
ValidSIM'™ REFERENCE MANUAL

Manual Number: MN224 Rev.A

15 July 1986

Valid Logic Systems, Incorporated
2820 Orchard Parkway
San Jose, CA 95134

(408)945-fHOO Telex 371 9004
FAX 408 262 2599

Copyright© 1986 Valid Logic Systems, Incorporated

This document contains confidential proprietary information which is
not to be disclosed to unauthorized persons without the prior written
consent of an officer of Valid Logic Systems Incorporated.

The copyright notice appearing above is included to provide statutory
protection in the event of unauthorized or unintentional public disclo­
sure.

ii

MANUAL REVISION HISTORY

Rev Dat.e Software Reason for Change
Release

A 7-15-86 ValidSIM Initial release.
Release 2.1

7 /15/86 iii

Section 1
Introduction

TABLE OF CON'IENTS

Theory of Operations... 1-2
Signal States.. 1-2
Bidirectional Nets... 1-4
Combination of States...................................... 1-4

Getting Started... 1-6
Selecting the Appropriate Simulation.............. 1-6
Window Sizes ... 1-7
Directives Files ... 1-7
Starting Simulation... 1-8

The Simulator Display.. 1-0
Status Lines.. 1-10
Echo Area... 1-11
Display Area... 1-12
Display Modes.. 1-12

Displaying Signal Values .. 1-13
Signal Values in Bus Mode.............................. 1-14
Signal Values in Waveforms Mode................. 1-14
Graphics for Signal Values............................... 1-14
Using Character Graphics................................ 1-16

Working with Signal Values................................... 1-17
Opening Signals .. 1-17
Opening Memories... 1-18
Initialization of Signals and Memories............ 1-18
Changing Signal Values.................................... 1-19
Changing Memory Values............................... 1-19

Advancing Simulation Time.................................. 1-19
Simulator Output.. 1-20

Listing File.. 1-20
Log File... 1-21
Command File.. 1-21
Waveform Input File.. 1-21

File Names.. 1-21
Split-Screen Simulation.. 1-22

Differences from Full-Screen Simulation........ 1-22

7/15/86 v

Table of Contents Simulator

Section 2
Logic Simulat.or Directive~

Section 3
Waveforms Mode

Waveform Commands:.. 3-2

Section 4
Breakpoints and Patching

Breakpoints .. ~...... 4-1
Breakpoint Commands... 4-2
Combining Breakpoint Commands....................... 4-5
Expression Syntax.. 4-6
Logic Patching 4-7

Section 5
Tracing and Tabular 1/0

Tracing.. 5-1
Requirements for Standard Tracing................ 5-1
Signal Mapping... 5-2
Value Information for Tracing......................... 5-2
File Formats for Tracing.................................. 5-2
Signal Mapping File Format............................. 5-3
Value File Format.. 5-5

Tabular 1/0 ... 5-6
File Format for Tabular l/O 5-6
Stirn ulating Circuits with Tabular 1/0 Files.... 5-7
Sample Tabular 1/0 Use.................................. 5-8

Section 6
Loading Memories

Section 7
Simulat.or Commands

vi 7/15/86

Simulator

Section 8
Delays

Table of Contents

Delay Properties... 8-1
Delay Property.. 8-1
Rise and Fall Properties................................... 8-2
Pin-to-Pin Delay... 8-2
Rise_Fall Directive... 8-3

Examples Using Delay Properties.......................... 8-4
Pin Delays with Rise/Fall Delays.................... 8-4
Pin Delays without Rise/Fall Delays............... 8-5

Delay Estimator.. 8-6
Interaction of Wire Delays

with Delay Estimator.................................... 8-7
Computing Net Dependent Delays................. 8-7
Using the Delay Estimator............................... 8-10

Expression Evaluator... 8-12
Wire Delay Feedback... 8-15

\Vire Delay File.. 8-15
Using a Wire Delay File................................... R-17

Section 9
Simulation Models

Using Simulation Primitives.................................. 9'-1
Simulator Primitives... 9-3
Logic Gate Pritnitives... 9-3
Buff er Primitives.. 9-5
JI(Prhnitive.. 9-6
Latch Primitives... 9-7
Register Primitives... 9-9
Multiplexer Primitives.. 9-13
Memory Ptimitive .. 9-14
Counter/Shift Register Primitive........................... 9-16
Arithmetic Primitives... 9-18
Timing Checker Primitives.................................... 9-20
Encoder and Decoder Primitives........................... 9-23
Other Prhnitives ... 9-24
U ser-Code<l Primitives... 9-25
Properties Affecting Simulation.............................. 9-25

Section 10
Error Messages

7 /15/86 vii

Table of Contents 'Simulator

Appendix A
S-32/S-320 Additional Features

Save and Restore Function.................................... A-1
Save Command.. A-1
Restore Command... A-2
Restore Directive... A-2

Simulator Interruption... A-2
User-Coded Primitives... A-3
The Pascal Code for Systems Running UNIX...... A-4
The Pascal Code for Systems Running VMS........ A-5
The Pascal Code for Systems Running CMS........ A-6
Running a Simulator Containing UCPs................. A-8

Running Your Simulator Under UNIX........... A-8
Running Your Simulator Under VMS............ A-8
Running Your Simulator Under CMS............ A-9

Body Definition for UCPs...................................... A-9
UCP Pinout Descriptions....................................... A-10

User_Prim_Config Directive............................ A-13
Own Storage in UCPs A-13

Functions Provided for Use in UCPs.................... A-13
Example of a User-Coded Primitive..................... A-18

User Configuration File................................... A-19
VMS Pascal Module Example.......................... A-20

Appendix B
PC AT Additional Features

Save and Restore Function.................................... B-1
Save Command.. B-1
Restore Command... B-2
Restore Directive... B-2

Index

viii 7 /15/86

SECTION 1
IN1RODUCTION

The Logic Simulator represents a new approach to simula­
tion of large digital systems. By separating timing
verification from simulation, timing verification has been
made more comprehensive and simulation has been made
conceptually simpler and thus much faster. Optional timing
analysis features in the Simulator also allow the user to per­
form some timing verification if desired.

First the design is entered using GED the Graphics Editor
and the signals are named using the SCALD language.
Buses can be drawn as a single wire by including a bit sub­
script in the signal name. The SIZE and TIMES properties
can be used to let a one-bit section represent a multibit­
wide part. After the design is entered, you call the Simula­
tor. The Simulator calls the Compiler to expand the design
using the simulation models for each library part used in
the design. The Compiler works on a design a page at-a­
time so that when a small change is made to a design, only
a single page needs to be recompiled. For special purposes,
the Compiler may also be called directly and a single large
expansion file may be produced for a design. See the Com­
piler Reference manual for details.

Although designed primarily as an interactive tool, the
Logic Simulator may also be run as a batch process. All
commands used during a simulation session may be
entered into a single command file and the
COMMAND_FILE directive may be entered in the Simula­
tor Directives file to direct the Simulator to use the com­
mands in the specified file.

The designer-may use command files to exercise a design in
a way that is analogous to a diagnostic program. Since
command files may be stored for repeated use, verification
of a previously checked circuit can easily be repeated to

7/15/86 1-1

Introduction Logic Simulator

ensure that it is still working correctly after design
modifications.

1.1 THEORY OF OPERATIONS

The Logic Simulator initializes the system to a fixed state
and waits for a command from the user. The user enters
commands interactively (or through a command file) to
OPEN the signals that need to be tracked, to DEPOSIT ini­
tial values to some signals, and to advance simulated time.
It is frequently necessary to provide an external stimulus to
a design, for example, a simulated disk data stream. Appli­
cation of stimulus may be done through a command file,
data file, or in many cases, by simulating an additional cir­
cuit specifically drawn to provide the stimulus.

After each SIMULA TE command, the Simulator reports
signal values for all OPENed signals. In Bus Mode simula­
tion (useful for very large designs) instantaneous signal
values are given for each signal. A history of previous sig­
nal values is not kept.

In Waveform Mode simulation, the signal value of each
signal is recorded as a waveform. The previous signal
values for each OPENed signal are kept for the amount of
simulated time specified with the HISTORY command.

SIGNAL STATES

Each bit of each signal in the Simulator assumes one of the
20 internal signal states used by the Simulator. These 20
internal states are mapped into 12 states that are used to
report signal values to the user. The eight states that are
not used to report signal values are special states that are
used internally.

Each state is made up of two parts, a VALUE and a
STRENGTH. The VALUE of a signal is its logical level.
There are three possible signal values. These are:

1-2 7 /15/86

Logic Simulator Introduction

Si al Value Mean in

0 Logical 0
1 Logical 1
U Unknown

(could be 0 or 1)

The STRENGTH of a signal describes the type of output or
outputs that drive the signal to its VALUE. The possible
STRENGTHs are: .

Driven to level
without resistance

SOFT Driven to level
through resistance

MEMORY Driven to level and holdillg
(due to charge storage)

INDETERMINATE Could be HARD, SOFT
or MEMORY

MEMORY STRENGTH signals maintain their VALUE for
the period of time specified with the DECAY_TIME direc­
tive. After this time they assume UNDEFINED VALUE.
DECAY_TIME is measured from the time the signal was
last driven to the specified value. All signals in a design
have the same decay time. The default value for
DECAY _TIME is infinite.

The combination of each of the three signal values with
each of the four signal strengths gives the 12 signal states
that are reported. The combination of INDETERMINATE
strength and UNKNOWN value is interpreted as Z (high­
impedance). The state names and abbreviations are:

7/15/86 1-3

Introduction

STATE NAME
HARD _STA TE_O
SOFT_STA TE_O
MEMORY _STA TE_O
INDETERMINA TE_STA TE_O

HARD _STA TE_l
SOFT_STA TE_l
MEMORY _STA TE_l
IND ETERMINA TE_STA TE_l

HARD _STA TE_U
SOFT_STA TE_U
MEMORY_STATE_U
STATE_Z

BIDIRECTiONAL NETS

Logic Simulator

ABBREVIATION
hO
sO

mo
iO

hl
sl

ml
i1

hU
sU
mU
z

Bidirectional nets are nets that connect to the pins of a
PASS TRANSISTOR or RES primitive. DEPOSITing into
bidirectional signals is not recommended as the deposited
value does not persist very long due to the bidirectional net
evaluation scheme used by the Simulator. Unidirectional
drivers should be connected to those bidirectional nets that
the user wishes to force to certain levels.

COMBINATION OF STATES

When more than one output drives a net, the state of the
net is determined by combining the states of the driving
outputs. When more than two outputs drive a net, the out­
put states are combined iteratively. The following tables
list all combinations of two states.

l-4 7 /15/86

Logic Simulator Introduction

hO sO mO iO hl sl

hO hO hO hO hO hU hO
so hO sO so iO hl sU
mO hO so mO iO hl sl
iO hO iO iO iO hU hU

hl hU hl hl hU hl hl
sl hO sU sl hU hl sl
ml hO sO mU hU hl sl
i1 hU hU hU hU hl il

hU hU hU hU hU hU hU
sU hO sU sU hU hl sU
mU hO so mU hU hl sl
z hO so mo iO hl sl

ml i1 hU sU mU -"'-z

hO hO hU hU hO hO hO
sO so hU hU sU sO so
mO mU hU hU sU mU mO
iO hU hU hU hU hU iO

hl hl hl hU hl hl hl
sl sl il hU sU sl sl
ml ml i1 hU sU mU ml
i1 il i1 hU hU hU i1

hU hU hU hU hU hU hU
sU sU hU hU sU sU sU
mU mU hU hU sU mU mU
z hml i1 hU sU mU z

7 /15/86 1-5

Introduction Logic Simulator

1.2 GETTING STARTED

This section describes the different ways you can invoke
the Simulator: the split-screen Simulator and the full-screen
Simulator. It also describes window sizes and explains the
two methods of invoking the Compiler.

SELECTING THE APPROPRIATE SIMULATION

The Simulator can be run on any of Valid's supported
hardware configurations.

The two most common ways to run the Simulator are in
full screen simulation with graphics or under GED in split­
screen simulation. Full screen simulation is used for
medium to large designs because signal values for 48 sig­
nals can be viewed simultaneously on the display. Split­
screen simulation is useful for smaller designs and for
opening signals. You enter split-screen simulation directly
from GED and the schematic appears in the top portion of
the screen while the lower portion is used for the simula­
tion display. Signals can be specified by a puck press in the
GED window, rather than typing a signal name. All of the
GED commands are available to the user as well as all of
the Simulator commands. Because part of the screen
shows the schematic in split-screen simulation, a fairly large
screen is required and only 12 signals can be viewed at one
time in the simulation display (use the ROW command to
see the others). See Split Screen Simulation later in this
section for additional information.

In addition to these two methods of running simulations,
the Logic Simulator can also be run on an IBM or VAX
mainframe. Full screen simulation is available in both
Waveforms and Bus mode. All commands that do not
require a puck are available, and in Waveforms mode,
waveforms appear in character-graphics (because of the
limitations of the hosts). User-coded primitives (UCPs)
may also be used during simulation on an IBM or VAX
mainframe.

1-6 7 /15/86

Logic Simulator Introduction

WINDOW SIZES

If the Simulator is invoked in a partial screen window, the
window must be at least a minimum size. Under GED,
this size is 48 x 86 characters. The Simulator with
character-graphics can be run in any window at least 12 x
80; with regular graphics, the minimum window size is 22 x
80. The user is prevented from running the Simulator in
any window that is smaller than required.

DIRECTIVES FILES

First, use the Graphics Editor to create the design to be
simulated. Then edit the Compiler Directives file. Here is
an example of a Compiler Directives file:

root_drawing 'subtractor';
com pile sim;
library standard, sim, lsttl, tutorial;
directory 'susan.wrk';
directory '/uO/lib/mylib/mylib.lib';
warnings on;
oversights on;
output list, expand, synonym;
print_width 80;
suppress HJ6;
end.

In this sample directives file, the drawing to be compiled is
named "subtractor." This drawing resides in the SCALD
directory "susan.wrk". The format of the Compiler direc­
tives file is the same whether the Compiler is called directly
(with the compile command), or from within the Simulator
(simulate command). Any errors reported during compila­
tion must be corrected before the design is simulated.

Next, edit the Simulator Directives File. Include the
ROOT_DRA WING directive and any other required direc­
tives. Specify the same root_drawing name as in the Com­
piler directives file. When the ROOT_DRA WING directive
is included, the Simulator can call the Compiler directly.

7/15/86 1-7

Introduction Logic Simulator

Directives may be entered in either upper or lower case.
Comments may be included if enclosed in curly brackets.
Each directive must be terminated with a semicolon (;)
and the file must end with an END. statement. Here is a
sample Simulator Directives File.

ROOT_DRA WING 'subtractor';
CLOCK_PERIOD 100;
CLOCK_JNTERVALS 5;
OUTPUT LIST, command_log;
SESSION_LOG ON;
TERMINAL GRAPHICS;
USE_IF BATCH; { rest of directives for batch only }
COMMAND_FILE 'BATCH.CMD';
TERMINAL TIT; {terminal type for batch mode }
END.

When the Simulator Directives file is correct, the Simulator
can be invoked immediately. Type the command "simu­
late" at the system prompt.

STARTING SIMULATION

The Simulator start.s by reading the Simulator directives file
(simulate.crud). If the ROOT_DRAWING directive is
specified in this file, or the drawing name given on the
simulate command line, the Simulator calls the Compiler
directly if it needs to, and then starts the Simulator if no
Compiler errors are found. A command line argument
overrides any root drawing name in the directives file. The
root drawing name should match that in the Compiler
directives file.

When the ROOT_D RA WING directive is used, the
COMPILER_OUTPUT and SYNONYM_FILE directives
are ignored and any existing Compiler expansion and
synonyms files are also ignored. The Compiler does NOT
generate the expansion and synonyms files.

1-8 7 /15/86

Logic Simulator Introduction

The Compiler generates error messages if there are any
errors during the compilation. If the specified root drawing
name is not found or if compile errors are detected, the
Simulator will exit and Comperr is run automatically to col­
lect the error reports. Look in the Compiler listing file
(cmplst.dat) for Compiler error messages.

The program COMPERR can also be invoked explicitly to
collect all the Compiler error messages. Any errors
reported during compilation must be corrected before the
design is simulated.

When there are no Compiler errors, the Simulator display
appears.

If the ROOT_DRAWING directive is not used, the Simula­
tor requires as input two Compiler output files: the expan­
sion file (cmpexp.dat) and the synonym file (cmpsyn.dat).
If the names of these files are not the default names, use
the COMPILER_OUTPUT and SYNONYM_FILE direc­
tives to specify the file names. If, for backwards compati­
bility, you need to generate Compiler output files, see the
Compiler Reference Manual.

1.3 THE SIMULATOR DISPLAY

The Simulator display screen is divided into three parts: the
status lines at the top, the display area in the middle, and
the echo area, at the bottom.

• The status lines report current simulation parameters
such as the current simulation time, the current
radix (or base) and the current scale or resolution.
The status lines are updated periodically by the
Simulator.

• The display area shows the values of signals selected
by the user and, in Waveforms mode, their history.

7/15/86 1-0

Introduction Logic Simulator

• The echo area echos the commands as they are
selected from the menu, as they are typed from the
keyboard, and as they are issued from a script file.

On platforms having multiple windows, the size of the
Simulator display area in full-screen simulation varies with
the size of the window in which the Simulator is invoked.
Not only does the number of lines increase (for up to 48
waveforms in a full-screen window), but the width of the
display area also grows as the size of the window is
increased above the minimum. The additional width is
used to increase the space available for waveforms in
Waveforms mode and to increase .the total amount of space
available for signal names and values in Bus mode.

STATUS LINES

The status lines display the following fields:

Time
Clock
Scale
Scope

Radix
Top Row
Mem path

Mem path and Scope are displayed only in Bus mode, and
Top Row is displayed only in Waveforms mode. Scope
appears in the status line in Bus mode and below the
display field in Waveforms mode.

1-10

• 'lime is the current simulation time in nanoseconds.

• Radix shows the current radix value, which can be
binary, octal, decimal, hexadecimal, or strength.

• Clock indicates the clock period in nanoseconds and
the number of intervals into which the clock has
been subdivided.

• Top Row indicates the row number of the top row
on the display in Waveforms mode.

• Scale is the scale factor that is set with the RESO­
LUTION directive.

7 /15/86

Logic Simulator Introduction

• Mem path is a memory pathname that indicates the
result of the last successful MEMPA 1H command.

• Scope shows the default path name that may be set
with the SCOPE command.

ECHO AREA

The echo area is used for echoing command inputs and
displaying Simulator output information. Most of this
information consists of either error messages or query
responses.

In Waveforms mode, the first line of the echo area has
three fields: Trigger, Cursor, and Scale.

• Trigger is the time the most recent Breakpoint was
encountered.

• Cursor shows the location of the cursor. The cursor
advances with simulation and can also be moved
with the CURSOR command. The CURSOR com­
mand is useful for determining the time of a transi­
tion. The cursor may be placed at any time between
0 and the current time. The values of the signals on
the display at the time specified by the cursor are
displayed on the right side of the screen.

• Scale is the Scale factor that is set with the RESO­
LUTION directive.

When running under GED, if a command results in several
lines of output, the Simulator displays a few lines and prints

**Press <RETURN> to continue **

The Simulator then waits for a < RETURN > and ignores
all other input until a < RETURN > is entered.

7/15/86 1-11

Introduction Logic Simulator

DISPLAY AREA

In Waveforms mode a time line appears across the bottom
of the display area and matching tick marks across the top.
The characters T, C, and B also appear along the top of the
display area. The T character marks the time of the most
recent Trigger. The C character marks the cursor. When
the T and C are in the same location, a B (for both) is
displayed.

DISPLAY MODES

The Simulator has two display modes. These are BUS
mode and WAVEFORMS mode. Bus mode displays
instantaneous values of a large group of signals selected by
the user. Bus mode is used for very large circuits.
Waveforms mode displays signal values for each signal as a
waveform over time. Signals (scalars or buses) are
displayed one to a line. In Waveforms mode signal values
for up to 200 signals can be maintained. The number of
signals that can be simultaneously displayed on the screen
is determined by the type of terminal, as shown in the fol­
lowing table.

Terminal Type Maximum Number
of Waveforms Displayed

S-320/S-32 48
IBMPCAT/GX 48
IBMPCAT/EG 17
IBM PC AT/VG 42
MicroVAX 48
Ann Arbor 34
VTlOO 12
IBM 3270 14

1-12 7/15/86

Logic Simulator Introduction

In the Waveforms mode, both the current value and a his­
tory of transitions are maintained for each signal. The sig­
nal history is displayed as a waveform (similar to that pro­
duced by a standard logic analyzer) and can be written to a
file (using the PLOT command) for subsequent input to
the Plottime program. The Plottime program produces tim­
ing diagrams that are GED drawings. See the Plottime
Reference Manual.

1.4 DISPLAYING SIGNAL VALUES

Signal values are displayed in one of five radices: binary,
octal, decimal, hexadecimal, or strength. Binary numbers
are indicated by a trailing "b", octal by "o", decimal by "d",
hex by "h", and strength by "s". On input, numbers are
assumed to be in the current radix. Each bit of a,ya)ue
may be either 1, 0, U (unknown), or Z (high impedance).

In binary, these bits are displayed as "1 ", "O", ''U" or "Z".
Unknown or high-impedance bits in octal or hex values
cause the digit to which they map to be reported as "Z" if
all bits in the digit are high impedance, otherwise "U".
Unknown or high-impedance bits in decimal values cause
the entire value to be displayed as ''U".

In strength radix, values are displayed and input using the
state abbreviations shown above (page 1-4). For example,
"UOOlOZZZZb" represents a binary value with the most
significant bit unknown and the four least significant bits in
high impedance. In hex, this value would be displayed as
"U2Zh". In strength radix, this value might be displayed as
".hU .hO.sO.sl.mO .. Z .. Z .. Z .. Zs" if some of the bits were
HARD, some SOFT, and some MEMORY strength. In
Waveforms mode, "---------"is output in the column of sig­
nal values if there is insufficient space to display the entire
value.

7/15/86 1-13

Introduction Logic Simulator

SIGNAL VALUES IN BUS MODE

In Bus mode many signals are displayed on each line. A
signal might not fit if its name and value require too much
room horizontally. If this happens, open the signal instead
as several subranges. The value for each range of bits will
be shorter than the total signal value.

SIGNAL VALUES IN WAVEFORMS MODE

Waveforms mode uses graphics to display signal values
whenever the terminal has graphics capabilities. When run­
ning simulation on a VAX or IBM mainframe, where
graphics are not available, character graphics are used. On
the SCALDSystem IV waveforms look slightly different
than on other systems because they are formed using a
graphical character set.

GRAPHICS FOR SIGNAL VALUES

When standard graphics are being used, single bit signals
(scalars) are represented as shown in Figure 1-1:

1-14

Logic 1 1 I
Logic 0 ol _ ----------

Unknown

High
lmpeda'nce

u ,, ___ __._I ..._I----

zl ---z--
Figure 1-1. Graphics for Scalar Signals

7/15/86

Logic Simulator Introduction

Multiple bit signals (buses) are represented as shown in
Figure 1-2:

BUS with all bits O L _ft

BUS with all bits Z -=-I ~

BUS with binary value C: 011?.ll ll?Jl?JI

Figure 1-2. Graphics for Bus Signals

When using standard graphics, all signal transitions are
indicated by a vertical line at the transition time; mµltiple
transitions at a single time are indicated by a bold vertical
line.

A typical scalar signal is shown in Figure 1-3:

SIGNAL

Figure 1-3. Scalar Signal

This signal has the history: 0,1,U,O,Z.

A typical bus signal (vector) is shown in Figure 1-4:

BUS< 15 •• 121> 430! !?ll?ll?ll I

Figure 1-4. Bus Signal

7/15/86 1-15

Introduction Logic Simulator

This bus has the history: 43D 1,? ,AD 34,0000,000U (where
"?" indicates that the value is too large to fit in the display
space). To view a signal value that is too large to fit in the
display, use the WAVEFORM command to zoom in on the
simulation time when that signal value occurred.

USING CHARACTER GRAPHICS

When character graphics are being used single bit signals
(scalars) are represented as follows:

Logic 1
LogicO
Unknown
High Impedance

U=
---Z---

Multiple bit signals (buses) are represented as follows:

All bits 1

All bits 0

All bits z
With value xxx

With value t.oo
large to display

""val"'"'

o

---Z---
==xxx=

When character-graphics are being used, the following char­
acters are used to indicate different transitions:

7/15/86

Logic Simulator Introduction

/ low-to-high transition
\ high-to-low transition
X multiple transitions mapping to same character
> transition to Z
I all other transitions (including transition to U)

A multiple transition symbol is displayed only if some bit of
the signal has changed two or more times during the time
mapping to the display position. If a bus undergoes several
transitions, but each bit changes only once, a multiple tran­
sition has not occurred.

1.5 WORKING WITH SIGNAL VALUES

OPENING SIGNALS

When the user "opens" a signal name, that signal and its
value appear in the main display. Signal names are in stan­
dard SCALD syntax, except that bit lists and step values
are not permitted. Names are right-justified in Waveforms
mode. The currently open signal is indicated by a "->"
preceding the signal value. The value of the signal appears
left-justified in the current radix. This value may be
changed by "depositing" some other value. The last signal
to be opened may be changed at any time in this fashion.

Any subrange of a signal may be displayed. If no bit range
is given for a signal vector, then the entire vector is
OPENed. A signal also may be displayed any number of
times in different radices. A change made to the value of
one version of the signal affects all the others.

7/15/86 1-17

Introduction Logic Simulator

A signal may be known by more than one name. A bit
may be common to a group of signals. For example, the
signal ADR BUS<31..0> may also be known as SYSTEM
BUS<71..40> and also as CHIP SELECT<5 .. 0>:
MEMORY ADR<27 .. 0>. The user may refer to the sig­
nal using any of its names.

OPENING MEMORIES

The contents of memories are displayed in a somewhat
different fashion from signals. First, the pathname to the
memory primitive is specified with the MEMPATH com­
mand (see the Commands section) and then the OPEN­
MEMORY command is used to open the desired addresses.
This sequence causes an entry to be made in the main
display area. This entry displays on the left the memory
pathname followed by the address (enclosed in
parentheses). On the right the value stored in the memory
at that address is displayed (right justified in the current
radix). Bit rang~s are not permitted in memory displays.

INITIALIZATION OF SIGNALS AND MEMORIES

At the start of a simulation session, each signal is set to the
undefined state U. The LOGIC_INIT and MEM_INIT
commands are used to initialize all signals or all memories
to a specific value. Signals and memories may be initialized
to 0, 1, undefined (U), asserted (*)or unasserted (-*). If
a signal has neither low assertion nor negation characters,
or if it has both, then its asserted state is one; otherwise it
is zero. For example, if - is the negation character and * is
the trailing low assertion character, then SIG A and -SIG
B* have an asserted value of one, while -SIG C and SIG D *
have an asserted state of zero. Memories with a bubbled
output have an asserted state of zero; other memories have
an asserted state of one.

1-18 7/15/86

Logic Simulator Introduction

CHANGING SIGNAL VALUES

The user may change the value of any signal, whether
driven or undriven. When the user changes the value of a
signal that is driven, the signal value specified remains on
the net until overridden by a driver. When a signal has a
clock assertion (!P or !C) and is not driven by an output in
the circuit, the signal generated by the Logic Simulator has
the timing behavior specified by the clock assertion. Signal
assertions with the prefixes !S and !D are ignored by the
Simulator.

CHANGING MEM:ORY VALUES

The user may change the value of any memory location in
the design by opening a location with the OPENMEMORY
command and then DEPOSITing the desired value to that
location. The location retains this value until a memory
write is done to the matching address or until another
DEPOSIT is done into that location.

1.6 ADVANCING SIMULATION TIME

The user can cause the simulated time to advance by/typing
"SIMULA TE C" (simulate for a clock period), "SIMULA TE
S" {simulate for the STEP time), or "SIMULA TE value
(simulate for value nanoseconds). Primitives are evaluated
and values are changed as time advances until the desig­
nated simulation time elapses. When this time is reached,
the status lines and the values of all the signals in the main
display are updated appropriately. The command "SIMU­
LA TE O" can be used to immediately cause the evaluation
of any zero-delay parts.

The Simulator is able to detect zero-delay loops during
simulation (except when using Realfast). This facility does
not attempt to detect all the possible oscillations, but simply
the loops that would otherwise cause the Simulator to enter
an infinite loop. When a zero-delay loop is detected, a
warning message appears and the SIMULATE command is
terminated. You will typically want to exit from the Simu­
lator and fix the error in the design.

7/15/86 1-19

Introduction Logic Simulator

1. 7 SIMULATOR OU'IPUT

The Simulator produces four output files: a listing file
(simlst.dat), a log file (simlog.dat), a command file
(simcmd.dat), and a Waveform Input file (plotsig.dat).

File names for these files are slightly different when the
Valid verification tools are run under different operating
systems {UNIX, VMS, CMS). Under UNIX, the file
names are:

Simulator Listing File
Simulator Log File
Simulator Command File
Waveform Input File

- simlst.dat
- simlog.dat
- simcmd.dat
- plotsig.dat

For file names under VMS and CMS, see File Names later
in this section.

The log file is produced every time you run the Simulator.
The OUTPUT directive regulates whether the listing file
and the command file are produced. The Waveform Input
file is produced when you use the PLOT command.

Each time the Logic Simulator is run from the same direc­
tory, the output files are overwritten. This saves consider­
able amounts of disk space. Here is a brief description of
each of the Simulator output files.

LISnNGFILE

The Listing file simlst.dat contains a summary of the direc­
tives, process information on the Simulator run, and error
information. The directive SESSION LOG ON causes a
record of all terminal I/O for the Sim-ulator session to be
sent to the listing file. The SNAPSH0'.1' command sends
an image of the status lines and signal display window to
the listing file. By using the SESSION_LOG directive and
the SNAPSHOT command a permanent record of a simula­
tion session can be created. For more details, see the sec­
tion on Logic Simulator Directives.

1-20 7 /15/86

Logic Simulator Introduction

LOG FILE

The Log file simlog.dat is used primarily by internal per­
sonnel to track down Simulator errors. In addition to pro­
cess and error information, this file contains statistics on
the memory requirements of the Simulator run.

COMMAND FILE

The Command file simcmd.dat is a list of all of the com­
mands issued in a Simulator session. It is used to exactly
duplicate a simulation session, or to run a batch simulation.
Edit the simcmd.dat file as required and rename it. Then
use the SCRIPT command or the COMMAND FILE direc­
tive to invoke the renamed file. See the SCRIPT command
for more information on command files.

WAVEFORM INPUT FILE

The Waveform Input File plotsig.dat is an ASCII file that
serves as the input file to the program Plottime which pro­
duces waveform diagrams of the signals from the design
verified. Plottime produces waveform diagrams from a
Simulator output file as well as from a Timing Verifier out­
put file. The PLOT command is used to produce the
Waveform Input file. One or several Waveform Input files
can be produced during a simulation session. By default
the Waveform Input file is named plotsig.dat but another
name or names can be specified. For more information on
Plottime, see the Plottime Reference Manual.

1.8 FILE NAMES

The Simulator file names vary under different operating
systems. The table below shows the file names under
different operating systems for the Simulator's input and
output files.

7/15/86 1-21

Introduction Logic Simulator

Table 1-1. Logic Simulawr Input and Output Files

File UNIX VMS CMS

Directives sim ulate.cmd SIMULA TE.CMD SIMULA TE CMD
Expansion cmpexp.dat CMPEXP.DAT CMPEXPDATA
Synonym cmpsyn.dat CMPSYN.DAT CMPSYN DATA

Listing simlst.dat SIMLST.DAT SIMLSTDATA
Log simlog.dat SIMLOG.DAT SIMLOG DATA
Waveform plotsig.dat PLOTSIG .DAT PLOTSIG DA TA
Command simcmd.dat SIMCMD.DAT SIMCMD DATA

1.0 SPLIT-SCREEN SIMULATION

The Graphics Editor SIMULA TE command creates a split.
screen display (with GED in the top portion and the Simu­
lator below) and invokes the Simulator. A sufficiently large
window is required to run the split.screen Simulator; the
minim um size is 48 x 86 characters.

Before simulating, the user MUST write out the drawing if
any changes have been made during the current editing ses­
sion and the changes are to be reflected during simulation.
If Compiler errors are found, the Simulator exits and
returns to the standard GED display.

Differences from Full Screen Simulation

1-22

• The user may specify a signal visible in the upper
(GED) window by pointing to it with the puck
instead of typing the name. For example, to open a
signal, select OPEN from the menu with the puck,
point to the signal to be opened, and then point to
the line of the Simulator display where you want the
signal to be placed (or select ; from the menu for
default placement). To open an unnamed signal
point to the wire.

7/15/86

Logic Simulator Introduction

• A command selected from the Graphics Editor win­
dow returns the user to the Graphics Editor and
suspends the Simulator. A command selected from
the Simulator menu, or selecting the SIMULA TE
command from the Graphics Editor menu, returns
control to the Simulator.

• The Simulator command EXIT terminates the Simu­
lator and causes the GED display to fill the entire
window.

• If the Graphics Editor is used to change a drawing
while the Simulator is running, simulation data will
be inconsistent with the new version of the drawing.
To simulate the modified drawing, you must EXIT
the Simulator and restart simulation. It is not neces­
sary to exit the Graphics Editor.

• "Softkeys" defined in the Graphics Editor can be
used with the Simulator to save typing.

7/15/86 1-23

SECTION2
LOGIC SIMULATOR DIRECTIVES

Simulator directives are parameters that control the simula­
tion session. These directives control error reporting, 1/0,
and the Simulator's interpretation of the input from the
Compiler. You enter directives in the Simulator directives
file (sim ulate.cmd).

Each of the directives is described below, along with an
example where usage may not be obvious. The Logic
Simulator directives and their parameters are not case sen­
sitive; each directive must be on a separate line and must
be terminated by a semicolon.

BINARY_TRACE

Specifying BINARY_TRACE ON causes the Value
File to be output in binary. The default,
BINARY_TRACE OFF, causes the Value File to be
an ASCII file. This directive is ignored for Tabular
tracing.

CLOCK_IN'IERVALS

7/15/86

This directive sets the number of evenly spaced
sub-periods within the clock period. For example, if
there are eight sub-periods and the period of the
clock is 100 ns, then MASTER CLK IC 0-2 is high
from time 0 ns to time 25 ns and low from 25ns to
lOOns. The directive

CLOCK_PERIOD 100;

sets the clock period to 100 ns and the directive

2-1

Directives Logic Simulator

CLOCK_INTERV ALS 20;

divides the clock into 20 intervals of equal length.
With a clock period of 100 ns, each interval is 5 ns
long.

For example, the signal MASTER CLK !C 0-10,15-
20 is high for the first ten intervals, (that is, from 0
to 50ns) and then high again for the last five inter­
vals, from 75 to 100 ns. The signal history for this
clock is:

MASTER CLK !C 0-10,15-20 = 1:0, 0:50, 1:75

If CLOCK_INTERV ALS is unspecified, the clock is
divided into ten intervals.

CLOCK_ON_DRIVEN

Specifies whether clock generators may be specified
on driven signals. The default for the directive is
OFF, which will only permit timing assertions to be
specified on undriven signals. Thus, building a clock
generator on a driven signal is not allowed unless
this directive is specified as ON.

CLOCK_PERIOD

2-2

Sets the period of the clock used by the Simulator.
This clock period is used defining the behavior of
clock signals. Clock period is specified in
nanoseconds. All signals with an "IC" or "!P" timing
assertion (e.g., MASTER CLK !C 0-3) have their
behavior specified relative to this period. The direc­
tive

CLOCK_PERIOD 56;

sets the clock period to 56 ns. If unspecified, the
Simulator sets the period to 100 ns. The clock
period must be an integer and may be changed dur­
ing simulation using the PERIOD command.

7 /15/86

Logic Simulator Directives

COMMAND_FILE

Specifies the name of a command file to be invoked
as soon as the Simulator starts. This directive lets
you run the Simulator in batch mode. A command
file can be quickly made from the Simulator output
file simcmd.dat by editing it and renaming it. The
file name must be enclosed in quotes. See the
SCRIPT command for a description of command
files.

COMMAND _FILE 'mysetup. dat ';

COMPILER_ OUTPUT

This directive is used with the SYNONYM_FILE
directive to run a simulation of a design from exist­
ing Compiler files when those files do not have the
default names. This directive is used to specify the
name of the Compiler expansion file of the dei:;ign to
be simulated. When this directive is not specified,
the default filename 'cmpexp.dat' is used. The file
name must be enclosed in quotes. This dire~tive is
ignored when the ROOT_DRAWING directive is
present.

DECAY_'llME

This directive specifies the time at which MEMORY
strength signals lose their value and assume an
UNDEFINED value. The default value is infinite.
This means that MOS signal strengths will not decay
over time unless the user explicitly specifies a decay
time. The directive takes an integer. The units are
nanoseconds.

DEFAULT_DRIVE

This directive is used to specify default values for
rise drive and fall drive. The directive takes two
values separated by commas. The first value

7/15/86 2-3

Directives Logic Simulator

specifies rise drive, the second specifies fall drive.
Values are given as real num hers and are used for all
pins whose drive is not otherwise specified. See the
section on the Delay Estimator and Expression
Evaluator. Here is an example directive:

DEFAULT_DRIVE 0.35,0.5;

DELAY_FSTIMATOR

This directive is used to turn the Delay Estimator
feature on and off. The default value is OFF. The
directive

DELAY _ESTIMATOR ON;

enables the Delay Estimator. See the section on the
Delay Estimator and Expression Evaluator.

DELAY_MODE

2-4

Delays in simulation. models may be specified as a
series of three values in square brackets. When this
notation is used, the first value is the minimum
delay, the second is the typical delay, and the third
value is the maximum delay. This directive is used
to select which of the three values is to be used for
the current simulation run. The directive takes the
values MIN, TYP, or MAX. The default value is
MAX.

When using this directive, the appropriate delay
values must be specified for each part used in the
design. All parts with non-zero delay values must
use the RISE and FALL properties or the DELAY
property to specify these values using the following
syntax:

RISE= (min, typ, max J
FALL=[min, typ,max]
DELAY=[min,typ,max] ,(min,typ,maxJ

7 /15/86

Logic Simulator Directives

If the DRIVE property is being used, minimum, typ­
ical, and maximum values must also be specified
using the following syntax:

DRIVE= [min, typ, max], [min, typ, max]

Note that the square brackets are required characters
in the syntax for the above properties. The values
given for min, typ, and max may be either integers
or real numbers. See the Delay Estimator and
Expression Evaluator section.

EXP_EVALUATOR

This directive is used to turn the expression evalua­
tor feature on and off. The default value is OFF.
To enable the expression evaluator, use the directive

EXP _EVALUATOR ON;

See the Delay Estimator and Expression Evaluator
section.

MEM_STATE

This directive selects between two-state memories
and four-state memories. A four-state memory
retains U's; a two-state memory does not. This
directive takes the values 2 or 4. If not specified,
memories are four-state (in fact, a misnomer since
there are only three actual states). To use two-state
memories use the directive

MEM_STATE 2;

OU1PUT (NO] {LIST, COMMAND_LOG};

7/15/86

This diredive determines which output files are pro­
duced by the Simulator. When no directive is given,
no files are created. The output file specifiers are:

2-5

Directives Logic Simulator

LIST causes the listing file sim lst.dat
to be created. The contents of
the list file are controlled by
other directives.

COMMAND _LOG is a file containing all of the
commands that the Simulator
processed. After renaming,
this file can be used as an
input command file (either
using the COMMAND _FILE
directive or the SCRIPT com­
mand).

PIN_DELAY

This directive specifies whether pin-to-pin delays will
be used by the Simulator. The values for this direc­
tive are ON and OFF. When ON is specified, the
pin delay properties override the body delay proper­
ties; otherwise, the body delay properties override
the pin delay properties. The default state for this
directive is OFF. When pin delay values are not
defined for a particular pair of input and output pins,
the body delay values are assumed.

REALCHIP _LIBRARY

2-6

Specifies the name of the Realchip library file con­
taining the full set of Realchip device definition
blocks for primitives modeled by Realchip reference
elements. This directive must be used if any Real­
chip models are used by the Simulator. Otherwise,
this directive can be omitted. The file name must be
enclosed in quotes . .L~n example directive is

REALCHIP _LIBRARY 'realchip.dat ';

7/15/86

Logic Simulator Directives

REMOTE_HOST

Specifies the name of the machine or machines on
the network containing RealchipfRealmodel model­
ing hardware and the Networked Realchip Server
software to serve as a remote host for simulation.
This directive enables the NETWORKED mode of
operation, in which patterns can be sent to remote
modeling hardware over the network connection. If
this directive is not specified, the HOSTED mode
will be used, accessing local modeling hardware
directly. Each host name must be enclosed in
quotes. When several host names are given, they
are separated by commas. Here is an example direc­
tive:

REM OTE_H OST 'vserver ', 'hostsim ';

RESOLUTION

7 /15/86

This directive specifies the time resolution to be used
by the Simulator. The value of the directive is a real
number that specifies nanoseconds. The .,_default
value is 1. Numbers smaller than 1 are u.sed to
specify finer resolution, numbers larger tha.Q- .. 1 are
used to specify coarser resolution. The resolution
currently in use by the Simulator is indicated in the
display area under the label ''Scale". The directive

RESOLUTION 0.05;

means that each tick on the time scale used in
Waveforms mode no longer represents one
nanosecond, but now represents 0.05 ns. Values
specified in ns (clock period, delays, decay times,
etc.) will remain in ns, but are scaled on the display
(e.g., a clock period of 100 ns will appear on the
display with a period of 2000 ticks; 'DECAY_TIME
5000" will cause memory signals to change value
after 100000 ticks). Screen-oriented commands
(SIM, WAVE, HISTORY, CURSOR, etc.) maintain
their relation to ticks on the screen, although the
"real" times associated with those ticks has changed.

2-7

Directives Logic Simulator

The command WAVEFORMS 0 1000 displays a time
scale of 0 to 1000 ticks, but each tick now represents
0.05 ns.

Exercise caution when changing the resolution. Too
fine a resolution will decrease execution speed
(simulating for hundreds of ticks even when no
events are scheduled) or generate massive amounts
of signal histories. Before decreasing the resolution,
ensure that the specification of other time values is
correspondingly coarse (e.g., "RESOLUTION 50"
probably will not make sense with a 20 ns clock
period).

RISE_FALL

2-8

This directive specifies whether separate RISE/FALL
delays will be used by the Simulator. When the
RISE_FALL directive is ON, simulations are per­
formed using both the rise and fall delays specified
for parts and between pins on parts. When
RISE/FALL or PRISE/PF ALL values are not
specified, the values of the DELAY and PD ELA Y
properties are used. When the RISE_F ALL directive
is OFF, the values of the DELAY and PDELAY
properties override. When the RISE_F ALL directive
is OFF and neither DELAY nor PD ELA Y properties
are used, delay values are derived from the delay
time if only one value is given {RISE or FALL but
not both, or PRISE or PF ALL but not both) or
using the greater of the rise and fall delays. The
default state of this directive is ON.

The following table summarizes the delay values that
are used. The notation "a:b" indicates that the value
"b" is assumed if the value "a" is not defined.

7 /15/86

Logic Simulator Directives

RISE_FALL ON OFF
RISE FALL RISE FALL

no DELAY r:O f:O max(r,f):O
DELAY x r:x f:x x x

DELAY-x,y r:x f:y max(x,y)

When the use of the separate rise/fall delay feature
is specified, the part delay used for the various tran-
sitions is as follows (where X indicates any value):

OLD VALUE NEW VALUE DELAY USED

x 0 fall
x 1 rise
x u min(rise, fall)
0 z rise
1 z fall
u z max(rise, fall)

ROOT_DRAWING

7/15/86

This directive specifies the name of the drawing on
which you wish to perform simulation. Using this
directive, the Simulator calls the Compiler directly,
and only as needed. The name of the drawing is
enclosed in quotes, like this:

ROOT_DRA WING 'counter';

To run a simulation using an existing Compiler
expansion file, omit this directive.

2-9

Directives Logic Simulator

SESSION_LOG

This directive specifies whether a copy of terminal
1/0 is to be output to the listing file. The directive
takes the value ON or OFF. Note that
SESSION_LOG ON and OU'IPUT NO LIST are
incompatible.

SIGNAME_CHARS

This directive defines the number of character
columns dedicated to signal names on the left side of
the screen in WAVEFORMS mode. The default
value is 24. This directive can take the values 9
through 24 inclusive. Values outside the legal range
will be rounded to the closest legal value. Here is an
exam pie directive

SIGNAME_CHARS 18;

As the number of characters is decreased, the space
available for waveforms is correspondingly increased;
however, with fewer characters available for signal
names, a greater number of characters will be trun­
cated when the length of the signal names exceeds
the space available. Use the PEEK command to see
the full signal name.

SYNONYM_FILE

2-10

This directive is used in conjunction with the
COMPILER_OU'IPUT directive to perform a simu­
lation on a design from existing Compiler files when
the Compiler files do not have the default names.
This directive gives the name of the synonyms file.
If no synonyms file is specified with this directive;
the default filename 'cmpsyn.dat' is used. The file
name must be enclosed in quotes. This directive is
ignored when the ROOT_)) RA WING directive is
present.

7/15/86

Logic Simulator Directives

TABULAR_ TRACE

This directive specifies the trace format.
TABULAR_TRACE OFF, the default, specifies stan­
dard trace format, while TABULAR_TRACE ON
specifies tabular trace format.

TERMINAL

This directive specifies the terminal type. The
allowed values are:

ANNARBOR
CLUSTER
GCLUSTER
GRAPHICS
VTlOO
3270
TTY

CLUSTER designates a SCALDsystem terminal run­
ning the Simulator locally or in transparent mode
connected to the host computer.

GCLUSTER designates a SCALDsystem terminal
with graphics capabilities.

GRAPHICS designates an IBM PC or a MicroVAX
II.

ANNARBOR designates an Ann Arbor Ambassador
terminal with 48 lines.

!IT designates any dumb video terminal or a tele­
type.

VTlOO designates a DEC VTIOO (or equivalent) with
24 lines.

7/15/86

3270 designates an IBM 3270 or equivalent.

If the Simulator is running in a Graphics Editor win­
dow, the TERMINAL directive is ignored.

2-11

Directives Logic Simulator

TIMING_ CHECK

This directive is used to enable timing checkers used
in simulation models. The directive takes the values
ON or OFF. When this directive is ON, the Simula­
tor recognizes all the timing checker primitives used
in the simulation models for the circuit and performs
timing violation checking accordingly. When
TIMING_CHECK is OFF, the Simulator ignores all
the timing checkers and performs no timing violation
checking. For designs you are validating with both
ValidTIME and ValidSIM, use TIMING_CHECK
OFF. The Simulator does not need to do timing
analysis and this will speed simulation. The default
value for this directive is OFF.

TRACE_RADIX

This directive specifies the radix to use for tabular
tracing. The directive can take the values 2, 8, 10,
or 16. The default value is 2. Here is an example
directive.

TRACE_RAD IX 16;

USE_IF

2-12

This directive is used to include two sets of direc­
tives in a single directives file: one set for batch
simulation, one set for interactive simulation. The
USE_IF directive takes one of two values: BATCH
or INTERACTIVE. The following directives are
only used if the Simulator is run in the specified
mode. The USE_IF directive has effect until the
next USE_IF directive, or until the end of the direc­
tives file. The following example of the USE_IF
directive instructs the Simulator to use a command
file, create a session log, and set the terminal type to
TTY when the Simulator is run as a batch process.
This directive is useful primarily on systems such as
the VAX where programs can be run either interac­
tively or as a batch process.

7/15/86

Logic Simulator Directives

USE_IF BATCH;
COMMAND_FILE 'BATCHSIM.CMD';
TERMINAL TTY;
SESSION_LOG ON;

USE_REALFAST

This directive controls the use of the Realfast Simu­
lation Accelerator and the Realmodel Modeling Sys­
tem. The directive takes the values ON or OFF.
When enabled (USE_REALFAST ON;), a simula­
tion is aborted if the Simulator cannot access the
Realfast hardware (Realfast currently can not be
shared between work stations; simultaneous use by
more than one work station is prohibited). Simula­
tion results using Realfast are the same as without its
use - Realfast simply increases the speed of simula­
tion. If this directive is omitted, Realfast is not
used.

USE_SYNONYM

This directive instructs the Simulator whether or not
to read the Compiler's synonyms file. Not reading
the synonyms file decreases simulation loading time;
however, signals can then only be referenced by
their base names. The default is ON (i.e., the
synonyms file is read).

USER_EXPRESSION expr_id (param. ..) = equation;

7/15/86

This directive is used with the Expression Evaluator.
When the directive EXP _EVALUATOR OFF; is
used, this directive is ignored. This directive is used
to define a user-defined delay equation for comput­
ing primitive delays. expr_id is a name assigned by
the user to the expression being defined. This is fol­
lowed by a list of params, enclosed in parentheses,
which are the variables used in equation. equation is
some combination of boolean and arithmetic opera­
tions which describe an equation to be used in

2-13

Directives Logic Simulator

computing the delay. See the Delay Estimator and
Expression Evaluator section. Here is an example
directive:

USER_EXPRESSION BufDelay(Cof}=
[load<=Cof]'drive * load', (Cof<load<=4
* Cof] '1.5 * drive * Co f';

USER_PARAMETER param_id = (x !, x ...]) ;

This directive is used with the Expression Evaluator.
When the directive EXP _EVALUATOR OFF; is
used, this directive is ignored. This directive is used
to define user-defined parameters used in the delay
equation specified with the USER_EXPRESSION
directive. x is a real number. Up to five real
numbers may be specified and should be enclosed in
parentheses. param_id is a name assigned by the
user to the set of parameters being defined. See the
USER_EXPRESSION directive and the Delay Esti­
mator and Expression Evaluator section. Here is an
example directive:

USER_PARAMETER INV1=18;

WIRE_DELAYS

This directive specifies the name of the wire delays
file; the filename must be quoted. See the Delays
section. Here is an example directive:

WIRE_D ELA YS 'wiredel. dat ';

WIRE_ES'IIMATE

2-14

. This directive is used with the Deiay Estimator. It
allows the user to define a look-up table specifying
equivalent loads of a net. The look-up table contains
a list of values corresponding to the delays associated
with incrementally increasing load. Up to 100 real
values may be specified. The values are separated by
commas, like this:

7/15/86

Logic Simulator Directives

7/15/86

WIRE_ESTIMA TE 5.5,6,6.4,6.8, 7.1, 7.5;

The directive can also take a family name parameter,
so that different look-up tables can be used for
different families of parts. Here is an example:

WIRE_ESTIMATE TTL 5.5,6,6.4,6.8,7.1,7.5;

The body property FAMILY is attached to all bodies
for which the alternate look-up tables are to be used.
See the Delay Estimator and Expression Evaluator
section for more information.

2-15

SEGI10N3
WAVEFORMS MODE

This section describes how to use the Simulator in
Waveforms mode. Waveforms mode displays the value of
each signal as a. waveform over time. Using Waveforms
mode, you can see twelve signals at one time in the split
screen Simulator under GED, or up to 48 signals at one
time in the full screen Simulator.

A certain group of commands that are not appropriate for
use in Bus mode, are used in Waveforms mode. These
commands are:

WAVEFORMS
HISTORY
CURSOR
DELTA_TIME

ROW
SCROLL
SPACING

Each of these commands are described below. In addition,
the OPEN command is also described below because it
works differently under Waveform Mode than it does
under bus mode.

Many of these commands take a number argument that
designates time in nanoseconds. These number arguments
are all affected by the value of the RESOLUTION directive.
When RESOLUTION = 1 (the default) each tick mark on
the Waveforms display represents 1 ns and the number
arguments represent nanoseconds. When RESOLUTION
= 10, for example, each tick mark represents 10 ns and the
number arguments represent tick marks. The command

CURSOR 100

moves the Cursor to the tick mark labeled 100, which actu­
ally represents 1000 ns.

7/15/86 3-1

Waveforms Logic Simulator

3.1 WAVEFORM COMMANDS

The following commands are commonly used in the
Waveforms mode and affect the signal display.

WAVEFORMS start_time end_time
or

WAVEFORMS ptl pt2

This command has two separate functions: the first is to
invoke Waveforms mode and define the range of time to
be displayed; the second is to pan and zoom on displayed
waveforms to get a better view. Because Bus mode is the
default, the first time you give the WAVEFORMS com­
mand, it invokes Waveforms mode. Be sure that you give
both a start time and an end time. The Waveforms display
advances automatically with simulation.

While you are in Waveforms mode, the WAVEFORMS
comm.and is used to pan and zoom the display. Several
different syntaxes are available for using the waveforms
command to pan and zoom.

3-2

1. The most common form of the WAVEFORMS com­
mand is

WAVEFORM 100 300

The two numbers designate real time in
nanoseconds. The first number is the start time and
the second is the end time. On systems with a puck
or mouse, the times can be designated as points on
the waveforms display (to zoom in) or as points on
the time line in the echo area (to zoom out). If the
end_ti"me or pt2 is omitted, the current display width
(end_ti"me - start_t£me) is used with the new start_time.
The screen pans to the right.

2. The times can also be given as relat£ve times, by
using this syntax:

WAVEFORM left 100 right 400
WAVEFORM right 100 right 50

7 /15/86

Logic Simulator Waveforms

In this syntax the start time (the first parameter) is
relative to the existing start time,. and the end time
(the second parnmeter) is relative to the new start
time.

HISTORY time

The History command is used to set the time period during
which signal history for each opened signal is maintained.
When Waveforms mode is entered, HISTORY is automati­
cally set to 10000 for all OPENED signals. Setting HIS­
TORY to a smaller number can improve performance.
When HISTORY is 500, signal history is only kept for each
OPEN signal for the 500 ns prior to the current time. The
HISTORY command is affected by the RESOLUTION
directive. When using a large number for resolution, you
will probably want to set HISTORY to a smaller number.

The HISTORY command with no argument tells you the
current value for HISTORY.

CURSOR time

This command moves the cursor to a new time. The time
parameter may be specified by giving a number, or using a
puck press on the waveforms display or on the time line in
the echo area. When a number is given, the units are
nanoseconds, and are affected by the value of the RESO­
LUTION directive.

A relative time can be specified by using the syntax:

CURSOR LEFT 25
CURSOR RIGHT 100

Whenever the cursor is moved, the signal values on the
right side of the screen are changed to indicate the signal
values at the cursor time. The cursor may be set to any
time between 0 and the current time, whether the new time
is visible or not. In full-screen graphics mode, if the new
time is visible, a vertical line is drawn through the entire
waveform display area; this line is displayed on all empty

7/15/86 3-3

Waveforms Logic Simulator

rows including the blank rows between waveforms when
SPACING is greater than 1. When simulation is complete,
the cursor is automatically moved to the current time.

In full-screen graphics mode a timeline appears in the echo
area and the value for the CURSOR command can be
given by a puck press on this line. The timeline does not
appear when running split-screen simulation under GED.

DEL TA_TIME ptl pt2

The DELta_time command is used to determine the time
difference between two points on the current waveform
display. The points are specified using the puck, so this
command is only available on systems having a puck. The
value appears in the echo area. Points can be specified any­
where in the current waveforms display.

OPEN signal (, row [, col J)
or

OPEN signal pt [{ dest pt signal pt) ...) [dest pt J

The OPEN command adds a signal to the display, and in
Waveforms mode it starts recording signal history for that
signal.

In split-screen simulation, a signal can be opened by select­
ing it with the puck in the GED drawing, and either giving
a destination point with the puck or ending the command.

When a destination point is given the signal is opened on
that line of the display. When none is given, the signal is
opened on the first available line (if the signal has not peen
opened before). You can open a maximum of 200 signals.
The command must be terminated by a semicolon or car­
riage retuin~

3-4 7/15/86

Logic Simulator Waveforms

The user can replace an existing signal by opening a new
signal and specifying row. Once a signal is OPENed in
Waveforms mode, the history for the signal is maintained
for the specified history period, even if the signal is not on
the screen. To remove an OPEN signal, use the REMOVE
command or OPEN another signal on the same row. This
feature allows a user to OPEN more signals than can be
displayed at once, simulate to calculate their signal
behavior, and then view their behavior.

ROW number

This command controls which signals are displayed on the
screen. The number gives the row number for the row that
is to be placed at the top of the screen. Relative row
numbers may also be specified by preceding the number
with a + or - sign, or by pointing to the row using the
puck. The number of the top row currently displayed on
the screen is shown as one of the fields on the status line.
Note that when changing the top row, all signals previously
displayed above the new top row are scrolled up and off of
the screen.

SCROLL

This command allows the user to control the automatic
scrolling feature of the Simulator. The command takes the
argument ON or OFF. In Waveforms mode, when you
have a full-screen of signals, the Simulator normally scrolls
the display to OPEN each additional new signal. If you
have many signals to open, it is faster to turn SCROLL off,
until OPEN and DEPOSIT is completed. Using SCROLL
OFF allqws the user to OPEN and DEPOSIT into signals
that are not on the display.

SPACING value

This command allows the user to specify single or double
(or multiple) spacing between adjacent waveforms in
Waveforms mode. value is an integer indicating the
numbe1· of spaces between waveforms. The default is 1

7/15/86 3-5

Waveforms Logic Simulator

(single spacing). The current SPACING value is displayed
in the echo area. Whenever the value of SPACING is
changed, the screen is redrawn using the new value of
SPACING.

3-6 7/15/86

SECTION 4
BREAKPOINTS AND PATCHING

Breakpoints are triggering conditions that cause the Simula­
tor to stop simulating and accept commands from the user.
The following are some important uses of breakpoints:

• Skipping to a point of interest; for example, when a
shift register shifts to all zeros.

• Performing "background" tests while the user stimu­
lates the design (such as stopping whenever the
design enters an error condition).

The logic patching facility allows the user to make simple
modifications to a design without recompiling. This facility
is useful primarily for "tacking" bug fixes in before they are
entered into the design, or for stimulating an incomplete
design. Some example uses are:

• Patching a design by forcing signals to some state,
such as forcing the PARITY ERROR signal to a 0
whenever some pattern is read that is incorrectly
reported as an error.

• Generating test stimuli based on the state of the
design, such as submitting instruction N+ 1 when­
ever instruction N has completed.

The Patch facility allows you to temporarily assign a partic­
ular signal value to a signal during a simulation session.
The commands you use are similar to the breakpoint com­
mands.

4.1 BREAKPOINTS

Breakpointing conditions are boolean expressions of signals
present in the design (refer to expression syntax). A
breakpoint is encountered (triggers) when the expression
defining it changes value from false to true.

7/15/86 4-1

Breakpoints Logic Simulator

In addition to the standard boolean operators AND, OR,
XOR, and NOT, state information can be included in
breakpoint expressions to allow the user to build a state
machine that detects when to trigger a breakpoint. This
general form of the trigger-enabling feature is used in most
logic analyzers.

To simplify construction of complex breakpoints, a new
class of signal called an ENABLE signal has been added to
the Simulator. ENABLE signals never exist in a design,
but are created by the user as partial products in expres­
sions. ENABLE signal names follow the same rules as
standard signal names, but they are always scalars.

Simulation halts to display a breakpoint expression, but the
system remains in interactive mode. The user may per­
form other operations or may continue simulation using
another SIMULA TE command.

If a breakpoint is encountered during execution of a SIMU­
LA TE command in a command file, simulation time stops
at the breakpoint and the next command in the script is
executed. This allows the user to create scripts for circuits
where it is unknown how long to simulate before a certain
event will occur.

Note that breakpoints should not be used when operating
REALFAST.

4.2 BREAKPOINT COMMANDS

This section contains a list of commands used with break­
points. See the following section for a description of break­
point syntax.

SET E."l\.~ABLE signal \VHEN expr

Sets signal to 1 when expr is true. The signal is a "new" sig­
nal that is created the first time it is referenced by the user
(i.e., the signal cannot already exist in the design).

4-2 7/15/86

Logic Simulator Breakpoints

CLEAR ENABLE signal WHEN expr

Clears signal to 0 when expr is true. The signal is a "new"
signal that is created the first time it is referenced by the
user (i.e., the signal cannot already exist in the design).

SAMPLE ENABLE signal GETS expr 1 WHEN expr 2

Equates si'gnal to the value of expr 1 when expr 2 changes
from a 0 to a 1. The signal is a "new" signal that is created
the first time it is referenced and cannot already exist in the
design.

LATCH ENABLE signal GETS expression 1 WHEN expr 2

Equates signal to the value of expr 1 when expr 2'is a 1.
The signal is a "new" signal that is created the first time it is
referenced and cannot already exist in the design.

EQUATE ENABLE signal TO ex pr

Continuously gives signal the value of expr. The signal is a
"new" signal that is created the first time it is referenced
and cannot already exist in the design.

SET BREAKPOINT expr

Installs expr as a breakpoint. While this breakpoint is set,
the Simulator ALWAYS stops when the function changes
from false to true. When the simulator stops, it prints out
the function to identify which breakpoint was encountered.
The Simulator assigns numbers to breakpoints to allow a
breakpoint to be specified either by number or function;
simple breakpoints can be called by name, and complex
breakpoints can be called by number.

Named breakpoints are a special case of ENABLE signals.
A user can EQUATE an ENABLE signal to the desired
breakpointing expression, and thereafter reference the
breakpoint by the name of the ENABLE signal as follows:

7/15/86 4-3

Breakpoints Logic Simulator

EQUA1E ENABLE name to breakpoint_condition
SET BREAKPOINT name

SET BREAKPOINT # number

Activates the indicated breakpoint. While this breakpoint is
set, the Simulator ALWAYS stops when the function
changes from false to true. When the simulator stops, it
prints out the function to identify the responsible break­
point. Breakpoints are given numbers by the Simulator,
and complex breakpoints may be re-installed by number.
(Note that when simulating under CMS, the # symbol
prefix must be replaced by the % symbol).

CLEAR BREAKPOINT name
or

CLEAR BREAKPOINT# number

Deactivates the breakpoint. The breakpoint no
longer affects simulation but it remains in the break­
point list marked "inactive". Only breakpoints that
are a single string containing no boolean expressions
may be cleared by name; all others must be cleared
by number. Breakpoints you can clear by name are
usually those defined using the EQUATE ENABLE
command.

LIST BREAKPOINTS

Lists all breakpoints that have been created, whether they
are active or have been CLEARed. Breakpoints are marked
as active (SET) or inactive (CLEARed). This command
also prints the breakpoint number assigned by the Simula­
tor.

LIST ENABLES

Lists all of the ENABLE signals that have been defined and
their definitions.

4-4 7 /15/86

Logic Simulator Breakpoints

4.3 COMBINING BREAKPOINT COMMANDS

Groups of SAMPLE, LATCH, SET, CLEAR, and
EQUATE commands may be applied to any signal, with the
following results:

• EQUA TEing a signal generates a combinational
function only; signals generated with the EQUATE
command have no state of their own. EQUA TEing
a signal that has already been equated supersedes the
old definition.

• SAMPLEing, LA TCHing, SETting or CLEARing a
signal generates a function containing state informa­
tion. SETs and CLEARs may be added to a signal
that is SAMPLEd or LATCHed. A SAMPLE or
LATCH may be added to a signal that is SET and/or
CLEARed. Defining a SAMPLE, LATCH, CLEAR,
or SET for a signal that already has such a definition
supersedes the old definition. Only one SAMPLE or
LATCH definition applies at one time. Defining a
SAMPLE or LATCH for a signal already defined to
have the other definition supersedes the existing
definition.

• Only one EQUATE definition or one definition from
the set {SAMPLE, LATCH, SET, CLEAR} applies
at a time. EQUA TEing a signal that was previously
defined as SAMPLEd, LA TCHed, SET, or
CLEARed supersedes the existing definition. SAM­
PLEing, LATCHing, SETting, or CLEARing a signal
that was previously EQUA TEd supersedes the exist­
ing definition.

7/15/86 4-5

Breakpoints Logic Simulator

4.4 EXPRESSION SYNTAX

The syntax for an expression is based on the SCALD stan­
dard expression syntax:

<expression>-> <expression> OR <boolean expression> {boolean
-> <expression> XOR <boolean expression> {boolean XOR
-> <boolean expression>

<boolean expression> -> <boolean expression> AND
<relational expression> {boolean AND }

-> <relational expression>

<relational expression>-> <term> <rel OP> <term>
-> <term>

<rel OP> -> <'='>
-> <'<>'>
-> <'>='>
-> <'<='>
-> <'<<'>
-> <'>>'>

<term> -> <signal>
-> (<expression>)

{equal }
{not equal }
{greater than or equal }
{ less than or equal }
{less than }
{ greater than }

->NOT <term> {boolean NOT}
-> 0 {constant 0 }
-> 1 {constant 1 }
-> & <constant> {any constant, given

in current radix }

A signal can be any number of bits wide, but the expression
used in a breakpoint or enable definition must evaluate to a
single bit. If a vector signal is used without a subscript, the
entire width is considered for the expression. The AND
operator takes precedence over the OR operator and the
XOR operator. A rel OP takes precedence over any
boolean operator except the NOT operator; when a rel OP
is used, it should be separated from terms by spaces to
prevent confusion in parsing. Some useful examples are:

4-6 7/15/86

Logic Simulator Breakpoints

SET BREAKPOINT NOT OUTA
SETBREAKPOINTDATA<15 .. 0> >= &3FO
SET BREAKPOINT (read* = 0 OR write AND
refresh) = 0

The last expression is evaluated as follows:

SET BREAKPOINT (((read* = 0) OR (write AND
refresh)) = 0)

4.5 LOGIC PATCHING

The logic patching facility allows the user to redefine the
behavior of a scalar signal or a single bit of a vector signal
in the design by specifying the new behavior of the signal
as a boolean expression of signals in the design (refer to
the expression syntax of signals). Note that patching must
be done after the LOGIC_INIT command. The commands
and operators used to patch a signal are very similar to
those used for defining breakpoints:

SEf PATCH s£gnal WHEN expr

Sets s£gnal to 1 when expr is true. The signal must be
present in the design.

CLEAR PATCH signal WHEN expr

Clears signal to 0 when funct£on is true. The signal must be
present in the design.

S.ANIPLE PATCH s£gnal GETS expr 1 WHEN expr 2

Equates signal to the value of expr 1 when expr 2 changes
from a 0 to a 1. The signal must be present in the design.

7/15/86 4-7

Breakpoints Logic Simulator

LATCH PATCH signal GETS expr 1 WHEN expr 2

Equates signal to the value of expr 1 when expr 2 is a 1. The
signal must be present in the design.

EQUATE PATCH signal TO expr
-

Continuously gives signal the value of expr. The signal
must be present in the design.

LIST PATCHES

Lists all PATCH signals that have been defined and their
definitions.

4-8 7/15/86

SEUllON 6
TRACING AND TABULAR 1/0

Tracing is a way to output the state of the design at various
times during the simulation. This type of report can be
generated during batch simulation and examined interac­
tively. Two formats for trace generation are described
here: the standard trace format and the tabular trace for­
mat. The tabular form may also be used as input to the
Simulator to force signals to values or patterns at specified
times (see the section below, "Stimulating Circuits with
Tabular I/0 files"). See the TABULAR_TRACE Simulator
directive for information on how to specify which trace for­
mat to use.

5.1 TRACING

REQUIREMENTS FOR STANDARD TRACING

A program reading the trace must be able to find the value
of any signal at any time during the simulation. The
required information may be separated into CONNEC­
TIVITY information, which describes the circuit, and
VALUE information, which describes the state of the
design. The connectivity of a design is nearly constant dur­
ing a simulation; it is modified only by explicit logic patch­
ing or breakpoint generation commands from the user.
The portion of connectivity that is most useful for under­
standing the behavior of a circuit is the mapping between
outputs and signals. The value information of a design
changes very rapidly during a simulation and includes all
state transitions occurring in the design. The Simulator
trace output is placed in two files: the signal mapping file
and the value file.

7/15/86 5-1

Tracing Logic Simulator

SIGNAL MAPPING

A program reading trace output needs a description of how
signals are attached to outputs in order to relate simulation
results to the circuit. An output of a part connects to a
range of bits of a signal or signals. The signal mapping file
relates which bits of which signals attach to which bits of
which outputs.

VALUE INFORMATION FOR TRACING

Value information is output in both absolute and relative
form. At the beginning of the simulation, and possibly at
intervals throughout the simulation, the state of the entire
design is output in absolute form. As each output pin
changes state, that change is reported in relative form. A
program may extract some or all transitions in the design
by reading just the relative sections of the value file, or
may maintain the current state of the design by first read­
ing an absolute report, and then applying transitions as they
appear in the relative reports.

FILE FORMATS FOR TRACING

Both the signal mapping file and the value file contain out­
put descriptors and primit£ve segment descriptors. Each of
these is a unique 32-bit integer that represents an output or
primitive segment. In the signal mapping file and the
ASCII version of the value file, these descriptors are output
as signed decimal integers. In the binary version of the
value file, they are output as binary integers. Any 32-bit
integer may be used as either an output descriptor or a primi­
t£ve segment descriptor but not both. Therefore, it is possible
to determine the type of a descrip~r from its value.

Several output descriptors are reserved for use as sentineis in
the value file. A sentinel is a reserved value that has a spe­
cial meaning, such as the last element in a list. Any sen­
tinel output descriptor will not be used as either a true output
descriptor or a primitive segment descriptor. The values of
these sentinels may differ from simulation to simulation,
and are defined in the signal mapping file.

5-2 7/15/86

Logic Simulator Tracing

SIGNAL MAPPING FILE FORMAT

The signal mapping file has the following format:

STA TE_ENCOD ING
<list of state encodings>

RELA TIVE_SENTINEL <relative sentinel descriptor> ;
ABSOLUTE_ SENTINEL

<absolute sentinel descriptor> ;
END _FILE_SENTINEL <end file sentinel descriptor> ;
RESERVED

<reserved information>
END _RESERVED ;
SIGNAL_MAPPING

<list of signal mappings>
END_SIGNAL ;
MEMORY _MAPPING

<list of memory mappings>
END_MEMORY;

list of state encodings is a list of the following entries:

<state name> : <state value> ;

state name is the name of the state in single quotes. state
value is a 32-bit integer that describes the value represent­
ing the state.

<relative sentinel descriptor> is the special <output
descriptor> that indicates that a relative report follows.
<absolute sentinel descriptor> is the special <output
descriptor> that indicates that an absolute report follows.
<end file sentinel descriptor> is the special <output
descriptor> that indicates that the end of the file has been
reached.

<reserved information> is a portion of the file that has
not yet been defined, except that it is terminated by the
keyword END _RESERVED.

<list of signal mappings> is a list of the following entries:

<signal name> <subrange> = <output descriptor> :
<offset>, <is bubbled> ;

7/15/86 5-3

Tracing Logic Simulator

<signal name> is a single-quoted string that contains a
base signal name in canonical syntax. <subrange> is a
subrange of the signal of the form:

"<"<most significant bit> .. <least significant bit> ">"

or

"<"<single bit number>">"

or

<nothing>

If no subrange is specified, the signal is a scalar. output
descriptor identifies the output to which the signal is con­
nected. offset is the bit number on the specified output that
matches the least-significant bit of the signal subrange. is
bubbled is BUBBLED if the output pin is bubbled, and is
NOT_BUBBLED if the output pin is not bubbled.

list of memory mappings is a list of the following entries:

<memory path name> <subrange> =
<primitive segment descriptor>, <is bubbled> ;

memory path name is the path name of a memory in the
design and is enclosed in single quotes. subrange describes
a contiguous subrange of the memory, that matches the
primitive segment descriptor.

primi"tive segment descriptor describes which primitive seg­
ment matches the indicated subrange of the memory. The
bits of a memory are numbered in increasing bit numbers
from 0, which is least significant, to size-1, which is most
significant. is bubbled is BUBBLED if the memory output
pin is bubbled, and is NOT_BUBBLED if the memory out­
put pin is not bubbled.

5-4 7 /15/86

Logic Simulator Tracing

VALUE FILE FORMAT

The value file contains a list of the following entries:

<type sentinel> <absolute time> <list of output states>

<type sentinel> equals an ABSOLUTE_SENTINEL, a
RELA TIVE_SENTINEL, or an END _FILE_SENTINEL.
<absolute time> is a 32-bit integer. <list of output
states> lists output pins and their current states. Each
entry in the <list of output states> has the following for­
mat:

<output descriptor> <value 1> <value 2> . .

or

<primitive segment descriptor> <memory address>
<value 1> <value 2>

<output descriptor> describes an output pin. <value 1>
and <value 2> are 32-bit integers that represent the state
of the output pin. The states of the eight bits of the output
pin are represented in the eight bytes of <value 1 > and
<value 2>. The highest order output pin hit is" in the
highest order byte (bits 31..24) of <value 1 >. Lower
order output pin bits are stored in descending bytes ending
with the lowest order output pin bit in bits 7 .. 0 of <value
2>. This list continues until another <type sentinel> is
reached. If the <type sentinel> equals an
ABSOLUTE_SENTINEL, then the following state informa­
tion represents an absolute report. If the <type sentinel>
equals a RELA TIVE_SENTINEL, then the following state
information represents a relative report. If the <type sen­
tinel> equals an END_FILE_SENTINEL, then this is the
last entry in the file, and no <absolute time> or <list of
output states> follows.

primitive segment descriptor describes a memory primitive
segment. memory address is a 32-bit integer that indicates
which location in the memory has changed. value 1 and
value f are 32-bit integers that represent the new state of

7/15/86 5-5

Tracing Logic Simulator

the memory location.

Whether the first element is an output descri"ptor or a primi­
tive segment descriptor can be determined by checking which
way the integer was referenced in the signal mapping file.

This file format is optimized for binary representation, but
is supported as both a binary and as an ASCII file of signed
decimal integers.

5.2 TABULAR 1/0

FILE FORMAT FOR TABULAR 1/0

The Tabular 1/0 output file includes a list of the signals
being traced, the radix in which they are being traced, and
a series of records that specify times and signal values; sig­
nal strengths are not output. Values that have not changed
since the last time specification need not be specified again,
although a comma is still required to delineate the field.
The following is an example of a Tabular I/O file:

FILE_TYPE = TABULAR_TRACE;
sigl,2
sig2<10 .. 8 > ,8
sig3<5>,2
sig2<7 .. 0>,2
START_TAB_TRACE;

0 I U,U,U,UUUUUUUU;
10 I 1,1,Z,10010110;
20 I 0,5,U,;
30 I ,,U,10010111;

END _TAB_TRACE;
END.

This example shows four subranges of three signals being
traced every 10 nanoseconds. Signals can be traced at any
interval or at every transition; that is, a new record is pro­
duced if a change occurs in any one of the signals being

5-6 7 /15/86

Logic Simulato1· Tracing

traced. See the 1RACE_INTERV AL command for more
information.

STIMULATING CIRCUITS Willi TABULAR 1/0
FILES

The Simulator can read in a Tabular I/O file, such as the
one in the example above, and set the signals specified in it
to the specified values at the specified times. The Simula­
tor reads the time from the file, and when the time in the
simulation reaches this value, the signal values are read and
deposited into the signals specified in the first part of the
file. See the TRACE_READ and TRACE_RESET com­
mands for further details.

The file can be created "manually" with a text editor or by
the Simulator from a previous run. When creating a Tabu­
lar 1/0 file manually, note that signal names containing a
comma should be enclosed in quotes (e.g., 'CLK IC0-1, 3-
4 '). Also note that if the values, which are separated by
commas, extend beyond an 80 character line, a tilde - must
be entered at the end of the line if a value is to be-,contin­
ued on the next line; that is, values cannot appear in the
80th column (although a "," or ";" is acceptable). If the
values extend over 255 characters, put a new line character
before the signal value that would make the total number
of characters exceed 255. For example:

10 / 1,1,0010101, ... 010,uu11011011,uuuuuu­
uuuu,z101011z,10, ... 101,uuuuu,1,11,1,1111,
1,11,0101011,1,1, ... 001,1,1,l,l,1,1,1,10, -
010100,
ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ,1,11;
25 / 0,1,0010101, ... 011, ,0000000000, etc.

In this case, a new line was inserted before the Zs because,
otherwise, the 255 character limit would have been
reached. Signals wider than approximately 250 bits must be
split into multiple segments to be traced using Tabular 1/0.
Note that memories cannot be traced using Tabular 1/0.

7/15/86 5-7

Tracing Logic Simulator

SAMPLE TABULAR 1/0 USE

With the directive ''TABULAR_TRACE ON;" included in
your directives file, the following command sequence might
be given to create a tabular stimulus file:

trace_radix 16 { trace buses in hex }
trace input {specify signals to trace }
trace output
trace sum<15 .. 3>
trace_start { open the file, start tracing }
sim 100 { OPEN signals, }
dep 42
trace_stop
trace_close

{ stop the trace }
{ close the file; write to disk }

To then use the file as stimulus to the Simulator, you could
use the following commands:

logic_init U { set time back to zero }
trace_read tabfile.dat {read the stimulus file }
sim 800 {simulation with stimulus of }

If stimulus from more than one tabular input file is desired,
the TRACE_RESET command can be used to reset the
Simulator after each file has been used. For example, after
the above sequence of commands, the user might specify
the following sequence to use a different tabular input file:

5-8

logic_init -*
trace_reset
trace_read tabfile2
sim c

7/15/86

SEUTION6
LOADING MEM:ORIES

Memories are loaded Crom the memory conten~ file using
the MEMLOAD command. First locate the memory using
the MEMPA TH command.

The format or the memory contents file is identical to the
format of the file generated by the DUMPMEMORY com­
mand. A memory contents file containing four 36-bit words
might appear as:

FILE_TYPE = MEMORY_CONTENTS;
BIT_RANGE = 35 .. O;
MEM_BLOCK 0,4;

0000 0001 0100 0000 1111 1010 1011 0101 1111 ;
0000 0010 0100 0000 1111 1110 1011 1101 1111 ;
0000 0011 0011 0000 0000 1111 1111 0110 0100;
0000 0000 0101 0000 0000 1111 1111 1111 1101 ;

END _MEM_BLOCK; ,
END.

BIT_RANGE determines the word size and bit numbering
of the data words in the file. Regardless or library format,
the syntax for BIT_RANGE is "high value low value" (e.g.,
"35 .. 0", not ~·o .. 35"). MEM_BLOCK is followed by two
decimal parameters. The first parameter is the starting
address or the block, the second parameter is the number
oC words in the block. Following MEM_BLOCK are the
data words in binary. Each data word must be the length
specified by BIT_RANGE and must end with a semicolon.
Spaces may be inserted in the data words Cor clarity. There
may be any number of MEM_BLOCKS; however, all
MEM_BLOCKS must be placed in ascending order or
address and must not specify overlapping ranges.

7/15/86 6-1

Memories Logic Simulator

The format of the MEMLOAD command is:

MEMLoad filename , < file bit range> , [file word range] ,
< primitive bit range > , [primiti"ve word range]

If no filename is given, the user is prompted for one.

The four optional arguments to the MEMLOAD command
are used to specify a mapping from the memory contents
file to the memory primitive. Note that bitr and word­
range arguments must be given as integers (in decimal) and
must be enclosed in the appropriate brackets (either
pointed or square, as indicated). An example of the com­
plete command syntax is:

MEMLOAD
ramvals.dat,<8 .. 5> ,[200 .. 100:10], <3 .. 0> ,[20 .. 0:2]

The file word range I high addr .. low addr : step J specifies
which words from the memory file are to be deposited in
the memory primitive, and the primitive word range [high
addr .. low addr : step] specifies the mapping of the words
within the memory primitive. Thus, the example above
maps words 200,190,180,170, .. _. of the file into words
20,18,16,14, .. _. of the memory primitive. If word ranges
are not specified, they default to I size-1..0] where size is the
depth of the memory primitive.

The file bit range n .. m specifies which of the file word
bits are deposited in the memory primitive, and the primi­
tive bit range specifies the mapping of the file word bits
within the memory primitive. Thus, the example above
maps bit 8 of file word into bit 3 of the primitive, bit 7 of
the file word into bit 2 of the primitive, and so on. If bit
ranges are not specified, they default to the range of the
memory primitive (either <width-1..0> or <O .. width-1>,
depending on the signal syntax being used at the site).

6-2 7/15/86

SEC'llON 7
SIMULATOR COMMANDS

All Simulator commands take the form of a command
name followed by arguments, if necessary. You may
abbreviate commands if the abbreviations are not ambigu­
ous. In the descriptions below the shortest unambiguous
abbreviations are given in boldface type. All commands
are terminated by either pressing RETURN or selecting the
; (semicolon) from the Simulator menu. All command
inputs may be typed in either upper or lower case. Some
commands prompt for arguments if none are given.

Certain commands allow puck points as arguments. On
systems where a puck is not available, all argumentS must
be typed in. Each command is described below. The list­
ing is alphabetical.

ASSERTIONS signal, time specifier

The ASSERTIONS command allows timing asser­
tions to be specified while running the Simulator.
This allows the user to specify assertions interac­
tively rather than as part of the signal name on the
GED drawing. This feature provides greater flexibil­
ity during simulations because timing assertions can
be changed during the simulation run.

The time specifier parameter is specified using the
standard SCALD syntax for timing assertions (e.g.,
0-4). Do not include the assertion character ! (excla­
mation point), or assertion prefix (C). The Simula­
tor automatically adds the "!C" prefix to the time
specifier.

This command can be invoked on existing clock sig­
nals as well as any other signals in the drawing.
Thus, any signal can be assigned a timing assertion

7/15/86 7-1

Commands Logic Simulator

BUS

during a simulation run, and assertions of existing
clock signals can be re-defined. After assigning clock
assertions, the signal can be OPENed using either its
previous or its new (with assertions) name.

This command is used to enter Bus mode simulation
and refreshes the screen. In Bus mode instantane­
ous signal values are displayed on the screen instead
of waveforms. Bus mode is effective for large
designs where many signals need to' be opened at a
time. Bus mode simulation is the default.
Waveforms mode is the other simulation mode. In
Waveforms mode signals appear one to a line and
their signal history is shown as a waveform. To
enter Waveforms mode use the WAVEFORMS
command. Signals opened in one mode are not
automatically opened in the other mode. Be sure to
select the appropriate mode before opening signals.

CLEAR BREAKPOINT signal
or

CLEAR BREAKPOINT# number

This command clears a breakpoint. The argument is
either a signal name or # followed by a number of a
current breakpoint. See the Breakpoints section.

CLEAR ENABLE signal WHEN expression

This command Clears an ENABLE signal when
expressi"on is true. See the Breakpoints section.

CLEAR PATCH signal WHEN expression

7-2

This command Clears a PATCH signal when expres­
sion is true. See the Logic Patching section.

7 /15/86

Logic Simulator Commands

CLOCK

This command turns the clocks on and off. CLOCK
ON turns on the clocks; CLOCK OFF turns off the
clocks. With no argument, CLOCK reports the
ON/OFF state of the clocks. When clocks are
turned off, the clock generator primitives are dis­
abled and the values of clock signals stop changing.
When clocks are turned on, at the start of the next
simulation all primitives are re-evaluated, and all
clock values are immediately set to their correct
instantaneous values.

COMPARE value

This command Compares the value of the currently
open signal against value

An indication is given of whether or not the com­
parison was successful. If the comparison is not suc­
cessful (and the command originated from a com­
mand file), the Logic Simulator PAUSEs from the
command file and returns command control to the
terminal. Control may be returned to the command
file with the RESUME command.

COVERAGE [ON I OFF]

Enables simple coverage analysis allowing the user to
obtain a list of the signals that have made a transi­
tion during a period of simulation. With no argu­
ment, the current status of the coverage analysis is
reported. If coverage analysis is off, the Simulator
does not track the number of transitions. See also
the WRITE_COVERAGE command.

CURSOR time

7/15/86

Moves the WAVEFORMS cursor to a new time. See
the Waveforms section.

7-3

Commands Logic Simulator

DEL TA_ TIME pt1 ptf

Indicates the time difference between two point.s on
the current waveform display. The point.s are
specified using the puck, so this command is only
available on systems having a puck. See the
Waveforms section.

DEPOSIT [signal, I pt) value1
[{@ I+ } time1 I value {@ I+ } time] ...]

7-4

Deposits value1 to the indicated signal at time1 and
schedules subsequent values to be deposited at the
indicated times. Multiple bit values appear in the
current radix; if the number of bits in the value
exceed the width of the signal, the extra bit.s at the
high order end are ignored. The signal is an optional
parameter which may be specified using the puck.
time1 and subsequent value/time pairs are also
optional and may be either absolute or relative to the
current time. Absolute times must be preceded by
the @ character, while relative times must be pre­
ceded by the + character. In the absence of these
optional parameters, value1 is be deposited into the
currently OPEN signal at the current time.

Only a space is required to separate value/time pairs.
These pairs do not have to be in any specific time
order. If time x = time y and value x does not
equal value y, then the latest value specified is depo­
sited to the signal. This applies to both single and
multiple invocations of the command. Also, if any
time x < current time, the corresponding value is
ignored. Values from the DEPOSIT command
always override the values specified in a tabular
input file for the same time. Unlike Tabular I/O,
times and values specified using the DEPOSIT com­
mand are volatile; i.e., after they are output, the
Simulator retains no knowledge of them. In addi­
tion, if the simulation time is reset to 0 (using
LOGIC_INIT), any scheduled deposits are cleared.

7 /15/86

Logic Simulator Commands

Note that this command will neither OPEN the
specified signal nor change which signal is currently
OPEN. If the specified si'gnal has not been opened,
DEPOSIT causes the value to be placed on the sig­
nal, but will neither OPEN it nor cause signal history
to be started.

Neither of the optional DEPOSIT parameters may be
specified when dealing with a memory location;
memory locations continue to require individual
DEPOSIT commands in order to change their con­
tents.

Here is an example. If the current time is 50, the
command:

dep input,a@ 100 b@200 c+ 500 d@30 e+ 400
f@lOO

deposits to the signal named INPUT the following
values:

fat time 100
bat time 200
eat time 450
cat time 550

The value a does not appear because it is overwritten
by the value f. The value d is ignored because 30 is
previous to the current time 50.

DISPLAY [ON I OFF }

7/15/86

Allow the user to enable/disable updating of the
display area of the screen. This is particularly helpful
in increasing the Simulator's speed when continuous
updating of the display area is not required. When
updating is disabled, a field on the status line indi­
cates this to the user. The output to the echo area
in response to the commands given proceeds as
usual. When the display is reenabled, the screen is
redrawn as if a REDISPLAY command was issued.

7-5

Commands Logic Simulator

DUMPMEMORY filename !,primitive bit range,
[primitive word range]]

Dumps the contents of· memory primitive into
filename (the user is prompted if a filename is not
specified). The optional bit and word range parame­
ters specify a window of memory to be dumped;
note that both ranges are taken to be in decimal
regardless of the current radix. If no optional
parameters are specified, the entire memory is
dumped. The file created can be used to load the
memory with the MEMLoad command. See the
Loading Memories section.

EQUATE ENABLE signal TO expression

Equates an ENABLE signal to expression. See the
Breakpoints section.

EQUATE PATCH signal TO expression

Equates a PATCH signal to expression. See the Logic
Patching section.

ERASE

EXIT

Erases the entire display area of the screen, including
all signals and values. Resets the top row number to
1 and restores the status lines.

Exits the Logic Simulator.

HARD COPY [{A - E }J

7-6

Produces a plot of the current Simulator screen.
This command only works when the Simulator is
running under GED or with the graphics Simulator.
When running under GED, the plot is produced by

7 /15/86

Logic Simulator Commands

GED and the optional parameter is not available.
The parameter may be specified with the graphics
Simulator to produce an output of the desired page
size; the default is "A".

Several plotter types are supported and a
local/spooled option is available through the SET
command (see below).

HISTORY recording period

Sets or provides the recording period for
WAVEFORMS. See the Waveforms section.

INIT_COVERAGE

Clears the list of signals that have made a transition.
This command enables the user to invoke coverage
analysis for different periods of simulation (see the
COVERAGE command). Note that turning cover­
age analysis OFF does not clear this list - this com­
mand must be invoked each time a new list of sig­
nals is to be started (except the first, when the list is
empty), regardless of the use of the COVERAGE
command.

INTERVAL value

Sets the number of clock intervals to the specified
decimal integer value. The interval value appears on
the status line. If the number of intervals is too
small, a warning is given.

LATCH ENABLE si'gnal GETS expression 1 WHEN expres­
si'on 2

7 /15/86

Latches an ENABLE signal to expressi'on 1 when
expression 2 is true. See the Breakpoints section.

7-7

Commands Logic Simulator

LATCH PATCH signal GETS expression 1 WHEN expres­
sion 2

Latches a PATCH signal to expression 1 when expres­
sion 2 is true. See the Logic Patching section.

LIST BREAKPOINTS

Lists all breakpoints. See the Breakpoints section.

LIST DEPOSITS

Lists all signals with associated value/time pair(s) for
which DEPOSITs have been scheduled at a time >
current time. The times reported are absolute times.

LIST ENABLES

Lists all ENABLE signals. See the Breakpoints sec­
tion.

LIST PATCHES

Lists all PATCH signals. See the Logic Patching sec­
tion.

LIST SIGNALS

Lists all signals originally present in the design.
Breakpoints and patches applied to the signal also are
reported.

LIST 1RACES

7-8

Lists all signals, subranges, and memories that are
currently being traced along with the radix in which
they are being traced. For example, if List Traces is
typed after the three trnce commands in the example
shown in the Trace command section, below, the

7/15/86

Logic Simulator Commands

following output appears:

LOAD MEMORY

data, binary
out<66 .. 33> ,hex
midout<4> ,binary

This is another name for the MEMLOAD command.

LOGIC_INIT { 0 11 I* I-* IU}

Resets simulated time to 0 and initializes all signals
to the specified value. Note that this comman~ does
not alter the contents of memories. "*" sets all sig­
nals to their asserted value; that is, low asserted sig­
nals become 0 and high asserted signals become 1.
"-*"sets all signals to their non-asserted values.

MEM_INIT { 0 11 I* I-* IU}

Initializes the contents of memories to the specified
values. U is only a legal option if the 'MEM_STATE
4;" directive has been given.

MEMLOAD file name! ,file bit range, (file word range),
pr£mit£ve bit range, [pr£mit£ve word range)]

Loads the memory specified by the current Memory
path from file name. Note that the square brackets
around the file and primitive word ranges are
required. The user is prnmpted for a file name if
none is given. All other parameters are optional. The
optional bit and word ranges specify a mapping from
the memory contents file to the memory primitive.
Note that all of the ranges are taken to be in decimal
regardless of the current radix. See the Loading
Memories section.

7 /15/86 7-9

Commands Logic Simulator

MEMPATH pathname

Sets the "Memory path" part of the status line to
pathname. Note that pathname must be the path­
name of a memory primitive and must be enclosed
in parentheses. The pathname need not be com­
plete, but must uniquely define a primitive. Memory
pathnames are necessary in order to display or
change memory locations or load memories from
files. If no memory can be found that matches the
given pathname, the memory that best matches the
pathname is used. The NEX™EMORY command
can be used to advance the mempath to another
memory.

MOVE from_poi'nt to_poi'nt

Allows the user to change the position on the screen
of a previously OPENed signal. from_point and
to_poi'nt are specified using the puck in the Simulator
window. The signal currently being displayed at
from_poi'nt will be removed and redisplayed at
to_poi'n~ replacing any signal which may already be at
that location. This command is only available where
puck usage is enabled (GED or graphics Simulator).

NEX™EMORY

Advances the mempath to another memory.

OPEN si'gnal (, row I , col) J
or

OPEN si'gnal pt [(dest pt si'gnal pt) ...) (de st pt J

7-10

V"pens a s1'-,-~a1 '' e _,.1...1_ - -:-~-1 1-~ 1-1,~ ,:i;~plnu\ g1i l l •· ., auu;:; a ;:;10 11£t1 1A1 "11"' u10 J""J 1 •

Note that the second syntax is only available where
puck usage is enabled (GED or graphics Simulator).
si'gnal pt is the puck point that identifies the signal in
the drawing or in the lower window; dest pt is the
point that defines where the signal is to be displayed.
If dest pt is omitted, the Simulator opens the signal

7/15/86

Logic Simulator Commands

in a default location, usually as near as possible to
the top of the display. The sequence of (dest pt sig­
nal pt) can be repeated; the command must be ter­
minated by a semicolon or carriage return. In
WAVEFORMS mode, opening a signal also causes
its history to be recorded.

If a signal has not already been opened and empty
rows remain on the current screen, omitting row
causes the signal to appear in the first free row. If
the screen is filled, the next available row (not on
the screen) is used, and the display is shifted to
display this signal. If the same signal was previously
opened and no position is indicated, the existing sig­
nal is marked as open (shifting, if necessary, to
display it).

The user can replace an existing signal by opening a
new signal and specifying row. Once a signal is
Opened in WAVEFORMS mode, the history for the
signal is maintained for the specified history period,
even if the signal is not on the screen (i.e., a user
can Open more signals than can be displayed.at one
time. Simulate to calculate their behavior, and then
vi~w their behavior). ·

OPENMEMORY ADDRESS (, row (, column)]

Adds the contents of the addressed memory location
to the main display. The memory is identified by the
pathname last given to the MEMPA TH command.
The pathname appears in parentheses, followed by
the address in parentheses. The memory word
appears in the current radix, and becomes the
current signal for purposes of depositing a new
value. The address uses the current radix and must
not contain any bits with value U (unknown) or Z
(high impedance). If a location (row or row,
column) is specified, the memory display is placed at
that location if it is available. The column argument
is only used in Bus mode.

7/15/86 7-11

Commands Logic Simulator

PAUSE

Stops taking commands from the current command
file and returns control to the terminal. The
RESUME command returns control to the command
file.

PEEK signal

Allows the user to observe the value of a specified
signal without requiring that it first be OPENed in
the display area. The signal value is simply output in
the echo area in the current radix. signal may be
specified using the puck. If CURSOR time is some­
thing other than the current time, the command will
output the value of the specified signal at both the
CURSOR time and the current time. If the specified
signal has no history, the message in the echo area
will so indicate and the command will output its
current value.

PERIOD value

Sets the clock period to the specified decimal integer
value (value). The clock period is displayed in the
status lines. If the specified period is too small, a
warning is given.

PLOT [start_ time end_ time] ['filename']

7-12

Builds a waveform diagrams file that can be used as
input to the PLOTTIME program to produce
waveform diagrams under GED. The default param­
eters are the waveform starting time, waveform end­
ing time, and the file name 'plot.sig.dat', respectively.
Note that specifying filename closes any previously­
specified file and opens a new file for output. Also
note that after invocation, the file is not closed and
subsequent calls without the filename parameter
append additional data onto the previously opened
file. For additional information on the Plottime

7 /15/86

Logic Simulator Commands

program, see The Plottime Reference Manual.

RADIX { 2 j8jl0116IB10 ID IH IS}

Sets the current radix. The radix value may be
either 2 or B for binary, 8 or 0 for octal, 10 or D for
decimal, 16 or H for hexadecimal, or S for strength.
The default radix is hexadecimal.

RECORD_ALL

The RECORD_ALL command causes the signal his­
tories of all signals AND all memories in a circuit to
be recorded. This command is identical to the
RECORD_SIGNALS command (see below) except
that the history of all locations of all memories also
is recorded. Note that considerable storage require­
ments could be involved in creating and maintaining
a history of all signals and memories. Thus, this
command should not be invoked on circuits with a
large number of elements and/or large memories.

RECORD _SIGNALS

Causes the signal histories of all signals in the circuit
to be recorded. By invoking this command the his­
tory of all signals is available thereafter.

Note that the RECORD _ALL command does not
affect the duration of history that is maintained for
all signals. Also note that since certain storage
requirements are involved in creating and maintain­
ing history, this command should not be invoked on
large circuits.

RED ISP

7/15/86

Erases the screen and redraws the status lines and
main display. The echo area disappears.

7-13

Commands Logic Simulator

REM:OVE [s£gnaq

Removes the indicated signal from the signal display
area. s£gnal is an optional parameter which may be
specified using the puck. If s£gnal is not specified,
the currently OPEN signal is REMOVEd. If s£gnal is
entered from the keyboard, a single occurrence of
the signal in the current radix is REMOVEd. When
selected from the menu, the user is prompted for a
signal name.

RESUME

Restores the SAVEd status of the Simulator from
the file filename. Returns command control to the
command file at the point of the most recent PAUSE
or COMPARE command.

ROW top row number

Specifies signals to be displayed by defining the sig­
nal to be positioned at the top of the display in the
WAVEFORMS mode. See the Waveforms section.

SAMPLE ENABLE s£gnal GETS expression 1 WHEN
expressfon 2

Samples an ENABLE signal to expression 1 when
expression 2 becomes true. See the Breakpoint sec­
tion.

SAMPLE PATCH signal GETS expression 1 WHEN expres­
s£on 2

7-14

Samples a PATCH signal to expression 1 when expres­
sion 2 becomes true. See the Logic Patching section.

7/15/86

Logic Simulator Commands

SCOPE pathname

D elines a default pathname to be used for signal
identification. If the user sets the scope to the
desired drawing or part, signals can be identified
without having to type the pathname. (Note that
even without defining scope, the Simulator accepts
an abbreviated or missing pathname if it uniquely
specifies a signal.)

SCRIPT file name

Changes the input stream so that the Simulator reads
from the specified file. The file name does not need
to be in quotes, but must follow the file name con­
ventions of the host machine; for example, in
UNIX, the case of letters is significant, while in
VMS, it is not. The Simulator echos the commands
in the script file at the terminal, but does not
prompt.

A convenient way to create a script file is to edit the
Simulator output file simcmd.dat (command file) and
rename it. See also the PAUSE and RESUME com­
mands for further information on script files.

SCROLL

This command controls the automatic scrolling
feature of the Simulator. The command takes the
values ON or OFF. The default is ON. See the
Waveforms section.

SEl' BREAKPOINT expression

7/15/86

Installs expression as a breakpoint. See the Break­
points section.

7-15

Commands Logic Simulator

SET BREAKPOINT # numb er

Activates a numbered breakpoint. The number
must be preceded with the # character. See the
Breakpoints section.

SET ENABLE signal WHEN expression

Sets an ENABLE signal when expression is true. See
the Breakpoints section.

SET { Local_plot ISpooled_plot}

Specifies what to do with HARD COPY output;
LOCAL_PLOT queues the output immediately,
while SPOOLED _PLOT sends the output to a file for
output using the I-IPR utility. LOCAL_PLOT is the
default. The spool file has the name 'hard' when
there is only a single window, or 'hardXY' (XY is
the tty number of the current window) on systems
having multiple windows. This command is only
available with the full-screen Simulator. It has no
effect when running the split-screen simulator. See
the HARDCOPY command.

SET PATCH signal WHEN expression

SET

7-16

Sets a PATCH signal when expression is true. See
the Logic Patching section.

The SET command specifies the plotter type for
HARDCOPY output. The allowed arguments are:

7 /15/86

Logic Simulator Commands

Wllversatec
W22versatec
W36versatec
W42versatec
Calcomp1043
Calcomp57 44
B9424
HP7475
HP7580

The same plotter types are supported as in GED with
the same name specifications. This command is only
available with the graphics Simulator - it has no
effect when running under GED. The 11" Versatec
is the default. See the HARDCOPY command.

SHOW pathname

Accepts a pathname in the same format as the
MEMPATH command and displays the current
values of all the signals connected to the primitive at
that pathname. This command is most useful for
testing simulation models during library develop­
ment.

SIMULA TE { val IC IS } [display percentage]

7/15/86

Simulates and advances simulated time by the
specified number of nanoseconds. If the command
"SIMULA TE C" or "SIMULA TE S" is given, time is
advanced by one clock period or one step, respec­
tively. When simulating past the final time displayed
on the screen in WAVEFORMS mode, the display
automatically shifts to display a new interval. The
optional display percentage parameter indicates the
percentage of the screen width which is to be occu­
pied by waveforms when this shift occurs. The
default is 50 percent of the screen but any value
from 0 to 100 may be specified.

7-17

Commands Logic Simulator

SNAPSHOT

Prints an image of the status lines and signal display
window in the List file if a List file is being created.

SPACING value

Sets the spacing between adjacent waveforms in
WAVEFORMS mode to value. The default value is
1, indicating single spacing. See the Waveforms sec­
tion.

S'IEP value

Sets the simulated time step size to the specified
decimal integer value.

SYSTEM

Returns user temporarily to operating system (UNIX
or VMS) so that they may give a command. Useful
for editing command files and script files.

The Simulator prompts for an operating system com­
mand, executes the command and redisplays the
simulation display. The operating system command
can also be given as an argument to the SYSTEM
command like this:

system ls

The SYSTEM command is not supported in the
split-screen Simulator. Instead, go into GED and
use the UNIX or SYSTEM command.

'IERMINAL

Sets the terminal type. Accepted arguments are:

7-18 7 /15/86

Logic Simulator Commands

ANNARBOR An Ann Arbor Ambassador ter­
minal set to 48 lines.

CLUSTER A SCALD terminal with charac­
ter graphics, running locally or in
transparent mode connected to
the host computer.

GCLUSTER A SCALD terminal with graphics
capabilities enabled.

GRAPHICS An IBM PC terminal or VAXsta­
tion II terminal.

TTY Any video terminal or a teletype
(this is the default).

VTlOO A DEC VTlOO with 24 lines.

3270 An IBM 3270.

TR.A CE signal, [rad-ix J
or

TRACE pt! pt ... J

7/15/86

Traces the output or outputs corresponding to the
given signal or signal subrange. The second syntax
indicates that signal may be specified using the puck
to point at it. rad-ix is an optional parameter that
may be specified using numerals (2, 8, 10, or 16) or
characters (b, o, d, or h). If no radix is specified the
default trace radix is used. See the Tracing section
and the TRACE_RAD IX and LIST TRACES com­
mands.

Example: *trace data
*trace out<66 .. 33>,h
*trace midout< 4>

7-19

Commands Logic Simulator

1RACE_ALL

Traces all outputs of all signals and all contents of all
memories.

1RACE_CLOSE

Closes all trace output files. Usually means that all
tracing for the current simulation is complete.

1RACE_INTERV AL number

For Tabular I/O format, causes a trace record to be
output every number nanoseconds during the simula­
tion. number must not be less than 0. If number is 0
(the default), a trace record is written every time
there is at least one transition. This command is
ignored when the standard trace format is being
used.

1RACE_MEM

Traces the contents of the memory currently
specified by the MEM_PA TH command. This com­
mand only works for standard tracing.

1RACE_OPEN

Opens the trace output file(s). If the simulation is
using the standard trace format, the signal mapping
file is output when this command is given.

1RACE_RADIX [2 18110I16 lb lo Id lh J

7-20 ,

Changes the default radix used for tracing (initially
set to 2). If no parameter is specified, the current
default trace radix is output.

7 /15/86

Logic Simulator Commands

TRACE_READ filename

Reads in a Tabular 1/0 trace file from a previous run
(or manually generated) to stimulate the circuit. The
signals to be traced are first read in, followed by the
list of times and signal values. As each time is
reached in the simulation, the values for that time
are deposited into the proper signals. To see the
values being deposited as the simulation advances,
use the UPDATE_INTERVAL command.

TRACE RESET
R~sets (disables} stimulation from a tabular input
file. This command can be given at any time to turn
off circuit stimulation. A different tabular input file
may also then be specified. See the Tracing section.

TRACE_START

Begins tracing the outputs specified by either the
TRACE_ALL command or appropriate TRACE
command. TRACE_START can be given any
number of times during a simulation run. See the
TRACE_STOP command.

TRACE_STOP

Discontinues tracing until another TRACE_START
command is entered.

UNO 0 DEPOSIT { si"gnal I pt }

7 /15/86

Cancel all future scheduled DEPOSITs for a specified
signal. signal may be specified using the puck. If
there are no outstanding DEPOSITs for a given sig­
nal for time > current time, a message will be out­
put. Note that this command is intended to undo
previously issued DEPOSIT commands made to a
specific signal; thus, attempts to UNDO DEPOSITs
to a superset, subset, synonym, etc. of the signal will

7-21

Commands Logic Simulator

fail (unless a DEPOSIT was scheduled for that signal
as well). For example, given the following sequence
of commands at time=O:

dep a<7 .. 0>, 45@ 100 lb@ 110
dep a<3 .. 0>, 7@ 100
undo dep A< 3 .. 0 >

The 'UNDO DEPOSIT' has no effect on the first
DEPOSIT command, and the value 45 will still be
scheduled for output at time=lOO.

UPD A 1E_IN1ERV AL constant

Sets the simulator to update the screen at specified
intervals while simulating for a longer time. If zero is
specified, any previously set interval is cleared and
updating is disabled.

WAVEFORMS { start time { end time I; } I; }
or

WAVEFORMS pt1 { ptf I; }
Enters WAVEFORMS mode with the specified.
parameters. See the Waveforms section.

WIRE_D ELA YS filename

Specifies the name of the wire delays file. See the
section on Delays.

WRITE_COVERAGE filename[, { 0I11213 })

7-22

.Outputs the list of signals that have made a transi­
tion and the number of transitions that they have
made. If the optional parameter (0 - 3) is specified,
the signals are processed based on the number of
times that they have made a transition. The signals
are sorted by the number of transitions, and the file
only contains those signal names in specific groups;
for example, specifying "O" indicates that only signals

7/15/86

Logic Simulator Commands

7/15/86

making 0 transitions (i.e., those that have not
changed) should be output, and "1" indicates that
only those signals making 0 or 1 transitions are out­
put. See also the COVERAGE and
INIT_COVERAGE commands.

7-23

SEUilON8
DELAYS

When making simulation models, delay values can be
added to each primitive using the body properties DELAY,
RISE, and FALL. Pin-to-pin delays can be specified using
the pin properties PD ELA Y, PRISE, and PF ALL. For
designs where delays are related to changes in output load­
ing, temperature, and voltage, the Delay Estimator and
Expression Evaluator can be used. Each of these features
is described below.

8.1 DELAY PROPERTIES

In most simulation models delays are modeled using three
body properties: DELAY, RISE, and FALL.

DELAY PROPERTY

The DELAY property accepts two values, a rise delay fol­
lowed by a fall delay and separated by a comma. If only
one value is specified, this value is used as both the rise
and fall delay.

All of the values for delay properties can be specified as a
single number, or as three numbers enclosed in square
brackets. When three numbers are used, the first value is
the minimum delay, the second is the typical delay, and the
third is the maximum delay. For a particular simulation
run, you select to use either all of the minimum values, or
all of the typical values, or all of the maximum values.
The DELA Y_MODE directive is used to select one of the
three values for the current simulation run. Thus, delay
can be specified in one of the following formats:

7/15/86 8-1

Delays

DELAY delay time
DELAY rise delay, fall delay
DELAY (min,typ,maxl
DELAY (min, typ, max , [min, typ, max]

RISE AND FALL PROPERTIFB

Logic Simulator

In addition to using the DELAY property, rise and fall
delays can be specified using the RISE and FALL proper­
ties. Usage of these properties is as follows:

RISE rise delay
FALL fall delay

When the DELAY property is attached to a body where the
RISE , and/or FALL properties are also attached, the
RISE_F ALL directive is used to select which delay values
are used. See the Directives section for more information.

PIN-TO-PIN DELAY

For complex primitives with multiple input and output pins,
accurate modeling of the delays within the primitive is tedi­
ous if not impossible. The pin-to-pin delay feature allows
the user to associate separate delay values for individual
paths from input to output pins.

To use pin-to-pin delays, you use the pin properties PRISE,
PF ALL, and PD ELA Y. These properties designate respec­
tively pin rise delay, pin fall delay, and pin delay. For
greatest flexibility, these properties are permitted on both
input pins and output pins.

When the delays through a primitive are all one set of
values except for one delay path, the one unusual delay
path can be specified using the pin properties and the other
delays can be specified using the body properties. The attri­
butes for the properties are: permit(pin), inhibit().

The property values must be in the format described below:

8-2 7 /15/86

Logic Simulator

PRISE = PV list
PF ALL = PV list
PD ELA Y = PV list

<PV list> ::= <PV> I <PV> , <PV list>
<PV> ::= <P> : <V>

Delays

<P> ::= <pin name> \(<pin list>)
<pin list> ::= <pin name> <pin name> , <pin list>
<V> ::= <delay value> I [<triple values> J
<triple values>::= <min>, <typ>, <max>
<min> ::= <delay value>
<typ> ::= <delay value>
<max> ::= <delay value>
<delay value> ::= <empty> I <value>

To enable the pin-to-pin delays the PIN_DELA Y directive
must be set to ON. OFF is the default value for the
PIN_D ELA Y directive. The pin delay properties override
the body delay properties when the PIN_DELA Y is set ON;
otherwise, the body delay properties override the pin delay
properties. When the PIN_DELA Y directive is set to ON,
the body properties DELAY, RISE, and FALL are used for
the pairs of input and output pins where pin delays are not
specified.

Any conflicts between input pin properties and output pin
properties (that is, two different delay values specified for
one pin-to-pin path) is reported as an error. When delay
values are specified between two input pins or two output
pins, an error is also reported.

RISE_FALL DIRECTIVE

The RISE FALL directive is used to control the use of
separate RISE/FALL delays for both parts and pins. By
default, this directive is ON. See the Directives section for
more information on this directive.

7 /15/86 8-3

Delays Logic Simulator

8.2 EXAMPLES USING DELAY PROPERTIES

Here are two examples showing the RISE_FALL directive
and the PIN_DELA Y directives working together ..

PIN DELAYS WITH RISE/FALL DELAYS

The ADDER primitive has inputs A, B, PI, GI, and CI,
and outputs F and CO. For this example both the
PIN_DELAY and the RISE_FALL directives have the
values ON .

. The ADDER body has the DELAY property attached with
these values:

DELAY= [3,4,5]

The input pin A has the following pin properties:

PD ELA Y = (F):[2.5, 3.7, 4.4)

PRISE = (F):[2.3, 3.4, 4.5], CO:[1.1, 2.4, 3.5]

PFALL = (F):[l.1, 2.2, 3.3], C0:(2.1, 3.2, 4.3)

For all delay paths from the input pins B, PI, GI, and CI
the values of the DELAY property are used.

For the delay paths from A to F and from A to CO the fol­
lowing delay values are used:

MIN TYP MAX

A t.oF (rise) 2.3 3.4 4.5
(fall) 1.1 2.2 3.3

A t.o CO (rise) 1.1 2.4 3.5
(fall) 2.1 3.2 4.3

8-4 7 /15/86

Logic Simulator Delays

PIN DELAYS WITHOUT RISE/FALL DELAYS

The REG RS primitive has inputs I, CK, R, and S, and
output Q. Assume that the PIN_DELA Y directive is ON
and the RISE_F ALL directive is OFF.

The REG RS body has the DELAY property attached with
these values:

DELAY= [3,4,5)

The output pin Q has the following pin properties:

PDELA Y = (R):[2.5, 3.7, 4.4)

PRISE = (R,S):[2.1, 3.5, 4.0), CK:[1.1, 2.4, 3.5J

PF ALL = (R,S):2.2, (CK):[0.9, 2.5, 4.3]

For the delay paths from I, CK, R, and S to Q the follow­
ing delay values are used:

MIN TYP MAX

I to Q 3 4 5
CKtoQ 1.1 2.5 4.3
RtoQ 2.5 3.7 4.4
s toQ 2.2 3.5 4.0

7/15/86 8-5

Delays Logic Simulator

8.3 DELAY ESTIMATOR

In many technologies, the time required for the output of a
component to reach its loads is affected by both the inter­
connect delay and the size of the load. If Tr is the calcu­
lated rise time and Tf is the calculated fall time, then:

Tr = Tdr + Kr(load on the net) + Tir
Tf = Tdf + Kf(load on the net) + Tif where

Tdr

Kr

Tir

Tdf

Kf

Tif

Note:

is the component's rise delay

is a device-specific constant related to
changes in the output's rise time as a
function of component loading

is the rising edge delay due to wires

is the component's fall delay

is a device-specific constant related to
changes in the outputs fall time as a
function of component loading

is the falling edge delay due to wires

Tdr, Tdf, Kr, Kf are device-specific;
(load on the net) is net specific; and
Tir, Tif input specific.

We can lump together the net loading term and intercon­
nect term of the delay. Then the delay due to all intercon­
nection effects can be modeled as an input specific wire
delay. If interconnection delays are computed (or
estimated) this way by the physical design system, and then
fed back to the Simulator as wire delays (in the delay file
specified with the WIRE_DELAYS directive), we obtain an
accurate representation of the system. Early in the design
cycle however, it may be impractical to provide such
detailed delay information -- estimators are required.

The Simulator has a Delay Estimator that takes into
account static load, and provides a wire delay estimate
based on the number of st.ops (inputs and outputs) on the

8-6 7 /15/86

Logic Simulator Delays

net. This delay estimate is added to the basic component
delay (specified with the RISE, FALL, and DELAY proper­
ties in the simulation model).

To use the Delay Estimator you need to use the directive
DELA Y_ESTIMATOR ON and set the other appropriate
directives to the required values.

The Delay Estimator uses the following equation:

Tr(estimated) = Tdr + Kr(loads on the net+ wire delay)
Tf(estimated) = Tdf + Kf(loads on the net+ wire delay)

where constants Tdr, Kr, Tdf, Kf are as above.

The load tenn is a weighted sum of inputs and outputs on
the net which approximates the true capacitive and DC load
on the net. The wire delay is estimated by counting the
number of stops on the net and converting stops into load
equivalents.

INTERACTION OF WIRE DELAYS WITH DELAY
ESTIMATOR

If a delay file is used to feed back delay information from a
physical design system and the Delay Estimator is also
used, the values from the delay file override values calcu­
lated by the Delay Estimator.

COMPUTING NET DEPENDENT DELAYS

The Simulator estimates the net delay on each net in six
steps:

1. The load is estimated by taking a weighted sum of
the inputs and outputs on the net.

2. The number of stops on the net is counted.

3. The number of stops is converted to an interconnec­
tion delay estimate (in units of load equivalents) by
table look-up.

7/15/Sfi 8-7

Delays Logic Simulator

4. An effective net load is computed by adding the
interconnect and load estimates.

5. The effective net loading is multiplied by the drive
constants (Kr and Kf) of the drivers of the net to
obtain rise and fall delays due to net loading.

6. These delays are added to the drivers zero-load
parameters (Tdr and Tdf).

Counting Loads

Counting the inputs and outputs on a net is complicated by
the presence of TIMES properties and dots.

When a net is connected to the output pin or input pin of a
library part that has the TIMES property attached to it, the
value of the TIMES property affects the number of loads
on the net.

When a net is connected to one or more input pins and a
single output pin, the following rule applies:

Each input pin is counted n times when TIMES = n
and the sum of the values of the TIMES properties
for each pin is used. The output pin to which the
net is connected is counted once and when the out­
put pin is connected to a library part having a TIMES
property, the total number of inputs on the net is
divided by n.

For example, a net is connected to an output pin of
a library part with the property TIMES=3, and to
three input pins. The input pins are on three
different library parts that have, respectively, the
properties TIMES=5, TIMES=2, and TIMES = 1.
The load is calculated as 5 + 2 + l = 8 inputs on
the net. This total number of inputs is divided by
the value of the TIMES property of the output pin.
This gives 8 divided by 3.

When a net is connected to several output pins that are
dotted together (connected together) and the output pins
belong to library parts that have the TIMES property

8-8 7 /15/86

Logic Simulator Delays

attached to them, the previous rules apply with two
changes:

The number of output pins on the net is the sum of
each output pin ignoring the TIMES properties. The
number of inputs on the net is counted as before,
and then divided by the smallest value of the TIMES
property of any library part with an output on the
net.

If phantom gates are used, they are collapsed to an
explicit dot for the counting procedure.

The user may , in addition, place an optional pin property,
LOAD_FACTOR, on any pin. LOAD_FACTOR takes a
fixed point number as a value. If LOAD_FACTOR is
specified, a pin is counted LOAD _FACTOR tim~~ (or
LOAD_FACTOR * n times when it is an input pin and a
TIMES property with a value of n is present) rather than
once in the above counting procedure.

Estimating Wire Delays

To estimate wire delay, the number of stops on each net is
counted. If phantom gates are used, they are collapsed into
an explicit dot for the stop counting process. The number
of stops is converted to equivalent loads by table lookup
using a table specified with the Simulator directive
WIRE_ESTIMA TE. WIRE_ESTIMA TE takes an argument
list of fixed point numbers and an optional FAMILY
specification. A net with j stops receives a wire delay esti­
mate given by the Jl:,h number in the list. The family
specification allows for a number of different
WIRE_ESTIMATE tables to be used in the same simula­
tion run. If a FAMILY body property is given on a primi­
tive, then the WIRE_ESTIMA TE table with the same
FAMILY specification will be used. If no FAMILY body
property is given on a primitive, then the
WIRE_ESTIMATE table without a FAMILY specification
will be used. An example set of WIRE_ESTIMA TE direc­
tives are given below:

7/15/86 8-9

Delays

WIRE_ESTIMATE 1.0, 2.0, 3.0, 4.0;
WIRE_ESTIMATE ECL: 0.5, 1.0, 2.0, 3.0;
WIRE_ESTIMATE TTL: 1.0, 2.0, 3.1, 4.0;

Logic Simulator

WIRE_ESTIMA TE ON_GA TE_ARRA Y: 0.3, 0.G, 1.0, 1.3;
WIRE_ESTIMATE BET_GATE_ARRA Y: 1.0, 2.0, 3.1, 4.5;

Computing Load Dependent Net Delays

In simulation models, each primitive that drives an output
pin of the part being modelled can have an optional pin
property, DRIVE. This property takes a pair of values, the
first value is the driver's Kr factor, the second its Kf factor.
For details of the syntax for the DRIVE property, see
below under Expression Evaluator. If no DRIVE property
is specified, Kr and Kf are set to the default value specified
by the DEFAULT_DRIVE directive. When neither
DRIVE properties nor the DEFAULT_DRIVE directive are
used, Kr and Kf are set to 0-0. If only one value is given,
Kr and Kf are both set to that value.

After the effective net loading has been computed for a
component's output net, the component's output delays
(DELAY, or RISE/FALL) are adjusted on a bit-by-bit
basis by the time obtained by multiplying its drive
constant(s) by each output bit's effective net loading.

USING 'IHE DELAY ESTIMATOR

To use the delay estimator, follow these steps:

1. Use the DELA Y_ESTIMATOR directive to turn on
delay estimation. The default value for this directive
is OFF.

2. Specify drive constants (Kr, and Kf). This can be
done in two ways:

8-10

• · By attaching the DRIVE pin property to each
Simulator primitive whose output is to display
load-dependent behavior.

7 /15/86

Logic Simulator Delays

• By specifying a default value for drive con­
stants. To do so, use the DEFAULT_DRIVE
directive. See under Directives for details.

3. Specify pin loading. This is done by attaching the
LOAD_FACTOR property to a pin of the Simulator
primitive that connects to the interface signal that
represents the pin of the part whose load is to be
specified. The LOAD~FACTOR property takes a
fixed point number as its value:

LOAD_FACTOR =fixed point number

If no LOAD_FACTOR property is specified, a
default LOAD_FACTOR value of 0 is used.

4. Specify a conversion table from stops to load
done with the
See under Directives

equivalents. This is
WIRE_ESTIMA TE directive.
for details.

Assuring Correct Load Counting

This scheme for counting stops and loads on a net is
independent of the actual wiring of a net. In two significant
cases this results in delay estimates that are too large;

Drivers with the TIMES property, especially those feeding
wire gates or phantom gates, are often wired with a careful
partitioning and placement of the loads. The estimation
scheme does not take this into account. It assumes a load
that results from an even partitioning of the loads into a
number of pieces equal to the smallest value of the TIMES
properties found on the drivers.

Physical parts often have common input pins which are
modelled as separate pins. For example in a design that
uses two LS374s, each with the property SIZE=4, both
parts could be driven by the same clock signal and hence be
allocated to the same package. However, since two logical
parts appear on the GED drawing, two LS374 clock pins
will appear on the net instead of one.

7/15/86 8-11

Delays Logic Sim uiator

8.4 EXPRESSION EVALUATOR

An expression evaluator feature allows the user to specify
equations to adjust primitive delay times based on output
loading, temperature, and voltage variation. Several direc­
tives and properties are used to implement this feature. If
the Expression Evaluator and the Delay Estimator are used
simultaneously, the Simulator uses the values produced by
the Expression Evaluator.

Drive and load factor can be specified as pin properties in
drawings using the properties DRIVE and
LOAD _FACTOR; both of these properties can take real
parameter values. The body properties DELAY _EQ and
DELA Y_PARAM allow the user to specify equation names
and parameter names to be used in calculating delay. The
TIMES property may be specified on bodies in drawings to
be simulated. The syntax of these properties is as follows:

DRIVE = <drive> or
DRIVE= <rise_drive>, <fall_drive>
LOAD_.FACTOR =<real>
TIMES= <integer>
DELAY_EQ = <eq_id> or
DELA Y_EQ = <rise_eq_id>, <fall_eq_id>
DELAY_.PARAM = <param_id> or
DELAY_PARAM = <rise_param_id>, <fall_param_id>

The expression evaluator is controlled in the Simulator with
several directives. The EXP _EVALUATOR directive con­
trols whether the feature is used in the Simulator. Default
rise and fall drive values can be specified using the
DEFAULT_DRIVE directive. Finally, users can define
delay equations containing variables via the
USER_PARAMETER and USER_EXPRESSION directives.
See the Directives section for more information on these
directives.

Here is an example explaining the operation of these pro­
perties and directives. Say that three equations define the
delay function for parts in a certain gate array library:

8-12 7 /15/86

Logic Simulator Delays

1. LOAD <= COF
tpd = tO + DRIVE *LOAD

2. COF < LOAD < = 2*COF
tpd = tO + l.5*DRIVE*LOAD - 0.5*DRIVE*COF

3. 2*COF < LOAD <= 4*COF
tpd = tO + 3*DRIVE*LOAD - 3.5*DRIVE*COF

where the variables are defined as follows:

output node loading LOAD

COF cell output factor which differs from cell
to cell

DRIVE

tpd

cell output drive capability

overall cell delay time including loading
effect

tO cell delay time excluding loading effect

In the design drawing a body named INVERTER is used
and two body properties are attached to it:

DELA Y_EQ=DelayEq
DELAY_PARAM=INVl

Delay Eq is a property value and gives the name of the
delay equation, or as we call it, the equation identifier.
DelayEq is chosen by the user. The output pin of the
INVERTER has the following pin property attached to it:

DRIVE=0.35

The equation identifier, DelayEq, and parameter identifier,
INV 1, must be defined in the Simulator Directives file so
those references can be resolved. The equation identifier is
defined in the USER_EXPRESSION directive. The param­
eter identifier is defined in the USER_PARAMETER direc­
tive. The USER_EXPRESSION directive can be used to
define the following delay equation:

7/15/86 8-13

Delays Logic Simulator

USER_EXPRESSION DelayEq(Cof)=
lu <=Cof] 'drive*lu',

where:

Cof <lu <=2*Cof] 'l.5*drive*lu-0.5*drive*Cof',
2*Cof <lu <=4*Cof) '3*drive*lu-3.5*drive*Cof';

DelayEq is the equation identifier

Cof

lu

drive

is the value given in the
USER_PARAMETER directive applicable
to this primitive (different values can be
used for different cells).

is the loading value calculated by the
Simulator from the value of the
LOAD_FACTOR property.

is the value of the DRIVE property
attached to the cell output pin.

The USER_PARAMETER directive is used to define the
value of Cof as follows:

USERYARAMETER INV1=18;

The value 18 is then substituted for Cof in the equations
for each library part that has the property
DELAY_PARAM = INVl attached. When two different
USER_PARAMETER directives are used, for example,

USER_PARAMETER INV1=18;
USERYARAMETER INV2=10;

the value 18 would be substituted for Cof in the equation
for the library parts having the property DELA Y_PARAM
= INVl and the value 10 would be substituted for Cof in
the equation for the library parts having the property
DELAY_PARAM = INV2.

To return to the example, if the total number of load units
{lu) at the output of the INVERTER is 20, the Simulator
can evaluate USER_EXPRESSION. The second equation is
selected since 18 < 20 < 2*18, and the computation
proceeds as follows:

8-14 7/15/86

Logic Simulator Delays

DelayEq(18) = (1.5 * 0.35 * 20) - (0.5 * 0.35 * 18)
= 7.35

The computed delay, 7.35, is added to the delay for this
INVERTER.

8.5 WIRE DELAY FEEDBACK

After a design has been sent to a physical design system
and layout and routing performed, precise wire delay infor­
mation is available. This delay information can then be fed
back into the Simulator and the design can be resimulated
to verify that it still performs as required.

WIREDELAYF1LE

The delay information is read by the Simulator from the
wire delay file. The wire delay file can h·ave any name.
You specify the name of the wire delay file with the
WIRE_D ELA YS directive or with the WIRE_D ELA YS
command. Do not use the wire delay file wheq using Real­
fast.

The format for the Simulator wire delay file is similar but
not identical to the format of the Timing Verifier delay.dat
file. The wire delay file must be in the format described
below. Each element in the file consists of a signal name in
quotes, a bit subscript (if any), and a delay element or a list
of path names of components that the signal drives with a
delay for each path. When multiple path names are
specified, the Simulator chooses the minimum delay from
all of the specified delays for each path. These delays are
added in with any other specified delay values to determine
when Simulator events should be scheduled for those out­
puts.

Ranges cannot be specified in the Simulator delay file.
Minimum, typical, and maximum delay values cannot be
specified in the Simulator delay file.

7/15/86 8-15

Delays Logic Simulator

<delay file> ::=END. I
<delay list>; END.

<delay list> ::= <signal delay list>; I
<signal delay list> ; <delay list>

<signal delay list> ::= <signal name> : <stop delay list>

<stop delay list> ::= <stop delay>; I
<stop delay>, <stop delay list>;

<stop delay> ::= = <quoted rise/fall>; I
<quoted path name> = <quoted rise/fall>;

<signal name> ::= <quoted signal name> I
<quoted signal name> < <bit range> >

<quoted signal name>::= '<name>'

<bit range> ::= <bit number>
<bit number> .. <bit number>

<bit number> ::= <integer>

<quoted path name> ::='<path name>'

<quoted rise/fall>
::='<delay>' I

'<rise delay>, <fall delay>' I
'<rise delay> - <fall delay>'

<rise delay> ::= <delay>

<fall delay> ::= <delay>

<delay> ::= <fixed point number>

8-16 7/15/86

Logic Simulator

Here is an example of a wire delay file:

'DATA' <5 .. 0>: = '2.3, 3.4';
'ENABLE':= '5.1';
'(SYS ALU MUX)' = '2.3,3.4',
'(SYS REG)' = 'l.7-1.2';
END.

Delays

Notice that the minus sign in the rise/fall specification does
NOT indicate a range of values. The first value specifies
the rise time and the second value specifies the fall time.

USING A WIRE DELAY FILE

Once the wire delay file is created, you instruct the Simula­
tor to use the file either with a directive in the Simulator
Directives file, or with an interactive command.

The directive you use is:

WIRE_D ELA YS 'name ';

We suggest you use a name other than delay.dat to avoid
confusion with the Verifier delay.dat file.

The command you use is:

WIRE_D ELA YS name

7/15/86 8-17

SECTION 9
SIMULATION MODELS

As part of each Valid-supplied library, there is a simulation
model for each component in the library. The simulation
model simulates the functionality of the component and is
used by the Logic Simulator. Simulation models are built
by library developers from a specific set of parts called
Simulator primitives that are contained in the library
named SIM. A wide variety of Simulator primitives are
available from simple logic gates to a complete ALU. The
behavior of each primitive is understood by the Logic
Simulator.

The model is entered into the SCALDsystem as a GED
drawing having the extension .SIM. For example, the
simulation model of an LS74 is a drawing with the name
LS74.SIM. It can be viewed on the screen using the EDIT
command. Permissions are usually set on component
models so that only the librarian or root has permission to
change the models.

0.1 USING SIMULATION PRIMITIVES

Each input and output pin on a primitive may be individu­
ally bubbled using the Graphics Editor command "BUB­
BLE." A bubbled pin has an intrinsic inversion; that is, an
AND gate with a bubbled output behaves as a NAND gate.
The function table for a bubbled AND gate is:

Input Output

0 1
1 0
z z
u u

7/15/86 9-1

Primitives Logic Simulator

A Simulator primitive can have a SIZE property to specify
its bit width. For example, to compute the sum of two 16-
bit signals, a single adder primitive with a SIZE of 16 can
be used, instead of 16 adder primitives. Two special primi­
tives, the "8 BIT PRIO EN COD ER" and the "1 OF 8
DECODER" have a fixed SIZE of eight bits. A primitive
may be given a size of "SIZE" which means that the size of
the primitive is taken from the size property of the part
being modeled. Many primitives have inputs and outputs
that are not affected by the size property. All enable inputs,
clock inputs, and chip select inputs have a fixed width of
one bit. The select input of an 8-bit multiplexer is always
three bit.s wide.

Simulator primitives may be given a DELAY property.
Primitives without an explicit DELAY are assumed to have
a delay of 0. Delays are given in nanoseconds. By conven­
tion, primitives are given delays to model the worst-case
behavior of the· part being modeled, but this is not
required. The SCALD Timing Verifier uses a different set
of timing models. For the Simulator to function correctly,
it is sufficient that the timing behavior of the Simulator
model represents one possible timing behavior of the part.
The user should exercise care when specifying delay values
for parts; in particular, zero-delay parts may result in unex­
pected behavior in a circuit.

Logic Simulator models must include interface signals with
names that correspond to the names of the signals in the
body drawing for the part being modeled. A DRAWING
body and a DEFINE body should be included in each Logic
Simulator model. The DRAWING body should be given a
TITLE property and an ABBREV property. The TITLE
should be the name of the body and the ABBREV should
be an abbreviation that is easily recognizable.

9-2 7 /15/86

Logic Simulator Primitives

9.2 SIMULATOR PRIMITIVES

The various Logic Simulator primitives are described in this
section. Function tables are included to document the
behavior of primitive outputs. The * {asterisk} character is
used to designate low assertion on inputs pins and to com­
plement output pins.

0.3 LOG! C GATE PRIMITIVES

There are three types of logic gate primitives: AND, OR,
and XOR. Since any pin of any primitive may be indepen­
dently bubbled, to create a NAND gate, simply bubble the
output of an AND gate.

AND PRIMITIVE

The AND primitives come in seven varieties, 2-input
through 8-input: 2 AND, 3 AND, 4 AND, 5 AND, 6
AND, 7 AND, and 8 AND. The truth table for an AND
primitive is:

One or More All Other The
Inputs Inputs Output

0 x 0
1 1 1

z,u 1 u

where X is any value.

7/15/86 9-3

Primitives Logic Simulator

OR PRIMITIVE

The OR primitives also come in seven varieties: 2 OR, 3
OR, 4 OR, 5 OR, 6 OR, 7 OR, and 8 OR. The truth table
for an OR primitive is:

One or More All Other The
Inputs Inputs Output

0 0 0
1 ·X 1

z,u 0 u

where X is any value.

XOR PRIMITIVE

The XOR has only a 2-input version. The truth table for an
XOR primitive is:

Input 1 Input 2 Output

0 0 0
0 1 1
1 0 1
1 1 0
x U,Z u

z,u x u

where X is any value.

9-4 7/15/86

Logic Simulator Primitives

0.4 BUFFER PRIMITIVES

There are three buffer primitives: the simple buff er BUF,
the tri-state buff er TS BUF, and the identity buffer, IDEN­
TITY.

BUF PRIMITIVE

The truth table for the BUF primitive is:

Input Output

0 0
1 1

z,u u

To create an inverting buff er, simply bubble the input or
output pin of a buff er. Non-inverting buffers are com­
monly used for delays.

TS BUF PRIMITIVE

The tri-state buff er primitive TS BUF has an enable input
which, when disabled, causes the output to take the value
high impedance (Z). The enable input has a width of one
bit. Here is the truth table for the TS BUF:

Input Enable* Output

0 0 0
1 0 1

z,u 0 u
x 1 z
x z,u u

7 /15/86 !J-5

Primitives Logic Simulator

IDENTITY

The IDENTITY primitive is similar to BUF except that it
propagates the exact signal on the input pin to the output
pin, while the BUF primitive converts the Z state to U and
soft values to hard values. Here is the truth table for the
ID ENTITY primitive:

Input Output

0 0
1 1
z z
u u

9.5 JK PRIMITIVE

The JK primitive models the J-K Flip Flop. The primitive
has input pins for J and K data inputs, asynchronous set
and reset functions, and an edge-sensitive clock. If the
clock input is not bubbled, then the primitive's outputs
triggers on a positive edge; if it is bubbled, it triggers on a
negative edge. Outputs consist of Q and Q-BAR data outr
puts. Asserting both the set and reset pins causes both of
the outputs to go high. The truth table for the JK primitive
is shown here:

9-6 7 /15/86

Logic Simulator Primitives

J K Clock PR* CL* Q Q-BAR

x x x z,u x u u
x x x x z,u u u
x x x 0 0 l l
x x x 0 1 l 0
x x x l 0 0 l
x x X--tZ,U l l u u
x x X--tO l l ps ps
0 0 0--tl l l ps ps
0 l 0--tl l l 0 l
l 0 0--tl l l l 0
l 1 0--tl l l not Q not Q-BAR

where X is any value and ps is previous state.

0.6 LATCH PRIMITIVES

There are five latch primitives: the LATCH, LATCH RS,
LATCH RS COMP, SCAN LATCH and SCAN LATCH
RS. The LATCH, LATCH RS, and LATCH RS COMP
primitives have an enable input that is level sensitive. The
LATCH RS and LATCH RS COMP also have asynchro­
nous set and reset inputs that cause the outputs to take the
values l and 0, respectively. The SCAN LATCH and
SCAN LATCH RS primitives are used for debugging and
testing a design.

LATCH PRIMITIVE

The truth table for the LATCH primitive is:

7 /15/86 0-7

Primitives Logic Simulator

Data Enable Output

x 0 no change
0 1 0
1 1 1

z,u 1 u
=ps z,u ps
~ ps z,u u

where X is any value and ps is previous state.

LATCH RS PRIMITIVE

On the LATCH RS primitive, reset prevails over set if both
are asserted. The truth table for the LATCH RS primitive
is:

Data Enable PR* CL* Output

x x x z,u u
x x x 0 0
x x z,u 1 u
x x 0 1 1

=ps z,u 1 1 ps
~ ps z,u 1 1 u
x 0 1 1 ps
0 1 1 1 0
1 1 1 1 1

z,u 1 1 1 u

LATCH RS COMP

Complementary outputs are provided on the LATCH RS
COMP, and both outputs take the value 1 when both set
and reset are asserted. The truth table for the LATCH RS

9-8 7 /15/86

Logic Simulator Primitives

COMP primitive is:

Data Enable PR* CL* Output Output*

x x x z,u u u
x x z,u x u u
x x 0 0 1 1
x x 0 1 1 0
x x 1 0 0 1

=ps z,u 1 1 ps ps
~ps z,u 1 1 u u
x 0 1 1 ps ps
0 1 1 1 0 1
1 1 1 1 1 '6

z,u 1 1 1 u tJ

SCAN LATCH

The SCAN LATCH primitive is a special purpose primitive.
Library developers requiring this primitive should contact
Valid.

SCAN LATCH RS

The SCAN LATCH RS primitive is a special purpose primi­
tive. Library developers requiring this primitive should
contact Valid.

9.7 REGISTER PRIMITIVFS

There are five register primitives: the REG, REG RS, REG
RS COMP, REG RS COMP 2 and REG CKE. The regis­
ters have an edge-sensitive clock input. When the clock
input is not bubbled, the primitive's outputs trigger on a
positive edge; when the clock input is bubbled, the outputs
trigger on a negative edge. The REG RS, REG RS COMP,

7 /15/86 9-9

Primitives Logic Simulator

and REG RS COMP 2 also have asynchronous set and
reset inputs that cause the outputs to take the values 1 and
0, respectively.

REG PRIMITIVE

The truth table for the REG primitive is:

Data Clock Output

0 0-+1 0
1 0->1 1

Z,U 0->1 u
x 1->0 ps

=ps X-+Z,U ps
=,rf ps X-+Z,U u

REG RS PRIMITIVE

In the REG RS primitive, reset prevails over set if both are
asserted. The truth table for the REG RS primitive is:

9-10 7/15/86

Logic Simulator Primitives

Data Clock PR* CL* Output

x x x z,u u
x x x 0 0
x x z,u 1 u
x x 0 1 1

=ps X-+Z,U 1 1 ps
~ ps X-+Z,U 1 1 u

0 0-+1 1 1 0
1 0-+1 1 1 1

z,u 0-+1 1 1 u
x 1-+0 1 1 ps

REG RS COMP PRIMITIVE

Complementary outputs are provided on the REG RS
COMP, and both outputs take the value 1 when both set
and reset are asserted. The truth table for the REG RS
COMP primitive is:

Data Clock PR* CL* Output Output*

x x x Z,U u u
x x z,u x u u
x x 0 0 1 1
x x 0 1 1 0
x x 1 0 0 1

=ps X-+Z,U 1 1 ps ps
~ ps X-+Z,U 1 1 u u
x X-+0 1 1 ps ps
0 0-+1 1 1 0 1
1 0-+1 1 1 1 0

z,u 0--d 1 1 u u

7 /15/86 ll-11

Primitives Logic Simulator

REG RS COMP 2 PRIMITIVE

This primitive is a special purpose version of the REG RS
COMP primitive. The primitive works the same as the
REG RS COMP primitive except that both outputs take the
value 0 when both PR* and CL* are asserted and several
additional conditions govern the behavior of preset and
clear. The truth table for the REG RS COMP 2 primitive
is:

Data Clock PR* CL* Output Output*

x x x z,u u u
x x z,u x u u
x x 0 0 0 0
x x 0 1 1 0
x x 1 0 0 1

=ps X-+Z,U 1 1 ps ps
:rf ps X-+Z,U 1 1 u u
x X-+O 1 1 ps ps
0 0-+1 1 1 0 1
1 0-+1 1 1 1 0

Z,U 0-+1 1 1 u u

The following additional conditions override the values in
the truth table.

1. When an instance of the REG RS COMP 2 primitive
has the body property DELAY attached with a value
d, and when PR* and CL* both change value from 0
to 1 within d nanoseconds or less of each other, then
both OUTPUT and OUTPUT* take the value U
(unknown).

2. When PR* = U and LAST OUTPUT = 1, then
OUTPUT= 1, and OUTPUT* = 0.

9-12

When PR* = U and LAST OUTPUT not = 1, then
OUTPUT = U, and OUTPUT* = U.

7 /15/86

Logic Simulator Primitives

When CL* = U and LAST OUTPUT = 0, then
OUTPUT = 0, and OUTPUT* = 1.

When CL* = U and LAST OUTPUT not = 0, then
OUTPUT = U, and OUTPUT* = 0.

When PR* = U and CL* = 0, then OUTPUT = 0,
and OUTPUT* = U.

REG CKE PRIMITIVE

The REG CKE primitive is similar to the REG primitive
except that it has a clock enable input that enables the clock
when asserted.

9.8 MULTIPLEXER PRIMITIVES

There are three multiplexer primitives with 2, 4, and 8
inputs: the 2 MUX, 4 MUX, and 8 MUX respectively. The
SELECT inputs for these parts have a fixed width of 1, 2,
and 3 bits respectively. Use of a multiplexer can often
dramatically reduce the number of Simulator primitives
needed to model a part. The truth table for the 2 MUX
appears below. The table can be extended readily for the 4
MUX and 8 MUX:

s IO : 11 y

0 IO ":/:- Z IO
IO= Z u

1 11 ":/:- z 11
Il = z u

Z,U IO = Il ":/:- Z Il
I0=11=Z u

IO ":/:- Il u

7/15/86 9-13

Primitives Logic Simulator

D.D MEMORY PRIMITIVE

There is one memory primitive: MEMORY. The width of
each word is determined by the SIZE property. The
number of words is determined by the DEPTI-I property.
The ADR input has a size corresponding to the number of
words. For example, a 256 word RAM has an ADR input
of width eight. As a convenience to the model builder, the
WE (write enable) and CS (chip select) inputs on the
MEMORY primitive are bubbled because many actual
memory parts have these inputs low asserted. These pins
may be un-bubbled (use the BUBBLE command in GED)
if necessary. The MR (master reset) input, when asserted,
clears the entire MEMORY to zeros.

Memories may be modeled in either two-state or four-state
mode. Use the MEM_STA TE directive to select two-state
mode. The default is four-state mode. In two-state mode,
each bit of the memory may assume one of two states: 0
and 1. In four-state mode, each bit of the memory may
assume one of three states: 0, 1 or U.

Truth tables for each mode are given below. The OUT­
PUT column shows what value is output in each case.
LOC means that the addressed location is output. The
WRITE column indicates whether a write operation is per­
formed. "No" indicates that no write operation is per­
formed. A single letter indicates a write operation to the
addressed location, and the value written. "All" indicates
that the given value is written to all memory locations.

9-14 7 /15/86

Logic Simulator Primitives

FOUR STA'IE MODE

MR cs WE ADR OUTPUT WRl'IE

0 0 x x z no
0 1,U x >= DEPllI u no
0 1 0 UNDEF u no
0 1 0 DEF LOO no

0 1 1 DEF I I
0 1 u DEF u u
0 1 1,U UNDEF u U all
0 u 0 x u no

0 u l,U DEF u
''"

u
0 u l,U UNDEF u U all
1 0 x x z 0 all
1 1 x x 0 0 all

1 u x x u 0 all
u 0 x x z

"
U all

u 1 x x u U all
u u x x u U all

7/15/86 9-15

Primitives Logic Simulator

TWO STATE MODE

MR cs WE ADR OUTPUT WRITE

0 0 x x z no
0 1,U x >=DEPTH u no
0 1 0 UNDEF u no
0 1 0 DEF LOC no

0 1 1 DEF I I
0 1 u DEF 1 1
0 1 1,U UNDEF 1 1 all
0 u 0 x u no

0 u 1,U DEF u ' 1
0 u 1,U UNDEF u 1 all
1 0 x x z 0 all
1 1 x x 0 0 all

1 u x x u 0 all
u 0 x x z 1 all
u 1 x x 1 1 all
u u x x u 1 all

D.10 COUNTER/SHIFT REGISTER PRIMinVE

The COUNTER SHIFT REGISTER primitive operates as
either a modulo-16 up/down counter or as a 4-bit bidirec­
tional shift register. This primitive has seven inputs:

9-16

MR

CK

CEP

Master reset

Clock

Count enable parallel input (active low)

7 /15/86

Logic Simulator Primitives

CET Count enable trickle input (active low).
This input also acts as a serial input for shift
left.

S select inputs (3 bits)

DI parallel data in

MSBIN serial data input for shift right. This input
produces two outputs: D 0 - data out and TC
- terminal count (active low).

The function of the COUNTER SHIFT REGISTER primi­
tive is selected based on the S input as follows:

82 Sl so FUNCTION

L L L Parallel Load
L L H Complement
L H L Shift Right
L H H Shift Left
H L L Count Down
H L H Clear
H H L Count Up
H H H Hold

The output also can be cleared asynchronously by bringing
the master reset signal active.

The two count enable inputs are provided for ease of cas­
cading in multistage counters. These two enable inputs
must be both asserted for the count up/down operations.
One count enable (CET) input also serves as a data input
for the shift left operation. The output also can be cleared
asynchronously by bringing the master reset signal active.

7/15/86 9-17

Primitives Logic Simulator

9.11 ARITIIMETIC PRIMITIVES

There are five arithmetic primitives: ADDER, ALU,
LOOKAHEAD, CARRY SAVE ADDER, and COM­
PARATOR.

ADDER PRIMITIVE

The ADDER primitive takes three inputs: A, B, and
CARRY IN; and pr()duces four outputs: F, P, G, and
CARRY OUT. The size property determines the width of
A, B, and F. F takes the sum of A, B, and CARRY IN.
CARRY OUT is asserted if an overflow occurs. G is
asserted if the addition of A and B generates a carry. P is
asserted if the addition of A, B, and 1 propagates a carry.

ALU PRIMITIVE

The ALU primitive has inputs and output identical to those
of the adder primitive with the addition of a 4-bit select
input that selects a function from the following table:

9-18 7/15/86

Logic Simulator Primitives

SELECT FUNCTION

0 A plus B (BCD)
1 A minus B (BCD)
2 B minus A (BCD)
3 0 minus B (BCD)
4 A plus B
5 A minus B
6 B minus A
7 0 minus B
8 {A and B) or (-A and -B)
0 (A and -B) or (-A and B)

10 A or B
11 A
12 -B
13 B
14 A and B
15 0

BCD stands for binary-coded-decimal. The behavior of the
BCD functions is not defined for SIZE values that are not
multiples of four, or for data inputs that are not valid BCD
values. The "plus" and "minus" denote two's-complement
arithmetic. A "-" denotes one's-complement. The ALU
primitive is patterned after the 100181. ECL part.

LOOKAHEAD PRIMITIVE

The LOOKAHEAD primitive is a look ahead carry genera­
tor with three inputs: P, G, and CARRY IN. The primitive
produces one output CARRY OUT. CARRY IN is one bit
wide. P, G, and CARRY OUT can be sized. Each
CARRY OUT bit is the carry calculated from CARRY IN
and the P and G inputs from the least significant bit
through the CARRY OUT bit of the primitive.

7/15/86 0-Hl

Primitives Logic Simulator

CARRY SA VE ADDER PRIMITIVE

The CARRY SA VE ADDER takes three inputs: A, B, and
C, and produces two outputs: T and CARRY. All can be
sized. The 2-bit sum is computed for each bit of A, B, and
C and is stored in the corresponding bits of CARRY and F.
F is the low order bit of the sum, and CARRY is the high
order bit of the sum.

COMPARATOR PRIMITIVE

The COMPARATOR primitive takes two inputs A and B
and produces three 1-bit outputs: LT, EQ, and GT. LT is
asserted if A < B. EQ is asserted if A = B. GT is
asserted if A > B.

0.12 TIMING CHECKER PRIMITIVES

Four timing checker primitives identical to the ones sup­
ported in the Timing Verifier are available as simulation
primitives. These are: SETUP HOLD, SETUP RISE
HOLD FALL, EDGE TO EDGE, and MIN PULSE
WIDTH.

Simulation speed is slower when these primitives are used.
The TIMING_CHECK directive is used to enable and dis­
able the timing checker primitives.

SEWPHOLD

The SETUP HOLD primitive has a clock and data input.
For an active-high clock, it generates an error message in
the output listing when the data input is not stable from
SETUP ns before, the beginning of the rising edge of the
clock until HOLD ns after the clock is high. The SETUP
HOLD primitive has by default two body properties
attached:

9-20

SETUP= 0.0
HOLD= 0.0

7/15/86

Logic Simulator Primitives

The properties SETUP and HOLD are assigned the
required property values by using the CHANGE command.
This primitive is used to check the set-up and hold times
of registers and latches.

The SETUP HOLD primitive has an optional enable input,
which if specified, turns the checking on and off. If the
enable input is any value other than ZERO, then checking
is enabled. If checking is enabled any time during the ris­
ing edge of the clock input, then checking is performed for
that edge.

SETUP RISE HOLD FALL

The SETUP RISE HOLD FALL primitive has a clock and
data input. For an active-high clock, it generates an error
message in the output listing when the data input is not
stable from SETUP ns before the beginning of the rising
edge of the clock, while the clock is rising, while the clock
is high, during the falling edge of the clock, until HOLD ns
after the clock has gone low. The SETUP RISE HOLD
FALL primitive has by default two body properties
attached:

SETUP= 0.0
HOLD= 0.0

The properties SETUP and HOLD are assigned the
required property values by using the CHANGE command.
This primitive is used to check the set-up and hold times
of data being written into memories.

The primitive has an optional enable input that can be used
to turn off checking. If the enable input is given, then any
value other than ZERO will cause checking to be enabled.
If checking is enabled at any time between the beginning of
the rising edge until the end of the falling edge, checking is
performed for that clock pulse.

7/15/86 9-21

Primitives Logic Simulator

EDGE TO EDGE

The EDGE TO EDGE primitive has two inputs, CKl and
CK2. It checks that the beginning of a RISING edge on
CK2 is at least a minimum delay from the end of a RIS­
ING edge on CKl and that the end of a RISING edge on
CK2 is no more than a nuLximum delay from the beginning
of a RISING edge on CKl. The EDGE TO EDGE primi­
tive has by default two body properties attached:

MIN= 0.0
MAX= 0.0

The properties MIN and MAX are assigned the required
property values by using the CHANGE command. Only
rising delays are used.

If there is no edge on CK2 (that is, if CK2 does not change
state), then no error message is generated.

The primitive has an optional enable input, which if
specified, turns the checking on and off. If the enable input
is any value other than ZERO, then checking is enabled. If
checking is enabled any time during the rising edge of CKl,
then checking is performed for that edge.

MIN PULSE WIDTH

The MIN PULSE WIDTH primitive has one data input. It
checks that its data input has no pulses on it that are low
for less than LOW ns, and no pulses on it that are high for
less than HIGH ns. The MIN PULSE WIDTH primitive
has by default two body properties attached:

LOW= 0.0
HIGH= 0.0

The properties LOW and HIGH are assigned the required
property values by using the CHANGE command.

The primitive has an optional enable input, which if
specified, turns the checking on and off. If the enable input
is any value other than ZERO, then checking is enabled. If
checking is enabled any time during a given pulse, then the

0-22 7 /15/86

Logic Simulator Primitives

width of that pulse is checked.

0.13 ENCODER AND DECODER PRJMITIVES

There are four encoder/decoder primitives: 8-BIT PRIO
ENCODER, PRIORITY ENCODER, 1 OF 8 DECODER,
and 8-BIT DECODER.

8-BIT PRJO ENCODER PRlMI'llVE

The 8-BIT PRIO ENCODER primitive takes an 8-bit input
and produces two outputs: T, which is three bits wide and
ANY, which is one bit wide. ANY is asserted if any input
bit is asserted. T is the bit number of the most significant
bit asserted, if any, where 0 is the most significant input.

PR10RI1Y ENCODER PRIMITIVE

The PRIORITY ENCODER primitive takes eight 1-bit
inputs: I7 .. IO, and produces two outputs: T, which is
three bits wide, and ANY, which is one bit wide. ANY is
asserted if any input bit is asserted. Tis the bit number of
the most significant input which is asserted, if any, where
I7 is the most significant input and has a bit number of 7
(111 binary).

1 OF 8 DECODER PRIMI'llVE

The 1 OF 8 DECODER primitive takes two inputs:
SELECT, which is three bits wide and ENABLE, which is
one bit wide. It produces an 8-bit output T. If ENABLE is
asserted, SELECT selects which hit of T is asserted. When
SELECT contains Z and/or U, those SELECT bits are
treated .as "don't care" for selecting output bits and the
selected output bits are set to U.

7/15/86 9-23

Primitives Logic Simulator

S<2 .. 0> EN T<7 .. 0>

x 1 all bits 0

i=defined value z,u the i-th bit U
and the rest 0

(0/1,Z/U,0/1) etc Z,U the (0/1,*,0/1)-th bits U
and the rest 0

i=defined value 0 the i-th bit 1
and the rest 0

(0/1,Z/U,0/1) etc 0 the (O/l,*,0/1)-th bits U
and the rest 0

8-BIT DECODER

The 8-BIT DECODER primitive is identical in operation to
the 1 OF 8 DECODER primitive. The output of the 1 OF
8 DECODER is an 8 bit bus. The output of the 8-BIT
DECODER is eight individual bits.

9.14 OTHER PRIMITIVES

The remaining four Simulator primitives are: PARITY,
RES, PASS TRANSISTOR, and UNI PASS TRANSISTOR.

PARITY PRIMITIVE

The PARITY primitive's I input can be sized and produces
a one bit output T. Tis the odd parity of I.

RES PRIMITIVE

The resistor primitive RES is fully bidirectional and acts
like a wire except that HARD strength signals are con­
verted to SOFT strength when they pass through. RES
primitives always have 0 delay. The RES primitive is SIZE
wide, and the pins may not be bubbled.

9-24 7/15/86

Logic Simulator Primitives

PASS TRANSISTOR PRIMITIVE

The PASS TRANSISTOR primitive is fully bidirectional,
and acts like a switch. The G pin of the PASS TRANSIS­
TOR controls whether the A and B pins are connected
together. An active G pin (0 if the pin is bubbled, other­
wise 1) causes the PASS TRANSISTOR to act like a wire,
connecting the A and B nets. An inactive G pin causes the
PASS TRANSISTOR to act as if it were not in the circuit.
The delay from A to B or B to A is always 0. The G pin
has an input delay that assumes the value of the DELAY
property on the PASS TRANSISTOR. The A and B pins of
the PASS TRANSISTOR are SIZE wide and may not be
bubbled. The G pin is always one bit wide, and may be
bubbled.

UNI PASS TRANSISTOR PRIMITIVE

The UNI PASS TRANSISTOR is a unidirectional version
of the PASS TRANSISTOR and results in more rapid
simulation for MOS circuits. Pins and properties of the
UNI PASS TRANSISTOR primitive are identical - a G pin
that controls whether the A and B pins are connected.
However, because this transistor is uni-directional, the A
pin is an input pin rather than an output.

9.15 USER-CODED PRIMITI~

The Simulator allows users to code simulator models in
PASCAL and refer to them using standard SCALD draw­
ings. Existence of these user-coded primitives (UCPs)
means that the user can expand the "parts set" understood
by the Logic Simulator. This feature is described in detail
in the section "User-Coded Primitives."

9.16 PROPERTIES AFFECTING SIMULATION

When a signal is driven by more than one output, the
result depends on the logic family. Output pins are given
output types to specify their behavior when wired together.
The OUTPUT_TYPE pin property is put on the body

7/15/86 9-25

Primitives Logic Simulator

drawings for the part and is inherited by both Simulator
and Timing Verifier models. Supported output_type values
are:

TS tri-state
TS,TS tri-state
OC,AND open collector
OE,OR open emitter

If no output type is given, the pin behaves as a "totem
pole" 1TL output.

0-26 7 /15/86

SEarIONlO
ERROR MESSAGES

Error messages are short statements that identify and
record each error encountered by the Logic Simulator.
When errors occur in a run of the Simulator, error mes­
sages are generated and printed in the list file (simlst.dat)
in numerical sequence.

10.1 NUMERICAL LISTING OF ERROR MESSAGES

The rest of this section contains a numerical listing of all of
the Logic Simulator error messages. Each message is
explained and often suggestions are made about the causes
of the problem and how to remedy them.

Certain error messages are labeled "reserved". This means
that the error does not occur in normal operation and is
reserved by Valid for debugging or other internal opera­
tions.

ERROR #1: Expect.ed identifier

Generated when the Simulator is expecting an identifier (a
string of letters, digits, or '-' starting with a letter) and
finds some other data.

ERROR #2: Expected =
Generated when the Simulator is expecting an equal sign
(=) and finds some other data.

ERROR #3: Expected [

Generated when the Simulator is expecting a left square
bracket [and finds some other data.

7/15/86 10-1

Errors Logic Simulator

ERROR #4: Expected)

Generated when the Simulator is expecting a right square
bracket J and finds some other data.

ERROR #5: Expected a constant

Generated when the Simulator is expecting a constant and
finds some other data.

ERROR #6: Expected (

Generated when the Simulator is expecting a left
parenthesis (and finds some other data.

ERROR #7: Expected)

Generated when the Simulator is expecting a right
parenthesis) and finds some other data.

ERROR #8: Expected ,

Generated when the Simulator is expecting a comma and
finds some other data.

ERROR #9: Expected •

Generated when the Simulator is expecting an asterisk *
and finds some other data.

ERROR #10: Expected <

Generated when the Simulator is expecting a less than
character < and finds some other data.

10-2 7 /15/86

Logic Simulator Errors

ERROR #11: Ex:peded >
Generated when the Simulator is expecting a greater than
character > and finds some other data.

ERROR #12: Expected;

Generated when the Simulator is expecting a semicolon
and finds some other data.

ERROR #13: Expected:

Generated when the Simulator is expecting a colon and
finds some other data.

ERROR #14: Unexpected symbol in integer expression

Generated when the Simulator is reading an expression and
finds something unexpected. When this error occurs, the
Simulator is expecting one of the following:

1. A constant

2. An expression in parentheses, for example, (2+ 3).

3. NOT followed by an item from this list.

4. An identifier whose value is one of the above or a
parameter whose value is an integer.

ERROR #15: Reserved

ERROR #16: Bit value invalid

Generated when the Simulator is reading a bit subscript
and finds an illegal bit value. Bit values are invalid if they
are negative or are greater than the largest allowed bit
number. Since the largest allowed bit number is (2**31 - 1
= 2147 483647), this error usually means that the bit value

7/15/86 10-3

Errors Logic Simulator

is negative.

ERROR #17: Expected/

Generated when the Simulator is expecting a slash / and
finds some other data.

ERROR #18: Scald configuration file does not exist

Generated when the Simulator is unable to find the
SCALD configuration file (config.dat). Check the location
and protection of the file.

ERROR #19: Reserved

ERROR #20: Unmatched closing comment symbol

Generated when the Simulator encounters a closing com­
ment symbol } (right curly brace) without a matching start­
ing comment symbol {(left curly brace). Either this sym­
bol is extraneous or the beginning of the comment was
never specified.

ERROR #21: Reserved

ERROR #22: String length exceeded

Generated when the Simulator is reading a string and finds
that the stl'ing is too long. Strings are limited to 255 char­
acters. The Simulator ignores the characters from the
current position to the end of the string.

ERROR #23: Illegal character found

Generated when the Simulator finds an illegal character in
the input line. Removing the character will solve the prob­
lem.

10-4 7 /15/86

Logic Simulator Errors

ERROR #24: Expression value overflow

Generated when the Simulator evaluates an expression and
its value overflows. When this error occurs, the Simulator
assigns 0 to the expression and continues.

ERROR #25: Division by zero

Generated when the Simulator detects a division by O dur­
ing the evaluation of an expression. This error does not
abort the Simulator, but the division is skipped.

ERROR #26: Could not parse signal name.

Generated when the Simulator fails to parse a signal name.
This error is usually caused by a typing error. Check the
signal name and enter again.

ERROR #27: Reserved

ERROR #28: Special sampling not supported in RM

Generated when the Simulator finds a Realmodel device
using the "SAMPLE=SPECIAL" directive in its definition
file. Delete this directive from the definition file or plug
the device into Realchip instead of Realmodel.

ERROR #29: Expected SPECIAL

Generated when using Realchip or Realmodel. The Simu­
lator expected SPECIAL keyword and found some other
data in the definition file.

ERROR #30: Unexpected symbol in bit subrange

Generated when the Simulator finds an unexpected symbol
in a bit subrange. The symbols expected by the Simulator
in a bit subscript are:

7/15/86 10-5

Errors Logic Simulator

1. Two do ts specifying a subrange (..) .

2. A colon (:) specifying a bit step.

3. A greater than symbol (>).

ERROR #-31: Realfast not supported on this platform.

Generated when the IBM PC platform is being used and
the Simulator finds the USE_REALFAST ON directive.
Realfast cannot be used with the IBM PC platform.
Remove the directive.

ERROR #-32: Non-printing ASCII character found

Generated when the Simulator finds a non-printing ASCII
character in the input line. Deleting the character corrects
this error.

ERROR #-33: Expected a string

Generated when the Simulator is expecting a string and
finds some other data.

ERROR #-34: Comment not closed before end of input

Generated when the Simulator does not find the end of the
comment before the end of input.

ERROR #-35: Cannot create instance in Realfast

Generated when not enough Realfast data structure
memory is available to store the information for a Realchip
instance found in the drawing. Run on a Realfast with
more (event) memory.

10-6 7/15/86

Logic Simulator Errors

ERROR #36: Reserved

ERROR #37: Expected .

Generated when the Simulator is expecting a period ."and
finds some other data.

ERROR #38: Illegal device size

Generated when the Simulator finds the number_dev_pins
specified in the Realchip definition file is not a multiple of
64 or is greater than 1536.

ERROR #39: Undefined identifier in expression

Generated when the Simulator finds an undefined identifier
in the expression. Identifiers are used as names in proper­
ties. Check the DEFINE bodies and parameters of the
body ..

ERROR #40: Expected END

Generated. when the Simulator is expecting the keyword
'END' and finds some other data. Check the file for the
keyword at the end of the file.

ERROR #41: Identifier length exceeded

Generated when the Simulator encounters an identifier that
has more than 16 characters. The Simulator ignores the
rest of the characters in the identifier.

ERROR #42: Non-existent primitive in expansion file

Generated when the Simulator encounters a primitive in
the expansion file that is not a Simulator, user-coded, or
Realchip primitive.

7/15/86 10-7

Errors Logic Simulator

ERROR #43: Non-existent pin on primitive

Generated when the Simulator finds a pin on a primitive in
the expansion file that is not a defined pin on the primitive.

ERROR #44: Illegal output type

Generated when an improper output type is detected for
the OUTPUT_TYPE pin property.

ERROR #45: Pin can have only one OU'IPUT_TYPE

Generated when the Simulator encounters more than one
output type for a pin. Defining exactly one output type
corrects this error.

ERROR #46: Failed to add ptrn to Realfast

Generated when not enough Realfast data structure
memory is available to store a new Realchip pattern. Run
on a Re,alf ast with more (event) memory.

ERROR #47: RM hardware failure

Generated when some unexpected Realmodel hardware
failure occurs. An interrupt was received but the hardware
was still running when the interrupt was serviced. Please
contact Valid,

ERROR #48: Command file already specified-ignoring

Generated when the Simulator encounters more than one
COMMAND _FILE directive. Only one command file can
be specified in the directives file; all command files except
the first are ignored.

10-8 7 /15/86

Logic Simulator Errors

ERROR #49: Cannot specify both types of tracing

Generated when the user specifies both
BINARY_TRACEing and TABULAR_TRACEing in the
directives file. The BINARY_TRACE directive is ignored.

ERROR #50: Reserved

ERROR #51: Unknown directive

Generated when the Simulator encounters an unknown
directive in the directives file.

ERROR #52: Invalid specification for directive

Generated when the Simulator is processing a directive
from the directives file and encounters an invalid operand.

ERROR #53: Input line exceeds maximum length

Generated when the Simulator tries to read a line greater
than 255 characters. The input line must be divided to
correct this error.

ERROR #54: Expected error number for suppression

Generated when the Simulator is expecting an error
number to be suppressed and finds some other data.

ERROR #55: This error cannot be suppressed

Generated when the user tries to suppress an error that
cannot be suppressed (only errors classified as oversights or
warnings can be suppressed).

7/15/86 10-9

Errors Logic Simulator

ERROR #56: Realmodel parity error

Generated when the Simulator finds a hardware error (par­
ity error} in either the Realmodel Interface Board, a Real­
model Slave Board, or the Realmodel Master Board.
Please contact Valid.

ERROR #57: End of input before end of expression

Generated when the Simulator finds the end of input
before the end of the expression being evaluated.

ERROR #58: Illegal dev _type

Generated when the Simulator finds an illegal dev _type in
Realchip. Realchip does not support devices with a size
greater than 128 pins.

ERROR #59: Realmodel hardware never st.opped

Generated when the Simulator finds that the stop bit in the
Realmodel hardware status register is not set by the time
the Simulator is ready to play the environment sequence.
This can indicate either a hardware or software failure.
Please contact Valid.

ERROR #60: Number of errors must be > 0

Generated when the Simulator is processing the
MAXIMUM_ERRORS directive and finds a 0 or negative
number.

ERROR #61: Radix must be in the range 2 .• 16

Generated when the Simulator encounters a radix (base)
outside the range 2-16. The Simulator supports four rad­
ices: 2, 8, 10, and 16.

10-10 7 /15/86

Logic Simulator Errors

ERROR #62: Trace radix must be 2,b,8,o,10,d,16 or h

Generated when the Simulator finds a specification for the
radix in a TRACE file other than the indicated values.

ERROR #63: Cannot open command log file {SIMCMD)

Generated when the Simulator is unable to open the com­
mand log file for output. Check disk space and directory
protection.

ERROR #64: Cannot open Simulator list file {SIMLST)

Generated when the Simulator is unable to open the list file
for output. Check disk space and directory protection.

ERROR #65: Cannot open session log file (SIMLOG)

Generated when the Simulator is unable to open the ses­
sion log file for output. Check disk space and directory
protection.

ERROR #66: Cannot open error log file (OUTFILE)

Generated when the Simulator is unable to open the error
log file for output. Check disk space and directory protec­
tion.

ERROR #67: Incorrect envir. vars or terminal type

Generated when the Simulator cannot find the environ­
ment variables (TERMCAP) for the terminal, or finds that
a terminal is set to GCLUSTER when it isn't one. Set the
proper terminal type or correct the environment variables.

7 /15/86 10-11

Errors Logic Simulator

ERROR #68: Min. graphics Sim. window at least 22x80

Generated when the graphics Simulator is invoked in a win­
dow which is smaller than the minimum size of 22 x 80.
Create a larger window for the Simulator.

ERROR #69: Reserved

ERROR #70: Non-contiguous 'bit suhicripts for pin

Generated when the Simulator finds non-contiguous bit
subscripts for a pin on a primitive. The Simulator supports
only contiguous bit subscripts.

ERROR #71: Window t.oo small-must be at least 12x80

Generated when the Simulator is invoked in a window
smaller than 12 x 80. Create a larger window for the Simu­
lator.

ERROR #72: Unknown signal syntax specification

Generated when the Simulator finds a syntax specification
with which it is not familiar. Check the syntax
specification.

ERROR #73: Signal syntax element found twice

Generated when the Simulator finds an element specified
twice while reading the signal syntax specification. Remov­
ing the second specification corrects this error.

ERROR #74: Every syntax MUST have a name portion

Generated when the Simulator does not find a name por­
tion in the signal syntax specification.

10-12 7/15/86

Logic Simulator Errors

ERROR #75: Every syntax MUST have a subscript

Generated when the Simulator does not find a subscript
portion in the signal syntax specification.

ERROR #76: Illegal form for signal syntax

Generated when the Simulator finds an element that is not
assertion_specifier, negation_specifier, or name_specifier
while reading the signal syntax, or does not have the
name_specifier in the proper location.

ERROR #77: Symbol must be one character

Generated when the Simulator finds more than one charac­
ter as the assertion_specifier symbol.

ERROR #78: Illegal symbol as configuration char

Generated when the Simulator finds a forbidden symbol (
< > # 0-9) as the configuration character.

ERROR #79: Error in remote host simulation

Generated when the Simulator gets illegal data from the
Network Realchip Server. Please contact Valid.

ERROR #80: Error in remote sendnet

Generated when the Simulator detects an error while send­
ing data over the network. This may be due to the Net­
work Realchip Server being down or to a problem with the
Ethernet cable connection.

ERROR #81: Error in remote readnet

Generated when the Simulator detects an error while read­
ing data over the network. This may be due to the Net­
work Realchip Server being down or to a problem with the

7/15/86 10-13

Errors Logic Simulator

Ethernet cable connection.

ERROR #82: Root drawing has some compile errors

Generated when there are errors reported by the Compiler
when it is invoked from the Simulator. Correct the com­
pile errors.

ERROR #83: Root drawing does not exist

Generated when the Simulator is unable to find the draw­
ing specified by the ROOT_DRAWING directive. Check
the drawing name.

ERROR #84: Cannot open WIREDELAYS file

Generated when the Simulator is unable to open the wire
delay file for reading.

ERROR #85: Expected FILE_TYPE specification

Generated when the Simulator does not find a file_type
specification in the file it is currently reading.

ERROR #86: File is not of the correct type

Generated when the Simulator finds a file_type that is not
the correct type for the current file.

ERROR #87: Directory file name previously specified

Generated when the Simulator finds that a SCALD direc­
tory has been specified more than once in the directives
file. Removing the second entry in the directives file
corrects this error.

10-14 7 /15/86

Logic Simulator Errors

ERROR #88: Cannot open tabular trace output file

Generated when the Simulator is unable to open an output
file for writing tabular trace.

ERROR #80: String not closed before the end of line

Generated when the SimulatOr finds that a string does not
have a closing quote before the end of the line.

ERROR #00: Cannot access device on remote host

Generated when the Simulator is unable to access a Real­
chip device on a remote host. The device may not be
present on the remote host or the device on the remote
host may not be available (static_forever device. is being
used by another user). ·

ERROR #01: Unknown service: check /etc/services

Generated when the Simulator is unable to communicate
with a remote host running the Network Realchip Server.
The /etc/services file should contain the entry "realchip
goo/tcp".

ERROR #02: Unknown remote host or remot.e host down

Generated when the Simulator is unable to access the
remote host specified in the REMOTE_HOST directive.
The host may not be on the network, the host may be
down, or the name of the remote host may not be defined
in /etc/hosts.

ERROR #03: Server busy or down on the remote host

Generated when the Simulator is unable to access a Net­
work Realchip Server. The server may be busy or may not
be running on the remote host.

7 /15/86 10-15

Errors Logic Simulator

ERROR #94: Cannot open signal mapping file(SIGMAP)

Generated when the Simulator is unable to open the signal
mapping file.

ERROR #95: Cannot open synonym file

Generated when the Simulator is unable to open the
synonyms file for reading. Misspelled or improper
specification of the synonyms file pathname in the direc­
tives file can cause this error.

ERROR #96: Cannot open MEMLOAD file

Generated when the Simulator is unable to open the file
specified in the MEMLOAD command.

ERROR #97: Expansion file not for Simulator

Generated when the Simulator finds an incorrect file type
in the Compiler expansion file. The drawing was not com­
piled for sim.

ERROR #98: This property has already been specified

Generated when the Simulator finds a property of a body
defined more than once.

ERROR #99: Error limit exceeded

Generated when the Simulator detects more than the max­
imum number of errors.

ERROR #100: Assertion chk failure: save simlog file

Generated when an internal error (an assertion failure) is
detected by the Simulator. Please contact Valid.

10-16 7 /15/86

Logic Simulator Errors

ERROR #101: Cannot open compiler output (CMPEXP)

Generated when the Simulator is unable to open the Com­
piler expansion file. Check the directives file and verify the
pathname.

ERROR #102: Compiler synonyms file has wrong type

Generated when the Simulator finds an incorrect file type
for the synonyms file. Recompile the drawing for sim.

ERROR #103: Cannot open user input file (USER.IN)

Generated when the Simulator is unable to start terminal
interaction, in interactive mode, or the script file, in batch
mode. ·

ERROR #104: Unknown command

Generated when the Simulator does not recognize the com­
mand entered. Check the manual for the proper Simulator
commands.

ERROR #105: Malformed command

Generated when a non-identifier is entered as a command
to the Simulator.

ERROR #106:
input(TABULAR)

Cannot open tabular trace

Generated when the Simulator is unable to open the trace
file for reading.

ERROR #107: Cannot open directives file (INFILE)

Generated when the Simulator is unable to find the
simulate.cmd file in the default or specified directory.

7 /15/86 10-17

Errors Logic Simulator

ERROR #108: Oock signal must be undriven

Generated when the Simulator finds a clock signal that is
not undriven -- building a clock on a driven signal results
in unexpected behavior.

ERROR #100: Oock ti.me must be within clock period

Generated when the Simulator finds a transition time that
is greater than the . clock period while building the clock
transitions list. The Simulator assigns the transition time to
be the clock period and builds the list accordingly.

ERROR #110: Oock ti.me less than previous ti.me

Generated when the Simulator finds a transition time that
is less than the previous transition time while building the
clock transitions list .. The signal should have ascending
clock assertions to correct this error.

ERROR #111: Oock period must be greater than 0

Generated when the Simulator finds a negative or zero
clock period in the PERIOD command or
CLOCK_PERIOD directive. Specify a clock period greater
than zero.

ERROR #112: Run stopped because errors were detect.ed

Generated when the Simulator halts after encountering
fatal errors. Check previous errors detected by the Simula­
tor.

ERROR #113: Oock intervals must be greater than 0

Generated when the Simulator finds a value less than 1 for
the number of clock intervals. Specify a value greater than
zero.

10-18 7/15/86

Logic Simulator Errors

ERROR #114: Only 2 or 4 memory states are allowed

Generated when the Simulator finds an operand other than
2 or 4 while processing the MEM_STA TE directive.

ERROR #115: Illegal paramet.er t.o OUTPUT directive

Generated when the Simulator finds some parameter other
than list or command_log to the OUTPUT directive.

ERROR #116: Illegal t.erminal type

Generated when the Simulator finds an improper terminal
type while processing the TERMINAL command or TER­
MINAL directive. See the Directives section for allowed
terminal types.

ERROR #117: Illegal value for memory depth

Generated when the Simulator finds a value that is nega­
tive, zero, or greater than the maximum depth for the
memory primitive.

ERROR #118: Expect.ad BIT_RANGE

Generated when the Simulator is expecting a bit range and
finds some other data.

ERROR #llD: Expect.ad ..

Generated when the Simulator is expecting ' . .' and finds
some other data.

ERROR #120: Expect.ad MEM_BLOCK

Generated when the Simulator is expecting a
MEM_BLOCK and finds some other data. Check the
MEMLOAD file.

7/15/86 10-10

Errors Logic Simulator

ERROR #121: Input word is wider than memory

Generated when the Simulator reads a word from a MEM­
LOAD file and finds that it is larger than the memory
word. Either adjust the input to the proper width or use
the subrange specification of the MEMLOAD command.

ERROR #122: Expected END _MEM_BLOCK

Generated when the Simulator is expecting an
END_MEM_BLOCK symbol and finds some other data.
Check the MEMLOAD file.

ERROR #123: BIT_RANGE does not mat.ch memory
width

Generated when the Simulator reads a MEMLOAD file and
finds that the bit range specified in the file does not match
the memory width. Use or correct the bit range
specification option of the MEMLOAD command.

ERROR #124: Illegal BIT_RANGE bit ordering

Generated when the Simulator finds a reversed bit range
specification (right_to_left ordering when using left_to_right
ordering). Reversing the bit range corrects this error.

ERROR #125: Reserved

ERROR #126: Memory conteniB file has wrong type

Generated when the Simulator is reading a MEMLOAD file
and finds a wrong type in the file. Use the correct file_type
specification in the file.

10-20 7 /15/86

Logic Simulator Errors

ERROR #127: hwut word is narrower than memory

Generated when the Simulator is reading a MEMLOAD file
and finds that the word read is narrower than the memory
word.

ERROR #128: Fewer words than specified in
MEM_BLOCK

Generated when the Simulator is expecting more words in
a MEMLOAD file and finds an END _MEM_BLOCK sym­
bol.

ERROR #129: Cannot open user configuration file

Generated when the Simulator is unable to open the user­
coded primitive configuration file. Check the file pathname
in the directives file.

ERROR #130: Expected PRIMITIVE

Generated when the Simulator is expecting a PRIMITIVE
symbol and finds some other data.

ERROR #131: Primitive already defined

Generated when the Simulator finds a primitive defined
more than once. Remove the extra declaration.

ERROR #132: Expected PIN

Generated when the Simulator is expecting a PIN descrip­
tion and finds some other data.

ERROR #133: Expected INPUT_SPEC or
OUTPUT_SPEC

Generated when the Simulator is expecting either the
INPUT_SPEC or OUTPUT_SPEC symbol and finds some

7/15/86 10-21

Errors Logic Simulator

other data.

ERROR #134: Expected END_PIN

Generated when the Simulator is expecting an END_PIN
symbol and finds some other data.

ERROR #135: Expected END_PRIMITIVE

Generated when the Simulator is expecting an
END_PRIMITIVE symbol and finds some other data.

ERROR #136: Expected width specification

Generated when the Simulator is expecting a width
specification and finds some other data.

ERROR #137: Illegal OWN_STORAGE value

Generated when the Simulator is expecting the number of
storage words and finds a value that is negative, zero, or
greater than the maxim um user storage.

ERROR #138: Cannot open Realchip Library file

Generated when the Simulator is unable to open the Real­
chip library file. Check the pathname in the directives file.

ERROR #139: Expect.ed INPUT_SPEC,OUTPUT_SPEC,
IO_SPEC

Generated when the Simulator is expecting the
INPUT_SPEC or OUTPUT_SPEC symbol in a UCP and
finds some other data, or one of these two symbols or
IO_SPEC in the Realchip definition file and finds some
other data.

10-22 7/15/86

Logic Simulator Errors

ERROR #140: Illegal JIG_ID value

Generated when the Simulator finds an invalid JIG_ID for
the Re.alchip primitive used in the simulation.

ERROR #141: Expected DYNAMI C,STATI Cor
STATIC_FOREVER

Generated when the Simulator is expecting the
DYNAMIC, STATIC, or STATIC_FOREVER symbols and
finds some other data.

ERROR #142: Expect.ed RISE, FALL, or BOTH

Generated when the Simulator is expecting a rise or fall
delay or both delays and finds some other data.

ERROR #143: Illegal clock_period value(s)

Generated when the Simulator finds a negative or zero
clock period value.

ERROR #144: Expect.ed, or ;

Generated when the Simulator is expecting a comma or
semicolon (, or ;) and finds some other data.

ERROR #145: Expect.ed: or, or;

Generated when the Simulator is expecting a colon,
comma, or semicolon and finds some other data.

ERROR #146: Pin number out of range

Generated when the Simulator finds a pin number that is
out of range. Since the number of pins supported is very
large, this error seldom occurs.

7/15/86 10-23

Errors Logic Simulator

ERROR #147: Delay value out of range

Generated when the Simulator finds a delay value that is
either less than the minimum value or greater than the
maximum value.

ERROR #148: Expected (TS,TS), (OC,AND) or
(OE,OR)

Generated when an OUTPUT_TYPE property is not fol­
lowed by either a (TS,TS), (OC,AND), or (OE,OR) value.

ERROR #149: Unknown definition parameter

Generated when the Simulator is unable to interpret a
parameter of a pin specification.

ERROR #150: Expected END_RFSET_SEQ

Generated when the Simulator is expecting an
END _RESET_SEQ symbol and finds some other data while
reading a Realchip library.

ERROR #151: RFSET_SEQ pin not found

Generated when the Simulator does not find the pin
specified in the reset sequence block of the Realchip
definition file. Check that the pin names match.

ERROR #152: Expected O, 1 or Z

Generated when the Simulator is expecting a 0, 1 or Z and
finds some other data.

ERROR #153: CLOCK_PIN pin not found

Generated when the Simulator finds that the pin specified
with the CLOCK_PIN directive has not been defined in the ·
pin section of the Realchip definition file.

10-24 7/15/86

Logic Simulator Errors

ERROR #154: Realchip adapt.er not found

Generat.ed when the Realchip device is used and the Simu­
lator does not find the adapt.er.

ERROR #155: Cannot open trace value file (V ALBIN)

Generat.ed when the Simulator is unable to open the trace
value file for output.

ERROR #156: Cannot open trace value file (V ALASC)

Generat.ed when the Simulator is unable to open the trace
value file for output.

ERROR #l57: Expect.ed END_DELAY_TABLE

Generat.ed when the Simulator does not find the
END_DELA Y_TABLE symbol while reading the Realchip
library.

ERROR #158: DELAY_TABLE output pin not found

Generat.ed when the Simulator does not find the output pin
read in the DELAY _TABLE. Check the pin name.

ERROR #159: Trace int.erval must be 0 or great.er

Generat.ed when the Simulator finds a negative trace int.er­
val.

ERROR #160: Symbol_stack. overfiow

Generat.ed when the Simulator symbol stack exceeds its
maximum depth during parsing.

7/15/86 10-25

Errors Logic Simulator

ERROR #161: Tabular trace input file has wrong type

Generated when the Simulator finds an incorrect file type
while reading the tabular trace input file.

ERROR #162: Expecled END_TAB_'IRACE

Generated when the Simulator is expecting an
END _TAB_TRACE symbol while reading the tabular trace
file and finds some other data.

ERROR #163: Expecled START_TAB_TRACE

Generated when the Simulator is expecting a
START_TAB_TRACE symbol while reading the tabular
trace file and finds some other data.

ERROR #164: Stimulation time must be > current time

Generated when the Simulator finds the stimulation time to
be less than the current time.

ERROR #165: Incorrect signal value in Tabular file

Generated when the Simulator finds an erroneous signal
value in the tabular file.

ERROR #166: Radix must be 2,8,10,16 in Tabular file

Generated when the Simulator finds a value other than 2,
8, 10, or 16 for the radix of a value in the tabular input file.

ERROR #167: Decay time must be great.er than 0

Generated when the Simulator finds the decay time to be
less than zero.

10-26 7/15/86

Logic Sim1.1lator Errors

ERROR #168: Odd # of reset_ seq for clk_both device

Generated when the device definition file has an odd
number of reset_sequences for the particular device
(clock_type = clock_both). Modify the definition file so
that the device has an even number of reset_sequences.

ERROR #169: Adapter found with duplicate jig ID

ERROR #170: Pattern RAM overflow. Invalid result.s.

Generated when the Realchip simulation pattern RAM
overflows.

ERROR #171: Unsupported clock period range

Generated when the Simulator finds a clock period that is
outside the range supported by Realchip/RealmodeL

ERROR #172: Missing pin number specification

Generated when the Simulator is expecting a pin number
specification and finds some other data.

ERROR #173: DELAY_TABLE input pin not found

Generated when the Simulator does not find the input pin
read from the DELAY _TABLE. Check the pin
specification.

ERROR #174: PAUSE sequence already given

Generated when the Simulator encounters a PAUSE
sequence more than once.

7 /15/86 10-27

Errors Logic Simulator

ERROR #175: Pin number is already used

Generated when the Simulator encounters a pin number
that is already used for another pin.

ERROR #176: Cannot find available modeling syst.em

Generated when a user attempts to use Realchip or Real­
model on a system where it does not exist or is already in
use.

WARNING #177: Feature not yet implement.ed for Real­
fast

Generated when the Simulator finds that the user tried to
invoke a Simulator feature that is not available when using
Realfast.

ERROR #178: Feedback may be disconnect.ed

Generated when the feedback connection for a device that
requires feedback is disconnected.

ERROR #179: Setup timing violation

Generated when the SETUP HOLD or SETUP RISE
HOLD FALL timing checkers encounter a setup time vio­
lation. Related signal names and the violation time are
printed in the Simulator output files.

ERROR #180: Hold timing violation

Generated when the SETUP HOLD or SETUP RISE
HOLD FALL timing checkers encounter a hold time viola­
tion. Related signal names and the violation time are
printed in the Simulator output files.

10-28 7 /15/86

Logic Simulator Errors

ERROR #181: Edge to Edge timing violation

Generated when the ED GE TO ED GE timing ch~cker
encounters an edge to edge timing violation. Related signal
names and the violation time are printed in the Simulator
output files.

ERROR #182: Cannot open memory dump file

Generated when the Simulator is unable to open an output
file for dumping the contents of a memory primitive.
Check disk space and directory protection.

ERROR #183: Cannot close output file

Generated when the Simulator is unable to close an output
file.

ERROR #184: Cannot close input file

Generated when the Simulator is unable to close an input
file.

ERROR #185: WIRE_ESTIMA'IE family has been
redefined

Generated when the Simulator finds more than one
WIRE_ESTIMA TE directive with the same family name.
The later definition overrides all previous definitions with
the same name.

ERROR #186: Have to use root_drawing for PFG

Generated when the probabilistic fault grading (PFC)
feature is specified and the ROOT_DRA WING directive
has not been used. PFG does not work when the design is
read in through an expansion file.

7/15/86 10-29

Errors Logic Simulator

ERROR #187: Cannot open PFG file

Generated when the Simulator is unable to open the PFG
file. The file may not exist or the user may not have read
permission.

ERROR #188: Identifier not found,skip the expression

Generated when the Simulator does not find an expression
name in the USER_EXPRESSION directive. The expres­
sion defined by this directive is ignored.

ERROR #189: PFG is not on

Generated when the user invokes the PFG command dur­
ing a simulation for which the. PFG directive has not been
set ON. The PFG feature must be enabled before the com­
mand can be invoked.

ERROR #190: PFG strobe period is 0 - turning pfg off

Generated when the PFG_STROBE directive is not
specified or is specified as 0 in the directives file. The
PFG_STROBE period must be greater than 0.

ERROR #191: Minpulse Width timing violation

Generated when the MIN PULSE WIDTH timing checker
encounters a minimum pulse width violation. Related sig­
nal names and the violation time are printed in the Simula-
tor output files. ·

ERROR #192: Too many entries in WIRE_ESTIMATE
list

Generated when the WIRE_ESTIMA TE directive has more
than 100 entries. The value of the entries after the 100th
are set to the same value as the 100th entry.

10-30 7/15/86

Logic Simulator Errors

ERROR #193: Maximum WIRE_ESTIMA1E entry is
100

Generated when the WIRE_ESTIMA TE directive has more
than 100 entries. The value of the entries after the lOOth
are set to the same value as the 100th entry.

ERROR #194: Reserved

ERROR #195: No expression fallows condition

Generated when the Simulator finds only a condition in the
USER_EXPRESSION directive. The expression is ignored.

ERROR #196: Signame_chars paramet.er out of range

Generated when the Simulator finds some value in the
SIGNAME_CHARS directive which is not in the range fl-
24. Check this parameter.

WARNING #197: Improper MEMLOAD params - using
defaults

Generated when the Simulator finds some error in the
specification of the optional parameters for the MEMLOAD
command. Simulator will try to use the default parameters
instead.

WARNING #198: Inconsistent MEMLOAD paramet.ers

Generated when the Simulator finds a different number of
bits or words in the MEMLOAD file from that specified by
the optional parameters for the MEMLOAD command.

WARNING #199: File is longer than memory

Generated when the Simulator finds that the MEMLOAD
file has more words than the memory primitive for the
MEMLOAD or DUMPMEMORY commands. Use the

7/15/86 10-31

Errors Logic Simulator

word range specification option.

WARNING #200: File has fewer words than memory

Generated when the Simulator finds that the MEMLOAD
file has fewer words than the memory primitive being
loaded.

ERROR #201: Output already has Realfast data

Generated when the Simulator finds that the data structure
for an output already has Realfast data in it.

ERROR #202: Not enough data structure memory

Generated when the Simulator finds that the design is too
big to fit in available Realfast memory. In particular, all of
the data structure memory (event memory) was used up.
Run on a Realfast with more memory.

ERROR #203: Input already has Realfast data

Generated when the Simulator finds that the data structure
for an input already has Realfast data in it.

ERROR #204: Primitive not yet implemented

Generated when the Simulator finds that the design con­
tains a simulator primitive which has not been implemented
in Realfast. Either change the design to not use that primi­
tive or simulate without using Realfast.

ERROR #205: Not enough microcode memory

Generated when the Simulator finds that the design is too
big to fit in available Realfast memory. In particular, all of
the evaluation memory was used up. Run on a Realfast
with more memory.

10-32 7/15/86

Logic Simulator Errors

ERROR #206: SET_MICRO_FIELD has invalid parame­
t.ers

Generated when the Simulator finds an illegal value in a
field of an instruction in the Realfast microcode. Please
contact Valid.

ERROR #207: Output has width> 1

Generated when the Simulator finds an internal error indi­
cating that a Realf ast data structure has a width greater
than one.

ERROR #208: Undriven input has illegal default value

Generated when the Simulator finds an internal erfor indi­
cating that a Realfast data structure has an improper default
value.

ERROR #209: Reserved

ERROR #210: Primitive already has Realf ast data

Generated when the Simulator finds that the data structure
for a primitive already has Realfast data in it.

ERROR #211: Monitor code too large

Generated when the Simulator finds that the microcode
monitor was larger than expected. This can only happen if
the Simulator and /uO/scald/simulator/monitor.int are out
of sync. Check installation.

ERROR #212: Monitor returned an error code

Generated when the Simulator finds that the microcode
monitor gave a failure indication. This usually indicates a
hardware problem but could also indicate an internal con­
sistency failure.

7/15/86 10-33

Errors Logic Sim ulatot

ERROR #213: Did not get access to Realf ast hardware

Generated when the Simulator is unable to access the Real­
fast hardware. This can be caused when there is no Real­
fast hardware plugged into the S-32, when Realfast is
turned off, when the hardware is incorrectly plugged in, or
when some other user is using Realfast at the present time.

ERROR #214: Realfast int.errupt but hardware busy

Generated when the Simulator finds that Realfast indicated
an interrupt condition but was still running when the inter­
rupt was serviced. This probably indicates a hardware
failure. If this error occurs, call your field service represen­
tative.

ERROR #215: Reserved

ERROR #216: Reserv~d

ERROR #217: Ran out of event blocks

Generated when the Simulator finds that the Realfast data
structure memory was exhausted during simulation. Run
on a Realfast with more memory.

ERROR #218: Some delay great.er than 4095 det.ect.ed

ERROR #219: Not enough value memory

Generated when the Simulator finds that the design is too
big to fit in available Realfast memory. In particular, all of
the evaluation memory was used up. Run on a Realfast
with more memory.

10-34 7 /15/86

Logic Simulator Errors

ERROR #220: UCP /Realchip delay > = 4096

Generated when the Simulator finds some UCP or Realchip
primitive with a delay of 4096 or greater. Change the UCP
or Realchip definition file to not use such a large delay.

ERROR #221: Realfast memory parity error

Generated when the Simulator finds a parity error in the
Realfast memory during simulation. This indicates a
hardware problem; call your field service representative.

ERROR #222: Feature not yet implement.ed for Realf ast

Generated when the Simulator finds that the user tried to
invoke a Simulator feature which is not available when
using Realf ast. This includes logic patching and break­
points.

ERROR #223: Cannot open Realf ast monit.or file

Generated when the Simulator finds that it cannot access
/uO/scald/simulator/monitor.int. Check that this file is
present and readable by users. Also check
/usr/bin/simassign to ensure that there is an entry
"RFMON=/uO/scald/simulator/monitor.int".

ERROR #224: Cannot open Realfast ALU file

Generated when the Simulator finds that it cannot access
/uO/scald/simulator/alumem.int. Check that this file is
present and readable by users. Also check
/usr/bin/simassign to ensure that there is an entry
"RFALU=/uO/scald/simulator/alumem.int".

ERRORS #225 through #239: Reserved

7/15/86 10-35

Errors Logic Simulator

ERROR #240: Improper operands order

Generated when the Simulator finds that the operands in
the USER_EXPRESSION directive are in the wrong order.
Output in the list file indicates what item caused the prob­
lem.

ERROR #241: Missing operand

Generated when the Simulator does not find an operand
for an operator in the USER_EXPRESSION directive. Ou.t­
put in the list file indicates what item caused the problem.

ERROR #242: Improper operat.ors order

Generated when the Simulator finds that the operators in
the USER_EXPRESSION directive are in the wrong order.
Output in the list file indicates what item caused the prob­
lem.

ERROR #243: Two consecutive conditional expressions

Generated when the Simulator finds two consecutive condi­
tional expressions in the USER_EXPRESSION directive.
The expression defined is ignored.

ERROR #244: Undefined family name, use default famiiy

Generated when the Simulator finds a FAMILY property
name on a primitive which was not defined in the
WIRE_ESTIMA TE directive. The default family name is
used for this primitive.

ERROR #245: Too many paramet-ers - only 5 allowed

Generated when the Simulator finds more than five formal
parnmeters specified in one USER_EXPRESSION directive,
or more than five values in the USER_PARAMETER
directive. The expression or parameter is ignored.

10-36 7 /15/86

Logic Simulator Errors

ERROR #246: Rest.ore Failed, check simulat.or version

Generated when the Simulator detects that the RESTORE
operation has failed. The SA VE file may have been created
under a different version of the Simulator, the state of
Realfast (ON or OFF) may be different in the SA VE file
from that in the current simulation session, or the SA VE
file may somehow have become corrupted.

ERROR #247: Command not supported in command
script

Generated when the user attempts to invoke a command
which may not be invoked from a script. Enter the com­
mand interactively.

ERROR #248: Save failed, check disk space

Generated when the Simulator detects that the SA VE com­
mand has failed. The user must have sufficient disk space
in order to execute this command.

ERROR #249: Rest.ore file not found

Generated when the Simulator is unable to find the
specified RESTORE file. Check the directory name and file
name.

WARNING #250: Illegal delay of zero in delay table

Generated when the Simulator finds a delay value of 0 in
the delay table. Delay values must be greater than 0, and a
delay of 1 ns is assumed.

ERROR #251: Delay format is not for min, typ, max.

Generated when the Simulator finds that the
DELAY MODE directive is set but that the format used
for delay values is not "(min, typ,max) ". Check that all
parts specify delay in the proper format or eliminate the

7/15/86 10-37

Errors Logic Simulator

DELAY _MODE directive.

ERRORS #252 through #255: Reserved

10-38 7 /15/86

APPENDIX A
S-32/S-320 ADDITIONAL FEATURES

The following additional features are available on the
VALID S-32/8-320 platform.

1.1 SAVEAND RESTORE FUNCTION

A Save and Restore function allows the user to Save a par­
ticular state of a simulation session, then continue with
simulation, and later return to the previously saved state by
using the RESTORE command or directive.

The paragraphs below describe the SA VE command, the
RESTORE command, and the RESTORE directive.

SAVE COMMAND

SA VE filename

This command records the state of the Simulator in a file
called filename during an interactive session. This file can
later be used to RESTORE the Simulator's state. All Simu­
lator status is output to the file, including that of Realfast if
it is in use. The contents of any output files that are open
at the time will not be stored in the status file, and thus
cannot be RESTOREd. If filename already exists, it is
overwritten. This command may not be invoked from a
script.

This command may be used to store the status at any point
during a simulation; conventional design loading can subse­
quently be bypassed, dramatically reducing the amount of
time required to reach a previously attained simulation
state. Note that a substantial amount of disk space is
required in order to SAVE the Simulator's state. An even
greater amount is necessary if the state includes Realfast
status. The user should ensure that sufficient disk storage
space exists before invoking this function.

7/15/86 A-1

Appendix A Logic Simulator

RESTORE COMMAND

RES TORE filename

This command restores the SAVEd status of the Simulator
from the file filename. After RESTOREing, the Simulator's
state is the same as that when the SA VE command was ori­
ginally invoked. Note that the contents of any output files
which were open when the SA VE command was invoked
have not been SA VEd, and the files are reset. If Realfast
was in use when the SA VE command was invoked, it must
be used when RESTORE is invoked. This command may
not be invoked from a script.

RESTORE DIRECTIVE

This directive is used to restore the previously SA VEd
status of the Simulator from the file saved file. The file
name must be enclosed in quotes. If this directive is
included, the Simulator will bypass its normal design load­
ing and initialize to the same state as that when the SA VE
command was invoked to create the specified file. Since
the RESTORE operation only requires a few minutes to
execute, this directive can dramatically reduce the amount
of time required to initialize the Simulator to a previously
attained simulation state. Here is an example:

RESTORE 'counter.sav';

If Realfast was in use when the SA VE command was
invoked, it must be used when the RESTORE directive is
used. Note that, with the exception of the
USE_REALF AST directive, any other directive specified
with the RESTORE directive will not have any effect on
the simulation. To avoid confusion, it may be advisable to
eliminate any other directives from the file.

1.2 SIMULATOR INTERRUPTION

The Simulator can also be interrupted during its execution.
This is accomplished by pressing the backslash key (\)
while holding the Control key down. The Simulator detects

A-2 7/15/86

Logic Simulator Appendix A

this character and executes a software interrupt, stopping
the command in progress. With this facility, the user is
able to terminate a Simulator command before completion
and regain interactive control. This feature can be used to
terminate various time-consuming commands, and is partic­
ularly useful when the user detects some error. Some com­
mon applications include the following:

1. Interrupt the SIMULA TE command during a long
simulation interval; the screen will be updated to
reflect the current status (including the current simu­
lation time). When using Realf ast, note that CTRL
\ is ignored if invoked during the SIMULA TE com­
mand.

2. Stop output in the echo area which is the result of a
LIST command.

3. Execute a PAUSE in a script file; the script may later
be RESUMEd, beginning with the command which
follows the interrupted command.

4. Interrupt a command that is generating a large
amount of screen data (e.g WAVEFORM, ROW, or
REDISPLAY) before the entire screen is re-drawn.

Note that the CTRL \ capability is only available on the
S-32 in full-screen simulation.

1.3 USER-CODED PRIMITIVES

The SCALD Logic Simulator allows users to code Simula­
tor models in PASCAL, and refer to them using standard
SCALD drawings. This section is a specification of this
feature, the Simulator User-Coded Primitives or "UCPs."

The use of UCPs allows the user to expand the "parts set"
understood by the Logic Simulator. A UCP has three basic
parts: a body definition for drawing; a description of the
"pin-out" of the part for the Simulator; and a PASCAL pro­
gram to model the behavior of the part.

7/15/86 A-3

Appendix A Logic Simulator

1.4 THE PASCAL CODE FOR SYSTEMS
RUNNING UNIX

Multiple user-coded object files may be linked on the S-320
and other platforms running UNIX in the creation of a
Simulator executable which contains multiple UCPs. This
allows multiple users to create their own source files for
UCPs, and use the object files created by others without
requiring the source code.

If the user codes his primitive as a single PASCAL pro­
cedure to be linked to the Simulator, it must be of the fol­
lowing form:

unit unit_for_userprim;
interface
uses (*$U userglob.obj*) userglob;

procedure userprim;
implementation

procedure userprim;
const

{user's constant definitions, if any}
type

{ user's type definitions, if any }
var

{user's var definitions, if any }
begin

{ body of user's userprim routine }
end;

end.

To compile and link "userprim.pas" with the Simulator
under UNIX, type:

/uO/scald/simulator/mkucpsim userprim

This script prints any syntax errors on the screen.

The procedure userprim may use any PASCAL language
features pwvided by SVS Pascal.

A-4 7/15/86

Logic Simulator Appendix A

There are a number of data structure access routines pro­
vided for the user to get signal values and store signal
values and to schedule simulation events. These are dis­
cussed below.

If the user has more than one UCP, separate procedures
must be provided for each, nested within userprim. It is up
to the user to dispatch among these several U CPs. The
Simulator only calls the procedure userprim. There is an
access function (get_number) provided that returns the
number of the particular user primitive to be called.

1.5 THE PASCAL CODE FOR SYSTEMS
RUNNING VMS

The user must code his or her primitive as a single PAS­
CAL procedure that is linked to the Simulator. '.This pro­
cedure must be of the following form:

(*
$S-,C+ ,X-,W­
*)
MODULE userprim(output);

CONST
{user constant definitions}
MAX_PIN_BIT_NUMBER = <value of your choice>;

TYPE
{user type definitions}

o/clNCLUDE 'SYS$SCALD:USERPRIM.TYP'
o/clNCLUD E 'SYS$SCALD :USERPRIM .D CL'
(GLOBAL) PROCEDURE userprim;

END {of procedure userprim };

END {of module}.

7/15/86 A-5

Appendix A Logic Simulator

The "(output)" parameter on the MODULE line "is required
if the user's PASCAL procedure includes any write or wri­
teln statements. To compile and link "userprim.pas" with
the Simulator under VMS, type:

@ SYS$SCALD:MKUCPSIM USERPRIM

This script prints any syntax errors to the screen.

The procedure userprim may use any PASCAL language
features provided by the host's PASCAL dialect. However,
if the user ever intends to use the Simulator under UNIX
as well, the procedure should adhere to ISO-standard PAS­
CAL.

There are a number of data structure access routines pro­
vided for the user to get signal values, to store signal
values, and to schedule simulation events. These are dis­
cussed below.

If the user has more than one UCP, separate procedures
must be provided for each, nested within userprim. It is up
to the user to dispatch among these several UCPs. The
Simulator only calls the procedure userprim. There is an
access function provided that returns the number of the
particular user primitive to be called.

1.6 THE PASCAL CODE FOR SYSTEMS
RUNNING CMS

The user must code his primitive as a single PASCAL pro­
cedure that is linked to the Simulator. This procedure must
be of the following form:

A-6 7 /15/86

Logic Simulator

SEGMENT U CPSEG;

CONST
{ user constant definitions }

Appendix A

MAX_PIN_BIT_NUMBER = <value of your choice>;

TYPE
{user type definitions }

%CNCLUDE UCPTYP
%CNCLUDE UCPDCL
PROCEDURE userprim; EXTERNAL;
PROCEDURE userprim;

END { of procedure userprim };
. {This is really a dot in the file. }

To compile and link "userprim pascal" with the Simulator
under CMS, type:

MKUCPSIM USERPRIM

This exec will print any syntax errors to the screen.

The procedure userprim may use any PASCAL language
features provided by the host's PASCAL dialect. However,
if the user ever intends to use the Simulator under UNIX
as well, the procedure should adhere to ISO-standard PAS­
CAL.

There are a number of data structure access routines pro­
vided for the user to get signal values and store signal
values and to schedule simulation events. These are dis­
cussed below.

If the user has more than one UCP, separate procedures
must be provided for each, nested within userprim. It is up
to the user to dispatch among these several UCPs. The
Simulator only calls the procedure userprim. There is an
access function provided that returns the number of the
particular user primitive to be called.

7/15/86 A-7

Appendix A Logic Simulator

1. 7 RUNNING A SIMULATOR CONTAINING UCPs

Since a Simulator linked with UCPs is a different program
than the released Simulator, it must be invoked differently.
The following sections describe how to run your own Simu­
lator under the different operating systems.

RUNNING YOUR SIMULATOR UNDER UNIX

To run your Simulator under the Graphics Editor under
UNIX, start the Graphics Editor as you normally would,
and EDIT your drawing. When you want to run the Simu­
lator, type:

set user_sim your_simulator
simulate

where your_simulator is the name of your simulator. This
name must be specified with its full pathname. The Simu­
lator specified will be invoked.

To run your Simulator as a stand-alone simulator under
UNIX, copy the file /usr/bin/simulate into one of your
directories and edit it so that the line that begins

/uO /scald/simulator /sim

is changed to give the name of YOUR executable file.
After you make this change, give the name of YOUR copy
of this script when you want to run the Simulator.

RUNNING YOUR SIMULATOR UNDER VMS

Type:

@ SYS$SCALD:SIMASSIGN
RUN SIM

where SIM is the name of your version of the Simulator.

A-8 7 /15/86

Logic Simulator Appendix A

RUNNING YOUR SIMULATOR UNDER CMS

Running the SIMULA TE EXEC accesses the first Simula­
tor in your search path. If you place the disk with your
Simulator earlier in your search path (e.g., on your A disk)
than the disk with the release Simulator, the EXEC will use
your version.

1.8 BODY DEFINITION FOR UCPs

The body definition of a UCP is nearly the same as the
body definition for any other primitive part -- see Section 4
of the Library Reference Manual. There are some addi­
tional rules:

1. For every pin on the part being modeled there must
be a pin on the body.

2. A vectored pin name must appear on a single pin.
For example, if there is a pin name
PNAME<15 .. 0>, you must not have a pin
PNAME<15 .. 8> and another PNAME<7 .. 0>.

3. Vectored pins must always have the most significant
bit on the left.

4. A part may have up to 512 pins.

5. A pin of a part may be up to 320 bits long.

Samples of correct Simulator bodies are found in any stan­
dard Valid Simulator library (for example, lOOK.SIM).

In addition to the .BODY drawing that describes the UCP,
a .PRIM drawing is required to mark the UCP as a primi­
tive for compilation. The .PRIM drawing contains a
DRAWING body and a DEFINE body. The TITLE and
ABBREV properties should correspond to the UCP name.
The SCALD directory containing the .PRIM files must
have this line

7/15/86 A-\l

Appendix A Logic Simulator

FILE_ TYPE = SIM_D IR;

as the first line.

Since SCALD directories created by GED have this line

FILE_TYPE = LOGIQ DIR;

as the first line, the user must edit the SCALD directory to
give it the proper FILE_TYPE. Only User-Coded Primi­
tives should be placed in a SCALD directory with a
FILE_TYPE of SIM_D IR.

1.9 UCP PINOUT DESCRIPTIONS

The Simulator must know how each of the pins of a UCP
are defined. This information is specified in the user primi­
tive configuration file. The Simulator must know:

1. The name of the UCP in the name of the .PRIM
drawing.

2. The number of input and output pins.

3. The name of each pin, and if it is size-replicated.

This information is passed to the Simulator using the fol­
lowing format:

A-10 7 /15/86

Logic Simulator Appendix A

primitive 'prim name';
pin

INPUT_SPEC = 'string':size, 'stri"ng':size;
INPUT_SPEC = 's'lring':size;
OUTPUT_SPEC = 'string':size, 'stri"ng':size;
OUTPUT_SPEC = 'stri"ng':size;

end_pin;
end_primitive;

primitive 'pri"m name';
pin

INPUT_SPEC = 'pi"n name':size, 'pin name':size;
INPUT_SPEC = 'pi"n name':size;
OUTPUT_SPEC = 'pi"n name':size, 'pi"n name':size;
OUTPUT_SPEC = 'pi"n name':size;

end_pin;
OWN_STORAGE integer;
OWN_STORAGE_INIT integer;

end_primitive;
END.

Follow these rules when making this file:

• INPUT_SPECs, OUTPUT_SPECs can be specified
using a list (elements separated by commas), or with
separate commands.

• All INPUT _SPECs must precede all
OUTPUT_SPECs.

• pi"n name and prim name are strings. The single quote
mark and the colon are NOT allowed in strings. A
prim name cannot be longer than 20 characters.
There is no restriction on the length of a pin name.
The pin name should use standard SCALD
Language syntax. For example, a low-asserted signal
should always appear as

- G

7/15/86 A-11

Appendix A Logic Simulator

and not as

G*

• s£ze specifies how wide the pin is. There are two
forms, the first for sizeable parts, the second for
parts of fixed size.

• For sizeable parts

size= SIZE

and the pin has the subscript <s£ze - 1 .. 0>
when bit ordering is right_to_left, or the sub­
script <0 .. s£ze - 1 > when bit ordering is
lef t_to Jigh t.

• For parts of fixed size

size= K

where K is an integer and the pin has the sub­
script <K - 1 .. 0> when bit ordering is
right_to_left, or <0 .. K - 1> when bit ord­
ering is left_to_right.

• If a primitive is to have "own" storage, the
OWN_STORAGE command specifies the number of
words and the OWN_STORAGE_INIT command
gives the initialization value for the entire array.

• There is no limit to the number of UCPs a user may
write.

A Simulator directive determines which user primitive
configuration file is used. This is the
USER_PRIM_CONFIG directive. This directive is
described below.

A-12 7/15/86

Logic Simulator Appendix A

USER_PRIM_CONFIG DIRECTIVE

This directive is used when user-coded primitives are
in use. The directive specifies the name of the user
primitive configuration file that contains the pin
names of the user-coded primitive. The format is
explained in the section on User-Coded Simulator
Primitives. The filename must be quoted. Here is
an example:

USER_PRIM_CONFIG 'primconf. dat ';

OWN STORAGE IN UCPs

The UCP itself is a PASCAL program (details below) that
performs the simulation of the primitive. The values of
local variables in the UCP will be lost from call to call.
Since it is necessary to have some state preserved from call
to call, the user may also specify a block of storage that is
accessible only by the user primitives, and its state will be
preserved from call to call. (It is analogous to an ALGOL
"own" variable.) The local storage is an array of integers:

static_storage: ARRAY (1 .. n) OF INTEGER;

where n is an integer.

1.10 FUNCTIONS PROVIDED FOR USE IN UCPs

There are a variety of functions provided to facilitate cod­
ing of user-coded primitives. The following predefined
types, constants, and routines are available for use in any
UCPs.

Predefined. constants:

MAX_PIN_JUT_NUMBER = 3109;

Predefined types:

LOGIC_TYPE = (LOGIC_O, LOGIC_l, LOGIC_Z,
LOGIC_U,);

LOGIC_PIN_ARRA Y =packed array !O .. max)

7/15/86 A-13

Appendix A

of logic_type;

where max is the max__pin_bit_number.

STR20 = packed array [1..20] of char;
STR256 = packed array [1..256] of char;

Predefined routines:

FUNCTION get_number: INTEGER;

Logic Simulator

Returns the number of the primitive to be simulated on
this call to userprim. The primitives are assigned successive
numbers in the order in which they were defined in the
user pl'imitive configuration file, the first one being "1."

PROCEDURE get_name(VAR name: str20);

Returns the name of the primitive to be simulated on this
call to userprim.

PROCEDURE get_path(V AR name: str256);

Returns the path name that uniquely determines the primi­
tive to be simulated on this call to userprim.

FUNCTION get_size: INTEGER;

Returns the value of the size property of this primitive.

FUN CTI ON get_ delay: INTEGER;

Returns the value of the rise or fall delay properties of this
primitive, whichever is larger (equal to the delay property
when rise and fall delays are not in use), in picoseconds
(see pu t__pin).

A-14 7 /15/86

Logic Simulator Appendix A

FUNCTION get_rise: INTEGER;

Returns the value of the rise delay property of this primi­
tive in picoseconds (see put_pin).

FUN CTI ON get_fall: INTEGER;

Returns the value of the fall delay property of this primitive
in picoseconds (see pu t_pin) .

PROCEDURE delay_mode(VAR rise_fall, pin_delay:
boolean);

Returns the value of the simulation directive flags
RISE_FALL and PIN_DELA Y, respectively.

FUNCTION
INTEGER;

get_pdelay(output_index: INTEGER):

Returns the larger of the rise or fall pin delay properties, in
picoseconds, for the current output pin which is addressed
by output_index.

FUNCTION
INTEGER;

get_prise(output_index: INTEGER):

Returns the value of the rise delay property, in
picoseconds, for the current output pin which is addressed
by output_index.

FUNCTION get_pfall(output_index: integer): INTEGER;

Returns the value of the fall delay property, in picoseconds,
for the current output pin which is addressed by
output_index.

7/15/86 A-15

Appendix A Logic Simulator

FUNCTION get_current_time: INTEGER;

Returns the current simulation time.

FUNCTION get_wire_delays(pin: INTEGER;
VAR rise_delay, fall_delay: REAL)

: BOOLEAN;

Returns the value of the rise and fall wire delays of the
output pin, pin. Returns TRUE if pin is a legal pin
number; returns FALSE if not.

The pins of a primitive are assigned successive numbers in
the order in which they were defined in the user primitive
configuration file. The first pin of each primitive is given
the number "1." The bits of a pin are numbered from most
significant to least significant as O_ .. _ LastBitNum (left-to­
right ordering) or LastBitNum_ .. _ 0 (right-to-left order­
ing).

FUNCTION get_bit_of_pin(pin, b: INTEGER;
VAR val: LOGIC_TYPE): BOOLEAN;

Stores the value of the b bit of pin in val. Returns TRUE
if pin is a legal pin n um her and if b is a legal bit n um her
within that pin; returns FALSE if not.

FUNCTION get_pin(pin: INTEGER;
VAR values: LOGIC_PIN_ARRAY;):
BOOLEAN;

Stores the value of the i"th" bit of pin in the i"th" location
of values. The last bit number of the pin must be less than
or equal to the user-defined constant
MAX_PIN_BIT_NUMBER. Returns TRUE if pin is in the
range 1 .. Last pin number; returns FALSE if not.

A-16 7 /15/86

Logic Simulator Appendix A

FUNCTION put_pin(pin: IN'IEGER;
VAR values: LOGIC_PIN_ARRAY;

time: IN'JEGER): BOOLEAN;

Forces pin to assume a new value, as specified by values at
the time (current simulation time + time). time is in
picoseconds (pico = 10 exp -12), where 1.27 nanoseconds
is 1270. Returns TRUE if pin is a legal pin number;
returns FALSE if not.

FUNCTION logic_AND (a, b: LOGIC_TYPE):
LOGIC_TYPE;

Returns the ''AND" of a and b.

FUNCTION logic_OR (a, b: LOGIC_TYPE):
LOGIC_TYPE;

Returns the "OR" of a and b.

FUNCTION logic_XOR (a, b: LOGIC_TYPE):
LOGIC_ TYPE;

Returns the ''XOR" of a and b.

FUNCTION logic_NOT (a: LOGIC_TYPE):
LOGIC_TYPE;

Returns the complement of "a."

FUNCTION logic_t.o_int (a: LOGIC_TYPE; VAR b:
INTEGER) : BOOLEAN;

Converts "a" to an integer, returned in "b." Returns TRUE
if "a" had the value logic_O or logic_l; otherwise returns
false.

I/lo/86 A-17

Appendix A Logic Simulator

FUN CTI ON int_ro_logic (a: INTEGER; VAR b:
LOGIC_TYPE): BOOLEAN;

Converts "a" to a logic_type, returned in "b." Returns
TRUE if "a" had the value 0 or 1; otherwise returns
FALSE.

FUNCTION int_shift (a, n: integer) : integer;

Returns the value of the integer "a" left shifted by n bits
within a host machine word. Zeros are entered into the
right end. If n is negative, "a" is right shifted by -n bits and
zeros are entered into the left end.

FUNCTION put_own (index, val: INTEGER) :
BOOLEAN;

Puts the value, val, in the index location of the own array
if it is within range. Returns TRUE if index was within
range, FALSE if not.

FUNCTION get_own (index: INTEGER; VAR value:
INTEGER): BOOLEAN;

Stores the contents of the index location of the own array
into value. Returns TRUE if the index is within range,
FALSE if not.

PROCEDURE report_error (errnum: INTEGER);

Outputs a report of the current primitive name and path
with the identifying number supplied by the user in err­
num.

1.11 EXAMPLE OF A USER-CODED PRIMITIVE

The following example models three parts -- an 8-function
ALU, a 12-bit latch, and a 32-word memory with a clear
line and separate read and write addresses.

A-18 7/15/86

Logic Simulator Appendix A

USER CONFIGURATION FILE

The user primitive configuration file specifies for each prim­
itive: the name of the primitive, the names and widths of
the input and output pins, the amount of user storage
required, and the initialization value for the user storage.

PRIMITIVE '8381';

PIN
INPUT_SPEC = 'a':SIZE, 'b':SIZE, 's':3, 'ci':l;
OUTPUT_SPEC = 'f':SIZE, 'co':l, '-g':l, '-p':l;

END_PIN;

END _PRIMITIVE;

PRIMITIVE 'LATCH12';

PIN
INPUT_SPEC = 'd':12, 'enin':l, 'enout':l;
OUTPUT_SPEC = 'q':12;

END_PIN;

OWN_STORAGE 1;
OWN_STORAGE_INIT O;

END _PRIMITIVE;

PRIMITIVE 'USERMEM';

PIN
INPUT_SPEC = 'ra':5,'wa':5, 'we':l, 'mr':l;
INPUT_SPEC = 'd':SIZE;
OUTPUT_SPEC = 'q':SIZE;

END_PIN;

OWN_STORAGE 2000;
OWN_STORAGE_INIT O;

END _PRIMITIVE;

END.

7 /15/86 A-HJ

Appendix A Logic Simulator

VMS PASCAL MODULE EXAMPLE

(*
*)
(*$S-,C+,X-,W-*)
MODULE USERPRIM(OUTPUT);

(***************************** CONSTANTS ***********************)

CONST

(**
* All user-coded primitives must define the constant *
* MAX PIN BIT NUMBER. This constant defines the size *
* of the type-LOGIC PIN ARRAY (see [SCALD)USERPRIM.DCL) *
* which is used whenever an array of pin values is· *
* passed to or returned from a procedure. *
**)

MAX PIN BIT NUMBER = 200;

(***************************** TYPES ***********************)

TYPE

(**
* * * Get the user-primitive type definitions from the *
* SCALD library. *
* * **)

%INCLUDE 'SYS$SCALD:USERPRIM.TYP'

(*********************** PROCEDURE DEFINITIONS *****************)

A-20

(**
* * * Get the user-primitive procedure definitions from the *
* SCALD library. *
* *
**)

7/15/86

Logic Simulator Appendix A

%INCLUDE 'SYS$SCALD:USERPRIM.DCL'

(**
* * * Do NOT include user-defined procedures here. Make *
* them sub-procedures of the USERPRIM procedure. *
* *
**)

(***************************** USERPRIM ************************)

(**
* * * This entire module has only one procedure definition, *
* namely OSERPRIM. All other procedures are sub- *
* procedures of USERPRIM. The user is free to declare *
* local variables, types, constants, and procedures *
* within USERPRIM. The following example of a user- *
* coded primitive defines a read-write 32-word memory *
* with a clear line, and separate read and write *
* addresses. It makes use of "own-storage" to store *
* memory contents. *
* * * Throughout this example, right-to-left bit ordering *
* is assumed. *
* * **)

{GLOBAL) PROCEDURE USERPRIM;
CONST

MinUserPrimNum = l;
MaxUserPrimNum m 3;
BitsPerHostWord = 32;
Debug = false;

TYPE

VAR
Value_Array • array (1 •• 10) of integer;

u_primnum,
u size,
u=delay: integer;

procedure user_alu;

var
a,b,s,ci,f,co,p,g: logic pin array;
select,s2,sl,sO,i: integer; -
c: logic_type;

begin (* user alu *)

7/15/86 A-21

Appendix A Logic Simulator

if not (get pin(l,a) and (* get inputs *)
get-pin(2,b) and
get-pin(J,s) and
get-pin(4,ci) and
logic to int(s[2J,s2) and
logic-to-int(s[lJ,sl) and
logic=to:=int(s(OJ,sO)) then REPORT_ERROR(l);

select := s2*4 + sl + sl + sO;
p[OJ := logic l;
g[OJ := logic-I;
co[O] := logic-0;
c := ci(OJ; -

for i := 0 to u size-1 do (* do function *)
case select of

0: f [i] := logic_O; (* CLEAR *)

1: begin
end;

2: begin
end;

3: begin
f[i) :=logic xor(logic xor(a[i),b(i)) , c);
c :=logic or(logic and(a(i),b[i)) ,

- logic=and(c , logic_or(a[i),b[i))));
end;

4: f(i] := logic_xor(a[i),b[i)); (* XOR *)

5: f[i] := logic_or(a[i),b[i)); (* OR *)

6: f[i] := logic_and(a[i),b[i]); (* AND *)

7: f(i) := logic_not(logic_O); (* SET *)

end;

co(O) := c;

if not (put pin(S,f,u delay) and
put-pin(6,co,u delay) and
put-pin(7,g,u delay) and
put=pin(8,p 1 u=delay)) then REPORT_ERROR(2);

end (* user_alu *);

procedure user_latch;

A-22 7/15/86

Logic Simulator Appendix A

const Dpin = l; ENINpin = 2; ENOUTpin = 3; Qpin 4;
var ok: boolean;

i ,j ,k: integer;
enin,
enout: LOGIC_TYPE;
Dval,
Qval: LOGIC PIN ARRAY;

begin (* user_latch-*) -

ok := GET BIT OF PIN(ENINpin,O,enin);
if (not ok)-or-debug then REPORT ERROR(l);
if enin • LOGIC 1 then -
begin -

ok := GET PIN(Dpin,Dval);
if (not "Ok) or debug then REPORT_ERROR(2);
j := O;
for i := 11 downto 0 do
begin

ok :•LOGIC TO INT(Dval(i),k);
if (not o~) or debug then REPORT ERROR(3);
j := (j*2) + k; • -

end;
ok := PUT OWN(l,j);
if (not ok) or debug then REPORT_ERROR(4);

end;

ok :• GET BIT OF PIN(ENOUTpin,O,enout);
if (not ok)-or-debug then REPORT ERROR(5);
if enout • LOGIC 1 then -
begin -

ok := GET OWN(l,j);
if (not ok) or debug then REPORT_ERROR(6);
for i :• 0 to 11 do

if odd(INTEGER SHIFT(j,-i)) then Qval[i] := LOGIC 1
- else Qval[i) := LOGIC O;

ok :•PUT PIN(Qpin,Qval,u delay); -
if (not ok) or debug then REPORT_ERROR(7);

end;

end (* user latch*);

procedure user mem;
const RApin=T; WApin=2; WEpin=3; MRpin=4; Dpin=5; Qpin=6;
var ok: boolean;

v: LOGIC_ TYPE;
vO,vl,
adr,
i,n: integer;
Dval,
Qval,
RAval,

7 /15/86 A-23

Appendix A Logic Simulator

A-24

WAval: LOGIC PIN ARRAY;
temp: Value:Array;

function Val to Adr(var val: LOGIC_PIN_ARRAY) integer;
var adr,bit,v7 integer;

ok: boolean;
begin (*Val to Adr*)

adr := O;- -
for bit := 4 downto 0 do
begin

ok :=LOGIC TO INT(val(bitJ,v);
if (not ok-) or debug then REPORT_ERROR(l);
adr := adr*2+v;

end;
Val to Adr := adr;

end (*°Val_to_Adr*};

procedure Conv_to_ValArr(var val: LOGIC PIN ARRAY;
var ValArr: Value_Array);

var i,j,k,v: integer;
ok: boolean;

begin (*Conv to ValArr*)
j := t; k 7= o;
for i := 0 to u size-1 do
begin --

if k • 0 then ValArr[j] := O;
ok :=LOGIC TO INT(val(i),v);
if (not ok-) or debug then REPORT ERROR(2);
ValArr[j) := ValArr[j]+INTEGER SHIFT(v,k);
if k = BitsPerHostWord-1 then -
begin j := j+l; k := O; end
else k := k+l;

end;
end (*Conv_to_ValArr*);

procedure Conv_to_Val(var ValArr: Value Array;
var val: LOGIC_PIN_ARRAY);

var i,j,k,v: integer;
ok: boolean;
lv: LOGIC TYPE;

begin (*Conv to Val*)
j := l; k7=0;
for i := 0 to u size-1 do
begin

if odd(INTEGER SIIIFT(ValArr[j) ,-k)) then v := l else v := O;
ok := INT TO LOGIC(v,lv);
if (not ok) or debug then REPORT ERROR(3);
val(i] := lv; -
if k = BitsPerHostWord-1 then begin j := j+l; k := O; end
else k := k+l;

7 /15/86

Logic Simulator Appendix A

end;
end (*Conv_to_Val*);

begin (* user mem *)
n := (u size+BitsPerHostWord-1) div BitsPerHostWord;

- (*n is the number of host words needed to store
one u_size-bit memory word*)

ok := LOGIC TO INT(LOGIC o.vO);
if (not ok-) or debug then REPORT ERROR(4);
vO := -vO; (*create host-word-long value for logic_O*)

ok :• LOGIC TO INT(LOGIC l,vl);
if (not ok-) or debug then REPORT ERROR(S);
vl := -vl; (*create host-word-long value for logic_l*)

ok :• GET BIT OF PIN(MRpin,O,v); (*v := value of MR<O>*)
if (not ok)-or-debug then REPORT ERROR(6);
if ok and (v • LOGIC l) then (*reset the entire memory*)

for i := 1 to n*32-do ok :• PUT_OWN(i,vO)
else
begin

ok := GET BIT OF PIN(WEpin,0,v); (*v := value of WE<O>*)
if (not ok)-or-debug then REPORT ERROR(7);
if ok then if v • LOGIC l then <*write input into memory*)
begin -

ok :• GET PIN(WApin,WAval);
if (not ok) or debug then REPORT ERROR(8);
if ok then ok := GET PIN(Dpin,Dval);
if (not ok) or debug then REPORT ERROR(9);
if ok then · -
begin

adr :• Val to Adr(WAval)j (*convert to address of memory*)
Conv to ValArr(Dval,temp); (*convert input to value array*)
for 1 :;; l to n do if ok then ok := PUT_OWN(adr*n+i,temp[i));

end;
end;

end;

ok := GET PIN(RApin,RAval); (*read memory into output pin*)
if (not ok or debug then REPORT_ERROR(IO);
if ok then
begin

adr := Val to Adr(RAval); (*convert to address of memory*)
for i := 1-to-n do if ok then
begin

ok :=GET OWN(adr*n+i,temp[i));
if (not ok) or debug then REPORT_ERROR(ll);

end;
if ok then
begin

7/15/86 A-25

Appendix A Logic Simulator

Conv to Val(temp,Qval);
ok :~PUT PIN(Qpin,Qval,u delay);
if (not ok) or debug then REPORT_ERROR(l2);

end;
end;

end (* user_mem *);

BEGIN (*USERPRIM*)
u_primnum :• GET_NUMBER; (*Get the index number of the

primitive called*)
u size := GET SIZE;
u=delay :• GET_DELAY;

(*Get the value of the SIZE parameter*)
(*And of the DELAY parameter*)

(*Dispatch on u primnum*)
if (u primnum >• MinUserPrimNum) and -

(u-primnum <• MaxUserPrimNum) then
case u primnum of

1: user-alu;
2: user-latch;
3: user-mem;

end -
else REPORT_ERROR(l3);

END (*USERPRIM*);

END.
(*
*)

A-26 7 /15/86

APPENDIXB
PC-AT ADDITIONAL FEATURES

The following additional features are available on all of the
PC-AT platforms.

1.1 SAVE AND RESTORE FUNCTION

A Save and Restore function allows the user to Save a par­
ticular state of a simulation session, then continue with
simulation, and later return to the previously saved state by
using the RESTORE command or directive.

The paragraphs below describe the SA VE command, the
RESTORE command, and the RESTORE directive.

SA VE COMMAND

SA VE filename

This command records the state of the Simulator in a file
called filename during an interactive session. This file can
later be used to RESTORE the Simulator's state. All Simu­
lator status is output to the file. The contents of any out­
put files that are open at the time will not be stored in the
status file, and thus cannot be RESTOREd. If' filename
already exists, it is overwritten. This command may not be
invoked from a script.

This command may be used to store the status at any point
during a simulation; conventional design loading can subse­
quently be bypassed, dramatically reducing the amount of
time required to reach a previously attained simulation
state. Note that a substantial amount of disk space is
required in order to SA VE the Simulator's state. The user
should ensure that sufficient disk storage space exists
before invoking this function.

4/10/86 B-1

Appendix B Logic Simulator

RESTORE COMMAND

RESTORE filename

This command restores the SA VEd status of the Simulator
from the file filename. After RESTOREing, the Simulator's
state is the same as that when the SA VE command was ori­
ginally invoked. Note that the contents of any output files
which were open when the SA VE command was invoked
have not been SA VEd, and the files are reset. This com­
mand may not be invoked from a script.

RESTORE DIRECTIVE

This directive is used to restore the previously SA VEd
status of the Simulator from the file saved file. The file
name must be enclosed in quotes. If this directive is
included, the Simulator will bypass its normal design load­
ing and initialize to the same state as that when the SA VE
command was invoked to create the specified file. Since
the RESTORE operation only requires a few minutes to
execute, this directive can dramatically reduce the amount
of time required to initialize the Simulator to a previously
attained simulation state. Here is an example:

RESTORE 'counter.sav';

Any other directive specified with the RESTORE directive
will not have any effect on the simulation. To avoid confu­
sion, it may be advisable to eliminate any other directives
from the file.

B-2 4/10/86

INDEX

1 of 8 decoder primitive, 0-23 .
8-bit decoder primitive, 0-24 ·
8-bit prio encoder primitives, 0-23

ABBREV property, 0-2, A-0
adder primitives, 0-18
alu primitives, 0-18
and primitive, 0-3
arithmetic primitives, 0-18
assertions, clock, 1-10
ASSERTIONS command, 7-1

batch simulation, 5-1
bidirectional nets, 1-4
BINARY_TRACE directive, 2-1
breakpoints, 1-11, 4-1
BUBBLE command, 0-1
buff er primitive, 0-5
BUS command, 7-2
Bus mode, 1-2, 1-6, 1-12, 3-1

signal names in, 1-14
bus signals, 1-15

carry save adder primitives, 0-20
CHANGE command, 0-21, 0-22
character graphics, 1-16
circuit initialization, 1-2
CLEAR BREAKPOINT command, 4-4, 7-2
CLEAR ENABLE command, 4-3, 7-2
CLEAR PATCH command, 4-7, 7-2
clock assertions, 1-10
CLOCK command, 7-3
clock intervals, 1-10
clock period, 1-10, 2-1, 2-2
CLOCK_INTERVALS directive, 2-1
CLOCK_ON_D RIVEN directive, 2-2
CLOCK_PERIOD directive, 2-2
cmpexp.dat file, 1-8, 1-9, 2-3, 2-0

7/15/86 1-1

Index

cmplst.dat file, 1-0
cmpsyn.dat file, 1-8, 1-9, 2-10, 2-13
CMS, 1-20, 1-22, A-6
command file, 1-1, 1-20, 1-21
command line, 1-8
commands

I-2

ASSERTIONS, 7-1
BUS, 7-2
CLEAR BREAKPOINT, 4-4, 7-2
CLEAR ENABLE, 4-3, 7-2
CLEAR PATCH, 4-7, 7-2
CLOCK, 7-3
COMPARE, 7-3
COVERAGE, 7-3, 7-7, 7-22
CURSOR, 1-11, 2-7, 3-1, 3-3, 7-3
DELTA_TIME, 3-1, 3-4, 7-4
DEPOSIT, 1-19, 1-2
DISPLAY, 7-5
DUMPMEMORY, 6-1, 7-6
EQUATE ENABLE, 4-3, 4-5, 7-6
EQUATE PATCH, 4-8, 7-6
EXIT, 1-23, 7-6
HARDCOPY, 7-6, 7-16
HISTORY, 1-2, 2-7, 3-1, 3-3, 7-7
INIT_COVERAGE, 7-7
INTERVAL, 7-7
LATCH ENABLE, 4-3, 7-7
LATCH PATCH, 4-8, 7-8
LIST BREAKPOINTS, 4-4, 7-8
LIST DEPOSITS, 7-8
LIST ENABLES, 4-4, 7-8
LIST PATCHES, 4-8, 7-8
LIST SIGNALS, 7-8
LIST TRACES, 7-8
LOADMEMORY, 7-0
LOGIC_INIT, 1-18, 4-7, 7-9
MEMLOAD, 6-1, 6-2, 7-9
MEMPA TH, 1-11,1-18,6-1, 7-10
MEM~INIT, 1-18, 7-9
MOVE, 7-10
NEXTMEMORY, 7-10
OPEN, 1-2, 1-22, 3-1, 3-4, 7-10
OPENMEMORY ADDRESS, 7-11

Logic Simulator

7/15/86

Logic Simulator

OPENMEMORY, 1-18, 1-10
PAUSE, 7-3, 7-12, 7-15
PEEK, 2-10, 7-12
PERIOD, 2-2, 7-12
PLOT, 1-13, 1-20, 1-21, 7-12
RADIX, 7-13
RECORD_ALL, 7-13
RECORD_SIGNALS, 7-13
REDISP, 7-13
REMOVE, 3-5, 7-14
RESTORE, A-2, B-2
RESUME, 7-3, 7-14, 7-15
ROW, 3-1, 3-5, 7-14
SAMPLE ENABLE, 4-3, 7-14
SAMPLE PATCH, 4-7, 7-14
SA VE, A-1, A-2, B-1, B-:2
SCOPE, 1-11, 7-15
SCRIPT, 1-21, 2-3, 2-6, 7-15
SCROLL, 3-1, 3-5, 7-15
SET, 7-16
SET BREAKPOINT, 4-3, 4-4, 7-15
SET ENABLE, 4-2, 7-16
SET PATCH, 4-7, 7-16
SHOW, 7-17
SIMULATE, 1-2, 1-19, 2-7, 7-17
SNAPSHOT, 1-20, 7-18
SPACING, 3-1, 3-5, 7-18
STEP, 7-18
SYSTEM, 7-18
TERMINAL, 7-18
TRACE, 7-19
TRACE_ALL, 7-20
TRACE_CLOSE, 7-20
TRACE_INTERVAL, 5-7, 7-20
TRACE_MEM, 7-20
TRACE_OPEN, 7-20
TRACE_RADIX, 7-20
TRACE_READ, 5-7, 7-21
TRACE_RESET, 5-7, 5-8, 7-21
TRACE_START, 7-21
TRACE_STOP, 7-21
UNDO_DEPOSIT, 7-21
UPDATE_INTERVAL, 7-22

7/15/86

Index

1-3

Index Logic Simulator

WAVEFORM, 1-16, 2-7, 3-1, 3-2, 7-2, 7-22
WIRE DELAYS 7-22 8-15 8-17 - ' ' ' WRITE_COVERAGE, 7-3, 7-22

COMMAND_FILE directive, 1-1, 1-21, 2-3, 2-6
comments in files, 1-8
comparator primitives, 9-20
COMPARE command, 7-3
COMPERR program, 1-9
Compiler

invoking, 1-7
output files, 2-3, 2-10, 2-13

Compiler directives file, see files, Compiler directives
Compiler expansion file, see files, Compiler expansion
Compiler synonym file, see files, Compiler synonym
COMPILER_OUTPUT directive, 1-8, 1-9, 2-3, 2-10
component delay, 8-7
counter primitive, 9-16
counter/shift register primitive, 9-16
COVERAGE command, 7-3, 7-7, 7-22
cursor, 1-12
CURSOR command, i-11, 2-7, 3-1, 3-3, 7-3

DECAY _TIME directive, 1-3, 2-3, 2-7
DEFAULT_DRIVE directive, 2-3, 8-10, 8-11, 8-12
DEFINE body, 9-2, A-9
delay equations user-defined, 2-13, 2-14
delay estimator, 2-3, 2-14, 8-1, 8-6, 8-7, 8-8, 8-9, 8-10, 8-12
delay properties, 8-1
DELAY property, 8-1, 8-7 9-2
delays

component, 8-1, 8-7
minimum, typical, maximum, 2-4, 8-1, 8-15
pin-to-pin, 2-6, 8-1, 8-2
ranges in,8-15
rise/fall, 2-8

DELAY_EQ property, 8-12, 8-13
DELAY_ESTIMATOR directive, 2-4, 8-7, 8-10
DELAY _MODE directive, 2-4, 8-1
DELA Y_PARAM property, 8-12, 8-13, 8-14
DELTA_TIME command, 3-1, 3-4, 7-4
DEPOSIT command, 1-2, 1-19
DEPTII property, 9-14

1-4 7 /15/86

Logic Simulator

directives
BINARY _TRACE, 2-1
CLOCK_INTERV ALS, 2-1
CLOCK_ON_DRIVEN, 2-2
CLOCK_PERIOD, 2-2
COMMAND_FILE, 1-1, 1-21, ·2-3, 2-6 ·
COMPILER_OUTPUT, 1-8, 1-9, 2-3, 2-10
DECAY_TIME, 1-3, 2-3, 2-7
DEFAULT_DRIVE, 2-3, 8-10, 8-11, 8-12
delay estimator, 8-7
DELAY _ESTIMATOR, 2-4, 8-7, 8-10
DELAY_MODE, 2-4, 8-1
EXP_EVALUATOR, 2-5, 8-12
MEM_STA TE, 2-5, 9-14
OUTPUT, 1-20, 2-5, 2-10
PIN_DELA Y, 2-6, 8-3 8-4 8-5
REAL_CHIP _LIBRARY, 2-6
REM OTE_HOST, 2-7
RESOLUTION, 1-10, 1-11, 2-7, 3-1, 3-3
RESTORE, A-2, B-2
RISE_F ALL, 2-8, 8-2, 8-3, 8-5
ROOT_DRAWING, 1-7, 1-8, 2-3, 2-9, 2-10
SESSION_LOG, 1-20, 2-10
SIGNAME_CHARS, 2-10
SYNONYM_FILE, 1-8, 1-9, 2-3, 2-10
TABULAR_TRACE, 2-11, 5-1, 5-8
TERMINAL, 2-11
TIMING_CHECK, 2-12, 9-20
TRA CE_RAD IX, 2-12
USER_EXPRESSION, 2-13, 8-12, 8-13
USER_PARAMETER, 2-14, 8-12, 8-13, 8-14
USER_PRIM_CONFIG, A-12, A-13
USE_IF, 2-12
USE_REALFAST, 2-13
USE_SYNONYM, 2-13
WIRE_DELA YS, 2-14, 8-6 8-15
WIRE_ESTIMATE, 2-14, 8-9, 8-11

families in, 8-9
directives files, 2-1

Compiler, l-7
Simulator, 1-7

directories SCALD, A-9
DISPLAY command, 7-5

7 /15/86

Index

l-5

Index Logic Simulator

display screen
echo area,1-9, 1-11
status line, 1-9, 1-10

DRAWING body, 9-2, A-9
drawing name, 9-1
drawing type .PRIM, A-9
drive, 2-3
DRIVE property, 8-8, 8-10, 8-12, 8-13, 8-14
drivers, unidirectional, 1-4
DUMPMEMORY command, 6-1, 7-6

edge to edge primitives, 9-22
encoder and decoder primitives, 9-23
EQUATE ENABLE command, 4-3, 4-5, 7-6
EQUATE PATCH command, 4-8, 7-6
error messages, 1-11, 10-1
errors

Compiler, 1-7, 1-9
report of, 1-21
simulation, 10-1

EXIT command, 1-23, 7-6
expression evaluator, 2-5, 2-13, 2-14, 8-1 8-12
EXP_EVALUATOR directive, 2-5, 8-12

FALL property, 8-1, 8-7
FAMILY property, 2-15, 8-9
file names, 1-22
files

I-6

command, 1-1, 1-20, 1-21
Compiler directives, 1-7
Compiler expansion, 1-8, 1-9, 2-3, 2-9
Compiler listing, 1-9
Compiler output, 2-3, 2-10, 2-13
Compiler synonym, 1-8, 1-9, 2-10, 2-13
Directives, 2-1
input command, 2-6
input, 1-22
listing, 1-20, 2-5, 2-10
log, 1-20, 1-21
output command, 2-5
output, 1-20, 1-22
Simulator directives, 1-7
user primitive configuration, A-10, A-HJ

7/15/86

Logic Simulator

waveform input, 1-20, 1-21
wire delay, 2-14, 8-7, 8-15

gates, phantom, 8-9, 8-11
GED, 9-1
Graphics Editor, 9-1

HARDCOPY command, 7-6, 7-16
HIGH property, 9-22
HISTORY command, 1-2, 2-7, 3-1, 3-3, 7-7
HOLD property, 9-21

identity primitive, 9-6
initialization

of circuits, 1-2
of signals, 1-18

INIT_COVERAGE command, 7-7
interrupt feature, A-2
INTERVAL command, 7-7

jk primitive,9-6

LATCH ENABLE command, 4-3, 7-7
LATCH PATCH command, 4-8, 7-8
latch primitive, 9-7, 9-8, 9-9
librarian, 9-1
libraries SIM, 9-1
library development, 8-1, 9-1
LIST BREAKPOINTS command, 4-4, 7-8
LIST DEPOSITS command, 7-8
LIST ENABLES command, 4-4, 7-8
LIST PATCHES command, 4-8, 7-8
LIST SIGNALS command, 7-8
LIST TRACES command, 7-8
listing file, 1-20, 2-10
load calculation, 8-9
loading, 8-6, 8-7, 8-8, 8-9, 8-10
LOADMEMORY command, 7-9
LOAD_FACTOR property, 8-9, 8-11, 8-12, 8-14
log file, 1-20, 1-21
logic patching, 4-1, 4-7
LOGIC_INIT command, 1-18, 4-7, 7-9
lookahead primitives, 9-10

7/15/86

Index

I-7

Index

LOW property, 0-22

MAX property, 0-22
MEMLOAD command, 6-1, 6-2, 7-9
memories, 1-18, 2-5, 5-7, 0-14

four-state, 2-5, 9-14
loading, 6-1
two-state, 2-5, 0-14

memory primitives, 5-4, 6-2, 9-14
memory strength signals, 1-3, 1-4
MEMPA TII command, 1-11, 1-18, 6-1, 7-10
MEM_INIT command, 1-18, 7-9
MEM_STA TE directive, 2-5, g_14
MIN property, 0-22
min pulse width primitives, {}-22
MOVE command, 7-10
mux primitive, 0-13

nets bidirectional, 1-4
NEXTMEMORY command, 7-10

open collector, {}-25
OPEN command, 1-2, 1-22, 3-1, 3-4, 7-10
open emitter, {}-25
OPENMEMORY ADDRESS command, 7-11
OPENMEMORY command, 1-18, 1-19
operating systems CMS, 1-20, 1-22, A-6

UNIX, 1-20, 1-22, A-4
VMS, 1-20, 1-22, A-5

or primitive, g_4
output

open collector, {}-25
emitter, {}-25
pole, 0-26
tri-state , 9-25

OUTPUT directive, 1-20, 2-5, 2-10
output files, 1-20, 1-21, 2-3, 7-15
OUTPUT_TYPE property, {}-25

parity primitive, {}-24
parts zero-delay, 1-10
PASCAL, {}-25, A-3, A-13
pass transistor primitive, 1-4, 9-25

I-8

Logic Simulator

7 /15/86

Logic Simulator

PAUSE command, 7-3, 7-12, 7-15
PDELA Y property, 8-1, 8-2
PEEK command, 2-10, 7-12
PERIOD command, 2-2, 7-12
permissions, 9-1
PFALL property, 8-1, 8-2
phantom gates, 8-9, 8-11
physical design system, 8-6, 8-15
PIN_D ELA Y directive, 2-6, 8-3, 8-4, 8-5
PLOT command, 1-13, 1-20, 1-21, 7-12
plotsig.dat file, 1-20, 1-21
Plottime, 1-13, 1-21
PRIM drawing, A-9
primitives

1 of 8 decoder, 9-23
8-bit decoder, 9-24
8-bit prio encoder, 9-23
adder, 9-18
alu, 9-18
and, 9-3
arithmetic, 9-18
buff er, 0-5
carry save adder, 9-20
comparator, 9-20
counter, 9-16
counter/shift register, 9-16
edge to edge, 9-22
encoder and decoder, 9-23
identity, 9-6
jk, 9-6
latch, 0-7, 9-8, 9-9
lookahead, 0-19
memory, 5-4, 6-2, 9-14
min pulse width, 9-22
mux, 9-13
or, 9-4
parity, 9-24
pass transistor, 1-4, 9-25
priority encoder, 9-23
reg, 9-9, 9-10, 9-11, 9-12, 9-13
resistor, 1-4, 9-24
setup hold, 9-20, 9-21
shift register, 9-16

7/15/86

Index

I-9

Index Logic Simulator

simulation, 8-9, 9-1
timing checker, 2-12, 9-20, 9-22
ts buf, 9-5
uni pass transistor, 9-25
user-coded, 9-25, A-3
xor, 9-4

priority encoder primitive, 9-23
PRISE property, 8-1, 8-2
procedure, userprim, A-5, A-6, A-7
properties

ABBREV, 9-2, A-9
DELAY, 2-4, 2-8, 8-1, 8-7, 9-2
DELAY_EQ, 8-12, 8-13
DELAY_PARAM, 8-12, 8-13, 8-14
DEPTH, 9-14
DRIVE, 2-4, 8-8, 8-10, 8-12, 8-13, 8-14
FALL, 2-4, 2-8, 8-1, 8-7
FAMILY, 2-15, 8-9
HIGH, 9-22
HOLD, 9-21
LOAD _FACTOR, 8-8, 8-9, 8-11, 8-12, 8-14
LOW, 9-22
MAX, 9-22
MIN, 9-22
OUTPUT_TYPE, 9-25
PD ELA Y, 2-8, 8-1, 8-2
PFALL, 2-8, 8-1, 8-2
pin delay, 2-6
PRISE, 2-8, 8-1, 8-2
RISE, 2-4, 2-8, 8-1, 8-7
SETUP, 9-21
SIZE, 1-1, 8-11, 9-2, 9-14, A-12, A-14
TIMES, 1-1, 8-8, 8-11, 8-12
TITLE, 9-2, A-9

radix, 1-10, 1-13, 7--13
strength, 1-13

RADIX command, 7-13
Realchip, networked, 2-7
Realfast, 1-19, 2-13
Realmodel, 2-13

networked, 2-7
REAL_ CHIP _LIBRARY directive, 2-6

1-10 7 /15/86

Logic Simulator

RECORD_ALL command, 7-13
RECORD_SIGNALS command, 7-13
RED ISP command, 7-13
register primitive, 9-9, 9-10, 9-11, 9-12, 9-13
REMOTE_HOST directive, 2-7
REMOVE command, 3-5, 7-14
resistor primitive, 1-4, 9-24
resolution, 1-10
RESOLUTION directive, 1-10, 1-11, 2-7, 3-1, 3-3
RESTORE command, A-2, B-2
RESTORE directive, A-2, B-2
RESUME command, 7-3, 7-14, 7-15
RISE property, 8-1, 8-7
RISE_FALL directive, 2-8, 8-2, 8-3, 8-5
ROOT_DRAWING directive, 1-7, 1-8, 2-3, 2-9, 2-10
ROW command, 3-1, 3-5, 7-14

SAMPLE ENABLE command, 4-3, 7-14
SAMPLE PATCH command, 4-7, 7-14
SAVE command, A-1, A-2, B-1, B-2
save/restore, A-2, B-2

with Realfast, A-2
scalar signals, 1-14
SCALD Directories, 1-7, A-9
SCALD Language, 1-1, 1-17
scale, see resolution, 1-10
scale

of simulation display, 2-7
SCOPE command, 1-11, 7-15
SCRIPT command, 1-21, 2-3, 2-6, 7-15
SCROLL command, 3-1, 3-5, 7-15
sentinels, in value file, 5-2, 5-5
SESSION_LOG directive, 1-20, 2-10
SET command, 7-16
SET BREAKPOINT command, 4-3, 4-4, 7-15
SET ENABLE command, 4-2, 7-16
SET PATCH command, 4-7, 7-16
setup hold primitives, 9-20, 9-21
SETUP property, 9-21
shift register primitive, 9-16
SHOW command, 7-17
signal assertions, 2-2
signal history, 1-2, 1-9, 1-13, 1-16, 3-5, 7-2

7/15/86

Index

I-ll

Index

signal initialization, 1-18
signal mapping, 5-2
signal mapping file, 5-2, 5-3
signal name syntax, 1-1, 1-17, 7-1, A-11
signal names on Simulator display, 2-10
signal states, 1-2, 1-4, 1-5
signal strength, 1--2, 1-3, 1-4, 1-13, 9-24

memory, 2-3
signal synonyms, 1-18
signal transitions, 1-15, 1-17
signal values, 1-2, 1-3, 1-4, 1-5, 1-9, 1-19

high impedance/unknown, 1-3
signals

bus, 1-15
driven, 2-2
low-asserted, 1-18, 9-3, A-11
MOS, 2-3
scalar, 1-14
undriven, 2-2
unnamed, 1-22
waveforms, 1-21

SIGNAME_CHARS directive, 2-10
SIM library, 9-1
simcmd.dat file, 1-1, 1-20, 1-21, 2-3, 2-5, 7-15
simlog.dat file, 1-20, 1-21
simlst.dat file, 1-20, 2-5, 2-10
SIMULATE command, 1-2, 1-19, 2-7, 7-17

in GED, 1-22
simulate.cmd file, 2-1
simulation

batch mode, 1-1, 1-21, 2-3, 2-12, 5-1
Bus mode, 1-2, 1-6
full-screen, 1-6
interactive, 2-12
mainframe host, 1-6
split-screen, 1-6, 1-22

Logic Simulator

Waveforms mode, 1-2, 1-6, 1-9, 1-12, 2-7, 2-10, 3-1, 3-2
with UCPs, 1-6, A-8

simulation models, 8-1, 8-7, 9-1
simulation primitives, 8-9, 9-1

bubbled pins on, 9-1
simulation time, 1-10
Simulator, invoking, A-8

I-12 7 /15/86

Logic Simulator

SIZE property, 1-1, 8-11, Q-2, Q-14, A-12, A-14
SNAPSHOT command, 1-20, 7-18
softkeys, 1-23
SPACING command, 3-1, 3-5, 7-18
split-screen simulation, 1-22
step, simulate for, 1-10, 7-18
STEP command, 7-18
SYNONYM_FILE directive, 1-8, 1-Q, 2-3, 2-10
syntax, 4-6
SYSTEM command, 7-18
systems, operating see operating systems

tabular I/O, 5-6, 5-7
tabular trace format, 5-1
TABULAR_TRACE directive, 2-11, 5-1, 5-8
TERMINAL command, 7-18
TERMINAL directive, 2-11
terminal types, 1-12
TIMES property, 1-1, 8-8, 8-11, 8-12
timing assertions, 2-2, 7-1
timing checker primitives, 0-20
timing errors, 2-12
TIMING_CHECK directive, 2-12, 0-20
TITLE property, Q-2, A-Q
totem pole output, Q-26
trace, tabular, 5-6
TRACE command, 7-10
trace format

standard, 5-1
tabular, 5-1

TRACE_ALL command, 7-20
TRACE_CLOSE command, 7-20
TRACE_INTERVAL command, 5-7, 7-20
TRACE_MEM command, 7-20
TRACE_OPEN command, 7-20
TRACE_RADIX command, 7-20
TRACE_RADIX directive, 2-12
TRACE_READ command, 5-7, 7-21
TRACE_RESET command, 5-7, 5-8, 7-21
TRACE_START command, 7-21
TRACE_STOP command, 7-21
tracing, 5-1

value information for, 5-2

7/15/86

Index

1-13

Index

tri-state output, 9-25
trigger, 1-11, 1-12
ts buf primitive, 9-5

Logic Simulator

UCP (user coded primitive), 1-6, 9-25, A-3, A-13
ucp functions, A-5, A-6, A-7, A-13, A-14, A-15, A-16, A-17, A­
UNDO_DEPOSIT command, 7-21
uni pass transistor primitive, 9-25
UNIX, 1-20, 1-22, A-4
unnamed signals, 1-22
UPDATEJNTERVAL command, 7-22
user primitive configuration file, A-10, A-19
user-coded primitives, 9-25, A-3, A-13
userprim procedure, A-5, A-6, A-7
USER_EXPRESSION directive, 2-13, 8-12, 8-13
USER_PARAMETER directive, 2-14, 8-12, 8-13, 8-14
USER_PRIM_CONFIG directive, A-12, A-13
USE_IF directive, 2-12
USE_REALFAST directive, 2-13
USE_SYNONYM directive, 2-13

value file, 5-2, 5-5
for tracing, 5-2
sentinels in, 5-2, 5-5

vectors, 1-15
VMS, 1-20, 1-22, A-5

waveform input file, 1-20, 1-21
waveforms, 1-21
WAVEFORMS command, 1-16, 2-7, 3-1, 3-2, 7-2, 7-22
Waveforms mode, 1-2, 1-6, 1-9, 1-12, 2-7, 2-10, 3-1, 3-2
window size, 1-10
windows, 1-7
wire delay file, 2-14, 8-7, 8-15
wire delays

estimated, 8-6, 8-7, 8-8, 8-9, 8-10
feedback of, 8-6, 8-15
load dependent, 8-6, 8-7, 8-8, 8-10

wire gates, 8-8, 8-11
wire stops, 8-6, 8-7, 8-9, 8-10
WIRE_DELA YS command, 7-22, 8-17, 8-15
WIRE_DELA YS directive, 2-14, 8-6, 8-15
WIRE_ESTIMATE directive, 2-14, 8-9, 8-11

I-14 7 /15/86

Logic Simulator

WRIIB_COVERAGE command, 7-3, 7-7, 7-22

xor primitive, 0-4
zero-delay loops, 1-10

7/15/86

Index

1-15

