
Wind River Workbench

USER’S GUIDE

Linux Version

2.6

®

Wind River Workbench User's Guide

Copyright © 2006 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/product_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Workbench User’s Guide, 2.6 Linux Version

29 Sep 06
Part #: DOC-15942-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

PART I: INTRODUCTION

1 Overview .. 3

1.1 Introduction ... 3

1.2 Wind River Workbench for Linux Documentation ... 4

1.3 Roadmap to the Workbench User’s Guide (Linux Version) 5

1.4 Document Conventions .. 6

1.5 Eclipse Concepts ... 6

Windows .. 7
Views .. 8
Tabbed Notebooks .. 8
Moving and Maximizing Views ... 8
Editors .. 9
Perspectives ... 9
Workspaces .. 11

1.6 Understanding Cross-Development Concepts ... 11

Hardware in a Cross-Development Environment 12
Working on the Host .. 12
Connecting the Target to the Host ... 12
Advantages of Using Wind River Workbench for Linux Development 12

Wind River Workbench
User’s Guide, 2.6 Linux Version

iv

1.7 Workbench for Linux Development ... 13

PART II: GETTING STARTED

2 Introduction ... 17

2.1 Building Linux Projects ... 17

Types of Projects ... 17

2.2 Linux Version Debugging Modes ... 19

3 Developing Applications (User Mode) ... 21

3.1 Introduction ... 22

3.2 Starting Workbench ... 22

3.3 Using Workbench ... 24

3.4 Creating a Project .. 26

Creating a Wind River Linux Application Project 27
Importing Existing Source Files ... 27

3.5 Using the Editor .. 28

Opening a Source File .. 28

3.5.1 Navigating in Source ... 29

3.5.2 Using Code Completion .. 30

3.5.3 Getting Parameter Hints ... 30

3.5.4 Using Bracket Matching .. 31

3.5.5 Using Bookmarks to Mark Errors .. 31

3.6 Configuring Project Properties .. 32

 Contents

v

3.7 Building the Project ... 33

3.7.1 Building ball With an Error ... 33

3.7.2 Displaying File History ... 34

3.7.3 Rebuilding the Project ... 34

3.8 Configuring a Target Connection .. 35

3.8.1 Configure NFS .. 35

Redirect Build Output to the Target Root ... 36

3.8.2 Run the Usermode Agent on the Target ... 36

3.9 Connecting to the Target ... 37

3.10 Running and Debugging on the Target ... 39

3.10.1 Using the Device Debug Perspective .. 41

3.10.2 Stepping to Initialize the Grid Array ... 42

3.10.3 Setting and Running to a Breakpoint .. 43

3.10.4 Modifying the Breakpoint ... 44

3.11 Creating Projects at External Locations .. 44

Building the Usermode Agent .. 45

4 Configuring Wind River Linux Platforms .. 47

4.1 Wind River Linux Platform Projects ... 47

Creating a Wind River Linux Platform Project 47
Contents of a Wind River Linux Platform Project 49

4.2 Configuring Wind River Linux Platform Kernels ... 51

Kernel Configuration Node .. 51

4.3 Adding Kernel Modules to the Platform ... 53

Creating a Custom Kernel Module .. 54
Moving the Kernel Module Project ... 55

Wind River Workbench
User’s Guide, 2.6 Linux Version

vi

4.4 Configuring User Space .. 55

Removing and Adding Packages ... 56
Debugging Packages .. 57
Building Packages .. 57

4.5 Managing Patches ... 58

Applying Patches ... 58
Patch Reject Resolution ... 62
Accepting Rejects, Inline or into Reject Files .. 63
Review the Accepted Rejections in the Tasks List 63
Viewing Patching Annotation using Workbench 64

4.6 Automating Target Deployment .. 66

5 Kernel Debugging (Kernel Mode) .. 69

5.1 Introduction ... 69

5.2 Configuring the Target for Kernel Mode Debugging 70

5.2.1 Installing KGDB on the Target ... 70

5.2.2 Booting the Target .. 72

5.3 Kernel Mode Debugging .. 72

5.3.1 Types of KGDB Connections .. 72

5.3.2 Creating a KGDB Connection ... 73

5.3.3 Attaching to Core and Debugging the Kernel 75

5.3.4 Rebooting the Wind River Linux Target ... 77

Configuring Target Reconnection Parameters 77

5.4 Working with Kernel Modules .. 78

5.4.1 Build the Sample Module .. 78

5.4.2 Install the Sample Module .. 79

5.4.3 Debugging Kernel Modules .. 79

5.4.4 Set a Hardware Breakpoint at Module Load .. 81

5.4.5 Debug Kernel Module at Entry .. 82

 Contents

vii

PART III: PROJECTS

6 Projects Overview .. 87

6.1 Introduction ... 87

6.2 Workspace and Project Location .. 88

6.3 Creating New Projects ... 89

6.3.1 Subsequent Modification of Project Creation Wizard Settings 90

6.3.2 Projects and Application Code ... 90

6.4 Overview of Preconfigured Project Types ... 90

Embedded Linux Kernel Project .. 91
Embedded Linux Application Project ... 91
Native Application Project .. 91
User-Defined Projects .. 91
Wind River Linux Application Project .. 92
Wind River Linux Platform Project ... 92

6.5 Projects and Project Structures .. 92

6.5.1 Adding Subprojects to a Project ... 93

Removing Subprojects ... 93

6.6 Project-Specific Execution Environments ... 94

6.6.1 Using a project.properties file with a Shell ... 95

6.6.2 Limitations When Using project.properties Files 95

7 Creating User-Defined Projects .. 97

7.1 Introduction ... 97

7.2 Creating and Maintaining Makefiles ... 98

7.3 Creating a User-Defined Project .. 98

Wind River Workbench
User’s Guide, 2.6 Linux Version

viii

7.4 Configuring a User-Defined Project ... 99

7.4.1 Configuring Build Support ... 99

7.4.2 Configuring Build Targets ... 100

7.4.3 Configuring Build Specs ... 101

7.4.4 Configuring Build Macros .. 101

Defining Global Macros ... 101
Defining Build Spec-Specific Macros .. 101

8 Native Application Projects .. 103

8.1 Introduction ... 103

8.2 Creating a Native Application Project .. 104

8.3 Application Code for a Native Application Project ... 106

9 Working in the Project Navigator .. 107

9.1 Introduction ... 107

9.2 Creating Projects ... 108

9.3 Adding Application Code to Projects ... 108

Importing Resources .. 108
Adding New Files to Projects ... 109

9.4 Opening and Closing Projects ... 109

Closing a Project ... 109

9.5 Scoping and Navigation .. 110

9.6 Moving, Copying, and Deleting Resources and Nodes 111

9.6.1 Resources and Logical Nodes ... 112

9.6.2 Manipulating Files ... 113

 Contents

ix

9.6.3 Manipulating Project Nodes ... 113

Moving and (Un-)Referencing Project Nodes 113
Deleting Project Nodes .. 114

9.6.4 Manipulating Target Nodes .. 114

Deleting Target Nodes ... 114

PART IV: DEVELOPMENT

10 Navigating and Editing ... 117

10.1 Introduction ... 117

10.2 Wind River Workbench Context Navigation .. 118

The Symbol Browser .. 119
The Outline View ... 119
The File Navigator ... 120
Type Hierarchy View ... 120
Include Browser .. 121

10.3 The Editor .. 121

Code Templates .. 121

10.3.1 Configuring a Custom Editor ... 123

10.4 Search and Replace: The Retriever ... 123

Initiating Text Retrieval ... 123

10.5 Static Analysis ... 124

Sharing Static Analysis Data with a Team .. 124

11 Building Projects ... 127

11.1 Introduction ... 127

11.2 Configuring Workbench Managed Builds .. 130

11.2.1 Configuring Standard Managed Builds .. 130

Wind River Workbench
User’s Guide, 2.6 Linux Version

x

11.2.2 Configuring Flexible Managed Builds .. 130

Adding Build Targets to Flexible Managed Builds 131
Modifying Build Targets .. 132
Leveling Attributes .. 134
Understanding Flexible Managed Build Output 134

11.3 Configuring User-Defined Builds .. 136

11.4 Accessing Build Properties ... 136

11.4.1 Workbench Global Build Properties .. 137

11.4.2 Project-specific Build Properties .. 137

11.4.3 Folder, File, and Build Target Properties ... 137

11.4.4 Multiple Target Operating Systems and Versions 137

11.5 Build Specs .. 138

11.6 Makefiles .. 138

11.6.1 Derived File Build Support ... 139

The Yacc Example ... 139
General Approach .. 140

12 Building: Use Cases ... 143

12.1 Introduction ... 143

12.2 Adding Compiler Flags ... 144

Add a Compiler Flag by Hand ... 144
Add a Compiler Flag with GUI Assistance .. 145

12.3 Building Applications for Different Target Architectures 145

12.4 Creating Library Build-Targets for Testing and Release 146

12.5 Architecture-Specific Implementation of Functions 149

12.6 User-Defined Build-Targets in the Project Navigator 151

Custom Build-Targets in User-Defined Projects 151
Custom Build-Targets in Workbench Managed Projects 151

 Contents

xi

Custom Build Targets in Wind River Linux Platform Projects 152
User Build Arguments ... 153

12.7 Custom Build Specs for Wind River Linux Platform Projects 153

12.8 Stepping Through Assembly Code .. 155

12.9 Developing on Remote Hosts .. 157

12.9.1 General Requirements ... 158

12.9.2 Remote Build Scenarios ... 159

Local Windows, Remote UNIX: ... 159
Local UNIX, Remote UNIX: .. 159
Local UNIX, Remote Windows: ... 159

12.9.3 Setting Up a Remote Environment .. 159

12.9.4 Building Projects Remotely ... 160

12.9.5 Running Applications Remotely .. 161

12.9.6 Rlogin Connection Description .. 162

12.9.7 SSH Connection Description .. 162

PART V: TARGET MANAGEMENT

13 Connecting to Targets .. 165

13.1 Introduction ... 165

13.2 The Target Manager View ... 166

13.3 Defining a New Connection .. 166

13.3.1 Target Server Connection Page .. 167

13.4 Establishing a Connection .. 168

13.5 Connection Settings ... 168

Connection Template ... 169
Back End Settings ... 169
Target File System and Kernel .. 170

Wind River Workbench
User’s Guide, 2.6 Linux Version

xii

Advanced Options (KGDB Only) .. 170
Advanced Target Server Options ... 170
Command Line ... 171

13.5.1 Target Operating System Settings .. 172

13.5.2 Object Path Mappings ... 172

13.5.3 Specifying an Object File ... 172

Pathname Prefix Mappings ... 173
Basename Mappings .. 173

13.5.4 Target State Refresh Page .. 173

Available CPU(s) on Target Board ... 174
Initial Target State Query and Settings .. 174
Target State Refresh Settings ... 174
Listen to execution context life-cycle events .. 174

13.5.5 Connection Summary Page (Target Server Connection) 174

13.6 The Registry ... 175

13.6.1 Launching the Registry ... 176

13.6.2 Remote Registries ... 176

Creating a Remote Registry .. 176

13.6.3 Shutting Down the Registry ... 177

13.6.4 Changing the Default Registry ... 177

14 Connecting with USB .. 179

14.1 Introduction ... 179

14.2 Configuring a Target for USB Connection .. 179

Target Configuration for a Linux Kernel 2.6 Host 180
Target Configuration for a Linux Kernel 2.4 Host 180
Target Configuration for a Windows Host ... 181

14.3 Configuring a Host for USB Connection ... 182

Linux 2.6 Host Configuration ... 182
Linux 2.4 Host Configuration ... 182
Windows Host Configuration .. 183

 Contents

xiii

15 Connecting with TIPC ... 185

15.1 Overview .. 185

15.2 Configuring TIPC Targets ... 186

15.2.1 Installing the TIPC Kernel Module .. 187

15.2.2 Running the usermode-agent ... 187

15.3 Configuring a TIPC Proxy .. 188

15.4 Configuring Your Workbench Host .. 190

15.5 usermode-agent Reference ... 191

PART VI: DEBUGGING

16 Launching Programs .. 197

16.1 Introduction ... 197

16.2 Creating a Launch Configuration .. 198

16.2.1 Editing an Attach to Target Launch Configuration 198

The Main Tab .. 199
The Projects to Build Tab ... 199
The Source Tab .. 200
The Common Tab ... 200

16.2.2 Creating a Process Launch Configuration .. 201

16.2.3 The Main Tab .. 201

16.2.4 The Projects to Build Tab ... 201

16.2.5 The Debug Options Tab ... 202

16.2.6 The Source Tab .. 202

16.2.7 The Common Tab ... 202

16.2.8 Using Launch Configurations to Run Programs 203

Increasing the Launch History ... 203
Troubleshooting Launch Configurations .. 204

Wind River Workbench
User’s Guide, 2.6 Linux Version

xiv

16.3 Remote Java Launches ... 204

16.4 Launching Programs Manually ... 207

16.5 Controlling Multiple Launches ... 207

Terminology .. 208
Configuring a Launch Sequence .. 208
Pre-Launch, Post-Launch, and Error Condition Commands 209

16.6 Launches and the Console View .. 212

Launches and the Console View .. 213
Console View Output .. 213

16.7 Attaching the Debugger to a Running Process ... 214

16.7.1 Running Processes .. 215

16.8 Attaching to the Kernel ... 217

16.8.1 Attaching to Kernel Core (KGDB) ... 217

16.8.2 Attaching the Kernel in System Mode (Dual-Mode Agent) 217

16.9 Suggested Workflow .. 218

17 Managing Breakpoints .. 219

17.1 Introduction ... 219

17.2 Types of Breakpoints ... 220

17.2.1 Line Breakpoints ... 220

Creating Line Breakpoints .. 220

17.2.2 Expression Breakpoints ... 221

17.2.3 Hardware Breakpoints ... 221

Adding Hardware Instruction Breakpoints ... 222
Adding Hardware Data Breakpoints .. 222
Disabling and Removing Hardware Breakpoints 222
Converting Breakpoints to Hardware Breakpoints 222
Comparing Software and Hardware Breakpoints 223

 Contents

xv

17.3 Manipulating Breakpoints ... 224

17.3.1 Exporting Breakpoints ... 224

17.3.2 Importing Breakpoints .. 224

17.3.3 Refreshing Breakpoints ... 224

17.3.4 Disabling Breakpoints ... 225

17.3.5 Removing Breakpoints .. 225

18 Debugging Projects .. 227

18.1 Introduction ... 227

18.2 Using the Debug View .. 228

18.2.1 Configuring Debug Settings for a Custom Editor 229

18.2.2 Understanding the Debug View Display .. 231

How the Selection in the Debug View Affects Activities 231
Monitoring Multiple Processes .. 232
Colored Views ... 233

18.2.3 Stepping Through a Program ... 234

Additional Run Control Options ... 234

18.2.4 Using Debug Modes .. 235

18.2.5 Setting and Recognizing the Debug Mode of a Connection 236

Switching Debug Modes ... 236

18.2.6 Debugging Multiple Target Connections ... 237

18.2.7 Disconnecting and Terminating Processes ... 237

18.2.8 Changing Source Lookup Settings .. 237

18.3 Using the Disassembly View ... 238

18.3.1 Opening the Disassembly View ... 238

18.3.2 Understanding the Disassembly View Display 238

18.4 Java-JNI Cooperative Debugging ... 239

Configuring a User Mode Connection for Cooperative Debugging 239
Creating a Launch Configuration for Cooperative Debugging 240

Wind River Workbench
User’s Guide, 2.6 Linux Version

xvi

Debugging In Java and Native Modes .. 241
Conditions that Disable the JDT Debugger .. 242
Re-Enabling the JDT Debugger .. 242

18.5 Remote Kernel Metrics .. 243

Building and Running the RKM Monitor ... 243
Running the RKM Monitor From the Command Line 244
Attach StethoScope to the RKM Monitor .. 244
Using StethoScope to View Remote Kernel Metrics 245

18.6 Run/Debug Preferences .. 245

19 Analyzing Core Files ... 247

19.1 Introduction ... 247

19.2 Acquiring Core Dump Files ... 248

19.3 Attaching Workbench to a Core File ... 249

Core File Analysis .. 250
Ending the Session ... 250

20 Troubleshooting .. 251

20.1 Introduction ... 251

20.2 Startup Problems .. 252

Workspace Metadata is Corrupted ... 252
.workbench-2.6 Directory is Corrupted .. 253
Registry Unreachable (Windows) .. 253
Workspace Cannot be Locked (Linux and Solaris) 254

20.2.1 Pango Error on Linux .. 255

20.3 General Problems ... 255

20.3.1 JDT Dependency ... 255

20.3.2 Help System Does Not Display on Linux ... 255

20.3.3 Help System Does Not Display on Windows 256

20.3.4 Resetting Workbench to its Default Settings .. 256

 Contents

xvii

20.4 Error Messages .. 256

20.4.1 Project System Errors ... 257

Project Already Exists .. 257
Cannot Create Project Files in Read-only Location 258

20.4.2 Build System Errors ... 258

Building Projects While Connected to a Target 259

20.4.3 Target Manager Errors ... 260

Troubleshooting Connecting to a Target ... 260
Exception on Attach Errors ... 261
Error When Running a Task Without Downloading First 261
Downloading an Output File Built with the Wrong Build Spec 262
Error if Exec Path on Target is Incorrect .. 262
Troubleshooting Running a Process .. 263

20.4.4 Launch Configuration Errors ... 264

Troubleshooting Launch Configurations .. 264

20.4.5 Static Analysis Errors ... 264

20.5 Error Log View .. 265

20.6 Error Logs Generated by Workbench ... 265

20.6.1 Creating a ZIP file of Logs .. 266

20.6.2 Eclipse Log .. 267

20.6.3 DFW GDB/MI Log .. 267

20.6.4 DFW Debug Tracing Log .. 268

20.6.5 Debugger Views GDB/MI Log .. 268

20.6.6 Debugger Views Internal Errors Log ... 269

20.6.7 Debugger Views Broadcast Message Debug Tracing Log 269

20.6.8 Target Server Output Log ... 270

20.6.9 Target Server Back End Log .. 271

20.6.10 Target Server WTX Log ... 272

20.6.11 Target Manager Debug Tracing Log .. 272

20.7 Technical Support ... 273

Wind River Workbench
User’s Guide, 2.6 Linux Version

xviii

PART VII: UPDATING

20 Integrating Plug-ins .. 277

20.1 Introduction ... 277

20.2 Finding New Plug-ins .. 278

20.3 Incorporating New Plug-ins into Workbench .. 278

20.3.1 Creating a Plug-in Directory Structure ... 278

20.3.2 Installing a ClearCase Plug-in .. 279

Downloading the IBM Rational ClearCase Plug-in 279
Adding Plug-in Functionality to Workbench 280

20.4 Disabling Plug-in Functionality .. 281

20.5 Managing Multiple Plug-in Configurations ... 281

21 Using Workbench in an Eclipse Environment 283

21.1 Introduction ... 283

21.2 Recommended Software Versions and Limitations .. 283

Java Runtime Version ... 283
Eclipse Version .. 284
Defaults and Branding ... 284

21.3 Setting Up Workbench .. 284

21.4 Using CDT and Workbench in an Eclipse Environment 285

21.4.1 Workflow in the Project Navigator .. 285

Application Development Perspective (Workbench) 285
C/C++ Perspective (CDT) .. 286

21.4.2 Workflow in the Build Console .. 287

Application Development Perspective (Workbench) 287
C/C++ Perspective (CDT) .. 287
General ... 287

 Contents

xix

21.4.3 Workflow in the Editor .. 287

Opening Files in an Editor .. 287

21.4.4 Workflow for Debugging .. 288

Workbench and CDT Perspectives .. 288

22 Using Workbench with Version Control .. 289

22.1 Introduction ... 289

22.2 Using Workbench with ClearCase Views .. 289

22.2.1 Adding Workbench Project Files to Version Control 290

Choosing Not to Add Build Output Files to ClearCase 291

PART VIII: REFERENCE

A Host Shell .. 295

A.1 Overview .. 295

A.2 Host Shell Commands and Options ... 301

A.2.1 Host Shell Basics ... 301

Initializing Your Environment .. 301
Starting the Host Shell ... 302
Host Shell Initialization Script .. 302
Stopping the Host Shell ... 302
Switching Interpreters ... 303
Setting Shell Environment Variables ... 303

A.2.2 Root Path Mapping .. 305

A.2.3 Using the Tcl Interpreter .. 305

Running the Tcl Interpreter ... 305
Scripting the GDB Interpreter with Tcl ... 306
Accessing Low Level GDB/MI APIs ... 307

A.2.4 Using the GDB Interpreter .. 308

General GDB Commands .. 308
Working with Breakpoints .. 309

Wind River Workbench
User’s Guide, 2.6 Linux Version

xx

Specifying Files to Debug .. 310
Running and Stepping Through a File .. 311
Displaying Disassembler and Memory Information 312
Examining Stack Traces and Frames ... 312
Displaying Information and Expressions ... 313
Displaying and Setting Variables ... 313

A.2.5 Using the Built-in Line Editor .. 314

vi-Style Editing ... 314
emacs-Style Editing .. 317
Command and Path Completion ... 319

A.2.6 Running the Host Shell in Batch Mode ... 319

A.2.7 Recording and Replaying Host Shell Commands 319

A.2.8 Extending the GDB interpreter ... 320

A.2.9 Deprecated Commands ... 322

B Configuring a Wind River Proxy Host .. 325

B.1 Overview .. 325

B.2 Configuring wrproxy ... 327

Configuring wrproxy Manually ... 327
Creating a wrproxy Configuration Script ... 328

B.3 wrproxy Command Summary .. 329

Invocation Commands .. 329
Configuration Commands .. 329

C Command-line Updating of Workspaces ... 333

C.1 Overview .. 333

C.2 wrws_update Reference .. 334

Execution ... 334
Options ... 334

 Contents

xxi

D Command-line Importing of Projects ... 337

D.1 Overview .. 337

D.2 wrws_import Reference .. 338

Execution ... 338
Options .. 338

E Wind River Cross Compiler Prefixes .. 341

Cross Compiler Prefixes for Supported Architectures 341

F Configuring Linux 2.4 Targets (Dual Mode) 343

F.1 Introduction ... 344

F.2 Setting Up the Linux Host .. 345

F.3 Tools ... 345

Summary ... 345
Target .. 346
Cross-compiler .. 346
Bootloaders .. 347
Kernels ... 348
Debugger and Emulator or Flash Programmer 348

F.4 Obtaining a Kernel ... 348

F.5 Applying the WDB Patch .. 349

F.6 Configuring the Kernel ... 351

F.6.1 Building the Kernel in Workbench as a Linux Kernel Project 352

Adding a Build Target to the Project ... 354
Building a Bootable Kernel Image ... 355

F.6.2 Building the Kernel from the Command Line 358

F.7 Preparing to Load the Linux Kernel ... 360

Before You Begin .. 360

Wind River Workbench
User’s Guide, 2.6 Linux Version

xxii

F.8 Exporting the ELDK Root File System ... 361

F.9 Launching U-Boot ... 362

Configuring a Serial Terminal .. 362
Launching U-Boot .. 363

F.10 Configuring U-Boot ... 364

F.10.1 Setting up the Kernel Files .. 365

F.10.2 Configuring U-Boot ... 365

F.10.3 Setting the Host Parameters ... 366

F.10.4 Setting the Target Parameters ... 367

F.10.5 Setting Root File System Parameters ... 367

F.10.6 Verifying and Saving the Parameters .. 368

F.11 Downloading the Kernel to the Target ... 369

F.12 Launching the Linux Kernel ... 370

Automating the Boot Sequence .. 372

G Broken Patch File Example ... 373

G.1 The myApache.patch Sample File ... 373

Text File myApache.patch ... 373
Annotated Patch File .. 374

H Glossary .. 377

Index .. 383

1

PAR T I

Introduction

1 Overview ... 3

Wind River Workbench
User’s Guide, 2.6 Linux Version

2

3

 1
Overview

1.1 Introduction 3

1.2 Wind River Workbench for Linux Documentation 4

1.3 Roadmap to the Workbench User’s Guide (Linux Version) 5

1.4 Document Conventions 6

1.5 Eclipse Concepts 6

1.6 Understanding Cross-Development Concepts 11

1.7 Workbench for Linux Development 13

1.1 Introduction

Welcome to the Wind River Workbench User’s Guide (Linux Version). Wind River
Workbench is a development suite that provides an efficient way to develop Linux
target kernels and embedded applications.

Workbench runs on various host operating systems. The screenshots in this
document were taken on a host running Red Hat Enterprise Linux so they may
differ slightly from what you see.

Wind River Workbench
User’s Guide, 2.6 Linux Version

4

1.2 Wind River Workbench for Linux Documentation

The following documentation is provided for the Workbench version that supports
Linux target operating systems:

■ Wind River Workbench User’s Guide (this document)

This guide describes how to configure your Workbench host and a Linux
target to debug applications and kernel objects on the target. It describes how
to use Workbench to develop projects, manage targets, and edit, compile, and
debug code. This manual is available in print from the Wind River bookstore.

■ Wind River Workbench User Interface Reference

This provides specific reference material for the Workbench GUI. It provides
detailed information on individual menu choices, buttons, and so on, that may
not be covered in the User’s Guide or may only be covered relative to the part
of their functionality that is being discussed. In many cases, you can access
relevant parts of this document by pressing the help key as described in
1.4 Document Conventions, p.6.

■ Wind River Scope Tools documentation

This is a set of documents that describe how to use the Wind River Scope tools
that are provided with Workbench. The tools include a memory use analyzer,
an execution profiler, and a graphical application variable monitoring tool.

■ Wind River System Viewer documentation

This User’s Guide describes how to use System Viewer which is included with
Workbench. System Viewer is a logic analyzer for visualizing and
troubleshooting complex embedded software. The Wind River System Viewer
API Reference is also included.

■ Wind River WDB Agent Porting Guide

This manual describes how to port a standard version of the Wind River WDB
agent patch to a custom Linux 2.4.x version kernel. The porting guide is
available from the Wind River Online Support Web site:

www.windriver.com/support

■ Wind River Workbench Tutorials for Linux

Several tutorials addressing specific Linux development topics are available
from the Wind River Online Support Web site.

http://www.windriver.com/support

1 Overview
1.3 Roadmap to the Workbench User’s Guide (Linux Version)

5

1
■ Wind River Workbench Host Shell User's Guide

The host shell is a host-resident shell that provides a command line interface for
debugging targets.

■ Wind River Workbench Online Help

Wind River Workbench provides context-sensitive Help. To access the full Help
set, select Help > Help Contents in Wind River Workbench. To see Help
information for a particular view or dialog box, press the help key when in that
view or dialog box. See 1.4 Document Conventions, p.6 for details on the help key.

1.3 Roadmap to the Workbench User’s Guide (Linux Version)

This document is divided into the following parts:

Part I. Introduction (this chapter) provides an overview of cross-development
concepts, and outlines how Workbench helps cross-development

Part II. Getting Started provides an introductory tutorial that takes you from
starting Workbench to using it to perform common debugging activities on sample
applications in user mode. Additional chapters build on this knowledge to
introduce kernel-mode and dual-mode methods of project development, and
introduce working with Wind River Linux Platforms.

Part III. Projects provides detailed information on how to use projects in
Workbench, including pre-defined projects, user-defined projects, using the
Project Navigator, and a discussion of various advanced project scenarios.

Part IV. Development describes how to use Workbench to edit source code, build
projects, and parse and analyze source-code symbol information.

Part V. Target Management discusses connecting to targets, and how to create new
target connections.

Part VI. Debugging provides an in-depth look at debugging operations, including
launching programs, managing breakpoints, and troubleshooting.

Part VII. Updating discusses integrating plug-ins to Workbench.

Wind River Workbench
User’s Guide, 2.6 Linux Version

6

Part VIII. Reference describes how to use the Wind River host shell for
command-line debugging, how to update workspaces on the command line for
automated builds, how to use a remote host for debugging, and provides
cross-compiler information for Wind River Linux targets. This section also
contains a glossary and index.

1.4 Document Conventions

In this document, placeholders for which you must substitute a value are shown
in italics. Literal values are shown in bold. For example, this document uses the
placeholder installDir to refer to the location where you have installed Workbench.
By default, this is C:\WindRiver on Windows hosts and $HOME/WindRiver on
Linux and Solaris hosts.

Menu choices are shown in bold, for example File > New > Project means to select
File, then New, then Project. Commands that you enter on a command line are
shown in bold and system output is shown in typewriter text, for example:

$ pwd
/home/mary/WindRiver
$

You will be directed to online help by suggestions to press the help key for more
information. The help key on Windows hosts is F1. On Linux hosts, it is the
combination CTRL+F1. On Solaris hosts, it is the Help key.

1.5 Eclipse Concepts

Wind River Workbench is based on the latest release of the Eclipse platform. This
section provides a brief introduction to the features of Workbench that are common
to all Eclipse-based systems.

1 Overview
1.5 Eclipse Concepts

7

1For a more detailed introduction, use the online Help in Workbench (select
Help > Help Contents, select Wind River Partners Documentation and expand
the Eclipse Workbench User Guide entry) or go to
www.eclipse.org/documentation/main.html and navigate to the Eclipse
Workbench Users Guide.

Eclipse-based systems are described with several terms: window, view, tabbed
notebook, editor, and perspective. This section outlines these terms and explains how
to use these features.

Windows

The term window is used only for the overall outer frame shown in Figure 1-1. Use
Window > New to create a new outer frame as part of the same Workbench
session; then use the new window to open additional views within the same
perspective (see Perspectives, p.9).

Figure 1-1 Workbench Window

http://www.eclipse.org/documentation/main.html

Wind River Workbench
User’s Guide, 2.6 Linux Version

8

Views

The term view refers to the individual panes within a window; in Figure 1-1 these
include the Project Navigator view on the top-left side of the screen, the Outline
view on the top-right, the Target Manager view on the bottom-left, and the stacked
view on the bottom-right with the title Tasks.

There are two rules to consider when using views:

1. Only one view (or Editor; see Editors, p.9) can be active at a time. The title bar
of the active view is highlighted.

2. Only one instance of a type of view can be present in a perspective at a time.

Many views include a menu that is accessed by clicking the down arrow to the
right of the title bar. This menu typically contains items that apply to the entire
contents of the view rather than a selected item within the view.

To open a view and add it to the existing perspective (see Perspectives, p.9), select
Window > Show View. Select the desired view from the list, or select Other to
display expandable lists with more choices. The view is added at its default
location in the window, and you can move it if desired—see Moving and
Maximizing Views, p.8.

Tabbed Notebooks

Several views can be stacked together in a tabbed notebook (often the result of
opening additional views). For example, the Tasks view at the bottom-right of
Figure 1-1 has six tabs along the top. The title of the selected tab shows in the title
bar of the view; in this case, Tasks (0 items). Click a tab to display that view.

Moving and Maximizing Views

Move a view by clicking either its title bar or its tab in a stacked notebook, and
dragging it to a new location.

There are several ways to relocate a view:

■ Drag the view to the edge of another view and drop it. The area is then split,
and both views are tiled in the same area. The cursor changes to an appropriate
directional arrow as you approach the edge of a view.

NOTE: Multiple editors can be present to view multiple source files.

1 Overview
1.5 Eclipse Concepts

9

1
■ Drag the view to the title bar of an existing view and drop it. The view will be

added to a stacked notebook with tabs. When you drag the view to stack it, the
cursor changes to an icon of a set of stacked folders.

■ If you drag a view over a tab in an existing view, the view will be stacked in
that notebook with its tab at the left of the existing view. You can also drag an
existing tab to the right of another tab to arrange tabs to your liking.

To quickly maximize a view to fill the entire perspective area, double-click its title
bar. Double-click the title bar again to restore it.

Editors

An Editor is a special type of view used to edit files. You can associate different
Editors with different types of files such as C, C++, Ada, Assembler, and Make
files. When you open a file, the associated Editor opens in the perspective’s Editor
area.

Any number of Editors can be open at once, but only one can be active at a time.
By default, Editors are stacked in the Editor area, but you can tile them in order to
view source files simultaneously.

Tabs in the Editor area indicate the names of files that are currently open for
editing. An asterisk (*) indicates that an Editor contains unsaved changes.

Perspectives

A perspective is the layout of the views and Editors in a window. A single window
can maintain several perspectives, but shows only one perspective at a time.

To open new perspectives and switch between them, use the buttons in the
shortcut bar along the top right edge of the Workbench window. When you start
Workbench for the first time, two buttons display as shown in Figure 1-2.

Wind River Workbench
User’s Guide, 2.6 Linux Version

10

Perspectives are a convenience for accomplishing specific tasks. For example, the
Application Development perspective (Figure 1-1), is designed for creating
projects, browsing files, and editing and building source code.

Click Window > Open Perspective > Device Debug. The Device Debug
perspective appears, containing the Debug and Breakpoints views, and a tabbed
notebook with the Local Variables, Watch, and Register views, which are useful
when running and debugging a program. These views replace the Outline view of
the Application Development perspective.

You can also create your own perspectives to suit your development needs. Follow
these steps to create a customized perspective:

1. Arrange the views in the window as desired by opening any required views
and moving them to an appropriate location.

2. Select Window > Save Perspective As, enter a name for your custom
perspective.

3. Click OK.

Your customized perspective is saved in your workspace. The button in the
shortcut bar displays the new name when you hover the cursor over it.

Switch back to the Application Development perspective by selecting it on the top
right side and resetting it with Window > Reset Perspective. It should once again
appear as shown in Figure 1-1.

Figure 1-2 Perspectives Shortcut Bar

Application Development Perspective

Open a Perspective

1 Overview
1.6 Understanding Cross-Development Concepts

11

1
Workspaces

Workbench uses a workspace to hold different types of information, including:

■ Information about a set of projects, including project names, lists of files for
each project, and build specifications.

■ Information about the current session, including the types and positions of
your windows when you last exited Workbench, current projects, and installed
breakpoints.

When you start Workbench, you are asked to specify a workspace to store your
project information. You must have write access to the workspace you are going to
use.

The default location proposed by Wind River Workbench may be sufficient, but
there are several situations in which specifying a different workspace is useful:

■ To separate your workspace from the installation directory and from that of
others (recommended).

■ Your target and host may share a root file system. In those cases, it may be
useful to place your workspace inside the root file system you export to the
target. (See 3.8 Configuring a Target Connection, p.35 for more information.)

■ To keep different sets of projects separate: each workspace has its own set of
projects.

■ To run two or more instances of Workbench (each must have its own
workspace and its own target root file system—see 3.8 Configuring a Target
Connection, p.35).

1.6 Understanding Cross-Development Concepts

Cross-development is the process of writing code on one system, known as a host,
that will run on another system, known as a target.

Cross-development allows you to write code on a system that is readily available
and familiar (such as a PC running Linux or Windows) and produce applications
that run on hardware that you would have no other convenient way of
programming, such as a chip destined for a mobile phone.

Wind River Workbench
User’s Guide, 2.6 Linux Version

12

Hardware in a Cross-Development Environment

A typical host is equipped with large amounts of RAM and disk space, backup
media, printers, and other peripherals. In contrast, a typical target has only the
resources required by the real-time application and perhaps some small amount of
additional resources for testing and debugging.

Working on the Host

You use the host just as you would if you were writing code to run on the host
itself. You can manage project files to edit, compile, link, and store multiple version
of your real-time application code. You can also configure the operating system
that will run on the target.

Connecting the Target to the Host

A number of alternatives exist for connecting the target system to the host, but
usually the connection consists of an Ethernet or serial link, or both.

Advantages of Using Wind River Workbench for Linux Development

Workbench ensures the smallest possible difference between the performance of
the target you use during development and the performance of the target after
deployment of the finished product by keeping development tools on the host.

With Workbench your application does not need to be fully linked. Partially
completed modules can be downloaded for incremental testing and modules do
not need to be linked with the run-time system, or even with each other. The
host-resident shell and debugger can be used interactively to invoke and test either
individual application routines or complete tasks.

Workbench loads the relocatable object modules directly and maintains a complete
host-resident symbol table for the target. This symbol table is incremental: the
target server incorporates symbols as it downloads each object module. You can
examine variables, call routines, spawn tasks, disassemble code in memory, set
breakpoints, trace subroutine calls, and so on, all using the original symbol names.

1 Overview
1.7 Workbench for Linux Development

13

1Workbench shortens the cycle between developing an idea and implementing it by
allowing you to quickly download your incremental run-time code and
dynamically link it with the operating system. Your application is available for
symbolic interaction and testing with minimal delay.

The Workbench debugger allows you to view and debug applications in the
original source code. Setting breakpoints, single-stepping, examining structures,
and so on, are all done at the source level, using a convenient graphical interface.

1.7 Workbench for Linux Development

Workbench is an integrated development environment for creating device
software to run on embedded Linux systems. Workbench is optimized for both
small programs and very large ones with thousands of files and millions of lines of
code. It includes a full project facility, advanced source-code analysis,
simultaneous management of multiple targets, and a debugger with capabilities
for managing multiple processes or threads on a single target or on multiple
targets.

Wind River Workbench
User’s Guide, 2.6 Linux Version

14

15

PAR T II

Getting Started

2 Introduction ... 17

3 Developing Applications (User Mode) 21

4 Configuring Wind River Linux Platforms 47

5 Kernel Debugging (Kernel Mode) 69

Wind River Workbench
User’s Guide, 2.6 Linux Version

16

17

 2
Introduction

2.1 Building Linux Projects 17

2.2 Linux Version Debugging Modes 19

2.1 Building Linux Projects

You can use Workbench to create projects for your generic Linux kernel and
applications, and you can also use Workbench to create platform (kernel and file
system) and application projects for Wind River Linux Platforms.

The choices you see in some menus may differ from those in the examples in this
document depending on your Workbench licensing.

Types of Projects

Workbench has predefined project types for building embedded kernels and
applications, and Wind River Linux platforms and applications. Additional project
types are user-defined applications and native applications. Some of the major
project types available to you are described in this section.

Wind River Workbench
User’s Guide, 2.6 Linux Version

18

User Defined Projects

User defined projects are typically ones where the source code, including makefile,
is provided by you or a third party. You import or reference the source and use the
makefile provided to build it. Workbench provides the Project Navigator as a
convenient way to access your build environment, and the Build Console will
display build output.

Embedded Linux Kernel Projects

This is basically a user-defined build. Typically you would acquire your kernel
source from someplace and it includes a makefile that the project uses. You then
use the Workbench environment to facilitate your builds.

Embedded Linux Application Projects

The embedded application project is a managed build. Workbench provides
default build settings that you can modify as you see fit. It also provides the
makefiles and controls all phases of the build.

Wind River Linux Application Projects

These are similar to embedded application projects, except in this case the build
specs provided are based on the tested and supported targets that are supported
by Wind River Linux. Appropriate libraries, cross-development tools and so on are
also provided, so much of the traditional gathering and debugging of a working
environment is eliminated.

Wind River Linux Platform Projects

Wind River Linux Platform projects are designed for building the entire target
platform, including the kernel and file system. They provide special tools to make
platform configuration, modification, and maintenance easier. Root file systems
are easily built using default settings or you can configure the file system through
a convenient GUI configuration tool that the project provides. Default kernels are
provided for supported targets, and kernel configuration is also easily performed
with a provided GUI configuration tool.

Native Application Projects

Native application projects are managed projects that are developed and deployed
on the host, so no cross-development is required. The build specs assume local
development tools. Additional build specs support team development for when a
team works with a combination of Windows, Linux, and Solaris host
environments.

2 Introduction
2.2 Linux Version Debugging Modes

19

2

2.2 Linux Version Debugging Modes

The chapters in the Getting Started section describe how to use Workbench in
different modes.

Depending on your needs and the version of the Linux kernel you are running on
your target, you will use one or more of the following debug modes:

■ User mode—This debug mode allows you to perform source code debugging
of user mode applications, including multi-process and multi-thread
debugging. In user mode, a usermode agent on the target communicates with
Workbench on the host, where you can edit your source code, step through the
application, set breakpoints, and so on. User mode debugging is available for
targets with Linux version 2.6 kernels and also Linux versions 2.4.20 and later.
Refer to 3. Developing Applications (User Mode) for a tutorial on the use of
Workbench in user mode.

■ Kernel mode—This debug mode allows for source code debugging of Linux
kernels version 2.6.10 and later. The kernel must be patched for the Kernel
GNU Debugger (KGDB), which communicates with the standard GNU
debugger (GDB) on the host. (KGDB is enabled by default for Wind River
Linux kernels and only needs to be disabled when going to production.)
Kernel mode source code debugging allows you to debug the kernel using
suspends, breakpoints, and so on, as you would with user mode debugging.
Kernel mode debugging is described in 5. Kernel Debugging (Kernel Mode).

■ Dual Mode—In dual mode, you can toggle between user mode and system
mode. Dual mode is supported for Linux 2.4 version kernels. It is not
supported on the newer 2.6 kernel versions. Dual mode requires that you build
the appropriate Linux kernel with the supplied Wind River WDB agent. Dual
mode operations, including building the kernel and downloading it to the
target, are described in F. Configuring Linux 2.4 Targets (Dual Mode).

NOTE: If user mode and KGDB debugging connections are used in parallel for
the same target, the user mode connection stalls when a KGDB breakpoint is
reached.

Wind River Workbench
User’s Guide, 2.6 Linux Version

20

21

 3
Developing Applications (User

Mode)

3.1 Introduction 22

3.2 Starting Workbench 22

3.3 Using Workbench 24

3.4 Creating a Project 26

3.5 Using the Editor 28

3.6 Configuring Project Properties 32

3.7 Building the Project 33

3.8 Configuring a Target Connection 35

3.9 Connecting to the Target 37

3.10 Running and Debugging on the Target 39

3.11 Creating Projects at External Locations 44

Wind River Workbench
User’s Guide, 2.6 Linux Version

22

3.1 Introduction

This chapter is designed as a tutorial on application development with
Workbench. It takes you from an introduction to using Wind River Workbench
through running and debugging a cross-compiled application on a target system.
It begins with the classic Hello World program to demonstrate default Workbench
perspectives and views that you can use to compile, run, and debug a program. It
also shows how to use a native-debug configuration in which your Workbench
host serves as your target. The first example requires only that Workbench be
installed on a Linux host computer.

Further examples expand on this functionality by building a project in cross-debug
mode, in which the target has an architecture different from the host and you use
the proper cross-compiler and related development tools for that architecture. As
you continue with the tutorial, you will cross-compile an application for the target,
connect to the target, and run and debug the application on the target. While
reading the tutorial is useful, you will learn more quickly if you work through the
tutorial on your computer.

3.2 Starting Workbench

The executable to start Workbench is located in installDir, the location where
Workbench is installed.

The command to start Workbench from installDir is:

$./startWorkbench.sh

This is the basic Workbench startup command. There are also a number of
arguments you can apply at startup as described in the section Running Eclipse in
Eclipse Workbench User Guide:Tasks in the online Help.

NOTE: Before starting Workbench, make sure your path environment variable is
set to include the path to your compiler.

3 Developing Applications (User Mode)
3.2 Starting Workbench

23

3

When Workbench starts, the initial Welcome screen appears with several options.
For now, go ahead and begin using Workbench, and note that you can come back
to the initial Welcome screen at anytime by selecting Help > Welcome from the
Workbench window.

Click Workbench.

The Application Development perspective is displayed. XREF shows the default
arrangement of the views in the Application Development perspective

NOTE: On a Windows host, from the Start menu select
Programs > Wind River > Workbench 2.6 > Wind River Workbench 2.6. If you
are using a Windows host, you can perform this part of the tutorial up to the point
where you are asked to connect to the localhost target, at which point you should
skip ahead to 3.4 Creating a Project, p.26.

NOTE: Workbench preserves its configuration when you close it, so that the next
time you start Workbench, it resumes where you left off in your development.To
restore its default settings, select Window > Reset Perspective.

Wind River Workbench
User’s Guide, 2.6 Linux Version

24

3.3 Using Workbench

The following example uses the native development environment in which
development tools such as gcc are on your host computer and in your $PATH
setting. You do not need cross-development tools for native development.

Figure 3-1 Default Application Development Perspective Views

3 Developing Applications (User Mode)
3.3 Using Workbench

25

3

Workbench starts by displaying the Application Development perspective with
several different views. (If you have not already started Workbench, follow the
steps in 3.2 Starting Workbench, p.22, and then continue with the procedure in this
section.)

1. In the Project Navigator on the left, right-click and select New > Example.

2. In the New Example dialog box that opens, select Native Sample Project and
click Next.

3. In the New Project Sample dialog box that opens, select
The Hello World Demonstration Program and click Finish.

4. The hello_world sample project is created. Expand the project folder in the
Project Navigator to see the sample contents.

The sample project contains all the necessary files to build the program.

5. Right-click the hello_world project folder and select Build Project. The
executable is built. The Build Console at the bottom of the Workbench
window will display build output. If you expand the build target (blue
container) in the Project Navigator you can see the resulting executable
hello_world. This is the build output or build result.

6. Your compiled application is now ready to be run on your target, but you must
first make a connection to the target. In this case, you will use your local Linux
host as the target. (If you are not using a Linux host, skip ahead to 3.4 Creating
a Project, p.26.) In the Target Manager on the bottom left, select the
linux_native_localhost entry and click the green connection button.

7. A default output window appears.

8. In the Target Manager, right-click Processes and select
Debug > Debug Process on Target.

9. In the Main tab of the dialog, find Exec Path on Target and browse to the
location of the Hello World program (hello_world) to select it. It will be under
workspace/hello_linux/Linux-gnu-native_DEBUG or a similar location
depending on your configuration. Select it and click OK.

10. Click Debug. The process executes until it comes to the main() routine in the
program.

NOTE: The particular project choices you see may differ depending on your
installation.

Wind River Workbench
User’s Guide, 2.6 Linux Version

26

Workbench is now in the Device Debug perspective showing the Debug view
in the upper right with execution stopped at the main routine of hello.c. Also,
the source file is open in the Editor, and other views appropriate for typical
debugging operations are open.

In the Debug view, note the process ID following the entry for hello_world.To
display all the processes running on the target, click the arrow next to
Processes in the Target Manager. Scroll down if necessary until you find the
process ID of hello_world and expand it. It will show the process as stopped.

11. Move your mouse cursor over the buttons at the top of the Debug view to see
the debug functions that you can perform.

12. Click the Step Over button (or press F6). The program advances one line in the
Editor, and Hello World! displays in the Console view.

13. You can continue stepping through the program, or click the Resume button
(F8) to complete it. When the program has completed, the Debug view
provides its exit status.

14. To remove old information from the Debug view, click the
Remove All Terminated Launches button.

3.4 Creating a Project

The Project Navigator lets you visually organize projects to reflect their inner
dependencies, and therefore the order in which they are compiled and linked.

In this section, you will create a project folder and import existing source files into
it.

The project you prepare in this section uses cross-debug mode, in which the output
runs on an architecture different from your development architecture. The
example supplied uses a PowerPC target and associated cross-development tools.

NOTE: You can use function keys as shortcuts to perform many of the
operations performed with the buttons. For example, F6 performs the Step
Over function and F8 is Resume. Click the Run menu item to see function keys
for other common activities.

3 Developing Applications (User Mode)
3.4 Creating a Project

27

3

The rest of this chapter uses the ball sample program, written in C. This program
implements a set of ASCII-character balls bouncing in a two-dimensional grid. As
the balls bounce, they collide with each other and with the walls. You see the balls
move by setting a breakpoint with the property continue-on-break at the outer
move loop, and watch a global grid array variable in the Memory window.

Creating a Wind River Linux Application Project

Create a new application project in your workspace as follows:

1. Click the Wind River Workbench project icon in the upper-left corner of the
Workbench window. You can find the names of the icons by letting your
mouse cursor hover over them. (The icon looks like a Workbench window
with a “W” on it.)

2. Select your target operating system (Wind River Linux Platform) in the new
project dialog and click Next.

3. For Build Type, select C Application and click Next.

4. Enter a name for the project, such as ball, and click Finish.

The new ball project appears in the Project Navigator. Click the arrow to the left of
the ball folder to expand it and see the files created for the project. Note that the
default build target name (in parenthesis after Build Targets) indicates that
ball.out will be created in a subdirectory of ball with that name. The build target
name is based on the default build spec, which you will choose later in this
tutorial—don’t worry if it does not match your target architecture at this point.

Importing Existing Source Files

In the following procedure, you import the ball program example source files into
your new project.

1. To import the existing source files of the ball program, right-click on the ball
project you created in the previous procedure and select Import.

2. In the Import dialog box, select File System and click Next.

3. For the From Directory field, click Browse. Browse to
installDir/workbench-2.6/samples/ball and click OK.

Wind River Workbench
User’s Guide, 2.6 Linux Version

28

4. In the Import dialog box, select the check box next to the ball folder.

The four files in that folder are now pre-selected in the right pane, and the
Into folder field includes ball.

5. Click Finish. The four new files are now included in the project in the
Project Navigator.

3.5 Using the Editor

In this section you exercise various aspects of the built-in Editor before moving on
to the next section where you will build the project you created in the previous
section.

Opening a Source File

The default Application Development perspective includes an area for the Editor
in the center and an Outline view on the right.

Expand the ball folder and double-click the main.c file. The file displays in the
Editor.

The Editor uses preference-based color syntax highlighting.

The code displays using a fixed font. Use the Workbench preferences settings to
modify the font.

1. Select Window > Preferences > General > Appearance > Colors and Fonts.

2. Expand the Basic folder in the Colors and Fonts pane and select Text Font.

NOTE: If you prefer, you can specify that the Workbench editor emulate the vi or
emacs editors by clicking the appropriate icon on the title bar. Refer to additional
editor preference s in Window > Preferences > General > Editor and additional
online information at http://help.eclipse.org.

3 Developing Applications (User Mode)
3.5 Using the Editor

29

3

3. Click Change. Change the font to:

■ Family: Courier 10 Pitch
■ Style: Regular
■ Size: 10

Click OK.

4. Move the Preferences dialog box out of the way to uncover the main.c Editor
window if necessary, click Apply to see the changes without closing the dialog
box.

5. Explore and experiment with any other preferences. Then click Restore
Defaults if you prefer the default settings.

6. Click OK.

3.5.1 Navigating in Source

Several mechanisms make it easy to navigate in the source code.

Using the Outline View

In the Outline view, click any name in the list to immediately focus the Editor on
the declaration of that name. Hover over the buttons on the Outline view toolbar
to see how to filter the list of names in the view.

The Outline view is limited to the names declared in the file that is open in the
Editor. To find the declaration of any symbol, right-click the symbol, then click
Navigate > Show Declaration.

For example:

1. In the Outline view, click main().

2. In the Editor, click the call to gridInit() to highlight that line.

3. Right-click gridInit() and select Show Declaration.

The grid.c file opens in the Editor, positioned at the declaration of gridInit().

Finding a Symbol

To open a more advanced symbol search dialog box:

1. Select Navigate > Open Symbol.

The Open Symbol dialog box appears.

Wind River Workbench
User’s Guide, 2.6 Linux Version

30

2. Enter grid*Ball.

As you enter a Pattern for the symbol, including wild cards, Workbench lists
all matching symbols. All symbols that match grid*Ball are displayed.

3. Click Cancel.

Finding a String

To find and optionally replace any string in the active Editor view, use
Edit > Find/Replace (CTRL+F). Use CTRL+K to Find Next and CTRL+SHIFT+K to
Find Previous. See the Edit menu for other choices.

The Search menu provides a grep-like search for strings in any file in the
workspace or in any location.

3.5.2 Using Code Completion

Code completion suggests methods, properties, and events as you enter code.

To use code completion, you can right-click in the Editor and select
Source > Content Assist or use CTRL+SPACE as a keyboard shortcut. A popup list
displays valid choices based on the letters you have typed so far.

For example, with the main.c file in the Editor:

1. Position your cursor inside main() to the right of the first { character and press
ENTER.

2. Type the first two characters of grid and then invoke code completion by
pressing CTRL+SPACE.

A dialog box appears with suggestions.

As you continue to type, your choices narrow.

3. Select gridAddBall(BALL*, POINT): void and press ENTER to add the routine
to the Editor.

3.5.3 Getting Parameter Hints

Parameter hints describe what data types a routine accepts.

When you add a function using code completion, it appears with parameter hints.

3 Developing Applications (User Mode)
3.5 Using the Editor

31

3

You can request parameter hints as you enter code by right-clicking in the Editor
and selecting Source > Parameter Hints. or use the keyboard shortcut
CTRL+SHIFT+SPACE.

3.5.4 Using Bracket Matching

To use bracket matching, position the cursor before an opening bracket or after a
closing bracket.

A rectangle encloses the corresponding bracket to make it easy to locate.

To jump between opening and closing brackets, press CTRL+SHIFT+P.

Bracket matching operates on the following characters:

■ (),

■ [],

■ { },

■ " ",

■ /* */,

■ < > (C/C++ only)

3.5.5 Using Bookmarks to Mark Errors

This procedure introduces an error in the source code and bookmarks it.

Introduce an Error

1. Click main() in the Outline view to go to the main routine in the Editor.

2. Move down a few lines to find the call to gridInit().

3. Delete the semicolon after the call to gridInit().

NOTE: Before you proceed with the tutorial, undo the changes you made to main.c
by selecting File > Revert.

Wind River Workbench
User’s Guide, 2.6 Linux Version

32

Creating the Bookmark

1. Right-click the gutter of the Editor next to that line (the gutter is the shaded
strip at the left edge of the Editor view) then select Add Bookmark.

2. In the Add Bookmark dialog box, enter Correct Error then click OK.

A small bookmark icon appears in the gutter.

3. To save the file with the error, click the Save button on the main toolbar.

4. Close all open files by clicking the X on the tab of their Editor view.

Locating and Viewing the Bookmark

1. To open the Bookmarks tab, select Window > Show View > Bookmarks.

The Bookmarks view shows all bookmarks in the project. Because there is only
one bookmark in this project, only the Correct Error bookmark appears in the
list.

2. Double-click the entry for Correct Error.

The main.c file opens in the Editor with the bookmark location highlighted.

3. Close main.c without making any changes (leave the error).

3.6 Configuring Project Properties

Every project has a set of build properties associated with it. You can use these
build properties to change target specifications, relocate build output, see and
modify the actual build command line, and more.

1. In the Project Navigator select the ball project, right-click, and select Properties
(at the bottom of the context menu).

2. In the Properties dialog, select Build Properties on the left.

3. Select the Build Support and Specs tab on the right. Note the list of available
and enabled build specs, and the default and active build specs on the bottom.

4. Click Disable All and then locate the build spec for your target and select it.
For example, select the check box for the 82xx choice that matches your target.

5. Select the Build Tools tab and select C-Linker from the Build tool menu.

3 Developing Applications (User Mode)
3.7 Building the Project

33

3

6. Click OK to save your modified build properties.

Note that the build target name after Build Targets in the Project Navigator is now
set to the name of your build target.

3.7 Building the Project

If you completed Creating a Project, p.26, the ball project folder now includes all the
files necessary to build and debug the program. In the example in 3.3 Using
Workbench, p.24, you built the Hello World program at this point by right-clicking
on the project folder and selecting Project Build. That example built the program
to run on the local host because the target connection was the localhost connection.

In this example, you will build the program with cross-development tools that
generate a build target for your target architecture. The example uses a PPC target,
but you can substitute your target architecture if it is different. Depending on your
Wind River Linux installation, the installDir/gnu directory contains appropriate
tools for your licensed architecture, including the C language cross-compiler used
in this example.

3.7.1 Building ball With an Error

In 3.5.5 Using Bookmarks to Mark Errors, p.31 you introduced an error in the ball
program source code that you will fix in the following procedure that
demonstrates how to find build errors using Workbench.

1. In the Project Navigator, right-click on the ball project and select Build Project
from the context menu to build the project. Click Continue if a prompt appears
concerning the include search path.

Build output displays in the Build Console tab and entries also appear in the
Problems tab. Click these tabs to move back and forth between their contents
or rearrange your window to view them both simultaneously.

Because there is an error n the main.c file, errors are encountered during the
build process. Notice that Workbench enters a task in the Problems list
showing the type of error, the file the error is in, the location of the file, and the
location of the error. It also shows warnings that occur in other locations in the
code because of the error.

Wind River Workbench
User’s Guide, 2.6 Linux Version

34

2. Double-click the error in either the Build Console view or the Problems view.

The Editor focuses on the erroneous line, with an identical X marking the
position of the error in the file.

3. Replace the semicolon (;) character you deleted in earlier steps.

4. Right-click the bookmark icon in the gutter and select Remove Bookmark.

5. Save and close the file.

3.7.2 Displaying File History

At this point, several changes have been made to the main.c file. Workbench tracks
all changes that are made to any files in the project.

To display the change history on the main.c file, right-click the file in the project
tree and select Compare With > Local History.

The Compare with Local History dialog box appears. The upper area of the dialog
box displays a list of the dates and times when the file was changed. When you
select one of the list entries in the upper part, the lower part displays the file as of
that time on the left, and the version before then on the right (that is, the changes
associated with that save). Note the changes you have just made.

Click OK to close the dialog box.

3.7.3 Rebuilding the Project

Right-click the ball folder at the top of the project tree, select Rebuild Project.

Now the project builds without errors.

3 Developing Applications (User Mode)
3.8 Configuring a Target Connection

35

3

3.8 Configuring a Target Connection

When running applications on your target, the target must be configured with the
appropriate Linux kernel and root file system.

Typically, a boot loader on your target will download a kernel from your host, and
the target will also NFS-mount a root file system from the host. Refer to your
target’s boot documentation for details on how to supply boot parameters. (One
example is given in F. Configuring Linux 2.4 Targets (Dual Mode).) This chapter
assumes the target board has already been configured, and shows you how to run
and debug applications on the target using Workbench on your development host.

The output of your build must appear on the target so that it can be launched from
there for debugging. One way to make your build output appear on the target is to
have your Workbench workspace located in a directory that is shared between the
target and host. This example assumes your workspace is not in a location shared
with the target, so you will redirect the build output to a shared location—the root
directory that the target mounts from the host. This allows you to have your
workspace anywhere on the host, for example in your home directory.

3.8.1 Configure NFS

Configure NFS on your host to export a root file system to the target. In the
example given, /opt/windriver/ppc_85xx is exported to the target named
ppc_target where it is mounted as the root file system (/). Figure 3-2 illustrates the
exported root file system used in this tutorial.

NOTE: To redirect build products to the exported root file system, you must have
write permission in that directory on the host.

Wind River Workbench
User’s Guide, 2.6 Linux Version

36

Redirect Build Output to the Target Root

You must configure your project build properties to export build results to the
target filesystem as follows:

1. Right-click on the ball folder in the Project Navigator and select Properties.

2. Select Build Properties on the left and then select the Build Paths tab. In
Redirection root directory browse to the directory you are exporting as the
target’s root or enter it manually. This is where your cross-compiled build
output will go.

3. Click OK.

3.8.2 Run the Usermode Agent on the Target

When you created the localhost connection to run the Hello World program in
native-debug mode, Workbench started a program called usermode-agent on
your host. This program is used in Workbench communications between target
and host. In cross-debug mode, you have to run the agent on your target before
Workbench can connect to it.

Figure 3-2 Exported Root File System Example

/

opt/

windriver/
ppc_85xx/
bin/ home/ opt/ sys/
boot/ initrd/ proc/ tmp/
dev/ lib/ root/ usr/
etc/ mnt/ sbin/ var/

/
bin/ home/ opt/ sys/
boot/ initrd/ proc/ tmp/
dev/ lib/ root/ usr/
etc/ mnt/ sbin/ var/

PPC Target

Host with Workbench

Export of root
file system

NOTE: Alternatively, if you are using a target that has its own file system, you can
NFS-mount that file system on your host, for example:

mount -t nfs targetbox:/ /opt/windriver/ppc_85xx

3 Developing Applications (User Mode)
3.9 Connecting to the Target

37

3

For Wind River Linux targets, the usermode-agent program is located in /usr/bin.

On the target, change directory to the location of the program and execute it:

$./usermode-agent &

If your target is using the uClibc library, add the -no-threads argument:

$./usermode-agent -no-threads &

Keep this window to your target open to observe possible errors when you run the
program. You are now ready to connect Workbench on your host to the agent on
the target.

3.9 Connecting to the Target

There are several ways to connect to your target and run the ball program. In the
Hello World example, you right-clicked in the Target Manager and selected
Debug > Debug Process on Target. You can also select Run > Debug from the
main menu to get you to the same place. This is the launch configuration dialog for
your project. Modify the default launch configuration to the way you want it and
you can then use it at any time to connect to your target and launch the program
in one step.

1. Select Run > Debug to begin to create a new debug launch configuration.

2. Under Configurations, select Process on Target.

3. Click the New launch configuration icon. An area for creating a launch
configuration is displayed in the right part of the dialog box.

NOTE: You can run the agent as a user or as root, but note that the processes you
launch from Workbench will run as the user that started the agent on the target.

NOTE: Wind River can only qualify usermode-agent binaries for Wind River
Linux. If you are using another version of Linux you may find an appropriate
usermode-agent binary in installDir/linux-2.x/usermode-agent. If you find that
the supplied usermode-agent does not work properly, you can re-compile
usermode-agent with your cross-development tools using the source provided.
Refer to Building the Usermode Agent, p.45 for an example of building
usermode-agent in Workbench.

Wind River Workbench
User’s Guide, 2.6 Linux Version

38

4. Beside Name, accept the supplied name or enter a new name for the launch
configuration, such as ball.

1. Click Add beside the Connection to use entry.

The New Connection dialog box appears.

2. Select Wind River Linux User Mode Target Server Connection and click
Next.

3. Select your target operating system and click Next.

4. In the User Mode Agent Options dialog box browse to the location of
usermode-agent in the target’s root file system as seen from the host. This is
typically /usr/bin/usermode-agent on the target so it will be something like
/opt/windriver/ppc-85xx/usr/bin/usermode-agent here, depending on where
you have located your target operating system.

Click Next.

5. The Target Server Connection for Linux User Mode dialog box appears.

In the Target Name / IP Address box, enter the hostname or IP address of your
target. As you type, the information will be entered in the Command Line
section at the bottom of the dialog box.

In the Target Filesystem section, Root Filesystem box, enter the path to the
directory that the target mounts. In this example, the target is mounting
/opt/windriver/ppc_85xx as its root file system.

Click Next.

6. The Object Path Mappings dialog box shows where Workbench looks on the
host to find objects that are on the target. Note that the target’s root (/) has been
mapped to the exported file system (/opt/windriver/ppc_85xx). Click Next.

7. Click Next to accept the default auto-refresh settings, and click Next to accept
the default breakpoint options.

8. Click Finish in the summary window.

9. The connection you created now appears in the Connection to use entry and
the connection is attempted. If successful the Target Manager in the lower-left
of your Workbench window shows the connection labeled as [connected], and
you can click the arrow next to it to expand it and see entries for the target
architecture and processes.

10. Click Browse for the Exec Path on Target entry. Find the executable ball.out
program in the root redirection directory (in this case, under /ball).

3 Developing Applications (User Mode)
3.10 Running and Debugging on the Target

39

3

11. Click Apply and Close.

Note that with Workbench connected to the agent on the target, and your build
results redirected to the target, you are now ready to run and debug
applications on the target from Workbench.

3.10 Running and Debugging on the Target

If your Debug view is not still open from the previous procedure, select
Run > Debug to open it and select your launch on the left to display the launch
configuration.

1. Click Debug to connect to your target and launch the program.

Several events occur:

■ Workbench builds the program.

■ Workbench connects to the target if not already connected.

■ Workbench switches to the Device Debug perspective.

■ Workbench downloads the program and runs it on the target (in this case
as an ordinary Linux application program).

■ The program executes up to main() and breaks.

■ Workbench opens the source file, highlighting the location of the program
counter where execution has stopped in the main routine.

2. You can see that the program has stopped at a breakpoint by looking at the
Debug view in the upper-right corner of your window.

3. When you connect to your target and launch the program, the connection
displays in the Target Manager with [connected] beside it. The type of target
and version of Linux that is running is displayed under the connection
definition. You can expand this node to display any tasks that are running.

NOTE: Instead of using the Run > Debug > Debug sequence of menu
selections, you could use the shortcut function key F11 or click the debug icon
(looks like a bug) in the main menu bar.

Wind River Workbench
User’s Guide, 2.6 Linux Version

40

Scroll down and find the stopped ball.out process. It will have the same
process ID shown with the stopped process in the Debug view.

4. The Workbench window now displays the Device Debug perspective with the
source file open and the line highlighted corresponding to the point at which
the program stopped.

Now that you have created a launch configuration, you do not have to go through
these steps each time you want to test your application—the connect, run, and
attach debugger steps are all pre-configured. You can use a launch configuration
in either run or debug mode. You can do any of the following:

■ Click the Run button in the toolbar to run the most recently launched
application, or press CTRL F11.

■ Click the Debug button in the toolbar to debug the most recently launched
application or press F11.

■ Click the arrow next to the Run button in the toolbar to select an application
to run from among your most recent launches.

■ Click the arrow next to the Debug button in the toolbar to select an application
to debug from among your most recent launches.

Refer to 16. Launching Programs for more information on the run and debug modes
of launch configuration.

The Device Debug perspective which opened when you launched the program is
discussed next.

NOTE: You can connect to the target from the Target Manager or the Project
Navigator instead of using a launch configuration. Connecting this way
automatically creates a launch configuration for you, which can be accessed by
right-clicking in the Debug view.

3 Developing Applications (User Mode)
3.10 Running and Debugging on the Target

41

3

3.10.1 Using the Device Debug Perspective

The default Device Debug perspective includes views suited to executing and
debugging a program, including the Project Navigator and Target Manager as
before, but replacing the Outline view with the following elements:

■ The Debug view

■ The Breakpoints view

■ A tabbed notebook that includes the Local Variables, Watch, Registers, and
Console views

Notice that the new perspective is present in the shortcut bar at the top right edge
of the Workbench window, where a button for Device Debug perspective has
been added to the buttons for Open a Perspective and the
Application Development perspective. Switch between the two perspectives by
clicking their buttons.

As with the Application Development perspective, the views in the Device Debug
perspective can be repositioned to suit your needs.

The action of the ball sample program is viewed in the Memory window.

To set up the Device Debug perspective to match this tutorial, do the following:

1. Select Window > Show View > Memory.

2. Click the Memory tab at the bottom right, then click the title bar and drag it
over the Build Console view (wait for an icon of a set of stacked folders to
appear at the cursor as you move it), and drop the view.

3. Select Window > Show View > Watch. Get the address value of the grid
global variable by entering grid under Name in the Watch view and pressing
ENTER.

4. Enter the value displayed into the memory window address bar and press
ENTER.

The Device Debug perspective now appears as shown.

Wind River Workbench
User’s Guide, 2.6 Linux Version

42

3.10.2 Stepping to Initialize the Grid Array

Press F6 (or use the Step Over button in the Debug view) twice to step from the
entry point of main() to the call to srand(). Using F6 twice causes Workbench to
step over and complete the execution of gridInit(). (All the run controls are
available on the Run menu, and also as arrow buttons in the Debug window.)

Adjust the Memory window to show the box outlining the grid on which the balls
will bounce.

■ Right-click in the Memory window and select Display > Item size - 8 bytes.

■ Drag the right or left borders of the Memory window to make it exactly wide
enough, and drag the top and bottom borders to make it high enough for the
box in the text area of the window to appear correctly as shown below.

3 Developing Applications (User Mode)
3.10 Running and Debugging on the Target

43

3

If the box does not appear, make sure the address you entered in the Memory
window is that of the grid global variable.

3.10.3 Setting and Running to a Breakpoint

1. Now scroll down in main.c past the three initialization for loops and set a
breakpoint at the while statement as described in the comment above it.

2. To set the breakpoint, double-click in the gutter next to the while statement.

A blue dot appears in the gutter, and the Breakpoints view displays the
module and line number of the breakpoint.

3. With the breakpoint set correctly, run to it by pressing F8 or clicking Resume
a few times. Execution stops each time it hits the breakpoint.

4. Examine the Memory window as you repeatedly resume execution. You
should see the balls of the sample program move in the grid. The highlighting
in the figure indicates changes since the last refresh.

NOTE: If no comment appears above the while statement, click the + symbol
in the gutter next to it to unfold the comment. You can click the + symbol again
when you are done reading the comment to fold it away.

Wind River Workbench
User’s Guide, 2.6 Linux Version

44

3.10.4 Modifying the Breakpoint

Next, change the behavior of the breakpoint so that at each break, the display will
refresh (showing the bouncing balls) without stopping execution.

1. Right-click the breakpoint in the gutter, or in the Breakpoints view, and select
Breakpoint Properties from the context menu.

The Line Breakpoint Properties dialog box appears.

2. Click the Continue on Break check box, click OK.

Now press F8 or click the Resume button to watch the balls bounce in the
Memory window.

When you are done, you can click the red box button in the Debug view to
terminate the process and click the grey Xs to remove the terminated launch.

3.11 Creating Projects at External Locations

In the example of the ball program, you imported existing files into a project in
your workspace. In some cases, you may prefer to use the files in their existing
location rather than, for example, maintaining copies of the files in two separate
locations. You can do this by creating a user-defined project at the location of the
source files. The project still appears in the Project Navigator like any project in
your workspace, but the actual files, including Workbench metafiles (.project and
.wrproject) are located in a location external to your workspace directory.

3 Developing Applications (User Mode)
3.11 Creating Projects at External Locations

45

3

Building the Usermode Agent

The following example shows how to build the usermode-agent at an external
location, using the source files that come with the Workbench installation.

1. Create a new user-defined project by right-clicking in the Project Navigator
and selecting New > User-Defined Project, so that the makefile in the
supplied source will be used.

2. If prompted, select your target operating system.

3. In the New User-Defined Project dialog box, assign a project name such as
usermode-agent.

4. Select Create project at external location.

5. Click Browse and locate the usermode-agent source files located in
installDir/linux-2.x/usermode-agent/1.1/src. Click OK, then Next.

6. In the Project Structure dialog box, click Next.

7. In the Build Support dialog box, select User-defined build. Leave the
Build command text as it is for now. Click Finish.

8. Expand your new project in the Project Navigator. Notice that the project
contains the usermode-agent source files as well as the project metafiles. Scroll
to the README file and double-click it to open it in the Editor.

9. In the README file, find the appropriate make text for your target
architecture and copy it. (If you are building usermode-agent for a Wind River
Linux target, refer to Building the Usermode Agent for Wind River Linux, p.45.)

10. In the Project Navigator, right-click the project folder and select Properties.
Select Build Properties and in the Build Support tab, replace the
Build command text with the make text you copied from the README file,
substituting any values as appropriate for your environment.

11. You can now build the project. The resulting binary will appear in the bin/arch
subdirectory of the src directory.

Building the Usermode Agent for Wind River Linux

If you are building the usermode agent for a Wind River Linux target, use the
command:

$ make -f Makefile ARCH=ARCH CROSS_COMPILE=${WIND_GNU_PATH}/bin/Cross_Compile
LINUX_ROOT=/nonexistent TOPDIR=/path_to_workspace/project_name

Wind River Workbench
User’s Guide, 2.6 Linux Version

46

See E. Wind River Cross Compiler Prefixes for correct values for ARCH and
Cross_Compile.

47

 4
Configuring Wind River Linux

Platforms

4.1 Wind River Linux Platform Projects 47

4.2 Configuring Wind River Linux Platform Kernels 51

4.3 Adding Kernel Modules to the Platform 53

4.4 Configuring User Space 55

4.5 Managing Patches 58

4.6 Automating Target Deployment 66

4.1 Wind River Linux Platform Projects

This chapter describes how to create a new Wind River Linux Platform project,
how to reconfigure the kernel and user space for that project, and how to easily
deploy your new configuration on a target.

Creating a Wind River Linux Platform Project

When you use Workbench to create a new Wind River Linux Platform project, the
choices you see in the project wizard are based on your installation. An initial
configure command is then generated based on the dynamically-generated build
spec.

Wind River Workbench
User’s Guide, 2.6 Linux Version

48

Follow this procedure to create a new platform project:

1. Right-click in the Project Navigator and select New > Wind River Linux
Platform Project.

2. Enter a name for the project and click Next.

3. Depending on your installation you will have different options for selecting a
build spec, a root file system, and a kernel:

■ Select a build spec for your board from the board menu.

■ Select a file system size from the RootFS menu. Possible options are
glibc_cgl for carrier grade Linux, glibc_full for standard Linux,
glibc_small for a Busybox-based file system, and uclibc_small for one
based on uClibc.

■ Select a kernel. Possible options are cgl and small.

The Command window displays the configure command with arguments
corresponding to your choices. Click Next unless you want to modify the
configure command argument list as described in the next step.

4. If you want to add or modify arguments to the configure command, select
Options. You can then enter options directly or select from the list provided,
editing them as appropriate. Substitute actual values for DIR, BUILD, and so
on, and choose between options specified in square brackets and separated by
lines. For example, if you select the following option:

--with-toolchain-version=[STRING|current]

you would substitute a value for STRING or use “current” as in:

--with-toolchain-version=current

Note that if you select an argument from the list that contains a DIR value to
be replaced, the Browse button becomes enabled and you can browse to
choose the appropriate directory. Click Add to add each additional option.

When you have finished adding options, click OK and then click Next.

5. Click Next to accept the default Build Support dialog box choices.

6. Click Finish in the Static Analysis dialog box to begin project configuration. If
you enable Static Analysis you will incur a severe performance penalty as the
tens of thousands of files involved in building a kernel are scanned.

The configure command is executed and output appears in the Build Console.
The configure command output and additional information is also stored in the
project’s creation.log file.

4 Configuring Wind River Linux Platforms
4.1 Wind River Linux Platform Projects

49

4

At this point you can build the kernel, file system, and other targets, as described
next. You can also reconfigure kernel parameters as described in 4.2 Configuring
Wind River Linux Platform Kernels, p.51 and add or remove RPMs from the file
system as described in 4.4 Configuring User Space, p.55 before building your target.

Contents of a Wind River Linux Platform Project

A new Wind River Linux platform project creates two subdirectories or folders in
your workspace—one with the name of your project (project) and another with the
name of your project with a _prj extension (project_prj).

The project folder contents appear in the Workbench Project Navigator and include
the following:

■ Kernel Configuration node—right-click and select Build Target to view and
modify the kernel’s .config file (see 4.2 Configuring Wind River Linux Platform
Kernels, p.51).

■ User Space Configuration node—right-click and select Build Target to add or
remove file system RPMs (see 4.4 Configuring User Space, p.55).

■ build nodes:

■ all—right-click and select Build Target to build all targets.

■ cramfs—right-click and select Build Target to build a CRAMFS file
system.

■ delete—right-click and select Build Target to clean the project file. This
should be used before removing a project by right-clicking on the project
folder and selecting Delete.

■ deploy—deploy the project as described in 4.6 Automating Target
Deployment, p.66

■ fs—right-click and select Build Target to build the root file system.

NOTE: If you are importing an existing platform project into Workbench, the
existing project location will be used and a project_prj folder will not be created.
Wind River Linux Platforms and Workbench are integrated to allow you to use any
combination of Linux command-line and Workbench GUI actions as desired.

NOTE: The Build Console displays the full make command and output when
building the following targets.

Wind River Workbench
User’s Guide, 2.6 Linux Version

50

■ jffs2—right-click and select Build Target to build a JFFS2 file system.

■ kernel-build—right-click and select Build Target to build the kernel.

■ kernel-config—right-click and select Build Target to configure the kernel
using config.

■ kenel-menuconfig—right-click and select Build Target to configure the
kernel using make menuconfig.

■ kernel-rebuild—right-click and select Build Target to rebuild the kernel.

■ kernel-xconfig—right-click and select Build Target to configure the
kernel using make xconfig.

■ ramfs—right-click and select Build Target to build a RAMFS file system.

■ project files:

■ .project—holds the binding of this project to the Wind River Linux target
operating system. It also defines the Workbench link named dist from the
project to the actual dist directory containing the source.1

■ .wrproject—holds the build targets for project, the
Kernel Configuration > General configuration, and the fundamental
build rules (build, rebuild and clean).

■ creation.log—contains detailed configure command output.

■ Makefile.wr—defines the make rules used by the build targets. This is
used for Wind River Linux platform projects in place of .wrmakefile.

The project_prj folder holds the actual project contents such as the dist and export
folders and is identical to a build directory created by the command line tools. This
folder can exist outside of the workspace folder, for example when an existing
project is imported into Workbench. In that case, the platform project has an
Eclipse link to the actual location.

1. The dist link is an Eclipse link, not a Linux symbolic link, so you will not see a symlink
named dist in the project folder.

4 Configuring Wind River Linux Platforms
4.2 Configuring Wind River Linux Platform Kernels

51

4

4.2 Configuring Wind River Linux Platform Kernels

When you build a kernel in a Wind River Linux Platform project, you can easily
view and modify the current kernel configuration with Workbench. This section
summarizes the major uses of the kernel configuration tools. For detailed reference
information on the Kernel Configuration node, refer to Wind River Workbench User
Interface Reference: Kernel Configuration Editor.

Workbench provides a Kernel Configuration node for Wind River Linux Platform
projects that presents the standard Linux configuration choices in a convenient
GUI that quickly shows inter-dependencies and provides additional information
on each configuration option. If you prefer, you can still use the menuconfig or
xconfig interface, either from the command line or by clicking on the menuconfig
or xconfig nodes in the platform project.

Kernel Configuration Node

When you double-click on Kernel Configuration in the project folder a tab with
the name of your project opens in the central view, displaying a configuration
window with two tabs: Overview and Configuration.

Overview Tab

The Overview tab displays the project configuration. This corresponds to the
choices you made when creating a new Wind River Linux Platform project. The
command-line arguments supplied to the configure command to create the initial
configuration are shown at the bottom of the view.

Configuration Tab

The Configuration tab consists of two windows. The top window presents the
items for configuration that may be familiar to you from using menuconfig or
xconfig to configure kernels. The lower window consists of three tabs for Help,
Dependencies, and Kconfig that provide additional information on the items you
select in the top window.

NOTE: By moving your cursor around inside the Kernel Configuration view, you
can find the drag points to enlarge view sections.

Wind River Workbench
User’s Guide, 2.6 Linux Version

52

When you select an item in the top window, Help appears in the Help tab. Select
the Dependencies tab to see any items your selected item depends on, or items
that depend on it. Double-click on any item dependency to move to it in the top
window. Select the Kconfig tab to see the definition of the item and the file system
location where it is defined. If you click on the file path link shown in blue the file
is added to the Edit view and you are placed at the location of the item definition.

Create a new kernel configuration by modifying the settings of menu items in the
top window. The current configuration status of items is indicated by the icons
associated with them. (Refer to Wind River Workbench User Interface Reference: Kernel
Configuration Editor for a detailed description of the icons in the menu.)

The Configuration view does not show all items as some of them are disabled due
to dependency conditions. To view all items, including disabled items, right-click
in the Configuration view and select Filters > Show All. The disabled items are
shown as greyed-out. You can still select them and view the Dependencies tab to
understand the reasons they are disabled.

Modifying the Configuration

For example, if you want your kernel to include support for PCMCIA or CardBus
cards, find Bus options in the scroll-down list, click on the arrow to expand it and
then click on the arrow next to PCCard. This displays the entry for PCCard
support. This is a tri-state configuration item which can be set to n for not included,
m for included as module, or y for built-in. Double-click on the item to change the
setting. See the Help tab for details on what the settings mean for the particular
item.

To find options, for example those concerned with USB support, select Edit > Find
and enter the string USB.

To generate the new kernel, right-click reconfig in the project folder and select
Build Target.

To save the configuration file select File > Save.

4 Configuring Wind River Linux Platforms
4.3 Adding Kernel Modules to the Platform

53

4

4.3 Adding Kernel Modules to the Platform

You can create a kernel module as a subproject of a kernel project, and the kernel
module subproject will inherit the kernel build properties. This makes creating a
kernel module a simple task. Workbench comes with a sample kernel module
project that demonstrates this and is shown in the following procedure.

1. From the main menu bar, select File > New > Example and select
Wind River Linux Sample Project. Click Next.

2. Select Wind River Linux Kernel Module Sample Project and click Next.

3. Select Kernel Module Debug 2.6 Demonstration and double-click on it or
click Finish. A new project called moduledebug_2_6 appears in the Project
Navigator.

4. Select the platform project that you have already built the kernel for and to
which you are going to add this new kernel module project. Then right-click
and select Properties > Project References.

5. Select the check box for moduledebug_2_6 and click OK. The
moduledebug_2_6 project will disappear from the project level and appear as
a subproject inside your selected platform project.

6. Expand the platform project and find moduledebug_2_6. Right-click on
moduledebug_2_6 and select Build Project.

After the successful build you should see the moduleDebugSample.ko kernel
module in the moduledebug_2_6 subproject.

NOTE: The following procedure assumes you have already built the kernel in a
platform project. You will make the kernel module in this procedure as a
subproject of that platform project.

NOTE: If you see va_list errors here it probably means that you have not yet
built the kernel in the platform project. You should do that before building the
kernel module subproject. You an build the kernel in a project by right-clicking
on kernel_build, and selecting Build Target.

NOTE: If you select the subproject and right-click and select
Properties > Build Properties, you can see how the kernel root directory,
target architecture, and cross-compiler prefix have been set from the parent
platform project.

Wind River Workbench
User’s Guide, 2.6 Linux Version

54

Creating a Custom Kernel Module

It is a simple matter to configure the build system for a custom kernel module
created from your source files once you have created a platform project. In this
example you will directly attach the new module to an existing platform project.
Alternatively, you You could skip that step and enter the KERNEL, ARCH, and
CROSS_COMPILE values directly for an external kernel, or even leave those
fields blank and attach or set them at a later date.

When you build this custom kernel module, note that the generated Makefile
automatically includes the module's source files, and the module name has been
set from the project name.

1. Right-click in the Project Navigator and select
New > Wind River Linux Kernel Module Project.

2. Assign a name to your kernel module project and click Next.

3. Select a platform project as a superproject for this kernel module and click
Next.

4. Note that the Linux kernel information at the bottom of the dialog is filled-in
because the values have been imported from the platform superproject. Click
Finish.

5. The kernel module project now appears as subproject of the platform
superproject in the Project Navigator.

6. Right-click on the new kernel module project and select
Import > General > File System. Browse to the directory
installDir/wrlinux-1.4/samples/moduledebug_2_6 and click OK. Select the
files bpHere.c and moduledebug.c.

Click Finish.

7. You can now build the module, deploy it, and test it.

NOTE: At this point, of course, you can import your own source files. The files
you are importing in this example are provided as an illustration and can be
used to demonstrate kernel module builds and testing. The moduledebug.c
file provides the module init and exit points, and bpHere.c sets a breakpoint
for testing purposes.

NOTE: If you have not built the platform kernel, you will not be able to build
the kernel module until you do so.

4 Configuring Wind River Linux Platforms
4.4 Configuring User Space

55

4

Moving the Kernel Module Project

To move the kernel module project from one platform project to another, use the
following procedure:

1. Right-click on the kernel module project and select Build Clean.

1. Right-click on the platform project that currently contains the kernel module
subproject and select Properties.

2. Click on Project References and then deselect the kernel module project. Click
OK. The kernel module project re-appears in the Project Navigator at the
project level.

3. Right-click on the platform project that you want to contain the kernel module
subproject and select Properties.

4. Click on Project References and then select the kernel module project. Click
OK. The kernel module project now appears as a subproject of the new
platform project.

5. Right-click on the kernel module project and select Build Clean.

4.4 Configuring User Space

Wind River Linux Platform projects have a User Space Configuration node that
allows you to add and remove RPMs from the target file system.

Double-click User Space Configuration in the platform project to open the
Platform Configuration dialog in the central view. A list of installed packages is
displayed below Installed Packages. If you look in the pkglist file in the project_prj
directory, you will see the same list of files. In Workbench, each package is listed
with its version number and the amount of space it takes.

To get more information on any package, select it and look at the tabs at the bottom
of the view.

■ The General tab gives a brief summary of what the package is.

NOTE: By moving your cursor around inside the Package Configuration view, you
can find the drag points to enlarge view sections.

Wind River Workbench
User’s Guide, 2.6 Linux Version

56

■ The Contents tab lists the various files and directories that the package
consists of.

■ The Dependencies tab displays package interdependencies in two windows:
the Requires window lists the packages that are required by the package you
have selected. The Required By windows lists the packages that require the
package you have selected.

■ The Options tab lets you turn debugging on or off for particular packages.

■ The Targets tab

■ The Log tab

Removing and Adding Packages

Use the Remove and Add buttons to remove and add packages from your
configuration.

For example, you could do the following to remove packages:

1. Select the Dependencies tab and then select a package from the Installed
Packages list that contains entries in both the Required and Required By
windows such as openssl.

2. Click Remove to remove the installed package that you have selected. A dialog
box appears that lists all the packages that will be removed (the selected
package and those packages it is required by) and the total space taken by the
packages.

3. Click OK to remove the packages.

The removed packages now appear in the Installable Packages list. Select
File > Save and look in the pkglist file. The packages will have been removed from
the list in that file.

To reinstall the same packages, do the following:

1. Select them from the Installable Packages list and click Add. A dialog box will
prompt you with the package(s) to be added and the total space involved. If
other packages are required for the package you have selected to be added,
they will be shown in the dialog box as well.

2. Click OK and the package(s) appear in the Installed Packages list.

4 Configuring Wind River Linux Platforms
4.4 Configuring User Space

57

4

You can add back the other packages that you removed and then select File > Save
to restore the package configuration to its original condition. If you look in the
pkglist file, all packages are now listed there.

Note that you can select multiple packages to add or remove at one time.

Debugging Packages

To enable debugging for a package, do the following:

1. Select the package.

2. Select the Options tab.

3. In the Options tab, click the Debug check box.

4. Click Apply.

If you look in the pkglist file and find the package you just marked for debugging,
you find the package name has BUILD_TYPE=debug next to it.

To turn off debugging, do the following:

1. Select the package

2. Select the Options tab

3. Unselect the Debug check box.

4. Click Apply.

Building Packages

Select the Targets tab for a set of buttons of build targets for the selected package.
The build targets are the usual with the addition of prepatch which allows you to
prepare the package for patching and is described in the next section.

Wind River Workbench
User’s Guide, 2.6 Linux Version

58

4.5 Managing Patches

There are two patching models supported by the Wind River Linux build system.

The basic model, called the Classic patching model, carries forward from
wrlinux-1.3 and is based on patch list files and the program patch. This is the
default for command-line configured projects, since this is streamlined for the
validated product.

The other model, called the Quilt patching model, is based on the industry
standard patching tool called Quilt. While Quilt is also based on patch, it provides
an additional rich set of patching features, such as pushing new patches to go
forward, popping patches to go backward, capturing development changes into
new patches, deriving patch annotation data, and more. The Quilt patching model
is the default for Workbench-configured projects because it provides these
advanced patching features.

Once a project is configured and built, you are free to continue with either model.
If, however, you would like to ability to pop backwards down into the product's
Wind River Linux provided patches, then it is better to use Quilt.

This section demonstrates the Wind River patch manager and its many features
and illustrates strategies for resolving potential rejects. Procedures show how to
successfully apply patches, how errors are reported and can be resolved, and how
to accept and generate rejects so that you can track them and resolve them at a later
time.

Applying Patches

This example shows you how to apply patches by using a set of patches that are
known to work, in this case the patches to the apache-ssl package.

Preparing to Patch

In this example, we need a configured platform project that includes Apache, for
example one with the CGL or Standard file system.

1. Select File > New > Wind River Linux Platform Project and create a new
platform project, for example one where RootFS is glibc_cgl and kernel is cgl.
Click Finish to configure the project.

NOTE: There is a configure option -enable-quilt=[no|yes] that can override the
default patching model for a particular project configuration.

4 Configuring Wind River Linux Platforms
4.5 Managing Patches

59

4

2. By default, the project uses the pre-built packages. Open up the project, and
double-click on the User Space Configuration icon.

In the Package Manager scroll down and select the apache-ssl package.

3. Click on the Targets tab below, and then click on the prepatch button. This
unpacks the package and prepares it for patching. You will see the patch
preparation progress in the Build Console.

4. When the prepatch step is complete, you must refresh the project file list.
Right-click on the build directory of the project and select Refresh.

Starting the Patch Dialog

1. Expand the build container within the project, right-click on the apache_1.3.34
directory, and select Team > Apply Patch. This selects the patch default
destination directory and opens the dialog.

2. Select the option Patch list file, and then browse to and select the file
workspace/project_prj/build/apache_1.3.34/WRLINUX_PATCHES click OK
and then click Next.

3. Select the first patch file in the list, apache-native-cc, and click Next. Do not
click the Finish button at this point unless you are absolutely sure that the
patch will apply without rejects.

4. Select the apache_1.3.34 directory and click Next. Again, do not click Finish at
this time.

NOTE: Workbench does not automatically refresh the file list. This is because
of the enormous number of files in a typical platform project (28,000 to 48,000),
where every small change could otherwise force repeated and lengthy delays.
Consequently, when changes are made (packages are expanded or compiled),
you must refresh the project's file list manually.

NOTE: Where did this patch list file come from? When you built the prepatch
target for this package, the Wind River Linux build system created two patch
list files, one for the classic patch model (which is always placed in the file
named WRLINUX_PATCHES), and one for the Quilt patch model (which is
always placed in a directory called WRLINUX_QUILT_PATCHES). The first
file lists the patches with their normal absolute path names, making it easy to
select a patch file that we know will work.

Wind River Workbench
User’s Guide, 2.6 Linux Version

60

Correcting a Patch Path Mismatch

1. You are now at the center of the patch application, the Verify Patch dialog box.

As you can see, all of the patch hunks (a hunk is a group of contiguous lines)
are marked with a red “x”. This indicates that these hunks did not apply
correctly to the source.

Note that the patch hunk groups all have a leading path of apache_1.3.33/. The
package you are patching has the version of _1.3.34 in its directory name
(ending in 4, not 3). The errors are caused by a mismatch of the path within the
patch file, a not uncommon occurrence.

2. Click on the drop-down box for Ignore leading path name segments, and
select 1. Note that the hunks all lose the red “x” error indication. The path
name issue has been resolved.

Browsing Patch Hunks

You can now browse the patch hunks, and see their effect on the source file.

1. There are three hunk groups, one for each target source file affected by this
patch.

2. Click on one or more of the check-boxes for the file hunk group. When
checked, the hunk is applied and the change becomes visible in the Text
Compare area.

3. Double click on a hunk, and observe that Text Compare jumps to that location.

4. Click on the gold up and down arrows in the middle right of the dialog to go
forward and back through the hunks.

You can also click on the marks in the right-hand gutter of the Text Compare
area to jump to hunk locations.

NOTE: If the hunks do not lose the error indication, or the lower source text
box remains empty, then you may need to explicitly refresh the project's file
list. Workbench caches the file list, and if you replace, update, clean, remove,
or expand the file list without a refresh, Workbench may still have the obsolete
file handle. If that is the case you must cancel this dialog, refresh the project's
file list, and repeat the previous steps. If you see the apache_1.3.34 directory
within the build directory, you can limit your refresh to that directory, as
opposed to refreshing the whole project.

4 Configuring Wind River Linux Platforms
4.5 Managing Patches

61

4

5. Observe how the insertion or deletion of patch text is represented in the Text
Compare area. Note in Figure 4-1 how two inserted lines in one hunk go
around an unchanged line and are indicated by two insert notations
(highlighted).

Applying the Patch

Now that the patch is observed to apply cleanly (no red “x”s), you can finish
applying it.

1. Click on all of the hunk groups so that all the patch hunks are selected to apply.

2. Click Finish. This applies the patch. If you were to look at the three target
source files, you can see the changes.

3. Repeat this process with the second (and final) official patch for this package,
the patch file cross_compile.diff.

Figure 4-1 Patch Application Example

Wind River Workbench
User’s Guide, 2.6 Linux Version

62

Patch Reject Resolution

The following procedure applies a patch with known errors to demonstrate some
patch resolution techniques. Copy the patch file mypatch.patch from the appendix
G. Broken Patch File Example and place it in a browsable path on your filesystem.

1. Open the Apply Patch dialog (right-click on apache_1.3.34 in the Project
Navigator and select Team > Apply Patch), select the File option, and browse
to the patch file myApache.patch. Click Next.

2. Select apache_1.3.34 as the resource to patch. (Click Next.

3. When you get to the Verify Patch dialog, you will see that all of the patch
hunks fail. Also, since the target file configure has no leading path, you know
that this cannot be fixed by changing the leading path segments.

4. Set the Maximum fuzz factor to 0. The patch manager looks for a place where
the context lines of the patch match exactly with the file when this setting is
zero. If set to 1, it allows the first and last lines of the context match, and so on.
A little “fuzz” is normal and we are at first being strict to demonstrate fuzz
factor.

5. A typical check to make at this point is to select the Reverse Patch box. Note
that immediately the first hunk now applies correctly, and that the source
appears. This tells you that the patch file was created backwards, resulting in
the hunk changes going in the reverse direction.

6. Select the first hunk by highlighting it —do not check its box yet. Selecting it
in this way locates the Original and Result views at the location where the
patch will be applied to Result. Now check the box for the first hunk and see
how the patch is to be applied in Result.

7. Highlight the second hunk to browse to it, then check the box to see how the
patch is to be applied in Result. Some fuzz factor will be required here—
change the Maximum fuzz factor to 2 and note that the hunk can now be
applied.

8. Highlight the third hunk and select its check box to see how the patch applies.
The problem here is that the source and the patch do not match correctly with
the leading and following context lines, due to the extra <<< SOURCE
FUDGE >>> line expected. Two ways you can correct this are:

a. Add the expected line to the source file. In Workbench, you can simply
select the << SOURCE FUDGE >> line in the Result view and paste it into
the source file in the Original view in the correct location (as a new line
after the blank line following shadow=’’). Then click Update.

4 Configuring Wind River Linux Platforms
4.5 Managing Patches

63

4

b. Alternatively, you could edit the myApatch.patch file to incorporate the
line in the patch. Edit myApatch.patch in a separate editor, make your
changes, and save it. Then click Back twice and click Forward twice to get
the new patch file applied.

9. You can experiment with the remainder of the hunks. Read the annotations on
the patch file in Annotated Patch File, p.374 for additional information. Leave
some hunks in the rejected state to use in the next procedures.

Accepting Rejects, Inline or into Reject Files

Rather than trying to fix the remaining rejected hunks, use this procedure to accept
these rejects for resolution at a later time.

1. Click the check-boxes for the remaining hunks, so that they will apply even
though there are errors. You can see that the rejected hunks appear within the
Result text box, still in their patch syntax form.

2. Click the check box Create Inline Rejection. This will keep the inserted patch
rejections within the target file.

3. Click Finish.

Alternatively, you could have kept the Create Inline Rejection option off. This
would have resulted in the creation of a file called (in this case) configure.rej in the
same directory as the respective target source file.

Review the Accepted Rejections in the Tasks List

Now that you have accepted some rejections, you can use Workbench to keep track
of them.

1. In the Workbench main perspective, locate the Tasks tab in the center lower
view. If there is no Tasks view, you may need to enable and place this
particular view (Window > Show View > Tasks).

2. Observe that there is a new entry in this list—the note about the accepted
rejection.

3. Double-click on this rejection task, and observe that the respective rejection
location appears in the Editor.

Wind River Workbench
User’s Guide, 2.6 Linux Version

64

Viewing Patching Annotation using Workbench

Workbench also supports a patch annotation feature, using a facility provided by
Quilt.

1. In the project container, browse to the following file and select it:

build/linux-2.6.14-cgl/include/linux/sched.h

2. Right-click on this file and select Show Patch Annotations.

3. If prompted to enable quick diff, click Yes

4. After a moment, this file should appear. As you scroll up and down this file,
observe the colored bars in the left hand gutter.

5. Hover the mouse over one of these colored bars. After a few seconds, a pop-up
box appears, giving the name of the patch that contributed this line.

6. Observe that when one of these pop-up boxes appear, some number of boxes
also appear in the gutter on the right. These boxes indicate the other locations
in this file that were contributed by this patch (see Figure 4-2).

NOTE: If the menu item Show Patch Annotations does not appear, that means
Workbench was not able to find the WRLINUX_QUILT_PATCHES directory
generated and required by Quilt.

4 Configuring Wind River Linux Platforms
4.5 Managing Patches

65

4

Figure 4-2 Example of Patch Annotation

Patch Name

Visible Hunks

Other Hunks in
Selected Patch

Wind River Workbench
User’s Guide, 2.6 Linux Version

66

4.6 Automating Target Deployment

You can cause your target to be rebooted with your latest kernel and file system
builds using the deploy target in the Project Navigator.

Edit the installDir/wrlinux-1.4/wrlinux/deploy.conf.in file to include the values as
shown in Table 4-1.

The values you enter in the deploy.conf.in file are used by the deploy.sh.in script.
For example in the following line in deploy.sh.in:

$TARGET_SHUTDOWN_COMMAND $TARGET_ID || exit 1

your shutdown command and target name will be substituted. Refer to the
comments and commands in the deploy.sh.in script if you would like any further
information on how these values are used.

Table 4-1 deploy.conf.in Values

Field and Value Description

USER = validUser Substitute your user name for
validUser. You will be prompted for
the root password during
deployment.

TARGET_FS_DIR =
/nfsRoot/targets/safeToDelete/
testTarget/fs

Replace the provided path with the
path on the host that the target
mounts as its root file system. The
path must contain the string
/safeToDelete.

TARGET_SHUTDOWN_COMMAND
= echo ssh targetServer
/targetCmds/targetShutdown

Replace targetServer with the name
or IP address of your target server,
and replace
/targetCmds/targetShutdown with
the full path to the command you use
to shut down the target.

TARGET_REBOOT_COMMAND =
echo ssh targetServer
/targetCmds/targetReboot

Replace targetServer with the name
or IP address of your target server,
and replace
/targetCmds/targetReboot with the
full path to the command you use to
reboot your target.

4 Configuring Wind River Linux Platforms
4.6 Automating Target Deployment

67

4

Once you have configured the deploy.conf.in file you can easily deploy each new
file system build to your target as follows:

1. Select deploy in the Project Navigator,

2. Right-click in the Project Navigator and select Build Target.

Your target will be deployed with the new file system.

Wind River Workbench
User’s Guide, 2.6 Linux Version

68

69

 5
Kernel Debugging (Kernel

Mode)

5.1 Introduction 69

5.2 Configuring the Target for Kernel Mode Debugging 70

5.3 Kernel Mode Debugging 72

5.4 Working with Kernel Modules 78

5.1 Introduction

Wind River Workbench supports source-level debugging for Linux 2.6 kernels that
support the Kernel GNU Debugger (KGDB). The KGDB functionality is provided
with Wind River Linux platforms.

With KGDB installed, you can debug the kernel much as you debug applications,
including stepping through code, setting breakpoints, and examining variables.
Kernel mode debugging between Workbench and the target takes place over a
serial protocol connection which may be over a serial line or Ethernet.

NOTE: If you are not using a Wind River Linux platform, contact Wind River
support for information on configuring your kernel for symbolic debugging with
Workbench.

Wind River Workbench
User’s Guide, 2.6 Linux Version

70

5.2 Configuring the Target for Kernel Mode Debugging

When you have your Wind River Linux or other kernel configured for KGDB, you
must configure your target with a kernel module as described in this section.

5.2.1 Installing KGDB on the Target

Once you have built your kernel appropriately, you must install the KGDB kernel
module on the target so that it can communicate with GDB on the host.

1. Locate the appropriate KGDB module in your kernel source tree. For an
Ethernet connection it is kgdboe.ko, and for a serial connection it is
kgdb_8250.ko.

2. If your KGDB kernel module is not in a file system exported to the target, copy
it to the target.

3. If you are installing the Ethernet module kgdboe.ko, follow the instructions in
this step. If you are installing the serial module kgdb_8250.ko for use with a
direct or terminal server connection, skip to the next step.

The kgdboe module usage syntax is:

kgdboe=[src-port]@[src-ip]/[dev],[tgt-port]@tgt-ip/[tgt-macaddr]

NOTE: With Wind River Linux, kernel debugging is enabled by default and you
only have to turn it off when going to production. With other versions of Linux be
sure to enable symbolic debugging when building your kernel. For example, select
Kernel hacking > Compile the kernel with debug info when using make
menuconfig. You will use the generated vmlinux file for symbolic debugging.

NOTE: When building your KGDB-enabled kernel, be sure to enable symbolic
debugging. For example, select
Kernel hacking > Compile the kernel with debug info in the make menuconfig
GUI.

5 Kernel Debugging (Kernel Mode)
5.2 Configuring the Target for Kernel Mode Debugging

71

5

For example you might enter the following command on the target:

target_# modprobe kgdboe kgdboe=@/,@192.168.1.8/

where the host running Workbench has the IP address 192.168.1.8.

To specify a different Ethernet device, for example eth2, enter:

target_# modprobe kgdboe kgdboe=@/eth2,@192.168.1.8/

4. If you are installing the serial module kgdb_8250.ko for a direct serial or
terminal server connection, use the following syntax:

modprobe kgdb_8250 kgdb8250=port,speed

where port is the serial (comm) port on the target and speed is baud rate.

For example:

target_# modprobe kgdb_8250 kgdb8250=0,115200

where the local (target) serial port to use is /dev/ttyS0.

5. You can verify your module has been installed with the lsmod command:

target_# lsmod | grep kgdb
kgdboe 6080 0

6. Remove the module only when you are not attached for debugging. To remove
the module, use rmmod:

target_# rmmod kgdboe

NOTE: In the usage statement, tgt is the host running Workbench. This
command is entered on the target so the host is the target from the local
point-of-view.

NOTE: The command above was entered on the target. Only the address of the
host needs to be supplied as the target address default is the local host. The
Ethernet device was not specified, because the target uses the default eth0.

NOTE: In the above command, kgdb_8250 includes an underscore, and
kgbd8250= does not.

Wind River Workbench
User’s Guide, 2.6 Linux Version

72

5.2.2 Booting the Target

You can configure your Workbench host to provide a kernel with TFTP and
NFS-export a root file system to the target. An example of how to do this for Linux
2.4 kernels and the PPC32 architecture is described in F. Configuring Linux 2.4
Targets (Dual Mode). For a target with the IA32 architecture, you could use the GNU
cross-compiler tools and configure a PXE boot environment in which the target
gets its IP address from a DHCP server and its kernel from your Workbench host
acting as the PXE boot server.

For symbolic debugging, the vmlinux symbol file should be accessible to
Workbench on the host.

5.3 Kernel Mode Debugging

This section discusses creating the connection between Workbench and the target
and also how to attach to the kernel core on the target and perform debugging
operations on it.

5.3.1 Types of KGDB Connections

Your target kernel must be configured with KGDB serial or Ethernet capability.
You can connect to the target in one of the following three ways:

■ directly to the target with a standard 8250 serial connection using a
null-modem cable.

■ to a terminal server with TCP. You will need the IP address of the terminal
server and a port number to connect to.

■ by Ethernet with UDP. You will need the IP address of the target and the KGDB
port number (default 6443). The target and host must be on the same subnet.

A Workbench wizard will take you through the process of configuring the
connection, supplying defaults where applicable, as described in the following
procedure.

NOTE: This section assumes you have a target running a KGDB-enabled kernel.

5 Kernel Debugging (Kernel Mode)
5.3 Kernel Mode Debugging

73

5

5.3.2 Creating a KGDB Connection

1. To create a KGDB connection to the target kernel using Ethernet, click the
Create a New Connection button in the Target Manager and select
Wind River Linux kgdb Connection in the Connection Type dialog box.
Click Next.

2. In this example, we installed the KGDB-over-Ethernet module kgdboe.ko, so
select the Linux KGDB via Ethernet connection in the
GDB Serial Connection Templates dialog box and click Next.

If you installed the kgdb_8250.ko module for connection over an 8250 serial
line you would select the Linux KGDB via RS232 connection.

Click Next.

3. In the GDB Remote Serial Protocol Connection Properties page, if you are
connecting over Ethernet, do the following:

■ For Back End, select UDP from the drop-down list (may already be
selected).

■ For CPU, select the CPU type of your target from the drop-down list. If
you are using Wind River Linux, leave this at the default setting default
from target and the target will be automatically identified.

■ Check the box Use character based break (may already be checked).

■ In Name/IP Address, enter the hostname or IP address of the target.

■ For Port, enter 6443 (may already be entered).

Click Next.

If you installed the serial module to connect your target, do the following:

■ For Back End, select RS232 for a direct connection, or TCP for a terminal
server connection, from the drop-down list (may already be selected).

■ For CPU, select the CPU type of your target from the drop-down list. If
you are using Wind River Linux, leave this at the default setting default
from target and the target will be automatically identified.

NOTE: For a serial line connection, you must set the serial port permissions on
the host to allow access, for example:

chmod 777 /dev/ttyS0

or add your user name to the uucp group which has access to /dev/ttyS0.

Wind River Workbench
User’s Guide, 2.6 Linux Version

74

■ Uncheck the box Use character based break (may already be unchecked).

■ Select the appropriate serial connection settings.

Regardless of connection type, the Manual Options box allows you to enter
the location of a debug log, for example debugcmds=/tmp/kgdb.log.

4. In the Target Operating System Settings dialog box, select your target kernel
version from the Booted Target OS on selected CPU drop-down list, and
enter the path to your vmlinux kernel symbol file in the Kernel image field.

Click Next.

In the Object Path Mappings dialog box, click Add to enter the path on your
Workbench host that is the root file system on the target. For example, if you
are exporting /target to the target, enter /target/ (include the terminating slash)
for the Host Path. Leave the Target Path field blank.

Click Next.

5. Click Next in the Target State Refresh dialog box.

6. Click Finish in the Connection Summary dialog box.

7. The connection will be attempted automatically. If successful, the Target
Manager displays the connected message, and the kernel is shown as
Stopped.

NOTE: The New Connection dialog box is called GDB Remote Serial Protocol
Connection Properties whether you are using a serial or Ethernet connection. The
GDB-to-KGDB communication between host and target uses a serial
communications protocol regardless of medium.

5 Kernel Debugging (Kernel Mode)
5.3 Kernel Mode Debugging

75

5

5.3.3 Attaching to Core and Debugging the Kernel

1. To begin kernel mode debugging, in the Target Manager right-click the CPU:
Kernel entry and select Attach to Core.

NOTE: You should have a terminal window open or console access on the target to
perform all the steps in this procedure.

Wind River Workbench
User’s Guide, 2.6 Linux Version

76

2. Workbench shifts to the Device Debug perspective and the Editor opens to the
stopped location in the kgdb.c source file.

3. If you have a terminal window open to the target, you will see that it is
stopped. If you try to enter a command, for example ls, you will find that it
does not return. To resume execution of the kernel, click the Resume button in
the Debug view. Commands entered on the target now work.

4. With the kernel running again, set a breakpoint. Select
Run > Breakpoints > Add Expression Breakpoint and in the
Breakpoint Location and General Attributes dialog box, enter do_fork in the
Location Expression box. Click OK.

5 Kernel Debugging (Kernel Mode)
5.3 Kernel Mode Debugging

77

5

5. Now enter a command on the target. It will not return because execution has
stopped at the fork. The Editor will open the fork.c source file. Clicking the
Resume button will allow the command to complete and the next fork, for
example another command, will again cause a break.

6. To complete this example, remove the breakpoint and click the Resume button
to continue execution of the kernel. To end the session, right-click the target in
the Target Manager and select Disconnect.

5.3.4 Rebooting the Wind River Linux Target

When you are connected to a Wind River Linux target with KGDB, you can reboot
using the command line or the GUI.

When you reboot from the command line the debugger disconnects and waits until
the target comes back up. When the target comes back up the debugger reloads
symbols and re-plants breakpoints.

In Workbench, reboot the target by right-clicking on the connection in the Target
Manager and selecting Reset Connected Target. Workbench reboots the target and
beginning two seconds after reboot begins to try to contact the target. It will try to
reconnect for approximately five minutes and then give up. These time periods are
configurable if you are having trouble connecting to a target after reboots.

Configuring Target Reconnection Parameters

In the Target Plugin Pass-through Options field of the Target Manager’s
Connection Properties window, you can modify the amount of time Workbench
waits before attempting to contact the target or how long it keeps trying to contact
the target after a KGDB reboot.

To change the length of time that Workbench waits before giving up on the target,
set the resetwait parameter. The default is 150 which is approximately five
minutes.

! CAUTION: It is not advisable to single-step in the kernel, especially over spin
locks or Ethernet code when your KGDB connection is by Ethernet.

NOTE: If you recompile the kernel, you must disconnect before rebooting the
target. This is not necessary with a Wind River Linux target as described next.

Wind River Workbench
User’s Guide, 2.6 Linux Version

78

To change the length of time Workbench waits before attempting to contact the
target after rebooting, set the bootwait parameter. The default is 2 for two seconds.

Separate multiple parameters with semicolons. For example, to change both times
you could enter:

bootwait=25;resetwait=50

Then close the dialog box and make the connection to the target.

5.4 Working with Kernel Modules

Workbench includes a sample project to demonstrate kernel module debugging as
discussed in this section. This example requires that you have access to the kernel
source you used to build the kernel and that you have terminal or console window
access to the target.

5.4.1 Build the Sample Module

1. Start Workbench and select File > New > Project. In the New Project dialog
box, expand the Examples node, select Embedded (or Wind River)
Linux Sample Project and click Next.

2. In the Sample Project Template dialog box, select
Kernel Module Debug 2.6.10 Demonstration and click Finish.

3. A new project called moduledebug_2_6 appears in the Project Navigator. This
is a user-defined project so it supplies its own Makefile. To modify the build
properties for your environment, right-click the moduledebug_2_6 project
folder and select Properties.

4. Select Build Properties on the left of the Properties dialog box and select the
Build Support tab. You must replace the values in brackets ({}) in the Build
command box with appropriate values for your environment:

■ For {linux_src_dir}, substitute the appropriate path for your kernel source
files.

■ For {path_to_workspace}, substitute the full path name of the workspace
you are using.

5 Kernel Debugging (Kernel Mode)
5.4 Working with Kernel Modules

79

5

■ For {ARCH}, substitute the name of your target architecture, for example
ppc.

■ For {cross_compile_prefix}, substitute the prefix, including the
terminating dash (-) of your cross-compiler commands. For example, if
your cross-compiler tools have names such as powerpc-gnu-gcc, enter
powerpc-gnu-.

Click OK.

Right-click the project folder and select Build Project to build the module. The
result will be a moduleDebugExample.ko file which is the kernel module that
you can now install on the target.

5.4.2 Install the Sample Module

Verify that the module is built correctly for your target by loading and removing it
on the target.

1. Place the moduleDebugExample.ko file in the root file system that your host
exports to the target, or copy it to the target with a network copy command.

2. To install the module, change directory to the module location or include the
path to the module when you enter the insmod command:

kgdb_target_$ insmod moduleExampleDebug.ko

3. Verify that the kernel module is loaded:

kgdb_target_$ lsmod | grep moduleExampleDebug
moduleExampleDebug 5152 0

4. Remove the module and verify that it is removed:

kgdb_target_$ rmmod moduleExampleDebug
kgdb_target_$ lsmod | grep moduleExampleDebug
kgdb_target_$

5.4.3 Debugging Kernel Modules

This section provides a simple example of how to set a breakpoint in a kernel
module and then step through it and resume processing to observe module
operation.

NOTE: For Wind River Linux environments, see E. Wind River Cross Compiler
Prefixes for architecture and cross-compiler prefix values.

Wind River Workbench
User’s Guide, 2.6 Linux Version

80

Before you begin this procedure, you should cleanly disconnect from any running
KGDB connection:

■ If you currently have a KGDB connection to your target that is stopped,
right-click the CPU (Kernel) entry and select Attach to Core. Click Resume.
Then disconnect as described next.

■ If you currently have a Workbench KGDB connection to your target,
disconnect by selecting it in the Target Manager and clicking the
Disconnect button.

1. On your target, install the moduleDebugExample.ko module with insmod as
described in 5.4.2 Install the Sample Module, p.79. Your module should be in the
root (/) directory of the target file system.

2. To observe module output, enter the following command:

tail -f /var/log/kern.log

You will see a sequence of Global and local messages with an incrementing
count. This is output from moduleDebugExample.ko. If you do not see output
and you have the kernel module loaded, use the following command to start
the kernel logging daemon:

klogd

3. From Workbench, attach to your target with the KGDB connection you created
in 5.3.2 Creating a KGDB Connection, p.73.

4. In the Target Manager, expand Processes and find the entry for
moduleDebugExample.ko below vmlinux. There should be a small red S in
the icon for the kernel module indicating the symbols are loaded. If there is no
S, right-click the entry and select Load Symbols to Debug Server.

5. Right click the CPU (Kernel) entry and select Attach to Core. Click Resume in
the Debug view.

6. In the Project Manager, find the bpHere.c source file and double-click it to
open it in the editor.

7. In the bpHere.c file, find the line with putABreakPointHere and put a
breakpoint in the gutter on the left side of it by right-clicking and selecting
Add Breakpoint for System Context.

NOTE: If you are unable to load symbols, be sure that you have your object
path mappings set correctly as described in 5.3.2 Creating a KGDB Connection,
p.73.

5 Kernel Debugging (Kernel Mode)
5.4 Working with Kernel Modules

81

5

8. Your kernel module output in the target window will stop when execution
reaches the breakpoint. You can experiment with single-stepping or repeatedly
resuming operation in the Debug view to control module output.

9. To complete this procedure, press CTRL-C in the target window to stop
viewing output. Use rmmod to remove the module, and then disconnect from
the target in the Target Manager.

5.4.4 Set a Hardware Breakpoint at Module Load

1. If you do not already have a KGDB connection to the target, make one now (see
5.3.2 Creating a KGDB Connection, p.73). Then right-click the CPU: Kernel entry
in the Target Manager and select Attach to Core. Click the Resume button in
the Debug view so that the kernel is running. (See 5.3.3 Attaching to Core and
Debugging the Kernel, p.75.)

2. In Workbench, open the module.c file in the kernel source tree by selecting
File > Open File and browsing to the kernel subdirectory. Double-click the
module.c file to open it in the Editor.

3. Enter CTRL-F to open the Find/Replace dialog box and search for
sys_init_module;—it will be at about line 1847 depending on your particular
source file. Scroll down from there to find the following lines:

/* Start the module */
if (mod->init != NULL)

ret = mod->init();

Right-click in the gutter next to the second line shown (if (mod->init != NULL)),
and select a System Context breakpoint.

With a breakpoint set, close the module.c file.

4. In the terminal view or console on the target, install the module:

kgdb_target_$ insmod moduleDebugExample.ko

5. In a moment, the Debug view in Workbench will show the System Context as
stopped, sys_init_module highlighted, and the editor will open the module.c
file to the location of the breakpoint. Note that the target window is stopped at
the insmod command.

6. To resume processing, remove the breakpoint and click the Resume button in
the Debug view. The insmod command completes. You can now remove the
module:

kgdb_target_$ rmmod moduleDebugExample.ko

Wind River Workbench
User’s Guide, 2.6 Linux Version

82

5.4.5 Debug Kernel Module at Entry

The following procedure shows how to debug a kernel module at the module entry
point.

1. In Workbench, open the module.c file in the kernel source tree. Select
File > Open and browse to the kernel subdirectory of your build’s
Linux-2.6.14 source tree root. Double-click on the module.c file to open it in the
Editor. For example, module.c might be found at:

/home/user/workdir/myboard/dist/linux-2.6.14/kernel/module.c

2. Go to the routine sys_init_module and find the line that calls the module’s init
procedure (about line 1852 depending on your particular source file).
Right-click in the gutter to insert a System Context breakpoint at the line as
shown here:

/* Start the Module */
=> if (mod->init != NULL)

ret = mod->init();

3. On the target, start the module.

kgdb_target_$ insmod moduleDebugExample.ko

4. In a moment, the Debug view in Workbench will show the System Context as
stopped, load_module highlighted, and the Editor will open the module.c file
to the location of the breakpoint. Note that the target window is hung at the
insmod command.

5. Ensure that moduleDebugExample.ko is registered by the Target Manager.
Examine the Target Connection window for your target, and look for
moduleDebugExample.ko in the list of installed kernel modules under
Processes. If is not present, do the following to synchronize the target
manager:

a. Un-expand the icon for the target labeled Processes.

b. Click Refresh in the Target Manager’s tool bar.

c. Re-expand the icon for the target labeled Processes.

d. It the module does not yet appear, repeat steps a to d.

NOTE: If you find that the break point cannot be planted, make sure that you
added the correct object mapping as described in 5.3.2 Creating a KGDB
Connection, p.73.

5 Kernel Debugging (Kernel Mode)
5.4 Working with Kernel Modules

83

5

6. Ensure that the symbols for moduleDebugExample.ko are loaded. Examine
the Target Connection window for your target, and look for
moduleDebugExample.ko in the list of installed kernel modules under
Processes. The icon for this module should be decorated with a red S. If it is
not, right click on the module and select Load Symbols.

7. You can now single step into the initialization routine of the kernel module.

8. To resume processing, remove the breakpoint and click the Resume button in
the Debug view. The insmod command completes. You can remove the
module from the kernel with the rmmod command:

kgdb_target_$ rmmod moduleDebugExample.ko

Wind River Workbench
User’s Guide, 2.6 Linux Version

84

85

PART II I

Projects

6 Projects Overview .. 87

7 Creating User-Defined Projects 97

8 Native Application Projects 103

9 Working in the Project Navigator 107

Wind River Workbench
User’s Guide, 2.6 Linux Version

86

87

 6
Projects Overview

6.1 Introduction 87

6.2 Workspace and Project Location 88

6.3 Creating New Projects 89

6.4 Overview of Preconfigured Project Types 90

6.5 Projects and Project Structures 92

6.6 Project-Specific Execution Environments 94

6.1 Introduction

Workbench uses projects as logical containers and as building blocks that can be
linked together to create a software system. For example, the Project Navigator lets
you visually organize projects into structures that reflect their inner dependencies,
and therefore the order in which they are compiled and linked.

Pre-configured templates for various project types let you create or import projects
using simple wizards that need only minimal input.

Wind River Workbench
User’s Guide, 2.6 Linux Version

88

6.2 Workspace and Project Location

By default, your workspace directory is created within your Workbench
installation directory. New projects are created in a subdirectory of the workspace
directory, named with the project name. For Wind River Platform projects, an
additional subdirectory named with the project name and a _prj extension is
created (see Contents of a Wind River Linux Platform Project, p.49).

Wind River Workbench cannot know where your source files are located, so it
initially suggests a default workspace directory within the installation directory.
However, this is not a requirement, or even necessarily desirable. If you use a
workspace directory outside of the Workbench installation tree this ensures that
the integrity of your projects is preserved after product upgrades or installation
modifications.

Normally, you would set your workspace directory at the root of your existing
source code tree and create your Workbench projects there. For multiple, unrelated
source code trees, you can use multiple workspaces.

Some considerations when deciding where to create your project:

Create project in workspace
Leave this selected if you want to create the project under the current
workspace directory. This is typical for:

– Projects created from scratch with no existing sources.

– Projects where existing sources will be imported into them later on (for
details, see 9.3 Adding Application Code to Projects, p.108).

– Projects where you do not have write permission to the location of your
source files.

Create project at external location
Select this option, click Browse, then navigate to a different location if you
want to create the project outside the workspace. This is typical for:

– Projects being set up for already existing sources, removing the need to
import or link to them later on.

– Projects being version-controlled, where sources are located outside the
workspace.

6 Projects Overview
6.3 Creating New Projects

89

6

Create project in workspace with content at external location
Select this option, click Browse, then navigate to your source location if you do
not want to mix project files with your sources, or copy sources into your
workspace. This is useful for:

– Projects where you do not have write permission to the location of your
source files.

– Projects where team members have their own projects, but share common
(sometimes read-only) source files. This option eliminates the need to
create symbolic links to your external files before you can work with them
in Workbench.

6.3 Creating New Projects

Although you can create projects anywhere, you would generally create them in
your workspace directory (see 6.2 Workspace and Project Location, p.88). If you
follow this recommendation, there will generally be no need to navigate out of the
workspace when you create projects. Note that if you do create projects outside the
workspace, you must have write permission at the external location because
Workbench project administration files are written to this location.

To create a new project, click the toolbar icon or select File > New > Wind River
Workbench Project to open the New Wind River Workbench Project wizard. It
will help you create one of the pre-configured project types. You can also select the
specific type of project you want to create by clicking the toolbar icon or by
selecting File > New > ProjectType. For more information about these projects, see
Overview of Preconfigured Project Types, p.90.

To create one of the demonstration sample projects, select File > New > Example
to open the New Example wizard. Each comes with instructions explaining the
behavior of the program.

Whichever menu command you choose, a wizard will guide you through the
process of creating the specific type of project you select.

Wind River Workbench
User’s Guide, 2.6 Linux Version

90

6.3.1 Subsequent Modification of Project Creation Wizard Settings

All project creation wizard settings can be modified in the Project Properties once
the project exists. To access the Project Properties from the Project Navigator,
right-click the icon of the project you want to modify and select Properties. For
more information about project properties, see 11.4 Accessing Build Properties,
p.136.

Project structural settings (sub- and superproject context of the project you are
creating) can be most easily modified in the Project Navigator by
dragging-and-dropping project folders into or outside other folders.

6.3.2 Projects and Application Code

All application code is managed by projects of one type or another. You can import
an existing Workbench-compatible project as a whole, or you can add new or
existing source code files to your projects. For more information, select File >
Import to open the Import File dialog and press the help key for your host.

6.4 Overview of Preconfigured Project Types

Workbench offers the following preconfigured project types:

■ Embedded Linux Kernel Project
■ Embedded Linux Application Project
■ Native Application Project
■ User-defined Project

Depending on your installation and licensing, you may also have one or both of
the following:

■ Wind River Linux Application Project
■ Wind River Linux Platform Project

6 Projects Overview
6.4 Overview of Preconfigured Project Types

91

6

The project types are described briefly below.

Embedded Linux Kernel Project

Use an Embedded Linux kernel project to configure (customize/scale) and build a
Linux kernel to run on the target. (For Wind River Linux kernels, see 6. Projects
Overview.) Because your subsequent Linux application projects will run on the
Linux kernel on the target, this is often a necessary first project to build, unless you
already have a target kernel. See F.6.1 Building the Kernel in Workbench as a Linux
Kernel Project, p.352 for a tutorial on building this type of project.

Embedded Linux Application Project

Embedded Linux application projects are built and reside on the host computer,
but run on the target kernel. Workbench provides pre-defined build specs that you
can use or modify for creating your embedded application projects. See
3.4 Creating a Project, p.26, for a tutorial on building this type of project.

Native Application Project

A native application project is built and run on the host computer. In effect, your
Workbench host serves as the target. See 3.3 Using Workbench, p.24 for an example
of building a native application project.

User-Defined Projects

User-defined projects do not use Workbench build support or pre-configured
features. These projects can be anything and it is up to the user to organize and
maintain the build system, target file system population, and so forth.

NOTE: You may see more project types depending on your installed software.
Refer to the documentation on the particular software for details on those project
types.

Wind River Workbench
User’s Guide, 2.6 Linux Version

92

Wind River Linux Application Project

Wind River Linux application projects are developed on the host computer and
deployed on the target. The Wind River Linux application projects dynamically
generate build specs for Wind River Linux-supported board architectures and
kernel and file system combinations. See 3.4 Creating a Project, p.26 for more
information on Wind River Linux application projects.

Wind River Linux Platform Project

Wind River Linux platform projects are developed on the Linux host computer and
deployed on pre-defined targets. Platform projects can include prebuilt or
customized kernels, and pre-defined or customized file systems.Workbench
provides special support for Wind River platform projects including kernel and
user space configuration tools, and multiple build targets. See 4.1 Wind River Linux
Platform Projects, p.47 for more details.

6.5 Projects and Project Structures

All individual projects of whatever type are self-contained units that have no
inherent relationship with any other projects. The system is initially flat and
unstructured. You can, however, construct hierarchies of project references within
Workbench. These hierarchies will reflect inter-project dependencies and therefore
also the build order.

When you attempt to create such hierarchies of references, this is validated by
Workbench; that is, if a certain project type does not make sense as a subproject of
some other project type, or even the same project type, such a reference will not be
permitted.

6 Projects Overview
6.5 Projects and Project Structures

93

6

6.5.1 Adding Subprojects to a Project

Workbench provides several ways to create a subproject/superproject structure:

■ You can drag-and-drop project nodes in the Project Navigator. This is the
easiest way to set up a structure among existing projects. Select the project that
you want to make into a subproject and drag it onto its new parent
(superproject).

■ You can use the Add as Project Reference dialog. In the Project Navigator,
right-click the project that you want to make into a subproject and choose
References > Add as Project Reference, or select the project and choose
Project > Add as Project Reference. In the dialog, you will see a list of valid
superprojects; you can select more than one.

■ You can use the Project References page in the Properties dialog. In the
Project Navigator, right-click the project that you want to make into a
superproject and choose Properties, or select the project and choose
Project > Properties. Then select Project References. In the dialog, you will
see a list of projects; select the ones that you want to make into subprojects.

Subprojects appear as subnodes of their parents (superprojects).

Workbench validates subproject/superproject relationships based on project type
and target operating system. It does not allow you to create certain combinations.
In general, a user-defined project can be a subproject or superproject of any other
project with a compatible target operating system.

Removing Subprojects

To undo a subproject/superproject relationship, use one of these methods:

■ In the Project Navigator, right-click the subproject and choose References >
Remove Project Reference, or select the subproject and choose
Project > Remove Project Reference.

■ In the Project Navigator, right-click the superproject and choose Properties, or
select the superproject and choose Project > Properties. Then select Project
References and unselect the subprojects that you want to disassociate from
their current parent.

Wind River Workbench
User’s Guide, 2.6 Linux Version

94

6.6 Project-Specific Execution Environments

If your development process requires you to maintain different build and external
tool execution environments for each of your projects, Workbench allows you to
create a project.properties file within each project that define which tools, tool
versions, and environment variable settings should be used for each one.

You can share the project.properties file with your team to maintain consistency,
and you should add it to source control along with your other project files.

1. In the Project Navigator, right-click your project, then select New > File.

2. In the New File dialog, create or link to a project.properties file:

■ To create a new file, type project.properties in the File name field, then
click Finish.

■ To link to an existing project.properties file, click Advanced, then select
Link to file in the file system. Type in the path or navigate to the file, then
click Finish.

3. The new project.properties file appears under your project in the Project
Navigator, and opens in the Editor so you can add or edit its content.

4. The project.properties file uses the same syntax as other properties files used
by wrenv (such as install.properties and package.properties).

As an example of what you can specify, the following lines define an extension
to the workbench package, adding the variable PROJECT_CONTEXT to the
environment with the value of set:

projectprops.name=projectprops
projectprops.type=extension
projectprops.subtype=projectprops
projectprops.version=0.0.1
projectprops.compatible=[workbench,,2.6]
projectprops.eval.01=export PROJECT_CONTEXT=set

NOTE: When sharing files with a team, or accessing them from a common
location, it is advisable to use a path variable instead of an absolute path since
each team member’s path to the location may be different.

To define a path variable, click Variables, then click New, then type a Name for
the path variable and the location it represents (or click File or Folder to
navigate to it). Click OK twice to return to the New File dialog; your path
variable and its resolved location appear at the bottom of the dialog. Click
Finish.

6 Projects Overview
6.6 Project-Specific Execution Environments

95

6

5. To find the information you will need to create your own extension, find the
project’s platform by looking to the right of your project’s name in the Project
Navigator (for example, it might say Wind River Linux version).

6. Open your installDir/install.properties file and look for the section listing the
platform information. This is the type, subtype, and other information you
must include to identify the package you want to extend.

7. Workbench uses the project properties specified in this file whenever you
build a target in the project. To apply the project properties from the command
line, include the -i option for both the project.properties and
install.properties files when invoking wrenv.

-i installDir/install.properties -i installDir/workspace/myproject/project.properties

In both cases, the environment for make is altered to include the environment
and properties specified in the file.

6.6.1 Using a project.properties file with a Shell

The Project > Open Shell menu item also takes advantage of the settings you
specified in the project.properties file. This action is context sensitive, so the
opened shell sets the environment of the selected project’s platform, plus the
extension from the properties file if one exists. If you did not have a project selected
before opening the shell, a dialog appears with the environments you can choose.

6.6.2 Limitations When Using project.properties Files

A project.properties file creates an extension to a project, meaning it can include
new tools, define variables, and specify versions. But it cannot exclude things that
are already included, or overwrite existing variables, or undo PATH settings that
are set within the properties you are trying to extend.

You cannot use a project.properties file with Native Application projects because
they do not have a package associated with them and so cannot be extended.

Wind River Workbench
User’s Guide, 2.6 Linux Version

96

97

 7
Creating User-Defined Projects

7.1 Introduction 97

7.2 Creating and Maintaining Makefiles 98

7.3 Creating a User-Defined Project 98

7.4 Configuring a User-Defined Project 99

7.1 Introduction

User-Defined Projects assume that you are responsible for setting up and
maintaining your own build system, file system population, and so on. The user
interface provides support for the following:

■ You can configure the build command used to launch your build utility; this
allows you to start builds from the Workbench GUI. You can also configure
different rules for building, rebuilding and cleaning the project.

■ You can create build targets in the Project Navigator that reflect rules in your
makefiles; this allows you to select and build any of your make rules directly
from the Project Navigator.

■ Build output is captured to the Build Console.

Wind River Workbench
User’s Guide, 2.6 Linux Version

98

7.2 Creating and Maintaining Makefiles

When you create a User-Defined project, Workbench checks the root location of the
project’s resources for the existence of a file named Makefile2. If it does not exist,
Workbench creates a skeleton makefile with a default all rule and a clean. This
allows you to use the Build Project, Rebuild Project, and Clean Project menu
commands, as well as preventing the generation of build errors. You are
responsible for maintaining this Makefile, and you can write any other rules into
this file at any time.

If you base your User-Defined project on an existing project, the makefile of that
project will be copied to the new project and will overwrite a makefile in the new
project’s location. If necessary, you can change the name of the new project’s
makefile using the -f make option to avoid overwriting an existing makefile.

7.3 Creating a User-Defined Project

Before creating the project, see the general comments on projects and project
creation in 6. Projects Overview.

1. Create a User-Defined project by selecting File > New > Wind River
Workbench Project. The New Wind River Workbench Project wizard appears.

2. Select a target operating system, then click Next.

3. From the Build type drop-down list, select User-Defined. Click Next.

4. Type a name for your project.

5. Decide where to create your project:

Create project in workspace
Leave this selected if you want to create the project under the current
workspace directory.

2. If you specified a different filename in the New Project wizard’s Build Command field
using the -f make option, which can include a relative or absolute path to a subdirectory,
Workbench checks for the file you specified.

7 Creating User-Defined Projects
7.4 Configuring a User-Defined Project

99

7

Create project at external location
Select this option, click Browse, then navigate to a different location if you
want to create the project outside the workspace.

Create project in workspace with content at external location
Select this option, click Browse, then navigate to your source location if
you do not want to mix project files with your sources, or copy sources into
your workspace.

6. When you are ready, click Finish. Your project appears in the Project
Navigator.

7.4 Configuring a User-Defined Project

Once you have created your project, you can configure its build targets, build
specs, and build macros.

For general details about build properties, see 11.4 Accessing Build Properties, p.136
or press the help key for your host.

1. To access build properties for your project, right-click it in the Project
Navigator and select Properties.

2. From the Properties dialog, click Build Properties.

7.4.1 Configuring Build Support

Use this tab to configure build support for your project.

1. Build support is enabled by default. Click Disabled to disable it, and click
User-defined build to re-enable it.

2. If necessary, edit the default build command.

3. Specify whether received build targets should be passed to the next level.

4. Specify when Workbench should refresh the project after a build.

NOTE: Build tools and build paths cannot be configured for User-defined projects.

Wind River Workbench
User’s Guide, 2.6 Linux Version

100

Because a refresh of the entire project can take some time (depending on its
size) Workbench does not do it by default. You may choose to refresh the
current project, the current folder, the current folder and its subfolders, or
nothing at all. This option applies to all build runs of the project.

7.4.2 Configuring Build Targets

Use this tab to configure make rules and define custom build targets for your
project.

1. Type the desired make rules into the fields in the Make rules section. These
rules are run when you select the corresponding options from the Project
menu or when you right-click your project in the Project Navigator and select
them from the context menu.

The Build Folder and Clean Folder options are available when you select a
folder in the Project Navigator.

2. To define a custom build target, click New. The New Custom Build Target
dialog opens.

3. Type in a name for your build target, then type in the make rule or external
command that Workbench should execute. You can also click Variables and
add a context-sensitive variable to the make rule or command.

The variables represented in the Select Variable dialog are context-sensitive,
and depend on the current selection in the Project Navigator. For variables that
contain a file-specific component, the corresponding target is only enabled
when a file is selected and the variable can be evaluated. Build targets without
file-specific components are always enabled.

4. Choose the type, whether it is a Rule or a Command.

5. Choose a refresh option for the build target, specifying whether Workbench
should use the project setting, refresh the current folder or project, or do
nothing. Click OK to close the dialog.

6. Edit a build target’s options by clicking Edit or Rename. You can also edit the
options (except name) by clicking in the column itself.

7. Continue configuring your project or click OK to close the Build Properties.

Once you have defined a build target, it is available when you right-click a project
and select Build Options. The build targets are inherited by each folder within the
project, eliminating the need to define the same build targets in each individual
folder.

7 Creating User-Defined Projects
7.4 Configuring a User-Defined Project

101

7

7.4.3 Configuring Build Specs

Use this tab to define and import build specs.

1. To define a new build spec for your project, click New and enter a build spec
name. Click OK. If this is the first build spec for this project, it automatically
appears in the Default build spec and Active build spec fields. Once you have
defined more than one, you can choose a different default and active spec from
the drop-down list.

2. To reset build properties to their default settings or import build settings from
another project, click Import and select the source of the build settings.

3. Decide whether to clear build setting overrides, then click Finish.

7.4.4 Configuring Build Macros

Use this tab to define global and build spec-specific macros that are added to the
build command when executing builds.

Defining Global Macros

To define a global build macro for your project, click New next to Build macro
definitions, then enter a Name and Value for the macro. Click OK.

You can define and use global build macros even if you don’t define any build
specs.

Defining Build Spec-Specific Macros

To define a build spec-specific macro, click New next to Build spec-specific
settings, enter a Name for the macro, leave the Value blank, then click OK.

To define the value, select the macro, select the build spec for which the value
should be applied, then click Edit and enter the New value and click OK.

NOTE: The Debug mode option is not available for User-defined builds, as this
has an effect only on build tool-specific fields, which are not available for
User-defined projects.

Wind River Workbench
User’s Guide, 2.6 Linux Version

102

The macro will always be appended to the build command when a build is
launched, and the value will be set according to the active build spec, including
empty values.

For example, if the build command is make --no-print-directory and the macro is
TEST_SPEC, you can define values to be used with different build specs:

The resulting build commands are as follows:

spec 1: Value = spec1Val
spec 2: Value = spec2Val
spec 3: Value =

build command for spec 1: make --no-print-directory TEST_SPEC=spec1Val
build command for spec 2: make --no-print-directory TEST_SPEC=spec2Val
build command for spec 3: make --no-print-directory TEST_SPEC=

103

 8
Native Application Projects

8.1 Introduction 103

8.2 Creating a Native Application Project 104

8.3 Application Code for a Native Application Project 106

8.1 Introduction

Use a Native Application project for C/C++ applications developed for your host
environment.

Workbench provides build and static analysis support for native GNU 2.9x, GNU
3.x, and Microsoft development utilities (assembler, compiler3, linker, archiver)
though you must acquire and install these utilities as they are not distributed with
Workbench.

There is no debugger integration for native application projects in Workbench, so
you must acquire and use the appropriate native tools for debugging as well.

3. Workbench supports the MinGW, Cygnus, and MS DevStudio compilers. Compilers for
native development are distributed with Wind River Platforms, but not with Workbench.

Wind River Workbench
User’s Guide, 2.6 Linux Version

104

8.2 Creating a Native Application Project

Before creating the project, please take a look at the general comments on projects
and project creation in 6. Projects Overview.

To create a Native Application project, proceed as follows.

1. Choose File > New > Native Application Project.

The New Native Application Project wizard appears. If you have multiple
operating systems installed, you are asked to select a target operating system.
If you see this field, select a version from the drop-down list and click Next.

2. Enter a Project name and Location.

If you choose Create project in workspace (default) the project will be created
under the current workspace directory. If you choose to
Create project at external location, you can navigate to a location outside the
workspace (see also 6.2 Workspace and Project Location, p.88 and 6.3 Creating
New Projects, p.89).

The project appears in the Project Navigator. To see the project location,
right-click on the project and select Properties, then select the Info node of the
Properties dialog.

When you are ready, click Next.

3. If you have created other projects, you are asked to define the project structure
(the super- and subproject context) for the project you are creating.

The text beside the Link to superproject check box refers to whatever project
is currently highlighted in the Project Navigator (if you do not see this check
box, no valid project is highlighted). If you select the check box, this will be the
superproject of the project you are currently creating.

The check boxes in the Referenced subprojects list represent the remaining
projects in the workspace that can be validly referenced as subprojects by the
project you are currently creating.

After project creation, you can change the project structure in the Project
Navigator using drag-and-drop.

When you are ready, click Next.

NOTE: All settings in the following wizard pages are build related. You can
therefore verify/modify them after project creation in the Build Properties node of
the project’s Properties, see 11. Building Projects.

8 Native Application Projects
8.2 Creating a Native Application Project

105

8

4. A Native Application project is a predefined project type that uses Workbench
Build support, so you can only select either this, or no build support at all. If
you are creating a project because you want to browse symbol information
only and you are not interested in building it, you could also disable build
support.

The Build command specifies the make tool command line.

Build output passing: If the project is a subproject in a tree, its own objects
(implicit targets) as well as the explicit targets of its subprojects, can be passed
on to be linked into the build targets of projects that are further up in the
hierarchy.

When you are ready, click Next.

5. Build Specs: The list of available build specs will always be available. By
checkmarking individual specs, you enable them for the current project, which
means that you will, in normal day to day work, only see relevant (enabled)
specs in the user interface, rather than the whole list.

If you are working on a Windows application, you would normally enable the
msvc_native build spec, and disable the gnu-native build specs. If you are
working on a Linux or Solaris native application, you would normally enable
the GNU tool version you are using, and disable all others.

The Debug Mode checkbox specifies wether or not the build output includes
debug information.

When you are ready, click Next.

6. Build Target: The Build target name is the same as the project name by
default. You can change the name if necessary, but if you delete the contents of
the field, no target will be created.

Build tool: For a Native Application project you can select:

■ Linker: This is the default selection. The linker produces a a
BuildTargetName (.exe for Windows native projects) executable file.

The Linker output product cannot be passed up to superprojects, although
the current project’s own, unlinked object files can, as can any output
products received from projects further down in the hierarchy (see step 4.
above).

■ Librarian: This is the default selection if you specified that the project is to
be linked into a project structure as a subproject. The Librarian produces a
TargetName.a (or .lib for Windows native projects) archive file.

Wind River Workbench
User’s Guide, 2.6 Linux Version

106

The Librarian output product can be passed up to superprojects, as can the
current project’s own, unlinked object files, as well as any output products
received from projects further down in the hierarchy (see step 4. above).

7. When you are ready, you can review your settings using the Back button or
click Finish.

The Native Application project is created and appears in the Project Navigator,
either at the root level, or linked into a project tree, depending on your
selection in step 3. above.

8.3 Application Code for a Native Application Project

After project creation you have the infrastructure for a Native Application project,
but often no actual application code. If you are writing code from the beginning,
you can add new files to a project. If you already have source code files, you will
want to import these to the project. For more information please refer to Importing
Resources, p.108, and Adding New Files to Projects, p.109.

107

 9
Working in the Project

Navigator

9.1 Introduction 107

9.2 Creating Projects 108

9.3 Adding Application Code to Projects 108

9.4 Opening and Closing Projects 109

9.5 Scoping and Navigation 110

9.6 Moving, Copying, and Deleting Resources and Nodes 111

9.1 Introduction

The Project Navigator is your main graphical interface for working with projects.
You use the Project Navigator to create, open, close, modify, and build projects. You
also use it to add or import application code, to import, or customize build
specifications, and to access your version control system.

Various filters, sorting mechanisms, and viewing options help to make project
management and navigation more efficient. Use the arrow at the top-right of the
Project Navigator to open a drop-down menu of these options.

Wind River Workbench
User’s Guide, 2.6 Linux Version

108

9.2 Creating Projects

Creating projects is discussed in general under 6.3 Creating New Projects, p.89.
Specific descriptions for creating individual project types are provided in the other
chapters in Part III. Projects.

9.3 Adding Application Code to Projects

After creating a project, you have the infrastructure for a given project type, but no
actual application code. If you already have source code files, you will want to
import these to the project.

Importing Resources

You can import various types of existing resources to (newly created) projects by
choosing File > Import.

For details about the entries in the Import File dialog, see Wind River Workbench
User Interface Reference: Import File Dialog.

NOTE: Importing resources creates a link to the location of those resources; it does
not copy them into your workspace.

Later, if you want to delete a project, check the path in the Confirm Project Delete
dialog very carefully when deciding whether to choose Also delete contents
under 'path' or Do not delete contents—choosing to delete the project contents
may delete your original sources or the contents of a project in a different
workspace, rather than the project in your current workspace.

9 Working in the Project Navigator
9.4 Opening and Closing Projects

109

9

Adding New Files to Projects

To add a new file to a project, choose File > New > File.

You are asked to Enter or select the parent folder, and to supply Filename.

For a description of the Advanced button, and what it reveals, press F1 and select
New file wizard.

9.4 Opening and Closing Projects

You can open or close a project by selecting it in the tree and choosing
Project > Open (if it is currently closed), or Project > Close (if it is currently open).
You can also use the corresponding commands on the Project Navigator’s
right-click context menu.

Closing a Project

■ The icon changes to its closed state (by default grayed) and the tree collapses.

■ All project member files that are open in the editor are closed.

■ All subprojects that are linked exclusively to the closed project are closed as
well. However, subprojects that are shared among multiple projects remain
open as long as a parent project is still open, but can be closed explicitly at any
time.

■ In general, closed projects are excluded from all actions such as symbol
information queries, and from workspace or project structure builds (that is, if
a parent project of a closed subproject gets built).

■ It is not possible to manipulate closed projects. You cannot add, delete, move,
or rename resources, nor can you modify properties. The only possible
modification is to delete the project itself.

■ Closed projects require less memory.

Wind River Workbench
User’s Guide, 2.6 Linux Version

110

9.5 Scoping and Navigation

There are a number of strategies and Workbench features that can help you
manage the projects in your workspace, whether you are working with multiple
projects related to a single software system, or multiple unrelated software
systems.

■ Close projects

If you expect to be working in a different context (under a different root
project) for a while, you can select the root project you are leaving, and
right-click Close Project.

If you close your root projects when you stop working on them, you will see
just the symbols and resources for the project on which you are currently
working (see also Closing a Project, p.109).

■ Go into a project

If you want to see, for example, the contents of only one software system in the
Project Navigator, select its root project node and right-click Go Into. You can
then use the navigation arrows at the top of the Project Navigator to go back
out of the project you are in, or to navigate history views.

■ Open a project in a new window

If you expect to be switching back and forth between software systems (or
other contexts) at short intervals, and you do not want to change your current
configuration of open editors and layout of other views, you can open the
other software system’s root project in a new window (right-click
Open in New Window). This essentially does the same as Go Into (see
Go Into a Project), except that a new window is opened, thereby leaving your
current Workbench layout intact.

■ Open a new window

You can open a new window by choosing Window > New Window. This
opens a new window to the same workspace, leaving your current Workbench
window layout intact while you work on some other context in the new
window.

9 Working in the Project Navigator
9.6 Moving, Copying, and Deleting Resources and Nodes

111

9

■ Use Working Sets

Using working sets lets you set the scope for all sorts of queries. You can, for
example, create working sets for each of your different software systems, or
any constellation of projects, and then scope the displayed Project Navigator
content (and other query requests) using the pull-down at the top-right of the
Project Navigator.

To create a Working Set, from the drop-down menu, choose
Select Working Set. In the dialog that appears, click New, then, in the next
dialog, specify the Resource type.

In the next dialog select, for example, a software-system root project and give
the working set a name. When you click Finish, your new working set will
appear in the Select Working Set dialog’s list of available working sets.

After the first time you select a working set in the Select Working Set dialog,
the working set is inserted into the Project Navigator’s drop-down menu, so
that you can directly access it from there.

■ Use the Navigate Menu

For day-to-day work, there is generally no absolute need to see the contents of
your software systems as presented in the Project Navigator.

Using the Navigate > Open Resource (to navigate files) and
Navigate > Open Symbol (to jump straight to a symbol definition) may often
prove to be the most convenient and efficient way to navigate within, or
among, systems.

9.6 Moving, Copying, and Deleting Resources and Nodes

The resources you see in the Project Navigator are normally displayed in their
logical, as opposed to physical, configuration (see 6.5 Projects and Project Structures,
p.92). Depending on the type of resource (file, project folder) or purely logical
element (target node) you are manipulating, different things will happen. The
following section briefly summarizes what is meant by resource types and logical
nodes.

Wind River Workbench
User’s Guide, 2.6 Linux Version

112

9.6.1 Resources and Logical Nodes

Resources is a collective term for the projects, folders, and files that exist in
Workbench.

There are three basic types of resources:

■ Files

Equivalent to files as you see them in the file system.

■ Folders

Equivalent to directories on a file system. In Workbench, folders are contained
in projects or other folders. Folders can contain files and other folders.

■ Projects

Contain folders and files. Projects are used for builds, version management,
sharing, and resource organization. Like folders, projects map to directories in
the file system. When you create a project, you specify a location for it in the
file system.

When a project is open, the structure of the project can be changed and you will
see the contents. A discussion of closed projects is provided under Closing a
Project, p.109.

Logical nodes is a collective term for nodes in the Project Navigator that provide
structural information or access points for project-specific tools.

■ Subprojects

A project is a resource in the root position. A project that references a
superproject is, however, a logical entity; it is a reference only, not necessarily
(or even normally) a physical subdirectory of the superproject’s directory in
the file system.

■ Build Target Nodes

These are purely logical nodes to associate the project’s build output with the
project.

■ Tool Access Nodes

These allow access to project-specific configuration tools.

9 Working in the Project Navigator
9.6 Moving, Copying, and Deleting Resources and Nodes

113

9

9.6.2 Manipulating Files

Individual files, for example source code files, can be copied, moved, or deleted.
These are physical manipulations. For example, if you hold down CTRL while you
drag-and-drop a source file from one project to another, you will create a physical
copy, and editing one copy will have no effect on the other.

9.6.3 Manipulating Project Nodes

Although copying, moving, or deleting project nodes are undertaken with the
same commands you would use for normal files, the results are somewhat
different because a project folder is a semi-logical entity. That is, a project is a
normal resource in the root position. A project that is referenced as a subnode is,
however, a logical entity; it is a reference only, not a physical instance.

If you copy/paste (or hold down CTRL while you drag-and-drop) a project folder
node to a new location in the project editor (for example, under some other project
node to be used as a subproject there) all that happens is that a reference to one and
the same project is inserted. This means that if you modify the properties of one
instance of the subproject node, all other instances (which are really only
references) are also modified. One such property would be, for example, the
project name. If you rename the project node in one context, it will also be renamed
in all other contexts.

Moving and (Un-)Referencing Project Nodes

If you drag-and-drop a project folder, you are making a logical, structural change.
However, if you select a project folder node and right-click Move, you will be
asked to enter (browse for) a new file system location. All the files associated with
the current project will then be physically moved to the location you select,
without any visible change in the Project Navigator (you can verify the new
location in the Project Properties).

When you drag-and-drop a project node, you are actually performing the
equivalent of right-click Add as Reference or, if you have selected a subproject,
also right-click Remove Reference. These commands open a dialog allowing you
to either have the currently selected project reference other projects as a subproject,
or, in the Remove Reference dialog, to remove the currently selected project from
its structural (logical) context as a subproject, in which case it will be moved to the
root level as a standalone project in the Project Navigator.

Wind River Workbench
User’s Guide, 2.6 Linux Version

114

Deleting Project Nodes

To delete a subproject, which might potentially be linked into any number of other
project structures, you first have to either unlink (right-click it and press Delete)
all instances of the subproject, or get a flat view of your workspace. To do this, open
the drop-down list at the top-right of the Project Navigator’s toolbar and choose
Hide > Project Structure. This hides the logical project organization and provides
a flat view with a single instance of the (sub)project that you can then delete by
pressing Delete again.

When you delete a project you are asked whether or not you want to delete the
contents. If you choose not to delete the contents, the only thing that happens is
that the project (and all its files) are no longer visible in the workspace; there are no
file system changes.

9.6.4 Manipulating Target Nodes

Target nodes cannot be copied or moved. These are purely logical nodes that make
no sense anywhere except in the projects for which they were created. If you copy
or move entire projects, however, the target nodes and generated build-targets
beneath them are also copied.

Deleting Target Nodes

Deleting a target node also removes the convenience node that represents the
generated, physically existing build-target. However, the physically existing
build-target (if built) is not deleted from the disk.

The convenience node referred to above, lets you see at a glance whether the target
has been built or not, even if you have uncluttered your view in the Project
Navigator by hiding build resources (in the drop-down menu at the top-right
choose Hide > Build Resources) and/or collapsing the actual target node. If you
have collapsed the node, the + sign will indicate that the build-target exists).

115

PAR T IV

Development

10 Navigating and Editing 117

11 Building Projects .. 127

12 Building: Use Cases ... 143

Wind River Workbench
User’s Guide, 2.6 Linux Version

116

117

 10
 Navigating and Editing

10.1 Introduction 117

10.2 Wind River Workbench Context Navigation 118

10.3 The Editor 121

10.4 Search and Replace: The Retriever 123

10.5 Static Analysis 124

10.1 Introduction

Workbench navigation views allow seamless cross-file navigation based on
symbol information. For example, if you know the name of a function, you can
navigate to that function without worrying about which file it is in. You can do this
either from an editing context, or starting from the The Symbol Browser, p.119. On
the other hand, if you prefer navigating within and between files, you can use the
The File Navigator, p.120.

Static analysis is the parsing and analysis of source code symbol information. This
information is used to provide code editing assistance features such as
multi-language syntax highlighting, code completion, parameter hints,
definition/declaration navigation for files within your projects.

Wind River Workbench
User’s Guide, 2.6 Linux Version

118

Apart from the things you see directly in the Editor, static analysis also provides
the data for code comprehension and navigation features such as include
browsing, call trees, as well as resolving includes to provide the compiler with
include search paths.

10.2 Wind River Workbench Context Navigation

Various filters are available on each tool’s local toolbar. Hover the mouse over the
buttons to see a tooltip describing what these buttons do. At the top-right, a
pull-down menu provides additional filters, including working sets (if you have
defined any). An active working set is marked by a bullet next to its name in the
pull-down menu.

Generally, you will want to navigate to symbols, or analyze symbol-related
information, from an Editor context. The entry points are:

■ The right-click context menu of a symbol

■ Keyboard shortcuts that act on the current selection in the Editor:

F3 — Jump between associated code, for example, between
definition/declaration or function definition/call. There is no navigation
from workspace files to external files, i.e. files outside your projects.

F4 — Open the type hierarchy of the current selection (see Type Hierarchy
View, p.120).

CTRL+ALT+H — Open the call tree of the current selection (see Wind River
Workbench User Interface Reference: Call Tree View).

CTRL+I — Open the include browser to view the includes of the current
selection (see Include Browser, p.121).

■ Keyboard shortcuts that open dialogs from which you can access symbols in
any of your projects:

SHIFT+F3 — Display the Open Symbol dialog.

NOTE: Syntax highlighting is provided for file system files that you open in the
Editor, but no other static analysis features are available for files that are outside
your projects.

10 Navigating and Editing
10.2 Wind River Workbench Context Navigation

119

10

SHIFT+F4 — Display the Open Type Hierarchy dialog.

ALT+SHIFT+H — Display the Open Call Tree dialog.

CTRL+SHIFT+R — Displays the Open Resource dialog.

These options are also available from the Navigate toolbar menu.

The Symbol Browser

By default, the Symbol Browser is a tab in the left pane of the main window,
together with the Project Navigator.

Use the Symbol Browser for global navigation. Because the Symbol Browser
presents a flat list of all the symbols in all the open projects in your workspace, you
might want to constrain the list by using Working Sets. You can configure and select
working sets using the Project Navigator’s local pull-down menu.

In addition, very large symbol loads can cause delays of up to several minutes
while Workbench loads the symbols. Loading smaller batches of symbols can
decrease this delay. Specify the size of the symbol batch using the Preferences
dialog. For more information, see Wind River Workbench User Interface Reference:
Debug View.

Text Filtering

The Name Filter field at the top of the view provides match-as-you-type filtering.
The field also supports wild cards: type a question mark (?) to match any single
letter; type an asterisk (*) to match any number of arbitrary letters. Selecting
Hide Matching next to the Name Filter field inverts the filter you entered in the
field, so you see only those entries that do not match your search criteria.

For a guide to the icons in the Symbol Browser, see Wind River Workbench User
Interface Reference: Symbol Browser View.

The Outline View

The Outline view is to the right of the currently active Editor, and shows symbols
in the currently active file.

Use the Outline view to sort, filter, and navigate the symbols in the context of the
file in the currently active Editor, as well as to navigate out of the current file
context by following call and reference relationships.

Wind River Workbench
User’s Guide, 2.6 Linux Version

120

For a guide to the icons in the Outline view, see Wind River Workbench User Interface
Reference: Outline View.

The File Navigator

If you have never used the File Navigator, you can open it by choosing
Window > Show View > Other. In the dialog that opens, select
Wind River Workbench > File Navigator and click OK. After the first time you
open the File Navigator, a shortcut appears directly under the
Window > Show View menu. By default, the File Navigator appears as a tab at the
left of the Wind River Workbench window, along with the Project Navigator and
the Symbol Browser.

The File Navigator presents a flat list of all the files in the open projects in your
workspace, so you can constrain the list by using Working Sets. You can configure
and select working sets using the File Navigator’s local pull-down menu.

The left column of the File Navigator shows the file name, and is active;
double-clicking on a file name opens the file in the Editor, and right-clicking on a
file allows you to compile the file and build the project, among other tasks. The
right column displays the project path location of the file.

The File Filter field at the top of the view works in the same way as the Name
Filter field in the Symbol Browser, see The Symbol Browser, p.119.

Type Hierarchy View

Use the Type Hierarchy view to see hierarchical typedef and type-member
information.

To open the Type Hierarchy view:

■ Right-click a symbol in the Editor, Outline, or Symbol Browser view and select
Type Hierarchy view.

■ Click the toolbar button on the main toolbar.

■ Select Navigate > Open Type Hierarchy.

For more information, see the Wind River Workbench User Interface Reference: Type
Hierarchy View.

10 Navigating and Editing
10.3 The Editor

121

10

Include Browser

By default, the Include Browser appears as a tab at the bottom-right.

To open the Include Browser:

■ Right-click a symbol in the Editor, Outline, or Symbol Browser view and select
Open Include Browser.

■ Right-click a file in the File Navigator or the Project Navigator and select
Include Browser.

■ Select Navigate > Open Include Browser.

Use the Include Browser to see which file includes, or is included by, the file you
are examining. Use the buttons on the Include Browser’s local toolbar to toggle
between showing include and included-by relationships. Double-click on an
included file in the Include Browser to open the file in the Editor at the include
statement.

10.3 The Editor

The Editor is your primary view for editing and debugging source code. The
Editor is language-aware, and can parse C, C++, Ada, and Assembler files. Many
Editor features are configurable in the Preferences (see Wind River Workbench User
Interface Reference: Editor).

Code Templates

The Editor uses templates to extend code assist (shortcut CTRL+SPACE) by
inserting recurring patterns of text.

In the case of source code, common patterns are for loops, if statements and
comment blocks. Those patterns can be parameterized with variable placeholders
that are resolved and substituted when the template is inserted into the text.
Unresolved variables can be link-edited after inserting the template, which means
that the first unresolved variable is selected, and all occurrences of this variable are
edited simultaneously when you enter the correct text.

Wind River Workbench
User’s Guide, 2.6 Linux Version

122

An example template might look like the following:

 for (int ${var} = 0; ${var} < ${max}; ++${var}) {
 ${cursor}
 }

Provided Templates

Workbench provides the following templates. Auto-insert is turned on by default.

Many template options are configurable in the Preferences (see Wind River
Workbench User Interface Reference: Editor).

Name Description

author author name

catch catch block

class class declaration

comment default multiline comment

do do while statement

else else block

elseif else if block

for for loop

for for loop with temporary variable

if if statement

ifelse if else statement

main main method

namespace namespace declaration

new create new object

stderr print to standard error

stdout print to standard output

switch switch case statement

try try catch block

using using a namespace

10 Navigating and Editing
10.4 Search and Replace: The Retriever

123

10

10.3.1 Configuring a Custom Editor

Workbench has a single global mapping between file types and associated editors.
This mapping dictates which editor will be opened when you double-click a file in
the Project Navigator, or when the debugger stops in a given file.

Configuring the custom editor through file associations will cause the correct
editor to be opened, and the instruction pointer to be painted in the editor gutter.
To view and modify the mappings, go to Window > Preferences > General >
Editors > File Associations.

10.4 Search and Replace: The Retriever

The Retriever is a fast, index-based global text search/replace tool. The scope of a
search can be anything from a single file to all open projects in the workspace. You
can query for normal text strings, or regular expressions. Matches can be filtered
according to location context (for example, show only matches occurring in
comments). Text can be globally or individually replaced, and restored if necessary.
You can create working sets from matched files, and you can save and reload
existing queries.

Initiating Text Retrieval

Text retrieval is context sensitive to text selected in the Editor. If no text is selected
in the Editor, an empty instance of the Retriever opens. If text is selected in the
Editor, the retrieval is immediately initiated according to the criteria currently
defined in the Retriever’s Find tab.

To open the Retriever, or to initiate a context sensitive search, use:

■ the keyboard shortcut CTRL+2.

■ right-click in the Editor and choose Retrieve in Files.

■ from the global menu, choose Search > Retrieve in Files.

NOTE: Some debugger features require additional configuration; for details, see
18.2.1 Configuring Debug Settings for a Custom Editor, p.229.

Wind River Workbench
User’s Guide, 2.6 Linux Version

124

■ Click the Retriever tab in the lower panel of the Workbench window, where
the Retriever appears by default.

For more information, see the Wind River Workbench User Interface Reference:
Retriever.

10.5 Static Analysis

Editing, navigating, and code comprehension rely on static analysis parsing of
source code.

You can enable static analysis in two ways: automatically, by leaving Enable Static
Analysis selected when you create your project, or manually, by right-clicking
your project in the Project Navigator and selecting Static Analysis > Enable.

For information about global and project-specific preferences, see the Wind River
Workbench User Interface Reference: Static Analysis Preferences.

Sharing Static Analysis Data with a Team

Static analysis of a large project can take quite a bit of time, so once you have
parsed the source code of your project, you can share the generated data with your
team members using your group’s source control tool.

To share generated data with your team:

1. In the Project Navigator, right-click a project then select Static Analysis >
Export Shared Team Data1. The Team Data Export Options dialog appears,
where you can set export options and specify how to resolve file version
differences in other workspaces (for details about this dialog, see Wind River
User Interface Reference: Static Analysis Preferences). Click Finish. Workbench
exports the data to the file system location you specified.

NOTE: If this is your first use of static analysis, you may need to select Static
Analysis > Activate Plug-in before you can access other static analysis features.

1. If this is your first use of Static Analysis, select Static Analysis > Activate Plug-in, then
select Static Analysis > Export Shared Team Data.

10 Navigating and Editing
10.5 Static Analysis

125

10

2. Using your team’s source control tool, make the generated data available to
other team members (for example, by checking it into ClearCase). After that,
when the project is imported into another workspace, Workbench will use the
shared data instead of parsing the project.

3. Changes to the source-code are not propagated to the shared data
automatically, they are stored local to the workspace. You must export the data
again to make these changes available to team-members.

4. Once you have made local changes to a project in your workspace, Workbench
uses that local data in preference to the shared data. To abandon your local
changes and go back to using shared data, right-click a project and select
Import Shared Team Data. Workbench launches a wizard that removes your
local data in favor of the shared data.

Comparing Local Data with Shared Team Data

The tricky part about working with shared team data is to figure out which of the
resources in your workspace have been changed relative to the shared data. In
other words, you need a technique to compare the version of the file in your
workspace with the one used to generate the shared data. Workbench comes with
several mechanisms to do that:

■ Compare Timestamps: In some setups (e.g. ClearCase dynamic views) a file of
a certain version will have the same timestamp no matter in which workspace
it appears. This makes it easy to check the version of a file against the shared
data. This technique is preferable because it is fast, but many setups do not
allow it (such as CVS and ClearCase snapshot views).

■ Use team data for all read-only files: In other setups, all files in a workspace
that are in sync with the repository of the source control tool are read-only. As
a heuristic, we can use the shared data for all files that are read-only. The fact
that a file of the workspace is in sync with the repository does not actually
guarantee that the file version is the same as the one used to generate the
shared data. If you update the shared data regularly though, the heuristic will
be good.

■ Use checksums as a fallback: If accessing the source code is reasonably fast
and doesn’t cause too much drag on the system (unlike in a ClearCase
dynamic view) computing and comparing checksums for each file is a
reasonable approach.

Wind River Workbench
User’s Guide, 2.6 Linux Version

126

When you export shared data, you can specify in the dialog which of the
techniques described above can be used by team members using the shared data.
Compare time stamps and Use team data for all files will always be available to
them in the import wizard, but you can disable Use team data for all files and
Compare checksums by unselecting the corresponding check boxes in the export
wizard.

When you import a project with shared data into your workspace, Workbench will
choose the best available comparison method.

Team-Shared Exclusion Filter

The project property page, accessible by right-clicking a project and selecting Static
Analysis > Edit Exclusion Filter now allows you to share filters with your team.

The filters are organized into a tree with two root nodes: one for shared filters and
one for workspace private ones. You can convert shared filters into
workspace-private ones if you would like to edit them, or you can share a private
filter with your team if you find it particularly useful. For details about exclusion
filters, see Wind River User Interface Reference: Static Analysis Preferences.

127

 11
 Building Projects

11.1 Introduction 127

11.2 Configuring Workbench Managed Builds 130

11.3 Configuring User-Defined Builds 136

11.4 Accessing Build Properties 136

11.5 Build Specs 138

11.6 Makefiles 138

11.1 Introduction

The process of building in Workbench starts during project creation, when you
select a build type for your projects, folders, and build targets. Individual build
settings can be changed later, and in some cases you can switch from a managed
build to a user-defined or disabled build, but if you want Workbench to manage
your builds, you must select Managed Build in the New Project wizard.

Workbench offers several levels of build support:

Managed Build
Workbench provides two types of managed build support—Standard and
Flexible—for all project types except User-Defined projects.

Wind River Workbench
User’s Guide, 2.6 Linux Version

128

Workbench provides default build settings (that you can change as necessary),
creates makefiles, and controls all phases of the build.

There are advantages to each type of managed build, depending on many
things including how much control you need over your build output and what
your source tree looks like.

Table 11-1 shows a comparison of standard and flexible managed build
features.

User-Defined build
With User-Defined builds, you are responsible for setting up and maintaining
your own build system and Makefiles, but Workbench does provide minimal
build support.

■ It allows you to configure the build command used to launch your build
utility, so you can start builds from the Workbench GUI.

■ You can create build targets in the Project Navigator that reflect rules in
your makefiles, so you can select and build any of your make rules directly
from the Project Navigator.

■ Workbench displays build output in the Build Console.

Disabled build
If you select Disabled build for a project or folder, Workbench provides no
build support at all. This is useful for projects or folders that contain, for
example, only header or documentation files that do not need to be built.

Disabling the build for such folders or projects improves performance both
during makefile generation as well as during the build run itself.

NOTE: You cannot change from a lower level of build support to a managed build
once the project is created. If you later want Workbench to manage your build,
create a new project with the desired type of managed build support, either on top
of the existing sources, or import your sources into it.

11 Building Projects
11.1 Introduction

129

11

Table 11-1 Comparison of Standard and Flexible Managed Build Features

Standard Managed Build Flexible Managed Build

Build structure parallels the file
system structure.

Build structure can be defined
independently from the file system
structure.

Build order is determined by the
project and folder hierarchies as
displayed in the Project Navigator.

Build order is flexible, and you can
customize settings per build tool and
build target.

Project contains folders and files.
Project metadata and build
information is stored in the source
code location.

Project contains folders, files, and
information about how the build targets
of the project are built (stored in the
.wrproject file). No information is stored
in .wrfolder files in the source code
location.

Project can contain multiple build
targets, but the build options are the
same regardless of the build target the
file is built into.

Project can contain multiple build targets.
You can add the same file to multiple
build targets, and set specific options
depending on which build target the file is
built into.

Build target can contain only files
within the project.

Build targets can contain any file, folder,
project, or other build target in the
workspace, including linked resources.

Virtual folders allow you to group objects
from different sources and apply build
settings to them.

Build target contains all contents of
included folders.

Folders and files can be excluded from the
build target using regular expressions.

Workbench creates one Makefile per
folder with all build specs. Makefiles
are based on data you enter at project
creation time, or later in the Build
Properties dialog.

Workbench creates one Makefile per
build spec for the whole project.

Leveling chain is project > folder >
file.

Leveling chain is project > build target >
folder > file.

Wind River Workbench
User’s Guide, 2.6 Linux Version

130

11.2 Configuring Workbench Managed Builds

The process of configuring Workbench managed builds differs significantly
depending on whether you selected a standard or a flexible managed build.

11.2.1 Configuring Standard Managed Builds

Standard managed builds have not changed from previous versions of
Workbench. When you select Standard in the New Project wizard, your project is
created and contains a preliminary build target in addition to the usual project
files.

To create the build target, right-click your project in the Project Navigator and
select Build Project.

11.2.2 Configuring Flexible Managed Builds

When you select Flexible, your projects are created in the same way and also
contain the usual project files, but you must create your build targets manually.

Workbench generates include search
paths for header files that are visible
in the workspace.

Same

Build output is displayed in the Build
Console.

Same

Table 11-1 Comparison of Standard and Flexible Managed Build Features (cont’d)

Standard Managed Build Flexible Managed Build

11 Building Projects
11.2 Configuring Workbench Managed Builds

131

11

Adding Build Targets to Flexible Managed Builds

Once your project is created, you will see a Build Targets node inside it.

1. To add a build target to your project, right-click the Build Targets node and
select New Build Target. The New Build Target dialog appears.

2. By default the Build target name and Binary output name1 are the same as the
project name, but if you are going to create multiple build targets you will
want to type in more descriptive names. Choose the appropriate Build tool for
your project, then click Next. The Edit Content dialog appears.

3. To display files, folders, and other build targets from outside your current
project, select Show all projects. If you have created a Working Set, you can
restrict the display by selecting it from the pull-down list.

4. You can add contents to your build target in several ways:

a. You can select specific files, folders, projects, or other build targets in the
left column and click Add. What you can add depends on the build tool
you use; for example, you cannot add an executable build target to another
build target.

When choosing folders or projects, they can be added “flat” or with
recursive content.

– Clicking Add creates a “flat” structure, meaning that Workbench adds
the exact items you choose and skips any subfolders and files.

– Clicking Add Recursive creates a structure that includes subfolders
and files.

1. Your build targets must have unique names, but you can use the same Binary output name
for each one. This allows you to deliver an output file with the same name in multiple
configurations. Workbench adds a build tool-appropriate file extension to the name you
type, so do not include the file extension in this field.

NOTE: Adding linked resources to a build target may cause problems within
a team if the linked resources are added using an absolute path instead of a
variable.

To define a path variable, select Window > Preferences > General >
Workspace > Linked Resources, click New, then enter a variable name and
location.

Wind River Workbench
User’s Guide, 2.6 Linux Version

132

b. You can create a virtual folder within your build target by clicking Add
Virtual Folder, typing a descriptive name in the dialog, and clicking OK.
Virtual folders allow you to group objects within the build target so you
can apply the same build settings to them; they also provide a way to add
files with the same name from different locations.

i. To add contents to your virtual folder, right-click it in the Project
Navigator and select Edit Content.

ii. Select content as described in step a above, and click Finish.

5. To adjust the order of the build target contents, select items in the right column
and click Up, Down, or Remove.

6. When you have configured your build target, click Finish. It appears in the
Project Navigator under the Build Targets node of your project.

Modifying Build Targets

There are several ways to modify your build target once it has been created.

Editing Content

To add additional items, adjust the order, or make any other changes to your build
target, right-click it in the Project Navigator and select Edit Content. The Edit
Content dialog appears, with the build target content displayed in the right
column. Adjust the contents as necessary, then click Finish.

Renaming Build Targets and Virtual Folders

To rename your build target or virtual folder, select it in the Project Navigator,
press F2, and type a new name.

Copying Build Targets

To copy a build target, right-click the build target and select Copy, then right-click
the destination project’s Build Targets node and select Paste (if you are pasting
back into the original project, type a unique name for the new build target).

NOTE: Folders appear in the specified place in the list, but the files within them
are added alphabetically.

11 Building Projects
11.2 Configuring Workbench Managed Builds

133

11

This is useful for setting up the same build targets in multiple projects with
different project types (for example, a library for a native application and a
downloadable kernel module will have the same contents but different flags).

Removing Content

To remove an item from the build target, right-click it in the Project Navigator and
select Remove from Build Target, or just select it and press Delete.

Depending on the item you selected, the menu item may change to Exclude from
Build Target if the item cannot be deleted (for example, recursive content cannot
be deleted). Pressing Delete also reinstates an item by removing the exclusion.

Excluding Content

To exclude a specific item from the build target that was included recursively,
right-click it in the Project Navigator and select Exclude from Build Target.

You can also use regular expressions to exclude groups of items.

1. To add a pattern to the excludes list, right-click a folder in the build target, then
select Properties, then select the Excludes tab.

2. Click Add File to define a pattern to exclude specific files or file types. For
example, type *_test.c to exclude any file named filename_test.c.

You can include additional parts of the path to better define the file you want
to exclude; for example, type lib/standard_test.c to exclude that specific file.

3. Click Add Folder to define a pattern to exclude folders within specific folders.
For example, type */lib/*_test.c to exclude any file located in a folder named
lib and named filename_test.c.

Dragging and Dropping Content

To modify build target contents without opening the Specify Content dialog,
you can drag and drop items in the Project Navigator.

■ You can drop resources onto build target nodes or virtual folders to add
them to a build. Workbench checks the validity of the action and reports
errors if the move is not allowed. Workbench also asks you if the resource
should be added “flat” or recursively.

NOTE: The build target and its contents are copied, but any overridden attributes
are not.

Wind River Workbench
User’s Guide, 2.6 Linux Version

134

■ You can reorder build target contents by dragging and dropping an item
on the same level.

■ You can drop a build target node onto other build targets to add the first
build target as a reference (for example, dropping a library onto an
executable, or dropping an executable onto an executable). Workbench
checks to make sure it is a valid operation before allowing you to complete
the action.

Leveling Attributes

The leveling of build-specific settings in flexible managed builds is significantly
different from the leveling of standard managed build projects. The leveling chain
for flexible managed build projects is shown below.

Project > Target > Folder > File
Project > Target > Folder > Subfolder > File
Project > Target > Virtual folder > File
Project > Target > Virtual folder > Folder >
Project > Target > File

The folder level here is related to folders underneath a build target, as described in
Adding Build Targets to Flexible Managed Builds, p.131.

The information that can be leveled is equivalent to the current implementation of
standard managed build projects, plus additional information so that you can
enable files to be built on a per build-spec basis (standard managed build allows
this only on folder level).

You can now configure the build target with specific settings for all build tools on
a build target level (for example, you can set compiler options for the source files
related to that build target).

Understanding Flexible Managed Build Output

The output of a flexible managed build is significantly different from the output of
a standard managed build.

NOTE: If your build target contains projects or folders, any files you add to them
later will be automatically added to the build target as well. So you do not need to
manually update your build target in this case.

11 Building Projects
11.2 Configuring Workbench Managed Builds

135

11

Workbench does not create build redirection directories for each folder, as the
objects might be built differently when building them for specific targets. Instead,
Workbench creates a build-specific redirection directory, which you can configure
on the Build Properties > Build Paths tab, underneath the project root directory.

In this redirection directory there is a directory for each build-target, and inside
those are directories named Debug or NonDebug depending on the debug mode
you chose for the build. Workbench generates the output files according to the
structure you defined in the build target, and deposits them in the debug-mode
directory.

In general, the build output is structured like this:

Project directory
Project dir/build specific redirection dir
Project dir/build specific redirection dir/target dir
Project dir/build specific redirection dir/target dir/debug mode dir
Project dir/build specific redirection dir/target dir/debug mode dir/binary output file of the
build target

All objects belonging to the build target are stored within an additional Objects
subfolder:

Project dir/build specific redirection dir/target dir/debug mode dir/Objects/structure of
object files

Example Build Target and Build Output Structure

To understand how the build target structure influences the build output, below is
an example of a project source tree.

proj1/
proj1/a.c
proj1/b.c
proj1/folder1/c.c
proj1/folder1/d.c

Target1 contains these two items:

a.c
folder1/*.c

Target2 contains these two items:

b.c
d.c

Configuring the project to use spec1 as the active build spec, naming the
redirection directory spec1, and turning debug-mode on produces the output
structure seen below.

Wind River Workbench
User’s Guide, 2.6 Linux Version

136

proj1/spec1/Target1/Debug/Target1.out
proj1/spec1/Target1/Debug/Objects/a.o
proj1/spec1/Target1/Debug/Objects/folder1/c.o
proj1/spec1/Target1/Debug/Objects/folder1/d.o

proj1/spec1/Target2/Debug/Target2.out
proj1/spec1/Target2/Debug/Objects/b.o
proj1/spec1/Target2/Debug/Objects/d.o

11.3 Configuring User-Defined Builds

When you create a User-Defined project, you can configure the build command,
make rules, build target name, and build tool (for more information, see 7. Creating
User-Defined Projects). To create the build target, right-click your project in the
Project Navigator and select Build Project.

To update the build settings, right-click your project in the Project Navigator and
select Properties, then select Build Properties.

See Wind River Workbench User Interface Reference: Build Properties for more
information about the settings described on the build properties tabs.

11.4 Accessing Build Properties

There are two ways to set build properties: in the Workbench preferences, to be
automatically applied to all new projects of a specific type, and manually, on an
individual project, folder, or file basis. The properties displayed will differ
depending on the type of node and the type of project you selected, as well as the
type of build associated with the project.

For details, see Wind River Workbench User Interface Reference: Build Properties.

11 Building Projects
11.4 Accessing Build Properties

137

11

11.4.1 Workbench Global Build Properties

To access global build properties, select Window > Preferences and choose the
Build Properties node.

This node allows you to select a project type, then set default build properties to be
applied to all new projects of that type.

11.4.2 Project-specific Build Properties

To access build properties from the Project Navigator, right-click a project and
select Properties. In the Properties dialog, select the Build Properties node.

The project-specific Build Properties node has tabs that are practically identical to
the ones in the Workbench preferences, but these settings apply to an existing
project that is selected in the Project Navigator.

11.4.3 Folder, File, and Build Target Properties

Folders, files, and build-targets inherit (reference) project build properties where
these are appropriate and applicable. However, these properties can be overridden
at the folder/file level. Inherited properties are displayed in blue typeface,
overridden properties are displayed in black typeface.

Overridden settings are maintained in the .wrproject file (and also in .wrfolder
files in standard managed builds). These files should therefore also be version
controlled. Note that you can revert to the inherited settings by clicking the eraser
button next to a field.

11.4.4 Multiple Target Operating Systems and Versions

If you installed Workbench for multiple target operating systems and/or versions,
you can set a default target operating system/version for new projects in the
Workbench Preferences, under General > Target Operating Systems.

For existing projects, you can verify the target operating system (version) by
right-clicking the project in the Project Navigator, then selecting Properties, then
Project Info.

Wind River Workbench
User’s Guide, 2.6 Linux Version

138

In the Project Navigator (and elsewhere), the target operating system and version
are displayed next to the project name by default. You can toggle the display of this
information in the Preferences, General > Appearance > Label Decorations, using
the Project Target Operating Systems check box.

If you have multiple versions of the same operating system installed, the New
Project wizard allows you to select which version to use when creating a new
project.

11.5 Build Specs

A build spec is a group of build-related settings that lets you build the same project
for different target architectures and/or different tool chains by simply switching
from one build spec to another. Note that the architecture/tool chain associations
are preconfigured examples; you can also create your own build specs (usually
from copies of existing ones, using the Copy button.

It is important to remember that the build spec used when you build must match
the target board.

11.6 Makefiles

The build system uses the build property settings to generate a self-contained
makefile named Makefile.

■ For standard managed builds, a Makefile is generated in each project and
folder at each build run. This allows you to build individual folders, projects,
and subtrees in a project structure.

■ For flexible managed builds, only one Makefile is created per build spec.

NOTE: In most cases, it will not be possible to successfully migrate a project from
one target operating system or version to another simply by switching the selected
Target Operating System and Version.

11 Building Projects
11.6 Makefiles

139

11

By default makefiles are stored in project directories; if you specified an absolute
Redirection Root Directory (see Wind River Workbench User Interface Reference:
Build Paths), they are stored there, in subdirectories that match the project directory
names.

The generated makefile is based on a template makefile named .wrmakefile that
is copied over at project creation time. If you want to use custom make rules, enter
these in .wrmakefile, not in Makefile, because this is regenerated for each build.
The template makefile, .wrmakefile, references the generated macros in the
placeholder %IDE_GENERATED%, so you can add custom rules either before or
after this placeholder. You can also add *.makefile files to the project directory.

For other ways of setting custom rules, see 12.6 User-Defined Build-Targets in the
Project Navigator, p.151.

11.6.1 Derived File Build Support

The Yacc Example

Workbench provides a sample project, yacc_example, that includes a makefile
extension showing how you can implement derived file build support. It is based
on yacc (Yet Another Compiler Compiler) which is not contained in the Workbench
installation. To actually do a build of the example you need to have yacc or a
compatible tool (like GNU’s bison) installed on your system, and you should have
extensive knowledge about make.

The makefile, yacc.makefile, demonstrates how a yacc compiler can be integrated
with the managed build and contains information on how this works.

1. Create the example project by selecting New > Project > Example > Native
Sample Project > Yacc Demonstration Program.

2. Right-click the yacc_example project folder, then select New > Build Target.
The New Build Target dialog appears.

3. In the Build target name field, type pre_build.

4. From the Build tool drop-down list, select (User-defined), then click Finish to
create the build target.

NOTE: If you configure your project for a remote build, the generated Makefile
contains paths for remote locations rather than local ones. For more information
about remote builds, see 12.9 Developing on Remote Hosts, p.157.

Wind River Workbench
User’s Guide, 2.6 Linux Version

140

5. In the Project Navigator, right-click pre_build and select Build Target. This
will use the makefile extension yacc.makefile to compile the yacc source file to
the corresponding C and header files. The build output appears in the Build
Console.

6. When the build is finished, right-click the yacc_example folder and select
Build Project.

Additional information on how you can extend the managed build is located in
yacc.makefile. It makes use of the extensions provided in the makefile template
.wrmakefile, which can also be adapted to specific needs.

General Approach

To implement derived file support for your own project, create a project-specific
makefile called name_of_your_choice.makefile. This file will automatically be used
by the managed build and its make-rules will be executed on builds.

It is possible to include multiple *.makefile files in the project, but they are
included in alphabetical order. So if multiple build steps must be done in a specific
order, it is suggested that you use one *.makefile and specify the order of the tools
to be called using appropriate make rules.

For example:

1. Execute a lex compiler.

2. Execute a yacc compiler (depending on lex output).

3. Execute a SQL C tool (depending on the yacc output).

NOTE: It is necessary to execute this build step prior to the project build,
because the files generated by yacc will not be used by the managed build
otherwise. This is due to the fact that the managed build generates the
corresponding makefile before the build is started and all files that are part of
the project at this time are taken into account.

11 Building Projects
11.6 Makefiles

141

11

Solution: (using the generate_sources make rule)

generate_sources :: do_lex do_yacc do_sql
do_lex:

@...

do_yacc:
@...

do_sql:
@...

or

generate_sources :: $(LEX_GENERATED_SOURCES) $(YACC_GENERATED_SOURCES)
$(SQL_GENERATED_SOURCES)

Add appropriate rules like those shown in the file yacc.makefile.

Wind River Workbench
User’s Guide, 2.6 Linux Version

142

143

 12
 Building: Use Cases

12.1 Introduction 143

12.2 Adding Compiler Flags 144

12.3 Building Applications for Different Target Architectures 145

12.4 Creating Library Build-Targets for Testing and Release 146

12.5 Architecture-Specific Implementation of Functions 149

12.6 User-Defined Build-Targets in the Project Navigator 151

12.7 Custom Build Specs for Wind River Linux Platform Projects 153

12.8 Stepping Through Assembly Code 155

12.9 Developing on Remote Hosts 157

12.1 Introduction

This chapter suggests some of the ways you can go about completing various
build-specific tasks in Wind River Workbench.

NOTE: This chapter discusses standard managed builds only. For details on
flexible managed builds, refer to 11. Building Projects.

Wind River Workbench
User’s Guide, 2.6 Linux Version

144

12.2 Adding Compiler Flags

You may know the exact compiler flag you want to add, for example -w, and use
the GUI to help you put it in the right place as shown in Add a Compiler Flag by
Hand, p.144. You can also use the GUI to help you specify the correct compiler flag
for what you want to do, as shown in Add a Compiler Flag with GUI Assistance,
p.145.

Add a Compiler Flag by Hand

If, for example, you are familiar with the GNU compiler command line and you
just want to know where to enter the -w option.

1. In the Project Navigator, right-click an application project and select
Properties.

2. In the Properties dialog box, select the Build Properties node.

3. In the Build Properties node, select the Build Tools tab.

4. In the Build Tools tab:

– Set the Build tool to C-compiler

– Set the Active build spec to, for example, PENTIUM-gnu-native.

– In the field next to the Tool Flags button, append a space and -w.

The contents of this, the Tool Flags field you have just modified, is
expanded to the %ToolFlags% placeholder you see in the Command field
above it. Because you entered the -w in the Tool Flags field, rather than the
Debug or Non Debug mode fields, warnings will always be suppressed,
rather than only in either Debug or Non Debug mode.

NOTE: This section describes how to add and edit the compiler flags on specific
projects. To make global build spec changes, see . However, for Wind River Linux
projects, global changes are made in board templates so that the settings can be
used by both the command line build system and Workbench, as described in
Wind River Linux Platforms User’s Guide (see also 12.7 Custom Build Specs for Wind
River Linux Platform Projects, p.153).

12 Building: Use Cases
12.3 Building Applications for Different Target Architectures

145

12

Add a Compiler Flag with GUI Assistance

If you are not familiar with the specific command line tool options that you want
to use, the GUI may be able to help. For example:

1. In the Project Navigator, right-click an application project, and select
Properties.

2. Click Build Properties and select the Build Tools tab.

3. In the Build Tools tab:

– Set the Build tool to C-compiler

– Set the Active build spec to, for example, PENTIUM-gnu-native.

– We assumed you are unfamiliar with the GNU compiler options so, to
open the GNU Compiler Options dialog box, click the Tool Flags button.

– In the GNU Compiler Options dialog box, click your way down the
navigation tree at the left of the dialog box and take a look at the available
options.

When you get to the Compilation > Diagnostics node, select the check
box labelled Suppress all compiler warnings.

Notice that -w now appears in the list of command line options at the right
of the dialog box.

Click OK.

4. Back in the Build Tools node of the Properties dialog box, you will see that the
-w option you selected now appears in the field next to the Tool Flags button.

The contents of this, the Tool Flags field, is expanded to the %ToolFlags%
placeholder you see in the Command field above it.

12.3 Building Applications for Different Target Architectures

The target nodes under projects in the Project Navigator display, in blue, the name
of the currently active build spec. You may want to switch build specs to build
projects for different architectures.

Wind River Workbench
User’s Guide, 2.6 Linux Version

146

If, for example, you want to build an application for testing on the localhost, and
then build the same project to run on a real board, you would simply switch build
specs as follows:

1. Right-click the project node and select
Build Options > Set Active Build Spec.

2. In the dialog box that appears, select the build spec you want to change to and
specify whether or not you want debug information.

When you close the dialog box, you will notice that the label of the target node
has changed. If you selected debug mode in the dialog box, the build spec
name is suffixed with _DEBUG.

3. Build the project for the new architecture.

12.4 Creating Library Build-Targets for Testing and Release

Assume you have a library that consists of the files source1.c, source2.c, and test.c.
The file test.c implements a main() function and is required exclusively for testing,
and is not to be included in the release version of the library.

One way to handle this is to use different targets that are built with different tools
as described below.

1. Create an application project to hold all the files mentioned above. Use this
project type, because you will need to use both the Linker and the Librarian
build tools later.

In the first page of the project creation wizard, name the project, for example,
LIB and click Finish. You will need to do some tweaking in the Project’s
Properties dialog box anyway, so you might as well do everything there.

2. Right-click the newly created LIB project, and select Properties. In the
Properties dialog box, select the Build Properties node, then the
Build Targets tab.

NOTE: To select the Active Build Spec directly from the Project Navigator, click the
green checkmark in the Project Navigator toolbar.

12 Building: Use Cases
12.4 Creating Library Build-Targets for Testing and Release

147

12

First create a build-target for the release version of your library.

– Change the Build tool to Librarian.
– Select Pass build target to next level.
– Clear the Use default contents and link order check box.
– Clear the check box next to test.c.
– Click Apply.

Figure 12-1 shows the results.

3. Next, create a target for the test version of the library.

– Click New then enter, for example, LIB_test in the dialog box that appears.

Notice that the Build Tool is set to C++-Linker, this is because the C++
Linker is the default tool for Embedded Linux Application projects, and
that the LIB (your previous build-target) has been added to the
Contents and link order list.

Figure 12-1 Release Version of the Library

Wind River Workbench
User’s Guide, 2.6 Linux Version

148

– Clear the Use default contents and link order check box.

– In the Contents and link order list, select only the check boxes next to LIB
and test.c; clear all other check boxes.

Figure 12-2 shows the results.

After you close the Properties dialog box, there will be two new build-target nodes
in the LIB project. If you build LIB_test, then LIB will automatically also be built
if it is out of date.

Figure 12-2 Test Version of the Library

12 Building: Use Cases
12.5 Architecture-Specific Implementation of Functions

149

12

12.5 Architecture-Specific Implementation of Functions

You can enable/disable build specs at the project as well as at the folder level. This
allows architecture-specific implementation of functions within same project.

Figure 12-3 shows a simplified project tree with two subprojects, arch 1 and arch2,
that each use code that is specific to different target architectures. This is how
projects could be set up to build a software target that requires the implementation
of a function that is specific to different target boards, where only the active build
spec in the topmost project has to be changed. The inner build spec relationships
are outlined in Table 12-1.

Figure 12-3 Simple Project Structure for Architecture-Specific Functions

Wind River Workbench
User’s Guide, 2.6 Linux Version

150

The function int arch_specific (void) is declared in arch.h and the file arch1.c
implements int arch_specific (void) for PENTIUM (the only build spec enabled
for the arch1 project), while the file arch2.c implements int arch_specific (void) for
PPC32 (the only build spec enabled for the arch2 project).

If the active build spec for project is set to PENTIUM-gnu-native, the subproject
arch1 will be built, and its objects will be passed up to be linked into the project
build-target. The arch2 subproject will not be built, and its objects will not be
passed up to be linked into the project build target because the
PENTIUM-gnu-native build spec is not enabled for arch2.

The same applies if the PPC82xx-gnu-eldk3.1 is the active build spec for project:
the arch2 subproject will be built, but the arch1 subproject will not.

Table 12-1 Project Content and Build Spec Configuration of the Structure in Figure 12-3

Directories/Folders Files Enabled Build Specs

/project main.c, arch.h PENTIUM-gnu-native and
PPC82xx-gnu-eldk3.1

/project/arch1 arch1.c PENTIUM-gnu-native only

/project/arch2 arch2.c PPC82xx-gnu-eldk3.1 only

12 Building: Use Cases
12.6 User-Defined Build-Targets in the Project Navigator

151

12

12.6 User-Defined Build-Targets in the Project Navigator

In the Project Navigator you can create custom build-targets that reflect rules in
makefiles. This is especially useful if you have User-Defined projects, which are
projects where the build is not managed by Workbench. However, you might also
find this feature useful in other projects as well.

Custom Build-Targets in User-Defined Projects

You can define a custom build-target for a rule or rules in your Makefile. To do so:

1. Right-click a project or folder and select New > Build Target.

2. In the dialog box that appears, enter the rule(s) you want to create a target for.
If you want to execute multiple rules, separate each one with a space.

The names of the rule(s) you enter must exist in your makefile(s) to be
executed when you build your new user-defined target.

3. Set the Build tool to User-defined.

4. Click Finish. The new build-target node appears under the project or folder
you selected. The node icon has a superimposed M to identify it as a
user-defined make rule.

To execute the rule(s), right-click the new target node and select Build Target.

Custom Build-Targets in Workbench Managed Projects

First write the make rules you need into the .wrmakefile file in the project
directory.

1. Right-click a project or folder and select New > Build Target.

2. In the dialog box that appears, enter the rule name(s) you created in
.wrmakefile. If you want to execute multiple rules, separate each one with a
space.

3. Set the Build tool to User-defined.

NOTE: For Wind River Platform projects, see Custom Build Targets in Wind River
Linux Platform Projects, p.152.

Wind River Workbench
User’s Guide, 2.6 Linux Version

152

4. Click Finish. The new build target node appears under the project or folder
you selected. The node icon has a superimposed M to identify it as a
user-defined rule.

To execute the rule(s), right-click the new target node and select Build Target.

Custom Build Targets in Wind River Linux Platform Projects

To create a custom build target for a Wind River Linux Platform project, you edit
Makefile.wr, not .wrmakefile. The contents of .wrmakefile (build properties and
build targets) should be edited only through the project Properties > Build
Properties dialogs.

First, write the rules you want add to Makefile.wr. For example, double-click
Makefile.wr and add the following at the bottom of the file in the Editor view:

uclibc-config :
xterm - e make -C $(DIST_DIR) uclibc.menuconfig

An xterm is used because this build rule, menuconfig, requires a shell that can
support xterm commends, which is beyond the capabilities of the Build Log view
within Workbench.

Note that at the top of Makefile.wr are the definitions DIST_DIR and
TARGET_DIR. These provide the redirection to the Wind River Linux Platform
project’s content directory.

1. Right-click a project or folder and select New > Build Target.

2. In the dialog box that appears, enter the rule(s) you want to create a target for.
If you want to execute multiple rules, separate each one with a space. For this
example, add the build target uclibc-config.

3. Set the Build tool to User-defined.

4. Click Finish. The new build target node appears under the project or folder
you selected. The node icon has a superimposed M to identify it as a
user-defined rule.

To execute the rule(s), right-click the new target node and select Build Target.

NOTE: This example shows how to add a build target to invoke the uClibc
configuration for PCD-based projects. This technique applies to bringing any other
Wind River Linux or custom command line feature to Workbench Platform
Projects.

12 Building: Use Cases
12.7 Custom Build Specs for Wind River Linux Platform Projects

153

12

User Build Arguments

The User Build Argument view appears near the top of the Project Navigator. You
can use the User Build Arguments view to execute any existing make rule, or
override any macro, or anything else that is understood by make, at every build,
regardless of what is being built. The view is toggled by choosing User Build
Arguments View from the drop-down menu at the top right of the Project
Navigator, or by clicking the button in the Project Navigator’s toolbar.

If you make entries in the User Build Arguments view, the rule or rules, macro
re-definitions, and so on, separated by a space, are appended to (and thus
override) the existing makefile entries. This occurs on the fly at every build while
the entries exist in the view.

12.7 Custom Build Specs for Wind River Linux Platform Projects

For Wind River Linux projects, the script file wbblddefgen.tcl translates the Wind
River Linux templates to the Workbench build spec. This script includes a feature
so that you can add custom build specs and have them automatically included in
projects.

There are, however, cases where you may want to have build specs appear that are
in addition to the ones derived from the templates. For example, Workbench and
the Wind River Linux build system supports Thumb-based application builds, but
this is not instantiated as a template because a kernel cannot be built with this
configuration. This section describes how to add custom build specs, in this
example Thumb-based, by adding build spec fragments to a special file.

One use of this feature is to add build specs that explicitly add ARM Thumb
support, as demonstrated here.

1. Go to the wrlinux-1.3/scripts directory:

$ cd installDir/wrlinux-1.3/script

NOTE: Wind River Linux does include pre-made build spec fragments. These can
be copied directly from files that are named in the form
wbbldsample_rootfs-arm-thumb.txt.

Wind River Workbench
User’s Guide, 2.6 Linux Version

154

2. Create a file called wbblddef_custom.txt, and add the following contents:

BOARD=ARM-gnu-wrs-arm_versatile_926ejs-thumb-uclibc_small
TARGET_ARCH=arm
TARGET_LINUX_ARCH=arm
TARGET_TOOLCHAIN_ARCH=arm
TARGET_CPU_VARIANT=arm
TARGET_OS=linux-gnueabi
TARGET_COPT=
TARGET_CDEBUG=
TARGET_COMMON_CFLAGS=-mcpu=arm926ej-s -mthumb
LINUX_KERNEL_VERSION=2.6.14
TARGET_THE_PLATFORM=uclibc_small
TARGET_SUPPORTED_KERNEL=cgl small
TARGET_SUPPORTED_ROOTFS=glibc_full glibc_small uclibc_small
BOARD=END

3. Create a Wind River Linux project, and notice that a new build spec with the
name of the BOARD field from the new file appears. (You must have installed
ARM support to be able to build with this build spec.)

The values used in the custom build spec describe the required values distilled
from the templates (see installDir/wrlinux-1.3/wrlinux/templates/). Sample board
definitions can be found in the other wbblddef_*.txt files provided as part of the
Application Developer support (see installDir/wrlinux-1.3/scripts).

NOTE: The line ending with -mthumb adds the Thumb support. Additional
Thumb support examples are provided in
installDir/wrlinux-1.3/scripts/wbbld-sample-rootfs-thumb.txt.

NOTE: The build specs for Wind River Linux application projects are of the
form CPU-toolchain-board-rootfs.

12 Building: Use Cases
12.8 Stepping Through Assembly Code

155

12

12.8 Stepping Through Assembly Code

You can view assembly code interleaved with the corresponding source code by
clicking the Toggle Assembly Stepping Mode button as shown in Figure 12-4.

Figure 12-5 shows an example of mixed assembly and C++ source code (this is
from the Penguin example program included with Workbench). The code has been
single-stepped to the call instruction. Note that the previous steps are shown in
lessening degrees of shading—this can help you see where you've been when
stepping into and out of routines.

Figure 12-4 Toggle Assembly and Source Code Viewing

Wind River Workbench
User’s Guide, 2.6 Linux Version

156

With the assembly language code visible you can step in and out of the inherited
parent class methods for C++ classes as your C++ code is executing.

For example, in Figure 12-5, stepping into the call for the p object's Move method
takes you into the Move method code for the parent class BALL, as shown in
Figure 12-6.

Figure 12-5 Single Stepping Though Assembly Code

NOTE: The assembly code shown will differ depending on your target. Code
produced for an Intel MPCBL0001 target is shown. For the ARM Versatile board,
for example, the instruction corresponding to the call instruction is the blx
instruction.

12 Building: Use Cases
12.9 Developing on Remote Hosts

157

12

Also in Figure 12-6, you can see at the top (for line 126) the call to the parent class
constructor POINT::POINT, which creates a new POINT object for the local
variable new_position. Additionally, you can see the call (for line 128) to the
parent class operator method POINT::operator +.

This is all hidden when debugging at the source code level.

12.9 Developing on Remote Hosts

The Workbench remote build feature allows you to develop, build and run your
applications on a local host running Workbench, using a workspace that is located
on a remote host as if it were on a local disk.

Figure 12-6 Example of C++ Assembly Code

Wind River Workbench
User’s Guide, 2.6 Linux Version

158

In the case of a managed build, Workbench generates the makefiles on the local
machine running Workbench using a path mapping of the workspace root
location, so that the generated makefiles will be correctly dumped for a build that
is executed on the remote machine. When launching the build, a network
connection (rlogin or ssh) is established to the build host, and the actual build
command is executed there by using an intermediate script to allow you to set up
the needed environment for the build process.

12.9.1 General Requirements

■ The Workbench host tools and the tool chain must be installed on the remote
machine.

■ The workspace root directory has to be accessible from both machines.

■ Only Eclipse projects located underneath the workspace root can be remotely
built.

■ An rlogin or ssh remote connection to the build machine must be possible.

12 Building: Use Cases
12.9 Developing on Remote Hosts

159

12

12.9.2 Remote Build Scenarios

Local Windows, Remote UNIX:

The workspace root directory should be located on the remote UNIX host and
mapped to a specific network drive on Windows. It may also be possible to locate
the root directory on the Windows machine, but then there is the need to mount
the Windows disk on the build host. This may lead to problems regarding
permissions and performance, so a mapping of the workspace root-directory is
definitely needed.

Local UNIX, Remote UNIX:

As it is possible to access the workspace root directory on both machines with the
equivalent path (automount) it may be possible to skip the path mapping.

Local UNIX, Remote Windows:

This scenario is not supported, as you would need to execute the build command
on Windows from a UNIX host.

12.9.3 Setting Up a Remote Environment

To set up your environment on the remote machine prior to a build or run, use the
Edit remote command script button to include additional commands. It will open
the file workspaceDir/.metadata/.plugins/com.windriver.ide.core/remote_cmd.sh.

For example, to extend the path before a build, add the highlighted lines to the
default file:

#!/bin/sh

WORKSPACE_ROOT="%WorkspaceRoot%"
export WORKSPACE_ROOT
DISPLAY=%Display%
export DISPLAY

PATH=/MyTools/gmake_special/bin:$PATH
export PATH

cd $WORKSPACE_ROOT

Wind River Workbench
User’s Guide, 2.6 Linux Version

160

cd "$1"
shift 1

exec "$@"

You can add any commands you need, but all commands must be in sh shell style.

12.9.4 Building Projects Remotely

1. Switch to a workspace that contains existing projects by selecting File > Switch
Workspace. Type the path to the appropriate workspace, or click Browse and
navigate to it.

2. In the Project Navigator, right-click a project and select Build > Remote
Connection. The Remote Connections dialog box appears.

3. Click Add and type a descriptive name for this remote connection. Click OK.

4. In the Connection Settings fields, add the following information to create a
remote connection:

Connection Type
Select Rlogin or SSH.

Hostname
The name of the build host (can also be an IP address).

Username
The username used to establish the connection (the remote user may differ
from the local user).

Remote Workspace Location
The root directory of the workspace as seen on the remote host.

Display (XServer)
IP address of the machine where the output should be displayed.

By clicking the Advanced button you can also access these fields:

Password request string
A string that will be recognized as a password request to prompt you for
the password.

Remember Password during Workbench sessions
A switch to specify whether the password entered should be remembered
during the current session. This is useful during a lengthy build/run
session.

12 Building: Use Cases
12.9 Developing on Remote Hosts

161

12

5. Click Connect to connect immediately. Remote connection settings are stored,
and are specific to this workspace. They are not accessible from any other
workspace.

6. The build is executed on the remote host, with the build output listed in the
standard Workbench Build Console. The XServer (IP address listed in the
Display field) is used whenever any type of X application is started, either
during builds or runs.

7. To return to local development, select Local Host from the list of connections,
then click Connect.

12.9.5 Running Applications Remotely

This section provides information about running native applications only, as
running VxWorks projects remotely is handled differently.

Running native applications remotely is quite similar to running applications
locally: a Native Application launch configuration must be created that defines
the executable to be run, as well as remote execution settings for the launch. On the
Remote settings tab are:

Remote Program
Enter the command that is used to launch the application. This may be useful
for command-line applications that could then be launched within an xterm,
for instance.

Remote Working Directory
This setting is optional, but if a remote working directory is given, it overrides
the entry in the Working Directory field of the Arguments tab.

For remote runs, a new connection similar to the active connection will be
established to allow control of Eclipse process handling, as the new remote process
will be shown in the Debug view. The Remember password during Workbench
sessions feature is very useful here.

Command-line application’s output and input is redirected to the standard Eclipse
console unless the application is started within an external process that creates a
new window (such as xterm). The default for remote execution is a remote
command like xterm -e %Application%, therefore a local XServer (like Exceed or
Cygwin X) must be set up and running.

For more information about creating launch configurations, see 16. Launching
Programs.

Wind River Workbench
User’s Guide, 2.6 Linux Version

162

12.9.6 Rlogin Connection Description

The rlogin connection used in the Workbench remote build makes use of the
standard rlogin protocol and ports. It establishes a connection on port 513 on the
remote host, and the local port used must be in the range of 512 to 1023 per rlogin
protocol convention.

On Windows the rlogin connection is implemented directly from within
Workbench, so you do not need an existing rlogin client. The UNIX
implementation is different, because for security reasons the local port (range: 512
to 1023) is restricted to root access, which cannot be granted from within
Workbench. Therefore an external rlogin process is spawned using the
command-line:

rlogin -l username hostname

rlogin on UNIX platforms makes use of setUID root to ensure that the needed root
privileges are available.

The standard rlogin protocol doesn't support access to stderr of the remote
connection, to all output is treated as stdout. Coloring in the Build Console of
Workbench for stderr is therefore not available.

12.9.7 SSH Connection Description

The supported protocol is SSH2, and it establishes a connection on port 22 (the
default SSH port).

Strict host key checking is disabled. Workbench does not use a known hosts file, so
host key information is stored in memory, and you are not prompted if the host key
changes.

Only password authentication is supported.

NOTE: On Linux the rlogin client and server daemon can be switched off per
default. So if the machine is used as a Workbench (remote build client) host, the
rlogin executable must be enabled (or built) and if the machine is acting as build
server (remote build host) the rlogin daemon must be enabled. Details may be
found in the system documentation of the host.

163

PART V

Target Management

13 Connecting to Targets .. 165

14 Connecting with USB ... 179

15 Connecting with TIPC .. 185

Wind River Workbench
User’s Guide, 2.6 Linux Version

164

165

 13
 Connecting to Targets

13.1 Introduction 165

13.2 The Target Manager View 166

13.3 Defining a New Connection 166

13.4 Establishing a Connection 168

13.5 Connection Settings 168

13.6 The Registry 175

13.1 Introduction

A Workbench target connection runs on a host and manages communications
between host tools and the target system itself. A connection must be configured
and established before the host tools can interact with the target.

All host-side connection configuration work and connection-related activity is
done in the Target Manager view. Connections are registered and made accessible
to users by the Wind River Registry as described in 13.6 The Registry, p.175.
Connection data may be maintained in a central location and be shared between
hosts with the use of remote registries as described in13.6.2 Remote Registries,
p.176.

Wind River Workbench
User’s Guide, 2.6 Linux Version

166

13.2 The Target Manager View

A connection to a Target Server must be defined and established before tools can
communicate with a target system.

All host-side connection configuration work and connection-related activity is
done in the Target Manager view. By default, the Target Manager view is on a tab
at the bottom-left of Workbench. It is available in the Application Development
perspective and in the Device Debug perspective. If the view is not visible, choose
Window > Show View > Target Manager or, if you do not see it listed here, you
will find it under Window > Show View > Other.

The most import tasks in the Target Manager view are:

■ Defining new connections
■ Connecting to targets
■ Disconnecting from targets

Once you have connected to a target, more commands are enabled on the
right-click context menu (see also 16. Launching Programs).

13.3 Defining a New Connection

All connections types are defined from the Target Manager view (see 13.2 The
Target Manager View, p.166).

To open the New Connection wizard, either use the appropriate toolbar button, or
right-click in the Target Manager and select New > Connection.

The first thing the New Connection wizard asks you to do is to select one of the
following connection types:

■ Wind River Linux Application Core Dump Target Server Connection—
Create a new connection to a Linux 2.4 or 2.6 application core dump (see
19. Analyzing Core Files).

■ Wind River Linux KGDB Connection—Create a new kernel mode connection
to a Linux 2.6.10 version kernel (see 5. Kernel Debugging (Kernel Mode)).

13 Connecting to Targets
13.3 Defining a New Connection

167

13

■ Wind River Linux Target Server Connection for Linux User Mode—Create a
user mode connection for Linux 2.6 version kernels (see 3. Developing
Applications (User Mode)).

■ Wind River Linux Target Server Connection for Linux—Create a dual mode
connection for Linux 2.4 version kernels (see F. Configuring Linux 2.4 Targets
(Dual Mode)).

Properties you set during the creation of a new connection using the New
Connection wizard can be modified later by right-clicking the connection in the
Target Manager and then selecting Properties from the context menu.

Note that if you change properties later, you will generally have to disconnect and
reconnect in order for changes to take effect. To disconnect, right-click the
connection and select Disconnect. To re-connect, right-click the connection and
select Connect.

13.3.1 Target Server Connection Page

Depending on the type of connection you are making, the options you are
presented and values you enter will differ. The following describes the values you
will typically supply depending on the type of connection you are making. For
details on all the options presented in the New Connection dialog, refer to
13.5 Connection Settings, p.168.

Connecting to Core Dumps

Specify the name of the core dump file in Core dump file, and specify the path to
the executable that caused the core dump in Application image.

For more information, refer to 19Analyzing Core Files, p.247.

Connecting in Kernel Mode (KGDB Connection)

When configuring a kernel mode connection, you must first select the type of
connection which will be either by a serial line (RS232) or over Ethernet. An
additional option is provided in case you are using a terminal server. A final option
is for custom situations for which you should refer to Wind River Support.

Specify an IP address and the path to your kernel symbol file (Kernel image).

For more information on connecting in Kernel mode and how to configure the
target to support KGDB, refer to 5. Kernel Debugging (Kernel Mode).

Wind River Workbench
User’s Guide, 2.6 Linux Version

168

Connecting in User Mode

Specify the target’s IP address and root file system when making a user mode
connection. The target must be running the usermode agent.

Refer to 3. Developing Applications (User Mode) for details on configuring the
usermode agent and on making a user mode connection.

Connecting in Dual Mode

Specify the target’s IP address and root file system (for user mode) or kernel (for
system mode) when making a dual mode connection to a Linux 2.4 kernel-based
target. The kernel must be patched with the Wind River WDB agent.

Refer to F. Configuring Linux 2.4 Targets (Dual Mode) for information on configuring
your target and host for dual mode connections.

13.4 Establishing a Connection

Once you have created your application projects and defined connections, you will
want to run, test, and debug the projects on your target. To do this, you first need
to connect to the target.

Typically, after configuring a new connection in the New Connection dialog, the
connection to the target is attempted automatically. If you do not want the
connection to be attempted at that time, unselect Immediately connect to target if
possible on the final dialog screen.

Connect to and disconnect from targets in the Target Manager by selecting a
connection node and then using either the appropriate toolbar button, or by
right-clicking and selecting Connect. See 13.2 The Target Manager View, p.166.

13.5 Connection Settings

When you have specified the type of connection to make, a new connection dialog
box presents various parameters that you must configure.

13 Connecting to Targets
13.5 Connection Settings

169

13

Connection Template

For KGDB connections, select the type of connection that best describes how you
are connecting to your target. Choose from the following connection types:

Linux KGDB via RS232
A serial cable connection.

Linux KGDB via Ethernet
An Ethernet connection.

Linux KGDB via Terminal Server
A connection in which you go through a terminal server to reach the target.

Custom Linux KGDB Connection
This template assumes no defaults.

Back End Settings

Back end
The Back end settings specify how a target server will communicate with a
target.

Back end for a KGDB connection requires that you select from the following:

■ RS232 for a direct serial port connection (connection with a null-modem
cable). You will then specify your serial line settings in the following
dialog.

■ TCP for connection to a terminal server with a direct serial connection.

■ UDP for an Ethernet connection on the same subnet.

■ PIPE is currently unsupported.

Back end for user mode and dual mode connections may be set to wdbrpc or
wdbproxy. wdbrpc supports any kind of IP connection (for example,
Ethernet). For dual mode connections, polled-mode Ethernet drivers are
available in most cases to support system-mode debugging for the wdbrpc
connection.

! CAUTION: The target server must be configured with the same communication
back end as the one built for the kernel image and used by the target agent.

Wind River Workbench
User’s Guide, 2.6 Linux Version

170

CPU
Select default from target to have Workbench identify the target CPU for you,
or select the target CPU from the drop-down menu.

Target Name/IP address
The Name/IP Address field specifies the network name or the IP address of
the target hardware for networked targets. If you are using a serial port in dual
mode, use this field to enter either COM1 or COM2, or /dev/ttyS0 or other port
as appropriate.

Target File System and Kernel

Target File System and Kernel properties relate to the location of the target’s root
file system and the name and location of the target kernel. You specify the path to
the kernel for KGDB and dual mode connections.

Root File System
Enter the full path of the target’s root file system as it is on the host. This file
system is typically NFS-exported from the host.

Kernel Image
This is the full path name including the kernel symbol file, for example,
/home/wbuser/WindRiver/workspace/new_prj/export/vmlinux-symbols.

Advanced Options (KGDB Only)

Backend Communication Log File

Enter or browse to the location of a file to store log information.

Target Plugin Pass-through Options

(See Configuring Target Reconnection Parameters, p.77.)

Advanced Target Server Options

These options are passed to the tgtsvr program on the command line (dual mode
and user mode only). Enter these options manually, or use the Edit button for GUI
assisted editing.

13 Connecting to Targets
13.5 Connection Settings

171

13

Edit Target Server Options

Open the Edit Target Server Options window with the Edit button on the main
wizard page. The options are subdivided into three tabbed groups: Common,
Memory, and Logging.

The Common Tab

Timeout Options

Set how many seconds the target server will wait for an answer from the target
before sending a timeout, how often to retry, and at what intervals it should
ping the target, in seconds.

The Memory Tab

Memory Cache Size

To avoid excessive data-transfer transactions with the target, the target server
maintains a cache on the host system. By default, this cache can grow up to a
size of 1 MB.

A larger maximum cache size may be desirable if the memory pool used by
host tools on the target is large, because transactions on memory outside the
cache are far slower.

The Logging Tab

Options on the logging tab are used mainly for troubleshooting by Wind River
support.

A maximum size can be specified for each of these files. If so, files are rewritten
from the beginning when the maximum size is reached. If the file initially
exists, it is deleted. This means that if the target server restarts (for example,
due to a reboot), the log file will be reset.

For the WTX (Wind River Tool Exchange) log file, you can specify a filter, a
regular expression that limits the type of information logged. In the absence of
a filter, the log captures all WTX communication between host and target. Use
this option in consultation with Customer Support.

Command Line

This will be filled-in based on the values you enter in this dialog box.

Wind River Workbench
User’s Guide, 2.6 Linux Version

172

13.5.1 Target Operating System Settings

Clicking Next opens the Target Operating System Settings dialog box (Kernel
mode only). Select the correct version of the Linux operating system, and specify
the path to the kernel symbol file (for example,
/home/wbuser/WindRiver/workspace/new_prj/export/vmlinux-symbols).

13.5.2 Object Path Mappings

Clicking Next will open the Object Path Mappings dialog box (Kernel mode and
Dual mode).

Workbench uses Object Path Mappings in two ways:

■ They allow the debugger to find symbol files for processes created on the
target by creating a correspondence between a path on the target and the
appropriate path on the host.

■ Workbench also uses object path mappings to calculate target paths for
processes that you want to launch by browsing to them with a host file system
browser.

By default, the debug server attempts to load all of a module’s symbols each time
a module is loaded. In the rare cases where you want to download a module or
start a process without loading the symbol file, unselect Load module symbols to
debug server automatically if possible.

13.5.3 Specifying an Object File

If you are loading object code on the target using a custom loader, or associating
symbols with already loaded modules, you can specify the object file that you want
the debugger to use.

1. Right-click a container in the Target Manager, then select Load/Add Symbols
to Debug Server. A dialog appears with your connection and core already
filled in.

2. To add a new object file to the Symbol Files and Order list, click Add.
Navigate to the file, then click Open.

3. In the Symbol Load Options section, select Specify base start address or
Specify start address for each section.

4. When you are finished, click OK.

13 Connecting to Targets
13.5 Connection Settings

173

13

For more information about the fields in this dialog, click in the Target Manager,
then press the help key for your host.

Pathname Prefix Mappings

This maps target path prefixes to host paths. Always use full paths, not relative
paths.

For example, mapping / to /opt/eldk/ppc_82xx/ tells the debugger that files
accessible under / on the target can be found under /opt/eldk/ppc_82xx/ on the
host.

In most cases Workbench provides correct defaults. If necessary, click Add to add
new mappings, or select existing mappings and click Edit to modify existing
mappings.

Basename Mappings

Use square brackets to enclose each mapping of target file basenames (left element)
to host file basenames (right element), separated by a semi-colon (;). Mapping
pairs (in square brackets) are separated by commas. You can use an asterisk (*) as
a wildcard.

For example, if debug versions of files are identified by the extension *.unstripped,
the mapping [*;*.unstripped] will ensure that the debugger loads
yourApp.vxe.unstripped when yourApp.vxe is launched on the target.

13.5.4 Target State Refresh Page

Since retrieving status information from the target leads to considerable target
traffic, this page allows you to configure how often and under what conditions the
information displayed in the Target Manager is refreshed.

These settings can be changed later by right-clicking the target connection and
selecting Refresh Properties.

NOTE: You cannot edit the supplied default mappings.

Wind River Workbench
User’s Guide, 2.6 Linux Version

174

Available CPU(s) on Target Board

Workbench can correctly identify the target CPU. In rare cases, a close variant
might be misidentified, so you can manually set the CPU here.

Initial Target State Query and Settings

Specify whether Workbench should query the target on connect, on stopped
events, and/or on running events. You can select all options if you like.

Target State Refresh Settings

Specify whether Workbench should refresh the target state only when you
manually choose to do so, or if (and how often) the display should be refreshed
automatically.

Listen to execution context life-cycle events

Specify whether Workbench should listen for life-cycle events or not.

13.5.5 Connection Summary Page (Target Server Connection)

This page proposes a unique Connection name, which you can modify if you
wish, and displays a Summary of name and path mappings for review; to modify
these mappings, use the Back button.

Shared
This option serves a dual purpose:

■ When you define a target connection configuration, this connection is
normally only visible for your user-id. If you define it as Shared, other
users can also see the configuration in your registry, provided that they
connect to your registry (by adding it as a remote registry on their
computer, see 13.6.2 Remote Registries, p.176).

13 Connecting to Targets
13.6 The Registry

175

13

■ Normally, when you disconnect a target connection, the target server (and
simulator) are killed because they are no longer needed. In a connection
that is flagged as Shared, however, they are left running so that other users
can connect to them. In other words, you can flag a connection as shared
if you want to keep the target server (and simulator) running after you
disconnect or exit Workbench.

Immediately connect to target if possible
If you do not want to connect to the target immediately, you can connect to the
target later using one of the ways described in 18. Debugging Projects.

If you have applications ready to run using the connection(s) you have just created,
please see 16. Launching Programs.

13.6 The Registry

The Wind River Registry is a database of target servers, boards, ports, and other
items used by Workbench to communicate with targets. For details about the
registry, see the wtxregd and wtxreg entries in Wind River Host Tools API Reference
in the online Help.

Before any target connections have been defined, the default registry—which runs
on the local host—appears as a single node in the Target Manager. (Under Linux,
the default registry is a target-server connection for Linux user mode.) Additional
registries can be established on remote hosts.

Registries serve a number of purposes:

■ The registry stores target connection configuration data. Once you have
defined a connection, this information is persistently stored across sessions
and is accessible from other computers.

You can also share connection configuration data that is stored in the registry.
This allows easy access to targets that have already been defined by other team
members.

NOTE: Having connection configuration data does not yet mean that the target
is actually connected.

Wind River Workbench
User’s Guide, 2.6 Linux Version

176

■ The registry keeps track of the currently running target servers and manages
access to them.

■ Workbench needs the registry to detect and launch target servers.

If Workbench does not detect a running default registry at start-up, it launches
one. After quitting, the registry is kept running in case it is needed by other
tools.

13.6.1 Launching the Registry

To launch the default registry, open the Target menu or right-click in the Target
Manager and select Launch Default Registry.

The registry stores its internal data in the file installDir/.wind/wtxregd.hostname. If
this file is not writable on launch, the registry attempts to write to
/var/tmp/wtxregd.hostname instead. If this file is also not writable, the registry
cannot start and an error message appears.

13.6.2 Remote Registries

If you have multiple target boards being used by multiple users, it makes sense to
maintain connection data in a central place (the remote registry) that is accessible
to everybody on the team. This saves everyone from having to remember
communications parameters such as IP addresses and other settings for every
board that they might need to use.

Creating a Remote Registry

You might want to create a new master registry on a networked remote host that is
accessible to everybody. To do so:

1. Workbench needs to be installed and the registry needs to be running on the
remote host. The easiest way to launch the registry is to start and quit
Workbench. However, you can also launch the wtxregd program from the
command line.

NOTE: These menu items are only available if the registry is not running, and the
default registry host is identical to the local host.

13 Connecting to Targets
13.6 The Registry

177

13

(For more information about wtxregd, see
Help > Help Contents > Wind River Documentation > References > Host
API and Command References > Wind River Host Tools API Reference.)

2. To use the remote registry on another host, right-click in the Target Manager,
(see 13.2 The Target Manager View, p.166), then select New > Registry from the
context menu.

3. In the dialog that appears, enter either the host name or the IP address of the
remote host.

Workbench immediately attempts to connect to the remote registry. If the host
is invalid, or if no registry is identified on the remote host, this information is
displayed in the Target Manager. A valid connection will display the registry
in the Target Manager and any active connections will be shown. Connect to
the target just as you would to a target in your local registry.

13.6.3 Shutting Down the Registry

Because other tools use the registry, it is not automatically shut down when you
quit Workbench. Before updating or uninstalling Workbench (or other products
that use the registry), it is advisable to shut down the registry so that the new one
starts with a fresh database. To shut down the registry:

■ On Windows, right-click the registry button in the system tray, and choose
Shutdown.

■ On Linux and UNIX, execute wtxregd stop, or manually kill the wtxregd
process.

If you want to migrate your existing registry database and all of your existing
connection configurations to the new version, make a backup of the registry data
file installDir/.wind/wtxregd.hostname and copy it to the corresponding new
product installation location.

13.6.4 Changing the Default Registry

Normally, the default registry runs on the local computer. You can change this if
you want to force a default remote registry (see 13.6.2 Remote Registries, p.176). To
do this on Linux and UNIX, modify the WIND_REGISTRY environment variable.
To do this on Windows, under the Windows Registry HKEY_LOCAL_MACHINE
node, modify the field Software\Wind River Systems\Wtx\N.N\WIND
_REGISTRY.

Wind River Workbench
User’s Guide, 2.6 Linux Version

178

179

 14
 Connecting with USB

14.1 Introduction 179

14.2 Configuring a Target for USB Connection 179

14.3 Configuring a Host for USB Connection 182

14.1 Introduction

You can make a USB connection between a Workbench host and a target that
supports the USB driver. Once you have established the connection, you can use it
to debug applications just as you would with an Ethernet connection.

14.2 Configuring a Target for USB Connection

The way you configure your target depends on the host platform.

Wind River Workbench
User’s Guide, 2.6 Linux Version

180

Target Configuration for a Linux Kernel 2.6 Host

The target kernel must support the USB device driver (USB Ethernet gadget). It
may be installed as a module or it may be built into the kernel (this is the default
for Wind River Linux kernels).

Determining Driver Status

To see if the USB Ethernet gadget is installed as a kernel module, examine the
lsmod command output. To see if the gadget is built into your kernel, search the
dmesg output for something similar to the following:

usb0: Ethernet Gadget, version: Equinox 2004
usb0: using pxa27x_udc, OUT ep3out-bulk IN ep2in-bulk STATUS ep1in-int
usb0: MAC 9a:8c:21:b0:9f:42
usb0: HOST MAC 26:06:24:43:81:a0

Your MAC and HOST MAC address will be different.

If lsmod shows the module installed or dmesg shows the gadget driver built in,
you can proceed to Configuring the USB Interface, p.180.

Adding Driver Support

To add USB gadget driver support, build it into the kernel or add it as a module
with Device Drivers > USB support > USB Gadget Support >
Support for USB Gadgets using make linux.xconfig or the Wind River platform’s
Kernel Configuration node.

To install the kernel module, enter:

modprobe g_ether

Configuring the USB Interface

With the kernel correctly configured and running, configure the usb0 interface, for
example:

ifconfig usb0 10.0.0.150

where 10.0.0.150 is the IP address assigned to the target.

Target Configuration for a Linux Kernel 2.4 Host

The target kernel must support the CDCEther driver. This may be built into the
kernel or installed as a module.

14 Connecting with USB
14.2 Configuring a Target for USB Connection

181

14

Determining Driver Status

To determine if your kernel already supports the CDCEther driver, examine the
lsmod and dmesg output for CDCEther. If it appears in either output, you can
proceed to configuring the USB interface.

Adding Driver Support

Configure CDCEther support into the kernel or create the CDCEther.o module
with USB support >USB Network Adaptors using make linux.xconfig.

To install the kernel module:

modprobe CDCEther

Configuring the USB Interface

With the kernel correctly configured and running, configure the usb0 interface, for
example:

ifconfig usb0 10.0.0.150

where 10.0.0.150 is the IP address assigned to the target.

Target Configuration for a Windows Host

Reconfigure your kernel to enable RNDIS support as follows.

1. $ cd dist

2. $ make linux.xconfig

3. Go to Device Drivers>USB Support>USB Gadget Support and select
RNDIS Support. Save and exit.

4. $ make linux.build

With the kernel correctly configured and running, configure the usb0 interface, for
example:

ifconfig usb0 10.0.0.150

where 10.0.0.150 is the IP address assigned to the target.

Wind River Workbench
User’s Guide, 2.6 Linux Version

182

14.3 Configuring a Host for USB Connection

The configuration procedure depends on the host OS.

Linux 2.6 Host Configuration

Driver Support

The host should have the g_ether module installed. Refer to Target Configuration for
a Linux Kernel 2.6 Host, p.180 for details on installing the g_ether module.

Interface Configuration

For a Linux 2.6 host, configure and test the USB interface as follows.

1. Connect a USB cable with the host connector attached to the Workbench host
and the peripheral connector attached to the target.

2. Configure the USB interface on the host as follows.

ifconfig usb0 10.0.0.151

In this example, 10.0.0.151 is the address assigned to the host on the USB
connection.

3. Verify that the connection is working with a ping command to the target:

$ ping 10.0.0.150

A successful ping of the target over the USB connection shows that your host
and target are properly connected.

Linux 2.4 Host Configuration

Driver Support

The host should have the CDCEther module installed. Refer to Target Configuration
for a Linux Kernel 2.4 Host, p.180 for details on installing the CDCEther module.

Interface Configuration

For a Linux 2.4 host to communicate over the USB connection you must configure
the ethX interface, where X is the next available Ethernet interface number,
typically eth1.

14 Connecting with USB
14.3 Configuring a Host for USB Connection

183

14

1. Connect a USB cable with the host connector attached to the Workbench host
and the peripheral connector attached to the target.

2. Configure the ethX interface, for example:

ifconfig eth1 10.0.0.151

In this example, 10.0.0.151 is the address assigned to the host on the USB
connection.

3. Verify that the connection is working with a ping command to the target:

$ ping 10.0.0.150

A successful ping of the target over the USB connection shows that your host
and target are properly connected.

Windows Host Configuration

You must install the linux.inf file on the windows host. The file is available in the
Documentation directory of most kernels including all Wind River Linux kernels.

To install the file, first convert it to the DOS text file format with the unix2dos
command:

$ unix2dos linux.inf

Connect a USB cable with the host connector attached to the Workbench host and
the peripheral connector attached to the target.

When you attach the USB cable to the Windows host, Windows will recognize new
hardware and start the new hardware wizard. Follow the prompts and install the
linux.inf file.

Wind River Workbench
User’s Guide, 2.6 Linux Version

184

185

 15
 Connecting with TIPC

15.1 Overview 185

15.2 Configuring TIPC Targets 186

15.3 Configuring a TIPC Proxy 188

15.4 Configuring Your Workbench Host 190

15.5 usermode-agent Reference 191

15.1 Overview

This appendix describes how to configure Linux TIPC targets and your Workbench
host to support debugging. For detailed information about TIPC, see the official
TIPC project Web site at http://tipc.sourceforge.net/.

The transparent inter-process communication (TIPC) infrastructure is designed for
inter-node (cluster) communication. Targets located in a TIPC cluster may not have
access to standard communication links or may not be able to communicate with
hosts not located on the TIPC network. Because of this, host tools used for
development may not be able to access those targets and debug them without
special tools. To solve this communication problem between the TIPC target and
TCP/IP hosts, Wind River provides the wrproxy process, which acts as a gateway
between the host and the target. (For a more generalized use of wrproxy, see
B. Configuring a Wind River Proxy Host.)

http://tipc.sourceforge.net/

Wind River Workbench
User’s Guide, 2.6 Linux Version

186

A basic diagram of a Workbench host configured to debug a TIPC target is shown
in Figure 15-1.

The Workbench host communicates using UDP, the TIPC target communicates
using TIPC, and the proxy translates between them.

Note that the functions of the three network hosts shown in Figure 15-1 may be
combined in different ways, for example, the WDB proxy and WDB agent may
both reside on a single target. You may even configure your Workbench host to
support all functions if you want to test your debug capabilities in native mode
before configuring external TIPC targets.

The following sections describe how to configure TIPC targets, configure a proxy,
and configure your Workbench host to support debugging over TIPC.

15.2 Configuring TIPC Targets

To configure TIPC targets, you must install the TIPC kernel module on them. To
configure them to communicate with Workbench, you must also run the WDB
agent on them.

Note that TIPC communication between nodes in a cluster does not require UDP
or TCP/IP networking services so those functions do not need to be included with
the kernel, enabling a smaller kernel with fast, intra-node (TIPC) communication.
For the TIPC-configured node to communicate with the Workbench host, however,
a proxy must be provided that is capable of both TIPC and UDP communication
capabilities. The proxy may be provided by one of the cluster nodes, a separate
host, or the Workbench host itself as described in 15.3 Configuring a TIPC Proxy,
p.188.

Figure 15-1 Workbench Host, Proxy, and TIPC Target

Workbench Host TIPC Proxy TIPC Target
with Target Server with WDB Proxy with WDB Agent

15 Connecting with TIPC
15.2 Configuring TIPC Targets

187

15

15.2.1 Installing the TIPC Kernel Module

If you are using a Wind River Linux platform, the tipc.ko kernel module is
supplied. If you do not have the kernel module, you can download the source from
http://sourceforge.net/projects/tipc and then build it based on the instructions in
the downloaded README file.

Once you have the kernel module, install it and configure it on the target as
follows.

1. Load the TIPC kernel module:

insmod /lib/modules/2.6.10-gpp/net/tipc.ko

(The example shown is for the module supplied with one version of the Wind
River Linux platform. The location of your tipc.ko kernel module may differ.)

2. Set the local TIPC address:

tipc-config -a=1.1.1 -be=eth:eth0

(Your actual command will differ if your network device is not eth0 or if you
chose an address different from 1.1.1.)

3. Check that everything is configured properly:

tipc-config -a

The output should display your current TIPC address, for example, 1.1.1.

15.2.2 Running the usermode-agent

You must run usermode-agent on each target you want to reach. Find the correct
agent for your target architecture in
installDir/linux-2.x/usermode-agent/1.1/bin/arch. For example, the correct agent
for the PPC architecture, when your installDir is WindRiver, is
WindRiver/linux-2.x/usermode-agent/1.1/bin/ppc/usermode-agent.

To launch usermode-agent on the target, copy it to the target, cd to the directory
where it is located, and enter the following command:

$./usermode-agent -comm tipc &

http://sourceforge.net/projects/tipc/

Wind River Workbench
User’s Guide, 2.6 Linux Version

188

15.3 Configuring a TIPC Proxy

The WDB proxy enables communication between the Workbench host and the
TIPC target. The target server on the Workbench host (see 15.4 Configuring Your
Workbench Host, p.190) instructs the proxy agent to communicate using TIPC with
a specified TIPC target address.

The WDB proxy agent is the wrproxy command (or wrproxy.exe with Windows).
The host that runs wrproxy must have TIPC capability. To configure TIPC
capability, install the TIPC kernel module (see 15.2.1 Installing the TIPC Kernel
Module, p.187), or build TIPC into the kernel and reboot it. When you have TIPC
support in the kernel, configure the host with a TIPC address that is different from
target TIPC addresses using tipc-config (see 15.2.1 Installing the TIPC Kernel
Module, p.187).

The wrproxy command is located in
installDir/workbench-version/foundation/version/x86-linux2/bin/. Enter the
following command on the TIPC-capable network host that is to serve as the proxy
between Workbench and the TIPC target:

$ wrproxy &

You can also use the -p port option to specify a different TCP port number for
wrproxy to listen to (default 0x4444), the -V option for verbose mode, or the -h
option to get command help.

Figure 15-2 illustrates a configuration in which the proxy agent runs on the same
host as Workbench. Figure 15-3 illustrates a configuration in which the proxy agent
runs on one of the nodes in a cluster. Another example might be a separate host
that runs wrproxy, between the targets in the cluster and the Workbench host.

NOTE: If you specify a port other than the default port for the proxy, then you must
specify the same port when configuring the target server as described in
15.4 Configuring Your Workbench Host, p.190.

15 Connecting with TIPC
15.3 Configuring a TIPC Proxy

189

15

15.4 Configuring Your Workbench Host, p.190 describes how to configure the target
server on the Workbench host to connect to the proxy agent and reach the TIPC
target that you want to connect to.

Figure 15-2 TIPC Configuration with WDB Proxy Agent on Workbench Host

Workbench Host

tgtsvr

wrproxy TIPC Target

UDP

TIPC

Figure 15-3 TIPC Configuration with WDB Proxy Agent on Cluster Target

Workbench Host

tgtsvr wrproxy

TIPC Target TIPC Target

TIPC TargetTIPC Target

Cluster with TIPC Interconnections

UDP

Wind River Workbench
User’s Guide, 2.6 Linux Version

190

15.4 Configuring Your Workbench Host

Use the tgtsvr command to connect to the proxy for communication with a TIPC
target. The following command shows the TIPC options to use:

tgtsvr [-V] -B wdbproxy -tipc -tgt targetTipcAddress ProxyIpAddres

For example, to connect to a target with a TIPC address of 1.1.8 using a proxy with
the IP address 192.168.1.5, use the following command:

$ tgtsvr -B wdbproxy -tipc -tgt 1.1.8 192.168.1.5

Additional Information

A fuller syntax for the tgtsvr command is:

tgtsvr [-V] -B wdbproxy -tipc -tgt targetTipcAddress [-tipcpt tipcPortType -tipcpi
tipcPortInstance] wdbProxyIpAddress|name

Table 15-1 explains the italicized parameter values in the command.

Note that if you change the default TIPC port configuration, you must also change
the default TIPC port for the usermode-agent as described in 15.5 usermode-agent
Reference, p.191.

Table 15-1 TIPC-Specific Parameter Values for Starting a Target Server

Parameter Value

targetTipcAddress The TIPC address of the target with the TIPC
network stack. For example: 1.1.8.

tipcPortType The TIPC port type to use in connecting to the
WDB target agent. The default port type for the
connection is 70. You should accept the default
port unless it is already in use.

tipcPortInstance The TIPC port instance to use in connecting to the
WDB target agent. The default port instance for the
connection is 71. You should accept the default
port instance unless it is already in use.

wdbProxyIpAddress|name The IP address or DNS name of the target with
WDB Agent Proxy.

15 Connecting with TIPC
15.5 usermode-agent Reference

191

15

Alternatively, you can use the Workbench GUI to configure the host. Select
wdbproxy as the backend when you create a new connection in the Target
Manager and then fill in the fields with the values you would supply as command
line arguments. The command line that is created at the bottom of the GUI should
be similar to the example shown in this section.

15.5 usermode-agent Reference

This section explains the several possible options available when launching the
usermode agent.

The listening port is the port used by the usermode agent to communicate with the
target server on the host machine. If you change the listening port on the usermode
agent side, then you have to specify the same port number to the target server.

Port option

The port option is:

-p or -port 0xpppp (UDP) | xxxx:yyyy (TIPC)

This option allows you to select an alternate listening port for the usermode agent.

Two network connection types are supported:

■ UDP—this is the default connection type. If you don't specify a particular type
of network connection, then this will be the used one.

If you don't want to use the default UDP port (0x4321) then you can choose
and set the one you want using this option. The port number can be entered in
either decimal or hexadecimal format. To set the port number using the
hexadecimal format, you need to use the 0x%x format where %x represents the
port number in hexadecimal base.

Example

To launch the usermode agent using UDP and port 6677:

$ usermode-agent -p 6677

or

$ usermode-agent -p 0x1A15

Wind River Workbench
User’s Guide, 2.6 Linux Version

192

■ TIPC—this is the TIPC network connection. If you don't want to use the
default TIPC port type (70) and TIPC port instance (71) then you can choose
and set the ones you want using this option. The port numbers can be entered
in either decimal or hexadecimal format. To set the port numbers using the
hexadecimal format, you need to use the 0x%x format where %x represents the
port number in hexadecimal base.

To launch the usermode agent using TIPC and port type 1234, port instance 55:

$ usermode-agent -p 1234:55

or

$ usermode-agent -p 0x4D2:37

Communication Option

The communication option allows to specify which kind of connection will be used
for connection between target server and usermode agent.

Comm option is:

-comm serial | tipc

If the serial option is set then you can also specify the serial link device to use rather
than the default one (/dev/ttyAMA1) and the baud speed for the serial link
(115200 is the default baud speed).

To set a different device for the serial link connection, the flag -dev has to be used
with the -comm serial option. For the baud speed, you need to set the -baud option
combined with the -comm serial option.

Example

To launch the usermode agent using serial link connection and serial device
/dev/ttyS0:

$ usermode-agent -comm serial -dev /dev/ttyS0

Example

To launch the usermode agent using serial link connection with default serial
device and baud speed of 19200:

$ usermode-agent -comm serial -baud 19200

15 Connecting with TIPC
15.5 usermode-agent Reference

193

15

Example

To launch the usermode agent using serial link connection with serial device
/dev/ttyS0 and baud speed of 19200:

$ usermode-agent -comm serial -dev /dev/ttyS0 -baud 19200

If the tipc option is set then you can also specify the port type (default is 70) and
port instance (default is 71) of the TIPC connection.

To set a different port type for the TIPC network connection, the flag -tipcpt has to
be used, in either decimal or hexadecimal format.

To set a different port instance for the TIPC network connection, the flag -tipcpi has
to be used, in either decimal or hexadecimal format.

Examples

To launch the usermode agent using TIPC network connection with default port
type and default port instance:

$ usermode-agent -comm tipc

To launch the usermode agent using TIPC network connection with specific port
type 123 and specific port instance 456:

$ usermode-agent -comm tipc -tipcpt 123 -tipcpi 456

Daemon mode

The -daemon option lets the usermode agent become a daemon after all
initialization functions are completed. The output message, if any, are still reported
on the device where the process has been started.

Environment Inheritance

The -inherit-env option makes all the child processes inheriting the environment
from the parent environment. Since the usermode agent is the father of all the
processes, then the processes will inherit the shell environment from which the
usermode agent has been launched.

Wind River Workbench
User’s Guide, 2.6 Linux Version

194

No Thread Support (Linux Thread Model Only)

The -no-threads option allows you to use the usermode agent on a kernel using
Linux threading model even if the libpthread library is stripped. Basically, the
libpthread library is used by the usermode agent to detect thread creation,
destruction and so on. On a kernel using Linux threading model, if the libpthread
library is stripped then the multithread debug would not be reliable so, by default,
the usermode agent exit if this option is not set, to ensure a reliable debug scenario.

This option is useless if your kernel is running using NPTL threading model.

Other Options

The -v option displays version information about the usermode agent, that is,
build and release information.

The -V option set the usermode agent to run in verbose mode. This is useful to
have the listening information: port number, listening connection type and the
target server connection to this usermode agent.

The -help or -h option displays all the possible startup options for the usermode
agent.

195

PAR T VI

Debugging

16 Launching Programs .. 197

17 Managing Breakpoints 219

18 Debugging Projects .. 227

19 Analyzing Core Files .. 247

20 Troubleshooting ... 251

Wind River Workbench
User’s Guide, 2.6 Linux Version

196

197

 16
 Launching Programs

16.1 Introduction 197

16.2 Creating a Launch Configuration 198

16.3 Remote Java Launches 204

16.4 Launching Programs Manually 207

16.5 Controlling Multiple Launches 207

16.6 Launches and the Console View 212

16.7 Attaching the Debugger to a Running Process 214

16.8 Attaching to the Kernel 217

16.9 Suggested Workflow 218

16.1 Introduction

Whenever you run a process or task from Workbench, a launch configuration is
automatically created for you. A launch configuration is like a named script that
captures the whole process of building, connecting a target, running, and possibly
attaching a debugger. You can rerun your previous launches at any time by
clicking a single button.

Wind River Workbench
User’s Guide, 2.6 Linux Version

198

This chapter explains how to edit and fine-tune your launch configurations to
provide a tight edit-compile-debug cycle, as well as how to manually attach the
debugger to tasks and processes.

16.2 Creating a Launch Configuration

A launch configuration is similar to a macro because it allows you to group
together the actions required to start a program. Then, with a single click, you can
connect to your target, start your process, and if you wish, attach the debugger.
Your configurations are stored persistently, and can be shared with your team.

Launch configurations can be run in one of two modes:

■ Run-mode connects to your target, then launches a process.

■ Debug-mode is like run-mode, but it automatically attaches the debugger after
completing all other actions.

The same launch configuration can be executed in either mode.

To create a launch configuration:

1. Select Run > Run or Run > Debug. The Create, manage, and run
configurations dialog box appears.

1. From the Configurations list, select the type of configuration you want to
create, Attach to Target or Process on Target (explained below). Click New.

2. Once you click New, tabs appear and display the appropriate fields and
options for your configuration type.

16.2.1 Editing an Attach to Target Launch Configuration

You do not create Attach to Target launch configurations manually. Instead, these
configurations are created automatically when you attach to a process or kernel
task from the Target Manager.

Attach to Target launch configurations are special in some ways:

■ They do not actually run something but just connect a target and attach the
debugger to some context that must already exist.

16 Launching Programs
16.2 Creating a Launch Configuration

199

16

■ They are visible only in Debug mode.

■ Attach to Target launches can not be created manually. They are created
automatically when you attach the debugger to a context using the Target
Manager.

Once an Attach to Target launch is created, you can review and edit it in the
Launch Configurations dialog box.

The Main Tab

The properties in the Main tab are for review only and cannot be changed.

What you can do is:

■ Review your existing attaches and delete those that you no longer need.

■ Rename your attaches and, if you think they are valuable, put them into your
Favorites menu using the Common tab.

■ Change the mapping between source paths compiled into your objects and
source paths in your workspace by editing the Source Locator information in
the Sources tab.

■ Change the Projects to Build settings for the launch.

The Projects to Build Tab

The Projects to Build tab displays the projects that Workbench will build before
launching the process in this configuration. To disable this, unselect Window >
Preferences > Run/Debug > Launching > Build (if required) before launching.

To add to the list, click Add Project, select one or more projects from the dialog box,
then click OK.

To rearrange the build order in the list, select a project then click Up, Down, or
Remove.

Note that the Projects to Build list takes project-subproject relationships from the
Project Navigator into account. Thus, when myLib is a subproject of myProj and
you choose to add myProj to the list, you cannot add myLib to the list as well
because it will be built automatically when you build myProj. Adding myLib as
well would be redundant and is thus disabled.

Wind River Workbench
User’s Guide, 2.6 Linux Version

200

The Source Tab

The Sources tab displays the order in which locations will be searched for source
files during debugging. The search order is determined by a location’s position in
the list.

Configuring the Source Lookup Path is optional, and is only necessary if the
build-target was compiled on a different host. See 18.2.8 Changing Source Lookup
Settings, p.237 for more information about the source locator.

1. On the Sources tab, click Add to configure the source lookup path.

2. Select the type of source to add to the lookup path.

3. Once you add a new source to the lookup path, you can adjust its position in
the search order by clicking Up or Down to change its position in the list.

The Common Tab

The Common tab allows you to specify who can access this configuration, and
whether it appears in the Workbench toolbar menu.

1. If this launch configuration is shared with others on your team, click Shared,
then type or browse to the directory where the shared configuration is located.

2. If you want to be able to access this launch configuration from the Debug
favorites menu (the drop-down menu next to the bug button on the
Workbench toolbar), select Debug in the Display in favorites menu box.

3. If you want the process to launch in the background, ensure that box is
selected.

4. Click Apply to save your settings but leave the dialog box open, click Close to
save your launch configuration for later use, or click Debug to launch it now.

16 Launching Programs
16.2 Creating a Launch Configuration

201

16

16.2.2 Creating a Process Launch Configuration

Once you click New, the Main, Projects to Build, Debug Options (in
debug-mode), Source, and Common tabs appear.

The Name of the build target you selected in the Project Navigator appears at the
top of the dialog box in the form name - connection_name. If you did not select a
build target, or want to modify the name that appears, type a descriptive Name for
your new launch configuration.

16.2.3 The Main Tab

The Main tab displays information about the output file that you want to
download and run during the launch.

1. On the Main tab of the dialog box, keep the default Connection registry and
Connection to use settings, or if you have more than one registry or
connection defined in the Target Manager, you may select a different one from
the pull-down list.

To create a new registry or connection type, click Add.

2. The Entry Point, Arguments, Priority, and Stack size fields are only active
when you are connected to a target. To retrieve the connection-specific
properties from the target, and adjust them if necessary, click Connect. Once
your target is connected, you can also click Edit to open the Advanced
Options dialog box.

3. To adjust the options field, click Select. The Options dialog box appears.

16.2.4 The Projects to Build Tab

You can specify that other projects should be built (if necessary) before launching
the current project with the Projects to Build tab. This only applies if you have
checked Build (if required) before launching in the
Window > Preferences > Run/Debug > Launching dialog box.

Click Add project to select one or more existing projects. You can change the order
in which they are built with the Up and Down buttons, or click Remove to remove
them from the list. Then click Apply and Close. When this configuration is
launched, those projects will first be built first (if required), in the specified order,
prior to launch of this project.

Wind River Workbench
User’s Guide, 2.6 Linux Version

202

16.2.5 The Debug Options Tab

The Debug Options tab only appears for launch configurations in debug-mode.

With Break on Entry checked and main entered in the box, the process will break
at launch on the entry to the main() routine for debugging operations.

16.2.6 The Source Tab

The Source tab displays the order in which locations will be searched for source
files during debugging. The search order is determined by a location’s position in
the list.

Configuring the Source Lookup Path is optional, and is only necessary if the
build-target was compiled on a different host. See 18.2.8 Changing Source Lookup
Settings, p.237 for more information about the source locator.

1. On the Source tab, click Add to configure the source lookup path.

2. Select the type of source to add to the lookup path; see 18.2.8 Changing Source
Lookup Settings, p.237 for a description of each type.

3. Once you add a new source to the lookup path, you can adjust its position in
the search order by clicking Up or Down to change its position in the list.

16.2.7 The Common Tab

The Common tab allows you to specify whether this launch configuration is Local
or Shared (local is the default), whether you want to access it from the Workbench
toolbar buttons, and if the program should be launched in the background.

1. If this launch configuration is shared with others on your team, click Shared,
then type in or browse to the directory where the shared configuration is
located.

2. If you want to be able to access this launch configuration from the Debug
favorites menu (the drop-down list next to the bug button on the Workbench
toolbar), select Debug in the Display in favorites menu box.

3. If you want the process to launch in the background, ensure that box is
checked.

16 Launching Programs
16.2 Creating a Launch Configuration

203

16

4. Click Apply to save your settings, but leave the dialog box open, click Close
to save your launch configuration for later use, or click Debug to launch it
now.

16.2.8 Using Launch Configurations to Run Programs

In a typical development scenario, you will run the same application many times
in a single debugging session. After creating a launch configuration, you can click
the Debug button to run a process and attach the debugger in a few seconds.

To launch a recently run process:

1. Click the pull-down arrow next to the Debug button and select the process
from the configuration list. Figure 16-1.

If you ran the configuration recently, it will appear on the menu. If you selected
Debug from the Display in favorites menu list (see The Common Tab, p.202)
for a configuration, it will always appear on the list, whether you have run it
recently or not.

2. To run a configuration not listed on the menu, click Debug, then choose the
configuration from the Configurations list, click Debug.

Increasing the Launch History

Workbench stores a history of previously launched configurations. The default
length of the launch history is 10, but you can increase the history length by
selecting Window > Preferences > Run/Debug > Launching and increasing the
number in the Size of recently launched applications list field.

Figure 16-1 Debug Launch List

Wind River Workbench
User’s Guide, 2.6 Linux Version

204

Troubleshooting Launch Configurations

If you press the Debug button (or click the Debug button from the Launch
Configuration dialog box) and get a “Cannot create context” error, check the Exec
Path on the Main tab of the Debug dialog box (see page 204) to be sure it is correct.
Also check your Object Path Mappings.

16.3 Remote Java Launches

There are four Java launch configuration types in Workbench:

■ Java Applet

■ Java Application

■ Remote Java Application

■ Remote Java Launch and Connect

The first three are standard Eclipse-with-JDT launch configuration types. Java
Applet and Java Application are for native mode debugging of Java applets and
Java applications. The Remote Java Application launch configuration type is for
connecting to an already running Java application on a remote target. It does not
launch the application on the target. You must start the application through
whatever means are available and apply the necessary options for remote
debugging. Also, the I/O capabilities of the Console view are not available. For
details on these launch configuration types, refer to http://help.eclipse.org.

Wind River has added the Remote Java Launch and Connect launch configuration
type which is documented here. This type of launch uses the usermode agent
running on the remote target to start the application and then connects the
debugger to the application. Remote Java Launch and Connect makes it easy to
start debugging remote Java applications with a single click, and it also makes
application I/O available in the Console view. This type of launch is required to
debug combined Java and JNI code as described in 18.4 Java-JNI Cooperative
Debugging, p.239.

http://help.eclipse.org

16 Launching Programs
16.3 Remote Java Launches

205

16

Create a Java Project

Create new Java projects in Workbench by selecting New > Project > Java Project,
and import existing .java files or use the Editor to create new ones. Build the
project by right-clicking on the project and selecting Build Project. A successful
build generates class files and reports no errors. The following discussion assumes
you are able to successfully build a Java application in Workbench and now wish
to debug it on a target.

Prepare the Target

The target must have a supported Java runtime environment (see your Release
Notes for details) and be running the Wind River usermode agent.

1. If your target does not have a usermode-agent executable on it, copy one to it.

Source and binary files for usermode-agent may be found in your Workbench
installation directory under the linux-2.x/usermode-agent/2.0/ subdirectory.

If there is no binary available for your target, refer to 3.11 Creating Projects at
External Locations, p.44 for an example of a way to build usermode-agent from
the source files with Workbench.

2. Run the usermode agent on the target, for example:

target_$./usermode-agent -p 4321 &

In this case, a port is specified so that additional instances of usermode-agent
can be run on the target for other purposes.

3. Make the Java application class files available for execution on the target. For
example, you could build the application in a Workbench project that is on a
filesystem shared between the host and target, or simply copy the class files
from the host to the target.

4. Make a target connection or create a new target connection to your target in the
Target Manager. If you specified a specific port when starting usermode-agent

NOTE: If you have both a 1.1 and 2.0 subdirectory, use the contents of the 2.0
directory for remote Java launches.

NOTE: If you specify a port when invoking usermode-agent, you must also
specify this port number when you create the target connection from the host.
This should be a unique number less than 65536 not used as a port by any other
application, and it should be greater than 1024 which is the last of the reserved
port numbers.

Wind River Workbench
User’s Guide, 2.6 Linux Version

206

on the target, you must specify that port in the target connection dialog as well.
(For details on how to create a target connection, refer to 13. Connecting to
Targets.)

Launch the Remote Debugging Session

The following procedure provides an example of how to initiate a remote Java
launch and debugging session. Only some of the possible launch configuration
settings are discussed. For details on all launch configuration settings, refer to
Wind River Workbench User Interface Reference: Launch Configuration Dialog.

1. Select Run > Debug and then select the Remote Java Launch and Connect
configuration type. Click New to open a set of tabs. Tabs marked with a red X
require input from you.

2. In the Main tab:

a. Specify a name for your launch in the Name field or leave the default
name.

b. Click Browse to find the correct project and click Search to identify the
correct main class.

c. Check Stop in main to cause the debugger to suspend execution on entry
into the method main in the main class.

3. In the Connection tab:

a. Select the correct target connection from the Connection to use pull-down
menu.

b. If you are using an NFS mount and have not specified object path
mappings for your target connection, you can do that now by clicking
Properties, select the Object Path mappings tab, and click Add. Enter the
host paths and target paths that map. For example, if you have mounted
your target’s root filesystem on the host’s /target directory, enter / for the
target path and /target for the host path. Click OK and click OK again to
return to the launch configuration tabs.

c. Enter or browse to the path of the java binary on the target in the
Exec Path on Target field. For example, if the java binary on the target
resides in the /usr/bin directory, enter /usr/bin/java.

4. In the Arguments tab, enter the directory path to the class files in the
Classpath field. For example, if the target path /java/classfiles/ holds the class
files for your Java application, enter /java/classfiles/ in this field.

Note that the complete command line is displayed at the bottom of this tab.

16 Launching Programs
16.4 Launching Programs Manually

207

16

5. In the Debug Options tab, enter a port number. This is the debugging port
number for JDT—not the usermode agent port number. This should be a
unique number less than 65536 not used as a port by any other application, and
it should be greater than 1024 which is the last of the reserved port numbers.

6. Click Debug.

Workbench changes to the Debug perspective, and the Debug view shows the
status of the launch. If you checked Stop in main in the Main tab of the launch
configuration, you should see the application suspended at main. The source
file should also be open in an Editor window, with the location where
execution has been suspended highlighted.

At this point you can examine variables, set breakpoints, step through your
application, and so on. Output and standard error output will appear in the
Console view, which is discussed in 16.6 Launches and the Console View, p.212.

Click the Resume icon in the Debug view toolbar to continue program
execution.

16.4 Launching Programs Manually

Once a launch configuration has been established, you can run programs using the
Run or Target selections on the menu bar, or with the Run and Debug buttons on
the toolbar. Workbench will automatically try to connect to the target, if a
connection is not already running.

16.5 Controlling Multiple Launches

You can create a Launch Control launch, consisting of a sequence of your launch
configurations, each one of which is then considered a sub-launch. You can even
add other Launch Control launches to a Launch Control configuration, the only
restriction being that a Launch Control configuration cannot contain itself.

Wind River Workbench
User’s Guide, 2.6 Linux Version

208

For detailed information on launch control settings, see the Wind River Workbench
User Interface Reference: Launch Configuration Dialog.

Terminology

A launch is a specific instance of a launch configuration, and a launch configuration
is a specific instance of a launch type. The launch is what occurs when you initiate
a run or debug session.

A launch configuration is your definition of how the launch will occur, for
example, what program will be run, what target it will run on, and what the
arguments are.

A launch type defines the kind of launches that are supported by Workbench.
There are several different kinds of launch types, for example, Java Application,
Process on Target, and Launch Control. The launch type includes GUI elements
that specify attributes specific to it.

You create a launch configuration based on a launch type, specifying the
appropriate attribute values. You then initiate a launch based on a launch
configuration. Launches also have a mode, the two standard modes being Run and
Debug. A launch may be initiated by the Run or Debug buttons in Workbench
(launches may be initiated other ways too). Note that some launch types are only
available in one mode. For example, the Remote Java Application launch type can
only be used in Debug mode.

Configuring a Launch Sequence

The following procedure assumes you have two or more launch configurations
already defined (see 16.2 Creating a Launch Configuration, p.198).

1. Select Run > Debug and the Debug dialog opens.

2. Select Launch Control from the Configurations list on the left, and then click
New at the bottom. A new launch control configuration with the default name
New Configuration appears. Change the name as desired.

3. Select the Launch Control tab. Note that your current launch configurations
are listed under Available Configurations on the left, and a space on the right
is labeled Configurations to Launch.

16 Launching Programs
16.5 Controlling Multiple Launches

209

16

4. Select each launch that you want to add to your new launch configuration and
click Add to add it to the list of configurations to launch. When you have a list
of configurations to launch, you can organize them in the order you want them
to launch by selecting a configuration and clicking Move Up or Move Down.
The sub-launch at the top of the list will come first and the one at the bottom
last. You can remove any sub-launch from the Launch Control configuration
by selecting it and clicking Remove.

You now have a Launch Control configuration that will launch a sequence of
sub-launches in the order specified in the Configurations to Launch list. You can
also specify commands to perform before launches, after launches, and in response
to a launch failure or an application error report as discussed in the next section.

Each launch in a Launch Control will open a Console view for I/O and error
messages as described in 16.6 Launches and the Console View, p.212.

Pre-Launch, Post-Launch, and Error Condition Commands

To access the launch configuration commands, select a sub-launch in your
Configurations to Launch list and click Properties (or double-click the
sub-launch). A properties page containing command information is displayed.
Here you can specify pre-launch, post-launch, and error condition commands,
which will inherit the environment variables shown below them unless you
change them in the command. Your changes affect the launch you are working
with only—other launches using the same configuration get the default values for
the environment variables. Also, the set of environment variables differs for each
launch configuration (see Understanding the Command Environment, p.211 for more
on environment variables).

Preparing a Launch with a Pre-Launch Command

An example of the use of a pre-launch command is to prepare a target for use. For
example, in a development environment you might have to reserve a target, and
you would not want to attempt a launch without being sure you had a target to
launch on. So a pre-launch command might be a script that reserves the board, puts
usermode-agent in the root file system, reboots the board, and starts
usermode-agent.

If the pre-launch command returns a non-zero return code then the launch is
aborted and the error condition command is executed for each sub-launch
previous to the failed sub-launch.

Wind River Workbench
User’s Guide, 2.6 Linux Version

210

Using a Post-Launch Command

If your application requires additional set up after it has been launched, or if you
would like to verify that it has launched correctly before proceeding to the next
launch, use a post-launch command.

If the post-launch command returns a non-zero return code then the launch is
aborted and the error condition command is executed for each sub-launch
previous to the failed sub-launch as well as for the failed sub-launch.

Using the Error Condition Command

The error condition command of a launch is run when a launch fails, or a
pre-launch or post-launch command returns a non-zero error code. This causes the
error command of the current launch to run, and then each error command of any
preceding launches to run. The error condition commands are executed in reverse
order of the sequence in which the launches occurred. For example, if the fourth
launch fails, the error condition command of the fourth launch is performed, then
the error condition of the third launch, and so on. This is to deal with situations in
which previous commands may have acquired locked resources—unlocking them
in reverse order is important to prevent potential deadlock.

Inserting Commands using an Empty Sub-Launch

You can place a command into your Launch Control that is not associated with any
particular sub-launch by adding an empty Launch Control to hold the command.
Select Launch Control and click New and then specify a name for the dummy
launch, for example, Empty Launch. Add the empty launch to the Launch Control
and use the properties page to insert commands into the launch which aren't
associated with any particular sub-launch.

Running All Pre-Launch Commands First

If you want to run each of the pre-launch commands for each launch first, check
Run Pre-Launch command for all launches first on the main launch control page.
The pre-launch commands will be executed in order, and only after they are all
successfully completed will the first launch take place, followed by the second
launch and so on. This provides for situations in which you do not want to
continue with a complete launch Control sequence if any of the sub-launches
cannot take place because, for example, a target is not available.

NOTE: To be precise, error commands are called in the reverse order that the
pre-launch commands were called. An error command will never be called for a
sub-launch that did not pass the pre-launch command step.

16 Launching Programs
16.5 Controlling Multiple Launches

211

16

Launch Controls as Sub-Launches

You can use an existing Launch Control as a sub-launch, but do not attempt to
create recursive launch controls in this way, as they will not run.

If the parent Launch Control's pre-initialize check box (Run Pre-Launch command
for all launches first) is selected and the pre-initialize check box is set for the child
Launch Control, the child will pre-initialize all of its sub-launches before operation
continues on to the next sub-launch of the parent Launch Control. Otherwise, the
child Launch Control will have its sub-launches initialize at the time that it is
launched.

Understanding the Command Environment

The environment variables are collected from multiple locations and then
provided on the Properties page as a convenience. Typically you will only read
variable values, but you may want to change them in your pre-launch command.
Your changes affect the launch you are working with only—other launches using
the same configuration get the default values for the environment variables.

Environment variables are gathered from four different sources. First, variables
may be defined on the Launch Control's Environment tab. These variables are not
displayed on a sub-launch’s Properties page because the information is readily
available on the Environment tab. The next source for environment variables is
from the sub-launch’s Environment tab (if it has one). The third source for the list
of environment variables is defined by the sub-launch’s configuration type
attributes. Each sub-launch configuration type defines its own set of attributes
(further documentation on sub-launch attributes can be found in the Eclipse
documentation for Launch Configuration). The final source of environment
variables are defined by Launch Control and provide general support for the
launch. The variables defined by Launch Control for each sub-launch are:

■ com_windriver_ide_launchcontrol_launch_mode

■ com_windriver_ide_launchcontrol_env_file

■ com_windriver_ide_launchcontrol_skip_next

The environment variable com_windriver_ide_launchcontrol_launch_mode
identifies the mode of a launch. The mode may be either debug or run, depending
on how a launch is initiated (for example selecting the Run > Debug dialog to
initiate a debug mode launch and Run->Run to initiate a run mode launch).
Changing com_windriver_ide_launchcontrol_launch_mode has no effect—it is
only provided for information about a current launch.

Wind River Workbench
User’s Guide, 2.6 Linux Version

212

Since the command’s environment terminates after the command completes any
variables which need to be changed for a launch must be written to a file. The name
of this file is provided in the environment variable
com_windriver_ide_launchcontrol_env_file. The format of this file is a list of key
value pairs on separate lines. Each key and value is separated by an = and the key
identifies the variable name (this is a standard Java properties file). After a
command is completed Launch Control will read this file and update any variables
as specified in the file.

Launch control also defines the com_windriver_ide_launchcontrol_skip_next
variable. Setting this variable to true in the Pre-Launch command causes the
remainder of the sub-launch to be skipped. Setting this variable in post-launch or
error commands has no effect.

An example of how this could be used is to check for the existence of a server
application in a pre-launch command. If the application is already running then
specifying com_windriver_ide_launchcontrol_skip_next=true in the
com_windriver_ide_launchcontrol_env_file will cause the launch of the
application to be skipped without invoking an error.

16.6 Launches and the Console View

Workbench supports the Eclipse Console view with Virtual IO (VIO) features that
allow you to monitor the standard output and error output of your applications
and to enter standard input. VIO connects the Console view to a particular context
(process or task). You can also have multiple Console views and “pin” them to a
particular context. Most Console view settings are available in the Common tab of
your launch configuration, and you can specify Console view preferences in your
Workbench preferences.

NOTE: Note that the Wind River environment variables for individual launches
are subject to change and you should not count on them being maintained across
releases. For details on variables beginning with the string org_eclipse refer to the
documentation available at http://help.eclipse.org.

http://help.eclipse.org

16 Launching Programs
16.6 Launches and the Console View

213

16

Note that Console view VIO is tied to the debugger and cannot always serve the
same purposes as a terminal connection to the target. You cannot use it, for
example, to monitor the boot loader or set boot parameters. The Console view is
associated with a particular debugger context and is not a general purpose
terminal connection.

Launches and the Console View

Each launch opens a Console view for I/O and error messages, provided the
Allocate Console check box is selected in the Common tab of the launch (the
default setting).

In the Common tab you can also specify a file where console output is appended
or overwritten with each launch. The Console view itself offers several controls as
described in the next section.

Note that you can also modify Console view settings such as buffer size and text
colors by selecting your preferences at
Window > Preferences > Run/Debug > Console.

Console View Output

To open a Console view select Window > Show View > Other > Basic > Console.
An example view is shown below.

NOTE: This refers to the Common tab of each individual launch configuration, not
the Common tab of the Launch Control configuration.

Figure 16-2 Example Console View

Wind River Workbench
User’s Guide, 2.6 Linux Version

214

The highlights of the view shown include the following:

■ A title indicates which context (process or task) this view applies to.

■ A comment indicates that in this case console file logging is occurring and
identifies the log file location. Click on the filename to display it in the Editor.

■ The standard output shown in the example is Hello World! and Bye for now!
and is in black, the default color for standard output.

■ The standard error outputs shown in the example are the Show me error
messages which are in red, the default color for standard error output.

Along with other standard functions, icons in the Console view toolbar allow you
to pin the context to a Console view, select among different Console views, and
create new Console views.

Select a specific process or task for a Console view by clicking the down arrow next
to the Display Selected Console icon and making your selection. Click
Pin Console to keep the Console view associated with that context. Select
Open Console > New Console View to create additional Console views.

Refer to http://help.eclipse.org for further details on the Console view, or press
CTRL-F1 in the Console view for online help.

16.7 Attaching the Debugger to a Running Process

You can attach to a running process to debug it as follows:

1. In the Target Manager, expand Processes for the target connection and locate
the process you want to attach to.

2. Right-click the process and select Attach to Process.

If you compiled the process with debug symbols, the symbols should load to allow
source-level debugging.

NOTE: The output appearing in the Console View can appear in a different order
than the order the output was produced if both output and error output are
present. The data from these two output types go through different channels and
their transit times can be different.

http://help.eclipse.org

16 Launching Programs
16.7 Attaching the Debugger to a Running Process

215

16

16.7.1 Running Processes

Right-clicking a process executable from the Project Navigator and selecting
Run Process on Target or Debug Process on Target opens the appropriate launch
configuration dialog box. See 16.2 Creating a Launch Configuration, p.198 for more
information about working with these dialog boxes.

This section explains how to launch processes from the Target Manager.

1. Right-click Processes, then select Run/Debug Process. The Run Process
dialog box appears.

2. Type the path and filename (as seen by the target) into the Exec Path on Target
field, or click the Browse button and navigate to the executable file.

3. To immediately put the program under debugger control at launch, select
Attach Debugger and Break on entry; to let it run, clear the Break on entry
check box. Click OK.

Workbench runs the process on the target, and the executable and its host
location, along with the individual tasks, appear below Processes in the Target
Manager. If a red S appears, then symbol information has been loaded into the
debugger.

If you selected Break on entry at main, four other things happen as well:

■ Workbench automatically switches to the Device Debug perspective (if it
is not already open).

■ The process is displayed in the Debug view.

Wind River Workbench
User’s Guide, 2.6 Linux Version

216

■ A temporary breakpoint is planted and appears in the Breakpoints view.

■ The program executes up to the entry point at main and breaks.

The result is as shown in Figure 16-3.

Whenever you manually run a process, a corresponding Attach to Target launch
configuration with those properties is automatically created. For more information
about how to use these configurations, see Editing an Attach to Target Launch
Configuration, p.198.

Figure 16-3 Process Running in Device Debug Perspective

16 Launching Programs
16.8 Attaching to the Kernel

217

16

16.8 Attaching to the Kernel

You can attach to the kernel in either KGDB or System (dual mode) debugging
modes.

16.8.1 Attaching to Kernel Core (KGDB)

For an example of attaching to core with a KGDB connection, refer to
5.3.3 Attaching to Core and Debugging the Kernel, p.75.

16.8.2 Attaching the Kernel in System Mode (Dual-Mode Agent)

To attach the kernel in System Mode, right-click the CPU button just below the
Connection button and select Attach to Kernel.

This will create an Attach to Target launch configuration that automatically
switches your target into System Mode before attaching the debugger. The
Debugger will show a single node labelled System Context that represents the
code that the CPU is currently executing. When you stop (suspend) the System
Context, your entire System is stopped, including all the tasks, processes, and
interrupt service routines. You can now also set breakpoints that will suspend the
entire System when they are hit.

Note that System Mode breakpoints (breakpoints that are planted while a System
Mode attach is active) will only be active when your target is in System Mode. You
can switch your target between System Mode and User Mode by choosing the
gear-wheel icon in the Target Manager, or by ticking the Debug Mode menu items
in the Debugger. For more information about Debug Mode functionality, see
18.2.4 Using Debug Modes, p.235.

Wind River Workbench
User’s Guide, 2.6 Linux Version

218

16.9 Suggested Workflow

Launch Configurations allow for a very tight Edit-Compile-Debug cycle when you
need to repeatedly change your code, build and run it. You can use the F11 (Debug
Last Launched) key to build the projects you have specified, connect your target
(unless it is already connected), download, and run your most important program
over and over again.

The only thing to watch is that you cannot rebuild your program or kernel while it
is still being debugged (or its debug info is still loaded into the debugger).
Depending on the size of the modules you run and debug, it can be the case that
the debug server cannot load all the symbolic information for your modules into
memory. By default, the size limit is set to 60MB (this can be changed by selecting
Window > Preferences > Target Manager > Debug Server Settings > Symbol File
Handling Settings.)

If a module is bigger than this limit, it will be locked against overwriting as long
as the debugger has symbols loaded. This means that when you try to rebuild this
module, you will see a dialog box asking you to unload the module’s symbol
information from the debugger before you continue building. You can usually
unload symbolic information without problems, provided that you do not have a
debug session open in the affected module. If you have a module open, you should
terminate your debug session before continuing the new build and launch process.

219

 17
 Managing Breakpoints

17.1 Introduction 219

17.2 Types of Breakpoints 220

17.3 Manipulating Breakpoints 224

17.1 Introduction

Breakpoints allow you to stop a running program at particular places in the code
or when specific conditions exist.

This chapter shows how you can use the Breakpoints view to keep track of all
breakpoints, along with their conditions (if any).

You can create breakpoints in different ways: by double-clicking or right-clicking
in the Editor’s left overview ruler (also known as the gutter), or by opening the
various breakpoint dialog boxes from the pull-down menu in the Breakpoints view
itself.

Wind River Workbench
User’s Guide, 2.6 Linux Version

220

17.2 Types of Breakpoints

Figure 17-1 shows the Breakpoints view with various types of breakpoints set.

See the sections below for when and how to use each type of breakpoint.

17.2.1 Line Breakpoints

Set a line breakpoint to stop your program at a particular line of source code.

Creating Line Breakpoints

To set a line breakpoint with an unrestricted scope (that will be hit by any process
or task running on your target), double-click in the left gutter next to the line on
which you want to set the breakpoint. A solid dot appears in the gutter, and the
Breakpoints view displays the file and the line number of the breakpoint. You can
also right-click in the gutter and select Add Global Line Breakpoint.

To set a line breakpoint that is restricted to just one task or process, right-click in
the Editor gutter and select Add Breakpoint for “selected thread”. If the selected
thread has a color in the Debug view, a dot with the same color will appear in the
Editor gutter with the number of the thread inscribed inside it.

Figure 17-1 Breakpoints View

17 Managing Breakpoints
17.2 Types of Breakpoints

221

17

17.2.2 Expression Breakpoints

Set an expression breakpoint using any C expression that will evaluate to a
memory address. This could be a function name, a function name plus a constant,
a global variable, a line of assembly code, or just a memory address. Expression
breakpoints appear in the Editor’s gutter only when you are connected to a task.

Breakpoint conditions are evaluated after a breakpoint is triggered, in the context
of the stopped process. Functions in the condition string are evaluated as addresses
and are not executed. Other restrictions are similar to the C/C++ restrictions for
calculating the address of a breakpoint using the Expression Breakpoint dialog
box.

17.2.3 Hardware Breakpoints

Some processors provide specialized registers, called debug registers, which can
be used to specify an area of memory to be monitored. For instance, IA-32
processors have four debug address registers, which can be used to set data
breakpoints or control breakpoints.

Hardware breakpoints are particularly useful if you want to stop a process when a
specific variable is written or read. For example, with hardware data breakpoints,
a hardware trap is generated when a write or read occurs in a monitored area of
memory. Hardware breakpoints are fast, but their availability is
machine-dependent. On most CPUs that do support them, only four debug
registers are provided, so only a maximum of four memory locations can be
watched in this way.

There are two types of hardware breakpoints:

■ A hardware data breakpoint occurs when a specific variable is read or written.

■ A hardware instruction breakpoint or code breakpoint occurs when a specific
instruction is read for execution.

Once a hardware breakpoint is trapped—either an instruction breakpoint or a data
breakpoint—the debugger will behave in the same way as for a standard
breakpoint and stop for user interaction.

Wind River Workbench
User’s Guide, 2.6 Linux Version

222

Adding Hardware Instruction Breakpoints

There two ways to add a new hardware instruction breakpoint:

In the gutter (grey column) on the left of the source file, right-click and select
Add Hardware Code Breakpoint. Or, double-click in the gutter to add a standard
breakpoint and then, in the breakpoint view, right-click the breakpoint you've just
added and select Properties. In the last pane (Hardware) of the Properties dialog
box select Enable Hardware Breakpoint.

Adding Hardware Data Breakpoints

Set a hardware data breakpoint when:

■ The debugger should break when an event (such as a read or write of a specific
memory address) or a situation (such as data at one address matching data at
another address) occurs.

■ Threads are interfering with each other, or memory is being accessed
improperly, or whenever the sequence or timing of runtime events is critical
(hardware breakpoints are faster than software breakpoints).

To add a hardware data breakpoint, go to the breakpoint view, then click the down
arrow in the top right of this view, and select Add Data Breakpoint to display the
hardware data breakpoint dialog box. You are presented with four tabs. In the
General tab, enter the variable you want to monitor in the Address Expression
box. The Status and Scope tabs work the same way as they do for hardware code
breakpoints. The Hardware tab will have fields bolded that you can check to make
a selection from the drop-down list, for example to choose the access size (Byte,
Half-Word, or Word) and the access type you want to monitor for this variable.

Disabling and Removing Hardware Breakpoints

You can disable and remove hardware breakpoints in the same ways that you
disable and remove standard breakpoints.

Converting Breakpoints to Hardware Breakpoints

To cause the debugger to request that a line or expression breakpoint be a
hardware code breakpoint, select the Hardware check box on the General tab of
the Line Breakpoint or Expression Breakpoint dialog boxes.

17 Managing Breakpoints
17.2 Types of Breakpoints

223

17

This request does not guarantee that the hardware code breakpoint will be planted;
that depends on whether the target supports hardware breakpoints, and if so,
whether or not the total number supported by the target have already been
planted. If the target does not support hardware code breakpoints, an error
message will appear when the debugger tries to plant the breakpoint.

Comparing Software and Hardware Breakpoints

Software breakpoints work by replacing the destination instruction with a
software interrupt. Therefore it is impossible to debug code in ROM using software
breakpoints.

Hardware breakpoints work by comparing the break condition against the
execution stream. Therefore they work in RAM, ROM or flash.

Complex breakpoints involve conditions. An example might be, “Break if the
program writes value to variable if and only if function_name was called first.”

NOTE: Workbench will set only the number of code breakpoints, with the specific
capabilities, supported by your hardware.

NOTE: If you create a breakpoint on a line that does not have any corresponding
code, the debugger will plant the breakpoint on the next line that does have code.
The breakpoint will appear on the new line in the Editor gutter.

In the Breakpoints view, the original line number will appear, with the new line
number in square brackets [] after it. See the third breakpoint in Figure 17-1.

Wind River Workbench
User’s Guide, 2.6 Linux Version

224

17.3 Manipulating Breakpoints

Now that you have an understanding of the different types of breakpoints, this
section will show you how to work with them.

17.3.1 Exporting Breakpoints

To export breakpoint properties to a file:

1. Select File > Export > Export Breakpoints, then click Next. The Export
Breakpoints dialog box appears.

1. Select the breakpoint whose properties you want to export, and type in a file
name for the exported file. Click Finish.

17.3.2 Importing Breakpoints

To import breakpoint properties from a file:

1. Select File > Import > Import Breakpoints, then click Next. The Import
Breakpoints dialog box appears.

2. Select the breakpoint file you want to import, then click Next. The Select
Breakpoints dialog box appears.

3. Select one or more breakpoints to import, then click Finish. The breakpoint
information will appear in the Breakpoints view.

17.3.3 Refreshing Breakpoints

Right-clicking a breakpoint in the Breakpoints view and selecting Refresh
Breakpoint causes the breakpoint to be removed and reinserted on the target. This
is useful if something has changed on the target (for example, a new module was
downloaded) and the breakpoint is not automatically updated.

To refresh all breakpoints in this way, select Refresh All Breakpoints from the
Breakpoints view toolbar drop-down menu.

17 Managing Breakpoints
17.3 Manipulating Breakpoints

225

17

17.3.4 Disabling Breakpoints

To disable a breakpoint, clear its check box in the Breakpoints view. This retains all
breakpoint properties, but ensures that it will not stop the running process. To
re-enable the breakpoint, select the box again.

17.3.5 Removing Breakpoints

There are several ways to remove a breakpoint:

■ Right-click it in the Editor gutter, select Remove Breakpoint.

■ Select it in the Breakpoints view, click the Remove button.

■ Right-click it in the Breakpoints view, select Remove.

Wind River Workbench
User’s Guide, 2.6 Linux Version

226

227

 18
 Debugging Projects

18.1 Introduction 227

18.2 Using the Debug View 228

18.3 Using the Disassembly View 238

18.4 Java-JNI Cooperative Debugging 239

18.5 Remote Kernel Metrics 243

18.6 Run/Debug Preferences 245

18.1 Introduction

Like other debuggers you may have used, the Wind River Workbench debugger
allows you to download object modules, launch new processes, and take control of
processes already running on the target.

However, unlike other debuggers, Workbench allows you to attach to multiple
processes simultaneously, without affecting the state of the items you are attaching
to or requiring you to disconnect from one process in order to attach to another.

This chapter introduces the Debug and Disassembly views, and shows you how to
use them to debug your programs.

Wind River Workbench
User’s Guide, 2.6 Linux Version

228

18.2 Using the Debug View

Use the Debug view to monitor and manipulate the processes running on your
target.

To examine a process in the Debug view:

1. Connect to your target in the Target Manager view (see 13.4 Establishing a
Connection, p.168).

2. Launch one or more processes:

■ Using a launch configuration as described in 16.2 Creating a Launch
Configuration, p.198.

■ Manually, as described in 16.4 Launching Programs Manually, p.207.

■ By attaching to an already running process, as described in 16.7 Attaching
the Debugger to a Running Process, p.214.

3. Once the debugger has attached to your process, it will appear in the Debug
view.

The Debug view displays processes differently depending on whether the
debugger is attached or not. Figure 18-1 shows two instances of the mthread
process: the first instance does not have the debugger attached and the second
does.

NOTE: You must compile your programs using debugging symbols (the -g
compiler option) to use many debugger features. The compiler settings used by the
Workbench project facility’s Managed Builds include debugging symbols.

18 Debugging Projects
18.2 Using the Debug View

229

18

18.2.1 Configuring Debug Settings for a Custom Editor

By default, the Workbench Editor opens when the debugger stops in a given file.
To cause a different editor to open for particular file types, modify the mappings
in Window > Preferences > General > Editor > File Associations.

Modifying these mappings takes care of editor selection and painting of the
instruction pointer in the editor gutter. However, to associate other debugging
actions with the new editor, you must modify the Eclipse extension point
org.eclipse.ui.editorActions.

For example, the breakpoint double-click action associated with the Workbench
Editor looks like this:

<extension point="org.eclipse.ui.editorActions">
<editorContribution

targetID="com.windriver.ide.editor.c"
id="com.windriver.ide.debug.CSourceFileEditor.BreakpointRulerActions">

<action
label="Dummy.label"
class="com.windriver.ide.debug.internal.ui.breakpoints.actions.ToggleB

reakpointRulerAction"
actionID="RulerDoubleClick"
id="com.windriver.ide.debug.ui.actions.toggleBreakpointRulerAction.c">

</action>
</editorContribution>

Figure 18-1 Debug View with Unattached and Attached Processes

Wind River Workbench
User’s Guide, 2.6 Linux Version

230

Other features that are by default configured to work only with the Workbench
Editor are Run to line, Set PC to here, and Watch. These features are configured
through following extensions:

<viewerContribution
targetID="#WREditorContext"
id="com.windriver.ide.debug.ui.editprPopup.actions">

<visibility>
<and>

<systemProperty
name="com.windriver.ide.debug.ui.debuggerActive"
value="true"/>

<pluginState value="activated" id="com.windriver.ide.debug.ui"/>
</and>

</visibility>
<action

label="%WatchAction.label"
icon="icons/actions/hover/watch_exp.gif"
menubarPath="group.debug"
helpContextId="com.windriver.ide.debug.ui.watchAction_context"
class="com.windriver.ide.debug.internal.ui.actions.WatchAction"
id="com.windriver.ide.debug.ui.editor.watchAction">

<enablement>
<systemProperty

name="com.windriver.ide.debug.ui.debuggerActive"
value="true">

</systemProperty>
</enablement>

</action>
<action

label="%SetPcToHereAction.label"
menubarPath="group.debug"
helpContextId="com.windriver.ide.debug.ui.setPcToHereAction_context"
class="com.windriver.ide.debug.internal.ui.actions.SetPcToHereAction"
id="com.windriver.ide.debug.ui.editor.setPcToHereAction">

</action>
<action

label="%RunToLineAction.label"
icon="icons/actions/hover/run_to_line.gif"
menubarPath="group.debug"
helpContextId="com.windriver.ide.debug.ui.runToLineAction_context"
definitionId="org.eclipse.debug.ui.commands.RunToLine"
class="org.eclipse.debug.ui.actions.RunToLineActionDelegate"
id="com.windriver.ide.debug.ui.editor.runToLineAction">

</action>
</viewerContribution>

Please refer to Eclipse SDK documentation for more information on these
extension points.

18 Debugging Projects
18.2 Using the Debug View

231

18

18.2.2 Understanding the Debug View Display

The Debug view displays a hierarchical tree for each process being debugged.

Below are examples of what might appear at each level of the tree, with a general
description of each level.

ball (2) [Process on Target] = launch level
launch name [launch type]

16,ball.out (MPC8260: Linux 2.4) = debug target level
process name (core name:OS name OS version)

16,ball.out (Stopped - Breakpoint) = thread level
thread name (state - reason for state change)

main() - main.c:59 = stack frame level
function(args) - file : line #, can also be address

In Workbench 2.6, stack arguments and argument values are not displayed in the
Debug view by default. This default setting was implemented to improve
debugging performance.

To activate stack-level arguments in the Debug view, select Window > Preferences
> Run/Debug > Performance, then select the Retrieve stack arguments for stack
frames in Debug View and Retrieve stack argument values for stack frames in
Debug View checkboxes. Click OK.

How the Selection in the Debug View Affects Activities

Choosing a specific level of your debug target controls what you can do with it.

NOTE: The stack arguments reflect the current value of the stack argument
variables, not the initial value of the stack arguments immediately after entering
the function call.

Selected Level Action Allowed

launch Terminate or disconnect from all processes/cores for the launch
debug target.

debug target Terminate or disconnect from the debug target.

Perform run control that applies to the whole process:
suspend/resume all threads.

Wind River Workbench
User’s Guide, 2.6 Linux Version

232

Monitoring Multiple Processes

When you start processes under debugger control, or attach the debugger to
running processes, they appear in the Debug view labeled with unique colors and
numbers. Likewise, breakpoints that are restricted to a particular process display
that process’s color/number context in the Breakpoints and Editor views.

For example, in Figure 18-2, three processes are shown in the Debug view:

■ The ball process, in pink in the Debug view, has been launched in debug mode
and the program counter is shown, in pink, in the main() routine.

■ The forkexec process is shown in blue. It has stopped at a breakpoint set at the
fork system call. The breakpoint is shown as a solid circle and the program
pointer is shown in blue with the number 0 in it. Note that the number 0 is also
shown with the parent process in the Debug view.

■ The third process, the forked child process, is shown in red in the Debug view.

The color assigned to a process or thread can be changed by right-clicking on the
process or thread and selecting Color > specific color.

Assign color to the debug target and all its threads/tasks.

thread Terminate or disconnect; terminates individual tasks/threads, if
supported by process/core.

Run control for thread: resume/suspend/step.

Assign color to thread.

stack frame Select of the stack frame causes the editor to display instruction
pointer and source for stack frame.

Perform same run control as on the thread.

Assign color to thread.

Assign corresponding color for parent thread.

18 Debugging Projects
18.2 Using the Debug View

233

18

The context pointer (the arrow in the left gutter in main.c) indicates the statement
that will execute when the process resumes.

Colored Views

The color context of a process also carries through to other views whose scope is
determined by the contents of the Debug view.

The data views that appear in the Device Debug perspective usually update to
reflect whatever is currently selected in the Debug view. If you prefer, you can start
colored views that are “pinned” to a process of a particular color and update only
when that process changes.

To open a view of a particular color, select Window > Show View > Other >
Device Debug - color > view.

For more information about how to set up Debug view settings, see the Wind River
Workbench User Interface Reference: Debug View.

Figure 18-2 Debug View with Editor and Breakpoint View

Wind River Workbench
User’s Guide, 2.6 Linux Version

234

18.2.3 Stepping Through a Program

Once a process has stopped under debugger control (most often, at a breakpoint),
you can single-step through the code, jump over subroutine calls, or resume
execution; what you can do depends on what you selected in the Debug view.

When the program is stopped, you can resume operation by clicking Resume on
the toolbar of the Debug view. If there are no more remaining breakpoints,
interrupts, or signals, the program will run to completion (unless you click the
Suspend button).

To step through the code one line at a time, click the Debug view’s Step Into
button. If you have other data views open, such as the Registers, Local Variables,
or Global Variables views, they will update with current values as you step
through the code.

The effect of Step Into is somewhat different if you click Toggle Disassembly/
Instruction Step Mode on the Debug view toolbar, or when the current routine
has no debugging information. When this mode is set, the step buttons cause
instruction-level steps to be executed instead of source-level steps. Also, the
Disassembly view will be shown instead of the Editor.

To single-step without going into other subroutines, click Step Over instead of
Step Into.

While stepping through a program, you may conclude that the problem you are
interested in lies in the current subroutine’s caller, rather than at the stack level
where your process is suspended. Click the Debug view’s Step Return button in
that situation: execution continues until the current subroutine completes, then the
debugger regains control in the calling statement.

Additional Run Control Options

The Run > Stack Frame menu provides other options for manipulating files.

Drop To Frame

The debugger resumes until the execution returns to the selected stack frame.

Run To Frame Address

The debugger resumes execution until the address of the selected stack frame is
reached.

18 Debugging Projects
18.2 Using the Debug View

235

18

Set Breakpoint at Frame Function

Select this to create an expression breakpoint at Frame Function of the selected stack
frame, with Frame Function replaced by the actual function name. This action is
only available if the symbol data for the selected frame is present (and the function
name is known).

Set PC to Frame Function

Select this to set the Program Counter register to the beginning of the Frame
Function of the selected stack frame, with Frame Function replaced by an actual
function name. This action also is only available if the symbol data for the selected
frame is present (and the function name is known).

18.2.4 Using Debug Modes

Depending on the type of connection the debugger has to the target, the debugger
may be capable of operating in different modes. Different debug modes have
different capabilities and limitations, which are mostly related to how the
debugger interacts with the target and the processes that are being debugged.

Your target connection type determines possible modes as follows:

■ KGDB connection type—Only supports debugging the kernel using a single
execution context. When the system context is suspended, the kernel, kernel
threads, and user processes are suspended also.

■ Usermode agent connection type—Supports debugging user processes.
Processes and threads within processes are suspended and resumed
independently of each other.

■ Dual mode connection type—In dual mode, you must toggle between user
and kernel connection type depending on your debugging needs:

■ Kernel mode (also called System mode)—Only supports debugging the
kernel using a single execution context. When the system context is
suspended, the kernel, kernel threads, and user processes are suspended
also.

■ User mode—Supports debugging user processes. Processes and threads
within processes are suspended and resumed independently of each other.

Wind River Workbench
User’s Guide, 2.6 Linux Version

236

As a general rule, when the target is being debugged in user mode, the debugger
interacts only with the process or processes being debugged. If this process is
suspended, other processes keep running. This mode is less intrusive, as it allows
the user to control the selected process or thread while the rest of the system can
continue to operate normally.

In kernel mode, the debugger interacts with the entire system at once, so if one task
is suspended, all processes and kernel tasks running on the system are suspended
as well. This allows for increased control and visibility into what is happening on
the system, but it is also very disruptive.

For example, if the system maintains network connections with other systems,
suspending it will cause the others to lose their network connections with the
debugged system.

18.2.5 Setting and Recognizing the Debug Mode of a Connection

Right-clicking on a connection in the Target Manager or the Debug view and
selecting Target Mode allows you to specify a debug mode for the connection. The
currently active mode is indicated by a checkmark.

When you create a new debug connection through a launch, the connection debug
mode (either system mode or task mode) is saved as a property of the launch. This
mode is listed in parentheses at the end of the label of the target node in the Debug
view.

Switching Debug Modes

For target connections that support switching between modes, if you switch the
debug mode while a debug connection is active, this debug connection will
become unavailable in the Debug view. When a debug connection is unavailable,
no operations can be performed on it, except for disconnecting the debug
connection.

In the Target Manager, if you switch the target to system mode, every node in the
tree will have a system mode icon painted on top. If the system mode icon does not
appear, then the node and processes are in task or user mode.

18 Debugging Projects
18.2 Using the Debug View

237

18

18.2.6 Debugging Multiple Target Connections

You can debug processes on the same target using multiple target connections
simultaneously. An example of this setup is a Linux target that has a user mode
ptrace agent installed for debugging processes, and an OCD connection for halting
the system and debugging the kernel.

In this situation, if the system is halted using the OCD (system mode) target
connection, the user mode ptrace agent will also be halted, and the user mode
target connection will be lost. When the system is resumed, the user mode target
connection will be re-established.

The Target Manager and the Debug view (if a debug session is active) both provide
feedback in this scenario. The Target Manager hides all the process information
that was visible for the target, and displays a label back-end connection lost next
to the target node. The Debug view does not end the active debug session, but it
shows it as being unavailable, in the same manner as if the debug mode was
switched.

18.2.7 Disconnecting and Terminating Processes

Disconnecting from a process or core detaches the debugger, but leaves the process
or core in its current state.

Terminating a process actually kills the process on the target.

18.2.8 Changing Source Lookup Settings

The purpose of Source Lookup is to map the debugger source file paths to the
actual source file locations in the workspace and the host file system. The debugger
paths for source files are the paths that are read by the debugger from the symbol
data of the executable that is being debugged. These paths were generated by the
compiler when the executable was built, and the are often different from the paths
to those files at time of debugging.

For information about how to set up Source Lookup Path settings, see the Wind
River Workbench User Interface Reference: Source Lookup Path Dialog.

NOTE: If the selected target supports terminating individual threads, you can
select a thread and terminate only that thread.

Wind River Workbench
User’s Guide, 2.6 Linux Version

238

18.3 Using the Disassembly View

Use the Disassembly view:

■ To examine a program when you do not have full source code for it (such as
when your code calls external libraries).

■ To examine a program that was compiled without debug information.

■ When you suspect that your compiler is generating bad code (the view
displays exactly what the compiler generated for each block of code).

18.3.1 Opening the Disassembly View

Unlike other Workbench views, the Disassembly view is not accessible from the
Window > Show View menu—it appears automatically if the Debug view cannot
display the appropriate source code file in the Editor (it appears as a tab in the
Editor, labelled with the target connection being debugged).

The Disassembly view can be opened manually by clicking the Debug View’s
Toggle Disassembly/Instruction Step Mode toolbar button, and by right-clicking
in the Stack Trace View and selecting Go To Code.

18.3.2 Understanding the Disassembly View Display

The Disassembly view shows source code from your file (when available),
interspersed with instructions generated by the compiler. As you step through
your code, the Disassembly view keeps track of the last four instructions where the
process was suspended. The current instruction is highlighted in the strongest
color, with each previous step fading in color intensity.

If the Disassembly view displays a color band at the top and bottom (here, the band
is blue), then it is pinned to the process with that color context in the Debug view;
if no color band is displayed, then the view will update as you select different
processes in the Debug view.

For more information, see Wind River Workbench User Reference: Disassembly View.

18 Debugging Projects
18.4 Java-JNI Cooperative Debugging

239

18

18.4 Java-JNI Cooperative Debugging

Java-JNI (Java native interface) cooperative debugging allows you to debug the
Java side of your Java application with the JDT debugger, and the JNI side of your
application with a C/C++ native debugger, simultaneously. You can use Java-JNI
cooperative debugging when you have a Java project that has Java classes with
native methods, and have built the associated native libraries with debug
information.

In addition to your Java classes, the JRE, and the native libraries required to run
your application on the target, you must have the special helper class and its
associated library file on the target as well. These are provided by Wind River and
are required for Workbench to perform Java-JNI cooperative debugging.

The helper class file and its associated native library are available in the directory
installDir/linux2-x/usermode-agent/2.0/bin/wrjnidebug/. Copy the contents of
this directory (the wrjnidebughelper.jar file and the libwrjnidebughelper.so file)
to a directory on the target. You will need to refer to the location of these files when
creating your launch configuration as described in Creating a Launch Configuration
for Cooperative Debugging, p.240.

Configuring a User Mode Connection for Cooperative Debugging

If you do not have a user mode connection to your target, create a new connection
(see 3.8 Configuring a Target Connection, p.35 for details). Be sure to specify the port
number if you started usermode-agent with a port number.

If your target's root file system is accessible to the host computer on which you are
running Workbench, specify the root file system in the Target Server Options page
under the Target Connection properties for your connection. Right-click on your
target connection in the Target Manager and select Properties to access this tab.

If, however, your target's root file system is not fully accessible to the host
computer, then you need to manually add the mappings under Object Path
Mappings in the Target Connection properties for your connection. Right-click on
your target connection and select Properties to access this tab. Be sure to configure

Wind River Workbench
User’s Guide, 2.6 Linux Version

240

your object path mapping so that the native debugger can locate the object files for
the following:

■ The java executable (for example, /usr/bin/java)

Without access to symbols from the java executable, the native debugger will
not be able to detect any shared libraries that the Java application loads, and
hence you will not be able to debug your JNI code.

■ The Linux run time loader (ld.so or ld-linux.so, usually located in /lib)

Without access to symbols of the runtime loader, the native debugger will not
be able to automatically detect shared libraries, such as your JNI libraries, as
the Java VM loads them. This will again prevent you from debugging your JNI
code.

■ The JNI libraries that are part of your application

Without access to symbols from your JNI libraries, you will not be able to
debug your JNI library even if the native debugger can detect that the library
has been loaded.

Note that if none of the target file system is accessible, you may need to copy the
necessary object files from the target to a location that the host has access to and
then specify that location in your object path mappings.

Creating a Launch Configuration for Cooperative Debugging

Use the following procedure to create a launch configuration for cooperative
debugging. For details on all options available when creating a launch
configuration, refer to Wind River Workbench User Interface Reference Manual: Launch
Configuration Dialog online.

1. Select Run > Debug, select Remote Java Launch and Connect, and click New
to create a new launch configuration.

2. In the Main tab:

■ Enter the name of your Java project for Project or select it by browsing to it.

■ Enter your main class for Main class or select Search to select it from a list.

■ Check Stop in main (optional, but will be used in this example).

3. In the Connection tab:

■ Select your target connection in the Connection to Use drop-down list.

18 Debugging Projects
18.4 Java-JNI Cooperative Debugging

241

18

■ Specify the target path to the Java executable in Exec Path on Target, for
example, /usr/bin/java.

■ Click Edit in Environment and remove the LD_BIND_NOW entry. Click
Add to add an entry with a Name of LD_LIBRARY_PATH. For Value,
specify the target path to the directory or directories on the target where
the JNI library (or libraries) that your application will call reside.

4. In the Arguments tab:

■ Under Classpath, enter the full target paths to both the directory where
your Java classes for your application reside, and the full path of the
wrjnidebughelper.jar file, located where you copied the contents of the
wrjnidebug directory. Separate multiple paths by colons. For example:

/usr/myapp:/usr/myapp/jni:/usr/agent/wrjnidebug/wrjnidebughelper.jar

Note that these are the paths as visible to programs running on the target,
not host paths.

5. In the Debug Options tab:

■ Specify a debug port for Port Number. This should be a unique number
not used as a port by any other application including usermode-agent,
and it should be greater than 1024 which is the last of the reserved port
numbers, and less than 65536.

■ Check Enable Debugger Cooperative Mode for JNI.

Debugging In Java and Native Modes

Once you have created your launch configuration for cooperative debugging you
can begin debugging and switch between Java and native modes as described in
the following procedure.

1. Click Debug to start your application.

Your application will come up stopped in its main class (if you selected Stop
in main in the Main tab). In the Debug view you should see two hierarchical
trees—one for the Java debugger (Java HotSpot™ Client VM) and one for the
native debugger (java). Execute your Java application until it reaches a
statement where there is a call to a native method and then click Step Into. It
should step into the native method.

If you did not configure the helper files location correctly, you will get an error
message indicating that JNI transitions are disabled.

Wind River Workbench
User’s Guide, 2.6 Linux Version

242

2. To return from JNI debugging to Java debugging, click Resume (not Step
Return) to complete the step. Workbench will stop the Java thread and you can
continue with debugging the Java side.

3. You can now move between the native and Java debuggers at any time and set
breakpoints in either—as long as the Java debugger is not disabled (discussed
next). For example, open any Java or native source file that is part of your
application and double-click in the gutter to set a breakpoint.

Conditions that Disable the JDT Debugger

With Java-JNI cooperative debugging, the native debugger has control over the
entire process including the JVM. Because of this, it is possible for the entire Java
application including the JVM to be stopped by the native debugger. This will
happen, for example, if you choose to manually suspend the entire process from
the native debugger.

You can also set a native breakpoint in your JNI library that will stop the entire
process. This can result in all the threads of the application, including the ones
communicating with the JDT Java debugger, to be suspended. When this happens,
the JDT debugger is not able to debug the Java side as it is unable to communicate
with the JVM.

In Workbench, the Java debugger entries in the Debug View will display the
message “(debugger is disabled)(may be out of synch)”, indicating that the Java
debugger is disabled and the Debug view display of Java information may no
longer be accurate. In this condition, you cannot perform any Java debugging
operations such as planting Java breakpoints, inspecting Java variables, and so on.

Re-Enabling the JDT Debugger

Click Resume to resume the entire process from the native debugger (not just one
thread). The Java debugger will re-establish communication with the JVM and
become enabled. You can now continue with Java-JNI cooperative debugging.

18 Debugging Projects
18.5 Remote Kernel Metrics

243

18

18.5 Remote Kernel Metrics

Remote kernel metrics (RKMs) are operating system signals (metrics) that are
dynamically collected by the rkm_monitor_linux target agent. The metrics can be
displayed in real-time utilizing the full-color features of the StethoScope GUI
included with Workbench.

The RKM monitor acquires its data from the /proc filesystem on the target. If you
do not have a /proc filesystem on your target, you may simply need to mount it, or
you may need to rebuild your kernel to include it.

To mount the /proc filesystem, use the mount command as follows:

mount -t proc proc /proc

If your kernel does not have /proc support built-in, you must re-build the kernel
and enable it in the File system configuration section of your kernel configuration
tool.

Building and Running the RKM Monitor

The RKM monitor agent is supplied in a Workbench sample project. Use the
following procedure to build the RKM monitor and then run it on your Linux
target.

1. Start Workbench.

2. Select File >New >Example >Native Sample Project. Click Next.

3. Select The RKM (Remote Kernel Metrics) Monitor Program and click Finish.

4. In the Project Manager, right-click on rkm_monitor_linux and select Build
Project.

5. Select Run > Run and select Process on Target.

6. In the Main tab, name it something like rkm_monitor_linux and choose your
target connection from the Connection to use pull-down menu.

7. Click Run and rkm_monitor will start on the target as shown in your Debug
view.

NOTE: The following procedure assumes the results of your project build are
available on the target, for example by locating your workspace on a shared NFS
mount. It also assumes you have created a connection to the target in the Target
Manager and have specified the target-host root filesystem mapping.

Wind River Workbench
User’s Guide, 2.6 Linux Version

244

Running the RKM Monitor From the Command Line

You can also start the RKM monitor by specifying it on the command line. To see
the various options available, enter the following from the directory containing the
rkm_monitor_linux executable that you built:

$./rkm_monitor_linux -help

For example, to start the RKM monitor with a different index value, say 125 instead
of the default 127, enter:

$./rkm_monitor_linux -index=125 &

In this way you can run multiple monitors which has several advantages. You
might want to configure one monitor, for example, to collect a few signals for all
processes at a low sampling frequency, and configure another to sample a
complete set of metrics for a few processes at a high frequency.

By specifically selecting the signals you want to monitor, you can reduce the
memory, CPU, and network resources required to monitor the large set of signals
selected by default. In addition, the source for rkm_monitor_linux is included so
you can create versions that monitor specific signals that are not made available by
the default configuration, or even monitor specific portions of an application.

As another example, you might just want to monitor memory usage for the root
user, taking 10 samples every second:

$./rkm_monitor_linux -samples=10 -processes user=root -sysmetrics memory &

When you attach StethoScope to the RKM monitor invoked as shown, you will
only be able to view root memory usage.

Attach StethoScope to the RKM Monitor

Use the following procedure to view the remote kernel metrics in the StethoScope
GUI that comes with Workbench.

1. With rkm_monitor running on the target, open StethoScope in Workbench by
selecting ScopeTools > StethoScope.

2. Select Linux as your target type and click OK.

3. Select the correct target connection from the pull-down menu.

18 Debugging Projects
18.6 Run/Debug Preferences

245

18

4. Enter 127 as the index value. This is the default to use for StethoScope with the
RKM monitor. Use a different index number if you want to run another
monitor on the target; this allows you to run multiple monitors on the target,
selecting them by index number.

5. Click OK.

A StethoScope windows opens.

Using StethoScope to View Remote Kernel Metrics

Your main navigation tool for StethoScope is the Signal Tree in the upper-left
corner. As an example of how to use StethoScope with remote kernel metrics, use
the following procedure.

1. Expand System and then time.

2. Check the time group to automatically check all of the metrics under time
(user, lowuser, system, idle) which then display in units of jiffies (1/100th of
a second CPU time) spent executing user, low-priority user, and system tasks,
as well as the number of jiffies spent idle.

3. Hover your mouse over the StethoScope toolbar to find the Zoom to Fit icon.
Click on it to contain all the signals in the graph window. Note that each signal
has a unique color associated with it and this color is used for the lines in the
graph. The MiniMonitor view lists the current values of monitored signals and
the MiniDump view lists the value of each signal at each sampling.

By default, when any new processes are started they are added to the monitor.
Note, however, that the buffer is reset when new signals are added, so you lose the
history of what you had been monitoring. You can avoid this by, for example,
monitoring only your own processes with appropriate command line options as
described in Running the RKM Monitor From the Command Line, p.244.

For more information on the use of StethoScope, see your StethoScope
documentation.

18.6 Run/Debug Preferences

For more information, see Wind River Workbench User Reference: Debug View.

Wind River Workbench
User’s Guide, 2.6 Linux Version

246

247

 19
 Analyzing Core Files

19.1 Introduction 247

19.2 Acquiring Core Dump Files 248

19.3 Attaching Workbench to a Core File 249

19.1 Introduction

You can configure your target system to save status and memory information on
programs that crash for specific reasons. For example, you can specify that the
information should be saved if a process exceeds some size, or tries to access
memory outside of its allowed memory space. This information is then saved on
the target in a file called the core file, or core dump, typically named core.pid where
pid is the process ID of the program that crashed. The core dump is an ELF file that
contains an image of the process memory space, details of the process state, and
additional information at the time of the crash. You can then transfer the core file
to your host and analyze the cause of the crash using the Workbench debugger at
any time.

Wind River Workbench
User’s Guide, 2.6 Linux Version

248

19.2 Acquiring Core Dump Files

With the bash shell, you control the creation of core dumps with the ulimit
command. For example, to determine your current settings enter:

target_$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
file size (blocks, -f) 20
pending signals (-i) 1024
max locked memory (kbytes, -l) 32
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
stack size (kbytes, -s) 10240
cpu time (seconds, -t) unlimited
max user processes (-u) 11768
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited
target_$

Most Linux systems come with the default setting to not allow core file generation.
In the example this is shown as a core file size setting of 0. You can turn on core file
generation by specifying a maximum size or unlimited as the core file size, for
example:

target_$ ulimit -c unlimited

Certain conditions, for example when a program tries to access restricted memory,
will then generate core dumps, as in:

target_$./segtest.out
Segmentation fault (core dumped)

You can also turn on core file generation by setting a core file size (unlimited or as
specified), and then cause a core file to be generated by setting a limit on some
condition. For example:

target_$ ulimit -c
0
target_$ ulimit -c 12000
target_$ ulimit -c
12000
target_$ ulimit -m
unlimited
target_$ ulimit -m 2000
target_$ ulimit -m
2000

19 Analyzing Core Files
19.3 Attaching Workbench to a Core File

249

19

The shell is now set to generate a core file of a maximum size of 12000 KB if the
memory size for a process exceeds 2000 KB.

Transfer the core dump to your host if it is not already on a file system that your
target mounts from the host. You can now analyze the core file using the
Workbench debugging tools.

19.3 Attaching Workbench to a Core File

Use the Target Manager to create a connection to the core file. You do not need to
be connected to the target if you have access to the target file system because core
file analysis takes place on the host. Note that when you are using Workbench to
analyze the core file, you are not debugging an active process, you are only
examining the state and conditions of a process at the moment it failed to
determine the cause of the failure.

1. Click the Create a New Target Connection button in the Target Manager, select
Wind River Linux Application Core Dump Target Server Connection, and
click Next.

2. Enter or browse to the path for the core dump file you wish to analyze in the
Core dump file field.

3. You can enter the CPU number for Force CPU number and the version of
Linux for Force OS version. The CPU number for your CPU can be found in
the text file $WIND_FOUNDATION_PATH/resource/target/architecturedb.
For example, the architecturedb file shows that the CPU number to enter for
an XScale CPU is 1120:

...
[CPU_1120]
cpuname = xscale
cpuFamilyName = XSCALE
...

NOTE: Your ulimit settings entered at the command line apply to the current shell
only. If you want to continue to generate core dumps across logins, add the ulimit
commands to a shell startup file, for example to .bash_login.

Wind River Workbench
User’s Guide, 2.6 Linux Version

250

The OS version value to enter is either 2.4 or 2.6.

4. Enter or browse to the path of the application image that created the core
dump file in the File field.

5. The command line your selections have created is displayed at the bottom of
the dialog. To add additional options for memory cache size, logging, and
symbol loading, click the Edit button next to the Options field and make your
selections. Click Next.

6. Specify the location of the target root by clicking on Add and entering the
Target path (for example /) and the Host path (for example /target/rootfs),
click OK, and then click Next.

7. Click Next in the Target Refresh Dialog box and then click Finish in the
Connection Summary box.

Your core file connection appears in the Target Manager.

You can now connect to the core dump by right-clicking on the “stopped” process
in the Target manager and selecting Attach to Process. The Debug view will show
the debugger attached to the process at the point of the failure and an editor
window will open at the error location in the source file.

Core File Analysis

You can now perform various activities on the core file, for example view a stack
trace, a memory dump, a thread list, local and global variables, and register values.
But remember this is only a read-only view of the process at the time of the core
dump.

Ending the Session

To end the core file debugging session, disconnect in the Debug view and
disconnect in the Target Manager.

NOTE: The core file does not contain information on the type of CPU or the
version of the operating system that it was created with. If you get a Failed to
connect target error message indicating a target-CPU mismatch, it is likely that
specifying the CPU number and OS version will resolve it.

251

 20
 Troubleshooting

20.1 Introduction 251

20.2 Startup Problems 252

20.3 General Problems 255

20.4 Error Messages 256

20.5 Error Log View 265

20.6 Error Logs Generated by Workbench 265

20.7 Technical Support 273

20.1 Introduction

This chapter displays some of the errors or problems that may occur at different
points in the development process, and what steps you can take to correct them. It
also provides information about the log files that Workbench can collect, and how
you can create a ZIP file of those logs to send to Wind River support.

If you are experiencing a problem with Workbench that is not covered in this
chapter, please see the Wind River Workbench Release Notes for your platform.

Wind River Workbench
User’s Guide, 2.6 Linux Version

252

20.2 Startup Problems

This section discusses some of the problems that might cause Workbench to have
trouble starting.

Workspace Metadata is Corrupted

If Workbench crashes, some of your settings could get corrupted, preventing
Workbench from restarting properly.

1. To test if your workspace is the source of the problem, start Workbench,
specifying a different workspace name.

On Windows

Select Start > Programs > Wind River > Workbench 2.6 > Wind River
Workbench 2.6, then when Workbench asks you to choose a workspace, enter
a new name (workspace2 or whatever you prefer).

Or, if the Workbench startup process does not get all the way to the Workspace
Launcher dialog box, or does not start at all, start it from a terminal window:

> installDir\workbench-2.6\wrwb\platform\eclipse\x86-win32\bin\wrwb.exe -data
newWorkspace

On Linux or Solaris

Start Workbench from a terminal window, specifying a new workspace name:

> ./startWorkbench.sh -data newWorkspace

2. If Workbench starts successfully with a new workspace, exit Workbench, then
delete the .metadata directory in your original Workbench installation
(installDir/workspace/.metadata).

3. Restart Workbench using your original workspace. The .metadata directory
will be recreated and should work correctly.

4. Because the .metadata directory contains project information, that information
will be lost when you delete the directory.

To recreate your project settings, reimport your projects into Workbench (File
> Import > Existing Project into Workspace).

NOTE: For more information on Workbench startup options, see
Help > Help Contents > Wind River Partners Documentation >
Eclipse Workbench User Guide > Tasks > Running Eclipse.

20 Troubleshooting
20.2 Startup Problems

253

20

.workbench-2.6 Directory is Corrupted

1. To test if your homeDir/.workbench-2.6 directory is the source of the problem,
rename it to a different name, then restart Workbench.

2. If Workbench starts successfully, exit Workbench, then delete the old version
of your homeDir/.workbench-2.6 directory (the one you renamed).

3. Restart Workbench. The homeDir/.workbench-2.6 will be recreated and should
work correctly.

4. Because the .workbench-2.6 directory contains Eclipse configuration
information, any information about manually configured Eclipse extensions
or plug-ins will be lost when you delete the directory.

To make them available again within Workbench, re-register them (Help >
Software Updates > Manage Configuration).

Registry Unreachable (Windows)

When Workbench starts and it does not detect a default Wind River registry, it
launches one. After you quit Workbench, the registry is kept running since it is
needed by all Wind River tools. You do not need to ever kill the registry.

If you do stop it, however, it stores its internal database in the file
installDir/workbench-2.6/foundation/.wind/wtxregd.hostname.

If this file later becomes unwritable, the registry cannot start, and Workbench will
display an error.

NOTE: Make sure you rename the homeDir/.workbench-2.6 directory, not the
installDir/workbench-2.6 directory.

Wind River Workbench
User’s Guide, 2.6 Linux Version

254

This error may also occur if you install Workbench to a directory to which you do
not have write access, such as installing Workbench as an administrator and then
trying to run it as yourself.

Workspace Cannot be Locked (Linux and Solaris)

If you start Workbench and select a workspace, you may see a Workspace Cannot
be Locked error.

There are three possible causes for this error:

1. Another user has opened the same workspace. A workspace can only be used
by one user at a time.

2. You installed Workbench on a file system that does not support locking.

Use the following command at a terminal prompt to start Workbench so that
it creates your workspace on a file system which does allow locking, such as a
directory on a local disk:

./startWorkbench.sh -configuration directory that allows locking

For example:

./startWorkbench.sh -configuration /usr/local/yourName

3. On some window managers (e.g. gnome) you can close the window without
closing the program itself and deleting all running processes. This results in
running processes maintaining a lock on special files in the workspace that
mark a workspace as open.

To solve the problem, kill all Workbench and Java processes that have open file
handles in your workspace directory.

NOTE: For more information on Workbench startup options, see
Help > Help Contents > Wind River Partners Documentation >
Eclipse Workbench User Guide > Tasks > Running Eclipse.

20 Troubleshooting
20.3 General Problems

255

20

20.2.1 Pango Error on Linux

If the file pango.modules is not world readable for some reason, Workbench will
not start and you may see an error in a terminal window similar to

** (<unknown>:21465): WARNING **: No builtin or dynamically loaded modules
were found. Pango will not work correctly. This probably means there was an
error in the creation of:

'/etc/pango/pango.modules'
You may be able to recreate this file by running pango-querymodules.

Changing the file’s permissions to 644 will cause Workbench to launch properly.

20.3 General Problems

If you are experiencing a problem with Workbench that is not covered in this
chapter, please see the Wind River Workbench Release Notes for your platform.

20.3.1 JDT Dependency

Some third party plug-ins are dependent on JDT. If a plug-in you are interested in
requires JDT, you should download it from the official Eclipse Web site:

http://download.eclipse.org/downloads/drops/R-3.0-200406251208/download.p
hp?dropFile=eclipse-JDT-3.0.zip

A list of official mirror sites is here:

http://www.eclipse.org/downloads

20.3.2 Help System Does Not Display on Linux

Workbench comes preconfigured to use Mozilla on Linux, and it expects it to be in
your path. If Mozilla is not installed or is not in your path, you must install and set
the correct path to the browser or Workbench will not display help or other
documentation.

To manually set the browser path in Workbench:

1. Select Window > Preferences > Help.

http://download.eclipse.org/downloads/drops/R-3.0-200406251208/download.php?dropFile=eclipse-JDT-3.0.zip
http://www.eclipse.org/downloads

Wind River Workbench
User’s Guide, 2.6 Linux Version

256

2. Click Custom Browser (user defined program), then in the Custom Browser
command field type or browse to your browser launch program, click OK.

Sample browser launch commands are "/usr/bin/firefox" %1,
"kfmclient openURL %1", and "/opt/mozilla/mozilla %1". Enter the
command line as appropriate for your browser.

20.3.3 Help System Does Not Display on Windows

The help system can sometimes fail to display help or other documentation due to
a problem in McAfee VirusScan 8.0.0i (and possibly other virus scanners as well).

For McAfee VirusScan 8.0.0i, the problem is known to be resolved with patch10
which can be obtained from Network Associates. As a workaround, the problem
can be avoided by making sure that McAfee on-access-scan is turned on and
allowed to scan the TEMP directory as well as *.jar files.

More details regarding this issue have been collected by Eclipse Bugzilla #87371 at
https://bugs.eclipse.org/bugs/show_bug.cgi?id=87371.

20.3.4 Resetting Workbench to its Default Settings

If Workbench crashes, some of your settings could get corrupted, preventing
Workbench from restarting properly. To reset all your settings to their defaults,
delete your $HOME/.workbench-2.6 directory which will be recreated when
Workbench restarts.

20.4 Error Messages

Some errors display an error dialog box directly on the screen, while others that
occurred during background processing only display this icon in the lower right
corner of Workbench window.

! CAUTION: Remove the directory .workbench-2.6 (begins with a “dot”) in your
home directory, not the directory workbench-2.6 in the Workbench installation
directory.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=87371

20 Troubleshooting
20.4 Error Messages

257

20

Hovering your mouse over the icon displays a pop-up with a synopsis of the error.
Later, if you closed the error dialog box but want to see the entire error message
again, double-click the icon to display the error dialog box or look in the Eclipse
Log, p.267.

This section explains error messages that appear in each Workbench component.

20.4.1 Project System Errors

For general information about the Project System, see 6. Projects Overview.

Project Already Exists

If you deleted a project from the Project Navigator but chose not to delete the
project contents from your workspace, then you try to create a new project with the
same name as the old project, you will see the following error:

If you click Yes, your old project contents will be overwritten with the new project.
If you want to recreate the old project in Workbench, click No, then right-click in
the Project Navigator, select Import, then select Existing Project into Workspace.

Type the name of your old project, or browse to the old project directory in your
workspace, click OK, then click Finish. Your old project will appear in the Project
Navigator.

Wind River Workbench
User’s Guide, 2.6 Linux Version

258

Cannot Create Project Files in Read-only Location

When Workbench creates a project, it creates a .wrproject file and other metadata
files it needs to track settings, preferences, and other project-specific information.
So if your source files are in a read-only location, Workbench cannot create your
project there.

To work around this problem, you must create a new project in your workspace,
then create a folder that links to the location of your source files.

1. Create a User-defined Project in your workspace by selecting File > New >
User-Defined Project. The Target Operating System dialog box appears.

2. Select a target operating system from the drop-down list, then click Next. The
Project dialog box appears.

3. Type in a name for your project, select Create project in workspace, then click
Next.

4. Click Next to accept the default settings in the next dialog boxes, then click
Finish to create your project.

5. In the Project Navigator, right-click your new project and select New > Folder.
The Folder dialog box appears.

6. Type in a name for your folder, then click Advanced and select the Link to
folder in the file system checkbox.

7. Type the path or click Browse and navigate to your source root directory, then
click OK to create the new folder.

8. Click the plus next to the folder to open it, and you will see the source files
from your read-only source directory. Eclipse calls items incorporated into
projects in this way linked resources.

20.4.2 Build System Errors

For general information about the Build System, see 11. Building Projects.

NOTE: This mechanism cannot be used for managed-build projects, only for
user-defined projects.

20 Troubleshooting
20.4 Error Messages

259

20

Building Projects While Connected to a Target

If you right-click a project in the Project Navigator and select Build Project while
you have a target connection active in the Target Manager, you will see this error:

This dialog box warns you that a build may fail because the debugger may still
have a lock on your files. You can continue your build by clicking OK, but be
advised that when you see an error message in the Build Console similar to dld:
Can’t create file XXX: Permission denied you will need to disconnect your target
and restart the build.

The best workflow for cases where you continually need to rebuild objects that are
in use by your target is as follows:

■ Create a launch configuration for your debugging task. When you need to
disconnect your target in order to free your images for the build process, the
launch configuration allows you to automatically connect, download, and run
your process with a single click once the build is finished.

You can even specify that your project should be rebuilt before it is launched
by selecting Window > Preferences > Run/Debug > Launching, and then
selecting Build (if necessary) before launching. For more information about
launch configurations, see 16. Launching Programs.

■ When you work with processes, make sure that your process is terminated
before you rebuild or relaunch. You can then safely ignore the warning (and
check the Do not show this dialog again box).

■ When you work with Downloadable Kernel Modules or user-built kernel
images, just let the build proceed. If the Link error message appears, either
disconnect your target or unload all modules, then rebuild or relaunch.

Wind River Workbench
User’s Guide, 2.6 Linux Version

260

20.4.3 Target Manager Errors

For general information about the Target Manager, see 13. Connecting to Targets.

Troubleshooting Connecting to a Target

If you see the following error:

Or if you have other trouble connecting to your target, try these steps:

1. Check that the target is switched on and the network connection is active. In a
terminal window on the host, type:

ping n.n.n.n

where n.n.n.n is the IP address of your target.

2. Verify the target Name/IP address in the Edit the Target Connection dialog
box (right-click the target connection in the Target Manager then select
Properties.)

3. Choose the actual target CPU type from the drop-down list if the CPU type in
the Edit the Target Connection dialog box is set to default from target.

4. Verify that a target server is running. If it is not:

a. Open the Error Log view, then find and copy the message containing the
command line used to launch the target server.

b. Paste the target server command line into a terminal window, then hit
ENTER.

c. Check to see if the target server is now running. If not, check the Error Log
view for any error messages.

5. Check if the dfwserver is running (on Linux and Solaris, use the ps command
from a terminal window; on Windows, check the Windows Task Manager). If
multiple dfwservers are running, kill them all, then try to reconnect.

20 Troubleshooting
20.4 Error Messages

261

20

6. Check that the WDB connection to the target is fully operational by
right-clicking a target in the Target Manager and selecting Target Tools > Run
WTX Connection Test. This tool will verify that the communication link is
correct. If there are errors, you can use the WTX and WDB logs to better track
down what is wrong with the target.

Exception on Attach Errors

If you try to run a task and the Target Manager is unable to comply, it will display
an Exception on Attach error containing useful information.

Build errors can lead to a problem launching your task or process; if one of the
following suggestions does not solve the problem, try launching one of the
pre-built example projects delivered with Workbench.

If the host shell was running when you tried to launch your task or process, try
closing the host shell and launching again.

Error When Running a Task Without Downloading First

You will see the following error if you try to run a kernel task without first
downloading it to your target:

Processes can be run directly from the Project Navigator, but kernel tasks must be
downloaded before running. Right-click the output file, select Download, fill in
the Download dialog box, then click OK.

If you see this error and you did download the file, open a host shell for your
connection, and try to run the task from the host shell. Type:

lkup entrypoint

to see if your entry point is there.

Wind River Workbench
User’s Guide, 2.6 Linux Version

262

Downloading an Output File Built with the Wrong Build Spec

If you built a project with a build spec for one target, then try to download the
output file to a different target (for example, you build the project for the simulator,
but now you want to run it on a hardware target), you will see this error:

To select the correct build spec, right-click the output file in the Project Navigator,
select Set Active Build Spec, select the appropriate build spec from the dialog box,
then rebuild your project.

Your project should now download properly.

Error if Exec Path on Target is Incorrect

If the Exec Path on Target field of the Run Real-time Processes dialog box does not
contain the correct target-side path to the executable file (if, for example, it contains
the equivalent host-side path instead) you will see this error:

If the target-side path looks correct but you still get this error, recheck the path you
gave.

20 Troubleshooting
20.4 Error Messages

263

20

Even if you used the Browse button to locate the file, it will be located in the host
file system. The Object Path Mapping that is defined for your target connection
will translate it to a path in the target file system, which is then visible in the Exec
Path edit field. If your Object Path Mapping is wrong, the Exec Path will be wrong,
so it is important to check.

Troubleshooting Running a Process

If you have trouble running your process from the Run Process or Run Real-time
Process dialog boxes, try these steps:

1. If the error Cannot create context appears, verify that the Exec Path on Target
is a path that is actually visible on the target (and doesn’t contain the
equivalent host-side path instead).

a. Right-click the process executable in the Project Navigator or right-click
Processes or Real-time Processes in the Target Manager and select Run
Real-time Process.

b. Copy the exec path and paste it into the Output View > Target
Console Tab (at the bottom of the view). Verify that the program runs
directly on the target.

2. If the program runs but symbols are not found, manually load the symbols by
right-clicking the process and selecting Load Symbols.

3. Check your Object Path Mappings to be sure that target paths are mapped to
the correct host paths. See 13.5.2 Object Path Mappings, p.172 for details on
setting up your Object Path Mappings.

a. Open a host shell and type:
ls execpath

If you have a target shell, type the same command.

b. In the host shell, type:
devs

to see if the prefix of the Exec Path (for example, host:) is correct.

4. If the Exec Path is correct, try increasing the back-end timeout value of your
target server connection (see Advanced Target Server Options, p.170 for details).

5. From a target shell or Linux console, try to launch the process.

6. Verify that the kernel node in the Target Manager view has a small S added to
the icon, indicating that symbols have been loaded for the Kernel.

Wind River Workbench
User’s Guide, 2.6 Linux Version

264

a. If not, verify that the last line of your Object Path Mappings table
displays a target path of <any> corresponding to a host path of
<leave path unchanged>.

20.4.4 Launch Configuration Errors

If a launch configuration is having problems, delete it by clicking Delete below the
Debug dialog box Configurations list.

If you cannot delete the launch configuration using the Delete button, navigate to
installDir/workspace/.metadata/.plugins/org.eclipse.debug.core/.launches and
delete the .launch file with the exact name of the problematic launch configuration.

Troubleshooting Launch Configurations

If you click the Debug button (or click the Debug button from the Launch
Configuration dialog box) and get a “Cannot create context” error, check the Exec
Path on the Main tab of the Debug dialog box to be sure it is correct. Also check
your Object Path Mappings. See 13.5.2 Object Path Mappings, p.172 for
information about Object Path Mappings.

For general information about launch configurations, see 16. Launching Programs.

20.4.5 Static Analysis Errors

If at any point Workbench is unable to open the cross reference database, you will
see this error:

NOTE: Do not delete any of the com.windriver.ide.*.launch files.

20 Troubleshooting
20.5 Error Log View

265

20

There are many reasons the cross reference database may be inaccessible,
including:

■ The database was not closed properly at the end of the last Workbench session
running within the same workspace. This happens if the process running
Workbench crashed or was killed.

■ Various problems with the file system, including wrong permissions, a
network drive that is unavailable, or a disk that is full.

You have several choices for how to respond to this error dialog box:

■ Retry—the same operation is performed again, possibly with the same failure
again.

■ Recover—the database is opened and a repair operation is attempted. This
may take some time but you may recover your cross reference data.

■ Clear Database—the database is deleted and a new one is created. All your
cross reference data is lost and your workspace will be reparsed the next time
you open the call tree.

■ Close—the database is closed. No cross reference data is available, nor will it
be generated. At the beginning of the next Workbench session, an attempt to
open the database will be made again.

20.5 Error Log View

See the Wind River Workbench User Interface Reference: Error Log View.

20.6 Error Logs Generated by Workbench

Workbench has the ability to generate a variety of useful log files. Some Workbench
logs are always enabled, some can be enabled using options within Workbench,
and some must be enabled by adding options to the executable command when
you start Workbench.

Wind River Workbench
User’s Guide, 2.6 Linux Version

266

This section describes the logs, tells you how to enable them (if necessary), and
how to collect them into a ZIP file you can send to Wind River support
representatives.

20.6.1 Creating a ZIP file of Logs

Once all the logs you are interested in have been enabled, Workbench
automatically collects the information as you work.

To create a ZIP file to send to a Wind River support representative:

1. Select Help > Collect Log Files. The dialog box opens.

2. Type the full path and filename of the ZIP file you want to create (or browse to
a location and enter a filename) then click Finish. The ZIP file is created in the
specified location, and contains all information collected to that point.

3. To discontinue logging (for those logs that are not always enabled) uncheck the
boxes on the Target Server Options tab, or restart Workbench without the
additional options.

20 Troubleshooting
20.6 Error Logs Generated by Workbench

267

20

20.6.2 Eclipse Log

The information displayed in the 20.5 Error Log View, p.265 is a subset of this log’s
contents.

How to Enable Log

This log is always enabled.

What is Logged

■ All uncaught exceptions thrown by Eclipse java code.

■ Most errors and warnings that display an error dialog box in Workbench.

■ Additional warnings and informational messages.

What it Can Help Troubleshoot

■ Unexpected error alerts.

■ Bugs in Workbench java code.

■ Bugs involving intercomponent communication.

Supported?

Yes.

20.6.3 DFW GDB/MI Log

The GDB/MI log is a record of all communication between the debugger back end
(the “debugger framework”, or DFW) and other views within Workbench,
including the Target Manager, debugger views, and OCD views.

How to Enable Log

This log is always enabled.

What is Logged

All commands sent between Workbench and the debugger back end.

What it Can Help Troubleshoot

Debugger and Target Manager-related bugs.

Wind River Workbench
User’s Guide, 2.6 Linux Version

268

Supported?

No. You may send this log to Wind River support, but no instructions are provided
for how to interpret the information contained in it.

20.6.4 DFW Debug Tracing Log

How to Enable Log

This log is always enabled.

What is Logged

Internal exceptions in the debugger back end.

What it Can Help Troubleshoot

The debugger back end.

Supported?

No. You may send this log to Wind River support, but no instructions are provided
for how to interpret the information contained in it.

20.6.5 Debugger Views GDB/MI Log

How to Enable Log

You must enable this log before you start Workbench. Do this by adding these
parameters to the Workbench executable command:

-vmargs -DDFE.Debug=true

What is Logged

Same as DFW GDB/MI Log, p.267, except with Workbench time-stamps.

What it Can Help Troubleshoot

Debugger and Target Manager-related bugs.

20 Troubleshooting
20.6 Error Logs Generated by Workbench

269

20

Supported?

No. You may send this log to Wind River support, but no instructions are provided
for how to interpret the information contained in it.

20.6.6 Debugger Views Internal Errors Log

How to Enable Log

You must enable this log before you start Workbench. Do this by adding these
parameters to the Workbench executable command:

-vmargs -DDFE.Debug=true

What is Logged

Exceptions caught by the Debugger views messaging framework.

What it Can Help Troubleshoot

Debugger views bugs.

Supported?

No. You may send this log to Wind River support, but no instructions are provided
for how to interpret the information contained in it.

20.6.7 Debugger Views Broadcast Message Debug Tracing Log

How to Enable Log

You must enable this log before you start Workbench. Do this by adding these
parameters to the Workbench executable command:

-vmargs -DDFE.Debug=true

What is Logged

Debugger views internal broadcast messages.

Wind River Workbench
User’s Guide, 2.6 Linux Version

270

What it Can Help Troubleshoot

Debugger views bugs.

Supported?

No. You may send this log to Wind River support, but no instructions are provided
for how to interpret the information contained in it.

20.6.8 Target Server Output Log

This log contains the messages printed by the target server while running. These
messages typically indicate errors during various requests sent to it, such as load
operations. Upon startup, if a fatal error occurs (such as a corefile checksum
mismatch) then this error will be printed before the target server exits.

How to Enable Log

■ Enable this log from the Target Manager by right-clicking the target
connection, selecting Properties, selecting the Target Server Options tab, then
clicking Edit.

Select the Logging tab, then check the box next to Enable output logging and
provide a filename and maximum file size for the log. Click OK.

■ Enable this log from the command line using the -l path/filename and -lm
maximumFileSize options to the target server executable. For more information
about target server commands, see Wind River Documentation > References
> Host API and Command References > Wind River Host Tools API
Reference > tgtsvr.

What is Logged

■ Fatal errors on startup, such as library mismatches and errors during exchange
with the registry.

■ Standard errors, such as load failure and RPC timeout.

What it Can Help Troubleshoot

■ Debugger back end

■ Target Server

■ Target Agent

20 Troubleshooting
20.6 Error Logs Generated by Workbench

271

20

Supported?

No. You may send this log to Wind River support, but no instructions are provided
for how to interpret the information contained in it.

20.6.9 Target Server Back End Log

This log records all requests sent to the WDB agent.

How to Enable Log

■ Enable this log from the Target Manager by right-clicking the target
connection, selecting Properties, selecting the Target Server Options tab, then
clicking Edit.

Select the Logging tab, then check the box next to Enable backend logging
and provide a filename and maximum file size for the log. Click OK.

■ Enable this log from the command line using the -Bd path/filename and -Bm
maximumFileSize options to the target server executable. For more information
about target server commands, see Wind River Documentation > References
> Host API and Command References > Wind River Host Tools API
Reference > tgtsvr.

What is Logged

Each WDB request sent to the agent. For more information about WDB services,
see Wind River Documentation > References > Host API and Command
References > Wind River WDB Protocol API Reference.

What it Can Help Troubleshoot

■ Debugger back end

■ Target Server

■ Target Agent

Supported?

No. You may send this log to Wind River support, but no instructions are provided
for how to interpret the information contained in it.

Wind River Workbench
User’s Guide, 2.6 Linux Version

272

20.6.10 Target Server WTX Log

This log records all requests sent to the target server.

How to Enable Log

■ Enable this log from the Target Manager by right-clicking the target
connection, selecting Properties, selecting the Target Server Options tab, then
clicking Edit.

Select the Logging tab, then check the box next to Enable WTX logging and
provide a filename and maximum file size for the log. Click OK.

■ Enable this log from the command line using the -Wd path/filename and -Wm
maximumFileSize options to the target server executable. For more information
about target server commands, see Wind River Documentation > References
> Host API and Command References > Wind River Host Tools API
Reference > tgtsvr.

What is Logged

Each WTX request sent to the target server. For more information about WTX
services, see Wind River Documentation > References > Host API and Command
References > WTX Reference > wtxMsg.

What it Can Help Troubleshoot

■ Debugger back end

■ Target Server

■ Target Agent

Supported?

No. You may send this log to Wind River support, but no instructions are provided
for how to interpret the information contained in it.

20.6.11 Target Manager Debug Tracing Log

How to Enable Log

You must enable this log before you start Workbench. Do this by adding these
parameters to the Workbench executable command:

-debug -vmargs -Dcom.windriver.ide.target.DEBUG=1.

20 Troubleshooting
20.7 Technical Support

273

20

What is Logged

Target Manager internal debug errors.

What it Can Help Troubleshoot

Inconsistencies in the debugger back end.

Supported?

No. You may send this log to Wind River support, but no instructions are provided
for how to interpret the information contained in it.

20.7 Technical Support

If you have questions or problems with Workbench or with Wind River Linux after
completing the above troubleshooting section, or if you think you have found an
error in the software, please contact the Wind River Customer Support
organization (contact information is listed in the release notes for your platform).
Your comments and suggestions are welcome.

Wind River Workbench
User’s Guide, 2.6 Linux Version

274

275

PAR T VII

Updating

20 Integrating Plug-ins .. 277

21 Using Workbench in an Eclipse Environment . 283

22 Using Workbench with Version Control 289

Wind River Workbench
User’s Guide, 2.6 Linux Version

276

277

 20
 Integrating Plug-ins

20.1 Introduction 277

20.2 Finding New Plug-ins 278

20.3 Incorporating New Plug-ins into Workbench 278

20.4 Disabling Plug-in Functionality 281

20.5 Managing Multiple Plug-in Configurations 281

20.1 Introduction

Because Wind River Workbench is based on Eclipse, you can incorporate new
modules into Workbench without having to recompile or reinstall it. These new
modules are called plug-ins, and they can deliver new functionality and tools to
your copy of Wind River Workbench.

Many developers enjoy creating new plug-ins and sharing their creations with
other Eclipse users, so you will find many Web sites with interesting tools and
programs available for you to download and incorporate into your Workbench
installation.

Some plug-ins are dependent on Java Development Tools (JDT), which is
automatically installed when you install Workbench (the install option is called
Wind River Java Development Tools).

Wind River Workbench
User’s Guide, 2.6 Linux Version

278

20.2 Finding New Plug-ins

In addition to the Eclipse Web site, http://www.eclipse.org, many other Web sites
offer a wide variety of Eclipse plug-ins. Here are a few:

http://www.eclipse-plugins.info/eclipse/plugins.jsp

http://www.eclipseplugincentral.com/

http://eclipse-plugins.2y.net/eclipse/

http://www.sourceforge.net/

20.3 Incorporating New Plug-ins into Workbench

Many developers who download plug-ins prefer to create a new directory for each
one, rather than unzipping the files directly into their Workbench installation
directory. There are many advantages to this approach:

■ The default Workbench installation does not change.

■ You do not lose any of your plug-ins if you update or reinstall Workbench.

■ Plug-ins do not overwrite each other’s files.

■ You know which files to replace when an update to the plug-in is available.

20.3.1 Creating a Plug-in Directory Structure

To make your plug-ins easier to manage, create a directory structure for them
outside your Workbench installation directory.

1. Create a directory to hold your plug-ins. It can have any descriptive name you
want, for example, eclipseplugins.

2. Inside this directory, create a directory for each plug-in you want to install.
These directories can also have any descriptive name you want, for example,
clearcase.

http://www.eclipse.org
http://www.eclipse-plugins.info/eclipse/plugins.jsp
http://www.eclipseplugincentral.com/
http://eclipse-plugins.2y.net/eclipse/
http://www.sourceforge.net/

20 Integrating Plug-ins
20.3 Incorporating New Plug-ins into Workbench

279

20

3. Inside each plug-in directory, create a directory named eclipse. This directory
must be named eclipse, and a separate eclipse directory is required inside each
plug-in directory.

4. Inside each eclipse directory, create an empty file named .eclipseextension.
This file must be named .eclipseextension (with no .txt or any other file
extension), and a separate .eclipseextension file is required inside each eclipse
directory.

5. Extract your plug-in into the eclipse directory. Two directories, called features
and plugins, appear in the directory alongside the .eclipseextension file.

20.3.2 Installing a ClearCase Plug-in

Once you have created a plug-in directory structure and have found a plug-in you
want to use with Workbench, download and install it according to the instructions
provided by the plug-in’s developer (almost every plug-in comes with release
notes containing installation instructions).

This section will show you how to download and install a plug-in on Windows.

Downloading the IBM Rational ClearCase Plug-in

Wind River recommends the IBM Rational ClearCase plug-in.

NOTE: Before continuing, download the plug-in’s .zip or other archive file and
look at its contents. Some plug-ins provide the eclipse directory structure and
the .eclipseextension file for you, others do not.

■ If the destination path for the files begins with eclipse, and you see an
.eclipseextension file in the list, you may skip the rest of this section and
extract the plug-in’s files into the directory you created in step 2.

■ If the destination path begins with plugins and features, then you must
complete the rest of the steps in this section.

NOTE: For any plug-in to work properly, its features and plugins directories
as well as an empty file called .eclipseextension must be located inside a
directory called eclipse.

Wind River Workbench
User’s Guide, 2.6 Linux Version

280

1. Follow steps 1 and 2 in 20.3.1 Creating a Plug-in Directory Structure, p.278 (the
IBM ClearCase plug-in creates the eclipse directory and the .eclipseextension
file for you.)

For the purposes of this example, name the top-level directory eclipseplugins,
and name the plug-in directory clearcaseIBM.

2. Navigate to
http://www-128.ibm.com/developerworks/rational/library/1376.html and
click the Plug-ins link under ClearCase. The Rational ClearCase Plug-ins page
opens.

3. Click the Download link to the right of the appropriate version of the package
file. For this example, select IBM Rational ClearCase SCM adapter for Eclipse
3.1: Windows (this file works for Eclipse 3.2 as well).

4. Extract the .zip file to your /eclipseplugins/clearcaseIBM directory. The
eclipse directory is created for you, and inside are two directories, called
features and plugins, alongside the .eclipseextension file.

Adding Plug-in Functionality to Workbench

1. Before starting Workbench, make sure that /usr/atria/bin (where the ClearCase
tools are installed) is in your path.

2. Start Workbench, then select Help > Software Updates > Manage
Configuration. The Product Configuration dialog appears.

3. Select Add an Extension Location in the Wind River Workbench pane.

4. Navigate to your eclipseplugins/plug-in/eclipse directory. Click OK.

5. Workbench will ask if you want to restart. To properly incorporate ClearCase
functionality, click Yes.

Incorporating the IBM Rational Plug-in

1. When Workbench restarts, activate the plug-in by selecting Window >
Customize Perspective.

2. In the Customize Perspective dialog, switch to the Commands tab.

3. Select the ClearCase option in the Available command groups column, then
click OK. A new ClearCase menu and icons appear on the main Workbench
toolbar.

http://www-128.ibm.com/developerworks/rational/library/1376.html

20 Integrating Plug-ins
20.4 Disabling Plug-in Functionality

281

20

4. From the ClearCase menu, select Connect to Rational ClearCase to activate
ClearCase functionality.

To configure the ClearCase plug-in, select Window > Preferences > Team >
ClearCase SCM Adapter.

For more information about using the ClearCase plug-in, see Help > Help
Contents > Rational ClearCase SCM Adapter.

For more information about ClearCase functionality, refer to your ClearCase
product documentation.

20.4 Disabling Plug-in Functionality

You can disable plug-in functionality without uninstalling the downloaded files.
This gives you the opportunity to re-enable them at a later time if you want.

1. To disable a plug-in, select Help > Software Updates > Manage
Configuration. The Product Configuration dialog appears.

2. In the left column, open the folder of the plug-in you want to uninstall, select
the plug-in itself, then click Disable.

3. Workbench will ask if you want to restart. To properly disable the plug-in’s
functionality, click Yes.

20.5 Managing Multiple Plug-in Configurations

If you have many plug-ins installed, you may find it useful to create different
configurations that include or exclude specific plug-ins.

When you make a plug-in available to Workbench, its extension location is stored
in the Eclipse configuration area.

When starting Workbench, you can specify which configuration you want to start
by using the -configuration path option, where path represents your Eclipse
configuration directory.

Wind River Workbench
User’s Guide, 2.6 Linux Version

282

On Windows:

From a shell, type:

% cd installdir\workbench-2.x\wrwb\platform\eclipse\x86-win32\bin
% .\wrwb.exe -configuration path

On Linux and Solaris:

Use the option as a parameter to the startWorkbench.sh script:

% ./startWorkbench.sh -configuration path &

For more information about using -configuration and other Eclipse startup
parameters, see Help > Help Contents > Wind River Partners Documentation >
Eclipse Workbench User Guide > Tasks > Running Eclipse.

283

 21
 Using Workbench in an

Eclipse Environment

21.1 Introduction 283

21.2 Recommended Software Versions and Limitations 283

21.3 Setting Up Workbench 284

21.4 Using CDT and Workbench in an Eclipse Environment 285

21.1 Introduction

It is possible to install Workbench in a standard Eclipse environment, though some
fixes and improvements that Wind River has made to Workbench will not be
available.

21.2 Recommended Software Versions and Limitations

Java Runtime Version

Wind River tests, supports, and recommends using the JRE 1.5.0_08 for Workbench
plug-ins.

Wind River Workbench
User’s Guide, 2.6 Linux Version

284

Wind River adds a package to that JRE version, and not having that package will
make the Terminal view inoperable.

Eclipse Version

Workbench 2.6 is based on Eclipse 3.2. Wind River patches Eclipse to fix some
Eclipse debugger bugs. These fixes will be lost when using a standard Eclipse
environment.

See the getting started for your platform for supported and recommended host
requirements for Workbench 2.6.

Defaults and Branding

Eclipse uses different default preferences from those set by Workbench. The dialog
described in 21.3 Setting Up Workbench, p.284 allows you to select whether to use
Workbench preferences or existing Eclipse preferences.

In a standard Eclipse environment, the Eclipse branding (splash screen, welcome
screen, etc.) is used instead of the Wind River branding.

21.3 Setting Up Workbench

This setup requires a complete Eclipse and Workbench installation. Follow the
respective installation instructions for each product.

1. From within Workbench, select Help > Register into Eclipse. The Register into
Eclipse dialog appears.

2. In the Directory field, type in or Browse to your Eclipse 3.2 directory.

3. In the Registration Options section, select Use Wind River default
preferences, or leave it unselected to maintain existing Eclipse preferences.

If you decide to use Wind River default preferences, some changes you will
notice are that autobuild is disabled, and the Workbench Application
Development perspective and help home become the defaults.

21 Using Workbench in an Eclipse Environment
21.4 Using CDT and Workbench in an Eclipse Environment

285

21

4. If you decided to maintain existing Eclipse preferences you can still use the
much faster Wind River (index based) search engine by leaving Use Wind
River search engine selected. To use the Eclipse default search engine,
unselect it.

5. If you want to track the installation process, leave Log installation process
selected (click Browse to change the path where the file should be created).
Uncheck it if you do not want Workbench to create a log file.

6. When you are done, click Finish. Workbench will be available the next time
you launch Eclipse. No special steps are necessary to launch Eclipse.

21.4 Using CDT and Workbench in an Eclipse Environment

The following tips will help you understand how to use Eclipse C/C++
Development Tooling (CDT) and Workbench together in the same Eclipse
environment.

21.4.1 Workflow in the Project Navigator

Some menus and actions are slightly different when using CDT and Workbench
together.

Application Development Perspective (Workbench)

CDT projects appear in this perspective along with Workbench projects.

NOTE: Any errors discovered during installation appear in the Error Log view.

NOTE: When starting Eclipse after registering Workbench, you will see three
errors in the Error Log.

These errors are not a problem. They appear because Workbench ships some CDT
plug-ins that are already on your system, and Eclipse is reporting that the new
ones will not be installed over the existing ones.

Wind River Workbench
User’s Guide, 2.6 Linux Version

286

Building CDT Projects

The context menu of the Project Navigator contains entries for Build Project and
Rebuild Project, but the Rebuild Project entry executes a normal build for CDT
projects. The Clean Project entry is missing for CDT projects.

Running Native Applications

The Run Native Application menu is enabled for CDT projects. When executed, it
creates a Workbench Native Application launch with correct parameters. Because
Workbench Native Application launches do not support debugging, to debug your
application you must create a CDT Local C/C++ Application launch from the
Run > Run As menu.

Selecting Projects to Build

When selecting multiple projects (including Workbench and CDT projects) and
executing any build action, the build action is only executed on Workbench
projects.

Displaying File and Editor Associations

The Workbench Project Navigator displays icons for the default editor of a file, if
file associations have been defined. If CDT is the default editor, the corresponding
icons will also show up in the Application Development perspective.

C/C++ Perspective (CDT)

Static Analysis

Static analysis is available from the context menu of the Project Navigator.

Building Workbench Projects

CDT Build Project and Clean Project actions are enabled for Workbench projects,
and they execute the appropriate build commands correctly.

Working with Workbench Binary Targets

There are no actions to directly run, debug or download a Workbench project’s
binary target in this perspective.

21 Using Workbench in an Eclipse Environment
21.4 Using CDT and Workbench in an Eclipse Environment

287

21

21.4.2 Workflow in the Build Console

Application Development Perspective (Workbench)

When adding a CDT project as a sub-project (project reference) to a Workbench
project, the Clear Build Console flag is ignored when executing a build on this
project.

C/C++ Perspective (CDT)

Executing a build on a Workbench project from this perspective correctly opens the
Workbench Build Console.

General

When navigating to errors from the Workbench Build Console or the Problems
view, the file containing the error opens in the assigned editor.

21.4.3 Workflow in the Editor

Opening Files in an Editor

The editor that should be used for files cannot be determined. It depends on the
settings defined in the appropriate plugin.xml files, and on the order in which the
Workbench and CDT plug-ins are loaded.

Only one default editor can be associated with each file type, and it is the same for
both perspectives. Files can be opened with the Open With menu, allowing you to
select the editor. When executed, that editor is associated with, and becomes the
default for, this specific file.

NOTE: To assign a default editor for all files with a given signature, you must
define a file association in the preferences by selecting Window > Preferences,
then choosing General > Editors > File Associations.

For example, to add a default editor for all *.c files, click Add and enter *.c. The list
of available editors appears. Select one, then click Default.

Wind River Workbench
User’s Guide, 2.6 Linux Version

288

21.4.4 Workflow for Debugging

Workbench and CDT Perspectives

Regardless of any direct file association created using the Open With command,
the default editor opens when debugging a file.

For example, associating *.c files with the default Workbench editor opens the
Workbench editor in the CDT Debug and the Workbench Device Debug
perspectives.

The reverse is also true: if you associate a file type with the CDT editor, it will open
when those files are debugged even if you have made an association with a
different editor using Open With.

289

 22
 Using Workbench with Version

Control

22.1 Introduction 289

22.2 Using Workbench with ClearCase Views 289

22.1 Introduction

This chapter provides tips on using Workbench with version-controlled files,
which Workbench project files you should add to version control when archiving
your projects, and how to manage build output when your sources are version
controlled.

22.2 Using Workbench with ClearCase Views

When using Workbench with ClearCase dynamic views, create your workspace on
your local file system for best performance. For recommendations about setting up
your workspaces and views, see Help > Help Contents > Rational ClearCase
SCM Adapter > Concepts > Managing workspaces.

Wind River does not recommend that you place the Eclipse workspace directory
in a view-private directory. If you create projects in the default location under the

Wind River Workbench
User’s Guide, 2.6 Linux Version

290

workspace directory, ClearCase prompts you to add the project to source control.
This process requires all parent directories to be under source control, including
the workspace directory.

Instead, create workspace directories outside of a ClearCase view. If you want to
create projects under source control, you should unselect the Create project in
workspace check box in the project creation dialog and then navigate to a path in
a VOB.

In addition, you should also redirect all build output files to the local file system
by changing the Redirection root directory in the Build Properties > Build Paths
tab of your product. All build output files such as object files and generated
Makefiles will be redirected.

For more information about the redirecting build output and the redirection root
directory, open the build properties dialog, press the help key for your host, and
see the Build Paths section.

22.2.1 Adding Workbench Project Files to Version Control

To add Workbench project files to version control without putting your workspace
into a ClearCase view, check-in the following automatically generated files along
with your source files:

For user-defined projects, all Makefile files need to be version controlled, too.

Project File Description

.project Eclipse platform project file containing general information
about the project.

.wrproject Workbench project file containing mostly general build
properties.

.wrfolder Workbench project file containing folder-level build properties
(located in subfolders of your projects).

.wrmakefile Workbench managed build makefile template used to generate
Makefiles.

*.makefile Workbench managed build extension makefile fragments (e.g
some Platform projects)

22 Using Workbench with Version Control
22.2 Using Workbench with ClearCase Views

291

22

You should avoid manually adding source files to any build macro in any project
type containing absolute paths—they should be substituted by environment
variables (provided by wrenv for example) wherever possible.

For more information about IBM Rational ClearCase, see
http://www-130.ibm.com/developerworks/rational/products/clearcase.

Choosing Not to Add Build Output Files to ClearCase

After installing the ClearCase plugin, you may be prompted to add any build
output files to ClearCase.

There are two ways to avoid this if you wish:

1. Using Workbench Preferences.

a. Open the Window > Preferences > Team > ClearCase SCM Adapter
preferences page.

b. From the When new resources are added pull-down list, select Do
nothing.

2. Using Derived Resource option.

a. Configure your build so the build output goes into one (or a few)
well-known directories such as bin or output.

b. Check in the empty bin or output directories into ClearCase.

c. In the Project Navigator, right-click the directory you checked in, select
Properties, and on the Info page, select Derived.

d. From now on, the Clearcase plug-in will not prompt you about Derived
resources.

NOTE: The .metadata directory should not be version controlled, as it contains
mostly user- and workspace-specific information with absolute paths in it.

NOTE: If you use Workbench managed builds, they will automatically mark
the build output directories as derived so ClearCase will not try to add the
build output files to source control. If you use a different builder, you may
have to configure it to mark resources as derived.

http://www-130.ibm.com/developerworks/rational/products/clearcase

Wind River Workbench
User’s Guide, 2.6 Linux Version

292

293

PAR T VII I

Reference

A Host Shell .. 295

B Configuring a Wind River Proxy Host 325

C Command-line Updating of Workspaces 333

D Command-line Importing of Projects 337

E Wind River Cross Compiler Prefixes 341

F Configuring Linux 2.4 Targets (Dual Mode) 343

G Broken Patch File Example 373

H Glossary .. 377

Wind River Workbench
User’s Guide, 2.6 Linux Version

294

295

 A
Host Shell

A.1 Overview 295

A.2 Host Shell Commands and Options 301

A.1 Overview

The host shell is a host-resident command shell that provides a GDB command line
interface. It allows you to download, monitor and debug applications using a
subset of the standard GDB commands. The host shell also provides a Tcl
interpreter allowing you to write simple Tcl scripts to interface with the GDB
interpreter's synchronous commands. This section describes how to begin using
the host shell from a Linux or Solaris host. For more detailed reference information
on the host shell, see A.2 Host Shell Commands and Options, p.301.

Host shell operation involves a debugger server, which handles debug
information, communication with the remote target, dispatching function calls and
returning their results; and a target agent, a small monitor program that mediates
access to target memory and other facilities. The target agent is the only component
that runs on the target. The debug information, including the symbol table

Wind River Workbench
User’s Guide, 2.6 Linux Version

296

managed by the debugger framework, resides on the host, although the
information it contains refers to the target system.

To start the host shell, perform the following steps:

1. Source the Wind River environment script.

2. Run the usermode-agent command.

3. Run the hostShell command.

Each of these steps is described in the following sections.

Running the Host Shell

To start running the host shell, use the following procedure. (The old procedure of
using windsh tgtsvrname to start the host shell as described in A.2.9 Deprecated
Commands, p.322 is deprecated and may not be supported in future versions.)

1. Source the environment script.

Change directory to the Workbench installation directory and use the eval
command to source the Wind River environment script as shown in the
following example:

$ cd WindRiver/
$ eval ‘./wrenv.sh -p linux-2.x -o print_env -f sh‘
$

For more information on wrenv.sh, see Initializing Your Environment, p.301.

2. Execute the usermode-agent binary on your host. For example, from the
Workbench installation directory, enter:

$./linux-2.x/usermode-agent/1.1/bin/ia/i386/usermode-agent &
[1] 3127

WDB AGENT 1.1 READY
(c) Copyright Wind River Systems Inc. 2005

NOTE: Before you can run the host shell, you must have a DFW session name and
a target definition name in the registry. Once you have used the Workbench GUI
(which registers the DFW session name) and created a target connection with the
Target Manager (to your localhost or any other host), you will then have the
necessary registry configuration to proceed with using the host shell as described
in this section.

NOTE: Users of the csh should substitute -f csh for the -f sh shown in the
example.

A Host Shell
A.1 Overview

297

A

All rights reserved.

$

3. Start the host shell. You can start the host shell by providing a session name
and target definition at the command line, or you can be prompted to enter
these values interactively.

a. To start the host shell with a session name and target definition, enter:
$ hostShell -ds dfw-session-name -dt target-definition-name

The required dfw-session-name and target-definition-name are stored in the
Workbench registry.

Every running debugger server, automatically started by the GUI or
manually started by the user, registers itself automatically in the
Workbench registry. To locate the dfw-session-name use the following
commands:

$ wtxtcl
wtxtcl> wtxInfoQ .* dfwserver
{dfw-wb24-philb dfwserver {host;VAN-KENEACH;hostip;147.11.80.58;…}}

The first tag (in the example, dfw-wb24-philb) is the one needed by the
-ds option.

The target definition entries are present in the Workbench registry and are
traditionally set by the Target Manager wizard, or may be set by the user.
To locate the target-definition-name use the following command:

wtxtcl> wtxInfoQ .* tgtconncfg
{philb_1126537537278 tgtconncfg {{_map_;generic;… }}}
{philb_1126598342655 tgtconncfg {{_map_;generic,… }}}
wtxtcl>

The first tag (in the example, philb_1126537537278) is the one needed by
the -dt option.

In this example, your full command line to start the host shell would be:

$ hostShell -ds dfw-wb24-philb -dt philb_112653753727

b. Alternatively, you can just specify hostShell on the command line without
any arguments to be prompted interactively. You will be shown a list from
which to select the debugger server and target definition. For example:
$ hostShell

List of DFW servers available:
 dfw-wb24-wbuser

Please select a DFW server amongst the list above (enter '.' to
skip):
dfw-wb24-wbuser

Wind River Workbench
User’s Guide, 2.6 Linux Version

298

List of target connection definitions available:
 wbuser_1127844872638 (tgt_192.168.29.121)

Please select a target connection definition amongst the list above
(enter '.' to skip): wbuser_1127844872638

With either method of host shell invocation, once you have supplied a session
name and target server, the host shell will start up:

Checking License... OK

Creating new target connection 'linux_native_localhost_wbuser' -OK.
Detected target plugin 'unifiedtargetplugin'.
Establishing direct WTX connection with target server
'linux_native_localhost_wbuser'.
Loading the 'gdb' shell interpreter... OK.

 ///// ///// ///// ///// ///// |
 ///// ///// ///// ///// ///// |
 ///// ///// ///// ///// ///// |
 ///// ///// ///// ///// ///// |
 ////// ////// ////// ////// ////// |
 ////// ////// ////// ////// ////// | W I N D R I V E R
 ///// ///// ///// ///// ///// |
 ///// ///// ///// ///// ///// |
 ///// ///// ///// ///// ///// | Development System
 //// //// //// //// //// |
 //// //// //// //// //// |
 //// //// //// //// //// | Host Based Shell
 //// //// //// //// //// |
 //// //// //// //// //// |
 /// /// /// /// /// | Version 2.0
 /// /// /// /// /// |
 // // // // // |
 // // // // // |
 // // // // // |
 // // // // // |

 Copyright 1995-2005 Wind River Systems, Inc.

(gdb)

The default prompt for the host shell is the GDB (gdb) prompt.

Using GDB

You can now use GDB. For example, to get help on GDB commands:

(gdb) help
List of classes of commands:

 aliases -- Aliases of other commands
 breakpoints -- Making program stop at certain points
 data -- Examining data

A Host Shell
A.1 Overview

299

A

 files -- Specifying and examining files
 internals -- Maintenance commands
 obscure -- Obscure features
 running -- Running the program
 stack -- Examining the stack
 status -- Status inquiries
 support -- Support facilities
 tracepoints -- Tracing of program execution without stopping the program
 user-defined -- User-defined commands

 Type "help" followed by a class name for a list of commands in that
class.
 Type "help" followed by command name for full documentation.
 Command name abbreviations are allowed if unambiguous.
(gdb)

Some typical functions and their commands follow.

Insert breakpoints:

(gdb) break functionname
(gdb) break filename:line number

Continue:

(gdb) c

Display stack:

(gdb) bt

Display variables:

(gdb) p var

Disconnect from the target:

(gdb) disconnect

Quit GDB

(gdb) quit

Using KGDB

This section describes how to configure a host shell for Linux kernel debugging
with KGDB. It assumes that a DFW server is already running and that a target
connection has been configured.

Start the host shell as described in Starting the Host Shell, p.302.

Wind River Workbench
User’s Guide, 2.6 Linux Version

300

You can begin kernel debugging at the GDB prompt. Use the command attach
kernel to select the Linux kernel as working context. This stops the kernel. You are
then able to debug the kernel with the supported GDB APIs. A sample session is
shown below.

(gdb) attach kernel
(gdb)
(gdb) bt
#0 breakpoint () at kgdb.c:1689
#1 tasklet_action () at softirq.c:254
#2 __do_softirq () at softirq.c:97
#3 do_softirq () at irq.c:176
#4 irq_exit () at handle.c:83
#5 do_IRQ () at irq.c:104
(gdb) break schedule
Breakpoint 3 at 0xC03EE658: file sched.c, line 2541.
(gdb) continue
Continuing.

Breakpoint 3, schedule () at thread_info.h:91
91 __asm__("andl %%esp,%0; ":"=r" (ti) : "0"
(~(THREAD_SIZE - 1)));
(gdb) list
85
86
87 /* how to get the thread information struct from C */
88 static inline struct thread_info *current_thread_info(void)
89 {
90 struct thread_info *ti;
91 __asm__("andl %%esp,%0; ":"=r" (ti) : "0"
(~(THREAD_SIZE - 1)));
92 return ti;
93 }
94
(gdb)

A Host Shell
A.2 Host Shell Commands and Options

301

A

A.2 Host Shell Commands and Options

This section provides details about operating the host shell.

A.2.1 Host Shell Basics

This section describes how to initialize your environment and start the host shell.

Initializing Your Environment

To use the tools efficiently from the command line, you need to configure some
environment variables and other settings. The best way to do this is with the wrenv
environment utility, which sets up a development shell based on information in the
install.properties file.

When using the Workbench tools from the command line, always begin by invoking the
environment utility as shown in Invoking wrenv, p.301. The wrenv utility, which is also
run by the IDE on startup, guarantees a consistent, portable execution
environment that works from the IDE, from the command line, and in automated
build systems. Throughout this guide, whenever host operating-system
commands are shown or described, it is assumed that you are working from a
properly configured development shell created by wrenv.

Invoking wrenv

Assuming a standard installation of Workbench, you can invoke wrenv as follows.

UNIX

From your operating-system shell prompt, enter:

% eval `installDir/wrenv.sh -p linux-2.x -o print_env -f shell`

—where shell is sh or csh, depending on the current shell program. For example:

% eval `./wrenv.sh -p linux-2.x -o print_env -f sh`

to invoke wrenv from within your installation directory for the sh shell.

Windows

You can invoke wrenv from the command prompt by entering:

C:\> installDir\wrenv.exe -p linux-2.x

Wind River Workbench
User’s Guide, 2.6 Linux Version

302

Workbench also supplies a fully configured Windows version of the Z shell
(sh.exe). The Z shell, sometimes called zsh, gives Windows users a UNIX-like
command-line interface.

Starting the Host Shell

To start the host shell, enter:

$ hostShell -ds dfw-session-name -dt target-definition-name

For more information, see Starting the Host Shell, p.302.

Host Shell Initialization Script

If you create the file installDir/.wind/wb/windsh.tcl, and Tcl commands it contains
are executed at host shell startup.

Stopping the Host Shell

Regardless of how you start it, you can terminate a host shell session by typing
quit at the prompt or pressing CTRL+D.

Table A-1 Host Shell Startup Options

Option Description

-c, -command expr Execute expression & exit shell (batch mode).

-dt target DFW target definition name.

-ds session DFW server session to use.

-dp port DFW server port to use.

-e, -execute expr Execute Tcl expression after initialization.

-h, -help Print help.

-host host Retrieve target server data from host's registry.

-m, -mode mode Indicate mode to start either Tcl or Gdb

-n, -noinit Do not read home Tcl initialization file.

A Host Shell
A.2 Host Shell Commands and Options

303

A

Switching Interpreters

At times you may want to switch between the Tcl interpreter and the GDB
interpreter. From a prompt, type these special commands followed by ENTER:

■ ? or tcl to switch to the Tcl interpreter. The prompt changes to tcl>.

■ gdb to switch to the GDB interpreter. The prompt changes to (gdb).

These commands can also be used to evaluate a statement native to another
interpreter. Simply precede the command you want to execute with the
appropriate interpreter's special command.

For example, to evaluate a Tcl interpreter command from within the GDB
interpreter, type:

(gdb) tcl puts -nonewline "hello tcl" ; tcl expr 4 + 2
hello tcl
6

Setting Shell Environment Variables

The host shell has a set of environment variables that configure different aspects of
the shell's interaction with the target and with the user. These environment
variables can be displayed and modified using the Tcl routine shConfig. Table A-2
provides a list of the host shell's environment variables and their significance.

Since shConfig is a Tcl routine, it should be called from within the shell's Tcl
interpreter; it can also be called from within the GDB interpreter if you precede the
shConfig command with a question mark or tcl (? shConfig variable option).

-p, -poll ms Set event poll interval in milliseconds [default=200].

-q, -quiet Do not echo script commands as they are executed.

-r [pathname] Root pathname mappings.

-s, -startup file Startup file of shell commands to execute.

-T, -Tclmode Start in Tcl mode.

-v, -version Print Wind River host-based shell version.

Table A-1 Host Shell Startup Options (cont’d)

Option Description

Wind River Workbench
User’s Guide, 2.6 Linux Version

304

Table A-2 Shell Environment Variables

Variable Meaning

ROOT_PATH_MAPPING This variable indicates how host and target
paths should be mapped to the host file
system on which the DFW server used by
the host shell is running. If this value is not
set, a direct path mapping will be assumed
(for example, a pathname given by
/folk/user will be searched, no translation to
another path will be performed). See
A.2.2 Root Path Mapping, p.305 for further
details on this variable.

PAGING_NUMBER Indicates the paging number. For example
the list call in the GDB interpreter may
return a long list of source code that will
need multiple pages to be displayed
entirely. Changing the paging number
allows you to display PAGING_NUMBER
lines of text for each page.

LINE_LENGTH Indicates the maximum number of
characters permitted in one line of the host
shell's window.

INTERPRETER Tcl | Gdb Indicates the host shell's current interpreter
mode and permits the user to switch from
one mode to another.

LINE_EDIT_MODE Sets the line edit mode to use. Set to emacs
or vi. Default is vi.

For example, to switch from vi mode to
emacs mode, from the GDB interpreter,
enter:

(gdb) tcl shConfig LINE_EDIT_MODE emacs

A Host Shell
A.2 Host Shell Commands and Options

305

A

A.2.2 Root Path Mapping

The root path mapping environment variable is used by both the host shell and the
debugger framework as a matching mechanism between the host and target paths.

Positioning this variable is often mandatory because host and target paths can be
located on different machines, different file systems, or visible through different
NFS mounting points.

This environment variable is made of a list of couples of paths, with the syntax:

[targetpath1,hostpath1][targetpath2,hostpath2]...[,]

The client tools apply a substitution on the target paths, replacing the matching
pattern targetpath by the corresponding hostpath.

For example, if the processes to debug on your linux target, labou, are located
under /etc/usr/procs/ and if the debugger server is running on another UNIX
machine, accessing the procs directory through NFS /net/labou/etc/usr/procs, then
you will need to use [,/net/labou] as root path mapping.

This way the debugger server will be able to locate the processes to debug from the
target path.

For example, you can launch a host shell with this root path mapping by running
the following:

$ hostShell -r "[,/net/labou][,]" -ds dfw-session-name -dt target-definition-name

The [,] sentinel is mandatory.

A.2.3 Using the Tcl Interpreter

The Tcl interpreter allows you to exploit Tcl's sophisticated scripting capabilities to
write complex scripts to help you debug and monitor your target.

Running the Tcl Interpreter

To start the host shell in the Tcl interpreter, use the -m option:

$ hostShell -ds dfw-session-name -dt target-definition-name -m Tcl

To switch to the Tcl interpreter from GDB mode, type a question mark (?) at the
(gdb) prompt; the prompt will change to tcl> to remind you of the shell’s new
mode. If you want to use a Tcl command without changing to Tcl mode, type a ?
followed by a space character before your line of Tcl code.

Wind River Workbench
User’s Guide, 2.6 Linux Version

306

If you want to switch to the Tcl interpreter, enter tcl or ? the host shell's prompt will
change to tcl>. To switch back to the GDB interpreter from the Tcl interpreter, enter
gdb, and the prompt will change to (gdb).

Scripting the GDB Interpreter with Tcl

It is possible to write Tcl scripts to interface with the host shell's GDB interpreter.
When calling the GDB interpreter from within the Tcl interpreter the output of the
call is displayed on the host shell's UI, and that output may also be directed to Tcl
variables. A typical use case would be a Tcl script that loops waiting for a variable
to change to a particular value, stepping the source code until the value has
changed. The following code illustrates such a script written using the host shell's
Tcl interpreter interfacing with the GDB interpreter:

load the application "nextTest"
tcl> gdb file /folk/laurac/bin/nextTest
Reading symbols from /folk/laurac/bin/nextTest...done.
set a breakpoint on the function "main"
tcl> gdb break main
Breakpoint 1 at 0x63000326: file nextTest.c, line 22.
run the application - the breakpoint will be hit
tcl> gdb run
Starting program: /folk/laurac/bin/nextTest
Breakpoint 1, main () at nextTest.c:22
22 i = dummy ();
list the application's source code
tcl> gdb list
16 }
17
18 int main ()
19 {
20 int i, j;
21
22 i = dummy ();
23 i += (5 * (i * 200) - 33);
24 j = 200;
25 return i;

loop reading the value of the variable j, when it reaches 200 exit the loop
tcl> while {1} {
=> set var [gdb print j]
=> if {[regexp 200 $var]} {
=> break
=> }
=> gdb step
=> }

tcl> gdb print j
%6 = 200
the loop has exited, read the registers at this point

A Host Shell
A.2 Host Shell Commands and Options

307

A

tcl> set registers [gdb info registers]
eax = 0x000000C8
ecx = 0x630263F8
edx = 0x630260E8
ebx = 0xFFFFFFFD
esp = 0x63023EF0
ebp = 0x63023EF8
esi = 0x00000000
edi = 0x00000000
eflags = 0x00000202
pc = 0x63000343
st0 = 0x00000000000000000000
st1 = 0x00000000000000000000
st2 = 0x00000000000000000000
st3 = 0x00000000000000000000
st4 = 0x00000000000000000000
st5 = 0x400AB3F0000000000000
st6 = 0x4010A8BFC00000000000
st7 = 0x401DAAAAAAA800000000
fpcr = 0xFFFF027F
fpsr = 0xFFFF0000
fptag = 0xFFFFFFFF
continue the application
tcl> gdb c
Continuing.

Accessing Low Level GDB/MI APIs

The Tcl interpreter provides access to the low level GDB/MI APIs., which allows
you to interact with the debugger framework.

To send a GDB/MI request to the debugger framework, you can use the gdb mi
command followed by the GDBMI command, for example:

tcl> gdb mi "-wrs-log"
^done,ls="/wind/river/DFW121/host/x86-linux2/bin/dfwserver.log",lt="/view/phi
lb.62/wind/river/DFW121/host/x86-linux2/bin/dfwstatus.log"
tcl>

In this example, the GDBMI command -wrs-log is executed.

NOTE: It is only possible to execute synchronous GDB commands with the Tcl
interface.

Wind River Workbench
User’s Guide, 2.6 Linux Version

308

A.2.4 Using the GDB Interpreter

To see a list of the command classes available in GDB mode, enter help at a (gdb)
prompt. Table A-3 lists the command classes available with GDB. For more
information on a class, enter help class to see a list of available commands in that
class. To get help on a specific command, enter help command.

Table A-4 lists general commands available within the GDB interpreter.

General GDB Commands

Table A-4 lists general commands available within the GDB interpreter.

Table A-3 GDB Command Classes

Command Class Command Class Description

aliases Aliases of other commands.

breakpoints Making program stop at certain points.

data Examining data.

files Specifying and examining files.

internals Maintenance commands.

obscure Obscure features.

running Running the program.

stack Examining the stack.

status Status inquiries.

support Support facilities.

tracepoints Tracing of program execution without
stopping the program.

user-defined User-defined commands.

A Host Shell
A.2 Host Shell Commands and Options

309

A

Working with Breakpoints

Table A-5 shows commands available for setting and manipulating breakpoints.

Table A-4 General GDB Interpreter Commands

Command Description

help command Print a description of the command.

cd directory Change the current directory.

pwd Show the current directory.

path path Append path to the path variable.

show path Show the path variable.

echo string Echo the string.

list line|symbol|
file:line

Display 10 lines of a source file, centered around a line
number or symbol.

shell command Run a shell command (such as ls or dir).

source scriptfile Run a script of GDB commands.

directory dir Append dir to the directory variable (for source file searches.)

q[uit] Quit the GDB interpreter.

Table A-5 GDB Interpreter Breakpoint Commands

Command Description

break line| function| *address Set a breakpoint at the specified line
number, function name, or address.

condition Specify breakpoint number N to break
only if COND is true.

Usage is condition N COND, where N is
an integer and COND is an expression to
be evaluated whenever breakpoint N is
reached.

Wind River Workbench
User’s Guide, 2.6 Linux Version

310

Specifying Files to Debug

Table A-6 lists commands that specify the file(s) to be debugged.

delete [breakpointid [breakpointid ...]] Delete breakpoints specified by
breakpoint number. Separate multiple
breakpoint numbers with spaces. Use no
arguments to delete all breakpoints.

disable [breakpointid [breakpointid ...]] Disable breakpoints specified by
breakpoint number. Separate multiple
breakpoint numbers with spaces. Use no
arguments to delete all breakpoints.

enable [breakpointid [breakpointid ...]] Enable breakpoints specified by
breakpoint number. Separate multiple
breakpoint numbers with spaces. Use no
arguments to enable breakpoints until
commanded otherwise.

hbreak Set a hardware assisted breakpoint.

ignore number count Set the ignore-count of breakpoint number
to count.

tbreak line | function | *address Set a temporary breakpoint at the specified
line number, function name, or address. The
breakpoint is deleted when hit.

thbreak Set a temporary hardware assisted
breakpoint.

Table A-5 GDB Interpreter Breakpoint Commands

Command Description

Table A-6 GDB Interpreter File Context Commands

Command Description

file filename Defines filename as the program to be debugged.

exec-file filename Specifies that the program to be run is found in filename.

A Host Shell
A.2 Host Shell Commands and Options

311

A

Running and Stepping Through a File

Table A-7 contains commands to run and step through programs.

load filename Loads a module.

unload filename Unloads a module.

attach processid Attaches to a process.

detach Detaches from the debugged process.

thread threadid Selects a thread as the current task to debug.

add-symbol-file file addr Reads additional symbol table information from the file
located at memory address addr.

Table A-6 GDB Interpreter File Context Commands

Command Description

Table A-7 GDB Interpreter Running and Stepping Commands

Command Description

run Runs a process for debugging (use set arguments and
set environment if program needs them).

kill processid Kills the process with processid.

interrupt Interrupts a running task or process.

continue Continues an interrupted task or process.

step [n] Steps through a program (if n is used, step n times).

stepi [n] Steps through one machine instruction (if n is used, step through
n instructions).

next [n] Continues to the next source line in the current stack frame (if n is
used, continue through n lines).

nexti [n] Execute one machine instruction, but if it is a function call,
proceed until the function returns (if n is used, execute n
instructions).

Wind River Workbench
User’s Guide, 2.6 Linux Version

312

Displaying Disassembler and Memory Information

Table A-8 lists commands for disassembling code and displaying contents of
memory.

Examining Stack Traces and Frames

Table A-9 shows commands for selecting and displaying stack frames.

until Continue running until a source line past the current line, in the
current stack frame, is reached.

jump address Moves the instruction pointer to address.

finish Finishes execution of current block.

Table A-7 GDB Interpreter Running and Stepping Commands (cont’d)

Command Description

Table A-8 GDB Interpreter Disassembly and Memory Commands

Command Description

disassemble address Disassembles code at a specified address.

x [/format] address Displays memory starting at address. format is one of the
formats used by print: s for null-terminated string, or i for
machine instruction. Default is x for hexadecimal initially,
but the default changes each time you use either x or print.

Table A-9 GDB Interpreter Stack Trace and Frame Commands

Command Description

bt [n] Displays back trace of n frames.

frame [n] Selects frame number n.

up [n] Move n frames up the stack.

down [n] Moves n frames down the stack.

A Host Shell
A.2 Host Shell Commands and Options

313

A

Displaying Information and Expressions

Table A-10 lists commands that display functions, registers, expressions, and other
debugging information.

Displaying and Setting Variables

Table A-11 lists commands for displaying and setting variables.

Table A-10 GDB Interpreter Information and Expression Commands

Command Description

info args Shows function arguments.

info breakpoints Shows breakpoints.

info extensions Shows file extensions (c, c++, ...)

info functions Shows all functions.

info locals Shows local variables.

info registers Shows contents of registers.

info source Shows current source file.

info sources Shows all source files of current process.

info target Displays information about the target.

info threads Shows all threads.

info warranty Shows disclaimer information.

print /x expression Evaluates and prints an expression in hexadecimal format.

Table A-11 GDB Interpreter Variable Display and Set Commands

Command Description

set args arguments Specifies the arguments to be used the next time a
debugged program is run.

set emacs Sets display into emacs mode.

Wind River Workbench
User’s Guide, 2.6 Linux Version

314

A.2.5 Using the Built-in Line Editor

The host shell provides various line editing facilities available from the library
ledLib (Line Editing Library). LedLib serves as an interface between the user input
and the underlying command line interpreters, and facilitates the user's interactive
shell session by providing the ability to scroll, search, and edit previously typed
commands. Any input will be treated by ledLib until the user hits the ENTER key,
at which point the command typed will be sent on to the appropriate interpreter.

The line editing library also provides path completion.

vi-Style Editing

The ESC key switches the shell from normal input mode to edit mode. The history
navigation, completion, and editing commands in Table A-12 and Table A-14 are
available in edit mode.

Some line editing commands switch the line editor to insert mode until an ESC is
typed (as in vi) or until an ENTER gives the line to one of the shell interpreters.
ENTER always gives the line as input to the current shell interpreter, from either
input or edit mode.

To locate a line entered previously, press ESC followed by one of the search
commands listed in Table A-13; you can then edit and execute the line with one of
the commands from the table.

set environment varname = value Sets environment variable varname to value. value
may be any string interpreted by the program.

set tgt-path-mapping Sets target to host pathname mappings.

set variable expression Sets variable value to expression.

show args Shows arguments of debugged program.

show environment Shows environment of debugged program.

Table A-11 GDB Interpreter Variable Display and Set Commands

Command Description

A Host Shell
A.2 Host Shell Commands and Options

315

A

Switching Modes and Controlling the Editor

Table A-12 lists commands that give you basic control over the editor.

Moving and Searching in the Editor

Table A-13 lists commands for moving and searching in input mode.

Table A-12 vi-Style Basic Control Commands

Command Description

ESC Switch to line editing mode from regular input mode.

ENTER Give line to current interpreter and leave edit mode.

CTRL+D Complete pathname (edit mode).

[tab] Complete pathname (edit mode).

CTRL+H Delete a character (backspace).

CTRL+U Delete entire line (edit mode).

CTRL+L Redraw line (edit mode).

CTRL+S Suspend output.

CTRL+Q Resume output.

CTRL+W Display HTML reference entry for a routine.

Table A-13 vi-Style Movement and Search Commands

Command Description

nG Go to command number n. The default value for n is 1.

/s or ?s Search for string s backward or forward in history.

n Repeat last search.

nk or n- Get nth previous shell command.

nj or n+ Get nth next shell command.

nh Go left n characters (also CTRL+H).

Wind River Workbench
User’s Guide, 2.6 Linux Version

316

Inserting and Changing Text

Table A-14 lists commands to insert and change text in the editor.

nl or SPACE Go right n characters.

nw or nW Go n words forward, or n large words. Words are separated by
spaces or punctuation; large words are separated by spaces only.

ne or nE Go to end of the nth next word, or nth next large word.

nb or nB Go back n words, or n large words.

$ Go to end of line.

0 or ^ Go to beginning of line, or to first nonblank character.

fc or Fc Find character c, searching forward or backward.

Table A-13 vi-Style Movement and Search Commands (cont’d)

Command Description

Table A-14 vi-Style Insertion and Change Commands

Command Description

a or A ...ESC Append, or append at end of line (ESC ends input).

i or I ...ESC Insert, or insert at beginning of line (ESC ends input).

ns ...ESC Change n characters (ESC ends input).

cw ...ESC Change word (ESC ends input).

cc or S ...ESC Change entire line (ESC ends input).

c$ or C ...ESC Change from cursor to end of line (ESC ends input).

c0 ...ESC Change from cursor to beginning of line (ESC ends input).

R ...ESC Type over characters (ESC ends input).

nrc Replace the following n characters with c.

~ Toggle between lower and upper case.

A Host Shell
A.2 Host Shell Commands and Options

317

A

Deleting Text

Table A-15 shows commands for deleting text.

Put and Undo Commands

Table A-16 shows put and undo commands.

emacs-Style Editing

The shell history mechanism is similar to the UNIX tcsh shell history facility, with
a built-in line editor similar to emacs that allows previously typed commands to
be edited.

To edit a command, the arrow keys can be used on most of the terminals. Up arrow
and down arrow move up and down through the history list, like CTRL+P and
CTRL+N. Left arrow and right arrow move the cursor left and right one character,
like CTRL+B and CTRL+F.

Table A-15 vi-Style Commands for Deleting Text

Command Description

nx or nX Delete next n characters or previous n characters, starting at cursor.

dw Delete word.

dd Delete entire line (also CTRL+U).

d$ or D Delete from cursor to end of line.

d0 Delete from cursor to beginning of line.

Table A-16 vi-Style Put and Undo Commands

Command Description

p or P Put last deletion after cursor, or in front of cursor.

u Undo last command.

Wind River Workbench
User’s Guide, 2.6 Linux Version

318

Moving the Cursor

Table A-17 lists commands for moving the cursor in emacs mode.

Deleting and Recalling Text

Table A-18 shows commands for deleting and recalling text.

Table A-17 emacs-Style Cursor Motion Commands

Command Description

CTRL+B Move cursor back (left) one character.

CTRL+F Move cursor forward (right) one character.

ESC+b Move cursor back one word.

ESC+f Move cursor forward one word.

CTRL+A Move cursor to beginning of line.

CTRL+E Move cursor to end of line.

Table A-18 emacs-Style Deletion and Recall Commands

Command Description

DEL or CTRL+H Delete character to left of cursor.

CTRL+D Delete character under cursor.

ESC+d Delete word.

ESC+DEL Delete previous word.

CTRL+K Delete from cursor to end of line.

CTRL+U Delete entire line.

CTRL+P Get previous command in the history.

CTRL+N Get next command in the history.

!n Recall command n from the history.

!substr Recall first command from the history matching substr.

A Host Shell
A.2 Host Shell Commands and Options

319

A

Special Commands

Table A-19 shows some special emacs-mode commands.

Command and Path Completion

Path completion will attempt to complete a directory name when the TAB key is
pressed. This functionality is available from all interpreter modes.

A.2.6 Running the Host Shell in Batch Mode

The host shell can also be run in batch mode, with commands passed to the host
shell using the -c option followed by the command(s) to execute.

The commands must be delimited with double quote characters. For example, to
launch the host shell in batch mode, executing the GDB commands to load, list the
source code, and run an application:

$ hostShell -dev dfw-session-name -m gdb -c "file helloworld; list; run" tgtsvr@host

A.2.7 Recording and Replaying Host Shell Commands

The RECORD and RECORD_FILE variables allow you to record a sequence of
host shell commands to a file. You can see the current status of these variables with
the shConfig command as follows:

-> shConfig
...
RECORD = off
RECORD_FILE = .
...
->

Table A-19 Special emacs-Style Commands

Command Description

CTRL+U Delete line and leave edit mode.

CTRL+L Redraw line.

CTRL+D Complete symbol name.

ENTER Give line to interpreter and leave edit mode.

Wind River Workbench
User’s Guide, 2.6 Linux Version

320

Set RECORD_FILE to the file name where you want to record the commands. Set
RECORD to on to begin recording commands:

-> shConfig “RECORD=on”

If RECORD_FILE is not set, it will be set to shellRecordFilepid.cmds in the
directory /tmp (or %TEMP% for Windows).

To turn off recording, set RECORD to off. If you turn recording back on, the
previous file will be used and overwritten unless you have already specified a new
record file.

To replay the script, use the -s record_file command line option to hostShell.

You can also source it from the GDB interpreter with the source command.

A.2.8 Extending the GDB interpreter

Some parts of the GDB interpreter are written in TCL. This allows the user to easily
extend the interpreter by adding commands that can communicate with the
debugger server. The extension is limited here to synchronous commands, that is,
commands that always return immediately with a possible result immediately
available in the command result.

This section explains how to add such user commands by modifying the TCL shell
code.

The TCL resources of the GDB host shell interpreter are located under
$(WIND_FOUNDATION_PATH)/resource/windsh/OS/tcl/gdbInterp/.

The file cmds.tcl contains the definitions and the bodies of most of the interpreter
commands.

The following example explains how to extend the GDB interpreter by adding two
new commands.

Code to add at the beginning of the file (declare the commands)

array of user related commands

variable userGdbArr

#
setupUserCmds - set up the object commands array
#

proc setupUserCmds {} {
 variable userGdbArr

A Host Shell
A.2 Host Shell Commands and Options

321

A

 set userGdbArr(0) {"a1" "gdb::usera1Cmd" "" "Help of the a1 command"
"Usage of the a1 command"}
 set userGdbArr(1) {"a2" "gdb::usera2Cmd" "xy:z:" "Help of the a2 command"
"Usage of the a2 command\noptions:\n\t-x : x option, no parameter\n\t-y <y> :
y option, 1 parameter\n\t-z <z> : z option , 1 parameter"}
}

Code to add in the middle of the file (body of the commands)

proc usera1Cmd {args} {
 puts stdout "arguments: $args"

 # get location of the debugger server log
 puts stdout [miGdb "-wrs-log"]
}

proc usera2Cmd {args} {
 puts stdout "arguments: $args"
 puts stdout "first argument: [lindex $args 0]"
 puts stdout "second argument: [lindex $args 1]"
 puts stdout "third argument: [lindex $args 2]"

 # send a string to the debugger server and get its echo
 puts stdout [miGdb "-wrs-echo $args"]
}

Code to add at the end of the file (register the commands)

gdb::setupUserCmds
shellGdbTopicAdd "user" "List of the shell commands user defined."
shellGdbArrayAdd "user" gdb::userGdbArr

Output, calling a1 and a2 commands

(gdb) a1
arguments:
^done,ls="/wind/river/DFW121/host/x86-linux2/bin/dfwserver.log",
lt="/view/philb.62/wind/river/DFW121/host/x86-linux2/bin/dfwstatus.log"

(gdb) a2 /x /y 1 /z 2
arguments: TRUE {TRUE "1"} {TRUE "2"}
first argument: TRUE
second argument: TRUE "1"
third argument: TRUE "2"
^done,echo="TRUE {TRUE 1} {TRUE 2}"

Wind River Workbench
User’s Guide, 2.6 Linux Version

322

A.2.9 Deprecated Commands

After initializing the environment with the eval command and starting the
usermode agent as it is now done, the sequence of commands starting at Step 3
below was formerly used to start the host shell. These commands are deprecated
and may not be supported in future releases. Wind River recommends that you
start the host shell as described in Starting the Host Shell, p.302.

1. Source the environment script.

$ eval ‘./wrenv.sh -p linux-2.x -o print_env -f sh‘

2. Execute the usermode-agent binary on your host.

$./linux-2.x/usermode-agent/1.1/bin/ia/i386/usermode-agent &
[1] 3127

3. Run the registry (if not already running):

$ wtxregd.ex &
[2] 3128
$

4. Run a target server on the local host:

$ tgtsvr -n LINUX -V localhost &
[3] 3129
Thu May 12 12:26:36 2005
 Target name is localhost
tgtsvr.ex (LINUX@hamlet): Thu May 12 12:26:36 2005
 Checking License ...OK
 WTX Library version: 4.0.6.10
 Tgtsvr core version: 4.0.6.12
 Connecting to target agent... succeeded.
 Loading plug-in for UserMode-Linux... succeeded.
 Linux plugin version: 4.0.6.3
 Linux kernel signature is Linux version 2.6.9-5.EL (#1 Wed Jan 5
19:22:18 EST 2005) WDB 1.0.2
 Target agent is ‘ptrace’ user mode agent

$

5. Launch the host shell:

$ windsh LINUX
Checking License... OK

Getting DFW plugins from directories
/home/wbuser/WindRiver/workbench-2.4/dfw/0109b/host/x86-linux2/dfwplugins
(gdb)
^done
(gdb)
^done,lt="/home/wbuser/WindRiver/workbench-2.4/dfw/0109b/host/x86-linux2/
bin/dfwstatus.log",lt="/home/wbuser/WindRiver/workbench-2.4/dfw/0109b/hos
t/x86-linux2/bin/dfwstatus.log"

A Host Shell
A.2 Host Shell Commands and Options

323

A

(gdb)
^done,ls="/home/wbuser/WindRiver/workbench-2.4/dfw/0109b/host/x86-linux2/
bin/dfwserver.log",ls="/home/wbuser/WindRiver/workbench-2.4/dfw/0109b/hos
t/x86-linux2/bin/dfwserver.log"
(gdb)
(listening - gdbmi on port 32806)
initialization finished, pid=3142
got accept
got accept
Creating new target connection ‘LINUX’ /OK.
Detected target plugin ‘unifiedtargetplugin’.
Establishing direct WTX connection with target server ‘LINUX’.
Loading the ‘gdb’ shell interpreter... OK.

///// ///// ///// ///// ///// |
 ///// ///// ///// ///// ///// |
 ///// ///// ///// ///// ///// |
 ///// ///// ///// ///// ///// |
 ////// ////// ////// ////// ////// |
 ////// ////// ////// ////// ////// | W I N D R I V E R
 ///// ///// ///// ///// ///// |
 ///// ///// ///// ///// ///// |
 ///// ///// ///// ///// ///// | Development System
 //// //// //// //// //// |
 //// //// //// //// //// |
 //// //// //// //// //// | Host Based Shell
 //// //// //// //// //// |
 //// //// //// //// //// |
 /// /// /// /// /// | Version 2.0
 /// /// /// /// /// |
 // // // // // |
 // // // // // |
 // // // // // |
 // // // // // |

 Copyright 1995-2005 Wind River Systems, Inc.

(gdb)

You are automatically placed at the debugger prompt, (gdb).

For more information on host shell startup, see Starting the Host Shell, p.302.

Wind River Workbench
User’s Guide, 2.6 Linux Version

324

325

 B
Configuring a Wind River Proxy

Host

B.1 Overview 325

B.2 Configuring wrproxy 327

B.3 wrproxy Command Summary 329

B.1 Overview

The Wind River proxy allows you to access targets not directly accessible to your
Workbench host. For example, you might run the proxy server on a firewall and
use it to access multiple targets behind the firewall.

The proxy supports TCP, UDP, and TIPC (Linux only) connections with targets.
Many different host tools and target agents can be connected. A simple illustration
of this is shown in Figure B-1.

Wind River Workbench
User’s Guide, 2.6 (Linux Version)

326

The proxy host itself can be one that runs any operating system supported for
Workbench hosts or any host running Wind River Linux. You run the wrproxy
command supplied with Workbench on the proxy host and configure it to route
access from various tools to specific targets. The mapping is done by TCP/IP port
number, so that access to a particular port on the proxy host is directed to a
pre-defined target. You can start wrproxy and then manually configure it, or you
can create a configuration script that wrproxy reads at startup.

Figure B-1 Wind River Proxy Example

Workbench Host

 Proxy Host

with Target Server

running wrproxy

Target running

Telnet Client

Workbench Host
with StethoScope

Target running

usermode-agent

telnetd

Target supplying
remote kernel
metrics to
StethoScope

Node on TIPC
Network

Target with
Serial
Connection

B Configuring a Wind River Proxy Host
B.2 Configuring wrproxy

327

B

B.2 Configuring wrproxy

The wrproxy command (or wrproxy.exe on Windows) is located in
installDir/workbench-version/foundation/version/x86-version/bin/. Copy it to the
host that will serve as your proxy host. The following discussion assumes you have
copied wrproxy to your proxy host and are configuring it from the proxy host.

Configuring wrproxy Manually

To configure wrproxy manually, start it with a TCP/IP port number that you will
use as the proxy control port, for example:

$./wrproxy -p 1234 &

You can now configure wrproxy by connecting to it at the specified port.

Use the create command to configure wrproxy to map client (host tool) accesses on
a proxy port to a particular target. The following example configures accesses to
the proxy port 1235 to connect to the Telnet port of the host my_target:

$ telnet localhost 1234
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
create type=tcpsock;port=23;tgt=my_target;pport=1235
ok pport=1235

(Refer to create, p.331 for details on create command arguments.)

If you now connect to the proxy host at port 1235, you are connected to the Telnet
port of my_target:

$ telnet localhost 1235
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

my_target login:

Wind River Workbench
User’s Guide, 2.6 (Linux Version)

328

Creating a wrproxy Configuration Script

If you are typically using the same Wind River proxy configurations over time, it
can be useful to use a startup script to configure it rather than doing it manually
each time. You can cause wrproxy to read a startup script by invoking it as
wrproxy -s startupscript. The script contains the commands that configure wrproxy
as well as comments that begin with the # character. A simple startup script that
configures the same port setup performed manually in the previous example
might look like this:

This is an example of a wrproxy startup script

Configure the proxy host port 1235 to connect to my_target Telnet

create type=tcpsock;port=23;tgt=my_target;pport=1235

list the port configuration

list

end of script

When you start wrproxy with this script, it gets configured as in the previous
example and sends input and output to standard output:

$./wrproxy -s wrproxy_startup &
[2] 6660
Executing startup script...

create type=tcpsock;port=23;tgt=my_target;pport=1235
ok pport=1235
list
ok pport=1235;type=tcpsock;port=23;tgt=my_target
$

Since no control port was specified with the -p option at startup, the default port
17476 is used.

The startup script accepts the create, list, and delete commands as described in
Configuration Commands, p.329.

NOTE: There is no password management in wrproxy. If you want to be sure that
no new connections (tunnels) are made remotely using the control port, use the
-nocontrol option with the -s startupscript option which will disable the proxy
control port.

B Configuring a Wind River Proxy Host
B.3 wrproxy Command Summary

329

B

B.3 wrproxy Command Summary

The following section summarizes all of the Wind River proxy commands.

Invocation Commands

The wrproxy command accepts the following startup options:

■ -p[ort]—specify TCP control port. If not specified, the default of 0x4444 (17476)
is used. This should be a unique number less than 65536 not used as a port by
any other application, and it should be greater than 1024 which is the last of
the reserved port numbers.

■ -V—enable verbose mode.

■ -v[ersion]—print wrproxy command version number.

■ -s startupscript—specify a startup script that contains wrproxy configuration
commands.

■ -h[elp]—print wrproxy command help.

■ -nocontrol—disable control port.

Configuration Commands

You can use the following commands interactively, and all except the connect
command in a Wind River proxy startup script.

connect

Create a new Wind River proxy connection and automatically connect to it. Unlike
the create command (see create, p.331) the connection is established immediately
and all packets sent to the connection are immediately routed between the target
and host.

NOTE: For all commands, unknown parameters are ignored; they are not
considered errors. In addition, the client should not make any assumption on the
number of values returned by the command as this could be changed in the future.
For example, the create command will always return the value for pport but
additional information may be returned in a future version of the Wind River
proxy.

Wind River Workbench
User’s Guide, 2.6 (Linux Version)

330

Usage

connect type=type;mode=mode;proto=proto; connection_specific_parameters

Where the arguments to the connect command are as follows:

type is:

■ udpsock—UDP socket connection.

■ tcpsock—TCP socket connection.

■ tipcsock—TIPC socket connection (Linux only).

mode describes how the connection is handled between the proxy and the
client (for example the Workbench host) and is:

■ raw—raw mode (default).

■ packet—packet size is sent first followed by packet content; the packet is
handled only when fully received.

proto describes how the connection is handled between the proxy and the
target and is:

■ raw—proxy does not handle any protocol (default).

■ wdbserial—(VxWorks targets only) proxy converts packet to wdbserial.
When proto is wdbserial, some control characters are inserted by the
proxy in the packet sent to the target so that the generated packet will be
understood correctly by the target using a WDB serial backend. This is
typically used to connect to a WDB agent running on a target through a
serial line that is connected to the serial port of a port server (this serial line
is then accessible by the proxy using a well-known TCP port of the port
server).

Connection-specific Parameters

■ udpsock and tcpsock connection:

port=port;tgt=tgtAddr

Where port is the TCP/UDP port number and tgtAddr is the target IP
address.

■ tipcsock connection (Linux only):

tipcpt=tipcPortType;tipcpi=tipcPortInstance;tgt=tgtAddr

Where tipcPortType is the TIPC port type, tipcPortInstance is the TIPC port
instance and tgtAddr is the TIPC target address.

B Configuring a Wind River Proxy Host
B.3 wrproxy Command Summary

331

B

The response of the Wind River proxy to the connect command is a string as
follows:

ok

or

error errorString

where errorString describes the cause of the error.

create

Create a new proxy port mapping to a target. The connection is not established
immediately as with the connect command (see connect, p.329) but only when a
client connects to the specified port number.

Usage

create type=type;port=port;tgt=target;pport=pport

where the arguments to the create command are as follows:

type=type is:

■ udpsock—UDP socket connection.

■ tcpsock—TCP socket connection. (Only tcpsock is allowed for a VxWorks
proxy host.)

■ tipcsock—TIPC socket connection.

port—this is the port to connect to on the target.

tgt=target—is the host name or IP address of the target when type is tcpsock
or udpsock, and port provides the UDP or TCP port number. When type is
tipcsock this is the target TIPC address, and tipcpi provides the TIPC port
instance and tipcpt provides the TIPC port type.

pport=proxy_TCP_port_number—specify the TCP port number that clients
(host tools) should connect to for connection to target_host. This should be a
unique number less than 65536 not used as a port by any other application, and
it should be greater than 1024 which is the last of the reserved port numbers.

NOTE: If you do not assign a port number, the default value of 0x4444 is used.

NOTE: If you do not specify a pport value, one will be assigned automatically
and returned in the command output.

Wind River Workbench
User’s Guide, 2.6 (Linux Version)

332

port=target_TCP_port_number—specify the TCP port to connect to on the
target. This should be a unique number less than 65536 not used as a port by
any other application, and it should be greater than 1024 which is the last of
the reserved port numbers.

A simple example of using the create command to configure a Telnet server port
connection is given in B.2 Configuring wrproxy, p.327.

delete

Delete the proxy configuration for a specific port.

Usage

delete pport=port_number

To delete the proxy configuration of a specific port, use the delete command
with the port number, for example:

$ telnet localhost 1234
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
delete pport=1235
ok^]
telnet> q
Connection closed.

list

List your current configuration with the list command.

Usage

list

For example, to list your current configuration, connect to the proxy control port
and enter the list command:

$ telnet localhost 1234
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
list
ok pport=1235;type=tcpsock;port=23;tgt=my_target

333

 C
Command-line Updating of

Workspaces

C.1 Overview 333

C.2 wrws_update Reference 334

C.1 Overview

The Workbench installation includes a wrws_update script that allows you to
update workspaces from the command-line. This can be used, for example, to
update workspaces in a nightly build script. The following section provides a
reference page for the command.

Wind River Workbench
User’s Guide, 2.6 Linux Version

334

C.2 wrws_update Reference

A script for updating an existing workspace is available in the Workbench
installation and is named:

wrws_update.bat (Windows only)

wrws_update.sh (Windows, Linux, and Solaris)

This script launches a GUI-less Eclipse application that can be used to update
makefiles, symbols (static analysis), and the retriever index.

Execution

Specify the location of the wrws_update script or add it to your path and execute
it with optional parameters, for example:

$ wrws_update.sh -data workspace_dir

The workspace must be closed for the command to execute. If you do not specify
any options to the command, all update operations are performed (-all projects,
-generate makefiles, --update symbols, -update index).

Options

General Options

-h, --help
Print command help.

-q, --quiet
Do not produce standard output.

Eclipse Options

-data workspace_dir
The script uses the default workspace (if known), but it can also update other
workspaces by specifying the -data workspace_dir option, just as Workbench
does. (The script accepts the same command-line options as Workbench. For
example, to increase virtual memory specify -vmargs -Xmxmem_size.)

C Command-line Updating of Workspaces
C.2 wrws_update Reference

335

C

Global Options

-a, --all-projects

Update all projects, this option will force all closed projects to be opened.
Opened projects will be closed after finishing the update.

-l, --specify-list-of-projects argument
Specify a list of projects to be updated. This option reduces the scope of the
nightly update to the specified list of projects. Needed closed projects will be
opened and unneeded opened ones closed. After finishing the update the
previous state is restored. Separate the list with "," for example:
cobble,helloWorld.

Build Options

-b, --build-projects argument
Launch build for projects. Several strings are valid as arguments, including:
build (default), clean, and rebuild.

-e, --enableTraceBuild
Enable trace build output.

-f, --debugMode argument
Build using specific debug or non-debug mode where applicable. The
argument, if specified, can be 0 or 1, otherwise the current mode is used per
project.

-u, --buildArgs argument
Specify a list of additional build options. Separate the list with "," for example:
-i,MY_VAR=value.

Nightly Update Options

-i, --update-index
Update search-database index.

-m, --generate-makefiles
Regenerate Makefiles where necessary.

-s, --update-symbols argument
Update symbol database (static analysis). To create the data from scratch, you
can supply 'rebuild' as argument.

Wind River Workbench
User’s Guide, 2.6 Linux Version

336

-t, --create-team-symbols argument
Export symbol databases for shared use in a team. The argument is a quoted
comma-separated list of options. Valid options are timestamp, readonly, and
checksum. The default is timestamp,readonly,checksum. See the online
documentation for details on these options.

-x, --update-xref argument
Update cross references (static analysis). To create the data from scratch, you
can supply 'rebuild' as argument.

Output

Any errors that might occur during the updates are printed out to standard error
output. Other information (for example, status, what has been done, and so on) are
printed out to standard output.

NOTE: No configuration management-specific actions or commands are executed
within this script and the launched application. Configuration management
specific synchronizations or updates relevant to the workspace (for example,
cvs-update, ClearCase view synchronization, and so on) have to be done before
this script is started.

337

 D
Command-line Importing of

Projects

D.1 Overview 337

D.2 wrws_import Reference 338

D.1 Overview

The Workbench installation includes a wrws_import script that allows you to
import existing projects into workspaces from the command-line. The following
section provides a reference page for the command.

Wind River Workbench
User’s Guide, 2.6 Linux Version

338

D.2 wrws_import Reference

A script for launching a GUI-less Eclipse application that can be used to import
existing projects into the workspace is available in the Workbench installation and
is named:

wrws_import.bat (Windows only)

wrws_import.sh (Windows, Linux, and Solaris)

Execution

Specify the location of the wrws_import script or add it to your path and execute
it with optional parameters, for example:

$ wrws_import.sh -data workspace_dir

Options

General Options

-d, --debug argument
Provide more information. The argument, if given, specifies the level of
verbosity. Default is 2, the possible options are: [2, 3, 4].

-h, --help
Print command help.

-q, --quiet
Do not produce standard output.

Eclipse Options

-data workspace_dir
Specify the Eclipse workspace with this option.

Import Project Options

-f, --files argument

Specify a list of project files to be imported. Separate the items in the list with
commas (,). For example: dir1/.project,dir2/.project.

-r, --recurse-directory argument
Specify a directory to recursively search for projects to be imported.

D Command-line Importing of Projects
D.2 wrws_import Reference

339

D

NOTE: This script will not stop or fail if some projects already exist in the
Workspace, the way the Import existing projects into workspace wizard does. It
will just print out the information and continue.

Wind River Workbench
User’s Guide, 2.6 Linux Version

340

341

 E
Wind River Cross Compiler

Prefixes

Cross Compiler Prefixes for Supported Architectures

Table E-1 provides the correct cross compiler prefixes to use when building for the
different Wind River Linux-supported architectures.

Table E-1 Wind River Linux Cross-Compiler and Architecture Mappings

ARCH Cross_Compile

arm arm-wrs-linux-gnueabi-arm-glibc_full-
arm-wrs-linux-gnueabi-arm-glibc_small-
arm-wrs-linux-gnueabi-arm-uclibc_small-
arm-wrs-linux-gnueabi-armv5teb-glibc_cgl-
arm-wrs-linux-gnueabi-armv5teb-glibc_small-
arm-wrs-linux-gnueabi-armv5tel-glibc_full-
arm-wrs-linux-gnueabi-armv5tel-glibc_small-
arm-wrs-linux-gnueabi-armv5tel-uclibc_small-

i386 i586-wrs-linux-gnu-i686p4-glibc_cgl-
i586-wrs-linux-gnu-i686p4-glibc_full-
i586-wrs-linux-gnu-i686p4-glibc_small-

Wind River Workbench
User’s Guide, 2.6 Linux Version

342

mips mips-wrs-linux-gnu-mips32_eb-glibc_cgl-
mips-wrs-linux-gnu-mips32_eb-glibc_full-
mips-wrs-linux-gnu-mips32_eb-glibc_small-
mips-wrs-linux-gnu-mips32_eb-uclibc_small-
mips-wrs-linux-gnu-mips32_el-glibc_full-
mips-wrs-linux-gnu-mips32_el-glibc_small-
mips-wrs-linux-gnu-mips32_el-uclibc_small-
mips-wrs-linux-gnu-mips32f_eb-glibc_cgl-
mips-wrs-linux-gnu-mips32f_eb-glibc_full-
mips-wrs-linux-gnu-mips32f_el-glibc_cgl-
mips-wrs-linux-gnu-mips32f_el-glibc_full-

ppc powerpc-wrs-linux-gnu-603e-glibc_full-
powerpc-wrs-linux-gnu-603e-glibc_small-
powerpc-wrs-linux-gnu-e500-glibc_cgl-
powerpc-wrs-linux-gnu-e500-glibc_full-
powerpc-wrs-linux-gnu-e500-glibc_small-
powerpc-wrs-linux-gnu-ppc440-glibc_full-
powerpc-wrs-linux-gnu-ppc440-glibc_small-
powerpc-wrs-linux-gnu-ppc7400-glibc_cgl-
powerpc-wrs-linux-gnu-ppc7400-glibc_small-
powerpc-wrs-linux-gnu-ppc750-glibc_cgl-
powerpc-wrs-linux-gnu-ppc750-glibc_small-
powerpc-wrs-linux-gnu-ppc970-glibc_cgl-
powerpc-wrs-linux-gnu-ppc970-glibc_full-
powerpc-wrs-linux-gnu-ppc970-glibc_small-
powerpc-wrs-linux-gnu-ppc970_64-glibc_cgl-
powerpc-wrs-linux-gnu-ppc970_64-glibc_small-

Table E-1 Wind River Linux Cross-Compiler and Architecture Mappings

ARCH Cross_Compile

343

 F
Configuring Linux 2.4 Targets

(Dual Mode)

F.1 Introduction 344

F.2 Setting Up the Linux Host 345

F.3 Tools 345

F.4 Obtaining a Kernel 348

F.5 Applying the WDB Patch 349

F.6 Configuring the Kernel 351

F.7 Preparing to Load the Linux Kernel 360

F.8 Exporting the ELDK Root File System 361

F.9 Launching U-Boot 362

F.10 Configuring U-Boot 364

F.11 Downloading the Kernel to the Target 369

F.12 Launching the Linux Kernel 370

Wind River Workbench
User’s Guide, 2.6 Linux Version

344

F.1 Introduction

Dual mode is for use in kernel and application debugging on Linux 2.4 kernels. It
does not work on Linux 2.6 kernels, which includes Wind River Linux kernels. For
details on debugging generic Linux 2.6 kernels, refer to 5. Kernel Debugging (Kernel
Mode). For details on debugging generic Linux 2.6 applications, refer to
3. Developing Applications (User Mode). Refer to 4. Configuring Wind River Linux
Platforms for specifics on developing Wind River Linux platforms.

Wind River Workbench can be used with Linux 2.4.x kernels with a dual mode of
user and system connection that requires the kernel to be patched with the Wind
River WDB agent. This chapter describes how to acquire the necessary tools and
then patch, configure, and build your Linux 2.4.x target kernel so that it can
communicate with Workbench. It also describes how to download to a target, and
provides a tutorial on the use of dual mode with a PPC target and associated tools.
Refer to the Wind River online support site for additional examples of how to use
the user and system modes available in dual mode.

To communicate with Workbench, your Linux 2.4.x target kernel must be patched
with the Wind River WDB agent. The WDB agent includes a small implementation
of UDP/IP, which Workbench uses to communicate with your target.

Information about downloading a kernel is provided in F.4 Obtaining a Kernel,
p.348. See the target.ref.linux files on the Wind River online support site for the
specific kernels supported by your board.

Although you may have a custom version of a kernel that you wish to use with
Workbench, Wind River highly recommends that the first time you try this
procedure, you use one of the standard versions of the kernel. Doing so will
familiarize you with the process and expose any issues that may arise when you
try to work through these steps with a custom kernel.

Before Workbench can be used with a Linux target, the host must be correctly
configured, a bootloader must be configured and built, the target itself must have
its jumpers and other hardware set correctly, and finally the bootloader must be
loaded into the target’s flash memory.

The next several sections point to online documentation which covers these
steps—including a variety of target hardware—in detail.

NOTE: For support with using Workbench to develop embedded projects that are
not based on Wind River Linux, contact Wind River Support Services.

F Configuring Linux 2.4 Targets (Dual Mode)
F.2 Setting Up the Linux Host

345

FF.2 Setting Up the Linux Host

To build your embedded Linux system, verify that your host setup includes the
following:

■ A running TFTP server with a TFTP directory that has full read and write
access.

■ Any firewall software disabled.

■ A running NFS server.

■ Workbench installed.

You may also require root access to your system, so make sure you know the root
password before continuing.

F.3 Tools

This section provides a summary of tools that are used to enable a dual mode
environment, and then lists the specific tools that are used in the examples in this
chapter.

Summary

You must choose the correct kernel, cross-compiler and bootloader for the target
you are using. The following list outlines in general terms the tools you should
have available to get your embedded Linux system working correctly, and
provides some pointers to further information. You will need the following:

■ A target reference board, with necessary cables and power supply

Make sure that your target is based on a processor architecture supported by
Workbench. For complete information on supported targets, please see the
target.ref.linux files on the Wind River Online Support site.

■ Wind River Workbench

In addition to the Workbench functionality, the Workbench installation
includes patches that are required for building your embedded system.

Wind River Workbench
User’s Guide, 2.6 Linux Version

346

■ Cross-compilers

A cross-compiler and related tools are required if your target is of an
architecture different from your host. Cross-compilers, like targets, are a
matter of personal preference. There are many available. You will need this
tool to compile your Linux kernel. You may also need to use it to compile a
bootloader into an image to download to your target.

■ Bootloaders

The bootloader is used to configure your target to run the Linux kernel and to
pass parameters to the kernel. There are several bootloaders and methods of
booting a target from which to choose. For information on appropriate
bootloaders for particular boards, please see the target.ref.linux files on the
Wind River online support site.

■ Linux kernel

Workbench dual mode supports the 2.4.x versions of the Linux kernel. The
supported architectures have been tested with various versions of the 2.4.x
kernel. Make sure that the target kernel you choose is supported by your target
board. Information on obtaining a kernel is provided in F.4 Obtaining a Kernel,
p.348.

■ A debugger and emulator, or flash programmer

These are the tools you need to program the bootloader into the flash memory
on your target.

The following sections describe the specific tools used in the examples.

Target

The examples in this chapter use the Wind River SBC 8260 target.

Cross-compiler

The examples use version 3.0 of the ELDK cross-compiler. This cross-compiler is
used to build the bootloader, Linux kernel, and applications. In addition, the ELDK
installation provides a root file system that you can use to develop your
application.

F Configuring Linux 2.4 Targets (Dual Mode)
F.3 Tools

347

F

ELDK is available at:

http://www.denx.de/e/index1.php

Make sure you install the correct version of ELDK.

For information on installing the ELDK and using it correctly on your Linux host,
see:

http://www.denx.de/wiki/DULG/ELDK

After you install ELDK, Wind River recommends including the following in your
path:

/ELDK_installDir/usr/bin

To verify your path, enter the following:

$ echo $PATH

For example, if ELDK is installed in the /opt/eldk directory, /opt/eldk/usr/bin
should be displayed.

Bootloaders

The examples in this chapter are for the U-Boot bootloader; however, you may find
other bootloaders more suitable.

U-Boot is commonly used with PowerPC architectures, and is available for
download at:

http://sourceforge.net/projects/u-boot/

NOTE: Although ELDK 3.0 is described in this manual, ELDK 2.1 is also supported
for the:

■ Wind River SBC 8260
■ Wind River Power QUICC II
■ IBM Walnut 405GP

Instructions for ELDK 3.0 also apply to ELDK 2.1.

NOTE: Including ELDK in your path is required in order to build a Linux kernel
with your tools. Compiling application projects with Workbench does not require
ELDK in your path, but including it makes compilation easier.

http://www.denx.de/e/index1.php

http://www.denx.de/wiki/DULG/ELDK

http://sourceforge.net/projects/u-boot/

Wind River Workbench
User’s Guide, 2.6 Linux Version

348

This chapter describes U-Boot versions 1.1.0 and 1.1.1. Make sure you download
the appropriate version for your target.

Kernels

The primary source for Linux kernels is:

http://www.kernel.org/pub/linux/kernel

For more information on obtaining your kernel source, see F.4 Obtaining a Kernel,
p.348.

Debugger and Emulator or Flash Programmer

Some bootloaders, like U-Boot, need to be programmed into flash. If you are using
Wind River ICE or Wind River Probe, see the Wind River Workbench On-Chip
Debugging Guide.

F.4 Obtaining a Kernel

The central repository for Linux kernels is located at the following location:

http://www.kernel.org/pub/linux/kernel.

Go to that Web site and download the kernel that you want to use to build your
embedded system. Be careful to download a kernel version that is supported for
your target as described in the target.ref.linux file.

The kernel source code you download is supplied in a single compressed file. For
example, if you download the 2.4.20 version of the kernel, the file is called
linux-2.4.20.tar.gz or linux-2.4.20.tar.bz2.

NOTE: If you have a custom version of a kernel that you want to use to build your
system, you do not need to download a kernel from http://www.kernel.org.

http://www.kernel.org/pub/linux/kernel
http://www.kernel.org/pub/linux/kernel
http://www.kernel.org

F Configuring Linux 2.4 Targets (Dual Mode)
F.5 Applying the WDB Patch

349

FExtract the kernel source code by entering the following:

$ tar xvzf linux-2.4.20.tar.gz

or

$ tar xvjf linux-2.4.20.tar.bz2

depending on what type of file you downloaded.

The Linux kernel source code extracts. When it is finished, the root kernel source
directory resides in the same location as the original compressed file, as shown in
Figure F-1.

F.5 Applying the WDB Patch

For Workbench to communicate properly with your kernel, the WDB agent must
be running on the target. The WDB agent is supplied as two kernel patches in the
installDir/linux-2.x/linux-2.4/agent/2.4 directory of the Workbench installation.

NOTE: If you download a different kernel, modify the command to reflect the
name of that kernel.

Figure F-1 New Linux Kernel Directory

Wind River Workbench
User’s Guide, 2.6 Linux Version

350

To install the WDB agent, apply two patch files to your kernel.

■ The first is the kernel hooks patch, and it is specific to the kernel you are using.
Kernel hooks patches are named linux-2.4.X-wdb2.4.patch, where X is the
version of the Linux kernel you are using.

For example, if you are using a Linux 2.4.26 kernel, the kernel hooks patch you
need to use is called linux-2.4.26-wdb2.4.patch.

■ The second patch file is not dependent on kernel architecture, and it supplies
the WDB Agent functionality. That file is called wdbagent-2.4.tar.

The WDB agent patches are designed to integrate smoothly with the default
versions of the kernel. If you have a custom Linux kernel that you are using to
build your embedded system, you may need to port the WDB agent to fit your
specific version. See the WDB Agent Porting Guide for information about how to
port the WDB agent to your kernel.

To apply the patches to a standard version of the kernel, do the following:

1. Change directories until you are in the top level of your kernel source.

$ cd /pathToKernelInstallDir/

2. Patch the kernel with the kernel hooks patch.

$ patch -p1 <
installDir/linux-2.x/linux-2.4/agent/2.4/linux-2.4.X-wdb2.4.patch

For example, to patch a Linux 2.4.26 kernel, type:

$ patch -p1 <
installDir/linux-2.x/linux-2.4/agent/2.4/linux-2.4.26-wdb2.4.patch

Text will be output to the screen as the kernel hooks patch is applied.

If you are using a standard version of the kernel, no errors occur. If you are not
using a standard kernel, see the WDB Agent Porting Guide for information
about how to port the patch to your kernel.

3. Verify that you are still at the root of your kernel source.

4. Patch the kernel with the WDB agent.

$ tar xvf installDir/linux-2.x/linux-2.4/agent/2.4/wdbagent-2.4.tar

NOTE: If you are using the standard version of the kernel and you encounter
errors when you apply the patch, be sure that you are using the correct patch
for your kernel version.

F Configuring Linux 2.4 Targets (Dual Mode)
F.6 Configuring the Kernel

351

FThe WDB agent code extracts into a directory called wdbagent in your kernel
tree.

5. If you are using a version of the Linux kernel other than 2.4.26, change the file
permissions of the mkimage.wrapper file to executable.

$ chmod +x arch/ppc/boot/utils/mkimage.wrapper

F.6 Configuring the Kernel

Prior to working through this section, do the following:

■ Make sure that the cross-compiler, such as ELDK, is installed and working
correctly as described in Cross-compiler, p.346.

■ Make sure that Workbench is installed on your host.

You can use Workbench to build your Linux kernel, or you can build it from the
command line. This section includes instructions for building it both ways.

To configure your kernel for use with a root file system you will load separately, no
additional files are required. This section assumes that you are using ELDK and a
standard version of the Linux kernel.

This section also assumes you are using U-Boot to load the Linux kernel onto the
target, and describes the steps necessary to make the bootable image required by
U-Boot. For more information about U-Boot, see Bootloaders, p.347.

Prior to beginning, make sure that your kernel source code is available on a local
or networked drive that you can access through Workbench. Also make sure that
you correctly applied the patch described in F.5 Applying the WDB Patch, p.349.

NOTE: If you are using the Linux 2.4.26 kernel, skip this step.

NOTE: Changing the permissions on this file is required because the source code
from http://www.kernel.org does not include execute permissions on the
mkimage.wrapper script.

NOTE: The cross-compile options included in this section are specific to ELDK.
You may need to modify the commands if you are using a different cross-compiler.

http://www.kernel.org

Wind River Workbench
User’s Guide, 2.6 Linux Version

352

You can choose to build your kernel using Workbench or from the command line.
Workbench instructions are provided in F.6.1 Building the Kernel in Workbench as a
Linux Kernel Project, p.352, and command-line instructions are provided in
F.6.2 Building the Kernel from the Command Line, p.358. See the section that best suits
your development needs.

F.6.1 Building the Kernel in Workbench as a Linux Kernel Project

The following steps describe how to use Workbench to build your Linux kernel.

1. Start Workbench running on your host.

To start Workbench, change directories to installDir and enter the following:

$./startWorkbench.sh

When you start Workbench, you are asked to specify a workspace for storing
your project information. You must have write access to the workspace you
use.

After you specify a workspace and click OK, and Workbench displays the
Welcome screen.

2. Click Start, then Workbench to open the Application Development
perspective.

3. Right-click in the Project Navigator, select New > Project.

The New Project dialog box appears.

4. Expand the Project node, click Embedded Linux Kernel Project and click
Next.

5. Enter a name for your kernel project in the Project Name field.

The Location area of the dialog box lets you specify where you want to store
your project files. To use the location where you placed the kernel files, select
Create project at external location, and browse to the top level directory of
your kernel source. Click OK and then click Next.

NOTE: Before starting Workbench, make sure the path environment variable is set
to include the path to your compiler.

NOTE: If you have opened Workbench previously, and are using the same
workspace, the Welcome screen does not display. Instead, Workbench opens
directly to the Application Development perspective.

F Configuring Linux 2.4 Targets (Dual Mode)
F.6 Configuring the Kernel

353

F6. The Build Support dialog box appears. This is where you specify how
Workbench should build your kernel.

Leave the Build support area of the dialog box set to User-defined build.

Specify the path to your kernel source tree and the required cross-compiler
information in the Build command field.

To add the path to your kernel, append the line -C /pathToKernelInstallDir to the
existing line in the dialog box.

Add the following cross-compile and PowerPC architecture commands to the
same line:

ARCH=ppc CROSS_COMPILE=CrossCompilePrefix

NOTE: If you want to debug the kernel, include the line
CFLAGS_KERNEL+=-gdwarf-2 in the dialog box. This will build your kernel
with symbol data.

Click Next.

7. The Static Analysis dialog box appears. By default, Workbench builds your
kernel with static analysis data. For very large projects, such as a kernel project,
it can be faster to turn static analysis off. If you want to turn it off, uncheck the
box Enable Static Analysis. Click Finish.

The project is created, and when finished, the name of the project appears in
the Project Navigator view of Workbench.

8. Click the arrow beside the project name to expand the list of files in your
project.

NOTE: Recall that your CrossCompilePrefix is unique to your architecture. Refer to
the bootloader page of the online support site for information about the
CrossCompilePrefix for your architecture.

NOTE: The cross-compile commands used in this section are specific to the ELDK
tools. You may need to modify this line if you are using a different cross-compiler.

NOTE: The path to your ELDK installation must be included in your default Linux
path to build a kernel, as described in F.3 Tools, p.345.

Wind River Workbench
User’s Guide, 2.6 Linux Version

354

Adding a Build Target to the Project

To build an image of your kernel that the bootloader can download to your target,
add a build target to the project.

1. Right-click your kernel project name, select New > Build Target.

2. If you are using a Linux 2.4.26 kernel, enter uImage in the Build target name
field of the dialog box.

If you are using any other version of the Linux kernel, enter pImage in the
Build target name field of the dialog box.

3. Click Finish.

A new build target displays in the Project Navigator, as shown in Figure F-2.

Figure F-2 New Build Target

NOTE: The uImage and pImage build targets rely on the build tools that you are
using to create a PowerPC bootable image being available. For PowerPC, the
utility is called mkimage, and it is included with the ELDK tools.

F Configuring Linux 2.4 Targets (Dual Mode)
F.6 Configuring the Kernel

355

F
Building a Bootable Kernel Image

Now everything you need to build the kernel is ready. The following steps describe
how to proceed.

1. Right-click the xconfig build target in the Project Navigator, select
Build Target.

Build output displays in the Build Console, and the
Linux Kernel Configuration menu displays as shown in Figure F-3.

2. Click Load Configuration from File.

The Load Configuration from file dialog box appears as shown in Figure F-4.

Figure F-3 Linux Kernel Configuration Menu

NOTE: The Linux Kernel Configuration menu is not part of Workbench. It is a
graphical utility provided with your Linux kernel that you can use for
configuration purposes.

Wind River Workbench
User’s Guide, 2.6 Linux Version

356

The configuration file names are unique to your target and the Ethernet device
you are using. The configuration file names for your architecture are in the
appropriate target.ref.linux file.

The configuration files are located in arch/ppc/configs. Enter
arch/ppc/configs/Configuration_File_Name for your target into the Load
Configuration from file dialog box.

Table F-1 describes configuration file names for the Linux 2.4.26 kernel. These
configuration files include the WDB agent as a buildable option; select the
specified Ethernet port.

Click OK to close the dialog box.

Figure F-4 Load Configuration

Table F-1 Kernel Configuration File Names

Target Ethernet Device Configuration File Name

Wind River SBC 8260 SCC1 wrs_wrsbc8260_scc1_defconfig

Wind River SBC 8260 FCC2 wrs_wrsbc8260_fcc2_defconfig

Wind River PowerQUICC II SCC1 wrs_wrsbc8260_scc1_defconfig

Wind River PowerQUICC II FCC2 wrs_wrsbc8260_fcc2_defconfig

Sandpoint 8245 EE Pro 100 PCI Card or
Realtek 8139 Card

wrs_SandpointX3-8245_defconfig

IBM Walnut 405GP CH1 wrs_Walnut405GP_defconfig

IBM Ebony 440GP CH1 wrs_Ebony440GP_defconfig

Wind River SBC 8560 gianfar or FCC2 wrs_wrsbc8560_gianfar_defconfig
wrs_wrsbc8560_fcc2_defconfig

F Configuring Linux 2.4 Targets (Dual Mode)
F.6 Configuring the Kernel

357

F3. From the Kernel Configuration menu, click Kernel hacking. Verify that the
WDB Agent: Remote process/kernel debugging option is set to Yes, as
shown in Figure F-5.

4. Click the Main Menu to close the dialog box.

5. Click Save and Exit to exit the Linux Kernel Configuration menu.

Figure F-5 Kernel Hacking

NOTE: If you are using a target that is not supported, you may need to modify the
kernel parameters in this menu manually. Make sure that in the Kernel Hacking
dialog box, the WDB Agent: Remote process/kernel debugging option is set to Y.
Pay attention to network settings, boot arguments, and board-specific settings
when you configure your kernel.

NOTE: Make sure to click Save and Exit instead of just closing the dialog box.
Otherwise, the changes you made are not saved.

Wind River Workbench
User’s Guide, 2.6 Linux Version

358

6. Click OK to close the confirmation dialog box that displays and return to
Workbench.

7. Right-click the dep build target in the Project Navigator, select Build Target.

This generates all the kernel dependencies. Build output displays, as shown in
Figure F-6.

8. Right-click either the pImage or the uImage build target in the
Project Navigator, select Build Target.

This builds the final bootable image and symbol file.

When it completes, a .elf file called vmlinux displays at the root of your kernel
tree, and a bootable image file is included in the
kernelInstallDir/arch/ppc/boot/images directory. If you built a pImage file, the
image file is called vmlinux.PPCBoot. If you built a uImage file, the image file
is called vmlinux.UBoot.

Now you have a bootable image of your kernel. See F.11 Downloading the Kernel to
the Target, p.369 for information about how to use U-Boot to download the kernel
to your target.

F.6.2 Building the Kernel from the Command Line

Prior to building your kernel, make sure that you have correctly applied the WDB
Agent patch as described in F.5 Applying the WDB Patch, p.349.

The following steps describe how to build your kernel. They use the xconfig kernel
configuration menu as described in Building a Bootable Kernel Image, p.355, so refer
to that section for further details.

1. cd into the top level of your kernel directory.

2. Enter the following command:

$ make ARCH=ppc CROSS_COMPILE=CrossCompilePrefix xconfig

Figure F-6 Kernel Dependencies Build Output

F Configuring Linux 2.4 Targets (Dual Mode)
F.6 Configuring the Kernel

359

F

The Linux Kernel Configuration menu displays.

3. Click Load Configuration from File.

Enter arch/ppc/configs/Configuration_File_Name for your target into the Load
Configuration from file dialog box.

4. Click OK to close the dialog box.

5. Click Kernel hacking, verify that the WDB Agent: Remote process
/kernel debugging option is set to Yes.

6. Click Main Menu to close the dialog box.

7. Click Save and Exit to exit the Linux Kernel Configuration menu.

8. Click OK to close the confirmation dialog box that displays and return to the
command line.

9. Build the kernel dependency information by typing:

$ make ARCH=ppc CROSS_COMPILE=CrossCompilePrefix dep

The kernel dependencies build.

10. Build the compressed kernel by typing:

$ make ARCH=ppc CROSS_COMPILE=CrossCompilePrefix ImageType

If your are using a Linux 2.4.26 kernel, ImageType is uImage. If you are using
any of the other supported kernels, ImageType is pImage.

For example, to build the compressed kernel for Sandpoint 8245 target with a
Linux 2.4.26 kernel, type:

$ make ARCH=ppc CROSS_COMPILE=ppc_82xx- uImage

NOTE: Recall that your CrossCompilePrefix is unique to your architecture. Refer to
the bootloader page of the online support site for information about the
CrossCompilePrefix for your architecture.

NOTE: If you are not using one of the supported targets, you may need to modify
the kernel parameters in this menu manually. Make sure that in the
Kernel Hacking dialog box, the WDB Agent: Remote process/kernel debugging
option is set to Y. Pay attention to network settings, boot arguments, and
board-specific settings when you configure your kernel.

NOTE: Be sure to click Save and Exit instead of just closing the dialog box.
Otherwise, the changes you made are not saved.

Wind River Workbench
User’s Guide, 2.6 Linux Version

360

This builds the final bootable image and symbol file.

When it completes, a .elf file called vmlinux displays at the root of your kernel
tree, and a bootable image file is included in the
kernelInstallDir/arch/ppc/boot/images directory. If you built a pImage file, the
image file is called vmlinux.PPCBoot. If you built a uImage file, the image file
is called vmlinux.UBoot.

You now have a bootable image of your kernel.

F.7 Preparing to Load the Linux Kernel

Loading the Linux Kernel onto the target is a three-step procedure:

1. Exporting the target file system.

2. Booting the target.

3. Downloading and launching the kernel.

The second step, booting the target, may be performed using a variety of methods
and bootloaders, depending on the type of target and on the method and
bootloader preferred.

Examples in this chapter describe booting a Power PC target board, using the
U-Boot bootloader. They also describes how to launch U-Boot on your target,
configure it correctly for your system and kernel, and use it to load your Linux
kernel.

Before You Begin

Prior to working through this section, do the following:

■ Turn the power off on your target.

■ Remove the emulator or flash programmer from your system.

■ Connect the serial cable on your target to your Linux host.

■ Make sure that the power and the Ethernet connections are secure on your
target.

F Configuring Linux 2.4 Targets (Dual Mode)
F.8 Exporting the ELDK Root File System

361

F

■ Work through F.6 Configuring the Kernel, p.351 to make sure you have a kernel
file to load to your target.

■ Decide how you want to mount your kernel and root file system.

During the development phase of your project, it is easiest to mount your root file
system on an NFS server. To do that, make sure you built the build target using
pImage or uImage, and that you have a separate root file system available to
mount. If you are using the ELDK tools, you can export the standard root file
system provided in the installation. If you did not export the root file system when
you installed ELDK, see F.8 Exporting the ELDK Root File System, p.361.

F.8 Exporting the ELDK Root File System

The ELDK installation includes a root file system. If you already have a root file
system you want to use with your kernel, skip this step and go to F.9 Launching
U-Boot, p.362.

To export the ELDK root file system:

1. Log in to your Linux host as root.

2. Change directories to the /etc directory.

root$ cd /etc

3. Edit the Exports file to add the following line:

/ELDK_installDir/ppc_target_arch *(rw,sync,no_root_squash)

For example, if you are using a PowerPC 82xx target, type:

/ELDK_installDir/ppc_82xx *(rw,sync,no_root_squash)

4. Save the file and close it.

5. Export the file system.

root$ /usr/sbin/exportfs -a

NOTE: Leave the power to your board turned off at this time.

NOTE: This file is blank until you add the line specified in Step 3.

Wind River Workbench
User’s Guide, 2.6 Linux Version

362

6. Restart your portmap and NFS services.

root$ /sbin/service portmap restart
root$ /sbin/service nfs restart

7. Verify that your file system is exported correctly. Type:

$ /usr/sbin/exportfs
/opt/eldk3.0/ppc_82xx

<World>
$

The root file system within the /ELDK_installDir/ppc_target_arch directory is
now exported and ready for mounting.

F.9 Launching U-Boot

You must configure a serial connection to the target, connect, and launch U-boot as
described in this section.

Configuring a Serial Terminal

Configure a serial terminal that you can use to communicate with your target.
Workbench includes a Terminal view you can use to open a serial channel. When
you start Workbench, the Terminal view is included in the group of tabbed views
at the bottom of In the Application Development Perspective.

The following steps describe how to set up the Terminal view to communicate
with your target.

1. Bring the Terminal view to the front of the group by clicking on its tab.

2. Click the Settings button to open the Terminal Settings dialog box.

3. Configure the Terminal Settings dialog box as follows:

a. Set the Connection Type to Serial

b. Set the port to the tty port your are using (either ttyS0 or ttyS1)

c. Configure the Baud Rate to match the speed that you specified in the
U-Boot configuration—for example, if you set the port speed in the U-Boot
file to use 115200, make sure that the serial connection is also set to 115200.

F Configuring Linux 2.4 Targets (Dual Mode)
F.9 Launching U-Boot

363

Fd. Set the Data Bits to 8, Stop Bits to 1, Parity to None, and both Flow In and
Flow Out to None.

4. Click OK to close the Terminal Settings dialog box.

5. Click the Connect button to open the serial channel.

Launching U-Boot

Apply power to your target. If you have defined your serial connection correctly,
the U-Boot initialization sequence begins. After a few seconds, the following
message displays:

Hit any key to stop autoboot: 5

Press a key before the autoboot sequence reaches 0. A prompt appears, as shown
in Figure F-7.

NOTE: If you are not running your Linux host as a root user, make sure that the
permissions are set correctly for you to access the serial port. To set the serial port
permissions correctly, issue one of the following commands (depending on which
port you plan to use:

$ chmod 777 /dev/ttyS0
$ chmod 777 /dev/ttyS1

If you do not have the permissions set correctly, only the NET option is available
in the Connection Type area of the Terminal Settings dialog box.

Wind River Workbench
User’s Guide, 2.6 Linux Version

364

F.10 Configuring U-Boot

Configure U-Boot on your target to download the Linux kernel you built in
F.6.1 Building the Kernel in Workbench as a Linux Kernel Project, p.352. Before you
begin, make sure that you have the following:

■ Your target connected with U-Boot in the flash.

■ Your Linux image on your host with a mountable root file system.

Figure F-7 U-Boot Boot Sequence

NOTE: Figure F-7 shows the startup sequence for U-Boot 1.1.1 on a Wind River
SBC 8260 target. Values may be different with different targets and versions of
U-Boot.

F Configuring Linux 2.4 Targets (Dual Mode)
F.10 Configuring U-Boot

365

F
■ A TFTP server running on your Linux host, which is used to load the kernel

from your host to the target.

■ An IP address on your network that you can assign to your target.

■ An Ethernet cable that connects your network to the correct Ethernet port on
your target (either the FCC port or the SCC port, depending on your board).

■ A serial cable connecting the serial port on your target to the your Linux host,
as described in F.9 Launching U-Boot, p.362.

F.10.1 Setting up the Kernel Files

In F.6.1 Building the Kernel in Workbench as a Linux Kernel Project, p.352, you created
two files. A symbol file called vmlinux, which is located at the root of the kernel
tree, and a bootable image file called either vmlinux.PPCBoot or vmlinux.UBoot,
located in the kernelInstallDir/arch/ppc/boot
/images directory.

Move these files so that U-Boot can find them correctly. Move the
vmlinux.PPCBoot or vmlinux.UBoot file to your TFTP directory. Move the
vmlinux file into the top level of the root file system you intend to export via NFS.

For example, if you exported the standard ELDK root file system as described in
F.8 Exporting the ELDK Root File System, p.361, copy the vmlinux file to
/ELDK_installDir/target_architecture.

As a specific example, if you installed ELDK in the /opt/eldk directory for an IBM
Walnut 405GP target, copy the vmlinux file to /opt/eldk/ppc_4xx.

F.10.2 Configuring U-Boot

The following commands are used to make changes to U-Boot in the flash memory
on your target:

printenv—displays the current U-Boot settings

setenv—modifies U-Boot settings

saveenv—saves any changes you have made to U-Boot settings

NOTE: To load your kernel, you must have a TFTP server actively running on your
Linux host. Make sure that it is running prior to continuing.

Wind River Workbench
User’s Guide, 2.6 Linux Version

366

Enter printenv at the prompt in your serial terminal, press ENTER. Output
displays in the terminal as shown.

=> printenv
bootcmd=version;echo;bootp;setenv bootargs root=/dev/nfs rw
nfsroot=$(serverip):
$(rootpath)ip=$(ipaddr):$(serverip):$(gatewayip):$(netmask):$(hostname):eth0:
off;bootm
bootdelay=5
baudrate=115200
ethaddr=00:a0:1e:a8:7b:cb
serverip=192.168.123.205
stdin=serial
stdout=serial
stderr=serial
ver=U-Boot 1.1.1 (Dec 8 2003 - 18:18:49)

Environment size: 326/262140 bytes
=>

These are the current U-Boot settings that are stored in the flash memory on your
target.

F.10.3 Setting the Host Parameters

Configure the host parameters as follows:

1. Enter setenv serverip ipAddressOfHost.

This sets the serverip parameter to the IP address of your host computer that
is running the TFTP server.

2. Enter setenv netmask netmask.

This sets the netmask parameter to the netmask address of your local network.

3. Enter setenv gatewayip ipAddressOfGateway.

If your network requires a gateway IP address, this command sets that
variable.

NOTE: Make sure that you have an IP address that you can assign to your target.
In addition, make sure you have worked through F.9 Launching U-Boot, p.362, and
have a prompt visible in your serial terminal.

NOTE: The settings displayed above may not match the settings on your target
exactly.

F Configuring Linux 2.4 Targets (Dual Mode)
F.10 Configuring U-Boot

367

F4. Enter setenv rootpath path.

Use this command to set the rootpath parameter to the directory on your host
computer where your root file system is located. If you used the ELDK file
system, described in F.8 Exporting the ELDK Root File System, p.361, set path to
/ELDK_installDir/target_architecture.

5. Enter setenv baudrate baudrate.

This command sets the baudrate parameter to the baud rate of the U-Boot
console connection. If the baud rate you configured U-Boot to use does not
match the value shown in printenv baudrate, use this command to set baudrate
to the rate specified in the U-Boot configuration.

After you change this, the following message displays:

Switch baudrate to baudrate bps and press ENTER ...

This is asking you to change the baud rate on your target to match the baud
rate you specify with the setenv baudrate command. If you set the baud rate
to match the one specified in your U-Boot configuration, press ENTER to
bypass this step.

F.10.4 Setting the Target Parameters

Next, configure the target parameters.

1. Enter setenv ipaddr ipAddress.

This command specifies the IP address that you want to assign to your target.
The IP address you assign must not be used anywhere else on your network.
Contact your System Administrator if you are not sure which IP address to
use.

2. Enter setenv hostname nameOfTarget

Use this command to assign a name to your target.

F.10.5 Setting Root File System Parameters

This section describes how to set up the root file system parameters for an NFS
mounted file system. The following steps describe how to configure the
parameters.

Wind River Workbench
User’s Guide, 2.6 Linux Version

368

1. Enter setenv bootfile imageName.

Use this command to specify the name of your Linux kernel to download.

2. Enter the following command to set the boot arguments:

setenv bootargs root=/dev/nfs rw nfsroot=$(serverip):$(rootpath)
ip=$(ipaddr):$(serverip):$(gatewayip):$(netmask):$(hostname):eth0:off

Enter the command on one line, exactly as it is shown. This will reference all
the settings you configured in previous steps.

F.10.6 Verifying and Saving the Parameters

Enter printenv to display the parameters that you configured. Output displays
similar to that shown below.

=> printenv
bootdelay=5
ethaddr=56:9a:38:2c:60:04
serverip=172.16.17.17
netmask=255.255.0.0
gatewayip=172.16.1.1
rootpath=/opt/eldk/ppc_82xx
baudrate=115200
ipaddr=172.16.8.88
hostname=sbc8260
bootfile=vmlinux.PPCBoot
bootargs=root=/dev/nfs rw nfsroot=172.16.17.17:/opt/eldk/ppc_82xx
ip=172.16.8.88:172.16.17.17:172.16.1.1:255.255.0.0:sbc8260:eth0:off
stdin=serial
stdout=serial

! CAUTION: Setting the boot arguments on your target is critical. Any error in
these parameters may prevent the kernel from booting, or may cause a system
failure at a later time.

! CAUTION: Enter this command on a single line, and make sure that you
include a space between $(rootpath) and ip.

! CAUTION: You must retype the boot arguments every time you change any of
the referenced variables. Otherwise you will be unable to load your Linux
kernel.

F Configuring Linux 2.4 Targets (Dual Mode)
F.11 Downloading the Kernel to the Target

369

F
stderr=serial
ver=U-Boot 1.1.1 (Dec 8 2003 - 18:18:49)

Environment size: 443/262140 bytes
=>

Verify that all the settings are correct for your system. When you are satisfied that
they are, enter saveenv to save the changes. The following output displays:

=> saveenv
Saving Environment to Flash...
Un-Protected 1 sectors
Erasing Flash...
. done
Erased 1 sectors
Writing to Flash... done
Protected 1 sectors
=>

When this is complete, your changes are saved in the flash memory on your target.

F.11 Downloading the Kernel to the Target

When you have finished modifying all the parameters on the target, you are ready
to download the Linux kernel to your target.

Before you begin, make sure that you:

■ Work through all of F.10 Configuring U-Boot, p.364, and have a prompt visible
in the serial terminal

■ Connect an Ethernet cable from your network to the Ethernet port on your
target.

To load the kernel, enter tftpboot at the prompt and press ENTER.

! CAUTION: If you do not save the changes on your target using the saveenv
command, the settings will be lost when you reboot your target. Make sure you
issue the saveenv command to preserve your settings.

NOTE: The following sections describe how to download and launch the Linux
kernel in two steps. To automate the sequence, see Automating the Boot Sequence,
p.372.

Wind River Workbench
User’s Guide, 2.6 Linux Version

370

=> tftpboot
TFTP from server 172.16.17.17; our IP address is 172.16.8.88
Filename 'vmlinux.PPCBoot'.
Load address: 0x400000
Loading: err: c01
###
 ##
done
Bytes transferred = 545719 (853b7 hex)
=>

If the image loads correctly, output similar to the above displays.

F.12 Launching the Linux Kernel

When you have finished downloading the kernel, enter bootm and press ENTER
to launch it.

The Linux initialization sequence begins, and output displays as in the example
shown below.

=> bootm
Booting image at 00400000 ...
 Image Name: Linux-2.4.20wdb
 Created: 2004-04-08 14:12:08 UTC
 Image Type: PowerPC Linux Kernel Image (gzip compressed)
 Data Size: 545655 Bytes = 532.9 kB
 Load Address: 00000000
 Entry Point: 00000000
 Verifying Checksum ... OK
 Uncompressing Kernel Image ... OK
Memory BAT mapping: BAT2=64Mb, BAT3=0Mb, residual: 0Mb
Linux version 2.4.20wdb (user1@machine-linux) (gcc version 2.95.4 20010319
 (prerelease/franzo/20011204)) #1 Thu Apr 8 10:09:58 EDT 2004
On node 0 totalpages: 16384
zone(0): 16384 pages.
zone(1): 0 pages.
zone(2): 0 pages.
Kernel command line: root=/dev/nfs rw nfsroot=172.16.17.17:/opt/eldk/ppc_82xx
ip
=172.16.8.88:172.16.17.17:172.16.1.1:255.255.0.0:sbc8260:eth0:off
Calibrating delay loop... 131.89 BogoMIPS

NOTE: If Ts display instead of #s during the boot process, there is a problem with
your network connection. Check that all cable connections are tight, and confirm
that the network addresses you configured are correct.

F Configuring Linux 2.4 Targets (Dual Mode)
F.12 Launching the Linux Kernel

371

F
Memory: 63316k available (1012k kernel code, 376k data, 52k init, 0k highmem)
Dentry cache hash table entries: 8192 (order: 4, 65536 bytes)
Inode cache hash table entries: 4096 (order: 3, 32768 bytes)
Mount-cache hash table entries: 1024 (order: 1, 8192 bytes)
Buffer-cache hash table entries: 4096 (order: 2, 16384 bytes)
Page-cache hash table entries: 16384 (order: 4, 65536 bytes)
POSIX conformance testing by UNIFIX
Linux NET4.0 for Linux 2.4
Based upon Swansea University Computer Society NET3.039
Initializing RT netlink socket
Starting kswapd
CPM UART driver version 0.01
ttyS00 at 0x0000 is a SMC
ttyS01 at 0x0040 is a SMC
ttyS02 at 0x8100 is a SCC
ttyS03 at 0x8200 is a SCC
pty: 256 Unix98 ptys configured
eth0: SCC ENET Version 0.1, 56:9a:38:2c:60:04
RAMDISK driver initialized: 16 RAM disks of 4096K size 1024 blocksize
loop: loaded (max 8 devices)
NET4: Linux TCP/IP 1.0 for NET4.0
IP Protocols: ICMP, UDP, TCP, IGMP
IP: routing cache hash table of 512 buckets, 4Kbytes
TCP: Hash tables configured (established 4096 bind 4096)
IP-Config: Complete:
 device=eth0, addr=172.16.8.88, mask=255.255.0.0, gw=172.16.1.1,
 host=sbc8260, domain=, nis-domain=(none),
 bootserver=172.16.17.17, rootserver=172.16.17.17, rootpath=
NET4: Unix domain sockets 1.0/SMP for Linux NET4.0.
Looking up port of RPC 100003/2 on 172.16.17.17
Looking up port of RPC 100005/1 on 172.16.17.17
VFS: Mounted root (nfs filesystem).
Freeing unused kernel memory: 52k init
tty_io.c: process 1 (swapper) used obsolete /dev/cua - update software to use
/d
ev/ttyS0
WDB Agent Ready (network:eth0)
INIT: version 2.78 booting
 Welcome to DENX Embedded Linux Environment
 Press 'I' to enter interactive startup.
Mounting proc filesystem: [OK]
Configuring kernel parameters: [OK]
Timed out waiting for time change.
Setting clock : Wed Dec 31 19:00:11 EST 2004 [OK]
Activating swap partitions: [OK]
Setting hostname sbc8260: [OK]
modprobe: Can't open dependencies file /lib/modules/2.4.20wdb /modules.dep
(No such file or directory)
Finding module dependencies: depmod: Can't open /lib/modules/2.4.20wdb
/modules
.dep for writing
[FAILED]
Checking filesystems
[OK]
Mounting local filesystems: [OK]
Enabling swap space: [OK]

Wind River Workbench
User’s Guide, 2.6 Linux Version

372

INIT: Entering runlevel: 3
Entering non-interactive startup
Setting network parameters: [OK]
Bringing up interface lo: [OK]
Starting system logger: [OK]
Starting kernel logger: [OK]
Starting ntpd: [OK]
Starting xinetd: [OK]

sbc8260 login:

At the login prompt, type root and press ENTER. A prompt displays. Once the
prompt displays, your Linux kernel is running properly on your target. To test the
kernel, ping your Linux host from this shell.

bash-2.05# ping 172.16.17.17
PING 172.16.17.17 (172.16.17.17) from 172.16.8.88 : 56(84) bytes of data.
64 bytes from 172.16.17.17: icmp_seq=0 ttl=64 time=483 usec
64 bytes from 172.16.17.17: icmp_seq=1 ttl=64 time=471 usec
64 bytes from 172.16.17.17: icmp_seq=2 ttl=64 time=487 usec

--- 172.16.17.17 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/mdev = 0.471/0.480/0.487/0.019 ms
bash-2.05#

Automating the Boot Sequence

To automate the Linux boot process so that it happens automatically when you
reset the target, follow the steps below.

1. In the serial terminal, enter setenv bootdelay time.

Use this command to specify the number of seconds that you would like the
target to wait before booting.

2. Enter setenv bootcmd tftpboot\; bootm.

This creates the script that will run on the target when booting.

3. Enter saveenv to save the settings.

Now you can reset your target, and in time seconds, your target will
automatically boot.

Once Linux is running on your target, you can connect to it using Workbench.

373

 G
Broken Patch File Example

G.1 The myApache.patch Sample File

This appendix contains the example patch file for Apache, with intentional reject
issues meant to be used with the example procedure in Patch Reject Resolution, p.62.

This patch file has also been produced as a reverse patch (from new to old, instead
of from old to new) for demonstration purposes, which explains why the new text
has the "-" markers instead of the expected "+" markers.

Text File myApache.patch

--- configure.new2006-09-21 23:38:37.000000000 -0700
+++ configure2006-09-21 23:31:30.000000000 -0700
@@ -14,7 +14,6 @@
 # See the License for the specific language governing permissions and
 # limitations under the License.

-## Here is a Simple Patch

 ##
 ## configure -- Apache Autoconf-style Interface (APACI)
@@ -26,9 +25,6 @@
 DIFS=’
 ‘ ;# <<< FUZZ FACTOR >>>

-## Here is some patch lines to
-## demonstrate the fuzz factor
-
 ##
 ## avoid brain dead shells on Ultrix and friends
 ##
@@ -55,9 +51,6 @@

Wind River Workbench
User’s Guide, 2.6 Linux Version

374

 configstatus=config.status
 shadow=’’

 ## <<< SOURCE FUDGE >>>
-## Here are some patch lines to
-## demonstrate source line editing
-
 ##
 ## pre-determine runtime modes
 ##
@@ -80,9 +73,6 @@
 ;;
 esac

 ## <<< REJECT ME >>>
-## Here are some patch lines to
-## demonstrate in-line rejection
-
 ##
 ## determine platform id
 ##
@@ -98,9 +88,6 @@
 echo “Configuring for Apache, Version $APV”
 fi

 ## <<< REJECT ME >>>
-## Here are some more patch lines to
-## also demonstrate in-line rejection
-
 ##
 ## important hint for the first-time users
 ##

Annotated Patch File

01 --- configure.new2006-09-21 23:38:37.000000000 -0700
02 +++ configure2006-09-21 23:31:30.000000000 -0700
03 @@ -14,7 +14,6 @@
04 # See the License for the specific language governing permissions and
05 # limitations under the License.
06
07 -## Here is a Simple Patch
08
09 ##
10 ## configure – Apache Autoconf-style Interface (APACI)
11 @@ -26,9 +25,6 @@
12 DIFS=’
13 ‘ ;# <<< FUZZ FACTOR >>>
14
15 -## Here is some patch lines to
16 -## demonstrate the fuzz factor
17 -

G Broken Patch File Example
G.1 The myApache.patch Sample File

375

G

18 ##
19 ## avoid brain dead shells on Ultrix and friends
20 ##
21 @@ -55,9 +51,6 @@
22 configstatus=config.status
23 shadow=''
24
25 ## <<< SOURCE FUDGE >>>
26 -## Here are some patch lines to
27 -## demonstrate source line editing
28 -
29 ##
30 ## pre-determine runtime modes
31 ##
32 @@ -80,9 +73,6 @@
33 ;;
34 esac
35
36 ## <<< REJECT ME >>>
37 -## Here are some patch lines to
38 -## demonstrate in-line rejection
39 -
40 ##
41 ## determine platform id
42 ##
43
44 ##
45 @@ -98,9 +88,6 @@
46 echo "Configuring for Apache, Version $APV"
47 fi
48
49 ## <<< REJECT ME >>>
50 -## Here are some more patch lines to
51 -## also demonstrate in-line rejection
52 -
53 ##
54 ## important hint for the first-time users
55 ##

Annotation

Line 7: This is a normal patch hunk, that will apply successfully, once the patch is
applied with the Reverse patch option.

Line 13: This hunk has the extra content ;# <<< FUZZ FACTOR >>> two lines
above the inserted text. This hunk will apply once the Maximum fuzz factor is set
to 2.

Line 25: This hunk has the extra content ## <<< SOURCE FUDGE >>> one line
above the inserted text. This cannot be fixed by adjusting the Maximum fuzz
factor. This hunk can be fixed by either adjusting the source file to include the extra
text, or by adjusting the patch file to remove or add the extra text.

Wind River Workbench
User’s Guide, 2.6 Linux Version

376

Line 36: The last two hunks also have extra text that does not allow the hunks to
apply. In the example case, these hunks are included as unresolved rejects, and are
automatically placed in a reject file, or included as inline reject hunks within the
target source file (if that option is selected).

377

 H
Glossary

This glossary contains terms used in Wind River Workbench. For basic Eclipse
terms, see the Eclipse glossary1.

If the term you want is not listed in one of these glossaries, you can search for it
throughout all online documentation.

1. At the top of the Help > Help Contents window, type your term into the
Search field.

2. Click Go. Topics containing the term will appear in the Search Results list.

3. To open a topic in the list, click it.

For more information about online help, see Help > Help Contents >
Wind River Documentation > Eclipse Platform Documentation >
Eclipse Workbench User Guide > Tasks > Using the help system.

active view

The view that is currently selected, as shown by its highlighted title bar. Many
menus change based on which is the active view, and the active view is the focus
of keyboard and mouse input.

1. To access the Eclipse glossary, see Help > Help Contents >
Wind River Documentation > Eclipse Platform Documentation >
Eclipse Platform Plug-inDeveloper Guide > Reference > Other reference information >
Glossary of Terms.

Wind River Workbench
User’s Guide, 2.6 Linux Version

378

back end

Functionality configured into a target server which allows it to communicate with
various target agents, based on the mode of communication that you establish
between the host and the target (network, serial, and so on).

color context

The color assigned to a particular process in the Debug view; this color carries over
to breakpoints in the Editor and to other views that derive their context from the
Debug view.

cross-development

The process of writing code on one system, known as the host, that will run on
another system, known as the target.

debuggable objects

Debuggable objects are the executable application files, kernels, kernel modules,
and libraries that can be accessed by both the host and Linux target. These objects
are ideally compiled without optimization, compiled with the appropriate debug
flags (for example with -g, or -g-dwarf-2), and are not stripped of symbols.

editor

An Editor is a visual component within Wind River Workbench. It is typically
used to edit or browse a file or other resource.

Modifications made in an Editor follow an open-save-close life cycle model.
Multiple instances of an Editor type may exist within a Workbench window.

help key

Press the help key in Workbench to get context-sensitive help. The help key is
host-dependent. On a Windows host, press F1. On a Linux host, press CTRL+F1. On
a Solaris host, press the HELP key.

host shell

A Wind River command shell that provides a command-line environment for GDB
and KGDB debugging. The host shell also provides Tcl scripting support.

H Glossary

379

H

hunk

A hunk is a contiguous group of source lines generated when the diff program is
applied to compare files. The patch program and the Quilt patch program based
upon it use diff to create patches, which are then internally represented as one or
more hunks to apply to a file to patch it.

JDT

Java Development Toolkit provided by the Eclipse organization
(http://www.eclipse.org) and included with Workbench.

JNI

Java Native Interface is a means of calling non-Java code (native code) from within
a Java application.

kernel mode

For Linux 2.6.10 and higher kernels, two connection modes are supported: kernel
and user mode connections. Kernel mode connections allow kgdb debugging of
the kernel in a manner analogous to debugging applications in user mode.

kernel module

A piece of code, such as a device driver, that can be loaded and unloaded without
the need to rebuild and reboot the kernel.

launch configuration

A run-mode launch configuration is a set of instructions that instructs the IDE to
connect to your target and launch a process or application. A debug-mode launch
configuration completes these actions and then attaches the debugger.

object path mappings

The object path mappings specify where the debuggable objects are to be found for
both the debugger running on the host and the Linux target. In Workbench, this is
set within the Target Manager view’s Target Connection Properties.

overview ruler

The vertical borders on each side of the Editor view. Breakpoints, bookmarks, and
other indicators appear in the overview ruler.

http://www.eclipse.org
http://www.eclipse.org

Wind River Workbench
User’s Guide, 2.6 Linux Version

380

perspective

A perspective is a group of views and Editors in the Workbench window. One or
more perspectives can exist in a single Workbench window. Each perspective
contains one or more views and Editors. Within a window, each perspective may
have a different set of views but all perspectives share the same set of Editors.

plug-in

An independent module, available from Wind River, the Eclipse Foundation, or
from many Internet Web sites, that delivers new functionality to Wind River
Workbench without the need to recompile or reinstall it.

program counter

The address of the current instruction when a process is suspended.

project

A collection of source code files, build settings, and binaries that are used to create
a downloadable application or bootable system image.

registry

The registry associates a target server’s name with the network address needed to
connect to that target server, thereby allowing you to select a target server by a
convenient name.

source lookup path

The source lookup path specifies the location that the Workbench debugger uses
to identify and open each source file as it is being debugged. This is set in the
Debug view in Workbench.

system mode

When in system mode, the debugger is focussed on kernel processes and threads.
When a process is suspended, all processes stop. Compare with user mode. System
and user are the two modes of a dual mode connection, and are supported for
Linux 2.4.x kernels only. For 2.6 kernels, separate kernel and user mode
connections are supported.

target agent

The target agent runs on the target, and is the interface between Wind River Linux
and all other Wind River Workbench tools running on the host or target.

H Glossary

381

H

target server

The target server runs on the host, and connects the Wind River Workbench tools
to the target agent. There is one server for each target; all host tools access the
target through this server.

TIPC

Transparent inter-process communication protocol typically used by nodes within
a cluster. Wind River provides a proxy and usermode agent program that allow
Workbench to access targets within the TIPC cluster.

user mode

When in user mode, the debugger is focused on user applications and processes.
When a process is suspended, other processes continue to run. For Linux 2.4.x
kernels, user mode is a part of a dual mode connection. Compare with system
mode. For Linux 2.6.10 an higher kernels, user mode is a separate connection type.
Compare to kernel mode.

view

A view is a visual component within Workbench. It is typically used to navigate a
hierarchy of information (like the resources in your Workbench), open an Editor,
or display properties for the active Editor.

Modifications made in a view are saved immediately. Only one instance of a
particular view type may exist within a Workbench window.

workspace

The directory where your projects are created. To share the build objects of your
projects with a target, the workspace (directory) may be in a file system that is
exported to the target, or you may redirect build objects from your workspace to a
location exported to the target.

Wind River Workbench
User’s Guide, 2.6 Linux Version

382

383

Index

A
adding

application code to projects 108
new files to projects 109
subprojects 93

annotations in patches 64
Application Development perspective 23
application project (Embedded) 18
application project (Wind River Linux) 18
attaching

to core file 249
to kernel core 75
to running process 214

B
back end, target server 169
ball sample program 27
basename mappings 173
batch mode, host shell 319
baudrate 367
Bookmarks tab 32
bootargs 368
bootfile 368
bootloader

 see U-Boot 364

bootm 370
automating boot sequence 372

breakpoints
conditional 221
converting to hardware 222
data 221
disabling 225
expression 221
hardware 221
host shell 309
line 220
refreshing 224
removing 225
restricted 220
unrestricted 220

Breakpoints view 219
build

applications for different boards 145
architecture-specific functions 149
flexible managed 127
library for test and release 146
make rule in Project Navigator 151
management 127
output

disabling prompt to add to ClearCase 291
properties

accessing 136
dialog 136

remote 160
remote connection 160

Wind River Workbench
User’s Guide, 2.6 Linux Version

384

remote, setting up environment 159
spec 138
standard managed 127
support 127

disabled 128
target

excluding with regular expressions 133
User-defined 128

build nodes (Wind River Linux) 49

C
ClearCase

disabling prompt to add build output files 291
installing plug-ins 279
using with Workbench 289

colored views 233
command line

import projects (wrws_import) 337
update workspaces (wrws_update) 333

compiler
flags, add 144

conditional breakpoints 221
-configuration startup option 254
connection type 19
Console view 212
context pointer 233
controlling multiple launches 207
cooperative debugging (Java and JNI) 239
core files

acquiring 248
attaching Workbench 249
general 247

creating custom kernel module 54
cross-compiler prefix (Wind River Linux) 341
cross-development concepts 11

D
data breakpoints 221
-data startup option 252
debug modes 19, 235

debug server
loading symbols 172

Debug view 228
debugger

disconnecting and terminating processes 237
single-stepping through code 234

deleting
project nodes 114
target nodes 114

deploy, automated target 66
derived resource, not adding to ClearCase 291
development shell - see wrenv
Device Debug perspective 26
disabled build support 128
disabling breakpoints 225
Disassembly view 238

opening automatically 238
opening manually 238

dual mode debugging 19

E
Eclipse

using Workbench in 283
Editor 121

context pointer 233
ELDK

including in system path 347
installing 347

emacs-style editing, host shell 317
Embedded Linux Application project 18, 91
Embedded Linux Kernel project 18, 91
environment commands (Launch Control) 211
environment variables

setting with wrenv 301
error condition command (Launch Control) 209
Error Log view 265, 267
Exec Path on Target

troubleshooting 262
execution environments, project-specific 94
exporting root file system

ELDK 361
expression breakpoints 221
external location for project 44

 Index

385

Index

F
File Navigator view 120
file system configuration (Wind River Linux) 55
files

manipulating 113
find and replace 123

G
gatewayip 366
GDB

commands 308
GDB/MI APIs 307
interpreter (host shell) 308
list of commands 309
using with host shell 298

GNU debugger (see GDB)

H
hardware

breakpoints 221
requirements 345

Hello World tutorial 25
help system

problems displaying on Solaris 255
problems displaying on Windows 256

host configuration for USB target connection 182
host parameters

baudrate 367
gatewayip 366
netmask 366
rootpath 367
serverip 366

host shell
batch mode 319
breakpoints 309
commands 301
definition 295
detailed commands 301
environment variables 303

interpreters 303
starting 302
stopping 302

hostname 367

I
IDE

wrenv 301
importing

build settings 109
resources 108

Include Browser view 121
install.properties

wrenv 301
ipaddr 367

J
Java applet 204
Java application 204
Java project 205
Java-JNI cooperative debugging 239
JNI 239

K
Kernel Configuration (Wind River Linux) 51
Kernel Configuration node (Wind River Linux) 49
kernel files

moving for U-Boot 365
Kernel GNU Debugger (see KGDB)
kernel hooks patch 350
kernel metrics 243
kernel mode debugging 19, 72
kernel modules 78

custom 54
kernel modules, platform 53
kernel reconfiguration (Wind River Linux) 51
kernel signals 243
kernel.org 348

Wind River Workbench
User’s Guide, 2.6 Linux Version

386

KGDB
and Workbench 69
connection dialog 73
connection types 72
Ethernet connection 70
rebooting 77
serial connection 71
using with host shell 299

L
launch (terminology) 208
launch configurations

creating 198
Launch Control 207
launch sequence 208
launching

programs, manually 207
line breakpoints 220
linked resources

path variable 131
linking project nodes, moving and 113
Linux host setup 345
Linux kernel

boot sequence, automating 372
building

from command line 358
with Workbench 352

configuring 351–358
downloading to target 369

tftpboot 369
Kernel Configuration menu

from command line 359
with Workbench 355

Kernel Hacking dialog
from command line 359
with Workbench 357

launching 370
automated boot 372
bootm 370

loading onto target 369–372
obtaining

kernel.org 348

patching 349
kernel hooks patch 350

pImage build target 354
root file system

ELDK 361
source code

downloading 349
extracting 349
kernel hooks patch 350
patching 349

uImage build target 354
versions supported 346

loading symbols to debug server
specifying an object file 172

logical nodes 112

M
make rule in Project Navigator 151
makefile

build properties 138
managed build

flexible 127
standard 127

managing patches 58
memory

cache size, target server 171
menu, Navigate 111
mode

debug type 19
modules, kernel 78
moving kernel module project 55
multiple

processes, monitoring 232
target operating systems or versions 137

multiple launch control 207

 Index

387

Index

N
Native Application

project 18, 91, 103
application code 106
creating 104

Navigate menu 111
navigation 110
netmask 366
New Connection wizard 166
nodes

moving and (un-)linking project 113
resources and logical 112

O
object path mappings

why they are required 172
opening

new window 110
project

in new window 110
properties dialog, build 136

operating systems, multiple 137

P
pango error 255
patch manager 58
patches

accepting rejects 63
applying 58, 61
browsing 60
managing 58
reject resolugion 62
reviewing rejects 63
viewing annotations 64
WDB agent 349

file permissions, changing 351
Workbench 345

path variable 131
pathname prefix mappings 173

perspective
Application Development 23

pImage build target 354
platform

kernel modules 53
platform project 47
plug-ins

activating 281
adding an extension location 280
creating a directory structure 278
creating a Workbench plug-in for Eclipse 283
installing ClearCase 279
web sites 278

post-launch command (Launch Control) 209
pre-launch command (Launch Control) 209
processes

attaching to running 214
disconnecting debugger 237

project
application code 90
build

properties
accessing 136

remote 160
closing 109, 110
create

for read-only sources 258
creating 108
creating new 89
Embedded Linux Application 18, 91
Embedded Linux Kernel 18, 91
execution environment 94
external location 44
files, version control of 290
go into 110
Native Application 18, 91, 103
nodes

manipulating 113
moving and (un-)linking 113

opening 109
platform 47
project structures 92
properties

creating project.properties file 94
limitations of project.properties files 95

Wind River Workbench
User’s Guide, 2.6 Linux Version

388

using from the command line 95
using with a shell 95
wrenv syntax 94

scoping 110
User-defined 18, 91, 128
Wind River Linux Application 18, 92
Wind River Linux Platform 18, 47, 92

project files (Wind River Linux) 50
Project Navigator

move, copy, delete 111
moving and (un-)linking project nodes 113
target nodes, manipulating 114
user-defined build-targets 151

project.properties
creating 94
limitations 95
using from the command line 95
using with a shell 95
wrenv syntax 94

proxy host 325

R
read-only sources

creating projects for 258
reboot with KGDB connection 77
redirection root directory

with ClearCase 290
registry 175

changing default 177
data storage 176
error, unreachable 253
launching the default 176
remote, creating 176
shutting down 177
wtxregd 176

regular expressions
to exclude contents of build target 133

remote
connection

rlogin 162
SSH 162

remote build 160
setting up environment 159

remote connection 160
remote Java application 204
remote Java debugging 206
remote Java launch and connect 204
remote kernel metrics (RKM) 243
removing breakpoints 225
replace 123
requirements

hardware 345
tools 345

resources and logical nodes 112
Retriever 123
RKM see remote kernel metrics (RKM)
rlogin remote build connection 162
root file system

exporting 361
root file system parameters

bootargs 368
bootfile 368
setting for U-Boot 367

rootpath 367
RPM configuration (Wind River Linux) 55

S
sample programs

ball 27
search 123
serial terminal

configuring 362
serverip 366
set, working 111
setting breakpoints

restricted 220
unrestricted 220

setup
Linux host 345

sh.exe
Z shell 302

shell
development 301
host

 Index

389

Index

detailed commands 301
see also host shell

Z (zsh) 302
source lookup path

adding sources 202
editing 237

spec
build 138

SSH remote build connection 162
startup, Workbench 22
static analysis

description 117
StethoScope 244
sub-launch 207
subprojects

adding 93
switching interpreter (host shell) 303
Symbol Browser view 119
system mode

compared with task mode 235

T
target

communicating with
serial terminal 362

deployment, automated 66
downloading Linux kernel 369
loading Linux kernel 369–372
operating systems, multiple versions 137
reconnect with KGDB 77
reconnection parameters (KGDB) 77
tftpboot 369
TIPC 186
USB 179

Target Manager view 166
basename mappings 173
New Connection wizard 166
object path mappings 172
pathname prefix mappings 173
shared connection configuration 174

target parameters
hostname 367
ipaddr 367
setting for U-Boot 367

target server
back end settings 169
memory cache size 171
timeout options 171

Tcl interpreter (host shell) 305
team

defining a path variable 131
sharing project.properties file 94

text search 123
tftpboot 369
tgtsvr command (TIPC) 190
tgtsvr options 170
TIPC

kernel module 187
overview 185
proxy 188
targets 186

tools
debugger 346
emulator 346
flash programmer 346
Linux kernel versions 346
requirements 345

tools, development
communications, managing 165

troubleshooting
download failed, wrong build spec 262
Error Log view 265, 267
exception on attach 261
Exec Path on Target 262
help system

problems displaying on Solaris 255
problems displaying on Windows 256

JDT dependency 255
launch configurations 264
pango error 255
registry unreachable 253
resetting Workbench defaults 256
running a process 263
target connection 260
workspace cannot be locked 254

Wind River Workbench
User’s Guide, 2.6 Linux Version

390

tutorial
ball sample program 27
Hello World 25
Workbench for Linux 22–45

Type Hierarchy view 120

U
U-Boot

configuring
for downloading Linux kernel 364

host parameters, setting 366
baudrate 367
gatewayip 366
netmask 366
rootpath 367
serverip 366

kernel files, locating 365
launching 362
root file system parameters, setting 367

bootargs 368
bootfile 368

serial terminal, configuring 362
settings 365
target parameters, setting 367

hostname 367
ipaddr 367

uImage 354
ulimit command and core files 248
USB

host configuration 182
target connection 179

user mode debugging 19
User Space Configuration (Wind River Linux) 55
User Space Configuration node 49
User-defined

build 128
project 18, 91, 98

usermode-agent
building 45
reference page 191
running 36

V
variables

environment 301
version control, adding Workbench project files to

290
VIO see virtual I/O (VIO)
virtual I/O (VIO) 212
vi-style editing, host shell 314

W
WDB agent

kernel patch for 349
permissions, changing 351

Wind River Linux Application project 18, 92
Wind River Linux Platform 47
Wind River Linux Platform project 18, 92
Wind River proxy 325
Workbench

Application Development perspective
creating a project 27

bookmarks
creating 31
finding 32
removing 34
viewing 32

breakpoints
modifying 44
running to 43
setting 43

building a project
build errors 33
rebuilding 34

building Linux kernel with 352
comparing files 34
creating a project 27
Editor

bookmarks, removing 34
parameter hints 30

editors 9
Embedded Debug perspective 39
GUI elements 6

 Index

391

Index

help system
problems displaying on Solaris 255
problems displaying on Windows 256

moving and sizing views 8
navigating in project source 29
Outline view

bookmarks, creating 31
patches 345
perspectives 9

Embedded Debug perspective 39
project files, adding to version control 290
project source

bookmarks, creating 31
bookmarks, finding 32
bookmarks, removing 34
bookmarks, viewing 32
breakpoints, modifying 44
breakpoints, running to 43
breakpoints, setting 43
file history, viewing 34
navigating in 29
Outline view 29
parameter hints 30
stepping 42
string, finding 30
symbol, finding 29
viewing 28

rebuilding a project 34
running sample program

with Embedded Debug perspective 41
starting 22

workspace, specifying 22
stepping in project source 42
tabbed notebooks 8
terminology 6
using in an Eclipse environment 283
using with ClearCase 289
viewing project source 28
views 8

Breakpoints 219
colored 233
Debug 228
Disassembly 238
Editor 121
Error Log 265, 267

File Navigator 120
Include Browser 121
Outline view 29
Symbol Browser 119
Type Hierarchy 120

windows 7
workspace 22

working sets 118
using 111

workspace
starting Workbench with a new 252

wrenv 301
IDE startup 301
overview 301
syntax of project.properties file 94

wrproxy command 325
wrws_import

reference page 338
script 337

wrws_update
reference page 334
script 333

wtxregd
using a remote registry 176

Z
Z shell 302

	Wind River Workbench User's Guide
	Contents
	Part I Introduction
	1 Overview
	1.1 Introduction
	1.2 Wind River Workbench for Linux Documentation
	1.3 Roadmap to the Workbench User’s Guide (Linux Version)
	1.4 Document Conventions
	1.5 Eclipse Concepts
	Windows
	Views
	Tabbed Notebooks
	Moving and Maximizing Views
	Editors
	Perspectives
	Workspaces

	1.6 Understanding Cross-Development Concepts
	Hardware in a Cross-Development Environment
	Working on the Host
	Connecting the Target to the Host
	Advantages of Using Wind River Workbench for Linux Development

	1.7 Workbench for Linux Development

	Part II Getting Started
	2 Introduction
	2.1 Building Linux Projects
	Types of Projects

	2.2 Linux Version Debugging Modes

	3 Developing Applications (User Mode)
	3.1 Introduction
	3.2 Starting Workbench
	3.3 Using Workbench
	3.4 Creating a Project
	Creating a Wind River Linux Application Project
	Importing Existing Source Files

	3.5 Using the Editor
	Opening a Source File
	3.5.1 Navigating in Source
	3.5.2 Using Code Completion
	3.5.3 Getting Parameter Hints
	3.5.4 Using Bracket Matching
	3.5.5 Using Bookmarks to Mark Errors

	3.6 Configuring Project Properties
	3.7 Building the Project
	3.7.1 Building ball With an Error
	3.7.2 Displaying File History
	3.7.3 Rebuilding the Project

	3.8 Configuring a Target Connection
	3.8.1 Configure NFS
	Redirect Build Output to the Target Root

	3.8.2 Run the Usermode Agent on the Target

	3.9 Connecting to the Target
	3.10 Running and Debugging on the Target
	3.10.1 Using the Device Debug Perspective
	3.10.2 Stepping to Initialize the Grid Array
	3.10.3 Setting and Running to a Breakpoint
	3.10.4 Modifying the Breakpoint

	3.11 Creating Projects at External Locations
	Building the Usermode Agent

	4 Configuring Wind River Linux Platforms
	4.1 Wind River Linux Platform Projects
	Creating a Wind River Linux Platform Project
	Contents of a Wind River Linux Platform Project

	4.2 Configuring Wind River Linux Platform Kernels
	Kernel Configuration Node

	4.3 Adding Kernel Modules to the Platform
	Creating a Custom Kernel Module
	Moving the Kernel Module Project

	4.4 Configuring User Space
	Removing and Adding Packages
	Debugging Packages
	Building Packages

	4.5 Managing Patches
	Applying Patches
	Patch Reject Resolution
	Accepting Rejects, Inline or into Reject Files
	Review the Accepted Rejections in the Tasks List
	Viewing Patching Annotation using Workbench

	4.6 Automating Target Deployment

	5 Kernel Debugging (Kernel Mode)
	5.1 Introduction
	5.2 Configuring the Target for Kernel Mode Debugging
	5.2.1 Installing KGDB on the Target
	5.2.2 Booting the Target

	5.3 Kernel Mode Debugging
	5.3.1 Types of KGDB Connections
	5.3.2 Creating a KGDB Connection
	5.3.3 Attaching to Core and Debugging the Kernel
	5.3.4 Rebooting the Wind River Linux Target
	Configuring Target Reconnection Parameters

	5.4 Working with Kernel Modules
	5.4.1 Build the Sample Module
	5.4.2 Install the Sample Module
	5.4.3 Debugging Kernel Modules
	5.4.4 Set a Hardware Breakpoint at Module Load
	5.4.5 Debug Kernel Module at Entry

	Part III Projects
	6 Projects Overview
	6.1 Introduction
	6.2 Workspace and Project Location
	6.3 Creating New Projects
	6.3.1 Subsequent Modification of Project Creation Wizard Settings
	6.3.2 Projects and Application Code

	6.4 Overview of Preconfigured Project Types
	Embedded Linux Kernel Project
	Embedded Linux Application Project
	Native Application Project
	User-Defined Projects
	Wind River Linux Application Project
	Wind River Linux Platform Project

	6.5 Projects and Project Structures
	6.5.1 Adding Subprojects to a Project
	Removing Subprojects

	6.6 Project-Specific Execution Environments
	6.6.1 Using a project.properties file with a Shell
	6.6.2 Limitations When Using project.properties Files

	7 Creating User-Defined Projects
	7.1 Introduction
	7.2 Creating and Maintaining Makefiles
	7.3 Creating a User-Defined Project
	7.4 Configuring a User-Defined Project
	7.4.1 Configuring Build Support
	7.4.2 Configuring Build Targets
	7.4.3 Configuring Build Specs
	7.4.4 Configuring Build Macros

	8 Native Application Projects
	8.1 Introduction
	8.2 Creating a Native Application Project
	8.3 Application Code for a Native Application Project

	9 Working in the Project Navigator
	9.1 Introduction
	9.2 Creating Projects
	9.3 Adding Application Code to Projects
	Importing Resources
	Adding New Files to Projects

	9.4 Opening and Closing Projects
	Closing a Project

	9.5 Scoping and Navigation
	9.6 Moving, Copying, and Deleting Resources and Nodes
	9.6.1 Resources and Logical Nodes
	9.6.2 Manipulating Files
	9.6.3 Manipulating Project Nodes
	Moving and (Un-)Referencing Project Nodes
	Deleting Project Nodes

	9.6.4 Manipulating Target Nodes
	Deleting Target Nodes

	Part IV Development
	10 Navigating and Editing
	10.1 Introduction
	10.2 Wind River Workbench Context Navigation
	The Symbol Browser
	The Outline View
	The File Navigator
	Type Hierarchy View
	Include Browser

	10.3 The Editor
	Code Templates
	10.3.1 Configuring a Custom Editor

	10.4 Search and Replace: The Retriever
	Initiating Text Retrieval

	10.5 Static Analysis
	Sharing Static Analysis Data with a Team

	11 Building Projects
	11.1 Introduction
	11.2 Configuring Workbench Managed Builds
	11.2.1 Configuring Standard Managed Builds
	11.2.2 Configuring Flexible Managed Builds
	Adding Build Targets to Flexible Managed Builds
	Modifying Build Targets
	Leveling Attributes
	Understanding Flexible Managed Build Output

	11.3 Configuring User-Defined Builds
	11.4 Accessing Build Properties
	11.4.1 Workbench Global Build Properties
	11.4.2 Project-specific Build Properties
	11.4.3 Folder, File, and Build Target Properties
	11.4.4 Multiple Target Operating Systems and Versions

	11.5 Build Specs
	11.6 Makefiles
	11.6.1 Derived File Build Support
	The Yacc Example
	General Approach

	12 Building: Use Cases
	12.1 Introduction
	12.2 Adding Compiler Flags
	Add a Compiler Flag by Hand
	Add a Compiler Flag with GUI Assistance

	12.3 Building Applications for Different Target Architectures
	12.4 Creating Library Build-Targets for Testing and Release
	12.5 Architecture-Specific Implementation of Functions
	12.6 User-Defined Build-Targets in the Project Navigator
	Custom Build-Targets in User-Defined Projects
	Custom Build-Targets in Workbench Managed Projects
	Custom Build Targets in Wind River Linux Platform Projects
	User Build Arguments

	12.7 Custom Build Specs for Wind River Linux Platform Projects
	12.8 Stepping Through Assembly Code
	12.9 Developing on Remote Hosts
	12.9.1 General Requirements
	12.9.2 Remote Build Scenarios
	Local Windows, Remote UNIX:
	Local UNIX, Remote UNIX:
	Local UNIX, Remote Windows:

	12.9.3 Setting Up a Remote Environment
	12.9.4 Building Projects Remotely
	12.9.5 Running Applications Remotely
	12.9.6 Rlogin Connection Description
	12.9.7 SSH Connection Description

	Part V Target Management
	13 Connecting to Targets
	13.1 Introduction
	13.2 The Target Manager View
	13.3 Defining a New Connection
	13.3.1 Target Server Connection Page

	13.4 Establishing a Connection
	13.5 Connection Settings
	Connection Template
	Back End Settings
	Target File System and Kernel
	Advanced Options (KGDB Only)
	Advanced Target Server Options
	Command Line
	13.5.1 Target Operating System Settings
	13.5.2 Object Path Mappings
	13.5.3 Specifying an Object File
	Pathname Prefix Mappings
	Basename Mappings

	13.5.4 Target State Refresh Page
	Available CPU(s) on Target Board
	Initial Target State Query and Settings
	Target State Refresh Settings
	Listen to execution context life-cycle events

	13.5.5 Connection Summary Page (Target Server Connection)

	13.6 The Registry
	13.6.1 Launching the Registry
	13.6.2 Remote Registries
	Creating a Remote Registry

	13.6.3 Shutting Down the Registry
	13.6.4 Changing the Default Registry

	14 Connecting with USB
	14.1 Introduction
	14.2 Configuring a Target for USB Connection
	Target Configuration for a Linux Kernel 2.6 Host
	Target Configuration for a Linux Kernel 2.4 Host
	Target Configuration for a Windows Host

	14.3 Configuring a Host for USB Connection
	Linux 2.6 Host Configuration
	Linux 2.4 Host Configuration
	Windows Host Configuration

	15 Connecting with TIPC
	15.1 Overview
	15.2 Configuring TIPC Targets
	15.2.1 Installing the TIPC Kernel Module
	15.2.2 Running the usermode-agent

	15.3 Configuring a TIPC Proxy
	15.4 Configuring Your Workbench Host
	15.5 usermode-agent Reference

	Part VI Debugging
	16 Launching Programs
	16.1 Introduction
	16.2 Creating a Launch Configuration
	16.2.1 Editing an Attach to Target Launch Configuration
	The Main Tab
	The Projects to Build Tab
	The Source Tab
	The Common Tab

	16.2.2 Creating a Process Launch Configuration
	16.2.3 The Main Tab
	16.2.4 The Projects to Build Tab
	16.2.5 The Debug Options Tab
	16.2.6 The Source Tab
	16.2.7 The Common Tab
	16.2.8 Using Launch Configurations to Run Programs
	Increasing the Launch History
	Troubleshooting Launch Configurations

	16.3 Remote Java Launches
	16.4 Launching Programs Manually
	16.5 Controlling Multiple Launches
	Terminology
	Configuring a Launch Sequence
	Pre-Launch, Post-Launch, and Error Condition Commands

	16.6 Launches and the Console View
	Launches and the Console View
	Console View Output

	16.7 Attaching the Debugger to a Running Process
	16.7.1 Running Processes

	16.8 Attaching to the Kernel
	16.8.1 Attaching to Kernel Core (KGDB)
	16.8.2 Attaching the Kernel in System Mode (Dual-Mode Agent)

	16.9 Suggested Workflow

	17 Managing Breakpoints
	17.1 Introduction
	17.2 Types of Breakpoints
	17.2.1 Line Breakpoints
	Creating Line Breakpoints

	17.2.2 Expression Breakpoints
	17.2.3 Hardware Breakpoints
	Adding Hardware Instruction Breakpoints
	Adding Hardware Data Breakpoints
	Disabling and Removing Hardware Breakpoints
	Converting Breakpoints to Hardware Breakpoints
	Comparing Software and Hardware Breakpoints

	17.3 Manipulating Breakpoints
	17.3.1 Exporting Breakpoints
	17.3.2 Importing Breakpoints
	17.3.3 Refreshing Breakpoints
	17.3.4 Disabling Breakpoints
	17.3.5 Removing Breakpoints

	18 Debugging Projects
	18.1 Introduction
	18.2 Using the Debug View
	18.2.1 Configuring Debug Settings for a Custom Editor
	18.2.2 Understanding the Debug View Display
	How the Selection in the Debug View Affects Activities
	Monitoring Multiple Processes
	Colored Views

	18.2.3 Stepping Through a Program
	Additional Run Control Options

	18.2.4 Using Debug Modes
	18.2.5 Setting and Recognizing the Debug Mode of a Connection
	Switching Debug Modes

	18.2.6 Debugging Multiple Target Connections
	18.2.7 Disconnecting and Terminating Processes
	18.2.8 Changing Source Lookup Settings

	18.3 Using the Disassembly View
	18.3.1 Opening the Disassembly View
	18.3.2 Understanding the Disassembly View Display

	18.4 Java-JNI Cooperative Debugging
	Configuring a User Mode Connection for Cooperative Debugging
	Creating a Launch Configuration for Cooperative Debugging
	Debugging In Java and Native Modes
	Conditions that Disable the JDT Debugger
	Re-Enabling the JDT Debugger

	18.5 Remote Kernel Metrics
	Building and Running the RKM Monitor
	Running the RKM Monitor From the Command Line
	Attach StethoScope to the RKM Monitor
	Using StethoScope to View Remote Kernel Metrics

	18.6 Run/Debug Preferences

	19 Analyzing Core Files
	19.1 Introduction
	19.2 Acquiring Core Dump Files
	19.3 Attaching Workbench to a Core File
	Core File Analysis
	Ending the Session

	20 Troubleshooting
	20.1 Introduction
	20.2 Startup Problems
	Workspace Metadata is Corrupted
	.workbench-2.6 Directory is Corrupted
	Registry Unreachable (Windows)
	Workspace Cannot be Locked (Linux and Solaris)
	20.2.1 Pango Error on Linux

	20.3 General Problems
	20.3.1 JDT Dependency
	20.3.2 Help System Does Not Display on Linux
	20.3.3 Help System Does Not Display on Windows
	20.3.4 Resetting Workbench to its Default Settings

	20.4 Error Messages
	20.4.1 Project System Errors
	Project Already Exists
	Cannot Create Project Files in Read-only Location

	20.4.2 Build System Errors
	Building Projects While Connected to a Target

	20.4.3 Target Manager Errors
	Troubleshooting Connecting to a Target
	Exception on Attach Errors
	Error When Running a Task Without Downloading First
	Downloading an Output File Built with the Wrong Build Spec
	Error if Exec Path on Target is Incorrect
	Troubleshooting Running a Process

	20.4.4 Launch Configuration Errors
	Troubleshooting Launch Configurations

	20.4.5 Static Analysis Errors

	20.5 Error Log View
	20.6 Error Logs Generated by Workbench
	20.6.1 Creating a ZIP file of Logs
	20.6.2 Eclipse Log
	20.6.3 DFW GDB/MI Log
	20.6.4 DFW Debug Tracing Log
	20.6.5 Debugger Views GDB/MI Log
	20.6.6 Debugger Views Internal Errors Log
	20.6.7 Debugger Views Broadcast Message Debug Tracing Log
	20.6.8 Target Server Output Log
	20.6.9 Target Server Back End Log
	20.6.10 Target Server WTX Log
	20.6.11 Target Manager Debug Tracing Log

	20.7 Technical Support

	Part VII Updating
	20 Integrating Plug-ins
	20.1 Introduction
	20.2 Finding New Plug-ins
	20.3 Incorporating New Plug-ins into Workbench
	20.3.1 Creating a Plug-in Directory Structure
	20.3.2 Installing a ClearCase Plug-in

	20.4 Disabling Plug-in Functionality
	20.5 Managing Multiple Plug-in Configurations

	21 Using Workbench in an Eclipse Environment
	21.1 Introduction
	21.2 Recommended Software Versions and Limitations
	21.3 Setting Up Workbench
	21.4 Using CDT and Workbench in an Eclipse Environment
	21.4.1 Workflow in the Project Navigator
	21.4.2 Workflow in the Build Console
	21.4.3 Workflow in the Editor
	21.4.4 Workflow for Debugging

	22 Using Workbench with Version Control
	22.1 Introduction
	22.2 Using Workbench with ClearCase Views
	22.2.1 Adding Workbench Project Files to Version Control

	Part VIII Reference
	A Host Shell
	A.1 Overview
	A.2 Host Shell Commands and Options
	A.2.1 Host Shell Basics
	Initializing Your Environment
	Starting the Host Shell
	Host Shell Initialization Script
	Stopping the Host Shell
	Switching Interpreters
	Setting Shell Environment Variables

	A.2.2 Root Path Mapping
	A.2.3 Using the Tcl Interpreter
	Running the Tcl Interpreter
	Scripting the GDB Interpreter with Tcl
	Accessing Low Level GDB/MI APIs

	A.2.4 Using the GDB Interpreter
	General GDB Commands
	Working with Breakpoints
	Specifying Files to Debug
	Running and Stepping Through a File
	Displaying Disassembler and Memory Information
	Examining Stack Traces and Frames
	Displaying Information and Expressions
	Displaying and Setting Variables

	A.2.5 Using the Built-in Line Editor
	vi-Style Editing
	emacs-Style Editing
	Command and Path Completion

	A.2.6 Running the Host Shell in Batch Mode
	A.2.7 Recording and Replaying Host Shell Commands
	A.2.8 Extending the GDB interpreter
	A.2.9 Deprecated Commands

	B Configuring a Wind River Proxy Host
	B.1 Overview
	B.2 Configuring wrproxy
	Configuring wrproxy Manually
	Creating a wrproxy Configuration Script

	B.3 wrproxy Command Summary
	Invocation Commands
	Configuration Commands

	C Command-line Updating of Workspaces
	C.1 Overview
	C.2 wrws_update Reference
	Execution
	Options

	D Command-line Importing of Projects
	D.1 Overview
	D.2 wrws_import Reference

	E Wind River Cross Compiler Prefixes
	Cross Compiler Prefixes for Supported Architectures

	F Configuring Linux 2.4 Targets (Dual Mode)
	F.1 Introduction
	F.2 Setting Up the Linux Host
	F.3 Tools
	Summary
	Target
	Cross-compiler
	Bootloaders
	Kernels
	Debugger and Emulator or Flash Programmer

	F.4 Obtaining a Kernel
	F.5 Applying the WDB Patch
	F.6 Configuring the Kernel
	F.6.1 Building the Kernel in Workbench as a Linux Kernel Project
	Adding a Build Target to the Project
	Building a Bootable Kernel Image

	F.6.2 Building the Kernel from the Command Line

	F.7 Preparing to Load the Linux Kernel
	Before You Begin

	F.8 Exporting the ELDK Root File System
	F.9 Launching U-Boot
	Configuring a Serial Terminal
	Launching U-Boot

	F.10 Configuring U-Boot
	F.10.1 Setting up the Kernel Files
	F.10.2 Configuring U-Boot
	F.10.3 Setting the Host Parameters
	F.10.4 Setting the Target Parameters
	F.10.5 Setting Root File System Parameters
	F.10.6 Verifying and Saving the Parameters

	F.11 Downloading the Kernel to the Target
	F.12 Launching the Linux Kernel
	Automating the Boot Sequence

	G Broken Patch File Example
	G.1 The myApache.patch Sample File
	Text File myApache.patch
	Annotated Patch File

	H Glossary

	Index

