
Wind River Workbench

HOST SHELL USER’S GUIDE

®

2.6

Wind River Workbench Host Shell User's Guide

Copyright © 2006 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/product_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Workbench Host Shell User’s Guide, 2.6

28 Sep 06
Part #: DOC-15898-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

1 Introduction .. 1

1.1 Introduction ... 1

1.2 Host Shell Modes ... 2

1.3 Starting the Host Shell .. 2

1.3.1 Starting the Host Shell from the Command Prompt 2

Host Shell Startup Options ... 3

1.3.2 Starting the Host Shell from Workbench .. 4

1.4 Switching Interpreters ... 4

1.5 Setting Shell Environment Variables ... 5

Path Mapping ... 8

1.6 Running the Host Shell in Batch Mode ... 9

1.7 Stopping the Host Shell .. 10

2 Using the Command Interpreter ... 11

2.1 Overview .. 11

2.2 General Commands ... 12

Wind River Workbench
Host Shell User’s Guide, 2.6

iv

2.3 Displaying Target Agent Information .. 13

2.4 Working with Memory .. 14

2.5 Displaying Object Information ... 15

2.6 Working with Symbols .. 15

2.6.1 Accessing a Symbol’s Contents and Address 15

2.6.2 Symbol Value Access ... 16

2.6.3 Symbol Address Access ... 17

2.6.4 Special Consideration of Text Symbols ... 17

2.7 Displaying, Controlling, and Stepping Through Tasks 17

2.8 Setting Shell Context Information .. 18

2.9 Displaying System Status ... 19

2.10 Using and Modifying Aliases .. 20

2.11 Launching RTPs .. 22

2.11.1 Redirecting Output to the Host Shell .. 22

2.11.2 Monitoring and Debugging RTPs .. 23

2.11.3 Setting Breakpoints .. 24

2.12 Examples .. 24

3 Using the C Interpreter .. 27

3.1 Overview .. 27

3.2 Data Types .. 28

3.3 Expressions .. 30

3.3.1 Literals .. 30

3.3.2 Variable References .. 30

3.3.3 Operators ... 31

 Contents

v

3.3.4 Function Calls ... 31

3.3.5 Arguments to Commands ... 33

3.4 Assignments .. 33

3.4.1 Typing and Assignment .. 33

3.4.2 Automatic Creation of New Variables .. 34

3.5 Comments .. 34

3.6 Strings ... 35

3.7 Ambiguity of Arrays and Pointers .. 35

3.8 Pointer Arithmetic .. 36

3.9 C Interpreter Limitations .. 37

3.10 C Interpreter Primitives .. 38

3.10.1 Managing Tasks .. 38

3.10.2 Displaying System Information ... 40

3.10.3 Modifying and Debugging the Target ... 41

3.11 Running Target Routines from the Host Shell ... 43

Invocations of VxWorks Subroutines .. 43
Invocations of Application Subroutines ... 43
Resolving Name Conflicts Between Host and Target 44

3.12 Examples .. 44

4 Using the Tcl Interpreter .. 47

4.1 Using the Tcl Interpreter ... 47

4.1.1 Accessing the WTX Tcl API .. 48

4.2 Tcl Scripting ... 48

Wind River Workbench
Host Shell User’s Guide, 2.6

vi

5 Using the GDB Interpreter ... 49

5.1 General GDB Commands ... 50

5.1.1 HELP .. 50

5.1.2 CD ... 50

5.1.3 PWD ... 50

5.1.4 PATH .. 50

5.1.5 SHOW PATH ... 51

5.1.6 ECHO ... 51

5.1.7 LIST .. 51

5.1.8 SHELL .. 51

5.1.9 SOURCE .. 51

5.1.10 DIRECTORY .. 52

5.1.11 QUIT ... 52

5.2 Working with Breakpoints ... 52

5.2.1 BREAK ... 52

5.2.2 TBREAK ... 53

5.2.3 ENABLE ... 53

5.2.4 DISABLE .. 53

5.2.5 DELETE ... 53

5.2.6 CLEAR ... 53

5.2.7 COND .. 54

5.2.8 IGNORE ... 54

5.3 Specifying Files to Debug ... 54

5.3.1 FILE .. 54

5.3.2 EXEC-FILE ... 54

5.3.3 LOAD ... 55

5.3.4 UNLOAD ... 55

5.3.5 ATTACH .. 55

 Contents

vii

5.3.6 DETACH .. 55

5.3.7 THREAD .. 55

5.3.8 ADD-SYMBOL-FILE .. 56

5.4 Running and Stepping Through a File .. 56

5.4.1 RUN .. 56

5.4.2 KILL .. 56

5.4.3 INTERRUPT .. 56

5.4.4 CONTINUE ... 57

5.4.5 STEP ... 57

5.4.6 STEPI .. 57

5.4.7 NEXT .. 57

5.4.8 NEXTI .. 57

5.4.9 UNTIL .. 58

5.4.10 JUMP .. 58

5.4.11 FINISH ... 58

5.5 Displaying Disassembly and Memory Information 58

5.5.1 DISASSEMBLE ... 58

5.5.2 X .. 59

5.6 Examining Stack Traces and Frames ... 59

5.6.1 BT .. 59

5.6.2 FRAME .. 59

5.6.3 UP ... 60

5.6.4 DOWN ... 60

5.7 Displaying Information and Expressions .. 60

5.7.1 INFO ... 60

5.7.2 PRINT /X .. 61

5.8 Displaying and Setting Variables ... 61

Wind River Workbench
Host Shell User’s Guide, 2.6

viii

5.8.1 SET ARGS .. 61

5.8.2 SET EMACS ... 61

5.8.3 SET ENVIRONMENT .. 62

5.8.4 SET TGT-PATH-MAPPING .. 62

5.8.5 SET VARIABLE ... 62

5.8.6 SHOW ARGS .. 62

5.8.7 SHOW ENVIROMENT ... 62

5.9 Wind River-Specific GDB Commands ... 63

5.9.1 TARGET OCD ... 63

5.9.2 WRSDEFTARGET ... 63

5.9.3 WRSDOWNLOAD ... 65

Download Executables and Data ... 65
Erase Flash Memory ... 65
Program Flash Memory ... 66

5.9.4 WRSMEMMAP ... 66

5.9.5 WRSPASSTHRU ... 67

5.9.6 WRSPLAYBACK ... 68

5.9.7 WRSREGQUERY .. 68

5.9.8 WRSRESET .. 69

5.9.9 WRSUPLOAD ... 69

6 Single Step Compatibility .. 71

6.1 Overview .. 71

6.2 Scripting ... 72

6.3 SingleStep Command Equivalents ... 72

6.4 SingleStep read Command Compatibility .. 76

6.5 SingleStep write Command Compatibility ... 78

 Contents

ix

6.6 SingleStep Variable Compatibility ... 79

7 Executing an OCD Reset and Download ... 83

7.1 Overview .. 83

7.2 Set Target Registers .. 84

7.3 Play Back Firmware Commands .. 85

7.4 Reset One or More Cores .. 86

7.5 Download Executables and Data and Program Flash 86

Download Executables and Data ... 87
Erase Flash Memory (Optional) ... 87
Program Flash Memory (Optional) ... 87

7.6 Run the Target ... 88

7.7 Set a Hardware Breakpoint .. 88

7.8 Configure Target Memory Map ... 88

7.9 Pass Through Command to Firmware .. 90

7.10 Upload from Target Memory .. 90

8 Eventpoint Scripting .. 91

8.1 Overview .. 91

8.2 Detailed API Description ... 93

8.2.1 Cmd Interpreter .. 93

handler add ... 93
handler show .. 94
handler remove ... 94
handler enable .. 94

8.2.2 GDB Interpreter .. 94

display .. 94

Wind River Workbench
Host Shell User’s Guide, 2.6

x

undisplay ... 95
info display .. 95
enable display ... 95
disable display .. 96
commands ... 96
info commands ... 96
enable commands ... 97
disable commands .. 97

8.3 Limitations ... 97

8.4 Example Cmd Session ... 99

8.5 Example GDB Session ... 100

9 Using the Host Shell Line Editor .. 103

9.1 Overview .. 103

9.2 vi-Style Editing ... 104

9.2.1 Switching Modes and Controlling the Editor 104

9.2.2 Moving and Searching in the Editor .. 105

9.2.3 Inserting and Changing Text .. 106

9.2.4 Deleting Text ... 106

9.2.5 Put and Undo Commands .. 107

9.3 emacs-Style Editing .. 107

9.3.1 Moving the Cursor ... 107

9.3.2 Deleting and Recalling Text .. 108

9.3.3 Special Commands ... 108

9.4 Command Matching .. 109

9.4.1 Directory and File Matching ... 109

9.4.2 Command and Path Completion ... 109

Index .. 111

1

 1
Introduction

1.1 Introduction 1

1.2 Host Shell Modes 2

1.3 Starting the Host Shell 2

1.4 Switching Interpreters 4

1.5 Setting Shell Environment Variables 5

1.6 Running the Host Shell in Batch Mode 9

1.7 Stopping the Host Shell 10

1.1 Introduction

The host shell is a host-resident command shell that allows you to download
application modules, invoke operating-system and application subroutines, and
monitor and debug applications. A target-resident version of the shell (called the
kernel shell) is also available; see the VxWorks Kernel Programmer’s Guide: Target
Tools.

Host shell operation involves a target server, which handles communication with
the remote target, dispatching function calls and returning their results; and a
target agent, a small monitor program that mediates access to target memory and
other facilities. The target agent is the only component that runs on the target. The

Wind River Workbench
Host Shell User’s Guide, 2.6

2

symbol table, managed by the target server, resides on the host, although the
addresses it contains refer to the target system.

1.2 Host Shell Modes

You can use the host shell in one of four modes:

■ C interpreter, which executes C-language expressions and allows prototyping
and debugging in kernel space.

■ Command (Cmd), a UNIX-style command interpreter for debugging and
monitoring a system, including RTPs.

■ Tcl, to access the WTX TCL API and for scripting.

■ GDB, for debugging a target using GNU Debugger (GDB) commands.

Which mode the shell opens in by default depends on what operating system it
detects. If it does not detect an operating system it opens in GDB mode. You can
also specify a mode when invoking the shell (see 1.3 Starting the Host Shell, p.2.)

1.3 Starting the Host Shell

You can start the host shell from a command prompt or from within the Workbench
GUI.

1.3.1 Starting the Host Shell from the Command Prompt

Before launching the Host Shell, you must use the command wrenv to set up your
environment. If you do not set your environment, the prompt will return the
following error:

WIND_FOUNDATION_PATH must be set to start the Host Shell

To set your environment, enter the following command at the prompt:

1 Introduction
1.3 Starting the Host Shell

3

1
wrenv -p workbench-2.x

where x is the currently installed version of Workbench.

To start the host shell, type the following:

windsh [options] targetServer

Table 1-1 summarizes startup options. For example, to connect to a running
simulator, type the following:

C:\> windsh vxsim0@hostname

You may run as many different host shells attached to the same target as you wish.
The output from a function called in a particular shell appears in the window from
which it was called, unless you change the shell defaults using shConfig (see
1.5 Setting Shell Environment Variables, p.5).

Host Shell Startup Options

NOTE: When you start the host shell, a second shell window appears, running the
Debug server. You can minimize this second window to reclaim screen space, but
do not close it.

Table 1-1 Host Shell Startup Options

Option Description

-N, -noconnection Specifies that the host shell will not connect to the
backend server on startup. This allows a Tcl script to
control the host shell.

-n, -noinit Do not read home Tcl initialization file.

-T, -Tclmode Start in Tcl mode.

-m[ode] Indicates mode to start in: C (C), Tcl (Tcl|tcl|TCL), GDB
(Gdb|gdb|GDB), or Cmd (Cmd|cmd|CMD).

-v, -version Display host shell version.

-h, -help Print help.

-p, -poll Sets event poll interval in milliseconds; the default is
200.

Wind River Workbench
Host Shell User’s Guide, 2.6

4

1.3.2 Starting the Host Shell from Workbench

If you have established a target connection, you can start the host shell from the
Target Manager in Workbench. For creating target connections, see the Wind River
Workbench User’s Guide: Connecting to Targets.

In the Target Manager, right-click on your target connection name and select
Target Tools > Host Shell. The Start Host Shell dialog appears. You can specify
startup options from Table 1-1 in this dialog, or leave them at their defaults. Click
OK to start the host shell.

1.4 Switching Interpreters

At times you may want to switch from one interpreter to another. From a prompt,
type these special commands and then press Enter:

■ cmd to switch to the command interpreter. The prompt changes to
[vxWorks] #.

-e, -execute Executes Tcl expression after initialization.

-c, -command Executes expression and exits shell (batch mode).

-r, -root mappings Root pathname mappings.

-ds[DFW server Session] Debugger Server session to use.

-dp[DFW server Port] Debugger Server port to use.

-host Retrieves target server information from host’s registry.

-s, -startup Specifies the startup file of shell commands to execute.

-q, -quiet Turns off echo of script commands as they are executed.

-dt target Backend target definition name.

Table 1-1 Host Shell Startup Options (cont’d)

Option Description

1 Introduction
1.5 Setting Shell Environment Variables

5

1
■ C to switch to the C interpreter. The prompt changes to ->.

■ ? to switch to the Tcl interpreter. The prompt changes to tcl>.

■ gdb to switch to the GDB interpreter. The prompt changes to gdb>.

These commands can also be used to evaluate a statement native to another
interpreter. Simply precede the command you want to execute with the
appropriate interpreter’s special command.

For example, to evaluate a C interpreter command from within the command
interpreter, type the following:

[vxWorks]# C test = malloc(100); test[0] = 10; test[1] = test[0] + 2

If you are using a command that is valid in more than one interpreter, another step
is necessary. For example, the set command is valid in both the GDB interpreter
and the Tcl interpreter, so the syntax

tcl> gdb set $pc= address

will return an error:

can't read "pc": no such variable

To avoid this problem, precede the set command’s argument with a backslash:

tcl> gdb set \$pc = 0x14200

1.5 Setting Shell Environment Variables

The host shell has a set of environment variables that configure different aspects of
the shell’s interaction with the target and with the user. These environment
variables can be displayed and modified using the Tcl routine shConfig. Table 1-2
provides a list of the host shell’s environment variables and their significance.

Since shConfig is a Tcl routine, it should be called from within the shell’s Tcl
interpreter; it can also be called from within another interpreter if you precede the
shConfig command with a question mark (?shConfig variable option).

For example, to switch from vi mode to emacs mode when using the C interpreter,
type the following:

-> ?shConfig LINE_EDIT_MODE emacs

Wind River Workbench
Host Shell User’s Guide, 2.6

6

When in command interpreter mode, you can use the commands set config and
show config to set and display the environment variables listed in Table 1-2.

Table 1-2 Host Shell Environment Variables

Variable Result

RTP_CREATE_STOP [on|off] When RTP support is configured in the
system, this option indicates whether RTPs
launched via the host shell (using the host
shell’s command interpreter) should be
launched in the stopped or running state.

RTP_CREATE_ATTACH [on|off] When RTP support is configured in the
system, this option indicates whether the
shell should automatically attach to any
RTPs launched from the host shell (using the
host shell’s command interpreter).

VXE_PATH . When RTP support is configured in the
system, this option indicates the path in
which the host shell should search for RTPs
to launch. If this is set to “.” the full
pathname of an RTP should be supplied to
the command to launch an RTP.

ROOT_PATH_MAPPING Indicates how host and target paths should
be mapped to the host file system on which
the backend used by the host shell is
running. If this value is not set, a direct path
mapping is assumed (for example, a
pathname given by /folk/user is searched; no
translation to another path is performed).

LINE_LENGTH Indicates the maximum number of
characters permitted in one line of the host
shell’s window.

STRING_FREE [manual|automatic] Indicates whether strings allocated on the
target by the host shell should be freed
automatically by the shell, or whether they
should be left for the user to free manually
using the C interpreter API strFree().

1 Introduction
1.5 Setting Shell Environment Variables

7

1

SEARCH_ALL_SYMBOLS [on|off] Indicates whether symbol searches should
be confined to global symbols or should
search all symbols. If
SEARCH_ALL_SYMBOLS is set to on, any
request for a symbol searches the entire
symbol table contents. This is equivalent to a
symbol search performed on a target server
launched with the -A option. Note that if the
SEARCH_ALL_SYMBOLS flag is set to on,
there is a considerable performance impact
on commands performing symbol
manipulation.

INTERPRETER [C|Tcl|Cmd|Gdb] Indicates the host shell’s current interpreter
mode and permits the user to switch from
one mode to another.

SH_GET_TASK_IO Sets the I/O redirection mode for called
functions. The default is on, which redirects
input and output of called functions to
WindSh. To have input and output of called
functions appear in the target console, set
SH_GET_TASK_IO to off.

LD_CALL_XTORS Sets the C++ strategy related to constructors
and destructors. The default is “target”,
which causes WindSh to use the value set on
the target using cplusXtorSet(). If
LD_CALL_XTORS is set to on, the C++
strategy is set to automatic (for the current
WindSh only). Off sets the C++ strategy to
manual for the current shell.

LD_SEND_MODULES Sets the load mode. The default on causes
modules to be transferred to the target
server. This means that any module WindSh
can see can be loaded. If
LD_SEND_MODULES if off, the target server
must be able to see the module to load it.

Table 1-2 Host Shell Environment Variables (cont’d)

Variable Result

Wind River Workbench
Host Shell User’s Guide, 2.6

8

Path Mapping

Since the host shell uses host paths to handle RTPs in both the command and gdb
interpreters, a path substitution mechanism operates to send the right target path
to the debugger server.

This mechanism converts a host path passed on the command line to a target path
understandable by both the debugger framework and the target, but you must
provide the host shell with additional information before it can perform the
conversion. Two shell environment variables are used to do this conversion: the
ROOT_PATH_MAPPING and VXE_PATH variables.

LD_PATH Sets the search path for modules using the
separator “;”. When a ld() command is
issued, WindSh first searches the current
directory and loads the module if it finds it.
If not, WindSh searches the directory path
for the module.

LD_COMMON_MATCH_ALL Sets the loader behavior for common
symbols. If it is set to on, the loader tries to
match a common symbol with an existing
one. If a symbol with the same name is
already defined, the loader take its address.
Otherwise, the loader creates a new entry. If
set to off, the loader does not try to find an
existing symbol. It creates an entry for each
common symbol.

DSM_HEX_MOD Sets the disassembling “symbolic + offset”
mode. When set to off the “symbolic +
offset” address representation is turned on
and addresses inside the disassembled
instructions are given in terms of “symbol
name + offset.” When set to on these
addresses are given in hexadecimal.

LINE_EDIT_MODE Sets the line edit mode to use. Set to emacs or
vi. Default is vi.

Table 1-2 Host Shell Environment Variables (cont’d)

Variable Result

1 Introduction
1.6 Running the Host Shell in Batch Mode

9

1Use the ROOT_PATH_MAPPING shell environment variable to define path
substitution pairs of the form [tgtpath1,hostpath1][tgtpath2,hostpath2]…

In an example where the host path is C:/mydirectory/myrtp.vxe and the target
path is cocyte:/home/users/philb/mydirectory/myrtp.vxe, the command is:

-> ?
tcl> shConfig ROOT_PATH_MAPPING \[cocyte:/home/users/philb/,C:/\]

With this information, the host shell can compute the correct target path and send
it to the debugger server. Note that the debugger server also needs this
ROOT_PATH_MAPPING setting to retrieve the RTP file in order to parse the RTP
symbols, but the debugger server will send the path of this RTP directly to the
target without any transformation by the host shell.

You can also define the VXE_PATH shell environment variable.

-> ?
tcl> shConfig VXE_PATH "C:/dir1/;C:/dir2/;E:/"

This variable can contain several host paths separated by semi-colons, and is used
as a PATH variable to indicate the locations in which the host shell should search
for RTPs to launch.

If both VXE_PATH and ROOT_PATH_MAPPING are set, then the host shell
reads successively each path in VXE_PATH and builds a full RTP path with the
RTP passed to the command line. If this full host path matches one of the host paths
stored in the ROOT_PATH_MAPPING variable, the host shell performs the
corresponding path substitution on it to build a target path.

The result of this substitution is tested to discover if it is reachable from the target
(by a stat performed on the target). If it is reachable, then this target path is sent to
the debugger framework; if not, the host shell tries to apply another path
substitution and when it reaches the end of ROOT_PATH_MAPPING, it retries
other combinations with the next path stored in VXE_PATH.

1.6 Running the Host Shell in Batch Mode

The host shell can also be run in batch mode, with commands passed to the host
shell using the -c option followed by the command(s) to execute.

The commands must be delimited with double quote characters. The default
interpreter mode used to execute the commands is the C interpreter; to execute

Wind River Workbench
Host Shell User’s Guide, 2.6

10

commands in a different mode, specify the mode with the -m[ode] option. It is not
possible to execute a mixed mode command with the -c option.

For example:

1. To launch the host shell in batch mode, executing the Command interpreter
commands task and rtp task, type the following:

% windsh -m cmd -c "task ; rtp task" tgtsvr@host

The -m option indicates that the commands should be executed by the
Command interpreter.

2. To launch the host shell in batch mode, executing the tcl mode commands puts
and expr, type the following:

% windsh -m tcl -c "puts helloworld; expr 33 + 22" tgtsvr@host

1.7 Stopping the Host Shell

Regardless of how you start it, you can terminate a host shell session by typing exit
or quit at the prompt or pressing Ctrl+D.

For more information, see the host shell reference pages: hostShell, cMode, cmdMode,
gdbMode, and rtpCmdMode.

11

 2
Using the Command Interpreter

2.1 Overview 11

2.2 General Commands 12

2.3 Displaying Target Agent Information 13

2.4 Working with Memory 14

2.5 Displaying Object Information 15

2.6 Working with Symbols 15

2.7 Displaying, Controlling, and Stepping Through Tasks 17

2.8 Setting Shell Context Information 18

2.9 Displaying System Status 19

2.10 Using and Modifying Aliases 20

2.11 Launching RTPs 22

2.12 Examples 24

2.1 Overview

Command interpreter mode applies only to VxWorks targets.

Wind River Workbench
Host Shell User’s Guide, 2.6

12

To switch to command interpreter mode from another mode, enter cmd at the
prompt and press ENTER.

The command interpreter is command-oriented and does not understand C
language syntax. (For C syntax, use the C interpreter.)

A command name is composed of one or more strings followed by option flags and
parameters. The command interpreter syntax is a mix of GDB and UNIX syntax.

The syntax of a command is as follows:

command [subcommand [... subcommand]] [options] [arguments] [;]

command and subcommand are alphanumeric strings that do not contain spaces.
arguments can be any string.

For example:

[vxWorks]# ls -l /folk/user
[vxWorks]# task delete t1
[vxWorks]# bp -t t1 0x12345678

The options and arguments strings may be processed differently by each command
and so can follow any format. Most of the commands follow the UNIX standard.
In that case, each argument and each option are separated by at least one space.

An option is composed of the dash character (-) plus one character (-o for example).
Several options can be gathered in the same string (-oats is identical to -o -a -t -s).
An option may have an extra argument (-f filename). The -- option is a special
option that indicates the end of the options string.

Arguments are separated by spaces. Therefore, if an argument contains a space, the
space has to be escaped by a backslash (“\”) character or surrounded by single or
double quotes. For example:

[vxWorks]# ls -l "/folk/user with space characters"
[vxWorks]# ls -l /folk/user\ with\ space\ characters

2.2 General Commands

Table 2-1 summarizes general command-interpreter commands.

2 Using the Command Interpreter
2.3 Displaying Target Agent Information

13

2

2.3 Displaying Target Agent Information

Table 2-2 lists the commands related to the target agent.

Table 2-1 General Command Interpreter Commands

Command Description

alias Adds an alias or displays list of aliases.

bp Displays, sets, or unsets a breakpoint.

cat Concatenates and displays files.

cd Changes current directory.

expr Evaluates an expression.

help Displays the list of shell commands.

ls Lists the files in a directory.

more Browses and pages through a text file.

print errno Displays the symbol value of an errno.

pwd Displays the current working directory.

quit Shuts down the shell.

reboot Reboots the system.

string free Frees a string allocated by the shell on the target.

unalias Removes an alias.

version Displays VxWorks version information.

Wind River Workbench
Host Shell User’s Guide, 2.6

14

2.4 Working with Memory

Table 2-3 shows the commands related to memory.

Table 2-2 Command Interpreter Target Agent Commands

Command Description

help agent Displays a list of shell commands related to the target agent.

agent info Displays the agent mode: system or task.

agent status Displays the system context status: suspended or running. This
command can be completed successfully only if the agent is
running in system (external) mode.

agent system Sets the agent to system (external) mode then suspends the system,
halting all tasks. When the agent is in external mode, certain
commands (bp, task step, task continue) work with the system
context instead of a particular task context.

agent task Resets the agent to tasking mode and resumes the system.

Table 2-3 Command Interpreter Memory Commands

Command Description

help memory Lists shell commands related to memory.

mem dump Displays memory.

mem modify Modifies memory values.

mem info Displays memory information.

mem list Disassembles and displays a specified number of instructions.

2 Using the Command Interpreter
2.5 Displaying Object Information

15

2

2.5 Displaying Object Information

Table 2-4 shows commands that display information about objects.

2.6 Working with Symbols

Table 2-5 lists commands for displaying and setting values of symbols.

2.6.1 Accessing a Symbol’s Contents and Address

The host shell command interpreter is a string-oriented interpreter, but you may
want to distinguish between symbol names, regular strings, and numerical values.

Table 2-4 Command Interpreter Object Commands

Command Description

help objects Lists shell commands related to objects.

object info Displays information about one or more specified objects.

object class Shows information about a class of objects.

Table 2-5 Command Interpreter Symbol Commands

Command Description

help symbols Lists shell commands related to symbols.

echo Displays a line of text or prints a symbol value.

printf Writes formatted output.

set or set symbol Sets the value of a symbol.

lookup Looks up a symbol.

Wind River Workbench
Host Shell User’s Guide, 2.6

16

When a symbol name is passed as an argument to a command, you may want to
specify either the symbol address (for example, to set a hardware breakpoint on
that address) or the symbol value (to display it).

To do this, a symbol should be preceded by the character & to access the symbol’s
address, and $ to access a symbol’s contents. Any commands that specify a symbol
should now also specify the access type for that symbol. For example:

[vxWorks]# task spawn &printf %c $toto.r

In this case, the command interpreter sends the address of the text symbol printf
to the task spawn command. It accesses the contents of the data symbol toto and,
due to the .r suffix, it accesses the data symbol as a character.

The commands printf and echo are available in the shell for easy display of symbol
values.

2.6.2 Symbol Value Access

When specifying that a symbol is of a particular numerical value type, use the
following:

$symName[.type]

The special characters accepted for type are as follows:

r = chaR
h = sHort
i = Integer (default)
l = Long

ll = Long Long
f = Float

d = Double

For example, if the value of the symbol name value is 0x10, type the following:

[vxWorks]# echo $value
0x10

But:

[vxWorks]# echo value
value

By default, the command interpreter considers a numerical value to be a 32-bit
integer. If a numerical string contains a “.” character, or the E or e characters (such
as 2.0, 2.1e1, or 3.5E2), the command interpreter considers the numerical value to
be a double value.

2 Using the Command Interpreter
2.7 Displaying, Controlling, and Stepping Through Tasks

17

2

2.6.3 Symbol Address Access

When specifying that a symbol should be replaced by a string representing the
address of the symbol, precede the symbol name by a & character.

For example, if the address of the symbol name value is 0x12345678, type the
following:

[vxWorks]# echo &value
0x12345678

2.6.4 Special Consideration of Text Symbols

The “value” of a text symbol is meaningless, but the symbol address of a text
symbol is the address of the function. So to specify the address of a function as a
command argument, use a & character.

For example, to set a breakpoint on the printf() function, type the following:

[vxWorks]# bp &printf

2.7 Displaying, Controlling, and Stepping Through Tasks

Table 2-6 displays commands for working with tasks.

Table 2-6 Command Interpreter Task Commands

Command Description

help tasks Lists the shell commands related to working with tasks.

task Displays a summary of each tasks’s TCB.

task info Displays complete information from a task’s TCB.

task spawn Spawns a task with default parameters.

task stack Displays a summary of each tasks’s stack usage.

task delete Deletes one or more tasks.

Wind River Workbench
Host Shell User’s Guide, 2.6

18

2.8 Setting Shell Context Information

Table 2-7 displays commands for displaying and setting context information.

task default Sets or displays the default task.

task trace Displays a stack trace of a task.

task regs Sets task register value.

show task regs Displays task register values.

task suspend Suspends a task or tasks.

task resume Resumes a task or tasks.

task hooks Displays task hook functions.

task stepover Single-steps a task or tasks.

task stepover Single steps, but steps over a subroutine.

task continue Continues from a breakpoint.

task stop Stops a task.

Table 2-6 Command Interpreter Task Commands (cont’d)

Command Description

Table 2-7 Command Interpreter Shell Context Commands

Command Description

help set Lists shell commands related to setting context information.

set or
set symbol

Sets the value of an existing symbol. If the symbol does not
exist, and if the current working context is the kernel, a new
symbol is created and registered in the kernel symbol table.

set bootline Changes the boot line used in the boot ROMs.

2 Using the Command Interpreter
2.9 Displaying System Status

19

2

2.9 Displaying System Status

Table 2-8 lists commands for showing system status information.

set config Sets or displays shell configuration variables.

set cwc Sets the current working context of the shell session.

set history Sets the size of shell history. If no argument is specified,
displays shell history.

set prompt Changes the shell prompt to the string specified. The
following special characters are accepted:

%/ : current path
%n : current user
%m : target server name
%% : display % character
%c : current RTP name

unset config Removes a shell configuration variable from the current
shell session.

Table 2-7 Command Interpreter Shell Context Commands (cont’d)

Command Description

Table 2-8 Command Interpreter System Status Commands

Command Description

show bootline Displays the current boot line of the kernel.

show devices Displays all devices known to the I/O system.

show drivers Displays all system drivers in the driver list.

show fds Displays all opened file descriptors in the system.

show history Displays the history events of the current interpreter.

show lasterror Displays the last error value set by a command.

Wind River Workbench
Host Shell User’s Guide, 2.6

20

2.10 Using and Modifying Aliases

The command interpreter accepts aliases to speed up access to shell commands.
Table 2-9 lists the aliases that already exist; they can be modified, and you can add
new aliases. Aliases are visible from all shell sessions.

Table 2-9 Command Interpreter Aliases

Alias Definition

alias List existing aliases. Add a new alias by typing alias
aliasname “command”. For example, alias ll "ls -l".

attach rtp attach

b bp

bd bp -u

bdall bp -u #*

bootChange set bootline

c task continue

checkStack task stack

cret task continue -r

d mem dump

detach rtp detach

devs show devices

emacs set config LINE_EDIT_MODE="emacs"

h show history

i task

jobs rtp attach

kill rtp detach

l mem list

lkAddr lookup -a

2 Using the Command Interpreter
2.10 Using and Modifying Aliases

21

2

lkup lookup

m mem modify

memShow mem info

ps rtp

rtpc rtp continue

rtpd rtp delete

rtpi rtp task

rtps rtp stop

run rtp exec

s task step

so task stepover

td task delete

ti task info

tr task resume

ts task suspend

tsp task spawn

tt task trace

vi set config LINE_EDIT_MODE="vi"

Table 2-9 Command Interpreter Aliases (cont’d)

Alias Definition

Wind River Workbench
Host Shell User’s Guide, 2.6

22

2.11 Launching RTPs

From the command interpreter, type the RTP pathname as a regular command,
adding any command arguments after the RTP pathname (as in a UNIX shell).

[vxWorks]# /folk/user/TMP/helloworld.vxe
Launching process '/folk/user/TMP/helloworld.vxe' ...
Process '/folk/user/TMP/helloworld.vxe' (process Id = 0x471630) launched.
[vxWorks]# rtp

NAME ID STATUS ENTRY ADDR SIZE TASK CNT
------------ ---------- ----------- ---------- ---------- --------

[vxWorks]# /folk/user/TMP/cal 12 2004
Launching process '/folk/user/TMP/cal' ...
December 2004
S M Tu W Th F S

1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
Process '/folk/user/TMP/cal' (process Id = 0x2fdfb0) launched.

2.11.1 Redirecting Output to the Host Shell

To launch an RTP in the foreground, simply launch it as usual:

[vxWorks]# rtp exec myRTP.exe

To launch an RTP in the background but redirect its output to the host shell,
include the -i option:

[vxWorks]# rtp exec -i myRTP.exe

To move the RTP to the background and stop it, press Ctrl+W. To resume an RTP
in the background that is stopped, use the command rtp background.

To move an RTP to the foreground, use the command rtp foreground.

To kill the RTP, press Ctrl+C.

To redirect output for all processes to the host shell, use the Tcl function vioSet as
shown below:

proc vioSet {} {
#Set stdin, stdout, and stderr to /vio/0 if not already in use
puts stdout "set stdin stdout stderr here (y/n)?"
if { [shParse {tstz = open ("/vio/0",2,0)}] != -1 } {

shParse {vf0 = tstz};
shParse {ioGlobalStdSet (0,vf0)} ;
shParse {ioGlobalStdSet (1,vf0)} ;

2 Using the Command Interpreter
2.11 Launching RTPs

23

2

shParse {ioGlobalStdSet (2,vf0)} ;
shParse {logFdSet (vf0);}
shParse {printf ("Std I/O set here!

} else {
shParse {printf ("Std I/O unchanged.

}
}

2.11.2 Monitoring and Debugging RTPs

Table 2-10 displays the commands related to RTPs.

Table 2-10 Command Interpreter RTP Commands

Command Description

help RTP Displays a list of the shell commands related to RTPs.

help rtp Displays shell commands related to RTPs, with synopses.

rtp Displays a list of processes.

rtp stop Stops a process.

rtp continue Continues a process.

rtp delete Deletes a process (or list of processes).

rtp info Displays process information.

rtp exec Executes a process.

rtp attach Attaches the shell session to a process.

rtp detach Detaches the shell session from a process.

set cwc Sets the current working context of the shell session.

rtp task Lists tasks running within a particular RTP.

rtp foreground Brings the current or specified process to the shell foreground.

rtp background Runs the current or specified process in the shell background.

Wind River Workbench
Host Shell User’s Guide, 2.6

24

2.11.3 Setting Breakpoints

The bp command is designed to set a breakpoint in the kernel, in a RTP, for any
task, for a particular task, or for a particular context. A breakpoint number is
assigned to each breakpoint, which can be used to remove that breakpoint.

bp Display, set or unset a breakpoint
bp [-p <rtpIdNameNumber>] [-t <taskId>] [[-u {<#bp number>
| <bp address>} ...] | [-n <count>] [-h <type>] [-q] [-a]
[expr]]
This command is used to set or unset (if the option -u is
specified) a breakpoint. The breakpoint is a hardware
breakpoint if the option -h is specified. Without any
arguments, this command displays the breakpoints currently
set.
The special breakpoint number '#*' or breakpoint address
'*' is used to unset all the breakpoints.
-a : stop all tasks in a context,
-n : number of passes before hit,
-h : specify a hardware breakpoint type value,
-p : breakpoint applies to specify RTP,
-q : no notification when the breakpoint is hit,
-t : breakpoint applies to specify task,
-u : unset breakpoint

Breakpoints can be set in a memory context only if the current working memory
context is set to that memory context.

2.12 Examples

List the contents of a directory.
[vxWorks]# ls -l /folk/usr

Create an alias.
[vxWorks]# alias ls "ls -l"

Summarize task TCBs.
[vxWorks]# task

Suspend a task, then resume it.
[vxWorks]# task suspend t1
[vxWorks]# task resume t1

Set a breakpoint for a task at a specified address.
[vxWorks]# bp -t t1 0x12345678

2 Using the Command Interpreter
2.12 Examples

25

2

Set a breakpoint on a function.
[vxWorks]# bp &printf

Show the address of someInt.
[vxWorks]# echo &someInt

Step over a task from a breakpoint.
[vxWorks]# task stepover t1

Continue a task.
[vxWorks]# task continue t1

Delete a task.
[vxWorks]# task delete t1

Run an RTP application.
[vxWorks]# /folk/user/TMP/helloworld.vxe

Run an RTP application, passing parameters to the executable.
[vxWorks]# cal.vxe -j 2002

Run an RTP application, passing options to the executable and to the RTP
loader (in this case, setting the stack size to 8K).
[vxWorks]# rtp exec -u 8096 /folk/user/TMP/foo.vxe -q

List RTPs or show brief information about a specific RTP.
[vxWorks]# rtp [rtpID]

Show details about an RTP.
[vxWorks]# rtp info [rtpID]

Stop an RTP, then continue it.
[vxWorks]# rtp stop 0x43210
[vxWorks]# rtp continue 0x43210

Wind River Workbench
Host Shell User’s Guide, 2.6

26

27

 3
Using the C Interpreter

3.1 Overview 27

3.2 Data Types 28

3.3 Expressions 30

3.4 Assignments 33

3.5 Comments 34

3.6 Strings 35

3.7 Ambiguity of Arrays and Pointers 35

3.8 Pointer Arithmetic 36

3.9 C Interpreter Limitations 37

3.10 C Interpreter Primitives 38

3.11 Running Target Routines from the Host Shell 43

3.12 Examples 44

3.1 Overview

The host shell running in C interpreter mode interprets and executes almost all
C-language expressions and allows prototyping and debugging in kernel space (it

Wind River Workbench
Host Shell User’s Guide, 2.6

28

does not provide access to processes; use the Cmd interpreter mode to debug
processes and RTPs).

Some of the commands (or routines) that you can execute from the shell are built
into the host shell, rather than running as function calls on the target. These
commands parallel interactive utilities that can be linked into the operating system
itself. By using the host shell commands, you minimize the impact on both target
memory and performance.

The shell parses and evaluates its input one line at a time. A line may consist of a
single shell statement or several shell statements separated by semicolons. A
semicolon is not required on a line containing only a single statement. A statement
cannot continue on multiple lines.

3.2 Data Types

The most significant difference between the shell C-expression interpreter and a C
compiler lies in the way that they handle data types. The shell does not accept any
C declaration statements, and no data-type information is available in the symbol
table. Instead, an expression’s type is determined by the types of its terms.

Unless you use explicit type-casting, the shell makes the following assumptions
about data types:

■ In an assignment statement, the type of the left hand side is determined by the
type of the right hand side.

■ If floating-point numbers and integers both appear in an arithmetic
expression, the resulting type is a floating-point number.

Data types are assigned to various elements, as shown in Table 3-1.

Table 3-1 C Interpreter Data-Type Assumptions

Element Data Type

variable int

variable used as a floating-point double

return value of subroutine int

3 Using the C Interpreter
3.2 Data Types

29

3

A constant or variable can be treated as a different type than what the shell
assumes by explicitly specifying the type with the syntax of C type-casting.
Functions that return values other than integers require a slightly different
type-casting; see 3.3.4 Function Calls, p.31. Table 3-2 shows the various data types
available in the shell C interpreter, with examples of how they can be set and
referenced.

Strings, or character arrays, are not treated as separate types in the C interpreter.
To declare a string, set a variable to a string value. (Memory allocated for string
constants is never freed by the shell.) For example:

-> ss = "any string"

The variable ss is a pointer to the string any string. To display ss, enter

-> d ss

The d() command displays the memory where ss is pointing. You can also use
printf() to display strings.

constant with no decimal point int/long

constant with decimal point double

Table 3-1 C Interpreter Data-Type Assumptions

Element Data Type

Table 3-2 Data Types in the C Interpreter

Type Bytes Set Variable Display Variable

int 4 x = 99 x
(int) x

long 4 x = 33
x = (long)33

x
(long_ x

short 2 x = (short)20 (short) x

char 1 x = ‘A’
x = (char)65
x = (char)0x41

(char)x

double 8 x = 11.2
x = (double)11.2

(double) x

float 4 x = (float)5.42 (float) x

Wind River Workbench
Host Shell User’s Guide, 2.6

30

The shell places no type restrictions on the application of operators. For example,
the shell expression

 *(70000 + 3 * 16)

evaluates to the 4-byte integer value at memory location 70048.

3.3 Expressions

Shell expressions consist of literals, symbolic data references, function calls, and
the usual C operators.

3.3.1 Literals

The shell interprets the literals in Table 3-3 in the same way as the C compiler, with
one addition: the shell also allows hex numbers to be preceded by $ instead of 0x.

3.3.2 Variable References

Shell expressions may contain references to variables whose names have been
entered in the system symbol table. Unless a particular type is specified with a
variable reference, the variable’s value in an expression is the 4-byte value at the
memory address obtained from the symbol table. It is an error if an identifier in an

Table 3-3 Literals in the C Interpreter

Literal Example

decimal numbers 143967

octal numbers 017734

hex numbers 0xf3ba or $f3ba

floating point numbers 555.555

character constants ‘x’ and ‘$’

string constants “This is a string.”

3 Using the C Interpreter
3.3 Expressions

31

3

expression is not found in the symbol table, except in the case of assignment
statements.

C compilers usually prefix all user-defined identifiers with an underscore, so that
myVar is actually in the symbol table as _myVar. The identifier can be entered
either way to the shell; the shell searches the symbol table for a match either with
or without a prefixed underscore.

You can also access data in memory that does not have a symbolic name in the
symbol table, as long as you know its address. To do this, apply the C indirection
operator “*” to a constant. For example, *0x10000 refers to the 4-byte integer value
at memory address 10000 hex.

3.3.3 Operators

The shell interprets the operators in Table 3-4 in the same way as the C compiler.

The shell assigns the same precedence to the operators as the C compiler. However,
unlike the C compiler, the shell always evaluates both operands of the logical
binary operators || and &&.

3.3.4 Function Calls

Shell expressions may contain calls to C functions (or C-compatible functions)
whose names have been entered in the system symbol table; they may also contain
function calls to commands that execute on the host.

Table 3-4 Operators in the C Interpreter

Operator Type Operators

arithmetic + - * / unary-

relational == != < > <= >=

shift << >>

logical || && !

bitwise | & ~ ^

address and indirection & *

Wind River Workbench
Host Shell User’s Guide, 2.6

32

The shell executes such function calls in tasks spawned for the purpose, with the
specified arguments and default task parameters; if the task parameters make a
difference, you can call taskSpawn() instead of calling functions from the shell
directly. The value of a function call is the 4-byte integer value returned by the
function. The shell assumes that all functions return integers. If a function returns
a value other than an integer, the shell must know the data type being returned
before the function is invoked. This requires a slightly unusual syntax because you
must cast the function, not its return value. For example:

[myDomain] -> floatVar = (float ()) funcThatReturnsAFloat (x,y)

The shell can pass up to ten arguments to a function. In fact, the shell always passes
exactly ten arguments to every function called, passing values of zero for any
arguments not specified. This is harmless because the C function-call protocol
handles passing of variable numbers of arguments. However, it allows you to omit
trailing arguments of value zero from function calls in shell expressions.

Function calls can be nested. That is, a function call can be an argument to another
function call. In the following example, myFunc() takes two arguments: the return
value from yourFunc() and myVal. The shell displays the value of the overall
expression, which in this case is the value returned from myFunc().

myFunc (yourFunc (yourVal), myVal);

Shell expressions can also contain references to function addresses instead of
function invocations. As in C, this is indicated by the absence of parentheses after
the function name. Thus the following expression evaluates to the result returned
by the function myFunc2() plus 4:

4 + myFunc2 ()

However, the following expression evaluates to the address of myFunc2() plus 4:

4 + myFunc2

An important exception to this occurs when the function name is the very first item
encountered in a statement. See 3.3.5 Arguments to Commands, p.33.

Shell expressions can also contain calls to functions that do not have a symbolic
name in the symbol table, but whose addresses are known to you. To do this,
simply supply the address in place of the function name. Thus the following
expression calls a parameterless function whose entry point is at address 10000
hex:

0x10000 ()

3 Using the C Interpreter
3.4 Assignments

33

3

3.3.5 Arguments to Commands

In practice, most statements input to the shell are function calls. To simplify this
use of the shell, an important exception is allowed to the standard expression
syntax required by C. When a function name is the very first item encountered in
a shell statement, the parentheses surrounding the function’s arguments may be
omitted. Thus the following shell statements are synonymous:

[vxKernel] -> rename ("oldname", "newname")
[vxKernel] -> rename "oldname", "newname"

as are:

[vxKernel] -> evtBufferAddress ()
[vxKernel] -> evtBufferAddress

However, note that if you wish to assign the result to a variable, the function call
cannot be the first item in the shell statement—thus, the syntactic exception above
does not apply. The following captures the address, not the return value, of
evtBufferAddress():

[vxKernel] -> value = evtBufferAddress

3.4 Assignments

The shell C interpreter accepts assignment statements in the form:

addressExpression = expression

The left side of an expression must evaluate to an addressable entity; that is, a legal
C value.

3.4.1 Typing and Assignment

The data type of the left side is determined by the type of the right side. If the right
side does not contain any floating-point constants or non-integer type-casts, then
the type of the left side will be an integer. The value of the right side of the
assignment is put at the address provided by the left side. For example, the
following assignment sets the 4-byte integer variable x to 0x1000:

[myDomain] -> x = 0x1000

Wind River Workbench
Host Shell User’s Guide, 2.6

34

The following assignment sets the 4-byte integer value at memory address 0x1000
to the current value of x:

[myDomain] -> *0x1000 = x

The following compound assignment adds 300 to the 4-byte integer variable x:

[myDomain] -> x += 300

The following adds 300 to the 4-byte integer at address 0x1000:

[myDomain] -> *0x1000 += 300

The following compound operators are available:

++ *= &=
-- /= |=
+= %= ^=
-=

3.4.2 Automatic Creation of New Variables

New variables can be created automatically by assigning a value to an undefined
identifier (one not already in the symbol table) with an assignment statement.

When the shell encounters such an assignment, it allocates space for the variable
and enters the new identifier in the symbol table along with the address of the
newly allocated variable. The new variable is set to the value and type of the
right-side expression of the assignment statement. The shell prints a message
indicating that a new variable has been allocated and assigned the specified value.

For example, if the identifier fd is not currently in the symbol table, the following
statement creates a new variable named fd and assigns to it the result of the
function call:

[myDomain] -> fd = open ("file", 0)

3.5 Comments

The shell allows two kinds of comments.

First, comments of the form /* … */ can be included anywhere on a shell input line.
These comments are simply discarded, and the rest of the input line evaluated as
usual.

3 Using the C Interpreter
3.6 Strings

35

3

Second, any line whose first non-blank character is # is ignored completely.

3.6 Strings

When the shell encounters a string literal ("…") in an expression, it allocates space
for the string including the null-byte string terminator. The value of the literal is
the address of the string in the newly allocated storage. For instance, the following
expression allocates 12 bytes from the target-agent memory pool, enters the string
in those 12 bytes (including the null terminator), and assigns the address of the
string to x:

[myDomain] -> x = "hello there"

Even when a string literal is not assigned to a symbol, memory is still permanently
allocated for it. For example, the following uses 12 bytes of memory that are never
freed:

[myDomain] -> printf ("hello there")

If strings were only temporarily allocated, and a string literal were passed to a
routine being spawned as a task, then by the time the task executed and attempted
to access the string, the shell would have already released, possibly even reused,
the temporary storage where the string was held.

After extended development sessions, the cumulative memory used for strings
may be noticeable. If this becomes a problem, restart your target server.

3.7 Ambiguity of Arrays and Pointers

In a C expression, a non-subscripted reference to an array has a special meaning,
namely the address of the first element of the array. The shell, to be compatible,
should use the address obtained from the symbol table as the value of such a
reference, rather than the contents of memory at that address. Unfortunately, the
information that the identifier is an array, like all data type information, is not
available after compilation. For example, if a module contains the following:

Wind River Workbench
Host Shell User’s Guide, 2.6

36

char string [] = "hello";

you might be tempted to enter a shell expression as in Example 1.

Example 1

[myDomain] -> printf (string)

While this would be correct in C, the shell will pass the first 4 bytes of the string
itself to printf(), instead of the address of the string. To correct this, the shell
expression must explicitly take the address of the identifier, as in Example 2.

Example 2

[myDomain] -> printf (&string)

To make matters worse, in C if the identifier had been declared a character pointer
instead of a character array:

char *string = "hello";

then to a compiler, Example 1 would be correct and Example 2 would be wrong.
This is especially confusing since C allows pointers to be subscripted exactly like
arrays, so that the value of string[0] would be “h” in either of the above
declarations.

Bear in mind that array references and pointer references in shell expressions are
different from their C counterparts. In particular, array references require an
explicit application of the address operator &.

3.8 Pointer Arithmetic

While the C language treats pointer arithmetic specially, the shell C interpreter
does not, because it treats all non-type-cast variables as 4-byte integers.

In the shell, pointer arithmetic is no different than integer arithmetic. Pointer
arithmetic is valid, but it does not take into account the size of the data pointed to.
Consider the following example:

[myDomain] -> *(myPtr + 4) = 5

Assume that the value of myPtr is 0x1000. In C, if myPtr is a pointer to a type char,
this would put the value 5 in the byte at address at 0x1004. If myPtr is a pointer to
a 4-byte integer, the 4-byte value 0x00000005 would go into bytes 0x1010–0x1013.

3 Using the C Interpreter
3.9 C Interpreter Limitations

37

3

The shell, on the other hand, treats variables as integers, and therefore would put
the 4-byte value 0x00000005 in bytes 0x1004–0x1007.

3.9 C Interpreter Limitations

The C interpreter in the shell is not a complete interpreter for the C language. The
following C features are not present in the Host Shell.

■ Control structures

The shell interprets only C expressions (and comments). The shell does not
support C control structures such as if, goto, and switch statements, or do,
while, and for loops. Control structures are rarely needed during shell
interaction. If you do come across a situation that requires a control structure,
you can use the Tcl interface to the shell instead of using its C interpreter
directly.

■ Compound or derived types

No compound types (struct or union types) or derived types (typedef) are
recognized in the shell C interpreter.

■ Macros

No C preprocessor macros (or any other preprocessor facilities) are available
in the shell. For constant macros, you can define variables in the shell with
similar names to the macros. You can automate the effort of defining any
variables you need repeatedly, by using an initialization script.

For control structures, or display and manipulation of types that are not supported
in the shell, you might also consider writing auxiliary subroutines to provide these
services during development; you can call such subroutines at will from the shell,
and later omit them from your final application.

Wind River Workbench
Host Shell User’s Guide, 2.6

38

3.10 C Interpreter Primitives

3.10.1 Managing Tasks

Table 3-5 summarizes the commands that manage tasks.

The repeat() and period() commands spawn tasks whose entry points are
_repeatHost and _periodHost. The shell downloads these support routines when
you call repeat() or period(). These tasks may be controlled like any other tasks on
the target; for example, you can suspend or delete them with ts() or td()
respectively.

Table 3-6 summarizes the commands that report task information.

Table 3-5 C Interpreter Task Management Commands

Command Description

sp() Spawns a task with default parameters.

sps() Spawns a task, but leaves it suspended.

tr() Resumes a suspended task.

ts() Suspends a task.

td() Deletes a task.

period() Spawns a task to call a function periodically.

repeat() Spawns a task to call a function repeatedly.

taskIdDefault() Sets or reports the default (current) task ID.

Table 3-6 C Interpreter Task Information Reporting Commands

Command Description

i() Displays system information. This command gives a snapshot
of what tasks are in the system, and some information about
each of them, such as state, PC, SP, and TCB address. To save
memory, this command queries the target repeatedly; thus, it
may occasionally give an inconsistent snapshot.

3 Using the C Interpreter
3.10 C Interpreter Primitives

39

3

The i() command is commonly used to get a quick report on target activity. If
nothing seems to be happening, i() is often a good place to start investigating. To
display summary information about all running tasks, type the following:

iStrict() Displays the same information as i(), but queries target system
information only once. At the expense of consuming more
intermediate memory, this guarantees an accurate snapshot.

ti() Displays task information. This command gives all the
information contained in a task’s TCB. This includes everything
shown for that task by an i() command, plus all the task’s
registers, and the links in the TCB chain. If task is 0 (or the
argument is omitted), the current task is reported on.

w() Prints a summary of each task’s pending information, task by
task. This routine calls taskWaitShow() in quiet mode on all
tasks in the system, or on a specified task if the argument is
given.

tw() Prints information about the object the given task is pending on.
This routine calls taskWaitShow() on the given task in verbose
mode.

checkStack() Shows a stack usage summary for a task, or for all tasks if no
task is specified. The summary includes the total stack size
(SIZE), the current number of stack bytes (CUR), the maximum
number of stack bytes used (HIGH), and the number of bytes
never used at the top of the stack (MARGIN = SIZE - HIGH).
Use this routine to determine how much stack space to allocate,
and to detect stack overflow. This routine does not work for
tasks that use the VX_NO_STACK_FILL option.

tt() Displays a stack trace.

taskIdFigure() Reports a task ID, given its name.

Table 3-6 C Interpreter Task Information Reporting Commands (cont’d)

Command Description

Wind River Workbench
Host Shell User’s Guide, 2.6

40

-> i
NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY

--------- ----------- -------- --- -------- ------- -------- ------- -----
tExcTask _excTask 3ad290 0 PEND 4df10 3ad0c0 0 0
tLogTask _logTask 3aa918 0 PEND 4df10 3aa748 0 0
tWdbTask 0x41288 3870f0 3 READY 23ff4 386d78 3d0004 0
tNetTask _netTask 3a59c0 50 READY 24200 3a5730 0 0
tFtpdTask _ftpdTask 3a2c18 55 PEND 23b28 3a2938 0 0
value = 0 = 0x0

3.10.2 Displaying System Information

Table 3-7 shows the commands that display information from the symbol table,
from the target system, and from the shell itself.

Table 3-7 C Interpreter System Information Commands

Command Description

devs() Lists all devices known on the target system.

lkup() Lists symbols from symbol table.

lkAddr() Lists symbols whose values are near a specified value.

d() Displays target memory. You can specify a starting address,
size of memory units, and number of units to display.

l() Disassembles and displays a specified number of
instructions.

printErrno() Describes the most recent error status value.

version() Prints VxWorks version information.

cd() Changes the host working directory (no effect on target).

ls() Lists files in host working directory.

pwd() Displays the current host working directory.

help() Displays a summary of selected shell commands.

h() Displays up to 20 lines of command history.

shellHistory() Sets or displays shell history.

shellPromptSet() Changes the C-interpreter shell prompt.

3 Using the C Interpreter
3.10 C Interpreter Primitives

41

3

The lkup() command takes a regular expression as its argument, and looks up all
symbols containing strings that match. In the simplest case, you can specify a
substring to see any symbols containing that string. For example, to display a list
containing routines and declared variables with names containing the string dsm,
do the following:

-> lkup "dsm"
_dsmData 0x00049d08 text (vxWorks)
_dsmNbytes 0x00049d76 text (vxWorks)
_dsmInst 0x00049d28 text (vxWorks)
mydsm 0x003c6510 bss (vxWorks)

Case is significant, but position is not (mydsm is shown, but myDsm would not
be). To explicitly write a search that would match either mydsm or myDsm, you
could write the following:

-> lkup "[dD]sm"

3.10.3 Modifying and Debugging the Target

Developers often need to change the state of the target, whether to run a new
version of some software module, to patch memory, or simply to single-step a
program. Table 3-8 summarizes the commands of this type.

printLogo() Displays the shell logo.

Table 3-7 C Interpreter System Information Commands (cont’d)

Command Description

Table 3-8 C Interpreter System Modification and Debugging Commands

Command Description

ld() Loads an object module into target memory and links it
dynamically into the run-time.

unld() Removes a dynamically linked object module from target
memory, and frees the storage it occupied.

Wind River Workbench
Host Shell User’s Guide, 2.6

42

The m() command provides an interactive way of manipulating target memory.

m() Modifies memory in width (byte, short, or long) starting at
addr. The m() command displays successive words in
memory on the terminal; you can change each word by
typing a new hex value, leave the word unchanged and
continue by typing ENTER, or return to the shell by typing a
dot (.).

mRegs() Modifies register values for a particular task.

b() Sets or displays breakpoints, in a specified task or in all tasks.

bh() Sets a hardware breakpoint.

s() Steps a program to the next instruction.

so() Single-steps, but steps over a subroutine.

c() Continues from a breakpoint.

cret() Continues until the current subroutine returns.

bdall() Deletes all breakpoints.

bd() Deletes a breakpoint.

reboot() Returns target control to the target boot ROMs, then resets
the target server and reattaches the shell.

bootChange() Modifies the saved values of boot parameters.

sysSuspend() If supported by the target agent configuration, enters system
mode.

sysResume() If supported by the target agent (and if system mode is in
effect), returns to task mode from system mode.

agentModeShow() Shows the agent mode (system or task).

sysStatusShow() Shows the system context status (suspended or running).

quit() or exit() Dismisses the shell.

Table 3-8 C Interpreter System Modification and Debugging Commands (cont’d)

Command Description

3 Using the C Interpreter
3.11 Running Target Routines from the Host Shell

43

3

The remaining commands in this group are for breakpoints and single-stepping.
You can set a breakpoint at any instruction. When that instruction is executed by
an eligible task (as specified with the b() command), the task that was executing
on the target suspends, and a message appears at the shell. At this point, you can
examine the task’s registers, do a task trace, and so on. The task can then be
deleted, continued, or single-stepped.

If a routine called from the shell encounters a breakpoint, it suspends just as any
other routine would, but in order to allow you to regain control of the shell, such
suspended routines are treated in the shell as though they had returned 0. The
suspended routine is nevertheless available for your inspection.

When you use s() to single-step a task, the task executes one machine instruction,
then suspends again. The shell display shows all the task registers and the next
instruction to be executed by the task.

3.11 Running Target Routines from the Host Shell

All target routines are available from the host shell. This includes both VxWorks
routines and your application routines. Thus the shell provides a tool for testing
and debugging your applications using all the host resources while having
minimal impact on how the target performs and how the application behaves.

Invocations of VxWorks Subroutines

-> taskSpawn ("tmyTask", 10, 0, 1000, myTask, fd1, 300)
value = …

-> fd = open ("file", 0, 0)
new symbol "fd" added to symbol table
fd = (…address of fd…): value = …

Invocations of Application Subroutines

-> testFunc (123)
value = …

-> myValue = myFunc (1, &val, testFunc (123))
myValue = (…address of myValue…): value = …

Wind River Workbench
Host Shell User’s Guide, 2.6

44

-> myDouble = (double ()) myFuncWhichReturnsADouble (x)
myDouble = (…address of myDouble…): value = …

Resolving Name Conflicts Between Host and Target

If you invoke a name that stands for a host shell command, the shell always
invokes that command, even if there is also a target routine with the same name.
Thus, for example, i() always runs on the host, regardless of whether you have the
VxWorks routine of the same name linked into your target.

However, you may occasionally need to call a target routine that has the same
name as a host shell command. The shell supports a convention allowing you to
make this choice: use the single-character prefix @ to identify the target version of
any routine. For example, to run a target routine named i(), invoke it with the
name @i().

3.12 Examples

Execute C statements.
-> test = malloc(100); test[0] = 10; test[1] = test[0] + 2
-> printf("Hello!")

Download and dynamically link a new module.
-> ld < /usr/apps/someProject/file1.o

Create new symbols.
-> MyInt = 100; MyName = "Bob"

Show system information (task summary).
-> i

Show information about a specific task.
-> ti(s1u0)

Suspend a task, then resume it.
-> ts(s1u0)
-> tr(s1u0)

Show stack trace.
-> tt

3 Using the C Interpreter
3.12 Examples

45

3

Show current working directory; list contents of directory.
-> pwd
-> ls

Set a breakpoint.
-> b(0x12345678)

Step program to the next routine.
-> s

Call a VxWorks function; create a new symbol (my_fd).
-> my_fd = open ("file", 0, 0)

Call a function from your application.
-> someFunction (1,2,3)

Sometimes a routine in your application code will have the same name as a host
shell command. If such a conflict arises, you can direct the C interpreter to execute
the target routine, rather than the host shell command, by prefixing the routine
name with @, as shown in the example below.

Call an application function that has the same name as a shell command.
-> @i()

Wind River Workbench
Host Shell User’s Guide, 2.6

46

47

 4
Using the Tcl Interpreter

4.1 Using the Tcl Interpreter 47

4.2 Tcl Scripting 48

4.1 Using the Tcl Interpreter

The Tcl interpreter allows you to access the WTX Tcl API, and to exploit Tcl’s
sophisticated scripting capabilities to write complex scripts to help you debug and
monitor your target.

To switch to the Tcl interpreter from another mode, type a question mark (?) at the
prompt; the prompt changes to tcl> to remind you of the shell’s new mode. If you
are in another interpreter mode and want to use a Tcl command without changing
to Tcl mode, type a ? before your line of Tcl code.

! CAUTION: You may not embed Tcl evaluation inside a C expression; the ? prefix
works only as the first non-blank character on a line, and passes the entire line
following it to the Tcl interpreter.

Wind River Workbench
Host Shell User’s Guide, 2.6

48

4.1.1 Accessing the WTX Tcl API

The WTX Tcl API allows you to launch and kill a process, and to apply several
actions to it such as debugging actions (continue, stop, step), memory access (read,
write, set), perform gopher string evaluation, and redirect I/O at launch time.

A real time process (RTP) can be seen as a protected memory area. One or more
tasks can run in an RTP or in the kernel memory context as well. It is not possible
to launch a task or perform load actions in an RTP, therefore an RTP is seen by the
target server only as a memory context.

For a complete listing of WTX Tcl API commands, consult the wtxtcl reference
entries.

4.2 Tcl Scripting

From any of the Host Shell interpreters, a single command can be executed by any
other interpreter by prefixing it with the appropriate command prefix. For
example, when the Host Shell is in Tcl mode, the following command executes the
single GDB mode command continue, leaving the Host Shell in Tcl mode:

gdb continue

In this way, Tcl scripts executed by the Host Shell can issue GDB mode commands
to perform OCD debugging operations, such as a reset and download operation.

The Host Shell can be made to execute a Tcl script by invoking it as follows:

hostShell -m Tcl -q -s script-pathname

The –q option is optional; it tells the Host Shell not to echo script commands as
they are executed.

The Host Shell can also execute Tcl scripts when events are encountered; see
8. Eventpoint Scripting.

49

 5
Using the GDB Interpreter

5.1 General GDB Commands 50

5.2 Working with Breakpoints 52

5.3 Specifying Files to Debug 54

5.4 Running and Stepping Through a File 56

5.5 Displaying Disassembly and Memory Information 58

5.6 Examining Stack Traces and Frames 59

5.7 Displaying Information and Expressions 60

5.8 Displaying and Setting Variables 61

5.9 Wind River-Specific GDB Commands 63

The GDB interpreter provides a command-line GDB interface to the host shell, and
permits the use of GDB commands to debug a target.

The GDB interpreter includes several Wind River-specific commands; these
commands are prefaced with the prefix wrs- to prevent confusion with existing or
future GDB commands. These commands are listed in 5.9 Wind River-Specific GDB
Commands, p.63.

Wind River Workbench
Host Shell User’s Guide, 2.6

50

5.1 General GDB Commands

This section lists general commands available within the GDB interpreter.

5.1.1 HELP

Syntax

help command

Prints a description of command.

5.1.2 CD

Syntax

cd directory

Changes the working directory.

5.1.3 PWD

Syntax

pwd

Prints the working directory.

5.1.4 PATH

Syntax

path pathname

Appends pathname to the path variable.

5 Using the GDB Interpreter
5.1 General GDB Commands

51

5

5.1.5 SHOW PATH

Syntax

show path

Shows the path variable.

5.1.6 ECHO

Syntax

echo string

Echoes the string.

5.1.7 LIST

Syntax

list line|symbol| file:line

Displays 10 lines of a source file, centered around a line number or symbol.

5.1.8 SHELL

Syntax

shell command

Runs a shell command (such as ls or dir).

5.1.9 SOURCE

Syntax

source scriptfile

Runs a script of GDB commands.

Wind River Workbench
Host Shell User’s Guide, 2.6

52

5.1.10 DIRECTORY

Syntax

directory dir

Appends dir to the directory variable (for source file searches.)

5.1.11 QUIT

Syntax

q or quit

Quits the Host Shell.

5.2 Working with Breakpoints

This section lists commands available for setting and manipulating breakpoints.

5.2.1 BREAK

Syntax

break symbol|line| file:line [if expr]

or

b symbol|line| file:line [if expr]

Sets a breakpoint.

5 Using the GDB Interpreter
5.2 Working with Breakpoints

53

5

5.2.2 TBREAK

Syntax

tbreak symbol|line| file:line [if expr]

or

t symbol|line| file:line [if expr]

Sets a temporary breakpoint.

5.2.3 ENABLE

Syntax

enable breakpoint_id

Enables a breakpoint. Takes optional arguments once and del.

5.2.4 DISABLE

Syntax

disable breakpoint_id

Disables a breakpoint.

5.2.5 DELETE

Syntax

delete breakpoint_id

Deletes a breakpoint.

5.2.6 CLEAR

Syntax

clear breakpoint_id

Clears a breakpoint.

Wind River Workbench
Host Shell User’s Guide, 2.6

54

5.2.7 COND

Syntax

cond breakpoint_id condition

Changes a breakpoint condition (re-initializes the breakpoint).

5.2.8 IGNORE

Syntax

ignore breakpoint_id n

Ignores a breakpoint n times (re-initializes the breakpoint).

5.3 Specifying Files to Debug

This section lists commands that specify the file(s) to be debugged.

5.3.1 FILE

Syntax

file filename

Defines filename as the program to be debugged.

5.3.2 EXEC-FILE

Syntax

exec-file filename

Specifies that the program to be run is found in filename.

5 Using the GDB Interpreter
5.3 Specifying Files to Debug

55

5

5.3.3 LOAD

Syntax

load filename

Loads a module.

5.3.4 UNLOAD

Syntax

unload filename

Unloads a module.

5.3.5 ATTACH

Syntax

attach process_id

Attaches to a process.

5.3.6 DETACH

Syntax

detach

Detaches from the debugged process.

5.3.7 THREAD

Syntax

thread thread_id

Selects a thread as the current task to debug.

Wind River Workbench
Host Shell User’s Guide, 2.6

56

5.3.8 ADD-SYMBOL-FILE

Syntax

add-symbol-file filename addr

Reads additional symbol table information from the file located at memory
address addr.

5.4 Running and Stepping Through a File

This section lists commands to run and step through programs.

5.4.1 RUN

Syntax

run

Runs a process for debugging (use set arguments and set environment if program
needs them).

5.4.2 KILL

Syntax

kill process_id

Kills a process.

5.4.3 INTERRUPT

Syntax

interrupt

Interrupts a running task or process.

5 Using the GDB Interpreter
5.4 Running and Stepping Through a File

57

5

5.4.4 CONTINUE

Syntax

continue

Continue an interrupted task or process.

5.4.5 STEP

Syntax

step [n]

Step one instruction. If n is used, step n times.

5.4.6 STEPI

Syntax

stepi [n]

Step one assembly-language instruction. If n is used, step n times.

5.4.7 NEXT

Syntax

next [n]

Continue to the next source line in the current stack frame. If n is used, continue
through n lines.

5.4.8 NEXTI

Syntax

nexti [n]

Execute one assembly-language instruction. If the instruction is a function call,
proceed until the function returns. If n is used, execute n instructions.

Wind River Workbench
Host Shell User’s Guide, 2.6

58

5.4.9 UNTIL

Syntax

until

Continue running until a source line past the current line in the current stack frame
is reached.

5.4.10 JUMP

Syntax

jump address

Move the instruction pointer to address.

5.4.11 FINISH

Syntax

finish

Finish execution of current block.

5.5 Displaying Disassembly and Memory Information

This section lists commands for disassembling code and displaying contents of
memory.

5.5.1 DISASSEMBLE

Syntax

disassemble address

Disassemble code at a specified address.

5 Using the GDB Interpreter
5.6 Examining Stack Traces and Frames

59

5

5.5.2 X

Syntax

x [/format] address

Display memory starting at address.

format is one of the formats used by print: either s for a null-terminated string, or i
for a machine instruction.

Initially, the default is x for hexadecimal; but the default changes each time you use
either x or print.

5.6 Examining Stack Traces and Frames

This section lists commands for selecting and displaying stack frames.

5.6.1 BT

Syntax

bt [n]

Display back trace of n frames.

5.6.2 FRAME

Syntax

frame [n]

Select frame number n.

Wind River Workbench
Host Shell User’s Guide, 2.6

60

5.6.3 UP

Syntax

up [n]

Move n frames up the stack.

5.6.4 DOWN

Syntax

down [n]

Move n frames down the stack.

5.7 Displaying Information and Expressions

This section lists commands that display functions, registers, expressions, and
other debugging information.

5.7.1 INFO

Syntax

info option

The info command takes the following options:

■ args - Shows function arguments.

■ breakpoints - Shows breakpoints.

■ extensions - Shows file extensions (c, c++, ...)

■ functions - Shows all functions.

■ locals - Shows local variables.

■ registers - Shows contents of registers.

■ source - Shows current source file.

5 Using the GDB Interpreter
5.8 Displaying and Setting Variables

61

5

■ sources - Shows all source files of current process.

■ target - Displays information about the target.

■ threads - Shows all threads.

■ warranty - Shows disclaimer information.

5.7.2 PRINT /X

Syntax

print /x expression

Evaluate and print an expression in hexadecimal format.

5.8 Displaying and Setting Variables

This section lists commands for displaying and setting variables.

5.8.1 SET ARGS

Syntax

set args arguments

Specify the arguments to be used the next time a debugged program is run.

5.8.2 SET EMACS

Syntax

set emacs

Set display to emacs mode.

Wind River Workbench
Host Shell User’s Guide, 2.6

62

5.8.3 SET ENVIRONMENT

Syntax

set environment varname =value

Set environment variable varname to value. value may be any string interpreted by
the program.

5.8.4 SET TGT-PATH-MAPPING

Syntax

set tgt-path-mapping

Set target to host pathname mappings.

5.8.5 SET VARIABLE

Syntax

set variable expression

Set variable value to expression.

5.8.6 SHOW ARGS

Syntax

show args

Show arguments of debugged program.

5.8.7 SHOW ENVIROMENT

Syntax

show environment

Show environment of debugged program.

5 Using the GDB Interpreter
5.9 Wind River-Specific GDB Commands

63

5

5.9 Wind River-Specific GDB Commands

5.9.1 TARGET OCD

target ocd spawns a backend server, connects to it, and connects to a target. If the
Host Shell is already connected to a backend server, this command simply
connects to a target using that backend server.

Syntax

target ocd target-id

target-id is one of the target IDs from the output of the wrsregquery command, or
the target-id given to an earlier wrsdeftarget command.

There is no corresponding command to disconnect from the target or backend
server. Once connected to a backend server and a target, the Host Shell remains
connected until the user terminates the Host Shell.

If the Host Shell is not connected to a backend server when this command is issued,
the Host Shell spawns a backend server and connects to it before sending GDB/MI
messages.

5.9.2 WRSDEFTARGET

wrsdeftarget creates a new target definition.

Syntax

wrsdeftarget target-id --core core-name --cpuplugin cpu-plugin [--targetplugin
target-plugin] param=value [param=value ...]

target-id is a user-supplied name for this target definition.

core-name is the type of the target CPU.

cpu-plugin is the name of the CPU plugin.

target-plugin is the name of the target plugin.

param is one of the parameter names shown in Table 5-1.

NOTE: If you omit the --targetplugin option, the Host Shell uses ocdtargetplugin
by default.

Wind River Workbench
Host Shell User’s Guide, 2.6

64

Example

wrsdeftarget mytarget --core MPC8260 --cpuplugin 82xxcpuplugin DEVICE="Wind
River ICE" STYLE=ETHERNET ADDR=128.224.50.236

If the Host Shell is not connected to a backend server when you issue this
command, the Host Shell will spawn a backend server and connect to it before
sending GDB/MI messages.

The new target definition is transient; it does not persist beyond the lifetime of the
backend server session in which it was created.

This command does not modify the contents of the Wind River Registry.

Table 5-1 wrsdeftarget Parameter Names

Parameter Name Description

DEVICE Specifies the device that is being connected to. Its value is one of
the following strings, enclosed in double quotes:

■ visionICE II - Connects to a visionICE II tool.
■ Wind River ICE - Connects to a Wind River ICE SX tool

(also called WINDPOWER ICE.) For this DEVICE type,
the BFNAME parameter is required; for other DEVICE
types, the BFNAME parameter is optional.

■ visionPROBE II - Connects to a visionPROBE II tool.
■ Wind River ISS - Connects to a Instruction Set

Simulator. For this DEVICE type, STYLE and ADDR are
unnecessary.

STYLE Specifies the style of the connection and how the ADDR
parameter is interpreted. The value of this parameter can be either
of the keywords ETHERNET or PARALLEL.

ADDR Specifies the connection address. When the parameter STYLE is
set to ETHERNET, the value of ADDR is either an IP address or
a hostname. When STYLE is set to PARALLEL, the value of
ADDR is either of the keywords LPT1 or LPT2.

BFNAME Specifies the host pathname of the board descriptor file.

5 Using the GDB Interpreter
5.9 Wind River-Specific GDB Commands

65

5

5.9.3 WRSDOWNLOAD

The wrsdownload command has three separate syntaxes: one for downloading
executables and raw data to the target; one for erasing flash memory on the target;
and one for programming flash memory on the target. These three syntaxes cannot
be used at the same time. (That is, you cannot specify more than one kind of
operation in the arguments for one wrsdownload command.)

Download Executables and Data

Use the wrsdownload command to download executables and data, using the
following syntax.

Syntax 1

wrsdownload [{--offset | -o} byte_offset] [{--modulename | -m} modulename]
[--symbolsonly | -s] [--nosymbols | n] pathname

byte_offset is the byte offset to apply to the download.

modulename is the logical name for the object file.

The --symbolsonly or -s option suppresses transfer of any data to target memory
(but still loads symbols from pathname.)

The --nosymbols or -n option suppresses loading symbols from pathname (but still
downloads the file to the target.)

pathname is the file to download.

Erase Flash Memory

Erase a specified area of flash memory on the target using the following syntax.

Syntax 2

wrsdownload {--eraseFlash | -e} start_address end_address

This command erases the content of flash memory from start_address to
end_address.

Wind River Workbench
Host Shell User’s Guide, 2.6

66

Program Flash Memory

Program flash memory on the target using the following syntax:

Syntax 3

wrsdownload {--flash | -f} address pathname

This command loads the file at pathname to flash memory, beginning at address.

5.9.4 WRSMEMMAP

Specify whether the debugger backend has read/write access to target memory,
and where in target memory such access is allowed. This command only affects the
backend. It does not affect memory map registers on the target, and does not cause
a state change.

Syntax

wrsmemmap { --access | --noaccess }
{ offset size { --inv |

[-r bitsize[|bitsize]...]
[-w bitsize[|bitsize]...] | -rw bitsize[|bitsize]... }

 } ...

This command will not check the validity of the numeric arguments, but it will
communicate any errors reported by the backend.

Example 1

With the --access option set, all of memory is accessible to reads or writes; but
within the range specifed, there are modifications to the access privileges. So, for
example, the command

wrsmemmap --access 0x14000 4000 -rw 8|16|32

allows you to read only the 4000-byte block of memory starting at address 0x14000,
with accesses of 8, 16, or 32 bits.

Example 2

With the --noaccess option set, all of memory is inaccessible to reads or writes; but
within the range specified there are modifications to the access privileges. The
command

wrsmemmap --noaccess 0x14000 4000 -rw 16

5 Using the GDB Interpreter
5.9 Wind River-Specific GDB Commands

67

5

allows you to read and write the 4000-byte block of memory starting at address
0x14000 with 16-bit accesses.

Example 3

The --inv option will invert the defined access setting without changing the
undefined settings, as in the following example:

First, enter the command

wrsmemmap --access 0x14000 4000 -r 8|16|32

This allows read-only access starting at address 0x14000. You can now read that
memory location but you cannot write to it. A read at 0x14000 provides data, but
a write returns the error

GDB/MI Error: Invalid 'write' access for address '0x00014000'

Next, enter the command

wrsmemmap --access 0x14000 4000 --inv

This inverts the previously defined setting. The previously defined setting allowed
a read, so the inverted setting does not. Now a read or a write at 0x14000 returns
an access error.

5.9.5 WRSPASSTHRU

Pass commands directly to the firmware without interpretation.

Syntax

wrspassthru command

command is an arbitrary sequence of space-separated strings. These strings are
concatenated with a single space between each, and passed as a single command
to the firmware.

Use this command to configure a target’s flash memory by issuing configuration
(CF) commands to the firmware. For information on the CF command, see the Wind
River Workbench On-Chip Debugging Command Reference.

Wind River Workbench
Host Shell User’s Guide, 2.6

68

5.9.6 WRSPLAYBACK

Play a file of commands directly to the firmware.

Syntax

wrsplayback [--quiet | -q] pathname

pathname identifies an object file suitable for downloading to the target. This file
must be accessible by the backend.

By default, the wrsplayback command returns human-readable status messages
as they are received from the backend.

Use the option --quiet or -q to set the wrsplayback command not to return status
messages.

With either option (that is, whether status messages are displayed to the user or
not) the wrsplayback command waits for the playback to complete.

5.9.7 WRSREGQUERY

wrsregquery queries the Wind River registry to obtain target definition
information. Target definitions can later be given to the wrsdeftarget command
(see 5.9.2 WRSDEFTARGET, p.63) to connect to a specific target.

Syntax

wrsregquery

The output is a list of target definitions having the format target-id, target-name.

target-id is a unique identifier specifying a target definition.

target-name is a non-unique human-readable version of the target definition.

Example

gdb> wrsregquery
jsmith_1136574941992, WRISS_MPC8260
jsmith_1136836847022, vxsim0
jsmith_1140032123849, WRICE_MPC8260

This command does not display backend servers, even though the Wind River
registry contains a list of backend servers running on the same host, because the
Host Shell will only connect to the backend server specified by the -ds
command-line option, or to a newly spawned backend server.

5 Using the GDB Interpreter
5.9 Wind River-Specific GDB Commands

69

5

5.9.8 WRSRESET

Reset one or more target cores.

Syntax

wrsreset [--tied | -t] [--noinitregs | -n] corename_1 [corename_2 ...]

The - -tied option performs a tied reset of all specified cores.

The - -noinitregs option specifies that target registers will not be initialized. If the
- -noinitregs option is omitted, target registers will be initialized by default.

5.9.9 WRSUPLOAD

Upload data from target memory.

Syntax

wrsupload [{ --style | -s } file_style] [--append | -a] start_address byte_count filename

--style specifies the type of file to create. Currently the only supported file_style is
RAWBIN. If you do not specify a style, the shell uses RAWBIN by default.

--append appends the uploaded data to filename instead of overwriting it.

Wind River Workbench
Host Shell User’s Guide, 2.6

70

71

 6
Single Step Compatibility

6.1 Overview 71

6.2 Scripting 72

6.3 SingleStep Command Equivalents 72

6.4 SingleStep read Command Compatibility 76

6.5 SingleStep write Command Compatibility 78

6.6 SingleStep Variable Compatibility 79

6.1 Overview

This chapter describes backward compatibility for Wind River SingleStep
scripting.

In this release, Wind River has used the Host Shell to implement a replacement for
SingleStep scripting functionality.

The Host Shell provides a Tcl interpreter in place of SingleStep’s C shell. Tcl offers
superior control constructs (i.e., arrays, namespaces, exceptions, etc.) and the
ability to bind to native code libraries.

In the Host Shell, Tcl variables take the place of a subset of SingleStep’s debugger
and shell variables. These variables are given default values by the Host Shell’s
startup Tcl code.

Wind River Workbench
Host Shell User’s Guide, 2.6

72

When the Host Shell starts, it sources the file value/.wind/wb/windsh.tcl, where
value is the value of the environment variable HOME; or, if that variable is not
defined, the value of the environment variable WIND_FOUNDATION_PATH. You
can edit this file to contain arbitrary Tcl commands to execute every time the Host
Shell starts. In particular, commands in this file can modify the default value of Tcl
variables used to provide SingleStep compatibility.

6.2 Scripting

The Host Shell will not execute SingleStep scripts. Existing SingleStep scripts must
be manually converted, using the equivalents described in this chapter.

The Host Shell does not have all of the scripting functionality of SingleStep; in
particular, pROBE+ and pRISM+ debugger variables are not supported. See
6.6 SingleStep Variable Compatibility, p.79.

6.3 SingleStep Command Equivalents

Table 6-1 enumerates each SingleStep command, along with its description and the
equivalent Host Shell command (if any). There are 72 SingleStep commands. Some
have equivalent Host Shell commands, some have no equivalent Host Shell
commands, and some have similar but not exactly equivalent Host Shell
commands.

Table 6-1 SingleStep Command Equivalents

SingleStep
Command Description Host Shell Equivalent

? Print value of expression print (GDB mode)

@ Set shell variable to
expression

set (Tcl mode)

alias Create command aliases proc (Tcl mode)

6 Single Step Compatibility
6.3 SingleStep Command Equivalents

73

6

args Display own arguments None.

asm Assemble into memory None.

break Set a breakpoint break or hbreak (GDB mode). These
commands are not as functional as the
SingleStep break command.

cache Display instruction/data
cache

None.

call Call function or subroutine None.

cd Change directory cd (cmd and Tcl modes)

cflush Flush cache memory None.

continue Continue loop continue (Tcl mode)

control Enable diagnostics None.

copymem Copy memory None.

curtask Set current task attach (GDB mode)

debug Select program to debug No single equivalent. This command maps
to the wrsreset and wrsdownload
commands.

echo Display arguments puts (Tcl mode)

exit Exit debugger or script exit (Tcl mode)

false No-op that always fails false (Tcl procedure defined in Host Shell
startup script)

flash Flash programmer
commands

wrspassthru (GDB mode)

foreach Loop through a list foreach (Tcl mode)

glob Display arguments None.

Table 6-1 SingleStep Command Equivalents

SingleStep
Command Description Host Shell Equivalent

Wind River Workbench
Host Shell User’s Guide, 2.6

74

go Run the target Similar command: continue (GDB mode).
The continue command does not support
the –n and –i options from the go
command.

goto Execute to a location Similar commands: set and continue (GDB
mode). This is equivalent to setting the
instruction pointer and issuing a continue
command.

help

help Display help on commands help (GDB mode)

history Display command history None.

if Conditional execution if (Tcl mode)

jobs Report background jobs None.

kernel Display kernel objects None.

load Load memory None. (Downloads Block Binary files,
which the Host Shell does not support.)

loadi Load a memory image wrsdownload (GDB mode)

loop Execute until here again Similar commands: tbreak and continue
(GDB mode). This is equivalent to setting a
temporary breakpoint and issuing a
continue command.

loopbreak Break a loop break (Tcl mode)

mem Specify a memory map wrsmemmap (GDB mode)

module Load or unload symbols Similar command: wrsdownload (GDB
mode)

nop No operation ; (Tcl mode)

offset For position independence None.

osboot Boot probe+ None.

Table 6-1 SingleStep Command Equivalents

SingleStep
Command Description Host Shell Equivalent

6 Single Step Compatibility
6.3 SingleStep Command Equivalents

75

6

probe Pass command to probe+ None.

pwd Print working directory pwd (Tcl mode)

read Read a variable or memory Similar commands: print and x (GDB
mode).

regs Display registers print and info registers (GDB mode)

repeat Repeat a command Similar commands: for or while (Tcl
mode).

reset Reset the target Similar command: wrsreset (GDB mode).

see See contents of files None.

set Set debugger variable Similar command: set (Tcl mode). (In the
Host Shell, all variables are Tcl variables.)

setenv Set an environment
variable

set env(varname) value (Tcl mode)

shift Shift a variable set argv [lreplace $argv 0 0] (Tcl mode)

sizeof Display size of variables None.

sleep Simulate sleep mode after (Tcl mode)

source Execute from a file source (Tcl mode)

stack Display the call stack bt (GDB mode)

status Get target status None.

step Step one statement step (GBD mode)

stop Stop the target None.

targetio Share target i/o spaces None.

true Generate success status true (Tcl procedure defined in Host Shell
startup script.)

typeof Display variable types None.

umask Get/set creation mask None.

Table 6-1 SingleStep Command Equivalents

SingleStep
Command Description Host Shell Equivalent

Wind River Workbench
Host Shell User’s Guide, 2.6

76

6.4 SingleStep read Command Compatibility

The SingleStep read command has a complex syntax that has no exact equivalent
in the Host Shell. Existing Host Shell GDB mode commands provide most of the

unalias Remove an alias Similar command: proc (Tcl mode). The
closest thing the Host Shell can do to
emulate unalias is to redefine the Tcl
procedure to do nothing.

unset Remove a shell variable unset (Tcl mode)

unsetenv Remove an environment
variable

array unset env varname (Tcl mode).

update Control view updates
(graphical)

None.

upload Upload memory Similar command: wrsupload (GDB mode)

visible Execute DOS command exec (Tcl mode). The exec command works
on every platform, not just Windows.

wait Wait for child processes None.

watch Watch a variable None.

wedit Edit source code
(graphical)

None.

where Display context list (GDB mode)

whereis Find files in the path None.

while Command loop while (GDB mode)

write Write variables or memory Similar commands: print (GDB mode) or
mem modify (Cmd mode).

Table 6-1 SingleStep Command Equivalents

SingleStep
Command Description Host Shell Equivalent

6 Single Step Compatibility
6.4 SingleStep read Command Compatibility

77

6

same functionality as the read command. Table 6-2 shows how various SingleStep
read commands map to Host Shell GDB mode commands.

Table 6-2 SingleStep read Command Compatibility

SingleStep read Command Description Host Shell Equivalent

read x Display value of variable x. print x

read x y z Display values of three
variables.

GDB mode: print x; print y; print z

Tcl mode: foreach var {x y z} {eval "puts \$$var"}

read -1#arg Display variable arg from
first function on stack.

None.

read file.c#var Display static variable var
from file.c.

print file.c:var

read main Disassemble starting at
main.

disassemble main

read 0x4000 Dump starting at address
0x4000.

x /32xw 0x4000

read -ux CPU:0x3FF00=long Read the MBAR register of
a 68360.

None.

read -Rux 0x7E02=char Read one byte at address
0x7E02.

x /1xb 0x7e02

read -F 0x4000 Disassemble starting at
0x4000.

disassemble 0x4000

read var=long Display variable var as if it
were a long.

print (long)var

read 0x120=(sym) Display 0x120 using type
from variable sym.

None.

read *p Display whatever p points
to.

print *p

read a[5] Display the fifth element of
array a.

print [a]5

read str.mem Display member mem. print str.mem

Wind River Workbench
Host Shell User’s Guide, 2.6

78

6.5 SingleStep write Command Compatibility

The SingleStep write command has a complex syntax that has no exact equivalent
in the Host Shell. Existing Host Shell GDB mode commands provide most of the
same functionality as the write command. Table 6-3 shows how various SingleStep
read commands map to Host Shell GDB mode commands.

read p->mem Display member mem. print p->mem

read Continue previous read. None.

Table 6-2 SingleStep read Command Compatibility

SingleStep read Command Description Host Shell Equivalent

Table 6-3 SingleStep write Command Compatibility

SingleStep write Command Description Host Shell Equivalent

write var=99 Write value 99 to variable
var.

set var=99

write x=1 y=2 z=3 Write values to multiple
variables.

set x=1; set y=2; set z=3

write *ptr=88 Write value to destination
of a pointer.

set *ptr = 88

write obj.member=77 Write value to member of
structure or class.

set obj.member = 77

write –b 0x1000=99 Write the value 99 to the
byte at 0x1000.

set *(char *)0x1000 = 99

write –w 0x1000=999 Write the value 999 to the
word at 0x1000.

set *(short *)0x1000 = 999

write –l 0x1000=99999 Write the value 99999 to
the longword at 0x1000.

set *(long *)0x1000 = 99999

6 Single Step Compatibility
6.6 SingleStep Variable Compatibility

79

6

The following SingleStep write command options are not implemented in the Host
Shell:

■ -c count
■ -q
■ -r
■ -u
■ -x
■ -H
■ -W

6.6 SingleStep Variable Compatibility

enumerates each SingleStep debugger and shell variable along with its description
and the equivalent Host Shell variable (if any). There are 44 SingleStep variables.
Some have equivalent Host Shell variables, some have no equivalent Host Shell
variables, and some have similar but not exactly equivalent Host Shell variables.

SingleStep had two variable namespaces: debugger variables and shell variables.
The Host Shell only has the Tcl variable namespace.

write –s 0x1000=3.14 Write the value 3.14 to the
single-precision float at
0x1000.

set *(float *)0x1000 = 3.14

write –d 0x1000=3.14 Write value 3.14 to the
double-precision float at
0x1000.

set *(double *)0x1000 = 3.14

write –e 0x1000=3.14 Write value 3.14 to the
extended-precision float at
0x1000.

None.

write -f 99 x y z Write value 99 to variables
x, y, and z.

No GDB mode equivalent.

In Tcl mode: foreach var {x y z} {set $var 99}

Table 6-3 SingleStep write Command Compatibility

SingleStep write Command Description Host Shell Equivalent

Wind River Workbench
Host Shell User’s Guide, 2.6

80

Table 6-4 SingleStep Variable Equivalents

SingleStep
Variable Description Host Shell Equivalent

altsep Word separator None

altshell Alternate shell None

argv List of arguments None

backtick Command substitution character None

breaknums Breakpoint numbers breaknums

cdpath Directory search path None

child Background process id None

debugblk Download data file None

debugchip Processor name None

debugdb Symbol database file None

debugdb2 Symbol database file None

debugout Linker output file None

echo Echo commands None

hexreplace Floats in hex None

histchars History substitution characters None

history Size of history list None

home Home directory Equivalent expression:
$env(HOME)

ignoreeof Ignore eof characters None

kanji_code Kanji codes None

litebold Highlight sequence None

liteoff No source highlight None

liteon Turn on highlighting None

mail Files for mail None

6 Single Step Compatibility
6.6 SingleStep Variable Compatibility

81

6

morelines Lines for display None

no_binary_msg ASCII download None

noclobber Do not overwrite files None

noglob No file name substitution None

nonomatch No match complaint None

ovlflags Overlay flags None

path Executable search path $env(PATH)

product Version of debugger Equivalent expression:
[tclShellVersionGet]

prompt Command line prompt None

random Random seed value Equivalent expressions: expr
srand(N) or expr rand()

root Root directory name root

shell Primary shell name None

srclines Lines for source window None

srclist Source file path list None

srcpath Source file path list None

status Command return status None

stkberr Stack error checking None

unixwild Wild card style None

vectaddr Vector address None

vectskip Exception vector list None

verbose Verbose information None

Table 6-4 SingleStep Variable Equivalents

SingleStep
Variable Description Host Shell Equivalent

Wind River Workbench
Host Shell User’s Guide, 2.6

82

83

 7
Executing an OCD Reset and

Download

7.1 Overview 83

7.2 Set Target Registers 84

7.3 Play Back Firmware Commands 85

7.4 Reset One or More Cores 86

7.5 Download Executables and Data and Program Flash 86

7.6 Run the Target 88

7.7 Set a Hardware Breakpoint 88

7.8 Configure Target Memory Map 88

7.9 Pass Through Command to Firmware 90

7.10 Upload from Target Memory 90

7.1 Overview

The Host Shell uses several commands to perform the equivalent of a Workbench
on-chip debugging (OCD) reset and download operation. Rather than implement
a single monolithic command having many options and optional arguments,
several simpler commands are provided that can be used together to achieve a
variety of goals.

Wind River Workbench
Host Shell User’s Guide, 2.6

84

If you need to invoke multiple commands repeatedly, you can create Tcl
procedures.

The OCD reset and download workflow has the following steps:

1. Optionally play firmware commands to configure target registers.

2. Reset one or more cores, optionally initializing registers.

3. Optionally download one or more executables (optionally verifying the
correctness of the download).

4. Optionally set the instruction pointer to an absolute address, the start address
specified in the downloaded file, the address of a symbol (for example, main),
or the address of a source line number (for example, foo.c:123).

5. Optionally play back firmware commands for post-reset target configuration.

6. Optionally set a breakpoint.

7. Optionally run the target.

All of these steps can be performed using GDB mode host shell commands, as
described in this chapter.

7.2 Set Target Registers

Use the GDB mode set command to set target registers.

Syntax

set $register_name = option

option can take any of the following four forms:

■ filename:line_number

set $pc = foo.c:113

Set the Program Counter to line 113 of the file foo.c.

NOTE: If the specified line number does not correspond to executable code, the
host shell returns an error.

7 Executing an OCD Reset and Download
7.3 Play Back Firmware Commands

85

7

■ address

set $pc = 0xfff000f0

Set the Program Counter to address 0xfff000f0.

■ program_symbol (typically a function name)

set $pc = main

Set the Program Counter to the beginning of the function main.

■ program_symbol + constant

set $pc = main + 0x60

7.3 Play Back Firmware Commands

Use the GDB mode wrsplayback command to play a file of commands directly to
the firmware.

Syntax

wrsplayback [--quiet | --q] pathname

pathname identifies an object file suitable for downloading to the target. This file
must be accessible by the backend.

By default, the wrsplayback command returns human-readable status messages
as they are received from the backend.

NOTE: In most cases you can use a GDB mode command from a Tcl prompt by
preceding it with the command gdb. However, because the set command is valid
in both GDB mode and Tcl mode, the syntax

tcl> gdb set $pc= address

will return an error:

can't read "pc": no such variable

To avoid this problem, precede the set command’s argument with a backslash:

tcl> gdb set \$pc= address

Wind River Workbench
Host Shell User’s Guide, 2.6

86

Use the option --quiet or -q to set the wrsplayback command not to return status
messages.

With either option (that is, whether status messages are displayed to the user or
not) the wrsplayback command waits for the playback to complete.

7.4 Reset One or More Cores

Use the GDB mode wrsreset command to reset one or more target cores.

Syntax

wrsreset [--tied | -t] [--noinitregs | -n] corename_1 [corename_2 ...]

The - -tied option performs a tied reset of all specified cores.

The - -noinitregs option specifies that target registers will not be initialized. If the
- -noinitregs option is omitted, target registers will be initialized by default.

7.5 Download Executables and Data and Program Flash

The GDB mode wrsdownload command has three separate syntaxes: one for
downloading executables and raw data to the target; one for erasing flash memory
on the target; and one for programming flash memory on the target. These three
syntaxes cannot be used at the same time. (That is, you cannot specify more than
one kind of operation in the arguments for one wrsdownload command.)

Erasing and programming flash are optional steps in a reset and download
operation. However, if you use the erase and program syntaxes, you must issue the
wrsdownload command three times: once to download code and data; once to
erase flash; and once to program flash.

7 Executing an OCD Reset and Download
7.5 Download Executables and Data and Program Flash

87

7

Download Executables and Data

First, use the wrsdownload command to download executables and data, using
the following syntax.

Syntax 1

wrsdownload [{--offset | -o} byte_offset] [{--modulename | -m} modulename]
[--symbolsonly | -s] [--nosymbols | n] pathname

byte_offset is the byte offset to apply to the download.

modulename is the logical name for the object file.

The --symbolsonly or -s option suppresses transfer of any data to target memory
(but still loads symbols from pathname.)

The --nosymbols or -n option suppresses loading symbols from pathname (but still
downloads the file to the target.)

pathname is the file to download.

Erase Flash Memory (Optional)

Erase a specified area of flash memory on the target, using the following syntax.

Syntax 2

wrsdownload {--eraseFlash | -e} start_address end_address

This command erases the content of flash memory from start_address to
end_address.

Program Flash Memory (Optional)

Program flash using the following syntax:

Syntax 3

wrsdownload {--flash | -f} address pathname

This command loads the file at pathname to flash memory, beginning at address.

Wind River Workbench
Host Shell User’s Guide, 2.6

88

7.6 Run the Target

First, use the GDB mode attach command to attach to a specific thread or to system
mode.

Example

attach system

Next, use the GDB mode continue command to make an OCD target begin
execution at the current instruction pointer.

Syntax

continue

7.7 Set a Hardware Breakpoint

Set hardware breakpoints using the GDB mode hbreak command.

Syntax

hbreak [address | file:line | symbol] [if condition] [--hx param=value ...]
[--sx param=expr ...]

The --hx and --sx options correspond to the equivalent options to the GDB/MI
command -wrs-break-insert, and param is any target-specific parameter that is
valid in that GDB/MI command. The hbreak command will not validate
tarrget-specific parameters.

7.8 Configure Target Memory Map

Use the GDB mode wrsmemmap command to specify whether the debugger
backend has read/write access to target memory, and where in target memory
such access is allowed. This command only affects the backend. It does not affect
memory map registers on the target, and does not cause a state change.

7 Executing an OCD Reset and Download
7.8 Configure Target Memory Map

89

7

Syntax

wrsmemmap { --access | --noaccess }
{ offset size { --inv |

[-r bitsize[|bitsize]...]
[-w bitsize[|bitsize]...] | -rw bitsize[|bitsize]... }

 } ...

This command will not check the validity of the numeric arguments, but it will
communicate any errors reported by the backend.

Example 1

With the --access option set, all of memory is accessible to reads or writes; but
within the range specifed, there are modifications to the access privileges. So, for
example, the command

wrsmemmap --access 0x14000 4000 -rw 8|16|32

allows you to read only the 4000-byte block of memory starting at address 0x14000,
with accesses of 8, 16, or 32 bits.

Example 2

With the --noaccess option set, all of memory is inaccessible to reads or writes; but
within the range specified there are modifications to the access privileges. The
command

wrsmemmap --noaccess 0x14000 4000 -rw 16

allows you to read and write the 4000-byte block of memory starting at address
0x14000 with 16-bit accesses.

Example 3

The --inv option will invert the defined access setting without changing the
undefined settings, as in the following example:

First, enter the command

wrsmemmap --access 0x14000 4000 -r 8|16|32

This allows read-only access starting at address 0x14000. You can now read that
memory location but you cannot write to it. A read at 0x14000 provides data, but
a write returns the error

GDB/MI Error: Invalid 'write' access for address '0x00014000'

Next, enter the command

wrsmemmap --access 0x14000 4000 --inv

Wind River Workbench
Host Shell User’s Guide, 2.6

90

This inverts the previously defined setting. The previously defined setting allowed
a read, so the inverted setting does not. Now a read or a write at 0x14000 returns
an access error.

7.9 Pass Through Command to Firmware

Use the GDB mode wrspassthru command to pass commands directly to the
firmware without interpretation.

Syntax

wrspassthru command

command is an arbitrary sequence of space-separated strings. These strings are
concatenated with a single space between each, and passed as a single command
to the firmware.

Use this command to configure a target’s flash memory by issuing configuration
(CF) commands to the firmware. For information on the CF command, see the Wind
River Workbench On-Chip Debugging Command Reference.

7.10 Upload from Target Memory

Use the GDB mode wrsupload command to upload data from target memory.

Syntax

wrsupload [{ --style | -s } file_style] [--append | -a] start_address byte_count filename

--style specifies the type of file to create. Currently the only supported file_style is
RAWBIN. If you do not specify a style, the shell uses RAWBIN by default.

--append appends the uploaded data to filename instead of overwriting it.

91

 8
Eventpoint Scripting

8.1 Overview 91

8.2 Detailed API Description 93

8.3 Limitations 97

8.4 Example Cmd Session 99

8.5 Example GDB Session 100

8.1 Overview

The Host Shell has the ability to execute a Tcl script when an event is encountered.
The user indicates the script to execute and the event type that will trigger the
script or the breakpoint ID that will trigger the script.

You must provide one of the following:

■ The name of the procedure to execute.

■ The name and location of the Tcl script to execute.

■ The Tcl script to enter, typed interactively at the tcl> prompt in the Host Shell.

You may also enter the following optional information:

■ The event that will trigger the execution. (By default, this is the stopped event.)

Wind River Workbench
Host Shell User’s Guide, 2.6

92

■ Whether the handler is enabled or disabled. (By default, it is enabled.)

■ For breakpoint events, the ID of the breakpoint that will trigger the handler. (If
no ID is indicated, all breakpoints will trigger the handler.)

■ Whether the default handler for the event should run after this new handler.
(By default, the default handler will not run.)

When the event is hit, you have two choices:

■ Execute a script (in which case you should indicate the path to the script to
execute.)

■ Execute a Tcl routine (in which case you should have previously sourced the
file containing the Tcl routine, either by using Tcl's source code or by adding
some code to the shell's startup procedures.)

If no argument is specified, you may enter Tcl code to execute at the tcl> prompt in
the Host Shell. The line end indicates the end of the script.

Your script should be written in Tcl. You have access to the target through the Gnu
Debugger/Machine Interface (GDB/MI) synchronous commands and the API
gdb mi. You can call the other interpreters by prefixing a command with the
interpreter you wish to call for that command. For example, to call the C
interpreter's i() command, you would write

C i

You can copy the output from calls to other interpreters into Tcl variables, and
manipulate them using standard Tcl.

If you wish to process the event that triggered the user handler, then your handler
should take the form of a Tcl procedure having one argument. The argument sent
to that procedure when the event type is encountered will be the triggering event
itself. You may then process the event to extract the various data fields using
standard Tcl string parsing procedures.

An example user handler:

proc breakpointHandler {evt} {
puts "Breakpoint Hit event received $evt"

}

When registering the script, you may indicate whether the script is enabled (that
is, whether it should be executed upon the next occurrence of the event specified)
or you may register the script in disabled mode and enable it later, using an API.

When writing your script, Wind River recommends that you pay close attention to
re-entrancy issues. If the script enters an infinite loop, you can exit the loop by
typing Ctrl+C.

8 Eventpoint Scripting
8.2 Detailed API Description

93

8

8.2 Detailed API Description

The APIs to register and enable/disable handlers and to list all registered handlers
are accessible from the Cmd and GDB interpreters.

8.2.1 Cmd Interpreter

handler add

Add an event handler to the shell.

Syntax

handler add [-e event_type] [-b breakpoint_number] [-d] [-n] [tcl_script|tcl_routine_name]

The Host Shell calls the handler when the specified event is encountered. You can
specify the following options:

-e event_type

This is the event that will trigger the handler. By default, this is the stopped
event.

-b breakpoint_number

If you want the Host Shell to call the handler when a breakpoint is hit, you can
specify the breakpoint number with this option. If this option is not specified,
all breakpoints will trigger the handler.

-d

Disable the handler. By default, the handler is enabled.

-n

Do not run the default handler for this event. By default, the default handler
will run after the user handler.

You can specify the handler to be executed when the event is encountered by using
this command as a Tcl routine, giving a full path to a Tcl script, or entering the
script manually at the tcl> prompt in the Host Shell.

Wind River Workbench
Host Shell User’s Guide, 2.6

94

handler show

Show any event handlers you have registered.

Syntax

handler show

handler remove

Remove a specified event handler.

Syntax

handler remove [-a]

This command removes the user event handler specified by the handler ID.

If you specify the flag -a, all handlers are removed.

handler enable

Enable the user event handler.

Syntax

handler enable [-a] [-d]

This command enables the user event handler specified by the handler ID.

If you specify the flag -a, all handlers are enabled.

If you specify the flag -d, the handler is disabled.

8.2.2 GDB Interpreter

display

Print the value of an expression each time the program stops.

Syntax

display [/FMT i|s] expression

8 Eventpoint Scripting
8.2 Detailed API Description

95

8

You can use the option /FMT to set the format: either s for a null-terminated string,
or i for a machine instruction.

The command display with no arguments displays all currently requested
auto-display expressions. Use undisplay to cancel a display request.

undisplay

Cancel display of expressions when the program stops.

Syntax

undisplay args

args are the code numbers of the expressions to stop displaying. For a current list
of code numbers, use the command info display.

The command undisplay with no arguments cancels all automatic-display
expressions.

This command is equivalent to the command delete display.

info display

Lists expressions currently specified to display when the program stops, with code
numbers.

Syntax

info display

enable display

Enable expressions to be displayed when the program stops.

Syntax

enable display args

args are the code numbers of the expressions to resume displaying. For a current
list of code numbers, use the command info display.

The command enable display with no arguments enables all automatic-display
expressions.

Wind River Workbench
Host Shell User’s Guide, 2.6

96

disable display

Disable display of expressions when the program stops.

Syntax

disable display args

args are the code numbers of the expressions to stop displaying.For a current list of
code numbers, use the command info display.

The command disable display with no arguments disables all automatic-display
expressions.

commands

Set commands to be executed when a breakpoint is hit.

Syntax

commands breakpoint_number

If you do not enter a breakpoint number, the shell targets the breakpoint that was
most recently set.

The commands themselves follow starting on the next line. To indicate the end of
the commands, use the line end.

Example

commands 123
silent
command_1
command_2
command_3
end

If you use silent as the first command, no output is printed when the breakpoint is
hit, except any output specified by the subsequent commands.

info commands

Lists commands to be executed when a breakpoint is hit.

8 Eventpoint Scripting
8.3 Limitations

97

8

Syntax

info commands

enable commands

Enable commands to be executed when a breakpoint is hit.

Syntax

enable commands args

args are the code numbers of the commands to enable. For a list of code numbers,
use the command info commands.

The command enable commands with no arguments enables all
automatic-execution commands.

disable commands

Disable the ability to execute commands when a breakpoint is hit.

Syntax

disable commands args

args are the code numbers of the commands to stop executing. For a list of code
numbers, use the command info commands.

The command disable commands with no arguments disables all
automatic-execution commands.

8.3 Limitations

Handlers have the following limitations:

■ One handler per event type or event ID.

Wind River Workbench
Host Shell User’s Guide, 2.6

98

■ If you register a handler for an event that already has a handler, the original
handler is overwritten.

■ If the handler is specified to be triggered by an event ID, then when the event
is removed, the handler is also removed.

■ If your handler calls one of the shell's interpreters, it must use the shell
function shEval followed by the interpreter name and then the command. The
interpreter name alone followed by the command will not succeed.

■ When using eventpoint scripting on slow or remote target connections, the
performance of the host shell is significantly affected. This is principally due
to the length of time required by the backend to communicate with the target.
Therefore Wind River recommends that you make use of the eventpoint
scripting capability on local targets, and limit as far as possible the amount of
event exchange between the host shell and the target when a script is called.
(For example, launch RTPs without VIO redirection; make event handlers very
short with as few calls to backend or shell APIs as possible; where possible,
limit the use of recurrent event handlers.)

■ If you specify a handler that listens for the context-start event, you must be
careful when calling any of the shell APIs to create a context (for example, the
C interpreter's sp() command or the Cmd interpreter's rtp exec command.)
These shell APIs also listen for the context-start event and act upon that event.
If your handler uses a while loop, the shell is likely to hang and the call to one
of the APIs to create a context will not succeed. As a workaround, you can
create a context using the GDB/MI commands directly, through the GDB
interpreter's mi commands, and not rely on the shell's APIs, as shown in the
following example:

The user wishes to add a user handler listening for the context-start event.
When the event is received, the handler calls a GDB/MI command to resume
the context, and then loop until the context exits.

proc taskWatchHandler {evt} {
regexp {thread-id=\"([^\"]+)} $evt dummy threadId
shEval gdb mi "-wrs-tos-object-modify -t $threadId KernelTask

taskResume --"
set taskId [expr int([taskIdGet $threadId])]
puts "taskWatchHandler Task $taskId"
while {1} {
set taskList [shEval cmd task]
set idx 0
set taskFound 0
foreach task [split $taskList "\n"] {

set id [lindex $task 2]
if {![catch {expr int($id)} err]} {
if {$err == $taskId} {

8 Eventpoint Scripting
8.4 Example Cmd Session

99

8

set taskFound 1
}
}

}
if {!$taskFound} {

puts "TASK EXITED"
return

}
after 1000
}

}

In the shell, the user registers the handler and then creates a task calling
taskDelay(500). The handler is called and it reports when the task has exited.

[vxWorks *]# lkup taskDelay
taskDelay 0x6012be20 text (ctdt.c)
taskDelaySc 0x60130c20 text (ctdt.c)
[vxWorks *]# handler add -e context-start taskWatchHandler
Added user handler id: 2
[vxWorks *]# gdb mi -wrs-tos-object-create KernelTask taskSpawn -- s2u1
100 83886097 0 20000 0x6012be20 true false 0x64 0x0 0x0 0x0 0x0 0x0 0x0
0x0 0x0 0
^done,thread-id="39"
[vxWorks *]# taskWatchHandler Task 1617033120
TASK EXITED

8.4 Example Cmd Session

[vxWorks *]# handler add -n
Type Tcl script to be executed when event is encoutered.
End with a line saying just "end".
puts "Breakpoint hit!!"
shEval cmd task
shEval cmd c
end
User Handler Added: 1
[vxWorks *]# handler show
Id Event Type Handler Enabled BreakpointId
--- -------------------- -------------------- ---------- -------------
1 stopped puts "Breakpoint hit yes ALL

shEval cmd task
shEval cmd c

--- -------------------- -------------------- ---------- -------------
[vxWorks *]# bp &printf
[vxWorks *]# C sp printf, "coucou"
task spawned: id = 0x616ffd08, name = s2u0
value = 1634729224 = 0x616ffd08

Wind River Workbench
Host Shell User’s Guide, 2.6

100

[vxWorks *]# Breakpoint hit!!

NAME ENTRY TID PRI STATUS PC ERRNO DELAY
---------- ------------ ---------- --- ---------- ---------- ---------- -----
tJobTask jobTask 0x6038e2a0 0 Pend 0x60126df4 0 0
tExcTask excTask 0x6018e1d0 0 Pend 0x60126df4 0 0
tLogTask logTask 0x6039bc20 0 Pend 0x60124dab 0 0
tNbioLog nbioLogServe 0x60392010 0 Pend 0x60126df4 0 0
tShell0 shellTask 0x6052d190 1 Pend 0x60126df4 0 0
tWdbTask wdbTask 0x6038bbd8 3 Ready 0x60126df4 0 0
tErfTask erfServiceTa 0x60447c40 10 Pend 0x60127414 0 0
tAioIoTask aioIoTask 0x60457c00 50 Pend 0x60127414 0 0
tAioIoTask aioIoTask 0x604399a8 50 Pend 0x60127414 0 0
tNetTask netTask 0x603a3020 50 Pend 0x60126df4 0 0
tAioWait aioWaitTask 0x604396d0 51 Pend 0x60126df4 0 0
s2u0 printf 0x616ffd08 100 Stop 0x60034c90 0 0

[vxWorks *]# task
NAME ENTRY TID PRI STATUS PC ERRNO DELAY

---------- ------------ ---------- --- ---------- ---------- ---------- -----
tJobTask jobTask 0x6038e2a0 0 Pend 0x60126df4 0 0
tExcTask excTask 0x6018e1d0 0 Pend 0x60126df4 0 0
tLogTask logTask 0x6039bc20 0 Pend 0x60124dab 0 0
tNbioLog nbioLogServe 0x60392010 0 Pend 0x60126df4 0 0
tShell0 shellTask 0x6052d190 1 Pend 0x60126df4 0 0
tWdbTask wdbTask 0x6038bbd8 3 Ready 0x60126df4 0 0
tErfTask erfServiceTa 0x60447c40 10 Pend 0x60127414 0 0
tAioIoTask aioIoTask 0x60457c00 50 Pend 0x60127414 0 0
tAioIoTask aioIoTask 0x604399a8 50 Pend 0x60127414 0 0
tNetTask netTask 0x603a3020 50 Pend 0x60126df4 0 0
tAioWait aioWaitTask 0x604396d0 51 Pend 0x60126df4 0 0
[vxWorks *]#

In this example, a handler has been added that overrides the default breakpoint
handler. The handler calls the Cmd interpreter's task command, and then calls
continue. The call to handler show describes the handler that has just been added.
A breakpoint is then set on printf and a task spawned to call printf; when the
breakpoint is hit, the handler is called.

8.5 Example GDB Session

(gdb) file /usr/bin/SIMPENTIUMdiab/printTest.vxe
Reading symbols from /usr/bin/SIMPENTIUMdiab/printTest.vxe...done
(gdb) b 46
Breakpoint 2 at 0x63000316: file printTest.c, line 46.

8 Eventpoint Scripting
8.5 Example GDB Session

101

8

(gdb) commands
Type commands for when breakpoint 2 is hit, one per line.
End with a line saying just "end".
info proc
end
(gdb) run
Starting program: /usr/bin/SIMPENTIUMdiab/printTest.vxe

Breakpoint 2, func (val=3.14000000000000, val0=12345) at printTest.c:46
46 dummy1 = val0;
0x60556010 16 /usr/bin/SIMPENTIUMdiab/printTest.vxe 0x630002B1
RTP_GLOBAL_SYMBOLS|RTP_DEBUG RTP_NORMAL

(gdb) display dummy1
0: dummy1 = 48
(gdb) display dummy2
1: dummy2 = 8.60716350995449E+168
(gdb) step
0x6300031C 47 dummy2 = val;
0: dummy1 = 12345
1: dummy2 = 8.60716350995449E+168
(gdb) info display
Auto-display expressions now in effect:
Num Enb Expression
0 y dummy1
1 y dummy2
(gdb)

This example downloads an RTP and sets a breakpoint within that RTP. The user
then calls the commands API, indicating that when the breakpoint is hit, the shell
should call the GDB command info proc. The user then runs the RTP, the
breakpoint is hit and the shell calls the command info proc. The user then calls the
display API, indicating two variables to watch each time the program stops. The
user calls step several times, and each time the step completes, the shell displays
the value of the auto-watch variables.

Wind River Workbench
Host Shell User’s Guide, 2.6

102

103

 9
Using the Host Shell Line Editor

9.1 Overview 103

9.2 vi-Style Editing 104

9.3 emacs-Style Editing 107

9.4 Command Matching 109

9.1 Overview

The host shell provides various line editing facilities available from the library
ledLib (Line Editing Library). ledLib serves as an interface between the user input
and the underlying command-line interpreters, and facilitates the user’s
interactive shell session by providing a history mechanism and the ability to scroll,
search, and edit previously typed commands. Any input is treated by ledLib until
the user presses the ENTER key, at which point the command typed is sent on to
the appropriate interpreter.

The line editing library also provides command completion, path completion,
command matching, and synopsis printing functionality.

Wind River Workbench
Host Shell User’s Guide, 2.6

104

9.2 vi-Style Editing

The ESC key switches the shell from normal input mode to edit mode. The history
and editing commands in Table 9-1 and Table 9-3 are available in edit mode.

Some line editing commands switch the line editor to insert mode until an ESC is
typed (as in vi) or until an ENTER gives the line to one of the shell interpreters.
ENTER always gives the line as input to the current shell interpreter, from either
input or edit mode.

In input mode, the shell history command h() displays up to 20 of the most recent
commands typed to the shell; older commands are lost as new ones are entered.
You can change the number of commands kept in history by running h() with a
numeric argument. To locate a previously typed line, press ESC followed by one
of the search commands listed in Table 9-2; you can then edit and execute the line
with one of the commands from the table.

9.2.1 Switching Modes and Controlling the Editor

Table 9-1 lists commands that give you basic control over the editor.

Table 9-1 vi-Style Basic Control Commands

Command Description

h [size] Displays shell history if no argument is given; otherwise sets
history buffer to size.

ESC Switch to line editing mode from regular input mode.

ENTER Give line to current interpreter and leave edit mode.

CTRL+D Complete symbol or pathname (edit mode), display synopsis of
current symbol (symbol must be complete, followed by a space), or
end shell session (if the command line is empty).

[tab] Complete symbol or pathname (edit mode).

CTRL+H Delete a character (backspace).

CTRL+U Delete entire line (edit mode).

CTRL+L Redraw line (edit mode).

9 Using the Host Shell Line Editor
9.2 vi-Style Editing

105

9

9.2.2 Moving and Searching in the Editor

Table 9-2 lists commands for moving and searching in input mode.

CTRL+S Suspend output.

CTRL+Q Resume output.

CTRL+W Display HTML reference entry for a routine.

Table 9-1 vi-Style Basic Control Commands (cont’d)

Command Description

Table 9-2 vi-Style Movement and Search Commands

Command Description

nG Go to command number n. The default value for n is 1.

/s or ?s Search for string s backward or forward in history.

n Repeat last search.

nk or n- Get nth previous shell command.

nj or n+ Get nth next shell command.

nh Go left n characters (also CTRL+H).

nl or SPACE Go right n characters.

nw or nW Go n words forward, or n large words. Words are separated by
spaces or punctuation; large words are separated by spaces only.

ne or nE Go to end of the nth next word, or nth next large word.

nb or nB Go back n words, or n large words.

$ Go to end of line.

0 or ^ Go to beginning of line, or to first nonblank character.

fc or Fc Find character c, searching forward or backward.

Wind River Workbench
Host Shell User’s Guide, 2.6

106

9.2.3 Inserting and Changing Text

Table 9-3 lists commands to insert and change text in the editor.

9.2.4 Deleting Text

Table 9-4 shows commands for deleting text.

Table 9-3 vi-Style Insertion and Change Commands

Command Description

a or A ...ESC Append, or append at end of line (ESC ends input).

i or I ...ESC Insert, or insert at beginning of line (ESC ends input).

ns ...ESC Change n characters (ESC ends input).

cw ...ESC Change word (ESC ends input).

cc or S ...ESC Change entire line (ESC ends input).

c$ or C ...ESC Change from cursor to end of line (ESC ends input).

c0 ...ESC Change from cursor to beginning of line (ESC ends input).

R ...ESC Type over characters (ESC ends input).

nrc Replace the following n characters with c.

~ Toggle between lower and upper case.

Table 9-4 vi-Style Commands for Deleting Text

Command Description

nx or nX Delete next n characters or previous n characters, starting at cursor.

dw Delete word.

dd Delete entire line (also CTRL+U).

d$ or D Delete from cursor to end of line.

d0 Delete from cursor to beginning of line.

9 Using the Host Shell Line Editor
9.3 emacs-Style Editing

107

9

9.2.5 Put and Undo Commands

Table 9-5 shows put and undo commands.

9.3 emacs-Style Editing

The shell history mechanism is similar to the UNIX Tcsh shell history facility, with
a built-in line editor similar to emacs that allows previously typed commands to
be edited. The command h() displays the 20 most recent commands typed into the
shell; old commands fall off the top as new ones are entered.

To edit a command, the arrow keys can be used on most of the terminals. Up arrow
and down arrow move up and down through the history list, like CTRL+P and
CTRL+N. Left arrow and right arrow move the cursor left and right one character,
like CTRL+B and CTRL+F.

9.3.1 Moving the Cursor

Table 9-6 lists commands for moving the cursor in emacs mode.

Table 9-5 vi-Style Put and Undo Commands

Command Description

p or P Put last deletion after cursor, or in front of cursor.

u Undo last command.

Table 9-6 emacs-Style Cursor Motion Commands

Command Description

CTRL+B Move cursor back (left) one character.

CTRL+F Move cursor forward (right) one character.

ESC+b Move cursor back one word.

ESC+f Move cursor forward one word.

Wind River Workbench
Host Shell User’s Guide, 2.6

108

9.3.2 Deleting and Recalling Text

Table 9-7 shows commands for deleting and recalling text.

9.3.3 Special Commands

Table 9-8 shows some special emacs-mode commands.

CTRL+A Move cursor to beginning of line.

CTRL+E Move cursor to end of line.

Table 9-6 emacs-Style Cursor Motion Commands (cont’d)

Command Description

Table 9-7 emacs-Style Deletion and Recall Commands

Command Description

DEL or CTRL+H Delete character to left of cursor.

CTRL+D Delete character under cursor.

ESC+d Delete word.

ESC+DEL Delete previous word.

CTRL+K Delete from cursor to end of line.

CTRL+U Delete entire line.

CTRL+P Get previous command in the history.

CTRL+N Get next command in the history.

!n Recall command n from the history.

!substr Recall first command from the history matching substr.

Table 9-8 Special emacs-Style Commands

Command Description

CTRL+U Delete line and leave edit mode.

9 Using the Host Shell Line Editor
9.4 Command Matching

109

99.4 Command Matching

Whenever the beginning of a command is followed by CTRL+D, ledLib lists any
commands that begin with the string entered.

To avoid ambiguity, the commands displayed depend upon the current interpreter
mode. For example, if a command string is followed by CTRL+D from within the
C interpreter, ledLib attempts to list any VxWorks symbols matching the pattern.
If the same is performed from within the command interpreter, ledLib attempts to
list any commands available from within command mode that begin with that
string.

9.4.1 Directory and File Matching

You can also use CTRL+D to list all the files and directories that match a certain
string. This functionality is available from all interpreter modes.

9.4.2 Command and Path Completion

ledLib attempts to complete any string typed by the user that is followed by the
TAB character (for commands, the command completion is specific to the currently
active interpreter).

Path completion attempts to complete a directory name when the TAB key is
pressed. This functionality is available from all interpreter modes.

CTRL+L Redraw line.

CTRL+D Complete symbol name.

ENTER Give line to interpreter and leave edit mode.

Table 9-8 Special emacs-Style Commands (cont’d)

Command Description

Wind River Workbench
Host Shell User’s Guide, 2.6

110

Index
A
Accessing the WTX Tcl API 48
aliases, host shell 20
at symbol (@) 45

B
batch mode 9
batch mode, host shell 9
breakpoints, setting in host shell

C interpreter 45
command mode 24
GDB mode

list of commands 52

C
C interpreter

ambiguity of arrays and pointers 35
arguments to commands 33
assignments 33

automatic creation of new variables 34
typing and assignment 33

comments 34
data types 28

examples 44
expressions 30
function calls 31
limitations 37
literals 30
operators 31
pointer arithmetic 36
primitives 38

displaying system information 40
managing tasks 38
modifying and debugging the target 41

strings 35
variable references 30

command interpreter 11
displaying object information 15
displaying system status 19
displaying target agent information 13
displaying tasks 17
examples 24
general commands 12
overview 11
RTPs

launching 22
monitoring and debugging 23
redirecting output 22
setting breakpoints 24

setting shell context information 18
stepping through tasks 17
symbols 15

accessing contents and address 15
111

Wind River Workbench
Host Shell User’s Guide, 2.6
symbol address access 17
symbol value access 16
text symbols 17

using and modifying aliases 20
working with memory 14

E
editor

host shell 103
emacs-style editing, host shell 107
environment variables 5

host shell 6
path mapping 8

eventpoint scripting 91
Cmd interpreter 93

handler add 93
handler enable 94
handler remove 94
handler show 94

detailed API description 93
example Cmd session 99
example gdb session 100
gdb interpreter 94

commands 96
disable commands 97
disable display 96
display 94
enable commands 97
enable display 95
info commands 96
info display 95
undisplay 95

limitations 97
overview 91

G
gdb interpreter 49

breakpoints 52
commands

ADD-SYMBOL-FILE 56

ATTACH 55
BREAK 52
BT 59
CD 50
CLEAR 53
COND 54
CONTINUE 57
DELETE 53
DETACH 55
DIRECTORY 52
DISABLE 53
DISASSEMBLE 58
DOWN 60
ECHO 51
ENABLE 53
EXEC-FILE 54
FILE 54
FINISH 58
FRAME 59
HELP 50
IGNORE 54
INFO 60
INTERRUPT 56
JUMP 58
KILL 56
LIST 51
LOAD 55
NEXT 57
NEXTI 57
PATH 50
PRINT /X 61
PWD 50
QUIT 52
RUN 56
SET ARGS 61
SET EMACS 61
SET ENVIRONMENT 62
SET TGT-PATH-MAPPING 62
SET VARIABLE 62
SHELL 51
SHOW ARGS 62
SHOW ENVIROMENT 62
SHOW PATH 51
SOURCE 51
STEP 57
112

 Index

Index
STEPI 57
TBREAK 53
THREAD 55
UNLOAD 55
UNTIL 58
UP 60
X 59

displaying and setting variables 61
displaying disassembly and memory

information 58
displaying information and expressions 60
examining stack traces and frames 59
general commands 50
running and stepping 56
specifying files to debug 54
Wind River-specific gdb commands 63

TARGET OCD 63
WRSDEFTARGET 63
WRSDOWNLOAD 65

download executables and data 65
erase flash memory 65
program flash memory 66

WRSMEMMAP 66
WRSPASSTHRU 67
WRSPLAYBACK 68
WRSREGQUERY 68
WRSRESET 69
WRSUPLOAD 69

H
host shell

aliases 20
batch mode 9
breakpoints

C interpreter 45
command mode 24
list of GDB-mode commands 52

editor 103
environment variables 6
memory 14
symbols 15
tasks 17

C interpreter 38

host shell modes 2

I
Introduction 1
Invocations of Application Subroutines 43
Invocations of VxWorks Subroutines 43

L
ledLib 103
line editor 103

command and path completion 109
command matching 109
directory and file matching 109
emacs-style editing 107

deleting and recalling text 108
moving the cursor 107
special commands 108

overview 103
vi-style editing 104

deleting text 106
inserting and changing text 106
moving and searching in 105
put command 107
switching modes 104
undo command 107

M
memory, host-shell commands 14

O
Overview 27
113

Wind River Workbench
Host Shell User’s Guide, 2.6
R
reset and download 83

configure target memory map 88
download executables and data 86
erase flash memory 87
overview 83
pass through command to firmware 90
play back firmware commands 85
program flash memory 87
reset one or more cores 86
run the target 88
set hardware breakpoint 88
set target registers 84
upload from target memory 90

Resolving Name Conflicts Between Host and
Target 44

RTPs (real time processes)
running in host shell 25

Running Target Routines from the Host Shell 43

S
setting shell environment variables 5
shell

kernel (target) 1
SingleStep 71

command equivalents 72
overview 71
read command compatibility 76
scripting 72
variable compatibility 79
write command compatibility 78

starting the host shell 2
from the command prompt 2
from Workbench 4
startup options 3

stopping the host shell 10
switching interpreters 4
symbols, in host shell 15

T
target agent 1

displaying information 13
target server 1
tasks, in host shell 17

C interpreter 38
Tcl Scripting 48

U
Using the C Interpreter 27
Using the Tcl Interpreter 47

V
variables

environment
host shell 6

vi-style editing, host shell 104
114

	Wind River Workbench Host Shell User's Guide
	Contents
	1 Introduction
	1.1 Introduction
	1.2 Host Shell Modes
	1.3 Starting the Host Shell
	1.3.1 Starting the Host Shell from the Command Prompt
	Host Shell Startup Options

	1.3.2 Starting the Host Shell from Workbench

	1.4 Switching Interpreters
	1.5 Setting Shell Environment Variables
	Path Mapping

	1.6 Running the Host Shell in Batch Mode
	1.7 Stopping the Host Shell

	2 Using the Command Interpreter
	2.1 Overview
	2.2 General Commands
	2.3 Displaying Target Agent Information
	2.4 Working with Memory
	2.5 Displaying Object Information
	2.6 Working with Symbols
	2.6.1 Accessing a Symbol’s Contents and Address
	2.6.2 Symbol Value Access
	2.6.3 Symbol Address Access
	2.6.4 Special Consideration of Text Symbols

	2.7 Displaying, Controlling, and Stepping Through Tasks
	2.8 Setting Shell Context Information
	2.9 Displaying System Status
	2.10 Using and Modifying Aliases
	2.11 Launching RTPs
	2.11.1 Redirecting Output to the Host Shell
	2.11.2 Monitoring and Debugging RTPs
	2.11.3 Setting Breakpoints

	2.12 Examples

	3 Using the C Interpreter
	3.1 Overview
	3.2 Data Types
	3.3 Expressions
	3.3.1 Literals
	3.3.2 Variable References
	3.3.3 Operators
	3.3.4 Function Calls
	3.3.5 Arguments to Commands

	3.4 Assignments
	3.4.1 Typing and Assignment
	3.4.2 Automatic Creation of New Variables

	3.5 Comments
	3.6 Strings
	3.7 Ambiguity of Arrays and Pointers
	3.8 Pointer Arithmetic
	3.9 C Interpreter Limitations
	3.10 C Interpreter Primitives
	3.10.1 Managing Tasks
	3.10.2 Displaying System Information
	3.10.3 Modifying and Debugging the Target

	3.11 Running Target Routines from the Host Shell
	Invocations of VxWorks Subroutines
	Invocations of Application Subroutines
	Resolving Name Conflicts Between Host and Target

	3.12 Examples

	4 Using the Tcl Interpreter
	4.1 Using the Tcl Interpreter
	4.1.1 Accessing the WTX Tcl API

	4.2 Tcl Scripting

	5 Using the GDB Interpreter
	5.1 General GDB Commands
	5.1.1 HELP
	5.1.2 CD
	5.1.3 PWD
	5.1.4 PATH
	5.1.5 SHOW PATH
	5.1.6 ECHO
	5.1.7 LIST
	5.1.8 SHELL
	5.1.9 SOURCE
	5.1.10 DIRECTORY
	5.1.11 QUIT

	5.2 Working with Breakpoints
	5.2.1 BREAK
	5.2.2 TBREAK
	5.2.3 ENABLE
	5.2.4 DISABLE
	5.2.5 DELETE
	5.2.6 CLEAR
	5.2.7 COND
	5.2.8 IGNORE

	5.3 Specifying Files to Debug
	5.3.1 FILE
	5.3.2 EXEC-FILE
	5.3.3 LOAD
	5.3.4 UNLOAD
	5.3.5 ATTACH
	5.3.6 DETACH
	5.3.7 THREAD
	5.3.8 ADD-SYMBOL-FILE

	5.4 Running and Stepping Through a File
	5.4.1 RUN
	5.4.2 KILL
	5.4.3 INTERRUPT
	5.4.4 CONTINUE
	5.4.5 STEP
	5.4.6 STEPI
	5.4.7 NEXT
	5.4.8 NEXTI
	5.4.9 UNTIL
	5.4.10 JUMP
	5.4.11 FINISH

	5.5 Displaying Disassembly and Memory Information
	5.5.1 DISASSEMBLE
	5.5.2 X

	5.6 Examining Stack Traces and Frames
	5.6.1 BT
	5.6.2 FRAME
	5.6.3 UP
	5.6.4 DOWN

	5.7 Displaying Information and Expressions
	5.7.1 INFO
	5.7.2 PRINT /X

	5.8 Displaying and Setting Variables
	5.8.1 SET ARGS
	5.8.2 SET EMACS
	5.8.3 SET ENVIRONMENT
	5.8.4 SET TGT-PATH-MAPPING
	5.8.5 SET VARIABLE
	5.8.6 SHOW ARGS
	5.8.7 SHOW ENVIROMENT

	5.9 Wind River-Specific GDB Commands
	5.9.1 TARGET OCD
	5.9.2 WRSDEFTARGET
	5.9.3 WRSDOWNLOAD
	Download Executables and Data
	Erase Flash Memory
	Program Flash Memory

	5.9.4 WRSMEMMAP
	5.9.5 WRSPASSTHRU
	5.9.6 WRSPLAYBACK
	5.9.7 WRSREGQUERY
	5.9.8 WRSRESET
	5.9.9 WRSUPLOAD

	6 Single Step Compatibility
	6.1 Overview
	6.2 Scripting
	6.3 SingleStep Command Equivalents
	6.4 SingleStep read Command Compatibility
	6.5 SingleStep write Command Compatibility
	6.6 SingleStep Variable Compatibility

	7 Executing an OCD Reset and Download
	7.1 Overview
	7.2 Set Target Registers
	7.3 Play Back Firmware Commands
	7.4 Reset One or More Cores
	7.5 Download Executables and Data and Program Flash
	Download Executables and Data
	Erase Flash Memory (Optional)
	Program Flash Memory (Optional)

	7.6 Run the Target
	7.7 Set a Hardware Breakpoint
	7.8 Configure Target Memory Map
	7.9 Pass Through Command to Firmware
	7.10 Upload from Target Memory

	8 Eventpoint Scripting
	8.1 Overview
	8.2 Detailed API Description
	8.2.1 Cmd Interpreter
	handler add
	handler show
	handler remove
	handler enable

	8.2.2 GDB Interpreter
	display
	undisplay
	info display
	enable display
	disable display
	commands
	info commands
	enable commands
	disable commands

	8.3 Limitations
	8.4 Example Cmd Session
	8.5 Example GDB Session

	9 Using the Host Shell Line Editor
	9.1 Overview
	9.2 vi-Style Editing
	9.2.1 Switching Modes and Controlling the Editor
	9.2.2 Moving and Searching in the Editor
	9.2.3 Inserting and Changing Text
	9.2.4 Deleting Text
	9.2.5 Put and Undo Commands

	9.3 emacs-Style Editing
	9.3.1 Moving the Cursor
	9.3.2 Deleting and Recalling Text
	9.3.3 Special Commands

	9.4 Command Matching
	9.4.1 Directory and File Matching
	9.4.2 Command and Path Completion

	Index

