WIND RIVER

Wind River"Workbench
for On-Chip Debugging

BOARD BRING-UP GUIDE FOR POWERPC

2.6.1

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDirlproduct_namel/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com
For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Workbench for On-Chip Debugging Board Bring-Up Guide for PowerPC, 2.6.1

20 Mar 07
Part #: DOC-15995-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Introductioncccceeremirreninenn.
On-Chip Debugging

Board Bring-Upcccceeeinneees

3.1 Goals and Objectives

Contents

3.2 Sequence of Events

OCD CONNECIONS .iceireerirrmerrmnsirrmssrrenssrrnsssrenssrsnsssranssrsnsssrenssrsnsssransnrs

41 Debug Connections

4.2 Creating a Target Connection

Tool Configurationcccccccrrccrirssssssss s s

5.1 Introduction

5.2 Tool Configuration

52.1 Clock Rate
522 Drive TRESET Line ..
523 Monitor Target Reset

fii

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

524 Emulator HRESET CONErolccveeieeiiiiieieceeeeeeeeeeeeeeeee e
525 CPU ReSet TYPE ..ocvviiiiiiciiiccciicc s
52.6 Saving Changes ...
Board Initializationccciiiiciiiiecr e e s e
6.1 Introduction
6.2 Background Mode
6.2.1 The IN CommMANdcovvovviiiiiieiiieieceeeeete et
6.2.2 St VEIDOSE O ..ttt et
6.3 The INN Command
6.4 Registers
6.4.1 Downloading a Register File ..o,
6.4.2 Enabling and Disabling Register Groupscccccoeovvvviviiiinninnnnnnen.
6.4.3 Modifying Registers Manuallyccccccoevvnniccennnnncccceeeenee
Verifying Hardwarecccciiiiiiiiinmmmmnnriinssssssss s sssssssssnssnnns
7.1 Introduction
7.2 Setting a Workspace
7.3 Diagnostic Functions
731 SImple RAM TESt ...coooriiiiriicieci e
7.3.2 FUIL RAM TESES ettt et eeaeeennes
7.3.3 CRC Calculation ...ccecovieeieiieeieeieeceeeceeeee ettt
734 SCOPE TESS ..coviiieiiiiciic s
Read From LOCAtioncceeevievieciieeiieeieeeeeee ettt
WIite TO LOCAtION .eviiiiieieiiiiciiie ettt et
Write and Complementccccccociiiiiiiiiiniiiiiicccccns
Write Rotating Value ..o
Write Then Readoovviveviiieiiieee et

21

22
22
22

25

Contents

7.3.5 BUS TOSES .
AdAIess BUs TEStveeeeuviiiieieeeeee ettt ettt
Data Bus TSt ..o
Testing MemMOTYcccciiimmmeirrininnesen s nmnnnes
8.1 Introduction
8.2 Testing Memory
8.2.1 Stepping an INStruction ..o
822 Running Code ...
8.2.3 Setting Software Breakpointscccoocoveieiiiiiiiceiiiiicecce
824 Setting Hardware Breakpoints ..o,
Debugging in RAM ... s s
9.1 Overview
9.2 Creating a Target Connection
9.3 Creating a Project
9.4 Downloading Code and Symbol Information
9.5 Debugging Code in RAM
9.5.1 Monitoring PTOCESSESccvvvviiiiiiiiiicice e
952 Stepping Through Codeccovviiiiiiiiiiiiii
9.5.3 Setting a Software Breakpoint ..o,
954 Running a Program ...
955 Stepping Through a Programccccooenniiiiiii
9.5.6 Setting a Hardware Breakpointccccoviiiiiiinniic
9.5.7 Disconnecting and Terminating Processescccoovviiiiiiiiinnnnnn

47

48

53

10

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

Programming Flash Memory e e e e ee e er e e
10.1 Introduction
10.2 Testing Flash Workspace
Reading and Writing MEMOIYcccceeueuiiiiciniiiniiicccccccneennes
10.3 Getting Started
10.4 Flash Configuration Tab
10.4.1 Selecting a Flash DIiver ..o
10.4.2 Configuring Flash Memory Boundsccccccocoeuviiniininniiccinicne.
10.4.3 Configuring Flash Memory Boundsccccccocoevviiniinininiiccicne.
10.4.4 Configuring RAM WOTKSPACEccovuvvimriiirieiiciiciieccece e
10.4.5 Setting TIMEOULScoeveviiiiiiicie s
10.5 Flash Programming Tab
10.5.1 Erasing and Programming Flash ...
10.52 Verifying Flash Contentscccccovviiiiiiiinininiiicc,
10.5.3 Running a Pre- or Post-Flash Scriptc.cccoooovviiiiinnnie,
10.5.4 Selecting Flash Sectors for Erasureccccoovviiiiininiincne,
10.5.5 Manually Configuring Flash Memory Erasure Bounds
10.5.6 Adding Filescccccoviiiiiiiiiiiiiiiccc s
10.5.7 Removing Files ...
10.5.8 Converting Files To Wind River Flash Binary Formatccc..........
10.5.9 Setting The Download Offset Of A Fileccccocccovviiinininiiniicicnnn,
10.5.10 Enabling A File For Downloadccccoovivinininnicnicccccice,
10.6 Flash Memory/Diagnostics Tab
10.6.1 Viewing MEMOIYcccovviuiuriiiiiiiiiniieciciceccee s
10.6.2 Running Diagnostic Testsccccceeuiiiiiiiiciiieiiiiccc

Vi

67

68
68

69

70
70
71
72
72
72

73
73
74
74
74
74
75
75
75
77
78

Contents

Debugging in ROM ... e cce e s s e e see e e s s e e s s e nn e e e e s nnnnennnnnes 81
11.1 Overview 81
11.2 Getting Started 82
11.3 Debugging in ROM 82
11.3.1 Stepping Through Boot Code ..., 85

11.3.2 Setting Hardware Breakpointsccccciiviiininiiiiiiiiiiiiiine, 86

Pins Mapped to Common Signalscccccecremmmmnismnsnnnissssssssssennes 89
A1 Introduction 89
A.2 PowerPC Processors -- JTAG 90
A.3 PowerPC Processors -- BDM 91
Internal Breakpoint Capabilitiesccccccemvreriiissre e e e s cee e eee e 93
Line Breakpoints ..o 94

Expression Breakpoints ... 94

Hardware Breakpointscccooeviiiiiiiiiiniiiiiccecccs 94

Importing Breakpointsccccccciiiiiiiininiiiniiiicccicccce 96

Exporting Breakpoints ..o 96

Refreshing Breakpointsccccoccevrericerieieenniniiiceesseeccecnenensesens 97

Disabling Breakpointsccccooveviiciniceinininiicecce s 97

Removing Breakpointsc.cocoeeireiiicniiininccecccce s 97

Pin Terminations ... 929
C.1 JTAG Pin Terminations 99
C1.1 16-Pin JTAG Connector I ..co.eeieieiiiiieieieeceeeeceeeeeeee e 929

C.1.2 16-Pin JTAG Connector ITccooovevuieiieieiiiieieeeee e 101

C.2 BDM Pin Terminations 103
C.2.1 PowerPC 5xx/8xx 10-pin BDM Connectorc.ccocevevecirrnrninccnnn. 103

C.3 Mictor Pin Terminations 105

vii

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

C3.1 AMCC 403 38-pin Mictor Connector Pin-outcccccceeuviccnviciininnnee 106
C3.2 AMCC 405 38-pin Mictor Connector Pin-outccccccceviccivecnininnnee 107
C3.3 AMCC 44x 38-pin Mictor Connector Pin-outcccccceuiiiiicninininne 108

109

viii

Introduction

This document describes procedures for using Wind River Workbench with the
Wind River Probe and Wind River ICE emulators to bring up a target board, from
the first power-up through running and debugging application code.

This document includes the following chapters:

1. Introduction - Introduces the document.

2. On-Chip Debugging - Describes of the theory of on-chip debugging.
3. Board Bring-Up - Provides an overview of board bring-up procedure.

4. OCD Connections - Describes making an OCD connection to a target using a
JTAG or BDM port.

5. Tool Configuration - Describes hardware-specific configuration options for Wind
River emulators.

6. Board Initialization - Describes how to use Wind River emulators to initialize the
target hardware.

7. Verifying Hardware - Describes how to use Wind River Workbench to run
hardware diagnostics on your target.

8. Testing Memory - Describes how to use Wind River emulators to suspend CPU
operations and force the target into background mode.

9. Debugging in RAM - Describes how to create a project, download code and
symbol information, set software breakpoints, and step through code.

10. Programming Flash Memory - Describes working with flash memory on your
target.

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

11. Debugging in ROM - Describes using hardware breakpoints to debug in ROM.

A. Pins Mapped to Common Signals - Provides a mapping reference for Wind
River-supported processor families.

B. Internal Breakpoint Capabilities - Provides a detailed reference for line, expression,
and hardware breakpoints in Workbench.

C. Pin Terminations - provides a detailed reference of pinouts for Wind
River-supported processor families.

On-Chip Debugging

Almost all embedded systems have hardware and software elements, which are
separate but interdependent. Since embedded systems generally do not have
keyboards, or any kind of user interface, debugging of their software elements
must be done externally.

An older solution to this problem was the in-circuit emulator, which substituted its
own internal processor for the central processing unit (CPU) of the embedded
system.

However, in-circuit emulators are expensive; and since they are made by
third-party vendors, there is often a long delay between a new target and a new
in-circuit emulator that can attach to it. A cheaper, and more easily implemented,
solution is on-chip debugging (OCD).

Many semiconductor manufacturers now integrate dedicated debug
microcircuitry into their chips. This approach adds hardware and software debug
capability to the existing JTAG or BDM ports. Since the debug operations occur on
a dedicated area of the chip itself, this solution is known as on-chip debugging.

OCD combines many features of software debug monitors and in-circuit
emulators. Like an in-circuit emulator, OCD provides low-level hardware access.
It does not need to use target memory; it does not need a target communication
channel; and, for some processors, it can edit memory and registers without
halting the processor. Like a software monitor, OCD lets you set breakpoints, stop
and start the CPU, step through code, examine memory, and run diagnostic tests;
but unlike a software monitor, OCD does not need good hardware to run.

Software defects that cause the operating system to crash will typically cause an
agent-based debug environment to fail. However, since an OCD connection is
implemented in the hardware, it is not as sensitive.

Table 2-1

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

An OCD connection remains active even on bad hardware. Using an OCD
connection, you can download low-level software even when the target board is
not functioning correctly, and the boot loader cannot run.

On-chip debugging capability varies from one processor family to another, but the
provided functionality is generally similar. Most processors use the following
primitives for Background Debug Mode (BDM):

OCD Primitives

Command Mnemonic Description

Read Register RDREG Read a data register and return the value.
Write Register WDREG Write a value to a data register.

Read Memory READ Read from a memory location.

Write Memory WRITE Write to a memory location.

Stop Processor BGND Assume control of the bus and put processor in

background mode.
Single Step STEP Step one instruction.

Resume GO Resume execution at the program counter's
current location.

Wind River tools use these low-level OCD primitives as building blocks to create
a higher level of primitives, thus allowing hardware and software verification.

OCD commands invoked while the processor is running “steal” bus cycles from
the CPU in the same way a Direct Memory Access (DMA) controller does.

As the debugger reads and writes to memory and registers, it halts the CPU and
restarts it. The CPU is not involved in OCD operations. The BGND instruction from
the OCD hardware causes the CPU to halt, and the OCD hardware assumes control
of chip operations. A GO (Resume) command flushes OCD operations and restarts
the CPU.

The Wind River Probe and Wind River ICE SX tools use the on-chip debug
capabilities embedded in the target processor. These tools are not true in-circuit
emulators, because they do not replace the target CPU with their own internal
processor. However, the functions they perform are similar, and this document will
refer to them as “emulators”.

2 On-Chip Debugging

OCD has many advantages over in-circuit emulation. It is cheaper; the debug
hardware is included by the silicon manufacturer, not by a third party; and unlike
an in-circuit emulator, the OCD hardware does not lag behind chip releases.

When you access the OCD services on the chip, all interaction between the
Wind River Probe or Wind River ICE SX and the target runs exclusively through
the OCD connection. This means that your system is effective for the entire
development process, even before board-level peripherals are stable.

ColdFire processors, and some older PowerPC processors (5xx and 8xx) use a
dedicated BDM port for OCD operations. A more recent approach is to attach the
OCD functions to the Joint Test Action Group (JTAG) interface to communicate to
the target CPU, and share this interface with boundary-scan board-circuit testing.
The JTAG interface follows the IEEE 1149.1 boundary-scan (JTAG/Test Interface)
specification.

The JTAG interface consists of a set of five signals, three JTAG registers, and a test
access port (TAP) controller. The TAP controller is typically embedded in the target
microprocessor or device. The information related signals are TDI (Test Data In)
and TDO (Test Data Out). The boundary-scan register chain (data) includes
registers controlling the direction of the input/output drivers, as well as registers
reflecting the signal value received or driven. The expectation and details of
particular CPU chains are encoded directly into the emulator firmware.

Each device sharing the JTAG interface employs a serial stream of relative data.
The data streams for all devices can be chained together. An associated process can
scan the combined chain to extract any particular device’s information.

For further information about JTAG operations, refer to the IEEE 1149.1
specification at http://standards.ieee.org.

Wind River emulators are non-intrusive; that is, they do not use target resources.
An emulator will not affect target memory, stack space, or the flash workspace.

On-chip debug agents reside inside cache and memory management units they
share the chip with, so the OCD hardware sees address and data values just like
the CPU sees them. Some processor families have dedicated output signals (other
than the JTAG pins) that can deliver information on the state of the processor.
Combined with external hardware (such as the Wind River ICE SX, in conjunction
with the Wind River Trace tool) these signals can log the real-time code execution
history to a trace buffer. This data is helpful when you need to debug problems that
only occur when the processor is running at full speed.

There is an industry standard, not yet widely adopted, created by the Global
Embedded Processor Debug Interface Forum, formally called IEEE-ISTO 5001. For

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

the standard, and a good deal of further information, see
http://www.nexus5001.org/standard.html.

Board Bring-Up

3.1 Goals and Objectives 7
3.2 Sequence of Events 7

3.1 Goals and Objectives

This chapter provides a general overview of board bring-up procedure.

The goal of a board bring-up procedure is to verify the operation of a target board,
all the way from power-on to successfully running and debugging code.

3.2 Sequence of Events

In general, the procedure of bringing up a board uses the following outline:

» Attempt a “smoke test”- that is, see if you can apply power to the board
without damaging it.

» Perform a “lamp check” - turn the LEDs on and off

»= Establish a JTAG or BDM connection to the emulator.

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

= Configure the emulator-target interface: set voltage, clock rate, signal logic.
= Enter background mode.

* Read and write core registers.

» Configure the target workspace.

* Runsimple RAM tests.

* Run bus tests on the address and data buses.

» Test low-level stepping and breakpoints.

= Execute low-level code.

= Test source-level stepping and breakpoints.

= Execute application.

* Debug application code in RAM.

= Test the target’s ability to erase and program flash memory.

* Debug application code in ROM.

OCD Connections

41 Debug Connections 9
4.2 Creating a Target Connection 10

4.1 Debug Connections

To create a target connection, create projects, and download code, you need a
Wind River Probe or a Wind River ICE SX.

For software-only tests, you can create a simulated connection using the Wind
River Instruction Set Simulator (ISS), which is available to all users of Wind River
Workbench OCD Edition. For instructions on using the Instruction Set Simulator,
see the Wind River Workbench On-Chip Debugging Guide.

The instructions in this document use a Wind River Probe connecting to a
PowerPC750FX target. The process for connecting with the ICE is similar; for
instructions on connecting with a Wind River ICE SX, see the Wind River ICE SX for
Wind River Workbench Hardware Reference.

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

4.2 Creating a Target Connection

To establish a connection with the Wind River Probe, use the following steps.
1. Launch Wind River Workbench according to the method for your host.
Linux/Solaris Hosts

From your installation directory, issue the following command:

$./startWorkbench.sh

Windows Hosts

Select Start > Programs > Wind River > Wind River Workbench 2.6.1 > Wind
River Workbench 2.6.

Wind River Workbench launches.
2. Specify a workspace.

For Windows hosts, Workbench displays a dialog where you can specify a
location for your workspace. For Linux hosts, the workspace defaults to
installDirlworkspace.

After you specify your workspace, Workbench opens and the Quick Target
Launch dialog appears.

wind River On Chip Debugging
@ Choose How You Want to Start

N Defined Launches
Create a new launch configuration

Edit an existing launch configuration
Connect, Attach, Reset and Download

Sync with target and download symbols

l.:'z.l [[] Do nat: show this dislog on startup Close

10

4 OCD Connections
4.2 Creating a Target Connection

The Quick Target Launch dialog allows you to create a launch configuration
to initialize your target and download symbols and code. Once created, the
launch configuration is persistent, so you can return to it at any time.

If this is the first time you have launched Workbench, the only available option
is Create a new launch configuration. The next time you open Workbench, the
Quick Target Launch dialog will give you the option of re-launching the same
launch configuration or creating a new one.

3. Select Create a new launch configuration.

The New Connection Wizard appears.

* New Connection

Connection Type

Flease select connection type.

‘Wind River Generic GDE Remote Serial Protocol Connection
Wind River Linux KEDE Connection

Wind River Linux User Mode Target Server Connection
Wind River OCD ICE Connection

Wind R 0 IS echi

4. Select Wind River OCD Probe Connection and click Next.

The Processor Selection dialog appears.

11

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

%) Mew Connection

wind River Probe Settings

Configure the designator settings For the emulator,

Designators
(&) Processor: | ppC7SORY | [Select. .]
() Board File:

Designatar Processor Processor Plugin

PPC7SOFY PPC7S0OFY PowerPC T Family Processar PlL..
Camrunicakions
USE Device Name: | PRO40510 i

[Help H = Back. ” Mext = l

5. Click Select. From the list that appears, expand MPC7xx and select MPC750FX.
6. Click OK.

You are returned to the Processor Selection dialog.
7. Click Next.

The connection wizard passes through several additional screens. For the
purposes of this chapter you do not need to use these screens. Click Next until
you come to the Connection Summary.

12

4 OCD Connections
4.2 Creating a Target Connection

':_.r New Connection

Connection Summary

Please review the connection information

Connection name: | WRProbe_PPC7SOFX_0

Summary

Property ‘alue
ACDR. PRO40310

i+ DESIGMATORMAP
CEVICE Wind River Probe
MAME_MAPPING [*;*.unstripped],[*;*]
PATH_MAPPING Ld
STYLE USEDEYICE

Immediately connect ko target if possible

[Help H < Back l ’ Finish ” Cancel]

8. Make sure that the Immediately connect to target if possible checkbox is
selected and click Finish.

Workbench creates a target connection called WRProbe_PPC750FX in the Target
Manager view.

9. In the Target Manager view, click on the “+” sign next to the
WRProbe_PPC750FX target connection name to expand it.

Before Workbench can actually talk to the processor on the target system,
Workbench must attach to the core.

10. Right-click on PPC750FX [connected - stopped] and select Attach to Core.

Workbench is now attached to the core, and able to talk to the processor.
Workbench switches to displaying the Device Debug perspective.

11. In the Workbench toolbar, select Window > Show View > OCD Command
Shell.

13

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

The OCD Command Shell opens.

Tasks | Problems | Properties | Bulld Console | Error Log | Terminal O | Trace: Prielan et iit=iytei=)yi= B2
[Connected to PPC7S0F] » @ @ p @ O
>ERR>|

The prompt in the OCD Command Shell will read either >BKM> (background
mode) or >ERR> (error.)

There are several reasons an >ERR> prompt might appear; these will be addressed
further on.

The next step is to configure the emulator by setting certain configuration options,
as described in 5. Tool Configuration.

14

Tool Configuration

5.1 Introduction 15

5.2 Tool Configuration 16

5.1 Introduction

Wind River emulators can be configured in several different ways to specify
various settings such as electrical properties, connection logic, and clock rate. To
configure these settings Workbench uses configuration options, or CF options, which
you can set in the OCD Command Shell.

This document only describes the most important CF options, ones that are
common to all Wind River-supported processor families. For a full description of
all Wind River CF options sorted by processor family, see the Wind River Workbench
for On-Chip Debugging Configuration Options Reference.

15

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

5.2 Tool Configuration

At the prompt in the OCD Command Shell (either >SBKM> or >ERR>) enter the
command CF with no arguments.

This displays a list of all CF options available for your target processor, along with
their current settings.

>ERR>cf
Set BreakPoint SB[SB,IHBC] = SB
Vector Table Location VECTOR [HIGH, LOW, IGNORE] = LOW
Monitor Target reset RST[YES,NO,HALT,RUN] = YES
Target CPU TAR[AUTO, 603E, EC603E, 603P, 603R, 740, 745,
750, 750CX, 750CXE, 750FX, 750GX, 755, 7400, 7410] = 750FX
Target CPU(SLAVE) SLAVE [NONE, 8260] = NONE
Slave IMMR reset value SLIMMRVAL [AUTO,VALUE] = AUTO
JTAG clock rate (MHz) CLK[0.025...100,AUTO] = 16
Application IMMR Exclusion Range AIMMRER [OFF, START and END] = OFF
Application IMMR Value AIMMRVAL[VALUE] = 0e000000
Real time Preservation RTP[YES,NO] = NO
Little Endian Mode LENDIAN[YES,NO] = NO
Processor Mode MODE[32,64] = 64
Download Mode DLD[NORMAL, 8] = NORMAL
Emulator HRESET Control HRESET [ENABLE, DISABLE] = ENABLE
Data Parity Checking PAR[YES,NO] = NO
Set Work Space WSPACE [BASE and SIZE] = 00000000 77c
Set Stack Range STACK[OFF / LOWER and UPPER] = OFF
Target Console Redirection TGTCONS [BDM, COM1,COM2] = BDM
Drive TReset line TRESET [OPENC, ACTIVE] = ACTIVE
Invalidate Instruction Cache on GO INVCI[YES,NO] = YES
Reset Pulse Length N*1lms RPL[1..600] =1
Sense Power via HRESET SPOWER[YES,NO] = YES
Power On Reset Length N*1lms PONR[O0..500] = 0
CPU Reset Type RESET [HRESET, SRESET, HRESET UNFILTER,
SRESET UNFILTER] = HRESET
Trap exception TRPEXP[YES, NO, SOI, BREAKPOINTONLY] = YES
Issue an IN on coldstart INCOLD[YES,NO] = YES
Display L2 Data Cache Warning L2WARNING[YES,NO] = NO
Memory Management Unit Mode MMU [ENABLE, DISABLE] = DISABLE
Load Boot Table On IN BL[ENABLE, DISABLE] = DISABLE
Trigger In Report Mode BRKREP [REPONLY, BRKREP] = BRKREP
TMD Mode TMD[ENABLE, DISABLE] = DISABLE
Run Counter Length RCL[1000..FFFF] = 1000
Delay after Reset Nms DRST[0..10000] = 25

5.2.1 Clock Rate

The CLK option controls the rate at which the JTAG clock (or BDM clock) clocks
debug commands to the target.

16

5 Tool Configuration
5.2 Tool Configuration

Available clock rates, and default settings, vary between processor families. Enter
CF at the prompt and look for CLK in the list of CF options to see the available clock
rates for your target.

For a PowerPC 750FX target, the available rates (shown above) range from 0.025 to
100. The default is 16. To change the clock rate, say from 16 to 32, use the following
command:

5
>ERR>cf clk 32 -

5.2.2 Drive TRESET Line

The TRESET option controls the logic applied to the target reset (TRESET) signal
on the target.

The option can be set to OPENC or ACTIVE. It is set to ACTIVE by default.

When set to ACTIVE, the emulator uses transistor-transistor logic (TTL.) The
emulator drives the TRESET signal to both active and inactive states. On some
targets, the conditioning resistors cause excessive rise or fall time on the signal
when returning to an inactive state. This excessive time can cause the processor to
come out of reset in an incorrect state.

When set to OPENC, the emulator uses open-collector logic. The active driver is
released by tri-stating the line and allowing conditioning resistors on the target to
return the signal to the non-active state.

If you are driving the TRESET signal with an external line, you should set the
emulator to use open-collector logic. Otherwise you could have an external line
driving the TRESET signal LOW while the emulator is driving it HIGH, thus
causing bus contention and possible damage to the target or the emulator.

To set the TRESET option to OPENC, use the following command:
>ERR>cf treset openc
To change it back, use the following command:

>ERR>cf treset active

5.2.3 Monitor Target Reset

The emulator continuously monitors the TRESET signal. If a target reset occurs, the
emulator takes one of the following actions:

17

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

* YES - If a target reset occurs it is reported to the user, and the target is forced
out of background mode.

= NO - If a target reset occurs it is ignored. This is normally used if the code
contains a reset instruction, which causes a reset to the external hardware, but
does not reset the core.

* HALT - If a reset occurs, the target is trapped at the restart vector.
= RUN-Ifareset occurs, the target is restarted and remains in background mode.

By default, this option is set to YES. When set to YES, the target will start running
code after each reset. If you are doing low-level work -- for example, if you are
examining register settings -- you may want the target to halt after a reset so you
can get a target snapshot. To set this option to halt the target on a reset, use the
following command:

>ERR>cf rst halt
To change it back, use the following command:

>ERR>cf rst yes

5.2.4 Emulator HRESET Control

By default, the emulator asserts the hardware reset (HRESET) signal when
initializing the hardware.

To configure the emulator not to assert the HRESET signal when it initializes the
board, use the following command:

>ERR>cf hreset disable
To change it back, use the following command:

>ERR>cf hreset enable

5.2.5 CPU Reset Type

As stated above, the emulator asserts the hardware reset (HRESET) signal when
initializing the hardware. You can configure the emulator to assert the software
reset (SRESET) signal on an initialization instead.

To configure the emulator to assert the SRESET signal instead of the HRESET
signal when it initializes the board, use the following command:

>ERR>cf reset sreset

18

5 Tool Configuration
5.2 Tool Configuration

To change it back, use the following command:
>ERR>cf reset hreset

You can also set this option to HRESET_UNFILTER or SRESET_UNFILTER. With the
_UNFILTER argument added, The emulator will not sample the reset signal when
it initializes the board.

5.2.6 Saving Changes

Most changes to configuration options do not take effect until you initialize the
board, as described in 6. Board Initialization.

19

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

20

Board Initialization

6.1 Introduction 21

6.2 Background Mode 22
6.3 The INN Command 25
6.4 Registers 25

6.1 Introduction

In order to establish communications with your target, you must first initialize it.
Also, if the code you are running on your target causes the connection to be lost,
you must initialize the target to restore that connection. Initialization is also
required if you change the register settings in the emulator and want them to be
reflected in the target.

The target is initialized whenever you first establish a connection using your
emulator. If you need to initialize the target when you are debugging, you can do
it using the IN or INN initialization commands, as described in this chapter.

21

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

6.2 Background Mode

In order for the emulator to work with the target, it must stop the target CPU and
put the target in background mode. When the target is in background mode, a
>BKM> prompt appears in the OCD Command Shell.

If an >ERR> prompt appears in the OCD Command Shell, the target is not in
background mode.

6.2.1 The IN Command

The IN command does two different things. First, it places the target board into
background mode. Second, it copies all of the register information that is stored in
the emulator’s NVRAM down to the target.

To initialize the board and enter background mode, enter the following command:
>ERR> in

The IN command may fail for several reasons. For example, if you have not
connected power to the target board, the output will resemble the following:

>ERR>in

PR R RS S SRS S S SRS S S SRS E SR SR EE SR SRR SRR R SRR RS SRR R R SRR R EEEEEEEEEEEEEEEEEEEESEES
Wind River Probe Initialization Sequence.

Copyright (c) Wind River Systems, Inc. 1999-2005. All rights reserved.

R e R R

Support Expires....... 4/20/06

Target Processor...... PPC750FX:UL
Wind River Probe Group ID#= 0
Wind River Probe Serial#= U1234567 Firmware= pr3.3_gab
Type CF For a Menu of Configuration Options
Initializing Background Debug Mode.............. Failed
Testing Communications to Hardware Interface....Passed
Driving HRESET to be High........... ..., Passed
Driving HRESET tO D€ LOW. . et vt it tneenenennennnn Passed
Waiting HRESET Low Acknowledge...............o... Failed
>ERR>

For a list of the tests the emulator runs during an IN sequence, see 6.2.2 Set Verbose
On, p.22.

6.2.2 Set Verbose On

To see the tests the emulator is running while attempting to enter background
mode, put the emulator in verbose mode using the following command:

22

6 Board Initialization
6.2 Background Mode

>ERR>set verbose on

Then enter the IN command again.

Here is a brief description of the tests with some possible reasons why each test
might fail.

Testing Communications to Hardware Interface

This tests the hardware connectivity, and examines the communications path
between the host and the emulator. If the test fails, ensure that you have the power
properly connected and turned on, that the emulator is correctly connected to the
host computer, and that your emulator hardware is properly connected to the
target.

Driving HRESET to be High

This function tests the RESET signal to verify that it is HIGH. The emulator is not
driving the RESET signal during this test, so the target must drive the RESET signal
via a pull-up resistor. If this test fails, check to see if the target board has a pull-up
resistor on the RESET signal to the HRESET pin of the connector. Also, check the
target board reset logic and verify that it is not continually driving RESET LOW.

Driving HRESET to be Low

The RESET signal is a bi-directional signal for your unit. The emulator drives the
RESET signal LOW and clocks it back in to verify that it is LOW. If this test fails,
you may have contention on your RESET signal. Check to see if a device on your
target board is continually driving RESET HIGH. Verify that the device on your
target board that is driving the RESET signal is an open-collector device with a
pull-up resistor.

Attempting JTAG Communication

During this test, the emulator stops the processor and attempts to establish JTAG
communications. If this fails, check to see that your hardware is connected
properly, and that the tests preceding this one passed. It is also possible that there
is contention on your board.

Waiting for HRESET to be Released

The emulator only drives RESET low for a specified period of time. After RESET is
driven LOW for the allotted time, it tri-states the RESET driver and clocks the

RESET signal back in to see if the RESET signal went high. It continues to check for
RESET to go high until is sees it go high or until you type Ctrl+X. If this test fails,

23

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

check to see if your target board reset logic is still driving the RESET signal LOW.
Also check that your target board has a pull-up resistor to drive RESET HIGH.

Testing for Target STOP State

This test verifies that the processor stopped during the preceding JTAG
Communications test by polling the processor status. If the target is still running,
this test fails.

Comparing Target CPU With CF Setting

This test verifies that the emulator is properly configured for the appropriate target
processor by comparing the processor type on your target with the processor type
specified in your board file. If the test fails, use the CF TAR command to properly
configure your target. For example, if you are using a PPC750FX target, and this
test fails, enter the following commands:

>ERR>cf tar 750fx
>ERR>in

Attempting to Locate IMMR register

This test only completes for PowerPC 82xx targets. It attempts to verify the location
of the IMMR register, which serves as a pointer to all of the other registers. If it fails,
none of the internal registers are accessible. If the test fails, check the reset
configuration word, located in Flash, and ensure that it is set to the correct value.
To find the correct value for the reset configuration word for your target, see your
target’s target.ref file, located in installDir/vxworks-6.x/target/config/yourTarget.

Loading Internal Registers

Once background communications are established, the emulator downloads
register values from the debugger NV-RAM to the target. It will only download
register values for those register groups that are enabled. If this test fails, see the
information in 6.3 The INN Command, p.25.

Testing JTAG Communication

This test examines the JTAG communication between the emulator and the target
using the internal clock rate for which the emulator is configured. If this test fails,
set the internal clock to a lower rate using the following command:

>ERR>cf clk value

24

6 Board Initialization
6.3 The INN Command

Attempting to restore CPU context

This test restores the processor scan chains.

6.3 The INN Command

In order to get a processor into background mode, the emulator asserts the RESET
line of the processor and then releases it. The processor and its peripherals on the
target board are forced into their reset state, and all of the internal registers are
forced to their manufacturer’s reset value.

The INN command places the target in background mode without overwriting the
target’s registers, leaving them in their default reset state for the processor.

If the IN command fails to put the target in background mode, enter the following
command:

>ERR>1nn
R R R R R R R R R R S Rk R R I I

Wind River Probe Initialization Sequence.
Copyright (c) Wind River Systems, Inc. 1999-2005. All rights reserved.

Khhkkkhkhkkhkhhkkhkhkkhkhhkkhkhkkhkhhkkhkhkhkkkhkkhkhhkkhhkkhhkkkhkkhhkkhkhkhkkkkkkkkkkkkkkkkkkkkkk

Support Expires....... 4/20/06
Target Processor...... PPC750FX:UL
Wind River Probe Group ID#= 0
Wind River Probe Serial#= U1234567 Firmware= pr3.3_gab
Type CF For a Menu of Configuration Options
Initializing Background Debug Mode.............. Successful
>BKM>
Generally, if an IN command fails but an INN succeeds, it is usually caused by

incorrect register values in the emulator's NVRAM.

To configure register values, see 6.4 Registers, p.25.

6.4 Registers

Your emulator includes an area of non-volatile memory (NVRAM) where you may
store register settings for a target.

25

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

Once the register values are present in NVRAM, they are automatically loaded to
the target after each cold start, warm start, or IN initialization command. You can
select which register values are written to the target by enabling and disabling the
appropriate register groups.

Wind River uses low-level SCGA commands to configure registers. Since
configuring registers manually would require entering a large number of SCGA
commands, Wind River provides register files for many targets. A register file is a
Workbench-specific script that you can execute in the OCD Command Shell.

Register files are ASCII files using the extension .reg. For example, the register file
for the Wind River PPC750FX target is ppmc750fx.reg, located in
installDir/workbench-2.x/dfw/build/host/registers/PowerPC/7xx/WindRiver_PP
MC.

6.4.1 Downloading a Register File

Figure 6-1

To download a register file to the emulator, use the following steps:
1. Inthe OCD Command Shell, click the Settings button.
The OCD Command Shell Settings dialog appears, as shown in Figure 6-1.

OCD Command Shell Settings

% 0CD Command Shell Settings

QD Command Shell Settings

PPC7S0FR

PlayBack File | Sa=eE A 0=l dRiver PPMCppmc?SoFx, regfieed [¥] Display Background Communications

Input Log File w [append
Full Log File w [append

[Ok] [Cancel

Next to the PlayBack File field, click Browse.

Navigate to the register file you wish to use and click Open.
Click OK.

In the OCD Command Shell, click the Playback File button.

AR N

26

6 Board Initialization
6.4 Registers

The register file you selected is downloaded to your target. The commands
from the file appear in the OCD Command Shell.

This procedure only sets the register values in the emulator’s NVRAM, not on the
target. To copy the register values from the emulator to the target, you must
initialize the target with the IN command:

>BKM>in

Only enabled register groups are copied to the target.

6.4.2 Enabling and Disabling Register Groups

If you look at the ppmc750£fx.reg register file, you will see that it ends with several
lines that begin CF GRP ENABLED. Registers are stored in logical register groups.
When you issue an IN command, the emulator only copies down register settings
for register groups that are enabled. Register groups that are disabled on your
target do not have register data transferred.

Disabling a register group enables you to view the target register value, but
prevents it from being overwritten during target initialization.

NOTE: If you change a register value directly on the target of a register group that
is disabled, that register does not get overwritten by the emulator during an
initialization. Note, however, that the processor may still reset that register value
to the processor default during a target initialization.

To enable or disable a register group on your target, use the following steps:
1. At the >BKM> prompt, type the command CF GRP.
The first register group appears, as shown below:
>BKM>cf grp
Group (CF GRP (M/S) Name = ENABLED/DISABLED
CUSTOM (0=Disable 1=Enable) Enabled >

The name of the register group is displayed, along with its current status
(either ENABLED or DISABLED).

2. Type1 to enable the group or 0 to disable it.

3. Toleave the setting as it is and advance to the next register group, press the
ENTER key without typing 0 or 1.

4. Continue through the list of register groups enabling and disabling them as
required.

27

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

5. When the register groups are enabled or disabled, type CF UPLOAD GROUP at
the >BKM> prompt.

This displays a list of all of the register groups on your target with their current
settings as shown below:

>BKM>cf upload group

CF GRP GT64260_CPU ENABLED ; GROUP
CF GRP GT64260_SDRAM ENABLED ; GROUP
CF GRP GT64260_DEVICE ENABLED ; GROUP
CF GRP GT64260_GPP ENABLED ; GROUP
CF GRP GT64260_MPP ENABLED ; GROUP
>BKM>

6.4.3 Modifying Registers Manually

Wind River supplies register files for Wind River evaluation boards, as well as for
many third-party target boards.

If you are using a target for which Wind River does not supply a register file, you
may have to create one. For instructions on creating register files, see the Wind
River Workbench for On-Chip Debugging User Tutorials: Configuring Target Registers.

Remember that the register file sets the register values in the emulator NVRAM,
not on the target. The emulator copies the values you set in its NVRAM down to
the target when you initialize the target with an IN command. Without a register
file, the NVRAM contains default register values, typically made for a Wind River
evaluation board, which most likely are not suitable for your target. So the IN
command will not set the target registers properly.

Some target processors, for instance most PowerPC targets, come with default
register settings. If your target has default register settings, you can modify the
registers directly on your target manually, at least to the point where you can
download your boot ROM application code.

Remember that if you modify your registers manually, any initialization command
or target reset will overwrite your changes.

To modify registers manually, use the Registers view in Workbench. The Registers
view lets you examine the bit-level detail for each register. The following sections
describe the Registers view and the bit-level detail provided.

The Registers View

When the Registers view is open in Workbench, all of the register groups for your
target are displayed with + signs beside them. Clicking on a + sign expands the

28

Figure 6-2

6 Board Initialization
6.4 Registers

register group, showing all of the registers that are included in that register group
along with the value that they are currently set to. An example of an expanded
register group is shown in Figure 6-2.

Expanded Register Group

>>4 = E

Local Variables | Memory BEE BT E ried

oD 6L B 7
Mame Enabled Yalue En
+ GPR.
+ CTRL
+ MU
+ FPU
Bl Pracr
—licke 000000000
FI 000
E 00
prncl 000000000
pmc2 000000000
prc3 000000000
proc 000000000
+ mmer 00000000
+ mirnerl 000000000
sia 0x00000000
+ L2CACHE
+ THERMAL
< >

NOTE: Figure 6-2 is only an example of an expanded register group. The groups
and the register values vary widely depending on your target architecture.

Bit-Level Detail

You can view the bit-level detail for any register by clicking on the + sign beside
the register in the register group.

NOTE: Before you can make any changes to your register settings, you need to
enable the register group that contains the register you want to modify, so that the
values download to the target when you initialize your system. If you do not
enable the register group, you can still modify the settings in the emulator but not
on the target. For more information, see 6.4.2 Enabling and Disabling Register
Groups, p.27.

29

Figure 6-3

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

You can make changes to any of the register settings by modifying each of the
bit-level settings for any register.

To modify bit-level values for your target, complete the following steps:
1. Inthe Registers view, double-click on the name of the register you wish to edit.

This opens the Properties view, which shows the name of the register you have
selected under the Property heading and its current setting under the Value
heading, as shown in Figure 6-3.

Properties View

Tasks | Problems Error Log | 20 Command Shell | CF Cptions il =0

|83 B 7
Property Yalue -~
I [
E Disable instruction cache thraokting
E bin 0b0
E dec 0
E oct]
“
4 >

2. Select the value under the Value heading and edit it as necessary.

3. Inthe Registers view, click Refresh Values. The register information
reappears with your changes.

NOTE: Some registers are write-protected and cannot be edited.

For more information on registers, including creating custom registers and register
groups, see the Wind River Workbench for On-Chip Debugging User Tutorials:
Configuring Target Registers.

When you have initialized your target and entered background mode, with a
>BKM> prompt showing in the OCD Command Shell, you can proceed to test your
hardware, as described in 7. Verifying Hardware.

30

Verifying Hardware

7.1 Introduction 31
7.2 Setting a Workspace 31

7.3 Diagnostic Functions 32

7.1 Introduction

This chapter describes several tests and diagnostics you can use to verify that your
hardware is working correctly.

7.2 Setting a Workspace

NOTE: The RAM workspace has no relation to the workspace that Workbench uses
to store project information.

The workspace is an area of RAM on the target that the emulator uses to download
the hardware diagnostic routines and flash programming algorithms.

31

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

You must tell your emulator where writable RAM is located on your target for this
purpose.

Depending on the device family and type, this space is limited to under 2 KB. Note
that more memory improves the speed of programming.

To configure the workspace, enter the parameters using the syntax
CF WSPACE base size

where base is the start address, and size is the minimum number of bytes of target
RAM required.

To find the base and size values for a Wind River-supported target, consult your
target’s target.ref file, located in installDir/vxworks-6.x/target/config/yourTarget.
Alternatively, consult your processor documentation.

For a Wind River PPC750FX target, the base of the workspace is 00000000 and the
size is 6000. To set the workspace, enter the command

>BKM>cf wspace 0 60000

This sets the workspace at address 0 with a size of 0x00006000 bytes.

7.3 Diagnostic Functions

Wind River Workbench provides a set of RAM and bus diagnostics and utilities
that can be controlled by the emulator or run on the target.

Some of the following tests can run code directly on the target instead of through
the emulator by selecting the Run on Target checkbox. This allows the test to run
at the execution speed of the target processor.

7.3.1 Simple RAM Test

This test writes and reads back a simple pattern to the memory bounded by the
starting and ending addresses entered in the Start Address and End Address
fields. If an error occurs, the test stops and the error type and address are displayed
in the Output field.

32

Figure 7-1

7 Verifying Hardware
7.3 Diagnostic Functions

The first diagnostic to be run is a Simple Ram Test on the area of memory used by
the workspace.

1. In the Workbench toolbar, select Window > Show View > Hardware
Diagnostics.

2. In the Diagnostic field, select Simple RAM Test — Single Pass.

@

The workspace cannot be used to test itself, so make sure the Run on target
checkbox is unchecked.

4. In the Start Address field, enter 0.
5. In the End Address field, enter 6000.
6. In the Units field, select LONG.
7. Click Run.

Workbench displays the test result in the Output field. The output of a successful
test will resemble that in Figure 7-1.

Successful Simple RAM Test

Tasks | Problems | Properties | Build Console | Error Log | OCD Command Shell EHar-:ll.-'-.lare Diagnostics X

Choose Diagnostic oukput
Diagnostic
Simnple RAM test - Single pass L3 simple: ram test running

kest complete
Descripkion

he Single RAM Test Single Pass writes and reads back a
imple pattern to the memory bounded by the starting
nd ending addresses entered in the fields below. IF an
rror occurs, the test stops and the error bype and
ddress will be displayed.

Start address: 0:00000000
End address: 0:00006000
Units LOMG L

D Fun on karget

Run

If the test fails, the Address Bus Test diagnostic and the Data Bus Test diagnostic
may determine the cause of the failure; see 7.3.5 Bus Tests, p.36.

If the RAM test of the memory used by the workspace passed, the rest of the
memory in the target system can now be tested at full bus speed.

33

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

In the Diagnostic field, select Simple RAM Test — Single Pass.
Select the Run on Target checkbox.

In the Start Address field, enter 14000.

In the End Address field, enter 20000000.

In the Units field, select LONG.

Click Run.

Workbench displays the test result in the Output field.

SANERLE I

If the message Test Complete appears, then the diagnostic passed.

If the test fails, try re-seating the SDRAM module and repeat the test. If the test still
fails, then run the Address Bus Test diagnostic and the Data Bus Test diagnostic
to determine the cause of the failure. See 7.3.5 Bus Tests, p.36.

7.3.2 Full RAM Tests

A Full RAM test writes a “walking” 1 on each bit of RAM and reads it back. This
is a very lengthy test and can detect bus configuration errors, typically on a new
printed circuit board.

This test sets and then clears each bit to try to locate memory defects bounded by
the starting and ending addresses entered in the Start Address and End Address
fields. If an error occurs, the test stops and the error type and address will be
displayed in the Output field.

NOTE: A complete Full RAM test would take several years to finish, so make sure
you specify a very small region of memory to be tested.

Full RAM tests are designed to check for cell disturbance and addressing
problems. These tests perform the following actions:

A Single Pass test will run the test only once. A Continuous test will repeat the test
over the same address until you click Stop.

1. In the Diagnostic field, select Simple RAM Test — Single Pass.
2. Select the Run on Target checkbox.

3. In the Start Address field, enter 14000.

4. In the End Address field, enter 14100.

34

7 Verifying Hardware
7.3 Diagnostic Functions

5. In the Units field, select LONG.

6. Click Run.

Workbench displays the test result in the Output field.

If the message Test Complete appears, then the diagnostics passed.

If the test fails, try re-seating the SDRAM module and repeat the test. If the test still
fails, then run the Address Bus Test diagnostic and the Data Bus Test diagnostic
to determine the cause of the failure. See 7.3.5 Bus Tests, p.36.

7.3.3 CRC Calculation

Workbench and the emulator support the calculation of a Cyclic Redundancy
Check (CRC) on all addresses in the range specified. The CRC test will checksum
a block of data on the target for the address range you specify in the CRC
Calculation dialog. The CRC algorithm is based on the following polynomial:

x16 + x5 +x"2 + 1
Workbench uses this polynomial as follows:

Workbench reads a location and uses the value read, x, to calculate the CRC. Then
Workbench adds the result to the value calculated for the previous address. This
process continues until Workbench has checked the entire specified memory
range.

The CRC sum will be returned if the communications with the emulator and target
are working. To interrupt the test, click Stop.

7.3.4 Scope Tests

Read From Location

The Read From Location Scope Test performs a memory read of designated length
from the address entered in the From Address field.

Write To Location

The Write To Location Scope Test performs a memory write of designated length
of the value entered in the Data Value field to the address in the To Address field.

35

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

Write and Complement

The Write and Complement Scope Test performs a memory write of designated
length of the value entered in the Data Value field to the address in the To Address
field; the value is then complemented.

Write Rotating Value

Write Then Read

The Write Rotating Value Scope Test performs a memory write of the value entered
in the Data Value field to the address in the To Address field. The value is then
rotated through all of the bit positions with respect to the designated length of the
memory address.

The Write and Read Scope Test performs a memory write of designated length of
the value entered in the Data Value field to the address in the To Address field; the
value is then read back.

7.3.5 Bus Tests

Address Bus Test

Data Bus Test

This test detects faults in the address bus over the range bounded by the starting
and ending addresses entered in the Start Address and End Address fields. This
test can be interrupted by clicking the Stop button.

This test detects faults in the data bus over the range bounded by the starting and
ending addresses entered in the Start Address and End Address fields. This test
can be interrupted by clicking the Stop button.

When you have tested your hardware successfully, you must test your ability to
read and write memory, as described in 8. Testing Memory.

36

Testing Memory

8.1 Introduction 37
8.2 Testing Memory 37

8.1 Introduction

Before handling more complex application code, the target system must be able to
handle low-level assembly instructions.

Wind River Workbench includes a simple diagnostic to test the target’s ability to
write to memory, set breakpoints, and run and step code. This diagnostic writes a
loop of NOP instructions at a specified memory address.

8.2 Testing Memory

To run the memory diagnostic, use the following steps.
1. At the >BKM> prompt in the OCD Command Shell, enter DF E 14000.
This writes a NOP loop at address 0x14000.

37

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

2. Enter the command DI 14000.
This command disassembles the instructions at 0x14000.
3. Enter the command SR PC 14000.
This command sets the Program Counter to address 0x14000.

The output should resemble that shown below.

>BKM>df e 14000

>BKM>di 14000

$00014000 : 0x60000000 :ppc nop

$00014004 : 0x60000000 :ppc nop

$00014008 : 0x60000000 :ppc nop

$0001400C : 0x60000000 :ppc nop

$00014010 : 0x7C0004AC :ppc sync

$00014014 : 0x4BFFFFFO :ppc b 0x14004
$00014018 : 0x00000000 :ppc dc.l 0x0
$0001401C : 0x00000000 :ppc dc.l 0x0
$00014020 : 0x00000000 :ppc dc.l 0x0
$00014024 : 0x00000000 :ppc dc.l 0x0
$00014028 : 0x00000000 :ppc dc.l 0x0
$0001402C : 0x00000000 :ppc dc.l 0x0
$00014030 : 0x00000000 :ppc dc.l 0x0
$00014034 : 0x00000000 :ppc dc.l 0x0
500014038 : 0x00000000 :ppc dc.l 0x0
$0001403C : 0x00000000 :ppc dc.l 0x0
$00014040 : 0x00000000 :ppc dc.l 0x0
$00014044 : 0x00000000 :ppc dc.l 0x0
$00014048 : 0x00000000 :ppc dc.l 0x0
$0001404C : 0x00000000 :ppc dc.l 0x0

>BKM>sr pc 14000
>BKM>

Now there is a simple program in the target’s memory, and the Program Counter
has been set to 0x14000.

8.2.1 Stepping an Instruction

First, test to see if the system can handle the step instruction command.
In the Debug view, click the Step Into button.

The Disassembly view opens, with the Program Counter now at 14004, as shown
in Figure 8-1.

38

8 Testing Memory
8.2 Testing Memory

Figure 8-1 Disassembly View

IC| diabasm.s |C| cdemo.c IC] strutils.c IC] calendar.c =2 WRProbe_PPCFSOFY B2 =8
Syskem Conkext
@ 00014004 @ nop ~
00014008: nop
0001400c: nop
00014010z sYnc
oo014014: h 0x14004
00014018: . long]
0001401c: . long]
0o014020¢: . long]
00014024 : . long]
00014028: . long]
0001402c: . long]
00014030z . long]
00014034: . long]
00014038: . long]
0001403 : . long]
00014040: . long]
00014044 : . long]
00014045 : . long]
0001404c: . long]
00014050z . long]
00014054 : . long]
00014058 : . long]
0001405¢c: . long]
00014060 : . long]
00014064 : . long]
00014068 : . long]
0001406¢c: . long] 2
ARAtanTA . Vo A

Also, the System Context in the Debug view now reads 0x14004, as shown in
Figure 8-2.

Figure 8-2 System Context
o 0

b= & BT RS
= & WRProbe_PPC7SOF [Attach to Target]
=4 PPCTSOF (System Mode)
= %Eﬂ System Context (Stopped - Step End)
el -
= 104

39

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

8.2.2 Running Code

Next, test to see if the processor can run the simple program at full bus speed.

In the Debug View, click the Resume button to start the target. In the Debug view,
the System Context changes to Running, and a >RUN> prompt appears in the
OCD Command Shell.

Wait a few seconds and then click the Suspend button to stop the target. In the
Debug view, the System Context changes to Stopped -- User Request, as shown
in Figure 8-3.

Figure 8-3 System Context
CErER =

D & 2T RS OE
=l @ WwRProbe_PPC7S0FY [Attach to Target]
=48 PPCTSOFY (System Mode)
= ﬂ"ﬂ Syskem Context (Stopped - User Request)
pr— .
E=a0::14010

Also, the Disassembly view updates to show the new location of the Program
Counter, as shown in Figure 8-4.

40

8 Testing Memory
8.2 Testing Memory

Figure 8-4 Program Counter at 14010

C| diabasm.s C| cdemo.c C| strutils.c C| calendar.c =2 WRProbe_PPCTSORY 58 =0
System Context
ooo01l4004: nop -~
ooo01i4008: nop
0001400 nop
O Qo0014010: Iyne
oo014014: a] Ox14004
00014015: . long a
ooo0il401e: . long a
ooo0140z20: . long a
00014024: . long a
o0014028: . long u]
0001402 . long a
00014030: . long a
o0014034: . long u]
o0014038: . long a
0001403 c: . long a
oo014040: . long u]
00014044 . long a
00014045: . long a
o001404e: . long u]
o0014050: . long a
o0014054: . long a
o0014055: . long u]
0001405 . long a
aool4060: . long a
00014064 - long u] “

8.2.3 Setting Software Breakpoints

Next, test to see if the target can set a software breakpoint.

In the Disassembly view, double-click to the left of address 0x14008 (in the gutter.)
Workbench places a software breakpoint at address 0x14008, as shown in
Figure 8-5.

41

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

Figure 8-5 Planted Software Breakpoint

|C| diabasm.s |C| cdemo.c |C| strutils.c |C| calendar.c
System Context
o0014004: nop L]
Ho0014008: nop
o001400c: nop
i 00014010¢: sync
o0014014: h Ox14004
o0014018: . long a
o001401c: . long a
oo0140z0: . long a
o0014024: . long a
o00140z268: . long a
o001402c: . long a —
o0014030: . long a
o0014034: . long a
o00140368: . long a
o001403c: . long a
oo014040: . long a
o0014044: . long a
o0014045: . long a
o001404c: . long a
oo014050: . long a
00014054 : . long o
O0014058: . long a
o001405c: . long a
oo014060: . long a
oo014064: . long u} v

The breakpoint at address 0x14008 appears in the Breakpoints view.

Figure 8-6 Breakpoints View

=g

In the Debug view, click the Resume button to start the processor. The program
will run until it hits the breakpoint. Output appears in the OCD Command Shell,

42

8 Testing Memory
8.2 Testing Memory

showing that the system has stopped and showing the current location of the
Program Counter, as shown below:

>RUN>

IBREAK! - [msgl2000] Software breakpoint; PC = 0x00014008 [EVENT Taken]
>BKM>

This output shows that the software breakpoint at address 0x14008 has been hit.
In the Debug view, the System Context changes to Stopped -- Breakpoint Hit.

Figure 8-7 System Context
S =

1l 3 & e R
= % wWRProbe_PPC7S0FY [Attach to Target]
=4 PRCTSOFY (System Mode)
= ﬁﬁﬂ System Context (Stopped - Breakpoint Hit)
= O+ 14005

= (114005

To remove the software breakpoint, double-click on the breakpoint icon to the left
of address 0x14008 in the Disassembly view.

8.2.4 Setting Hardware Breakpoints

Next, test to see if the system can handle setting hardware breakpoints.

In the Disassembly view, right-click to the left of address 0x1400C (in the gutter)
and select Add Hardware Breakpoint. Workbench places an internal hardware
breakpoint at address 0x1400C, as shown in Figure 8-8.

43

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

Figure 8-8 Planted Hardware Breakpoint

|C| diabasm.s |C| cdemo.c |C] strutils.c |C| calendar.c == WRProbe_PPCT7SOFY &3 =08
System Context
00014004 : nop L’
00014005 : nop
#oooie00e: nop
00014010: sync
ooo014014: h Ox14004
o0014015: long a
0001401c: long a
o0014020: long a
00014024 : . long a
00014025 . long a
0001408 . long a .
o0014030: . long a
00014034 : long a
00014035: long a
0001403 c: long a
00014040: . long a
00014044 : . long a
00014045 : . long a
0001404 : long a
o0014050: long a
00014054 : long a
00014055: long a
0001405e: . long a
oo0014060: . long a
00014064 : . long u] w

The hardware breakpoint at address 0x1400C appears in the Breakpoints view.

Figure 8-9 Breakpoints View -- Hardware Breakpoint

In the Debug view, click the Resume button to start the processor. The program
will run until it hits the breakpoint. Output appears in the OCD Command Shell,

44

8 Testing Memory
8.2 Testing Memory

showing that the system has stopped and showing the current location of the
Program Counter, as shown below:

>RUN>
IBREAK! - [msgll001] Internal hardware breakpoint; PC = 0x0001400c [EVENT

Taken]
>BKM>

This output shows that the hardware breakpoint at address 0x1400C has been hit.
In the Debug view, the System Context changes to Stopped -- Breakpoint Hit.

To remove the hardware breakpoint, double-click on the breakpoint icon to the left
of address 0x1400C in the Disassembly view.

If all these steps perform successfully, the target can run and debug low-level
assembly code. The next step is to run and debug application code, as described in
9. Debugging in RAM.

45

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

46

Debugging in RAM

9.1 Overview 47

9.2 Creating a Target Connection 47

9.3 Creating a Project 48

9.4 Downloading Code and Symbol Information 53
9.5 Debugging Code in RAM 56

9.1 Overview

This chapter describes the process of running and debugging application code in
RAM using Wind River Workbench.

9.2 Creating a Target Connection

To download and run code and symbol information, you must have an active
target connection.

47

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

To create a target connection, create projects, and download code, you can use a
Wind River Probe, a Wind River ICE SX, or the Wind River Instruction Set
Simulator (ISS), which is available to all users of Wind River Workbench OCD
Edition.

To create a target connection, use the procedure described in 4. OCD Connections.

9.3 Creating a Project

In order to download and run code and symbol information in RAM, you must
have an active project open.

Several example projects are included in Wind River Workbench for
demonstration purposes. To open a new demonstration project, use the following
steps:

1. Select File > New > Example.

The New Example wizard appears, as shown in Figure 9-1.

48

Figure 9-1

New Example Wizard

¥ New Example

Select a wizard

Creates a new O5-agnostic sample project

Wizards:

= = Examples
=% Embedded Linux Sample Project
1% Mative Sample Praoject
{8 Standalone Sample Project

[¥xworks Downloadable

B9 YxWarks Real Time Process Sample Project
% wind River Linux Sample Project

Kernel Module Sample Project

Cancel

9 Debugging in RAM
9.3 Creating a Project

2. Select Standalone Sample Project and click Next.

A sample project template appears, as shown in Figure 9-2.

49

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

Figure 9-2 Sample Project Template

% New Project Sample

Sample Project Template R
Select a sample praject template. @

Available Examples: InFormation:
on Programm C Demonstration Program ~
1= C++ Demaonstration Program This program demonstrates warious C
1=* The Ball Demonstration Program language features including struckures,

(& The Panel Demanstration Program character arrays, linked lisks, and recursion.

‘au can build and download this program
to your simulator or target board. The
default RAM location For the program is
000014000, To change the default
memary address, edit the simple.k linker
command File,

Features
v

The following features are demonstrated

Mext = Finish l [Cancel

3. Click Finish.

Workbench creates the sample project in the default workspace directory, and
the project name c_demo_sa appears in the Project Navigator view.

4. In the Project Navigator view, expand the c_demo_sa project.

A number of available build specs appear.

50

9 Debugging in RAM
9.3 Creating a Project

Figure 9-3 c_demo_sa

Symbal Browser =0

(M0 ARM-0:00000000-BE-diab_DEEUG
(20 ARM-0:00000000-LE-diab_DEELIG
(20 ARM-0:04000000-BE-diab_DEEUG
(20 ARM-0:04000000-LE-diab_DEEUIG
(2 ARM-0:05000000-BE-diab_DEEUG
(20 ARM-0:05000000-LE-diab_DEEUIG
(20 MCF-0x00000000-BE-diab_DEEUIG
(20 MCF-0x20000000-BE-diab_DEEUIG
(20 MCF-0x40000000-BE-diab_DEEUIG
(M0 MIPS52-4KE c-BE-16bit-diab_DEELIG
(M0 MIPS52-4KE c-BE-32hit-diab_DEELIG
(0 MIPS32-4KEc-LE-16bit-diab_DEBUG
(M MIPS32-4KE c-LE-32bit-diab_DEBUG
(0 MIPS3z-4K-BE-32hit-diab_DEEUG
(M0 MIPS5z-4K:x-LE-32bit-diab_DEELIG
(0 MIps5z-BCM-BE-32hit-diab_DEEUG
(0 MIPS5z-BCM-LE-32hit-diab_DEELIG
(M MIPS5z-1DT-BE-32bit-diab_DEELIG
(0 MIPS3z-1DT-LE-32bit-disb_DEBUG
(M0 MIPS5z-PHI-BE-32bit-diab_DEELIG
(0 MIPS3z-PHI-LE-32bit-disb_DEBUG
(0 MIPS5z-PNX-BE-16bit-disb_DEBUG
(M0 MIPS5z-PMY-BE-32bit-disb_DEBUG
(0 MIPS3z-PNY-LE-16hit-diab_DEEUG
(M0 MIPS3z-PNY-LE-32hit-diab_DEEUG
(0 MIPS3z-WISS-BE-32hit-diab_DEEUG
(0 MIPS32-WISS-LE-32bit-diab_DEELIG
(M0 MIPSE4-20K c-BE-diab_DEBUG

(0 MIPSE4-20K c-LE-diab_DEEUG

(M MIPSE4-SKc-BE-diab_DEBUG

(0 MIPSE4-SKe-LE-diab_DEEUG

(M MIPSE4-RMI000_PO-BE-diab_DEEUG
[MIPSE4-RMI000_PO-LE-diab_DEEUIG
(M MIPSE4-RMI000_P1-BE-diab_DEEUG
(0 MIPSE4-RMI000_P1-LE-diab_DEEUIG
(M MIPSE4-RMI000-BE-diab_DEBUG
[MIPSE4-RMI000-LE-diab_DEEUG
(0 MIPSE4-TR49-BE-diab_DEEUG

(M0 MIPSE4-T49-LE-disb_DEBUG

(M0 MIPSE4-YR4131-BE-diab_DEELIG
(M MIPSE4-YR4131-LE-disb_DEBUG

G o0 patmss A unEEnn BE diok _CEDLL

5. To build the sample project, right-click on the c_demo_sa top-level folder and
select Build Options > Set Active Build Spec.

The Set Active Build Spec and Debug Mode dialog appears, as shown in
Figure 9-4.

51

Wind River Workbench for On-Chip Debugging

Board Bring-Up Guide for PowerPC, 2.6.1

Figure 9-4 Set Active Build Spec and Debug Mode Dialog

b

Debug mode {use debug mode Flags)

% Set Active Build Spec and Debug Mode E|

PPCa03diab A~
PPCa03diab-WISS

MIPSS2-4KEc-BE- 1 6hit-diab

MIPSS2-4KEc-LE- 16hit-diab

MIPSS2-4kEc-BE-32hit-diab

MIPSS2-4kEc-LE-32hit-diab

MIPS32-4kx-BE-32bit-diab

MIPS32-4Kx-LE-32hit-diab

MIPSS2-BCM-BE-32hit-diab

MIPSS2-BCM-LE-S2bit-diab

MIPSS2-10T-BE-532hit-diab

MIPS32-10T-LE-32hit-diab

MIPS32-PHI-BE-32hit-diab

MIPS32-PHI-LE-32hit-diab

MIPSS2-PM¥-BE- 1 6hit-diab w

[oK H Cancel l

8.
9.

Select the build spec for your target family. This document uses the Wind River
PPC750FX for its examples, so Figure 9-4 shows the PowerPC build spec.

Select Debug mode (use debug mode flags) so Workbench will generate
symbolic debug information.

Click OK.
Right-click on the c_demo_sa folder and select Build Project.

Workbench builds the sample project using the Wind River Compiler. The results
of the project build appear in the Build Console view, as shown in Figure 9-5.

52

9 Debugging in RAM
9.4 Downloading Code and Symbol Information

Figure 9-5 Build Console View

Errar Log | Terminal 0 | OCD Comrnmand Shell 4 = 0O

b B 4 AR T
_ @A &l

echo "building PPCE03diab_DEBUGSlinklist. o";dec -g -kdebug-dwartz -EPPCE0ZES: simple -DTOOL_FAMILY=diab -DTOOL=d

flinklist.o" -c "linklist.c"

building PPCe03diab_DEBUG /linklist.o

echo "building PPCE03diab_DEBUG dake, 0" doc -g -Xdebug-dwarfz -tPPCE03ES: simple -DTOOL_FAMILY=diab -DTOOL=diz

e.0" -c "date.c”

building PPCe03diab_DEBUG /date.o

echo "building PPCE03diab_DEBUG math. o";doc -g -Xdebug-dwarfz -tPPCE03ES: :simple -DTOOL_FAMILY=diab -DTOOL=di

h.o" -c "math.c"

building PPC603diab_DEBUG /math.o

echo "building PPC603diab_DEBUG)addone, o";das -tPPCE03ES: simple -DTOOL_FAMILY=diab -DTOOL=diab -DPowerPC -

building PPCe03diab_DEBUG/addone.o

echo "building PPCE03diab_DEBUGcdemo. elf; did -o "PPCE03diab_DEBUG cdemo, elf” -tPPCE03ES: simple cdemo-POWERF

Sdiab_DEEBLUG strutils . 0 PPCE03diab_DEBUG engineer .o PPCG03diab_DEBEUG/calendar. o PPCa03diab_DEEUG/linklist. o PPC

" 1; then echo "building Fun plink ukility"; plink. PPC603diab_DEEUG) cdema.elf;Fi

building PPCE03diab_DEBUG/ cdemo.elf

make: built targets of C:fwindRiverfworkspace/c_demo_sa

Build Finished in Project "c_demo_sa": 2006-05-01 11:05:57 ({Elapsed Time: 00:08)

Tasks | Problerns | Properties

< >

NOTE: When using projects other than the supplied demonstration projects: you
must compile your programs using debugging symbols (the -g compiler option) to
use most debugger features. The compiler settings used by the Wind River
Workbench project facility’s Managed Builds include debugging symbols.

However, Workbench does not support code compiled with -02 optimization.

9.4 Downloading Code and Symbol Information

To run the sample code, right-click on cdemo.elf in the Project Navigator view and
select Reset and Download.

The Reset and Download view appears, as shown in Figure 9-6.

53

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

Figure 9-6 Reset and Download

WRProbe_PPC750FX - PPC750FX

Modify attributes and launch.

Mame: | WRProbe_PPCTSOFY - PPCTSOFY |

* Main |@ Reset | # Download | # Instruction Pointer | # Run Options | ** Projects to Build | %2 source | B Common

Connection
Connection ko use: |WRPr0be_PPC?SDF>< (lacalhast)

onnect | WRProbe PPCFSOFX - WRProbe_PPCTSOFY is connected.

+ | []Hide unconnected
|

Core: |PRCTSOFX |

[Apply H Revert]

[Debug H Close]

When opened from this folder, the Reset and Download view is pre-configured for
this project.
Leave the settings at their defaults and click Debug.

The OCD Console view opens, as shown in Figure 9-7.

54

9 Debugging in RAM
9.4 Downloading Code and Symbol Information

Figure 9-7 OCD Console

Tasks | Problems | Properties | Build Console | Error Log | Terminal 0| Trace | OCD Command Shell

Reset and Download

Testing Communications to Hardware Interface. ... Passed
Driving HRESET to be High Passed
Driving HRESET to be Low.. . Passed
‘Waiting HRESET Low Acknowledge. ..o Passed

Attempting JTAG communication. ... Passed
‘Waiting for HR.eset to be released. . Passed
Testing for target STOP State....... Passed
Comparing target CPU with CF setting Passed
‘Waiking for HRESET High Acknowledge Passed

Tesking ITAG Cornrnunication. ... o Passed

Loading Internal Registers, . Passed

Testing ITAG Cornrunication, , Passed

Getting walue of cf mmu option .. Passed

Attempting to restore CPU contexd Passed
C:iwindRiveriwaorkspace\c_demo_sa\PPCa03diab_DEBUG,cdemo.elf 0 LT)
Loading symbols... Completed at Default Offset (<1 sec)

Specified not to Run

* Reset and Download Completed *

< »

The OCD Console view shows the progress of the download operation, as
Workbench downloads the sample code to the target.

The Editor opens showing the Program Counter set at the beginning of the
application code, as shown in Figure 9-8.

55

Figure 9-8

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

Editor

IC| cdemo.c IC] strutils.c IC| calendar.c =27 WWRProbe_PPCTSOFH =0
.ifdef PowerPC L
b o o o e e o o o o o o e o o o o o
.gection .text,,C
.globl _start,START,ENTRY
.extern main
@+]
START:
EHTRY:
= start:
3 r addis rll,r0, 5P INITRha # Initial Stack Pointer
addi ri,ril, SP INITAL
addis rl13,r0, SDA EASE Bha # Small Data Lres
addi r13,r13, SDA BASE @1
addis rZ,r0, 3DAZ EBASE [ha # Swall Data Lres 2
addi r2,rZ, SDAZ BASE Bl
addi ro,r0,0 # Push 0 onto =stack
stwu r0,-64irl)
@[]
hl main
@[]
deadloop:
b deadloop
@[]
.glohl addone
S P b’
£

You are now ready to run and debug the application.

9.5 Debugging Code in RAM

Use the Debug view to monitor, control, and manipulate the processes and tasks
that you are actively debugging. The Debug view shows only the processes that

are currently under debugger control.

56

9 Debugging in RAM
9.5 Debugging Code in RAM

Figure 9-9 Debug View
e O

Ok & 2 TR S B

= 89 WRISS_MPCES40 [Attach to Target]
= 42" MPCE540 (System Mods)
= ﬁﬂ S';.fustem Context (Stopped)

=g ctart() - diabasm.s:44

9.5.1 Monitoring Processes

When you start processes under debugger control, or attach the debugger to
running processes, they appear in the Debug view labeled with unique colors and
numbers. You can change the color assigned to a process or thread by right-clicking
the process or thread and selecting Color > specific color.

9.5.2 Stepping Through Code
The Editor shows the source file diabasm.s, showing the c_demo_sa project’s
initialization assembly.
In the Debug view, click the Step Into button.

The Program Counter moves to the second assembly instruction. If you open the
Memory view or the Registers view, you can see them update memory and
register values as you step through instructions.

Click the Step Into button seven more times, to step through all the initialization
code and reach the first branch instruction:

bl main

57

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

This is where the application branches out of assembly into C code.
Click the Step Into button again.

The application branches into main() and the Editor opens the source file cdemo.c,
as shown in Figure 9-10.

Figure 9-10 C Source

C| disbasm.s €| cdema.c 53 | strutils.c 22 WRProbe_PPCTSORY C! lirkist.c > =03
int initval; /% initialization walue for calculation %/ A
char *globhalstring[3]:; /% Uninitializeded array of string pointers

char bell[2] = {BELL_CHAR, '%0'}:

-+-ll|"t**ﬁ‘1“%‘1"T1“1‘1"1“1"1"1“1“1"tﬁﬁﬁ‘1“%‘1"T1“1‘1"1“1"1"1“1“1"ﬁﬁﬁﬁ'1“%‘1"%‘1“1‘1"ﬁ**t**ﬁ**ﬁtﬁ*#*wﬁﬁ**t**ﬁ
int main()
{
rolatile long demo counter;

3 volatile int pfa_dewmo=0;
int sum = 0;
rolatile char cwvar; /% zample char variable %/

REC_TYPE1l gr
volatile int localIntl;
rolatile long locallongl:

/% Setup the global string array %/

globalstring[0] = "zero®;
globalstring[1l] = "one™;
globalstring[2] = "two™;

/% Initialize the rectest structure */
rectest. long integer = OxFFFFEEEE;
rectest.short_integer = 5555;

rectest.integer_array[0] = 0;

rectest.integer_array[1l] = 10;

rectest.integer_array[2] = 20;

rectest.integer_array[3] = 30;

rectest.string pointer = "Wind River's Tool Product Family™;

b
@ s
< >

9.5.3 Setting a Software Breakpoint

Breakpoints allow you to stop a running program at particular places in the code
or when specific conditions exist. For a full explanation of Workbench breakpoints,
see B. Internal Breakpoint Capabilities.

In the left ruler of the Editor (the gutter), double-click to the left of the source line

globalstring[2] = “two”;

58

9 Debugging in RAM
9.5 Debugging Code in RAM

This sets a software breakpoint on that source line. The breakpoint appears in the
Breakpoints view.

Figure 9-11 Planted Software Breakpoint

Breakpoints X =08

In the Debug view, click the Resume button. The program runs until it hits the
breakpoint. The System Context changes to Stopped -- Breakpoint Hit.

Figure 9-12 System Context -- Stopped

& 0us x NG C
Ok & e =
= & WRProbe_PPCTSOFY [Attach ko Target]
=57 PPCTSOFY (System Mode)
= ﬁﬁj Sy;stem Context {Stopped - Breakpoint Hit)
Bl rnain) - cdemo.c:113

=" diabasm.s:55

Breakpoint information also appears in the OCD Command Shell:

>RUN>

IBREAK! - [msgl2000] Software breakpoint; PC = 0x00014074 [EVENT Taken]
>BKM>

9.5.4 Running a Program

To run your downloaded program, click Resume in the Debug view. The program
will run until it hits a breakpoint. If there are no breakpoints or interrupts, the
program will run to completion or until you click Suspend.

59

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

When the program is running, the System Context changes to Running, as shown
in Figure 9-13, and a >RUN> prompt appears in the OCD Command Shell.

Figure 9-13 System Context -- Running

= oetus x NG _°
oo L = =
= @ WRProbe_PPCTS0F: [Attach ko Target]
BB a4 PPC7S0F: (System Mode)
System Conkext (Running)

If there are no breakpoints, you can stop the program by clicking the Suspend
button in the Debug view or by entering the HA command at the >RUN> prompt
in the OCD Command Shell.

The Editor updates to show the current location of the Program Counter and the
System Context in the Debug view changes to Stopped -- User Request.

Figure 9-14 System Context -- Stopped

* oot x N —C
Ok & T R E B =
= ﬁ WRProbe_PPC7S0Fs [Attach ko Target]
-4 PPCTSOFY {System Mode)
= ‘3:."'3: Sy';stem Caontext (Stopped - User Reguast)

= [i)

= calendar() - calendar.c:122
=" main() - cdema.c: 184
=" diabasm.s:58

9.5.5 Stepping Through a Program

To single-step without going into other subroutines, click Step Over instead of
Step Into.

While stepping through a program, you may conclude that the problem you are
interested in lies in the current subroutine’s caller, rather than at the stack level

60

9 Debugging in RAM
9.5 Debugging Code in RAM

where your process is suspended. In this situation, if you click Step Return,
execution continues until the current subroutine completes, then the debugger
regains control in the calling statement.

9.5.6 Setting a Hardware Breakpoint

The availability of hardware breakpoints varies by architecture. You can only set
as many hardware breakpoints as there are debug registers available on your
target.

Once a hardware breakpoint is trapped, the debugger will behave in the same way
as for a standard breakpoint and stop for user interaction.

For a full description of hardware breakpoints in Workbench, see B. Internal
Breakpoint Capabilities.

In the Breakpoints view, click on the Menu button and select Add Data
Breakpoint.

The Data Breakpoint dialog appears, as shown in Figure 9-15.

If an error message appears, you may have exceeded the number of allowed
hardware breakpoints (four for most targets). Right-click in the Breakpoints view
and select Remove All. Then select Menu > Add Data Breakpoint again.

If an error message still appears, your target may not support hardware
breakpoints.

61

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

Figure 9-15 Data Breakpoint Dialog

) Data Breakpoint Properties
Breakpoint Address and General Attributes

) Please specify Address Expression

Select debug karget faor karget-specific information
& ppCTSORY
Mone - preserve current settings

@ &eneral Skatus Scope @ Hardware

Address Expression | |

[continue on Break

Conkinue Delay (ms)

Cancel

You can use data hardware breakpoints to find out which routines are modifying
a specific variable.

The Address Expression can be a symbol or a specific address in hex. You can use
the address 0x0 in the Address Expression field to set a data hardware breakpoint
to catch null pointers. You can set the Address Expression field to an address in
the stack area to set a data hardware breakpoint to find out if the stack grew to that
point.

The following example sets a symbol in the Address Expression field.
1. Click Browse.

The Select Symbol dialog appears, showing a list of available symbols that can
take a hardware breakpoint.

62

9 Debugging in RAM
9.5 Debugging Code in RAM

Figure 9-16 Select Symbol

Chaonse the symbal From the list. Debug symbals can only be
retrieved if there is an active debug session

Debug target

& PPC7SORY

Filter {regular expression)

Matching symbols

send_manth - globalfunction *~
SeniorTestEngineer - globalvariable
stakus - globalvariable
stremp - globalfunction
strcpy - globalfunction
swapiells - globalfunction
test_engineer - globalvariable
testEits - globalvariable
TestEngineer - globalvariable
wait_count - globalvariable
t_index - gla le:
wear1997 - globalvariable

[1E2|

l OF, H Cancel]

2. Scroll down and highlight the symbol wait_index.
3. Click OK.

The global variable wait_index is now the address for the data hardware
breakpoint.

The hardware breakpoint on wait_index appears in the Breakpoints view.

63

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

Figure 9-17 wait_index

Breakpoints X = O

XRF#>w|le BEST

Il wait_index (*Planted®, Restricted Scope)

In the Debug view, click Resume.

The program runs until it hits the hardware breakpoint. Workbench halts the
processor when it locates wait_index and displays that source line in the Editor.

64

Figure 9-18 Hardware Breakpoint Hit

C| cdemo.c 22 C| skrukils.c C| calendar.c ! =0
~
globallongl = calendar({ locallongl §:
@ ey
g.a = 55;
strepy (d.b, "December™) ;
.o = 123456781
g.zolor = red:
sum = 0;
3 wait_index = O;:
wait_count = 5;
quick index = 5:
recordvar.color = red;
* £
while (wait_index < walt_count)
i
wait_index = addone(wait_index): w
4 4
Tasks | Problems | Properties | Build Console | & OCD Command Shell &3 i =0
[Connected to PPC7S0FX] > @ @ p @ O
'BREEAK! = [WSYLJUUUJ HOITWALE PIEaKpOINT; FPL = UXUOUL
>EEM:>
>BEM>
RN
>BEM>go
FRUN>ha
>BEM>go
>R
>BEM>
>R
'ERELE! - [m=gllO0l] Internal hardware breakpoint; PC
>BEM>
>BEM> A
4 ¥

9.5.7 Disconnecting and Terminating Processes

9 Debugging in RAM
9.5 Debugging Code in RAM

%5 Debug 52

g &

= % WRProbe_PPC7S0FY [Attach ko Target]
=4 PPCTSOFY (System Mode)
= i':.'ﬂ System Conkext (Stopped - Breakpoi
= main{) - cdemo,c:195
=" diabasm.s:58

< >
B Breakpoinks 52 =0
XZPLo-w|BEST

‘f-g, wait_index (*Flanted*, Restricted Scope;

£ >
))2 = E
f%& Q*?Ei ?z =
Marme Yalue Descr
] Ox000141C4 Gener
rl O:x00015F70 Gener
12 Ox0001CFS0 GEner
r3 Cx00015FSE Gener
r4 Ox00014FED Gener
] 0x003ESEDC Gener
tE Q00000000 Gener
7 O:3FFO0EAT GEner
=] 0x24F27DEG GEner
e Ox00000011 Gener
rin O 00000000 Gener
rit Ox00BCEI4E Gener
riz 000000000 Gener
r13 0x0001025C Gener ¥

Disconnecting from a process or core detaches the debugger, but leaves the process

or core in its current state.

Terminating a process actually kills the process on the target.

65

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

NOTE: If the selected target supports terminating individual threads, you can
select a thread and terminate only that thread.

66

10

Programming Flash Memory

10.1 Introduction 67

10.2 Testing Flash Workspace 68

10.3 Getting Started 69

10.4 Flash Configuration Tab 70

10.5 Flash Programming Tab 73

10.6 Flash Memory/Diagnostics Tab 78

10.1 Introduction

In order to erase and program target flash memory, you must first set up your
target registers properly, as described in 6. Board Initialization.

The Flash Programmer view provides the ability to flash images into flash chips
present on your target.

To program flash correctly you need to know the physical characteristics of your
flash bank. For instance, your target may have one flash device connected to a
64-bit bus. Or it may have a bank of several flash devices, for example two flash
devices, each wired at 16 bits, connected along a 32-bit bus. If you are using a Wind
River-supported target, this information can be found in the file

installDirlvxworks-6.x/target/config/yourTarget/target.ref

67

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

If you are not using a Wind River-supported target, consult your target’s
documentation. The design primitives of your target board should be included in
its board specification and schematics.

10.2 Testing Flash Workspace

The flash programming algorithm needs to run on the target. This requires a RAM
workspace, to which the algorithm will download, and breakpoints, which are
used to stop an erase and program operation at completion.

Reading and Writing Memory

Once you have established communications with the target, use the following
procedure to make sure you can write to and read from the target. In this example
we assume that the RAM workspace is 0x00F00200.

NOTE: A RAM workspace address of 0x00F00200 is not appropriate for all targets.
For Wind River-supported targets, you can find the necessary RAM workspace in
your target’s target.ref file, located in
installDir[vxworks-6.x/target/config/yourInrget/target.ref.

Wherever the RAM workspace is located on your target, you must make sure that
memory is writable there.

At the >SBKM> prompt, enter dm 00F00200 and press ENTER. Doing so displays the
memory on your target at address 0.

Next, enter sm 00F00200 1234 and press ENTER to set the memory at address 0 to
the value 1234. Enter dm 00F00200 to display the memory at that address again.

If you are communicating properly with your target, output is similar to that
shown below:

>BKM>dm 00£00200

00F00200: FF7C EFFE FEFF E3FE 0DO1 OFBE FOFD BFB6 B
>BKM>sm 00£00200 1234

>BKM>dm 00£00200

00F00200: 1234 EFFE FEFF E3FE 0DO1 OFBE FOFD BFB6 .4.............
>BKM>

68

10 Programming Flash Memory
10.3 Getting Started

Occasionally, you may have difficulty programming flash memory on your target
if software breakpoints are not being hit properly. Test this functionality before you
continue.

To use the test, enter the following commands at the >SBKM> prompt in the OCD
Command Shell:

>BKM>df e 0

>BKM>di 0 6

$00000000 : 0x60000000 :ppc nop
$00000004 : 0x60000000 :ppc nop
$00000008 : 0x60000000 :ppc nop
$0000000C : 0x60000000 :ppc nop
$00000010 : 0x7C0004AC :ppc sync
$00000014 : 0x4BFFFFFO :ppc b 0x4
>BKM>go 0
>RUN>dr pc
PC = 00000004
>RUN>dr pc
PC = 00000010
>RUN>sb 8
>RUN>
IBREAK! - [msgl2000] Software breakpoint; PC = 0x00000008 [EVENT Taken]
>BKM>
>BKM>rb
>BKM>

10.3 Getting Started

Once you have connected to Wind River Workbench, as described in your
emulator’s Hardware Reference, and configured your target registers, as described
in 6. Board Initialization, you are ready to begin programming flash.

1. In the toolbar, click on Window, then select Show View > Flash Programmer.
The Flash Programmer view appears.

The Flash Programmer view has three tabs: Configuration, Programming, and
Memory/Diagnostics. Use these tabs to configure your flash address and RAM
workspace, choose files for download, execute erase and program operations, and
check the results of your operations.

69

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

10.4 Flash Configuration Tab

Figure 10-1

Use the Configuration tab to configure the base address and workspace address
for flash memory erase operations. You can also enter the physical description of
your flash devices.

Configuration Tab

Error Log | Tasks | Problems | Properties | Build Console | OCD Command Shell SRR = =1ae 1 Terminal 0

Configuration |P‘rogramming Memory Diagnostics

Configuration
Flash Bank Addresses

Base: | 0xe0000000 | Last: | |

Device Selection

Current: |

= AMD ~
29LY004T F
Z9LY004E
2091V O0GET

RAM Workspace
Start: | 0x00f00200 | End: | |

29LY003BE _ Size:
29F010
29F040
= 25F080/51
B 1024 % 8
1 Device

2 Devices
o Set(Edit Timeouks

4 Devices
20FD16/17
Erase: 200
20F032(33 v rase

10.4.1 Selecting a Flash Driver

In the Device Selection field, browse to a description of your flash bank.
Figure 10-1 shows an example of a flash bank consisting of four 8-bit AMD 29F0808

devices.

NOTE: For AMD flash devices, “F” and “LV” devices are interchangeable in
Workbench.

If you attempt to move on to the Programming tab without selecting a flash bank
description in the Configuration tab, Workbench displays an Invalid Flash Bank
error and returns you to the Configuration tab.

70

10 Programming Flash Memory
10.4 Flash Configuration Tab

10.4.2 Configuring Flash Memory Bounds

Figure 10-2

In the Configuration field, enter the Base value for the area of flash memory you
wish to erase. In Figure 10-1 the address used is 0xe0000000. The Last field
populates automatically.

NOTE: Workbench erases flash memory sector by sector. That means that no matter
where the address you enter in the Base field is located within the flash sector,
Workbench will still erase the entire sector.

If Workbench detects that the address you entered in the Base field is not correctly

aligned with the flash sector boundary, it displays the following warning message:

Incorrect Flash Base Address

WARNING - Incorrect Fash Base Address

1, Incorvect address: fFEFFFEF ‘

The base address vou entered For vour Flash is incorract.
This address must be aligned on a boundary of 0x100000

Clicking "align’ will slign vour Flash base address correctly For vou,
Clicking "Zancel’ will take wou back to the configuration tab so that vou can re-enter the base address manually,

Clicking ‘Conkirue’ will allow vou ko use the incorrectly aligned address that you have entered.
Be aware that this option could cause undetermined behavior while using the flash utility and is not recommended,

[Align H Continue][Cancel]

» Tohave Workbench align your base address, click Align. Workbench aligns the
base address with the nearest preceding sector boundary.

» To go back to the Configuration tab and re-enter the address manually, click
Cancel.

» To use the base address as you entered it, without aligning it with the flash
boundary, click Continue.

71

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

A CAUTION: Choosing Continue may cause unpredictable results in your flash
programming operations. Wind River recommends that you align the base
address with the flash sector boundary.

10.4.3 Configuring Flash Memory Bounds

In the Configuration field, enter the Base value for the area of flash memory you
wish to erase. In Figure 10-1 the address used is 0xe0000000. The Last field
populates automatically.

NOTE: Workbench erases flash memory sector by sector. That means that no matter
where the address you enter in the Base field is located within the flash sector,
Workbench will still erase the entire sector.

10.4.4 Configuring RAM Workspace

The flash programming algorithm needs to run on the target. This requires a RAM
workspace, to which the algorithm will download.

In the RAM Workspace field, enter the Start value for the area of RAM you wish
to use as the workspace. In the Size field, enter the desired size of the workspace
in bytes. In Figure 10-1 the starting address used is 0x00F00200 and the workspace
size is 3992. The End field populates automatically.

NOTE: A RAM workspace address of 0x00000000 is not appropriate for all targets.
For Wind River-supported targets, you can find the necessary RAM workspace in
your processor’s target.ref file, located in
installDirlvxworks-6.x/target/config/yourTarget Board/target.ref, or target.ref.linux
file, located at http://www.windriver.com/support.

10.4.5 Setting Timeouts

To set a program or erase timeout, use the Program or Erase fields in the Set/Edit
Timeouts area. Enter a timeout value in seconds. If you enter an invalid number,
Workbench resets the timeout to its default setting.

72

10 Programming Flash Memory
10.5 Flash Programming Tab

10.5 Flash Programming Tab

Figure 10-3

Use the Programming tab to execute erase and program operations in flash and to
specify files for download.

Programming Tab

Error Log | Tasks | Problems | Properties | Build Console | OCD Command Shell BEANGES e =i a4 Terminal 0 =0

Configuration | Programming | Memory)Diagnostics

Flash Programming Erase Sector Selection
[J5end "IN" befare each operation # Seckor

[IEnable pre-flash | Browse a (0000000

1 020040000

[IEnable post-flash | Browse 2 Oxe00s0000

3 ee00c0000

. 4 Oxe0100000

[Erase] [Program] [ErasefProgram] [Werify] [Abort 5 Oxe0140000

] _ 3 Oxe0180000

[owerride erase sector selection 7 Oxe01c0000

Lower boundary address g xedZ0a000

9 Oxel240000

Upper boundary address 10 020230000

11 Oxe02c0000

12 Oxe0300000

13 Oxe0340000

14 020350000
15 020320000

Select all] [Clear all]

Add/Remove Files

Status File: Path Start Addr... End Address = Enabled Add file

10.5.1 Erasing and Programming Flash

To issue an IN initialization command before erase or program operations, select
the Send “IN” before each operation checkbox.

Click Erase to erase the contents of the flash memory sectors you selected in the
Configuration tab.

Click Program to program the flash memory with the files you selected in the
Add/Remove Files area of the Programming tab.

Click Erase/Program to perform both operations. Workbench will erase all selected
flash sectors before programming.

Click Abort to stop the erase or program operation.

73

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

10.5.2 Verifying Flash Contents

Click Verify to execute a byte-by-byte comparison between the file you just
downloaded and the file already in memory. If there is a discrepancy, Workbench
will break at that address and deliver an error message.

10.5.3 Running a Pre- or Post-Flash Script

You can specify a script to run before or after an erase or program operation. Select
the Enable pre-flash or Enable post-flash checkboxes (you can select either or
both for any operation). Next to the checkbox, click Browse and navigate to the
script you wish to run.

10.5.4 Selecting Flash Sectors for Erasure

The Sectors field automatically populates with the starting addresses of sectors of
flash memory, depending on which flash device you specified in the
Configuration tab. Click on a sector to select it. You can select all sectors by
clicking Select All. Click Clear All to deselect all sectors.

Before you erase all sectors, make sure you know what resides in the flash. For
example, PowerPC 82xx processors read their reset configuration word from
FE000000 out of the flash device, so for 82xx processors, erasing the entire device
may cause problems with resetting the board.

10.5.5 Manually Configuring Flash Memory Erasure Bounds

Workbench allows greater user control by allowing manual configuration of the
flash memory bounds for erase operations.

You can manually configure the flash memory bounds by checking the Override
erase sector selection checkbox. When this box is checked, Workbench will allow
you to enter any addresses in the Lower boundary address and Upper boundary
address fields.

NOTE: If the values you enter result in a memory address range that is outside
your target board’s flash programming area, erase operations will not perform
correctly.

74

10 Programming Flash Memory
10.5 Flash Programming Tab

10.5.6 Adding Files

To add a .bin file, click Add File. This opens the Choose File for Flash Download
browser window. Workbench automatically looks for a folder labeled firmware,
located in installDirfworkbench-2.x/dfw/version/host/firmware, where version is
the installed version of the debugger middleware. If your .bin files are stored in
another folder, use the browser to navigate to it. Select the file you want and click
Open. The file will appear in the File Path field.

10.5.7 Removing Files

To remove a file from the list, highlight it and then click Remove File.

10.5.8 Converting Files To Wind River Flash Binary Format

In order to use a file to program flash, you must convert it to a Wind River binary
format that the Flash Programmer can use. Workbench can convert any of the
following file types to Wind River binary format:

= elf files

* hexfiles

= srec files

» any headerless flat binary (RAWBIN) file

To convert a file to Wind River binary format, use the following steps:
1. In the Programming tab, select Convert File.

2. Inthebrowser window that opens, navigate to the file you want to convert and
click Open.

The Convert utility appears.

75

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

File Conversion utility

File path
Input path: | 1\bitbucketcdema. eff | [This is a raws binary file

Oukput path: | C:ibitbucket!cdemo. bin

Conversion oubpuk

Address information

Start: | 0x00000000
End: | DuFFFFFFFF

Convert File
Convert and Add File

':':’:' [K I[Cancel]

Converting the file to Wind River binary format does not delete the original
file.

By default, Workbench stores the new binary file in the same location as the
original file. If you want the new binary file stored somewhere else, enter the
path to the desired location in the Output path field.

3. Select Convert and Add File.

Workbench converts the selected file to Wind River binary format and adds it
to the file list in the Programming tab.

76

10 Programming Flash Memory
10.5 Flash Programming Tab

File Conversion utility

File path
Input path: C:\bitbucketicdema, elf [This is & raw binary File

Output path: | Ciibitbucketicdema.bin

Caonversion oukpuk

Address infarmation convert ¥7.11G Copyright (c) 1996-2006 Wind River HSI
s convert ELF file C:ibitbucketicdemo. elf to Flat Binary File C:ibitbucketicdemo, bin
S 00000000 Extracting image From 'C:ibitbuckethcdemo. elf!
End: | OxFFFFFFFF ‘Writing Flak binary image ko 'Crbitbucket)cdema. bin'
Lower address: 0x0
Upper address: 0xFFFFFFFF
Execution address: 0x00000400
Image writken
Processing time: 0,000 seconds

Convert File
Convert and Add File

@ oK] [Cancel

NOTE: To convert the selected file to Wind River binary format without adding
it to the file list in the Programming tab, select Convert File.

4. Click OK.

You are returned to the Programming tab. The file you just converted now
appears in the File Path field.

10.5.9 Setting The Download Offset Of A File

In some cases, before you program the file into flash, you may need to set a
memory offset bias to divert the data to other areas of the flash bank.

Each file is built with a start address. This start address may or may not be the
address where you want the image to reside on the board. If you subtract the start
address of the image from the address where you want the image to reside on the
board, then you end up with the proper bias address.

77

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

For example, if the image was built with a start address of 0x00 and you wanted
the image to reside at the reset vector OxFFF00100, then the offset bias would be
FFF00100.

You can use the Add/Remove Files area to edit the starting address of a .bin file to
offset the file into flash. Click on the value under the Start Address heading to
highlight it. Edit the value as needed.

10.5.10 Enabling A File For Download
Enable a file by clicking on the checkbox under the Enabled heading. If the file
address is outside your specified address range, an error message appears:

Cannot enable for download.
Part of this file falls outside your flash address range.

To correct this error, you must either change the start address of your file or use the
Configuration tab to change your flash address range.

10.6 Flash Memory/Diagnostics Tab

Use the Memory/Diagnostics tab to view the contents of flash memory and to run
diagnostic tests to verify your ability to write and erase flash.

You must set up the Configuration tab before using the Memory/Diagnostics tab.

78

10 Programming Flash Memory
10.6 Flash Memory/Diagnostics Tab

Figure 10-4 Memory/Diagnostics Tab

Programming I AddiRemove Files I Configuration Memory/Diagnostics I

Yiew address: IDxFFfDUDDD Program | Erase | Abort |
iddress e e e e e e e e e e o e e -]
FFFOOO010 5B 44 75 &C 79 20 32 30 EC 20 32 30 30 30 20 5D [July 20, 20
FFFOOCZ0 30 31 32 33 34 35 36 37 38 39 61 62 63 64 65 66 0123456789=ak
FFFOOO30 67 68 69 64 6B 6C 6D 6E 6F 70 71 7EZ 73 74 75 76 ghijklmnopogr
FFFOOO40 7778 79 7h 21 40 23 24 25 SE 2Zge ZAR 28 29 S5F ZB wxve !B#i3tes
FFFOOOS0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FFFOOOBO oo oo oo 0o OO0 00 OO 00 00 00 00 OO0 00 00 0o oo

FFFOOO7TO AL 55 g6 599 AL 55 66 99 AL 55 66 99 AR 55 66 299 Uf UL UL
FFFOOOS0 AL 55 66 99 AL 55 66 99 AL 55 66 99 AR 55 66 99 UE UE UL
FFFOOOSO hh 55 66 99 AL 55 66 99 AL 55 66 99 Ak 55 66 99 Ut U UL
FFFOOOLD AL 55 g6 599 AL 55 66 99 AL 55 66 99 AR 55 66 299 Uf UL UL
FFFOOOEO Ai 55 66 99 AAL 55 66 599 AL 55 66 99 Ak 55 66 99 Uf UE UL
FFFOOOCO hh 55 66 99 AR 55 66 99 AL 55 66 99 Ak 55 66 99 Ut U UL
FFFOOODO AAR 55 66 599 AR 55 66 59 AL 55 66 99 AR 55 66 95 Ut U UL
FFFOOOED Ak 55 66 599 AL 55 66 99 AA 55 66 S99 AR 55 68 99 Uf Uf UL
FFFOOOFO hh 55 66 99 AL 55 66 99 AL 55 66 99 Ak 55 66 99 Ut U UL |

-

d | e
—Messages

|

10.6.1 Viewing Memory

Enter the address you wish to view in the View Address field. The area below
displays the bit-level detail. To change the view, edit the address in the View
Address field and click Refresh. You can also use the scrollbar on the right to scroll
up and down from the starting address to the end address.

10.6.2 Running Diagnostic Tests
To test your ability to write to flash memory, click the Start Program Diagnostic
button. This writes a bit pattern to flash.
You may see a Target Exception message. This requires no action.

If the write operation is successful, you should see the pattern *WRS_FLASH*
repeated under the ASCII heading in the Memory/Diagnostics tab, as shown in
Figure 10-5.

79

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

Figure 10-5 Successful Program Diagnostic

Prograrrming I AddfRemave Files I Configuration Memary/Diagnostics I

Yiew address: IDxFFFDDDDD Refresh | Program | Erase | |

e e e B R e
SF 46 4C 41 53 48 2zA SF 2A 57 52 53 SF 46 A4C 41 FLASH® *URS FLA
53 45 24 SF 24 57 52 53 SF 46 4C 41 53 48 24 SF SH*_*WRS_FLASHY
2i 57 5z 53 SF 46 4C 41 53 48 2zA S5F 2ZA 57 52 53 *WRS_FLASHT_*WRS
SF 46 4C 41 53 48 2zA SF 2A 57 52 53 SF 46 A4C 41 _FLASH® *URS FLA
53 45 24 SF 24 57 52 53 SF 46 4C 41 53 48 24 SF SH*_*WRS_FLASHY
2h 57 5z 53 SF 46 4C 41 53 48 2A SF 2ZL 57 52 53 *WRS_FLASHT_*WRS
SF 46 4C 41 53 48 2zA SF 2A 57 52 53 SF 46 A4C 41 FLASH® *URS FLA
53 48 24 SF 24 57 52 53 SF 46 4C 41 53 48 24 SF SH*_*WRS_FLASHY
2i 57 5z 53 SF 46 4C 41 53 48 2A S5F 2L 57 52 53 *URS_FLASHT_*WRS
SF 46 4C 41 53 48 2zA SF 2A 57 52 53 SF 46 A4C 41 FLASH® *URS FLA
53 48 24 SF 24 57 52 53 SF 46 4C 41 53 48 24 SF SH*_*WRS_FLASHY
2h 57 5z 53 SF 46 4C 41 53 48 2A SF 2L 57 52 53 *WRS_FLASHT_*WRS
SF 46 4C 41 53 48 2zA SF 2A 57 52 53 SF 46 A4C 41 _FLASH® *URS FLA
53 48 24 SF 2h 57 52 53 SF 46 4C 41 53 48 24 SF SH*_*WRS_FLASHY
24 57 5z 53 SF 46 4C 41 53 48 2zA S5F 2ZA 57 52 53 *URS_FLASHT_*WRS

Kl |
—Messages

I

-

If the write operation is unsuccessful, the diagnostic will never complete. You will
need to click the Abort Diagnostic button to stop the write operation. Check to
make sure that you have the right flash device selected in the Device Selection
area in the Configuration tab, and that you are using the correct base address.

To test your ability to erase flash memory, click the Start Erase Diagnostic button.
This will erase the selected flash sectors.

You may see a Target Exception message. This requires no action.

If the erase operation is successful, the selected sectors will be erased and the space
under the ASCII heading in the Memory/Diagnostics view will be empty.

If the erase operation is unsuccessful, the diagnostic will never complete. You will
need to click the Abort Diagnostic button to stop the erase operation. Check to
make sure that you have the right flash device selected in the Device Selection
area in the Configuration tab, and that you are using the correct base address.

80

11

Debugging in ROM

11.1 Overview 81
11.2 Getting Started 82
11.3 Debugging in ROM 82

11.1 Overview

The procedure described in 9. Debugging in RAM uses software breakpoints.
Software breakpoints work by replacing the destination instruction with an
interrupt; therefore it is impossible to debug code in ROM using software
breakpoints.

To debug code in ROM you must use hardware breakpoints, which work by setting
a break condition and comparing the condition with the execution stream. This
chapter describes using Workbench to debug code in ROM with hardware
breakpoints.

81

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

11.2 Getting Started

To debug code in ROM, you must have an active target connection.

To create an active target connection, follow the steps described in 4. OCD
Connections.

NOTE: You cannot use the Instruction Set Simulator to simulate debugging in
ROM, because you must have an actual target in order to set hardware
breakpoints.

You do not need to have an active project to debug code in ROM.

11.3 Debugging in ROM

Use the Debug view to monitor, control, and manipulate the processes and tasks
that you are actively debugging. The Debug view shows only the processes that
are currently under debugger control.

1. Inthe Target Manager view, right-click on your target name and select Attach
to Core.

The Disassembly view opens, with the Program Counter set to the start of the
reset vector.

82

11 Debugging in ROM
11.3 Debugging in ROM

=0

Systern Context
o fEEO00100: 1i ri,2 ~

fEf00104: nop

£E£00105: hl OxFFFOO138

fEf0010c: heol 0x1E, OxF,0xFFFO7154

fEfo0110: andi. r9,rl9,0x67658

fEfO00114: andis. r0,rl,0x3139

fEf00115: addi ril,rzZ0,0xED32

fffo0iic: addic ri,rl6,0x3220

fEfO00120: clrslwi r9,r27,0x26,0xD

fEf00124: subfic ri,rlS,0x6976

fEEO00125: oris rig,ri1l, 0x2053

fEfo0ize: . long Ox79737465

fE£00130: xoris ri9,ril,0x2C20

fEE00154: ha Ox16E63ZC

fEEO00135: mr ril,r3

fEf0015e: xor r4,r4,r4

fEf00140: mr ro,r4

fEfO00144: isvyne

LLf00145;: mtmsr rd

fEfO0014c: isvyne

fE£f00150: ®or ro,r0,x0

fEf00154: mtspr sprgl, r0

fEfO00155: mtspr sprgl,r0

fEfO0015c: mtspr sprg, 0

fEf00160: mtspr sprgi, 0

fEfO00164: ®or r4,r4,rd

FEFOO16S: mtar 0,rd b

2. In the Target Manager view, select OCD Reset and Download.
3. Select the Reset tab.
4. Set the reset type to INN -- Reset.

This will initialize the target, but leave the target registers as close to reset
value as possible.

NOTE: Because the target registers are not set, the target software watchdog
timers are still active. This can cause some targets, such as PowerPC82xx
targets, to drop out of background mode.

Leave the Play register file box unchecked.
Select the Download tab.
Click Add Files...

® N o @

In the browser window that appears, navigate to the boot ROM file for your
target.

83

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

10.
11.

12.
13.
14.
15.
16.

Tasks | Problems | Properties | Error Log | Terminal O | ©CD Command Shell

Since this example uses a Wind River PPMC750FX target, the boot ROM file is
located in
installDir/[vxworks-6.x/target/config/wrPpmc750fx/bootrom_uncmp.

Click Open.
You are returned to the Download tab.
Uncheck the Download checkbox.

Make sure the Load Symbols checkbox is selected and the Verify field is set to
None.

Select the Instruction Pointer tab.

Uncheck the Set instruction pointer after download checkbox.
Select the Run Options tab.

Make sure the Do not run checkbox is selected.

Click Debug.

The OCD Console view opens to show the results.

CF Options | 3 =8

Reset and Download
~
Testing Communications ko Hardware Interface. ... Passed
Driving HRESET ko be High. ..o Passed
Driving HRESET to be Low.......... Passed
‘Waiting HRESET Low Acknowledge Passed
Attempting JTAG communication, .. Passed
‘Waiting For HReset to be released. Passed
Testing for target STOP State...... Passed
Comparing target CPU with CF setting. . Passed
‘Waiting For HRESET High Acknowledge, Passed
Tesking ITAG Communication.......... Passed
Tesking ITAG Communication. ... Passed
Getting walue of of mmu option ... Passed
Attempting ko restore CPU conkext.. ..o, Passed
Loading symbols. ..
CiwWindRiverwoworks-6. 3 targetconfighwrPpmc7S0F <ibootrom_uncrmp Specified not to Download
Specified nat to Run
* Reset and Download Completed * 3
< ¥

84

11 Debugging in ROM
11.3 Debugging in ROM

11.3.1 Stepping Through Boot Code

In this example, the first line of the reset vector is a Load Immediate command:
£££00100 1i r2, r3

In the Debug view, click the Step Into button.

The Program Counter moves to the No-Operation command on the next line:
£££00104 nop

In the Debug view, the System Context changes to Stopped -- Step End, and the
view updates to show the new location of the Program Counter.

* oebus x -
1] & I =
= % WRProbe PPC7S0FX [Atkach to Target]
=457 PPCTSOFY (System Made)

= %Eﬁﬂ Syskem Context (Stopped - Step End)
=" G

If you have data views, such as the Watch view, Memory view, or Registers view
open, you can see them update as you step through code.

In the Debug view, click Step Into again.
The Program Counter moves to the Branch and Link instruction on the next line:
£££00108 bl 0XFFF00138

In the Debug view, click Step Into one more time.

The branch instruction executes and the Program Counter jumps to address
FFF00138. The Debug view updates to show the Program Counter at address
FFF00138.

85

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

| Do % N _C
13 & B g T B =
[=l & WRProbe PPC7S0F: [Attach to Target]
=4 PPCTSOFY (System Mode)
= ﬂ*"ﬁﬂ Syskern Context (Stopped - Step End)
ol 0:FFF0013S
" nxFFFO0108

11.3.2 Setting Hardware Breakpoints

Breakpoints allow you to stop a running program at particular places in the code
or when specific conditions exist. Use the Breakpoints view to keep track of your
breakpoints and their conditions.

To debug in ROM you must use hardware breakpoints. The availability of
hardware breakpoints varies by architecture. You can only set as many hardware
breakpoints as there are debug registers available on your target.

Once a hardware breakpoint is trapped, the debugger will behave in the same way
as for a standard breakpoint and stop for user interaction.

For a full description of hardware breakpoints in Workbench, see B. Internal
Breakpoint Capabilities.

In the Disassembly view, right-click in the left ruler (the gutter) to the left of the
Exclusive Or instruction at address FFF00150:

f££f00150 xor r0,r0,xr0

From the context menu that appears, select Add Hardware Breakpoint.

The breakpoint appears in the Disassembly view and is displayed in the
Breakpoints view.

86

11 Debugging in ROM
11.3 Debugging in ROM

>

® R & - w | e S
bl 0:FFFOD150 (Hardwa 5

Breakpoinks

In the Debug view, click the Resume button.
The code runs until it hits the hardware breakpoint at address FFF00150.

In the Debug view, the System Context changes to Stopped --Breakpoint Hit.

= oo X N — 0
b= & 3. R 5O ~
=l @ R Probe_PPC7S0F. [Atkach ko Target]
= PPCTEOFY (System Mods)
= Swstem Conkext (Stopped - Breakpoint Hik)
=" [
=" 0xFFFO0103

The following message appears in the OCD Command Shell:
>RUN>

IBREAK! - [msgll00l1] Internal hardware breakpoint; PC = Oxf£ff00150 [EVENT
Taken]

>BKM>

To remove the hardware breakpoint, double-click on the breakpoint icon in the
Disassembly view gutter, or right-click on the breakpoint in the Breakpoints view
and select Remove.

87

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

88

Pins Mapped to Common
Signals

A.1 Introduction 89
A.2 PowerPC Processors -- JTAG 90
A.3 PowerPC Processors -- BDM 91

A.1 Introduction

This appendix describes mapped pins to common signals for Wind
River-supported PowerPC processor families.

For all families described in this appendix, “n” is set as an ACTIVE LOW.

89

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

A.2 PowerPC Processors -- JTAG

Table A-1

PowerPC -- JTAG

:ll:mber Function Description

1 TDO Test Data Out

2 nQACK Quiescent Acknowledge
3 TDI Test Data In

4 nTRST Test Reset (reset JTAG clock)
5 nQREQ Quiescent Request

6 JTAG_VIO JTAG Voltage Output

7 TCK Test Clock

8 CHKSTPIN Checkstop Input

9 TMS Test Mode Select

10 PIN10 Hardwired

11 nSRESET Software Reset

12 GND Ground

13 nHRESET Hardware Reset

14 NC Not Connected

15 CHKSTPO Checkstop Output

16 GND Ground

90

A Pins Mapped to Common Signals
A.3 PowerPC Processors -- BDM

A.3 PowerPC Processors -- BDM

Table A-2

PowerPC -- BDM

:ll:mber Function Description

1 VFLS0 Visible Flash Status bit 0
2 nSRESET Software Reset

3 GND Ground

4 DSCK Debug Serial Clock

5 GND Ground

6 VFLS1 Visible Flash Status bit 1
7 nHRESET Hardware Reset

8 DSDI Debug Serial Data Input
9 BDM_VIO Voltage Input/Output
10 DSDO Debug Serial Data Output

91

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

92

Internal Breakpoint
Capabilities

Emulators use breakpoints to implement single stepping, since the embedded
processor’s single step mode, if it has one, is not useful for stepping through C
code.

Software breakpoints work by replacing the destination instruction by a software
interrupt. Therefore, it is impossible to debug code in ROM using software
breakpoints.

Hardware breakpoints work by setting a break condition and comparing it against
the execution stream. You can use hardware breakpoints to debug code in RAM,
ROM, flash memory, or even unused address spaces.

Complex breakpoints involve conditions. An example might be, “Break if the
program writes value to variable if and only if function_name was called first.” A
software-only debugger setting a complex breakpoint must interpret the program
while watching for the trigger condition, which slows performance. Emulators
implement complex breakpoints in hardware, so there is no performance penalty.

In Wind River Workbench, you can use the Breakpoints view to keep track of all
breakpoints, along with any conditions.

You can create breakpoints in different ways: by double-clicking or right-clicking
in the Editor’s left overview ruler (also known as the gutter), by opening the
various breakpoint dialogs from the pull-down menu in the Breakpoints view
itself, or by selecting one of the breakpoint options from the Run menu.

Wind River Workbench supports three kinds of breakpoints: line breakpoints,
expression breakpoints, and hardware breakpoints.

93

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

Line Breakpoints

Set a line breakpoint to stop your program at a particular line of source code.

To set a line breakpoint with an unrestricted scope (that will be hit by any process
or task running on your target), double-click in the left gutter next to the line on
which you want to set the breakpoint. A solid dot appears in the gutter, and the
Breakpoints view displays the file and the line number of the breakpoint. You can
also right-click in the gutter and select Add Global Line Breakpoint.

To set a line breakpoint that is restricted to just one task or process, right-click in
the Editor gutter and select Add Breakpoint for selected thread. If the selected
thread has a color in the Debug view, a dot with the same color will appear in the
Editor gutter, with the number of the thread inscribed inside it.

Either of these actions opens the Line Breakpoint dialog, where you can create and
adjust the properties of the breakpoint.

Expression Breakpoints

Set an expression breakpoint using any C expression that will evaluate to a
memory address. This could be a function name, a function name plus a constant,
a global variable, a line of assembly code, or just a memory address. Expression
breakpoints appear in the Editor’s gutter only when you are connected to a task.

Breakpoint conditions are evaluated after a breakpoint is triggered, in the context
of the stopped task or process. Functions in the condition string are evaluated as
addresses and are not executed. Other restrictions are similar to the C/C++
restrictions for calculating the address of a breakpoint using the Expression
Breakpoint dialog.

Select Add Expression Breakpoint from the pull-down menu in the Breakpoints
view to open the Expression Breakpoint dialog, where you can create and adjust
the properties for the breakpoint.

Hardware Breakpoints

Some processors provide specialized registers called debug registers that can be
used to specify an area of memory to be monitored. For instance, IA-32 processors
have four debug address registers, which can be used to set data breakpoints or
control breakpoints.

94

B Internal Breakpoint Capabilities

Hardware breakpoints are useful if you want to stop a process when a specific
variable is written or read. For example, with hardware data breakpoints, a
hardware trap is generated when a write or read occurs in a monitored area of
memory. Hardware breakpoints are fast, but their availability is
machine-dependent. On most CPUs that do support them, only four debug
registers are provided, so you can only watch a maximum of four memory
locations in this way.

There are two types of hardware breakpoints:
* A hardware data breakpoint occurs when a specific variable is read or written.

» A hardware instruction breakpoint or code breakpoint occurs when a specific
instruction is read for execution.

Once a hardware breakpoint is trapped—either an instruction breakpoint or a data
breakpoint—the debugger will behave in the same way as for a standard
breakpoint and stop for user interaction.

Adding Hardware Instruction Breakpoints
There two ways to add a new hardware instruction breakpoint:

In the gutter on the left of the source file, right-click and select Add Hardware
Code Breakpoint. Alternately, double-click in the gutter to add a standard
breakpoint and then, in the Breakpoints view, right-click the breakpoint you just
added and select Properties. In the last pane (Hardware) of the Properties dialog,
select Enable Hardware Breakpoint.

Adding Hardware Data Breakpoints

Set a hardware data breakpoint when:

* Thedebugger should break when an event (such as a read or write of a specific
memory address) or a situation (such as data at one address matching data at
another address) occurs.

» Threads are interfering with each other, or memory is being accessed
improperly, or whenever the sequence or timing of runtime events is critical
(hardware breakpoints are faster than software breakpoints).

Select Add Data Breakpoint from the pull-down menu in the Breakpoints to open
the Hardware Data Breakpoint dialog, where you can create and adjust the
properties for the breakpoint.

95

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

Converting Line or Expression Breakpoints Into Hardware Code Breakpoints

To cause the debugger to request that a line or expression breakpoint be a
hardware code breakpoint, select the Hardware check box on the Hardware tab of
the Line Breakpoint or Expression Breakpoint dialog.

This request does not guarantee that the hardware code breakpoint will be planted;
that depends on whether the target supports hardware breakpoints, and if so,
whether or not the total number supported by the target have already been
planted. If the target does not support hardware code breakpoints, an error
message will appear when the debugger tries to plant the breakpoint.

NOTE: Workbench will set only the number of code breakpoints, with the specific
capabilities, supported by your hardware.

NOTE: If you create a breakpoint on a line that does not have any corresponding
code, the debugger will plant the breakpoint on the next line that does have code.
The breakpoint will appear on the new line in the Editor gutter. In the Breakpoints
view, the original line number will appear, with the new line number in square
brackets [] after it.

Importing Breakpoints

To import breakpoint properties from a file:

1. Select File > Import > Import Breakpoints, then click Next. The Import
Breakpoints dialog appears.

2. Select the breakpoint file you want to import, then click Next. The Select
Breakpoints dialog appears.

3. Select one or more breakpoints to import, then click Finish. The breakpoint
information will appear in the Breakpoints view, and the next time the context
for that breakpoint is active in the Debug view, the breakpoint will be planted.

Exporting Breakpoints

To export breakpoint properties to a file:

96

B Internal Breakpoint Capabilities

1. Select File > Export > Export Breakpoints, then click Next. The Export
Breakpoints dialog appears.

2. Select the breakpoint whose properties you want to export, and type in a file
name for the exported file. Click Finish.

Refreshing Breakpoints

Right-click a breakpoint in the Breakpoints view and select Refresh Breakpoint to
cause the breakpoint to be removed and reinserted on the target. This is useful if
something has changed on the target (for example, you downloaded a new
module) and the breakpoint is not automatically updated.

To refresh all breakpoints in this way, select Refresh All Breakpoints from the
pull-down menu in the Breakpoints view.

Disabling Breakpoints
To disable a breakpoint, clear its check box in the Breakpoints view. This retains all
breakpoint properties, but ensures that it will not stop the running process. To
re-enable the breakpoint, select the box again.

Removing Breakpoints

To remove a breakpoint:

= Right-click on a breakpoint in the Editor gutter and select Remove
Breakpoint.

» Select a breakpoint in the Breakpoints view and select Remove.

97

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

98

Pin Terminations

C.1 JTAG Pin Terminations 99
C.2 BDM Pin Terminations 103

C.3 Mictor Pin Terminations 105

C.1 JTAG Pin Terminations

C.1.1 16-Pin JTAG Connector |

The following processors use this pinout:

» PowerPC5xxx

= PowerPC 55xx
* PowerPC6xx

* PowerPC7xx

= PowerPC74xx

= PowerPC82xx

= PowerPC83xx

= PowerPC85xx

= PowerPC86xx

* PowerPC9xx

The connector type on your board should be as follows:

99

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

= 16 (2 by 8) 0.025" square posts

= (.10" between centers of adjacent posts

= 0.23" height of each post

A sample connector is Samtec part number TSW-108-07-S-D.

Figure C-1 shows the pinouts for this connector.

Figure C-1 16-pin JTAG Connector Pinouts

me 1\l B | 2 ne
3 Wl W | 4R
farEe 5|l WM | 6 BEXFSENSE
Tk 7/l W | 8 NG
m™ms ¢ W |10 NC
SRESET 11| M W | 12 GND
MRESET 13| @ W | 14 NC
crstro 15| I M| 16 GhND

The following table contains the Wind River-recommended pull-up/pull-down
resistor values that must be placed on the target. Signals not shown should not
have pull-ups or pull-downs.

Table C-1 16-pin Connector JTAG Terminations

Signal Name Description
TRST External 4.7K pull-up
EXPSENSE External 1K pull-up

100

C Pin Terminations
C.1 JTAG Pin Terminations

NOTE: These are the termination values for the Wind River reference design. It is
important that you verify that the pull-up and pull-down values you use are
appropriate for the board that you are working with.

C.1.2 16-Pin JTAG Connector I

The following processors use this pinout:

= AMCC 40x
= AMCC 44x

The connector type on your board should be as follows:

» 16 (2 by 8) 0.025" square posts

» (.10" between centers of adjacent posts

» (.23" height of each post

A sample connector is Samtec part number TSW-108-07-S-D.

Figure C-2 shows the pinouts for this connector.

101

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

Figure C-2 16-Pin JTAG Connector for AMCC 40x and 44x

2 1 1R [2 NG
3l W | 4 ReT

ve 5\l M |6 FTR
Sense

ek 7/ W | 8 NC
ms ol W | 10NC
e 11|l A 12 N
WG 13 | 14 EEY
NG 15| | B | 16 GND

Newer processors may not be 3.3v or 5v tolerant.

Board designers will provide the correct I/O voltage to use with these processors
through the PWR Sense pin (pin 6). Debugger hardware connections to the debug
port should adjust their output voltage levels based on the PWR Sense pin. If the
PWR Sense pin indicates 1.8v, then the levels of TCK, TMS, TDI, TRST and HALT
should not exceed 1.8v. The same applies for input pins like TDO. The debugger
hardware should be able to differentiate between high and low even when the high
level may only be 1.8v.

The maximum allowed value of TCK is half the core speed. A 50MHz processor
should not be clocked with TCK greater than 25MHz.

The following table contains the Wind River-recommended pull-up/pull-down
resistor values that must be placed on the target. Signals not shown should not
have pull-ups or pull-downs.

102

C Pin Terminations
C.2 BDM Pin Terminations

Table C-2 16-pin Connector JTAG Terminations

Signal Name Description

TRST External 4.7K pull-up

AMCC 40x and 44x processors can also use 38-pin Mictor connectors to combine
run control and trace control. See C.3 Mictor Pin Terminations, p.105.

C.2 BDM Pin Terminations

C.2.1 PowerPC 5xx/8xx 10-pin BDM Connector

The connector type on your board should be as follows:

*» 10 (2by 5) 0.025" square posts

» (.10" between centers of adjacent posts

» (.23" height of each post

A sample connector is Samtec part number TSW-105-07-S-D.

Figure C-3 shows the pinouts for this connector.

103

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

Figure C-3 10-pin BDM Connector Pinouts

ieoswPOvFSO 1| I I | 2 spEsET
GND 3| Il B | 4 CSCKICK
cNo 5 Il W | 6 P BI/WPIAVFLST
/HRESET 7| Il W | 8 CsSDITDI
23v 2| W | 10 DSDOTDO

The following table contains the Wind River-recommended pull-up/pull-down
resistor values that must be placed on the target. Signals not shown should not
have pull-ups or pull-downs.

Table C-3 PowerPC 5xx/8xx BDM Terminations

Signal Name Description
DSCK/TCK External 10K pull-down
DSDI External 10K pull-down

NOTE: These are the termination values for the Wind River reference design. It is
important that you verify that the pull-up and pull-down values you use are
appropriate for the board that you are working with.

104

C Pin Terminations
C.3 Mictor Pin Terminations

C.3 Mictor Pin Terminations

Table C-4

The AMCC 40x and 44x processors use a 38-pin Mictor connector when connected
to the Wind River Trace. The Mictor connector can also be used for run control.

The recommended manufacturer’s part number for this 38-pin Mictor connector is
part number AMP 2-767004-2.

No terminations are required for any of the trace signal pins. For JTAG
terminations, the following table contains the Wind River-recommended
pull-up/pull-down resistor values that must be placed on the target. Signals not
shown should not have pull-ups or pull-downs.

16-pin Connector JTAG Terminations

Signal Name Description

TRST External 4.7K pull-up

NOTE: These are the termination values for the Wind River reference design. It is
important that you verify that the pull-up and pull-down values you use are
appropriate for the board that you are working with.

105

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

C.3.1 AMCC 403 38-pin Mictor Connector Pin-out

This connector’s pin-out information for the AMCC 403 processor is shown in
Figure C-4.

Figure C-4 AMCC 403 38-pin Mictor Connector

NC1 | m m | 2N
N3 | Ol | 4N
N/C5 | B B | 6 TRCCLK

[HALT? | m ® | BN
NCce | m®m | 10NG
TDO11 | W m |12VREF
NC13 | B E [14NC
K15 | B B |16NC

TMz17 | @ ® m |1eN
TOI19 | ® W |[20NC
NAC21 | m M |22NiC
NC23 | Mg M |24NIC
MAC25 | m | 26TS0
Nico7 | 0 E |28 TS
NC29 | M o M (30782
N3 | T M |32753
NC33 | B H [34Ts4
M35 | @ W |367S5
Vok-BE B BECRE:

mERTH

O O o O

56060

106

This connector’s pin-out information for the AMCC 405 processor is shown in

Figure C-5.

Figure C-5 AMCC 405 38-Pin Mictor Connector

C Pin Terminations

C.3 Mictor Pin Terminations

C.3.2 AMCC 405 38-pin Mictor Connector Pin-out

N/C 1
N/C 3
N/C 5
fHALT 7
N/C D
TDO 11
N/C 13
TCK 15
TMS 17
DI 19
/TRST 21
NAC 23
NJC 25
N/C 27
N/C 29
NAC 31
NAC 33
NJC 35
NAC 35

GHD 39
GO 40
GHD 41
GMD 4%

2 M
4 M

B TRCCLK
g MAC
10 MAC
12%REF
14 NAC
16 MAZ
18 MNAC
200MC
22NC
247510
26 T320
28TH1E
J0 TSZE
32 TH3
34 T34
36 TS5
38 T=6

107

Wind River Workbench for On-Chip Debugging
Board Bring-Up Guide for PowerPC, 2.6.1

This connector’s pin-out information for the AMCC 44x processor is shown in

Figure C-6.

Figure C-6 AMCC 440 38-Pin Mictor Connector

C.3.3 AMCC 44x 38-pin Mictor Connector Pin-out

MAZ
MAC 3
MAC G
JHALT 7
MAC S
TOO N
MAZ 13
TCK 15
TS 17
O 19

[TRET 21
MIC 23
BS0 25
B51 27
BS2 29
ES0 31
ES1 33
E52 35
ES3 35

GHD 39
GO 40
GHD 41
GMD 4%

2 M

4 M

B TRCCLK
g MAC
10 MAC
12%REF
14 NAC
16 MAZ
18 MNAC
200MC
22NC
24 ES4
26 T30
28 791
30752
32 TH3
34 T34
36 TS5
38 T=6

108

Numerics

38-pin Mictor Connector Pin-out 106, 107, 108

A

Adding Hardware Data Breakpoints 95
Adding Hardware Instruction Breakpoints 95
Address Bus Test 36

Attempting JTAG communication 23
Attempting to Locate IMMR register 24
Attempting to restore CPU context 25

Background Mode 22
BDM Pin Terminations 103
BDM Processors 91
Bit-Level Detail 29
Board Bring-Up 7
Board Initialization 21
breakpoints

verifying with target 69
Breakpoints view 86
Bus Tests 36

Index

C

Clock Rate 16

Comparing Target CPU With CF Setting 24

Configuring Registers Manually 28

Converting Files To .bin Format 75

Converting Line or Expression Breakpoints Into
Hardware Code Breakpoints 96

CPU Reset Type 18

CRC Calculation 35

Creating a Project 48

Creating a Target Connection 10, 47

D

Data Bus Test 36
Debug Connections 9
debugger
disconnecting and terminating processes 65
Debugging Code in RAM 56
Debugging in RAM 47
Debugging in ROM 81, 82
Diagnostic Functions 32
Disabling Breakpoints 97
Disconnecting and Terminating Processes 65
Downloading a Register File 26
Downloading Code and Symbol Information 53
Drive TRESET Line 17

109

Wind River Workbench for On-Chip Debugging

Board Bring-Up Guide for PowerPC, 2.6.1

Driving HRESET to be High 23
Driving HRESET to be Low 23

E

Emulator HRESET Control 18

Enabling and Disabling Register Groups 27

Exporting Breakpoints 96
Expression Breakpoints 94

F

Flash Programmer view 73
Configuration tab 70
getting started 69
Memory/Diagnostics tab 78

Flash programming
erasing flash 73
setting timeouts 72
verifying flash contents 74

Full RAM Tests 34

G

Goals and Objectives 7

H

Hardware Breakpoints 94

Importing Breakpoints 96
Internal Breakpoint Capabilities 93
Introduction 1, 15,21, 31, 37, 67, 89

110

J

JTAG Pin Terminations 99

L

Line Breakpoints 94
Loading Internal Registers 24

M

Monitor Target Reset 17
Monitoring Processes 57

N

New Connection Wizard 11

O

OCD Connections 9
On-Chip Debugging 3
Overview 47,81

P

Pin Terminations 99
Pins Mapped to Common Signals 89

PowerPC 5xx/8xx 10-pin BDM Connector

PowerPC Processors -- JTAG 90
processes

disconnecting debugger 65
Programming Flash Memory 67

103

Index

R '}

Read From Location 35 Verifying Hardware 31
Reading and Writing Memory 68
Refreshing Breakpoints 97
register groups
disabling 27 W
enabling 27
Registers 25
Registers view 28
Removing Breakpoints 97
Running a Program 59
Running Code 40

Waiting for HRESET to be Released 23
Workbench
views
Breakpoints 86
Write and Complement 36
Write Rotating Value 36
Write Then Read 36
Write To Location 35

S

Saving Changes 19

Scope Tests 35

Set Verbose On 22

Setting a Workspace 31

Setting Breakpoints 86

Setting Hardware Breakpoints 43
Setting Software Breakpoints 41
Setting Up a Project 82

Simple RAM Test 32

Stepping an Instruction 38
Stepping Through a Program 60

T

target

software breakpoints, verifying 69
Testing Communications to Hardware Interface 23
Testing Flash Workspace 68
Testing for target STOP State 24
Testing JTAG Communication 24
Testing Memory 37
The IN Command 22
The INN Command 25
The Registers View 28
Tool Configuration 15, 16

111

	Wind River Workbench for On-Chip Debugging Board Bring-Up Guide for PowerPC
	Contents
	1 Introduction
	2 On-Chip Debugging
	3 Board Bring-Up
	3.1 Goals and Objectives
	3.2 Sequence of Events

	4 OCD Connections
	4.1 Debug Connections
	4.2 Creating a Target Connection

	5 Tool Configuration
	5.1 Introduction
	5.2 Tool Configuration
	5.2.1 Clock Rate
	5.2.2 Drive TRESET Line
	5.2.3 Monitor Target Reset
	5.2.4 Emulator HRESET Control
	5.2.5 CPU Reset Type
	5.2.6 Saving Changes

	6 Board Initialization
	6.1 Introduction
	6.2 Background Mode
	6.2.1 The IN Command
	6.2.2 Set Verbose On

	6.3 The INN Command
	6.4 Registers
	6.4.1 Downloading a Register File
	6.4.2 Enabling and Disabling Register Groups
	6.4.3 Modifying Registers Manually

	7 Verifying Hardware
	7.1 Introduction
	7.2 Setting a Workspace
	7.3 Diagnostic Functions
	7.3.1 Simple RAM Test
	7.3.2 Full RAM Tests
	7.3.3 CRC Calculation
	7.3.4 Scope Tests
	Read From Location
	Write To Location
	Write and Complement
	Write Rotating Value
	Write Then Read

	7.3.5 Bus Tests
	Address Bus Test
	Data Bus Test

	8 Testing Memory
	8.1 Introduction
	8.2 Testing Memory
	8.2.1 Stepping an Instruction
	8.2.2 Running Code
	8.2.3 Setting Software Breakpoints
	8.2.4 Setting Hardware Breakpoints

	9 Debugging in RAM
	9.1 Overview
	9.2 Creating a Target Connection
	9.3 Creating a Project
	9.4 Downloading Code and Symbol Information
	9.5 Debugging Code in RAM
	9.5.1 Monitoring Processes
	9.5.2 Stepping Through Code
	9.5.3 Setting a Software Breakpoint
	9.5.4 Running a Program
	9.5.5 Stepping Through a Program
	9.5.6 Setting a Hardware Breakpoint
	9.5.7 Disconnecting and Terminating Processes

	10 Programming Flash Memory
	10.1 Introduction
	10.2 Testing Flash Workspace
	Reading and Writing Memory

	10.3 Getting Started
	10.4 Flash Configuration Tab
	10.4.1 Selecting a Flash Driver
	10.4.2 Configuring Flash Memory Bounds
	10.4.3 Configuring Flash Memory Bounds
	10.4.4 Configuring RAM Workspace
	10.4.5 Setting Timeouts

	10.5 Flash Programming Tab
	10.5.1 Erasing and Programming Flash
	10.5.2 Verifying Flash Contents
	10.5.3 Running a Pre- or Post-Flash Script
	10.5.4 Selecting Flash Sectors for Erasure
	10.5.5 Manually Configuring Flash Memory Erasure Bounds
	10.5.6 Adding Files
	10.5.7 Removing Files
	10.5.8 Converting Files To Wind River Flash Binary Format
	10.5.9 Setting The Download Offset Of A File
	10.5.10 Enabling A File For Download

	10.6 Flash Memory/Diagnostics Tab
	10.6.1 Viewing Memory
	10.6.2 Running Diagnostic Tests

	11 Debugging in ROM
	11.1 Overview
	11.2 Getting Started
	11.3 Debugging in ROM
	11.3.1 Stepping Through Boot Code
	11.3.2 Setting Hardware Breakpoints

	A Pins Mapped to Common Signals
	A.1 Introduction
	A.2 PowerPC Processors -- JTAG
	A.3 PowerPC Processors -- BDM

	B Internal Breakpoint Capabilities
	Line Breakpoints
	Expression Breakpoints
	Hardware Breakpoints
	Importing Breakpoints
	Exporting Breakpoints
	Refreshing Breakpoints
	Disabling Breakpoints
	Removing Breakpoints

	C Pin Terminations
	C.1 JTAG Pin Terminations
	C.1.1 16-Pin JTAG Connector I
	C.1.2 16-Pin JTAG Connector II

	C.2 BDM Pin Terminations
	C.2.1 PowerPC 5xx/8xx 10-pin BDM Connector

	C.3 Mictor Pin Terminations
	C.3.1 AMCC 403 38-pin Mictor Connector Pin-out
	C.3.2 AMCC 405 38-pin Mictor Connector Pin-out
	C.3.3 AMCC 44x 38-pin Mictor Connector Pin-out

	Index

