WICAT Multi-user Control System

WMCS

Programmer’'s Reference Manual
188-190-305 C

May 1985

« Software »
Publications

WICATsystems

Copyright © 1983 by WICAT Systems Incorporated
All Rights Reserved
Printed in the United States of America

Receipt of this manual must not be construed as any kind of commitment,

on the part of WICAT Systems Incorporated, regarding delivery or
ownership of items manufactured by WICAT.

This manual is subject to change without notice.
first printing August 1983

second printing April 1984
third printing May 1985

Typographical Conventions Used in this Publication

Bold facing indicates what you should type.

Square brackets, [1, indicate a function key, the name of which appears
in uppercase within the brackets. For example, [RETRN], [CTRL1, etc.

Underlining is used for emphasis.

iii

Information about this Manual

Review the following items before you read this publication:

1. WMCS Introductory User's Manual
2. WMCS User's Reference Manual

The subject of this manual

WMCS system calls and the Keyed Sequential Access Method (KSAM) are
described for the system programmer's ongoing use of the WMCS operating
system.

The audience for whom this publication was written

Programmers who understand programming fundamentals and who have read the
WMCS Introductory User's Manual and the WMCS User's Reference Manual.
Related publications

The chart on the following page lists other publications about the WMCS
and the order in which they should be read.

iv

Reader’s Guide to WMCS Publications

Instructions: Determine the audience to which you belong and
then read only the publications at an arrowhead.
Dotted arrowheads indicate optional reading.

System WMCS Systems
manager user programmer

Introductorﬂ

Y¥oductory ManoX(

System Manj ’s Reference g ual

’VMCS User’ 53 ‘:erence Manua' L

Manuals describitt g system utlhhe

Table of Contents

Chapter 1 Introduction
Chapter 2 Directory of the WMCS System Calls

Process Creation « « o « ¢ o o o o o o o o o o o o « 21
Process CONtIOl « ¢ o ¢ ¢ ¢ o ¢ o o o o o o s o o o 222
File System . . ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ 0 6 0 0 o o o o o o o2-4
Device CONtrol « ¢« o« ¢ ¢ o ¢ o o o o o o o o o o o o 2=6
KSAM.ooooo.o.ooooono.-ooooo.2-7
Memory Control .« ¢« ¢ ¢ ¢ ¢ ¢ o o o ¢ ¢ o o o o o o o« 29
LOgicalNameS.-.................2-10
Ovnership « « o« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o s« «2-10
Protection ¢« o« ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o ¢ ¢ o o o o #2-11
Interprocess Communication . « . . « « ¢« ¢ ¢ o o . .,2-12
Installed Fil1€S o « ¢ ¢ ¢ o o o o o o o o o o o o o 2=13
INformation « « ¢ ¢ ¢ ¢ e o o o o o o ¢ ¢ s o o o« » 2-13
Floating Point « « o ¢ ¢ ¢ ¢ o o o o o o o o o o o .2-14
Networking « « o o ¢ o ¢ ¢ ¢ o ¢ o o o o o o o s «» o2-14
Important Features of the System Call Library . . . 2-14

Chapter 3 Dictionary of System Calls

AlAIM ¢« o ¢ ¢ o ¢ o o o o o o o o o o o o « « « salarm-1
QllOC ¢ ¢ ¢ o ¢ o ¢ ¢ o o o o o s o o o o s o o salloc-1
AlIMEM ¢« ¢ o ¢ ¢ o o o o o o o o o o o s s o o sallmem-1
andevntcvc-oooooooooooo0oooarldevnt"l
@sSign « ¢ ¢« ¢ ¢ 4 ¢t e o e e e e o o o o o . eassign-1
Chdir..-...............-...Chdir-l
ChSUDEL « ¢ ¢« ¢ ¢ « o o o « o« o o « o« o o « » <Chsuper-1
ChUSEL ¢ ¢« o« ¢ ¢ e« o« o o ¢« o« o o« ¢ « « o « o« o« oChuser-1
clone e o o o o« oClone-1

ClOSE ¢« ¢ ¢ ¢ o o o o o o e o o o o o o o o o o oClose-1
Clrevnt « ¢ ¢ o ¢ o« o o ¢ o o ¢ o o o« o o s o Clrevnt-1
CONNECE ¢ « ¢« ¢ o o ¢ o o o o o« o o« « o o o o« oCONnect-1
CrEAt@ o« « o« ¢ o o o e o o s s o o s o o o o » oCreate-l
CrEatS ¢ « o o o o ¢ o« o o o o » s s s s o » o oCreats-l
CIPDICS « o o o o o o o « o o o o o o o o o « o oCrprcs-l1
CIPIOC « o o o o o o o o o s o« o o o o o o « o oCrproc-l
Crshdp « « ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o o o o o oCrshdp-1

CtrlC e © e o o o o © o e o o o o e o o o o e o o CtrlC‘l
&omll e © o ® o o o o o o e e o o o o o dCODall-l
dconidle e o o o o o o o o o e o o o o o dconidle_l

vii

Table of Contents

dealloc .
defdprt .
defduic .
defmem .
defprot .
deinst .
delete .
disconn .
dismt .
duplun .
errno . .
exitrtn .
exproc .
flush . .
frawait .
fremem .
gassign .
gerlgy L] L]
getalc .
getattr .
getdir .
getdnam .
getdprt .
getdst .
getduic .
getevnt .
getexit .
getfcb .
getfid .
getfnam .
getfprt .
getfre .
getfrsz .
getfuic .
getglb .
getinst .
getlog .
getmlst .
getnnam .
getnsid .

getpcb
getpid

getpnam

getpos
getpri

getprot

getprv .
getrel .
getrtr .
gettic .
gettim .

L] . L]] []

L] .

e e

. e
e e

.dealloc-1
.defdprt-1
.defduic-1
.defmem-1
.defprot-1
.deinst-1
.delete~-1
.disconn-1
.dismnt-1

.exitrtn-1
.exproc-1
. .flush-1
.frawait-1
.fremem-1
.gassign-1
. .gengy-1l
.getalc-1
.getattr-1
..... getdir-1
.getdnam-1
.getdprt-1
.getdst-1
.getduic-1
.getevnt-1
.getexit-1
e o « « .getfcb-l
e « « « .getfid-l
e o o+ ogetfnam-1
e « o ogetfprt-1
o o o o .getfre-l1
o o o ogetfrsz-1
« « « o.getfuic-1
« « o « .getglb-1
« « . o.getinst-1
e » « « .getlog-l
o o o o.getmlst-1

........... getnnam-1

. . . .getnsid-1
e « « « .getpcb-1
e o « o .getpid-l

. « « o.getpnam-1
« « o « .getpos-1
e o« « « .getpri-l

« « « ogetprot-l

.gettic-1

o o .getrtr-l
. « .gettim-1

Table of Contents

getUnSl-.................-.getth].-l
getuiC o o ¢ ¢ ¢ ¢ ¢ e e e e e e e 4 e s o . o ogetuic-l
giOdSt...-o................giOdSt-l
gmail « ¢ ¢ o o o e o e e e e e e e e o o o o o o.gmail-l
hibern « « ¢ ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢« e+ o« . Jhibern-1
install . . . ¢« ¢ ¢ ¢ e e vt e e e e e s . o oinstall-l

kclall

kclose . .
kcreat . .
kdelet . .
kfind . . .
kflush . .
kinfo . . .
kmovfb . .
kopen . . .
kread . . .
kunlck . .
kupdat . .
kwrite . .
lock . . .
mapfp . . .
mapphys . .
memmnt . .
mount . . .
mulcrps . .
open . . .
orevnt . .
origprv . .
physio . .
physop . .
pidlst . .
prclst . .
prirat . .

protmem . .
rdpmem . .
read . . .
rename . .
rnidlst
rsidlst
setattr
setdprt
setdst .
setduic
setevnt
setexit
setfcb .
setfid .
setfprt
setfrsz
setfuic
setmprt

.
L
.
L]

L] L[] L] .

L] * L] L

L] . L[] L] .

[] (] []

L] L] L] L] . L] L L]

L] L] L] .

ix

L] L] L] L]

L] . L[] .

L] L] L] L[]

L] L] L] L] L]

L] L] L] L] L d .
® © e o o o
e o o o o o
e o o o o e o
o e o o o o

. L[] . L] L]

e o o o o
e o © o o o
® ®© e o o o

e ® o e =

e o & o .

e o o o [

e o o o .
® e o o o o
e e © o o o

e o o o o
e o o e ® e
e o o o e o

e o o o o

o o e o
e e o o o o

¢« o e o

e o o o o

e o e o o

*® ® e ®

e o o o o
® e o o o o

e o o o .

® o e o o

e o o o
o o e e o o
e o o ¢ o o
e o o o o e
e o o o o o

e o o o o
e o o o o o
s o e o o
e e o o o o

® o o e o

® & o s o
® o o e o o
® o o o o o
......
e o e o o o

. .kclall-l
. .kclose-1
kcreat-1
. .kdelet-1
. kfind-1
. .kflush-1
. .kinfo-1
kmovfb-1
. .kopen-1
. .kread-1
. kunlck-1
.kupdat-1
Jkwrite-1
. .lock-1
. .mapfp-1
-mapphys-1
.Mmemmt-1
. .Mmount-1
.mulcrps-1
. .open-1
.orevnt-1
.origprv-1
.physio-1
.physop-1
.pidlst-1
.prclst-1
.prirat-1
.protmem-1
. rdpmem~-1
. .read-1l
. rename—-1
.rmidlst-1
.rsidlst-1
.setattr-1
.setdprt-1
.setdst-1
.setduic-1
.setevnt-1
.setexit-1
.setfcb-1
.setfid-1
setfprt-1
.setfrsz-1

L3

Table of Contents

Chapter 4

setmuic « & ¢ ¢ ¢« ¢ ¢ ¢ ¢ ¢ o o o o o o o o » oSetmuic-1
. .setpnam-1
.setpos-1
.setpri-1
.setprv-1
.setrtm-1
.setrtr-1
.settim-1
.settmsl-1

setpnam . .

setuic . .
shmem . .
sidlst . .
siodst . .
skip . . .

o+
g
2.
o}

ushrmem . .

version

wait

w&e o L] L] L] []
wakec [] L] [] L] L]
write

Keyed Sequential

3
*
.
L]

L] . L] L] L] L

[] L] L] [] L] .

. L] L] . . L]
L] L[] L[] L] L]

. L[] L[] L]

L] L] L] L] . L]

e @ ® o o e o o o o o

Access Method (KSAM)

Features of KSAM .
Calling KSAM &« & ¢ o o o o o o o o o @
KSAM as a Class Handler . . .
Memory Requirements
KSAM File Structure
Pointers « « o« « o o o o o
Reys ¢ ¢« ¢ ¢ o ¢ ¢ o o o o &
Updating a Record
Searching for aKey . « « . .
Locking Records « « « « « « &
Multiple Processes « « « « o « « « o

Information Facility .

. ° L] []

Hardware/Software Requirements . . .

Reading and Positioning File Po:mter .

KSAM Data File Description
KSAM Keys File Description .
Keyblocks « ¢« ¢ o ¢ ¢ ¢ ¢ ¢ o o o o o o
KSAM Sample Program . « « « « o« o o o o

* L] L] L] L] L]

*

L] . . L] . L]

.sidlst-1
.siodst-1
. o.skip-1
. .Smail-l
.tranpid-1
. .trans-1
.udefmem-1
.unlock-1
.ushrmem-1
.version-1
. .wait-1
. .wakec-1
. write-l
.wtpmem-1

Appendix A

Appendix B

Appendix C

Table of Contents
Directory of System Calls
Glossary of WMCS Diagnostic Messages
KERNEL Diagnostic Messages . « « « « o + ¢ o o o « « B-1
Class Handler Diagnostic Messages B-17

Device Driver Diagnostic Messages . . « « « « . . . B=35
Utility Diagnostic Messages

Remote System Calls

xi

CHAPTER 1

INTRODUCTION

The Multiuser Control System (MCS) is a general purpose, interactive,
multi-user operating system developed by WICAT Systems, Inc. for it’s
family of MC68000-based computer systems. The MCS makes available, on
a microcomputer, features previously available only on large mini, and
mid-sized computer systems.

1.1 FEATURES OF THE MCS

The operating system is divided logically into two parts:

1.

The scheduler.

Based upon the priority and status assigned to each
process, or task, the scheduler gives each process a
share of the processor resource.

System service calls.

System service calls are executed only as they are
called for (explicitly) by a process. They are
therefore considered extensions of the process. When a
process calls the operating system, the process
continues its execution within the MCS; it is as though
the system service calls were a set of reentrant,
callable subroutines. Hence, the system calls are not
an overhead function 1like the scheduler (that is not
part of any process and does not contribute to the
accomplishment of any user task).

These are the major features of the MCS:

1.

System configuration does not require a complicated
system generation procedure. For example, device
drivers can be added and removed using the _MOUNT and
_DISMNT system calls.)

1-1

INTRODUCTION

FEATURES OF THE MCS

2.

10.

11.

12.

13.

14.

The amount of available memory is the only limitation on
the number of files that can be open simultaneously, the
number of processes that can be active simultaneously,
the number of devices that can be concurrently mounted,
etc.

A prioritized scheduling algorithm.

The text portion of processes is automatically shared by
multiple invocations of the same image file. '

Memory can be allocated and deallocated dynamically.
Each process has its own address space. The MCS address
space is protected from all processes, and processes are
protected from one another by the hardware memory
management.

A hierarchichal file structure.

Disk devices support a user-definable disk cache with
read-ahead capability.

Multiple versions of files.

Logical 1/0, i.e., disk files and devices are accessed
uniformly.

Logical names are fully integrated into the MCS.

A multi-keyed (Keyed Sequential Access Method, KSAM)
file access program is provided in addition to standard
random and sequential access methods.

Interprocess communication includes named pipes, mail,
shared memory, and event flags.

General purpose record locking.

User-assignable, interactive terminal characteristics.
The standard XONXOFF protocol is supported, and reads
from the terminal can use any of several edit modes
including raw data and 1line reads. Time outs are
supported so that processes do not hang while waiting
for input.

Chapter 2

Directory of WMCS System Calls

This chapter 1lists the WMCS system calls by function. For a complete
alphabetical 1listing of these system calls, see Appendix A in this
manual .

Process Creation

This set of system calls provides the mechanism for process creation and
termination. There are two forms of process creation under the WMCS:

1. Forking. The child process is executed parallel to the parent
process.

2. Spawning. The parent process hibernates until the execution of
the child process is complete.

Several parameters can be specified during the creation of a process,
e.g., the scheduling priority for the new process; its standard input,
output, and error files; a name and a command line.

_CLONE Make a duplicate of an existing process.

_CRPRCS This simplified version of the create process system
call assumes default values for many of the parameters
associated with the _CRPROC System Call.

_CRPROC Create a new process. This is the standard system call
for process creation.

_EXPROC Terminates, i.e., removes from the system, the specified
process. Any open files are closed automatically and
all memory assigned to the process is made available to
the system.

2-1

Directory of WMCS System Calls

~MULCRPS

Process Control

Allows the creation of multiple copies of a process by
means of a single image file. This is useful in quickly
bringing up a single application on several terminals
simultaneously.

These system calls are used to manage the attributes of processes
executing in the system. Note that privileges are required before a
process can affect processes that do not have the same user id code
(UIC). Also, privileges are required to change a processes priority,
timeslice, operating mode or privileges.

_ALARM

CHSUPER

—CHUSER

- CRSHDP

_CTRLC

_EXTTRIN

Sets or resets a timer so that, if the specified time is
reached during the life of the process, the process is
terminated.

Change to supervisor mode. If the calling process has
the correct privilege, its processing mode is changed to
supervisor. This allows the process to execute
privileged instructions and to access memory outside of
its logical address space. After successful execution of
this system call, the process has virtually unlimited
access to the system.

Change the processing mode of the calling process to user
(this is the inverse of _CHSUPER).

Use this system call to enable or inhibit the crash
display (stack dump) which normally appears when a
process performs an illegal operation.

Enables or disables the use of [CIRL] c to terminate the
process.

This system call can be used in place of _SETEXIT to
define an exit handler. If the process uses _SETEXIT to
define an exit handler, it must use an RTR or RTE
instruction to return from the exit handler. With
_EXITRIN the process can return from the exit handler
with the standard subroutine return statement, RTS. This
allows processes written in high level languages to
define exit handlers from which they can return.

Returns, to the calling process, the PID of the specified
ancestor process.

_GETEXIT

-GETPCB

_GETPID

_GETPRI

—GETPRV

_GETTMSL

_HIBERN

_ORIGPRV

—PIDLST

_PRCLST

SETATTR

_SETEXIT

Directory of WMCS System Calls

Returns the current process attributes.

Returns, to the calling process,
current exit handler.

the address of the

Returns, to the calling process,
Block (P(B) of the specified process.

the Process Control

Returns the Process Identification number (PID) of the

process whose name is specified as part of this system
call.

Returns the name of the process assigned to the PID
specified as part of this system call.

Returns the priority level of the process assigned to the
PID specified as part of this system call.

Returns the privilege mask assigned to the process whose
PID is specified as part of this system call.

Returns the timeslice assigned to the process whose PID
is specified as part of this system call. The timeslice
is the maximum amount of time a process is allowed to run
before it is interrupted so that another process can run.

Suspends the specified process.
suspended process to resume.
process cannot wake itself.

Use WAKE to cause the
Note that a suspended

This system call returns the privilege a process has, not
including any privileges with which it may have been
installed.

Returns the PIDs of all processes on all priorities and
the total number of processes running on your machine.

Returns the PIDs of those processes assigned to the
priority level designated as part of this system call.

Assigns the scheduling ratios for each priority level.
The scheduling ratio determines the number of processes
at a particular priority 1level that will be executed for
each process at the next lower level.

Set process attributes.

Allows a process to specify the execution of a procedure
or subroutine before the termination of the calling
process. This is particularly useful in recovering from
errors.

2-3

Directory of WMCS System Calls

_SETPNAM Changes the name of the process assigned to the PID
specified as part of this system call.

_SETPRI Changes the priority level of the specified process.
_SETPRV Changes the privileges assigned to the specified process.

_SETRTM Immunizes the specified process from interruptions by the
scheduler, i.e., with the real-time mode flag set, the
process runs until it either relinquishes the CPU, or is
blocked due to input or output not being received in
time.

SETIMSLL. Adjusts the timeslice associated with the specified
process. The timeslice is the maximum amount of time a
process is allowed to run before being interrupted so
that another process can run.

_SETTRP Allows a user process to take advantage of the MC68000
trap instructions, and to handle certain hardware
exceptions, e.g., a divide-by-zero.

_WAIT Suspends the designated process for a specified period.
_WAKE Wakes a hibernated process.

_WAKEC Decrements the hibernate count of the specified process.
If the hibernate count goes to zero, the specified
process is awakened. Contrast this with _WAKE.

File System

One of the major functions of the file system is to insulate user
processes from the details of physically accessing I/0 devices. It is
also advantageous if a program can read from and write to terminals,
printers, etc., using those system calls used to access files on a disk.

These capabilities are referred to as device-independent I/0, or logical
I/0. In other words, this allows the program to manipulate files without
having to consider most of the particular characteristics of the device
on which the file is located. The WMCS provides logical 1/0 for reading
and writing devices, files, as well as named pipes (interprocess) .

_CHDIR Designates the working-default device and directory for
the calling process.

CLOSE

—CREATE

—CREATES

_DELETE

-DUPLUN

_FROWNAIT

GETDIR

_GETFCB

_GETFID

_GETFRSZ

—GETPOS

—OPEN

Directory of WMCS System Calls

Closes the specified file, i.e., makes
inaccessible to read and write operations.

the file

Creates a file and assigns it the attributes specified as
part of this system call, then opens the file.

This simplified version of _CREATE creates a file and
assigns it default values for many of the _CREATE
parameters.

Deletes the specified file.

Copy the LUN from
opening) .

_OPEN or _CREATE (similar to re-

Waits for the completion of a fast read. A fast read
means that one or more sectors are read directly into the
logical address space assigned to the process (bypassing
the disk cache). Inasmuch as this happens
asynchronously, this system call allows the calling
process to verify that the data are available before the
data are accessed.

Returns a string containing the name of the default
device and the name of the default directory for the
calling process.

Returns the FCB of a file opened by the calling process.

Returns the file 1D,
specified process.

to the calling process, of the
A process can use this system call to determine the name
of an open file.

Returns the record size of an open file.

(relative to the
of the next record in the file to be

Returns the relative record position
front of the file)
read or written.

Allows the process to 1lock records within a specified
file to be used exclusively by the calling process.

Makes the specified file accessible to read and/or write
operations. A file can be opened for read and/or write
operations and (optionally) for exclusive access by the
calling person. Files can also be shared.

2-5

Directory of WMCS System Calls

—READ

—RENAME

_SETFCB

_SETFID

_SETFRSZ

—SETPOS

_UNLOCK

_WRITE

Device Control

Reads records from an open file into the specified
buffer.

Changes the name of the specified file.

Allows the calling process to modify the File Control
Block of an open file.

Allows the calling process to specify the file ID of an
open file.

Allows the calling process to change the record size of
an open file.

Allows the process to position a file. This is not
required for random access to files. _READ and _WRITE
allow the specification of those records to be
transferred.

Unlocks records in an open file.

Writes records from the specified buffer to the file.

The following set of system calls allow a process to mount, dismount,
access and set attributes on devices.

~ALLOC

_DEALLOC

_DISMNT

_FLUSH

—GETALC

Use this system call to allocate or reserve a device for
the exclusive use of a process and its subprocesses.

Deallocate a device that was allocated using the _ALLOC
system call.

Removes the device from the cognizance of the WMCS.

Flushes I/0 buffers to the device. Any modified sectors
or FCBs are written to the device.

This system call allows a process to retrieve the names
of devices allocated to a specified process.

Returns the name of the nth device in the list of mounted
devices.

Returns the device table and device status block for the
specified device.

2-6

—GETREL

—GETRTR

—GIODST

_PHYSIO

_PHYSOP

_SETDST

_SETRTR

SIODST

_SKIP

Directory of WMCS System Calls

Given the name of a rotored device, this system call will
retrieve the names of all devices assigned to that rotor.

This system call allows a process to retrieve the names
of all currently defined rotor lists.

This system call is the same as _GETDST except that it
requires the logical unit number (lun) of an open file on
the device instead of the device name. This is a more
efficient mechanism than _GETDST.

Makes a device or pipe known to the file system and, if
necessary, loads the device driver from a specified
location in system memory.

Makes a device or pipe known to the file system and, if
necessary, loads the device driver from the specified
file.

Allows the process to perform physical I/0 operations on
the device, e.g., reading and writing sectors.

Allows the process to perform physical I/0 operations on
the device, e.g., reading and writing sectors.

Allows the process to update the device status block of
the specified device, and is used to establish such
device characteristics as baud rate.

Defines a rotor list and assigns the names of the devices
that are associated with the rotor.

Similar to _SEIDST except that the device whose status is
to be set is specified by a logical unit number of an
open file on the device instead of the device name. This
is more efficient than _SETDST. Allows the process to
update the device status block of the specified device,
and is used to establish such device characteristics as
baud rate.

Allows the process to position the tape at the beginning
or end of the tape, or to skip files.

2-7

Directory of WMCS System Calls

KSAM

The Keyed Sequential Access Method (KSAM) is an optional WMCS module that
can be included in the system's configuration when the system is booted.
It allows files to be accessed on the basis of key values, an access
method that enhances the standard random access provided by the file
system. Its more important features include:

Multi-user access to KSAM files

Record-level locking

Deadlock detection

Multiple keys

Segmented keys

Each KSAM file is maintained as two separate files; one containing the
keys and the second containing the data.

Keys can be composed of any number of signed or unsigned bytes, words, or
longwords (up to a maximum of 255 bytes).

Programs can find a record containing a specified key value, or read a
file in ascending or descending order for any key.

"KSAM file" in the following list of KSAM system calls refers to the KSAM
key file and the KSAM data file.

—KCLALL Closes all KSAM files opened by the calling process.
—RCLOSE Closes a KSAM file.

_KCREAT Creates a KSAM file. This includes a definition of all
the key fields in the records constituting the new file.

—KDELET Deletes the current record from the KSAM file.

_KFIND Finds the record that contains the specified key value.
_KFLUSH Writes all modified KSAM buffers to the disk.

_KINFO Returns information about an open KSAM file.

_KMOVFB Positions (logically) the KSAM file at its beginning or
end, according to the specified key.

_KOPEN Opens an existing KSAM file for access.

_KREAD Retrieves a record from an open KSAM file.

2-8

—KUNLCK
—KUPDAT

Memory Control

Directory of WMCS System Calls

Unlocks the specified KSAM records.

Replaces a KSAM record, in an open KSAM file, with the
specified record.

Adds a new record to an open KSAM file.

The following system calls allow the process to manage the system's

memory .

-ALLMEM

-DEFMEM

_GETMLST

_MAPPHYS

_RDPMEM

UDEFMEM

—USHRMEM

Adds a new page of memory to the process, or allows the
process to share a page of memory with another process.

Define a named shareable memory segment. Once a named
memory segment has been defined, other processes may
request that that segment be mapped into their address
space.

Deallocates a page of memory, i.e., returns the page to
the system's pool of available memory.

Assigns the amount of available memory to the calling
process.

This system call allows a process to retrieve the names
of currently defined named shared memory segments.

This system call allows a process to map any physical
segment of memory into its logical address space.

Sets or clears the write-protect flag on a page of
logical memory.

Allows the process to read the values stored in the
specified locations in physical memory.

Maps the specified named shareable memory segment to the
logical address space of the calling process.

Removes the definition for the specified named shareable
memory segment from the operating system. This is the
inverse of _DEFMEM.

Removes the memory associated with the specified named
shareable memory segment from the logical address space
of the calling process. This is the inverse of _SHRMEM

2-9

Directory of WMCS System Calls

_WTPMEM Allows the process to write values to the specified
locations in physical memory.

Logical Names

The following system calls allow processes to assign, deassign, and
retrieve logical names. A logical name is a string equivalence.

_ASSIGN Assigns a logical name in the logical name table for the
specified process.

_GASSIGN Assigns a logical name in the system's logical name
~ table.

_GETGIB Allows the process to retrieve the nth logical name from
the system's logical name table.

_GETLOG Allows the process to retrieve the nth logical name from
the logical name table for the specified process.

_TRANPID Returns the Hjuivalence assigned to the specified Name.
Note that this is similar to _TRANS except that this
system call uses the logical name table of a specified
process and its parents, instead of the logical name
table of the calling process.

_TRANS Returns the HBquivalence assigned to the specified Name.
First, the logical name table for the calling process is
searched. If no BEquivalence is found, the logical name
table for the parent of the calling process is searched.
The search continues until an Equivalence is found, or
until there are no more parent processes. At that time,
the system's logical name table is searched. If no
Equivalence is found, the original string is returned as
the translation.

Ownership

The following system calls are used to £find out or specify the ownership
of files, devices, or processes (all files, devices, and processes have
an owner). Ownership is determined by a User Identification Code, or
UIC. The UIC is composed of an owner ID and a group ID.

2-10

_DPEFDUIC

_GETDUIC
_GETFUIC
-GETUIC

_SETDUIC

-SETFUIC
_SETMUIC

SETUIC

Protection

Directory of WMCS System Calls

Establishes the default device ownership. Whenever the
device is not being referenced Ly any process the user
identification code (UIC) of the device is set to this
value.

Returns the UIC for the specified device.

Returns the UIC for the specified file.

Returns the UIC for the specified process.

Assigns a UIC to the specified device (this changes the
ownership of the file).

Set file UIC. This changes the ownership of the file.
Assigns a UIC to the specified named memory segment.

Assigns a UIC to the specified process (this changes the
ownership of the specified process).

The following system calls are used to find out or assign device and file

protection.

Protection is actually a matter of the access privileges

granted (to a process) by the owner of the device or file. Processes
fall into four categories, based on the owner of the process and the
process's privilege mask:

1. A process created by the owner of the file or device.

2. Processes created by members of the same group to which the
owner belongs.

3. Processes with SYSTEM privilege.

4. All other processes, i.e., the Public.

_DEFDPRT

_DEFPROT

Establishes the default protection to be applied to a
device. Whenever the device is not being referenced by
any process, the protection mask will be set to this
value.

Establ ishes the default protection to be assigned to files

or devices created, by the specified process, when
protection is not specified.

2-11

Directory of WMCS System Calls

—GETDPRT

_GETFPRT

—GETPROT

—SETDPRT

_SETFPRT

_SETMPRT

Returns the protection flag word associated with the
specified device.

Returns the protection flag word associated with the
specified file.

Returns a default protection mask associated with the
calling process.

Assigns the specified value as the protection flag word
for the designated device.

Assigns the specified value as the protection flag word
for the designated file.

Assigns the specified value as the protection flag word
for the designated memory segment.

Interprocess Commmication

These system calls signal events and send messages between cooperating

processes.

_ANDEVNT

OREVNT

_SETEVNT

Waits for the logical AND of event flags. The calling

process is suspended until all of the specified bits are
set in the event flag word of the specified process.

Clears the specified bits in the event flag word of
specified process.

Transfers the event flag word of the specified process to
the calling process.

Returns a message (sent to the specified process) to the
calling process.

Waits for the logical OR of event flags. The calling
process is suspended until any of the specified bits are
set in the event flag word of the specified process.

Sets bits in the event flag word of the specified process.

Allows the calling process to send mail to another
process.

2-12

Directory of WMCS System Calls

Installed Files

An installed file is an image file that must execute with more privileges
than the parent process may have. In other words, an installed process
executes with privileges that the user running the process does not
possess.

Furthermore, a device driver can be installed, meaning that a process
with no privileges can mount a device using that driver.

The following system calls allow processes to install and remove
privileged files.

_DEINST Removes a privileged file from the list of installed
files.

_GETINST Retrieves the definition of the nth installed file.
_INSTALL Installs the specified privileged file.

Information

These system calls are used to set the system clock and to get the
system's time of day, the system's tick clock, and the WMCS version
banner.

_ERRNO The WMCS will pass control to the exit handler of a process
when the process is about to be terminated. _ERRNO is used
to determine the cause of the termination, or the abort
reason code.

_GETTIC Returns the value of the system's tick clock, which shows
how much time has elapsed since the system was booted. The
time is expressed as the number of .01 seconds that have
elapsed.

_GETTIM Returns the date and time according to the system's time-
of-day clock.

_SETTIM Sets the system's time-of-day clock.
_VERSION Returns a string containing the WMCS version banner, which

contains a copyright notice and the revision number of the
version of the WMCS running on your system.

2-13

Directory of WMCS System Calls
Floating Point

_MAPFP A process uses this system call to map the physical address
of a hardware floating point device into its logical
address space.

Networking
The following system calls allow processes to execute on a remote
computer.
-OONNECT Make a connection to a remote machine.
-DOONALL Break all remote connections.
_DCONIDLE Break all idle remote connections.
_DISCONN Break a remote connection.
-GEINNAM Get a nodename from a site ID.
_GEINSID Get a site ID from a nodename.
_RNIDLST Return a list of all known remote ID numbers.
_RSIDLST Get a list of site IDs from a remote network.

_SIDLST Return a list of all known site ID numbers on the current
network.

Important Features of the System Call Library

The system call library is a set of procedures that allow programs
written in C, FORTRAN, Assembler and Pascal to call the WMCS. The
interface (system call name, parameter definition, parameter sequence,
etc.) is uniform for each language.

Furthermore, a set of system table definitions is released with the WMCS.
These files contain the structure or record definitions of all WMCS
tables for Assembler, C, and Pascal. These files can be included in any
program that refers to system tables, to provide up-to-date definitions.
Note that this is particularly useful for systems integrators who write
device drivers.

2-14

CHAPTER 3

DICTIONARY OF SYSTEM CALLS

alarm
Set alarm clock
Description:

Sets an alarm clock. When the system clock becomes greater
than or equal to the specified value, the process will be

terminated. Time is in the 64 bit system time format
(absolute time or delta time).

The absolute time format of the date and time within these
8 bytes is as follows, where byte 0 is the most significant

byte.
Bytes Description
0,1 The current year (counted from A.D. 0). Example, 1983.
2,3 The day of the year (l..365 or 1..366)
4 The hour of the day (0..23)
5 The minute of the hour (0..59)
6 The second of the minute (0..59)
7 The fraction of a second (in 100°ths of a second) (0..99)

For delta time, the most significant long word is (-1).
The least significant long word is a negative number whose
absolute value is the number of ticks (.0l seconds per tick)

from the current time.

Alarm clocks may be set only for the current process.

There can be only one alarm time per process. When _alarm is
called, the previous setting is replaced with the new value.

Setting the alarm time to O resets (disables) the alarm clock.
Related Privileges:

None.
Parameters:

mstime -~ Most significant 32 bits of clock value
lstime - Least significant 32 bits of clock value

Diagnostics:
None.
See Also:

_wait - Pause for a period of time

ALARM-1

Dictionary of MCS System Calls
_alarm

Assembler Calling Sequence:

push mstime
push lstime
jsr _alarm

C function declaration:

void

_alarm(mstime,lstime)
long mstime;
long lstime;

Fortran Subroutine Declaration:

(o

;value - most significant time bits
;value - least significant time bits

;set alarm clock

/* set alarm clock */
/* no result */

/* most significant time bits */
/* least significant time bits */

! set alarm clock

subroutine alarm(mstime, lstime)

integer*4 mstime
integer*4 lstime

Pascal procedure declaration:
procedure _alarm(
mstime : longint;

lstime : longint
); external;

ALARM-2

! most significant time bits
! least significant time bits

{** Set alarm clock }
{** most significant time bits }

{** least significant time bits }

Allocate a device.
Description:

This system call is used to allocate a device for the exclusive use
of a specified process and any spawned subprocesses of that process
(see _crproc). Once a device is successfully allocated, other
processes may not access that device except to read the device status
(_getdst) and to flush the cache buffers (_flush).

A device may be allocated to at most one process. Subprocesses of
the process to which the device is allocated will be able to access
the device as though it were allocated to them.

To be successfully allocated, the specified device must not be
currently referenced by any process. That is, the device must not be
open by any other process. _getdst, _setdst, _physop, and other
device operations also cause a device to be momentarily referenced.
If the device is a virtual circuit (X.25) the device may not have an
incoming session pending.

The device to be allocated may reside on any node to which the
process has access.

The calling process also specifies the intended use (read operations,
and/or write operations) of the device. The specified process must
have access to the device for the intended use before the device can
be alloced. For instance, if the intended use of the device is for
read operations, the specified process must have read privilege to
the device.

The calling process must have access to the process to which the
device will be allocated. For instance, a process which does not
have either world or group privilege may allocate a device to itself,
or to any other process with the same user identification code.

If the specified device name is the name of a rotor list, this system
call will select a device from the 1list that is currently not in use
and to which the specified process has appropriate access (read
privilege/write privilege).

Dictionary of WMCS System Calls

_alloc

The time out parameter is used to specify the maximum amount of time
the calling process is willing to wait for the specified device (or a
suitable dewice from the specified rotor list) to become available
for allocation. The specified device (or the suitable devices on the
specified rotor 1list) is checked once per second until it becomes
available, or the time out expires. Note that if the specified
process does not have access to the device (according to the
specified intended use) the time out does not apply. That is, a non-
zero status is returned to the calling process immediately, without
waiting for the time out to expire.

Related Privileges:

none - Allows allocation of devices to a process with the same
user identification code (UIC) as the calling process.
group - Allows allocation of devices to processes which have the
same group id as the calling process.
world - Allows allocation of devices to any process whatsoever.
Parameters:
pid - Process IDentification number of the process to

which a device will be allocated. The pids 0 and
-1 have special meaning. 0 refers to the calling
process, -1 refers to the parent of the calling
process.

timout - Should the specified device not be currently
available, this svc will poll once per second
until the specified timeout expires. This parameter
is the number of 1/100th second ticks to wait for
a device to become available.

access - This parameter specifies the intended use for
the allocated device by the specified process.
The format of this parameter is the same as the
mode parameter used by the open and create svcs
except that bits 2-31 are reserved and should be

Zero.
bit 0 = read access. l=access desired, 0=no access.
bit 1 = write access. l=access desired, 0=no access.

bit 2-31 = reserved. Should be 0.

dname

alcnam
status

Diagnostics:

Dictionary of WMCS System Calls
_alloc

- Address of a null terminated string identifying

the specific device (or rotor list name) which

is to be allocated. This string will be translated
automatically by WMCS into its logical equivalent.

The string may contain up to 93 significant characters
followed by a null, but must translate to a valid
device or rotor list name of not more than 27
characters (l6-character nodename with two underscores
and an 8 character devicename with one underscore and a
null) .

- Address of a 27-character string buffer which will

contain the null terminated name of the successfully
allocated device.

- Address of a long word to receive the result of

the operation.

errinsufpriv (1) The process lacks the privileges required to

perform the operation.

erremptyrtrlst (18) The specified rotor list is empty.

errnamenull

errnoname
errtimeout

(80) The specified name must not be null.

(82) The specified name does not exist.

(128) The request was not completed within
the specified time.

errinvdevnam (130) The specified devicename is syntactically

incorrect.

errundevnam (131) The MCS does not recognize the devicename.

is the device mounted?

errnoreadpriv (144) The process does not have Read Privilege for

the file.

errnowritepriv (145) The process does not have Write Privilege for

See Also:

_dealloc
—getalc
_getrel
—getrtr
_setrtr

the file.

Deallocate an allocated device.

Get names of allocated devices.

Get names of rotor list elements.
Get rotor list names.

Assign device names to a rotor list.

Dictionary of WMCS System Calls
—alloc

Assembler Calling Sequence:

push pid ; value - process id

push timout ; value - time out

push access ; value - access mode

push dname ; address - device name

push alcnam ; address - allocated device

push status ; address - result of the operation
jsr ~alloc ; Allocate a device

C Function Declaration:

/* Allocate a device */

long /* returns result of the operation */
—alloc(pid, timout,access,dname,alcnam)

long pid; /* process id */

long timout; /* time out */

long access; /* access mode */

char dname[941] ; /* device name */
char alcnam([27]1; /* allocated device */

FORTRAN Subroutine Declaration:

c ! Allocate a device
subroutine _alloc(pid,timout,access,dname,alcnam, status)
integer*4 pid ! process id
integer*4 timout ! time out
integer*4 access ! access mode
character*94 dname ! device name
character*27 alcnam ! allocated device
integer*4 status ! result of the operation

Pascal Procedure Declaration:

var alcnam
var status
); external;

string(26]; {** allocated devicel
longint {** result of the operation}

procedure _alloc({** Allocate a device}
pid : longint; {** process id}
timout : longint; {** time out}
access : longint; {** access mode}
devnam : string(93}; {** device name}

_allmem
Allocate dynamic memory.

Description:

Allocate a 4K byte page of memory to the calling process,
or share a 4K byte page of memory with another process.

For successful page allocation the address of the page must

be on a 4K byte boundary; it must reside in the first 2
megabytes of address space (locations $000000 through $1FE000);
and that address must not have been allocated previously by

the process receiving the page. Note that for security reasons
the process cannot allocate memory in the highest page of

the logical address space, i.e. at location $1FF000.

Unless the process has writephys privilege, only pages owned
by the calling process can be shared with another process.

To share a page, the value of the pid parameter is the process

id of a process other than the calling process, i.e. the pid of
the process to receive the page (receiving process). The value

of the adr parameter specifies the address of a valid page of
memory within the calling process. The page shared will have

the same logical address in both the sharing process and the
receiving process. For successful sharing, the receiving process
must not have a page of logical memory already allocated at the
specified address.

If the value of the pid parameter is zero or the process id

of the calling process, a new page is allocated to the
calling process.

Related Privileges:

none - Can allocate memory to the current process or can
share memory with processes with the same owner id
and group id (uic)
group -~ Can share memory with any process with the
same group id.
world - Can share memory with any process whatsoever.
writephys - Can request that an unowned page of memory, assigned
to the current process be shared with another
process.

Parameters:

pid - Process ID of which process is to receive the

memory. O is used for the current process, -1 for
the parent of the current process.

ALLMEM-1

Dictionary of MCS System Calls

_allmem
adr - Logical address in the 2 megabyte logical address
space. Adr must be aligned on 4K byte boundary.
prot - Protection. O indicates no protection; 1 page 1is

write protected; other values reserved.
timout - The wait count is in 100°ths of a second and
represents the amount of time to wait for a page
to become available before returning an error.
status - Address of a long word to receive the result of
the operationm.

Diagnostics:

errinsufpriv (1) The process lacks the privileges required to

perform the operation.
errprcsnotfnd (2) The specified process is not in the system

process table.

errinvadr (4) The logical address, for the memory requested,
is invalid.

errmemalloc (5) The process requested a logical page that was
already allocated.

errnonowned (6) The process tried to affect a page in memory it

did not owm.
errnomemavail (7) All available memory has been allocated.

errtimeout (128) A request was not completed within the specifie
time.

See Also:
_fremem - Deallocate a page of memory
getfre - Get amount of available memory
__protmem- Change memory page protection

Assembler Calling Sequence:

push pid ;value - process id

push adr ;value - address of new page

push prot ;value - protection

push timout ;value - time out

push status saddress - result of the operation
jsr _allmem ;allocate dynamic memory

C Function Declaration:

/* allocate dynamic memory */

long /* returns result of the operation */
allmem (pid, adr, prot, timout)
- long pid; /* process id */
long adr; /* address of new page */
long prot; /* protection */
long timout; /* time out */

ALLMEM~2

Dictionary of MCS System Calls
_allmem

Fortran Subroutine Declaration:

c ! allocate dynamic memory
subroutine allmem(pid, adr, prot, timout, status)
integer*4 pid ! process id
integer*4 adr ! address of new page
integer*4 prot ! protection
integer*4 timout ! time out
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _allmem({** allocate dynamic memory}
pid ¢ longint; {** process id}
adr : longint; {** address of new page}
prot ¢ longint; {** protection}
timout : longint; {** time out}
var status : longint {** result of the operation}

); external;

ALLMEM-3

_ANDEVNT

Wait for AND of event flags
Description:

Suspend process execution until the logical AND of

one or more event flags is true. When all of the specified
event flags are simultaneously set (1’s) the process

is resumed.

Related Privileges:

none - allows waiting on event flags of any process
with the same owner id and group id (uic) as the
calling process.

group - allows waiting on event flags of processes

with the same group id but a different owner id

than the calling process.

allows waiting on event flags of processes

whose owner id and group id (uic) are other than

those of the calling process.

world

Parameters:

pid - Process ID of the process whose event flags

are to be waited on. A O indicates the current

process; =1 indicates the parent of the current

process.

Event flag mask. The mask of all bits which

must simultaneously be set high for control

to return to the calling process.

timout - The wait count in 100°ths of a second. Represents
the amount of time to wait for the specified event
flags to be set before giving up.

efmask

NOTE that time outs are not
implemented in MCS 4.1.

status = Address of a long word to receive the result of
the operation.
Diagnostics:
errinsufpriv (1) The process lacks the privileges required to

perform the operation.

errpresnotfnd (2) The specified process is not in the system
process table.)

errtimeout (128) A request was not completed within the specified

time.

ANDEVNT-1

Dictionary of MCS System Calls
_andevnt

See Also:

_clrevnt - Clear event flags
_getevnt - Read event flags

orevnt - Wait for OR of event flags
:setevnt - Set event flags

Assembler Calling Sequence:

push pid s;value - process id

push efmask ;value - event flag mask

push timout ;value - time out

push status saddress = result of the operatiom
jsr _andevnt ;wait for AND of event flags

C function declaration:

/* wait for AND of event flags */

long /* returns result of the operation */
_andevnt (pid, efmask, timout)

long pid; /* process id */

long efmask; /* event flag mask */

long timout; /* time out */

Fortran Subroutine Declaration:

c ! wait for AND of event flags
subroutine andevn(pid, efmask, timout, status)
integer*4 pid ! process id
integer*4 efmask event flag mask

!
integer*4 timout ! time out
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure andevnt({** wait for AND of event flags}
pid : longint; {** process id}
efmask : longint; {** event flag mask}
timout : longint; {** time out}
var status : longint {** result of the operation}

); extermal;

ANDEVNT-2

_ASSIGN
Assign a logical name.
Description:

Creates, deletes or replaces a logical name in the current process’s
translation table, or in the table of any other process.

Abbreviations are allowed in logical names. An asterisk (*)
in the logical name is a marker that indicates the minimum

string that is a recognized abbreviation of the logical name.
Abbreviations are recognized only during logical name tramnslation
(see trans). For example, if the logical name is " PR*INT',

a translation of any of the strings "PR', "PRI", "PRIN', or " PRINT"
will return the equivalence.

The values of the parameters lname and equiv determine whether
an entry in the logical name table of the specified process is
created, removed, or replaced.

To create a new logical name, the lname parameter must contain

a logical name which does not match any existing logical names
in the logical name table of the specified process and the equiv
parameter must not be null.

To remove a logical name assignment, the lname parameter must
contain a logical name which matches a logical name found in
the logical name table of the specified process and the equiv
parameter must be null.

To replace the equivalent string associated with a logical name
the lname parameter must contain a logical name which matches
an existing logical name found in the logical name table of the

specified process and the equiv parameter must not be null.

If the lname parameter contains a logical name which does

not match any existing name found in the logical name table
and the equiv parameter is null, or if the lname parameter
is null, this system call has no effect.

If the assignment is made in the current process’s translation
table, it (the assignment) is not in effect after the current
process terminates. If the assignment. is made in another process’s

translation table, it persists for the life of that process.
Related Privileges:

none - Allows creation or replacement of a logical name in
the translation table of any process with the same
owner id and group id (uic) as the calling process.

ASSIGN-1

Dictionary of MCS System Calls
_assign

group - Allows creation or replacement of a logical name in
the translation table of another process with the same
group id as the calling process.

world - Allows creation or replacement of a logical name in
the translation table of any other process.

Parameters:

1lname - Address of null terminated string containing the
logical name to be added, replaced or deleted from
the logical name table of the specified process.
This string may contain up to 93 characters plus a null.

equiv - Address of null terminated string containing the
equivalent to which the logical name translates.
It this parameter contains a null string, the
logical name represented in parameter lname is
removed from the logical name table. This string
may contain up to 93 characters plus a null.

pid - The process id of the process for which this logical
name will be in effect. O=current process,
-l=parent process.

status =~ Address of a long word to receive the result of
the operationm.

Diagnostics:

errinsufpriv (1) The process lacks the privileges required to
perform the operation.
errprcsnotfad (2) The specified process is not in the system

process table.
errnomemavail (7) All available memory has been allocated.

See Also:

_gassign - Assign a global logical name

_getgldb Retrieve a global logical name

_getlog = Retrieve a logical name
_gengy Get pid of ancestor process

_trans Translate a logical name

Assembler Calling Sequence:

push lname ;address - logical name

push equiv ;address - translation string

push pid ;value = process id

push status saddress = result of the operation
jsr assign ;assign a logical name

C function declaration:

/* assign a logical name */

ASSIGN-2

Dictionary of MCS System Calls

_assign
long ' /* returns result of the operation */
_assign (lname, equiv, pid)

char lname([94]; /* logical name */
char equiv[94]; /* translation string */
long pid; /* process id */
Fortran Subroutine Declaration:
c ! assign a logical name
subroutine assign(lname, equiv, pid, status)
character*94 lname ! logical name
character*94 equiv ! translation string
integer*4 pid ! process id
integer*4 status ! result of the operation
Pascal Procedure Declaration:
procedure _assign({** assign a logical name}
1name : stringl93]; {** logical name}
equiv : string[93]; {** translation string}
pid : longint; {** process 1id}
var status : longint {** result of the operation}

); external;

ASSIGN-3

_CHDIR
Set default device and directory.
' Description:

Used by a process to change its default directory.
Any subsequent file references that do not have an explicit

path name will be assumed to be in this directory. 1In
essence, the named path becomes the current working directory.

Unless the process has bypass privilege, it must have read
privilege to the new default device, execute privilege to
all directories up to the new default directory and read
privilege to the default directory.

If the devdir is specified in fcb.seq number format, the process
must have read privilege to the new default device and read
privilege to the new default directory.

Related Privileges:

None - Successful 1f process has access to the device and
directories as described above.

altuic - Successful if the owner of image file for the
current process has access to the device and directory

as described above.

bypass = Allows the process to set the default to any
mounted device and directory independent of the
file protection.

system - Successful if the system has access to the device
and directory as described above.

Parameters:

devdir - Address of a null terminated string which contains

the new default device and directory specification.
This string will be translated automatically by the
MCS to its logical equivalence. This parameter may
have up to 93 characters (the null makes 94)

status = Address of a long word to receive the result of
the operation.

Diagnostics:

errnomemavail (7) All available memory has been allocated.

errinvdevnam (130) The specified devicename is syntactically
incorrect. .

errundevnam (131) The MCS does not recognize the devicename.
Is the device mounted?
errnoexecpriv (143) The process does not have Execute Privilege

CHDIR~-1

Dictionary of MCS System Calls
_chdir

for the file.
errnoreadpriv (144) The process does not have Read Privilege for

the file.
errinvdirfle (148) The specified directory is not a directory.

errinvdirstr (149) The specified directory name is syntactically
incorrect.
errinvcloper (173) The device class is inappropriate for the

operation.
errinvdirdev (174) Directories do not exist on the specified
device.
errdirnotfnd (177) The specified directory does not exist.
errinvseqnum (178) The file’s FCB.SEQ number in the directory
file is incorrect.
Device integrity errors.

See Also:

_create - Create a file
delete - Delete a file
:getdir - Get default device and directory
_open - Open a file
rename - Rename a file
:}etfprt- Set file protection

Assembler Calling Sequence:

push devdir ;address - new device/directory
push status s;address - result of the operation
jsr _chdir ;set default device and directory

C function declaration:

/* set default device and directory */
long /* returns result of the operation */
_chdir(devdir)

char devdir(94]; /* new device/directory */

Fortran Subroutine Declaration:

c ! set default device and directory
subroutine chdir(devdir, status)
character*94 devdir ! new device/directory
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _chdir({** set default device and directory}
devdir : string[93]; {** new device/directory}
var status : longint {** -esult of the operation}

); extermal;

CHDIR-2

__CHSUPER
Change to supervisor mode.
Description:

Sets the supervisor bit (bit 13) in the CPU status register.
Allows execution of privileged instructioms.

If the call is successful, the system returns control to the

process with the CPU in supervisor mode. The process will
continue in supervisor mode until the process changes the
status register back to user mode.

Note especially that with the change to supervisor mode comes
a transition to using the supervisor stack pointer. The
supervisor stack is approximately 1700 bytes in length

and is located in system memory. Overflowing the system stack
will crash the process and probably the system also.

Data that was on the users stack prior to this call will have
to be accessed differently while in supervisor mode.

Note that with the processor in supervisor mode, the

user has complete access to all hardware features of the
system. Indiscriminate memory accesses may lead to unexpected
and disastrous results.

Related Privileges:

none - Process not allowed to change to supervisor mode
chngsuper - Allows process to change to supervisor mode

Parameters:

status - Address of a long word to receive the result
of the operation.

Diagnostics:

errinsufpriv (1) The process lacks the privileges required to
perform the operation.

See Also:
chuser - Change processor mode to user

Assembler Calling Sequence:

push status ;address - result of the operation
jsr chsuper s;change to supervisor mode

CHSUPER~-1

Dictionary of MCS System Calls
_chsuper

C function declaration:

/* change to supervisor mode */
long /* returns result of the operation */
_chsuper()

Fortran Subroutine Declaration:

c ! change to supervisor mode
subroutine chsupe(status)

integer*4 status ! result of the operation

Pascal Procedure Declarationm:
procedure _chsuper({** change to supervisor mode}

var status : longint {** result of the operation}
; external;

CHSUPER-2

Change processor mode to user.

Description:

_CHUSER

Clears the supervisor bit (bit 13) in the CPU status register.
Provides high level languages the ability to convert back to

user mode from supervisor mode.

Note that with the change to user mode comes a transition

to using the user stack pointer.

Note that unless the process is currently in supervisor
mode a fatal error will occur when an attempt is made to

write to the status register.
Related Privileges:
None.
Parameters:
None.
Diagnostics:
None.
See Also:
_chsuper - Change to supervisor
Assembler Calling Sequence:
jsr _chuser
C function declaration:
void
_chuser()
Fortran Subroutine Declaration:

c
subroutine chuser

Pascal Procedure Declaration:

procedure chuser;

CHUSER-1

mode

;change processor mode to user

/* change processor mode to user */
/* no result */

! change processor mode to user

{** change processor mode to user}

Dictionary of MCS System Calls
_chuser

external;

CHUSER~-2

CLONE
Create a new process by cloning an existing process

Description:

This call is similar to _crproc except that rather than load the
image for the process to be created from some mass storage media
specified by a file name, the process is created via copying
(cloning) an already existing process specified by a PID.

Each process under control of the operating system must be created by
a call to this operating system service routine or to _crproc,
_crprcs, or _mulcrps. When a process is created, it is called a
child process. The process that created it is called its parent
process.

SPAWN and FORK are two different modes of creation. Spawned processes
run in series. This means that the parent process hibernates while
the child process runs. When the child process terminates, the
parent process resumes. The completion status of the child is
returned to the parent.

Forked processes run in parallel. The parent process is not
hibernated, but continues execution immediately after successful
creation of the child process.

The calling process must be able to access the process specified by
the PID either via group privilege, world privilege, or the
protection allowing public access to it for successful creation of
the cloned process.

Without the setpriv privilege, the child may not be given more
privileges than the parent has.

The child process is created with the same default device and
directory as the parent.

Related Privileges:
none - Allows the parent process to create a child
from an existing process to which the parent has

only public access. The child may not
be given privileges not possessed by the parent.

CLONE-1

Dictionary of WMCS System Calls

_clone

group

setpriv

setprior

world

Parameters:

mode

pid

pname

priv

Allows the parent process to create a child
process with the same group ID but a different
owner ID than the parent process has. Also
allows the cloning of processes with the same
group ID but a different owner ID that the
creating process has.

Allows the parent process to give the child
process more privileges than those possessed
by the parent.

Allows the parent process to initiate a child
at a higher priority level and/or with a higher
timeslice than the parent.

Allows the parent process to create a child
with any owner ID and group ID (UIC) whatsoever.
Also allows a process to clone a process with
any owner ID and group ID (UIC) whatsoever.

Whether the process is spawned or forked.

A 0 indicates spawn, 1 indicates fork. All other
values are reserved and should not be used.

The process ID of the process to be cloned.

The new process will be created on the same site
where the process being cloned exists.

Address of a 17 byte null terminated string
containing the process name to be given the

new process. This string is used for human
identification. (16 significant characters

plus a null) '

The privilege mask contains a bit mask of
privileges to be given to the child process.

A -1 indicates that the child should receive
the same privileges that the parent has.
Privileges are bit encoded as follows:

Bit Name Bit # Description
pcbpvsetpriv 0 setpriv
pcbpvsystem 1 system
pcbpvreadphys 2 readphys
pcbpvwritephys 3 writephys
pcbpvsetprior 4 setprior
pcbpvchngsuper 5 chngsuper
pcbpvbypass 6 bypass
pcbpvoperator 7 operator
pcbpvaltuic 8 altuic
pcbpvworld 9 world
pcbpvgroup 10 group

CLONE-2

priort

tslice

uic

sysin

sysout

syserr

Dictionary of WMCS System Calls
—clone

pcbpvnetwork 11 network
pcbpvsetattr 12 setattr
13-31 Reserved. Must be set to zero.

- The priority level (0..15) at which the child process

will execute. Level 0 is the highest priority.

A minus one (-1) in this parameter means to use the
same priority as the parent process.

The timeslice value. The maximum amount of time the
child process will be able to run each time it is
scheduled. This time is specified in .01 milliseconds.
(A timeslice of 100 represents 1 millisecond)

A minus one (-1) in this parameter means to use the
same timeslice as the parent process.

The user identification code of the child process. The
most significant 16 bits represent the owner ID and the
least significant 16 bits represent the group ID.

A minus one (-1) in this parameter means to use the
same UIC as the parent process.

Address of a 94 byte null terminated string containing
the name of the standard input file for the

child process. This string will be translated automatically
by the WMCS to its logical equivalent. The equivalent
string will be assigned the logical name "SYSSINPUT" in
the logical name table of the child process. The string
passed is NOT checked for validity. It may contain up
to 93 significant characters followed by a null.
Address of a 94 byte null terminated string containing
the name of the standard output file for the

child process. This string will be translated
automatically by the WMCS to its logical equivalent.
The equivalent string will be assigned the logical name
"SYSSOUTPUT" in the logical name table of the child
process. The string passed is NOT checked for validity.
It may contain up to 93 significant characters followed
by a null.

Address of a 94 byte null terminated string containing
the name of the standard error file for the

child process. This string will be translated automatically
by the WMCS to its logical equivalent. The equivalent
string will be assigned the logical name "SYSSERROR" in
the logical name table of the child process. The string
passed is NOT checked for validity. It may contain up
to 93 significant characters followed by a null.
Address of the command line. (up to 3072 bytes)

The command line may contain any data whatever

to be passed from the parent to the child.

CLONE-3

Dictionary of WMCS System Calls

_Clone

cmdlen
chpid

ccode

The data appears on the top of the child process's

stack as the child process begins. The long word

at the top of the child's stack is the length in

bytes of the command line. At the location (USP+4) -

on the child's stack is a long word which contains

the starting address of the command line.

Length of the command line specified in bytes.

Address of a long word to receive the PID of the child

process. Note that this is only valuable in the case

that the child is forked. If the address of the long

word is zero, no value is returned.

Address of a long word to receive the completion code

returned to the parent by the process responsible for

terminating the child process. If the child is exited

as a result of a system violation (memory violation,

illegal instruction, ...) the system supplies the ccode.

If the process terminates normally, the process itself

supplies the ccode. If the process is exited by another

process, the other process supplies the ccode. Note

that the ccode will always be zero for processes that

are forked. If the address of the long word is zero,

no value is returned. Completion codes that may be

supplied by the system include:

erralarmexit (28) The system clock reached the value
specified for _ALARM.

errzerodivtrap (29) The process has an undefined trap:
Divide-by-zero.

errchktrap (30) The process has an undefined trap:
CHK Instruction.

errtrapvtrap (31) The process has an undefined trap:
TRAPV Instruction.

errtracetrap (32) The process has an undefined trap:
TRACE.

errl010trap (33) The process has an undefined trap:
1010 Instruction.

errlllltrap (34) The process has an undefined trap:
1111 Instruction.

errprivintrap (35) The process attempted to execute a
privileged instruction.

errillintrap (36) The process attempted to execute an
illegal instruction.

errbustrap (37) The process has a bus error.

erradrtrap (38) The process has an address error.

errnonexmem (39) The process attempted to access
nonexistent memory.

ermemparity (40) The process has a memory parity-error.

CLONE-4

Dictionary of WMCS System Calls
_Clone

errwriteprot (41) The process attempted to write to a
write-protected page in memory.

errundeftrap (42) _SETTRP was not used to define a call
for a trap other than TRAP 0.

errundefsvc (43) The MCS does not recognize the SVC
number used by the process.

errcontccode (255) [CTRL] c terminated the process.

status - Address of a long word to receive the result of
the operation.

Diagnostics:

errinsufpriv (1) The process lacks the privileges required to
perform the operation.

errnomemavail (7) All available memory has been allocated.

errinvsiteid (8) The specified site ID does not exist.

errnotimfle (21) The specified file is not an image file.

errimagebmbad (53) (MCS error) The bitmap changed during the
creation of the process.

errinvdevnam (130) The specified devicename is syntactically
incorrect.

errundevnam (131) The MCS does not recognize the devicename.
Is the device mounted?

errfilnotfnd (133) The specified file could not be found.

errreadleof (140) The process tried to read past the logical end

of a file.

errnoexecpriv (143) The process does not have Execute Privilege
for the file.

errnoreadpriv (144) The process does not have Read Privilege for
the file.

errinvfnstr (147) The specified filename is syntactically incorrect.

errinvdirfle (148) The specified directory is not a directory.

errinvdirstr (149) The specified directory name is syntactically
incorrect.

errdirnotfnd (177) The specified directory does not exist.

errfilopen (202) The process tried to simultaneously open more
than one tape file.

See Also:

_crprcs - Simplified create process
_crproc - Create a new process

_exproc - Terminate the specified process
_mulcrps - Multiple create process
_setpnam - Change process name

_setpri - Change priority lewvel

_settmsl - Change scheduling timeslice
_setuic - Set process UIC

CLONE-5

Dictionary of WMCS System Calls

_clone

Assembler Calling Sequence:

push
push
push
push
push
jsr

mode
pid
pname
priv
priort
tslice
uic
sysin
sysout
syserr
cnd
cmdlen
pid
ccode
status
_Clone

C Function Declaration:

long

svalue - spawn or fork

;value - pid of process to clone
;address - process name

;value - process privilege

;value - process priority

;value - process timeslice

;value - user identification code
;address - standard input file
;address - standard output file
;address - standard error file
;address - command line

svalue - length of cmd

saddress - childs pid

;address - childs completion code
;address - result of the operation
;clone an existing process

/* clone an existing process */
/* returns result of the operation */

_clone(mode, pid, pname, priv, priort, tslice, uic,
sysin, sysout, syserr, cmd, cmdlen, chpid, ccode)

long mode;

long pid;

char pnamel(17];
long priv;

long priort;
long tslice;
long uic;

char sysinl[94];
char sysout([94];
char syserr([94];
char and[3072] ;
long cmdlen;
long *chpid;
long *ccode;

/* spawn or fork */

/* PID of process to clone */
/* process name */

/* process privilege */

/* process priority */

/* process timeslice */

/* user identification code */
/* standard input file */

/* standard output file */
/* standard error file */

/* command line */

/* length of cmd */

/* childs pid */

/* childs completion code */

Dictionary of WMCS System Calls

_clone
FORTRAN Subroutine Declaration:
c ! clone an existing process
subroutine _clone(mode, pid, pname, priv, priort,
& tslice, uic,sysin, sysout, syserr, cmd,
& cmdlen, chpid, ccode,status)
integer*4 mode ! execution mode (spawn or fork)

integer*4 pid
character*17 pname
integer*4 priv
integer*4 priort
integer*4 tslice
integer*4 uic
character*94 sysin
character*94 sysout
character*94 syserr

PID of process to clone
process name

process privilege
process priority
process timeslice

user identification code
standard input file
standard output file
standard error file

character*(*) cmd command line
integer*4 cmdlen length of cmd
integer*4 chpid childs pid

integer*4 ccode

childs completion code
integer*4 status

result of the operation

Pt o Gun Qe Pum G Pue P Guw Sue Puw Oms S Sem

Pascal Procedure Declaration:

procedure _clone {** clone an existing process }

(
mode : longint; {** spawn or fork}
pid ¢ longint;
pname : stringl16]; {** process name}
priv ¢ longint; {** process privilege}
priort : longint; {** process priority}
tslice : longint; {** process timeslice}
uic : longint; {** yser identification code}
sysin : stringl93]; {** standard input file}
sysout : stringl93]; {** standard output file}
syserr : stringl93]1; {** standard error file}
cmd : “array_of char; {** command line}
cndlen : longint; {** length of cmd}
var chpid : longint; {** childs pid}
var ccode : longint; {** childs completion code}
var status : longint {** result of the operation}
) ; external;

CLONE-7

CLOSE

Close a file.
Description:

Given a valid logical unit number (lun), close a file. That is, make
the file inaccessible to the current process through that lun. If the
flush flag is set on a disk device, all disk cache buffers will be
written to the device. If the device is a tape, the tape buffer is
written to the device.

Any pending errors encountered during asynchronous reads to this file
will be returned as warnings to the _close.

If the delete option is specified in the mode parameter, the process
must have read and write privilege to the device containing the file,
read and write privilege to the directory containing the file, and
delete privilege to the file itself in order for the file to be
successfully deleted.

Related Privileges:

none - The file will be closed. Allows optional deletion of the
file if the process has privileges to the file as
described above. Returns a warning if the process
specified delete upon closing and does not have privilege
to the file as described above.

bypass - Allows the process to delete the file upon closing,
independent of the process's privilege to the file.
system - Allows the process to delete the file upon closing if the
system has privilege to the file as described above.
Parameters:
lun - Logical unit number.
mode - Bit encoded long word specifying action to be taken upon

closing. If the bit is a zero, no action is performed.
The following descriptions apply when the specified bit
is set (1):

CLOSE-1

Dictionary of WMCS System Calls
_Close

————

L e gl

| Ve 1T Bit Name Bit # Description

cldelete 0 Delete - Requests that the file be
deleted upon closing. If other
processes have the file open, the
file will be marked for deletion,
no error is returned, and as soon
as the file is closed by all
processes it will be deleted.

—— clnotruncfile 1 No truncate - Specifies that when
the disk file is closed, the
extra physical sectors allocated
to the file are not to be released.
For tape devices, this bit
specifies that the last block
written to the tape should be
written as a full sized block (as
opposed to a variable sized block) .

-~ clnodelete 2 No delete - Overrides the delete
upon closing request specified by
the _open system call.

clforcedwrite 3 Forced write - Writes to the
device all data in system buffers
associated with this lun. If an
error occurs it will be reported
as a warning to the calling
process. The file is always
closed.

Suppress all deletes - Overrides

all deletes that have been set for

the file, i.e., opdelete or a

delete set by a different process.

clzerodelete 5 Zero delete - Zero each sector of
the file before deleting the file.
This bit is only valid if the file
is being deleted (via cldelete or
some other way) .
6-31 Reserved. Must be set to zero.
status - Address of a long word to receive the result of
the operation.

o

— clsupalldelete

Diagnostics:

errinvlfn (132) The logical unit number does not correspond
to an open file.

errnodelpriv (146) The process does not have Delete Privilege for
the file.

CLOSE~2

Dictionary of WMCS System Calls
_Close

erropendel (153) The specified file is open, has been marked for

deletion.

errdelfile (158) System files cannot be deleted.
errdevwrtprot (269) The specified device is write-protected.

See Also:

_Create - Create a file
_delete - Delete a file

_frawait - Wait for a fast read to complete

_open - Open a file
Assembler Calling Sequence:

push lun

push mode

push status

jsr _Close

C Function Declaration:

long

_close (lun, mode)
long lun;
long mode;

Fortran Subroutine Declaration:

C

svalue - logical unit number
;value - mode word

;address - result of the operation
;close a file

/* close a file */
/* returns result of the operation */

/* logical unit number */
/* mode word */

! close a file

subroutine _close (lun, mode, status)

integer*4 lun

integer*4 mode
integer*4 status

Pascal Procedure Declaration:

procedure _close(

lun : longint;
mode : longint;
var status : longint
) ; external;

CLOSE~3

! logical unit number
! mode word
! result of the operation

{** close a file}

{** logical unit number}

{** type of access requested}
{** result of the operation}

_CLREVNT
Clear event flags.
Description:

Clears the specified event flags of a particular
process.,

Related Privileges:

None - Allows clearing event flags of any process
with the same owner id and group id as the calling
process.

group - Allows clearing the event flags of any process

with the same group id as the calling process.
world - Allows clearing the event flags of any process
whatever.

Parameters:

pid - Process ID of the process whose event flags

are to be cleared. 0 refers to current process;
-1 references the parent of the current process.

efmask - Event flag mask. The 32 bit mask of those flags which
are to be cleared. Bits set within the mask correspond
to the event flags which will be cleared.

status = Address of a long word to receive the result of
the operation.

Diagnostics:

errinsufpriv (1) The process lacks the privileges required to
perform the operation.
errprcsnotfnd (2) The specified process is not in the system

process table.

See Also:

_andevnt - Wait for AND of event flags

_getevnt - Read event flags
_orevnt =~ Wait for OR of event flags

_setevnt - Set event flags

Assembler Calling Sequence:

push pid ;value - process id

push efmask ;value - event flag mask

push status ;jaddress - result of the operation
jsr _clrevnt ;jclear event flags

CLREVNT-1

Dictionary of MCS System Calls
_clrevnt

C function declaration:

long
_clrevnt (pid, efmask)

long pid;
long efmask;

Fortran Subroutine Declaration:

c

/*
/*

/*
/*

!¢

clear event flags */
returns result of the operation */

process id */
event flag mask */

lear event flags

subroutine clrevn(pid, efmask, status)
! process id

integer*4 pid
integer*4 efmask
integer*4 status

Pascal Procedure Declaration:

procedure _clrevnt(
pid ¢ longint;
efmask : longint;
var status : longint
); external;

CLREVNT-2

! e
'r

{**
{**
{**
{**

vent flag mask
esult of the operation

clear event flags}
process id}

event flag mask}
result of the operation}

_OONNECT

Make a connection to a remote machine.
Description:

This system call is used to establish a logical connection with a
remote machine. It does this by allocating a network link (virtual
circuit) to the process for use in network communication.

There must be an entry in the remote machine's NETUAF.DAT file
matching the UIC of the process requesting the connection for the
_connect to succeed.

This SVC does not need to be called prior to accessing other nodes on
a network. All SVCs that access other nodes in the network will
automatically issue a connect request if the process does not already
have an open connection to the node. Use this SVC if you want to
ensure that you have a good connection to another node prior to
performing any operations on that node. This may simplify error
reporting.

Related Privileges:

none - Process not allowed to access the network.
network -~ Process allowed to perform network operations.
Parameters:
siteid - Site ID of the system with which a connection is
being attempted.
status - Address of a long word to receive the result of

the operation.
Diagnostics:

errinsufpriv (1) The process lacks the privileges required to
perform the operation.

errnomemavail (7) All available memory has been allocated.

errinvsiteid (8) The specified site ID does not exist.

errremotelogon (47) The process was not allowed to logon to the
remote system

errnoclass (185) The device class handler was not loaded when
the system was booted.

CONNECT-1

Dictionary of WMCS System Calls
—connect

See Also:
_disconn - Break a remote connection
_dconall - Break all remote connections
_dconidle -~ Break all idle remote connections

Assembler Calling Sequence:

push siteid ;value - site being connected to
push status ;address - result of the operation
jsr _connect ;make a remote connection

C Function Declaration:

/* make a remote connection */

long /* returns result of the operation */
_connect (siteid) ;

long siteid; /* site being connected to */
FORTRAN Subroutine Declaration:

c ! make a remote connection
subroutine _connec(siteid, status)

integer*4 siteid ! site being connected to

integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _connect({** make a remote connection }
siteid : longint; {** gite being connected to }
var status : longint {** result of the operation }

) ; external;

CONNECT-2

_CREATE
Create a file.

Description:

After logical name translation, the specified file is created. Upon
successful completion of the create, the file is opened and the
logical unit number is returned. If a specific version number is
requested, the file is created provided that there is no file with
the specified filename and version number. If the version number is 0
or no version number is specified, the new file will be assigned a
version number one higher than the previous highest version number on
a file with the same name in the specified directory.

Unless the process has bypass privilege, it must have read and write
privilege to the device to contain the file, execute privilege to the
device to contain the file, execute privilege for all directories in
the path 1leading to the file, and read and write privilege to the
directory to ocontain the file for the file to be successfully
created.

If the delete upon closing option is specified in the mode parameter,
the process must have read and write privilege to the device
containing the file, read and write privilege to the directory
containing the file, and delete privilege to the file itself for the
file to be successfully deleted.

Related Privileges:

none - Allows creation only if process has access as described
above. The created file may not have a UIC other than
that of the calling process.

altuic - Allows creation if the owner of the image file for the
current process has access as described above.

bypass - Allows the process to create the file independent of the
file protection.

group - Allows the process to create a tile with the same group
ID but a different owner ID than the calling process.

system - Allows creation if the system has access as described
above.

world - Allows the process to create a tile with any UIC.

CREATE-1

Dictionary of WMCS System Calls
—Create

Parameters:

fname ~ Address of a null terminated string containing the
name of the file to be created. The string will be
translated automatically by WMCS to its logical
equivalence. This string may contain up to 93
significant characters followed by a null.

mode - Bit encoded long word specifying the type of access
required. The following description explains the
options when the specified bit is set (1).

Bit Name

Bit #

Description

opreadacc
opwriteacc

opreadlock

opwritelock

opdelete

opappend

opfastread

opnextfile

0

1
2

(§)]

7

CREATE-2

Read access - Requests permission
to read the file.

Write access - Requests permission
to write the file.

Read lock - Requests permission
for exclusive read access to the
file.

Write lock - Requests permission
for exclusive write access to the
file.

Delete - Requests that the file be
deleted upon closing.

Append - Specifies that the
initial file position be at the
logical end of file.

Fast read - Specifies that the
file will be read asynchronously.
That is, that control returns to
the user process before the data
have actually been read. As
records are read, they will be
transferred directly into the
process's logical address space
bypassing the device cache. This
bit is only valid for disk class
devices. Other requirements are

1) Supports only requests for
complete sectors only, 2) Process
buffer must be on a word boundary,
3) Request cannot cross a 4 Kbyte
page boundary. Use the _frdwait
system call to determine when
asynchronous reads are complete.
Open next file - On a tape device,
specifies to open the "next" file
without regard to the filename.

reclen

Dictionary of WMCS System Calls
—Create

opnordahead 8 No read ahead - Specifies that
read ahead is not to be done on
the opened file.
opnotruncfile 9 No truncate - Specifies that when
the file is closed the extra
physical sectors allocated to the
file are not to be released.
cropenifthere 10 Open if there - Specifies that the
file will be opened if it exists.
Only if it does not exist will it
be created. If the file does exist
and this bit is set the ftype,
prot., uic, fid, mstime, and lstime
parameters are ignored. The reclen
parameter will specify the record
length for this open and does not
alter the default record length
associated with the file.
cropenshared 11 Open shared - Specifies that if
the current process or any
ancestor of the current process
has a file with the specified
name (fname) and with the same
access modes currently open,
this process will share the file
with the ancestor, including the
default file position. As the file
is read or written, the default
position is adjusted for both the
current process and the ancestor.
opzerodelete 12 Zero delete - Zero each sector of
the file before deleting the file.
This bit is only valid if the file
is being deleted (via cldelete or
some other way) .
13-31 Reserved. Must be set to zeros.
- Default file record length in bytes. Must be between 0
and 65535. In the case of the "open if there" mode and
the file exists, this parameter overrides the default
record length specified for the file. If a zero or
SFFFFFFFF (-1) is used, the file will be created with a
record length of 1. In the case that the named file
exists and the "open if there" bit is set, a SFFFFFFFF
(-1) signifies that the default length of the specified
file is to be used.

CREATE-3

Dictionary of WMCS System Calls
_Create

ftype - A numerically valued field specifying the file type.

File Type Value Description

fcbftdata 0 data

fcbftdir 1 directory

fcbftimage 2 image file

fcbftksamdata 3 KSAM data file

fcbftksamkey 4 KSAM key file

fcbftllimage 5 LL image file

fcbftarchcont 6 archive file continuation
7 reserved

fcbftsystem 8 system file

fcbftarchive 9 archive file

20-255 reserved
256-65535 user defined
prot - File protection mask. The least significant 16 bit

word of this parameter is divided into 4 nibbles.
Each nibble corresponds to a class of users. The bits
within each nibble represent the type of access that
class of user is granted for this file. If the bit is
set (1), the access is granted.

From the least to the most significant nibble the user
classes are:

ownr - file owner

Grp - processes with the same group ID as the owner
Pub - all other processes in the system

Sys - processes with SYSTEM privilege.

Sys Pub Grp Ownr

I I I | !

|DWRE | DWRE | DVRE | DWRE |

I I
MSB LSB

From the least to the most significant bits within the
nibbles, the access privileges are:

E - Execute access
R - Read access
W - Write access
D - Delete access

The value S$FFFFFFFF (-1) is a reserved value that means
that the user's default protection mask is to be used.

CREATE-4

uic -

fid -

mstime -

1stime -

lun -

status -

Diagnostics:

Dictionary of WMCS System Calls
_cCreate

The user identification code, specifying the owner of the
file. The most significant 16 bits of this parameter
contain the owner ID, and the least significant 16 bits
contain the group ID. A value of SFFFFFFFF (-1) is a
reserved value which means to give the file the same UIC
as the calling process.

The least significant 16 bits of this parameter become
the file identification code to be associated with the
file.

The most significant 32 bits of the file creation date
and time in system time format. This parameter may be
used to specify a file creation date other than the
current date. If the value of this parameter is S$FFFFFFFF
(-1) , the current date (year and day) will be used.
Otherwise, the value specified will be used for the
creation date. This value is not checked for validity.
The least significant 32 bits of the file creation date
and time in system time format. This parameter may be
used to specify a file creation time other than the
current time. If the value of this parameter is $FFFFFFFF
(-1), the current time (hour, minute, second and tick)
will be used. Otherwise, the value specified will be

used for the creation time. This value is not checked

for validity.

Address of a long word to receive the logical unit number
of the open file.

Address of a long word to receive the result of

the operation.

errinsufpriv (1) The process lacks the privileges required to

perform the operation.

errnomemavail (7) All available memory has been allocated.
errinvvernum (129) A file's version number cannot be greater than

65535.

errinvdevnam (130) The specified devicename is syntactically

errundevnam

incorrect.
(131) The MCS does not recognize the devicename.
Is the device mounted?

errfilexists (134) The specified version of the file already

exists.

errinvreclen (138) Edit mode 3 requires that the file's record

length be set to one.

errinvfiletype (139) The specified file type is reserved for the MCS.
errnoexecpriv (143) The process does not have Execute Privilege

for the file.

CREATE-5

Dictionary of WMCS System Calls

—Create

errnoreadpriv (144) The process does not have Read Privilege for
the file.

errnowritepriv (145) The process does not have Write Privilege for
the file.

errnodelpriv (146) The process does not have Delete Privilege for
the file.

errinvfnstr (147) The specified filename is syntactically
incorrect.

errinvdirfle (148) The specified directory is not a directory.

errinvdirstr (149) The specified directory name is syntactically
incorrect.

errinvcloper (173) The device class is inappropriate for the
operation.

errdimotfnd (177) The specified directory does not exist.

errdirinvver (200) A directory file cannot have a version number
greater than one.

errfilopen (202) The process tried to simultaneously open more
than one tape file.

See Also:
_close - Close a file
—creats - Simplified file creation

_defprot - Set default protection mask
- Delete a file

- Open a file

_setfprt - Set file protection

_delete
_open

Assembler Calling Sequence:

push
push

fname
mode
reclen
ftype
prot
uic
fid
mstime
1stime
lun
status
_Create

;address - file name
;value - type of access requested
;svalue - record length

;value - file type

;value - protection

;value - user identification code
;value - file ID

;value - day and year

;value - hour, minute, second, tick
;address - logical unit number
;address - result of the operation
;create a file

C Function Declaration:

long

Dictionary of WMCS System Calls
_Create

/* create a file */
/* returns result of the operation */

—create (fname, mode, reclen, ftype, prot, uic, fid, mstime,

lstime,

char fnamel94];
long mode;
long reclen;
long ftype;
long prot;
long uic;

long fid;

long mstime;
long lstime;
long *lun;

FORTRAN Subroutine Declaration:
c

1lun)

/* file name */

/* type of access requested */
/* record length */

/* file type */

/* protection */

/* user identification code */
/* file ID */

/* day and year */

/* hour, minute, second, tick */
/* logical unit number */

! create a file

subroutine _create (fname, mode, reclen, ftype, prot,
& uic, fid, mstime, lstime, lun, status)
character*94 fname ! file name

integer*4 mode
integer*4 reclen
integer*4 ftype
integer*4 prot
integer*4 uic
integer*4 fid
integer*4 mstime
integer*4 lstime
integer*4 lun

Pascal Procedure Declaration:

procedure _create(

fname : stringl93];
mode : longint;
reclen : longint;
ftype : longint;
prot : longint;
uic : longint;
fid ¢ longint;
mstime : longint;
lstime : longint;
var lun : longint;
var status : longint
); external;

! type of access requested
! record length

! file type

! protection

! user identification code

! file ID

! day and year

! hour, minute, second, tick
! logical unit number

{** create a file}

{** file name}

{** type of access requested}
{** record length}

{** file typel

{** protection}

{** yser identification codel
{** file ID}

{** day and year!

{** hour, minute, second, tick}
{** logical unit number}

{** result of the operation}

CREATE~7

_CREATS
Simplified file creation.
Description:

This system call is simplified form of _create. Default values are
assumed for the file type (data file), the file protection (uses the
user's default protection mask), the uic (becomes the same as that of
the calling process), fid (uses 0), creation date and time (uses the
current date and time).

After logical name translation, the specified file is created. Upon
successful completion of the create, the file is opened and the
logical unit number is returned. If a specific version number is
requested, the file is created provided that there is no file with
the specified file name and version number. If version number 0, or
no version number is specified, the new file will be assigned a
version number one higher than the previous highest version number on
a file with the same name in the specified directory.

Unless the process has bypass privilege, it must have read and write
privilege to the device to contain the file, execute privilege for
all directories in the path leading to the file, and read and write
privilege to the directory to contain the file for the file to be
successfully created.

If the delete upon closing option is specified in the mode parameter,
the process must have read and write privilege to the device
containing the file, read and write privilege to the directory
containing the file and delete privilege to the file itself for the
file to be successfully deleted.

Related Privileges:

none - Allows creation only if process has access
as described above.
altuic - Allows creation if the owner of the image file
for the current process has access as described above.
bypass - Allows the process to create the file independent
of the file protection.
system - Allows creation if the system has access as

described above.

Dictionary of WMCS System Calls

_Creats
Parameters:
fname
mode

- Address of a null terminated string containing

the name of the file to be created. The string
will be translated automatically, by the MCS to
its logical equivalence. This string may

contain up to 93 significant characters followed
by a null.

Bit encoded long word specifying the type of access
required. The following description explains the
options when the specified bit is set (1).

Bit Name Bit Description

opreadacc 0 Read access - Requests permission
to read the file.

opwriteacc 1 Write access ~ Requests permission
to write the file.

opreadlock 2 Read lock - Requests permission
for exclusive read access to the
file.

opwritelock 3 Write lock - Requests permission
for exclusive write access to the
file.

opdelete 4 Delete - Requests that the file
be deleted upon closing

opappend 5 Append - Specifies that the initial
file position be at the logical end
of file.

opfastread 6 Fast read - Specifies that the file

will be read asynchronously. That
is, that ocontrol returns to the user
process before the data has actually
been read. As records are read, they
will be transferred directly into
the process's logical address space,
bypassing the device cache. This bit
is only valid for disk class
devices. Other requirements are:
1) Supports requests for complete
sectors only, 2) Process's buffer
must be on a word boundary, 3) The
request cannot cross a 4-Kbyte page
boundary. Use the _frdwait system
call to determine when asynchronous
reads are complete.

opnextfile 7 Open next file - On a tape device,
specifies to open open the 'next'
file without regard to the file's
name.

reclen

opnordahead 8

opnotruncfile 9

cropenifthere 10

cropenshared 11

opzerodelete 12

13-31

Dictionary of WMCS System Calls
—Creats

No read ahead - Specifies that read
ahead is not to be done on the
opened file.

No truncate - Specifies that when
the file is closed the extra
physical sectors allocated to the
file are not to be released.

Open if there - Specifies that the
file will be opened if it exists.
Only if it does not exist will it
be created. If the file does exist
and this bit is set, the ftype,
prot, uic, fid, mstime, and lstime
parameters are ignored. The reclen
parameter will specify the record
length for this open and does not
alter the default record length
associated with the file.

Open shared - Specifies that if the
current process or any ancestor of
the current process has a file with
the specified name (fname) and with
the same access modes currently
open, this process will share the
file with the ancestor, including
the default file position. As the
file is read or written, the default
position is adjusted for both the
current process and the ancestor.
Zero delete -~ Zero each sector of
the file before deleting the file.
This bit is only valid if the file
is being deleted (via cldelete or
same other way) .

Reserved. Must be set to zero.

Default file Record length in bytes. Must be between
0 and 65535. In the case of the 'open if there' mode
and the file exists, this parameter overrides the
default record length specified for the file.

If a zero or SFFFFFFFF (-1) is used, the file will be
created with a record length of 1. In the case that
the named file exists and the 'Open if there' bit is

set, a SFFFFFFFF (-1) signifies that the default length
of the specified file is to be used.

CREATS-3

Dictionary of WMCS System Calls

_Creats
lun - Address of a long word to receive the logical unit number
of the open file.
status - Address of a long word to receive the result of
the operation.
Diagnostics:

errnomemavail (7) All available memory has been allocated.

errinvvernum (129) A file's version number cannot be greater than
65535.

errinvdevnam (130) The specified devicename is syntactically
incorrect.

errundevnam (131) The MCS does not recognize the devicename.
Is the device mounted?

errfilexists (134) The specified version of the file already exists.

errinvreclen (138) Edit mode 3 requires that the file's record
length be set to one.

errinvfiletype (139) The specified file type is reserved for the MCS.

errnoexecpriv (143) The process does not have Execute Privilege
for the file.

errnoreadpriv (144) The process does not have Read Privilege for
the file.

errnowritepriv (145) The process does not have Write Privilege for
the file.

errnodelpriv (146) The process does not have Delete Privilege for
the file.

errinvfnstr (147) The specified filename is syntactically incorrect.

errinvdirfle (148) The specified directory is not a directory.

errinvdirstr (149) The specified directory name is syntactically
incorrect.

errinvcloper (173) The device class is inappropriate for the
operation.

errdirnotfnd (177) The specified directory does not exist.

errdirinvver (200) A directory file cannot have a version number
greater than one.

errfilopen (202) The process tried to simultaneously open more
than one tape file.

See Also:
_close - Close a file

_Create - Create a file

_defprot - Set default protection mask
_delete - Delete a file

—open - Open a file

_setfprt — Set file protection

Assembler Calling Sequence:

push
push
push
push
push
jsr

fname
mode
reclen
lun
status
_Creats

C Function Declaration:

long

Dictionary of WMCS System Calls
—Creats

;address - file name

svalue -~ type of access requested
;value - record length

saddress - logical unit number
;address - result of the operation
;simplified file creation

/* simplified file creation */
/* returns result of the operation */

—creats (fname, mode, reclen, lun)

char fname(94];

long mode;
long reclen;
long *lun;

/* file name */

/* type of access requested */
/* record length */

/* logical unit number

FORTRAN Subroutine Declaration:

C

Pascal Procedure Declaration:

! simplified file creation

subroutine _creats(fname, mode, reclen, lun, status)
character*94 fname ! file name
integer*4 mode ! type of access requested
integer*4 reclen ! record length
integer*4 lun ! logical unit number
integer*4 status ! result of the operation

procedure _creats(

{** simplified file creation}

fname : stringl93]; {** file name}
mode ¢ longint; {** type of access requested}
reclen : longint; {** record length}
var lun : longint; {** logical unit number}
var status : longint {** result of the operation}
); external;

CREATS-5

_CRPRCS

Simplified create process.
Description:

This call is identical to _crproc except that several parameters
are removed. It uses the default of each of the parameters left
out.

Each process under control of the operating system must

be created by a call to this operating system service routine
(or to _crproc). When a process is created, it is called a
child process. The process that created it is called its
parent process.

This system call allows spawning of child processes.

Spawned processes run in series. This means that the parent
process hibernates while the child process runs. When the
child process terminates, the parent process resumes. The
completion status of the child is returned to the parent.

The calling process must have read privilege to the device
containing the image file, execute privilege to all directories
in the path leading to the directory containing the image file,
read privilege to the directory containing the image file and
execute privilege to the file containing the child process image
for successful creation of the child process.

If the image file is specified by fcb.seq number then the
process must have read privilege to the device containing the
image file and execute privilege to the file contailning the
image.

The child process 1is created with the same privileges, at

the same priority, with the same time slice, with the same
user identification code, and the same standard input, output
and error files as the parent process.

Related Privileges:

none - Allows the parent process to create a child
from an image file to which the parent has

access as described above.
bypass - Allows the parent process to create a child
process independent of the file protection.
Parameters:
fname - Address of a 94 byte null terminated string
specifying the name of the file containing the

CRPRCS-1

Dictionary of MCS System Calls

_crpres

pname

cmd

cmdlen
pid

ccode

process image. This string will be tramnslated
automatically by the MCS to its logical equivalent.
This string may contain up to 93 significant
characters followed by a null.

Address of a 17 byte null terminated string
containing the process name to be given the
new process. This string is used for human
identification. (16 significant characters
plus a null)

Address of the command line. The command line
may contain up to 3072 significant bytes.

The command line may contain any data whatever
to be passed from the parent to the child.

The data appears on the top of the child process’s

stack as the child process begins. The long word

at the top of the child’s stack is the length in

bytes of the command line. At the location (USP+4)

on the child’s stack is a long word which contains

the starting address of the command line.

Length of the command line specified in bytes.

Address of a long word to receive the pid of the child

process. If the address of the long word is zero,

no value is returned.

Address of a long word to receive the completion code

returned to the parent by the process responsible for

terminating the child process. If the child is exited

as a result of a system violation (memory violation,

illegal instruction, ...) the system supplies the ccode.

If the process terminates normally, the process itself

supplies the ccode. TIf the process is exited by another

process, the other process supplies the ccode. If the

address of the long word is zero, no value is returned.

Completion codes that may be supplied by the system include:

erralarmexit (28) The system clock reached the value
specified for ALARM.

errzerodivtrap (29) The process has an undefined trap:
Divide=by-zero.

errchktrap (30) The process has an undefined trap:
CHK Instructionm.

errtrapvtrap (31) The process has an undefined trap:
TRAPV Instruction.

errtracetrap (32) The process has an undefined trap:

TRACE.

errl0l0trap (33) The process has an undefined trap:
1010 Instruction.

errllllitrap (34) The process has an undefined trap:

1111 Instructionm.
errprivintrap (35) The process attempted to execute a
privileged instruction.
errillintrap (36) The process attempted to execute an

CRPRCS-2

Dictionary of MCS System Calls
_crpres

illegal instruction.

errbustrap (37) The process has a bus error.
erradrtrap (38) The process has an address error.
errnonexmen (39) The process attempted to access

nonexistent memory.

errmemparity (40) The process has a memory parity=-error.
errwriteprot (41) The process attempted to write to a

write-protected page in memory.

errundeftrap (42) SETTRP was not used to define a call

“for a trap other than TRAP 0.

errundefsve (43) The MCS does not recognize the SVC

number used by the process.

errcontccode (255) [CTRL] ¢ terminated the process.
status - Address of a long word to receive the result of
the operation.

Diagnostics:

errinsufpriv (1) The process lacks the privileges required to
perform the operation.

errnomemavail (7) All available memory has been allocated.

errnotimfle (21) The specified file is not an image file.

errimagebmbad (53) (MCS error) The bitmap changed during the
creation of the process.

errinvdevnam (130) The specified devicename is syntactically
incorrect.

errundevnam (131) The MCS does not recognize the devicename.
Is the device mounted?

errfilnotfnd (133) The specified file could not be found.

errreadleof (140) The process tried to read past the logical end
of a file.

errnoexecpriv (143) The process does not have Execute Privilege
for the file.

errnoreadpriv (144) The process does not have Read Privilege for
the file.

errinvfnstr (147) The specified filename is syntactically incorrect.

errinvdirfle (148) The specified directory is not a directory.

errinvdirstr (149) The specified directory name is syntactically
incorrect.

errdirnotfnd (177) The specified directory does not exist.

errfilopen (202) The process tried to simultaneously open more
than one tape file.
Device integrity errors

See Also:

_crproc =~ Create a new process

_exproc = Terminate the specified process

_setpnam - Change process name

_setpri - Change priority level

_settmsl - Change scheduling time slice

CRPRCS-3

Dictionary of MCS System Calls
_crpres

_setuic =~ Set process uic

Assembler Calling Sequence:

push fname saddress ~ name of image file

push pname ;address - process name

push cmd ;address = command line

push cmdlen ;value - length of cmd

push pid ;jaddress - childs pid

push ccode ;jaddress - childs completion code
push status sjaddress - result of the operation
jsr _crprcs ;simplified create process

C function declaration:

/* simplified create process */

long /* returns result of the operation */
_crprcs (fname, pname, cmd, cmdlen, pid, ccode)

char fname[94]; /* name of image file */

char pname(l7]; /* process name */

char amd([3072]; /* command line */

long cmdlen; /* length of cmd */

long *pid; /* childs pid */

long *ccode; /* childs completion code */

Fortran Subroutine Declaration:

c ! simplified create process

subroutine crprcs(fname, pname, cmd, cmdlen, pid,
& ccode, status)
character*94 fname ! name of image file
character*17 pname ! process name
character*(*) cmd ! command line
integer*4 cmdlen ! length of cmd
integer*4 pid ! childs pid
integer*4 ccode ! childs completion code
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _crprcs({*#** simplified create process}
fname : string[93]; {** name of image file}
pname : string[16]; {** process name}
cmd : "array_of char; {** command line}
cmdlen : longint; {** length of cmd}
var pid : longint; {** childs pid}
var ccode ¢ longint; {** childs completion code}
var status : longint {** result of the operation}

); external;

CRPRCS-4

_CRPROC
Create a new process.
Description:

Each process under control of the operating system must

be created by a call to this operating system service routine.
When a process is created, it is called a child process.

The process that created it is called its parent process.

SPAWN and FORK are two different modes of creation.

Spawned processes run in series. This means that the parent
process hibernates while the child process runs. When the
child process terminates, the parent process resumes. The
completion status of the child is returned to the parent.

Forked processes run in parallel. The parent process is not
hibernated, but continues execution immediately after successful
creation of the child process.

The calling process must have read privilege to the device
containing the image file, execute privilege to all directories
in the path leading to the directory containing the image file,
read privilege to the directory containing the image file and
execute privilege to the file containing the child process image
for successful creation of the child process.

If the image file is specified by fcb.seq number then the
process must have read privilege to the device containing the
image file and execute privilege to the file containing the
image.

Without the setpriv privilege, the child may not be given more
privileges than the parent has.

The child process is created with the same default device
and directory as the parent.

Related Privileges:

none - Allows the parent process to create a child
from an image file to which the parent has
access as described above. The child may not
be given privileges not possessed by the parent.

bypass - Allows the parent process to create a child
process independent of the file protection.

group - Allows the parent process to create a child
process with the same group id but a different
owner id than the parent process has.

setpriv - Allows the parent process to give the child

CRPROC-1

Dictionary of MCS System Calls

crproc

process more privileges than those possessed
by the parent.

setprior - Allows the parent process to initiate a child

world

Parameters:

mode

siteid

fname

pname

priv

priort

tslice

at a higher priority level and/or with a higher
time slice than the parent.

~ Allows the parent process to create a child

with any owner id and group id (uic) whatsoever.

Whether the process is spawned or forked.

A O indicates spawn, 1 indicates fork. All other
values are reserved and should not be used.
The site 1d of the system on which the process
is to be created. If the site id is zero, the
process will be created on the same system as
the calling process.

Address of a 94 byte null terminated string
specifying the name of the file containing the
process image. This string will be translated
into its logical equivalent. This string may
contain up to 93 significant characters followed
by a null.

Address of a 17 byte null terminated string
containing the process name to be given the
new process. This string is used for human
identification. (16 significant characters
plus a null)

The privilege mask contains a bit mask of
privileges to be given to the child process.

A -1 indicates that the child should receive

the same privileges that the parent has.
Privileges are bit encoded as follows:

Bit Name Bit # Description
pcbpvsetpriv 0 setpriv
pcbpvsystem 1 system
pcbpvreadphys 2 readphys
pcbpvwritephys 3 writephys
pcbpvsetprior 4 setprior
pcbpvchngsuper 5 chngsuper
pcbpvbypass 6 bypass
pcbpvoperator 7 operator
pcbpvaltuic 8 altuic
pcbpvworld 9 world
pcbpvgroup 10 group

11-31 Reserved. Must be set to zero
The priority level (0..3) at which the child process
will execute. Level 0 is the highest priority.
A minus one (~1) in this parameter means to use the
same priority as the parent process.

-~ The time slice value. The maximum amount of time the

CRPROC-2

uic

sysin

sysout

syserr

cmd

cmdlen
pid

ccode

Dictionary of MCS System Calls
_crproc

child process will be able to run each time it is
scheduled. This time is specified in .01 milliseconds.
(A time slice of 100 represents 1 millisecond)

A minus one (-1) in this parameter means to use the

same time slice as the parent process.

The user identification code of the child process. The
most significant 16 bits represent the owner id and the
least significant 16 bits represent the group id.

A minus one (~1) in this parameter means to use the

same uic as the parent process.

Address of a 94 byte null terminated string containing
the name of the standard input file for the

child process. This string will be translated automatically
by the MCS to its logical equivalent. The equivalent
string will be assigned the logical name " SYSSINPUT' in
the logical name table of the child process. The string
passed is NOT checked for validity. It may contain up
to 93 significant characters followed by a null.

Address of a 94 byte null terminated string containing
the name of the standard output file for the

child process. This string will be translated automatically
by the MCS to its logical equivalent. The equivalent
string will be assigned the logical name " SYSSOUTPUT' in
the logical name table of the child process. The string
passed is NOT checked for validity. It may contain up
to 93 significant characters followed by a null.

Address of a 94 byte null terminated string containing
the name of the standard error file for the

child process. This string will be translated automatically
by the MCS to its logical equivalent. The equivalent

string will be assigned the logical name " SYSSERROR' in

the logical name table of the child process. The string
passed is NOT checked for validity. It may contain up

to 93 significant characters followed by a null.

Address of the command line. (up to 3072 bytes)

The command line may contain any data whatever

to be passed from the parent to the child.

The data appears on the top of the child process’s
stack as the child process begins. The long word

at the top of the child’s stack is the length in
bytes of the command line. At the location (USP+4)
on the child’s stack is a long word which contains
the starting address of the command line.

Length of the command line specified in bytes.
Address of a long word to receive the pid of the child
process. Note that this is only valuable in the case
that the child is forked. If the address of the long
word is zero, no value is returned.

- Address of a long word to receive the completion code

CRPROC-3

status

Diagnostics:

Dictionary of MCS System Calls
_crproc

returned to the parent by the process responsible for
terminating the child process. If the child is exited
as a result of a system violation (memory violation,
illegal instruction, ...) the system supplies the ccode.
If the process terminates normally, the process itself
supplies the ccode. If the process is exited by another
process, the other process supplies the ccode. Note
that the ccode will always be zero for processes that
are forked. If the address of the long word is zero,

no value is returned. Completion codes that may be
supplied by the system include:

erralarmexit (28) The system clock reached the value
specified for _ALARM.

errzerodivtrap (29) The process has an undefined trap:
Divide-by-zero.

errchktrap (30) The process has an undefined trap:
CHK Instruction.

errtrapvtrap (31) The process has an undefined trap:
TRAPV Instruction.

errtracetrap (32) The process has an undefined trap:
TRACE.

errl0l0trap (33) The process has an undefined trap:
1010 Instructiom.

errlllltrap (34) The process has an undefined trap:
1111 Instruction.

errprivintrap (35) The process attempted to execute a
privileged instructionm.

errillintrap (36) The process attempted to execute an
illegal instruction.

errbustrap (37) The process has a bus error.

erradrtrap (38) The process has an address error.

errnonexmemn (39) The process attempted to access
nonexistent memory.

errmemparity (40) The process has a memory parity-error.

errwriteprot. (41) The process attempted to write to a
write-protected page in memory.

errundeftrap (42) SETTRP was not used to define a call

“for a trap other than TRAP O.

errundefsve (43) The MCS does not recognize the SVC
number used by the process.

errcontccode (255) [CTRL] c terminated the process.

Address of a long word to receive the result of
the operation.

errinsufpriv (1) The process lacks the privileges required to
perform the operation.

errnomemavail (7) All available memory has been allocated.

errinvsiteid (8) The specified site id does not exist.

CRPROC-4

errnotimfle
errimagebmbad

errinvdevnam
errundevnam

errfilnotfnd
errreadleof

errnoexecpriv
errnoreadpriv
errinvfnstr
errinvdirfle

errinvdirstr

errdirnotfnd
errfilopen

See Also:

_crprces

(21)
(53)

(130)
(131)

(133)
(140)

(143)
(144)
(147)
(148)
(149)

(177)
(202)

Dictionary of MCS System Calls
_crproc

The specified file is not an image file..

(MCS error) The bitmap changed during the
creation of the process.

The specified devicename is syntactically
incorrect.

The MCS does not recognize the devicename.

Is the device mounted?

The specified file could not be found.

The process tried to read past the logical end
of a file.

The process does not have Execute Privilege
for the file.

The process does not have Read Privilege for
the file.

The specified filename is syntactically incorrect.
The specified directory is not a directory.
The specified directory name is syntactically
incorrect.

The specified directory does not exist.

The process tried to simultaneously open more
than one tape file.

Device integrity errors

Simplified create process

exproc = Terminate the specified process
“setpnam - Change process name
“setpri =- Change priority level
_settmsl - Change scheduling time slice
_setuic =~ Set process uic
Assembler Calling Sequence:
push mode ;value - spawn or fork
push siteid ;value = system 1id
push fname s;address - name of image file
push pname ;address - process name
push priv ;value - process privilege
push priort svalue - process priority
push tslice ;value - process time slice
push uic s;value — user identification code
push sysin ;address - standard input file
push sysout ;address - standard output file
push syserr saddress - standard error file
push cmd ;address - command line
push cmdlen ;value - length of cmd
push pid saddress - childs pid
push ccode saddress — childs completion code
push status ;address - result of the operation
jsr _crproc ;jcreate a new process

CRPROC-5

Dictionary of MCS System Calls

.CTProc

C function decla

long
_crproc (mod

long
long
char
char
long
long
long
long
char
char
char
char
long
long
long

Fortran Subrouti

c

ration:

/*

/*

e, siteid, fname, pname,
sysout, syserr, cmd,
mode; [*
siteid; /*
fname[94]; /*

pname([17]; /*
priv; /*
priort; /*
tslice; /*
uic; /*
sysin[94]; /*
sysout[94]; /*

syserr{94]; /*
cmd [3072]; /*
cmdlen; /*
pid; /
ccode; /

ne Declaration:

!

create a new process */

returns result of the operation */
priv, priort, tslice, uic, sysin,

cmdlen, pid, ccode)
spawn or fork */
system id */

name of image file */
process name */
process privilege */
process priority */
process time slice */
user identification code */
standard input file */
standard output file */
standard error file */
command line */

length of cmd */

childs pid */

childs completion code */

create a new process

subroutine crproc(mode, siteid, fname, pname, priv,

&
&

Pascal Procedure

procedure c

priort, tslice, uic,

cmdlen, pid, ccode,
integer*4 mode !
integer*4 siteid !
character*94 fname !
character*17 pname !
integer*4 priv !
integer*4 priort !
integer*4 tslice !
integer*4 uic !
character*94 sysin !
character*94 sysout !
character*94 syserr !
character*(*) cmd !
integer*4 cmdlen !
integer*4 pid !
integer*4 ccode !
integer*4 status !

Declaration:

{*

rproc(

sysin, sysout, syserr, cmd,
status)

spawn or fork

system 1id

name of image file
process name

process privilege
process priority

process time slice

user identification code
standard input file
standard output file
standard error file
command line

length of cmd

childs pid

childs completion code
result of the operation

* create a new process}

mode : longint; {** spawn or fork}
siteid : longint; {** gystem 1d}
fname string[93]; {** name of image file}

CRPROC-6

pname
priv
priort
tslice
uic
sysin
sysout
syserr
cmd
.cmdlen
var pid
var ccode
var status
); extermal;

string[16];
longint;
longint;
longint;
longint;
string[93];
string[93];
string[93];
“array_of char;
longint;
longint;
longint;
longint

CRPROC-7

Dictionary of MCS System Calls

{**
{**
{**
{**
{'k*
{**
{**
{**
{**
{**
{**
{**
{**

crproc

process name}

process privilege}
process priority}
process time slice}

user identification code}
standard input file}
standard output file}
standard error file}
command line}

length of cmd}

childs pid}

childs completion code}
result of the operation}

CRSHDP

crshdp

crshdp - Enable/disable crash display.
Description:

Enable or disable the crash display report when an error
occurs in a process. The crash display report is the report
that is generated by the system which shows the value of the
processor registers, the system stack, user stack, etc.

~When a process is created, crash displays are enabled. That
is, if the process performs an invalid operation, e.g. accessing
nonr-existent memory or executing an illegal instruction, the

crash display will be written to the standard error file for
that process.

Using this system call the programmer can specify that crash
displays are to be suppressed. Having the crash display report
disabled does not affect the normal cleanup, by WMCS, of a
process when it performs an invalid operation.

Related Privileges:
None.

Parameters:

mode ~ A flag indicating whether the crash display report is
to be enabled or disabled. A value of 0 will disable
crash display reports, a nomr-zero value will enable
crash display reports.
Diagnostics:
None.
See Also:
None.
Assembler Calling Sequence:

push mode ;value - enable or disable
jsr _crshdp ;enable/disable crash display

C Function Declaration:

CRSHDP-1

Dictionary of WMCS System Calls
crshdp :

void
_crshdp (mode)
long mode;

_Fortran Subroutine Declaration:

c

subroutine crshdp(mode)
integer*4 mode

Pascal Procedure Declaration:
procedure crshdp(

mode : longint;
; external;

CRSHDP=-2

/* enable/disable crash display */
/* no result */

/* enable or disable

! enable/disable crash display
! enable or disable

{** enable/disable crash display}
{** enable or disable}

_CTRLC
Set/clear control-c protectionm.
Description:

Enable or disable process termination upon receipt
of a CTRL/C character.

Any process which accesses a standard terminal port

(using open, read, write, create, exproc or crproc)
will be asynchronously exited if a CTRL/C character is
received from the terminal. This system call enables

or disables this feature.

By default when a process is created the control c
protection is disabled, i.e. the process will be deleted
if control ¢ is pressed.

Note that terminals also have a control C feature
that determines whether control C characters should
be passed on to the application program. In order
for a process to terminate when control C is pressed,
The process must have been the last process to have
accessed the terminal, the terminal must be set to

" CONTROL C' status and the process must not be control
C protected.

Related Privileges:

None.

Parameters:

mode - A flag indicating whether the process

is to be control C protected. A O indicates
that the process 1is not protected, i.e. it
will be deleted when control C is pressed.

Diagnostics:
none.
See Also:

_getdst - Get device status
setdst - Set device status

Assembler Calling Sequence:

push mode ;jvalue - protect or unpr “~ct

CTRLC-1

Dictionary of MCS System Calls
_ctrle

jsr _ctrle

C function declaration:

void
_ctrlc(mode)
long mode

Fortran Subroutine Declaration:

c
subroutine ctrlc(mode)
integer*4 mode

Pascal Procedure Declaration:
procedure _ctrlc(

mode : longint
); external;

CTRLC-2

;set/clear control c protection

/* set/clear control c protection */
/* no result */

/* protect or unprotect */

! set/clear control c protection

! protect or unprotect

{** set/clear control c protection}
{** protect or unprotect}

_DCONALL
Disconnect all remote connections this process has.
Description:
This system call is used to break all logical connections with remote
machines. It does this by deallocating the network 1links (virtual
circuits) to the process created by the _connect system call.
Related Privileges:
mm.

Parameters:

status - Address of a long word to receive the result of
the operation.

Diagnostics:
None.
See Also:
_connect - Make a remote connection
_disconn - Break a remote connection
_dconidl - Break all idle remote connections
Assembler Calling Sequence:

push status ;address - result of the operation
jsr _dconall sbreak all remote connections

C Function Declaration:
/* break all remote connections */

long /* returns result of the operation */
_dconall();

DCONALL~1

Dictionary of WMCS System Calls
_dconall

FORTRAN Subroutine Declaration:
c ! break all remote connections
subroutine _dconal (status)
integer*4 status ! result of the operation
Pascal Procedure Declaration:
procedure _dconall({** break all remote connections }

var status : longint {** result of the operation }
); external;

DQONALL~2

_DCONIDLE
Disconnect the idle remote connections this process has.

Description:

This system call is used to break all logical connections that are
currently idle. It does this by deallocating the network 1links
(virtual circuits) to the process created by the _connect system
call. A connection is considered idle if no files are open on the
remote system and if your default directory is not on the remote
system.
Related Privileges:
None.

Parameters:

status - Address of a long word to receive the result of
the operation.

Diagnostics:
None.

See Also:

_connect - Make a remote connection
_disconn - Break a remote connection
_dconall -~ Break all remote connections

Assembler Calling Sequence:

push status ;address - result of the operation
jsr _dconidle ;break all idle remote connections

C Function Declaration:

/* break all idle remote connections */

long /* returns result of the operation */
_dconidle() ;

DCONIDLE-1

Dictionary of WMCS System Calls
._dconidle
FORTRAN Subroutine Declaration:

c ! break all idle remote connections
subroutine _dconid(status)
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _dconidle({** preak all idle remote connections }
var status : longint {** result of the operation }
); external;

DCONIDLE-2

_DEALIOC
Deallocate an allocated device.

Description:

This SVC is used to deallocate a device which was previously
allocated using the _alloc SVC.

Related Privileges:

none - Allows deallocation of a device which is currently
allocated to a process with the same owner id
and group id (uic) as the calling process.
group - Allows deallocation of a device which is
allocated to a process with the same group id
but a different owner id than the calling process.
world - Allows deallocation of a device allocated to any
process whatsoever.

Parameters:

dname - Address of a null terminated string identifying
the specific device which is to be deallocated.
This string will be translated automatically by
WMCS into its logical equivalent. The string
may contain up to 93 significant characters followed
by a null, but must translate to a valid device name
of not more than 27 characters (lé-character nodename
with two underscores and an 8-character devicename
with one underscore and a null).

status - Address of a long word to receive the result of
the operation.

Diagnostics:

errinsufpriv (1) The process lacks the privileges required
to perform the operation.

errnotalloc (16) The specified device is not allocated.

errnamenull (80) The specified name must not be null.

See Also:
_alloc - Allocate a device
_getalc - Get names of allocated devices
_getrel - Get names of rotor list elements
_getrtr - Get rotor list names
_setrtr - Assign device names to a rotor list

DEALLOC-1

Dictionary of WMCS System Calls
—dealloc

Assembler Calling Sequence:

push dname ; address - device name
push status ; address - result of the operation
jsr _dealloc ; deallocate an allocated device

C Function Declaration:

/* deallocate an allocated device */
long /* returns result of the operation */

_dealloc (dname)
char dname([94] ; /* device name */

FORTRAN Subroutine Declaration:

! deallocate an allocated device

subroutine _deallo(dname, status)
character*94 dname ! device name
integer*4 status | result of the operation

C

Pascal Procedure Declaration:

procedure _dealloc({** deallocate an allocated device}
dname : stringl[931; {** device name}
var status : longint {** result of the operation}
); external;

DEALLOC-2

DEFDPRT

defdprt

defdprt - Set default device protection.
Description:

Establishes the default protection to be applied to a device.
The default protection is the protection that is assigned to

a device when the device is not being referenced by any prccess.
Device protection can be assigned with the setdprt system call.
But, as soon as the device is not being referenced (no process
has the device, or any file on the device open) the protection
reverts back to the most recently defined default protection.

If no default protection has been assigned, the protection
of the device does not change when the device is not referenced.

This operation is valid for any mounted device.

To successfully change protection on a device the process must
have operator privilege or bypass privilege.

Related Privileges:

None - The process can not change the default protection of
a device.
bypass - Allows the process to change the default protection on

any device.
operator - Allows the process to change the default protectlon on
any device.

Parameters:

dname - Address of a null terminated string containing the
the name of the device whose protection is to be set.
This string may contain up to 93 significant characters
followed by a null. This string will be translated
autamatically by the MCS to its logical equivalent.
If this string contains a file designation. the
devicename portion of the file designation is used for
this parameter.

prot - File protection mask. The least significant
16 bit word of this parameter is divided into
4 nibbles. Each nibble corresponds to a class
of users. The bits within each nibble represent
the type of access that class of user is granted
for this device. If the bit is set (1) the access

DEFDPRT-1

Dictionary of WMCS System Calls

dedprt.

is granted.

From the least to the most significant nibble
the user classes are:

Ownr - device owner

Grp - processes with the same group id as the owner
Pub =~ all other processes in the system

Sys - processes with SYSTEM privilege

|SYS IPUb lGrp Iownrl
}mlmlmlml
I

MSB LSB

From the least to the most significant bits within
the nibbles, the access privileges are:

Execute access
Read access
Write access
Delete access

O=om
(T

A long word -1 (SFFFFFFFF) is a reserved value that
means that the user's default protection mask is to be used.

status - Address of a long word to receive the result of
the operation.

Diagnostics:

See

errinsufpriv
errinvdevnam

er rundevnam

(1) The process lacks the privileges required to
perform the operation.
(130) The specified devicename is syntactically
incorrect.
(131) The MCS does not recognize the devicename.
Is the device mounted?

Device integrity errors

Also:

_defprot

_getdprt
_getfprt

_Setdprt
_setfprt

Set default protection mask
Get device protection

Get file protection

Set device protection

Set file protection

Assembler Calling Sequence:'

DEFDPRT-2

Dictionary of WMCS System Calls

push dname
push prot
push status
jsr _defdprt

C function declaration:

long

_defdprt (dname. prot)
char dname([9%4];
long prot;

Fortran Subroutine Declaration:

c

dedprt

;address - device name

;value - protection mask

;address - result of the operation
;set default device protection

/* set default device protection */
/* returns result of the operation */

/* device name */
/* protection mask */

! set default device protection

subroutine defdpr (dname. prot. status)

character*94 dname
integer*4 prot
integer*4 status

Pascal Procedure Declaration:

procedure defdprt(
dname : string[93];
prot : longint;
var status : longint
); external;

DEFDPRT-3

! device name
! protection mask
! result of the operation

{** set default device protection}
{** device name}

{** protection mask}

{** result of the operation}

DEFDUIC

defduic

defduic - Set default device UIC.
Description:

This system call allows a process to change the default user
identification code (uic) of a device. Given the correct
privileges a process can change the uic of a device with the
_setduic svc. As soon as no processes have a device open.

it's uic will revert back to this default value. When a device
is first mounted the default device uic value is the same as
the device uic. By changing the uic the ownership of the
device is changed.

To successfully change the uic of a device, either the device
must have the UNCOWNED uic ([0000,0001]) or the calling
process must have operator privilege, and either group
privilege or world privilege.

If the calling process has group privilege, and the group
id of the device is the same as the group id of the calling
process, the process can modify the owner id of the device.

If the calling proéess has world privilege and operator
‘privilege it can change the uic of any device to be any
other uic except zero.

This system call is valid for any class of device.
Related Privileges:

none - If the device has the UNOWNED uic ([0000,0001]) the
process can change the uic of the device to the same
uic as the calling process.

group - If the process also has operator privilege, it can
modify the owner id of any mounted device which has
the same group id as the calling process. If the
process does not have operator privilege but the
device has the UNOWNED uic ([0000,0001]) the process
can set the group id to it's own group id, and it can
set the owner id to any value.

operator- Allows setting the uic if the process also has
either group or world privilege.

world - If the process also has operator privilege, it can
modify the uic of any mounted device to any other
uic except zero. If the process does not have
operator privilege but the device has the UNOWNED

DEFDUIC-1

Dictionary of WMCS System Calls

defduic

uic ([0000,0001]) the process can set the uic of the
device to any other uic except zero.

Parameters:

dname - Address of a null temminated string containing the
name of the device whose uic is to be changed. This
string will be translated autamatically by the MCS
to its logical equivalent. This string may contain
up to 93 valid characters followed by a null byte.
If this string contains a file designation. the
devicename portion of the file designation is used for
this parameter.

uic - A long word containing the user identification
code. This long word is divided into two fields.
The most significant 16 bits constitute the owner
id number. The least significant 16 bits constitute
the group id number (identifying the group to which
the user belongs).

The value SFFFFFFFF (~1) is a reserved value that
means to use the default uic, i.e. the uic of the
calling process.

A value of zero is invalid.
status - Address of a long word to receive the result of
the operation.

Diagnostics:

See

errinsufpriv (1) The process lacks the privileges required to
perform the operation.

errinvdevnam (130) The specified devicename is syntactically
incorrect. :

er rundevnam (131) The MCS does not recognize the devicename.
Is the device mounted?

Also:

—getduic - Get device uic
—getfuic - Get file uic
_getuic - Get process uic
—setduic - Set device uic.
_setfuic - Set file uic
_setuic - Set process uic

Assembler Calling Sequence:

push dname ;address - device name
push uic v ;value - owner id code _
push status ;address -~ result of the operation

DEFDUIC-2

jsr _defduic

C Function Declaration:

long
_defduic (dname., uic)
char dname[94];
long uic;
Fortran Subroutine Declaration:

c
character*94 dname
integer*4 uic
integer*4 status
Pascal Procedure Declaration:

procedure defduic(

dname : string[93];
uic : longint;
var status : longint

); external;

DEFDUIC-3

Dictionary of WMCS System Calls

defduic

;set default device uic

/*
/*

/*
/*

set default device uic */
returns result of the operation */

device name */
owner id code */

! set default device uic
subroutine defdui(dname. uic, status)

! device name

! owner id code

! result of the operation

{** set default device uic}
{** device name}

{** owner id code}

{** result of the operation}

DEFMEM

defmem

defmem - Define named shared memory area.
Description:

Named sharable memory areas are created with defmem. Named sharable
memory areas are sections of system memory which have an associated
name. Using this name. a process may request that this section of
memory be mapped into its logical memory space which extends from
address $00001000 through address $001fefff. The size of these
memory areas will be same multiple of the hardware page size which

is 4K bytes.

A process which wants to create a named sharable memory area must
first have allocated the memory to itself. This may have happened
at initial program lcad time or the process may use the normal memory
allocation routines to cause additional system memory to be mapped
into empty portions of his logical address space. After having
initialized this memory space, the process calls _defmem to make

this memory space to available to other processes.

After having called _defmem. the named sharable memory area is
defined and has one process, that of the definer, which references it.
At the time that no more processes reference the named sharable
memory area, the system will deallocate the memory and return it to
the free memory list. If desirable, the linger bit may be set which
will cause the named sharable memory area to remain defined even
though no process references it. In this case. an explicit call to
_udefmem is needed to deallocate the memory area.

Related Privileges:

None - The defined memory area may not have a uic other
than that of the calling process.

group - Allows the process to define a memory area with the
same group id but a different owner id than the
calling process.

world =~ Allows the process to define a memory area with any
uic.
Parameters:
mname - Address of a null terminated string containing

the name to be assigned to the memory area. This
string will be translated autamatically by WMCS
into its logical equivalent. This string may

DEFMEM-1

Dictionary of WMCS System Calls

defmem

adr

size

uic

prot

contain up to 93 significant characters followed
by a null.

A long word containing the location in local user
logical memory where the shared memory area will
start.

A long word containing the length in bytes of the
new memory area. The value saved in the control
structure will be rounded up to the hardware page
size.

A lorng word containing the user identification code
(uic) specifying the owner of the memory area.
The most significant 16 bits of this parameter
contain the owner id while the least significant
16 bits contain the group id. A value of
SFFFFFFFF (-1) is a reserved value which means to
give the memory are the same uis as the calling
process.

File protection mask. The least significant

16 bit word of this parameter is divided into

4 nibbles. Each nibble corresponds to a class

of users. The bits within each nibble represent
the type of access that class of user is granted
for this memory area. If the bit is set (1) the
access is granted.

From the least to the most significant nibble
the user classes are:

Ownr - memory area owner
" Grp - processes with the same group id as
the owner
Pub = all other processes in the system
Sys - processes with SYSTEM privilege

Sys Pub ?rp ?wnr '
| | .
| DWRE | DWRE | DWRE | DWRE |

I l
MSB LSB

From the least to the most significant bits within
the nibbles, the access privileges are:

E - Execute access
R - Read access
W - Write access
D - Delete access

The value SFFFFFFFF (-1) is a reserved value ;hat
means that the users default protection mask is to
be used.

DEFMEM-2

Dictionary of WMCS System Calls
defmem

mode - A long word which contains the linger bit which
allows the memory area remain even though no one
is currently referencing it.

BIT # NAME DESCRIPTION
0 linger NSM remains defined after
process dies.
status - Address of a long word to receive the result of

the operation.

Diagnostics:

errinsufpriv. " (1) The process lacks the privileges required
to perform the operation.

errnonowned (6) Attempt to affect nonmowned memory.
errsizovfl (60) The size passed to the MCS is out of range.
ermamenull (80) The name specified must not be null.
errnameexists (81) The name specified already exists.

See Also:
_bdefmem - Undefine a named sharable memory area.
_Shrmem - Share a named sharable memory area.
_ushrmem - Unshare a named sharable memory area.
_getmlst - Get a list of named snarable memory areas.
_setmuic - Change owner of a named sharable memory area.
_Setmprt - Change protection of a named sharable memory area.

Assembler Calling Sequence:

push mmame ; address - memory area name

push adr ; value - address of memory area
push size ; value - size of memory area
push uic ; value - user identification code
push prot ; value - memory area protection
push mode ; value -~ mode flags

push status ; address - result of the operation
jsr _defmem ; define named shared memory area -

C Punction Declaration:

/* define named shared memory area */

long /* returns result of the operation */
_defmem (mname ,adr,size,uic,prot,mode)

char mame (94] ; /* memory area name */

long adr; /* address of memory area */

long size; /* size of memory area */

long uic; /* user identification code */

long prot; /* memory area protection */

DEFMEM~3

Dictionary of WMCS System Calls
defmem

long mode; /* mode flags */

FORTRAN Subroutine Declaration:
c ! Define named shared memory area
subroutine defmem(mname. adr, size, uic, prot, mode, status)
character*94 mname ! memory area name
integer*4 adr ! address of memory area
integer*4 size ! size of memory area
integer*4 uic ! user identification code
!
1
!

integer*4 prot ! memory area protection
integer*4 mode ! mode flags

integer*4 status ! result of the operation

PASCAL Procedure Declaration:

procedure _defmem({** define named shared memory area}

mname : string[93]; {** memory area name}
adr : longint; {** address of memory area }
size : longint; {** size of memory area }
uic : longint; {** user identification code}
prot : longint; {** memory area protection}
mode : longint; {** mode flags }

var status : longint {** result of the operation}

;s external;

DEFMEM-4

Set default protection mask.

Description:

_DEFPROT

Specifies to the system the protection to be applied to

newly created files when the _create ‘prot’ parameter is
(-1). This mask will be used for any files created by
the current process and any child processes of the current

process.

Related Privileges:

None.

Parameters:

prot

Diagnostics:

None.

- File protection mask. The least significant

16 bit word of this parameter is divided into
Each nibble corresponds to a class
The bits within each nibble represent
the type of access that class of user is granted
for this file. If the bit is set (1) the access

4 nibbles.
of users.

is granted.

From the least to the most significant nibble
the user classes are:

Ownr

Grp
Pub

Sys

Sys

file owner

processes with the same group id as the owner
all other processes in the system

processes with SYSTEM privilege

Pub Grp Ownr

| DWRE | DWRE | DWRE | DWRE |

!
MSB

|
LSB

From the least to the most significant bits within
the nibbles, the access privileges are:

E

o=

Execute access

Read access
Write access
Delete access

DEFPROT-1

Dictionary of MCS System Calls
_defprot

See Also:

_create - Create a file

_creats - Simplified file creation

getprot - Get default protection mask

“setfprt- Set file protection
Assembler Calling Sequence:

push prot
jsr _defprot

C Function Declaration:

void
_defprot (prot)
long prot;

Fortran Subroutine Declaration:

c
subroutine defpro(prot)
integer*4 prot

Pascal Procedure Declaration:
procedure _ﬁefprot(

prot : longint
); external;

DEFPROT~2

svalue - protection mask
;set default protection mask

/* set default protection mask */
/* no result */

/* protection mask */

! set default protection mask

! protection mask

{** get default protection mask}
{** protection mask}

Deinstall privileged f

Description:

ile.

_DEINST

This call is used to remove entries from the system table of

installed files.

Once a file is deinstalled, it will execute with

only those privileges owned by the user. That is, it will not have
any special privileges.

Related Privileges:

none - The process is not allowed to deinstall privileged files.
operator - The process can deinstall any installed file.
Parameters:
siteid - The site id of the system on which the file is currently
installed. If the value of this parameter is zero, the
system on which the calling process is running is
assumed.
fname - The name of the file that you wish to deinstall.
status - Address of a long word to receive the result of the
operation.
Diagnostics:
errinsufpriv (1) The process lacks the privileges required to
perform the operation.
errinvsiteid (8) The specified site id does not exist.
erridxrange (56) The table ends before the specified occurrence.
errinvvernum (129) A file's version number cannot be greater than
65535.
errinvdevnam (130) The specified devicename is syntactically
incorrect.
errundevnam (131) The WMCS does not recognize the devicename. Is
the device mounted?
errinvfnstr (147) The specified filename is syntactically
incorrect.
errinvdirfle (148) The specified directory is not a directory-type
file.
errinvdirstr (149) The specified directory name is syntactically
incorrect.
errdimotfnd (177) The specified directory does not exist.

DEINST-1

Dictionary of WMCS System Calls

_deinst

See Also:

—getinst - Get installed privileged file
_install - Install privileged file

Assembler Calling Sequence:

push siteid
push fname
push status
jsr _deinst

C Function Declaration:

;value - the system id

;value - file to deinstall
;address - result of the operation
;deinstall privileged file

/* deinstall privileged file */

long /* returns result of the operation */
_deinst (siteid, fname)

long siteid; /* the system id */

char fnamel[94]; /* file to deinstall */

FORTRAN Subroutine Declaration:

C

! deinstall privileged file

subroutine _deinst(siteid, lun, status)
integer*4 siteid ! the system id
character*94 fname ! file to deinstall
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _deinst(

siteid
fname
var status
); external;

{** deinstall privileged file}

longint; {** the system id}
stringl93]; {** file to deinstall}
longint {** result of the operation}

DEINST-2

_DELETE
Delete a file.
Description:

The named file is removed from the file structure, freeing

the space it had consumed. In the absence of an explicit

version number, the file with the highest version number
is deleted.

This call will result in the file being marked for deletion,

but the file will not actually be deleted until it is closed
by all processes.

Tape files cannot be deleted.

Unless the process has bypass privilege, it must have read

and write privilege to the device containing the file, it must
have execute privilege of all directories in the path leading
to the file, it must have read and write privilege to the
directory containing the file, and delete privilege to the file
itself in order for the file to be successfully deleted.

If the fname 1is specified in fcb.seq number format, the process
must have read and write privilege to the device, read and write
privilege to the directory containing the file and delete
privilege to the file itself.

Related Privileges:

None - Allows deletion only if process has access
to the file as described above.

altuic = Allows deletion if the owner of image file
for the current process has access to the file
as described above.

bypass = Allows the process to delete the file independent
of the file protection.
system = Allows deletion if the system has access to

the file as described above.

Parameters:

fname - Address of a null terminated string containing the

name of the file to be deleted. This string will
be translated automatically by the MCS into its
logical equivalent. This string may contain up to

93 significant characters followed by a null.
status = Address of a long word to receive the result of

the operation.

DELETE-1

Dictionary of MCS System Calls
_delete

Diagnostics:

errinvdevnam (130) The specified devicename 1is syntactically
incorrect.

errundevnam (131) The MCS does not recognize the devicename.
Is the device mounted?

errfilnotfnd (133) The specified file could not be found.

errnoexecpriv (143) The process does not have Execute Privilege
for the file.

errnoreadpriv (144) The process does not have Read Privilege for

the file.
errnowritepriv (145) The process does not have Write Privilege for
the file.
errnodelpriv (146) The process does not have Delete Privilege for
the file.
errinvfnstr (147) The specified filename is syntactically incorrect.

errinvdirfle (148) The specified directory is not a directory.
errinvdirstr (149) The specified directory name is syntactically
incorrect.

erropendel (153) The specified file is open, has been marked
for deletion.

errdelfile (158) System files cannot be deleted.

errinvcloper (173) The device class is inappropriate for the
operation.

errdirnotfnd (177) The specified directory does not exist.
errinvseqnum (178) The file’s FCB.SEQ number in the directory
file is incorrect.
Device integrity errors

See Also:

_plose - Close a file
_create - Create a file
_open - Open a file

Assembler Calling Sequence:

push fname ;address - file name
push status s;address - result of the operation
jsr _delete ;jdelete a file

C function declaration:

/* delete a file */
long /* returns result of the operation */

_delete(fname)
char fname[94]; /* file name */

Fortran Subroutine Declaration:

c ! delete a file

DELETE-2

Dictionary of MCS System Calls
_delete

subroutine delete(fname, status)

character*94 fname
integer*4 status

Pascal Procedure Declaration:

procedure _delete(
fname ¢ string[93];
var status : longint
); external;

DELETE-3

! file name
! result of the operation

{** delete a file}
{** file name}
{** result of the operation}

_DISCONN

Break a connection to a remote machine.
Description:

This system call is used to break a logical connection with a remote
machine. It does this by deallocating the network link (virtual
circuit) to the process created by the _connect system call.

Related Privileges:

None.
Parameters:
siteid - Site ID of the system with which a connection is
being broken.
status - Address of a long word to receive the result of
the operation.
Diagnostics:

errinvsiteid (8) The specified site ID does not exist.
errremotelogon (47) The process was not allowed to log on to the
remote system

See Also:

_connect - Make a remote connection
_dconall - Break all remote connections
_dconidl - Break all idle remote connections

Assembler Calling Sequence:

push siteid ;value - site being disconnected
push status ;address - result of the operation
jsr _disconn sbreak a remote connection

DISCONN-1

Dictionary of WMCS System Calls
_disconn

C Function Declaration:

/* break a remote connection */
long /* returns result of the operation */
_disconn(siteid) ;
long siteid; /* site being disconnected */

FORTRAN Subroutine Declaration:
c ! break a remote connection
subroutine _discon(siteid, status)
integer*4 siteid ! site being connected to
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _disconn({** pbreak a remote connection 1}
siteid : longint; {** gite being disconnected }
var status : longint {** result of the operation }

); external;

DISCONN-2

_DISMNT

Dismount a logical device.

Description:

Removes a device from further consideration by the 0.S.
A device cannot be dismounted if it contains open files.

After the device is dismounted, if the device driver is

no longer needed (no other similar devices are mounted),
the device driver is discarded and the space it occupied
is returned to the system dynamic memory pool.

The process dismounting a user device must have either delete
privilege to the device, or bypass privilege.

Related Privileges:

None

bypass

Parameters:

dname

status

Diagnostics:

Allows dismounting of devices for which the process
has delete privilege
Allows dismounting of any device

Address of null terminated string containing the name
of the device to be dismounted. This string will be
translated automatically by the MCS into its logical
equivalent. This string may contain up to 93
significant characters followed by a null.

If this string contains a file designation, the
devicename portion of the file designation is used for
this parameter.

Address of a long word to receive the result of

the operation.

errinsufpriv (1) The process lacks the privileges required to

perform the operation.

errinvdevnam (130) The specified devicename is syntactically

incorrect.

errundevnam (131) The MCS does not recognize the devicename.

Is the device mounted?

errnodelpriv (146) The process does not have Delete Privilege

for the file.

errfilesopen (160) The device cannot be dismounted because files

are still open on it.

errdiffbtblk (168) The boot block has changed since the device

was mounted.

DISMNT-1

Dictionary of MCS System Calls
_dismnt

See Also:

_flush - Flush I/0 buffers to the device
_getdnam—- Get device name
_mount = Mount a logical device

Assembler Calling Sequence:

push dname saddress - device name
push status s;address - result of the operation
jsr _dismnt ;dismount a logical device

C function declaration:

/* dismount a logical device */
long /* returns result of the operation */

_dismnt (dname)
char dname[94]; /* device name */

Fortran Subroutine Declaration:

c ! dismount a logical device
subroutine dismnt(dname, status)
character*94 dname ! device name
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _dismnt({** dismount a logical device}
dname : string[93]; {** device name}
var status : longint {** result of the operation}

); external;

DISMNT=-2

DUPLUN
Duplicate a logical unit number of a file.

Description:

Given a valid logical unit number (lun), duplicate it. That is, make
the file accessible via a new lun. Both the original and the new lun
share the same characteristics and position in the file.

Related Privileges:

None.
Parameters:
lun - Logical unit number to duplicate.
newlun - The new duplicate logical unit number.
status - Address of a long word to receive the result of
the operation.
Diagnostics:

errmomemavail (7) All available memory has been allocated.
errinvlfn (132) The logical unit number does not correspond
to an open file.

See Also:

_Create - Create a file
_open - Open a file

Assembler Calling Sequence:

push lun ;value - logical unit number

push newlun ;address - new logical unit number
push status ;address - result of the operation
jsr —duplun ;sduplicate an existing lun

C Function Declaration:

/* duplicate an existing lun */

long /* returns result of the operation */
_duplun (lun, newlun)

long lun; /* logical unit number */

long *newlun; /* new logical unit number */

DUPLUN-1

Dictionary of WMCS System Calls
—duplun

FORTRAN Subroutine Declaration:

Cc

! duplicate an existing lun

subroutine _duplun(lun, newlun, status)

integer*4 lun

integer*4 newlun

integer*4 status
Pascal Procedure Declaration:

procedure _duplun(

lun : longint;
var newlun : longint;
var status : longint

):; external;

! logical unit number
! new logical unit number
! result of the operation

{** duplicate an existing lun}
{** Jogical unit number}

{** new logical unit number}
{** result of the operation}

DUPLUN-2

erImo

errno - Receive process abort reason.

Description:

Obtain the process abort reason from the process control block
(pcb) for any process in the system.

This call is most useful if called from an exit handler. With
this svc a process can obtain the reason it entered its exit
handler, i.e. the reason it is being terminated.

The value will be zero if the process has not temminated yet.

Related Privileges:

none

group

world

Parameters:

pid
reason
status

Diagnostics:

- Allows process to obtain the abort reason for any process

with the same owner id and group id (uic) as the calling
process.

- Allows process to obtain the abort reason for any process

with the same group id as the calling process.
Allows process to obtain the abort reason for any process
in the system.

- Process ID of the process whose abort reason is to be

obtained. 0 refers to the calling process, -1 refers
to the parent of the calling process.

Address of a long word to receive the reason the given
process teminated. This value will be zero if the
process has not teminated yet.

- Address of a long word to receive the result of

the operation.

errinsufpriv (1) The process lacks the privileges required to

perform the operation.

errpresnotfnd (2) The specified process is not in the system

See Also:

process table.

_setexit - Define exit handler.

Assembler Calling Sequence:

ERRNO-1

Dictionary of WMCS System Calls
ermo

push pid ;value - process id

push reason ;address - receives abort reason
push status ;address - result of the operation.
jsr _ermo ' ;receive process abort reason

C function declaration:

/* receive process abort reason

long /* returns result of the operation */
—ermo(pid, reason)

long pid; /* process id */

long *reason; /* receives abort reason */

Fortran Subroutine Declaration:

c ! receive process abort reason
subroutine ermo(pid, reason, status)
integer*4 pid ! process id
integer*4 reason ! receives abort reason
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure errno({** receive process abort reason}
pid : longint; {** process id} .
var reason : longint; {** receives abort reason}
var status : longint {** result of the operation}
; external;

ERRNO-2

_EXTTRTN
Define a returnable exit handler.

Description:

The user may define an exit handler to be executed when the process
is deleted. An exit handler can be used as a cleanup and restore
routine or as a mechanism for "catching” otherwise fatal errors. Use
of this SVC also allows a process to return to the point from which
the process was exited instead of merely altering the path to final
exit. The return feature allows processes to use the exit handler as
a software interrupt routine. Other processes send the interrupt
using the _exproc system call and mutually recognized abort codes.

Return code values from -65535 to -4096 are for users to define as
they wish. Values from -4095 to +4095 are reserved for WMCS. Values
from +4096 to +65535 are also for users to define. The abort code can
be determined using the _errno system call. Exit routines cannot have
any call arguments.

The exit handler for a process is executed when a process exits
regardless of the cause or circumstances of the exit. The exit
handler is executed in the same processor mode (user or supervisor
mode) as the mode from which the exit handler was defined.

When control is passed to the exit handler the OS notes that the
process is executing its exit handler. If a fatal process error
occurs while the process is executing its exit handler, the process
will be deleted without passing through the exit handler again. If
the process wants an exit handler to be called again as the process
exits, it must define a new exit handler while it is executing its
exit handler. Since no further abort conditions will be honored
until the next time the process is scheduled, a carefully written
exit handler can determine the reason for being transferred to the
exit handler and be able to define a new one if necessary.

To terminate the process normally once the exit handler has been
called, issue a call to _exproc from within the exit handler.

When a returnable exit handler is called, the registers contain the
context of the process at the point it was interrupted. The top of
the stack contains a return address to a piece of runtime code which
will execute an RIR or RTE instruction upon return from the exit
handler. The actual return address and status register of the
interrupted process are stored at 6 and 4 bytes respectively from the
top of the stack. Because an exithandler is capable of being called

EXTTRIN-1

Dictionary of WMCS System Calls
—exitrtn

asynchronously in relation to the main process, changing global
variables from within an exit handler may cause seemingly mysterious
results when control is returned to the main body of a process which
uses those same variables.

Related Privileges:
None.

Parameters:

adr - Address of the first executable instruction of the
exit handler to be called upon process exit.

Diagnostics:
None.
See Also:
—errno - Receive process abort reason
_exproc - Terminate the specified process
_setexit - Define an exit handler
Assembler Calling Sequence:

push adr sexit handler address
jsr _exitrtn ;define a returnable exit handler

C Function Declaration:

/* define a returnable exit handler */
void /* no status is returned */
_exitrtn (adr)
long adr; /* exit handler address */

FORTRAN Subroutine Declaration:
c ! define a returnable exit handler
subroutine _exitrt(adr)
external adr ! name of exit hander process

Pascal Procedure Declaration:

procedure _exitrtn({** define a returnable exit handler}
adr ¢ longint {** exit handler address}
); external;

EXTTRIN-2

EXPROC

Terminate the specified process.

Description:

The specified process is terminated, returning a 32-bit return code
to the parent of the terminated process. The return code is received
in the ccode parameter of the _crproc system call.

Return code values from -65535 to -4096 are for users to define as
they wish. Values from -4095 to +4095 are reserved for WMCS. Values
from +4096 to +65535 are also for users to define.

If the terminated process has an exit handler defined, it can request
the "result" parameter using the _errno system call.

Related Privileges:

none - Allows termination of any process with the same
owner id and group id (uic) as the calling process
group - Allows termination of any process with the same
group id as the calling process
world - Allows termination of any process in the system
Parameters:
pid - The process id (pid) of the process to be terminated

A process id of 0 represents the current process. A
process id of -1 represents the parent of the current

process.

result - 32 bit result returned to the parent of the terminated
process.

status - Address of a long word to receive the result of

the operation.
Diagnostics:
errinsufpriv (1) The process lacks the privileges required to
perform the operation.

errprcsnotfnd (2) The specified process is not in the system
process table.

EXPROC-1

Dictionary of WMCS System Calls
_exproc

See Also:

—crprcs - Simplified create process
_crproc - Create a new process

—exitrtn - Define a returnable exit handler
_setexit - Define exit handler

Assembler Calling Sequence:

push pid ;value - process id

push result ;value - return code

push status ;address - result of the operation
jsr _exproc ;terminate the specified process

C Function Declaration:

/* terminate the specified process */

long /* returns result of the operation */
_exproc (pid, result)

long pid; /* process id */

long result; /* return code */

FORTRAN Subroutine Declaration:

c ! terminate the specified process
subroutine _exproc(pid, result, status)
integer*4 pid ! process id

integer*4 result ! return code
integer*4 status | result of the operation

Pascal Procedure Declaration:

procedure _exproc({** terminate the specified process}
pid ¢ longint; {** process id}
result : longint; {** return code}
var status : longint {** result of the operation}

); external;

EXPROC-2

_FLUSH

Flush I/0 buffers to the device.

Description:

Write all of the modified device cache buffers and modified
file control blocks (fcb’s) to the device, making the file
system on the device current.

Requires that the process have write privilege to the device
being flushed.

Related Privileges:

None

bypass

operator-

Parameters:

dname

status

Diagnostics:

Allows a process with write privilege to the device
to flush the buffers.

Allows a process to flush the buffers independent
of the file protection.

Allows a process to flush the buffers independent
of the file protection.

Address of a null terminated string containing the

name of the device to be flushed. This string is
translated automatically by the MCS into its logical
equivalent. This string may contain up to 93

significant characters followed by a null.

If this string contains a file designation, the devicename
portion of the file designation is used for this parameter.
Address of a long word to receive the result of

the operation.

errinvdevnam (130) The specified devicename is syntactically

incorrect.

errundevnam (131) The MCS does not recognize the devicename.

Is the device mounted?

errnowritepriv (145) The process does not have Write Privilege

for the file.

errinvcloper (173) The operation is inappropriate for the

See Also:

_close

device class.

Close a file

_dismnt - Dismount a logical device
_getdnam— Get device name

- Write to an open file

_yrite

FLUSH-1

Dictionary of MCS System Calls
_flush

Assembler Calling Sequence:

push dname
push status
jsr _flush

C function declaration:

long
_flush (dname)
char dname[94];
Fortran Subroutine Declaration:

c

;address - device name
;address = result of the operation
;flush I/0 buffers to the device

/* £lush I/0 buffers to the device */
/* returns result of the operation */

/* device name */

! flush I/0 buffers to the device

subroutine flush(dname, status)

character*94 dname
integer*4 status

Pascal Procedure Declaration:

procedure _flush(
dname : string{93];
var status : longint
); extermal;

FLUSH=-2

! device name
! result of the operation

{** flush I/0 buffers to the device}

{** device name}
{** result of the operation}

_FRDWAIT
Wait for fast read to complete.
Description:

Given a valid logical unit number, wait for any
asynchronous read operations to complete. Any errors

pending from previous asynchronous read operations are
reported in the status of this system call.

If there was not a previous asynchronous read, this
system call returns successfully.

This call is only implemented on disk class devices.
Related Privileges:
None.

Parameters:

lun - The logical unit number of the open file
on which the fast read was initiated.
status - The address of a long word to receive the result of

the operation.
Diagnostics:

errinvlfn (132) The logical unit number does not correspond
to an open file.

errinvcloper (173) The device class is inappropriate for the
operation.
Device integrity errors.

See Also:
_close - Close a file
_create - Create a file
_open - Open a file
_read - Read from an open file

Assembler Calling Sequence:

push lun ;value - logical unit number
push status saddress - result of the operation
jsr frdwait ;jwalt for fast read to complete

C Function Declaration:

/* wait for fast read to complete */

FRDWAIT-1

Dictionary of MCS System Calls
_frdwait

long /* returns result of the operation */
_frdwait (lun)
long 1lun; /* logical unit number */

Fortran Subroutine Declaration:

c ! wait for fast read to complete
subroutine frdwai(lun, status)
integer*4 lun ! logical unit number
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _frdwait({** wait for fast read to complete}
lun : longint; {** logical unit number}
var status : longint {** result of the operation}

); external;

FRDWAIT-2

_ FREMEM
Deallocate a page of memory.
Description:

This supervisor call allows a process to remove a four kilobyte

page of logical memory from its pcb. Unless the page 1is shared
by another process, it 1s returned to the system memory pool.

A process can deallocate any page which has been allocated
to it and which is owned by the calling process.

If the process has writephys privilege, it can deallocate any
page of memory which has been allocated to it, independent
of whether the page is owned by the calling process.

Related Privileges:

none - Allows the process to deallocate any page
which is allocated to it and which it owns.

writephys = Allows the process to deallocate any page
which is allocated to it.

Parameters:

adr - Logical address in the 2 megabyte logical address
space of the page to be deallocated. This address
must be on a 4K byte boundary.

status - Address of a long word to receive the result of
the operation.

Diagnostics:

errinvadr (4) The logical address, for the memory requested,
is invalid.

errnonowned (6) The process tried to affect a page in memory it
did not own.

errmemdeall (9) The process attempted to release memory that does

not exist.
See Also:

_allmem - Allocate dynamic memory
_protmem- Change memory page protection

Assembler Calling Sequence:

push adr ;value - address of page
push status ;address - result of the ouperation
jsr _fremem ;deallocate a page of memory

FREMEM-1

Dictionary of MCS System Calls
_fremem

C function declaration:

/* deallocate a page of memory */
long /* returns result of the operation */

_fremem(adr)
long adr; /* address of page */

Fortran Subroutine Declaration:

c ! deallocate a page of memory
subroutine fremem(adr, status)
integer*4 adr ! address of page
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _fremem({** deallocate a page of memory}
adr ¢ longint; {** address of page}
var status : longint {*#* result of the operation}

); external;

FREMEM-2

_GASSIGN
Assign a global logical name.
Description:

Creates, deletes or replaces a logical name in the global logical
name translation table of the current system or another system.

A system’s global logical name table contains logical name

equivalences that apply to every process in the system. A logical
name in the global logical name table does not have to be

duplicated in the logical name table of each forked process.

Global logical names remain until they are explicitly removed,
independent of any process on the system.

Abbreviations are allowed in logical names. An asterisk (*)

in the logical name 1is a marker that indicates the minimum

string that is a recognized abbreviation of the logical name.
Abbreviations are recognized only during logical name translation
(see _trans). For example, if the logical name is "PR*INT',

a translation of any of the strings "PR', "PRI", "PRIN', or " PRINT'
will return the equivalence.

The values of the parameters lname and equiv determine whether

an entry in the logical name table of the specified process is
created, removed, or replaced.

To create a new logical name, the lname parameter must contain
a logical name which does not match any existing logical names
in the global logical name table of the specified system and
the equiv parameter must not be null.

To remove a logical name assignment, the lname parameter must

contain a logical name which matches a logical name found in
the global logical name table of the specified system and the
equiv parameter must be null.

To replace the equivalent string associated with a logical name
the lname parameter must contain a logical name which matches

an existing logical name found in the global logical name table
of the specified system and the equiv parameter must not be null.

If the lname parameter contains a logical name which does
not match any existing name found in the global logical name

table and the equiv parameter is null, or if the lname parameter
is null, this system call has no effect.

Related Privileges:

GASSIGN-1

Dictionary of MCS System Calls
_gassign

none - Does not allow the process to affect any names
in the global logical name table.

operator - Allows creation, replacement or deletion of any
logical name in the global logical name table.

Parameters:

lname - Address of null terminated string containing the

logical name to be added, replaced or deleted from
the logical name table of the specified system.
This string may contain up to 93 characters plus a null.
Address of null terminated string containing the
equivalent to which the logical name translates.
It this parameter contains a null string, the
logical name represented in parameter lname is
removed from the logical name table. This string
may contain up to 93 characters plus a null.
siteid - A long word containing the site id of the system
for which this logical name will be in effect.
O=the system on which the calling process is
executing.
status - Address of a long word to receive the result of
the operatiom.

equiv

Diagnostics:

errinsufpriv (1) The process lacks the privileges required to
perform the operation.
errprcsnotfnd (2) The specified process is not in the system

process table.
errnomemavail (7) All available memory has been allocated.

errinvsiteid (8) The specified site id does not exist.
See Also:

_assign - Assign a logical name

_getglb - Retreive a global logical name

_getlog - Retrieve a logical name
_trans =~ Translate a logical name

Assembler Calling Sequence:

push lname ;address - logical name

push equiv ;address - translation string

push siteid ;value - system id

push status ;address - result of the operation
jsr _gassign ;assign a global logical name

C function declaration:

/* assign a global logical name */

GASSIGN-2

Dictionary of MCS System Calls

_gassign
long /* returns result of the operation */
_gassign (lname, equiv, siteid)

char lname[94]; /* logical name */
char equiv[94]; /* translation string */
long siteid; /* system id */
Fortran Subroutine Declaration:
¢ ! assign a global logical name
subroutine gassig(lname, equiv, siteid, status)
character*94 lname ! logical name
character*94 equiv ' translation string
integer*4 siteid ! system id
integer*4 status ! result of the operation
Pascal Procedure Declaration:
procedure _gassign({** assign a global logical name}
lname : string[93]; {** logical name}
equiv : string[93]; {** translation string}
siteid : longint; {** gystem id}
var status : longint {*#* result of the operation}

); external;

GASSIGN-3

_GENGY

Get PID of ancestor process.

Description:

Return the process id (pid) of a specified ancestor
process of the given process.

Related Privileges:
None.
Parameters:

refpid - The process id (pid) of the process which will
serve as the reference point from which ancestors
or children PID’s will be received. If the refpid
is zero (0), it corresponds to the current process.
A refpid of SFFFFFFFF (-1) corresponds to the parent
of the current process.

rel - Relative relationship with specified process.
«se, =2=grandparent, =-l=parent, O=current process,
If the requested relationship goes beyond the actual
number of ancestors an error is returned. Specify a
relationship of one (1) to get the pid of the oldest
ancestor.

pid - Address of a long word to receive the process id

of the relative.
status = Address of a long word to receive the result of
the operation.

Diagnostics:

errprcsnotfnd (2) The specified process is not in the system
process table.

See Also:

_getpcb - Get process control block
_getpild - Get process id (pid) from name
_getpnam~ Get process name from pid

Assembler Calling Sequence:

push refpid ;value - reference point pid

push rel ;value - relative relationship
push pid ;address - process id

. push status saddress - result of the operation
jsr _gengy ;get pid of ancestor process

GENGY-1

Dictionary of MCS System Calls
_gengy

C function declaration:

/* get pid of ancestor process */

long /* returns result of the operation */
_gengy(refpid, rel, pid)

long refpid; /* reference point pid */

long rel; /* relative relationship */

long *pid; /* process id */

Fortran Subroutine Declaration:

c ! get pid of ancestor process
subroutine gengy(refpid, rel, pid, status)
integer*4 refpid ! reference point pid

integer*4 rel ! relative relationship
integer*4 pid ! process 1id
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _gengy({** get pid of ancestor process}
refpid : longint; {** reference point pid}
rel : longint; {** relative relationship}
var pid : longint; {** process id}
var status : longint {** result of the operation}

); external;

GENGY-2

GETALC

getalc

getalc - Get names of allocated devices
Description:
Given a PID, return the names of all devices allocated to that process.
Related Privileges:

none - Allows the caller to determine which if any devices are
allocated to processes with the same uic as the itself.

group - Allows the caller to determine which if any devices are
allocated to processes in the same group as the itself.
world - Allows the caller to determine which if any devices are
allocated to any process.
Parameters:
pid - Process IDentification number of the process
which is to be examined for allocated devices.
devlst ~-This parameter is the address of a string buffer
in which will be placed the names of the devices
allocated to the specified PID. All names are
separated by commas. The string is null terminated.
maxlen - This parameter contains the maximum length of the
devlst string. :
status - Address of a long word to receive the result of
the operation.
Diagnostics:

errinsufpriv (1) The process lacks the privileges required
to perform the operation.

errprcsnotfnd (2) The specified process is not in the system
process table.

See Also:
_allec - Allocate an availble device.
_dealloc - Deallocate an allocated device.
_getrel - Get names of rotor list elements.
_getrtr - Get rotor list names.
_setrtr = Assign device names to a rotor list.

Assembler Calling Sequence:

GETALC-1

Dictionary of WMCS System Calls
getalc

push pid

push devlst
push maxlen
push status
jsr —getalc

C Function Declaration:

long

—getalc(pid,devlst,maxlen) ;

long pid;

char devlst [1024];

long maxlen;

FORTRAN Subroutine Declaration:

o]

value - process id

address - string where devices return
value - max length of devlst

address - status

get names of allocated devices

Ne wo N “e o

/* get names of allocated devices */
/* returns result of the operation */

/* process id */

/* string where devices return */
/* max length of devlst */

! get names of allocated devices

subroutine getalc(pid,devlst,maxlen,status)

integer*4 pid

character*1024 devlst
integer*4 maxlen
integer*4 status

PASCAL Procedure Declaration:

procedure getalc(

pid : longint;

var devlst : string[1024];
maxlen : longint;

var status : longint

); extermnal;

GETALC-2

! process id

! string where devices return
! max length of alcdev

! result of the operation

{** get names of allocated devices}
{** process id}

{** string where devices return }
{** max length of devlst }

{** result of the operation}

_GETATTR

Get P(B attribute bits.

Description:

Call this routine to get the process attribute bits in the PGB for a
particular process. To modify the process attributes of a process,
use this routine first to get the current ones and set or reset the
appropriate bits, then call _SETATTR with the modified value. The
pcbattrforceset bit is always returned set.

Related Privileges:

None.
Parameters:

pid

attr

- A long word containing the process ID of the process

whose attributes are to be changed. 0 represents
the current process; -1 (SFFFFFFFF) represents the
parent of the current process.

Address of a long word to receive the attributes.

Process attribute bit definitions. Note that these
offsets are defined for being in the high word of a
longword. Because it is only a word in the PGB, if you
access the PB directly you will have to shift these
numbers right by 16.

Bit Name Bit Number Description
pcbattrdesencrypt 16 If set, do network
encryption with DES
algorithm.
pcbattrfastencrypt 17 If set, do network
encryption with fast
algorithm.
pcbattruserl - 23 If set, user
attribute bit 1.
pcbattruser2 24 If set, user
attribute bit 2.
pcbattruser3 25 If set, user

attribute bit 3.

Dictionary of WMCS System Calls
_getattr

pcbattruser4

pcbattrnowatchdog 27

pcbattrswappable 28

pcbattrprezeromem 29

pcbattrpostz

eromem 30

pcbattrforceset 31

If set, user
attribute bit 4.

If set, cannot be
killed by WATCHDOG
utility.

If set, the OS will
not swap this process.
If set, pages of
memory are zeroed as
they are allocated.
If set, pages of
memory are zeroed as
they are released.

If set, then modify
the bits. Must be set
to cause other bits
to take effect.

status - Address of a long word to receive the result of
the operation.

Diagnostics:

errprcsnotfnd (2) The specified process is not in the system
process table.

See Also:

_setattr - Set PCB attribute bits

Assembler Calling Sequence:

push pid
push attr
push status
jsr —getattr

C Function Declaration:

long

_getattr (pid, attr)
long pid;
long *attr;

svalue - process id
;address - to store attribute bits
saddress - result of the operation
;get the attributes

/* get process attributes */
/* returns result of the operation */

/* process id */
/* returned attributes */

FORTRAN Subroutine Declaration:

(o]

Dictionary of WMCS System Calls
_getattr

! get process attributes

subroutine _getatt(pid, attr, status)

integer*4 pid

integer*4 attr

integer*4 status
Pascal Procedure Declaration:

procedure _getattr (

pid : longint;
var attr : longint;
var status : longint

}: external;

! process id
! returned attributes
! result of the operation

{** get process attributes}
{** process id}

{** returned attributes}

{** result of the operation}

GETDIR

_GETDIR

Get default device and directory.
Description:

Obtain from the 0S the current default device and directory
specification.

Related Privileges:
None.
Parameters:

devdir - Address of a 94 byte buffer to receive the default

string. The string returned may be up to 93
significant characters followed by a null character.

Diagnostics:

None.

See Also:

_chdir - Set default device and directory
Assembler Calling Sequence:

push devdir ;address - default string
jsr _getdir ;get default device and directory

C function declaration:

/* get default device and directory */

void /* no result */
_getdir (devdir)

char devdir(94]; /* default string */

Fortran Subroutine Declaration:

c ! get default device and directory

subroutine getdir(devdir)
character*94 devdir ! default string

Pascal Procedure Declaration:
procedure _getdir({** get default device and directory}

var devdir : string[93] {** default string}
); external;

GETDIR-1

GETDNAM

Get devicename.
Description:
The operating system maintains a device table for each mounted
device. Given an index into the array of device tables, this SVC
returns the corresponding devicename and device class.

Use this call to obtain the devicenames of mounted devices.

Related Privileges:

None.
Parameters:
siteid - The site ID of the system whose device table is being
queried. A site ID of zero corresponds to the system
on which the calling process is running.
index - The index of which device is desired. An index of 0
returns the name of the first device.
dname -~ Address of where to store the devicename. The devicename
string will be null terminated. The string must be at
least 32 characters long, allowing for up to 31
significant characters plus a null.
class -~ Address of a long word to receive the device class.
status ~ Address of a long word to receive the result of
the operation.
Diagnostics:
errinvsiteid (8) The specified site ID does not exist.
erridxrange (56) The table ends before the specified occurrence.
See Also:
_dismnt - Dismount a logical device
_flush - Flush I/0 buffers to the device
_getdst - Get device status
_mount =~ Mount a logical device
_setdst - Set device status

GETDNAM-1

Dictionary of WMCS System Calls
_getdnam
Assembler Calling Sequence:

push siteid value - the system ID

push index ; value - sequence number

push dname ; address - receives devicename
push class ; address - receives device class
push status ; address - result of the operation
jsr —getdnam ; get devicename

C Function Declaration:
/* get devicename */

long /* returns result of the operation */
_getdnam(siteid, index, dname, class)

long siteid; /* the system ID */

long index; /* sequence number */

char dname[94] ; /* receives devicename */

long *class; /* receives device class */

FORTRAN Subroutine Declaration:

c ! get devicename
subroutine _getdna(siteid, index, dname, class, status)
integer*4 siteid ! the system ID
integer*4 index ! sequence number
character*94 dname ! receives devicename
integer*4 class ! receives device class
integer*4 status ! result of the operation

Pascal Procedure Declaration:
{** get devicename}
procedure _getdnam(

siteid : longint; {** the system ID}
index : longint; {** sequence number}
var dname : stringl93]; {** receives devicename}
var class : longint; {** receives device class}
var status : longint {** result of operation}
) jexternal ;

GETDNAM-2

_GETDPRT

Get device protection.
Description:

Retrieves the protection mask on a specified device. The

protection mask determines the type of access granted to
classes of users on the device.

Protection can be retrieved on any class of device, independent
of the privileges posessed by the calling process.

Related Privileges:

None.
Parameters:

dname - Address of a null terminated string containing the
name of the device whose protection is sought. This
string is translated automatically by the MCS to its
logical equivalent. This string may contain up to 93
significant characters followed by a null. If this
string contains a file designation, the devicename
portion of the file designation is used for this parameter.
prot - Address of a long word to receive the protection mask.
The least significant 16 bit word of this long word

is divided into 4 nibbles. Each nibble corresponds to
a class of users. The bits within each nibble represent

the type of access that class of user is granted for
the device. 1If the bit is set (1) the access is granted.

From the least to the most significant nibble the
user classes are:

Ownr - The device owner

Grp = Processes with the same group id as the owner
Pub = All other processes in the system

Sys = Processes with system privilege

Sys Pub Grp Ownr
I 1 I | |
| DWRE | DWRE | DWRE | DWRE |

| |
MSB LSB

From the least to the most significant bit within the
nibbles, the access privileges are:

E - Execute access

GETDPRT-1

Dictionary of MCS System Calls
_getdprt

R = Read access
W = Write access
D =~ Delete access

status - Address of a long word to receive the result of
the operationm.

Diagnostics:

errinvdevnam (130) The specified devicename is syntactically
incorrect.

errundevnam (131) The MCS does not recognize the devicename.
Is the device mounted?

errnoreadpriv (144) The process does not have Read Privilege for
the file.

See Also:

_getfprt - Get file protection
_setdprt - Set device protection
_setfprt - Set file protection

Assembler Calling Sequence:

push dname ;address - device name

push prot ;address - protection mask

push status ;address - result of the operation
jsr _getdprt ;get device protection

C Function Declaration:

/* get device protection */

long /* returns result of the operation */
_getdprt(dname, prot)

char dname[94]; /* device name */

long *prot; /* protection mask */

Fortran Subroutine Declaration:

c ! get device protection
subroutine getdpr(dname, prot, status)
character*94 dname ! device name
integer*4 prot ! protection mask
integer*4 status ! result of the operatiom

Pascal Procedure Declaration:

procedure _getdprt({** get device protection}
dname ¢ string[93]; {** device name}
var prot : longint; {** protection mask}

var status longint {** result of the operation}

GETDPRT-2

Dictionary of MCS System Calls
_getdprt

; extermal;

GETDPRT-3

Get device status.
Description:

Given the device name of a currently mounted device, copies the
device table and device status into user specified buffers.

CAUTION: The format of the device table may change with each
release. The current definition is included in each
release in the file /SYSINCL.SYS/DEVIDISP.*. The record
definition is named "devicetable", i.e. in your program
you can declare a variable of type "devicetable."

The device table for a device oontains the information maintained
about the device by the class handler. The device table is divided
into two parts. The first part is device independent, and the second
part is device class dependent. The device independent part is as

follows:
Length
Name (bytes) Description
dtnextlink 4 Pointer to the next device table
dtbackl ink 4 Pointer to the previous device table
dtdevname 8 The user supplied device name
dtclass 2 Contains the device class. Valid options are:

Class Name Value Description

dtclassttyspc 0 Character device (ttyspc)
dtclasstty 1 Character device (tty)
dtclasstapespc 2 Tape device (tapespc)
dtclasstape 3 Tape device (tape)
dtclassdiskspc 4 Disk device (diskspc)
dtclassdisk 5 Disk device (disk)
dtclassnetspc 6 Network dev. (networkspc)
dtclassnet 7 Network device (network)
dtclasspipespc 8 Pipe device (pipespc)
dtclasspipe 9 Pipe device (pipe)
dtclasssyncspc 10 BSC device (syncspc)
dtclasssync 11 BCS device (sync)
dtclassquespc 12 Queue device (quespc)

dtclassque 13 Queue device (que)
dtclassnondevspc 14 Non-dev device(nondevspc)
dtclassnondev 15 Non-dev device (nondev)

GETDST-1

Dictionary of WMCS System Calls

_getdst

dtrefcount

- dtdriveid

dtallocpid

dtsiteid
dtsegnum

dtdefuserid

dtdefgroupid

dtdefprotect

dtclassptr
dtdriverptr
dtflags

dtfcbptr

dtblksz
dtuserid

dtgroupid

N [\S] V) [N

N b

The number of files currently open on the
device

Internal drive ID

The PID of the process that has this device
allocated

The site ID of this device

The mount sequence number of this device. This
will be unique for each device on the machine.
The default userid for this device. This will
be loaded into the DTUSERID variable everytime
the DTREFCOUNT variable goes to zero.

The default group ID for this device. This will
be loaded into the DIGROUPID variable every-
time the DTREFCOUNT variable goes to zero.
The default protection mask for this device.
This will be loaded into the DTPROTECT
variable everytime the DIREFCOUNT variable
goes to zero.

Address of the class handler for this device
Address of the device driver for this device
Device flags. This is a bit encoded word.

Bit Name Bit # Description

dtflfcbflushmode 4 Current flush mode for
disk fcbs

dtflchflushmode 5 Current flush mode for
disk cache

dtflflushing 6 Device is currently
being flushed
Device is write
protected

Tape file is being
created

Tape file is open

dtflwriteprot 7
dtflcreatmode 10

dtflfileopen 11

dtfleot 12 Tape is at physical
end of tape

dtfleof 13 Tape is at logical
end of file

dtflsessionestb 15 A session is currently
establ ished

Address of the file control block of the
first open file on the device. A list
head pointer. (Used for disks only)
Block size for the device

Owner ID portion of the UIC. Corresponds
to the owner of the device.
Group ID portion of the UIC. Corresponds

to the owner of the device.

GETDST-2

dtprotect
dtmntmstime
dtmntlstime

dtidfield
dtidtag

2
$5555

Dictionary of WMCS System Calls
—getdst

The device protection flags. Uses the

same format at the file protection flags.
The most significant 32 bits (year and day)
of the date and time the device was mounted
The least significant 32 bits (hour, minute,
second and tick) of the date and time the
device was mounted

Table identifier flag

Table ID value for this table

For TTY, PIPE, SYNC, and NONDEV class devices, the second part of the
table is defined as follows:

Length
Name (bytes) Description

dttyreadacc 1 The read access count (the number of
times this device has been opened for
read access)

dttyreadlock 1 The read lock count (the number of
times this device has been opened with
read lock)

dttywriteacc 1 The write access count (the number of
times this device has been opened for
write access)

dttywritelock 1 The write lock count (the number of
times this device has been opened with
write lock)

dttywritegh 4 The write queue header

dttyreadgh 4 The read queue header

dttydriveid 2 Contains drive table index

dttyboardid 2 Contains board table index

dttytypeid 2 Contains type ID of board

For TAPE class devices, the second part of the table is defined as

follows:

Length
Name (bytes) Description

dttpreadahead 2 ~ Read ahead flag

dttpfil segno 4 Sequence number of currently open file or next
file to be opened.

dttpcachesz 2 Number of elements in tape cache

GETDST-3

Dictionary of WMCS System Calls

—getdst

dttpcacheadr
dttpskpcache

dttpnextblk

dttpreadpos

For DISK class
follows:

Name
dtdkflags

dtdksecshfcnt
dtdkdefalloc
dtdksecalloc
dtdkchreadmin
dtdkmaxuserch

dtdkszmaxch

dtdkcachecolsz
dtdkcachesze
dtdkchaddr
dtdkbmpos
dtdkfcbbmpos
dtdkfcbptr
dtdkdirptr
dtdkfcbbitptr
dtdkbitptr
dtdkalocsecgh
dtdkal ocfcbgh

Address of cache header

Address of special cache header for
non-buffered commands, i.e., skip, get or set
status, write file mark

Next logical block number in the currently
open file

Actual block number to be read next physically

devices, the second part of the table is defined as

Length

(bytes) Description

2

NN

[N

[N R S 8

Disk class flags. This is a bit encoded word.

Bit Name Bit # Description
dtdkflautoflush O If set do auto
flushing

dtdkflreadahead 1 If set do readahead

dtdkflforcedwrite 2 If set do forced
writes on all writes

The sector shift count

The initial file allocation

The secondary file allocation

Non-modified cache minimum size

Number of cache elements (minus 1) that

can be consumed in a single request

to the 0OS

Size of stack area in bytes used to

hold the addresses of used cache elements

((devcldsmaxcachet2) *4)

The number of columns in the cache

The number of cache sectors

Address of disk cache column table

Bitmap file's next allocation location

Fcbbitmap file's next allocation location

Address of fcb for FCB.SYS

Address of fcb for ROOIDIR.DIR

Address of fcb for FCBBITMAP.SYS

Address of fcb for BITMAP.SYS

Allocate disk queue head

Allocate fcb queue head

GETDST-4

Dictionary of WMCS System Calls
—getdst

For NETWORK class devices, the second part of the table is defined as

follows:

Name

dtnkreadacc
dtnkreadlock
dtnkwriteacc
dtnkwritelock
dtnkflags
dtnkwritegh
dtnkreadgh

dtnkhwrite
dtnkhuninit

For QUEUE class devices,

follows:

Name
dtqucbptr

dtqufhptr
dtquwriteoper

Length

(bytes) Description

1

L

Length

The read access count (the number of

times this device has been opened for

read access)

The read lock count (the number of

times this device has been opened with

read lock)

The write access count (the number of

times this device has been opened for

write access)

The write lock count (the number of

times this device has been opened with

write lock)

Network class flags. This is a bit encoded

word.

Bit Name Bit # Description

dtnkflvcdriver 0 If set, this is a
virtual circuit driver

The write access queue header

The read access queue header

Pointer to network layer write routine

Pointer to network layer uninit routine

the second part of the table is defined as

(bytes) Description

4

Contains the address of control block page
which is the communication block between the
QUREUE class handler and the queue manager
process

Contains the address of the queue control
file header page

Contains how many write operations have

been performed on the QUEUE

GETDST-5

Dictionary of WMCS System Calls

_getdst

dtquflags 2 QUEUE class flags. Bit encoded word.
Bit Name Bit # Description
dtqufldefcrp 0 A default create

dtquflqmres

dtquflqmnodie

dtquflclosed

dtquflhal ted

dtquflclean

process record is
defined. This means a
user can redirect 1/0
directly to the QUEUE.
The queue manager
process is to

remain resident at
all times

In critical code and
the queue manager
process cannot die
The queue is marked
as closed. No new
entries may be queued.
The queue is marked as
halted. No pending
entries will be
executed.

There are no entries
in the queue control
files

The device status is a device class dependent 128 byte table. It is

maintained by the device driver for each device.

NOTE: The device status table may change with each release of
the operating system. The current definition is included

in each release in the file

named: /SYSINCL.SYS/

DSTATDISP.*. The name of the record included in that file
is "devicestatus," i.e. in your program you can declare a
variable whose type is "devicestatus."

GETDST-6

Dictionary of WMCS System Calls
—getdst

The device status table is divided into two parts. The first half is
device independent and is composed of the following fields:

Length

Name (bytes) Description

dsclassid 2 The device class. Valid classes are:
(Note that these names are defined in
the devtdisp.* files)
Class Name Value Description
dtclassttyspc 0 Character device (ttyspc)
dtclasstty 1 Character device (tty)
dtclasstapespc 2 Tape device (tapespc)
dtclasstape 3 Tape device (tape)
dtclassdiskspc 4 Disk device (diskspc)
dtclassdisk 5 Disk device (disk)
dtclassnetspc 6 Network dev. (networkspc)
dtclassnet 7 Network device (network)
dtclasspipespc 8 Pipe device (pipespc)
dtclasspipe 9 Pipe device (pipe)
dtclasssyncspc 10 BSC device (syncspc)
dtclasssync 11 BCS device (sync)
dtclassquespc 12 Queue device (quespc)
dtclassque 13 Queue device (que)
dtclassnondevspc 14 Non—dev device(nondevspc)
dtclassnondev 15 Non-dev device (nondev)

dsdriverid 2 The unique id number for this device driver

dsblksz 2 The block size of the device (e.g. sector
size)

dsharderr 2 The hard error count for the device

dssofterr 2 The soft error count for the device

dsreadoper 4 The number of read operations on this device

dswriteoper 4 The number of write operations on this device

dsmaxnumdev 2 Maximum # of devices this driver can handle

dscurnumdev 2 Number of devices currently mounted using this
device driver

dsnumtoretry - 2 Number of times to retry before reporting a
hard error

dserrorreason 4 This contains the hardware error code for the
last error received on this device

dsreserved 32 Reserved

dsnexttableptr 4 Address of next device status table

GETDST-7

Dictionary of WMCS System Calls

_getdst

The second half of the device status table is device class dependent
For TAPE class devices the second part is defined as follows:

Length
Name (bytes) Description
dstpstatus 2 Tape device status. A bit encoded word.
Bit name bit # Description
dstpready 0 Set if device ready
dstpintpend 1 Set if interrupt
pending
dstprewinding 2 Set if tape rewinding
dstpbotdetect 3 Set if device is at
physical BOT
dstpeotdetect 4 Set if device is at
physical EOT
dstpwriteprot 5 Set if tape is write
protected
dstpflagsl 2 Tape status information. A bit encoded word.
Bit name bit # Description
dstpdoraw 0 0=Read after write
disabled
=Read after write
enabled
dstperrintenb 1 O=Error interrupts are
enabled
1=Error interrupts are
disabled
dstpspeed 1 Tape speed. Values are:
0 - Reserved
dstpspeedl2ips 1 - 12 ips
dstpspeed25ips 2 - 25 ips
dstpspeed30ips 3 - 30 ips
dstpspeed50ips 4 - 50 ips
dstpspeed90ips 5 - 90 ips
dstpspeedl00ips 6 - 100 ips
dstpspeedl25ips 7 - 125 ips
dstpdensity 1 Tape density. Values are:

GETDST-8

0 - Reserved
dstpdens800bpi 1 - 800 bpi
dstpdensl1600bpi 2 - 1600 bpi
dstpdens3200bpi 3 - 3200 bpi
dstpdens6250bpi 4 - 6250 bpi
dstpdens6400bpi 5 - 6400 bpi

dstpiopbent 2
dstpcachesz 2
dstpreserved 46
dstpuserfield 8

Dictionary of WMCS System Calls
_getdst

Number of IOPBs allocated to device

Number of cache elements allocated to device
Reserved

User defined status

For DISK class devices the second half of the device status table is

defined as follows:

Length
Name (bytes) Description
dsdkintfac 2 Disk interleave factor
dsdkiopbcnt 2 Number of IOPB's allocated to the drive
dsdknumbsect 4 The number of sectors on the volume
dsdksectrack 2 The number of sectors on a track
dsdkheads 2 The number of heads on the device
dsdkcylinders 2 The number of cylinders on the volume
dsdkflagsl 2 Disk status information. A bit encoded word.
Bit Name Bit # Description
dsdkdensityl 0 Device density
dsdkdensity2 1
dsdkdenssignle 00 - Single density
dsdkdensdouble 01 - Double density
dsdkdensquad 10 - Quad density
dsdkdensreserve 11 - Reserved
dsdkdoraw 3 If set, do Read after
write verify
dsdkwriteprot 4 If set, Device write
protected
dsdkseekdir 15 Current seek direction
dsdkseekincr 0 - Increasing
cylinder numbers
dsdkseekdecr $8000 - Decreasing
cylinder numbers
dsdkcurcyl 2 Current cylinder position
dsdkcachesz 2 Number of sectors in the disk cache
dsdkentryname 16 A null terminated string containg the name of
this type of drive
dsdkreserved 20 Reserved
dsdkuserfield User Defined status

GETDST-9

Dictionary of WMCS System Calls
_getdst

For TTIY class devices the second half of the device - status table is
defined as follows:

Length
Name (bytes) Description
dstymoderegl 1 Uart mode register 1. This byte is bit
encoded as follows:
Bit Name Bit # Description
dstymrlbaudfacl 0 Baud factor
dstymrlbaudfac2 1
dstymrlsyncl 00 - sync 1 x clock
rate
dstymrlasyncl 01 - async 1 x clock
rate
dstymrlasyncl6 10 - async 16 x clock
rate
dstymrlasync64 11 - async 64 x clock
rate
dstymrlcharlenl 2 Character length
dstymrlcharlen2 3 definition
dstymrldwSbit 00 - 5 data bits
dstymrldwébit 01 - 6 data bits
dstymrldw7bit 10 - 7 data bits
dstymrldw8bit 11 - 8 data bits
dstymrlparityctrl 4 Parity control
dstymrlpardis 0 - disable parity
dstymrlparenb 1 - enable parity
dstymrlparitytype 5 Parity type
dstymrlparodd 0 - odd parity
dstymrlparevn 1 - even parity
dstymrlstopbitsl 6 Async mode # of stop
bits
dstymrlstopbits2 7 Async mode # of stop
bits
dstymrlbinv 00 - invalid
dstymrlsbl 01 - 1 stop bit
dstymrlsbl5 10 - 1.5 stop bits
dstymrlsb2 11 - 2 stop bits
dstymrltransctrl 6 Sync mode transparent
dstymrlnormal 0 - normal
dstymrltrans 1 - transparent

dstymrlnumsync 7 Sync mode # of syncs
dstymrlsyncdouble 0 - double sync
dstymrlsyncsingle 1 - single sync

GETDST-10

dstymodereg2

dstycmdreg

1

Dictionary of WMCS System Calls

Uart mode register 2.
encoded as follows:
Bit Name - Bit #
dstymr2baudrtl 0
dstymr2baudrt2 1
dstymr2baudrt3 2
dstymr2baudrt4 3
dstymr2baud50
dstymr2baud75
dstymr2baudl10
dstymr2baudl345
dstymr2baudl50
dstymr2baud300
dstymr2baud600
dstymr2baudl1200
dstymr2baudl800
dstymr2baud2000
dstymr2baud2400
dstymr2baud3600
dstymr2baud4800
dstymr2baud7200
dstymr2baud9600
dstymr2baudl19200
dstymr2recvclock 4
dstymr2recextclk
dstymr2recintclk
dstymr2transclock 5
dstymr2trnextclk
dstymr2trnintclk
6-7
Uart command register.
Bit Name Bit #
dstycrtransctrl O
dstycrtcdis

dstycrtcenb

dstycrdtr 1
dstycrdtrhigh
dstycrdtrlow

dstycrrecvertl 2
dstycrrcdis
dstycrrcenb

dstycrforcebrk 3
dstycrbrknorm
dstycrbrkforce

GETDST-11

—getdst

This byte is bit

Description

The baud rate

Baud rate continued
Baud rate continued
Baud rate continued
0000 - 50 baud

0001 - 75 baud
0010 - 110 baud
0011 - 134.5 baud
0100 - 150 baud
0101 - 300 baud
0110 - 600 baud
0111 - 1200 baud
1000 - 1800 baud
1001 - 2000 baud
1010 - 2400 baud
1011 - 3600 baud
1100 - 4800 baud
1101 - 7200 baud

1110 - 9600 baud
1111 - 19200 baud
Receiver clock

0 - External clock
1 - Internal clock
Transmitter clock

0 - External clock
1 - Internal clock
Reserved

Bit encoded.

Description

Transmitter control

0 - Disable
transmitter

1l - Enable
transmitter

Data terminal ready

0 - DIR high

1 -DIR low

Receiver control

0 - Disable receiver
1 - Enable receiver
Async force break

0 - normal

1 - force break

Dictionary of WMCS System Calls
_getdst

dstycrsenddle 3 Sync send DLE

dstycrdlenorm 0 - normal
dstycrdlesend 1 - send DLE
dstycrreseterror 4 Reset error
dstycrnoreset 0 - normal
dstycrreseterr 1 - reset error
dstycrrts 5 Request to send
dstycrrtshigh 0 - RIS high
dstycrrtslow 1l - RIS 1low
dstycropermodel 6 Operating mode
dstycropermode2 7 Operating mode
continued
dstycromnormal 00 - Normal operation
dstycramautocecho 01 - Async autoecho
dstycromstripdle 01 - Sync strip DLE
dstycromlocallp 10 - Local loop back
dstycramremotelp 11 - Remote loop back
dstytermtype 1 Terminal type definition. This byte contains
values for each type of terminal.
Value Name Value Description

0-15 User defined types
16-246 Reserved

dstywit 247 WIT terminal
dstyhydra 248 Hydra terminal
dstyvt100 250 VT-100 terminal
dstyvt52 251 VI-52 terminal
dstyt7000 252 T-7000 terminal
dstymg8000 253 MG-8000 terminal

dstytvid9lac 254 TVI 912 C terminal
dstyvisual200 255 - Visual 200 terminal

dstystatreg 1 Uart status register. Bit encoded.
Bit Name Bit # Description
dstysrtransrdy 0 Transmitter buffer
ready

dstysrtranfull 0 - Transmitter full
dstysrtranempty 1 - Transmitter empty

dstysrrecvrdy 1 Receiver buffer ready
dstysrrecvempty 0 - Receiver empty
dstysrrecvfull 1 - Receiver full

dstysrdschg 2 DSR or DCD change
dstysrdsrnormal 0 - Normal
dstysrdsrchange 1 - DSR or DCD change

GETDST-12

dstypacketterm

dstyflagsl

1

Dictionary of WMCS System Calls

dstysrparityerr 3
dstysrparnormal
dstysrparerror

dstysroverrunerr 4
dstysrovernormal
dstysrovererror

dstysrframingerr 5
dstysrframnormal
dstysrframerror

dstysrdcddetect 6
dstysrdcdhigh
dstysrdcdlow

dstysrdsrdetect 7
dstysrdsrhigh
dstysrdsrlow

—getdst

Parity error

0 - Normal

1 - Async parity
error. Sync
parity error
or DLE received

Overrun error

0 - Normal

1 - Overrun error

Framing error

0 - Normal

1 - Async framing
error. Sync SYN

char
DCD Detect
0 - DCD high
1l -DCOD low
DSR Detect
0 - DSR high
1l -DSR low

Holds code for packet termination characters

Value Name Value

Description

dstyptnoterm 0

dstyptallterm 1
dstyptcrterm 2

Do not terminate
packet on any control
characters

Terminate packets on
all control characters
Terminate packet on
carriage return <CR>
character

Terminal status information. Bit encoded.

Bit Name bit #
dstycontrolc 0

dstyxonxoff
dstycontrolx

dstycontrolo
dstytabmap

1
2
dstycontrolz 3
4
5
dstymasksbit 6

GETDST-13

Description
Control C enable
(0 = enabled)
xon xoff enable
(0 = enabled)
Control X enable
(0 = enabled)
Control Z enable
(0 = enabled)
Control O enable
(0 = enabled)
Tab map enable
(1 = enabled)
Mask 8th bit enable
(0 = enabled)

Dictionary of WMCS System Calls

—getdst

dstyinputcnt
dstyoutptent
dstycolumnpos
dstyinbufsz
dstyoutbufsz
dstywidth
dstylength
dstysubreadoper
dstysubwriteoper
dstyreserved
dstyuserfield

[N
OB BN N

dstycontrolu
dstybroadcast
dstyhandshakel
dstyhandshake2
dstyhsbell
dstyhssoft
dstyhshard
dstyhsnone
dstyduplex
dstymodemctrl
dstyautobaud

dstyremote

11
12
13
14

Control U enable

(0 = enabled)
Broadcast enable
(0 = enabled)

Handshaking type

00 - No handshake,
send bell

01 - Software
handshake

10 - Hardware
handshake

11 - No handshake, no
bell

Full/half duplex

(0 = full duplex)

Modem control enable

(1 = enabled)

Auto baud enable

(1 = enabled)

Remote enable

(1 = enabled)

Count of characters in input interrupt buffer
Count of characters in output interrupt buffer

Current column position

Input buffer size in bytes

Output buffer size in bytes

The width of the given terminal screen
The length of the given terminal screen
Number of sub-read operations

Number of sub-write operations

Reserved

User defined status

For PIPE class devices the second part of the device status table is

defined as follows:

Length
Name (bytes) Description
dsppreaderpid 4 Process ID of pending reader
dsppwriterpid 4 Process ID of pending writer
dspppipeid 4 The pipe's ID
dsppbuffersz 2 The buffer size in bytes
dsppbuffercnt 2 Number of characters in the pipe buffer

GETDST-14

dsppreadque
dsppwriteque
dsppreserved
dsppuserfield

4
4
32
8

Dictionary of WMCS System Calls
_getdst

Address of read queue
Address of write queue
Reserved

User defined status

For SYNC class devices the second part of the device status table is
defined as follows:

Length
Name (bytes) Description
dssymoderegl 1 Mode register 1 of the uart (See DSTYMODERHG1
for bit definitions)
dssymodereg2 1 Mode register 2 of the uart (See DSTYMODERHG2
for bit definitions)
dssycmdreg 1 Command register of the uart (See DSTYCMDREG
for bit definitions)
dssytermtype 1 Terminal type definition. A binary value.
Value Name Value Description
dssyibm3741 249 IBM 3741 terminal
dssyibm296 8 250 IBM 2968 terminal
dssyibm2770 251 IBM 2770 terminal
dssyibm3276 252 IBM 3276 terminal
dssyibm3275 253 IBM 3275 terminal
dssyibm2780 254 IBM 2780 RJE
dssyibm3780 255 IBM 3780 RJE
dssystatreg 1 Status register of uart (See DSTYSTATREG
for bit definitions)
dssynumbsync 1 Number of sync characters to write
dssyflagsl 2 Device Status flags. Bit encoded.
Bit Name Bit # Description
dssymultipnt 0 O=point to point
1=multipoint
dssyebcdic 1 O=ascii line
1=ebcdic line
dssycrcccitt 2 O=crc-16
l=crc-ccitt
dssylrc 3 O=crc (on above types)
=1lrc
dssyasctoebcw 4 0=no translate on
write

l=translate ascii to
ebcdic on write

GETDST-15

Dictionary of WMCS System Calls

—getdst

dssyinputcnt
dssyoutputcnt

dssyinbufsz
dssyoutbufsz
dssyprevrderr
dssyprevwrerr
dssyprevrdtype

dssynumbtrpad
dssyrecsize
dssyreserved
dssyuserfield

dssyebctoascr 5 0=no translate on read
l=translate ebcdic to
ascii on read

dssytranstbl2 6 O=use translate
table 1
l=use translate table
2

Number of characters in input interrupt

buffer

Number of characters in output interrupt

buffer

Input buffer size in bytes

Output buffer size in bytes

Error from previous un-verified read

Error from previous no-wait write

Type of previous read

dssynontran - 0 Non-transparent read

dssytran - 1 Transparent read

The number of trailing pads to write

Used in transparent mode with ITBs

Reserved

User defined status

N

[l S~ O 3 V) N

o N+

For NETWORK class devices the second part of the device status table
is defined as follows:

Length
Name (bytes) Description
dsnkflags 2 Device status flags. Bit encoded.
Bit Name Bit # Description
dsnkbyte 0 O=datagram mode
1=byte mode
" dsnkmodemctrl 1 O=not enabled
1=modem ctrl enabled
dsnkwindowsize 1l Window size the circuit will use
dsnkreserved 53 Reserved
dsnkuserfield 8 User defined status

GETDST-16

Dictionary of WMCS System Calls
—getdst

For NONDEV class devices the second part of the device status table

is defined as follows:

Length
Name (bytes) Description
dsnduserfield 64 Reserved

For QUEUE class devices
defined as follows:

the second part of the device status table is

Length
Name (bytes) Description
dsquassocdev 9 A null terminated string containing the name
of the physical printer device
dsqusenddev 9 A null terminated string containing the name
of the physical device that control messages
are to be sent to
dsquformname 10 A null terminated string containing the
current form name
dsqunumexec 2 Maximum number of entries that can execute
concurrently
dsqucurnumexec 2 The number of entries that are
currently active
dsquflags 2 Device Status flags. Bit encoded.
Bit Name Bit # Description
dsquflupdating 0 If set, currently
updating queue control
file
dsquflgmstay 1 If set, the queue
manager process will
remain running even
when queue is empty
dsquflnorestart 2 If set, when the queue
is mounted it does not
restart the jobs in
the queue
dsqulength 2 This holds the length of the forms of the
printer associated with this queue
dsquwidth 2 This holds the width of the forms of the
printer associated with this queue
dsqunextentry 4 The entry number of the next entry to

be enqued

GETDST-17

Dictionary of WMCS System Calls

—getdst

dsqutype 1 The type of queue this is. The
values are:
Value Name Value Description
dsqutpprint 1 Print type queue
dsqutpjob 2 Job entry type queue

dsqubaseprior 1 The priority that entries will be queued at
if they specify the default priority

dsqureserved 20 Reserved

dsquuserfield 8 User defined status

Related Privileges:

None.
Parameters:

dname

dtable
ldtab

dstat

status

Diagnostics:

- Address of a null terminated string containing

the name of the device. This string is translated
automatically by the MCS into its logical equivalent.
This string may contain up to 93 significant
characters followed by a null. If this string contains
a file designation, the devicename portion of the
file designation is used.

Address of a buffer to receive the device table. This
table must be word aligned.

Length of the device table. Up to this many bytes

of the device table will be transferred to the user
buffer.

- Address of a 128 byte buffer to receive the device

status.
Address of a long word to receive the result of
the operation.

errinvdevnam (130) The specified devicename is syntactically

errundevnam

incorrect.
(131) The MCS does not recognize the devicename.
Is the device mounted?

errnoreadpriv (144) The process does not have Read Privilege

for the file.

GETDST-18

Dictionary of WMCS System Calls

—getdst
See Also:
—dismnt - Dismount a logical device
—getdnam - Get device name
—giodst - Get device status with lun
_mount - Mount a logical device
_setdst - Set device status
_siodst - Set device status with lun
Assembler Calling Sequence:
¥3sys$disk/sysincl.sys/devtdisp.asm
$3¥syssdisk/sysincl.sys/dstatdisp.asm
push dname ;address - device name
push dtable ;address - device table
push 1dtab ;value - length of device table
push dstat ;address - device status
push status ;address - result of the operation
jsr —getdst ;get device status
C Function Declaration:
#include "sys$disk/sysincl.sys/devtdisp.h"
#include "sys$disk/sysincl.sys/dstatdisp.h”
/* get device status */
long /* returns result of the operation */
_getdst (dname, dtable, ldtab, dstat)
char dnamel94]; /* device name */
devicetable *dtable; /* device table */
long ldtab; /* length of device table */

devicestatus *dstat; /* device status */
FORTRAN Subroutine Declaration:

c ! get device status
subroutine _getdst (dname, dtable, ldtab, dstat, status)
character*94 dname ! device name
character*(*) dtable ! device table
integer*4 ldtab ! length of device table
character*(*) dstat ! device status
integer*4 status ! result of the operation

GETDST-19

Dictionary of WMCS System Calls
_getdst
Pascal Procedure Declaration:

$3sys$disk/sysincl.sys/devtdisp.pas
¥sysdisk/sysincl.sys/dstatdisp.pas

procedure _getdst({** get device status!}
dname : stringl93]; {** device name}
dtable : “array_of_char;{** device table}
ldtab : longint; {** length of device table}
dstat : "array_of char;{** device status}
var status : longint {** result of the operation}
); external;

GETDST-20

_GETDUIC

Get device UIC.

Description:

Given a device name, returns the user identification code (uic)
which is composed of an owner id and a group id.

This system call is valid for any class of device.

Related Privileges:
None.
Parameters:

dname - Address of a null terminated string containing the

name of the device whose uic is requested. This string
will be translated automatically by the MCS to its
logical equivalent. This string may contain up to
93 valid characters followed by a null byte. If the
string contains a file designation, the devicename
part of the file designation is used for this parameter.
uic - Address of a long word to receive the user identification
code. This long word is divided into two fields.
The most significant 16 bits constitute the owner
id number. The least significant 16 bits constitute
the group id number (identifying the group to which
the user belongs).
status = Address of a long word to receive the result of
the operation.

Diagnostics:

errinvdevnam (130) The specified devicename is syntactically
incorrect.

errundevnam (131) The MCS does not recognize the devicename.
Is the device mounted?

See Also:
_getfuic - Get file uic
getuic - Get process uic
“setduic - Set device uic
_ﬁetfuic - Set file uic

_setuic - Set process uic
Assembler Calling Sequence:

push dname ;address - device name

GETDUIC-1

Dictionary of MCS System Calls

_getduic
push uic ;address - user id code
push status ;address - result of the operation
jsr _getduic ;get device uic

C Function Declaration:

/* get device uic */

long /* returns result of the operation */
_getduic(dname, uic)

char dname[94]; /* device name */

long *uic; /* user id code */

Fortran Subroutine Declaration:

c ! get device uic
subroutine getdui(dname, uic, status)
character*94 dname ! device name
integer*4 uic ! user id code
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _getduic({** get device uic}
dname : string[93]; {** device name}
var uic : longint; {*#* user id code}
var status : longint {** result of the operation}

); external;

GETDUIC-2

_GETEVNT
Read event flags.
Description:

Read the event flags of any desired process. The event
flags to be read are specified by a mask.

Related Privileges:

None - Allows reading event flags of any process with
the same owner id and group id (uic) as the‘calling
process.

group - Allows reading event flags of any process with
the same group id as the calling process.
Allows reading event flags of any process.

world
Parameters:

pid - process 1d of the process whose event flags
are to be read.

efmask = Event flag mask specifying which of the event
flags are to be read. Those bits that correspond
to 1°s in the mask will be read. The other bits
will be set to zero.

eflags - Address of a long word to receive the event flags
which were read.

status = Address of a long word to receive the result of
the operation.
Diagnostics:
errinsufpriv (1) The process lacks the privileges required to

perform the operation.
errprcsnotfnd (2) The specified process is not in the system
process table.

See Also:

_andevnt - Wait for AND of event flags
clrevnt - Clear event flags

“orevnt - Wait for OR of event flags

“setevnt - Set event flags

Assembler Calling Sequence:

push pid ;value - process id

push efmask ;value- = event flag mask

push eflags ' saddress - resulting event flags
push status ;address = result of the operation

GETEVNT-1

Dictionary of MCS System Calls
_getevnt

jsr _getevnt

C function declaration:

long

_getevnt(pid, efmask, eflags)

long pid;

long efmask;

long *eflags;
Fortran Subroutine Declaration:

(o
c

integer*4 pid

integer*4 efmask
integer*4 eflags

Pascal Procedure Declaration:

procedure _getevnt(

pid ¢ longint;
efmask : longint;
var eflags : longint;
var status : longint

); extermal;

GETEVNT-2

sread event flags

/*
/*

/*
/*
/*

read event flags */
returns result of the operation */

process id */
event flag mask */
resulting event flags */

! read event flags

! returns result of the operation
integer*4 function getevn(pid, efmask, eflags)

! process 1id

! event flag mask

! resulting event flags

{** read event flags}

{** process id}

{** event flag mask}

{** resulting event flags}
{** result of the operation}

_GETEXIT
Get the address of the current exit handler.
Description:
Call this routine to get the address of the currently defined exit

handler. (See _SETEXIT for a description of exit handlers.) Returns
zero if no exit handler is defined.

Related Privileges:
None.
Parameters:
adr - Address to store exit handler address.
Diagnostics: '
None.
See Also:
—errno - Receive process abort reason
—exitrtn - Define a returnable exit handler

_exproc - Terminate the specified process
_setexit - Set exit handler

Assembler Calling Sequence:

push adr ;address -~ address of exit handler
jsr _getexit ;get the exit handler address

C Function Declaration:

/* get exit handler address */
void /* no result */
—getexit(adr)

long *adr; /* Returned address of exit handler */

FORTRAN Subroutine Declaration:
c ! get exit handler address

subroutine _getexi (adr)
integer*4 adr ! Returned address of exit handler

GETEXIT-1

Dictionary of WMCS System Calls
_getexit

Pascal Procedure Declaration:

procedure _getexit({** get exit handler address}
var adr : longint {** Returned address of exit handler}
); external;

GETEXIT-2

Get file control block.
Description:

Given the logical unit number (lun) of a file successfully opened for

read and/or write access by the calling process, the file control
block (fcb) for that file is copied to the process's buffer.

CAUTION: The format of the file control block may change with
each release. The current definition is included in
each release in the file /SYSINCL.SYS/FCBDISP.*. The
name of the fcb record is "fcbtype", i.e. in vyour
program you can declare a variable whose type is

"fcbtype".

There are several variations on the format of file control blocks,
depending on the class of device which contains the file. Disk files
contain "root" fcbs and "continuation" fcbs. Tape files have "tape"
fcbs. All other files have "tty" fcbs.

On tapes, the zeroeth fcb is the file header. It does not contain
accurate file size information. The first continuation fcb on a tape
is the file trailer. It is the same as the file header except that
it contains correct file size information. If the first continuation

fcb of a tape file is requested, the tape is positioned at the
logical end of the file.

The format of the first 14 bytes of the fcb record is the same for
all types of fcb's. The format of this common type is:

Length
Name (bytes) Description
fcbnum 4 fcb number for this fcb. The record
number of this record within the fcb file.
For tty fcbs, the value of this field
is zero.
fcbsegnum 2 fcb sequence number. This number is

unique for each usage of this fcb.
For tty fcbs, the value of this field
is zero.

GETFCB-1

Dictionary of WMCS System Calls
—getfcb

fcbentfcbnum 4 fcb number of continuation fcb. The
record number of the next fcb for this
same file. For tape and tty fcbs, the
value of this field is zero.

fcbentsegnum 2 Sequence number of the continuation fcb.
For tape and tty fcbs, the value of this
field is zero.

fcbusageid 1 Usage id field. The type of fcb. Values

are:

Name Value Description

fcbunalloc 0 This fcb is unused. The
data in this record is
invalid.

fcballocroot 1 This record contains a
root fcb.

fcballoccont 2 This record contains a
continuation fcb.
fcbextusecent 1 Number of extent fields in use within
this fcb.

The format of the last 242 bytes of the fcb is different for
"primary" fcbs as opposed to "continuation" fcbs. For primary fcbs
(disk, tape and tty) the format is as follows:

fcbfiletype 2 File type. For tty files, it is
always set to zero (a data file). Valid
file types are:

Name Value Description
fcbftdata 0 Data file

fcbftdir 1 Directory file
fcbftimage 2 Image file
fcbftksamdata 3 KSAM data type file
fcbftksamkey 4 KSAM key type file
fcbftllimage 5 11 type image file
fcbftarchcont 6 Archive continuation file
fcbftencrypt 7 Encrypted file
fcbftsystem 8 System file
fcbftarchive 9 Archive file

10-255 Reserved
256-65535 User defined file types
fcbfilename 9 File name. For disk and tape files it
contains the filename portion of the file
designation. For tty files it contains
the devicename.

fcbfileext
fcbfilevers
fcbdirfcbnum

fcbdirsegnum

fcbrecordsz
fcbuserid
fcbgroupid
fcbprotect

fcbereatemstim

fcbereatelstim

fcbmodmstim

fcbmodlstim

fcbreserved
fcbphysicalsz

fcblogicalsz
fcbfileid

> [(NI SN) N

[

Dictionary of WMCS System Calls
—getfcb

File extension.
is set to zero.
File version number.
is set to zero. :
Directory fcb number. The fcb number of
the directory file containing this file.

For tape and tty fcbs it contains zero.
Directory sequence number. The sequence
number of the directory file containing
this file. For tty fcbs this field contains
Zero.

Default record size.
field is set to 1.
Owner id of the files owner.

Group id of the files owner.

File protection field. For tty fcbs it
contains the device protection.

The most significant 32 bits of the file
creation date in system time format (year
and day) . For tty fcbs, it contains

the year and day that the device was mounted.
The least significant 32 bits of the file
creation date in system time format (hour,
minute, ...). For tty fcbs, it contains

the hour, minute, ... that the device was
mounted.

The most significant 32 bits of the date

the file was last modified (year and day).
For tty fcbs, it contains the year and day
that the device was mounted.

The least significant 32 bits of the date
the file was last modified (hour, minute,
second, tick). For tty fcbs, it contains
the hour, minute, ... that the device was
mounted.

Reserved space

The physical size of the file in bytes.

For tty fcbs, it is set to zero.

The logical size of the file in bytes.

For tty fcbs, it is set to zero.

File id of the file. For tty fcbs, it is
set to zero.

For tty fcbs this field
For tty fcbs this field

For tty fcbs this

GETFCB-3

Dictionary of WMCS System Calls
—getfcb

fcbrootextblk 180

(fcbtapedirlen) (2)

(fcbtapedirname) (178)
fchnotcksum 2

file extent fields. There are 30 extent
fields in a primary fcb. Each extent field
is composed of 6 bytes. The first two bytes
represent the number of sectors in that
extent. The last four bytes are the logical
sector number of the first sector in that
extent.

For tty fcbs, this field is set to zero.

For tape fcbs, the first two bytes of this
field contain the length of the directory
name associated with this file.

The other 178 bytes contain the directory
name.

The fcb's notted checksum

The format of the last 242 bytes of the fcb for "continuation" fcbs
(disk only) is as follows:

fcbcontextblk 240

fcbnotcksum 2

File extent fields in a continuation fcb.
There are 40 extent fields in a continuation
fcb. Each extent field is composed of 6
bytes. The first two bytes represent the
number of sectors in that extent. The last
four bytes are the logical sector number

of the first sector in that extent.

The fcb's notted checksum

The process can obtain the fcb for any file currently opened with
read and/or write access by the process on any device.

Related Privileges:

bbneo
Parameters:
lun - Logical unit number of file whose fcb is requested.
cont -~ Which part of the fcb for this file is desired.
O=primary fcb, 1l=1st continuation fcb...
fcbuff - Address of 256 byte buffer to receive the fcb. This

buffer must be word aligned.

GETFCB-4

Dictionary of WMCS System Calls
—getfcb

status - Address of a long word to receive the result of
the operation.
Diagnostics:

erridxrange (56) The table ends before the specified occurrence.
errinvlfn (132) The logical unit number does not correspond
~ to an open file.
errnoreadacc (141) The process does not have read-access to the
file.

See Also:

_create - Create a file
_open - Open a file
_setfcb - Write file control block

Assembler Calling Sequence:

$3syss$disk/sysincl.sys/fcbdisp.asm

push 1lun ;svalue - logical unit number

push cont ;value - continuation fcb number
push fcbuff ;address - buffer to receive the fcb
push status ;address - result of the operation
jsr —getfcb sget file control block

C Function Declaration:

#include "sysS$disk/sysincl.sys/fcbdisp.h”
/* get file control block */

long /* returns result of the operation */
—getfcb (lun, cont, fcbuff)

long lun; /* logical unit number */

long cont; /* continuation fcb number */

fcbtype *fcbuff; /* buffer to receive the fcb */

FORTRAN Subroutine Declaration:

c ! get file control block
subroutine _getfcb(lun, cont, fcbuff, status)
integer*4 lun ! logical unit number

integer*4 cont ! continuation fcb number

character*(*) fcbuff ! buffer to receive the fcb
integer*4 status ! result of the operation

GETFCB-5

Dictionary of WMCS System Calls
—getfch

Pascal Procedure Declaration:

¥8¥sys$disk/sysincl.sys/fcbdisp.pas

procedure _getfcb({** get file control block}
lun : longint; {** logical unit number}
cont ¢ longint; {** continuation FCB number}
fcbuff : “array_of_ char;{** buffer to receive the FCB}
var status : longint {** result of the operation}
) ; external;

GETFCB-6

_GETFID

Get file ID.

Description:

Retrieves the file id on an open file. The file id

is a user specified identifier that can be associated
with a file.

The file id can be retrieved on any disk file open for
read access.

Related Privileges:
None.
Parameters:

lun - The logical unit number of the open file whose
file id is sought.

Address of a long word to receive the file id.
The file id will be moved to the least significant

16 bit word of this long word.
status - Address of a long word to receive the result of
the operation.

fid

Diagnostics:

errinvlfn (132) The logical unit number does not correspond
to an open file.

errnoreadacc (141) The process does not have read-access to the
file.

errinvcloper (173) The device class is inappropriate for the
operation.

See Also:

_setfid - Set file id

Assembler Calling Sequence:

push lun ;value - logical unit number

push fid ;address - file id

push status ;address - result of the operation
jsr _getfid ;get file id

C Function Declaration:

/* get file id */
long /* returns result of the operation */

GETFID-1

Dictionary of MCS System Calls
_getfid

_getfid(lun, fid)
long lun;
long *fid;

Fortran Subroutine Declaration:

c

/* logical unit number */
/* file id */

! get file id

subroutine getfid(lun, fid, status)

integer*4 lun
integer*4 fid
integer*4 status

Pascal Procedure Declaration:

procedure getfid(
lun ¢ longint;
var fid ¢ longint;
var status : longint
; external;

GETFID-2

! logical unit number
! file id
! result of the operation

{** get file id}

{** logical unit number}
{** file id}
{** result of the operation}

GETF'NAM

getfnam

getfnam - Given a lun, return the filename.
Description:
Given the logical unit number (lun) of a file successfully opened
for read and/or write access by the calling process, the filename
for this file is returned. This will work on all classes of devices.

Related Privileges:

None.
Parameters:
lun - Logical unit number (lun) of the file whose name you
wish to receive.
fname - Address of a 94 byte buffer to receive the filename.

The string returned may be up to 93 significant characters
followed by a null character.

status - Address of a long word to receive the result of
the operation.

Diagnostics:
errinvlfn (132) The logical unit number does not correspord
to an open file.
errmoreadacc (141) The process does not have read-access to the
file.
See Also:
_pfdnam - Given a PFD address., return the filename.

Assembler Calling Sequence:

push lun ;value - logical unit number

push fname ;address - receives filename string
push status ;address - result of the operation
jsr _getfnam ;given a lun, return the filename

C function declaration:

/* given a lun, return the filename */
long /* returns result of the operation */
—getfnam(lun, fname)

long lun; /* logical unit number */

GETFNAM-1

Dictionary of WMCS System Calls
getfnam

char fname[94]; /* receive filename string */
Fortran Subroutine Declaration:
c ! given a lun, return the filename
subroutine getfna(lun, fname, status)
integer*4 lun logical unit number

1
character*(94) fname ! receives filename string
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure getfnam({** given a lun, return the filename}
lun : longint; {** logical unit number}
fname : string([93]; {** receives filename string}
var status : longint {** result of the operation}

): external;

GETFNAM-2

_GETFPRT

Get file protection.

Description:

Retrieves the protection mask on an open file. The
protection mask determines the type of access to the
file granted to classes of users. Protection can be
retrieved on any file open for read or write access
on the system.

Related Privileges:

none

Parameters:

lun

prot

- Allows retrieval of the protection if the calling

process has successfully opened the file for read
access.

The logical unit number of the open file whose
protection mask is sought.

Address of a long word to receive the protection mask.
The least significant 16 bit word of this long word

is divided into 4 nibbles. Each nibble corresponds to
a class of users. The bits within each nibble represent
the type of access that class of user is granted for

the file. If the bit is set (1) the access is granted.

From the least to the most significant nibble the
user classes are:

Ownr - The file owner

Grp - Processes with the same group id as the owner
Pub = All other processes in the system

Sys = Processes with system privilege

Sys Pub Grp Ownr
1 I | | |
| DWRE | DWRE | DWRE | DWRE |

| |
MSB LSB

From the least to the most significant bit within the
nibbles, the access privileges are:

- Execute access
- Read access
Write access
Delete access

o=nxd
|

GETFPRT-1

Dictionary of MCS System Calls
_getfprt

status - Address of a long word to receive the result of
the operation.

Diagnostics:

errinvlfn (132) The logical unit number does not correspond

to an open file.
errnoreadacc (141) The process does not have read-access to the
file.

See Also:

_getdprt - Get device protection

_setdprt - Set device protection
_setfprt - Set file protection

Assembler Calling Sequence:

push lun ;value - logical unit number

push prot ;address = protection mask

push status s;address - result of the operation
jsr _getfprt ;get file protection

C Function Declaration:

/* get file protection */

long : /* returns result of the operation */
_getfprt(lun, prot)

long lun; /* logical unit number */

long *prot; /* protection mask */

Fortran Subroutine Declaration:

c ! get file protection
subroutine getfpr(lun, prot, status)
integer*4 lun ! logical unit number
integer*4 prot ! protection mask
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _getfprt({** get file protection}
lun : longint; {** logical unit number}
var prot ¢ longint; {** protection mask}
var status ¢ longint {*#* result of the operation}

); external;

GETFPRT-2

_GETFRE
Get amount of available memory.
Description:

Returns the amount of available memory in the general

memory pool. The value is in units of 1024 bytes. Only
represents the amount of memory available in free pages.

Related Privileges:
None.
Parameters:

siteid -~ A long word containing the system id of the

system whose amount of available memory is sought.
A siteid of zero (0) corresponds to the system
on which the calling process 1is executing.

fremem - Address of a long word to receive the amount
of available memory.

status - Address of a long word to receive the result of the
operation.

Diagnostics:
errinvsiteid (8) The specified site id does not exist.

See Also:

Assembler Calling Sequence:

push siteid ;value - system id

push fremem ;address - free memory

push status saddress - result of the operation
jsr _getfre ;get amount of available memory

C function declaration:

/* get amount of available memory */

long /* returns result of the operation */
_getfre (siteid, fremem)

long siteid; /* system id */

long *fremen; /* free memory */

Fortran Subroutine Declaration:

c ! get amount of available memory
subroutine getfre(siteid, fremem, status)

GETFRE-1

Dictionary of MCS System Calls
_getfre

integer*4 siteid
integer*4 fremem
integer*4 status

Pascal Procedure Declaration:

procedure _getfre(
siteid : longint;
var fremem : longint;
var status : longint
; external;

GETFRE-2

! system id
! free memory
! result of the operation

{** get amount of available memory}
{** gystem 1id}

{** free memory}

{** result of the operation}

GETFRSZ

Get file record size.
Description:

Retrieves the file record size on an open file. The file record size
is the number of bytes returned when one record is requested from the
operating system. All files have a default record size that was
specified when the file was created. The default record size may be
overridden when the file is subsequently opened for further access.
This system call returns the current record size that the file system
has defined for the open file.

Related Privileges:

None.
Parameters:
lun - The logical unit number of the open file whose
record size is sought.
result - Address of a long word to receive the record size.

The record size will be moved to the least significant
16-bit word of this long word.
status - Address of a long word to receive the result of
the operation.
Diagnostics:

errinvlfn (132) The logical unit number does not correspond
to an open file.

See Also:
_setfrsz - Set file record size

Assembler Calling Sequence:

push lun ;value - logical unit number

push result ;address - record size

push status ;address - result of the operation
jsr _getfrsz ;get file record size

GETFRSZ-1

Dictionary of WMCS System Calls
_getfrsz

C Function Declaration:

/* get file record size */

long /* returns result of the operation */
—getfrsz(lun, result)

long lun; /* logical unit number */

long *result; /* file record size */

FORTRAN Subroutine Declaration:

c ! get file record size
subroutine _getfrs(lun, result, status)
integer*4 lun ! logical unit number

integer*4 result ! file record size
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _getfrsz({** get file record size}
lun : longint; {** Jogical unit number}
var result : longint; {** file record size}
var status : longint {** result of the operation}

); external;

GETFRSZ-2

_GETFUIC
Get file UIC.

Description:

Given the logical unit number of an open file, returns

the user identification code (uic) which is composed of
an owner id and a group id.

To successfully retrieve the uic of a file, the calling

process must have successfully opened the file with read

access. This system call is valid for files of any class.
Related Privileges:

None.

Parameters:

lun - The logical unit number of the file whose uic is
requested.
uic - Address of a long word to receive the user identification

code. This long word is divided into two fields.
The most significant 16 bits constitute the owner
id number. The least significant 16 bits constitute
the group id number (identifying the group to which
the user belongs).

status =- Address of a long word to receive the result of
the operation.

Diagnostics:

errinvlfn (132) The logical unit number does not correspond

to an open file.
errnoreadacc (141) The process does not have read-access to the
specified file.

See Also:

_getduic Get device uic

_getuic - Get process uic
setduic - Set device uic

“setfuic - Set file uic

_setuic - Set process uic

Assembler Calling Sequence:

push lun ;value - logical unit number
push uic ;address - user id code
push status s;address = result of the operation

GETFUIC-1

Dictionary of MCS System Calls
_getfuic

jsr _getfuic

C Function Declaration:

long
_getfuic(lun, uice)

long lun;
long *uic;

Fortran Subroutine Declaration:

Cc

integer*4 lun
integer*4 uic
integer*4 status

Pascal Procedure Declaration:

procedure _getfuic(
lun : longint;
var uic : longint;
var status ! longint
); external;

GETFUIC-2

;get file uic

/*
/*

/*
/*

get file uic */
returns result of the operation */

logical unit number */
user id code */

! get file uic
subroutine getfui(lun, uic, s

11

tatus)
ogical unit number

! user id code

!'r

{**
{**
{**
{**

esult of the operation

get file uic}

logical unit number}
user id code}

result of the operation}

_GETGLB

Retrieve a global logical name.

Description:

Given an index into a system’s global logical name table,
returns the logical name and equivalence associated with
that index.

Related Privileges:

None.

Parameters:

index
siteid

lname

equiv

status

Diagnostics:

which entry in the logical name table is desired.
Site id of the system whose gobal logical name table
is being accessed. Zero (0) corresponds to the system
on which the calling process is executing.

Address of a 94 byte buffer to receive the

logical name. String will be null terminated.

(up to 93 valid characters plus a null)

Address of a 94 byte buffer to receive the
equivalent string associated with the logical

name. (up to 93 valid characters plus a null)
Address of a long word to receive the result of

the operation.

errprcsnotfnd (2) The specified process is not in the system

process table.

errinvsiteid (8) The specified site id does not exist.

erridxrange (56) The table ends before the specified occurrence.
See Also:

_assign - Assign a logical name

_gassign - Assign a global logical name

_getlog = Retreive a logical name

_trans - Translate a logical name

Assembler Calling Sequence:

push
push
push
push
push
jsr

index svalue - index into the table
siteid ;value - system id

lname ;address - logical name

equiv s;address = equivalent

status ;address - result of the operation
getglb sjretrieve a global logical name

GETGLB-1

Dictionary of MCS System Calls
_getglb

C function declaration:

long

long index;
long siteid;
char lname[94];
char equiv[94];

Fortran Subroutine Declaration:

C

integer*4 index
integer*4 siteid
character*94 lname
character*94 equiv
integer*4 status

Pascal Procedure Declaration:

procedure _getglb(
index : longint;
siteid longint;
var lname : string[93];
var equiv : string[93];
var status : longint
); external;

GETGLB-2

/* retrieve a global logical name */
/* returns result of the operation */
_getglb(index, siteid, lname, equiv)
/* index into the table */
/* system id */

/* logical name */

/* equivalent */

! retrieve a global logical name

subroutine getglb(index, siteid, lname, equiv, status)
! index into the table
system id

equivalent

!
! logical name
1
!

result of the operation

{**
{**
[#*
{**
(%%
{**

retrieve a global logical name}
index into the table}

system id}

logical name}

equivalent}

result of the operation}

_GETINST
Get installed files.
Description:

This call is used to obtain a list of installed files.
Given an index into the system table of installed files,
this call returns the corresponding entry which is composed
of the name of the installed file (in fcb.seq format) and

a privilege mask indicating which privileges the file is
granted.

Related Privileges:

None.
Parameters:

siteid - A long word containing the system id number of
the system whose table of privileged images is
requested. A siteid of zero (0) corresponds to
the system on which the calling process is
executing.

index - The index into the system table of the file
whose name and privilege are requested. The first
entry in the table has an index of zero.

fcbnam - Address of a string to receive the name of the
file in fcb.seq format. The returned name may
contain up to 93 significant characters and will
be null terminated.

priv -~ Address of a long word to receive the privilege mask.
The privilege mask is a bit mask of privileges
to be assigned to process when it is created using
crproc. Privileges are bit encoded as follows:

Bit Name Bit # Description
pcbpvsetpriv 0 setpriv
pcbpvsystem 1 system
pcbpvreadphys 2 readphys
pcbpvwritephys 3 writephys
pcbpvsetprior 4 setprior
pcbpvchngsuper 5 chngsuper
pcbpvbypass 6 bypass
pcbpvoperator 7 operator
pcbpvaltuic 8 altuic
pcbpvworld 9 world

pcbpvgroup 10 group
11-31 Reserved.
status -~ Address of a long word to receive the result of
the operation.

GETINST-1

Dictionary of MCS System Calls
_getinst

Diagnostics:

errinvsiteid (8) The specified site id does not exist,
erridxrange (56) The table ends before the specified occurrence.

errundevnam (131) The MCS does not recognize the devicename. Is
the device mounted?
See Also:

_deinst - Deinstall privileged file
_Install - Install privileged file

Assembler Calling Sequence:

push siteid svalue - system id

push index ;value - index into table

push fcbnam saddress - fcb.seq file name

push priv ;address - privilege mask

push status ;jaddress - result of the operation
jsr _getinst ;Get installed privileged file

C Function Declaration:

/* get installed privileged file */

long /* returns result of the operation
getinst(siteid, index, fcbnam, priv)
- long siteid; /* system id */
long index; /* index into table */
char fcbnam[94]; /* fcb.seq file name */
long *priv; /* privilege mask */

Fortran Subroutine Declaration:

c ! get installed privileged file
subroutine getins(siteid, index, fcbnam, priv, status)
integer*4 siteid ! system id

index into table
fcb.seq file name
privilege mask

result of the operation

integer*4 index
character*94 fcbnam
integer*4 priv
integer*4 status

- s sw e

Pascal Procedure Declaration:

procedure getinst({** get installed privileged file}
siteid : longint; {** gystem id}
index : longint; {** index into table}
var fcbnam : string[93]; {** fcb.seq file name}
var priv : longint; {** privilege mask}
var status : longint {** result of the operation}

); external;

GETINST-2

_GETLOG
Retrieve a logical name.
Description:

Given an index into a given process’s logical name table,
returns the logical name and equivalence associated with
that index.

Related Privileges:

None - Allows retrieval of logical names from tables
of processes with the same user and group id
(uic) as the current process.

group - Allows retrieval of logical names from tables
of processes with the same group id as the
current process.

world - Allows retrieval of logical names from tables
of any process in the system.

Parameters:

index - which entry in the logical name table is desired.
pid - Process id of the process whose logical name table
is being accessed. O=current process, =l=parent process.
lname - Address of a 94 byte buffer to receive the
logical name. String will be null terminated.
(up to 93 valid characters plus a null).
If an error is detected, this buffer will remain
unmodified.
equiv - Address of a 94 byte buffer to receive the
equivalent string associated with the logical
name. (up to 93 valid characters plus a null)
If an error is detected, this buffer will remain
unmodified.
status - Address of a long word to receive the result of
the operation.

Diagnostics:

errinsufpriv (1) The process lacks the privileges required to
perform the operation.

errprcsnotfnd (2) The specified process is not in the system
process table.

erridxrange (56) The table ends before the specified occurrence.
See Also:
_assign - Assign a logical name

_gassign - Assign a global logical name

GETLOG-1

Dictionary of MCS System Calls
_getlog

_getglb - Retreive a global logical name
_gengy - Get pid of ancestor process
_trans - Translate a logical name

Assembler Calling Sequence:

push index
push pid
push Iname
push equiv
push status
jsr _getlog

C function declaration:

long

_getlog(index, pid, lname, equiv)

long index;
long pid;

char lname[94];
char .equiv[94];

Fortran Subroutine Declaratiom:

Cc

s;value - index into the table

svalue - process id

;address - logical name

;address - equivalent

s;address - result of the operation
;jretrieve a logical name

/* retrieve a logical name */
/* returns result of the operation */

/* index into the table */
/* process id */

/* logical name */

/* equivalent */

! retrieve a logical name

subroutine getlog(index, pid lname, equiv, status)

integer*4 index
integer*4 pid
character*94 lname
character*94 equiv
integer*4 status

Pascal Procedure Declaration:

procedure _getlog(
index ¢ longint;
pid : longint;

var lname

var equiv

var status
); external;

: string(93];
: string[93];
: longint

GETLOG-2

! index into the table

! process id

! logical name

! equivalent

! result of the operation

{** retrieve a logical name}
{** index into the table}
{** process id}

{** logical name}

{** equivalent}

{** result of the operation}

getmlst

getmlst - Get an entry from list of named shared memory areas
Description:

The operating system maintains a control structure for each named
sharable memory area. _Getmlst is used to obtain a copy of one of
these control structures. INDEX specifies an offset into the list
of shared memory area control structures. A value of zero will
reference the first entry in the list. If too large a value is
specified, _getmlst will indicate an error. This system call

is used to obtain a description of the named 'sharable memory

areas which are defined in the system.

Related Privileges:
None.

Parameters:

siteid A long word containing the address of the system
from whom the information is needed. If SITEID
is zero, the current system is referenced.
index - A long word which is the offset into the list
of shared memory areas. A value of zero returns
the first entry in the list.
bsize - A long word containing the maximum size of the
buffer BUFFER.

buffer - Address of an area to receive a copy of the
of the named sharable memory control structure.
Length
Name (bytes) Description
nsm _£_link 4 Forward link
nsm b_link 4 Back link
nsm struct size 2 Structure size in bytes
nsm id_tag 2 Structure id tag == $3542
nsm mod_pid 4 PID of last modifier
nsm ref_cnt 2 Structure reference count
nsm status 2 Status word
Bit Name Bit # Description
nsm linger bit 0 The linger bit
nsm node_linked bit 1 Node linked into chain bit
nsm protection 2 Memory protection mask
nsm mem_size 4 Size of memory area in bytec

GETMLST-1

Dictionary of WMCS System Calls

getmlst

nsm lock_gque
nsm_uic
nsm namelen
nsm name
nsm page_cnt

4 Access queue to region

4 UIC of definer

2 Length of name of memory area
94 Name of memory area

2 Number of pages in page list -

retlen - Address of a long word to receive the size
of the control structure in units of bytes.
status - Address of a long word to receive the result of
the operation.
Diagnostics:
erridxrange (56) The index is beyond the end of the table.
errinvadr (4) The memory address is not on a 4K page boundary.
See Also:
_defmem - Define a named sharable memory area.
_udefmem - Undefine a named sharable memory area.
_Shrmem - Share a named sharable memory area.
_ushrmem - Unshare a named sharable memory area.
_setmuic - Change owner of a named sharable memory area.
_setmprt - Change protection of a named sharable memory area.

Assembler Calling Sequence:

push siteid
push index
push Imtab
push mtable
push retlen
push status
jsr _getmlst

C Function Declarati

long
—getmlst (siteid,
long
long
long
nsm
long

address - result of the operation
Get an entry from list of named
shared memory areas

; value - system site id

; value - sequence number

; value - length of mtable

; address - memory table

; address - # of bytes transferred

on:
/* Get an entry from list of named */
/* shared memory areas */
/* returns result of the operation */

index, lmtab, mtable, retlen)
siteid; /* system site id */
index; /* sequence number */
lmtab; /* length of mtable */
mtable; /* memory table */
retlen; / % of bytes transferred */

FORTRAN Subroutine Declaration:

GETMLST-2

Dictionary of WMCS System Calls
getmlst

c ! Get an entry from list of named
c ! shared memory areas
getmls(siteid, index, lmtab, mtable, retlen, status)
integer*4 siteid ! system site id
integer*4 index ! sequence number
integer*4 lmtab ! length of mtable
character*1024 mtable ! memory table
integer*4 retlen ! # of bytes transferred
integer*4 status ! result of the operation

PASCAL Procedure Declaration:

{** get an entry from list of named}

procedure getmlst({** shared memory areas}
siteid : longint; {** system site id }
index : longint; {** sequence number }
Imtab : longint; {** length of mtable}
mtable : nsm; {** memory table}
var retlen : longint; {** % of bytes transferred}
var status : longint {** result of the operation}
); external;

GETMLST-3

Get nodename from site ID.
Description:

This SVC returns the name of a node that is associated with the
specified site ID.

Related Privileges:

none - No privileges are needed to execute this SVC.
Parameters:
siteid - This parameter is a long word containing the site
ID for which the nodename is desired.
nname - This parameter is the address of a string buffer

in which will be placed the name of the node
for the specified siteid. A nodename always
begins with two underscores. The string is
null terminated.

status - Address of a long word to receive the result of
the operation.

Diagnostics:
errinvsiteid (8) The specified site ID does not exist.
errnoclass (185) The device class handler was not loaded when
the system was booted.
See Also:
_getnsid - Get site ID from nodename
Assembler Calling Sequence:

push siteid value - site id

H
push nname ; address - for nodename
push status ; address - result of the operation
jsr _getnnam ; get name of node

GETNNAM-1

Dictionary of WMCS System Calls
_getnnam

C Function Declaration:
/* Get nodename for site id */

long . /* returns result of the operation */
—getnnam(siteid, nname

long siteid; /* Site id */

char nname [94] ; /* Returned nodename */

FORTRAN Subroutine Declaration:

c ! Get nodename from site id
subroutine _getnna(siteid, nname, status)
integer*4 siteid ! Site id
character*94 nname ! Returned nodename
integer*4 status ! Result of operation

Pascal Procedure Declaration:

{** Get nodename from site id }
procedure _getnnam(

siteid : longint; {** Site id }
var nname : string(93]; {** Returned nodename }
var status : longint {** Result of operation }

) ;jexternal ;

GETNNAM-2

_GEINSID

Get site ID from nodename.

Description:
This SVC returns the site ID for a given nodename.

Related Privileges:

none - No privileges are needed to execute this SVC.
Parameters:

nname - This parameter is the address of a null terminated
string which contains the nodename.

siteid - This parameter is the address of a longword
which will receive the site ID for the given
nodename.

status - Address of a long word to receive the result of

the operation.
Diagnostics:

errnonodefnd (53) The nodename is not defined.
errnoclass (185) The device class handler was not loaded when
the system was booted.

See Also:
_getnnam - Get nodename from site ID
Assembler Calling Sequence:

push nname address - nodename

i
push siteid ; address -~ for siteid
push status ; address - result of the operation
jsr _getnsid ; get site id for nodename

C Function Declaration:
/* Get site id from nodename?*/

long /* Returns result of the operation */
_getnsid(nname, siteid)

char nname[94] ; /* nodename */

long *siteid; /* Returned site id */

GEINSID-1

Dictionary of WMCS System Calls

—getnsid

FORTRAN Subroutine Declaration:

C

! Get site id from nodename

subroutine _getnsi(nname, siteid, status)
character*94 nname ! nodename
integer*4 siteid ! Returned site id
integer*4 status ! Result of operation

Pascal Procedure Declaration:

{** Get site id from nodename }

procedure _getnsid(

nname
var siteid
var status
) ;external;

string[93]; {** nodename }
longint; {** Returned site id }
longint {** Result of operation }

GEINSID-2

Get process control block.
Description:

Given the process ID (PID) of a process in the system, copy the

process control block (PB) for that process into the buffer of the
calling process.

CAUTION: The format of the process control block may change with
each release of the operating system. The current
definition is included in each release in the file
named /SYSINCL.SYS/PRCSDISP.*. The name of the record
is "pcbtable", i.e. in your program, you can declare a
variable whose type is "pcbtable".

The format of the PCB is as follows:

Length
Name (bytes) Description

pcbnextl ink 4 Forward link to next pcb on same priority
level

pcbbackl ink 4 Backward 1link to previous pcb on same
priority level

pcbsysidnum 2 Contains the system ID number (the most
significant word of the PID)

pcbidnum 2 Contains the least significant word of
the PID

pcbname 16 The process name

pcbstatus 4 A bit encoded long word representing the

process status. If the bit is asserted (1),

the corresponding status applies.

Bit name Bit # Description

pcbsttoabort 0 Process is to be
scheduled for deletion
(i.e. the next time
this process is
scheduled, send it to
the delete process

routines)
1 Reserved
pcbsttohibernate 2 Process is to be
hibernated

GETPCB-1

Dictionary of WMCS System Calls
_getpcb

pcbstabrinprgs

pcbstexhinprgs
pcbstreal time

pcbstswapped
pcbsthaschild

pcbstnocontc

pcbsterrreport

pcbstextndfcb
pcbstbadseclog
pcbstksam

pcbstcrprces
pcbstcleanup
pcbstinque
pcbstcrashdisp
pcbstalarmset
pcbstsupervisor
pcbstmulcrps
pcbstdisperr
pcbsttracing
pcbstfppending
pcbstsurrogate

GETPCB-2

o N U s

11
12

13
14

15
16

17
18
19
20
21
22
23
24
25
26

Process is currently
being deleted. (i.e.
process is currently
executing the delete
process routines)
Process is executing its
exit handler

Process is in real time
mode

Process has been swapped
Process is in a child
wait state

Process may receive
CTRL/C without aborting
Reserved

Process is reporting a
system error

Reserved

Process is extending the
fcb.sys file

Process is logging a bad
sector

Process is accessing a
KSAM file

Reserved

Process is loading an
image

Set when closing files
when dying

Process is waiting in a
dqueue

If set, suppress crash
displays

An alarm has been set
The call was issued
while the processor was
in supervisor mode
Multiple create process
is in progress.

If set, a crash report
has been displayed

If set, process is
tracing

If set, a floating point
exception is pending

If set, this is an NSP
for networking

pcbtimeslice

pcbmathtype

pcbmathptr

pcbprsize

pcbprivilege

Dictionary of WMCS System Calls
—getpcb

pcbstsurrchild 27 If set, this is the
child of a surrogate
28-31 Reserved

The process time slice value, i.e., the

maximum amount of time (specified in .01

milliseconds. That is, a time slice of 100

represents 1 millisecond.) that the non-real

time process will be allowed to run each

time it is scheduled.

The type of floating point hardware in use

The valid types are:

1 - skyl board

2 - ndp2 board

3 - ffpl board

The math pointer. Contains the index of

this process's window on the hardware floating

point board.

The number of pages of memory currently

allocated to this process. Each page is

4K bytes.

The privileges granted to the current

process. This is a bit encoded field.

The privilege is granted when the

corresponding bit is set.

Bit Name Bit # Description

pcbpvsetpriv 0 setpriv - Process may
assign more privileges
than it currently has.

pcbpvsystem 1 system - Process has
system access to files

pcbpvreadphys 2 readphys - Process can
do physical read
operations to devices
and memory

pcbpvwritephys 3 writephys - Process
can do physical write
operations to devices
and memory

pcbpvsetprior 4 setprior - Process can
increase the process
priority

pcbpvchngsuper 5 chngsuper - Process
can change to
supervisor mode of
execution

GETP(B-3

Dictionary of WMCS System Calls
—getpcb

pcbpvbypass 6 bypass - Process can
access files and
devices independently
of file protection
pcbpvoperator 7 operator - Process can
perform operator
functions
pcbpvaltuic 8 altuic - Process can
have access to files
as though it had the
same user and group id
(uic) as the owner of
the process image
pcbpvworld 9 world - Process can
affect any process
in the system
pcbpvgroup 10 group - Process can
affect any process
with the same group id
as itself
pcbpvnetwork 11 network - Process can
do network accesses
pcbpvsetattr 12 setattr - Process can
modify its attributes
13-15 Reserved

pcbuserid 2 The owner ID of the process (most significant
word of the uic)

pcbgroupid 2 The group ID of the process (least significant
word of the uic)

pcbehildpebadr 4 Address of the pcb for the child process of
this process

pcbparntpcbadr 4 Address of the pcb for the parent process of
this process

pcbecurpriority 2 The current priority level

pcbalarmtime 8 The date and time at which to issue the alamm

pcbtimeout 8 The date and time at which the current
operation will time out

pcbnondelent 2 Non-delete count

pcberiticalent 2 Critical code count

pcbusp 4 The user stack pointer

pcbssp 4 The system stack pointer

pcbevntfl 4 The process event flags

pcbimgsiteid 2 Site ID of the image file

pcbattributes

pcbimgdevsegnum

pcbimgfcbnum
pcbimgsegnum

pcbstacktop
pcbparabortsts
pcbexithdr
pcbabor treason

2

N

Lo N >

Dictionary of WMCS System Calls
—getpcb

Attributes pertaining to the current process.
This is a bit encoded field. The attribute is
given when the corresponding bit is set. Note
that these offsets are defined for being in
the high order word of a longword. Because it
is only a word in the P@B, if you access the
PCB directly you will have to subtract 16 from
these numbers.

Bit Name Bit #

pcbattrdesencrypt 16

Description

If set, do network
encryption with DES
algorithm

If set, do network
encryption with fast
algorithm

If set, user attribute
bit 1

If set, user attribute
bit 2

If set, user attribute
bit 3

If set, user attribute
bit 4

If set, cannot be
killed by WATCHDOG
utility
pcbattrnotswappable 28 If set, cannot swap
this process

If set, pages are
zeroed as they are
allocated

If set, pages are
zeroed as they are
released

If set, other set bits
will be set

The mount sequence number of the device that
contains the image file from which this
process was initiated

The fcb number of the image file from which
this process was initiated

The sequence number of the image file

from which this process was initiated

Address of the top of the system stack
Address of where to put status in parent
Address of the process's exit handler

Reason code why this process terminated

pcbattrfastencrypt 17

pcbattruserl 23
pcbattruser2 24
pcbattruser3 25
pcbattruser4 26

pcbattrnowatchdog 27

pcbattrprezeromem 29

pcbattrpostzeromem 30

pcbattrforceset 31

GETPCB-5

Dictionary of WMCS System Calls

_getpcb

pcblogiclink
pcblogicque
pcbdefdevadr

pcbdefdevseqnum

pcbdef fcbnum
pcbdef segnum

pcbdefstrlen
pcbdefdiradr
pcbdefdirlen
pcbofpadr
pcbkpfdadr
pcbqueadr

pcbnetpcktnum
pcbtrapvecs
pcb0divide
pcbchktrap
pcbtrapv

pcbtracetrap
pcblinel010

pcblinellll
pcbdefexithand
pcbfpinthand
pcbtrapreserved
pcbloaderaddr
pcbevntflque
pcbtrapreturn
pcbtrapnum
pcbmailptr
pcbmailque
pcbdefaul tprot
pcbaltuserid
pcbal tgroupid
pcbhibercent

pcbschedent
pcbnsmaddr

pcbnetpageaddr
pcbmldrl isthead

pcballochdr

=N N (V] L

NN DN b o N b OV b bbb N L 3 8

> ok B

Address of the logical name table for process
Queue for linking logical names

Address of the device table for the default
device for this process

The mount sequence number of the default
device for this process

fcb number for the current default directory
sequence number for the current default
directory

Length of the default device string

Address of the default directory string
Length of the default directory string

List head to open files

List head to open ksam files

Address of the pcb of next entry in
whatever queue this process is waiting in.
Network packet number

Trap handler addresses

Divide by zero trap handler address

Check trap handler address

Overflow trap handler address

Trace trap handler address

1010 emulation trap handler address

1111 emulation trap handler address

Define exit tran handler

Floating point interrupt handler

Reserved space for future trap handlers
Address of loader routine

Queue for event flag synchronization

Trap 0 return address

The current trap number

Address of the head node for pending mail
Queue for processes waiting for mail

The default protection mask

The user ID number of the image file

The group ID number of the image file

Count of how many times this process has been
hibernated

Count of how many times this process has been
scheduled.

List head for named shared memory regions
that are currently mapped into this process
Holds network packet page address

List head for control information by various
MCS loaders.

List head for devices that are allocated to
this process

GETPCB-6

Dictionary of WMCS System Calls
—getpcb

pcborigprivilege 2 Holds original privileges process was created
with before any installed privileges were
added in.

pcbdefaul tnode 4 Contains siteid of current default node
pcbeurtrapnum 4 The number of current SVCs being executed
pcbcurtrapprm 4 The stack address of current trap parameters
pcbremotepid 4 If this is an NSP, this is PID of originator
pcbremoteuic 4 If this is an NSP, this is UIC of originator
pcbremotepriv 2 If this is an NSP, this is priv of originator
pcbrctadr 4 List head for remote connection table
pcbbasepriority 2 Holds base priority level
pcbcurstate 4 Index into scheduling queues for current state
Queue Name Offset Description
pcbest_toswapin 0 List for processes to
be swapped in
pcbest_active 4 List for active
processes
pcbest_asleep 8 All processes above
here are in normal
sleeps
pcbest_iowait 8 List for processes
in I/0 wait
pcbest_hibernate 12 List for processes
in hibernation
pcbest_childwait 16 List for processes
in child wait
pcbest_sgsize 20 Holds size of this
schedul ing queue
pcbswaptslice 2 Holds # of timeslices after swapin to get
pcbremotetslice 2 If this is an NSP, timeslice of originator
pcbremoteattr 2 If this is an NSP, attributes of originator
pcbremoteprior 2 If this is an NSP, priority of originator
pcbnoswapent 2 If non-zero, process is swap critical
pcbpagecnt 2 Holds size of this pcb in pages
pcbreserved 16 Reservedspace
pcbidfield 2 Table ID tag value
pcbidtag $3333 Table ID value
pcbmemory 1024 The process's memory mapping registers
pcbdevstr 94 The default device/directory string

Related Privileges:

None.

GETPCB-7

Dictionary of WMCS System Calls

—getpcb
Parameters:
pid
pcbuff
len
retlen

status

Diagnostics:

- Process ID of the process whose PGB is desired.

- Address of the buffer to receive the PCB

- The number of bytes requested. This number of
bytes will be copied into the users buffer.

- Address of where to return the number of bytes
actually copied into the users buffer.

- Address of a long word to receive the result of
the operation.

errinsufpriv (1) The process lacks the privileges required to
perform the operation.

errprcsnotfnd (2) The specified process is not in the system
process table.

See Also:

—gengy
—getpid

_prclst

- Get PID of ancestor process

- Get process ID (PID) from name
—getpnam - Get process name from PID

- Get PIDs on a priority level

Assembler Calling Sequence:

push
push
push
push
push
jsr

pid
pcbuf £
len
retlen
status

—getpcb

C Function Declaration:

;value - process id

;address - buffer to receive pcb
;value - length of buffer

;address - # of bytes transferred
;address - result of the operation
;get process control block

#include "sys$disk/sysincl.sys/pcbdisp.h”

long

/* get process control block */
/* returns result of the operation */

_getpcb(pid, pcbuff, len, retlen)

long pid; /* process id */
pcbtable *pcbuff; /* buffer to receive pcb */
long len; /* length of buffer */

long *retlen;

/* # of bytes transferred */

GETPCB-8

Dictionary of WMCS System Calls
—getpcb

FORTRAN Subroutine Declaration:

c | get process control block
subroutine _getpcb(pid, pcbuff, len, retlen, status)
integer*4 pid ! process id
character*(*) pcbuff ! buffer to receive pcb
integer*4 len ! length of buffer
integer*4 retlen ! # of bytes transferred
integer*4 status ! result of the operation

Pascal Procedure Declaration:

$%sys$disk/sysincl.sys/pcbdisp.pas

procedure _getpcb({** get process control block}
pid : longint; {** process id}
pcbuff : “array_of char; {** buffer to receive P(B}
len : longint; {** length of buffer}
var retlen : longint; {** § of bytes transferred}
var status : longint {** result of the operation}
); external;

_GETPID
Get process ID (PID) from name.
Description:

This system call returns the process id (pid) of the highest

priority process whose name matches the name supplied in the
call. If there is more than one process with the specified
name, the pid of the process closest to being scheduled again

will be returned.
Related Privileges:
None.
Parameters:

siteid - A long word containing the siteid of the system
on which the named process is executing. A siteid
of zero (0) corresponds to the system on which the
calling process 1is executing.

pname - Address of a 17 byte buffer containing the name
of the process whose pid is requested. The process
name is null terminated with up to 16 valid characters.

pid - Address of a long word to receive the process id.
status = Address of a long word to receive the result of
the operation.

Diagnostics:

errprcsnotfnd (2) The specified process is not in the system

process table.
errinvsiteid (8) The specified site id does not exist.

See Also:
_gengy - Get pid of ancestor process
_getpnan— Get process name from pid

_prclst - Get pid’s on a priority level

Assembler Calling Sequence:

push siteid svalue ~ system id

push pname ;address - process name

push pid saddress - process id

push status s;address = result of the operatiom
jsr _getpid ;get process id (pid) from name

C function declaration:

GETPID-1

Dictionary of MCS System Calls
_getpid

long

_getpid(siteid, pname, pid)]
long siteid;
char pname[17];
long *pid;

Fortran Subroutine Declaration:

c
subroutine getpid(siteid,
integer*4 siteid
character*17 pname
integer*4 pid
integer*4 status

Pascal Procedure Declaration:

procedure _getpid(
siteid : longint;
pname : stringll6];
var pid : longint;
var status : longint

); external;

GETPID-2

/* get process id (pid) from name

/* returns result of the operation */
/* system id */

/* process name */

/*

process id */

! get process id (pid) from name
pname, pid, status)

! system id

! process name

! process id

! result of the operation

{** get process id (pid) from name}
{** system id}

{** process name}

{** process id}

{** result of the operation}

_GETPNAM

Get process name from PID.

Description:

Given a process id (pid) returns a null terminated 17 byte
string containing the process name.

Related Privileges:

None.

Parameters:

pid - Process id of the desired process.

pname - Address of a 17 byte null terminated string to receive
the process name. Allows up to 16 significant characters
plus a null bytes.

status = Address of a long word to receive the result of
the operation.

Diagnostics:

errprcsnotfnd (2) The specified process is not in the system
process table.

See Also:

_gengy = Get pid of ancestor process
_getpid - Get process id (pid) from name
_prclst - Get pid’s on a priority level

Assembler Calling Sequence:

push pid ;value - process id

push pname saddress - receives the process name
push status s;address -~ result of the operation
jsr _getpnam ;jget process name from pid

C function declaration:

/* get process name from pid */

long /* returns result of the operation */
getpnam(pid, pname)
- long pid; /* process id */
char pname[17]; /* receives the process name */

Fortran Subroutine Declaration:

c ! get process name from pid

GETPNAM-1

Dictionary of MCS System Calls
_getpnam

subroutine getpna(pid, pname, status)

integer*4 pid

character*17 pname

integer*4 status
Pascal Procedure Declaration:

procedure _getpnam(

pid ¢ longint;
var pname : string[16];
var status : longint

); external;

GETPNAM-2

! process 1id
! receives the process name
! result of the operation

{** get process name from pid}

{** process id}

{** string to receive process name}
{** result of the operation}

_GETPOS
Get the current file position.

Description:

Given a valid logical unit number (lun), returns the current
file position. This 1is specified as the relative record
position (relative to the front of the file) of the next
record to be read or written.

Related Privileges:
None.
Parameters:

lun - Logical unit number of desired file.
recnum - Address of a long word to receive the record position.

status = Address of a long word to receive the result of
the operation.

Diagnostics:

errinvlfn (132) The logical unit number does not correspond
to an open file.

See Also:

_read - Read from an open file
_setpos - Set the current file position
_write - Write to an open file

Assembler Calling Sequence:

push lun ;value - logical unit number

push recnum ;address -~ position

push status saddress - result of the operation
jsr _getpos ;get the current file position

C function declaration:

/* get the current file position */

long /* returns result of the operation */
getpos(lun, recnum)
- long lun; /* logical unit number */
long *recnum; /* position */

Fortran Subroutine Declaration:

c ! get the current file position

GETPOS-1

Dictionary of MCS System Calls
_getpos

subroutine getpos(lun, recnum, status)

integer*4 lun ! logical unit number
integer*4 recnum ! position
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _getpos({** get the current file position}
lun : longint; {** logical unit number}
var recnum : longint; {** position}
var status ¢ longint {** result of the operation}

); external;

GETPOS-2

GETPRI

Get a process's priority.
Description:
This call allows a process to get its own scheduler priority or the
priority of another process. There are 16 priority levels numbered 0
to 15. Priority level 0 is the highest.

Related Privileges:

None.
Parameters:
pid - A long word containing the process ID of the process
whose priority is to be obtained. 0 refers to the
current process, -1 refers to the parent of the
current process.
priort - Address of a long word to receive the priority level.
status - Address of a long word to receive the result of
the operation.
Diagnostics:

errprcsnotfnd (2) The specified process is not in the system
process table.

See Also:

_prirat - Set priority scheduling ratio
_setpri - Set process's priority
_settmsl - Change scheduling time slice

Assembler Calling Sequence:

push pid ;value - process id

push priort ;address - priority level

push status ;address - result of the operation
jsr _getpri ;get process's priority

Dictionary of WMCS System Calls
_getpri

C Function Declaration:

/* get process's priority */

long /* returns result of the operation */
—getpri (pid, priort)
long pid; /* process id */
long *priort; /* priority level */

FORTRAN Subroutine Declaration:

c ! get process's priority
subroutine _getpri(pid, priort, status)
integer*4 pid ! process id

integer*4 priort ! priority level
integer*4 status | result of the operation

Pascal Procedure Declaration:

procedure _getpri({** get process's priority }
pid : longint; {** process id}
var priort : longint; {** priority level}
var status : longint {** result of the operation}
); external;

GETPROT

Get default protection mask.

Description:

Retrieves the default protection mask for the process.
This is the mask that is used for any files created by
the current process and any child processes of the current

process.

Related Privileges:

None.
Parameters:

prot

Diagnostics:
None.

See Also:

- Address of a long word to receive the file protection

mask. The least significant 16 bit word of this
return value is divided into 4 nibbles. Each nibble
corresponds to a class of users. The bits within each
nibble represent the type of access that class of user
is granted for this file. If the bit is set (1) the
access is granted.

From the least to the most significant nibble
the user classes are:

Ownr - file owner

Grp = processes with the same group id as the owner
Pub - all other processes in the system

Sys = processes with SYSTEM privilege

Sys Pub Grp Ownr

| | | | |

| DWRE | DWRE | DWRE | DWRE |

| |
MSB LSB

From the least to the most significant bits within
the nibbles, the access privileges are:

- Execute access
- Read access

- Write access

- Delete access

(o B i~ I]

GETPROT-1

Dictionary of MCS System Calls
_getprot

_create - Create a fi1

creats = Simplified file creation

e

:ﬁefprot - Set default protection mask

_setfprt- Set file pro

Assembler Calling Sequence

push
jsr

prot
_getprot

C Function Declaration:

void
_getprot (prot)
long *prot;

Fortran Subroutine Declara

c
subroutine get
integer*4

Pascal Procedure Declarati

procedure _getprot(
var prot : long
); external;

tection

.
.

tion:
pro(prot)
prot

on:

int

GETPROT-2

s;address - protection mask
;get default protection mask

/* get default protection mask */
/* no result */

/* protection mask */

! get default protection mask

! protection mask

{** get default protection mask}
{** protection mask}

Get process privilege.

Description:

GETPRV

This call allows a process to inspect the privileges assigned in the

process privilege word of any process in the system.

Related Privileges:

None.
Parameters:

pid

priv

status

Diagnostics:

are to be returned.

current process.

- Process id of the process whose privileges
A pid of 0 represents the
A pid of -1 represents the

parent of the current process.

Address of a long word to receive the privilege
mask containing a bit mask of privileges assigned

to the specified process.

Bit Name Bit Description
pcbpvsetpriv. 0 setpriv
pcbpvsystem 1 system
pcbpvreadphys 2 readphys
pcbpvwritephys 3 writephys
pcbpvsetprior 4 setprior
pcbpvchngsuper 5 chngsuper
pcbpvbypass 6 bypass
pcbpvoperator 7 operator
pcbpval tuic 8 altuic
pcbpvworld 9 world
pcbpvgroup 10 group
pcbpvnetwork 11 network
pcbpvsetattr 12 setattr

13-32 Reserved.

Address of a long word to receive the result of

the operation.

errprcsnotfnd (2) The specified process is not in the system
process table.

Dictionary of WMCS System Calls
—getprv

See Also:

_crproc - Create a new process

—gettmsl - Get scheduling time slice
—setpri - Set process priority
_sSetprv - Set process privilege
_settmsl - Change scheduling time slice

Assembler Calling Sequence:

push pid ;value - process id

push priv ;address - privilege mask

push status ;address - result of the operation
jsr —getprv sget process privilege

C Function Declaration:

/* get process privilege */

long /* returns result of the operation */
—getprv(pid, priv)

long pid; /* process id */

long *priv; /* privilege mask */

FORTRAN Subroutine Declaration:

c ! get process privilege
subroutine _getprv(pid, priv, status)
integer*4 pid ! process id
integer*4 priv ! privilege mask

integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _getprv({** get process privilege}
pid : longint; {** process id}
var priv : longint; {** privilege mask}
var status : longint {** result of the operation}
); external;

GETREL

Get names of rotor list elements.
Description:

This call returns the names of all the devices assigned to a
specified rotor list.

Related Privileges:

none - No privileges are needed to execute this SVC.
Parameters:
rtrnam - This parameter is the address of a null terminated string

which contains the name of the rotor list whose elements
are to be returned. The name supplied will be logically
translated before use.

devnms - This parameter is the address of a string buffer in
which will be placed the names of the devices which
comprise the rotor list named in the rtrnam parameter.
All names are separated by commas. The string is null

terminated.
maxlen - This parameter contains the maximum length of the devnms
string. Up to this number of characters will be returned.
status - Address of a long word to receive the result of the
operation.
Diagnostics:
errnamenull (80) The specified name must not be null.
errnoname (82) The specified name does not exist.
See Also:
_alloc - Allocate an available device.
_dealloc - Deallocate an allocated device.
—getalc - Get names of allocated devices.
_getrtr - Get rotor list names.
_setrtr - Assign devicenames to a rotor list.

Assembler Calling Sequence:

push rtrnam
push devnms

address - name of rotor list
address - element list

e weo

GETREL~1

Dictionary of WMCS System Calls
-getrel

push maxlen
push status
jsr —getrel

value - length of devrms
address - result of the operation
get names of rotor list elements

~o We “o

C Function Declaration:

/* get names of rotor list elements */

long /* returns result of the operation */
_getrel (rtrnam, devnms, maxlen);

char rtrnam([94] ; /* name of rotor list */

char devrms[10251; /* element list */

long maxlen; /* length of devrms */

FORTRAN Subroutine Declaration:

c ! get names of rotor list elements
subroutine _getrel (rtrnam, devrnms, maxlen, status);
character*94 rtrnam | name of rotor list
character*1024 devnms ! element list
integer*4 maxlen ! max length of devrms in bytes
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _getrel ({** get names of rotor list elements}
rtrnam : string(931; {** name of rotor list}
var devnms : stringl[1024]; {** element list}

maxlen : longint; {** length of devrms}
var status : longint {** result of the operation}
); external;

GETREL~2

GEIRTR

Get rotor list names.
Description:

This SVC allows a process to obtain the name of the Nth rotor list
known to WMCS. The first rotor list known to WMCS has an index of 0.
In order to get the name of all the rotor lists, call this SVC using
increasing rotor name indices until the error "erridxrange" is
returned. Because rotor lists may be defined and/or deleted between
calls to the SVC, the name of the Nth rotor list may not persist over
time. If a reliable record of each rotor list is desired, the calling
process should be running in real-time mode between the first and
last call to this SVC.

Related Privileges:

None.
Parameters:
siteid - The site ID of the machine or node that contains the
rotor list.
index - The index into the list of rotor names where the first
rotor name has an index of 0.
rtrnam - Address of where to store the rotor name. The rotor name
string will be null terminated. The string provided must
be at least 10 characters long, allowing for up to 9
significant characters plus a null.
status - Address of a long word to receive the result of the
operation.
Diagnostics:

erridxrange (56) The table ends before the specified occurrence.
See Also:

_alloc - Allocate an available device
_dealloc - Deallocate an allocated device
_getalc - Get names of allocated devices
_getrel - Get names of rotor list elements
_setrtr - Assign devicenames to a rotor list

GETRTR-1

Dictionary of WMCS System Calls
_getrtr

Assembler Calling Sequence:

push siteid ;value - site ID of rotor list
push index ;value - rotor name index

push rtrnam ;address - name of indexth rotor
push status ;address - result of the operation
jsr —getrtr ;get rotor list names

C Function Declaration:

/* get rotor list names */

long /* returns result of the operation */
—getrtr(siteid, index, rtrnam)

long siteid; /* site ID of rotor list */

long index; /* rotor name index */

char rtrnamp[10] /* name of indexth rotor list */

FORTRAN Subroutine Declaration:

c ! get rotor list names
subroutine _getrtr(siteid, index, rtrnam, status)
integer*4 siteid ! site ID of rotor list
integer*4 index ! rotor name index
character*10 rtrnam ! name of indexth rotor list
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _getrtr({** get rotor list names}
siteid : longint; {** gite ID of rotor list}
index : longint; {** rotor name index}
var rtrnam : stringl9]; {** name of indexth rotor list}
var status : longint {** result of the operation}
); external;

GETRTR-2

Get internal tick count.

Description:

_GETTIC

Returns a 64-bit unsigned value which is the number of
.0l second ticks since the system was last booted.

Related Privileges:

None.

Parameters:

siteid

mstime

lstime

status

Diagnostics:

errinvsiteid

See Also:

- A long word containing the system id of the

system whose tick clock is to be read. A system
id of zero (0) corresponds to the system on

which the calling process is executing.

~ Address
32 bits

- Address
32 bits
- Address

of a long word to receive the most significant
of the tick clock

of a long word to receive the least significant
of the tick clock

of a long word to receive the result of

the operation.

(8) The specified site id does not exist.

-gettim - Get the current date and time
_settim - Set system date and time

Assembler Calling Sequence:

push

push
push
push

jsr

siteid

mstime
lstime
status
_gettic

;value - system id
s;address - most significant 4 bytes

sjaddress - least significant 4 bytes
;address - result of the operation

;get intermal tick count

C function declaration:

long

/* get internal tick count */
/* returns result of the operation */

_gettic (siteid, mstime, lstime)

long siteid; /* system id */
long *mstime; /* most significant 4 bytes */
long *1stime; /* least significant 4 bytes */

GETTIC-1

Dictionary of MCS System Calls
_gettic

Fortran Subroutine Declaration:

(o

! get internmal tick count

subroutine gettic(siteid, mstime, lstime, status)

integer*4 siteid
integer*4 mstime
integer*4 lstime
integer*4 status

Pascal Procedure Declaration:

procedure _gettic(
siteid : longint;
var mstime : longint;
var lstime : longint;
var status : longint
); external;

GETTIC-2

! system id

! most significant 4 bytes
! least significant 4 bytes
! result of the operation

{** get intermal tick count}
{** system id}

{** most significant 4 bytes}
{** least significant 4 bytes}
{** result of the operation}

_GETTIM

Get the current date and time.
Description:

Read the current system time of day clock. Returns 8 bytes
containing the contents of the system time of day clock.

The format of the date and time within these 8 bytes is as
follows, where byte 0 is the most significant byte.

Bytes Description

0,1 The current year (counted from A.D. 0). Example, 1983.
2,3 The day of the year (l1..365 or 1..366)

The hour of the day (0..23)

The minute of the hour (0..59)

The second of the minute (0..59)

The fraction of a second (in 100ths of a second) (0..99)

~N oy &

Related Privileges:
None.

Parameters:

siteid - A long word containing the system id of the
system whose time of day clock is to be read.
A siteid of zero (0) corresponds to the system
on which the calling process is executing.

mstime - Address of a long word to receive the most significant
32 bits of the date and time (actually the year and day
of the year)

lstime - Address of a long word to receive the least significant

32 bits of the date and time (actually the hour, minute,
second and fraction of a second)

status =~ Address of a long word to receive the result of the
operation.
Diagnostics:
errinvsiteid (8) The specified site id does not exist.

See Also:

_gettic - Get intermal tick count
_settim - Set system date and time

Assembler Calling Sequence:

push siteid s;value -~ system id
push mstime saddress - most significant 4 bytes

GETTIM-1

Dictionary of MCS System Calls
_gettim

push 1stime
push status
jsr _gettim

C function declaration:

long
gettim(siteid, mstime, lstime)
- long siteid;
long *mstime;
long *1stime;

Fortran Subroutine Declaration:

c
subroutine gettim(siteid,

integer*4 siteid
integer*4 mstime

integer*4 lstime
integer*4 status

Pascal Procedure Declaration:

procedure _gettim(
siteid : longint;
var mstime : longint;
var lstime : longint;
var status : longint
); external;

GETTIM-2

saddress - least significant 4 byteo

s;address - result of the operation
;get the current date and time

/* get the current date and time */
/* returns result of the operation */

/* system id */
/* most significant 4 bytes */
/* least significant 4 bytes */

! get the current date and time
mstime, lstime, status)

! system id

! most significant 4 bytes

! least significant 4 bytes

! result of the operation

{** get the current date and time}
{** system id}
{** most significant 4 bytes}

{** least significant 4 bytes}
{** result of the operation}

_GETTMSL
Get scheduling time slice.

Description:

Retrieve the scheduling time slice of a process. Time slice
is the maximum amount of time the non-real time process will
be allowed to execute each time it 1is scheduled. When the
time slice is expired, other processes are allowed to execute
according to the scheduling algorithm.

Each time slice increment is .0l milliseconds. A time slice
value of 5000 allows the process to execute up to one twentieth
of a second (50 milliseconds) each time it is scheduled. A

time slice value less than 10 results in the process not running
at all.

Note that processes will not always use their full time slice.

When an I/0 operation is performed, the process often relinquishes
control and loses the rest of it’s time slice.

Related Privileges:
None .
Parameters:

pid - The process id of the process whose time slice
is to be retrieved. O represents the current process;
-1 represents the parent of the current process.

tslice - Address of a long word to receive the time slice
value (0..65535). Represents the scheduling time slice
in .01 milliseconds.

status - Address of a long word to receive the result of
the operation.

Diagnostics:

errpresnotfad (2) The specified process is not in the system
process table.

See Also:
_prirat - Set priority scheduling ratio
_setpri =~ Change process’s priority
_settmsl - Change scheduling time slice

Assembler Calling Sequence:

push pid ;value - process id

GETTMSL-1

Dictionary of MCS System Calls

_gettnsl
push tslice
push status
jsr _gettmsl

C function declaration:

long

_gettmsl(pid, tslice)
long pid;
long *tslice;

Fortran Subroutine Declaration:

(o]

;address - time slice
s;address ~ result of the operation

;Ge

/*
/*

/*
/%

''g

t scheduling time slice

Get scheduling time slice */
returns result of the operation */

process id */
time slice */

et scheduling time slice

subroutine gettms(pid, tslice, status)
! process id
! time slice
! result of the operation

integer*4
integer*4
integer*4

pid
tslice
status

Pascal Procedure Declaration:

procedure _gettmsl(

pid ¢ longint;
var tslice : longint;
var status ¢ longint

); external;

GETTMSL-2

{**
{**
{**
{**

get scheduling time slice}
process id}

time slice}

result of the operation}

_GETUIC
Get process UIC.

Description:

Given a process id (pid) returns the user identification
code (uic) which is composed of an owner id and a group id.

Related Privileges:

None.
Parameters:

pid - The process id of the process whose uic is requested.
A process id of O corresponds to the calling process.
A process id of -1 corresponds to the parent of the
calling process.

uic - Address of a long word to receive the user identification
code. This long word is divided into two fields.

The most significant 16 bits constitute the owner
id number. The least significant 16 bits constitute
the group id number (identifying the group to which
the owner belongs).

status =~ Address of a long word to receive the result of
the operation.

Diagnostics:

errprcsnotfnd (2) The specified process is not in the system
process table.

See Also:
_getduic - Get device uic
_getfuic - Get file uic
setduic - Set device uic
“setfuic - Set file uic

setuic - Set process uic

Assembler Calling Sequence:

push pid ;value = process id

push uic s;address - user id code

push status saddress - result of the operation
jsr _getuic ;get process uic

C Function Declaration:

/* get process uic */

GETUIC-1

Dictionary of MCS System Calls
_getuic

long
_getuic(pid, uic)
long pid;
long *uicj;
Fortran Subroutine Declaration:

c

/* returns result of the operation >,

/* process id */
/* user id code */

! get process uic

subroutine getuic(pid, uic, status)

integer*4 pid
integer*4 uic
integer*4 status

Pascal Procedure Declaration:

procedure _getuic(
pid ¢ longint;
var uic ¢ longint;
var status : longint
); external;

GETUIC-2

! process id
! user id code
! result of the operation

{** get process uic}

{** process id}

{** user id code}

{** result of the operation}

_GIODST
Get device status with LUN. -

Description:

Given the LUN of a currently mounted device, this system call copies
the device table and device status into user specified buffers.
(Contrast this system call with _getdst).

WARNING: The format of the device table may change with each
release. The current definition is included in each
release in the file /SYSINCL.SYS/DEVIDISP.*. The record
definition is named "devicetable", i.e. in your program
you can declare a variable of type "devicetable."

The device table for a device contains the information maintained
about the device by the class handler. The device table is divided
into two parts. The first part is device independent, and the second
part is device class dependent. The device independent part 1is as

follows:
Length
Name (bytes) Description
dtnextlink 4 Pointer to the next device table
dtbacklink 4 Pointer to the previous device table
dtdevname 8 The user supplied devicename
dtclass 2 Contains the device class. Valid options are:

Class Name Value Description

dtclassttyspc O Character device (ttyspc)
dtclasstty 1 Character device (tty)
dtclasstapespc 2 Tape device (tapespc)
dtclasstape 3 Tape device (tape)
dtclassdiskspc 4 Disk device (diskspc)
dtclassdisk 5 Disk device (disk)
dtclassnetspc 6 Network dev. (networkspc)
dtclassnet 7 Network device (network)
dtclasspipespc 8 Pipe device (pipespc)
dtclasspipe 9 Pipe device (pipe)

dtclasssyncspc 10 BSC device (syncspc)
dtclasssync 11 BCS device (sync)
dtclassquespc 12 Queue device (quespc)
dtclassque 13 Queue device (que)

GIODST-1

Dictionary of WMCS System Calls

_giodst

dtrefcount

dtdriveid
dtallocpid

dtsiteid
dtsegnum
dtdefuserid

dtdefgroupid

dtdefprotect

dtclassptr
dtdriverptr
dtflags

dtfcbptr

dtblksz

[\

N NN [

N > b

dtclassnondevspc 14 Non-dev device(nondevspc)
dtclassnondev 15 Non-dev device (nondev)
The number of files currently open on the
device

Internal drive ID

The PID of the process that has this device
allocated

The site ID of this device

The mount sequence number of this device. This
will be unique for each device on the machine.
The default userid for this device. This will
be loaded into the DTUSERID variable every
time the DTREFCOUNT variable goes to zero.

The default groupid for this device. This will
be loaded into the DIGROUPID variable every
time the DTREFCOUNT variable goes to zero.

The default protection mask for this device.
This will be loaded into the DTPROTECT
variable every time the DTREFCOUNT variable
goes to zero.

Address of the class handler for this device
Address of the device driver for this device
Device flags. This is a bit encoded word.

Bit Name Bit # Description
dtflfcbflushmode 4 Current flush mode for
disk fcbs
dtflchflushmode 5 Current flush mode for
disk cache
dtflflushing 6 Set if device is
now being flushed
dtflwriteprot 7 Set if the device is
write protected
dtflwritebuf 8 Set if the tape buffer

has been modified
Set if a tape file is
open

dtflfileopen 11

dtfleot 12 Set if tape is at
physical end of tape
dtfleof 13 Set if tape is at

logical end of file
Set if a session is
currently established
Address of the file control block of the
first open file on the device. A list

head pointer. (Used for disks only)

Block size for the device

dtflsessionestb 15

GIODST-2

dtuserid
dtgroupid
dtprotect
dtmntmstime
dtmntlstime

dtidfield
dtidtag

B NN

2
$5555

Dictionary of WMCS System Calls
—giodst

Owner id portion of the uic. Corresponds
to the owner of the device.

Group id portion of the uic. Corresponds
to the owner of the device.

The device protection flags. Uses the

same format at the file protection flags.
The most significant 32 bits (year and day)
of the date and time the device was mounted
The least significant 32 bits (hour, minute,
second and tick) of the date and time the
device was mounted

Table identifier flag

This is the table id value for this table

For TTY, PIPE, SYNC, and NONDEV class devices, the second part of the
table is defined as follows:

Name

dttyreadacc
dttyreadlock
dttywriteacc
dttywritelock

dttywritegh
dttyreadgh

For TAPE class

follows:

Length

(bytes) Description

1

The read access count (the number of
times this device has been opened for
read access)

The read lock count (the number of
times this device has been opened with
read lock)

The write access count (the number of
times this device has been opened for
write access)

The write lock count (the number of
times this device has been opened with
write lock)

The write queue header

The read queue header

devices, the second part of the table is defined as

GIODST-3

Dictionary of WMCS System Calls

—giodst

Length
Name (bytes) Description

dttpreadahead 2 Read ahead flag

dttpfilsegno 4 Sequence number of currently open file or next
file to be opened.

dttpcachesz 2 Number of elements in tape cache

dttpcacheadr 4 Address of cache header

dttpskpcache 4 Address of special cache header for
non-buffered commands, i.e., skip, get or set
status, write file mark

dttpnextblk 4 Next logical block number in the currently
open file

dttpreadpos 2 Actual block number to be read next physically

For DISK class devices, the second part of the table is defined as
follows:
Length
Name (bytes) Description

dtdkflags 2 Disk class flags. This is a bit encoded word.
Bit Name Bit # Description
dtdkflautoflush 0 If set do auto

flushing
dtdkflreadahead 1 If set do readahead
dtdkflforcedwrite 2 If set do forced
writes on all writes

dtdksecshfcnt 2 The sector shift count

dtdkdefalloc 2 The initial file allocation

dtdksecalloc 2 The secondary file allocation

dtdkchreadmin 2 Non-modified cache minimum size

dtdkmaxuserch 2 Number of cache elements (minus 1) that
can be consumed in a single request
to the OS

dtdkszmaxch 2 Size of stack area in bytes used to
hold the addresses of used cache elements
((devcldsmaxcache+2) *4)

dtdkcachecol sz 2 The number of columns in the cache

dtdkcachesze 2 The number of cache sectors

dtdkchaddr 4 Address of disk cache column table

dtdkbmpos 4 Bitmap file's next allocation location

dtdkfcbbmpos 4 Fcbbitmap file's next allocation location

dtdkfcbptr 4 Address of fcb for F(B.SYS

dtdkdirptr 4 Address of fcb for ROOIDIR.DIR

GIODST-4

dtdkfcbbitptr
dtdkbitptr

dtdkalocsecgh
dtdkalocfcbgh

Dictionary of WMCS System Calls
—giodst

Address of fcb for FCBBITMAP.SYS
Address of fcb for BITMAP.SYS
Allocate disk queue head
Allocate fcb queue head

For NETWORK class devices, the second part of the table is defined as

follows:

Name

dtnkreadacc
dtnkreadlock
dtnkwriteacc
dtnkwritelock
dtnkflags
dtnkwritegh
dtnkreadgh

dtnkhwrite
dtnkhuninit

For QUEUE class devices,

follows:

Name

dtqucbptr

Length
(bytes)

Description

1

[

Length
(bytes)

The read access count (the number of

times this device has been opened for

read access)

The read lock count (the number of

times this device has been opened with

read lock)

The write access count (the number of

times this device has been opened for

write access)

The write lock count (the number of

times this device has been opened with

write lock)

Network class flags. This is a bit encoded

word.

Bit Name Bit # Description

dtnkflvcdriver 0 If set, this is a
virtual circuit driver

The write access queue header

The read access queue header

Pointer to network layer write routine

Pointer to network layer uninit routine

the second part of the table is defined as

Description

4

Contains the address of control block page
which is the communication block between the
QUEUE class handler and the queue manager
process

GIODST-5

Dictionary of WMCS System Calls
—giodst

dtqufhptr 4
dtquwriteoper 4
dtquflags 2

Contains the address of the queue control

file header page

Contains how many write operations have
been performed on the QUEUE

QUEUE class flags.

Bit Name Bit #
dtqufldefcrp 0
dtquflgmres 1
dtquflgmnodie 2
dtquflclosed 3
dtquflhalted 4
dtquflclean 5

Bit encoded word.

Description

If set, a default
create process record
is defined. A user can
redirect I/0 directly
to the QUEUE.

If set, the queue
manager process is to
remain resident at
all times.

If set, we are in
critical code and the
queue manager process
cannot die.

If set, the queue is
marked as closed. No
new entries may be
queued.

If set, the queue is
marked as halted. No
pending entries will
be executed.

If set, there are no
entries in the queue
control files.

The device status is a device class dependent 128 byte table. It is

maintained by the device driver for each device.

NOTE: The device status table may change with each release of
the operating system. The current definition is included
in each release in the
DSTATDISP.*. The name of the record included in that file
is "devicestatus," i.e., in your program you can declare a
variable whose type is "devicestatus."

file named /SYSINCL.SYS/

The device status table is divided into two parts. The first half is
device independent and is composed of the following fields:

GIODST-6

Dictionary of WMCS System Calls

—giodst
Length
Name (bytes) Description
dsclassid 2 The device class. Valid classes are:

dsdriverid
dsblksz
dsharderr
dssofterr
dsreadoper
dswriteoper
dsmaxnumdev
dscurnumdev

dsnumtoretry

dserrorreason

w
[V) > [\M] NN BRNDNMDDNDN

dsreserved
dsnexttableptr

(Note that these names are defined in
the devtdisp.* files)
Class Name Value Description

dtclassttyspc 0 Character device (ttyspc)
dtclasstty 1 Character device (tty)
dtclasstapespc 2 Tape device (tapespc)
dtclasstape 3 Tape device (tape)
dtclassdiskspc 4 Disk device (diskspc)
dtclassdisk 5 Disk device (disk)
dtclassnetspc 6 Network dev. (networkspc)
dtclassnet 7 Network device (network)
dtclasspipespc 8 Pipe device (pipespc)
dtclasspipe 9 Pipe device (pipe)
dtclasssyncspc 10 BSC device (syncspc)
dtclasssync 11 BCS device (sync)
dtclassquespc 12 Queue device (quespc)

dtclassque 13 Queue device (que)
dtclassnondevspc 14 Non-dev device(nondevspc)
dtclassnondev 15 Non-dev device (nondev)
The unique id number for this device driver
Block size of the device (e.g. sector size)
The hard error count for the device

The soft error count for the device

The number of read operations on this device
The number of write operations on this device
Maximum # of devices this driver can handle
Number of devices currently mounted using this
device driver

Number of times to retry before reporting a
hard error

This contains the hardware error code for the
last error received on this device

Reserved

Address of next device status table

The second half of the device status table is device class dependent
For TAPE class devices the second part is defined as follows:

GIODST-7

Dictionary of WMCS System Calls

—giodst

Length
Name (bytes) Description
dstpstatus 2 Tape device status. A bit encoded word.
Bit name bit # Description
dstpready 0 Set if device ready
dstpintpend 1 Set if interrupt
pending
dstprewinding 2 Set if tape rewinding
dstpbotdetect 3 Set if device is at
physical BOT
dstpeotdetect 4 Set if device is at
physical EOT
dstpwriteprot 5 Set if tape is write
protected
dstpflagsl 2 Tape status information. A bit encoded word.
Bit name bit # Description
dstpdoraw 0 O=Read after write
disabled
1=Read after write
enabled
dstperrintenb 1 O=Error interrupts are
enabled
1=Error interrupts are
disabled
dstpspeed 1 Tape speed. Values are:
0 - Reserved
dstpspeedl2ips 1 - 12 ips
dstpspeed25ips 2 - 25 ips
dstpspeed30ips 3 - 30 ips
dstpspeed50ips 4 - 50 ips
dstpspeed90ips 5 - 90 ips
dstpspeedl00ips 6 - 100 ips
dstpspeedl25ips 7 - 125 ips
dstpdensity 1 Tape density. Values are:
0 - Reserved
dstpdens800bpi 1 - 800 bpi
dstpdens1600bpi 2 - 1600 bpi
dstpdens3200bpi 3 - 3200 bpi
dstpdens6250bpi 4 - 6250 bpi
dstpdens6400bpi 5 - 6400 bpi
dstpiopbcnt 2 Number of IOPBs allocated to device
dstpcachesz 2 Number of cache elements allocated to device
dstpreserved 46 Reserved
dstpuserfield 8 User defined status

GIODST-8

Dictionary of WMCS System Calls

—giodst

For DISK class devices the second half of the device status table is

defined as follows:
Length

Name (bytes) Description
dsdkintfac 2 Disk interleave factor
dsdkiopbcnt 2 Number of IOPB's allocated to the drive
dsdknumbsect 4 The number of sectors on the volume
dsdksectrack 2 The number of sectors on a track
dsdkheads 2 The number of heads on the device
dsdkcylinders 2 The number of cylinders on the volume
dsdkflagsl 2 Disk status information. A bit encoded word.
Bit Name Bit # Description
dsdkdensityl 0 Device density
dsdkdensity?2 1
dsdkdenssignle 00 - Single density
dsdkdensdouble 01 - Double density
dsdkdensquad 10 - Quad density
dsdkdensreserve 11 - Reserved
dsdkdoraw 3 If set, do Read after
write verify
dsdkwriteprot 4 If set, Device write
protected
dsdkseekdir 15 Current seek direction
dsdkseekincr 0 - Increasing
cylinder numbers
dsdkseekdecr $8000 - Decreasing
cylinder numbers
dsdkcurcyl 2 Current cylinder position
dsdkcachesz 2 Number of sectors in the disk cache
dsdkentryname 16 A null terminated string containing the name
of this type of drive
dsdkreserved 20 Reserved
dsdkuserfield 8 User Defined status

For TIY class devices the second half of the device status table is

defined as follows:

Length
Name (bytes) Description
dstymoderegl 1 Uart mode register 1. This byte is bit

encoded as follows:

GIODST-9

Dictionary of WMCS System Calls

—giodst

dstymodereg2

1

Bit Name Bit #

dstymrlbaudfacl 0

dstymrlbaudfac2 1
dstymrlsyncl

dstymrlasyncl
dstymrlasyncl6é
dstymrlasync64

dstymrlcharlenl 2
dstymrlcharlen2 3
dstymrldw5Sbit
dstymrldwbbit
dstymrldw7bit
dstymrlaw8bit
dstymrlparityctrl 4
dstymrlpardis
dstymrlparenb
dstymrlparitytype 5
dstymrlparodd
dstymrlparevn
dstymrlstopbitsl 6

dstymrlstopbits2 7

dstymrlbinv
dstymrlsbl
dstymrlsbl5
dstymrlsb2
dstymrltransctrl 6
dstymrlnormal
dstymrltrans
dstymrlnumsync 7
dstymrlsyncdouble
dstymrlsyncsingle
Uart mode register 2.
encoded as follows:
Bit Name Bit #
dstymr2baudrtl
dstymr2baudrt2
dstymr2baudrt3
dstymr2baudrt4
dstymr2baud50
dstymr2baud75
dstymr2baudl10
dstymr2baudl1345

wWN O

GIODST-10

Description

Baud factor

00 - sync 1 x clock
rate

01 - async 1 x clock
rate

10 - async 16 x clock
rate

11 - async 64 x clock
rate

Character length

definition

00 - 5 data bits

01 - 6 data bits

10 - 7 data bits

11 - 8 data bits
Parity control

0 - disable parity
1 - enable parity
Parity type

0 - odd parity

1 - even parity
Async mode # of stop
bits :
Async mode # of stop
bits

00 - invalid

01 - 1 stop bit

10 - 1.5 stop bits
11 - 2 stop bits
Sync mode transparent
0 - normal

1 - transparent
Sync mode # of syncs
0 - double sync

1 - single sync

This byte is bit

Description

The baud rate

Baud rate continued
Baud rate continued
Baud rate continued
0000 - 50 baud

0001 - 75 baud

0010 - 110 baud
0011 - 134.5 baud

dstycmdreg

Dictionary of WMCS System Calls

dstymr2baudl50
dstymr2baud300
dstymr2baud600
dstymr2baudl200
dstymr2baudl800
dstymr2baud2000
dstymr2baud2400
dstymr2baud3600
dstymr2baud4800
dstymr2baud7200
dstymr2baud9600
dstymr2baudl9200
dstymr2recvclock 4
dstymr2recextclk
dstymr2recintclk
dstymr2transclock 5
dstymr2trnextclk
dstymr2trnintclk
6-7
Uart command register.
Bit Name Bit #
dstycrtransctrl 0
dstycrtcdis

dstycrtcenb

dstycrdtr 1
dstycrdtrhigh
dstycrdtrlow

dstycrrecvertl 2
dstycrrcdis
dstycrrcenb

dstycrforcebrk 3
dstycrbrknorm
dstycrbrkforce

dstycrsenddle
dstycrdlenorm
dstycrdlesend

dstycrreseterror 4
dstycrnoreset
dstycrreseterr

dstycrrts 5
dstycrrtshigh
dstycrrtslow

dstycropermodel 6

W

GIODST-11

—giodst

0100 - 150 baud
0101 - 300 baud
0110 - 600 baud

0111 - 1200 baud
1000 - 1800 baud
1001 - 2000 baud
1010 - 2400 baud
1011 - 3600 baud

1100 - 4800 baud
1101 - 7200 baud
1110 - 9600 baud
1111 - 19200 baud
Receiver clock

0 - External clock
1l - Internal clock
Transmitter clock

0 - External clock
1 - Internal clock
Reserved

Bit encoded.

Description

Transmitter control

0 - Disable
transmitter

1 - Enable
transmitter

Data terminal ready

0 - DIR high

l] - DTR low

Receiver control

0 - Disable receiver
1 - Enable receiver
Async force break

0 - normal

1 - force break
Sync send DLE

0 - normal

1l - send DLE
Reset error

0 - normal

1l - reset error
Request to send
0 - RTS high

1l - RIS low

Operating mode

Dictionary of WMCS System Calls

—giodst

dstytermtype

dstystatreg

dstycropermode2 7

dstycromnormal
dstycromautoecho
dstycromstripdle
dstycraomlocallp
dstycromremotelp

Operating mode
continued

00 - Normal operation
01 - Async autoecho
01 - Sync strip DLE
10 - Local loop back
11 - Remote loop back

Terminal type definition. This byte contains
values for each type of terminal.

Value Name Value Description
0-15 User defined types
16-246 Reserved
dstywit 247 WIT terminal
dstyhydra 248 Hydra terminal
dstyvt100 250 VI-100 terminal
dstyvt52 251 VI-52 terminal
dstyt7000 252 T-7000 terminal
dstymg8000 253 MG-8000 terminal

dstytvi9l2c 254
dstyvisual200 255
Uart status register.
Bit Name Bit #

™I 912 C terminal
Visual 200 terminal

Bit encoded.

Description

dstysrtransrdy 0

dstysrtranfull
dstysrtranempty
dstysrrecvrdy 1
dstysrrecvempty
dstysrrecvfull
dstysrdschg 2
dstysrdsrnormal
dstysrdsrchange

dstysrparityerr 3
dstysrparnormal
dstysrparerror

dstysroverrunerr 4
dstysrovernormal
dstysrovererror

dstysrframingerr 5
dstysrframnormal

GIODST-12

Transmitter buffer
ready

0 - Transmitter full
1 - Transmitter empty
Receiver buffer ready
0 - Receiver empty

1 - Receiver full
DSR or DCD change

0 - Normal

1 - Change in DSR or
DCD

Parity error

0 - Normal

1 - Async parity
error. Sync parity
error or DLE received
Overrun error

0 - Normal

1 - Overrun error
Framing error

0 - Normal

dstypacketterm

dstyflagsl

1

Dictionary of WMCS System Calls

_giodst

1 - Async framing
error. Sync SYN

char
DCD Detect
0 - DCD high
1l -DCD1low
DSR Detect
0 - DSR high
1l - DSR low

Holds code for packet termination characters

Description

dstysrframerror
dstysrdcddetect 6
dstysrdcdhigh
dstysrdcdlow
dstysrdsrdetect 7
dstysrdsrhigh
dstysrdsrlow
Value Name Value
dstyptnoterm 0
dstyptallterm 1
dstyptcrterm 2

Do not terminate
packet on any control
characters

Terminate packets on
all control characters
Terminate packet on
carriage return <CR>
character

Terminal status information. Bit encoded.

Bit Name bit #
dstycontrolc 0
dstyxonxof £ 1
dstycontrolx 2
dstycontrolz 3
dstycontrolo 4
dstytabmap 5
dstymask8bit 6
dstycontrolu 7
dstybroadcast 8

dstyhandshakel 9
dstyhandshake2 10
dstyhsbell

dstyhssoft

GIODST-13

Description
Control C enable
(0 = enabled)
xon xoff enable
(0 = enabled)
Control X enable
(0 = enabled)
Control Z enable
(0 = enabled)
Control O enable
(0 = enabled)
Tab map enable
(1 = enabled)
Mask 8th bit enable
(0 = enabled)
Control U enable
(0 = enabled)
Broadcast enable
(0 = enabled)
Handshaking type

00 - No handshake,
send bell

01 - Software
handshake

Dictionary of WMCS System Calls

—giodst
dstyhshard 10 - Hardware
handshake
dstyhsnone 11 - No handshake, no
bell
dstydupl ex 11 Full/half duplex

(0 = full duplex)
dstymodemctrl 12 Modem control enable

(1 = enabled)
dstyautobaud 13 Auto baud enable
(1 = enabled)
dstyremote 14 Remote enable
(1 = enabled)
dstyinputcent 2 Count of characters in input interrupt buffer
dstyoutptent 2 Count of characters in output interrupt buffer
dstycolumnpos 2 Current column position
dstyinbufsz 2 Input buffer size in bytes
dstyoutbufsz 2 Output buffer size in bytes
dstywidth 2 The width of the given terminal screen
dstylength 2 The length of the given terminal screen
dstysubreadoper 4 Number of sub-read operations
dstysubwriteoper 4 Number of sub-write operations
dstyreserved 26 Reserved
dstyuserfield 8 User defined status

For PIPE class devices the second part of the device status table is
defined as follows:

Length
Name (bytes) Description
dsppreaderpid 4 Process ID of pending reader
dsppwriterpid 4 Process ID of pending writer
dspppipeid 4 The pipe's ID
dsppbuffersz 2 The buffer size in bytes
dsppbuffercnt 2 Number of characters in the pipe buffer
dsppreadque 4 Address of read queue
dsppwriteque 4 Address of write queue
dsppreserved 32 Reserved
dsppuserfield 8 User defined status

For SYNC class devices the second part of the device status table is
defined as follows:

GIODST-14

Dictionary of WMCS System Calls

_giodst
Length
Name (bytes) Description
dssymoderegl 1 Mode register 1 of the uart (See DSTYMODERHG1
for bit definitions)
dssymodereg2 1 Mode register 2 of the uart (See DSTYMODERHG2
for bit definitions)
dssycmdreg 1 Command register of the uart (See DSTYCMDREG
for bit definitions)
dssytermtype 1 Terminal type definition. A binary value.
Value Name Value Description
dssyibm3741 249 IBM 3741 temminal
dssyibm296 8 250 IBM 2968 terminal
dssyibm2770 251 IBM 2770 terminal
dssyibm3276 252 IBM 3276 terminal
dssyibm3275 253 IBM 3275 terminal
dssyibm2780 254 IBM 2780 RJE
dssyibm3780 255 IBM 3780 RJE
dssystatreg 1 Status register of uart (See DSTYSTATREG
for bit definitions)
dssynumbsync 1 Number of sync characters to write
dssyflagsl 2 Device Status flags. Bit encoded.
Bit Name Bit # Description
dssymultipnt 0 O=point to point
1=multipoint
dssyebcdic 1 O=ascii line
1=ebcdic line
dssycrcccitt 2 O=crc-16
l=crc—ccitt
dssylrc 3 O=crc (on above types)
1=1rc
dssyasctoebcw 4 0=no translate on
write
l=translate ascii to
ebcdic on write
dssyebctoascr 5 0=no translate on read
1l=translate ebcdic to
ascii on read
dssytranstbl2 6 O=translate table 1
l=translate table 2
dssyinputcnt 2 Number of characters in input interrupt
buffer
dssyoutputcnt 2 Number of characters in output interrupt
buffer
dssyinbufsz 2 Input buffer size in bytes

GIODST-15

Dictionary of WMCS System Calls

—giodst

dssyoutbufsz 2 Output buffer size in bytes
dssyprevrderr 4 Error from previous un-verified read
dssyprevwrerr 4 Error from previous no-wait write
dssyprevrdtype 1 Type of previous read

. dssynontran - 0 Non-transparent read

dssytran - 1 Transparent read

dssynumbtrpad 1 The number of trailing pads to write
dssyrecsize 2 Used in transparent mode with ITBs
dssyreserved 28 Reserved
dssyuserfield 8 User defined status

For NEIWORK class devices the second part of the device status table is
defined as follows:

Length
Name (bytes) Description
dsnkflags 2 Device status flags. Bit encoded.
Bit Name Bit # Description
dsnkbyte 0 O=datagram mode
1=byte mode

dsnkmodemctrl 1 O=not enabled
l=modem ctrl enabled
dsnkwindowsize 1 Window size the circuit will use
dsnkreserved 53 Reserved
dsnkuserfield 8 User defined status

For NONDEV class devices the second part of the device status table is
defined as follows:

Length
Name (bytes) Description

dsnduserfield 64 User defined status

For QUEUE class devices the second part of the device status table is
defined as follows:

GIODST-16

Name

Length

Dictionary of WMCS System Calls
_giodst

(bytes) Description

dsquassocdev

dsqusenddev

dsquformname

dsqunumexec

dsqucurnumexec

dsquflags

dsqul ength
dsquwidth
dsqunextentry

dsqutype

dsqubaseprior

dsqureserved
dsquuserfield

9
9

10
2
2
2

= s NN

A null terminated string containing the name
of the physical printer device

A null terminated string containing the name
of the physical device that control messages
are to be sent to

A null terminated string containing the
current form name

This is the maximum number of entries that
can execute concurrently

This is the number of entries that are
currently active
Device Status flags.
Bit Name Bit #

dsquflupdating 0

Bit encoded.
Description

If set, currently
updating queue control
file

If set, the queue
manager process will
remain running even
when queue is empty

If set, when the queue
is mounted it does not
restart jobs in the
queue

This holds the length of the forms of the
printer associated with this queue

This hold sthe width of the forms of the
printer associated with this queue

This is the entry number of the next entry to
be enqued

This contains the type of queue this is. The
values are:
Value Name

dsqutpprint 1

dsqutpjob 2 This is a job entry
. type queue

This contains the priority that entries will

be queued at if they specify the default

priority

Reserved

User defined status

dsquflgmstay 1

dsquflnorestart 2

Value Description

This is a print type
queue

GIODST-17

Dictionary of WMCS System Calls
_giodst

Related Privileges:

None.
Parameters:
lun - Logical unit number (LUN) of a file on the device whose
status you wish to receive.
dtable - Address of a buffer to receive the device table. This
table must be word aligned.
1dtab - Length of the device table. Up to this many bytes
of the device table will be transferred to the user
buffer.
dstat - Address of a 128 byte buffer to receive the device
status.
status - Address of a long word to receive the result of
the operation.
Diagnostics:
errinvlfn (132) The logical unit number does not correspond

to an open file.
errnoreadpriv (144) The process does not have Read Privilege
for the file.

See Also:

_dismnt - Dismount a logical device

_getdnam - Get devicename

_getdst - Get device status

_Jmount - Mount a logical device
_setdst - Set device status

_siodst - Set device status with LUN

Assembler Calling Sequence:

$%syss$disk/sysincl.sys/devtdisp.asm
$%syssdisk/sysincl.sys/dstatdisp.asm

push lun ;value - logical unit number

push dtable ;address - device table

push 1dtab ;svalue - length of device table
push dstat ;address - device status

push status ;address - result of the operation
jsr —giodst :get device status

GIODST-18

Dictionary of WMCS System Calls
_giodst

C Function Declaration:
#include "sys$disk/sysincl.sys/devtdisp.h”

#include "sys$disk/sysincl.sys/dstatdisp.h”
/* get device status with lun*/

long /* returns result of the operation */
—giodst (lun, dtable, ldtab, dstat)
long 1lun; /* logical unit number */
devicetable *dtable; /* device table */
long ldtab; /* length of device table */

devicestatus *dstat; /* device status */

FORTRAN Subroutine Declaration:

c ! get device status with lun
subroutine _giodst(lun, dtable, ldtab, dstat, status)
integer*4 lun ! logical unit number

character*(*) dtable ! device table
integer*4 ldtab ! length of device table
character*(*) dstat ! device status
integer*4 status ! result of the operation

Pascal Procedure Declaration:

$3syssdisk/sysincl.sys/devtdisp.pas
$%syssdisk/sysincl .sys/dstatdisp.pas

procedure _giodst({** get device status with lun}
lun : longint; {** logical unit number}
dtable : “array_of_char;{** device table}
ldtab : longint; {** length of device table}
dstat : “"array_of_char;{** device status}
var status : longint {** result of the operation}

) ; external;

GIODST-19

_GMAIL
Receive interprocess mail.
Description:

Receive a message sent from another process. The message
may be up to 3952 bytes long and may contain any data.

Related Privileges:

none - Allows the process to receive mail addressed to
itself or to another process with the same owner id
and group 1d (uic) as the calling process.

group - Allows the process to receive mail addressed to
any process with the same group id as the calling

process.
world - Allows the process to receive mail addressed to
any other process in the system.

Parameters:

rpid - Process id of the process whose mail you wish
to receive. A process id of O represents the
current process. A process id of -1 represents
the parent of the current process.

mail —- Address of a buffer to receive the message. If
an error is detected, this buffer is not modified.
len - Length of the mail buffer in bytes. This

is the maximum number of characters that can
be received.
timout = The maximum time to wait for mail to become available
for the receiving process. The time out is specified
in .0l seconds.
pid - Address of a long word to receive the pid
of the sender.
retlen = Address of a long word to receive the length
of the message that was returned. If an error is
detected, the value of this long word is set to zero.
status = Address of a long word to receive the result of
the operation.

Diagnostics:

errinsufpriv (1) The process lacks the privileges required to
perform the operation.

errprcsnotfnd (2) The specified process is not in the system
process table.

errnomail (20) VNo interprocess mail, in system message table,
for the process.
errtimeout (128) A request was not completed within the

GMAIL-1

Dictionary of MCS System Calls
_gmail
specified time.
See Also:
_smail =~ Send interprocess mail

Assembler Calling Sequence:

push rpid ;value - intended receiver

push mail ;jaddress - message buffer

push len ;value - maximum message length
push timout ;value - time out

push pid ;address - senders pid

push retlen ;address - actual message length
push status saddress - result of the operation
jsr _gmail ;receive interprocess mail

C function declaration:

/* receive interprocess mail */

long /* returns result of the operation */
_gmail (rpid, mail, len, timout, pid, retlen)

long rpid; /* intended receiver */

char mail([3952]; /* message buffer */

long len; /* maximum message length */

long timout /* time out */

long *pid; /* senders pid */

long *retlen; /* actual message length */

Fortran Subroutine Declaration:

c ! receive interprocess mail
subroutine gmail(rpid, mail, len, timout, pid, retlen, status)
integer*4 rpid ! intended receiver

character*(*) mail
integer*4 len
integer*4 timout
integer*4 pid
integer*4 retlen
integer*4 status

message buffer

maximum message length
time out

senders pid

actual message length
result of the operation

e @ s ot sem e

Pascal Procedure Declaration:

procedure _gmail({** receive interprocess mail}

rpid : longint; {** intended receiver}
mail : “array_of char; {** message buffer}
len : longint; {** maximum message length}
timout : longint; {** time out}

var pid : longint; {** senders pid}

var retlen : longint; {** actual message length}

var status : longint {** result of the operation}

GMAIL-2

Dictionary of MCS System Calls
_gmail

; external;

GMAIL-3

HIBERN

hibern

hibern - Hibernate a process.
Description:

Remove a process from consideration by the scheduler. This
will increment a hibernate refrence count and set the hibernate
status bit so the process can no longer be scheduled. There
are two ways to wake a hibernated process. A call to _wake
will set the refrence count to zero and clear the hibernate
status bit. On the other hand a call to _wakec will decrement
the hibernate count and clear the hibernate status bit when
the count goes to zero. A hibernated process will exist
indefinitely in the process table but in a dormant state until
either the process is terminated by another process, or is
awakened by another process.

Related Privileges:

none - Allows process to hibernate any process with
the same owner id and group id (uic) as the calling
process.

group - Allows process to hibernate any process with
the same group id as the calling process.

world - Allows process to hibernate any process in the
System.

Parameters:
pid - Process ID of the process to be hibernated. 0 refers

to the calling process, -1 refers to the parent of the
calling process.

status - Address of a long word to receive the result of
the operation.

Diagnostics:
errinsufpriv (1) The process lacks the privileges required to
perform the operation.
errprcsnotfnd (2) The specified process is not in the system
process table.
See Also:
_wait - Pause for a period of time

_wake = Wake a hibermated process
—wakec - Wake a hibernated process with count

HIBERN-1

Dictionary of WMCS System Calls
hibern

Assembler Calling Seguence:

push pid ;value - process id
push status ;address - result of the operation
jsr _hibern shibernate a process

C function declaration:

/* hibernate a process */
long /* returns result of the operation */

_hibern (pid)
long pid; /* process id */

Fortran Subroutine Declaration:

c ! hibernate a process
subroutine hibern(pid, status)
‘integer*4 pid ! process id
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _hibern({** hibernate a process}
pid : longint; {** process id}
var status : longint {** result of the operation}
) ;. external;

HIBERN-2

_INSTALL
Install privileged file.
Description:

Allows a process to set the image file privileges on an open file, or
to establish that a certain file is a device driver.

If the file is an image file, then when a process is created from
this image, it will have all of the privileges specified by the
_install system call, plus whatever privileges were specified by the
creating (parent) process.

If a file containing a device driver is installed, then a process can
mount a device using that driver without having to have operator
privilege. That is, processes which do not have operator privilege
cannot mount deviceswith drivers that are not installed. Note that
the driver file need not be given any privileges.

If the specified file is already installed, the function performed by
this system call is to redefine the privileges for the file. No error
is returned.

Note that an installed file is identified by the device on which it
resides and its fcb.seq number. The filename is not used to identify
the file. That is, loading a new file with the same name as an
installed file does not install that file. Also, renaming an
installed file does not affect the fact that the file is installed.

This operation is valid on any disk file.

To successfully set file privileges, the calling process must have
operator privilege, and must have successfully opened the file for
write access. The calling process can set any privileges that it (the
process) already has. It must have setpriv privilege to grant more
privileges than the calling process has.

Related Privileges:

none - The process cannot successfully install any file.

operator - Allows the calling process to install files and to
grant them any privileges that the calling process has.

setpriv - If the calling process also has operator privilege, this
privilege allows the calling process to install files
and to grant that file any privilege.

INSTALI~1

Dictionary of WMCS System Calls
_install

Parameters:

siteid - A long word containing the site id of the system on which
the privileged process is to be installed. A siteid of
zero corresponds to the system on which the calling
process is executing.
fname - Address of a null terminated string containing the
name of the file whose privileges are to be set. The
string will be translated automatically by WMCS to its
logical equivalence. This string may contain up to 93
significant characters followed by a null.
priv - The privilege mask contains a bit mask of privileges to
be given to the file. If the value of this parameter is
-1, the specified file is given the same privileges as
the calling process. If the value of this parameter is
not -1, it represents privileges which are bit encoded
as follows:
Bit Name Bit # Description
pcbpvsetpriv. 0 setpriv
pcbpvsystem 1 system
pcbpvreadphys 2 readphys
pcbpvwritephys 3 writephys
pcbpvsetprior 4 setprior
pcbpvchngsuper 5 chngsuper
pcbpvbypass 6 bypass
pcbpvoperator 7 operator
pcbpvaltuic 8 altuic
pcbpvworld 9 world
pcbpvgroup 10 group
pcbpvnetwork 11 network
pcbpvsetattr 12 setattr
13-32 Reserved. Must be set to zero.
status - Address of a long word to receive the result of the
operation.

Diagnostics:

errinsufpriv (1) The process lacks the privileges required to
perform the operation.

errinapft (12) The file type is inappropriate for the given
operation.

errnowriteacc (142) The process does not have write—-access to the
specified file.

errinvcloper (173) The device class is inappropriate for the
operation.

INSTALL~2

See Also:

Dictionary of WMCS System Calls
_install

-crproc - Create a new process

—deinst - Deinstall privileged file
—getinst - Get installed privileged file
_Jmount - Mount a logical device

Assembler Calling Sequence:

push siteid

push fname
push priv
push status
jsr _install

C Function Declaration:

svalue - system id

;address - file name

;value - privilege mask

;address - result of the operation
;install privileged file

/* install privileged file #*/

long /* returns result of the operation */
_install(siteid, fname, priv)

long siteid; /* system id */

char fnamel[94]; /* file name */

long priv; /* privilege mask */

FORTRAN Subroutine Declaration:

C

! install privileged file

subroutine _instal(siteid, fname, priv, status)
integer*4 siteid ! system id

character*94 fname ! file name
integer*4 priv ! privilege mask
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _install({** install privileged file}
siteid : longint; {** gystem id}
fname : stringl931; {** file name}
priv : longint; {** privilege mask}
var status : longint {** result of the operation}

); external;

INSTALIL~3

_KCLALL

Close all ksam files.

Description:

Close any ksam files that have been opened by the

current process. Note that this happens automatically
when the process is deleted.

Related Privileges:
None.
Parameters:

siteid - A long word containing the system id of the system
on which all ksam files are to be closed. A siteid
of zero (0) corresponds to the system on which the
calling process is executing.

status = Address of a long word to receive the result of
the operation

Diagnostics:

errnoclass (185) The device class handler was not loaded when

the system was booted.
errdevwrtprot (269) The specified device is write-protected.
Device integrity errors

See Also:

_kclose - Close a ksam file
_kopen - Open a ksam file

Assember calling sequence:

push siteid ;value - system id
push status ;address ~ result of the operation
jsr _keclall ;close all ksam files

C function declaration:

/* close all ksam files */
long /* returns result of the operation */
_kclall(siteid)

long siteid; /* system id */

Fortran Subroutine Declaration:

c ! close all ksam files

KCLALL-1

Dictionary of MCS System Calls
_kclall

subroutine kclall(siteid, status)
integer*4 siteid ! system id
integer*4 status ! result of the operation

Pascal Procedure Declaration:

procedure _kclall({** close all ksam files}
siteid : longint; {** system id}
var status : longint {** result of the operation}

); external;

KCLALL-2

_KCLOSE
Close a KSAM file.

Description:

This SVC closes a currently open KSAM file (both data and key files)
that has been opened by the calling process. Any records still locked
by the closing process are automatically unlocked.

_KCLOSE writes both the key and data files to disk if the flush flag
is set. If the flush flag is set on a disk device, all disk cache
buffers will be written to the device. If the device is a tape, the
tape buffer is written to the device.

If the delete mode bit is set, the process must have write privilege
to the directories containing the data and key files and delete
privilege to both files for the files to be successfully deleted.

Related Privileges:

none - The file will be closed. Allows optional deletion
of the data and key files if the process has privileges
as described above. Returns a warning if the process
specified delete upon closing and does not have the
required privileges.

altuic - Allows the process to delete the files upon closing
if the owner of the image file for the current process
has privileges to the files as described above.

bypass - Allows the process to delete the files upon closing
independent of the process's privileges to the file.

system - Allows the process to delete the files upon closing
if the system has privileges to the files as described
above.

Parameters:

lun -~ The logical unit number of the file to be closed. The
lun is obtained from _kopen or _Kkcreat.

mode - Bit encoded long word specifying action to be

taken upon closing. If the bit is zero (0), no
action is performed. The following actions apply
when the specified bit is set to one (1).

KCLOSE-1

Dictionary of WMCS System Calls

_kclose
status
Diagnostics:
errinvlfn
errnodelpriv

Bit Name Bit #
cldelete 0

clnotruncfile 1

clnodelete 2

clforcedwrite 3

clsupalldelete 4

clzerodelete 5

6-31

Description

Delete the data and key files after
closing. If the file is currently
open by another process, the actual
deletion of the files is delayed
until after all processes have
closed the files.

No truncate - Specifies that when
the disk file is closed, the

extra physical sectors allocated
to the file are not to be released.
For tape devices, this bit
specifies that the last block
written to the tape should be
written as a full sized block (as
opposed to a variable sized block).
No delete - Overrides the delete
upon closing request specified by
the _open system call.

Forced write - Writes to the
device all data in system buffers
associated with this lun. If an
error occurs it will be reported
as a warning to the calling
process. The file is always

closed.

Suppress all deletes - Overrides
all deletes that have been set for
the file, i.e., opdelete or a
delete set by a different process.
Zero delete - Zero each sector of
the file before deleting the file.
This bit is only valid if the file
is being deleted (via cldelete or
some other way) .

Reserved. Must be set to zero.

Address of a long word to receive the result of the

operation.

(132) The logical unit number does not correspond to

an open file.

(146) The process does not have Delete Privilege for

the file.

KCLOSE-2

Dictionary of WMCS System Calls

_kclose
errnoclass (185) The device class handler was not loaded when
the system was booted.
errdevwrtprot (269) The specified device is write-protected.

See Also:
_delete - Delete a file
_kclall - Close all KSAM files
_kcreat -~ Create a KSAM file
_kopen - Open a KSAM file
Assember Calling Sequence:
push lun svalue - logical unit number
push mode ;value - mode word
push status ;address - result of the operation
jsr _kclose ;close a KSAM file
C Function Declaration:
/* close a KSAM file */
long /* returns result of the operation */
_kclose(lun, mode)
long lun; /* logical unit number */
long mode; /* mode word */

FORTRAN Subroutine Declaration:

c ! close a KSAM file
subroutine _kclose(lun, mode, status)
integer*4 lun ! logical unit number
integer*4 mode ! mode word

integer*4 status | result of the operation

Pascal Procedure Declaration:

procedure _kclose({** close a KSAM file}
lun : longint; {** Jogical unit number}
mode : longint; {** mode word}
var status : longint {** result of the operation}
); external;

KCLOSE-3

_KCREAT
Create a KSAM file.

Description:

This SVC creates new KSAM data and keys files and initializes the key
files using information provided by the user process. The "current
key" is set to zero, and the "current record pointer" is undefined
(the current position pointer is just before the first record in the
file) as defined by the zeroth key.

Upon successful completion of _kcreat, the KSAM file is opened and
the logical unit number is returned. Use the logical unit number for
all subsequent accesses to the file.

Unless the process has bypass privilege, it must have read and write
privilege to the device to contain the files, execute privilege for
all directories in the path leading to the files, and read and write
privilege to the directories to contain the files for the file to be
successfully created.

NOTE: Each key may be up to 255 bytes long. Word and longword
keys and Kkey segments must 1lie on word boundaries (even
byte) within memory and within the data record. Word keys
and key segments must be two-byte multiples, and longword
keys and key segments must be four-byte multiples.
Assigning either a byte value in a record definition may
misalign word or longword key fields that follow. You may
have to offset the other keys to align them on word or
longword boundaries.

Related Privileges:

none - Allows creation if the process has access as described
above.

altuic - Allows creation if the owner of the image file for the
current process has access as described above.

bypass - Allows the process to create the file independent of the
file protection.

system - Allows creation if the system has access as described
above.

KCREAT-1

Dictionary of WMCS System Calls

_kcreat
Parameters:
fname
kfname
mode

- Address of a null terminated string containing the

name of the KSAM data file to be created. It may be
fully qualified with device, directory, file extension
and version number qualifications. An extension of

.DAT is recommended. This string will be translated
automatically by WMCS to its logical equivalent. This
string may contain up to 93 significant characters
followed by a null.

Address of a null terminated string containing the

name of the KSAM key file to be created. It may be

fully qualified with device, directory, file extension
and version number qualifications. An extension of

.KEY is recommended. This string will be translated
autamatically by WMCS to its logical equivalent. This
string may contain up to 93 significant characters
followed by a null.

A bit mask that specifies the type of access allowed to
this and other users during the time the KSAM files pair
is open. The following bits, when set, have the following
meanings:

Bit Name Bit # Description

opreadacc 0 Read access - Requests permission
to read the file.

opwriteacc 1 Write access - Requests permission
to write the file.

opreadlock 2 Read lock - Requests permission

for exclusive read access to the
file. Other processes may not
read the file(s).

opwritelock 3 Write lock - Requests permission
for exclusive write access to the
file. Other processes may not
write the file(s).

opdelete 4 Delete - Requests that the files
be deleted upon closing.

5 Reserved.

KCREAT-2

reclen

prot

Dictionary of WMCS System Calls
_kcreat

opfastread 6 Fast read - Specifies that the
file will be read asynchronously.
That is, that control returns to
the user process before the data
have actually been read. As
records are read, they will be
transferred directly into the
process's logical address space
bypassing the device cache. This
bit is only valid for disk class
devices. Other requirements are
1) Supports only requests for
complete sectors only, 2) Process
buffer must be on a word boundary,
3) Request cannot cross a 4 Kbyte
page boundary. Use the _frdwait
system call to determine when
asynchronous reads are complete.
opnextfile 7 Open next file - On a tape device,
specifies to open the "next" file
without regard to the filename.
opnordahead '8 No read ahead - Specifies that
read ahead is not to be done on
the opened file.
opnotruncfile 9 No truncate - Specifies that when
the file is closed the extra
physical sectors allocated to the
file are not to be released.
10 Reserved.
11 Reserved.
opzerodelete 12 Zero delete - Zero each sector of
the file before deleting the file.
This bit is only valid if the file
is being deleted (via cldelete or
some other way) .
13-31 Reserved. Must be set to zero.
Record length. A value that represents the length in
bytes of each record in the KSAM data file. The record
length must be in the range of 4 to 65534 bytes
inclusive. The record size specified by the calling
process is internally incremented by one to include
a deletion flag byte.
File protection mask. The least significant 16 bit
word of this parameter is divided into 4 nibbles.
Each nibble corresponds to a class of users. The bits
within each nibble represent the type of access that
class of user is granted for this file. If the bit is
set (1), the access is granted.

KCREAT-3

Dictionary of WMCS System Calls
_kcreat

From the least to the most significant nibble the user
classes are:

Ownr - file owner

Grp - processes with the same group ID as the owner
Pub - all other processes in the system

Sys - processes with SYSTEM privilege.

Sys Pub Grp Ownr

| | | | |

|DWRE | DWRE | DNRE | DWRE |

I I
MSB LSB

From the least to the most significant bits within the
nibbles, the access privileges are:

E - Execute access
R - Read access

W Write access
D Delete access

The value SFFFFFFFF (-1) is a reserved value that means
that the user's default protection mask is to be used.

numbuf - A value that specifies the number of 1-Kbyte buffers to
allocate for file manipulation. The value supplied is
used as follows:

- If the number supplied is zero, the number of
buffers allocated is four times the number of
defined keys.

- If the number supplied is not zero, but is a multiple
of four, it is used "as is."

- If the number supplied is not zero and is not
divisible by four, the number of buffers allocated
is the number specified, rounded up to the next
multiple of four.

In general, at least four buffers per key should be
available for each key defined in the key definition
table (see below) . Optimal throughput is achieved by
allocating sufficient buffers that the top two levels

of each B-tree can remain in the KSAM cache at all times.
The number of buffers needed to contain the top two
levels of any given B-tree is:

1 + (1006/ (<key-length>+4))

where <key-length> is the length of the key in bytes
rounded up to an even number.

KCREAT-4

Dictionary of WMCS System Calls
_kcreat

ktable - Address of an array that describes the keys that will be
used to organize the data file. This table must be word
aligned. You may define as many keys as you want," each
of which can contain up to 15 segments, subject to the
limitation that the total length of the array may not
exceed 3500 bytes. Typically, this allows you to define
more than 300 keys.

The very first word in the array specifies how many keys
you are defining.

NOTE: When you are creating a file, enter the
number of keys you want to define. When you
later access this file, refer to the first
of the keys as key 0. For example, if you
place a value of 5 in the first word of the
KTABLE array, specifying that you want to
define 5 keys for this file, the keys will
be designated key 0, key 1, key 2, key 3,
and key 4.

The rest of the array contains the definitions of these
keys. Thus, the array looks like:

I Number of key definitions I

First key definition
(4 to 32 words)

Second key definition
(4 to 32 words)

KCREAT-5

Dictionary of WMCS System Calls
_kcreat

You must specify at least six pieces of information in
the key table array for each key. These are:

- data type

number of segments in the key

whether duplicate values are allowed in the key
the total length of the key in bytes

the starting position of each segment of the key
the length of each segment of the key

The length of the key definition is from 4 to 32 words,
depending on the number of segments defined for the key.
Each key definition is organized as follows:

Word 0 of key definition
This word contains the duplicate key flag bit, the
data type, and the number of segments in this key.

| 1511411311211111019181 7 1 6 I 51 413 121110

| Reserved IDupl Key type | Number of seg |

The field positions of these data are:

Bits 15-8 -Reserved for internal use by KSAM.
See the description of the _kinfo
SVC for details.

Bit 7 -Duplicate key flag. A value of zero
means that duplicate key values are
allowed; a value of one means no
duplicates are allowed.

Bits 6-4 -Key type. The following are valid
key types:

000 8 bit unsigned byte (character)

001 8 bit signed byte

010 16 bit unsigned integer

011 16 bit signed integer (integer)

100 32 bit unsigned long integer

101 32 bit signed long integer (long int.)
110 reserved for future use by WICAT

111 reserved for future use by WICAT

Bits 3-0 -Number of segments in the key. This value
must be between 1 and 15 (inclusive).

KCREAT-6

Dictionary of WMCS System Calls
_kcreat

Word 1 of key definition
This word contains the total length of the key in bytes.
Valid values are from 1 to 255 (inclusive).

Word 2 of key definition
This word contains the starting position within the
record of the first segment of the key. The first byte
of the record is designated byte zero.

Word 3 of key definition

This word contains the length in bytes of the first

segment of the key. The length is subject to the

following restrictions:

- No key or key segment (of any type) may exceed 255
bytes in length.

- Integer key and key segment lengths must be
multiples of 2.

- Long integer key and key segment lengths must be
multiples of 4.

- Character key and key segment lengths may be any
value from 1 to 255 characters (inclusive).

Words 4 and 5 of key definition
These words (if present) are of the same format as
words 2 and 3 but contain information concerning
segment 2 of the key.

Words 6 and 7 of key definition
These words (if present) are of the same format as
words 2 and 3 but contain information concerning

segment 3 of the key.

Words 30 and 31 of key definition
These words (if present) are of the same format as
words 2 and 3 but contain information concerning
segment 15 of the key.

Example of key definition:

If a KSAM file is defined as having two keys, the
first a long word key with 1 segment and the second
a character key with 4 segments, the key table array
may look like this:

KCREAT-7

Dictionary of WMCS System Calls

_kcreat
Position Value Meaning
1 $2 Number of keys to follow
Key 0 Definition
2 $51 Duplicate keys allowed, long word
key, 1 segment
3 $4 Total length of key 0 in bytes
4 $0 Starting position of the key within
the record
5 $4 The length of the segment is 4 bytes
Key 1 Definition
6 $84 No duplicate keys allowed, character
key, 4 segments
7 $2A Total length of key 1 in bytes
8 $21 Starting position of the first segment
of the key within the record
9 $10 Length of first segment of key
10 $4 Starting position of the second
segment of the key within the record
11 $5 Length of second segment of key
12 $40 Starting position of the third segment
of the key within the record
13 $11 Length of third segment of key
14 $0 Starting position of the fourth
segment of the key within the record
15 $4 Length of fourth segment of key
Note that different key definitions may be created
from the same portion of the data record. In this
example, bytes 0-3 of the record are used as the
first segment of key 0 and the last segment of key 1.
lun - Address of a long word to receive the logical unit number
from _kcreat after successful creation of the file.
status - Address of a long word to receive the result of
the operation.
Diagnostics:
errinvvernum (129) A file's version number cannot be greater than
65535.
errinvdevnam