is
selected and click Finish.

Workbench creates a target connection called WRProbe_PPC750FX in the
Target Manager view and opens the Reset and Download view.

You do not need to download code to program flash memory, so click Close to
close the Reset and Download view.

162

9 Programming Flash Memory
9.3 Testing Flash Workspace

9.3 Testing Flash Workspace

The flash programming algorithm needs to run on the target. This requires a RAM
workspace, to which the algorithm will download, and breakpoints, which are
used to stop an erase and program operation at completion.

Reading and Writing Memory

Once you have established communications with the target, use the following
procedure to make sure you can write to and read from the target. In this example
we assume that the RAM workspace is 0x00F00200.

NOTE: A RAM workspace address of 0x00F00200 is not appropriate for all targets.
For Wind River-supported targets, you can find the necessary RAM workspace in
your target’s target.ref file, located in
installDir[vxworks-6.x/target/config/yourIarget/target.ref.

Wherever the RAM workspace is located on your target, you must make sure that
memory is writable there.

At the >SBKM> prompt, enter dm 00F00200 and press ENTER. Doing so displays the
memory on your target at address 0.

Next, enter sm 00F00200 1234 and press ENTER to set the memory at address 0 to
the value 1234. Enter dm 00F00200 to display the memory at that address again.

If you are communicating properly with your target, output is similar to that
shown below:
>BKM>dm 00£00200

00F00200: FF7C EFFE FEFF E3FE 0DO1 OFBE FOFD BFB6 .‘
>BKM>sm 00£00200 1234
>BKM>dm 00£00200

00F00200: 1234 EFFE FEFF E3FE 0DOl1 OFBE FOFD BFB6 .4.............
>BKM>
Occasionally, you may have difficulty programming flash memory on your target
if software breakpoints are not being hit properly. Test this functionality before you
continue.

To use the test, enter the following commands at the >SBKM> prompt in the OCD
Command Shell:

>BKM>df e 0

>BKM>di 0 6

163

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

$00000000 : 0x60000000 :ppc nop
$00000004 : 0x60000000 :ppc nop
$00000008 : 0x60000000 :ppc nop
$0000000C : 0x60000000 :ppc nop
$00000010 : 0x7CO0004AC :ppc sync
$00000014 : O0x4BFFFFFO :ppc b 0x4
>BKM>go 0
>RUN>dr pc
PC = 00000004
>RUN>dr pc
PC = 00000010
>RUN>sb 8
>RUN>
IBREAK! - [msgl2000] Software breakpoint; PC = 0x00000008 [EVENT Taken]
>BKM>
>BKM>rb
>BKM>

9.4 Configuring Registers

Before you can program target flash, you must configure your target registers. This
is done in two steps: first, configure register settings in the emulator’s non-volatile
RAM (NVRAM); second, copy the register settings from the emulator to the target
by issuing an IN initialization command.

Wind River emulators use low-level SCGA commands to configure register
settings. These low-level commands are stored in a script called a register file, a text
file with the extension *.reg. Register files for Wind River hardware reference
designs are located in installDir/lworkbench-2.x/dfw/build/host/registers.

To configure target registers for a Wind River PPMC750FX, use the following steps:

1. In the Workbench toolbar, select Window > Show View > OCD Command
Shell.

2. Inthe OCD Command Shell, select Settings.

The OCD Command Shell Settings dialog appears.
3. Next to the PlayBack File field, click Browse.
4. Navigate to the file you wish to use and click Open.

164

9 Programming Flash Memory
9.5 Using the Flash Programmer View

The register file for the Wind River PPMC750FX is ppmc750fx.reg, located in
the folder WindRiver_PPMC in the directory
installDir/workbench-2.x/dfw/build/host/registers/PowerPC/7xx.

5. Click OK.
You are returned to the OCD Command Shell.
6. Click Playback File.
Workbench plays the register file and configures the emulator NVRAM.
7. At the >BKM> prompt in the OCD Command Shell, enter the command IN.

Workbench initializes the target and configures the target registers with the
values from the emulator NVRAM.

You have now configured the target registers. For more information on registers,
see 8. Configuring Target Registers.

9.5 Using the Flash Programmer View
Once you have connected to Wind River Workbench, and configured your target
registers, you are ready to begin programming flash.
In the Workbench toolbar, select Window > Show View > Flash Programmer.
The Flash Programmer view appears.

The Flash Programmer view has three tabs: Configuration, Programming, and
Memory/Diagnostics. Use these tabs to configure your flash address and RAM
workspace, choose files for download, execute erase and program operations, and
check the results of your operations.

165

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

9.6 Flash Configuration Tab

Figure 9-1

Use the Configuration tab to configure the base address and workspace address
for flash memory erase operations. You can also enter the physical description of
your flash devices.

Configuration Tab

Error Log | Tasks | Problems | Properties | Build Console | oD Command Shell RS R TR aea == e o Terminal 0

Configuration | Pragramming | Memory/Diagnostics

Configuration
Flash Bank Addresses

Oxe0000000 | Lask:

Device Selection

Current;

= AMD - Base:

20000047
29LV004E
29LVO0SET

RAM Warkspace

Start: | 0x00F00200 | End:

29LV005EE T B
Z9F010
29F040
[=)- 29F030/81
= 1024 x 8
1 Device
z Devices
ces SetfEdit Timeouts

& Devices Program: g
29F016/17
Z9F032)33 3 Erase: Z00

9.6.1 Selecting a Flash Driver

In the Device Selection field, browse to a description of your flash bank. Figure 9-1
shows an example of a flash bank consisting of four 8-bit AMD 29F0808 devices.

NOTE: For AMD flash devices, “F” and “LV” devices are interchangeable in
Workbench.

If you attempt to move on to the Programming tab without selecting a flash bank
description in the Configuration tab, Workbench displays an Invalid Flash Bank
error and returns you to the Configuration tab.

166

9 Programming Flash Memory
9.6 Flash Configuration Tab

9.6.2 Configuring Flash Memory Bounds

Figure 9-2

In the Configuration field, enter the Base value for the area of flash memory you
wish to erase. In Figure 9-1 the address used is 0xe0000000. The Last field
populates automatically.

NOTE: Workbench erases flash memory sector by sector. That means that no matter
where the address you enter in the Base field is located within the flash sector,
Workbench will still erase the entire sector.

If Workbench detects that the address you entered in the Base field is not correctly
aligned with the flash sector boundary, it displays the following warning message:

Incorrect Flash Base Address

WARNING - Incorrect Flash Base Address

1, Incorrect address: D=FFFFFFEF |

The base address yvou entered For vour Fash is incarrect,
This address must be aligned on a boundary of 0x100000

Clicking "align’ will align wour Flash base address correctly For you,
Clicking 'Cancel' will take vou back to the configuration tab so that vou can re-enter the base address manually.

Clicking 'Continug’ will allaw wou to use the incorrectly aligned address that vou have entered,
Be aware that this option could cause undetermined behavior while using the Flash utility and is not recommended.

I Align H Continue ” Cancel]

* Tohave Workbench align your base address, click Align. Workbench aligns the
base address with the nearest preceding sector boundary.

= To go back to the Configuration tab and re-enter the address manually, click
Cancel.

= To use the base address as you entered it, without aligning it with the flash
boundary, click Continue.

167

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

CAUTION: Choosing Continue may cause unpredictable results in your flash
programming operations. Wind River recommends that you align the base
address with the flash sector boundary.

9.6.3 Configuring RAM Workspace

The flash programming algorithm needs to run on the target. This requires a RAM
workspace, to which the algorithm will download.

In the RAM Workspace field, enter the Start value for the area of RAM you wish
to use as the workspace. In the Size field, enter the desired size of the workspace
in bytes. In Figure 9-1 the starting address used is 0x00F00200 and the workspace
size is 3992. The End field populates automatically.

NOTE: A RAM workspace address of 0x00F00200 is not appropriate for all targets.
For Wind River-supported targets, you can find the necessary RAM workspace in
your processor’s target.ref file, located in
installDir/vxworks-6.x/target/config/yourIargetBoard/target.ref, or target.ref.linux
file, located at http://www.windriver.com/support.

9.6.4 Setting Timeouts

To set a program or erase timeout, use the Program or Erase fields in the Set/Edit
Timeouts area. Enter a timeout value in seconds. If you enter an invalid number,
Workbench resets the timeout to its default setting.

9.7 Flash Programming Tab

Use the Programming tab to execute erase and program operations in flash and to
specify files for download.

168

9 Programming Flash Memory
9.7 Flash Programming Tab

Figure 9-3 Programming Tab

0CD Command Shell FEANEEERE e =g Binary Upload | CF Options | OCD Statistical Code ... | Hardware Diagnostics | Cache | Trace =0

Configuration | Programming | MemaryDiagnostics

Flash Pragramming Erase Sector Selection
[]send "IN" before each operation Oxff 100000
0xff108000
[JEnable pre-flash 0xfF10c000
0xff 110000
[JEnable post-Flash Oxff 120000
Oxff 140000
[Erase] [Program] [Erase/Program] [Werify] [Abort] Oxff 160000
0xff150000
AddfRemove Files gz;;i:gggg
Status | File Path Start Addr.., | End Addr... = Enabled Add File 0xfF1e0000

Convert file
Select all | | Clear all

[Joverride erase sector selection
Lower boundary address

Upper boundary address

9.7.1 Erasing and Programming Flash
To issue an IN initialization command before erase or program operations, select
the Send “IN” before each operation checkbox.

Click Erase to erase the contents of the flash memory sectors you selected in the
Configuration tab.

Click Program to program the flash memory with the files you selected in the
Add/Remove Files area of the Programming tab.

Click Erase/Program to perform both operations. Workbench will erase all selected
flash sectors before programming.

Click Abort to stop the erase or program operation.

9.7.2 Verifying Flash Contents
Click Verify to execute a byte-by-byte comparison between the file you just

downloaded and the file already in memory. If there is a discrepancy, Workbench
will break at that address and deliver an error message.

169

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

9.7.3 Running a Pre- or Post-Flash Script

You can specify a script to run before or after an erase or program operation. Select
the Enable pre-flash or Enable post-flash checkboxes (you can select either or
both for any operation). Next to the checkbox, click Browse and navigate to the
script you wish to run.

9.7.4 Selecting Flash Sectors for Erasure

The Sectors field automatically populates with the starting addresses of sectors of
flash memory, depending on which flash device you specified in the
Configuration tab. Click on a sector to select it. You can select all sectors by
clicking Select All. Click Clear All to deselect all sectors.

Before you erase all sectors, make sure you know what resides in the flash. For
example, PowerPC 82xx processors read their reset configuration word from
FE000000 out of the flash device, so for 82xx processors, erasing the entire device
may cause problems with resetting the board.

9.7.5 Manually Configuring Flash Memory Erasure Bounds

Workbench allows greater user control by allowing manual configuration of the
flash memory bounds for erase operations.

You can manually configure the flash memory bounds by checking the Override
erase sector selection checkbox. When this box is checked, Workbench will allow
you to enter any addresses in the Lower boundary address and Upper boundary
address fields.

NOTE: If the values you enter result in a memory address range that is outside
your target board’s flash programming area, erase operations will not perform
correctly.

9.7.6 Adding Files

To add a .bin file, click Add File. This opens the Choose File for Flash Download
browser window. Workbench automatically looks for a folder labeled firmware,
located in installDir/workbench-2.x/dfw/version/host/firmware, where version is
the installed version of the debugger middleware. If your .bin files are stored in

170

9 Programming Flash Memory
9.7 Flash Programming Tab

another folder, use the browser to navigate to it. Select the file you want and click
Open. The file will appear in the File Path field.

9.7.7 Removing Files

To remove a file from the list, highlight it and then click Remove File.

9.7.8 Converting Files To Wind River Flash Binary Format

In order to use a file to program flash, you must convert it to a Wind River binary
format that the Flash Programmer can use. Workbench can convert any of the
following file types to Wind River binary format:

= elf files

* hexfiles

= srec files

» any headerless flat binary (RAWBIN) file

To convert a file to Wind River binary format, use the following steps:
1. In the Programming tab, select Convert File.

2. Inthebrowser window that opens, navigate to the file you want to convert and
click Open.

The Convert utility appears.

171

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

File Conversion utility

File path
Input path: | 3\ bitbucket|cdema. ff | [This is a raws binary file

Output path: | C:ibitbucketicdemo. bin

Conversion oukput

Address information

End: | QufFFFFFFF

Caonvert File
Convert and Add File

@ [Ok H Cancel]

Converting the file to Wind River binary format does not delete the original
file.

By default, Workbench stores the new binary file in the same location as the
original file. If you want the new binary file stored somewhere else, enter the
path to the desired location in the Output path field.

3. Select Convert and Add File.

Workbench converts the selected file to Wind River binary format and adds it
to the file list in the Programming tab.

172

9 Programming Flash Memory
9.7 Flash Programming Tab

File Conversion utility

File path
Input pathi | C:ybitbucket|cdema.elf [C] This is & raws binary File
Output path: | Cuybithucket|cdema.bin

Conversion outpuk

Address infarmation convert v7,11G Copyright () 1996-2006 'Wind River HSI
. convert ELF File Ciibitbucketicdemo.elf to Flat Binary file C:ibitbucketicdema, bin
£y 0x00000000 E:xtracting image from 'C:\bitbucketicdemo, elf*
End: | OxFFFFFEFF 'wriking Flat binary image ko "Ciibitbucketicdemo, bin'
Lower address: 0x0
Upper address: OxFFFFFFFF
Execution address: 000000400
Image written
Processing time: 0,000 seconds

Convert File
Convert and Add File

@ oK] [Cancel

NOTE: To convert the selected file to Wind River binary format without adding

it to the file list in the Programming tab, select Convert File.

4. Click OK.

You are returned to the Programming tab. The file you just converted now

appears in the File Path field.

9.7.9 Setting The Download Offset Of A File

In some cases, before you program the file into flash, you may need to set a

memory offset bias to divert the data to other areas of the flash bank.

Each file is built with a start address. This start address may or may not be the
address where you want the image to reside on the board. If you subtract the start
address of the image from the address where you want the image to reside on the

board, then you end up with the proper bias address.

173

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

For example, if the image was built with a start address of 0x00 and you wanted
the image to reside at the reset vector OxFFF00100, then the offset bias would be
FFF00100.

You can use the Add/Remove Files area to edit the starting address of a .bin file to
offset the file into flash. Click on the value under the Start Address heading to
highlight it. Edit the value as needed.

9.7.10 Enabling A File For Download
Enable a file by clicking on the checkbox under the Enabled heading. If the file
address is outside your specified address range, an error message appears:

Cannot enable for download.
Part of this file falls outside your flash address range.

To correct this error, you must either change the start address of your file or use the
Configuration tab to change your flash address range.

9.8 Flash Memory/Diagnostics Tab

Use the Memory/Diagnostics tab to view the contents of flash memory and to run
diagnostic tests to verify your ability to write and erase flash.

You must set up the Configuration tab before using the Memory/Diagnostics tab.

174

9 Programming Flash Memory
9.8 Flash Memory/Diagnostics Tab

Figure 9-4 Memory/Diagnostics Tab

Programming I Add/Remove FiIesI Configuration Memory/Diagnostics I

Yiew address: IDxFFfDDDDD Program | Erase I Abort |
Address o e e e e e e e e [e -
FFFOOO10 5B 44 75 eC 79 zZ0 32 30 ZC 20 32 30 30 30 g0 5D [July 20, ZC
FFFOOOZO 30 31 32 33 34 35 36 3V 38 39 61 B2 63 64 65 66 0O1lZ3456759ak
FFFOOO30 87 B8 69 eh BE 6C D GE &F 7O Tl Y2 T3 74 7S 76 ghijklmnopor
FFFOOO40 77 78 79 T7A z1 40 23 24 25 BE 26 24 25 29 5F 2B wxyz!@#§stec
FFFOOOS0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FFFOOO&0 oo oo Qo 00 oo 0o 00 00 0o 00 00 00 OO OO0 00 oo

FFFOOO7O0 Ak 55 66 99 AL 55 A6 99 AL 55 A6 99 AL 55 66 99 uf Uf UL
FFFOOOS0 Ai 55 66 99 AL 55 66 95 Ak 55 466 99 AL 55 66 99 mE UL£ UL
FFFOOOS0 hi 55 66 99 AL 55 66 95 Ak 55 466 99 AL 55 &6 99 mE UL£f UL
FFFOOOAD Ai 55 66 99 AL 55 66 95 Ak 55 466 99 AL 55 66 99 mE Uf£f UL
FFFOOOQEOD hi 55 66 99 AL 55 66 95 ARk 55 466 99 AL 55 66 99 mE Uf£f UL
FFFOOQCO hi 55 66 99 AL 55 66 95 ARk 55 466 99 AL 55 66 99 mE Uf£f UL
FFFOOQDO Ai 55 66 99 AL 55 66 95 Ak 55 466 99 AL 55 66 99 mE UL£f UL
FFFOOOED hi 55 66 99 AL 55 66 99 Ak 55 46 99 AL 55 66 99 Ut Uf UL
FFFOOOFO hi 55 66 99 AL 55 66 99 Ak 55 46 99 AL 55 66 99 Ut Uf UL o

-

a | N
—~Messages

|

9.8.1 Viewing Memory

Enter the address you wish to view in the View Address field. The area below
displays the bit-level detail. To change the view, edit the address in the View
Address field and click Refresh. You can also use the scrollbar on the right to scroll
up and down from the starting address to the end address.

9.8.2 Running Diagnostic Tests
To test your ability to write to flash memory, click the Start Program Diagnostic
button. This writes a bit pattern to flash.
You may see a Target Exception message. This requires no action.

If the write operation is successful, you should see the pattern *WRS_FLASH*
repeated under the ASCII heading in the Memory/Diagnostics tab, as shown in
Figure 9-5.

175

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Figure 9-5 Successful Program Diagnostic

Prograrmrming I AddiRermaove Files I Corfiguration Memary/Tiagnostics I

Yiew address: |D><FFFUDDDD Refresh | Pragram | Erase | |

I EEE R E e e
SF 46 4C 41 53 48 24 SF Zzh 57 52 53 SF 46 4C 41 _FLASH®_*URS_FLA
S3 48 24 S5F 2& 57 52 53 SF 46 4C 41 53 48 2 SF SHY *URS FLASHT
2h 57 52 53 S5F 46 4C 41 53 48 2A SF 24 57 52 53 *URS_FLASH_*WR3
SF 46 4C 41 53 48 24 SF zh 57 52 53 SF 46 4C 41 _FLASH®_*WRS_FLA
53 48 24 S5F 2& 57 52 53 SF 46 4C 41 53 48 24 SF SHY *URS FLASHY
24 57 52 53 5F 46 4C 41 53 48 2A SF 24 57 52 53 *URS_FLASH_*WR3
SF 46 4C 41 53 48 24 SF zh 57 52 53 SF 46 4C 41 _FLASH®_*WRS_FLA
53 48 2L S5F 2h 57 52 53 SF 46 4C 41 53 48 2 SF SHY *URS FLASHY
24 57 5z 53 5F 46 4C 4L 53 48 2A SF 24 57 52 53 *WRS_FLASH_ *WR3
SF 46 4C 41 53 48 24 SF zh 57 52 53 SF 46 4C 41 _FLASH®_*WRS_FLA
53 48 2L S5F 2k 57 52 53 SF 46 4C 41 53 48 24 SF SHY *URS FLASHY
24 57 5z 53 5F 46 4C 4L 53 43 2A SF 24 57 52 53 *URS_FLASH_ +WR3
SF 46 4C 41 53 48 24 SF 2k 57 52 53 SF 46 4C 41 _FLASH®_*WRS_FLA
53 48 2L S5F 2h 57 52 53 SF 46 4C 41 53 48 2 S5F SHY *URS FLASHY
24 57 5z 53 5F 46 4C 4L 53 43 2zA SF 24 57 52 53 *WRS_FLASH_ +WR3

Kl |
—Messages

I

-

If the write operation is unsuccessful, the diagnostic will never complete. You will
need to click the Abort Diagnostic button to stop the write operation. Check to
make sure that you have the right flash device selected in the Device Selection
area in the Configuration tab, and that you are using the correct base address.

To test your ability to erase flash memory, click the Start Erase Diagnostic button.
This will erase the selected flash sectors.

You may see a Target Exception message. This requires no action.

If the erase operation is successful, the selected sectors will be erased and the space
under the ASCII heading in the Memory/Diagnostics view will be empty.

If the erase operation is unsuccessful, the diagnostic will never complete. You will
need to click the Abort Diagnostic button to stop the erase operation. Check to
make sure that you have the right flash device selected in the Device Selection
area in the Configuration tab, and that you are using the correct base address.

176

10

On-Chip Debugging for Linux

10.1 Introduction 177

10.2 Linux Virtual Memory Management Architecture 178
10.3 Connection Parameters 179

10.4 Emulator Configuration 183

10.5 MMUL Settings 183

10.6 Booting a Linux System with OCD 185

10.7 Boot Line Commands 192

10.8 Reverse-Engineering the Boot Line Parameters 195
10.9 Debugging the Linux Kernel 196

10.10 Kernel Configuration 198

10.11 Debugging User Space Applications with OCD 198
10.12 Linux Troubleshooting 201

10.1 Introduction

This chapter describes the basic concepts required to use Wind River On-Chip
Debugging (OCD) tools to debug a Linux system.

177

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Wind River OCD tools for kernel and kernel module debugging allow you to
develop Linux board-support code, such as LSP, drivers, stacks, I/O, and kernel
priorities.

NOTE: Linux memory management is not supported for all processor families.

For general Workbench information, see the Wind River Workbench for Linux User’s
Guide.

10.2 Linux Virtual Memory Management Architecture

Since Wind River OCD tools typically access the entire physical address space
(memory, devices, and peripherals), it’s important to know how Linux manages
the virtual memory space and translates to an OCD memory access.

The Linux memory architecture consists of three identified spaces:

» Kernel Space - Virtual and partially linear (generally fixed and not paged.)
OCD Kernel Mode supports static translation and paged translation.

» Static translation covers all areas statically linked to the kernel.

= Paged translation covers all dynamically allocated areas, such as kernel
modules, insmod and kmalloc.

= Exception Space - Fixed and linear (component of kernel space, architecture
dependent.) Used for Real Mode.

Real Mode is the mode of debugging of an application that is executing in the
target when the Linux memory management unit (MMU) is disabled. In this
mode the CPU is not translating addresses.It usually covers the startup of the
kernel until the MMU is initialized and the exception vector.

= User Space - Virtual but not linear (demand paged). User space is the memory
area where all User Mode application work can be swapped out when
necessary.

Pages currently swapped out of these spaces to a filesystem cannot be accessed.

178

10 On-Chip Debugging for Linux
10.3 Connection Parameters

10.3 Connection Parameters

Figure 10-1

To use the Target Operating System (TOS) awareness for Linux, some
configuration is necessary in the connection definition you create in the Target
Manager view in Workbench.

1. Having selected your emulator type and target processor, click Next.

The Target Operating System Settings dialog appears, as shown in
Figure 10-1.

2. Inthe Booted Target OS on selected CPU: field, point to the kernel image that
you are using. Workbench uses this kernel image only to load the symbols
automatically, and not to download them physically to the target.

Target Operating System Settings

':; New Connection

Target Operating System Settings

Select the target operating system which is currently booted on the
configured target,

Available CPU(s) on target board:

Targek operating system settings

Booted Target O35 on selected CPUL | None A4

Description:
Providing plugin:

Kernel image: Browse,..

Kernel imaqge is optional for None

Target 05 plugin pass-through options: W

Help H < Back. ” Mext =

179

Figure 10-2

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

3. Click Next.

The Memory Options dialog appears, as shown in Figure 10-2.

Memory Options

) Mew Connection

Memory Options

Specify the memory options for the target cpu,

Available CPU(s) on target board:

Mermory mapping

Offset Size Attributes

Undefined memory areas accessible

@ [< Back][Text =]

Cancel

Use this dialog to specify the base address and size of the physical RAM that

is allocated to the Linux system.

4. Click Next.

The Object Path Mappings dialog appears, as shown in Figure 10-3.

5. Select Load module symbols to debug server automatically if possible.

6. Define the path substitution required between your target filesystem and host
filesystem. If your system loads a large number of modules automatically, you
may want to load the symbols manually for only the subset wanted.

180

10 On-Chip Debugging for Linux
10.3 Connection Parameters

Figure 10-3 Object Path Mappings

New Connection

Object Path Mappings
Specify how files in the target file system are visible in the host file system,
Available CPUs) on target board:

Load maodule symbals to debug server autarnatically if possible

Pathname prefix mappings:

« | Target Path Hast Path add...
<any = <leave path unchanged =

Export...

ad

| v

EBasenarne mappings:
| [** .unstripped],[*;*]

[Help][= Back “ Mext =

7. Click Next.
The Target State Refresh dialog appears, as shown in Figure 10-4.

181

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Figure 10-4 Target State Refresh

:; Mew Connection

Target State Refresh

Configure the corels) kargek states refresh settings,

Available CPUCS) on target board:

Initial target skate query settings
] query target ohject lists and target object states on connect
[Jouery target object statefs) on skopped events

] uery target object statefs) on running events (receiving objieck only)

Targek stakte refresh settings
(%) Refresh the karget state manually anly
() Auto-refresh the target state periodically

[CLisken to execution conkext [fe-cycle events {conbext-skart, conkext-gxit)

1t is nokt known if life-cycle events for execution contexts are provided.

[Help H < Back “ Mext = l

8. Select your desired refresh method.

The default setting is Refresh the target state manually only. Retrieving target
memory through OCD is very time-consuming, so if you select Auto-refresh
the target state periodically, it can slow your project significantly.

The change of state (running or stopped) is event driven, and does not require
auto-refresh to update Workbench on these events.

9. Click Next to bring up the connection summary.

10. Click Finish.

182

10 On-Chip Debugging for Linux
10.4 Emulator Configuration

10.4 Emulator Configuration

Once you have connected to your emulator, you must enable the MMU
configuration.

In the CF Options view, set the Memory Management Unit Mode (MMU) option
to ENABLED, or enter the command

>BKM>cf mmu enable

at the >SBKM> prompt in the OCD Command Shell.

This will enable the translation mechanism required to debug a Linux kernel with
an OCD connection.

If you plan to use OCD to transfer the boot line to the kernel (see 10.6 Booting a
Linux System with OCD, p.185):

In the CF Options view, set the Load Boot Table on IN (BL) option to ENABLED,
or enter the command

>BKM>cf bl enable

at the >SBKM> prompt in the OCD Command Shell.

Enabling this option will cause the boot line to be written into memory upon every
target reset.

10.5 MMUL Settings

Linux has address locations that are defined and translated before runtime. For
instance, the Linux image may be compiled at an effective address of 0xC0000000,
loaded into the target at RAM location 0, and run from location 0 until the Memory
Management Unit is initialized and turned on. Other locations may be I/O, DMA,
or other fixed and linearly mapped locations, such as the address locations of
exceptions that run in Real Mode. The MMU commands allow you to pre-map
these locations for facilitating downloads and improving performance.

MMU commands:
* MMUL: List the pre mapped translation(s)
» MMUA: add a translation

183

Syntax

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

= MMUD: remove one or all translations

In most cases, only one MMUL translation needs to be defined: the one that maps
the entire physical address space into the kernel space.

MMUL logical_address physical_address mask Mode Process_ID

Example 1

For a board that has 512 MB of RAM and the kernel linked at OxC0000000, the
following MMUL is required:

Logical address: 0xC0000000

Physical Address: 0

Mask: 0xe0000000 // mask a region of 512 MB

Mode and Process ID (PID) can be set to 0, as they are reserved for future use.

At the >BKM> prompt in the OCD Command Shell, enter

>BKM>mmua C0000000 0 E0000000 0 O

Example 2

To map direct access to a 64 KB I/O region located at FEO000000 and 64KB:
At the >BKM> prompt in the OCD Command Shell, enter

>BKM>mmua £e000000 £e000000 ££££0000 0 O

Example 3

Some PowerPC architectures (such as PPCé6xx, PPC7xx, and PPC82xx) disable
their MMU entirely when entering an exception. These architectures require a
translation to map the bottom of the memory so the tools can debug exception
handler (64K in this example):

>BKM> mmua 0 0 ££££0000 0 0

These settings are persistent, and need to be entered only once.

NOTE: The Workbench Linux plug-in automatically sets the MMUA to
0xC0000000 based on the memory settings you enter in the Memory Options page
in the New Connection wizard.

184

10 On-Chip Debugging for Linux
10.6 Booting a Linux System with OCD

10.6 Booting a Linux System with OCD

There are two main methods to boot a Linux target with OCD tools:

* Rely on the existing boot loader, such as redboot, uboot, or yamon, to boot the
system as if the OCD tools were not connected to the target.

» Use the OCD tools’ boot line capabilities to download and boot a Linux kernel
image without using a boot loader.

10.6.1 Standard Boot

If a boot loader is already developed for your target, this is probably the easiest
way to start debugging a Linux System with OCD tools.

You need to reset the target, let the target resume from its reset vector, and let the
boot loader load and boot the Linux image.

If aboot loader is resident and configured to boot Linux, you do not need a register
file.

Workbench automatically installs a hardware breakpoint at the start of the Linux
kernel to detect that the kernel has been loaded. This enables the TOS awareness
features (such as the List of Processes), as well as all the breakpoints you have
already defined.

NOTE: After every reset, all user breakpoints are automatically disabled until the
kernel has started.

For a standard boot, use the following steps:
1. In the Target Manager view, select Reset and Download.

The Reset and Download view appears, as shown in Figure 10-5.

185

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Figure 10-5 Reset Tab

) WRICE_440GP - 440GP

Modify attributes and launch.

Mame: | WRICE_440GP - 440GP |

| # Main || #* Projects to Build | * Reset | # Dpownload || . Instruction Poinker || # Run Options || Eiy Source || B Common|
0GP |

[CIPlay register file

Reset M - Reset
(%) specified core
8l coves

Cores tied on reset:

2. In the Reset tab, check the Reset box and select INN -- Reset.

On an INN command, the tools will reset the target without initializing any of
the peripherals.

3. Select the Download tab.

186

10 On-Chip Debugging for Linux
10.6 Booting a Linux System with OCD

Figure 10-6 Download Tab

) WRICE_440GP - 440GP

Modify attributes and launch.

Name: | WRICE_440GP - 440GP |

Wain g Projects to Build L2 Reset| # Download |Q Instruckion Pointer | ## Run Options 'E'W Source |] Comman
0GP |

Filename Download | Werify Load Symbals Offset

[Apply][Revert]

[Debug H Close]

If you entered a kernel image name in the Target Operating System Settings
dialog (see 10.3 Connection Parameters, p.179), you do not need to specify a
download file.

If not, select your Linux image (vmlinux) and select the checkbox in the
Download field. Set the Verify field to None and leave the Load Symbols field
unchecked.

4. Select the Instruction Pointer tab.

187

Figure 10-7

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Instruction Pointer Tab

WRICE_440GP - 440GP

Modify attributes and launch.

Name! | WRICE_440GP - 440GP |

| * Main || #* Projects to Build || ® pecet || # Download | . Instruction Painter | # Run Options || E. source || B Comm0n|
440GP |

=&t instruction pointer after download
Use start address From download file

Use start address from symbol

Use specified start address 1

ety |[et |

[Debug H Close]

5. Uncheck Set instruction pointer after download. The INN reset will leave the
instruction pointer already at the reset vector.

6. Select the Run Options tab.

188

10 On-Chip Debugging for Linux
10.6 Booting a Linux System with OCD

Figure 10-8 Run Options Tab

%) WRICE_440GP - 440GP

Modify attributes and launch.

Mame: | WRICE_440GP - 440GP

Main | ¥ Projects toBuld | # Reset | #® Download

Instruction Pointer| # Run Optians |E§_// Source | = Common

440aP |

ODD nak run

(O Run to address
(%) Run to end of program

[Apply ” Revert]

[Debug H Close]

7. Select Run to end of program. This automatically starts the target after the
reset is completed. (Optional, but recommended for targets running a
Watchdog timer by default to reduce the time elapsed between INN and GO.)

NOTE: AMCC 40X and 44X processors have a debug control register (DBCRO) that
controls debug event conditions, which can affect the operation of any emulator.
By default, uboot clears this register, which disables the breakpoint mechanism.
Either use a version of uboot that does not clear this register, or select Play post
download script and specify a script to issue the command DR DBCR0 81000001 to
the target, thereby re-initializing the DBCRO register for emulator debugging.

8. Click Debug.

10.6.2 OCD Boot

OCD tools can download the kernel image directly into memory, allowing you to
start the kernel without boot loader involvement.

189

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

If you are loading and starting the Linux kernel directly through JTAG, without a
bootloader, you need a register file. The register file needs to initialize the registers
for correct memory access as well as the boot line.

No MMUL or MMUOS settings should be part of the register file; these parameters
are initialized upon connection to the target, when a symbol file is loaded (or
reloaded.)

The OCD tools will reset the target, initialize the required target peripherals
according to the values defined in the register file, and initialize the required boot
parameters into memory as defined in the BL command.

To perform an OCD boot, use the following steps:
1. In the Target Manager view, select OCD Reset and Download.

The Reset and Download view appears, as shown in Figure 10-9.

Figure 10-9 Reset Tab

% Reset & Download

Core Connection: MPC8260

Reset |Downlnad Instruction Poinker | Run Options | Stakus

[1Play register file

Reset |IN - Resetisetup regs i

(%) Specified care
) all cores

Cores tied on reset:
MPCE260

T ——

2. In the Reset tab, check the Reset box and select IN -- Reset/setup regs.

On an IN command, the tools will reset the target, initialize peripherals with
the register file value, and initialize the boot line.

190

10 On-Chip Debugging for Linux
10.6 Booting a Linux System with OCD

3. Select the Download tab.

Figure 10-10 Download Tab

', Reset & Download

Core Connection: MPC8260
Reset | Download | Instruction Painter | Run Options | Status
Filename Download Verify Load Symbols | Offset
Cewrnlinuzvmlinu E]
< J _
| B

4. Click Add Files to specify the kernel image to download. Select both
Download and Load Symbols. Set the Verify field to None.

5. Select the Instruction Pointer tab.

191

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Figure 10-11 Instruction Pointer Tab

'J Reset & Download

Core Connection: MPCB260

Reset | Download | Instruction Pointer | pun Options | Status

Set instruckion painter after download

(%1 Use specified start address | 1 w

T

6. Select Set instruction pointer after download.

7. Select Use specified start address and set the instruction pointer to the start of
the kernel.

NOTE: For all architectures that start with the MMU disabled, the start address is
not the one defined in the *.elf file, but the translated one to the real space. For
example, 82xx vmlinux reports a start address at 0xC0000000, but the real start
address is 0.

8. Click Reset and Download.

10.7 Boot Line Commands

Wind River emulators support various low-level commands and configuration
options that allow you to create, define, pre-set, and manage the Linux boot line
parameters and Linux kernel paging mechanism.

192

Table 10-1

10 On-Chip Debugging for Linux
10.7 Boot Line Commands

The following table gives an overview of the low-level commands and
configuration options that are specific to Linux boot line configuration. For full
descriptions, see the Wind River Workbench On-Chip Debugging Command Reference
and the Wind River Workbench for On-Chip Debugging Configuration Options
Reference.

Low-Level Boot Line Commands

Command Examples Description
BL BL ADD These commands allow you to customize the
BL DELETE location and values for the Linux boot line, which
BL MODIFY are automatically passed to Linux through a
BL DISPLAY register group. Available only when the
BL UPLOAD configuration options MMU and BL are set to
ENABLED.

NOTE: In addition, these commands may require other resources, such as target
workspace (RAM). For instance, the BL command requires you to allocate target
memory using the CF WSPACE configuration option.

Like other operating systems, Linux requires parametric information about its
network, file system, and target board environment. In some cases, these boot line
parameters may be compiled into the Linux image as default parameters; or Linux
may acquire these parameters from the boot loader for more versatility.
Consequently, Linux must be customized to accept the parameter format of the
boot loader (for example, uboot). Generally, Linux retrieves pointers or values to
boot line parameters by using registers. Boot line parameters include memory
information, IP address information, and so on. Incorrect boot line parameters are
an obstacle to the successful bring-up of Linux.

The various BL commands allow you to create any number of structures, which are
appropriate for virtually any Linux startup. The structures may reflect the fields of
the Linux architecture-specific structure bd_info bd_t; the Linux boot line; or even
the MAC address assigned to the board.

Pointers to the structures are generally passed using a group of registers. The
structures and their registers can be entered and held by the emulator using a BL
command and passed on a GO command. Once both tables (Structure and
Register) are configured with the BL commands, Linux boot loader code is no
longer required to be pre-installed-embedded into the target and/or included
within the downloaded application. Those tables are retained in the emulator's
NVRAM, so their contents are persistent from one session to another.

193

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

The following example displays a customized set of boot line parameters for a
particular distribution of Linux that have been generated by the BL command and
stored in the emulator’s NVRAM. On a GO command, these parameters will be
loaded into the target memory and passed to Linux via a set of register pointers.
This process is controlled by the emulator's run-time firmware DLL.

Example:

Dynamic Boot Table:

structure configuration

Entry Description | Value/String

__________________________ | e

00 MemStartAdd | 0x00000000

01 MemSize | 0x04000000

02 FlashStart | 0x40000000

03 FlashSize | 0x00400000

04 FlashOffset | 0x00040000

05 SRAMStart | 0x00000000

06 SRAMSize | 0x00000000

07 IMMR Base | 0x£0000000

08 BOOTFlags | 0x00000001

09 IP_ADDR | 0x00000000

10 ENETADDR [6] | 0x00a0lea87bcb

11 ETHSPEED | 0x6c79

12 INTFREQ | 0x0bcd3dso

13 VBUSFREQ | 0x01£78a40

14 CPMFREQ | 0x03e£1480

15 BRGFREQ | 0x01£78a40

16 SCCFREQ | 0x01£78a40

17 VCO | 0x07de2900

18 BAUDRATE | 0x00002580

19 bi_mon_fnc | OxOfffffff

20 CmdStrg | ->console=ttyS0,9600 root=/<-
| ->dev/ram0 rw

The Entry field is a sequential reference for each line item.
The Description field is an ASCII field only used for comment.

The Value/String field can contain a char, byte, unsigned long, or unsigned short
value.

» Unsigned long values are displayed in hex using 8 digits, as shown in Entry 01.

» Unsigned short values are displayed in hex using 4 digits, as shown in Entry
11.

» Char values are displayed as shown in Entry 20. (Char strings greater than 20
characters are displayed on several lines, using arrows.)

» Byte values are displayed as shown in Entry 10.

194

10 On-Chip Debugging for Linux
10.8 Reverse-Engineering the Boot Line Parameters

Examples of boot lines for various architectures and boot loaders are provided as
part of the Linux register files distributed with Wind River Workbench.

10.8 Reverse-Engineering the Boot Line Parameters

The boot line parameters change with the target architecture, the Linux
architecture, and the developer. You may desire the boot line parameter
information without knowing the low-level details in order to set up a boot line
script. In most cases, this is possible by acquiring an operational target board with
startup /bootstrap firmware and doing the following:

1.
2.

Set up the target with your Wind River emulator.

Allow the boot ROM to run from ROM by issuing the INN and GO commands.
(Assuming you have set up the MMUL properly.)

Download your image using Tftpboot.

Halt the emulator by issuing a HA command, and set a hardware breakpoint
at the beginning of where your Linux image will start. This start location can
be retrieved from the System.map of the vmlinux build.

NOTE: Some processors have debug control registers that are essential for
emulator function, and which may be manipulated by the boot ROM. Halting
after Tftpboot may allow the emulator to reacquire control of these debug
control registers.

Uncompress and boot your image using bootm.

After hitting the hardware breakpoint, issue a DR command to display the
register setup before Linux starts.

The registers contain pointers to the boot information structures. For uboot,
consider r2, r3, r6, and r7 (r4 and r5 are generally the RAMdisk pointers and
should be set to zero if there is no RAMdisk).

At the >BKM> prompt, enter DML (r3) and press ENTER several times. This
displays the boot information. Do not make any changes at this time. This is
only to understand what your boot flash put into memory for Linux boot
information.

195

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Now you should be able to download your Linux image (as before, but
without a reset or register load) and run the image as if it were booted from
ROM. If the boot ROM successfully boots the Linux image, then your Linux
image is compatible with your boot ROM and the image of the boot
information structure can be retrieved by the emulator. If not, you must set up
the boot line in a register file in accordance for Linux. To do this, you need to
know what your Linux image expects for boot information (in memory).

8. The downloaded image (via the emulator) is now functioning properly and
has the proper boot line and register setup from ROM. Next, repeat Steps 2
through 5 and capture/duplicate the register setup (as in Step 6) and memory
storage with the boot line facility.

10.9 Debugging the Linux Kernel

Wind River Workbench OCD Edition allows you to debug every part of the kernel,
starting at the very first opcode, as if it were any standalone application. It is
possible to debug the early initialization routines, as well as the entire boot
sequence.

Wind River recommends that the kernel be built with -gdwarf2 to optimize the
symbol reading performances in Workbench.

NOTE: Due to the required optimization level used to build the Linux kernel, some
of the source level single stepping operation seems to not follow the code flow, and
steps out of order.

10.9.1 Debugging Linux Kernel Modules

Linux kernel modules are dynamically allocated in the kernel space when an
insmod is performed.

Kernel Module Detection

Workbench automatically detects that a module was installed and lists the module
name in the Target Manager view.

196

10 On-Chip Debugging for Linux
10.9 Debugging the Linux Kernel

Workbench transparently installs breakpoints in the sys_init_module and
free_module functions to keep track of the module loading and unloading in the
system.

If you defined the target RootFileSytem path in the connection wizard (see

10.3 Connection Parameters, p.179), Workbench can automatically read the symbol
file and relocate the different sections according to where the module has been
allocated, to allow debugging of the module. (You can also manually load the
symbol file by right-clicking the module name and selecting Load Symbol File.)

Debugging the init() Function of a Module

Figure 10-12

To debug the init() function of a module, use the following steps:

1. Place a breakpoint in the sys_init_module function where the mod->init() is
called.

2. In the Linux shell, enter the command insmod module_name.
3. When the breakpoint is hit, step in the init() function.

Note that Workbench automatically detects the module when sys_init_module is
exited.

To see the module appear in the Target Manager view while stopped in the middle
of sys_init_module, select the target that needs to be refreshed in the Target
Manager view and press the Refresh button in the top right of the view.

Target Manager View

9 rarget pranager |
IR K R
= =] defaubilocahast) ~
bt _172.16.,17.70 {Genaral Linus Kernel 2.x)
BB bgt_172.16.18,223 (General Lirux Kernel 2.x)
gt _172.16. 20,53 (Genaral Linux Kemel 2.0)
E bge_172.16.20.93_0 [General Lirars Kerned 2.x)
rgt_Phalta_SKC (Wind Riwer Yeworks 6.2)
B vxsim (wind River Vxwiorks £.2)
B8 wRICE_pMToca
B wRIcE_MPCEzE)
B8 wRICE_MPCEHa
BB WeICE_MPCESSD
Bl WRICE_WincRiver PPMCTS00xE
B wriss_akec
B wRiss_mPoazed
[wrProbe_105G
= W wAphe SR D [wenected]
= i AP 6 [comected] tndeterminats)|

=ﬂ. il - Symbolfile: T:wmliouc
B waProbe_440G0

197

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

10.10 Kernel Configuration

For the Linux 2.6 kernel, the kernel module section link information is not
persistent in the kernel structures by default. For Workbench to properly relocate
the different modules’ symbol files, this information must be made persistent
using one of the following methods.

» For kernel versions 2.6.12 and above, set CONFIG_KGDB.

= For kernel versions 2.6.11 and below, you must both set CONFIG_KGDB and
apply a patch to the kernel. The necessary patch is named module.patch and
is located in installDirfwrwb_2.x_50/linux-2.x/kgdb/wrs-2.2.1/linux-2.6.10.

If turning on KGDB is an issue, the equivalent functionality can be obtained by
enabling the code conditionally compiled for CONFIG_KGDB in the
/kernel/module.c and /include/linux/module.h files.

In both module.c and module.h, replace

#ifdef CONFIG_KGDB

with

#1f defined (CONFIG_KGDB) || defined (CONFIG_WINDRIVER_OCD)
In module.h, add

#define CONFIG_WINDRIVER_OCD

(There are four instances in module.c and one in module.h.)

10.11 Debugging User Space Applications with OCD

You can use the Target Manager in Workbench to attach to a running process or a
particular thread of a process. This creates a debug context to see the state of a
particular process and debug it. The debug context thus created represents the User
Mode context of the attached process.

Every Linux application has two contexts: User Mode and Kernel Mode. Both
modes use the same process ID (PID.)

Workbench can attach only to threads that have a User Mode context. Workbench
cannot currently attach to kernel threads.

198

10 On-Chip Debugging for Linux
10.11 Debugging User Space Applications with OCD

The User Mode context can make system calls to the Kernel Mode context, but you
can see Kernel Mode context only in the system context.

OCD allows full debug capabilities within the user space application and its
shared libraries.

10.11.1 Attaching to a Process

You cannot create a process with OCD; you can only attach to one that is already
existing.

To attach to a running process, use the following steps:

1.
2.

In the Target Manager, click the Refresh View button.
Right-click on the process you want to attach to and select Attach to Process.

This option is only available for User Mode processes. For processes where it
is not available, the option will be greyed out.

Currently there is no way to auto-resolve a symbol file for the application, so
you must load symbols manually. Right-click on the attached process and
select Load/Add Symbols to Debug Server.

The Load/Add Symbols dialog appears.
Click Add.

In the browser window that opens, navigate to the symbol file you wish to use
and click Open.

You are returned to the Load/Add Symbols dialog.
Click OK.

10.11.2 Debugging a Process

Use the Debug view to run, step, and set breakpoints in process threads.

NOTE: You cannot stop only one thread. Whenever a breakpoint is hit in any
thread, the whole system stops.

199

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

10.11.3 Setting Breakpoints

Linux uses on-demand memory allocation; memory is not allocated to an
application until it needs it. You cannot set software breakpoints in areas of
memory that are not yet allocated. Attempting to set a software breakpoint in
unallocated memory returns an error:

IERROR! [msg 170000] : Unable to map virtual address

However, you can always set hardware breakpoints in the entire address space.

10.11.4 Thread-Qualified Breakpoints

By default, a set breakpoint goes to the parent; but Workbench allows you to set the
scope of a breakpoint to a single thread by selecting the drop-down menu in the
Breakpoints view and selecting Breakpoint Preferences.

However, whenever the breakpoint is hit, Workbench will stop the target,
determine if the breakpoint was hit in the correct thread, and if not, restart the
target. This transparent restart of the target can have an impact on the real-time
aspect of the application.

This is also true of processes. If you run the same process several times, the code
section of the application is not replicated; all the processes use the same area of

user space. So if a breakpoint is hit in one process, all other processes will stop to
check if the breakpoint was hit in the correct process and then resume.

10.11.5 Debugging the Beginning of a Process

To debug the beginning of a process, use an internal hardware breakpoint.

Set an expression hardware breakpoint from the system debug context at the start
address of the application. Then start your process.

10.11.6 Limitations

* You cannot start a process using OCD; you can only attach to an already
existing process, started from the shell or elsewhere.

» Thereis nonotification when a process dies. You must detach from the process
manually.

200

10 On-Chip Debugging for Linux
10.12 Linux Troubleshooting

Workbench cannot currently attach to kernel threads. You can debug kernel
threads through the system context.

10.12 Linux Troubleshooting

If you are having trouble, check the following:

Make sure the kernel symbol file has debug information.

Make sure the MMUL command returns 1 translation of type PHY-KERN to
match the Linux kernel translation.

Make sure the MMUOS command returns a list of parameters consistent with
the Linux kernel version you are using.

201

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

202

11

Using the WDB Transparent
Mode Driver

11.1 Introduction 203

11.2 Connecting Through the Transparent Mode Driver 204
11.3 Using the TMD With the Wind River ICE SX 206

11.4 Configuring the Target Server 209

11.5 Moving On 218

11.1 Introduction

NOTE: The Transparent Mode Driver is not supported for Wind River Probe. This
chapter applies only to the Wind River ICE SX.

In VxWorks debugging, a Wind River Debug (WDB) agent runs on the target as a
kernel task to provide debugging support. You can use the WDB agent to debug
kernel tasks and real-time processes on the target. The WDB agent specifies how
the target server on the host communicates with the target agent on the board.
Typically, Workbench communicates with the WDB agent using an Ethernet or
serial connection.

In some cases an Ethernet or serial connection may not be available for use; for
example, if your target does not have an Ethernet or a serial port on it, or if you are

203

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

using those ports for some other purpose. In this case you can use the Wind River
Transparent Mode Driver.

The Transparent Mode Driver provides an alternate communications channel for
allowing Workbench to talk to the WDB agent. The Transparent Mode Driver
works through the Wind River ICE SX, implementing communication over the
BDM/JTAG/EJTAG connection. The connection to the target operates entirely
through the standard BDM or JTAG debug link.

The Wind River Transparent Mode Driver supports all of the debug capabilities of
the WDB agent, including system mode, task mode, and virtual I/O. When
connected through the Transparent Mode Driver, the Wind River ICE SX also
functions as a second on-chip debug channel. This allows you to use the ICE to
download VxWorks images, set breakpoints in the kernel, debug device drivers,
and so on, in addition to using the WDB agent for task and process debugging.

In order to use the Transparent Mode Driver, you must set your Wind River ICE SX
to TMD mode, as described in TMD Mode, p.207.

You must also incorporate the Transparent Mode Driver into your Workbench
build. For information doing this, and for general information on the WDB agent,
please see the Wind River Workbench User’s Guide: Setting Up Hardware.

11.2 Connecting Through the Transparent Mode Driver

The most common use of the Transparent Mode Driver is to act as a WDBRPC
connection mechanism to the WDB target agent.

This section briefly explains some of the technical details regarding how the
Transparent Mode Driver works when it is being used as the link connecting the
WDB agent on the target and the target server on the host.

When the Transparent Mode Driver is not being used, the host to target agent
connection consists of either a network or a serial connection, as shown in
Figure 11-1.

204

11 Using the WDB Transparent Mode Driver
11.2 Connecting Through the Transparent Mode Driver

Figure 11-1 Typical Host to Target Agent Connection

HOST

Workbench

Target Server

WDBRPC Backend

TARGET
Application

WDB Agent

Serial or Network
WDB Protocol Driver

Network or serial connection

For this connection scheme to work, you need a fully functional Board Support
Package (BSP), along with known good hardware, as well as network and / or serial

drivers.

When you use the Transparent Mode Driver, the connection scheme is simplified,

as shown in Figure 11-2.

Figure 11-2 Connection Using the Transparent Mode Driver

HOST

Workbench

Target Server

WDBRPC Backend

TARGET
Application

-

WDB Agent

Transparent Mode Driver

Network
Connection

JTAG

Connection

Wind River ICE

205

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

In this scenario, the Wind River ICE SX provides the link between the backend and
the target agent. From the perspective of the host tools, the Transparent Mode
Driver appears to be identical to the standard supplied connection (either an
Ethernet or a serial connection).

When you are using the Transparent Mode Driver, the only difference when setting
up the target server is that the IP address of the Wind River ICE SX is listed in the
target server configuration dialog box instead of the IP address of the target.

Information on configuring a target server is available in 11.4 Configuring the Target
Server, p.209.

11.3 Using the TMD With the Wind River ICE SX

You may need to configure your Wind River ICE SX before you can use it with the
Transparent Mode Driver.

11.3.1 Configuring Wind River ICE SX

Information on configuring Wind River ICE SX for network operation is available
in the Wind River ICE SX for Wind River Workbench Hardware Reference. Follow the
instructions provided in that document to configure your Wind River ICE SX for
network operation.

There is one additional option that must be set when you are using the Transparent
Mode Driver; the UDP Console Port must be set to 17185. The following steps
explain how to do this.

1. In the ethsetup menu, accessible from the >NET> prompt (as described in the
Wind River ICE SX for Wind River Workbench Hardware Reference), select Option
5 to view the current port settings.

2. If UDPCNSL is already set to 17185, no modifications are necessary, and you
should exit the ethsetup menu.

3. 1f UDPCNSL is not set to 17185, type 6 to allow the port values to be changed.
A list of port settings appears.

206

11 Using the WDB Transparent Mode Driver
11.3 Using the TMD With the Wind River ICE SX

4. Type the number assigned to the UDPCNSL port, which will allow the
UDPCNSL port setting to be changed, and change it to 17185.

5. Type 0 to exit the Change Port Settings menu.
You are returned to the main ethsetup menu.

6. To save the changes in the ICE unit’s NV-RAM, select Option 8 and press
ENTER.

7. Select Option 9 to exit the ethsetup menu.
You are returned to a >NET> prompt in the Terminal view.
8. Power cycle the Wind River ICE SX unit so these changes take effect.

The ICE unit runs through the same series of internal tests as on initial startup,
making sure that all the hardware and firmware in the unit is functioning
correctly. These tests are again displayed in the Terminal view in Wind River
Workbench, and when they conclude, the > NET > prompt is again visible in
the view.

11.3.2 Configuration Options

For some processors, you may also need to change some of the configuration
options on your Wind River ICE SX.

NOTE: For Freescale ColdFire processors, setting the CF options TMD Mode and
Trap Exception is not necessary. For ColdFire processors you only need to set the
CF option Target Console Redirection.

Setting CF Options in the CF Options View
In the Workbench toolbar, click on Window and select Show View > CF Options.

TMD Mode

1. Under the Command Name heading in the CF Options view, scroll down to
TMD.

2. Double-click on the value under the Current Setting heading to bring up a list
of options.

3. Select ENABLE.

207

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

4. Click on the Send All CF Options to Target icon.

Trap Exception

1. Under the Command Name heading in the CF Options view, scroll down to
TRPEXP.

2. Double-click on the value under the Current Setting heading to bring up a list
of options.

3. Select BREAKPOINTONLY.
If BREAKPOINTONLY is not available for your target board, set TRPEXP to NO.
4. Click on the Send All CF Options to Target icon.

Target Console Redirection

1. Under the Command Name heading in the CF Options view, scroll down to
TGTCONS.

2. Double-click on the value under the Current Setting heading to bring up a list
of options.

3. Select BDM.
4. Click on the Send All CF Options to Target icon.

Setting CF Options with Low-Level Commands

You can also set these options using low-level commands.

1. In the Workbench toolbar, click on Window and select
Show View > OCD Command Shell.

2. At the >BKM> prompt in the OCD Command Shell, type CE.

Alist of the current settings for the CF options on your Wind River ICE SX will
appear.
3. At the >BKM> prompt, type CF TMD ENABLE and press ENTER.

4. Type CF TRPEXP BREAKPOINTONLY and press ENTER.

If BREAKPOINTONLY is not available for your target board, set TRPEXP to NO.
5. Type CF TGTCONS BDM and press ENTER.
6. Type CF again.

208

11 Using the WDB Transparent Mode Driver
11.4 Configuring the Target Server

The CF options now show the values you entered.

7. Type the command IN or INN to reset the processor. Your changes will not take
effect until you reset the processor.

11.4 Configuring the Target Server

If an image is running on your target, your host will be able to communicate with
the running WDB agent. To do this, you must configure and activate a Target
Server. To configure a Target Server, use the following steps.

First, open Workbench according to the method for your host computer.

Linux/Solaris Hosts
From your installation directory, issue the command
$./startWorkbench.sh
Windows Hosts
Select Start > All Programs > Wind River > Wind River Workbench version.

On Windows hosts, Workbench prompts you to specify a workspace location.
Linux hosts use the default location installDir/workspace.

When Workbench opens, the Quick Target Launch dialog appears.

209

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Wind River On Chip Debugging
@ Chioose How You Wank to Start
Defined Launches
4F| Create anewlaunch configuration
=
Edit an existing launch configuration
Connect, Attach, Reset and Download
Sync with target and download symbols
(#) [Joo not show this dialog on startup Close

1. Select Create a new launch configuration.

The Connection Type dialog appears.

210

11 Using the WDB Transparent Mode Driver
11.4 Configuring the Target Server

Mew Connection

Connection Type

Plzase select connection bvpe,

Wind River OCD ICE Connection

Wind River OCD 155 Connection

‘Wind River OCD Probe Connection

Wwind River Wx\Warks 6.3 Care Dump Conneckion
Wwind River WeWarks 6, Simulator Canneckion

Conneckion

2. Choose Wind River VxWorks 6.x Target Server Connection.

NOTE: The Transparent Mode Driver is not currently supported for Linux.

3. Click Next.

The Connection Settings dialog appears.

211

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

% New Connection

Target Server Connection

@ Please enter a walid target hoskname or IP-address,

Back End Settings
Back End: |wdbrpc V| CPU: |(default From target) v|

Target Mame [IP Address: | | V|

Kernel Image
(3)File Path From Target (IF Available)

(IFile:

[Bypass checksum comparison

Advanced Target Server Options
‘erbose target server output

Options: | R C:fworkbenchz 4/ ace -R -4 v| [Edit...]

Command Line

| tgkswr =¥ R C: fworkbenchz . 4 workspace -Ri -4 |

’ Help] ’ < Back] Mext =

4. Set the Back End field to wdbrpc.

5. Inthe Name/IP Address field, enter the IP address of your Wind River ICE SX
unit. (Make sure you use the IP address of the ICE, and not the IP address of
your target.)

For information on assigning an IP address to your ICE unit, see the
Wind River ICE SX for Wind River Workbench Hardware Reference.

6. Click Next.
The Memory Options dialog appears.

212

11 Using the WDB Transparent Mode Driver
11.4 Configuring the Target Server

%) New Connection

Memory Options

Specify the memary options for the target cpu.

Awailable CPUCS) on target board:

Memory mapping

Offset Size Attributes Add...

Undefined memoty areas accessible

':'f'," [= Back “ Mext =]

The Memory Options dialog is only necessary for Linux or other
non-VxWorks target operating systems, so leave the settings at their defaults
and click Next.

The Object Path Mappings dialog appears.

213

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

New Connection

Object Path Mappings

Specify how files in the target file system are visible in the host file
syskem

Available CPU(s) on Target Board:

Load maodule symbols ko debug server auktomatically if possible

Pathname Prefix Mappings:

Target Path Host Path Add. ..
boathast: =strip target prefix=
Tegtswr) Crywarkbenchz, 4yworkspacel
<an > <leawve path unchanged =
S *

Basename Mappings:
| [*p* unstripped],[**]

[Help][< Back ” Mexk = H Finish][Cancel]

Use this dialog to make sure your pathnames are mapped correctly. To change
the pathname mappings, use the Add, Edit and Remove buttons.

7. Click Next.
The Target State Refresh dialog appears.

214

11 Using the WDB Transparent Mode Driver
11.4 Configuring the Target Server

New Connection

Target State Refresh

Configure the corels) barget: states refresh settings.

Available CPIU{s) on Target Board:

Initial Target State Query Settings
Query target object lists and target object states on connect

[Query target object state(s) on stopped events

[Guery target objeck skatels) on running events freceiving object onlyd

Target State Refresh Settings
(%) Refresh the target state manually anly

() Auko-refresh the target stake periodically

Listen to execution context life-cycle events {context-start, context-sxit)

Life-cycle events are provided for all execution conkexts!

[Help H = Back, ” Mext =][Finish ” Cancel]

8. Use this dialog to specify the target state query and target state refresh
parameters.

9. Click Next.
The Default Breakpoint Options dialog appears.

215

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Mew Connection

Default Breakpoint Options

Select the default breakpoint options For newly created breakpoints,

Available CPU(s) on target board:

Default Breakpaoint Stop Scope
() stop all
(¥ Stop triggering thread

® (o) [et

Use this dialog to set default breakpoint options for newly created

breakpoints.
10. Click Next.

A connection summary appears.

216

11 Using the WDB Transparent Mode Driver
11.4 Configuring the Target Server

% New Connection

Connection Summary

Please review the connection information

Connection name: | tgt_255.23.2.43 shared: []
SURREry
Property Yalue -~
DEVICE WTE_VEWORKS
MAME_TMAPPING [** unstripped],[**]
PATH_MAPPING [boothost:; 1d,[ftgtsyr [Cworkbenchz, 4 works

isFetchTargetStateOnRun False
isFetchTargetStatednStop False
targetStatelpdatestratec manual

Immediately connect to barget iF possible

[Help H < Back] [Firish][Cancel]

11. Check the summary to be sure your settings are correct and click Finish.

You are returned to the Device Debug perspective. The target server
connection is now visible as a target name in the Target Manager view.

NOTE: If you do not want to connect to your target now, uncheck the Immediately
connect to target if possible box. You can connect to your target at any time by
right-clicking on the target name in the Target Manager view and selecting
Connect.

217

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

11.5 Moving On

Once the target server has been launched successfully, you can use any of the
Wind River Workbench tools. Workbench operates in the same fashion regardless
of whether the WDB connection is serial, Ethernet, or the Transparent Mode
Driver. The only difference you may notice when the Transparent Mode Driver is
in use is the speed, which is due to limitations on the BDM/JTAG/EJTAG
connection type.

For information on Workbench tools, see the Wind River Workbench User’s Guide.

218

12

Internal Software Trace

12.1 Overview 219

12.2 The Trace View 220
12.3 Configuring Trace 225
12.4 Tracing Execution 231

12.1 Overview

Internal software trace is only supported for PowerPC 85xx, PowerPC 86xx, and
PA Semi PA6T-1682M processors. This chapter applies only to the PowerPC 85xx
and 86xx and the PA Semi PA6T-1682M.

Internal trace captures a snapshot of your executing code to a memory array, at full
speed. It saves up to hundreds of thousands of machine cycles, displaying
addresses and instructions; PPC 85xx and 86xx also display transferred data.
Wind River Workbench translates raw machine cycles to assembly code or C/C++
statements, and displays them in the Trace view.

Workbench captures only memory cycles, and may not reflect what the core
actually executes, especially if cache is enabled.

Wind River Workbench starts and stops trace collection based on user-defined
triggering mechanisms.

219

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

12.2 The Trace View

To open the Trace view, select Window > Show View > Trace View.
The Trace view appears, unpopulated.
The Trace view has two fields: the Events field and the Trace field.

The Events field shows the trace buffer. When code runs, the Events field shows
the start of trace and the end of trace. It also displays the type of trace event.

For PPC 85xx and 86xx processors, the Trace field has five columns, from left to
right: Event Occurrences (unlabeled), Address, Abs Time, DEL Time, and
Instruction (unlabeled.) For PA Semi PA6T-1682M processors, the Trace field is the
same except that it does not use the Abs Time and DEL Time columns.

The Event Occurrences column shows the type of trace event.
The Address column shows the address or line number of the trace event.

The Abs Time column shows the absolute time, that is, the elapsed time since the
beginning of trace.

The DEL Time column shows the delta time, that is, the change in absolute time
since the last trace entry.

The Instruction column shows the executed instructions. To set the code display,
right-click in the Instruction field and select Show Code Level. From the list of
options, select Functions, Source, or Disassembly.

12.2.1 Trace View Buttons

The buttons in the Trace view have the following functions:

Collapsing and Expanding Fields

The first four columns in the Trace field (or the first two columns for PA Semi
PA6T-1682M processors, which do not use the Abs Time and DEL Time columns)
can be collapsed or expanded using the four toggle buttons in the Trace view, as
shown in Figure 12-1.

220

12 Internal Software Trace
12.2 The Trace View

Figure 12-1 Trace Toggle Buttons

\F:IEEEEI&L

Toggle Delta Timestamp Bar

Toggle Absolute Timestamp Bar

oggle Address Bar

Toggle Event Bar

To collapse any column, click on the toggle button for that field. To re-expand it,
click on the toggle button again.

The Instruction column cannot be collapsed.

Toggle Trace/Source view Auto-Sync

Click this button to set the Workbench editor to align itself with any highlighted
instruction in the instruction field in the Trace view. With this button toggled,
clicking on a function in the Trace view will cause the editor to jump to that
function. To un-sync the Trace view and the editor, click the button again.

Clear Trace Buffer

Clear the trace buffer so that previously stored trace data is not included in the next
trace that appears. Whenever you add new code, or manually alter the Program
Counter value, you should clear the trace buffer before running or stepping, to
prevent errors from occurring due to old trace data in the buffer. The button can
also be used to trace individual functions by clearing the buffer and then stepping
over the function.

The button does not actually flush the trace buffer; it just moves the pointer to the
beginning of the buffer, so any previous data is overwritten.

221

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Refresh Trace View

Click this button to refresh the entire Trace view, including the Events field.
Refresh the Trace view to display the newest good information.

Open Trace Rules Dialog

Click this button to open the Trace Rules dialog, as shown in Figure 12-2.

Figure 12-2 Trace Rules Dialog

Trace Rules Configuration

"Rule File Mame

| Browse |
|

Relocatable CodefData Rule Definitions

Memary Type | Start Address | End Address

1] 3|

&dd Rule Remove Ruls Save Rules |

~Image File Settings

* Image file must be manually added to reset and download utility
with the "Download” and "Load S¥ymbols™ options unchecked

I | Browse |

Upload To File Uploadiappend Tao File Delete File |

oK I Cancel

222

12 Internal Software Trace
12.2 The Trace View

Use the Trace Rules dialog to create a trace rules file, for cases where the code is
not running in the address range of the download file specified in the Reset and
Download view, such as an interrupt service routine in flash.

To create a trace rules file, use the following steps:
1. Click Add Rule.

Add Rule

Relocatable CodefData Rule Definitions
Mernarsy Type

Start Address I

End Address |

(0] 4 I Cancel |

In the Memory Type field, select CODE (for executable code) or DATA.
In the Start Address field, enter the memory address you want trace to begin.
In the End Address field, enter the memory address you want trace to end.

Click Save Rules.

S

In the browser window that opens, specify a location and name for your rules
file. Rules files must be saved as ASCII files with the extension .rulesconf.

Next, use the ASCII file you have just created to generate a binary file using the
following steps:

1. Click Upload File.

2. Inthebrowser window that opens, specify alocation and name for your binary
file and click Open. Workbench will save the binary file with the extension .elf.

If you already have an existing trace.elf file, you can click Upload/Append
File to append the new rule you just created to the end of the existing file.

223

Wind River Workbench for On-Chip Debugging

User Tutorials, 2.6.1

b

® N o O

10.

11.

Click OK to close the Trace Rules dialog.

In the Target Manager view, right-click on your target connection name and
select OCD Reset and Download.

The Reset and Download view appears.
Select the Files tab.
Click Add Files.

In the browser window that appears, navigate to the trace.elf file you have just
created and click Open.

The trace.elf file appears in the file list.

Uncheck the Download and Load Symbols fields. Leave the Verify field set to
None.

Click Debug.

The trace rules are now added to your project.

Filter Visible Trace Events

Filtered trace is not supported for internal software trace.

Save Output to File

This button opens a browser window. Use the browser to specify a file to which
you can save the information in the Trace view.

This button saves the information from all columns in the Trace field (three or five,
depending on which processor family you are connected to). It does not save
information from the Events field.

224

12 Internal Software Trace
12.3 Configuring Trace

12.3 Configuring Trace

To configure trace-specific configuration options, click the Configure Trace button.
The Configure Trace dialog opens, showing the available options for your target
processor.

12.3.1 PowerPC Trace Configuration Options

If you are connected to a PPC 85xx or 86xx processor, the Configure Trace dialog
opens showing the following options.

Figure 12-3 Internal Trace Options for PowerPC

Trace Configuration
@ Retrieving Current Settings. .. @

Available Trace Subsystems

Trace Configuration Trace Syskem Skatus
Trace Mode |Enabled .
|P.II walid cycles v
Skop Condition
|BuFFer is Full v |
Skart Condition
|nrmed Immediately w |
Clear Trace On Go Match Criteria
|Enabled w | Target I
|Boot Sequencer v | [CJEnable
Source I0
|Boot Sequencer w | [CIEnable
Transaction Type
|At0mic Clear A | [CJEnable
Source Type
Coherency Module v |

OK] [Cancel

225

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Trace Configuration

Trace Mode

Select the Trace Mode to determine whether to trace every valid cycle, or only trace
when the event is matched:

= All Valid Cycles -- Capture any valid bus cycle regardless of what the Match
Criteria is set to.

= Trace Event is detected -- Capture only those cycles that match the Match
Criteria.

If you set up any of the fields in the Match Criteria, use Trace Event is detected.

Start Condition
Select the start condition to determine when to start the Trace Buffer capture:

* Arm Immediately -- This option starts trace captures as soon as the target
starts.

= Watchpoint Monitor event is detected -- Start trace capture only when a
Watchpoint Monitor event occurs.

= Trace Buffer Event is detected -- Start trace capture only when a Trace Buffer
Event occurs.

* Performance Monitor signal overflow -- Start trace capture when
performance monitors overflow (an internal signal indicates that a counter
overflow has happened).

= TRIG_IN transitions from 0 to 1 -- Start capture when TRIG_IN signal goes
from O to 1.

= TRIG_IN transitions from 1 to 0 -- Start capture when TRIG_IN signal goes
from 1 to 0.

* Current context ID = Programmed context ID -- Start trace capture when the
programmed context ID register is equal to the current context ID.

* Current context ID != Programmed context ID -- Start trace capture when the
programmed context ID register is not equal to the current context ID.

Stop Condition
Select a Stop Condition to determine when to stop capturing trace.

» Trace Buffer is Full -- Stop trace capture when it reaches the end of the buffer.

226

12 Internal Software Trace
12.3 Configuring Trace

= Watchpoint monitor event is detected -- Stop capturing any trace when the
Watchpoint monitor event is matched.

» Trace Buffer Event is detected -- Stop capturing trace when a trace buffer
event is matched.

* Performance Monitor signal overflow -- Stop capturing trace when
performance monitors overflow (an internal signal indicates that a counter
overflow has happened).

»= TRIG_IN transitions from 0 to 1 -- Stop capture when TRIG_IN signal goes
from O to 1.

»= TRIG_IN transitions from 1 to 0 -- Stop capture when TRIG_IN signal goes
from 1 to 0.

* Current context ID = Programmed context ID -- Stop trace capture when the
programmed context ID register is equal to the current context ID.

* Current context ID != Programmed context ID -- Stop trace capture when the
programmed context ID register is not equal to the current context ID.

Clear Trace On GO

Use this parameter to control where to start saving trace data in the trace memory
on a GO command. The trace clear settings YES and NO determine where to start
saving the trace data in the trace memory, as explained below.

* YES — When a GO command is issued, the trace data will be stored in trace
memory starting at the first trace memory location. All previously stored trace
data will be overwritten and lost. All newly captured trace data will be stored
starting at the beginning of the trace memory.

* NO — When GO command is issued, the trace data will be stored in trace
memory starting at the next trace memory location. All previously stored trace
data will not be overwritten. All newly captured trace data will be stored
starting at the next trace memory location.

Source Type

* Coherency Module - This is the default trace source after the processor reset.
It provides all the activities on the local bus and the snoop cycles between the
core and the L2 cache.

* DDR SDRAM -- This is similar to the Coherency Module, except without
snoop cycles.

» PCI -- Select the trace source of the PCI/PCI-X output interface.

227

Wind River Workbench for On-Chip Debugging

User Tutorials, 2.6.1

Rapid IO -- Select the internal Rapid I/O outbound interface for the trace
source.

Trace System Status

Use this parameter to control the acquiring of trace data to the trace memory on a
GO command. The trace data will also be acquired when stepping, running to a PC
value, or running back to a calling function. The trace acquire settings ENABLE and
DISABLE determine when the trace memory will acquire trace data on a GO
command, as follows:

ENABLE — When a GO command is issued, all trace data will be acquired and
saved in the trace memory.

DISABLE — When a GO command is issued, no trace data will be acquired and
saved in the trace memory.

Match Criteria

Address with Mask -- This option will filter the Trace Buffer by matching only
the correct address with the address mask. For an instruction fetch bus cycle,
the address will appears in the form 0x0, 0x20, 0x40 and the memory variable
address will shows up as it is. In order to capture the correct address (with
mask), an instruction fetch address has to be entered as 0x0, 0x20, 0x40 and the
memory cycle’s address can be entered without any adjustment.

Transaction Type -- This option will filter trace capture by matching only the
correct transaction type. The transaction types are different when the trace
source changes. A different set of drop down menu will appear when the trace
source changes.

Source ID -- Selecting the Source ID field will capture only the matched cycle
with the same Source ID. This ID indicates the source of this cycle.

Target ID -- Selecting the Target ID field will capture only the matched cycle
with the same Target ID. This ID indicates the destination of this cycle.

12.3.2 PA Semi Trace Configuration

If you are connected to a PA Semi PA6T-1682M processor, the Configure Trace
dialog opens showing the following options.

228

12 Internal Software Trace
12.3 Configuring Trace

Figure 12-4 Internal Trace Configuration for PA Semi

Trace Configuration

Awailable Trace Subsystems

| Internal Trace

‘alue To Filker On Filker ©On Instruckion PC Capture Mode
Q00000000 |N|:| Filter on Instruction | w | |64 bt b |
Trace Syskem Status Trace Unkil Buffer Full Trace Source
|Disahled w | |OFF “ | |F‘C Retire Trace “ |
Log Branches Only
OFff w
0K l [Cancel

Available Trace Subsystems

The only available trace subsystem is Internal Trace.
Filter on Execution

Use this field to set Workbench to enable or disable trace when a particular
instruction is executed. By default this field is set to No Filter on Instruction. If you
set it to Enable on Instruction or Disable on Instruction, you must enter the
address of the instruction in the Value to Filter On field.

Value to Filter On

If you have set the Filter on Execution field to No Filter on Instruction, ignore this
field. If you have set the Filter on Execution field to Enable on Instruction or

Disable on Instruction, use this field to specify the address of the instruction you
want to use.

229

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

PC Capture Mode
Use this field to specify whether Workbench should output captured trace as 32-bit
or 64-bit values.

Trace System Status

Use this field to control the acquiring of trace data to the trace memory on a GO
command. The trace data will also be acquired when stepping, running to a PC
value, or running back to a calling function. The trace acquire settings Enabled and
Disabled determine when the trace memory will acquire trace data on a GO
command, as follows:

* Enabled — When a GO command is issued, all trace data will be acquired and
saved in the trace memory.

* Disabled —When a GO command is issued, no trace data will be acquired and
saved in the trace memory.
Trace Until Buffer Full

Set this option to On to set Workbench to stop capturing trace when the trace buffer
is full. If this option is set to Off, Workbench continues to capture trace when the
trace buffer is full, overwriting the contents of the trace buffer with the newly
captured trace.

Trace Source
» PC Retire Trace - Select the PCI/PCI-X output interface for the trace source.
* Connexium Bus Trace - Select the Pa Semi Connexium bus for the trace source
* Rapid IO Trace - Select the internal Rapid I/O outbound interface for the trace

source.

Log Branches Only

When this option is set to Off (the default) the processor outputs all instructions.
When this option is set to On, the processor outputs only on branch instructions.

230

12 Internal Software Trace
12.4 Tracing Execution

12.4 Tracing Execution

You must have downloaded your code to Workbench, either by using the
Workbench project management facility or by using the Reset and Download
view, before you can begin to trace code.

12.4.1 Setting a Tracepoint

Next, set a tracepoint in your code.

If no tracepoints are set, The trace will contain all code up to the point where the
target was suspended, either manually or by hitting a breakpoint.

To set a tracepoint, right-click to the left of the editor (in the gutter) and select
Tracepoints > Add Tracepoint.

The Line Tracepoint dialog appears. The options shown in the Line Tracepoint
dialog (After Trace Counter, Post Trigger Counter, and so on) are not supported for
internal trace.

12.4.2 Tracing Execution

Having specified your tracepoint in the Line Tracepoint dialog, click OK.

Workbench sets the tracepoint in your code, placing a trace icon in the editor. An
entry for the tracepoint appears in the Breakpoints view.

In the Debug view, click Resume. Let some code execute and then click Suspend.
In the Trace view, click Refresh View.

Trace information appears in the Trace view, as shown in Figure 12-5.

231

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Figure 12-5 Trace View

Tasks | Problems | Properties | Build Console | Error Log | Terminal 0 B PIEE-0e 0 Command Shell | ©C0 Console =08
EDAGEAIEREEEE
Events Address ABS Time DEL Time
Trace Buffer u] 0.000 ns 0.000 ns = .ifdef PowerPC
Start of Trace 14395 0.000 ns 0.000 ns = moves.l #0O,a6 E
End of Trace Oxz20000400 0.000 ns 0.000 ns moves. 1 #0x20002800,a7 -
(@ 0x00000010 0x20000406 0.000 ns 0.000 ns moves. 1 #0, a6 -
& 186447760315.000 ng 1498 60,594 = 60.594 = = movea.l # SP_INIT,=sp
Ox20000400 60.5584 = 60.5594 = moves. 1 #0x20002800,a7
1499 0.000 n= 0.000 n= = moves.l #0,a6 g =
OxZ0000408 0.000 ns 0.000 ns movesa. 1l #0, a6 =
1498 183.763 = 183.763 = = moves. 1 #7SP71NIT,sp H
Oxz0000400 183.763 = 183.763 = movea. 1 #0x20002300, a7
£) 55 < | >

(In Figure 12-5, the Event Occurrences column is collapsed to make it easier to read
the information in the Instruction field.)

232

13

Using the CF Options View

13.1 Introduction 233

13.2 Connecting to a Target 234

13.3 Configuring the Target Connection 238

13.4 Changing CF Options in the CF Options View 240
13.5 Changing CF Options With Low-Level Commands 241
13.6 Resetting CF Options 242

13.1 Introduction

Wind River emulators can be configured in several different ways to specify
various settings such as electrical properties, connection logic, and clock rate. To
configure these settings Workbench uses configuration options, or CF options, which
you can set in the CF Options view.

This chapter provides a tutorial for configuring a target connection using CF

options.

What CF options are available depends on the target processor, and also on
whether you connect with a Wind River Probe or Wind River ICE SX. For a full
description of all Wind River CF options sorted by processor family, see the Wind
River Workbench for On-Chip Debugging Configuration Options Reference.

233

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

13.2 Connecting to a Target

In order to configure CF options, you must have an active target connection.

This tutorial uses a Wind River Probe emulator connected to a Wind River
PPMC750FX target.

To connect to your target, use the following steps:

1. Launch Wind River Workbench according to the method for your host.

Linux/Solaris Hosts
From your installation directory, issue the command
$./startWorkbench.sh
Windows Hosts
Select Start > All Programs > Wind River > Wind River Workbench version.

On Windows hosts, Workbench prompts you to specify a workspace location.
Linux/Solaris hosts use the default location installDir/workspace.

When Workbench opens, he Quick Target Launch dialog appears.

Wind River On Chip Debugging
(D) Choose How You Want to Start

N Defined Launches
Create a new launch configuration

Edit an existing launch configuration

Connect, Attach, Reset and Download

Syne with target and download symbals

(#) []oo not show this dislog on startup Close

2. Select Create a new launch Configuration.

234

13 Using the CF Options View
13.2 Connecting to a Target

The Connection Type dialog appears.

New Connection

Connection Type

Please select connection type.

Wind River OCD ICE Connection
Wind River OCD 155 Connection
ind)0 Probe ction
‘Wind River ¥xMWorks 6. Core Dump Conneckion
WWind River Wxworks 6.x Simulator Connection
wind River YxWorks 6. Target Server Connection

Cancel

3. Select Wind River OCD Probe Connection and click Next.

The Processor Selection dialog appears.

235

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

New Connection

Wind River Probe Settings

Configure the designator settings for the emulator,

Designators
(%) Processor: | PPCTSOFY | [Select...]
() Board file:

v | Designatar Pracessor Pracessor Plugin

PPC7S0FA PPC7S0FS PawerPC 7ixx Family Process...

Auta-attach to connecked designators

Communications
USE Device Mame: | PRO40310 w
@ < Back ” Mexk =]

4. Click Select. From the list that appears, expand MPC7xx and select PPC750FX.

236

13 Using the CF Options View
13.2 Connecting to a Target

% Processor Selection

Current Connection - Wind River Probe : PPC750F

MPChix ~

MPC 7

[=) MPC T
MPC740
MPC745
MPC750
MPC755
PPCP40
PPCP45
PPCFSO0
PPCFS0CH
PPCFS0CKE
PPCFS0CHR
PPC7S0FX

PPC7S0GH

(= =yl &

(2 [[o]4 H Cancel]

5. Make sure the Auto-attach to connected designators checkbox is selected and
click OK.

You are returned to the Processor Selection dialog.
6. Click Next.

7. The connection wizard passes through a number of screens that you do not
need to configure for this tutorial. Leave all settings at their defaults and click
Next until you come to the Connection Summary.

237

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

%) New Connection

Connection Summary

Please review the connection information

Connection name: | WRProbe_PPCTS0FX_D

SURRArY

Property Yalue
ADDR. PRO40310
AutoattachConnectedCon true

+ DESIGMATORMAP
DEWICE Wind River Probe
MAME_MMAPPING [*:* . unstripped],[*;*]
P&TH_MAPPING L
STYLE LUSEDEVICE

£ 2

Immediately connect to karget if possible

@ ’ Finish ” Cancel]

8. Make sure that the Immediately connect to target if possible checkbox is
selected and click Finish.

Workbench creates a target connection called WRProbe_PPC750FX in the
Target Manager view and opens the Reset and Download view.

9. You do not need to download code to configure the target connection, so click
Close to close the Reset and Download view.

13.3 Configuring the Target Connection

In the Workbench toolbar, select Window > Show View > CF Options.

238

13 Using the CF Options View
13.3 Configuring the Target Connection

OCD Statistica. .. | Hardware Dia... |Cache Trace | Flash Program...| — O

i |]®
Command Mame Current Setking Parameters Description i
9B SB [5E, IHBC] Siet BreakPoint
VECTOR Loy [HIGH, LW, IGMORE] Wector Table Location
RST YES [¥ES, MOy, HALT, RIUUN] Monitor Targek reset
TAR FS0FR [AUTO, 603E, ECAO3E, 603... Target CPU
SLAVE MOME [MOME, g260] Target CPU{ SLAVE)
SLIMMRVAL AUTO [AUTO, WALLE] Slave IMMR. reset value
RTP MO [YES, M) Real time Preservation
LEMDIAN NG [¥ES, MO Little Endian Mode
MODE 64 [3z, 64] Processor Mode
DL MORMAL [MORMAL, 8] Download Mods
HRESET ENAEBLE [EMAELE, DISABLE] Ernulator HRESET Conkrol
PAFR. MO [YES, MO Data Parity Checking
TGTCOMNS BDIM [BDM, COML, COMZ] Target Console Redirection
TRESET ACTIVE [OPEMC, ACTIVE] Drive TReset line
INVCT YES [YES, M) Invalidate Instruction Cach...
SPOWER YES [¥ES, MO Sense Power wia HRESET
RESET HRESET [HRESET, SRESET, HRESET... CPU Reset Type
TRPEXP YES [¥ES, MO, SOI, BREAKPOIM,.. Trap exception
INCOLD [l [¥ES, M) Issue an IM on coldstart
L2WARNING MO [YES, M) Display L2 Data Cache War...
ML DISABLE [EMAELE, DISABLE] Memory Management Unit ...
BL DISABLE [EMAELE, DISABLE] Load Boot Table On IM
ERKREP ERKREP [REPONLY, BREREF] Trigger In Repart Mode
™MD DISABLE [EMAELE, DISABLE] TMD Mode
CLE 16 [0.025...100,AUTO] ITAG clock rate (MHz) b

The CF Options view opens, populated with the available CF options for your
emulator and target processor.

The CF Options view has four columns: Command Name, Current Setting,
Parameters, and Description. An example entry is shown below:

Command Name Current Setting Parameters Description

INCOLD NO [YES, NOJ Issue an IN on coldstart

Command Name shows the argument associated with this option for the low-level
CF command in the OCD Command Shell.

Current Settings shows the value to which the option is currently set.
Parameters shows the available range of values to which you can set the option.

Description shows a description of the configuration option.

239

Wind River Workbench for On-Chip Debugging

User Tutorials, 2.6.1

13.4 Changing CF Options in the CF Options View

To change the value of a CF option in the CF Options view, use the following steps.

1. Highlight any CF option and click on its entry in the Current Settings column.

A drop-down list appears.

OCD Comman... | Binary Upload X (D Statistica... | Hardware Dia... |Cache | Trace | Flash Program. .. =0
o ﬂ*
Command Mame Current Setting Parameters Description ~
SB SB [SE, IHEC] Set BreakPaoink
WECTOR L [HIGH, LW, IGHORE] ‘eckor Table Location
RST YES [YES, MO, HALT, RIUN] Monitor Target reset
TAR FoROFY [AUTO, 603E, EC603E, 603... Targek CPU
SLAVE MOME [MCHE, 8260] Targek CPU{ SLAVE 3
SLIMMR WAL AUTO [AUTO, WALLIE] Slave IMMR reset value
RTP MO [YES, MO Real time Preservation
LENDIAM Lo} [YES, MQ] Littlz Endian Mads
MODE 64 [32, 64] Processor Mode
DLD MORMAL [MORMAL, 5] Download Mode
HRESET EMABLE [EMABLE, DISAEBLE] Ernulakor HRESET Control

[YES, MG

[BOM, COML, COMZ]
[OPENC, ACTIVE]
[YES, MG

[YES, MG

[HREZET, SRESET, HRESET...

| [EMABLE, DISAELE]

[EMABLE, DIS&BLE]

Data Parity Checking
Target Console Redirection
Crive TResek line

Invalidate Instruction Cach...

Sense Power via HRESET
CPU Reset Type
Trap exception

e an IM on coldstart

Display LZ Data Cache War...
Mernory Managernent Uik .,

Load Boot Table On IM

BRKREF [REPOMLY, BRKREF] Trigger In Report Mode
DISAEBLE [EMAELE, DISABLE] TMD Made
16 [0.025...100,AUTO] ITAG clock rate (MHz) AS

2. Inthe drop-down list, choose the value you want and click on it to reset the CF

option.

For example, suppose you want the emulator to send an IN initialization

command to the target on every cold start. By default this option is set to NO.

a. Inthe Description column, find Issue an IN on coldstart.

b. Highlight that CF option and click the Current Settings column.

c. A drop-down list of available values (in this case NO and YES) appears.

d. Select YES to enable the option.

3. Repeat these steps for any CF options you wish to change.

240

13 Using the CF Options View
13.5 Changing CF Options With Low-Level Commands

4. After you have set all the CF options you want to set, click the Send All CF
Options to Target button.

NOTE: Setting CF options in the CF options view does not immediately make
changes to the target connection. Your changes do not take effect until you issue a
target reset, either by using the Send All CF Options to Target button in the CF
Options view or by issuing an IN or INN command in the OCD Command Shell.

13.5 Changing CF Options With Low-Level Commands

You can also work with configuration options by using the CF command in the
OCD Command Shell. At a >BKM> or >ERR> prompt, enter the command CF. This
will bring up a list of your emulator’s configuration options.

>BKM>cf
Set BreakPoint SB[SB, IHBC] = SB
Vector Table Location VECTOR [HIGH, LOW, IGNORE] = LOW
Monitor Target reset RST[YES,NO,HALT,RUN] = YES
Target CPU TAR[AUTO, 603E, EC603E, 603P, 603R, 740, 745,
750,750CX, 750CXE, 750FX, 750GX, 755,7400,7410] = 750FX
Target CPU(SLAVE) SLAVE[NONE, 8260] = NONE
Slave IMMR reset value SLIMMRVAL [AUTO, VALUE] = AUTO
JTAG clock rate (MHz) CLK[0.025...100,AUTO] = 16
Application IMMR Exclusion Range AIMMRER [OFF, START and END] = OFF
Application IMMR Value AIMMRVAL [VALUE] = 0e000000
Real time Preservation RTP[YES,NO] = NO
Little Endian Mode LENDIAN[YES,NO] = NO
Processor Mode MODE[32,64] = 64
Download Mode DLD[NORMAL, 8] = NORMAL
Emulator HRESET Control HRESET [ENABLE, DISABLE] = ENABLE
Data Parity Checking PAR[YES,NO] = NO
Set Work Space WSPACE [BASE and SIZE] = 00000000 174c
Set Stack Range STACK[OFF / LOWER and UPPER] = OFF
Target Console Redirection TGTCONS [BDM, COM1,COM2] = BDM
Drive TReset line TRESET [OPENC, ACTIVE] = ACTIVE
Invalidate Instruction Cache on GO INVCI[YES,NO] = YES
Reset Pulse Length N*1lms RPL[1..2000] =1
Sense Power via HRESET SPOWER[YES,NO] = YES
Power On Reset Length N*1lms PONR[0..500] = O
CPU Reset Type RESET[HRESET, SRESET,HRESET UNFILTER,SRESET UNFILTER] = HRESET
Trap exception TRPEXP[YES, NO, SOI, BREAKPOINTONLY] = YES
Issue an IN on coldstart INCOLD[YES,NO] = NO
Display L2 Data Cache Warning L2WARNING[YES,NO] = NO
Memory Management Unit Mode MMU [ENABLE, DISABLE] = DISABLE
Load Boot Table On IN BL[ENABLE,DISABLE] = DISABLE
Trigger In Report Mode BRKREP [REPONLY, BRKREP] = BRKREP

241

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

TMD Mode TMD [ENABLE, DISABLE] = DISABLE
Run Counter Length RCL[1000..FFFF] = 1000
Delay after Reset Nms DRST[0..10000] = 25
>BKM>

Change any CF option using the syntax
CF CommandName Value

CommandName is the name given in the Command Name column in the CF
Options view.

Value is the value you wish to change to.

For example, to set the emulator to send an IN initialization command to the target
on every cold start, enter the command

>BKM>cf incold yes

Enter the CF command again to see your changes.

NOTE: Setting CF options with the CF command does not immediately make
changes to the target connection. Your changes do not take effect until you issue a
target reset, either by using the Send All CF Options to Target button in the CF
Options view or by issuing an IN or INN command in the OCD Command Shell.

13.6 Resetting CF Options

To restore all CF options to their target defaults, use the Reset to default target
settings button in the CF Options view.

242

14

Using Hardware Diagnostics

14.1 Introduction 243

14.2 Connecting to Your Target 244
14.3 Setting a Workspace 248

14.4 Hardware Diagnostic Tests 249

14.1 Introduction

The Hardware Diagnostic view provides a set of RAM and bus diagnostics and
utilities that can be controlled by the emulator or run on the target. For some of the
tests, you can run code directly on the target instead of through the emulator by
selecting the Run on Target checkbox. This allows the test to run at the execution
speed of the target processor.

This tutorial uses a Wind River Probe emulator connected to a Wind River
PPMC750FX target.

243

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

14.2 Connecting to Your Target

To connect to your target, use the following steps:

1. Launch Wind River Workbench according to the method for your host.

Linux/Solaris Hosts
From your installation directory, issue the command

$./startWorkbench.sh

Windows Hosts
Select Start > All Programs > Wind River > Wind River Workbench version.

On Windows hosts, Workbench prompts you to specify a workspace location.
Linux/Solaris hosts use the default location installDir/workspace.

The Quick Target Launch dialog appears.

Wind River On Chip Debugging
(D) Choose How You Want to Start

N Defined Launches
Create a new launch configuration

Edit an existing launch configuration

Connect, Attach, Reset and Download

Syne with target and download symbals

(#) []oo not show this dislog on startup [Close

2. In the Target Manager view, right-click default(localhost) and select
New > Connection.

The Connection Type dialog appears.

244

New Connection

14 Using Hardware Diagnostics
14.2 Connecting to Your Target

Connection Type

Please select connection type.

Wind River OCD ICE Connection
Wind River OCD 155 Connection
Wind [Pro ian

‘Wind River ¥xMWorks 6. Core Dump Conneckion
WWind River Wxworks 6.x Simulator Connection
wind River YxWorks 6. Target Server Connection

@ s

Cancel

3. Select Wind River OCD Probe Connection and click Next.

The Processor Selection dialog appears.

New Connection

Wind River Probe Settings

Configure the designator settings for the emulator,

Designatars

(%) Processar: | PRCFSOFY | [Select. ..]
() Board file: B
¥ | Designator Processor Processor Plugin
PPC7S0FA PPC7S0FS PawerPC 7ixx Family Process...

Auta-attach to connecked designators

Camrmunications

USE Device Mame: | PRO40310

@ [< Back ” Mk =

Cancel

245

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

4. Click Select. From the list that appears, expand MPC7xx and select PPC750FX.

% Processor Selection

Current Connection - Wind River Probe : PPC750F

MPCEax -~
MPCThex 7
= MPC T

MPC740

MPC745

MPC750

MPC755

PPC740

PPC745

PPC7S0

PPCTS0CK

PPC7SOCHE

PPC7SOCKR.

PPC7E0RY

PPC7S0GH
pEC7ENl

NG

7 [O, ” Cancel]

5. Make sure the Auto-attach to connected designators checkbox is selected and
click OK.

You are returned to the Processor Selection dialog.
6. Click Next.

7. The connection wizard passes through a number of screens that you do not
need to configure for this tutorial. Leave all settings at their defaults and click
Next until you come to the Connection Summary.

246

14 Using Hardware Diagnostics
14.2 Connecting to Your Target

New Connection

Connection Summary

Please review the connection information

Connection name: | WRProbe_PPCTS0FX_D

SURRArY
Property Yalue
ADDR. PRO40310

AutoattachConnectedCon true
DESIGNATORMAP

DEWICE Wind River Probe
MAME_MMAPPING [*:* . unstripped],[*;*]
PATH_MAPFING L
STYLE LUSEDEVICE
£ 2

Immediately connect to karget if possible

@ Mexk = ’ Finish ” Cancel]

8. Make sure that the Immediately connect to target if possible checkbox is
selected and click Finish.

Workbench creates a target connection called WRProbe_PPC750FX in the
Target Manager view and opens the Reset and Download view.

9. You do not need to download code in order to run hardware diagnostics, so
click Close to close the Reset and Download view.

247

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

14.3 Setting a Workspace

NOTE: The RAM workspace has no relation to the workspace that Workbench uses
to store project information.

The RAM workspace is an area of RAM on the target that the emulator uses to
download the hardware diagnostic routines and flash programming algorithms.
You must tell your emulator where writable RAM is located on your target for this
purpose.

NOTE: Setting a RAM workspace is only necessary if you are running the
diagnostics on the target. If you do not select the Run on Target checkbox, you do
notneed to seta RAM workspace. Tests run on the target are slower, so if you select
the Run on Target checkbox, make sure you specify a small area of memory to be
tested.

Depending on the device family and type, this space is limited to under 2 KB. Note
that more memory improves the speed of programming.

To configure the workspace, enter the parameters in the OCD Command Shell,
using the syntax

CF WSPACE base size

where base is the start address, and size is the minimum number of bytes of target
RAM required.

To find the base and size values for a Wind River-supported target, consult your
target’s target.ref file, located in installDir/vxworks-6.x/target/config/yourTarget.
Alternatively, consult your processor documentation.

For example, on a Wind River PPC750FX target, the base of the workspace is
00000000 and the size is 1770. To set the workspace, in the OCD Command Shell
enter the command

>BKM>cf wspace 0 1770

This sets the workspace at address 0 with a size of 1770 bytes.

248

14 Using Hardware Diagnostics
14.4 Hardware Diagnostic Tests

14.4 Hardware Diagnostic Tests

To run diagnostic tests on your target, use the following steps.

14.4.1 Simple RAM Test

This test writes and reads back a simple pattern to the memory bounded by the
starting and ending addresses entered in the Start Address and End Address
fields. If an error occurs, the test stops and the error type and address are displayed
in the Output field.

The first diagnostic to be run is a Simple Ram Test on the area of memory used by
the workspace.

1.

@

4
5.
6
7

In the Workbench toolbar, select Window > Show View > Hardware
Diagnostics.

In the Diagnostic field, select Simple RAM Test — Single Pass.

The workspace cannot be used to test itself, so make sure the Run on target
checkbox is unchecked.

In the Start Address field, enter 0.
In the End Address field, enter 1770.
In the Units field, select LONG.
Click Run.

Workbench displays the test result in the Output field. The output of a successful
test will resemble that in Figure 14-1.

249

Figure 14-1

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Successful Simple RAM Test

OCD Command Shell | Binary Upload | CF Options | ©CD Statistical Code Profiing | Cache | Trace

Choose Diagnostic Cukbpuk

Diagnoskic

- = simple ram test running
Simple RAM test - Single pass test complete
Descripkion

The Single RAM Test Single Pass writes and reads back a simple
pattern ko the memory bounded by the starting and ending
addresses entered in the fields below, IF an error occurs, the test
stops and the error bype and address will be displayed.

Start address: 000000000
End address: 000001770
Units LONG b

|:| Run on Earget

Run

If the test fails, the Address Bus Test diagnostic and the Data Bus Test diagnostic
may determine the cause of the failure; see 14.4.5 Bus Tests, p.253.

If the RAM test of the memory used by the workspace passed, you can now test the
rest of the memory in the target system at full bus speed.

1. Inthe Diagnostic field, select Simple RAM Test — Single Pass.
2. Select the Run on Target checkbox.
3. In the Start Address field, enter 14000.
4. Inthe End Address field, enter 20000000.
5. In the Units field, select LONG.

6. Click Run.

Workbench displays the test result in the Output field.

If the message Test Complete appears, then the diagnostic passed.

If the test fails, try re-seating the SDRAM module and repeat the test. If the test still
fails, then run the Address Bus Test diagnostic and the Data Bus Test diagnostic
to determine the cause of the failure. See 14.4.5 Bus Tests, p.253.

250

14 Using Hardware Diagnostics
14.4 Hardware Diagnostic Tests

14.4.2 Full RAM Tests

A Full RAM test writes a “walking” 1 on each bit of RAM and reads it back. This
is a very lengthy test and can detect bus configuration errors, typically on a new
printed circuit board.

This test sets and then clears each bit to try to locate memory defects bounded by
the starting and ending addresses entered in the Start Address and End Address
fields. If an error occurs, the test stops and the error type and address are displayed
in the Output field.

NOTE: A complete Full RAM test would take several years to finish, so make sure
you specify a very small region of memory to be tested.

Full RAM tests are designed to check for cell disturbance and addressing
problems. These tests perform the following actions:

A Single Pass test will run the test only once. A Continuous test will repeat the test
over the same address until you click Stop.

In the Diagnostic field, select Full RAM Test — Single Pass.
Select the Run on Target checkbox.

1
2
3. In the Start Address field, enter 14000.

4. In the End Address field, enter 00014100.

5. In the Units field, select LONG.

6. Click Run.

Workbench displays the test result in the Output field.

If the message Test Complete appears, then the diagnostics passed.

If the test fails, try re-seating the SDRAM module and repeat the test. If the test still
fails, then run the Address Bus Test diagnostic and the Data Bus Test diagnostic
to determine the cause of the failure. See 14.4.5 Bus Tests, p.253.

14.4.3 CRC Calculation

Workbench and the emulator support the calculation of a Cyclic Redundancy
Check (CRC) on all addresses in the range specified. The CRC test will checksum
a block of data on the target for the address range you specify in the CRC
Calculation dialog. The CRC algorithm is based on the following polynomial:

251

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

x16 + x5 +x"2 + 1
Workbench uses this polynomial as follows:

Workbench reads a location and uses the value read, x, to calculate the CRC. Then
Workbench adds the result to the value calculated for the previous address. This
process continues until Workbench has checked the entire specified memory
range.

In the Diagnostic field, select CRC Calculation.
In the Start Address field, enter the starting address, for example 20000.

1
2
3. Inthe End Address field, enter the ending address, for example 21000.
4. Set the Units field to BYTE.

5. Click Run.

To interrupt the test, click Stop.

If communications with the emulator and target are working, Workbench returns
the CRC sum.

OCD Command Shell | Binary Upload | CF Options | OCD Statistical Code Profiling | Cache | Trace |

Choose Diagniostic Cukput

Diagnostic

. CRC-16 kest running
CRC Caleulation Completed... CRC-16 Yalus = 9375
Descripkion

The CRC will perfarm a cydlic redundancy check of the menary
bounded by the starting and ending addresses entered in the
fields below based on the Following algorithm: {+ %15 + 52 +
13, The CRC sum will be returned if the communications with the
emulator and karget are working, The test can be inkerrupted by
clicking the stop button,

Start address: 000020000

End address: 000021000

LUnits EYTE A4
Run [Configure Workspace]

252

14 Using Hardware Diagnostics
14.4 Hardware Diagnostic Tests

14.4.4 Scope Tests

Read From Location

The Read From Location Scope Test performs a memory read of designated length
from the address entered in the From Address field.

Write To Location

The Write To Location Scope Test performs a memory write of designated length
of the value entered in the Data Value field to the address in the To Address field.

Write and Complement
The Write and Complement Scope Test performs a memory write of designated

length of the value entered in the Data Value field to the address in the To Address
field; the value is then complemented.

Write Rotating Value
The Write Rotating Value Scope Test performs a memory write of the value
entered in the Data Value field to the address in the To Address field. The value is

then rotated through all of the bit positions with respect to the designated length
of the memory address.

Write Then Read

The Write then Read Scope Test performs a memory write of designated length of
the value entered in the Data Value field to the address in the To Address field; the
value is then read back.

14.4.5 Bus Tests

Address Bus Test

253

Data Bus Test

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

This test detects faults in the address bus over the range bounded by the starting
and ending addresses entered in the Start Address and End Address fields. This
test can be interrupted by clicking the Abort button.

This test detects faults in the data bus over the range bounded by the starting and
ending addresses entered in the Start Address and End Address fields. This test
can be interrupted by clicking the Abort button.

254

15

OCD Statistical Code Profiling

15.1 Introduction 255

15.2 Connecting to the Target 256
15.3 Creating a Project 266

15.4 Profiling Your Code 272

15.1 Introduction

The OCD Statistical Code Profiling view provides built-in performance analysis
and code coverage features that allow you to profile your software’s performance
and view a symbolic display in chart or histogram format. These features help
identify system bottlenecks and let you optimize your application software.

This chapter provides a tutorial for using the OCD Statistical Code Profiling view
to profile your code.

To populate the OCD Statistical Code Profiling view, you must have an active
project and an active target connection.

This tutorial uses the Wind River Instruction Set Simulator and the C
Demonstration Program, both of which are included in your Workbench
installation.

255

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

15.2 Connecting to the Target
First, open Workbench according to the method for your host computer.

Linux/Solaris Hosts
From your installation directory, issue the command

$./startWorkbench.sh

Windows Hosts
Select Start > All Programs > Wind River > Wind River Workbench version.

On Windows hosts, Workbench prompts you to specify a workspace location.
Linux/Solaris hosts use the default location installDir/workspace.

When Workbench opens, the Quick Target Launch dialog appears.

Wind River On Chip Debugging
@ Choose How You Want to Start

e Defined Launches
E 57| Create a new launch configuration
B==2]

Edit an existing launch configuration
Connect, Atkach, Reset and Download

Syne with target and download symbals

l.':f,l [[1Do nat show this dislog on startup Close

1. Select Create a new launch configuration.

The Connection Type dialog appears.

256

15 OCD Statistical Code Profiling
15.2 Connecting to the Target

Mew Connection

Connection Type

Please select connection bvpe.

'wind River Generic GDB Remote Serial Pratocol Connection
Wind River OCD ICE Connection
a _onnection
‘ind River OCD Probe Connection

‘ind River WxWarks 6.3 Core Dump Connection
Wind River YxWorks 8.x Simulator Connection
ind River WxWorks 6.x Target Server Connection

@ | -

Cancel

2. Select Wind River OCD ISS Connection and click Next.

The Processor Selection dialog appears.

257

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

New Connection

wind River IS5 Settings

Configure the designator settings for the emulator.

Designators
(%) Processor: | MPCE260 | [Seleck... l
() Board file: Birt
v | Designator Processar Processor Plugin
MPCE2E0 MPCE2E0 PawerPC S2xxf83x: Family Proces
t >

Auko-attach ko connected designators

Cancel

':'f,' [= Back “ Mext =]

3. Click Select. From the list that appears, expand MPC82xx and select
MPC8260.

258

15 OCD Statistical Code Profiling
15.2 Connecting to the Target

'_, Processor Selection

Current Connection - Wind River 1SS : MPC8260

[= MPCE2we: ~
MPCE220
MPCE240
MPCE241
MPCE245
MPCE247
MPCE245
MPCE250

MPCEZ65

MPCE266
MPCE270
MPCE2T1
MPCE272
MPCE275 v

@ [Ok l [Cancel]

4. Make sure the Auto-attach to connected designators checkbox is selected and
click OK.

You are returned to the Processor Selection dialog.
5. Click Next.

6. The connection wizard passes through a number of screens that you do not
need to configure for this tutorial. Leave all settings at their defaults and click
Next until you come to the Connection Summary.

259

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

%) New Connection

Connection Summary

Please review the connection information

Connection name; | WRISS_MPCE260 shared: []
Summary
Property Yalue

DEVICE Wind River IS5
MNAME _MAPPING [*i*.unstrippad], [*;*]
PATH_MAPPING [;d

< >

Imrnediately connect to target if possible

@ ’ Finish] ’ Zancel l

AukodtkachConneckedCor trus
+ DESIGMATORMAR

260

Make sure that the Immediately connect to target if possible checkbox is
selected and click Finish.

Workbench creates a target connection called WRISS_MPC8260 in the Target
Manager view.

NOTE: On Windows hosts, Workbench starts WindISS.exe and opens a
command shell. Do not close this shell or terminate WindISS.exe while your
target connection is running. Workbench automatically terminates
WindISS.exe and closes the shell when you disconnect from the target
connection.

The Reset and Download view appears.
Choose how you want to proceed:

a. If you want to create a project in which to run and debug your code, skip
the rest of this section and proceed to 15.3 Creating a Project, p.266.

9.

Marne:

10.

11.

12.

15 OCD Statistical Code Profiling
15.2 Connecting to the Target

b. If you want to run and debug your code without creating a project,
continue with this section.

In the Reset and Download view, select the Reset tab.

WRISS_MPCE260 - MPCS260

. Main m@ Download | 4 Instruction Pointer | #® Run Options | #% Projects to Build EV Source | =] Common
MPCE260

[CIFlay register file

Reset 1M - Resetfsetup regs * | | Query Target
() Specified core
8l cores

Cores tied on reset:

If you want to configure the target register values with a register file, select
Play Register File and browse for the file you want to use.

Register files for many Wind River-supported targets are located in
installDir/workbench-2.x/dfw/build/host/registers.

If you do not want to reconfigure your target registers, leave this box
unchecked.

Choose the type of reset initialization you want to perform.

You can use the IN or INN initialization commands. For a full discussion of
these two commands, see the Wind River Workbench for On-Chip Debugging
Command Reference.

You can also choose not to perform an initialization by clearing the Reset box.

CAUTION: If you are manually changing registers on your target, be aware that
issuing an IN or INN initialization command will overwrite your changes.

Select the Download tab.

261

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Name: | WRISS_MPCE260 - MPCE260

. Main | ¥ Reset mﬁ Instruction Painter | ¥ Run Options | #% Projects to Buid | % Source | E=] Common
MPCE260

File Download ‘erify Load Symbols | Offset

13. Click Add Files.

In the browser window that appears, navigate to the executable file you want
to run.

The file you select appears in the Filename field. Repeat this process as many
times as necessary.

The file at the top of the list will download to the target first, followed by the
others from the top down. You can edit the order of the list by clicking on any
filename to highlight it and using the Up, Down, and Delete buttons.

14. Use the other fields to configure the download.

Download

The Download field is checked by default. If you clear it, the file will remain
on the list but will not download data to the target. This is useful if, for
example, you only want to download symbol information and not data.

Verify

The Verify field configures the extent to which the file you are downloading
will be compared to a file that may already be on the target. There are three
options: Full, Compare, and None.

When this field is set to Full, a write/read verify will occur for every
download. Workbench writes to the target and then verifies that the write to
the target and the read from the target are identical. This is slower than a
normal download, but it is a useful security option.

262

15 OCD Statistical Code Profiling
15.2 Connecting to the Target

When the field is set to Compare, Workbench will verify that the image has
been downloaded correctly (that is, that the image on the host is the same as
the image on the target.) This is useful for programming flash.

NOTE: You should only set the Verify field to Compare if an image already
exists on the target. If you set the field to Compare when there is no image on
the target, Workbench will look for a file to compare and not find one, and the
reset and download operation will fail.

When the field is set to None, Workbench will perform no verification.

The Verify field is set to None by default.

Load Symbol

The Load Symbol field, which is checked by default, determines whether the
file’s symbol information is downloaded to the target.

Offset

15.

In the Offset field, you can enter a value in hex to set a memory offset bias for
your application file. If you do not enter a value, Workbench uses the default
value 0x00000000.

Select the Instruction Pointer tab.

Main | ¥ Reset | 9 Download [EESETNE Gl ap-n ¥ Run Options | *¥ Projects to Build Fi? Source | =] Comman

16.

MPCE260

Sek instruction pointer after download

() Use specified start address 1

Set the starting point for your file.

By default, the instruction pointer is set to use the starting address from the
download file.

You can set the instruction pointer to start the file from the first occurrence of
a particular symbol (for example, main) or you can just specify a starting

263

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

17.

address by entering the address value in hex in the Use Specified Start
Address field.

If you do not want to set a starting point, clear the Set Instruction Pointer
After Download box.

Select the Run Options tab.

#® Main | ¥ Reset | #® Download | #® Instruction Poinker mﬂ Prajects to Build | B Source |] Common

MPCE260

@ Do not run

() Run to address

()Run ko end of program

[CIPlay post download script

18.

19.

264

Determine how you want your file to run.

By default, the Reset and Download view is set not to run the file after
downloading. If you want the file to run, you have several options to
determine where it should break:

You can set it to break at the first occurrence of a symbol (for example,
main) by selecting Run to Symbol and entering the symbol in that field.

You can set it to break at the end of your program by selecting Run to end
of program.

You can set it to break at a given memory address by selecting the Run to
Address box and entering the address in hex in that field.

You can set it to break at an _exit routine by selecting the Break at Exit box.

If you need to perform a post-initialization, you can define it here. Select the
Play post download script box and click Browse. In the browser window that
appears, navigate to your initialization file.

Select the Source tab.

15 OCD Statistical Code Profiling
15.2 Connecting to the Target

Name: | WRISS_MPCE260 - MPCE260

#®. Main | ¥ Reset | #® Download | #® Instruction Pointer | #® Run Options | % Projects to Build m:. Comman
Saource Laokup Path:

Remave

[5earch for duplicate source files on the path

20. Use the Source tab to configure the source path of your file.

Workbench uses the input path of the local file system by default. Unless you

need to use a different path, you do not need to do anything in the Source tab.

If you need to use a different path, click Add... and use the Add Source dialog
to configure the appropriate search path for your project.

21. Select the Common tab.

Mame: | WRISS_MPCS260 - MPCS260

3 E5e AN nscrucoion Fointer un Uprions rojects Lo ol : aUrce
4 Main | ¥ Reset| ¥ Download | #* Instruction Pointer | #® Run Opti ** Prajects to Build 5

Save as

(@) Local file

() shared File:

Display in Favarites menu Console Encading
O Q Run (®) Default (Cp1252)
] %fS:Debug) Other

Standard Input and Output
Allocate Console (necessary For inpuk)

[IFile:

Launch in hackgraund

22. Specify whether your launch configuration is local or shared.

265

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

The configuration is local by default. To make it shared, click Shared file: and
browse to the shared directory where you want the configuration to be located.

You have now fully defined your reset and download operation.
23. Click Debug.

Workbench initializes the target board, then downloads the file, then runs the
file.

The OCD Console view opens to show the progress of the reset and download
operation.

Tasks | Problems | Properties | Build Console | Error Log | Terminal 0 | Trace | OCD Command Shel

Reset and Download

Testing Communications to Hardware Interface. ... Passed
Driving HRESET ta be High. .. Passed
Driving HRESET ko be Law... Passed
\Waiting HRESET Low Acknowledge. . Passed
Attempting JTAG communication..... Passed
waiting For HReset to be released Passed
Testing for target STOP State........ Passed

Comparing karget CPU with CF sething.. oo, Passed
‘Waiting For HRESET High Acknowledge, Passed

Testing ITAG Cormmunication Passed

Loading Internal Registers. .. Passed

Testing ITAG Communication. .. Passed

Getting value of cf mmu option Passed

Atternpting ko restore CPU context, oo, Passed
CwindRiveriworkspacelc_demo_sa\PPCE03diab_DEBUG\cdema. elf (5151]
Loading symbals. .. Completed at Default Offset {1 sec)

Specified not to Run

* Reset and Download Completed *

< >

Proceed to 15.4 Profiling Your Code, p.272.

15.3 Creating a Project

NOTE: If you do not plan to build or edit your source files within Workbench, skip
this section and proceed to 15.4 Profiling Your Code, p.272.

In the Reset and Download view, click Close.

266

15 OCD Statistical Code Profiling
15.3 Creating a Project

To create the C Demonstration Project, use the following steps.
1. In the Workbench toolbar, select File > New > Project.

The New Project wizard appears.

% New Project

Select a wizard

Creates a new O5-agnostic sample project |

Yizards:

| tyvpe filker ket

(= Wiwvorks 5.5 -~
(= Wavarks 6.x
(= WxWrarks 653
(= wind River Linux
[=-[= Examples
179 Mative Sample Project
185 wxWorks 5.5 Downloadable application Sample Project
1 WxWwarks Downloadable Kernel Madule Sample Project
184 WxWorks Real Time Process Sample Project
5% wind River Linux &pplication Sample Project
1% wind River Linux User-Defined Sample Project =
w

[1show all wizards.

2. Expand the Examples folder and select Standalone Sample Project.

3. Click Next.

A sample project template appears.

267

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

New Project Sample

Sample Project Template
Select a sample project termplate, @

Available Examples; Information:
b= C Demonskration Program C Demonstration Program A
1= C++ Demonstration Program This program demonstrates various C
1=+ The Ball Demanstration Program language features including structures,

character arrays, linked lists, and

1=F The Panel Demaonstration Pragram recLrSion,

You can build and download this program
to wour simulator ar karget board, The
default RAM location For the program is
000014000, To change the default
memory address, edit the simple.lk linker
command File,

Features

The Follmwing Features are demonstrated
Fram main):

® Factorials: The FactorialDemol)
function oenerates a Factorial table

':?:' Mext = I Finish l [Cancel

4. Select C Demonstration Program and click Finish.

Workbench creates the sample project in the default workspace folder and
opens the Application Development perspective.

5. In the Project Navigator view, expand the c_demo_sa project.

268

15 OCD Statistical Code Profiling
15.3 Creating a Project

.} c_dem

[cdema.elf (MCF-0:00000000-EE-diab_DEBUG)
(M ARM-0x00000000-BE-diab_DEBLG
% ARM-000000000-LE-dish_DEBUG
(M ARM-0x04000000-BE-diab_DEBLG
(M ARM-0x04000000-LE-dish_DEBUIG
(M ARM-0%05000000-EE-disb_DEBUG
(™ ARM-0505000000-LE-dish_DEEUG
(0 1 F-0x00000000-BE-dish_DEBUG
(M 1 F-0x20000000-BE-dish_DEBUG
(2 MCF-0x40000000-EE-dish_DEEUG
(M MIPS32-4KEC-BE-1 6hit-diab_DEBUG
(M MIPS32-4KEC-BE-32hit-disb_DEBUG
(2 MIPS32-4KEc-LE-16hit-dish_DEBUG
(M MIPS32-4KEc-LE-32hit-dish_DEBUIG
(M MIPS32-4¥x-BE-32bit-disb_DEBLUG
(2 MIPS32-4kx-LE-32bit-dish_DEBUG
(M MIPS32-BCM-BE-32bit-diab_DEBLG
(M IPS32-BCM-LE-32bit-diab_DEBUIG
(™ MIPS32-IDT-BE-32bit-dish_DEBUG
(M MIPS32-10T-LE-32bit-diab_DEBUG
(M 1IPS32-PHI-BE-32hit-dish_DEBUIG
(™ MIPS32-PHI-LE-32bit-diab_DEBUG v

To build the sample project for use with the Wind River Instruction Set
Simulator (WISS), right-click on the ¢_demo_sa top-level folder and select
Build Options > Set Active Build Spec.

The Set Active Build Spec and Debug Mode dialog appears.

269

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

% Set Active Build Spec and Debug Mode E|

PPCEO3diab -

MIPS32-4KEc-BE-16bit-diab
MIPS32-4KEc-LE-16bit-diab
MIPS32-4KEC-BE-32bit-diab
MIPS32-4KEc-LE-32bit-diab
MIPS32-4k x-BE-32bit-diab
MIPS3Z2-4kx-LE-32bit-diab
MIPS32-BCM-BE-32bit-diab
MIPS32-BCM-LE-32bit-diab
MIPS32-10T-BE-32bit-diab
MIPS32-I0T-LE-32hit-diab
MIP532-PHI-BE-32hit-diab
MIPS32-PHI-LE-32hit-diab
MIPS32-PMX-BE- 16bit-diab A

Debug mode {use debug mode Flags)

':':’:' [K H Cancel]

7. Scroll to the top and highlight PPC603diab-WISS.

8. Select Debug mode (use debug mode flags) so Workbench will generate
symbolic debug information.

9. Click OK.
10. Right-click on the project name and select Rebuild Project.

Workbench builds the sample project. The results of the project build appear
in the Build Console view.

Error Log | Tasks | Problems | Properties Terminal | Consale =8

&5 4 BEE T
CTIO DO SO0 W L DD OO s U UL Y A SO0yl £ - OO L PO DT IO | RITILL T=0ia 0 D o= 0ias
5 _DEBLG/date.o" -c "date.c" e
building PPCED3diab-WISS_DEBUG/date.o
echo "building PPCa03diab-WISS_DEBLUG/math.o";dee -g -Hdebug-dwarf2 -tPPCA03ESiwindiss -DTOOL_FAMILY=diab -DTOOL=diat
5_DEBUG/math.o" -c "math.c"
building PPCED3diab-WISS_DEBUG/math.o
echo "building PPCAO3diab-WISS_DEBUG/addone. o";das -tPPCE03ES windiss -DTOOL_FAMILY=diab -DTOOL=diab -DPowerPC -DP
building PPC603diab-WISS_DEBUG/addone.o
echo "building PPC&03diab-WISS_DEEUG/cdemo.elf”; did -o "PRCA03diab-wISS_DEEUG/cdemo. elf” -kPPCE03ES windiss cdemo-POb
S_DEBUG)cdemn.o PPCAD3diab-wWISS_DEBUG)strutils, o PPCA03diab-WISS_DEBUG enginest o PPCA03diab-wIS5_DEBUG) calzndar
ath.o PPCE03diab-WIS5_DEEUG addone.o if ["0" ="1"]; then echo "building Run plink utility"; plink PPCE03diab-wWIS5_DEBUG)
building PPC603diab-WISS_DEBUG/cdemo.elf
make: built targets of C:fwindRiverfworkspace/c_demo_sa w

< >

270

15 OCD Statistical Code Profiling
15.3 Creating a Project

15.3.1 Downloading the Sample Code

To run the sample code, use the following steps:

1. Inthe Target Manager, highlight the target connection name
WRISS_MPC8260.

2. In the Project Navigator view, right-click on cdemo.elf and select Reset and
Download.

The Reset and Download view appears.

%) WRISS_MPCB260 - MPCB260

Modify attributes and launch.

Mame: | WRISS_MPCEZE0 - MPCEZ60

m@ Reset | ¥ Download | 4 Instruction Pointer | #® Run Options | ¥ Projects to Build | =1 Common

Conneckion

Connection to use: |WRISS_MPC8260 (localhost) d | [(IHide unconnected

“ornect | WRISS_MPCBZ60 - WRISS_MPCEZED is connected.

Care: | MPCE260 A4

[Apply H Revert]

@ [Debug H Close]

3. Leave all settings at their defaults and click Debug.
The OCD Console view opens.

271

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Errar Log | Tasks | Problems | Properties | Build Consale | Terminal | Console [ESRsTastae 0 4 =0
Testing ITAG Communication. oo Passed
Attempting to restore CPU context, oo, Passed
CiwindRiveriworkspacsc_demo_salPPCE03diab-W IS5 _DEBLUG cdema. elf (FEEE SRR R . N
Loading symbals. .. Completed at Default OFfset (<1 sec)
Specified not to Run
* Reset and Download Completed *
< >

The OCD Console view shows the progress of the download operation, as
Workbench downloads the sample code to the Wind River Instruction Set

Simulator.

Proceed to 15.4 Profiling Your Code, p.272.

15.4 Profiling Your Code

To perform statistical profiling analysis on your code, use the following steps:

1. In the Workbench toolbar, select

Window > Show View > OCD Statistical Code Profiling.

The OCD Statistical Code Profiling view opens.

272

Error Log | Tasks | Problems | Properties | Build Consale | Terminal | Canscle Qyl]

15 OCD Statistical Code Profiling
15.4 Profiling Your Code

% =l

Profile Data | Profile Plak

Function Mame TModule Mame (File ... w Start Address End Address CPU Percentage
main CifwindRiverfworks,., 0x00014030 000014338 0,00
skrcpy CifwindRiverfworks... 0x00014335 0x00014359¢C 0.00
strcmp CiwWindRiverfworks... Ox0001439¢ 00001 4404 0.00
engineers CifWindRiverfworks,., Ox00014404 000014554 0.00
dayOfyear CifwindRiverfworks... 0x00014584 0x00014674 0.00
dateForDayMum CifwindRiverfworks... Ox00014674 000014740 0.00
daysBetween CifwWindRiverfworks... Ox00014740 0x000147b0 0.00
calendar Ci/windRiverjworks,.. 0x000147b0 000014935 0,00
addCell CifwindRiverfworks... 0x0001493& 000014954 0.00
swapCells CifwindRiverfworks... Ox000145964 00001 4a00 0.00
linkList CifWindRiverfworks,.. 0x00014200 00001 4bds 0.00
send_month Ci/windRiverjworks,.. 0x00014bd& 0x00014c50 0,00
date CiiwindRiverfworks... Ox00014c50 0x00014dic 0.00
factarial CifwWindRiverfworks... Ox00014dic 00001 4de4 0.00
Factoriallemo CiWindRiverfworks,,, 0x00014dé4 0x00014=10 0,00

The view populates with the functions from your code. (Note that the view
only populates when there is code on the target. If you opened the view
without downloading code as described above, the view would be empty.)

The functions are arranged in five columns, listing the function name, the full
path to the function, the start and end addresses of the function, and the
percentage of CPU time each function used. Since you have not yet run the
code, the CPU Percentage column just reads 0.00.

To sort the functions, click on a column heading. In the above image, the arrow
in the heading of the Start Address column shows that the functions are sorted
by lowest starting address.

NOTE: By default, the Module Name field shows the path to where the
function was built. If you have a function that is not physically located where
it was built, then in the OCD Statistical Code Profiling view you can click
Toggle local build/source paths in table to make the Module Name field
show the full path to the file’s physical location.

In the OCD Statistical Code Profiling view, click Configure PFA Code Range.

The Profile Code Range dialog appears.

273

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Profile Code Range

Retrieving profile range. .. ~
Mew profile range: 0x00014000,,0:00014F70

Start Address! | geooo140o0
End Address: |D><DDDI4F?U I

Current Rate:

W

[startprofie | [ox |

N o g

274

Use the Start Address and End Address fields to set the desired code range.

To obtain the start address, click the heading of the Start Address column. (The
arrow in the heading of the Start Address column should be pointing down,
to show that the first address is at the top of the column. If it is pointing up,
click the Start Address column heading again.) For the C demonstration
program, the first address is the start of the function main at 0x00014030.

NOTE: You can set the Profile Code Range dialog to populate with the
beginning of your downloaded code automatically, by clicking the Show PFA
preference page button and selecting the Set profile range to beginning of
downloaded code checkbox in the dialog that appears.

To obtain the end address, click the heading of the End Address column. (The
arrow in the heading of the Start Address column should be pointing up, to
show that the last address is at the top of the column. If it is pointing down,
click the End Address column heading again.) For the C demonstration
program, the last address is the end of the function abs at 0x00014f64.

In the Start Address field, enter 0x00014030.
In the End Address field, enter 0x00014f64.
Click Modify.

Click OK.

15 OCD Statistical Code Profiling
15.4 Profiling Your Code

8. In the OCD Statistical Code Profiling view, click Start PFA Profiling.

This starts your code running in PFA mode. A >PFA> prompt appears in the
OCD Command Shell.

9. Inthe OCD Statistical Code Profiling view, click Stop PFA Profiling,.

This returns the target to Background Mode. The OCD Statistical Code
Profiling view is now populated with a list of the functions called while the
code was running, showing the percentage of run time for each function.

Error Log | Tasks | Problems | Properties | Build Console | Terminal | Console rofiling X

% =l
Profile Daka | Prafile Plat
Function Mame Module Marme (File B... w Stark Address End Address CPU Percentage -~
main CifwindRiver fworks... 0x00014030 0x00014335 7.43
strcpy CifwindRiver fworks,,, 0x00014333 0x0001439¢ 11.89
strcmp CfwindRiver fwarks... 0x0001439c 00014404 31.85
engineers CifwindRiver fwaorks,,. 0x00014404 000014534 5.10
davOFear CifwindRiver fworks,,, 0x00014554 Ox00014674 25.69
dateFaorDayhum CifwindRiver fworks,,. 0x00014674 0x00014740 3.40
davsBetween CifwindRiver fworks,,, 0x00014740 0x000147b0 1.49
calendar CifwindRiver fworks... 0x000147b0 0x00014935 2.76
addCell CifwindRiver fworks,,, 0x00014933 000014934 0.64
swapCells CifwindRiver fworks, .. Dx00014954 00014200 0.4z
linkLisk CifwindRiver fwarks,,. 0x00014a00 0x00014bd3 4,46
send_maonth CifwindRiver fworks,,, 0x00014bda 0x00014c50 0.85
date CifwindRiver fworks,.. 0x00014c50 0x00014d1c 2,76
factorial CifwindRiver fworks,., 0x00014d1c 0x00014da4 0.21
FactaorialDemo CiiwindRiver fworks.., Ox00014d64 0x00014e10 0.00 b

To see graphic representations of the code profile, click the Profile Plot tab.

The OCD Statistical Code Profiling view can display information in any of four
graph types. To cycle between these graph types, use the Show next graph type
and Show previous graph type buttons.

To change the color assigned to each function, use the Change graph colors button.

275

Figure 15-1

Figure 15-2

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Two-dimensional Bar Graph

Etror Log | Tasks | Problems | Properties | Build Console | OCD Command. ..

OCD Console | Terminal | Console

[
Soop | B O Ry K » B
Profile Data | Profile Plot
* Color CPU & Functlion
‘n 1. 35.36 stzomp
2. nw.n day0f¥ear
— S 13.39 strcpy
o 5.63 maLn
5. 5.10 linkList
Ll . 5.10 engineezs
7. 3.15 calendaz
0. e 1.70 dat e orDay Num
1 L .03 date
[JRe— 0.60 daysDetween
1Y 11. 0.6@ swapCells
11, 0.45 send_month
13, 0.33 adACell
4. 0.23 tactorial
io%
e “ |_| |_|][
1 2 3 . 5 6 ? [l 9 10 11 12 13 14

Three-dimensional Bar Graph

Error Log | Tasks | Problems | Properties | Build Consale | 0D Command... | OCD Consale | Terminal | Consale fyll

YT

x % B

| Prafile Data | Profile Plat

10 11 12 13 1i

Colox

Function

stzcmp
dayoE¥ear
SEICPY

main

linklizt
engineers

cal enda.
dateForlayiumr
date

daysDetween
swapCells

Eactorial

276

15 OCD Statistical Code Profiling
15.4 Profiling Your Code

Figure 15-3 Two-dimensional Pie Graph

| Prafile Data | Frofil Plot |

* Colox CrU A Function
L. — 35.36 strcmp
2. — . dayor¥ea:
ER — 13.290 stIcpy
™ — ENCH main
5. — 5.10 1inkList
. — 5.10 enginee:s
7. 3.15 calendar
o. — .70 dateForiayiiur
. 2.03 date
10, 0.5l daysDetween
11. 0.60 swapCells

o 11 — 0.5 send_manth
13 0.23 adACell
1 0.23 factorial

1., X
o | Bkl RS % E

Prafilz Data | Profile Flot |

+ Colox CPU & Function
1. — 5.3 stzcmp
2. — . dayor¥ear
= — 13.29 SEICpY
L. — 5.63 main
5. — 5.10 1inkList

o 6. — 5.10 englneexs
7. 3.15 cal endax
0. — 2.70 dateF ozDayNur

- 0. 2.03% date
= 10. — 0.60 daysHetween

1. 0.0 swapCells
1. e 0.45 send_ronth
13, 0.23 adacell
14 0.23 factorial

By default, these graphs show only functions that used CPU time while your code
was running. You can also set the bar graphs (though not the pie graphs) to show

277

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

all functions, whether they were called or not, by clicking the Show PFA
preference page button, setting the Set number of functions to display field to 25
(the maximum), selecting the Display functions with 0% time in bar graphs
checkbox, and clicking Apply.

Figure 15-5 OCD Statistical Code Profiling Preferences Dialog

%) Preferences

- Help “|| OCD Statistical Code Profiling Preferences
+- InstallfUpdate
4 Java
OCD Command Shell Set number of functions to display (Maximum = 253
= RunfDebug 25
Breakpoints
Cache Options
Cansale Display Functions with 0% time in bar graphs
Disassembly

. i Set profile range to beginning of downloaded code
Expression Yiews

External Tools
Forking
+- Launching

Memary Yiew
QCD Statistical Code P
Performance
Perspectives
Source Lookup
String Substitution
Vieww Management

ScopeTools

Skatic Analysis

Syskem Wiewer

+- Targek Manager

+- Team b’

T

T

[Restore Defaults] [Apply]

@ I K, H Cancel]

15.4.1 Profiling Selected Functions

You can also set the OCD Statistical Code Profiling view to profile only selected
functions. For example, say you are only interested in the function calendar. In the
Start Address and End Address columns you can see that the function calendar
starts at 0x00014740 and ends at 0x00014938. Enter those values in the Start
Address and End Address fields in the Profile Code Range dialog, and click
Modify and then OK. Now when you click Start PFA Profiling, the OCD
Statistical Code Profiling view returns data only for the function calendar.

278

15 OCD Statistical Code Profiling
15.4 Profiling Your Code

15.4.2 Browsing Functions in Source
To see the source for any function, highlight the function in the Profile Data tab
and click Browse PFA function in source. The selected function is displayed in the
Workbench editor.

15.4.3 Updating the Profile Data
To update profile data, use the Refresh/Update PFA grid data button. You can see
the output for each function in the OCD Command Shell.

15.4.4 Removing Functions

To delete a function from the Profile Data tab, highlight the function and click
Remove selected function.

279

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

280

16

Using the Cache View

16.1 Introduction 281

16.2 Connecting to the Target 282

16.3 Creating a Project 293

16.4 Examining Cache 299

16.5 Viewing Cache Source 303

16.6 Comparing Memory 303

16.7 Reconfiguring the Cache 305

16.8 Exporting Cache Information 305

16.9 Using Processors Without Cache Lines 306

16.1 Introduction

Use the Cache view to view instructions and data stored in cache.

The Cache view has two tabs: Cache Lines and Advanced Control and Status.
Cache Lines is the default tab, for processors (the majority) that organize their
cache memory in logical blocks, each of which contains an address index, an
address tag, and a given number of bytes of data; each such block of memory is
called a cache line.

281

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

For targets that do not use cache lines, such as Freescale ColdFire, the Cache view
cannot display cache information. However, the Advanced Control and Status tab
provides cache control options for these targets.

In either case, the Cache view displays tabs for the Instruction Cache and the Data
Cache. (If your target processor uses a multi-level cache, there may be additional
tabs visible, such as L2 Data Cache, L2 Instr Cache, and so on.) Before you perform
any operation in the Cache view, make sure you are in the appropriate tab.

To populate the Cache view, you must have an active target connection.

16.2 Connecting to the Target
First, open Workbench according to the method for your host computer.

Linux/Solaris Hosts

From your installation directory, issue the command

$./startWorkbench.sh

Windows Hosts
Select Start > All Programs > Wind River > Wind River Workbench version.

On Windows hosts, Workbench prompts you to specify a workspace location.
Linux hosts use the default location installDir/workspace.

When Workbench opens, the Quick Target Launch dialog appears.

282

16 Using the Cache View
16.2 Connecting to the Target

Wind River On Chip Debugging
@ Chioose How You Wank to Start

Defined Launches

2| Create anew launch configuration
E:

Edit an existing launch configuration
Connect, Attach, Reset and Download

Sync with target and download symbols

(#) [Joo not show this dialog on startup o

1. Select Create a new launch configuration.
The Connection Type dialog appears.

This tutorial uses a Wind River Probe emulator connected to a Wind River
PPMC750FX target.

283

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

New Connection

Connection Type

Flease select connection bvpe,

Wind River OCD ICE Connection
‘Wind River OCD I55 Connection

‘ind Riv] ineckion

WWind River Wowtorks 6.x Core Dump Connection
Wind River YeWarks 6. Simulator Connection
WWind River Wowlorks 6.x Target Server Conneckion

® | -

2. Select Wind River OCD Probe Connection and click Next.

The Processor Selection dialog appears.

284

16 Using the Cache View
16.2 Connecting to the Target

ew Connection

Wind River Probe Settings

Configure the designator settings for the emulator,

Designatars

(%) Processor: | PRCTSOFY | [Seleck. .. l
() Board Fils:
v Designator Processar Processor Plugin

PPC7S0F: PPRC7SOFY PowerPC 7w Family Process, ..

Auko-attach to connected designatars

Cormmunications

|JSE Device Mame: | PRO40310 £V

@ [<Back J[met>]| Finist

3. Click Select. From the list that appears, expand MPC7xx and select PPC750FX.

285

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

% Processor Selection

Current Connection - Wind River Probe : PPC750F

MPCExRx ~
MPC7 4
= MPCT=x

MPC740

MPZ745

MPC750

MPCZ755

PRC740

PRC745

PRC7S0

PPC730CR

PRC7S0OCEE

PRC7S0OCRR
PRC7S0FA
PPC7500GR
BRCFEMA b’

(7 [oK H Cancel]

4. Make sure the Auto-attach to connected designators checkbox is selected and
click OK.

You are returned to the Processor Selection dialog.
5. Click Next.

6. The connection wizard passes through a number of screens that you do not
need to configure for this tutorial. Leave all settings at their defaults and click
Next until you come to the Connection Summary.

286

16 Using the Cache View
16.2 Connecting to the Target

-~

") New Connection

Connection Summary

Please review the connection information

Conneckion name: | WRProbe_PPCTSOFX_0

Summary

Property Yalue
ADDR. PRO40310
AutoAttachConnectedCor trus

DESIGMATORMAR
CEVICE ‘Wind River Probe
MAME_MAPPIMNG [*i*. unstripped],[*;*]
PATH_MAPPING [:1d
STYLE USBDEYICE

Immediately connect to target if possible

@ [Finish H Cancel]

7.

Make sure that the Immediately connect to target if possible checkbox is
selected and click Finish.

Workbench creates a target connection called WRProbe_PPC750FX in the
Target Manager view.

The Reset and Download view appears.
Choose how you want to proceed:

a. If you want to create a project in which to run and debug your code, skip
the rest of this section and proceed to 16.3 Creating a Project, p.293.

b. If you want to run and debug your code without creating a project,
continue with this section.

In the Reset and Download view, select the Reset tab.

287

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Mame: | WRProbe_PPC7SOFY - PPC7SOFY

. Main m@ Download . Instruction Pointer | 4® Run Options | #* Projects ko Build T§¢ Source | =] Common
PPCFSOF

[FIPlay register fils CHiwindRiveriworkbench-2,64dfw\ 01 60gihostiregisters\PowerPCl 7xWindRiver_PPMC\ppmc?50fx.reg hd
RBSE'Z I - Resetfsetup regs | | Query Target
(=) Specified core

O all cores

Cores tied on reset:

10. If you want to configure the target register values with a register file, select
Play Register File and browse for the file you want to use.

Register files for many Wind River-supported targets are located in
installDir/fworkbench-2.x/dfw/build/host/registers.

If you do not want to reconfigure your target registers, leave this box
unchecked.

11. Choose the type of reset initialization you want to perform.

You can use the IN or INN initialization commands. For a full discussion of
these two commands, see the Wind River Workbench for On-Chip Debugging
Command Reference.

You can also choose not to perform an initialization by clearing the Reset box.

CAUTION: If you are manually changing registers on your target, be aware that
issuing an IN or INN initialization command will overwrite your changes.

12. Select the Download tab.

Mame: | WRProbe PPC7SOF: - PRPCTSOFY

@ Main | ¥ Reset m@ Instruction Poinker | #® Run Options | ¥% Projects to Build | B, Source | =1 Common
PPCFS0FY

File: Download Werify Load Symbols | OFfset
cdemn. elf - C:fwindRiverfstandalone-1.0fsamplesc_demd .. Mone L7

288

13.

14.

16 Using the Cache View
16.2 Connecting to the Target

Click Add Files.

In the browser window that appears, navigate to the executable file you want
to run.

The file you select appears in the Filename field. Repeat this process as many
times as necessary.

The file at the top of the list will download to the target first, followed by the
others from the top down. You can edit the order of the list by clicking on any
filename to highlight it and using the Up, Down, and Delete buttons.

Use the other fields to configure the download.

Download

The Download field is checked by default. If you clear it, the file will remain
on the list but will not download data to the target. This is useful if, for
example, you only want to download symbol information and not data.

Verify

The Verify field configures the extent to which the file you are downloading
will be compared to a file that may already be on the target. There are three
options: Full, Compare, and None.

When this field is set to Full, a write/read verify will occur for every
download. Workbench writes to the target and then verifies that the write to
the target and the read from the target are identical. This is slower than a
normal download, but it is a useful security option.

When the field is set to Compare, Workbench will verify that the image has
been downloaded correctly (that is, that the image on the host is the same as
the image on the target.) This is useful for programming flash.

NOTE: You should only set the Verify field to Compare if an image already
exists on the target. If you set the field to Compare when there is no image on
the target, Workbench will look for a file to compare and not find one, and the
reset and download operation will fail.

When the field is set to None, Workbench will perform no verification.

The Verify field is set to None by default.

289

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Load Symbol

The Load Symbol field, which is checked by default, determines whether the
file’s symbol information is downloaded to the target.

Offset

15.

Mame:

In the Offset field, you can enter a value in hex to set a memory offset bias for
your application file. If you do not enter a value, Workbench uses the default
value 0x00000000.

Select the Instruction Pointer tab.

WRProbe_PPC7E0F: - PPCTSOFY

o Main | ¥ Reset | ¥ Download FEENTETTESINENTE N @ Run Options | ## Projects to Build T§¢ Source | =] Common
PPCFSOF

[¥] 5et instruction pointer after download

() Use start address From download File

(O Use start address From symbaol

() Use specified start address |

16.

17.

290

Set the starting point for your file.

By default, the instruction pointer is set to use the starting address from the
download file.

You can set the instruction pointer to start the file from the first occurrence of
a particular symbol (for example, main) or you can just specify a starting
address by entering the address value in hex in the Use Specified Start
Address field.

If you do not want to set a starting point, clear the Set Instruction Pointer
After Download box.

Select the Run Options tab.

16 Using the Cache View
16.2 Connecting to the Target

Mame: | WRProbe_PPC7SOFY - PPCTSOF:

Main | ¥ Reset ¥ Download | #® Instruction Pointer m” Projects to Build T‘y Source | =] Comman
PPCFS0FR

@ Do not run
() Run to symbol

(RuN ko address

()Run ko end of program
[Cereak at Exit

[IPlay post download script

18. Determine how you want your file to run.

By default, the Reset and Download view is set not to run the file after
downloading. If you want the file to run, you have several options to
determine where it should break:

* You can set it to break at the first occurrence of a symbol (for example,
main) by selecting Run to Symbol and entering the symbol in that field.

* You can set it to break at the end of your program by selecting Run to end
of program.

* You can set it to break at a given memory address by selecting the Run to
Address box and entering the address in hex in that field.

* Youcanset it to break at an _exit routine by selecting the Break at Exit box.

If you need to perform a post-initialization, you can define it here. Select the
Play post download script box and click Browse. In the browser window that
appears, navigate to your initialization file.

19. Select the Source tab.

Mame: | WRProbe_PPC7SOFY - PPC7S0FR

4 Main | ¥ Resct| ¥ Download | @ Instruction Pointer | #® Run Options | % Projects to Build m:. Common
Source Lookup Path:

- o

20. Use the Source tab to configure the source path of your file.

291

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

21.

Workbench uses the input path of the local file system by default. Unless you
need to use a different path, you do not need to do anything in the Source tab.

If you need to use a different path, click Add... and use the Add Source dialog
to configure the appropriate search path for your project.

Select the Common tab.

#* Main | # Reset | ¥ Download | #® Instruction Pointer | #® Run Options | #% Projects to Build @ Source m
Save as
(®) Local file

() shared file:

Standard Input and Cutput

Allocate Console {necessary For input)

[CIFile:

22.

23.

292

Specify whether your launch configuration is local or shared.

The configuration is local by default. To make it shared, click Shared file: and
browse to the shared directory where you want the configuration to be located.

You have now fully defined your reset and download operation.
Click Debug.

Workbench initializes the target board, then downloads the file, then runs the
file.

The OCD Console view opens to show the progress of the reset and download
operation.

16 Using the Cache View
16.3 Creating a Project

Tasks | Problems | Properties | Build Console | Error Log | Terminal 0 | Trace | OCD Command Shell

Reset and Download
Testing Communications to Hardware Interface. ... Passed
Driving HRESET tabe High. oo Passed
Driving HRESET ko be Law..... Passed
‘Waiting HRESET Low Acknowledge. .. Passed
Atterpting JTAG communication. .. Passed
Wwaiting For HReset to be released. Passed
Testing for target STOP State...... Passed
Comparing target CPU with CF setking.. Passed
‘Waiting For HRESET High Acknowledge, Passed
Testing ITAG Cormunication, Passed
Loading Internal Registers. ... Passed
Testing ITAG Communication. ... Passed
Getting value of cf mmu option ... Passed
Atternpting ko restore CPU context, oo, Passed
CwindRiveriworkspacelc_demo_sa\PPCE03diab_DEBUG\cdema. elf (5151]
Loading symbals. .. Completed at Default Offset {1 sec)
Specified not to Run
* Reset and Download Completed *
< >

Proceed to 16.4 Examining Cache, p.299.

16.3 Creating a Project

NOTE: If you do not plan to build or edit your source files within Workbench, skip
this section and proceed to 16.4 Examining Cache, p.299.

Click Close in the Reset and Download view.

This tutorial uses the C Demonstration Program, which is included in your
Workbench installation.

1. In the Workbench toolbar, select File > New > Project.

The New Project wizard appears.

293

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Enable/disable toggle button
/

New Project

Select a wizard p—

Creates a new O5-agnostic sample project |

Yizards:

| tyvpe filker ket

[WxWarks 5.5
(= Wxiorks 6.x
(= WxWrarks 653
(= wind River Linux
(= Examples
179 Mative Sample Project

|

- 6B

Standalone Sarmple P

185 wxWorks 5.5 Downloadable application Sample Project
1 WxWwarks Downloadable Kernel Madule Sample Project
184 WxWorks Real Time Process Sample Project

5% wind River Linux &pplication Sample Project

1% wind River Linux User-Defined Sample Project

E4]

[1show all wizards.

2. Expand the Examples folder and select Standalone Sample Project.
3. Click Next.

A sample project template appears.

294

16 Using the Cache View
16.3 Creating a Project

New Project Sample

Sample Project Template

Select a sample project termplate,

Available Examples;

Information:

E=, C Demonstration Program

1= C++ Demonstration Program

1= The Ball Demonstration Program
1=+ The Panel Demaonstration Program

C Demonstration Program A

This program deronstrates various C
language Features including structures,
character arrays, linked lists, and
recursion,

You can build and download this program
to wour simulator ar karget board, The
default RAM location For the program is
000014000, To change the default
memory address, edit the simple.lk linker
command File,

Features

The Follmwing Features are demonstrated
Fram main):

® Factorials: The FactorialDemol)
function oenerates a Factorial table

®

I Finish l [Cancel

4. Select C Demonstration Program and click Finish.

Workbench creates the sample project in the default workspace folder and
opens the Application Development perspective.

5. In the Project Navigator view, expand the c_demo_sa project.

295

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

fa]

B & c_demo d R randalo Ef
1y cdemo.elf {MCF-0:00000000-BE-diab_DEEBUG)
e ARM-0x00000000-BE-diab_DEBUG
[ARM-0:00000000-LE-disb_DEEUG
e ARM-0x04000000-BE-diab_DEBUG
e ARM-0:x04000000-LE-diab_DEBIUG
[ARM-0:x03000000-EE-diab_DEBUG
[ARM-0:03000000-LE-disb_DEEUG
[MCF-0x00000000-BE-diab_DEBIG
[MCF-0x20000000-BE-disb_DEELG
[MCF-0:40000000-BE-disb_DEEUG
[MIPS52-4KEc-BE- 1 6hit-diab_DEBLUG
[MIPS3Z2-4KEc-BE-32bit-diab_DEBLG
[MIPS3Z2-4KEC-LE- 16hit-disb_DEEUG
[MIPS52-4KEc-LE-32hit-disb_DEBUG
[MIPS32-4Kx-BE-32hit-diab_DEBUG
[MIPS3Z2-4k-LE-32hit-disb _DEEUG
[MIPS52-BCM-BE-32bit-diab_DEBUG
[MIPS32-BCM-LE-32bit-diab_DEBUIG
[MIPS32-10T-BE-32hit-disb_DEEUG
e MIPSZ2-1DT-LE-32bit-diab_DEBUG
e MIP532-PHI-BE-32bit-diab_DEBLG
[MIPS32-PHI-LE-32bit-diab_DEEUG b

6. To build the sample project for use with a PowerPC target, right-click on the
c_demo_sa top-level folder and select Build Options > Set Active Build Spec.

The Set Active Build Spec and Debug Mode dialog appears.

296

16 Using the Cache View
16.3 Creating a Project

Set Active Build Spec and Debug Mode

PPCED3diab-WISS
MIP532-4KEC-BE-16bit-diab
MIPS32-4KEc-LE-16bit-diab
MIPS32-4KEc-BE-32bit-diab
MIPS32-4KEc-LE-32bit-diab
MIP532-4kx-BE-32bit-diab
MIPS32-4Kx-LE-32bit-diab
MIPS32-BCM-BE-32bit-diab
MIPS32-BCM-LE-32bit-diab
MIP532-1DT-BE-32kit-disb
MIPS32-1DT-LE-32bit-diab
MIPS32-PHI-EE-32bit-diab
MIPS32-PHI-LE-32hit-diab
MIP532-PM=-BE-16bit-diab w

Debug mode (use debug mode Flags)

@ [a4] [Cancel]

7. Scroll to the top and highlight PPC603diab.

8. Select Debug mode (use debug mode flags) so Workbench will generate
symbolic debug information.

9. Click OK.
10. Right-click on the project name and select Rebuild Project.

Workbench builds the sample project. The results of the project build appear
in the Build Console view.

Error Log | Tasks | Problems | Properties Terminal | Console =0

=] & 4 EBRE T
e e B T B R e e T P e PR T R B e e T
5_DEBUG/date.o" -t "date.c" A
building PPC603diab-WISS_DEBUG/date.o
echo "building PPC&03diab-WISS_DEELIG/math.o";dee -g -Xdebug-dwarf2 -tPRPCE03ESiwindiss -DTOOL_FAMILY=diab -DTOOL=diat
5_DEBUG/math.o" -c "math.c”
building PPC603diab-WISS_DEBUG /math.o
echo "building PPCa03diab-WIs5_DEEUG/addone . o";das -tPPCA03ES: windiss -DTOOL_FAMILY=diab -DTCOOL=diab -DPowerPC -DP
building PPC603diab-WISS_DEBUG/addone.o
echo "building PPCA0Ediab-WI55_DEELUG/cdemo.elf”; did -o "PPCAN3diab-wissS_DEEUG/cdemo.elf” -tPPCA0ZES windiss cdemo-POn
S_DEBUG/cdemo .o PPCA03diab-wISS _DEBUG strutils. o PPC603diab-WIS5_DEBUG/engineer .o PPC603diab-wIS5_DEBIG calendar
ath.o PPCE03diab-WISS_DEEUG addone.a if ["0" ="1"]; then echo "building Run plink utility"; plink PPCE03diab-wWISS_DEEUG)
building PPC6D3diab-WISS_DEBUG/cdemo.elf
make: built targets of C:fWindRiverjworkspace/c_dermo_sa £

< >

297

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

16.3.1 Downloading the Sample Code

To run the sample code, use the following steps:

1. Inthe Target Manager, highlight the target connection name
WRProbe_PPC750FX.

2. In the Project Navigator view, right-click on cdemo.elf and select Reset and
Download.

The Reset and Download view appears.

%) WRProbe_PPC750FX - PPC750FX

Modify attributes and launch.

Mame: | WhProbe_PPCTSOFY - PPCTS0FK

m@ Fieset | # Dowrload | #® Instruction Pointer | #® Run Opions | % Projects to Build EV Source | =] Common

Connection

[Create a Mew Target Connection]

Connection to use: |WRPr0be_PPC?SDFX {localhost) v | []Hide unconnected

“orrect | WRProbe_PPCTSOFY - WRProbe_PPCTSOFY is connected.

Core: |PPCTSORK v|

[Apply] [Revert]

e [Debug] [Close]

3. Leave all settings at their defaults and click Debug.
The OCD Console view opens.

298

16 Using the Cache View
16.4 Examining Cache

Errar Log | Tasks | Problems | Properties | Build Consale | Terminal | Console [#6#s

Testing ITAG Communication. oo Passed

Attempting to restore CPU context, oo, Passed
CiwindRiveriworkspacsc_demo_salPPCE03diab-W IS5 _DEBLUG cdema. elf (FEEE SRR R . N
Loading symbals. .. Completed at Default OFfset (<1 sec)
Specified not to Run

* Reset and Download Completed *

The OCD Console view shows the progress of the download operation.

16.4 Examining Cache

Use the instructions in this section to examine cache.

16.4.1 Instruction Cache

1. In the Workbench toolbar, select Window > Show View > Cache.
2. Click on the Instr Cache tab.
3. Click the Enable Instr Cache toggle button.

299

Wind River Workbench for On-Chip Debugging

User Tutorials, 2.6.1

©CD Command Shell | Binary Upload | CF Options | OCD Statistical Code Profiling | Hardware Diagnastics @

he X

Cache - L1 Instr Cache is Enabled

L1 Instr Cache | |1 Data Cache | L2 Unified Cache

Trace =0

a[% [#]l] B | &% 4~

Set-Way Status Aiddress Data

Disassembly

Function Source

Resource

In Folder Location Text

‘ Cache Lines ‘ Advanced Control and Status

QCD Command Shell | Binary Upload | CF Options | OCD Statistical Cads Profiing | Hardware Diagnostics

4. Inthe Debug view, click Resume.
5. Let the code run and then click Suspend.
6. In the Cache view, click Refresh.

NOTE: The cache view has two refresh buttons: Refresh and Refresh AllL
Refresh updates the cache with only the 100 most recent instructions. Refresh
All updates the entire cache. A Refresh All operation may take significantly
longer.

The Cache view populates with the instructions stored in cache while your
code was running.

=8

Cache -

L1 Instr Cache

L1 Instr Cache is Enabled

o= %] B shee 47

L1 Data Cache | L2 Unified Cache

Set-Tay Status Address Data Disaz=zenbly Function Source Resource &
1-0 ¥ LRU O0x00014020 Ox43000011 kbl main

0Ox00014024 0Ox45000000 deadloop: b deadloop B

0x00014028 0Ox38630001 addone: addi r3,r3,1

O0x000140ZC Ox4ES000EZ0 blr

0x00014030 0Ox94Z1FFEO0 main: stwu rl,-0x50(rl)

0x00014034 Ox7COS0246 mfle ju}

Ox00014038 Ox93410044 stw ri9,0x44(ri1)

Ox0001403C 0Ox93C10048 sty r30,0x48(rl)
7-0 ¥ LRU O0x000140ED0 Ox43000D85 bl fibonaccilemo

Ox000140E4 Ox39400003 1i rio, 3

OxDO0140ES8 0Ox9141000C stw rl0,0xCirl)

O0x000140EC Ox39200000 1i 2,0

0x000140F0 0x91210010 stw r9,0x10(ri} v
< ¥

Cache Lines | Advanced Control and Status

300

16 Using the Cache View
16.4 Examining Cache

16.4.2 Data Cache

1. In the Workbench toolbar, select Window > Show View > Cache.
2. Click on the Data Cache tab.
3. Click the Enable Data Cache toggle button.

0D Command Shell | Binary Upload | CF Options | OCD Statistical Code Profiling | Hardware Diagnoskics @ Cache X
Cache - L1 Data Cache is Disabled el % @&l L-é}_} \»{@ 2 =

L1 Instr Cache | L1 Data Cache | L2 Unified Cache

Set-Way 3tatus Address Data Disassembly Text

Cache Lines | Sdvanced Control and Status

4. In the Debug view, click Resume.

5. Let the code run and then click Suspend.
6. In the Cache view, click Refresh.

The Cache view populates with the data stored in cache while your code was
running.

16.4.3 Interpreting the Cache View
The Cache view displays information in the following columns:

Set-Way

A Set-Way is a logical grouping of cache lines. This column displays the
number of the Set-Way to which the following cache lines belong.

Status

This column displays the status of the given cache line, whether valid (V) or
invalid (I). By default, the Cache view shows all available information,

301

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

whether valid or invalid. To see only valid instructions and data, click the
Valid button in the Cache view. This flushes all invalid information and shows
only valid instructions and data.

To mark all instructions or data currently in the cache as invalid, click the
Invalidate button in the Cache view. This does not disable the cache.

This column also shows the algorithm the cache uses to return cached
information to RAM. If a cache has limited storage, which it usually does,
information will have to be periodically ejected to make room for a new entry.
The decision on what to eject is handled by a heuristic algorithm, the
replacement policy. A popular replacement policy is LRU, which replaces the
Least Recently Used entry.

Address

This column displays the address in RAM to which this cache line corresponds.

Data

This column displays the bits of data the cache line contains. This column only
populates if you select Data Mode by clicking the Data button in the Cache view.

Disassembly

This column displays the operation codes that the data in the Data column
represent (if any.) This column only populates if you select Data Mode by clicking
the Data button in the Cache view.

Function

This column displays the associated function for each instruction in the Cache
view. This column is only visible in the instruction cache. It only populates if you
select Source Mode by clicking the Source button in the Cache view.

Source

This column displays the source for each instruction in the Cache view. This
column is only visible in the instruction cache. It only populates if you select
Source Mode by clicking the Source button in the Cache view.

Text

This column displays ASCII strings that the data in the Data column represent (if
any.)

302

16 Using the Cache View
16.5 Viewing Cache Source

To disable the cache, select the Instr Cache tab or the Data Cache tab and click the
Enable/Disable toggle button again.

To clear the contents of the Cache view, click the Clear button.

16.5 Viewing Cache Source

Source Mode is only available in the instruction cache.

With Source Mode enabled, the instruction cache shows the function and source of
each instruction in the Cache view, under the headings Function and Source.

To see the contents of a cache line in source, use the following steps:
1. Select the Instruction Cache tab.

2. Click the Source button to enable Source Mode.

3. Right-click on an instruction and select Go To.

Workbench brings up the source of the instruction in the editor.

16.6 Comparing Memory

The Cache view allows you to compare the information in the cache to information
stored in RAM.

1. Right-click in the Cache view and select Display Cache Properties.

The Preferences dialog appears.

303

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Help #|| cache
Install{Update
Java Appearance color options:
o0 Cammand Shell L 2 '
&- Run/Debug nchanged ca ; : Color: E]
Unchanged memory walues color

Breakpaints

Difference color

G
Consale
Disassembly
Expression Views
External Tools
Farking
Launching
[Memory Yiew
OCD Skatistical Code P
Performance
Perspectives
Source Lookup
Skring Substitution
View Management
ScopeTools
Skatic Analysis
Syskem Yiewer
Target Manager w

’ Restore Defaults] [Apply]

@ [QK H Cancel]

Use the Preferences dialog to set the color of the data stored in cache.
Click on Unchanged cache values color.

Click the Color button.

On the color palette, choose the color black.

Click on Unchanged memory values color.

On the color palette, choose the color blue.

Click on Difference color.

On the color palette, choose the color red.

Click OK.

Y ® N o gk =

Open the drop-down menu in the upper right corner of the Cache view and
select Compare Memory.

Workbench displays any differences between cache and memory in red.

304

16 Using the Cache View
16.7 Reconfiguring the Cache

D Command Shell | Binary Upload | CF ©ptions | OCD Statistical Code Profiling | Hardware Diagnostics | Trace E =0
Cache - L1 Data Cache is Enabled {;52:, 5@ -3 =
L1 Instr Cache | L1 Data Cache | L2 Unified Cache
SJec—-Way Scacus Lddres= Data Dizassenbly Text A
iz0-0 C W LEU Ox0001S5F00 Ox00015F10 . long 0x15F10
Ox00015F04 0x000D1SES . long 0xD15ES
Ox00015F05 Ox0000000F . long OxE
Ox00015F0C Ox00015Z70 . long Ox15270
Ox00015F10 0Ox00015F30 . long 0x15F30
Ox00015F14 0x000145E4 . long 0x145E4
0x00015F15 Ox000D1SES . long OxD15ES
Ox00015F1C Ox00000001 . long 1
iz20-0 Ox00015FO0 Ox0000004LS | long Ox b3
Ox00015F04 0x000053445 . long OxG4a5
0x00015F05 OxO00015F55 . long Ox15F56
Ox00015F0C Ox0OO0D1SFS0 . long Ox15F50
Ox00015F14 0x0001476C . long 0x1476C A
Cache Lines | Adwanced Control and Status

16.7 Reconfiguring the Cache

If you are using a target board that has programmable variable cache, you can
specify changes in the Cache view.

1. Program the cache with a user-supplied file or program.

2. Open the drop-down menu in the upper right corner of the Cache view and
select Reconfigure for your changes to take effect.

NOTE: If you are using a target board with fixed cache, choosing the
Reconfigure option will have no visible results.

16.8 Exporting Cache Information

To export the information in the Cache view to a text file, right-click in the Cache
view and select Export.

305

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

You can also export only selected parts of the information in the Cache view by
highlighting the information you choose, right-clicking in the Cache view, and
selecting Export Selected.

16.9 Using Processors Without Cache Lines

If you are connected to a processor that does not organize its cache in cache lines,
you can manipulate cache using the Advanced Control and Status tab. The
Advanced Control and Status tab does not display the contents of cache; it only
allows you to perform operations on it. What operations are available varies by
target processor.

Instruction Cache

1. In the Workbench toolbar, select Window > Show View > Cache.
2. Select the Instr Cache tab.
3. Select the Advanced Control and Status tab.

0D Command Shell | Flash Programmer | Binary Upload | CF Options | OCD Statistical Code ... | Hardware Diagnostics |3 &
Cache 8 b |l ghép | F T

L1 Instr Cache | L1 Data Cache

L1l Instr Cache Is Disabled

Ll Instr Cache Is Cacheable

L1l Instr Cache Write Protect Is Disabled

L1l Instr Cache CPUSHL Is Enabled

L1 Instr Cache Buffered Write Is Disabled

L1l Instr Cache Line Fill - LW LN LW LG

L1l Instr Cache Freeze Is Disabled

L1l Instr Cache Bursting Is Disabled

L1l Instr Cache User Stack Pointer Is Disabled

Toggle Cache State [Enable, Disable]

Invalidate Instr Cache

Toggle Cache Mode State [Cacheable, Inhibited]

Toggle Cache Write Protect [Enable, Disable]

Toggle Cache CPIUSHL Invalidate Enable [Enable, Disable]

Set Cache Line Fill To LineLinelineLong

Set Cache Line Fill To LineLineLonglong

Set Cache Line Fill To LineLineLineLine

Toggle Cache Freeze Enable

Toggle Cache Bursting Enable

[
(
(
(
(
[Togale Cache Buffered write [Enable, Disable]
[
[
[
[
(
(

Toggle User Stack Pointer Enable

Cache Lines | advanced Control and Status

306

16 Using the Cache View
16.9 Using Processors Without Cache Lines

The Advanced Control and Status tab shows available cache operations for
the connected processor. This example shows the available instruction cache
operations for a ColdFire MCF5208 processor.

Data Cache

1. Select the Data Cache tab.
2. Select the Advanced Control and Status tab.

OCD Command Shell | Flash Programmer | Binary Upload | CF Options | ©CD Statistical Code ... | Hardware Diagnostics
Cache - L1 Data Cache Is Disabled

e X Trace| — O

8 ®(njcgpp | 77

L1 Instr Cache | L1 Data Cache |

- L1l Data Cache Is Disabled
[Toggle Cache State [Enable, Disable]]

[Invalidate Data Cache]

Cache Lines | Advanced Contral and Status |

This example shows the available data cache operations for a ColdFire
MCF5208 processor.

307

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

308

17

Uploading Target Memory to a
Binary File

17.1 Introduction 309
17.2 Uploading Memory 309
17.3 Comparing Memory 311

17.1 Introduction

The Binary Upload view allows you to upload segments of target memory into a
raw binary file. For example, you can use this view to back up your boot loader
parameters to a file so they can be reflashed on other boards, or to back up a
running boot loader prior to an upgrade. You can also use the view to compare the
contents of a raw binary file with target memory.

17.2 Uploading Memory

To use the Binary Upload view, use the following steps:

1. In the Workbench toolbar, select Window > Open Perspective > On Chip
Debug.

309

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

2. In the Workbench toolbar, select Window > Show View > Binary Upload.
The Binary Upload view appears.

OCD Command Shell | Flash Programmer L Binary Upload CF Options | OCD Statistical Code ... | Hardware Diagnostics | Cache | Trace =0

File Mame Ci\bin_filestexport_file,bin
Start Address Location | 000000000

End Address Location | 000000100

Diata Width
Upload | [] &ppend uploaded data to file [heck ko skop on first error encountered

3. In the File Name field, specify the file to which you want the data to be
uploaded.

If the file does not already exist, Workbench creates it in the location you
specify.

4. In the Start Address Location field, enter the start address of the memory
segment you want to upload.

5. In the End Address Location field, enter the end address of the memory
segment you want to upload.

6. In the Data Width field, specify the data bus width for the upload operation.

For example, if you select 32 bits, Workbench uploads the data to your file in
a series of 32-bit memory reads.

7. Click Upload.

This uploads the specified memory segment to your binary file. To cancel the
upload, click Cancel.

By default, Workbench overwrites data in your binary file every time you click
Upload. To append data to the file instead of overwriting it, select the Append
uploaded data to file checkbox before you click Upload.

310

17 Uploading Target Memory to a Binary File
17.3 Comparing Memory

17.3 Comparing Memory

You can use the Binary Upload view to compare the contents of a raw binary file
with memory, in order to detect memory corruption; for example, to check that a
region of flash memory has not been modified by incorrect execution.

1. Make sure the Start Address and End Address locations are the same locations
you specified for the upload.

2. Click Compare.

Workbench compares the contents of the file with the memory at the specified
location. Any mismatches are displayed below the progress bar in the Binary
Upload view.

If the contents of memory and your file are the same, Workbench shows the
following result:

[J

© MISMATCHES FOUND: O

Suppose the value at 0x00000100 has changed since you uploaded the file.
Workbench shows the following result:

[J

@ MISMATCHES FOUMD: 4

Display error log in editar

3. If you want Workbench to stop the compare operation the first time it finds a
mismatch, select the Check to stop on first error encountered checkbox.

4. To see the difference between the memory and your file, click Display error
log in editor.

311

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

| 0x00000100 | 7o | o0

| 0x00000101 | 73 | oo

| 0x00000102 | 43 | o0

| 0x00000103 | a6 | £t

< | ¥

If you specify a different start or end address for your compare operation,
Workbench returns one of the following results.

If the memory area you specify is smaller than the binary file:

[J

@ MISMATCHES FOLND: 0

& UMDERFLOW: Your address range (61440 bytes) is smaller than your file size (65280 bytes)

If the memory area you specify is greater than the binary file:

[J

@ MISMATCHES FOUMD: 240

& OVERFLOW: Your address range (65520 bytes) is greater than wour file size (65280 bytes)

Display error log in editor

312

18

Using the Instruction Set
Simulator

18.1 Introduction 313
18.2 Connecting to the Simulator 314

18.1 Introduction

The Wind River Instruction Set Simulator (ISS) is a simulated hardware target for
use in testing and prototyping. The simulator allows you to develop, run, and test
applications on your host system, reducing the need for target hardware during
development.

NOTE: Wind River Workbench supports the Instruction Set Simulator only for
On-Chip Debugging functionality.

The ISS is also useful for demonstrations, as it allows you to run applications on
your host system without needing an emulator or target processor.

The ISS has no input/output functionality, so certain Workbench views are not
accessible when using it. The Cache view, for example, since the simulation has no
cache; also the Flash Programmer view, since the simulation has no flash memory.

The Instruction Set Simulator runs a program by simulating the effects of each
instruction on a target processor, one instruction at a time. Instead of generating an
ordinary executable file, the ISS executes the entire instruction set.

313

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

The Instruction Set Simulator is not currently supported for ARM targets.

18.2 Connecting to the Simulator

To define a Wind River ISS connection, use the following steps:

First, open Workbench according to the method for your host computer.

Linux/Solaris Hosts

From your installation directory, issue the command

$./startWorkbench.sh

Windows Hosts
Select Start > All Programs > Wind River > Wind River Workbench version.

On Windows hosts, Workbench prompts you to specify a workspace location.
Linux/Solaris hosts use the default location installDir/workspace.

When Workbench opens, the Quick Target Launch dialog appears.

Wind River On Chip Debugging
@ Choose How You Want to Start

= Defined Launches
Create a new launch configuration

Edit an existing launch configuration

Connect, Attach, Reset and Download

Sync with target and download symbals

l‘:7l [[10o not show this dislog on skartup Close

314

18 Using the Instruction Set Simulator
18.2 Connecting to the Simulator

1. Select Create a new launch configuration.

The Connection Type dialog appears.

Mew Connection

Connection Type

Please select connection bvpe.

'wind River Generic GDB Remote Serial Pratocol Connection
Wind River OCD ICE Connection
‘ind onnection
‘ind River OCD Probe Connection
‘ind River WxWarks 6.3 Core Dump Connection
Wind River YxWorks 8.x Simulator Connection
ind River WxWorks 6.x Target Server Connection

Cancel

2. Select Wind River OCD ISS Connection and click Next.

The Processor Selection dialog appears.

315

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

New Connection

wind River IS5 Settings

Configure the designator settings for the emulator.

Designators
(%) Processor: | MPCE260 | [Seleck... l
() Board file: Birt
v | Designator Processar Processor Plugin
MPCE2E0 MPCE2E0 PawerPC S2xxf83x: Family Proces
t >

Auko-attach ko connected designators

Cancel

':'f,' [= Back “ Mext =]

3. Click Select. From the list that appears, expand MPC82xx and select
MPC8260.

316

18 Using the Instruction Set Simulator
18.2 Connecting to the Simulator

'_, Processor Selection

Current Connection - Wind River 1SS : MPC8260

[= MPCE2we: ~
MPCE220
MPCE240
MPCE241
MPCE245
MPCE247
MPCE245
MPCE250
MPCE255
I 0

MPCEZE

MPCE265
MPCE266
MPCE270
MPCE2T1
MPCE272
MPCE275

by

@ [Ok, l [Cancel]

4. Make sure the Auto-attach to connected designators checkbox is selected and
click OK.

You are returned to the Processor Selection dialog.

5. Click Next.

6. The connection wizard passes through a number of screens that you do not
need to configure, since you are not connecting to a real target. Leave all
settings at their defaults and click Next until you come to the Connection
Summary.

317

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

%) New Connection

Connection Summary

Please review the connection information

Connection name; | WRISS_MPCE260 shared: []
Summary
Property Yalue

AukodtkachConneckedCor trus
+ DESIGMATORMAR

DEVICE Wind River IS5
MNAME _MAPPING [*i*.unstrippad], [*;*]
PATH_MAPPING [;d

< >

Imrnediately connect to target if possible

@ ’ Finish] ’ Zancel l

7. Make sure that the Immediately connect to target if possible checkbox is
selected and click Finish.

Workbench creates a target connection called WRISS_MPC8260 in the Target
Manager view.

NOTE: On Windows hosts, Workbench starts WindISS.exe and opens a
command shell. Do not close this shell or terminate WindISS.exe while your
target connection is running. Workbench automatically terminates
WindISS.exe and closes the shell when you disconnect from the target
connection.

Your connection is now visible in the Target Manager, as shown in Figure 18-1.

318

18 Using the Instruction Set Simulator
18.2 Connecting to the Simulator

Figure 18-1 ISS Connection

B N O ¥ X P8
==, defaultilocahost)

You can now download files and run application code through the simulator as
you would if you were connected to a target.

319

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

320

19

Programming a VxWorks Boot
ROM into Flash Memory

19.1 Introduction 321
19.2 Configuring The Target 322
19.3 Flashing the Boot ROM 324

19.1 Introduction

This chapter describes how to use Wind River Workbench and your
Wind River ICE SX or Wind River Probe to program a boot ROM into the flash
memory on your target board.

The purpose of aboot ROM is to load a kernel image, set boot parameters, and pass
control to the loaded kernel image.

Programming flash can be a complicated process, and is specific to your target
board. If you are using a Wind River-supported target, all of the target-specific
information is included in a file that is specific to your target. The file is located in
your Workbench installation directory under the path

installDir/vxworks-6.x/target/config/yourTarget Board/target.ref

The file includes flash addressing information, switch and jumper settings, and
any other information that is specific to your target. If you are using a custom
target, make sure you have detailed specifications about your target board. You

321

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

will need to know the size of your RAM workspace, where it is located, what type
of flash device is on your target, and where it is located.

19.2 Configuring The Target

Make sure you have the following;:
» A working Wind River ICE SX or Wind River Probe with all required cables.

» A target with a power supply (make sure the target is turned off before
attaching the power supply).

» An Ethernet cable to connect your target to a LAN.
» A serial cable to connect your target to a host computer.
» Wind River Workbench installed on your host computer.

Depending on which target you are using, you may need to modify several
switches and jumpers so that your board will work correctly. These switch and
jumper settings are specific to the target you are using.

Hardware-specific information for each of the boards supported in this release is
included in the file target.nr or target.ref, located in
installDir/vxworks-6.x/target/config/yourTargetBoard. It includes all the switch and
jumper settings that are required to flash and run the boot ROM. Familiarize
yourself with the board-specific information and use the information provided in
that section to configure the switches and jumpers on your target correctly.

If you are not using a Wind River-supported target board, make sure that the
switches and jumpers are set to choose the flash device that you want to use and
to use the proper clock frequency. If your target board has a switch that controls
whether a debugger can attach to it, make sure that it is set to allow debugger
control.

19.2.1 Making Physical Connections
The documentation for your Wind River ICE SX or Wind River Probe debugging

tool explains how to make all physical connections correctly. For information
about making the connection, and about applying power and establishing

322

19 Programming a VxWorks Boot ROM into Flash Memory
19.2 Configuring The Target

communications with your target board, see the Wind River ICE SX for Wind River
Workbench Hardware Reference or Wind River Probe for Wind River Workbench
Hardware Reference.

In the Workbench toolbar, click Window and select
Show View > OCD Command Shell.

If you have followed the instructions in your emulator’s Hardware Reference, you
should see a Background Mode (>BKM>) prompt appear in the OCD Command
Shell once you have successfully established communications.

19.2.2 Testing Memory and Breakpoints
The flash programming algorithm needs to run on the target. This requires a RAM
workspace, to which the algorithm will download, and breakpoints, which are
used to stop an erase and program operation at completion.

Reading and Writing Memory
Once you have established communications with the target, use the following

procedure to make sure you can write to and read from the target. In this example
we assume that the RAM workspace is 0x00000000.

NOTE: A RAM workspace address of 0x00000000 is not appropriate for all targets.
For Wind River-supported targets, you can find the necessary RAM workspace in
your target’s target.ref file, located in
installDirlvxworks-6.x/target/config/yourTarget Board/target.ref.

Wherever the RAM workspace is located on your target, you must make sure that
memory is writable there.

At the >SBKM> prompt, enter dm 00000000 and press ENTER. Doing so displays the
memory on your target at address 0.

Next, enter sm 00000000 1234 and press ENTER to set the memory at address 0 to
the value 1234. Enter dm 00000000 to display the memory at that address again.

If you are communicating properly with your target, output is similar to that
shown below:

323

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

>BKM>dm 00000000

00000000: FF7C EFFE FEFF E3FE 0D01 OFBE FOFD BFB6 .\
>BKM>sm 00000000 1234
>BKM>dm 00000000

00000000: 1234 EFFE FEFF E3FE 0DO1 OFBE FOFD BFB6 .4.............
>BKM>

Testing Breakpoints

Occasionally, you may have difficulty programming flash memory on your target
if software breakpoints are not being hit properly. Test this functionality before you
continue. Some basic tests are provided with Wind River tools to test this
functionality.

To use the test, enter the following commands at the >SBKM> prompt in the OCD
Command Shell:

>BKM>df e 0

>BKM>di 0 6

$00000000 : 0x60000000 :ppc nop
$00000004 : 0x60000000 :ppc nop
$00000008 : 0x60000000 :ppc nop
$0000000C : 0x60000000 :ppc nop
$00000010 : 0x7C0004AC :ppc sync
$00000014 : 0x4BFFFFFO :ppc b 0x4
>BKM>go 0
>RUN>Ar pc
PC = 00000004
>RUN>Ar pc
PC = 00000010
>RUN>sb 8
>RUN>
IBREAK! - [msgl2000] Software breakpoint; PC = 0x00000008 [EVENT Taken]
>BKM>
>BKM>rb
>BKM>

19.3 Flashing the Boot ROM

Before you begin, make sure that a >BKM> prompt is visible in the OCD
Command Shell in Workbench.

324

19 Programming a VxWorks Boot ROM into Flash Memory
19.3 Flashing the Boot ROM

19.3.1 Playing a Register File

Play back the register file for your target board. The register file sets up access to
memory and sets configuration options correctly (this can affect the setting of
breakpoints). In some cases it also sets up the default flash algorithm.

Click on the Playback icon in the OCD Command Shell.
The OCD Command Shell Settings dialog appears, as shown in Figure 19-1.

Figure 19-1 OCD Command Shell Settings

% 0CD Command Shell Settings

2D Command Shell Settings

MPCS540

FlayBack File ~ [#] Display Background Communications
Input Log File ~ []append
Full Log File ~ Clappend

[0K] [Cancel

Next to the PlayBack File field, click Browse.

Browse for the appropriate register file for your target and click OK.

19.3.2 Setting Up Chip Select 0 and Programming the Reset Configuration Word

Depending on the target board you are using, you may need to program the reset
configuration word and set up chip select 0 for your target. For example, most 82xx
targets need to have the reset configuration word set correctly.

Not all targets use the reset configuration word and chip selects. Check
installDir/vxworks-6.x/target/config/yourTurget Board/target.ref for information
about whether these are necessary for your target.

If you are not using a Wind River-supported target, you must determine the correct
reset configuration word for the boot ROM. The reset configuration word is
determined by the way you configure the boot ROM. Use a hex editor to open your
boot ROM file and read the reset configuration word from that file. Your processor
documentation should provide information about how to read the reset
configuration word from that file.

325

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

19.3.3 Unlocking Flash

On some target boards, you may need to unlock Sector 0 of the flash memory
before you can program flash. Some targets do this with a series of commands;
some use jumpers or on-board switches; and some do not need to be unlocked. The
data sheet for the flash device on your target board should tell you whether
unlocking is necessary, and also supply the necessary settings or commands.

To run commands, click Window in the toolbar and select
Show View > OCD Command Shell. Make sure a >SBKM> prompt is visible in the
OCD Command Shell.

For example, to unlock the flash chip on a Sandpoint 8245 target, you would type
the following commands:

>BKM>sct picrl £ee00000 ££041a88
>BKM>sct errdrl feee00003 00
>BKM>mml £ec00000 4c580080
>BKM>mml f£ee00000 00130400
>BKM>mml £ec00000 4c580080
>BKM>dml fee00000 1

FEE00000: 00130400

>BKM>

Once you enter these commands, Sector 0 is unlocked and you can program the
flash memory.

19.3.4 Programming Flash
Once your target is set up, you can program the boot ROM into flash memory on
your target.
1. Open Wind River Workbench.
2. In the toolbar, select Window > Open Perspective > Device Debug.
3. In the toolbar, select Window > Show View > Flash Programmer.

The Flash Programmer view appears, as shown in Figure 19-2.

326

19 Programming a VxWorks Boot ROM into Flash Memory
19.3 Flashing the Boot ROM

Figure 19-2 Flash Programmer View

CF Options | OCD Statistical ... | Hardware Diagn... | Cache | Trace =8

folmnal=lr i1t IO B+ Flach Programmer X

Configuration |Programming Memory/Diagnostics

Device Selection Configuration
Current: | Flash Bank. Addresses

Base: | OxFFFFFFFF | Last: | |

RarM Workspace
Start: | 000000000 | End: | |

SetfEdit Timeouts

Erase: 200

4. Select the Configuration tab.

Use the Configuration tab to set the base address and workspace for your
target board.

5. In the Device Selection area, select the correct flash device for your target.

The physical characteristics of your flash bank should be included in the board
specification and schematics that came with your target board.

6. In the Configuration area, enter the base register for your target.

7. In the RAM Workspace area, set the Start and Size fields to the correct value
for your target, as described in 9. Programming Flash Memory.

8. Select the Programming tab.

The Programming tab appears, as shown in Figure 19-3.

327

Wind River Workbench for On-Chip Debugging

User Tutorials, 2.6.1

Figure 19-3 Programming Tab

0D Command Shell JEANGEE

Configuration | Programming | Memary, Diagnostics

Tag= =10 9, Binary Upload | CF Options | OCD Statistical Code ... | Hardware Diagnostics | Cache | Trace =0

Flash Programming Erase Sector Selection
[5end "IN" befare each aperation 0xfF100000
0xffLO8000
[CEnable pre-Flash 0xFFL0C000
0xfFL 10000
[Enable post-flash 0xFF120000
OxFFL40000
’ Erase] ’ Program] l Erase/Program] ’ Werify] ’ Abort:] 0xFF1E0000
OxfFFLE0000
0xfF1a0000

Add/Remove Files

[override erase sector selection
Lower boundary address

Upper boundary address

0xff1c0000

Status | File Path Statt Addr... End Addr... = Enabled Add File 0xff 120000
Convert file

Select all | | Clear all

10.

11.

12.

328

Click Add File.
A browser window appears.
Navigate to the boot ROM file for your target board.

The boot ROM files for Wind River-supported targets are located in
installDir/vxworks-6.x/target/config.

In installDir/vxworks-6.x/target/config, find the directory for your target
board.

This directory contains the bootrom.bin or bootrom.hex file for your target
board.

Select the bootrom.bin file for your board and click Open. The filename
appears in the Add/Remove Files area.

Workbench needs a .bin file to program flash. If your directory only contains
a .hex file, you will need to convert it to .bin format by following Steps a
through d. Otherwise, proceed to Step 13.

a. Return to the Programming tab and click Convert File.

19 Programming a VxWorks Boot ROM into Flash Memory
19.3 Flashing the Boot ROM

b. Navigate to the folder for your target board and select the bootrom.hex
file.

The File Conversion Utility dialog appears. Figure 19-4 shows the
bootrom.hex file for a PowerQUICC II board.

Figure 19-4 File Conversion Utility

File Conversion utility

File path
Input path: | CriwindRiveriviworks-6, 3\ targeticonfighwrPprc7S0F=\boatram_uncrp. hex |

Output path: | CywindRiverlyxwaorks-6, 3ikargetconfighwrPpmc S0P bookrom_uncrp. bin |

Conversion oubpuk

Address information

End: | OxfFFFFFFF

Convert File

OK I [Cancel
c. Click Convert and Add File.
The conversion output appears in the Conversion Output field.

329

Figure 19-5

Figure 19-6

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Conversion Output

Canversion outpuk

orwert w7, 110 Copyright (o) 1996-2004 Wind River HSI

onvert S-Record file CiiwindRiverivioworks-6, targeticonfighwrPpmc TS0 \boat
wbracting image From "2 WindRiverwomorks-6, 3kargetconfighwrPpmc?S0F:boo
titing flat binary image to 'C:\windRiverivxwaorks-6, 3\ targeticonfigiwrPpmc7S0F:

ower address: 0x0

pper address; OxfFFFFFFF

wecution address: 0x00000000

mage writken

rocessing time: 0,109 seconds

d. Click OK.

The converted file appears in the Add/Remove Files tab.

File Added to Add/Remove Files Tab

Tasks | Problems | Properties | Build Console | Error Log | Terminal 0 | OCD Cormand Shell BESNEEERNTEE TS 4

[
&
Programming | AddiRemave Files | Configuration | Memaory/Diagnostics
Skatus File Path Start Ad... End Add... = Enabled
5)@ CihwiindRiverwomorks-6, 3\ target confighwrPpmc?S... 0x00000... Ox000BLFF v Add file
Canvert file

13. Click on the value under the Start Address heading to highlight it.

Before you program the file into flash, you need to set a memory offset bias so
the boot ROM will begin at the base address of your flash bank.

330

14.
15.
16.

17.
18.

19.

20.
21.

19 Programming a VxWorks Boot ROM into Flash Memory
19.3 Flashing the Boot ROM

The necessary bias can be found in
installDir/vxworks-6.x/target/config/yourTarget Board/target.ref.

Select the check box under the Enabled heading to enable the file.
Click on the Configuration tab.
In the Configuration tab, click Select AlL

This selects all memory sectors for erasure. Wind River recommends that you
do a full erase when programming a boot ROM.

Click on the Programming tab.

Verify that the Flash Driver, Flash Bank, and Workspace fields in the Flash
Settings area of the Programming tab are set to the correct values.

Click Erase/Program.

Workbench erases the flash memory on your target and programs the flash
with your boot ROM image. When it completes, the status bar at the bottom of
the Programming tab shows that the download is complete.

Click the Memory/Diagnostics tab.
Click Refresh.
The contents of the flash memory with the boot ROM image loaded appear.

At this point, your boot ROM image is successfully programmed into the flash
memory on your target.

After you have programmed the boot ROM into flash, set the program counter at
the first instruction and run and debug it as you would any other program. For
information on how do this, see the Wind River Workbench User’s Guide.

331

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

332

20

Programming a Linux
Bootloader into Flash Memory

20.1 Introduction 333

20.2 Installing the Bootloader 334

20.3 Configuring and Building the Bootloader 334
20.4 Configuring the Target 338

20.5 Flashing the Bootloader 340

20.1 Introduction

This chapter describes how to use Wind River Workbench and your emulator to
program a Linux bootloader into the flash memory on your target board.

The purpose of a bootloader is to initialize target hardware, load the Linux kernel
image, set boot parameters, and pass control to the loaded Linux image.

There are many different bootloaders available, and different bootloaders (and
different versions of the same bootloader) support different target boards. For
demonstration purposes this chapter uses uboot, a bootloader commonly used for
PowerPC targets.

Programming flash can be a complicated process, and is specific to your target
board. If you are using a Wind River-supported target, all of the target-specific
information is included in a target.ref.linux file that is specific to your target. The
file includes flash addressing information, switch and jumper settings, and any

333

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

other information that is specific to your target. To find the target.ref.linux file for
your target, go to http://www.windriver.com/support.

If you are using a custom target, make sure you have detailed specifications about
your target board. You will need to know the size of your RAM workspace, where
it is located, what type of flash device is on your target, and where it is located.

This chapter provides detailed instructions about programming uboot into the
flash memory on your target board using Workbench.

20.2 Installing the Bootloader

Download the bootloader you wish to use. For example, uboot is available for
download at http://sourceforge.net/projects/u-boot/.

NOTE: Different versions of U-Boot are supported for different kernel versions and
architecture types. Make sure you download the correct version of uboot for your
target board.

To unpack the file and install the bootloader on your host, enter the following
commands:

$ tar x3j£ bootloader_file
For example, if you downloaded u-boot-1.1.1.tar.bz2, type:
$ tar xjfu-boot-1.l1l.1l.tar.bz2

This command unpacks the files and creates the bootloader directory structure.

Change directories so that you are in the new bootloader directory.

20.3 Configuring and Building the Bootloader

Wind River provides a website with detailed information about building and
configuring a bootloader. This section provides a brief overview about how to

334

20 Programming a Linux Bootloader into Flash Memory
20.3 Configuring and Building the Bootloader

configure and build uboot. For more detailed information, go to
http://www.windriver.com/support.

Wind River Workbench supports the bootloader in two different ways.
= Patching the Standard Installation

Wind River includes uboot patches for some of the supported targets at
http://www.windriver.com/support. To configure and build a bootloader
using a Wind River patch, follow the instructions provided there.

= Manually Modifying the boardConfig.h file

Some of the supported targets require only minor modification to the standard
bootloader configuration files.

For boards supported in this manner, the following section describes how to
modify the configuration file in a standard installation for your target.

20.3.1 Configuring and Building the Bootloader Manually

Modifying the boardConfig.h File

To create a uboot image that you can download to your target, uboot uses a
boardConfig.h file, which contains specific hardware settings. The name of the
boardConfig.h file is specific to your target and is located in the
ubootInstallDir/include/configs directory.

If your specific board settings do not match the defaults in the boardConfig.h file,
edit the file appropriately.

The steps in this section describe how to edit the file for your target.

NOTE: The bootloader initializes your target to run a Linux kernel. Any errors in
uboot configuration may prevent the kernel from booting correctly or may cause
it to fail later.

1. From the top level of the U-Boot directory, type the following:
$ cd include/configs

2. Open the boardConfig.h file for your target.

All hardware options in this file must match your target. The next steps
describe specific items that may need to change for your target.

335

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

NOTE: The items described are not a comprehensive list. Review the contents of
the entire file carefully and make any changes that are required for your target.

= Clock Speed

Verity that the configuration information pertaining to clock speed (oscillator
frequency) is correct for your target.

For example, the sbc8260.h file contains the following two lines:
#define CONFIG_8260_CLKIN (66 * 1000 * 1000)

and

#define CFG_SBC_MODCK_H 0x05

These values are correct for a 66 MHz target. If you are using a 33 MHz target,
change the lines to read:

#define CONFIG_8260_CLKIN (33 * 1000 * 1000)
and
#define CFG_SBC_MODCK_H 0x01

= Baud Rate

Configure the baud rate to a value that works for your system. The console will
run faster with a higher baud rate.

= Ethernet MAC Address

Change the Ethernet MAC address to the address of the Ethernet port on your
target board.

A CAUTION: Make sure that the Ethernet MAC address you choose is unique on
your network. Duplicate Ethernet MAC addresses on the same network will
cause problems when you try to load the kernel onto your target.

After you have examined the options and verified that they are correct for your
target board, you can build a downloadable bootloader file for your target.

Building a Downloadable U-Boot File

Follow these steps to build a downloadable U-Boot file for your target:
1. Change directories until you are at the top level of your uboot directory.

2. Type the following command:

336

20 Programming a Linux Bootloader into Flash Memory
20.3 Configuring and Building the Bootloader

$ make distclean

This ensures that there are no build results remaining from any previous
configurations.

3. Configure U-Boot for your target.
$ make ARCH=ppc CROSS_COMPILE=CrossCompilePrefix yourConfigString

The values of CrossCompilePrefix and yourConfigString are based on your
processor and flash device.

For example, if you want to configure U-Boot to use the Wind River SBC 8260
target, enter the following:

$ make ARCH=ppc CROSS_COMPILE=ppc_82xx- sbc8260_config
4. Make the U-Boot downloadable image.

$ make ARCH=ppc CROSS_COMPILE=CrossCompilePrefix dep
$ make ARCH=ppc CROSS_COMPILE=CrossCompilePrefix all

For example, using the Wind River SBC 8260 target, enter the following:

S make ARCH=ppc CROSS_COMPILE=ppc_82xx- dep
$ make ARCH=ppc CROSS_COMPILE=ppc_82xx- all

Once these commands finish executing, three new files are included in the
uboot directory, as shown in:

= u-boot
* u-boot.bin
= u-boot.srec

The files generated during the build process are described in Table 20-1.

Table 20-1 U-Boot Files

File Name Description
u-boot A .elf file image of uboot.
u-boot.bin A flat binary executable image of uboot.

u-boot.srec A standard Motorola format of uboot for flash programming.

u-boot, u-boot.bin, and u-boot.srec can be used to program the flash memory
on your target. Use the file that works with Workbench and your emulator.

337

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

20.4 Configuring the Target

Make sure you have the following:
* A working emulator with all required cables.

» A target with a power supply (make sure the target is turned off before
attaching the power supply).

» An Ethernet cable to connect your target to a LAN.
» A serial cable to connect your target to a host computer.
» Wind River Workbench installed on your host computer.

Depending on which target you are using, you may need to modify several
switches and jumpers so that your board will work correctly. These switch and
jumper settings are specific to the target you are using.

Hardware-specific information for each of the Wind River-supported boards in
this release is included in the file target.ref.linux. Find the file specific to your
board at http://www.windriver.com/support. It includes all the switch and jumper
settings that are required to flash and run the bootloader. Familiarize yourself with
the board-specific information and use the information provided in that section to
configure the switches and jumpers on your target correctly.

If you are not using a supported target board, make sure that the switches and
jumpers are set to choose the flash device that you want to use and to use the
proper clock frequency. If your target board has a switch that controls whether a
debugger can attach to it, make sure that it is set to allow debugger control.

20.4.1 Making Physical Connections

The documentation for your Wind River ICE SX or Wind River Probe debugging
tool explains how to make all physical connections correctly. For information
about making the connection, and about applying power and establishing
communications with your target board, see the Wind River ICE SX for Wind River
Workbench Hardware Reference or Wind River Probe for Wind River Workbench
Hardware Reference.

In the Workbench toolbar, select Window > Show View > OCD Command Shell.

If you have followed the instructions in your emulator’s Hardware Reference, you
will see a Background Mode (>BKM>) prompt appear in the OCD Command Shell
once you have successfully established communications.

338

20 Programming a Linux Bootloader into Flash Memory
20.4 Configuring the Target

20.4.2 Testing Memory and Breakpoints

The flash programming algorithm needs to run on the target. This requires a RAM
workspace, to which the algorithm will download, and breakpoints, which are
used to stop an erase and program operation at completion.

Reading and Writing Memory

Once you have established communications with the target, use the following
procedure to make sure you can write to and read from the target. In this example
we assume that the RAM workspace is 0x00000000.

NOTE: A RAM workspace address of 0x00000000 is not appropriate for all targets.
For Wind River-supported targets, you can find the necessary RAM workspace in
your target’s target.ref.linux file, located at http://www.windriver.com/support.

Wherever the RAM workspace is located on your target, you must make sure that
memory is writable there.

At the >BKM> prompt, enter dm 00000000 and press ENTER. Doing so displays the
memory on your target at address 0.

Next, enter sm 00000000 1234 and press ENTER to set the memory at address 0 to
the value 1234. Enter dm 00000000 to display the memory at that address again.

If you are communicating properly with your target, output is similar to that
shown below:

>BKM>dm 00000000

00000000: FF7C EFFE FEFF E3FE 0D0O1 OFBE FOFD BFB6 \
>BKM>sm 00000000 1234

>BKM>dm 00000000

00000000: 1234 EFFE FEFF E3FE 0D01 OFBE FOFD BFB6 .4.............
>BKM>

Testing Breakpoints

Occasionally, you may have difficulty programming flash memory on your target
if software breakpoints are not being hit properly. Test this functionality before you
continue. Some basic tests are provided with Wind River tools to test this
functionality.

To use the test, enter the following commands at the >SBKM> prompt in the OCD
Command Shell:

339

Wind River Workbench for On-Chip Debugging

User Tutorials, 2.6.1

>BKM>sy progl 0

>BKM>di 0 6

$00000000 : 0x60000000 :ppc
$00000004 : 0x60000000 :ppc
$00000008 : 0x60000000 :ppc
$0000000C : 0x60000000 :ppc
$00000010 : 0x7C0004AC :ppc
$00000014 : Ox4BFFFFFO :ppc

>BKM>go 0

>RUN>dr pc
PC = 00000004

>RUN>dr pc
PC = 00000010

>RUN>sb 8

>RUN>
IBREAK! - [msgl2000] Software

>BKM>

>BKM>rb

>BKM>

20.5 Flashing the Bootloader

Before you begin:

nop
nop
nop
nop
sync

breakpoint; PC

0x4

= 0x00000008 [EVENT Taken]

» Copy the u-boot.bin file to your host computer.

» Make sure that a >SBKM> prompt is visible in the OCD Command Shell in
Workbench.

20.5.1 Playing a Register File

Play back the register file for your target board. The register file sets up access to
memory and sets configuration options correctly (this can affect the setting of
breakpoints.) In some cases it also sets up the default flash algorithm.

In the OCD Command Shell, click Playback.

The OCD Command Shell Settings dialog appears, as shown in Figure 20-1.

340

20 Programming a Linux Bootloader into Flash Memory
20.5 Flashing the Bootloader

Figure 20-1 OCD Command Shell Settings

% 0OCD Command Shell Settings

OCD Command Shell Settings

MPCE540

PlayBack Fils - [#] Display Backaround Communications
Input Log File - [append
Full Log File ~ Clappend

[Ok] [Cancel

Next to the PlayBack File field, click Browse.

Browse for the appropriate register file for your target and click OK.

20.5.2 Setting Up Chip Select 0 and Programming the Reset Configuration Word

Depending on the target board you are using, you may need to program the reset
configuration word and set up chip select 0 for your target. For example, most 82xx
targets need to have the reset configuration word set correctly. Check your
target.ref.linux file for information about the reset configuration word.

If you are not using a Wind River-supported target, you must determine the correct
reset configuration word for the bootloader. The reset configuration word is
determined by the way you configure the bootloader. Use a hex editor to open the
u-boot.bin file that you generated, and read the reset configuration word from that
file. Your Motorola processor documentation provides information about how to
read the reset configuration word from that file.

20.5.3 Unlocking Flash

On some target boards, you may need to unlock Sector 0 of the flash memory
before you can program flash. Some targets do this with a series of commands;
some use jumpers or on-board switches; and some do not need to be unlocked. The
data sheet for the flash device on your target board should tell you whether
unlocking is necessary, and also supply the necessary settings or commands.

To run commands, select Window > Show View > OCD Command Shell. Make
sure a >BKM> prompt is visible in the OCD Command Shell.

341

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

For example, on a Sandpoint 8245 target, you would type the following
commands:

>BKM>sct picrl fee00000 ££041a88

>BKM>sct errdrl feee00003 00

>BKM>mml £ec00000 4c580080

>BKM>mml £ee00000 00130400

>BKM>mml f£ec00000 4c580080

>BKM>dml £ee00000 1

FEE00000: 00130400

>BKM>
Once you enter these commands, Sector 0 is unlocked and you can program the
flash memory.

20.5.4 Programming Flash

Once your target is set up, you can program the flash memory on your target with
the bootloader.

1. In the toolbar, select Window > Show View > Flash Programmer.

The Flash Programmer view appears.

Figure 20-2 Flash Programmer View

CF Options | OCD Statistical ... | Hardware Diagn... | Cache | Trace =0

felaeRats T n RO = Flash Programmer X

Configuration |Pr0gramming Mernaory/Diagnostics

Device Seleckion Configuration
(TR | Flash Bank Addresses
Base: | QxFFFFFFEF | Lask: | |

RAM Warkspace
Start: | 0xO00DDOOO | End: | |

SetfEdit Timeouts

Erase: =00

2. Select the Configuration tab.

Use the Configuration tab to set the base address and workspace for your
target board.

3. Inthe Device Selection area, select the flash device that is on your target.

342

20 Programming a Linux Bootloader into Flash Memory
20.5 Flashing the Bootloader

4. Inthe Configuration area, enter the base register for your target.

5. In the RAM Workspace area, set the Start and Size fields to the correct value
for your target, as described in 9. Programming Flash Memory.

6. Click on the Programming tab.

The Programming tab appears, as shown in Figure 20-3.
Figure 20-3 Programming Tab

ek B 5 Flash Programmer X Binary Upload | CF Options | OCD Statistical Code ... | Hardware Diagnostics | Cache | Trace =0

Configuration | Programming | Memory/Diagnostics

Flash Programming Erase Sector Selection
[5end "IN" before each aperation 0xfF100000

0xff108000
[Enable pre-flash 0xFF10£000
0xff110000
[Enable post-Flash 0xFF120000

0xfF140000

[Erase] ’ Frogram] ’ Erase/Program] ’ Yerify] ’ Abort:] 0:xFF160000
0xfF130000

. OxfF1a0000

Add/Remove Files DeFFLeOn0D

Status | FiePath Start Addr... End Addr... = Enabled Add file 0xFF1e0000
Convvert File

Select all | | Clear all

[ovetride erase sector selection
Lower boundary address

Upper boundary address

7. Click Add Files.

A browser window appears. Browse for the u-boot.bin file and click Open.
The file appears in the Add/Remove Files area of the Programming tab.

8. Click under the Enable heading to enable the file for downloading.

9. Verify that the Flash Driver, Flash Bank, and Workspace fields in the Flash
Settings area of the Programming tab are set to the correct values.

10. Click Erase/Program.

Workbench erases the flash memory on your target and programs the flash
with your uboot image. When it completes, the status bar at the bottom of the
Programming view states that the download is complete.

343

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

11. Click the Memory/Diagnostics tab.
12. Click Refresh.
The contents of the flash memory with the U-Boot image loaded appear.

At this point, your uboot image is successfully programmed into the flash memory
on your target.

344

21

Downloading a Kernel Image
Using a JTAG Connection

21.1 Introduction 345

21.2 Bypassing the Boot Line Address -- VxWorks 347
21.3 Bypassing the Boot Line Setup -- Linux 349

21.4 Downloading the Kernel Image 351

21.1 Introduction
The function of a boot loader, whether a boot ROM for VxWorks or uboot or grub

for Linux, is to initialize the hardware, set boot parameters, load a kernel image
into RAM, and pass control to the loaded kernel image, as shown in Figure 21-1.

345

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Figure 21-1 Loading a Kernel Image with a Boot Loader

HOST TARGET

Flash

. (“Boot ROM
(o5 mage o
[OSImage |
N

BOOT_LINE_ADRS

RAM
\ SE—
(TFTP Server \,
OS Image

\ /

Serial or network connection

The Wind River ICE SX and Wind River Probe tools can also perform these
functions through the JTAG port, as shown in Figure 21-2. This can be useful for
BSP or driver developers who may not have a boot ROM available or may be in the
process of developing one.

346

21 Downloading a Kernel Image Using a JTAG Connection
21.2 Bypassing the Boot Line Address -- VxWorks

Figure 21-2 Loading a Kernel Image with an Emulator

HOST TARGET
JTAG port T Flash
L]
T
/ \\ Wind River ICE
‘ OS Image {77 or
‘\\ /f Wind River Probe RAM
\\\ ///
C—
BOOT_LINE_ADRS 0S Image

21.2 Bypassing the Boot Line Address -- VxWorks

Ordinarily, the boot ROM passes the boot parameters to the kernel image using an
agreed-upon BOOT_LINE_ADRS memory location. For example, most PowerPC
targets use the address 0x4200.

When the boot ROM retrieves and starts the kernel image through a TFIP server,
the loaded image runs and uses the memory string at the BOOT_LINE_ADRS
memory location as its boot parameters.

However, when an emulator loads the kernel image instead of a boot ROM, it does
not set the boot parameters, and the BOOT_LINE_ADRS memory location probably
contains uninitialized memory. The cracking of the bootline reads the random
values until it finds a 0x00/null string termination. This usually results in a
message about an invalid boot line.

347

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

There are two ways of solving this problem:
= Manually setting the BOOT_LINE_ADRS location.
» Forcing the DEFAULT_BOOT_LINE.

21.2.1 Manually Setting the BOOT_LINE_ADRS Location

When setting up the boot parameters, the board looks at the beginning of the boot
line memory location to crack the boot line, that is, to decode the boot parameter
string into its individual fields: hostname, IP address, and so on.

When the value at the beginning of the boot line memory location is zero, the boot
line cracking function will use the DEFAULT_BOOT_LINE value specified in the
config.h file in the BSP.

Using a Wind River ICE SX or Wind River Probe, you can manually set the boot
line memory location to zero before running the image, so the boot line cracking
function will use the DEFAULT_BOOT_LINE value.

To manually set the boot line address to zero, do the following:
1. Make sure you have a > BKM> prompt in the OCD Command Shell.
2. At the >BKM> prompt, type SM 4200 0 and press ENTER.

NOTE: 0x4200 is only one example; it is the standard address for PowerPC targets.
To find the correct BOOT_LINE_ADRS memory location for your target, consult the
manufacturer’s documentation for your target processor.

21.2.2 Forcing the DEFAULT_BOOT_LINE

The other method is to force the default boot line by conditionally compiling in the
FORCE_DEFAULT_BOOT_LINE construct. This construct is only available in
certain Wind River-specific BSPs.

348

21 Downloading a Kernel Image Using a JTAG Connection
21.3 Bypassing the Boot Line Setup -- Linux

If the FORCE_DEFAULT_BOOT_LINE construct is available on your BSP, the
config.h file will contain the following:

/ *

* If the FORCE_DEFAULT_BOOT_LINE is defined then the

* DEFAULT BOOT_LINE parameters are always used regardless of NVRAM

* values specified at bootrom time. See target.nr for details.

* This is usually used to debug downloaded images without a bootrom present.
*/

##idefine FORCE_DEFAULT BOOT_LINE

Defining the FORCE_DEFAULT_BOOT_LINE construct informs the loaded kernel
image that the DEFAULT_BOOT_LINE from the config.h file in the BSP should be
used, regardless of the value at the BOOT_LINE_ADRS memory location.

CAUTION: Make sure you undefine the FORCE_DEFAULT_BOOT_LINE construct
before you ship your product.

In the sysHwInit() sysLib.c file, the FORCE_DEFAULT_BOOT_LINE value is used
to copy the default boot line information into the BOOT_LINE_ADRS location.
The value of DEFAULT_BOOT_LINE is also specified in the config.h file.

#idefine FORCE_DEFAULT BOOT_LINE
#ifdef FORCE_DEFAULT_BOOT_LINE

strncpy (sysBootLine, DEFAULT_ BOOT LINE, strlen(DEFAULT BOOT_LINE)+1);
#endif /* FORCE_DEFAULT_BOOT_LINE */

21.3 Bypassing the Boot Line Setup -- Linux

You can create, define, pre-set, and manage the Linux boot line (BL) parameters for
your target board using low-level commands from the OCD Command Shell. This
will allow you to define a new set of boot line parameters without re-compilation
or rebooting from on-board ROM.

The boot line commands are BL ADD, BL DELETE, BL DISPLAY, BL MODIFY, and BL
UPLOAD. For a detailed description of all these commands, see the Wind River
Workbench On-Chip Debugging Command Reference.

349

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

NOTE: To use the BL commands you must set both the CF BL and CF MMU
configuration options to ENABLE.

You can only use the BL commands in the OCD Command Shell. There is no
BL-specific GUI for setting up boot parameters.

The following example displays a customized set of boot line parameters for a
particular distribution of Linux that have been generated by the BL commands and
stored in the emulator’s NVRAM. On a GO command, these parameters will be
loaded into the target memory and passed to Linux via a set of register pointers.
This process is controlled by the emulator's run-time firmware DLL.

Dynamic Boot Table: structure configuration
Entry | Description \ Value/String

00 | MemStartAdd | 0x00000000
01 | MemSize | 0x04000000

02 | FlashStart | 0x40000000
03 FlashSize | 0x00400000
04 | FlashOffset | 0x00040000
05 | SRAMStart | 0x00000000
06 | SRAMSize | 0x00000000

07 | IMMR_Base | 0x£0000000
08 | BOOTFlags | 0x00000001
09 | IP_ADDR | 0x00000000

|
|
|
|
|
|
|
|
|
|
10 | ENETADDR[6] | 0x00a0lea87bcb
|
|
|
|
|
|
|
|
|
|

11 | ETHSPEED | 0x6c79

12 | INTFREQ | 0x0bcd3d80

13 | vBUSFREQ | 0x01£78a40

14 | CPMFREQ | 0x03ef1480

15 | BRGFREQ | 0x01£78a40

16 | SCCFREQ | 0x01£78a40

17 | vCco | 0x07de2900

18 | BAUDRATE | 0x00002580

19 | bi_mon_fnc | OxOEffffff

20 CmdStrg | ->console=ttyS0,9600 root=/<-

->dev/ram0 rw

» The Entry field is a sequential reference for each line item.

» The Description field is an ASCII field only used for comment.

» The Value/String field can contain a char, unsigned long or unsigned short
value.

» Unsigned long values are displayed in hexadecimal using 8 digits, as in Entry
#1.

» Unsigned short values are displayed in hexadecimal using 4 digits, as in Entry
#11.

350

21 Downloading a Kernel Image Using a JTAG Connection
21.4 Downloading the Kernel Image

Char values are displayed as in Entry #20.

Char string greater than 20 characters will be displayed on several lines, using
arrows.

Byte values are displayed as in Entry #10.

21.4 Downloading the Kernel Image

Once you have bypassed the boot setup, initialize your target board and download
your kernel image using the Reset and Download view.

1.

Build your image using a VxWorks Image Project or a Linux Kernel Project.

For information on building projects, see the Wind River Workbench User’s
Guide.

Connect to your Wind River ICE SX or Wind River Probe.

For instructions on connecting to your emulator, see the Wind River ICE SX for
Wind River Workbench Hardware Reference or the Wind River Probe for Wind River
Workbench Hardware Reference.

In the Target Manager view, click the OCD Reset and Download icon to bring
up the Reset and Download view, and click under the Settings heading to
configure it.

351

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

Figure 21-3 Reset and Download View

WRISS_MPCB540 - MPCES40

Modify attributes and launch.

Name: | WRISS_MPCES40 - MPCAS4D

Main |z Prajects to Build | #® Resst | #* Download | #® Instruction Pointer | #* Run Options Ey Source |] Common

Conneckion

Connection to use: |WRISS_MPC854D {localhost) v| [Hide unconnected

Srnect | WRISS_MPCES4D - WRISS_MPCES40 s connected.

Core: |MPCES40]

4. In the Reset tab, choose your register file.

Check the Play Register File box and click Browse. Navigate to the register file
for your target board.

For more information on register files, see 8. Confiquring Target Registers.

5. Still in the Reset tab, choose the type of initialization you wish to perform,
using the IN or INN command.

For more information on the IN and INN commands, see the Wind River
Workbench On-Chip Debugging Command Reference.

352

Figure 21-4

Figure 21-5

21 Downloading a Kernel Image Using a JTAG Connection
21.4 Downloading the Kernel Image

Reset Tab

%) WRISS_MPCB540 - MPCB540

Modify attributes and launch.

hame; ‘ WRISS_MPCES40 - MPCES40

Main | #¥ Prajects to Buid | # Reset | # Download | #® Instruction Painter | #* Run Gptions || B Source | I Common

MPCES4D |
[FIPlay register e |C:ywindRiveriworkbench-2.5\dfw|0L4 Lhost|registers\PowerPC |85 WindRiver_SBCIWRS | [Browse... |
[“IResst ‘IN - Resetjsetup regs b |
(®) Specified core
14l cores
Cores tied on reset!

Figure 21-4 shows the Reset tab set to play the register file for a Wind River
PowerQUICC II 8260 target and issue the IN initialization command.

your VxWorks Image Project or Linux Kernel Project.

In the Download tab, click Add Files... and navigate to the kernel image from

Figure 21-5 shows the Download tab set to download the vmlinux.elf file

from a Linux Kernel Project.

Download Tab

WRISS_MPCE540 - MPCB540

Modify attributes and launch.

Mame: | WRISS_MPCE540 - MPCES40

* ain ﬂ Projects to Build -* Rasetl . Dowrload |@ Instruction Pointer | #® Run Opkions T%y Source | = Common

MPCESHD |

Filename
wrnlinu - C: furnlinus:

Download Werify Load Symbols Offset
L] Mane -

353

Figure 21-6

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

7. In the Instruction Pointer tab, set the start address for your file.

Figure 21-6 shows the Instruction Pointer tab set to use the start address from
the download file. It also has the Set Instruction Pointer After Download box
checked.

You can also select the Use Start Address From Symbol field and specify a
symbol. For example, in VxWorks you would use the symbol sysInit. Or you
can just specify a start address in hex.

Instruction Pointer Tab

T WRISS_MPCES540 - MPCB540

Modify attributes and launch.

Mame: | WRISS_MPCES4D - MPCES4D |

Main | ¥ Projects to Buid | # Reset | #® Duwnlua\:ll # Instruction Painter ‘@ Run Options | B Source | B Common
MPCESHD |

[+] Set instruction pointer after download
| (%) Use start address from download File
| () Use start address From symbiol

() Use specified start address Il

8. In the Run Options tab, specify the memory location to where you want the
download file to run. By default it is set not to run after download, as in
Figure 21-7.

354

Figure 21-7

Figure 21-8

21 Downloading a Kernel Image Using a JTAG Connection
21.4 Downloading the Kernel Image

Run Options Tab

WRISS_MPCE540 - MPCES40

Modify attributes and launch.

Mame: | WRISS_MPCES40 - MPCES40

MPCES40 |

. Main | *¥ Projects to Build | #® Reset | *® Download | #® Instruction Pninter\ . pun Options % Source | =) Common

(%) Do nat run
| (CRun ko symbel

| CRun ko address ol
() Run to end of program
[CIBreak at Exit
[CIPlay post download script

For more information on the Reset and Download view, see the Establishing
Communications chapter of your emulator’s Hardware Reference.

9. Once you have entered the values you want, click Debug.

The emulator initializes your target and downloads the kernel image.The
OCD Console view opens to show the progress of the download, as shown in

Figure 21-8.

OCD Console View

Tasks | Problems | Properties | Build Console | Error Lag | Terminal MCD Command Shell | Trace | CF Options =0

Reset and Download |

Initislizing Wind River ICEfTRACE Images........ Passed
Driving RESET To Be High.... . Passed
Driving RESET Ta Be Low. Passed

Release HRESET. i, Passed

Testing For Target FREEZE State, Passed
Waiting For RESET To Be Released. . Passed
Attempting To Enable Background Mad, Passed
Testing BOM Communication Passed
Loading Internal Reqisters.. Passed
Testing EOM Communication Passed
Initislizing CPU Regiskers. Passed

Wind River ICE/TRACE Initialization Complete. ... Passed

Cilworkbench2 Syworkspacelc_demo_salMCF-0x00000000-BE-diab_D... [

Loading symbals. ..
Specified not to Run
* Reset and Download Completed *

Completed at Default Offset (<1 sec)

355

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

The kernel image is now downloaded to your target. Run and debug it as you
would any other file. For information on running and debugging files, see the
Wind River Workbench User’s Guide.

356

22

Kernel-Aware Debugging

22.1 Introduction

Wind River Workbench supports kernel-aware debugging for several operating
systems other than VxWorks 6.x. Run control and data visibility for these operating
systems are outlined in this chapter.

22.1.1 VxWorks 5.5

The following VxWorks 5.5 kernel objects are viewable in Workbench:
= Tasks

22.1.2 Linux

The following Linux kernel objects are viewable in Workbench:

= Processes
= Threads

The following Linux processor architectures are supported in Workbench:

MIPS
ARM9
ARM11
PowerPC

357

Wind River Workbench for On-Chip Debugging
User Tutorials, 2.6.1

22.1.3 ThreadX

The following ThreadX kernel objects are viewable in Workbench:

» Threads

= Timers

= Mutexes

» Semaphores

= Memory Byte Pools
= Memory Block Pools
* Message Queues

= Event Flag Groups

The following ThreadX processor architectures are supported in Workbench:

» PowerPC 821
» PowerPC 823
» PowerPC 860
» PowerPC 8240
» PowerPC 8260
» PowerPC 60x
» PowerPC 44x
» PowerPC 405
= MIPS32 4kx

Additional processor support may be available from Express Logic at
http://www.expresslogic.com/windriver_wb23.asp.

358

A

Adding a new group of registers to an existing .reg

file 155
Adding Files 170
Adding registers to a register group 154
Address Bus Test 253
attach to user mode threads 199
Attaching to a Process 199

Basic Operation
Debugging with a Project 5
Debugging without a Project 33
Bit-Level Detail 145
Board Descriptor Files 88
board files 89, 91
creating new 89
XML 98
boot line
address
bypassing with Linux 349
bypassing with VxWorks 347
forcing the default boot line 348
setting manually 347, 348
commands 349
configuration options 350

Index

Boot Line Commands 192
boot parameters 347
boot ROM 321
Booting a Linux System with OCD 185
bootloader 333, 345
U-Boot
downloading 334
generated files 337
installing 334
manually 335
breakpoints
verifying with target 163, 324, 339
Browsing Functions in Source 279
Build Spec Wizard 67
Build Tools 69
Building a Downloadable U-Boot File 336
Building an OCD Standalone Project 71
Bus Tests 253

Bypassing the Boot Line Address -- VxWorks 347

Bypassing the Boot Line Setup -- Linux 349

C

CF CMDRST 133

CFHRESET 133

changing CF options
with low-level commands 241
with the GUI 240

359

User Tutorials, 2.6.1

Changing CF Options in the CF Options View 240
Changing CF Options With Low-Level
Commands 241
Clear Trace Buffer 221
Clear Trace Buffer on GO (TRCCLR) 227
code profiling 255
Collapsing and Expanding Fields 220
commands
for multi-core debugging 134
Commands for Multi-Core Debugging 134
communications
with multiple devices 107
Comparing Memory 303, 311
Configuration Options 207
configuration options
for multi-core debugging 131
Configure Trace 225
Configuring and Building the Bootloader 334
Configuring and Building the Bootloader
Manually 335
configuring communication settings
manually 110
Configuring Communication Settings
Manually 110
Configuring Flash Memory Bounds 167
Configuring Options for Multi-Core
Debugging 131
Configuring RAM Workspace 168
Configuring Registers 164
Configuring Registers Manually 143
Configuring Target Registers 137
Configuring target registers 137
Configuring The Target 322
Configuring the Target 338
Configuring the Target Connection 238
Configuring the Target Server 209
Configuring Trace 225
Configuring Wind River ICE SX 206
Connecting Through the Transparent Mode
Driver 204
Connecting to a Target 158, 234
Connecting to the Simulator 314
Connecting to the Target 6, 34, 256, 282, 314
Connecting to Your Target 244
Connection Parameters 179

360

Wind River Workbench for On-Chip Debugging

Converting Files To .bin Format 171

Converting Files To Wind River Flash Binary
Format 171

CRC Calculation 251

creating

new board files 89

Creating a Launch Configuration 76

Creating a New Board Descriptor File 89

Creating a New Set of Registers 147

Creating a Project 18, 125, 266, 293

Creating an OCD Standalone Project 64

Creating New Registers With Low-Level
Commands 149

D

Data Bus Test 254
Data Cache 301, 307
debugger
disconnecting and terminating processes 32,
61
Debugging a Process 199
Debugging Code 25, 53
Debugging Code in RAM 25,53
Debugging Linux Kernel Modules 196
Debugging Multi-Core Targets 105
Debugging the Beginning of a Process 200
Debugging the init() Function of a Module 197
Debugging the Linux Kernel 196
Debugging User Space Applications with OCD 198
Defining a Launch Configuration 75
Disconnecting and Terminating Processes 32, 61
Document Overview 1
document overview 1
downloading
register files 138
Downloading a .REG File 138
Downloading a Kernel Image Using a JTAG
Connection 345
Downloading a Register File 138
downloading an OS image using a JTAG
connection 345
Downloading Code 46
Downloading the Kernel Image 351

Downloading the Sample Code 23, 130, 271, 298

E

Editing Your Board Layout 97

Emulator Configuration 183

Enabling A File For Download 174

Enabling and Disabling Register Groups 141

Enabling and Disabling Register Groups with Low-
Level Commands 142

Erasing and Programming Flash 169

Establishing Communications with Multiple
Devices 107

Examining Cache 299

Examining the Cache 299

Exporting Cache Information 305

F

file conversion utility 329
files
.REG 138
Filter Visible Trace Events 224
Flash Configuration Tab 166
flash memory 321, 333
programming
requirements 321, 333
Flash Memory/Diagnostics Tab 174
Flash Programmer view 168
Configuration tab 166
getting started 165
Memory/Diagnostics tab 174
Flash programming
erasing flash 169
setting timeouts 168
verifying flash contents 169
flash programming 321, 324, 326, 333
configuring the target 322
reset configuration word 325
setting chip selects 325
testing breakpoints 324, 339
unlocking flash 326

Index

Flash Programming Tab 168
Flash Programming view 326, 342
Configuration view 327, 342
file conversion utility 329
Files view 327, 343
Memory/Diagnostics view 331
flashing a boot ROM 321, 324
flashing a Linux bootloader 333
Flashing the Boot ROM 324
Flashing the Bootloader 340
Forcing the DEFAULT_BOOT_LINE 348
Full RAM Tests 251

G

Getting Started 165
GO ALL command 134

H

HALT ALL command 134
Hardware Diagnostic Tests 249
Hardware Diagnostic view

tests 249

Initializing the Targets 119

Installing the Bootloader 334

Instruction Cache 299, 306

Instruction Set Simulator 313

Internal Software Trace 219

Interpreting the Cache View 301

Introduction 1,5, 33, 63,75, 87,105, 137,157,177,
203, 233, 243, 255, 281, 309, 313, 321, 333,
345, 357

361

User Tutorials, 2.6.1

J

JTAG 345

JTAG Editor
defining a core 94
defining a graphic layoutin 91
editing a board layout 97
JTAG Editor view 89
selecting a processor type 93
toolbar 91
using the custom option 95

JTAG editor 89

JTAG Server 106

JTAG server 106

K

Kernel Configuration 198
Kernel Module Detection 196
Kernel-Aware Debugging 357

L

Launch Configuration
Add Source dialog 83
common tab 84
Download tab 80
Adding files 80
Configuring download 80
Download field 80
Load Symbol field 81
Offset field 81
Verify field 81
Setting the instruction pointer 81
source tab 83
Launch configuration ??-125
common tab 51, 124, 265, 292
source tab 50, 123, 264, 291
Limitations 200
Linux 357
linux
troubleshooting 201

362

Wind River Workbench for On-Chip Debugging

user space applications 198
Linux Troubleshooting 201
Linux Virtual Memory Management
Architecture 178

M

Making Physical Connections 338
Making Physical Connections 322
Manually Configuring Flash Memory Erasure
Bounds 170
Manually Creating XML Board Files 101
Manually Setting the BOOT_LINE_ADRS
Location 348
MMUL Settings 183
Modifying an Existing Register File 154
Modifying the boardConfig.h File 335
Monitoring Processes 25, 54
Moving On 32, 61, 218
Multi-Core Debugging 107
multi-core debugging 107
commands for 134
configuration options 131

N

NV-RAM 137

O

OCD 1
OCD Boot 189
OCD Statistical Code Profiling 255
on-chip debugging 1
On-Chip Debugging for Linux 177
Open Trace Rules Dialog 222
Other Options 85
Other Resources 2
Overview 219
overview
document 1

P

PA Semi Trace Configuration 228

PFA profiling 255

play a register file 47,120, 138, 261, 288, 325

Playing a Register File 325, 340

PowerPC Trace Configuration Options 225

processes

disconnecting debugger 32, 61

Profiling Selected Functions 278

Profiling Your Code 272

Programming a Linux Bootloader into Flash
Memory 333

Programming a VxWorks Boot ROM into Flash
Memory 321

Programming Flash 326, 342

programming flash 321, 333

Programming Flash Memory 157

R

Read From Location 253
Reading and Writing Memory 163, 323, 339
Reconfiguring the Cache 305
Refresh Trace View 222
.REG files 138
register groups
disabling 141
enabling 141
Registers view 144
Removing Files 171
Removing Functions 279
requirements
for flash programming 321, 333
reset configuration word 325
programming with Wind River Workbench
u-boot.bin file 341
Resetting CF Options 242
Reverse-Engineering the Boot Line Parameters 195
RST command 134
RSTINN command 134
Running a Pre- or Post-Flash Script 170
Running a Program 28, 56
Running Diagnostic Tests 175

Index

S

Save Output to File 224, 228
Saving Register Settings from a Target 139
SC Commands 155
SCGA Options 151
Scope Tests 253
Selecting a Flash Driver 166
Selecting Flash Sectors for Erasure 170
Setting a Hardware Breakpoint 29, 58
Setting a Software Breakpoint 27, 55
Setting a Tracepoint 231
Setting a Workspace 248
Setting Breakpoints 200
Setting CF Options in the CF Options View 207
Setting CF Options with Low-Level

Commands 207,208
setting chip selects 325
Setting Standalone Project Defaults 72
Setting The Download Offset Of A File 173
Setting Timeouts 168
Setting Up Chip Select 0 and Programming the Reset

Configuration Word 325, 341
Simple RAM Test 249
Source Mode 303
Specifying Files 78
Standalone Project Wizard 63

Default Settings 72

Standard Boot 185
Stepping Through a Program 29, 57
Stepping Through Code 25, 54
System Configuration (SC) Commands 155

T

target
jumper settings 322, 338
physical connections to 322, 338
software breakpoints, verifying 163, 324, 339
switch settings 322, 338
Target Console Redirection 208
Testing Breakpoints 324, 339
testing breakpoints 324, 339
Testing Flash Workspace 163

363

User Tutorials, 2.6.1

Testing Memory and Breakpoints 323, 339

The Trace View 220

Thread-Qualified Breakpoints 200

ThreadX 358

TMD Mode 207

Toggle Trace/Source view Auto-Sync 221

Trace View Buttons 220

Tracing Execution 231

Transparent Mode Driver 203
configuring the target server 209
connecting 204
using with an emulator 206

Trap Exception 208

U

U-Boot
building
manually 335
configuring
manually 335
downloading 334
generated files 337
installing 334
u-boot file 337
Unlocking Flash 326, 341
unlocking flash memory 326, 341
Updating the Profile Data 279
Uploading Memory 309

Uploading Target Memory to a Binary File 309

user mode 199
breakpoints 200
thread-qualified 200
processes 200
user space applications 198
Using Board Descriptor Files 87
Using Hardware Diagnostics 243
Using Processors Without Cache Lines 306
Using the Cache View 281
Using the CF Options View 233
Using the Custom Option in the JTAG Editor
View 95
Using the Flash Programmer View 165
Using the Instruction Set Simulator 313

364

Wind River Workbench for On-Chip Debugging

Using the OCD Standalone Project Wizard 63
Using the Predefined Layouts in JTAG Editor 91
Using the TMD With the Wind River ICE SX 206
Using the WDB Transparent Mode Driver 203
Using Your New Register File 153

\'}

Verifying Flash Contents 169
Viewing Cache Source 303
Viewing Memory 175
VxWorks 5.5 357

W

WDB 203
Wind River DeBug 203
Wind River ICE SX
Configuring for Transparent Mode 206
Working With Custom Register Groups 147
Write and Complement 253
Write Rotating Value 253
Write Then Read 253
Write To Location 253

X

XML Board File Fields 100
XML board files 98
XML Board Files 98

	Wind River Workbench for On-Chip Debugging User Tutorials
	Contents
	1 Introduction
	1.1 Document Overview
	1.2 Other Resources

	2 Basic Operation: Debugging with a Project
	2.1 Introduction
	2.2 Connecting to the Target
	2.3 Creating a Project
	2.3.1 Downloading the Sample Code

	2.4 Debugging Code
	2.4.1 Monitoring Processes
	2.4.2 Stepping Through Code
	2.4.3 Setting a Software Breakpoint
	2.4.4 Running a Program
	2.4.5 Stepping Through a Program
	2.4.6 Setting a Hardware Breakpoint
	2.4.7 Disconnecting and Terminating Processes

	2.5 Moving On

	3 Basic Operation: Debugging Without a Project
	3.1 Introduction
	3.2 Connecting to the Target
	3.3 Downloading Code
	3.4 Debugging Code
	3.4.1 Monitoring Processes
	3.4.2 Stepping Through Code
	3.4.3 Setting a Software Breakpoint
	3.4.4 Running a Program
	3.4.5 Stepping Through a Program
	3.4.6 Setting a Hardware Breakpoint
	3.4.7 Disconnecting and Terminating Processes

	3.5 Moving On

	4 Using the OCD Standalone Project Wizard
	4.1 Introduction
	4.2 Creating an OCD Standalone Project
	4.3 Building an OCD Standalone Project
	4.4 Setting Standalone Project Defaults

	5 Defining a Launch Configuration
	5.1 Introduction
	5.2 Creating a Launch Configuration
	5.2.1 Specifying Files

	5.3 Other Options

	6 Using Board Descriptor Files
	6.1 Introduction
	6.2 Board Descriptor Files
	6.3 Creating a New Board Descriptor File
	Using the Predefined Layouts in JTAG Editor
	Using the Custom Option in the JTAG Editor View
	Editing Your Board Layout

	6.4 XML Board Files
	6.4.1 XML Board File Fields
	<DEVICE_TABLE> Fields
	<DEVICE> Fields

	6.5 Manually Creating XML Board Files

	7 Debugging Multi-Core Targets
	7.1 Introduction
	7.2 JTAG Server
	7.3 Multi-Core Debugging
	7.3.1 Establishing Communications with Multiple Devices
	Configuring Communication Settings Manually

	7.4 Initializing the Targets
	7.5 Creating a Project
	7.5.1 Downloading the Sample Code

	7.6 Configuring Options for Multi-Core Debugging
	CF HRESET
	CF CMDRST

	7.7 Commands for Multi-Core Debugging

	8 Configuring Target Registers
	8.1 Introduction
	8.2 Downloading a Register File
	8.3 Saving Register Settings from a Target
	8.4 Enabling and Disabling Register Groups
	Enabling and Disabling Register Groups with Low-Level Commands

	8.5 Configuring Registers Manually
	8.6 Working With Custom Register Groups
	Creating a New Set of Registers
	Creating New Registers With Low-Level Commands
	SCGA Options
	Using Your New Register File
	Modifying an Existing Register File

	8.7 System Configuration (SC) Commands

	9 Programming Flash Memory
	9.1 Introduction
	9.2 Connecting to a Target
	9.3 Testing Flash Workspace
	Reading and Writing Memory

	9.4 Configuring Registers
	9.5 Using the Flash Programmer View
	9.6 Flash Configuration Tab
	9.6.1 Selecting a Flash Driver
	9.6.2 Configuring Flash Memory Bounds
	9.6.3 Configuring RAM Workspace
	9.6.4 Setting Timeouts

	9.7 Flash Programming Tab
	9.7.1 Erasing and Programming Flash
	9.7.2 Verifying Flash Contents
	9.7.3 Running a Pre- or Post-Flash Script
	9.7.4 Selecting Flash Sectors for Erasure
	9.7.5 Manually Configuring Flash Memory Erasure Bounds
	9.7.6 Adding Files
	9.7.7 Removing Files
	9.7.8 Converting Files To Wind River Flash Binary Format
	9.7.9 Setting The Download Offset Of A File
	9.7.10 Enabling A File For Download

	9.8 Flash Memory/Diagnostics Tab
	9.8.1 Viewing Memory
	9.8.2 Running Diagnostic Tests

	10 On-Chip Debugging for Linux
	10.1 Introduction
	10.2 Linux Virtual Memory Management Architecture
	10.3 Connection Parameters
	10.4 Emulator Configuration
	10.5 MMUL Settings
	10.6 Booting a Linux System with OCD
	10.6.1 Standard Boot
	10.6.2 OCD Boot

	10.7 Boot Line Commands
	10.8 Reverse-Engineering the Boot Line Parameters
	10.9 Debugging the Linux Kernel
	10.9.1 Debugging Linux Kernel Modules
	Kernel Module Detection
	Debugging the init() Function of a Module

	10.10 Kernel Configuration
	10.11 Debugging User Space Applications with OCD
	10.11.1 Attaching to a Process
	10.11.2 Debugging a Process
	10.11.3 Setting Breakpoints
	10.11.4 Thread-Qualified Breakpoints
	10.11.5 Debugging the Beginning of a Process
	10.11.6 Limitations

	10.12 Linux Troubleshooting

	11 Using the WDB Transparent Mode Driver
	11.1 Introduction
	11.2 Connecting Through the Transparent Mode Driver
	11.3 Using the TMD With the Wind River ICE SX
	11.3.1 Configuring Wind River ICE SX
	11.3.2 Configuration Options
	Setting CF Options in the CF Options View
	Setting CF Options with Low-Level Commands

	11.4 Configuring the Target Server
	11.5 Moving On

	12 Internal Software Trace
	12.1 Overview
	12.2 The Trace View
	12.2.1 Trace View Buttons
	Collapsing and Expanding Fields
	Toggle Trace/Source view Auto-Sync
	Clear Trace Buffer
	Refresh Trace View
	Open Trace Rules Dialog
	Filter Visible Trace Events
	Save Output to File

	12.3 Configuring Trace
	12.3.1 PowerPC Trace Configuration Options
	12.3.2 PA Semi Trace Configuration

	12.4 Tracing Execution
	12.4.1 Setting a Tracepoint
	12.4.2 Tracing Execution

	13 Using the CF Options View
	13.1 Introduction
	13.2 Connecting to a Target
	13.3 Configuring the Target Connection
	13.4 Changing CF Options in the CF Options View
	13.5 Changing CF Options With Low-Level Commands
	13.6 Resetting CF Options

	14 Using Hardware Diagnostics
	14.1 Introduction
	14.2 Connecting to Your Target
	14.3 Setting a Workspace
	14.4 Hardware Diagnostic Tests
	14.4.1 Simple RAM Test
	14.4.2 Full RAM Tests
	14.4.3 CRC Calculation
	14.4.4 Scope Tests
	Read From Location
	Write To Location
	Write and Complement
	Write Rotating Value
	Write Then Read

	14.4.5 Bus Tests
	Address Bus Test
	Data Bus Test

	15 OCD Statistical Code Profiling
	15.1 Introduction
	15.2 Connecting to the Target
	15.3 Creating a Project
	15.3.1 Downloading the Sample Code

	15.4 Profiling Your Code
	15.4.1 Profiling Selected Functions
	15.4.2 Browsing Functions in Source
	15.4.3 Updating the Profile Data
	15.4.4 Removing Functions

	16 Using the Cache View
	16.1 Introduction
	16.2 Connecting to the Target
	16.3 Creating a Project
	16.3.1 Downloading the Sample Code

	16.4 Examining Cache
	16.4.1 Instruction Cache
	16.4.2 Data Cache
	16.4.3 Interpreting the Cache View

	16.5 Viewing Cache Source
	16.6 Comparing Memory
	16.7 Reconfiguring the Cache
	16.8 Exporting Cache Information
	16.9 Using Processors Without Cache Lines
	Instruction Cache
	Data Cache

	17 Uploading Target Memory to a Binary File
	17.1 Introduction
	17.2 Uploading Memory
	17.3 Comparing Memory

	18 Using the Instruction Set Simulator
	18.1 Introduction
	18.2 Connecting to the Simulator

	19 Programming a VxWorks Boot ROM into Flash Memory
	19.1 Introduction
	19.2 Configuring The Target
	19.2.1 Making Physical Connections
	19.2.2 Testing Memory and Breakpoints
	Reading and Writing Memory
	Testing Breakpoints

	19.3 Flashing the Boot ROM
	19.3.1 Playing a Register File
	19.3.2 Setting Up Chip Select 0 and Programming the Reset Configuration Word
	19.3.3 Unlocking Flash
	19.3.4 Programming Flash

	20 Programming a Linux Bootloader into Flash Memory
	20.1 Introduction
	20.2 Installing the Bootloader
	20.3 Configuring and Building the Bootloader
	20.3.1 Configuring and Building the Bootloader Manually
	Modifying the boardConfig.h File
	Building a Downloadable U-Boot File

	20.4 Configuring the Target
	20.4.1 Making Physical Connections
	20.4.2 Testing Memory and Breakpoints
	Reading and Writing Memory
	Testing Breakpoints

	20.5 Flashing the Bootloader
	20.5.1 Playing a Register File
	20.5.2 Setting Up Chip Select 0 and Programming the Reset Configuration Word
	20.5.3 Unlocking Flash
	20.5.4 Programming Flash

	21 Downloading a Kernel Image Using a JTAG Connection
	21.1 Introduction
	21.2 Bypassing the Boot Line Address -- VxWorks
	21.2.1 Manually Setting the BOOT_LINE_ADRS Location
	21.2.2 Forcing the DEFAULT_BOOT_LINE

	21.3 Bypassing the Boot Line Setup -- Linux
	21.4 Downloading the Kernel Image

	22 Kernel-Aware Debugging
	22.1 Introduction
	22.1.1 VxWorks 5.5
	22.1.2 Linux
	22.1.3 ThreadX

	Index

