SCALDsystem™
UNIX™

PROGRAMMER’S
MANUAL

\ALID

2820 Orchard Parkway
San Jose, CA 95134

408/945-9400
900-00038 Rev C Telex 371 9004

Copyright 1979, Bell Telephone Laboratories,
Incorporated. Holders of a UNIX™/ 32V software
license are permitted to copy this document,

or any portion thereof, as necessary for licensed
use of the software, provided this copyright
notice and statement of permission are included.

PREFACE

This manual describes the UNIX operating system as implemented
in SCALDsystem. While a majority of the commands, system calls,
subroutines, and maintenance facilities are based on the 4.2
Berkeley Software Distribution, features from Western Electric
System 3 and Bell Laboratories Version 7 also are included. 1In
addition, a number of unique "private" extensions have been
developed by Valid Logic Systems Incorporated and embodied
within SCALDsystem UNIX.

TABLE OF CONTENTS

VOLUME 1

l. Commands and Application Programs

intro . .
adb « . . &
admin . . .

ar L] L]
at [] ®
awk « .

basename .
bdiff . .

cal . .

calendar .

cat + o
cb . .
CC o
cd o .

L]

chgrp « « &
ChmOd o s

chsh .
clear .
cmp . .

°

col . »

comb .
comm .,
CP o o
cpio .
cptree
crypt .
csh . .
ctags .
date .
dd..
delta .
deroff
df . .
diff .
diff3 .
du . .
echo .
ed . °
eX o o
expand
expr .

*

°
°

L]

. . . L]

e« o« ¢ o e o s o o o s Iintroduction to commands
o-ooooooooo..o.o.oodebugger
e« ¢+ o« o+ o o« o create and administer SCCS files
e ¢« o o s o o o o« archive and library maintainer
e o s o o« o o o exXecute commands at a later date
e ¢« o pattern scanning and processing language
¢+ ¢ o o o a s o o e o s o strip filename affixes
. differential file comparator for large files
e ¢ o o o s ¢« s s o s s o o o o print calendar
o e o o o o 6 o6 ® o o o © o o o t‘eminder service
e o o o s o s s o s s o s o catenate and print
o ¢ o o s » s o s s s« o o s C program beautifier
e o o o s o o s o o o s o o s o o s o C compiler
& © & s & 8 ® ® © ® e @ Change Working directory
e o o o s o s o o s o o s« o « s o change group
e o o o s o 5 ¢ o o s o s o s o s o change mode
e« s o ¢« s o« o o s o « change default login shell
e o ¢ o o o s o s s s o s clear terminal screen
e 5 o o s 5 o s s s o s o o o compare two files
e o o o s o o o o o o filter reverse line feeds

e« ¢ o o o o » o o e o » o o » combine SCCS deltas
select or reject lines common to two sorted files

e o o o o o o s s o 6 s s s s s s s s s e s CODY
e s o o » o o s« o copy file archives in and out
e« s o o o o o o directory tree file copy utility

e e e o o o s s s o s s s o o o o encode/decode
a shell (command interpreter) with C-like syntax

e o o o o s s o s s o o o » create a tags file
e o o o o a o o s s o o o print and set the date
e o s o o o o 0o o s s o convert and copy a file

e o o« o « o make a delta (change) to an SCCS file

« o« o o remove nroff, troff, and eqn constructs
e 6 o o o o s o s s s s s s o s o o s disk free
o » o differential file and directory comparator

e ¢ o ¢ o s 3-way differential file comparator
e« o o o o s s s o o o o o o summarize disk usage
e o o o o ¢ s o o o s s o« s s o o echo arguments
e o o o o o s s o s s o s s o s o o text editor
e o o s o s o s o e s s o s s s s o text editor
e o« o« o o « expand tabs to spaces and vice versa
e s o o « o evaluate arguments as an expression

Table of Contents

false « «

file « o« o &
find e o o o
get e o o o

getline . .

BreD o o o o
groups + o« .
head « « .
hostid . . .
hostname . .
install . .

iostat . . o
join . + . .
kill « « .«
last « ¢« o &
Id « ¢ ¢ o
lex e o o o

lint s o o o
In ¢ ¢« ¢ o &
login « .+ &

look « « & &
lorder « . .
Ipg ¢« ¢ o &

Ipr « ¢ o &

lprm « ¢« . &
1S ¢ o o o &
mail « « . &
make « o ¢ o
MAl o o o o

MESE o o o o
mkdir . + .

MOTE o o o o
MV ¢ o o o o
NEWETD + o o
nice « « .
MM ¢ o ¢ o o
nroff . . .

od ¢ ¢ o o o
pagesize . .
passwd . . .
plot « « .
Pr o o o o o
printenv . .,
prof « « o &
PS o o o o o

e o o o o 6 s o o s s s 6 o s o o s s s o « provide truth tables
© o o o s o ¢ o o o o 6 s s s o o s s s o s o determine file type
° L] L] . ° L] L] L] L] L] L] o ® L] L] * ° . L] L] L] L] L] L] ® ® L] ® find fi les

e o o o o o & o o © o o e o o ° e o get a version of an SCCS file

© o © ® & & © © © e © ®© o o e & & ° © o © e & ° o get input line
e o o o o o o ¢ s o o o s s o s o o o search a file for a pattern
© ¢ o o ¢ o o o s s o o o s s o e e« o s o o show group memberships
® o © © o 0 & ® o © 6 o © 6 o & o © o O o o @ give first few lines
e ¢ o« ¢ s o o s » o set or print identifier of current host system
e o o o o o s o o o s o o set or print name of current host system

e o o o o o o e o o o+ o ; e o o o o & © o o o install binaries
© © o ® o © o 06 6 o © 6 ® © o o o ® o © o e report I/O statistics
e ¢ o o o o s o o s o o s s o o o o o relational database operator
e o o s o s o o o o o o terminate a process with extreme prejudice
e o o o ¢ o s o o o o 1Indicate last logins of users and teletypes
o o o o © o o o o o ©6 © o © o © @ o © © e © © o © o o liﬂk editor

e o o o o o s s o o o s o generator of lexical analysis programs
© o o o o o o o o s o o s o o s o s s o s o o aC program verifier
© o o o o o o s o o s o & 6 s s s s s o o s e o o o« « » make links

® © e ©® o o ® o o © ° © © o ® © © © © © © ° © e e e e ° o Sigﬂ on
e o o o o o s o s o s o s o s o s o o find files in a sorted list
e o o o o o o s o o o find ordering relation for an object library

e e o o o o s o o s o s o s o o o Spo0l queue examination program

e ® ® © © © o © ® e © © ® » © ® © ® ®© ©® © © & ° e Off 1ine print
e « o o » o s o o remove jobs from the line printer spooling queue
©« o o o o o s o s o s e o o s o s o s s list contents of directory
e o o o o o s o o o sa.0 s o o s o e s s o« « send and receive mail
e o o o o s s o s s o s s s o s e e s o o maintain program groups

e o« o o find manual information by keywords; print out the manual
e o o s o o o o o o s o o s s s o e o o o o print or deny messages

e o o o o o s s s s s s o o s s s o s s o « o o« make a directory
o ¢ o s o s s s o o s o o s » file perusal filter for crt viewing
e ¢ o o s o s s o o s 8 s s o s e e s o o o o move or rename files
L] L] L] L] L] L] L] L] ® L] L] L] L] L] L] . L] o . ® L] L] log in to a new group
e o o o o o 5 s o o s s o« run a command at low priority (sh only)
e o s s o o 5 o 6 o s o s s s s o o o s s e o o o print name list

® o o o o o o 8 o o e o o o e o o s ® s s e s e o text fotmatting
e o o o o o s o o o o s s s s o o« octal, decimal, hex, ascii dump
e ¢ o o o o o o s s s o s s s o s o o s o o print system page size
e ¢ 6 e o e o o © o © ® & 0o o ¢ o o ° o° e o Change 10gin password
© ¢ o o a o o 5 s o o o e s s s s o s s s o o o o graphics filters
© o o o o o o o o o o o o s s s o o o o o o« pr to the line printer
e o o o o s o o s o s s s o s s s s o « print out the environment
® o o o o s o o o s o o e s o o o o o o s o o display profile data
e o o o o s o s o s s o s o s s s o s o s s e s s s process status

PWAd ¢ ¢« o o o o o o o o o s s o s o o s o o s o ¢ o s« » working directory name

TeV ¢« o o o
rlogin . . .
rm L] L] L] L] L]
rmdel . . .
rmdir . . .
rsh « « « &
ruptime . .

e o o o o o o o o o o s s s o s s o o o o reverse lines of a file
e o o o o o o o o s s o o o o o s o 6 s s s o s o o o remote login
e o o s s o o o o o o o o o « remove (unlink) files or directories

e o o o o o o o o o o o o s o o remove a delta from an SCCS file

e o o o o o o o ¢« s o o o s« remove (unlink) directories or files

e o o o s o o o s s s o s o s s s s s s e s o s o « remote shell

e o o o o s s o s o s o s o o« show host status of local machines

ii

Table of Contents

TWHO ¢ o o o o o o o o o o o s o o« o« s o o « wWho's logged in on local machines
SCCShelpo ® o o 8 o o o e o o ask for SCCS help
SCTIPt ¢ o o o ¢ o o o o ¢ o o o o s o « o make typescript of terminal session
Sed...............................Streameditor
Sh ¢ o o o o o ¢ o o ¢ ¢ o o o o o o o s s o s 06 8 0o o o o s o command language
shownet « ¢« ¢« ¢« o ¢ ¢ ¢ o ¢ o o o s o s o« s s » o« o o« o« show Valid node status
S1Z€ o o o o ¢ o o o ¢ ¢ o s 0 5 o s 0 o ¢ o s o s o o o 8lze of an object file
Sleep « « « ¢ o ¢ o o o o s o o o s o » o o o suspend execution for an interval
SOTL o o o o ¢ ¢ o o o o o o o o s s o o o o o o o o o o« o« sort or merge files
SPEll ¢ ¢ 4 s o o o o ¢ o o s o s s o s o s o o s o o o o find spelling errors
SPLIt ¢ o ¢ ¢ o ¢ ¢ o o o ¢ o o6 o ¢ o o s o o s o o o split a file into pieces
strings « « « « « o find printable strings in an object, or other binary, file
SETIP o o o o o o ¢ o o o o o o o s« s « o« o« remove symbols and relocation bits
SELEY o o o o o o o o o o o o o o s o o s s s s o s o s o o set terminal options
SU o o o o s « o o o s o o s o o o s o o o o o o substitute user id temporarily
SUM « o = o o s o o s o o o o s o o s« o o s o« o sum and count blocks in a file
tail « o ¢ o ¢ 4 4 o 4 s o s s e o o o s s o o deliver the last part of a file
EAT o o o o o o o o o o o o o s © s o ¢ o o s o o s o s o s s o o tape archiver
tee........-......................pipefitting
EESt o o ¢ o o o ¢ o o o s o o o s o o o s s s s o o s o o o condition command
tiMe o ¢ o o o ¢ o o ¢ o o o o ¢ o o o o s o o o o s s o o s s » time a command
touch ¢ o o o o o o o o o o o o o o« o o« o o update date last modified of a file
LD ¢ o o o o o o o o o o o s s o o o o o o s o o o« » o manipulate tape archiver
ET o o o o o o o o o s o o o o o s o o o o s o o o s o o o translate characters
troff o o ¢ o ¢ o o o ¢ o ¢ o o o o o o o o o o text formatting and typesetting
ETUE ¢ o o o o o o « o o o o o o o« s s s o s s s s o o o o provide truth tables
ESOTL o« o o o« topological sort
EEY o ¢ o o s o o o o o o o s » s o s o o o o s o o o s o o o get terminal name
UNEEL o o o o s o o o s o s o o o« s o o » o undo a previous get of an SCCS file
Uniq ¢ ¢« o o o o o o o o ¢ o o o s o o s o o o report repeated lines in a file
Units o o o o o o o o o o o o o s o o o o s o o o s s » o o conversion program
vfontinfo « « ¢« ¢« ¢« ¢« ¢« « o 1inspect and print out information about UNIX fonts
Vi e ¢ ¢ o ¢ ¢« ¢ o o o« o o« screen oriented (visual) display editor based on ex
VPl 4 & ¢« 4 4 ¢« ¢« o ¢« ¢« o s o o« « cOpy a spooled plot to raster printer/plotter
VDT o « o o o o o s o o s o s s o o s s o s o » raster printer/plotter spooler
VEFOff ¢ o o o o o o o o o « s o o o s« o o o o o« s » « troff to raster plotter
Wall o o o o o o o ¢ o o o o o o o o o o s o o s o o o o o o Write to all users
WC o o o o o o o o o o s o o o s o o o o o o o 6 s o s o s o o o o o word count
what « + . « show what versions of object modules were used to construct a file
WhO « o o o o o o o o o o o o o o o s o s o o s o o s« o « who is on the system
whoami ¢« ¢ ¢ ¢ o ¢ o ¢ ¢ ¢ o o o o o« o o« o« o« o« print effective current user id
WELIte o ¢ 4 o & o o o o o o s s o o o o o o o o o » o o« o Write to another user
XSEY « o ¢ o o o o extract strings from C programs to implement shared strings
JACC o o o o s o o o o o o o s o s o o o o o o o yet another compiler-compiler
YES o o o o o s o o o o 6 s s o o o o s o o o s o o be repetitively affirmative

L]
.
.
L]
®
.
e
.
L]
.
L]
[
.
e
.

iii

Table of Contents

2. System Calls

intro « « «
accept o« o o
access o o o
bind
brk « ¢« ¢« « &
chdir « « .
chmod . « « &
chown « « « &
chroot . . .
close ¢« ¢« o &
connect . o .
creat « o o .
dup ¢« ¢ ¢ . &
execve . o o
exit . . . &
flock « « «
fork « « « &
fsync « o o &
getdtablesize
getgid . . .
getgroups . .
gethostid . .
gethostname .
getitimer . .
‘getpagesize .
ZELPEIP « o o
getpid . . .
getpriority .
getrlimit . .
getrusage . .
getsockopt .
gettimeofday
getuid o o o
ioctl « o ¢« &
kill « » « &
killpg « . &
1ink e o o o
listen . « &
lseek « « &
mkdir « « «
mknod . . . &
mount « « o o
open « o+ « o
pipe « + o &
profil e o o
ptrace . . .
read
readlink . .
reboot . . .
TECV o o o o
rename . o .

introduction to system calls and error numbers
e o o o o o o o s o o o Aaccept a connection on a socket
e ¢ o o o o o o s o o o determine accessibility of file
e o ¢ ¢ o o o ¢ s o o o 8 o s o bind a name to a socket
e o o o s o o ¢ s o o o o o o change data segment size
e o o s o« o s o s o o change current working directory
o o o o o @ o o o o o o e ® o & o o Change mode of file
e o o o @ © o o o o o Change owner and group of a file
e o o o o o s o s o o s s s s » o change root directory
o o s 6 o o o s s o o s o o e o o delete a descriptor
e » o ¢ « s o o o o o initiate a connection on a socket
e o o o o o o o o o o o s o s o o o » create a new file
e o o ¢ o o o s o o s o o s » o duplicate a descriptor
e o o o o o o o o o o o o o e s s o o o o execute a file
terminate a process
« « « apply or remove an advisory lock on an open file
e o o o o o o s s s s s s s o s e o Create a new process
synchronize a file’s in-core state with that on a disk
e e o o o o o s s o o o o o » get descriptor table size
® 6 o 6 o o o o o 0 e 0o 8 e o e o o 0 get group identity
e © o o o o6 ¢ o ® ¢ o s o ° o o o get group access list
e o « o s o o get/set unique identifier of current host
e e« « o« « o get/set name of current host

L] . . L L] L] L] L] L] L] L] L] L L] L] L] L] Ld

e o o o o s s o o o s o get/set value of interval timer
e o o o o o s o o e s s o s o o » get system page size
e © o o o o o6 ® © o o o o © o o o o° o get process group

e o o s o s s o s o s s o o o get process identification
e o ¢« o o o o o o o get/set program scheduling priority
e o o o o o control maximum system resource consumption
e o o« o« o o get information about resource utilization

e o o« s o o o s s o o s » get and set options on sockets

e o o s o s o o s s s s s e s s o get/set date and time

e o s o o o o o o s s o o s s o o o o get user identity
e o s o o o s s o o s s o s o o s s s « control device

e o o o o o o o o o s s o o s o send signal to a process

e o o o o o o o o o » o o send signal to a process group

e 6 o o o o o © o o o o o o o make a hard link to a file

e o o o o o o o o o o listen for connections on a socket
e o o o o e o s s s s s s o « o move read/write pointer
e o o ¢ s o s s s s s s s s o » » make a directory file
© o o o o s o s o s s s s s s o o o make a special file

e o o o o o o o » o mount or remove file system

open a file for reading or writing, or create a new file

e o o« o o o create an interprocess communication channel

e e ® ® ® ® o o ® © o © e o e o o execution time profile

e © o o @ o o & 6 ® 6 o o & o © o o o o o process trace
e o o o o o s o s 8 s s o s s s s s o o s o ¢ read input
@ e 6 ¢ o 6 o & o o o o o o read value of Symb01iC link
reboot system or halt processor
receive a message from a socket
change the name of a file

L] e o L] L] L] . . L] L] . . L] L] L]

Table of Contents

rmdir.........................removeaditectoryfile
SenNd o+ o o o o o o s o o o 4 o s o o o o o o o o o send a message from a socket
SétgrO“pS.oooouoooooooooooooooocosetgroupacceSS]-ist
setpgrp...........................setprocessgroup
setregid « ¢ ¢ o o o ¢ o o o 6 4 o s o o o o o set real and effective group ID
setreuld « ¢« ¢ o o o ¢ ¢ o o o o s o o o o o o set real and effective user ID’s
shutdown « « « « ¢ ¢« « « o« » ¢« o « o« shut down part of a full-duplex connection
SOCKEt ¢ o o o o o o ¢ o o o o« o o o o o o create an endpoint for communication
Stat . [] L] . L] L] . L] . L] L] . L] L] L] L] L] L] L] L] L] . L] L] L] L] L] * L] get file Status
Symlink ¢ o o o o o o o o o o o ¢ o s s o o« o o o make symbolic link to a file
SYNC « o o o o o o o o o o o o o o o o o s o o o o o o o o « update super-block
SYSCAll « o o o o o o o o s o o s o o o o s o o o o s s o 1indirect system call
ETUNCALE ¢ ¢ o o « o o « o o « o« o o o o truncate a file to a specified length
UMASK ¢ ¢ ¢ o o o s o o s o o o o o o s s o s o o o set file creation mode mask
unlink o o o o o o o o ¢ ¢ o o o o o o o o o o o » o o o remove directory entry
ULIMES « o o o o o o o o o s o o o s o o o o o s s o o o ¢ o o o set file times
VEOork ¢« ¢« ¢ ¢« o« s ¢ o ¢« o« o« spawn new process in a virtual memory efficient way
vhangup « « « « o« o« « o« o o o « virtually "hangup" the current control terminal
wait...................... Waitforprocesstoterminate
WEIte o o o o o o o o ¢ o o o o s o s o o o o o o o s s s o o o Wwrite on a file

Table of Contents

3. C Library Subroutimes

INEYo ¢ o« o o o o o o o« o« o « o« ¢ o« o o o o » introduction to library functions
ADOTt 4 o o © o o o o o o o o ¢ o o o o ¢ o o 06 06 o o o 8 o @ generateafault
abs.......................... integerabsolutevalue
Atof & o 4 o o ¢ o e s 6 6 s s e e o o s e s s s o« o convert ASCIT to numbers
bString « o o ¢ o« ¢« o ¢ o ¢ o o o« o« ¢ o« s o » o bit and byte string operations
Cryptooocooo.oooauooo.ooooooo.oaooDEsencryption
ctime « o o o s ¢ o o ¢ ¢ o s o o s o o o s s o convert date and time to ASCII
CEYPE « o o o © o o ¢ o o o o o o o s s o o & o character classification macros
directOoTY o o o o o o o o s o o o o o s o s o o o o o o« o directory operations
€CVL o o o o o o o o o o o o o o o o s o o o s o o s o s o o oOutput conversion
end ¢ ¢ ¢ o o o o ¢ o s o o s o o s o s s s s s « o o last locations in program
exeCloooooooo.-oocoooo-ooooolo.-ooexecuteafile
exXit ¢« ¢« ¢« ¢ o o+ o+ o o o terminate a process after flushing any pending output
freXp ¢ o o o ¢ o o « o o o o o s o o o o« o o split into mantissa and exponent
GELENV ¢ o ¢ o o s o s ¢ s s o o o s o o o s o o o o value for environment name
BeLBTEeNt o« o o o o o o o o o s o o o o ¢ o s o o o o o o o« get group file entry
BEL1OZIN « o ¢ o o o o o o o s o s o o s o s s s s 0o 0o « o o s « get login name
BELPASS 4 o o o o o o o o 5 s o o o o o s o o o o s s o s o o« o read a password
BELPWENL « « o o o o o o s o o o o o o o o o o o s o o get password file entry
BetWd ¢ ¢ o o o o o o s 0 o o s o o o o get current working directory pathname
MALlOC o ¢ o o o o o o o o o o o o o o o a o s o s o o o » o o memory allocator
mktemp.........................makeauniquefilename
MONLILOT o o 4.6 o o « o s o o o s o o o » o o o o« o o prepare execution profile
D11St o ¢ o ¢ o o o o o o o o s o« s s o o s s o « +» get entries from name list
PEITOT o o s o o o o o o s « o o o o o o o o o o o s o o System error messages
POPEIl & o o o o o o o o s o o s o o« o » o« o o o 1initiate I/0 to/from a process
PSIig8NAl ¢ o ¢ o o o o o o o o o o o o s % s o o o o o » sSystem signal messages
QSOTL o o o o o o o o o o s o o o o s o s o o o o o s o o s o o o Qquicker sort
random . . . + better random number generator; routines for changing generators
TEZEX o o o o o o o o o s » o ¢« s o o« s o o o s o » Tregular expression handler
SCANdiIr « o o o o o o o o 5 s o s s o s o o s o o s & s & o o scan a directory
SELIMP o o o o o o o o o o o s o o s o o o o s o o o o s o o o » nON~local goto
Setuld « ¢ o o o o o o o o ¢ o ¢ o ¢ s o o o o s o o o o set user and group ID
S1E€eP « o o o o o o s s o o o o o o » o o s o » suspend execution for interval
SETING o o o o o o o o o o o o s o o s ¢« o o o s o s o o » o string operations
Swab.................'..............Swapbytes
SYSEEM o« o o o o o o o o o o s o o o s o o s o o o o o o 1issue a shell command
tEYNAME « o o o o o o s o o o o o o o o o o s o o o o o find name of a terminal
VATATEZS o o o s o o o s o o o o o o« o s o o o o s o o o variable argument list

3M. Math Library

intro « « ¢« ¢« ¢ ¢ ¢ s ¢« ¢« o » o Iintroduction to mathematical library functions
€XP ¢ o o o o o o o o o o o & o o o exponential, logarithm, power, square root
floor ¢« ¢ o ¢« o« o« o « o ¢ o o« o« o » o absolute value, floor, ceiling functions.
gama L] (] L] L] L] L] L] L] . L] L] L) L] L] ° L] L] L] ° L] L] L] * L] ® L] L] log gama function
hypot « o ¢ ¢ ¢ ¢ « o ¢ o ¢« o o s s s s« o s s« o o« « » o o« o FEuclidean distance
JO ¢ o ¢ ¢ o o o o o o o o s o s o o s o o s s e s s e o o o o bessel functions
8In ¢ ¢ ¢ o ¢ ¢ 4 o 4 e ¢ o 6 s e s s e s s s s s o s o trigonometric functions
Sinh ¢ ¢ o o o & ¢ o o ¢ ¢ o o ¢ o o o s o o 5 s o s s o o hyperbolic functions

vi

Table of Contents

3N. Internet Network Library

byteorder « « + o« ¢« ¢« o« o« o convert values between host and network byte order
gethostent « o« « o o o o o o s o ¢ o ¢ s o o o o ¢« o o get network host entry
getnetent o« o ¢ o o o o o ¢ s s o s s o o o o s s s o o o o get network entry
GEtPTOLOENt o o o o s o o o s o o o o o o » o o o o o o o o get protocol entry
BeLSETrVEeNt o o « o o o o ¢ o o o o o o o o o o o ¢ o o o o o get service entry
inet ¢« o o o o ¢ ¢ o ¢ ¢ ¢ ¢ ¢ o ¢ o o Internet address manipulation routines

3S. C Standard I/0 Library Subroutines

Intro « « o ¢« o « o ¢ o o o ¢« o o « « o standard buffered input/output package
£CloSe o « o o o o o o o o o ¢ o s o o s s o o s o o s close or flush a stream
ferror o o o ¢ 4 o o o o o 6 o o o o o o s o s o o o s o Stream status inquires
fOPENM & o o o o o o o o o o o ¢ o o o o o o s o s o o o s o s s o Open a stream
fread « « ¢« ¢ 4+ o o o o o o o o o o s s s o s o o buffered binary input/output
£SE€EK o o o o ¢ o o o o o o o o o o ¢ o o o o s o o o o o o reposition a stream
BELEC o o o o o o o o o o o o o« o s o o o o o get character or word from stream
gets ® © o 8 o 6 o o 6 o 6 e © 6 o o o o © e o o o o get a String fl'.'om a stream
Printf ¢« ¢ ¢ ¢ o o o ¢ o o ¢ o o o o o o s o s o o formatted output conversion
PUEC ¢ ¢ o o o o o o o o s o« o o o s o o o o put character or word on a stream
PUES ¢ o o o o o o o o o o o o o o o s o o o s o » o o put a string on a stream
scanf o« o« o o o ¢ o o 6 o o 6 o 6 o o s o ¢ o o o » formatted input conversion
setbuf « ¢ o o o o o ¢ ¢ o o o o o o s o o o o o » assign buffering to a stream
UNZELC s o o o o o s o o o o o o o o o o push character back into input stream

3X. Other Libraries

iNntro o« « o o ¢ ¢« o o o o o o o introduction to miscellaneous library functions
CUTSES « o o o « o o o« o o o o o screen functions with "optimal" cursor motion
getfsent o « ¢ ¢« ¢ o ¢ ¢ o o o o o s o o get file system descriptor file entry
Init@roups o o o o o o o o o o o o o o s o o o o o initialize group access list
tEIMCAP s o s o s o s o o o o o o o o o terminal independent operation routines

3C. Compatibility Library Subroutines

intro ¢« o« o« o o o« o« « o « o o o introduction to compatibility library functions
alarm « o o o o o o o o s o o o ¢« o« s o o schedule signal after specified time
CEEDPW 4 ¢ o o o o o o o o o s o 5 s s o s s s s s o s o o s o get name from uid
NICE o o o o o o o o o o o o o ¢« o o o o o o o o o o » o o Set program priority
PAUSE & o o o o o o o s o o o o o s o o o s s s o o o o o o o stop until signal
rand « o« o ¢ o o o o s s o o o s o s o s s o s o o o o random number genmerator
signal o« o o ¢« ¢ o o o ¢« o o o o o« o« o o simplified software signal facilities
SELY o o o o o o o o o o o o s o o o s o o set and get terminal state (defunct)
EiMe o o o o o o o o o o o o o o o o o o o s s o o o o o o o get date and time
tiMeS o o o o o o o o o o o o o o s s o o o o o o o o o o o o get process times
UEIME ¢ o o o o o « o o o o o o o o o o o o o s o o o o o o o o set file times
viimit ¢ ¢ o o o ¢ ¢ o o o o o o« o control maximum system resource consumption
VEIMES o o s o o o o o o o o o o o » get information about resource utilization

vii

Table of Contents

4, Special Files

INtro o « ¢ o o « « o« « o« o« 1introduction to special files and hardware support
e o« s o o ¢ o o paging device
€C o o o o o o o o o s o o o o o o o s o o o o o 3Com 10Mb/s Ethernet interface
ip @ © 6 6 6 o 6 © o 6 © & 6 © 6 © o o © 6 0 o © o o o ° e 0 internet prOtOCOl
10 ¢ ¢ ¢ ¢ o o o o o o o o s s o s o o o o software loopback network interface
lp e o o o o o o 5 o s o o 8 s e s s s e o e s s s s o s s s e s o line printer
MEM ¢ o ¢ o o o o o o s o o o o s o o o s o o o s o o o o o o o o o Main memory
mtio « ¢ o & e o o o o o o o o o o o o s o s o o o o o o UNIX magtape interface
null @ © 6 © 6 6 © o 6 o o © o o o e ® e 6 6 & © o & 06 e o o & e o o data sink
PLY o « o o pseudo terminal driver
EtY o o o o o o o o o o o o o o s o o o o o o s« o« « general terminal interface
VA o« o o o o o o o o o o o o o o o o s s s o o o o o« o Benson-Varian interface
VD o o o o o o s o o o o s o s o o o s s s o o o o o o s o » Versatec interface

ATUM ¢ o o ¢ o o o o o o ¢ o o o o o o o o o o @

5. File Formats

QeOUL ¢ o « o o o o o o o o o s s s o o o o o assembler and link editor output
AT o o o o o o o o o o s o o ¢« s o o o o o o o » archive (library) file format
COTE o ¢ o o o o o o o o o s s s o o a o« o o s o o format of memory image file
dir & ¢ ¢ ¢ o ¢ ¢ ¢ o o o o o o o o o o o s o o s o o o o format of directories
disktab « o o o o o o o o o o o o o o o o o o o« o o s o o disk description file
dUmD ¢ ¢ o o o o o o o o ¢ ¢ o o o o o s s o o o s o o 1incremental dump format
£S o o o o o o o o o o o o s o o o o o s s o s o o format of file system volume
fstab ¢« « ¢ ¢ o o o ¢ o o o o o o o o static information about the filesystems
BTOUP o o o o o o o o o o o o o o s o s s s o o o s s o s o o o o o group file
hOSES o o o o o o o o o o o o o o o s o o s o « o o s o o o host name data base
MEAD ¢ o o o o o o o o o o o o o o s s o o« o s o o« o mounted file system table
paSSWd © 6 o ¢ o o o © © o © o o o o © o s e o o o e o o o o o o0 password file
Protocols « « « o o o o o o s o o s o s s o o o o o o o protocol name data base
SETVICEeS 4 o Service name data base
StAD 4 o o o o o o s o o o o o o o o s o s s s o s o s s o o symbol table types
LAT ¢ o o o o o o o o o o o o o s o o o s o o o o o o« tape archive file format
EEIMCAD « o o o o o » o o o o o o o o o o s o o o terminal capability data base
ttys @ 6 o © o o o o © o o © 6 @ © o © o & ° o ° o terminal initialization data
EEYEYPE o o o o o o o o o s o o o o o o« o o data base of terminal types by port
"LYPES ¢ o o o o o o o o o 6 s o o s s o s s s o o o primitive system data types
ULMD ¢ o o o o o o o o s o o o o s o s o o o s o o o o o o o o » login records
viont « « o« ¢« o« ¢« ¢ ¢ o o o« « o font formats for the Benson-Varian or Versatec

7. Miscellaneous

Intro « ¢« ¢ o ¢ ¢ o o o o o o o o o o o miscellaneous useful information pages
ascii o ¢ o o o o ¢ o o o o o 6 6 o o o ¢ o o o o o map of ASCII character set
€NVITOMN o o o o o o o s o o o o o o o o s o s o o o s o o o o USer environment
eqnchar o« o o ¢ ¢ o o o o o« o o« o o o o o Special character definitions for eqn
hier ¢ o o o o o o o o o o o o ¢ o o o o« o o o« « s ¢« o o file system hierarchy
mailaddr ¢« ¢« ¢ ¢ ¢ ¢ ¢ o o o o o o o o s o o o o« o mail addressing description
MAT o o o o o o o o o o o o o o o o s s s o o o o o o Mmacros to typeset manual
ME o o ¢ o o o o © o ¢ o o o o o o o o o o o o o o Macros for formatting papers

viii

term + .« o

8. System Maintemance

L L L] L L] L] L] L] L] ® L] L] L] L] L] . L] L] L] L] text format ting macros

e e o o o o o o o o« conventional names for terminals

intro « « ¢« ¢« ¢« ¢« ¢ « introduction to system maintenance and operation commands

ac L] L] . L

backup « « &

chkhosts .
chown . .
chuid . .
clri o & ©
conn « o« .
crash . .
CTON o o o
dcheck . .

dmesg . . .« o«

d ump L L] . .

efsioctl .
ether . .
fsck « «
getfs .
getty « .
halt . . .
icheck . .
init . . o

L]

lpdo-oco

makekey . o o

mkconfig . .«

mkfs « « &

mklost+found

mknod . .

mkproto « o« o

mkusr . .
mount . .
ncheck . .
newfs . .
pstat . .
TC o o o &
reboot . .
restor . .
rimioctl .
rlogind .
rshd . . .
rwhod . .
savecore .
shutdown .
SYNC o o o
tunefs . .
‘update . .

o

L]

L] . L]

.......-..........loginaccounting
e o o s o o s s s o o user-friendly backup procedure
e o o o o o o« o s o s o maintain network host tables
e o o o o o o o o o o s s ¢ s o o s o change owner
e« o« « « o« change user/group ids on directory trees
....................Cleari-node
e o e o o o o o o o administer extended file system
e« ¢« s o« o« s o« Wwhat happens when the system crashes
........-..-.-......clockdaemon
e « o« o o« o file system directory consistency check
collect system diagnostic messages to form error log
e e o o o s o s o o o o incremental file system dump
e o« o o o o o o o o o o EFS superuser access control
e o o o o o o o o 3Com 3C400 driver control program
file system consistency check and interactive repair
e ¢ o o o o s o o s o o o s o o o list file systems
.............-...Setteminalmode
e o o o s o o o s o s o s s o o o stop the processor
e e o« o o o o file system storage consistency check
e o o o o s o o o o » process control initialization
o o o o s s s ¢ o s o s o s o o line printer daemon
e o o s o s s o s s o s o » generate encryption key
e o o o o s s s o s o » maintain configuration file
e e o o o o o s o » o s o« o construct a file system
e o o s o o o o make a lost+found directory for fsck
e o o s o o s o o o o s o o s o build special file
e« o o o o o s o o construct a prototype file system
e o o« o« o o o o » o« procedure for adding new users
e ¢ o o o o o o o o mount and dismount file system
e o o s s o o o o o » generate names from i-numbers
e o o o o o o o o o o » construct a new file system
e o o o o o s o o s s s ¢ o o o print system files
e o « o o command script for auto-reboot and daemons
e o o o s o s s o o s s o s o reboot or halt system
e o o ¢ s s o o o o Iincremental file system restore
e « ¢« o » send ioctl commands to Rimfire controller
e o o o o o o6 o s s o o o o o o remote login server
e o o o o o o o o o s s s o o » remote shell server
e o o o o o o o o o o o o o o System status server
e « o« o o o save a core dump of the operating system
e o« o o o o close down the system at a specific time
e ¢ o o o » o s o o o o o o o update the super block
e ¢ o o o o o o o o tune up an existing file system
e« o o o o« o o o periodically update the super block

ix

Table of Contents

VOLUME 2

An Introduction to the C Shell
An Introduction to Display Editing with Vi

NROFF/TROFF User’s Manual

INTRODUCTION TO YOLUME 1

This volume gives descriptions of the publicly available features of the UNIX/32vt system, as
extended to provide a virtual memory environment and other enhancements at U. C. Berkeley.
It does not attempt to provide perspective or tutorial information upon the UNIX operating sys-
tem, its facilities, or its implementation. Various documents on those topics are contained in
Volume 2. In particular, for an overview see ‘The UNIX Time-Sharing System’ by Ritchie and
Thompson; for a tutorial see ‘UNIX for Beginners’ by Kernighan, and for an guide to the new
features of this virtual version, see ‘Getting started with Berkeley Software for UNIX on the
vAX’ in volume 2C.

Within the area it surveys, this volume attempts to be timely, complete and concise. Where
the latter two objectives conflict, the obvious is often left unsaid in favor of brevity. It is
intended that each program be described as it is, not as it should be. Inevitably, this means
that various sections will soon be out of date.

The volume is divided into eight sections:

Commands

System calls

Subroutines

Special files

File formats and conventions

Games

Macro packages and language conventions
Maintenance commands and procedures

PR B W=

Commands are programs intended to be invoked directly by the user, in contradistinction to
subroutines, which are intended tq be called by the user’s programs. Commands generally
reside in directory /bin (for binary programs). Some programs also reside in /usr/bin, or in
lusr/uch, to save space in /bin. These directories are searched automatically by the command
interpreters.

System calls are entrjes into the UNIX supervisor. The system call interface is identical to a C
language procedure call; the equivalent C procedures are described in Section 2.

An assortment of subroutines is available; they are described in section 3. The primary
libraries in which they are kept are described in intro(3). The functions are described in terms
of C, but most will work with Fortran as well.

The special files section 4 discusses the characteristics of each system ‘file’ that actually refers
to an I/0 device. The names in this section refer to the DEC device names for the hardware,
instead of the names of the special files themselves.

The file formats and conventions section 5 documents the structure of particular kinds of files;
for example, the form of the output of the loader and assembler is given. Excluded are files
used by only one command, for example the assembler’s intermediate files.

Games have been relegated to section 6 to keep them from contaminating the more staid infor-
mation of section 1.

t UNIX is a t_rédgmark of Bell Laboratories.

Section 7 is a miscellaneous collection of information necessary to writing in various specialized
languages: character codes, macro packages for typesetting, etc.

The maintenance section 8 discusses commands and procedures not intended for use by the
ordinary user. The commands and files described here are almost all kept in the directory /erc.

Each section consists of a number of independent entries of a page or so each. The name of
the entry is in the upper corners of its pages, together with the section number, and sometimes
a letter characteristic of a subcategory, e.g. graphics is 1G, and the math library is 3M. Entries
within each section are alphabetized. The page numbers of each entry start at 1; it is infeasible
to number consecutively the pages of a document like this that is republished in many variant
forms.

All entries are based on a common format, not all of whose subsections will always appear.

The name subsection lists the exact names of the commands and subroutines covered
under the entry and gives a very short description of their purpose.

The synopsis summarizes the use of the program being described. A few conventions are
used, particularly in the Commands subsection:

Boldface words are considered literals, and are typed just as they appear.

Square brackets [] around an argument indicate that the argument is optional.
When an argument is given as ‘name’, it always refers to a file name.

Ellipses ‘... are used to show that the previous argument-prototype may be
repeated.

A final convention is used by the commands themselves. An argument beginning
with a minus sign ‘—’ is often taken to mean some sort of option-specifying argu-
ment even if it appears in a position where a file name could appear. Therefore, it is
unwise to have files whose names begin with ‘—".

The description subsection discusses in detail the subject at hand.
The files subsection gives the names of files which are built into the program.
A see also subsection gives pointers to related information.

A diagnostics subsection discusses the diagnostic indications which may be produced.
Messages which are intended to be self-explanatory are not listed.

The bugs subsection gives known bugs and sometimes deficiencies. Occasionally also the
suggested fix is described.

At the beginning of the volume is a table of contents, organized by section and alphabetically
within each section. There is also a permuted index derived from the table of contents. Within
each index entry, the title of the writeup to which it refers is followed by the appropriate sec-
tion number in parentheses. This fact is important because there is considerable name duplica-
tion among the sections, arising principally from commands which exist only to exercise a par-
ticular system call.

"HOW TO GET STARTED

This section sketches the basic information you need to get started on UNIX how to log in and
log out, how to communicate through your terminal, and how to run a program. See ‘UNIX for
Beginners’ in Volume 2 for a more complete introduction to the system.

Logging in. You must call UNIX from an appropriate terminal. Almost any ASCII terminal
capable of full duplex operation and generating the entire character set can be used. You must
also have a valid user name, which may be obtained, together with necessary telephone
numbers, from the system administration. After a data connection is established, the login pro-
cedure depends on what kind of terminal you are using and local system conventions. The fol-
lowing examples are typical.

300-baud terminals: Such terminals include the GE Terminet 300, and most display terminals
run with popular modems. These terminals generally have a speed switch which should be set
at ‘300’ (or ‘30 for 30 characters per second) and a half/full duplex switch which should be set
at full-duplex. (This switch will often have to be changed since many other systems require
half-duplex). When a connection is established, the system types ‘login:’; you type your user
name, followed by the ‘return’ key. If you have a password, the system asks for it and turns
off the printer on the terminal so the password will not appear. After you have logged in, the
‘return’, ‘new line’, or ‘linefeed’ keys will give exactly the same results.

1200- and 150-baud terminals: If there is a half/full duplex switch, set it at full-duplex. When
you have established a data connection, the system types out a few garbage characters (the
‘login.” message at the wrong speed). Depress the ‘break’ (or ‘interrupt’) key; this is a speed-
independent signal to UNIX that a different speed terminal is in use. The system then will type
‘login:,” this time at another speed. Continue depressing the break key until ‘login:” appears in
clear, then respond with your user name. From the TTY 37 terminal, and any other which has
the ‘newline’ function (combined carriage return and linefeed), terminate each line you type
with the ‘new line’ key, otherwise use the ‘return’ key.

Hard-wired terminals. Hard-wired terminals usually begin at the right speed, up to 9600 baud;
otherwise the preceding instructions apply.

For all these terminals, it is important that you type your name in lower-case if possible; if you
type upper-case letters, UNIX will assume that your terminal cannot generate lower-case letters
and will translate all subsequent upper-case letters to lower case.

The evidence that you have successfully logged in is that a shell program will type a prompt (‘$’
or ‘%’) to you. (The shells are described below under ‘How to run a program.’)

For more information, consult tset(1), and stzy(1), which tell how to adjust terminal behavior,
getty(8), which discusses the login sequence in more detail, and #ry(4), which discusses termi-
nal 1/0.

Logging out. There are three ways to log out:

By typing an end-of-file indication (EOT character, control-d) to the Shell. The Shell will
terminate and the ‘login: ’ message will appear again.

You can log in directly as another user by giving a login(1) command.

If worse comes to worse, you can simply hang up the phone; but beware — some
machines may lack the necessary hardware to detect that the phone has been hung up.
Ask your system administrator if this is a problem on your machine.

How to communicate through your terminal. When you type characters, a gnome deep in the sys-
tem gathers your characters and saves them in a secret place. The characters will not be given
to a program until you type a return (or newline), as described above in Logging in.

UNIX terminal I/0 is full-duplex. It has full read-ahead, which means that you can type at any.
time, even while a program is typing at you. Of course, if you type during output, the printed
output will have the input characters interspersed. However, whatever you type will be saved
up and interpreted in correct sequence. There is a limit to the amount of read-ahead, but it is
generous and not likely to be exceeded unless the system is in trouble. When the read-ahead
limit is exceeded, the system throws away all the saved characters (or beeps, if your prompt was
a %).

The character ‘@’ in typed input kills all the preceding characters in the line, so typing mistakes
can be repaired on a single line. Also, the character ‘#’ erases the last character typed. (Most
users prefer to use a backspace rather than ‘#°, and many prefer control-U instead of ‘@’;
tset(1) or suy(1) can be used to arrange this.) Successive uses of ‘#’ erase characters back to,
but not beyond, the beginning of the line. ‘@’ and ‘#’ can be transmitted to a program by
preceding them with \’. (So, to erase ‘\’, you need two ‘#’s).

The ‘break’ or ‘interrupt’ key causes an interrupt signal, as does the AsCll ‘delete’ (or ‘rubout’)
character, which is not passed to programs. This signal generally causes whatever program you

are running to terminate. It is typically used to stop a long printout that you don’t want. How-
ever, programs can arrange either to ignore this signal altogether, or to be notified when it hap-
pens (instead of being terminated). The editor, for example, catches interrupts and stops what
it is doing, instead of terminating, so that an interrupt can be used to halt an editor printout
without losing the file being edited. Many users change this interrupt character to be “C
(contrel-C) using sty(1).

It is also possible to suspend output temporarily using “S (control-s) and later resume output
with Q. In a newer terminal driver, it is possible to cause output to be thrown away without
interrupting the program by typing "O; see 1y (4).

The quit signal is generated by typing the ascil FS character. (FS appears many places on
different terminals, most commonly as control-\ or control-|.) It not only causes a running pro-
gram to terminate but also generates a file with the core image of the terminated process. Quit
is useful for debugging.

Besides adapting to the speed of the terminal, UNIX tries to be intelligent about whether you
have a terminal with the newline function or whether it must be simulated with carriage-return
and line-feed. In the latter case, all input carriage returns are turned to newline characters (the
standard line delimiter) and both a carriage return and a line feed are echoed to the terminal.
If you get into the wrong mode, the reset(1) command will rescue you.

Tab characters are used freely in UNIX source programs. If your terminal does not have the tab
function, you can arrange to have them turned into spaces during output, and echoed as spaces
during input. The system assumes that tabs are set every eight columns. Again, the rser(1) or
stty(1) command will set or reset this mode. Tset(1) can be used to set the tab stops automati-
cally when necessary.

How to run a program; the shells. When you have successfully logged in, a program called a
shell is listening to your terminal. The shell reads typed-in lines, splits them up into a com-
mand name and arguments, and executes the command. A command is simply an executable
program. The Shell looks in several system directories to find the command. You can also
place commands in your own directory and have the shell find them there. There is nothing
special about system-provided commands except that they are kept in a directory where the
shell can find them.

The command name is always the first word on an input line; it and its arguments are separated
from one another by spaces.

When a program terminates, the shell will ordinarily regain control and type a prompt at you to
indicate that it is ready for another command.

The shells have many other capabilities, which are described in detail in sections sh(1) and
csh(1). If the shell prompts you with ‘$’, then it is an instance of sh(1) the standard Bell-labs
provided shell. If it prompts with ‘%’ then it is an instance of csh(1), a shell written at Berke-
ley. The shells are different for all but the most simple terminal usage. Most users at Berkeley
choose csh(1) because of the history mechanism and the alias feature, which greatly enhance
its power when used interactively. Csh also supports the job-control facilities; see cs#(1) or the
Csh introduction in volume 2C for details.

You can change from one shell to the other by using the chsh (1) command, which takes effect
at your next login.

The current directory. UNIX has a file system arranged in a hierarchy of directories. When the
system administrator gave you a user name, he also created a directory for you (ordinarily with
the same name as your user name). When you log in, any file name you type is by default in
this directory. Since you are the owner of this directory, you have full permission to read,
write, alter, or destroy its contents. Permissions to have your will with other directories and
files will have been granted or denied to you by their owners. As a matter of observed fact,
few UNIX users protect their files from perusal by other users.

To change the current directory (but not the set of permissions you were endowed with at
login) use cd(1).

Path names. To refer to files not in the current directory, you must use a path name. Full
path names begin with ‘/°, the name of the root directory of the whole file system. After the
slash comes the name of each directory containing the next sub-directory (followed by a ‘/°)
until finally the file name is reached. For example, /usr/lem/filex refers to the file filex in the
directory lem; lem is itself a subdirectory of usr; usr springs directly from the root directory.

If your current directory has subdirectories, the path names of files therein begin with the name
of the subdirectory with no prefixed ‘/°.

A path name may be used anywhere a file name is required.

Important commands which modify the contents of files are cp(1), mv(1), and rm(1), which
respectively copy, move (i.e. rename) and remove files. To find out the status of files or direc-
tories, use Is(1). See mkdir(1) for making directories and rmdir (in rm(1)) for destroying
them.

For a fuller discussion of the file system, see ‘The UNIX Time-Sharing System,” by Ken
Thompson and Dennis Ritchie. It may also be useful to glance through section 2 of this
manual, which discusses system calls, even if you don’t intend to deal with the system at that
level.

Writing a program. To enter the text of a source program into a UNIX file, use the editor ex(1)
or its display editing alias vi(1). (The old standard editor ed(1) is also available.) The principal
languages in UNIX are provided by the C compiler cc(1), the Fortran compiler f77(1), the Pas-
cal compiler pc(1), and interpreter pi(1) and px(1), and the Lisp system lisp(1). User contri-
buted software in the latest release of the system supports APL, the Functional Programming
language, and Icon. Refer to ap/(1), fp(1), and icon(1), respectively for more information
about each. After the program text has been entered through the editor and written on a file,
you can give the file to the appropriate language processor as an argument. The output of the
language processor will be left on a file in the current directory named ‘a.out’. (If the output is
precious, use mv to move it to a less exposed name soon.)

When you have finally gone through this entire process without provoking any diagnostics, the
resulting program can be run by giving its name to the shell in response to the shell (‘$* or ‘%’)
prompt.

Your programs can receive arguments from the command line just as system programs do, see
execve(2).

Text processing. Almost all text is entered through the editor ex(1) (often entered via vi(1)).
The commands most often used to write text on a terminal are: cat, pr, more and nroff, all in
section 1.

The cat command simply dumps ASCII text on the terminal, with no processing at all. The pr
command paginates the text, supplies headings, and has a facility for multi-column output.
Nroff'is an elaborate text formatting program. Used naked, it requires careful forethought, but
for ordinary documents it has been tamed; see me(7) and ms(7).

Troff prepares documents for a- Graphics Systems phototypesetter or a Versatec Plotter; it is
very similar to nroff, and often works from exactly the same source text. It was used to pro-
duce this manual.

Script(1) lets you keep a record of your session in a file, which can then be printed, mailed, etc.
It provides the advantages of a hard-copy terminal even when using a display terminal.

. More(1) is useful for preventing the output of a command from zipping off the top of your
screen. It is also well suited to perusing files.

Status inquiries. Various commands exist to provide you with useful information. w(1) prints

a list of users presently logged in, and what they are doing. date(1) prints the current time and
date. Is(1) will list the files in your directory or give summary information about particular

files.

Surprises. Certain commands provide inter-user communication. Even if you do not plan to-
use them, it would be well to learn something about them, because someone else may aim
them at you.

To communicate with another user currently logged in, write(1) is used; mail(1) will leave a
message whose presence will be announced to another user when he next logs in. The write-
ups in the manual also suggest how to respond to the two commands if you are a target.

If you use csh(1) the key "Z (control-Z) will cause jobs to “‘stop’’. If this happens before you
learn about it, you can simply continue by saying ‘‘fg”> (for foreground) to bring the job back.

When you log in, a message-of-the-day may greet you before the first prompt.

CONVERTING FROM THE 6TH EDITION

There follows a catalogue of significant, mostly incompatible, changes that will affect old users
converting from the sixth edition on a PDP-11. No attempt is made to list all new facilities, or
even all minor, but easily spotted changes, just the bare essentials without which it will be
almost impossible to do anything.

Addressing files. Byte addresses in files are now long (32-bit) integers. Accordingly seek has
been replaced by Iseek(2). Every program that contains a seek must be modified. Stat and
Sfstat(2) have been affected similarly, since file lengths are now 32- rather than 24-bit quantities.

Assembly language. This language is dead. Necromancy will be severely punnished.
Stty and grty. These system calls have been extensively altered, see ioct/(2) and rty(4).

C language, lint. The syntax for initialization requires an equal sign = before an initializer,
and brackets { } around compound initial values; arrays and structures are now initialized
honestly. Assignment operators such as ==+ and = — are now written in the reverse order:
+=_ —=_ This removes the possibility of ambiguity in constructs such as x=—2, y="*p, and
a==/*b. You will also certainly want to learn about

long integers

type definitions

casts (for type conversion)

unions (for more honest storage sharing)

#include <filename> (which searches in standard places)

The program lint(1) checks for obsolete syntax and does strong type checking of C programs,
singly or in groups that are expected to be loaded together. It is indispensable for conversion
work. '

Fortran. The old fc is replaced by f77, a true compiler for Fortran 77, compatible with C.
There are substantial changes in the language; see ‘A Portable Fortran 77 Compiler’ in Volume
2.

Stream editor. The program sed(1) is adapted to massive, repetitive editing jobs of the sort
encountered in converting to the new system. It is well worth learning.

Standard I/0. The old fopen, getc, putc complex and the old —Ip package are both dead, and
even getchar has changed. All have been replaced by the clean, highly efficient, stdio package,
intro(3S). The first things to know are that getchar(3) returns the integer EOF (—1) (which is
not a possible byte value) on end of file, that 518-byte buffers are out, and that there is a
defined FILE data type.

Make. The program make(1) handles the recompilation and loading of software in an orderly
way from a ‘makefile’ recipe given for each piece of software. It remakes only as much as the
modification dates of the input files show is necessary. The makefiles will guide you in building
your new system.

Shell, chdir. F. L. Bauer once said Algol 68 is the Everest that must be climbed by every com-
puter scientist because it is there. So it is with the shell for UNIX users. Everything beyond
simple command invocation from a terminal is different. Even chdir is now spelled cd. If you
wish to use sh (as opposed to csh) then you will want to study sh(1) long and hard.

C shell. Csh(1), developed at Berkeley, has features comparible to sh. It includes a history
mechanism that saves you from retyping all or part of previous commands, as well as an
efficient aliasing (macro) mechanism. The job control facilities of the system, which make the
system much more pleasant to use, are currently available only with csh. See csh(1) for a
description. These features make csh pleasant to use interactively. Csh programs have a syn-
tax reminiscent of C, while s# command programs have a syntax reminiscent of ALGOL-68.

Debugging. Sdb is a far more capable replacement for the debugger cdb, and debugs C and
Fortran at the source level. For machine language debugging, adb replaces db. The first-time
user should be especially careful about distinguishing / and ? in adb commands, and watching
to make sure that the x whose value he asked for is the real x, and not just some absolute loca-
tion equal to the stack offset of some automatic x. You can always use the ‘true’ name, _x, to
pin down a C external variable.

Dsw. This little-known, but indispensable facility has been taken over by rm —ri.

Boot procedures. Needless to say, these are all different. See section 8 of this volume, and the
other documentation you should have received with your tape.

CONVERTING FROM THE DECEMBER, 1979 BERKELEY DISTRIBUTION

There have been a number of significant changes and improvements in the system. This
list just gives the bare essentials:

C language changes. The C compiler now accepts and checks essentially arbitrary length
identifiers and preprocessor names. There is a new type available in type casts: void which
signifies that a value is to be ignored. It is useful in keeping lint happy about values which are
not used (especially values returned from procedures). Finally, the language has been changed
so that field names need not be unique to structures; on the other hand, the compiler insists
that you be more honest about types involved in pointer constructs or it will warn you.

Object file format. The object file format has been changed to include a string table, so that
language compilers may have names longer than 8 characters in their resulting a.our files. Old
.o files must be recreated. A.out files will still run on both this and the December 1979 version
of the system; only the symbol tables are incompatible.

Archive format and table of contents. The archive format has been changed to one which is port-
able between the VAX and other machines (e.g. the PDP-11). Old vaX archives should be
converted with arcv(8); loader archives should just be recreated since the object files are also
obsolete. Loader archives should have table-of-contents added by ran/ib(1); if they dont the
loader will gripe when they are used.

New 1ty driver, job control facilities and csh. Hand in hand are new job control facilities, a new
tty driver and a new version of the C shell which supports and uses all of this. See rry(4) and
csh(1) for a quick introduction.

Pascal compiler. There is a true Pascal compiler, pc(1) which allows separate compilation as
well as mixing in of FORTRAN and C code.

Error analyzer. There is an error analyzer program error(1), which takes a set of error message
and merges them back into the source files at the point of error. It can be used interactively to
avoid inserting errors which are uninteresting. This program eliminates once and for all making
lists of errors on small scraps of paper.

Mail forwarding. The system now provides mail forwarding and distribution facilities. Group
and aliases are defined in the file /usr/liblaliases see aliases(5). If you change this file you will
have to rerun newaliases(1). For any particular system a table in the source of the delivermail
postman program may have to be changed so that it knows about the gateways on the local

machine.

System boorstrap procedures. These are totally changed; the system performs automatic reboots
and preens the disks automatically at reboot. You should reread the appropriate pages in sec-
tion 8 if you deal with system reboots.

CONVERTING FROM THE JUNE, 1981 BERKELEY DISTRIBUTION

Many many changes have been made. This list indicates those which are most visible to
users.

Directory format. Directory entries are no longer fixed length. This forces user programs
which read directories to be modified to use the directory(3) package.

Signals. A new signal package has replaced the previous signal mechanism as well as the ‘‘jobs
library”’. When using the compatible signa/(3C) interface routine, the two most important
changes are: signal handlers are not reset to SIG_DFL when a process receives a signal, and
while a signal handler is processing a signal, that signal is blocked until the handler returns.
This has implications, in particular, for programs which process the suspend character typed at
the terminal. Refer to sigvec, sigblock, sigpause, sigstack, and sigsetmask (2) for information
about the new signal facilities.

File and path names. File names may now be up to 255 characters in length. Path names are
restricted to be at most 1024 characters. These two constants are provides as MAXNAMLEN
and MAXPATHLEN in <sys/dir.h> and <sys/param.h>, respectively.

System time. System time is provided in microsecond precision with 10 millisecond accuracy.
The new system call gettimeofday(2) supplants the old time(3) call which is now a library rou-
tine. The major impact of this change is that programs are now written in a fashion which is
independent of the line clock frequency.

Groups. A user may now be in many groups simultaneously. This has obviated the need for
the newgrp command. See gergroups(2) for more information.

Stat and fstat return value. The structure returned by the stat and fstar system calls is now
larger. This is due to inode numbers growing to 32-bits, time stamps expanding to 64-bits and
other information being included in the return value. Consult stat(2) for more information.

Mail forwarding. The system now provides general internetwork mail forwarding and distribu-
tion facilities. The sendmail(8) program replaces the old delivermail facility.

Debuggers. The previous C source language debugger, sdb, has been replaced by a new one,
dbx(1). Adb(1) has been extended to simplify debugging of the operating system.

Networking support. Many new user programs provide access to the networking facilities. The
rlogin(1C) and rsh(1C) programs are intended for communicating between UNIX systems. The
telnet(1C) and fip(1C) programs support the DARPA Internet standard protocols. The
netstat(1) program is useful in watching network activity.

INTRO (1) UNIX Programmer’s Manual INTRO (1)

NAME
intro — introduction to commands

DESCRIPTION

This section describes publicly accessible commands in alphabetic order. Certain distinctions of
purpose are made in the headings:

1 Commands of general utility.
(1) Commands for communication with other systems.
(1G) Commands used primarily for graphics and computer-aided design.

N.B.: Commands related to system maintenance used to appear in section 1 manual pages and
were distinguished by (1M) at the top of the page. These manual pages now appear in section
8.

SEE ALSO
Section (6) for computer games.

How to get started, in the Introduction.

DIAGNOSTICS

Upon termination each command returns two bytes of status, one supplied by the system giving
the cause for termination, and (in the case of ‘normal’ termination) one supplied by the pro-
gram, see wait and exit(2). The former byte is 0 for normal termination, the latter is cus-
tomarily 0 for successful execution, nonzero to indicate troubles such as erroneous parameters,
bad or inaccessible data, or other inability to cope with the task at hand. It is called variously
‘exit code’, ‘exit status’ or ‘return code’, and is described only where special conventions are
involved.

7th Edition 18 January 1983 1

ADB (1) UNIX Programmer’s Manual ADB(1)

NAME

adb — debugger

SYNOPSIS ! :

adb [—wl [=k] [-Idir] [objfil [corfil]]

DESCRIPTION

Adb is a general purpose debugging program. It may be used to examine files and to provide a
controlled environment for the execution of UNIX programs.

Objfil is normally an executable program file, preferably containing a symbol table; if not then
the symbolic features of adb cannot be used although the file can still be examined. The
default for objfil is a.out. Corfil is assumed to be a core image file produced after executing
objfit, the default for corfilis core.

Requests to adb are read from the standard input and responses are to the standard output. If
the —w flag is present then both objfiland corfil are created if necessary and opened for reading
and writing so that files can be modified using adb.

The —k option makes adb do UNIX kernel memory mapping; it should be used when core is a
UNIX crash dump or /dev/imem

The -1 option specifies a directory where files to be read with $< or $< < (see below) will be
sought; the default is /usr/lib/adb.

Adbignores QUIT, INTERRUPT causes return to the next adbcommand.
In general requests to adbare of the form
[address] [, count] [command] [;]

If address is present then dor is set to address. Initially dotis set to 0. For most commands
count specifies how many times the command will be executed. The default countis 1. Address
and count are expressions.

The interpretation of an address depends on the context it is used in. If a subprocess is being
debugged then addresses are interpreted in the usual way in the address space of the subpro-
cess. If the operating system is being debugged either post-mortem or using the special file
/dev/imem to interactive examine and/or modify memory the maps are set to map the kernel vir-
tual addresses which start at 0x80000000 (on the VAX). ADDRESSES.

EXPRESSIONS
. The value of dot.
+ The value of dotincremented by the current increment.

The value of dotdecremented by the current increment.
" The last address typed.

integer A number. The prefixes 0o and 00 (‘‘zero oh’’) force interpretation in octal radix; the
prefixes Ot and OT force interpretation in decimal radix; the prefixes Ox and 0X force
interpretation in hexadecimal radix. Thus 0020 = 0t16 = 0x10 = sixteen. If no
prefix appears, then the default radix is used; see the $d command. The default radix is
initially hexadecimal. The hexadecimal digits are 0123456789abcdefABCDEF with the
obvious values. Note that a hexadecimal number whose most significant digit would
otherwise be an alphabetic character must have a Ox (or 0X) prefix (or a leading zero if
the default radix is hexadecimal).

integer. fraction
A 32 bit floating point number.

"ccce” The ASCII value of up to 4 characters. \ may be used to escape a .

4th Berkeley Distribution 18 July 1983 1

ADB (1) UNIX Programmer’s Manual ADB(1)

< name
The value of name, which is either a variable name or a register name. Adb maintains a
number of variables (see VARIABLES) named by single letters or digits. If name is a
register name then the value of the register is obtained from the system header in
corfil. The register names are those printed by the $r command.

symbol A symbolis a sequence of upper or lower case letters, underscores or digits, not starting
with a digit. The backslash character \ may be used to escape other characters. The
value of the symbol is taken from the symbol table in objfil An initial _ will be
prepended to symbol if needed.

_ symbol
In C, the ‘true name’ of an external symbol begins with _. It may be necessary to utter
this name to distinguish it from internal or hidden variables of a program.

routine.name
The address of the variable name in the specified C routine. Both routine and name are
symbols. 1f name is omitted the value is the address of the most recently activated C
stack frame corresponding to routine. (This form is currently broken on the VAX; local
variables can be examined only with dbx(1).)

(exp) The value of the expression exp.

Monadic operators

*exp The contents of the location addressed by expin corfil.
@exp The contents of the location addressed by expin objfil.
—exp Integer negation.

~exp Bitwise complement.

#exp Logical negation.

Dyadic operators are left associative and are less binding than monadic operators.
el + e2 Integer addition.

el— e2 Integer subtraction.

el=e2 Integer multiplication.

el%e2 Integer division.

el&e2 Bitwise conjunction.

elle2 Bitwise disjunction.

el#e2 Elrounded up to the next multiple of e2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of modifiers. The following
verbs are available. (The commands ‘?" and ‘/° may be followed by ‘*’; see ADDRESSES for
further details.)

f Locations starting at address in objfil are printed according to the format f£ dotis incre-
mented by the sum of the increments for each format letter (q.v.).

f Locations starting at address in corfil are printed according to the format fand dot is
incremented as for ‘7.

=f The value of address itself is printed in the styles indicated by the format £ (For i for-
mat *?’ is printed for the parts of the instruction that reference subsequent words.)

4th Berkeley Distribution 18 July 1983 : 2

ADB (1) UNIX Programmer’s Manual ADB (1)

A formatconsists of one or more characters that specify a style of printing. Each format charac-
ter may be preceded by a decimal integer that is a repeat count for the format character. While
stepping through a format dotis incremented by the amount given for each format letter. If no
format is given then the last format is used. The format letters available are as follows.

Print 2 bytes in octal. All octal numbers output by adb are preceded by 0.

Print 4 bytes in octal.

Print in signed octal.

Print long signed octal.

Print in decimal.

Print long decimal.

Print 2 bytes in hexadecimal.

Print 4 bytes in hexadecimal.

Print as an unsigned decimal number.

Print long unsigned decimal.

Print the 32 bit value as a floating point number.

Print double floating point.

Print the addressed byte in octal.

Print the addressed character.

Print the addressed character using the standard escape convention where con-

trol characters are printed as "X and the delete character is printed as 2.

n Print the addressed characters until a zero character is reached.

Print a string using the ~X escape convention (see C above). nis the length of

the string including its zero terminator. '

4 Print 4 bytes in date format (see ctime(3)).

n Print as machine instructions. » is the number of bytes occupied by the
instruction. This style of printing causes variables 1 and 2 to be set to the
offset parts of the source and destination respectively.

a 0 Print the value of dorin symbolic form. Symbols are checked to ensure that

they have an appropriate type as indicated below.

-}
[S

AC T Hm e M Ta0L O
— == O R PANAEANPENNAEANDS

- e
=

local or global data symbol
local or global text symbol
local or global absolute symbol

9 S~

I

p 4 Print the addressed value in symbolic form using the same rules for symbol
lookup as a.

t 0 When preceded by an integer tabs to the next appropriate tab stop. For exam-
ple, 8t moves to the next 8-space tab stop.

r 0 Print a space.

n 0 Print a newline.

"..." 0 Print the enclosed string.

Dot is decremented by the current increment. Nothing is printed.
Dotis incremented by 1. Nothing is printed.
Dotis decremented by 1. Nothing is printed.

I+

newline
Repeat the previous command with a countof 1.

[?/11 value mask
Words starting at dor are masked with mask and compared with value until a match is
found. If L is used then the match is for 4 bytes at a time instead of 2. If no match is
found then dotis unchanged; otherwise dotis set to the matched location. If mask is
omitted then —1 is used.

{2/1w value ...

4th Berkeley Distribution 18 July 1983 3

ADB (1)

UNIX Programmer’s Manual ADB (1)

Write the 2-byte value into the addressed location. If the command is W, write 4 bytes.
Odd addresses are not allowed when writing to the subprocess address space.

[?/1m b1 el f112/]
New values for (b1, el, fI) are recorded. If less than three expressions are given then
the remaining map parameters are left unchanged. If the *?” or */" is followed by ‘+
then the second segment (b2, e2, f2) of the mapping is changed. If the list is ter-
minated by ‘?’ or ‘/° then the file (objfil or corfil respectively) is used for subsequent
requests. (So that, for example, ‘/m?’ will cause */° to refer to objfil.)

> name Dot is assigned to the variable or register named.
! A shell (/bin/sh) is called to read the rest of the line following *!".

$ modifier

Miscellaneous commands. The available modijfiers are:

<sf

<<f

>f

o -

'=§<.=ewim

:modifier

Read commands from the file £ If this command is executed in a file, further
commands in the file are not seen. If fis omitted, the current input stream is
terminated. If a countis given, and is zero, the command will be ignored. The
value of the count will be placed in variable 9 before the first command in fis
executed.

Similar to < except it can be used in a file of commands without causing the
file to be closed. Variable 9 is saved during the execution of this command.
and restored when it completes. There is a (small) finite limit to the number
of << files that can be open at once.

Append output to the file £, which is created if it does not exist. If fis omitted,
output is returned to the terminal.

Print process id, the signal which caused stoppage or termination, as well as the
registers as $r. This is the default if modifier is omitted.

Print the general registers and the instruction addressed by pc. Doris set to pc.
Print all breakpoints and their associated counts and commands.

C stack backtrace. If address is given then it is taken as the address of the
current frame instead of the contents of the frame—pointer register. If C is
used then the names and (32 bit) values of all automatic and static variables are
printed for each active function. (broken on the VAX). If countis given then

-only the first countframes are printed.

Set the default radix to address and report the new value. Note that address is
interpreted in the (old) current radix. Thus *“108d™ never changes the default
radix. To make decimal the default radix, use ‘‘0t108d"’.

The names and values of external variables are printed.

Set the page width for output to address (default 80).

Set the limit for symbol matches to address (default 255).

All integers input are regarded as octal.

Exit from adb.

Print all non zero variables in octal.

Print the address map.

(Kernel debugging) Change the current kernel memory mapping to map the
designated user structure to the address given by the symbol _w. The address
argument is the address of the user’s user page table entries (on the VAX).

Manage a subprocess. Available modifiers are:

bc

Set breakpoint at address. The breakpoint is executed count—1 times before
causing a stop. Each time the breakpoint is encountered the command cis exe-
cuted. If this command is omitted or sets dor to zero then the breakpoint

4th Berkeley Distribution ' 18 July 1983 4

ADB (1) UNIX Programmer’s Manual ADB (1)

causes a stop.
d Delete breakpoint at address.

r Run objfil as a subprocess. If address is given explicitly then the program is
entered at this point; otherwise the program is entered at its standard entry
point. count specifies how many breakpoints are to be ignored before stopping.
Arguments to the subprocess may be supplied on the same line as the com-
mand. An argument starting with < or > causes the standard input or output
to be established for the command.

cs The subprocess is continued with signal s, see sigvec(2). If address is given
then the subprocess is continued at this address. If no signal is specified then
the signal that caused the subprocess to stop is sent. Breakpoint skipping is the
same as for r.

Ss As for ¢ except that the subprocess is single stepped counttimes. If there is no
current subprocess then objfil is run as a subprocess as for r. In this case no
signal can be sent; the remainder of the line is treated as arguments to the sub-
process.

k The current subprocess, if any, is terminated.

VARIABLES

Adb provides a number of variables. Named variables are set initially by adb but are not used
subsequently. Numbered variables are reserved for communication as follows.

0 The last value printed.

1 The last offset part of an instruction source.

2 The previous value of variable 1.

9 The count on the last $< or $< < command.

On entry the following are set from the system header in the corfil. If corfil does not appear to
be a core file then these values are set from objfil.

b The base address of the data segment.
d The data segment size.
e The entry point.
m The ‘magic’ number (0407, 0410 or 0413).
S The stack segment size.
t The text segment size.
ADDRESSES

FILES

The address in a file associated with a written address is determined by a mapping associated
with that file. Each mapping is represented by two triples (b1, el, f1) and (b2, €2, f2) and the
file address corresponding to a written address is calculated as follows.

bl< address< el => file address= address+ fl —bl, otherwise,
b2< address< e2 => file address= address+ f2—b2,

otherwise, the requested addressis not legal. In some cases (e.g. for programs with separated |
and D space) the two segments for a file may overlap. If a ? or / is followed by an * then only
the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is
not of the kind expected then, for that file, b/ is set to 0, e/ is set to the maxinum file size and
f11is set to 0; in this way the whole file can be examined with no address translation.

a.out
core

4th Berkeley Distribution 18 July 1983 5

ADB (1) UNIX Programmer’s Manual ADB(1)

SEE ALSO
cc(1), dbx (1), ptrace(2), a.out(5), core(5)

DIAGNOSTICS
*Adb’ when there is no current command or format. Comments about inaccessible files, syntax
errors, abnormal termination of commands, etc. Exit status is 0, unless last command failed or
returned nonzero status.

BUGS
Since no shell is invoked to interpret the arguments of the :r command, the customary wild-
card and variable expansions cannot occur.

4th Berkeley Distribution 18 July 1983 6

ADMIN(1) ADMIN(1)

NAME
admin — create and administer SCCS files

SYNOPSIS
admin [—n] [—i[name]] [—rrel] [—t[{name]] [—fflag[flag-val]]
[[—dtiia[g[ﬂa]g-glal]] [—alogin] [—elogin] [—m[mrlist]] [—y[comment]]
—h] [—z] files

DESCRIPTION

Admin is used to create new SCCS files and change parameters of existing
ones. Arguments to admin, which may appear in any order, consist of
keyletter arguments, which begin with —, and named files (note that SCCS
file names must begin with the characters s.). If a named file doesn’t exist,
it is created, and its parameters are initialized according to the specified
keyletter arguments. Parameters not initialized by a keyletter argument are
assigned a default value. If a named file does exist, parameters correspon-
ding to specified keyletter arguments are changed, and other parameters are
left as is.

If a directory is named, admin behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of — is given, the standard input is read; each line of
the standard input is taken to be the name of an SCCS file to be processed.
Again, non-SCCS files and unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only
one named file is to be processed since the effects of the arguments apply
independently to each named file.

-n This keyletter indicates that a new SCCS file is to be
created.
—i[name) The name of a file from which the text for a new

SCCS file is to be taken. The text constitutes the first
delta of the file (see —r keyletter for delta numbering
scheme). If the i keyletter is used, but the file name
is omitted, the text is obtained by reading the stan-
dard input until an end-of-file is encountered. If this
keyletter is omitted, then the SCCS file is created
empty. Only one SCCS file may be created by an
admin command on which the i keyletter is supplied.
Using a single admin to create two or more SCCS files
require that they be created empty (no —i keyletter).
Note that the —i keyletter implies the —n keyletter.

—rrel The release into which the initial delta is inserted.
This keyletter may be used only if the —i keyletter is
also used. If the —r keyletter is not used, the initial
delta is inserted into release 1. The level of the ini-
tial delta is always 1 (by default initial deltas are
named 1.1).

—t[name) The name of a file from which descriptive text for the
SCCS file is to be taken. If the —t keyletter is used
and admin is creating a new SCCS file (the —n and/or
—i keyletters also used), the descriptive text file
name must also be supplied. In the case of existing
SCCsS files: (1) a —t keyletter without a file name
causes removal of descriptive text (if any) currently
in the SCCS file, and (2) a —t keyletter with a file

-1-

ADMIN(1)

—fflag

cceil

ffloor

dsip

Vist

qrext

mmod

ADMIN(1)

name causes text (if any) in the named file to replace
the descriptive text (if any) currently in the SCCS file.

This keyletter specifies a flag, and, possibly, a value
for the flag, to be placed in the SCCS file. Several f
keyletters may be supplied on a single admin com-
mand line. The allowable flags and their values are:

Allows use of the —b keyletter on a ger(1) command
to create branch deltas.

The highest release (i.e., ‘‘ceiling’”), a number less
than or equal to 9999, which may be retrieved by a
get(1) command for editing. The default value for
an unspecified ¢ flag is 9999.

The lowest release (i.e., ““floor’’), a number greater
than O but less than 9999, which may be retrieved by
a get(1) command for editing. The default value for
an unspecified f flag is 1.

The default delta number (SID) to be used by a
get(1) command.

Causes the "No id keywords (ge6)" message issued by
get(1) or delta(l) to be treated as a fatal error. In
the absence of this flag, the message is only a war-
ning. The message is issued if no SCCS identification
keywords (see get(1)) are found in the text retrieved
or stored in the SCCS file.

Allows concurrent get(1) commands for editing on
the same SID of an SCCS file. This allows multiple
concurrent updates to the same version of the SCCS
file.

A list of releases to which deltas can no longer be
made (get —e against one of these ‘‘locked’’ releases
fails). The listz has the following syntax:

<list> ::= <range> | <list> , <range>
<range> ::= RELEASE NUMBER | a

The character a in the /list is equivalent to specifying
all releases for the named SCCS file.

Causes delta(1) to create a “‘null’’ deita in each of
those releases (if any) being skipped when a delta is
made in a new release (e.g., in making delta 5.1 after
delta 2.7, releases 3 and 4 are skipped). These null
deltas serve as ‘‘anchor points’ so that branch deltas
may later be created from them. The absence of this
flag causes skipped releases to be non-existent in the
SCCS file preventing branch deltas from being created
from them in the future.

User definable text substituted for all occurrences of
the %Q% keyword in SCCS file text retrieved by
get(1).

Module name of the SCCS file substituted for all
occurrences of the %M% keyword in SCCS file text
retrieved by get(1). If the m flag is not specified, the
value assigned is the name of the SCCS file with the

-2-

ADMIN(1)

tiype

vlpgm]

—dflag

Vist

—alogin

—elogin

—y[comment]

— m[mrlist]

ADMIN(1)

leading s. removed.

Type of module in the SCCS file substituted for all
occurrences of %Y% keyword in SCCS file text
retrieved by ger(1).

Causes delta(1) to prompt for Modification Request
(MR) numbers as the reason for creating a delta.
The optional value specifies the name of an MR num-
ber validity checking program (see delta(1)). (If this
flag is set when creating an SCCS file, the m keyletter
must also be used even if its value is nulil).

Causes removal (deletion) of the specified flag from
an SCCS file. The —d keyletter may be specified only
when processing existing SCCS files. Several —d
keyletters may be supplied on a single admin com-
mand. See the —f keyletter for allowable flag names.

A list of releases to be ‘‘unlocked”. See the —f
keyletter for a description of the | flag and the syntax
of a list.

A login name, or numerical UNIX group ID, to be
added to the list of users which may make deltas
(changes) to the SCCS file. A group ID is equivalent
to specifying all Jogin names common to that group
ID. Several a keyletters may be used on a single
admin command line. As many Jogins, or numerical
group IDs, as desired may be on the list simul-
taneously. If the list of users is empty, then anyone
may add deltas.

A login name, or numerical group ID, to be erased
from the list of users allowed to make deltas
(changes) to the SCCS file. Specifying a group ID is
equivalent to specifying all login names common to
that group ID. Several e keyletters may be used on a
single admin command line.

The comment text is inserted into the SCCS file as a
comment for the initial delta in a manner identical to
that of delta(1). Omission of the —y keyletter results
in a default comment line being inserted in the form:

date and time created YY/MM /DD HH:MMSS by login

The —y keyletter is valid only if the —i and/or —n
keyletters are specified (i.e., a new SCCS file is being
created).

The list of Modification Requests (MR) numbers is
inserted into the SCCS file as the reason for creating
the initial delta in a manner identical to delta(1).
The v flag must be set and the MR numbers are vali-
dated if the v flag has a value (the name of an MR
number validation program). Diagnostics will occur
if the v flag is not set or MR validation fails.

Causes admin to check the structure of the SCCS file
(see scesfile(S)), and to compare a newly computed
check-sum (the sum of all the characters in the SCCS
file except those in the first line) with the check-sum

-3.

ADMIN(1) ADMIN(l‘)

that is stored in the first line of the SCCS file.
Appropriate error diagnostics are produced.

This keyletter inhibits writing on the file, so that it
nullifies the effect of any other keyletters supplied,
and is, therefore, only meaningful when processing
existing files. '

-z The SCCS file check-sum is.recomputed and stored in
the first line of the SCCS file (see —h, above).

Note that use of this keyletter on a truly corrupted
file may prevent future detection of the corruption.

FILES

The last component of all SCCS file names must be of the form s.file-name.
New SCCS files are given mode 444 (see chmod(1)). Write permission in
the pertinent directory is, of course, required to create a file. All writing
done by admin is to a temporary x-file, called x.file-name, (see get(1)),
created with mode 444 if the admin command is creating a new SCCS file,
or with the same mode as the SCCS file if it exists. After successful execu-
tion of admin, the SCCS file is removed (if it exists), and the x-file is
renamed with the name of the SCCS file. This ensures that changes are
made to the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and
that SCCS files themselves be mode 444. The mode of the directories
allows only the owner to modify SCCS files contained in the directories.
The mode of the SCCS files prevents any modification at all except by SCCS
commands.

If it should be necessary to patch an SCCS file for any reason, the mode
may be changed to 644 by the owner allowing use of ed(1). Care must be
taken! The edited file should always be processed by an admin —h to check
for corruption followed by an admin —z to generate a proper check-sum.
Another admin —h is recommended to ensure the SCCS file is valid.

Admin also makes use of a transient lock file (called z.file-name), which is
used to prevent simultaneous updates to the SCCS file by different users.
See get(1) for further information.
SEE ALSO
delta(1), ed(1), get(1), help(1), prs(1), what(1), sccsfile(5).
Source Code Control System User’s Guide by L. E. Bonanni and C. A. Salemi.
DIAGNOSTICS
Use help(1) for explanations.

AR(1) . UNIX Programmer’s Manual AR(1)

NAME

ar — archive and library maintainer
SYNOPSIS

ar key [posname | afile name ...
DESCRIPTION

Ar maintains groups of files combined into a single archive file. Its main use is to create and
update library files as used by the loader. It can be used, though, for any similar purpose.

Key is one character from the set deqtpmx, optionally concatenated with one or more of vuaib-
clo. Afile is the archive file. The names are constituent files in the archive file. The meanings
of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u is used with r,

‘ then only those files with ‘last-modified’ dates later than the archive files are replaced.

If an optional positioning character from the set abi is used, then the posname argument

must be present and specifies that new files are to be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive file. Optional positioning
characters are invalid. The command does not check whether the added members are
already in the archive. Useful only to avoid quadratic behavior when creating a large
archive piece-by-piece.

t Print a table of contents of the archive file. If no names are given, all files in the
archive are tabled. If names are given, only those files are tabled.

P Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning character is present,
then the posname argument must be present and, as in r, specifies where the files are to
be moved.

x Extract the named files. If no names are given, all files in the archive are extracted. In
neither case does x alter the archive file. Normally the ‘last-modified’ date of each
extracted file is the date when it is extracted. However, if o is used, the ‘last-modified’
date is reset to the date recorded in the archive.

v Verbose. Under the verbose option, ar gives a file-by-file description of the making of
a new archive file from the old archive and the constituent files. When used with t, it
gives a long listing of all information about the files. When used with p, it precedes
each file with a name.

c Create. Normally ar will create afile when it needs to. The create option suppresses
the normal message that is produced when afile is created.

1 Local. Normally ar places its temporary files in the directory /tmp. This option causes
them to be placed in the local directory.

FILES

/tmp /v* temporaries
SEE ALSO

lorder(1), 1d(1), ar(5)
BUGS

If the same file is mentioned twice in an argument list, it may be put in the archive twice.

7th Edition 24 February 1979 1

P

AR(1) UNIX Programmer’s Manual AR(1)

The ‘last-modified’ date of a file will not be altered by the o option if the user is not the owner
of the extracted file, or the super-user.

7th Edition 24 February 1979 2

AS (1) UNIX Programmer’s Manual AS(1)

NAME
as — VAX-11 assembler
SYNOPSIS
as[-d124] [-L][-W] [-=V]I[-=J]1[-R][—tdirectory } [—o objfile] [name ...]
DESCRIPTION
As assembles the named files, or the standard input if no file name is specified. The available
flags are:

-d Specifies the number of bytes to be assembled for offsets which involve forward or
external references, and which have sizes unspecified in the assembly language. The
default is —d4.

—~L Save defined labels beginning with a ‘L’, which are normally discarded to save space in
the resultant symbol table. The compilers generate such temporary labels.

-V Use virtual memory for some intermediate storage, rather than a temporary file.
-—W Do not complain about errors.

-J Use long branches to resolve jumps when byte-displacement branches are insufficient.
This must be used when a compiler-generated assembly contains branches of more than
32k bytes.

-R Make initialized data segments read-only, by concatenating them to the text segments.
This obviates the need to run editor scripts on assembly code to make initialized data
read-only and shared.

-t Specifies a directory to receive the temporary file, other than the default /tmp.
All undefined symbols in the assembly are treated as global.
The output of the assembly is left on the file objfile; if that is omitted, a.outis used.

FILES
/tmp/as* default temporary files
a.out default resultant object file
SEE ALSO

1d(1), nm(1), adb(1), dbx (1), a.out(5)
Auxiliary documentation Assembler Reference Manual.

AUTHORS
John F. Reiser
Robert R. Henry

BUGS
—J should be eliminated; the assembler should automatically choose among byte, word and
long branches.

4th Berkeley Distribution July 1, 1983 1

AT (1) UNIX Programmer’s Manual AT (1)

NAME
at — execute commands at a later time

SYNOPSIS
at time [day] [file]

DESCRIPTION
At squirrels away a copy of the named file (standard input default) to be used as input to sh(1)
(or ¢sh(1) if you normally use it) at a specified later time. A cd command to the current direc-
tory is inserted at the beginning, followed by assignments to all environment variables (except-
ing the variable TERM, which is useless in this context.) When the script is run, it uses the
user and group ID of the creator of the copy file.

The time is 1 to 4 digits, with an optional following ‘A’, ‘P’, ‘N’ or ‘M’ for AM, PM, noon or
midnight. One and two digit numbers are taken to be hours, three and four digits to be hours
and minutes. If no letters follow the digits, a 24 hour clock time is understood.

The optional day is either (1) a month name followed by a day number, or (2) a day of the
week; if the word ‘week’ follows invocation is moved seven days further off. Names of months
and days may be recognizably truncated. Examples of legitimate commands are

at 8am jan 24
at 1530 fr week

At programs are executed by periodic execution of the command /usr/lib/atrun from cron(8).
The granularity of ar depends upon how often atrun is executed.

Standard output or error output is lost unless redirected.

FILES
/usr/lib/atrun executor (run by cron(8)).

in /usr/spool/at:

yy.ddd.hhhh.=« activity for year yy, day dd, hour hhhh.
lasttimedone last hhhh
past activities in progress
SEE ALSO
calendar(1), pwd(1), sleep(1), cron(8)
DIAGNOSTICS

Complains about various syntax errors and times out of range.

BUGS
Due to the granularity of the execution of fusr/lib/atrun, there may be bugs in scheduling things
almost exactly 24 hours into the future.

4th Berkeley Distribution 18 January 1983 1

AWK (1) UNIX Programmer’s Manual AWK (1)

NAME

awk — pattern scanning and processing language

SYNOPSIS

awk [=Fc] [prog] [file] ...

DESCRIPTION

7th Edition 18 January 1983

Awk scans each input file for lines that match any of a set of patterns specified in prog. With
each pattern in prog there can be an associated action that will be performed when a line of a
file matches the pattern. The set of patterns may appear literally as prog, or in a file specified as
—f file.

Files are read in order; if there are no files, the standard input is read. The file name ‘=’
means the standard input. Each line is matched against the pattern portion of every pattern-
action statement; the associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by
using FS, vide infra.) The fields are denoted $1, $2, ... ; $0 refers to the entire line.

A pattern-action statement has the form
pattern { action }
A missing { action } means print the line; a missing pattern always matches.
An action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]

while (conditional) statement

for (expression ; conditional ; expression) statement
break

continue

{ [statement] ... }

variable = expression

print [expression-list] [>expression]

printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, newlines or right braces. An empty expression-list
stands for the whole line. Expressions take on string or numeric values as appropriate, and are
built using the operators +, —, =, /, %, and concatenation (indicated by a blank). The C
operators ++, ——, +=, —=_»=_/=_ and %= are also available in expressions. Variables
may be scalars, array elements (denoted x[i]) or fields. Variables are initialized to the null
string. Array subscripts may be any string, not necessarily numeric; this allows for a form of

"

associative memory. String constants are quoted "...".

The print statement prints its arguments on the standard output (or on a file if > file is present),
separated by the current output field separator, and terminated by the output record separator.
The printfstatement formats its expression list according to the format (see printf(3S)).

The built-in function length returns the length of its argument taken as a string, or of the whole
line if no argument. There are also built-in functions exp, log, sqrt, and int. The last truncates
its argument to an integer. substr(s, m, n) returns the n-character substring of s that begins at
position m. The function sprintf(fmi, expr, expr, ...) formats the expressions according to the
printf(3S) format given by finr and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, Il, &&, and parentheses) of regular expressions
and relational expressions. Regular expressions must be surrounded by slashes and are as In
egrep. lsolated regular expressions in a pattern apply to the entire line. Regular expressions
may also occur in relational expressions.

AWK (1) UNIX Programmer’s Manual AWK (1)

A pattern may consist of two patterns separated by a comma; in this case, the action is per-
formed for all lines between an occurrence of the first pattern and the next occurrence of the
second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either = (for contains)
or !~ (for does not contain). A conditional is an arithmetic expression, a relational expression,
or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first input line
is read and after the last. BEGIN must be the first pattern, END the last.

A single character ¢ may be used to separate the fields by starting the program with
BEGIN { FS = "¢"}
or by using the —Fc option.

Other variable names with special meanings include NF, the number of fields in the current
record; NR, the ordinal number of the current record; FILENAME, the name of the current
input file; OFS, the output field separator (default blank); ORS, the output record separator
(default newline); and OFMT, the output format for numbers (default "%.6g").

EXAMPLES

Print lines longer than 72 characters:
length > 72
Print first two fields in opposite order:
{ print $2, $1}
Add up first column, print sum and average:

{s+=81}
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:
{for (i = NF;i > 0; ——i) print $i }

Print all lines between start/stop pairs:
/start/, /stop/

Print all lines whose first field is different from previous one:
$1 != prev { print; prev = $1 }

SEE ALSO

BUGS

lex(1), sed(1)
A. V. Aho, B. W. Kernighan, P. J. Weinberger, Awk — a pattern scanning and processing
language

There are no explicit conversions between numbers and strings. To force an expression to be
treated as a number add O to it; to force it to be treated as a string concatenate "" to it.

7th Edition 18 January 1983 2

BASENAME (1) UNIX Programmer’s Manual BASENAME (1)

NAME

basename — strip filename affixes
SYNOPSIS

basename string [suffix]
DESCRIPTION

Basename deletes any prefix ending in ¢/’ and the suffix, if present in string, from string, and
prints the result on the standard output. It is normally used inside substitution marks * " in
shell procedures.

This shell procedure invoked with the argument /usr/src/binfcar.c compiles the named file and
moves the output to car in the current directory:

cc $1
mv a.out ‘basename $1 .c

SEE ALSO
" sh(1)

7th Edition 1 April 1981 1

BDIFF(1) BDIFF(1)

NAME

bdiff — big diff

SYNOPSIS

bdiff filel file2 [n] [—s]

DESCRIPTION

FILES

Bdiff is used in a manner analogous to diff (1) to find which lines must be
changed in two files to bring them into agreement. Its purpose is to allow
processing of files which are too large for diff. Bdiff ignores lines common
to the beginning of both files, splits the remainder of each file into n-line
segments, and invokes diff upon corresponding segments. The value of n
is 3500 by default. If the optional third argument is given, and it is
numeric, it is used as the value for n. This is useful in those cases in
which 3500-line segments are too large for diff, causing it to fail. If filel
(file2) is —, the standard input is read. The optional —s (silent) argument
specifies that no diagnostics are to be printed by bdiff (note, however, that
this does not suppress possible exclamations by diff. If both optional
arguments are specified, they must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to
account for the segmenting of the files (that is, to make it look as if the
files had been processed whole). Note that because of the segmenting of
the files, bdiff does not necessarily find a smallest sufficient set of file
differences.

SEE ALSO

diff (1).

DIAGNOSTICS

Use help(1) for explanations.

CAL (1) UNIX Programmer’s Manual CAL (1)

NAME
cal — print calendar

SYNOPSIS
cal [month] year

DESCRIPTION
Cal prints a calendar for the specified year. If a month is also specified, a calendar just for that
month is printed. Year can be between 1 and 9999. The month is a number between 1 and 12.

The calendar produced is that for England and her colonies.
Try September 1752.

BUGS
The year is always considered to start in January even though this is historically naive.

Beware that ‘cal 78’ refers to the early Christian era, not the 20th century.

7th Edition 29 March 1982

PN

CALENDAR (1) UNIX Programmer’s Manual CALENDAR (1)

NAME

calendar — reminder service
SYNOPSIS

calendar [—]
DESCRIPTION

Calendar consults the file ‘calendar’ in the current directory and prints out lines that contain
today’s or tomorrow’s date anywhere in the line. Most reasonable month-day dates such as
‘Dec. 7,” ‘december 7, ‘12/7,” etc., are recognized, but not ‘7 December’ or ‘7/12’. If you
give the month as ‘“+” with a date, i.e. ‘‘* 1°°, that day in any month will do. On weekends
‘tomorrow’ extends through Monday.

When an argument is present, calendar does its job for every user who has a file ‘calendar’ in
his login directory and sends him any positive results by mail/(1). Normally this is done daily in
the wee hours under control of cron(8).

The file ‘calendar’ is first run through the ‘‘C”’ preprocessor, /lib/cpp, to include any other
calendar files specified with the usual ‘‘#include’ syntax. Included calendars will usually be
shared by all users, maintained and documented by the local administration.

FILES
calendar
/usr/lib/calendar to figure out today’s and tomorrow’s dates
/etc/passwd
/tmp/cal»
/lib/cpp, egrep, sed, mail as subprocesses

SEE ALSO
at(1), cron(8), mail(1)

BUGS
Calendar’s extended idea of ‘tomorrow’ doesn’t account for holidays.

Provisional 4.2 BSD 29 March 1982 1

CAT (1) UNIX Programmer’s Manual CAT (1)

NAME
cat — catenate and print
SYNOPSIS
cat [=u][=n][=s][=v]fie..
DESCRIPTION
Cat reads each file in sequence and displays it on the standard output. Thus

cat file
displays the file on the standard output, and
cat filel file2 >file3
concatenates the first two files and places the result on the third.

’

If no input file is given, or if the argument ‘=" is encountered, car reads from the standard
input file. Output is buffered in 1024-byte blocks unless the standard output is a terminal, in
which case it is line buffered. The —u option makes the output completely unbuffered.

The —n option displays the output lines preceded by lines numbers, numbered sequentially
from 1. Specifying the —b option with the —n option omits the line numbers from blank lines.

The —s option crushes out multiple adjacent empty lines so that the output is displayed single
spaced.

The —v option displays non-printing characters so that they are visible. Control characters
print like "X for control-x; the delete character (octal 0177) prints as “?. Non-ascii characters
(with the high bit set) are printed as M- (for meta) followed by the character of the low 7 bits.
A —e option may be given with the —v option, which displays a ‘$’ character at the end of
each line. Specifying the —t option with the —v option displays tab characters as “I.

SEE ALSO
cp(1), ex(1), more(1), pr(1), tail(1)

BUGS
Beware of ‘cat a b >a’ and ‘cat a b >b’, which destroy the input files before reading them.

A 4th Berkeley Distribution 18 January 1983 1

CB(1) UNIX Programmer’s Manual CB(1)

NAME

cb — C program beautifier
SYNOPSIS

cb
DESCRIPTION

Cb places a copy of the C program from the standard input on the standard output with spacing
and indentation that displays the structure of the program.

7th Edition 18 January 1983 1

cc(n)

NAME

UNIX Programmer’s Manual ccil)

cc — C compiler

SYNOPSIS

cc [option] ... file ...

DESCRIPTION

Ccis the UNIX C compiler. Ccaccepts several types of arguments:

Arguments whose names end with ‘.c’ are taken to be C source programs, they are compiled,
and each object program is left on the file whose name is that of the source with ‘.0’ substituted
for ‘.c’. The ‘.0" file is normally deleted, however, if a single C program is compiled and
loaded all at one go.

In the same way, arguments whose names end with ‘.s’ are taken to be assembly source pro-
grams and are assembled, producing a ‘.o’ file.

The following options are interpreted by cc. See I/d(1) for load-time options.

-c Suppress the loading phase of the compilation, and force an object file to be produced
even if only one program is compiled.

—-g Have the compiler producé additional symbol table information for dbx(1). Also pass
the —Ig flag to /d(1).

—go Have the compiler produce additional symbol table information for the obsolete
debugger sdb(1). Also pass the —Ig flag to Id(1).

—-wW Suppress warning diagnostics.

-p Arrange for the compiler to produce code which counts the number of times each rou-
tine is called. If loading takes place, replace the standard startup routine by one which
automatically calls monitor(3) at the start and arranges to write out a mon.out file at
normal termination of execution of the object program. An execution profile can then
be generated by use of prof(1).

-pg Causes the compiler to produce counting code in the manner of —p, but invokes a
run-time recording mechanism that keeps more extensive statistics and produces a
gmon.out file at normal termination. Also, a profiling library is searched, in lieu of the
standard C library. An execution profile can then be generated by use of gprof(1).

-0 Invoke an object-code improver.

-R Passed on to as, making initialized variables shared and read-only.

-S Compile the named C programs, and leave the assembler-language output on
corresponding files suffixed ‘.s’.

-E Run only the macro preprocessor on the named C programs, and send the result to the
standard output.

-C prevent the macro preprocessor from eliding comments.

— 0 output
Name the final output file output. If this option is used the file ‘a.out’ will be left
undisturbed.

—Dname=def

—Dname

Define the name to the preprocessor, as if by ‘#define’. If no definition is given. the
name is defined as "1".

- Uname
Remove any initial definition of name.

4th Berkeley Distribution 9 February 1982 1

CC (1)

FILES

UNIX Programmer’s Manual CC(1)

—-1dir ‘#include’ files whose names do not begin with */° are always sought first in the direc-
tory of the file argument, then in directories named in —1 options, then in directories
on a standard list.

—Bstring
Find substitute compiler passes in the files named string with the suffixes cpp. ccom
and c2. If srringis empty, use a standard backup version.

—tlp012]
Find only the designated compiler passes in the files whose names are constructed by a
—B option. In the absence of a — B option, the sringis taken to be ‘/usr/c/’.

Other arguments are taken to be either loader option arguments, or C-compatible object pro-
grams, typically produced by an earlier cc run, or perhaps libraries of C-compatible routines.
These programs, together with the results of any compilations specified, are loaded (in the
order given) to produce an executable program with name a.out.

file.c input file
file.o object file
a.out loaded output
/tmp/ctm? temporary
/1ib/cpp preprocessor
/lib/ccom compiler

/usr/c/occom backup compiler

/usr/c/ocpp backup preprocessor

/1ib/¢2 optional optimizer

/lib/crt0.0 runtime startoff

/lib/mert0.0 startoff for profiling
/usr/lib/gcrt0.ostartoff for gprof-profiling

/1ib/libc.a standard library, see intro(3)
/usr/lib/libc_p.aprofiling library, see intro(3)
/usr/include standard directory for ‘#include’ files

mon.out file produced for analysis by prof(1)
gmon.out file produced for analysis by gprofl1)
SEE ALSO

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978
B. W. Kernighan, Programming in C—a tutorial

D. M. Ritchie, C Reference Manual

monitor(3), prof(1), gprof(1), adb(1), 1d(1), dbx (1), as(1)

DIAGNOSTICS

BUGS

The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages
may be produced by the assembler or loader.

The compiler currently ignores advice to put char, unsigned char, short or unsigned short
variables in registers. It previously produced poor, and in some cases incorrect, code for such
declarations.

4th Berkeley Distribution 9 February 1982 2

CD (1) UNIX Programmer’s Manual CD(1)

NAME
c¢d — change working directory

SYNOPSIS
cd directory

DESCRIPTION
Directory becomes the new working directory. The process must have execute (search) permis-
sion in directory.
Because a new process is created to execute each command, cd would be ineffective if it were
written as a normal command. It is therefore recognized and executed by the shells. In csha(1)
you may specify a list of directories in which directory is to be sought as a subdirectory if it is
not a subdirectory of the current directory; see the description of the cdpath variable in csh(1).

SEE ALSO
csh(1), sh(1), pwd(1), chdir(2)

4th Berkeley Distribution S April 1980 ' 1

CHGRP (1) UNIX Programmer’s Manual CHGRP (1)

NAME

chgrp — change group
SYNOPSIS

chgrp [-f] group file ...

DESCRIPTION
Chgrp changes the group-1D of the filesto group. The group may be either a decimal GID or a
group name found in the group-ID file.

The user invoking chgrp must belong to the specified group and be the owner of the file, or be
the super-user.

No errors are reported when the —f (force) option is given.

FILES
/etc/group

SEE ALSO
chown(2), passwd(5), group(5)

4th Berkeley Distribution 28 April 1982 1

CHMOD (1) UNIX Programmer’s Manual CHMOD (1)

NAME
' chmod — change mode
SYNGPSIS

chmod mode file ...
DESCRIPTION

The mode of each named file is changed according to mode, which may be absolute or symbolic.
An absolute mode is an octal number constructed from the OR of the following modes:

4000 set user ID on execution

2000 set group ID on execution

1000 sticky bit, see chmod(2)

0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:
[whol op permission [op permission] ...

The who part is a combination of the letters u (for user’s permissions), g (group) and o (other).
The letter a stands for all, or ugo. If who is omitted, the default is a but the setting of the file
creation mask (see umask(2)) is taken into account.

Op can be + to add permission to the file’s mode, — to take away permission and = to assign
permission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), s (set owner or
group id) and t (save text — sticky). Letters u, g or o indicate that permission is to be taken
from the current mode. Omitting permission is only useful with = to take away all permissions.

EXAMPLES
The first example denies write permission to others, the second makes a file executable:

chmod o—w file
chmod +x file

Multiple symbolic modes separated by commas may be given. Operations are performed in the
order specified. The letter s is only useful with u or g.

Only the owner of a file (or the super-user) may change its mode.

SEE ALSO
1s(1), chmod(2), stat(2), umask(2), chown(8)

Tth Edition : 18 January 1983 1

CHSH (1) UNIX Programmer’s Manual CHSH (1)

NAME
chsh — change default login shell

SYNOPSIS
chsh name [shell]

DESCRIPTION
Chsh is a command similar to passwd(l) except that it is used to change the login shell field of

the password file rather than the password entry. If no shell is specified then the shell reverts to
the default login shell /bin/sh. Otherwise only /bin/csh, /binfoldcsh, or lusrinew/csh can be specified
as the shell unless you are the super-user.

An example use of this command would be
chsh bill /bin/csh

SEE ALSO
csh(1), passwd(1), passwd(5)

4th Berkeley Distribution 21 October 1980 1

CLEAR (1) UNIX Programmer’s Manual CLEAR (1)

NAME
clear — clear terminal screen

SYNOPSIS
clear

DESCRIPTION
Clear clears your screen if this is possible. It looks in the environment for the terminal type
and then in /etc/termcap to figure out how to clear the screen.

FILES
/etc/termcap terminal capability data base

3rd Berkeley Distribution 24 February 1979 : 1

CMP (1) UNIX Programmer’s Manual CMP (1)

NAME
cmp — compare two files

SYNOPSIS
cmp [—1] [—s] filel file2

DESCRIPTION
The two files are compared. (If filel is ‘—’, the standard input is used.) Under default options,
cmp makes no comment if the files are the same; if they differ, it announces the byte and line
number at which the difference occurred. If one file is an initial subsequence of the other, that
fact is noted.
Options:
=1 Print the byte number (decimal) and the differing bytes (octal) for each difference.
—s Print nothing for differing files; return codes only.

SEE ALSO
diff (1), comm(1)

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessible or miss-
ing argument.

7th Edition 18 January 1983 1

COL (1) UNIX Programmer’s Manual COL (1)

NAME

col — filter reverse line feeds

SYNOPSIS

col [—bfx]

DESCRIPTION

Col reads the standard input and writes the standard output. It performs the line overlays
implied by reverse line feeds (ESC-7 in ASCII) and by forward and reverse half line feeds
(ESC-9 and ESC-8). Col is particularly useful for filtering multicolumn output made with the
‘.rt’ command of nroff and output resulting from use of the tb/(1) preprocessor.

Although col accepts half line motions in its input, it normally does not emit them on output.
Instead, text that would appear between lines is moved to the next lower full line boundary.
This treatment can be suppressed by the —f (fine) option; in this case the output from co/ may
contain forward half line feeds (ESC-9), but will still never contain either kind of reverse line
motion.

If the —b option is given, col assumes that the output device in use is not capable of backspac-
ing. In this case, if several characters are to appear in the same place, only the last one read
will be taken.

The control characters SO (ASCII code 017), and SI (016) are assumed to start and end text in
an alternate character set. The character set (primary or alternate) associated with each printing
character read is remembered; on output, SO and SI characters are generated where necessary
to maintain the correct treatment of each character.

Col normally converts white space to tabs to shorten printing time. If the —x option is given,
this conversion is suppressed.

All control characters are removed from the input except space, backspace, tab, return, new-
line, ESC (033) followed by one of 7, 8, 9, SI, SO, and VT (013). This last character is an
alternate form of full reverse line feed, for compatibility with some other hardware conven-
tions. All other non-printing characters are ignored.

SEE ALSO

BUGS

troff (1), tbl(1)

Can’t back up more than 128 lines.
No more than 800 characters, including backspaces, on a line.

7th Edition : 18 January 1983 1

COMB(1) COMB(1)

NAME

comb — combine SCCS deltas

SYNOPSIS

comb [—o] [—s] [—psid] [—clist] files

DESCRIPTION

Comb generates a shell procedure (see shA(1)) which, when run, will recon-
struct the given SCCS files. The reconstructed files will, hopefully, be smal-
ler than the original files. The arguments may be specified in any order,
but all keyletter arguments apply to all named SCCS files. If a directory is
named, comb behaves as though each file in the directory were specified as
a named file, except that non-SCCS files (last component of the path name
does not begin with s.) and unreadable files are silently ignored. If a name
of — is given, the standard input is read; each line of the standard input is
taken to be the name of an SCCS file to be processed; non-SCCS files and
unreadable files are silently ignored.

The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only
one named file is to be processed, but the effects of any keyletter argument
apply independently to each named file.

—pSID The SCCS IDentification string (SID) of the oldest delta to be
preserved. All older deltas are discarded in the reconstructed file.

—clist A list (see get(1) for the syntax of a list) of deltas to be preserved.
All other deltas are discarded.

-0 For each get —e generated, this argument causes the reconstructed
file to be accessed at the release of the delta to be created, oth-
erwise the reconstructed file would be accessed at the most recent
ancestor. Use of the —o keyletter may decrease the size of the
reconstructed SCCS file. It may also alter the shape of the delta
tree of the original file.

-5 This argument causes comb to generate a shell procedure which,
when run, will produce a report giving, for each file: the file name,
size (in blocks) after combining, original size (also in blocks), and
percentage change computed by:

100 = (original — combined) / original
It is recommended that before any SCCS files are actually com-
bined, one should use this option to determine exactly how much
space is saved by the combining process.

If no keyletter arguments are specified, comb will preserve only leaf deltas
and the minimal number of ancestors needed to preserve the tree.

FILES
s.COMB The name of the reconstructed SCCS file.
comb????? Temporary.
SEE ALSO
admin(1), delta(1), get(1), help(1), prs(1), sccsfile(5).
Source Code Control System User’s Guide by L. E. Bonanni and C. A. Salemi.
DIAGNOSTICS
Use help(1) for explanations.
BUGS

Comb may rearrange the shape of the tree of deltas. It may not save any

space; in fact, it is possible for the reconstructed file to actually be larger
than the original.

COMM (1) UNIX Programmer’s Manual COMM (1)

NAME
. comm ~— select or reject lines common to two sorted files

SYNOPSIS
comm [— [123]] filel file2

DESCRIPTION
Comm reads filel and file2, which should be ordered in ASCII collating sequence, and produces
a three column output: lines only in filel, lines only in file2; and lines in both files. The
filename ‘=’ means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm =12 prints only
the lines common to the two files; comm —23 prints only lines in the first file but not in the
second; comm —123 is a no-op.

SEE ALSO
emp(1), diff(1), unig(1)

7th Edition 18 January 1983 ' 1

Cp(1) UNIX Programmer’s Manual CP(1)

NAME
Cp — copy

SYNOPSIS
cep[=1] [—r]filel file2

cp [—1] [—r] file ... directory

DESCRIPTION
Filel is copied onto file2. The mode and owner of file2 are preserved if it already existed; the
mode of the source file is used otherwise.

In the second form, one or more files are copied into the directory with their original file-names.
Cp refuses to copy a file onto itself.

If the =i option is spéciﬁed, ¢p will prompt the user with the name of the file whenever the
copy will cause an old file to be overwritten. An answer of ’y’ will cause c¢p to continue. Any
other answer will prevent it from overwriting the file.

If the —r option is specified and any of the source files are directories, cp copies each subtree
rooted at that name; in this case the destination must be a directory.

SEE ALSO ‘
cat(1), pr(1), mv(1)

4th Berkeley Distribution 1 April 1982 1

CPIO(1) UNIX Programmer’s Manual CPIO(1)

NAME
cpio — copy file archives in and out (to & from tape)

SYNOPSIS
cpio — o [acBSv |
cpio — i [BedfmMrtuv8q | | patterns |
cpio — p [adlmMSruvq | directory

DESCRIPTION
Cpio — o (copy out) reads the standard input to obtain a list of path names and copies those
files onto the standard output together with path name and status information.

Cpio — i (copy in) extracts from the standard input (which is assumed to be the product of a
previous cpio — o) the names of files selected by zero or more patterns given in the name-
generating notation of sh (1). In patterns , meta-characters ? , * , and [...] match the slash (/)
character. A pattern can be omitted by using ! pattern. The default for patterns is * (i.e., select
all files).

Cpio — p (pass) copies out and in in a single operation. Destination path names are interpreted
relative to the named directory.

Options:
a Reset access times of input ﬁles after they have been copied.

B Input./output is to be blocked 5,120 bytes (10 UNIX blocks) to the record. Note that this
is different from the default that tar uses (20 UNIX blocks). This does not apply to the
pass option; meaningful only with data directed to or from tape.

c Write header information in ASCII character form for portability.

Directories are to be created as needed. This option is only necessary if the directories do
not exist in the archive and do not exist in the destination directory. If the directories
were placed in the archive, you do not need this option.

f Take as a parameter a file containing a list of file names to extract. For example:
cpio — iBf flist < /dev/rmt0

will extract from /dev/rmtO the files whose names are listed, one per line, in the file
"flist.” No pattern metacharacters are recognized here. This option does not work with
cpio — p or cpio — o.

1 Link files rather than copying, where possible. Usable only with the — p option. Cpio
always preserves links.

m Retain previous file modification time. This option is ineffective on directories that are
being copied. '

M Change mode and ownership of existing directories to match mode and ownership of
corresponding directories on tape.

q Take the next argument as a filename. Cpio quits when the given filename is found.

r Interactively rename files. If the user types a null line, the file is skipped. Entering con-
trol d assumes a null line for the remaining files. This option is not available with epio
— p.

Swabs the file bodies (but not the headers). Try it if file names come out scrambled.

t Print a table of contents of the input. No files are created. This list of files does not con-
tain any “junk” and is suitable input to cpio.

CPIO(1) UNIX Programmer’s Manual CPIO(1)

u Copy unconditionally (normally, an older file will not replace a newer file with the same
name).

S Causes symbolic links to be followed as if they are real files

Verbose: causes a list of file names to be printed. When used with the t option, the table
of contents looks like the output of an Is — 1 command (see Is (1)).

EXAMPLES
The first example below copies the contents of a directory into an archive (tape); the second
duplicates a directory hierarchy:

find . - print cpio — oB >/dev/rmt0

cd olddir
find . — print cpio — pdl newdir

The first example can be handled more efficiently by:
find . - cpio /dev/rmt0
To copy an archive (tape) in, use:
cpio — iBdmu < /dev/rmt0
NOTES

Cpio can archive special files (devices) if you are logged on as the super-user. Tar can not
archive special files.

BUGS
There is no way, short of using — r interactively, of unrooting a epio archive made with rooted
file names (ones that start with ’/’).

Cpio changes modification dates by default; tar leaves them alone by default.

If you use pattern matching with the — i option, cpio always searches the whole archive (or
tape) even if it has already found all the files listed. There is no way to use the rename (- r)
option from a file instead of interactively.

With the — o option, if you have a directory file as input, it adds the directory to the tape but
does not recursively add the directory’s files (unlike tar).

CPTREE(1V) UNIX Programmer’s Manual CPTREE(1V)

NAME
cptree — copy directory tree

SYNOPSIS
cptree fromdir todir

DESCRIPTION
cptree recursively copies a directory hierarchy to another existing directory. fromdiris the top of
the hierarchy to be copied and todir represents the top of the resulting directory tree.

EXAMPLE

mkdir /tmp/newdir

cptree /usr/adm /tmp/newdir
SEE ALSO

tar(1)

7th Edition Valid 7 DECEMBER 1984 1

£7

CRYPT (1) UNIX Programmer’s Manual CRYPT (1)

NAME

crypt — encode/decode

SYNOPSIS

crypt [password]

DESCRIPTION

FILES

Crypt reads from the standard input and writes on the standard output. The password is a key
that selects a particular transformation. If no password is given, crypt demands a key from the
terminal and turns off printing while the key is being typed in. Crypt encrypts and decrypts with
the same key:

crypt key <clear >cypher
crypt key <cypher | pr

will print the clear.
Files encrypted by crypt are compatible with those treated by the editor ed in encryption mode.

The security of encrypted files depends on three factors: the fundamental method must be hard
to solve; direct search of the key space must be infeasible; ‘sneak paths’ by which keys or clear-
text can become visible must be minimized.

Crypt implements a one-rotor machine designed along the lines of the German Enigma, but
with a 256-element rotor. Methods of attack on such machines are known, but not widely;
moreover the amount of work required is likely to be large.

The transformation of a key into the internal settings of the machine is deliberately designed to
be expensive, i.e. to take a substantial fraction of a second to compute. However, if keys are
restricted to (say) three lower-case letters, then encrypted files can be read by expending only a
substantial fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible to users executing
ps(1) or a derivative. To minimize this possibility, crypt takes care to destroy any record of the
key immediately upon entry. No doubt the choice of keys and key security are the most
vulnerable aspect of crypt.

/dev/tty for typed key

SEE ALSO

BUGS

ed(1), makekey(8)

There is no warranty of merchantability nor any warranty of fitness for a particular purpose nor
any other warranty, either express or implied, as to the accuracy of the enclosed materials or as
to their suitability for any particular purpose. Accordingly, Bell Telephone Laboratories
assumes no responsibility for their use by the recipient. Further, Bell Laboratories assumes no
obligation to furnish any assistance of any kind whatsoever, or to furnish any additional infor-
mation or documentation.

Tth Edition 18 January 1983 1

CSH (1) UNIX Programmer’s Manual CSH (1)

NAME

csh — a shell (command interpreter) with C-like syntax

SYNOPSIS

csh [—cefinstvVxX] [arg ...]

DESCRIPTION

Csh is a first implementation of a command language interpreter incorporating a history
mechanism (see History Substitutions) job control facilities (see Jobs) and a C-like syntax.
So as to be able to use its job control facilities, users of csh must (and automatically) use the
new tty driver fully described in try(4). This new tty driver allows generation of interrupt char-
acters from the keyboard to tell jobs to stop. See stry(1) for details on setting options in the
new tty driver.

An instance of csh begins by executing commands from the file ‘.cshrc’ in the home directory of
the invoker. If this is a login shell then it also executes commands from the file *.login’ there.
It is typical for users on crt’s to put the command ‘‘stty crt’” in their .login file, and to also
invoke tset(1) there.

In the normal case, the shell will then begin reading commands from the terminal, prompting
with ‘% . Processing of arguments and the use of the shell to process files containing com-
mand scripts will be described later.

The shell then repeatedly performs the following actions: a line of command input is read and
broken into words. This sequence of words is placed on the command history list and then
parsed. Finally each command in the current line is executed.

When a login shell terminates it executes commands from the file ‘.logout’ in the users home
directory.

Lexical structure

The shell splits input lines into words at blanks and tabs with the following exceptions. The
characters ‘& ‘0 ‘)" ‘<’ *>" ‘(" ‘)’ form separate words. If doubled in ‘&&, ‘[, ‘<< or
*>>" these pairs form single words. These parser metacharacters may be made part of other
words, or prevented their special meaning, by preceding them with *\’. A newline preceded by
a ‘\’ is equivalent to a blank.

(34l eny

In addition strings enclosed in matched pairs of quotations, *°, *™ or ‘", form parts of a word:
metacharacters in these strings, including blanks and tabs, do not form separate words. These
quotations have semantics to be described subsequently. Within pairs of *”* or ‘"’ characters a
newline preceded by a ‘\’ gives a true newline character.

When the shell’s input is not a terminal, the character ‘#" introduces a comment which contin-
ues to the end of the input line. It is prevented this special meaning when preceded by *\' and

ALY

in quotations using ', *"", and *"’.
Commands

A simple command is a sequence of words, the first of which specifies the command to be exe-
cuted. A simple command or a sequence of simple commands separated by ‘[characters forms
a pipeline. The output of each command in a pipeline is connected to the input of the next.
Sequences of pipelines may be separated by ‘;", and are then executed sequentially. A
sequence of pipelines may be executed without immediately waiting for it to terminate by fol-
lowing it with an ‘&’.

Any of the above may be placed in ‘(" *)° to form a simple command (which may be a com-
ponent of a pipeline, etc.) It is also possible to separate pipelines with ‘|[' or ‘&&’ indicating, as
in the C language, that the second is to be executed only if the first fails or succeeds respec-
tively. (See Expressions.)

4th Berkeley Distribution 18 July 1983 1

CSH (1) UNIX Programmer’s Manual CSH (1)

Jobs

The shell associates a job with each pipeline. It keeps a table of current jobs, printed by the jobs
command, and assigns them small integer numbers. When a job is started asynchronously with
‘&’, the shell prints a line which looks like:

(111234

indicating that the jobs which was started asynchronously was job number 1 and had one (top-
level) process, whose process id was 1234.

If you are running a job and wish to do something else you may hit the-key "Z (control-Z)
which sends a STOP signal to the current job. The shell will then normally indicate that the job
has been ‘Stopped’, and print another prompt. You can then manipulate the state of this job,
putting it in the background with the bg command, or run some other commands and then
eventually bring the job back into the foreground with the foreground command fz A “Z takes
effect immediately and is like an interrupt in that pending output and unread input are dis-
carded when it is typed. There is another special key “Y which does not generate a STOP signal
until a program attempts to read(2) it. This can usefully be typed ahead when you have
prepared some commands for a job which you wish to stop after it has read them.

A job being run in the background will stop if it tries to read from the terminal. Background
jobs are normally allowed to produce output, but this can be disabled by giving the command
‘*stty tostop’’. If you set this tty option, then background jobs will stop when they try to pro-
duce output like they do when they try to read input.

There are several ways to refer to jobs in the shell. The character ‘%" introduces a job name.
If you wish to refer to job number 1, you can name it as ‘%o1’. Just naming a job brings it to
the foreground; thus ‘%1’ is a synonym for ‘fg %]1°, bringing job 1 back into the foreground.
Similarly saying ‘%1 & resumes job 1 in the background. Jobs can also be named by prefixes
of the string typed in to start them, if these prefixes are unambiguous, thus "%ex’ would nor-
mally restart a suspended ex(1) job, if there were only one suspended job whose name began
with the string ‘ex’. It is also possible to say ‘% ?string’ which specifies a job whose text con-
tains string, if there is only one such job.

The shell maintains a notion of the current and previous jobs. In output pertaining to jobs. the
current job is marked with a ‘+° and the previous job with a ‘—'. The abbreviation %+’
refers to the current job and ‘% —" refers to the previous job. For close analogy with the syntax
of the history mechanism (described below), ‘%%’ is also a synonym for the current job.

Status reporting

This shell learns immediately whenever a process changes state. It normally informs you when-
ever a job becomes blocked so that no further progress is possible, but only just before it prints
a prompt. This is done so that it does not otherwise disturb your work. If, however, you set
the shell variable norify, the shell will notify you immediately of changes of status in back-
ground jobs. There is also a shell command norify which marks a single process so that its
status changes will be immediately reported. By default norify marks the current process; simply
say ‘notify’ after starting a background job to mark it.

When you try to leave the shell while jobs are stopped, you will be warned that ‘You have
stopped jobs.” You may use the jobscommand to see what they are. If you do this or immedi-
ately try to exit again, the shell will not warn you a second time, and the suspended jobs will be
terminated.

4th Berkeley Distribution 18 July 1983 2

CSH (1) , | UNIX Programmer’s Manual CSH (1)

Substitutions

We now describe the various transformations the shell performs on the input in the order in
which they occur.

History substitutions

History substitutions place words from previous command input as portions of new commands,
making it easy to repeat commands, repeat arguments of a previous command in the current
command, or fix spelling mistakes in the previous command with little typing and a high degree
of confidence. History substitutions begin with the character ‘!” and may begin anywhere in the
input stream (with the proviso that they do not nest.) This ‘! may be preceded by an ‘\’ to
prevent its special meaning; for convenience, a ‘!" is passed unchanged when it is followed by a
blank, tab, newline, ‘=" or ‘(. (History substitutions also occur when an input line begins
with ‘1°. This special abbreviation will be described later.) Any input line which contains his-
tory substitution is echoed on the terminal before it is executed as it could have been typed
without history substitution.

Commands input from the terminal which consist of one or more words are saved on the his-
tory list. The history substitutions reintroduce sequences of words from these saved commands
into the input stream. The size of which is controlled by the history variable. the previous com-
mand is always retained, regardless of its value. Commands are numbered sequentially from 1.

For definiteness, consider the following output from the Aistory command:

9 write michael
10 ex write.c

11 cat oldwrite.c
12 diff *write.c

The commands are shown with their event numbers. It is not usually necessary to use event
numbers, but the current event number can be made part of the prompt by placing an *!" in the
prompt string.

With the current event 13 we can refer to previous events by event number *!11°, relatively as
in *!—2" (referring to the same event), by a prefix of a command word as in *!d" for event 12
or ‘'wri’ for event 9, or by a string contained in a word in the command as in *!?mic?" also
referring to event 9. These forms, without further modification, simply reintroduce the words
of the specified events, each separated by a single blank. As a special case *!'” refers to the pre-
vious command; thus “!!" alone is essentially a redo.

To select words from an event we can follow the event specification by a *:" and a designator for
the desired words. The words of a input line are numbered from 0, the first (usually com-
mand) word being 0, the second word (first argument) being 1, etc. The basic word designa-

tors are:
0 first (command) word
n n’th argument
1 first argument, ie. ‘1’
$ last argument

% word matched by (immediately preceding) ?s? search
x—y range of words
-y abbreviates ‘0—)"

* abbreviates ‘1—9$", or nothing if only 1 word in event
Xx* abbreviates ‘x—9%'
x— like ‘x*’ but omitting word ‘$’

4th Berkeley Distribution 18 July 1983 3

CSH (1) UNIX Programmer’s Manual CSH (1)

The *" separating the event specification from the word designator can be omitted if the argu-
ment selector begins with a *1°, *$’, *+* ‘=" or ‘%’. After the optional word designator can be
placed a sequence of modifiers, each preceded by a *’. The following modifiers are defined:

h Remove a trailing pathname component, leaving the head.
r Remove a trailing *.xxx’ component, leaving the root name.
e Remove all but the extension ‘.xxx" part.

s/l/rl Substitute /for r

Remove all leading pathname components, leaving the tail.
Repeat the previous substitution.

Apply the change globally, prefixing the above, e.g. ‘g&’.
Print the new command but do not execute it.

Quote the substituted words, preventing further substitutions.
Like q, but break into words at blanks, tabs and newlines.

® .0 T M o~

Unless preceded by a ‘g’ the modification is applied only to the first modifiable word. With
substitutions, it is an error for no word to be applicable.

The left hand side of substitutions are not regular expressions in the sense of the editors, but
rather strings. Any character may be used as the delimiter in place of */*; a *\' quotes the del-
imiter into the /and rstrings. The character ‘&’ in the right hand side is replaced by the text
from the left. A *\’ quotes ‘&’ also. A null /uses the previous string either from a /or from a
contextual scan string sin ‘!?s?’. The trailing delimiter in the substitution may be omitted if a
newline follows immediately as may the trailing *?" in a contextual scan.

A history reference may be given without an event specification, e.g. *!$’. In this case the
reference is to the previous command unless a previous history reference occurred on the same
line in which case this form repeats the previous reference. Thus ‘!?foo?] '$' gives the first
and last arguments from the command matching ‘?foo?’.

A special abbreviation of a history reference occurs when the first non-blank character of an
input line is a *1’. This is equivalent to ‘!is1’ providing a convenient shorthand for substitu-
tions on the text of the previous line. Thus ‘{Ibllib’ fixes the spelling of ‘lib’ in the previous
command. Finally, a history substitution may be surrounded with ‘{’ and ‘}" if necessary to
insulate it from the characters which follow. Thus, after ‘Is —Id “paul’ we might do ‘'{l}a’ to"
do ‘Is —1d “paula’, while ‘!la’ would look for a command starting ‘la’.

Quotations with " and "

The quotation of strings by ** and ‘" can be used to prevent all or some of the remaining sub-
stitutions. Strings enclosed in ‘’ are prevented any further interpretation. Strings enclosed in
‘"> may be expanded as described below.

In both cases the resulting text becomes (all or part of) a single word; only in one special case
(see Command Substitition below) does a ‘"> quoted string yield parts of more than one word; *~
quoted strings never do.

Alias substitution

The shell maintains a list of aliases which can be established, displayed and modified by the
alias and unalias commands. After a command line is scanned, it is parsed into distinct com-
mands and the first word of each command, left-to-right, is checked to see if it has an alias. 1f
it does, then the text which is the alias for that command is reread with the history mechanism
available as though that command were the previous input line. The resulting words replace
the command and argument list. If no reference is made to the history list, then the argument
list is left unchanged.

4th Berkeley Distribution 18 July 1983 4

CSH (1) UNIX Programmer’s Manual CSH (1)

Thus if the alias for ‘Is’ is ‘Is —1' the command ‘Is /usr’ would map to ‘Is —1 /usr’, the argu-
ment list here being undisturbed. Similarly if the alias for ‘lookup’ was ‘grep !l /etc/passwd’
then ‘lookup bill’ would map to ‘grep bill /etc/passwd’.

If an alias is found, the word transformation of the input text is performed and the aliasing pro-
cess begins again on the reformed input line. Looping is prevented if the first word of the new
text is the same as the old by flagging it to prevent further aliasing. Other loops are detected
and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax. Thus we can ‘alias
print ‘pr \!* | Ipr”” to make a command which pr’sits arguments to the line printer.

Variable substitution

The shell maintains a set of variables, each of which has as value a list of zero or more words.
Some of these variables are set by the shell or referred to by it. For instance, the argv variable
is an image of the shell’s argument list, and words of this variable’s value are referred to in
special ways.

The values of variables may be displayed and changed by using the setand unsetcommands. Of
the variables referred to by the shell a number are toggles; the shell does not care what their
value is, only whether they are set or not. For instance, the verbose variable is a toggle which
causes command input to be echoed. The setting of this variable results from the —v com-
mand line option.

Other operations treat variables numerically. The ‘@' command permits numeric calculations
to be performed and the result assigned to a variable. Variable values are, however, always
represented as (zero or more) strings. For the purposes of numeric operations, the null string
is considered to be zero, and the second and subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is executed, variable sub-
stitution is performed keyed by ‘$’ characters. This expansion can be prevented by preceding
the ‘8" with a ‘\’ except within ‘"’s where it always occurs, and within *"’s where it never
occurs. Strings quoted by ‘" are interpreted later (see Command substitution below) so ‘S’ sub-
stitution does not occur there until later, if at all. A ‘$ is passed unchanged if followed by a
blank, tab, or end-of-line.

.

Input/output redirections are recognized before variable expansion, and are variable expanded
separately. Otherwise, the command name and entire argument list are expanded together. It
is thus possible for the first (command) word to this point to generate more than one word, the
first of which becomes the command name, and the rest of which become arguments.

Unless enclosed in ‘" or given the ‘:q’ modifier the results of variable substitution may eventu-
ally be command and filename substituted. Within *"* a variable whose value consists of multi-
ple words expands to a (portion of) a single word, with the words of the variables value
separated by blanks. When the ‘:q” modifier is applied to a substitution the variable will expand
to multiple words with each word separated by a blank and quoted to prevent later command or
filename substitution.

The following metasequences are provided for introducing variable values into the shell input.
Except as noted, it is an error to reference a variable which is not set.

$name

${name}
Are replaced by the words of the value of variable name, each separated by a biank.
Braces insulate name from following characters which would otherwise be part of it. Shell
variables have names consisting of up to 20 letters and digits starting with a letter. The
underscore character is considered a letter. '
If name is not a shell variable, but is set in the environment, then that value is returned

4th Berkeley Distribution 18 July 1983 5

CSH (1) UNIX Programmer’s Manual CSH (1)

(but : modifiers and the other forms given below are not available in this case).

$namelselector]

${name[selector]}
May be used to select only some of the words from the value of name. The selector is
subjected to ‘$’ substitution and may consist of a single number or two numbers separated
by a ‘—'. The first word of a variables value is numbered ‘1°. If the first number of a
range is omitted it defaults to ‘1°. If the last member of a range is omitted it defaults to
‘$#name’. The selector ‘*" selects all words. It is not an error for a range to be empty if
the second argument is omitted or in range.

$#name
${#name)
Gives the number of words in the variable. This is useful for later use in a ‘[selector]’.
$0
Substitutes the name of the file from which command input is being read. An error
occurs if the name is not known.
$number
${number}
Equivalent to *Sargv[number]’.
S

Equivalent to ‘Sargv([+]".
The modifiers “:h’, “:t’, “ir’, *:q" and ‘:x’ may be applied to the substitutions above as may ‘:gh’,

“:gt’ and *:gr’. If braces ‘|’ '}’ appear in the command form then the modifiers must appear
within the braces. The current implementation allows only one ‘.’ modifier on each *$

expansion.)
The following substitutions may not be modified with *:’ modifiers.

$7name
${?name]}
Substitutes the string ‘1” if name is set, *0" if it is not.
$70
Substitutes ‘17 if the current input filename is known, ‘0" if it is not.
33
Substitute the (decimal) process number of the (parent) shell.
$<

Substitutes a line from the standard input, with no further interpretation thereafter. It
can be used to read fr_om the keyboard in a shell script.

Command and filename substitution

The remaining substitutions, command and filename substitution, are applied selectively to the
arguments of builtin commands. This means that portions of expressions which are not
evaluated are not subjected to these expansions. For commands which are not internal to the
shell, the command name is substituted separately from the argument list. This occurs very
late, after input-output redirection is performed, and in a child of the main shell.

Command substitution

o

Conimand substitution is indicated by a command enclosed in The output from such a
command is normally broken into separate words at blanks, tabs and newlines, with null words
being discarded, this text then replacing the original string. Within ‘"’s, only newlines force
new words; blanks and tabs are preserved.

4th Berkeley Distribution 18 July 1983 7 6

CSH (1) UNIX Programmer’s Manual CSH (1)

In any case, the single final newline does not force a new word. Note that it is thus possible for
a command substitution to yield only part of a word, even if the command outputs a complete
line.

Filename substitution

If a word contains any of the characters ‘=, *?°, *[* or *{* or begins with the character ‘™, then
that word is a candidate for filename substitution, also known as ‘globbing’. This word is then
regarded as a pattern, and replaced with an alphabetically sorted list of file names which match
the pattern. In a list of words specifying filename substitution it is an error for no pattern to
match an existing file name, but it is not required for each pattern to match. Only the meta-
characters *+’, ‘2> and ‘[’ imply pattern matching, the characters ‘™ and ‘{’ being more akin to
abbreviations.

PRy

In matching filenames, the character ‘.” at the beginning of a filename or immediately following
a ‘/°, as well as the character ‘/° must be matched explicitly. The character ‘*’ matches any
string of characters, including the null string. The character *?° matches any single character.
The sequence ‘[...]" matches any one of the characters enclosed. Within [...]°, a pair of charac-

ters separated by ‘—’ matches any character lexically between the two.

The character ™" at the beginning of a filename is used to refer to home directories. Standing
alone, i.e. ‘7" it expands to the invokers home directory as reflected in the value of the variable
home. When followed by a name consisting of letters, digits and ‘=" characters the shell
searches for a user with that name and substitutes their home directory; thus ‘"ken’ might
expand to ‘/usr/ken’ and ‘"ken/chmach’ to ‘/usr/ken/chmach’. If the character ‘™ is followed
by a character other than a letter or ‘/° or appears not at the beginning of a word, it is left
undisturbed.

The metanotation ‘alb,c,d}e’ is a shorthand for ‘abe ace ade’. Left to right order is preserved.
with results of matches being sorted separately at a low level to preserve this order. This con-
struct may be nested. Thus ‘source/sl/loldls,Is}.c’ expands to ‘/usr/source/sl/oldls.c
/usr/source/s1/1s.c’ whether or not these files exist without any chance of error if the home
directory for ‘source’ is ‘/usr/source’. Similarly ‘../{memo,*box}’ might expand to ‘../memo
../box ../mbox’. (Note that ‘memo’ was not sorted with the results of matching ‘*box’.) As a
special case ‘{’, *}* and *{}* are passed undisturbed.

Input/output

The standard input and standard output of a command may be redirected with the following
syntax:

< name
Open file name (which is first variable, command and filename expanded) as the standard
input.

< < word

Read the shell input up to a line which is identical to word. Word is not subjected to vari-
able, filename or command substitution, and each input line is compared to word before
any substitutions are done on this input line. Unless a quoting *\", ‘", " or ‘" appears in
word variable and command substitution is performed on the intervening lines, allowing
‘\" to quote ‘S, *\" and ‘. Commands which are substituted have all blanks, tabs, and
newlines preserved, except for the final newline which is dropped. The resultant text is
placed in an anonymous temporary file which is given to the command as standard input.

> name
>! name
>& name

4th Berkeley Distribution 18 July 1983 -7

CSH (1) UNIX Programmer’s Manual CSH (1)

>&! name
The file nameis used as standard output. If the file does not exist then it is created. if the
file exists, its is truncated, its previous contents being lost.

If the variable noclobber is set, then the file must not exist or be a character special file
(e.g. a terminal or ‘/dev/null’) or an error results. This helps prevent accidental destruc-
tion of files. In this case the *!" forms can be used and suppress this check.

The forms involving ‘&’ route the diagnostic output into the specified file as well as the
standard output. Name is expanded in the same way as ‘<’ input filenames are.

>> name

>>& name

>>! name

>>&! name
Uses file name as standard output like *>" but places output at the end of the file. If the
variable noclobber is set, then it is an error for the file not to exist unless one of the *!
forms is given. Otherwise similar to *>".

A command receives the environment in which the shell was invoked as modified by the
input-output parameters and the presence of the command in a pipeline. Thus. unlike some
previous shells, commands run from a file of shell commands have no access to the text of the
commands by default. rather they receive the original standard input of the shell. The ‘<<’
mechanism should be used to present inline data. This permits shell command scripts to fune-
tion as components of pipelines and allows the shell to block read its input. Note that the
default standard input for a command run detached is not modified to be the empty file
‘/dev/null’: rather the standard input remains as the original standard input of the shell. If this
is a terminal and if the process attempts to read from the terminal, then the process will block
and the user will be notified (see Jobs above.)

Diagnostic output may be directed through a pipe with the standard output. Simply use the
form ‘|&’ rather than just ‘.

Expressions

A number of the builtin commands (to be described subsequently) take expressions. in which
the operators are similar to those of C, with the same precedence. These expressions appear in
the @, exit, if, and while commands. The following operators are available:

&& |1 & === =" 1" <= >= < > << >> + — «/ % !~ ()

Here the precedence increases to the right, ‘=="*!=" ‘=" and ‘!, ‘<="*'>=" <" and
‘>’ *<<'and *>>", ‘“+7and ‘=", ¢ /7 and ‘%’ being, in groups, at the same level. The
‘==" ‘1=’ =" and ‘!” operators compare their arguments as strings. all others operate on
numbers. The operators ‘=""and ‘! are like *'="and ‘= =" except that the right hand side is
a pattern (containing, e.g. *+’s, ‘?"s and instances of ‘[...]') against which the left hand operand
is matched. This reduces the need for use of the switch statement in shell scripts when all that
is really needed is pattern matching.

Strings which begin with ‘0" are considered octal numbers. Null or missing arguments are con-
sidered *0". The result of all expressions are strings, which represent decimal numbers. It is
important to note that no two components of an expression can appear in the same word:
except when adjacent to components of expressions: which are syntactically significant to the
parser (‘& ‘P *<’*>"*("*)’) they should be surrounded by spaces.

Also available in expressions as primitive operands are command executions enclosed in ‘{" and
*}" and file enquiries of the form *—/ name’ where /is one of:

4th Berkeley Distribution 18 July 1983 8

CSH (1) UNIX Programmer’s Manual CSH (1)

read access
write access
execute access
existence
ownership
zero size

plain file
directory

O.=NO®Xg "

The specified name is command and filename expanded and then tested to see if it has the
specified relationship to the real user. If the file does not exist or is inaccessible then all
enquiries return false, i.e. ‘0. Command executions succeed, returning true. i.e. ‘1, if the
command exits with status 0, otherwise they fail, returning false, i.e. ‘0’. If more detailed
status information is required then the command should be executed outside of an expression
and the variable starus examined.

Control flow

The shell contains a number of commands which can be used to regulate the flow of control in
command files (shell scripts) and (in limited but useful ways) from terminal input. These com-
mands all operate by forcing the shell to reread or skip in its input and, due to the implementa-
tion, restrict the placement of some of the commands.

The foreach, switch, and while statements, as well as the jf—rhen—else form of the ifstatement
require that the major keywords appear in a single simple command on an input line as shown
below.

If the shell’s input is not seekable, the shell buffers up input whenever a loop is being read and
performs seeks in this internal buffer to accomplish the rereading implied by the loop. (To the
extent that this allows, backward goto’s will succeed on non-seekable inputs.)

Builtin commands

Builtin commands are executed within the shell. If a builtin command occurs as any com-
ponent of a pipeline except the last then it is executed in a subshell.

alias

alias name

alias name wordlist
The first form prints all aliases. The second form prints the alias for name. The final
form assigns the specified wordlist as the alias of name; wordlist is command and filename
substituted. Nameis not allowed to be aliasor unalias.

alloc
Shows the amount of dynamic core in use, broken down into used and free core, and
address of the last location in the heap. With an argument shows each used and free
block on the internal dynamic memory chain indicating its address, size, and whether it is
used or free. This is a debugging command and may not work in production versions of
the shell; it requires a modified version of the system memory allocator.

bg

bg %job ...
Puts the current or specified jobs into the background. continuing them if they were
stopped.

break
Causes execution to resume after the end of the nearest enclosing foreach or while. The
remaining commands on the current line are executed. Multi-level breaks are thus possi-
ble by writing them all on one line.

4th Berkeley Distribution 18 July 1983 ‘ 9

CSH (1) UNIX Programmer’s Manual CSH (1)

breaksw
Causes a break from a switch, resuming after the endsw.
case label:
A label in a switch statement as discussed below.
cd
cd name
chdir

chdir name
Change the shells working directory to directory name. If no argument is given then
change to the home directory of the user.
If name is not found as a subdirectory of the current directory (and does not begin with
/, ./ or *../”), then. each component of the variable cdpathis checked to see if it has a
subdirectory name. Finally, if all else fails but name is a shell variable whose value begins
with */°, then this is tried to see if it is a directory.

continue
Continue execution of the nearest enclosing while or foreach. The rest of the commands
on the current line are executed.

default:
Labels the default case in a swirch statement. The default should come after all case
labels.

dirs
Prints the directory stack: the top of the stack is at the left. the first directory in the stack
being the current directory.

echo wordlist

echo — n wordlist
The specified words are written to the shells standard output, separated by spaces, and ter-
minated with a newline unless the —n option is specified.

else
end
endif
endsw
See the description of the foreach, if, switch, and while statements below.

eval arg ...
(As in sh(1).) The arguments are read as input to the shell and the resulting command(s)
executed in the context of the current shell. This is usually used to execute commands
generated as the result of command or variable substitution, since parsing occurs before
these substitutions. See rset(1) for an example of using eval.

exec command
The specified command is executed in place of the current shell.

exit

exit(expr)
The shell exits either with the value of the starus variable (first form) or with the value of
the specified expr (second form).

fg

fg %job ...
Brings the current or specified jobs into the foreground, continuing them if they were
stopped.

4th Berkeley Distribution 18 July 1983 10

CSH (1) UNIX Programmer's Manual CSH (1)

foreach name (wordlist)

end
The variable name is successively set to each member of wordlist and the sequence of
commands between this command and the matching end are executed. (Both foreach and
end must appear alone on separate lines.)

The builtin command continue may be used to continue the loop prematurely and the buil-
tin command break to terminate it prematurely. When this command is read from the
terminal, the loop is read up once prompting with ‘?° before any statements in the loop
are executed. If you make a mistake typing in a loop at the terminal you can rub it out.

glob wordlist
Like echo but no *\” escapes are recognized and words are delimited by null characters in
the output. Useful for programs which wish to use the shell to filename expand a list of
words.

goto word
The specified word is filename and command expanded to yield a string of the form
‘label’. The shell rewinds its input as much as possible and searches for a line of the form
‘label:’ possibly preceded by blanks or tabs. Execution continues after the specified line.

hashstat
Print a statistics line indicating how effective the internal hash table has been at locating
commands (and avoiding exec’s). An exec is attempted for each component of the path
where the hash function indicates a possible hit, and in each component which does not
begin with a /.

history

history »

history —r n

history —h n
Displays the history event list; if » is given only the » most recent events are printed.
The —r option reverses the order of printout to be most recent first rather than oldest
first. The —h option causes the history list to be printed without leading numbers. This
is used to produce files suitable for sourceing using the —h option to source.

if (expr) command
If the specified expression evaluates true, then the single command with arguments is exe-
cuted. Variable substitution on command happens early, at the same time it does for the
rest of the jfcommand. Command must be a simple command. not a pipeline, a com-
mand list, or a parenthesized command list. Input/output redirection occurs even if expr
is false, when command is not executed (this is a bug).

if (expr) then
else if (expr2) then
else

endif
If the specified expris true then the commands to the first else are executed. else if expr2
is true then the commands to the second else are executed, etc. Any number of else-if
pairs are possible; only one endifis needed. The else part is likewise optional. (The words
else and endif must appear at the beginning of input lines; the jfmust appear alone on its
input line or after an else.)

4th Berkeley Distribution 18 July 1983 11

CSH (1) UNIX Programmer’s Manual CSH (1)

jobs

jobs —1
Lists the active jobs; given the —1 options lists process id’s in addition to the normal
information.

kill %job

kill —sig %job ...

kill pid

kill —sig pid ...

kill —1
Sends either the TERM (terminate) signal or the specified signal to the specified jobs or
processes. Signals are either given by number or by names (as given in
Jusr/include/signal. h, stripped of the prefix ‘SIG’’). The signal names are listed by *‘kill
—1"". There is no default, saying just ‘kill’ does not send a signal to the current job. If
the signal being sent is TERM (terminate) or HUP (hangup), then the job or process will
be sent a CONT (continue) signal as well.

limit

limit resource

limit resource maximum-use
Limits the consumption by the current process and each process it creates to not individu-
ally exceed maximum-use on the specified resource. If no maximum-use is given, then the
current limit is printed; if no resource is given, then all limitations are given.

Resources controllable currently include cputime (the maximum number of cpu-seconds to
be used by each process), filesize (the largest single file which can be created), dawsize
(the maximum growth of the data+stack region via sbrk(2) beyond the end of the pro-
gram text), stacksize (the maximum size of the automatically-extended stack region), and
coredumpsize (the size of the largest core dump that will be created).

The maximum-use may be given as a (floating point or integer) number followed by a
scale factor. For all limits other than cputime the default scale is ‘k’ or ‘kilobytes’ (1024
bytes). a scale factor of ‘m’ or ‘megabytes’ may also be used. For cpurime the default
scaling is ‘seconds’, while ‘m’ for minutes or ‘h’ for hours, or a time of the form ‘mm:ss’
giving minutes and seconds may be used.

For both resource names and scale factors, unambiguous prefixes of the names suffice.

login
Terminate a login shell, replacing it with an instance of /bin/legin. This is one way to log
off, included for compatibility with sh(1).

logout
Terminate a login shell. Especially useful if ignoreeofis set.

nice

nice +number

nice command

nice +number command
The first form sets the nice for this shell to 4. The second form sets the nice to the given
number. The final two forms run command at priority 4 and number respectively. The
super-user may specify negative niceness by using ‘nice —number ...". Command is
always executed in a sub-shell, and the restrictions place on commands in simple jfstate-
ments apply.

nohup

4th Berkeley Distribution 18 July 1983 12

CSH (1) UNIX Programmer’s Manual CSH (1)

nohup command
The first form can be used in shell scripts to cause hangups to be ignored for the
remainder of the script. The second form causes the specified command to be run with
hangups ignored. All processes detached with ‘& are effectively nohup’ed.

notify

notify %job ...
Causes the shell to notify the user asynchronously when the status of the current or
specified jobs changes; normally notification is presented before a prompt. This is
automatic if the shell variable notjf is set.

onintr

onintr —

onintr label
Control the action of the shell on interrupts. The first form restores the default action of
the shell on interrupts which is to terminate shell scripts or to return to the terminal com-
mand input level. The second form ‘onintr —’ causes all interrupts to be ignored. The
final form causes the shell to execute a ‘goto label’ when an interrupt is received or a
child process terminates because it was interrupted.

In any case, if the shell is running detached and interrupts are being ignored, all forms of
onintr have no meaning and interrupts continue to be ignored by the shell and all invoked
commands.

popd

popd +n
Pops the directory stack, returning to the new top directory. With a argument *+ »' dis-
cards the nth entry in the stack. The elements of the directory stack are numbered from
0 starting at the top.

pushd

pushd name

pushd +n
With no arguments. pushd exchanges the top two elements of the directory stack. Given a
name argument, pushd changes to the new directory (ala c¢d) and pushes the old current -
working directory (as in csw) onto the directory stack. With a numeric argument, rotates
the nth argument of the directory stack around to be the top element and changes to it.
The members of the directory stack are numbered from the top starting at 0.

rehash
Causes the internal hash table of the contents of the directories in the path variable to be
recomputed. This is needed if new commands are added to directories in the parh while
you are logged in. This should only be necessary if you add commands to one of your
own directories, or if a systems programmer changes the contents of one of the system
directories.

repeat count command
The specified command which is subject to the same restrictions as the command in the
one line jfstatement above, is executed counttimes. 1/0 redirections occur exactly once,
even if countis 0.

set
set name
set name =word
set name [index] =word
set name = (wordlist)
The first form of the command shows the value of all shell variables. Variables which

4th Berkeley Distribution 18 July 1983 13

CSH (1) UNIX Programmer's Manual CSH(1)

have other than a single word as value print as a parenthesized word list. The second
form sets name to the null string. The third form sets name to the single word. The
fourth form sets the index’th component of name to word; this component must already
exist. The final form sets name to the list of words in wordlist. In all cases the value is
command and filename expanded.

These arguments may be repeated to set multiple values in a single set command. Note
however, that variable expansion happens for all arguments before any setting occurs.

setenv name value
Sets the value of environment variable name to be value, a single string. The most com-
monly used environment variable USER, TERM, and PATH are automatically imported
to and exported from the csh variables user, term, and path; there is no need to use sereny
for these.

shift

shift variable
The members of argv are shifted to the left, discarding argv///. It is an error for argy not
to be set or to have less than one word as value. The second form performs the same
function on the specified variable.

source name

source —h name
The shell reads commands from name. Source commands may be nested. if they are
nested too deeply the shell may run out of file descriptors. An error in a source at any
level terminates all nested source commands. Normally input during sowrce commands is
not placed on the history list; the —h option causes the commands to be placed in the his-
tory list without being executed.

stop
stop %job ...
Stops the current or specified job which is executing in the background.

suspend
Causes the shell to stop in its tracks, much as if it had been sent a stop signal with “Z.
This is most often used to stop shells started by su(1).

switch (string)
case strl:

breaksw
default:

breaksw
endsw
Each case label is successively matched, against the specified string which is first command
and filename expanded. The file metacharacters *+", *?" and *[...]" may be used in the case
labels, which are variable expanded. If none of the labels match before a ‘default’ label is
found. then the execution begins after the default label. Each case label and the default
label must appear at the beginning of a line. The command breaksw causes execution to
continue after the endsw. Otherwise control may fall through case labels and default labels
as in C. If no label matches and there is no default. execution continues after the cndsw.

time
. time command
With no argument, a summary of time used by this shell and its children is printed. If

4th Berkeley Distribution 18 July 1983 4 14

CSH (1) UNIX Programmer’s Manual CSH (1)

arguments are given the specified simple command is timed and a time summary as
described under the rime variable is printed. If necessary, an extra shell is created to print
the time statistic when the command completes.

umask

umask value
The file creation mask is displayed (first form) or set to the specified value (second form).
The mask is given in octal. Common values for the mask are 002 giving all access to the
group and read and execute access to others or 022 giving all access except no write access
for users in the group or others.

unalias pattern ;
All aliases whose names match the specified pattern are discarded. Thus all aliases are
removed by ‘unalias *’. It is not an error for nothing to be wunaliased.

unhash
Use of the internal hash table to speed location of executed programs is disabled.

unlimit resource

unlimit
Removes the limitation on resource. If no resource is specified, then all resource limita-
tions are removed. '

unset pattern)
All variables whose names match the specified pattern are removed. Thus all variables
are removed by ‘unset *'; this has noticeably distasteful side-effects. It is not an error for
nothing to be unset.

unsetenv pattern
Removes all variables whose name match the specified pattern from the environment.
See also the setenvcommand above and printenv(1).

wait
All background jobs are waited for. It the shell is interactive, then an interrupt can dis-
rupt the wait, at which time the shell prints names and job numbers of all jobs known to
be outstanding.

while (expr)

end

While the specified expression evaluates non-zero, the commands between the while and
the matching end are evaluated. Break and continue may be used to terminate or continue
the loop prematurely. (The while and end must appear alone on their input lines.)
Prompting occurs here the first time through the loop as for the foreach statement if the
input is a terminal.

Y%job
Brings the specified job into the foreground.

%job &
Continues the specified job in the background.

@

@ name = expr

@ namelindex] = expr
The first form prints the values of all the shell variables. The second form sets the
specified naime to the value of expr. If the expression contains ‘<, *>", *&" or ' then at
least this part of the expression must be placed within ‘(" *)°. The third form assigns the
value of expr to the index'th argument of name. Both name and its index'th component

4th Berkeley Distribution 18 July 1983 ‘ 15

CSH (1) UNIX Programmer’s Manual CSH (1)

must already exist.

The operators **=", *4+ =", etc are available as in C. The space separating the name from
the assignment operator is optional. Spaces are, however, mandatory in separating com-
ponents of expr which would otherwise be single words.

Special postfix *++" and ‘— —’ operators increment and decrement name respectively,
ie. '@ i++".
Pre-defined and environment variables

The following variables have special meaning to the shell. Of these. argv, cwd, home, path,
prompt, shelland starus are always set by the shell. Except for cwdand swarus this setting occurs
only at initialization; these variables will not then be modified unless this is done explicitly by
the user.

This shell copies the environment variable USER into the variable user, TERM into term, and
HOME into home, and copies these back into the environment whenever the normal shell vari-
ables are reset. The environment variable PATH is likewise handled; it is not necessary to
worry about its setting other than in the file .cshrc as inferior csh processes will import the
definition of path from the environment, and re-export it if you then change it.

argy Set to the arguments to the shell. it is from this variable that positional param-
eters are substituted, i.e. ‘$1° is replaced by ‘Sargv[1]", etc.

cdpath Gives a list of alternate directories searched to find subdirectories in chdir com-
mands.

cwd The full pathname of the current directory.

echo Set when the —x command line option is given. Causes each command and

its arguments to be echoed just before it is executed. For non-builtin com-
mands all expansions occur before echoing. Builtin commands are echoed
before command and filename substitution, since these substitutions are then
done selectively.

histchars Can be given a string value to change the characters used in history substitu-
tion. The first character of its value is used as the history substitution charac-
ter, replacing the default character !. The second character of its value replaces
the character | in quick substitutions.

history Can be given a numeric value to control the size of the history list. Any com-
mand which has been referenced in this many events will not be discarded.
Too large values of history may run the shell out of memory. The last exe-
cuted command is always saved on the history list.

home The home directory of the invoker, initialized from the environment. The
filename expansion of ‘™" refers to this variable.

ignoreeof If set the shell ignores end-of-file from input devices which are terminals.
This prevents shells from accidentally being killed by control-D’s.

mail The files where the shell checks for mail. This is done after each command
completion which will result in a prompt, if a specified interval has elapsed.
The shell says ‘You have new mail." if the file exists with an access time not
greater than its modify time.

If the first word of the value of mail is numeric it specifies a different mail
checking interval, in seconds, than the default, which is 10 minutes.

If multiple mail files are specified, then the shell says ‘New mail in name’
when there is mail in the file name.

4th Berkeley Distribution 18 July 1983 16

CSH (1)

noclobber

nogiob

nonomatch

notify

path

prompt

savehist

shell

status

time

verbose

UNIX Programmer’s Manual CSH (1)

As described in the section on /Input/output, restrictions are placed on output
redirection to insure that files are not accidentally destroyed, and that *>>"
redirections refer to existing files.

If set, filename expansion is inhibited. This is most useful in shell scripts
which are not dealing with filenames, or after a list of filenames has been
obtained and further expansions are not desirable.

If set, it is not an error for a filename expansion to not match any existing
files; rather the primitive pattern is returned. It is still an error for the primi-
tive pattern to be malformed, i.e. ‘echo [’ still gives an error.

If set, the shell notifies asynchronously of job completions. The default is to
rather present job completions just before printing a prompt.

Each word of the path variable specifies a directory in which commands are to
be sought for execution. A null word specifies the current directory. If there
is no path variable then only full path names will execute. The usual search
path is *.’, */bin’ and ‘/usr/bin’, but this may vary from system to system. For
the super-user the default search path is ‘/etc’, */bin’ and ‘/usr/bin’. A shell
which is given neither the —c nor the —t option will normally hash the con-
tents of the directories in the path variable after reading .cshre¢, and each time
the path variable is reset. If new commands are added to these directories
while the shell is active, it may be necessary to give the rehash or the com-
mands may not be found.

" The string which is printed before each command is read from an interactive

terminal input. If a *!" appears in the string it will be replaced by the current
event number unless a preceding ‘\" is given. Default is *% °, or *# * for the
super-user.

is given a numeric value to control the number of entries of the history list
that are saved in “/.history when the user logs out. Any command which has
been referenced in this many events will be saved. During start up the shell
sources ~/.history into the history list enabling history to be saved across
logins. Too large values of savehist will slow down the shell during start up.

The file in which the shell resides. This is used in forking shells to interpret
files which have execute bits set, but which are not executable by the system.
(See the description of Non-builtin Command Execution below.) Initialized to
the (system-dependent) home of the shell.

The status returned by the last command. If it terminated abnormally. then
0200 is added to the status. Builtin commands which fail return exit status *1°,
all other builtin commands set status ‘0.

Controls automatic timing of commands. If set, then any command which
takes more than this many cpu seconds will cause a line giving user, system.
and real times and a utilization percentage which is the ratio of user plus sys-
tem times to real time to be printed when it terminates.

Set by the —v command line option, causes the words of each command to be
printed after history substitution.

Non-builtin command execution

When a command to be executed is foiind to not be a builtin command the shell attempts to
execute the command via execve(2). Each word in the variable path names a directory from |
which the shell will attempt to execute the command. If it is given neither a —c nor a —t
option, the shell will hash the names in these directories into an internal table so that it will

4th Berkeley Distribution 18 July 1983 17

CSH (1) UNIX Programmer’s Manual CSH (1)

only try an exec in a directory if there is a possibility that the command resides there. This
greatly speeds command location when a large number of directories are present in the search
path. If this mechanism has been turned off (via wunhash), or if the shell was givena —cor —t
- argument, and in any case for each directory component of path which does not begin with a
/, the shell concatenates with the given command name to form a path name of a file which it
then attempts to execute.
Parenthesized commands are always executed in a subshell. Thus *(cd ; pwd) ; pwd’ prints the
home directory; leaving you where you were (printing this after the home directory), while *cd :
pwd’ leaves you in the home directory. Parenthesized commands are most often used to
prevent chdir from affecting the current shell.

If the file has execute permissions but is not an executable binary to the system, then it is
assumed to be a file containing shell commands and a new shell is spawned to read it.

If there is an alias for shell then the words of the alias will be prepended to the argument list to
form the shell command. The first word of the alias should be the full path name of the shell
(e.g. ‘Sshell’). Note that this is a special, late occurring, case of alias substitution, and only
allows words to be prepended to the argument list without modification.

Argument list processing

If argument O to the shell is ‘=" then this is a login shell. The flag arguments are interpreted

as follows:

—c¢ Commands are read from the (single) following argument which must be present. Any
remaining arguments are placed in argv.

—e The shell exits if any invoked command terminates abnormally or yields a non-zero exit
status.

—f The shell will start faster, because it will neither search for nor execute commands from
the file ‘.cshrc’ in the invokers home directory.

—i The shell is interactive and prompts for its top-level input, even if it appears to not be a
terminal. Shells are interactive without this option if their inputs and outputs are termi-
nals.

—n Commands are parsed, but not executed. This aids in syntactic checking of shell scripts.
—s Command input is taken from the standard input.

—t A single line of input is read and executed. A ‘\’ may be used to escape the newline at
the end of this line and continue onto another line.

—v Causes the verbose variable to be set, with the effect that command input is echoed after
history substitution.

—x Causes the echo variable to be set, so that commands are echoed immediately before exe-
cution.

—V Causes the verbose variable to be set even before *.cshrc’ is executed.

—X Isto —xas —Visto —v.

After processing of flag arguments if arguments remain but none of the —¢, —i, —s, or —t

options was given the first argument is taken as the name of a file of commands to be executed.

The shell opens this file, and saves its name for possible resubstitution by ‘30". Since many

systems use either the standard version 6 or version 7 shells whose sheii scripts are not compa-

tible with this shell, the shell will execute such a ‘standard’ shell if the first character of a script

is not a ‘#’, i.e. if the script does not start with a comment. Remaining arguments initialize the

variable argv.

4th Berkeley Distribution 18 July 1983 ‘ 18

CSH (1) UNIX Programmer’s Manual CSH (1)

Signal handling

The shell normally ignores quitsignals. Jobs running detached (either by ‘&’ or the bgor Y%...
& commands) are immune to signals generated from the keyboard, including hangups. Other
signals have the values which the shell inherited from its parent. The shells handling of inter-
rupts and terminate signals in shell scripts can be controlled by onintr. Login shells catch the
terminate signal. otherwise this signal is passed on to children from the state in the shell’s
parent. In no case are interrupts allowed when a login shell is reading the file *.logout’.

AUTHOR

William Joy. Job control and directory stack features first implemented by J.E. Kulp of
I.ILA.S.A, Laxenburg, Austria, with different syntax than that used now.

FILES

“/.cshrc Read at beginning of execution by each shell.

“/.login Read by login shell, after ‘.cshrc” at login.

“/.logout Read by login shell, at logout.

/bin/sh Standard shell, for shell scripts not starting with a ‘#°.

/tmp/sh=* Temporary file for ‘< <",

/etc/passwd Source of home directories for ‘"name”.
LIMITATIONS

Words can be no longer than 1024 characters. The system limits argument lists to 10240 char-
acters. The number of arguments to a command which involves filename expansion is limited
to 1/6°th the number of characters allowed in an argument list. Command substitutions may
substitute no more characters than are allowed in an argument list. To detect looping, the shell
restricts the number of alias substitutions on a single line to 20. :

SEE ALSO
sh(l), access(2), execve(2), fork(2), killpg(2), pipe(2), sigvec(2), umask(2). setrlimit(2),
wait(2), tty(4), a.out(5), environ(7), ‘An introduction to the C shell’

BUGS
When a command is restarted from a stop, the shell prints the directory it started in if this is
different from the current directory; this can be misleading (i.e. wrong) as the job may have
changed directories internally.

Shell builtin functions are not stoppable/restartable. Command sequences of the form ‘a . b .
¢’ are also not handled gracefully when stopping is attempted. If you suspend ‘b’. the shell will
then immediately execute ‘¢’. This is especially noticeable if this expansion results from an
alias. 1t suffices to place the sequence of commands in ()’s to force it to a subshell. i.e. ‘*(a: b
e

Control over tty output after processes are started is primitive; perhaps this will inspire some-
one to work on a good virtual terminal interface. In a virtual terminal interface much more
interesting things could be done with output control.

Alias substitution is most often used to clumsily simulate shell procedures; shell procedures
should be provided rather than aliases.

Commands within loops. prompted for by *?°, are not placed in the history list. Control struc-
ture should be parsed rather than being recognized as built-in commands. This would allow
control commands to be placed anywhere. to be combined with ‘I, and to be used with ‘& and
.’ metasyntax.

It should be possible to use the *:" modiiers on the output of command substitutions. All and
more than one *:’ modifier should be allowed on *$’ substitutions.

4th Berkeley Distribution 18 July 1983 , 19

CSH (1) UNIX Programmer’s Manual CSH (1)

Symbolic links fool the shell. In particular, dirs and ‘cd ..’ don’t work properly once you've
crossed through a symbolic link.

4th Berkeley Distribution 18 July 1983 20

CTAGS (1) UNIX Programmer’s Manual CTAGS (1)

NAME

ctags — create a tags file

SYNOPSIS

ctags [—BFatuwvx] name ...

DESCRIPTION

FILES

Ctags makes a tags file for ex(1) from the specified C, Pascal and Fortran sources. A tags file
gives the locations of specified objects (in this case functions and typedefs) in a group of files.
Each line of the tags file contains the object name, the file in which it is defined, and an address
specification for the object definition. Functions are searched with a pattern, typedefs with a line
number. Specifiers are given in separate fields on the line, separated by blanks or tabs. Using
the rags file, ex can quickly find these objects definitions.

If the —x flag is given, ctags produces a list of object names, the line number and file name on
which each is defined, as well as the text of that line and prints this on the standard output.
This is a simple index which can be printed out as an off-line readable function index.

If the —v flag is given, an index of the form expected by vgrind(1) is produced on the standard
output. This listing contains the function name, file name, and page number (assuming 64 line
pages). Since the output will be sorted into lexicographic order, it may be desired to run the
output through sort —f. Sample use:

ctags —v files|sort —f > index

vgrind —x index

Files whose name ends in .c or .h are assumed to be C source files and are searched for C rou-
tine and macro definitions. Others are first examined to see if they contain any Pascal or For-
tran routine definitions; if not, they are processed again looking for C definitions.

Other options are:

—F use forward searching patterns (/.../) (default).
—B use backward searching patterns (?...7).

—a append to tags file.

—~t create tags for typedefs.

—w suppressing warning diagnostics.

—u causing the specified files to be updated in tags, that is, all references to them are deleted,
and the new values are appended to the file. (Beware: this option is implemented in a
way which is rather slow; it is usually faster to simply rebuild the tags file.)

The tag main is treated specially in C programs. The tag formed is created by prepending M to
the name of the file, with a trailing .c removed, if any, and leading pathname components also
removed. This makes use of ctags practical in directories with more than one program.

tags output tags file

SEE ALSO

ex(1), vi(1)

AUTHOR

BUGS

Ken Arnold; FORTRAN added by Jim Kleckner; Bill Joy added Pascal and —x, replacing cxref;
C typedefs added by Ed Pelegri-Llopart.

Recognition of functions, subroutines and procedures for FORTRAN and Pascal is done is a
very simpleminded way. No attempt is made to deal with block structure; if you have two Pas-
cal procedures in different blocks with the same name you lose.

4th Berkeley Distribution 25 August 1982 1

CTAGS (1) UNIX Programmer’s Manual CTAGS (1)

The method of deciding whether to look for C or Pascal and FORTRAN functions is a hack.
Does not know about #ifdefs.

Should know about Pascal types. Relies on the input being well formed to detect typedefs. Use
of -tx shows only the last line of typedefs.

4th Berkeley Distribution 25 August 1982 2

DATE (1) UNIX Programmer’s Manual DATE (1)

NAME
date — print and set the date

SYNOPSIS
date [-u] [yymmddhhmm [.ss]]

DESCRIPTION
If no arguments are given, the current date and time are printed. If a date is specified, the
current date is set. The -u flag is used to display the date in GMT (universal) time. This flag
may also be used to set GMT time. yy is the last two digits of the year; the first mm is the
month number; dd is the day number in the month; hh is the hour number (24 hour system);
the second mm is the minute number; .ss is optional and is the seconds. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The year, month and day may be omitted, the current values
being the defaults. The system operates in GMT. Date takes care of the conversion to and
from local standard and daylight time.

FILES
/usr/adm/wtmp to record time-setting

SEE ALSO
utmp(5)
DIAGNOSTICS '
' ‘Failed to set date: Not owner’ if you try to change the date but are not the super-user.

BUGS .
The system attempts to keep the date in a format closely compatible with VMS. VMS, how-
ever, uses local time (rather than GMT) and does not understand daylight savings time. Thus
if you use both UNIX and VMS, VMS will be running on GMT.

4th Berkeley Distribution 1 April 1983 ' 1

DD (1)

NAME

UNIX Programmer’s Manual DD (1)

dd — convert and copy a file

SYNOPSIS

dd [option=value] ...

DESCRIPTION

Dd copies the specified input file to the specified output with possible conversions. The stan-
dard input and output are used by default. The input and output block size may be specified to
take advantage of raw physical 1/0.

option values

if = input file name; standard input is default

of = output file name; standard output is default

ibs=n input block size n bytes (default 512)

obs=n output block size (default 512)

bs=n set both input and output block size, superseding ibs and obs; also, if no
conversion is specified, it is particularly efficient since no copy need be done

cbs=n conversion buffer size

skip=n skip n input records before starting copy

files=n copy n input files before terminating (makes sense only where input is a
magtape or similar device).

seek=n seek n records from beginning of output file before copying

count=n copy only n input records

conv =ascii convert EBCDIC to ASCII
ebcdic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
block convert variable length records to fixed length
unblock convert fixed length records to variable length
Icase map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input record to ibs
..., ... several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end with k, b or w to
specify multiplication by 1024, 512, or 2 respectively; a pair of numbers may be separated by x
to indicate a product.

Cbs is used only if ascii, unblock, ebcdic, ibm, or block conversion is specified. In the first two
cases, cbs characters are placed into the conversion buffer, any specified character mapping is
done, trailing blanks trimmed and new-line added before sending the line to the output. In the
latter three cases, characters are read into the conversion buffer, and blanks added to make up
an output record of size cbs.

After completion, dd reports the number of whole and partial input and output blocks.

For example, to read an EBCDIC tape blocked ten 80-byte EBCDIC card images per record into
the ASCII file x:

dd if=/dev/rmt0 of =x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. Dd is especially suited to I/0 on the raw physical devices because
it allows reading and writing in arbitrary record sizes.

4th Berkeley Distribution 18 January 1983 1

DD (1) UNIX Programmer’s Manual DD(1)

SEE ALSO
cp(1), tr(1)

DIAGNOSTICS
f+p records in(out): numbers of full and partial records read (written)

BUGS
The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the CACM
Nov, 1968. The ‘ibm’ conversion, while less blessed as a standard, corresponds better to cer-
tain IBM print train conventions. There is no universal solution.
One must specify ‘‘conv=noerror,sync’’ when copying raw disks with bad sectors to insure dd
stays synchronized.

4th Berkeley Distribution 18 January 1983 2

DELTA(1) DELTA(1)

NAME
delta — make a delta (change) to an SCCS file

SYNOPSIS
delta [—rSID] [—s] [—n] [—glist] [—m[mrlist]] [—ylcomment]] [—p]
files

DESCRIPTION

Defta is used to permanently introduce into the named SCCS file changes
that were made to the file retrieved by ger(1) (called the g-file, or generated
file).

Delta makes a delta to each named SCCS file. If a directory is named, delta
behaves as though each file in the directory were specified as a named file,
except that non-SCCS files (last component of the path name does not
begin with s.) and unreadable files are silently ignored. If a name of — is
given, the standard input is read (see WARNINGS); each line of the stan-
dard input is taken to be the name of an SCCS file to be processed.

Delta may issue prompts on the standard output depending upon certain
keyletters specified and flags (see admuin(l)) that may be present in the
SCCS file (see —m and —y keyletters below).

Keyletter arguments apply independently to each named file.

—rSID Uniquely identifies which delta is to be made to the
SCCS file. The use of this keyletter is necessary only
if two or more outstanding gets for editing (get —e)
on the same SCCS file were done by the same person
(login name). The SID value specified with the —r
keyletter can be either the SID specified on the get
command line or the SID to be made as reported by
the get command (see get(1)). A diagnostic results if
the specified SID is ambiguous, or, if necessary and
omitted on the command line.

—s Suppresses the issue, on the standard output, of the
created delta’s SID, as well as the number of lines
inserted, deleted and unchanged in the SCCS file.

-n Specifies retention of the edited g-file (normally
removed at completion of delta processing).

—glist Specifies a list (see get(1) for the definition of lisz) of
deltas which are to be ignored when the file is
accessed at the change level (SID) created by this
delta.

— m[mrlist] If the SCCS file has the v flag set (see admin(1)) then
a Modification Request (MR) number nmst be sup-
plied as the reason for creating the new deita.

If —m is not used and the standard input is a ter-
minal, the prompt MRs? is issued on the standard
output before the standard input is read; if the stan-
dard input is not a terminal, no prompt is issued.
The MRs? prompt always precedes the comments?
prompt (see —y keyletter).

MRs in a list are separated by blanks and/or tab
characters. An unescaped new-line character ter-
minates the MR list.

DELTA (1)

DELTA(1)

Note that if the v flag has a value (see admin(1)), it
is taken to be the name of a program (or shell pro-
cedure) which will validate the correctness of the MR
numbers. If a non-zero exit status is returned from
MR number validation program, delta terminates (it
is assumed that the MR numbers were not all valid).

—ylcomment] Arbitrary text used to describe the reason for making

FILES

the delta. A null string is considered a valid comment.

If —y is not specified and the standard input is a ter-
minal, the prompt comments? is issued on the stan-
dard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued.
An unescaped new-line character terminates the com-
ment text.

Causes delta to print (on the standard output) the
SCCS file differences before and after the delta is
applied in a diff (1) format.

All files of the form ?-file are explained in the Source Code Control System
User's Guide. The naming convention for these files is also described there.

g-file
p-file
g-file
x-file
z-file
d-file
/usr/bin/bdiff

WARNINGS

Existed before the execution of delta; removed after com-
pletion of delta.

Existed before the execution of delta; may exist after com-
pletion of delta.

Created during the execution of delta; removed after com-
pletion of delta.

Created during the execution of delta; renamed to SCCS file
after completion of delta.

Created during the execution of delta; removed during the
execution of delta.

Created during the execution of delta; removed after com-
pletion of delta.

Program to compute differences between the ‘‘gotten’” file
and the g-file.

Lines beginning with an SOH ASCII character (binary 001) cannot be placed
in the SCCS file unless the SOH is escaped. This character has special
meaning to SCCS (see sccsfile(5)) and will cause an error.

A get of many SCCS files, followed by a delta of those files, should be
avoided when the get generates a large amount of data. Instead, multiple
get/delta sequences should be used.

If the standard input (—) is specified on the delta command line, the —m
(if necessary) and —y keyletters must also be present. Omission of these
keyletters causes an error to occur.

SEE ALSO

admin(1), bdiff(1), get(1), help(1), prs(1), scesfile(5).
Source Code Control System User’s Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS

Use help(1) for explanations.

DEROFF (1) UNIX Programmer’s Manual DEROFF (1)

NAME
deroff — remove nroff, troff, tbl and eqn constructs

SYNOPSIS
deroff [—w] file ...

DESCRIPTION
Deroff reads each file in sequence and removes all nroff and troff command lines, backslash con-
structions, macro definitions, egn constructs (between ‘EQ’ and ‘.EN’ lines or between delim-
iters), and table descriptions and writes the remainder on the standard output. Deroff follows
chains of included files (‘.so’ and ‘.nx’ commands); if a file has already been included, a ‘.s0’ is
ignored and a ‘.nx’ terminates execution. If no input file is given, deroff reads from the stan-
dard input file.

If the —w flag is given, the output is a word list, one ‘word’ (string of letters, digits, and apos-
trophes, beginning with a letter; apostrophes are removed) per line, and all other characters
ignored. Otherwise, the output follows the original, with the deletions mentioned above.

SEE ALSO
troff (1), eqn(1), tbi(1)

BUGS

Deroff is not a complete troff interpreter, so it can be confused by subtle constructs. Most
errors result in too much rather than too little output.

7th Edition 18 January 1983 1

DF (1) UNIX Programmer’s Manual DF (1)

NAME

df — disk free
SYNOPSIS

df [—1] [filesystem ...] [file ...]
DESCRIPTION

Df prints out the amount of free disk space available on the specified filesystem, e.g.
‘“/dev/rp0a”, or on the filesystem in which the specified file, e.g. ‘“‘SHOME”’, is contained. If
no file system is specified, the free space on all of the normally mounted file systems is printed.
The reported numbers are in kilobytes.

Other options are:
-i Report also the number of inodes which are used and free.

FILES
/etc/fstab list of normally mounted filesystems

SEE ALSO
fstab(5), icheck(8), quot(8)

4th Berkeley Distribution 18 January 1983 1

DIFF (1) UNIX Programmer’s Manual DIFF (1)

NAME

diff — differential file and directory comparator

SYNOPSIS

diff [=1][—=r][—=s][—cefh] [—b]dirl dir2
diff [—cefh] [—b] filel file2
diff [—=Dstring] [—b] filel file2

DESCRIPTION

If both arguments are directories, diff sorts the contents of the directories by name, and then
runs the regular file diff algorithm (described below) on text files which are different. Binary
files which differ, common subdirectories, and files which appear in only one directory are
listed. Options when comparing directories are:

-1 long output format; each text file diff is piped through pr(1) to paginate it, other
differences are remembered and summarized after all text file differences are reported.

-r causes application of djff recursively to common subdirectories encountered.
-S causes djff to report files which are the same, which are otherwise not mentioned.

~Sname
starts a directory diff in the middle beginning with file name.

When run on regular files, and when comparing text files which differ during directory com-
parison, diff tells what lines must be changed in the files to bring them into agreement. Except
in rare circumstances, diff finds a smallest sufﬁciem set of file differences. If neither filel nor
file2 is a directory, then either may be given as ‘—’, in which case the standard input is used.
If filel is a directory, then a file in that directory whose file-name is the same as the file-name
of file2 is used (and vice versa).

There are several options for output format; the default output format contains lines of these
forms:

nl a n3 n4
ni,n2d n3
nl,n2c n3 né

These lines resemble ed commands to convert filel into file2. The numbers after the letters
pertain to file2. In fact, by exchanging ‘a’ for ‘d’ and reading backward one may ascertain
equally how to convert file2 into filel. As in ed, identical pairs where nl = n2 or n3 = n4 are
abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged by ‘<,
then all the lines that are affected in the second file flagged by ‘>

Except for —b, which may be given with any of the others, the following options are mutually
exclusive:

. —e producing a script of a, ¢ and 4 commands for the editor ed, which will recreate file2

from filel. In connection with —e, the following shell program may help maintain
multiple versions of a file. Only an ancestral file (31) and a chain of version-to-
version ed scripts ($2,33,...) made by djffneed be on hand. A ‘latest version’ appears
on the standard output.

(shift; cat $+; echo '1,8p’) | ed — $1

Extra commands are added to the output when comparing directories with —e, so
that the result is a sA(1) script for converting text files which are common to the two
directories from their state in dir! to their state in dir2.

-f produces a script similar to that of —e, not useful with ed, and in the opposite order.

4th Berkeley Distribution 18 January 1983 ’ 1

DIFF (1) UNIX Programmer’s Manual DIFF (1)

-C produces a diff with lines of context. The default is to present 3 lines of context and
may be changed, e.g to 10, by —¢10. With —c the output format is modified slightly:
the output beginning with identification of the files involved and their creation dates
and then each change is separated by a line with a dozen +’s. The lines removed
from filel are marked with ‘=’; those added to file2 are marked ‘+’. Lines which are
changed from one file to the other are marked in both files with ‘!’

=h does a fast, half-hearted job. It works only when changed stretches are short and well
separated, but does work on files of unlimited length.

—Dstring
causes diff to create a merged version of filel and file2 on the standard output, with C
preprocessor controls included so that a compilation of the result without defining
string is equivalent to compiling filel, while defining string will yield file2.

-b causes trailing blanks (spaces and tabs) to be ignored, and other strings of blanks to
compare equal.

FILES

/usr/lib/diffh for —h
/bin/pr

SEE ALSO
"~ emp(1), cc(1), comm(1), ed(1), diff3(1)

DIAGNOSTICS
Exit status is 0 for no differences, 1 for some, 2 for trouble.

BUGS
Editing scripts produced under the —e or —f option are naive about creating lines consisting of
a single °.’.
When comparing directories with the —b option specified, djff first compares the files ala cmp,
and then decides to run the djffalgorithm if they are not equal. This may cause a small amount
of spurious output if the files then turn out to be identical because the only differences are
insignificant blank string differences.

4th Berkeley Distribution 18 January 1983 2

DIFF3 (1) UNIX Programmer’s Manual DIFF3 (1)

NAME

diff3 — 3-way differential file comparison

SYNOPSIS

diff3 [—ex3] filel file2 file3

DESCRIPTION

FILES

Diff3 compares three versions of a file, and publishes disagreeing ranges of text flagged with
these codes:

- all three files differ
- | filel is different
-) file2 is different
=] file3 is different

The type of change suffered in converting a given range of a given file to some other is indi-
cated in one of these ways:

finla Text is to be appended after line number n/ in file £, where f= 1, 2, or 3.

finl,n2c¢ Text is to be changed in the range line n!/ to line n2. If nl = n2, the range
may be abbreviated to ni.

The original contents of the range follows immediately after a ¢ indication. When the contents
of two files are identical, the contents of the lower-numbered file is suppressed.

Under the —e option, diff7 publishes a script for the editor ed that will incorporate into filel all
changes between file2 and file3, i.e. the changes that normally would be flagged == == === and
=a=a==3 (Option —x (=—3) produces a script to incorporate only changes flagged = ===
(====3), The following command will apply the resulting script to ‘filel’.

(cat script; echo "1,8p") | ed — filel

/usr/1ib/diff3

SEE ALSO

BUGS

diff(1)

Text lines that consist of a single ‘.’ will defeat —e.

7th Edition 18 January 1983 1

DU (1) UNIX Programmer’s Manual DU (1)

NAME
du — summarize disk usage

SYNOPSIS
du[=s][—a]l[name...]

DESCRIPTION
Du gives the number of kilobytes contained in all files and, recursively, directories within each
specified directory or file name. If name is missing, ‘.’ is used.

The argument —s causes only the grand total to be given. The argument —a causes an entry
to be generated for each file. Absence of either causes an entry to be generated for each direc-
tory only.

A file which has two links to it is only counted once.

SEE ALSO
df(1), quot(8)

BUGS
Non-directories given as arguments (not under —a option) are not listed.
If there are too many distinct linked files, du counts the excess files multiply.

4th Berkeley Distribution 17 March 1982 1

ECHO (1) UNIX Programmer’s Manual ECHO(1)

NAME
echo — echo arguments

SYNOPSIS
echo[=n] [arg]..

DESCRIPTION
Echo writes its arguments separated by blanks and terminated by a newline on the standard out-
put. If the flag —n is used, no newline is added to the output.

Echo is useful for producing diagnostics in shell programs and for writing constant data on
pipes. To send diagnostics to the standard error file, do ‘echo ... 1>&2’.

7th Edition 18 January 1983 . 1

ED(1)

NAME

UNIX Programmer’s Manual ED (1)

ed — text editor

SYNOPSIS

ed[=][=x][name]

DESCRIPTION

FEd is the standard text editor.

If a name argument is given, ed simulates an e command (see below) on the named file; that is
to say, the file is read into ed’s buffer so that it can be edited. If —x is present, an x command
is simulated first to handle an encrypted file. The optional — suppresses the printing of expla-
natory output and should be used when the standard input is an editor script.

Ed operates on a copy of any file it is editing; changes made in the copy have no eﬂ‘éCt on the
file until a w (write) command is given. The copy of the text being edited resides in a tem-
porary file called the buffer.

Commands to ed have a simple and regular structure: zero or more addresses followed by a sin-
gle character command, possibly followed by parameters to the command. These addresses
specify one or more lines in the buffer. Missing addresses are supplied by default.

In general, only one command may appear on a line. Certain commands allow the addition of
text to the buffer. While ed is accepting text, it is said to be in inpur mode. In this mode, no
commands are recognized; all input is merely collected. Input mode is left by typing a period
*,” alone at the beginning of a line.

Ed supports a limited form of regular expression notation. A regular expression specifies a set of
strings of characters. A member of this set of strings is said to be matched by the regular
expression. In the following specification for regular expressions the word ‘character’ means
any character but newline.

1. Any character except a special character matches itself. Special characters are the regu-
lar expression delimiter plus \ [. and sometimes " *§$.

A . matches any character.
A\ followed by any character except a digit or () matches that character.

4, A nonempty string s bracketed [s] (or ["s]) matches any character in (or not in) s. In
s, \ has no special meaning, and] may only appear as the first letter. A substring a—b,
with a and b in ascending ASCII order, stands for the inclusive range of ASCII charac-
ters.

5. A regular expression of form 1-4 followed by * matches a sequence of 0 or more
matches of the regular expression.

A regular expression, x, of form 1-8, bracketed \ (x\) matches what x matches.

7. A\ followed by a digit » matches a copy of the string that the bracketed regular expres-
sion beginning with the nth \(matched.

8. A regular expression of form 1-8, x, followed by a regular expression of form 1-7, y
matches a match for x followed by a match for y, with the x match being as long as pos-
sible while still permitting a y match.

9. A regular expression of form 1-8 preceded by ~ (or followed by $), is constrained to
matches that begin at the left (or end at the right) end of a line.

10. A regular expression of form 1-9 picks out the longest among the leftmost matches in a
line.

11. An empty regular expression stands for a copy of the last regular expression encoun-
tered.

3rd Berkeley Distribution 14 September 1979 1

ED(1) UNIX Programmer’s Manual ED(1)

Regular expressions are used in addresses to specify lines and in one command (see s below)
to specify a portion of a line which is to be replaced. If it is desired to use one of the regular
expression metacharacters as an ordinary character, that character may be preceded by ‘\’. This
also applies to the character bounding the regular expression (often ¢/’) and to ‘\’ itself.

To understand addressing in ed it is necessary to know that at any time there is a current line.
Generally speaking, the current line is the last line affected by a command; however, the exact
effect on the current line is discussed under the description of the command. Addresses are
constructed as follows.

1. The character ‘.’ addresses the current line.

2 The character ‘S’ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4 “x’ addresses the line marked with the name x, which must be a lower-case letter.

Lines are marked with the & command described below.

5. A regular expression enclosed in slashes ¢/’ addresses the line found by searching for-
ward from the current line and stopping at the first line containing a string that matches
the regular expression. If necessary the search wraps around to the beginning of the
buffer.

6. . A regular expression enclosed in queries ‘?’ addresses the line found by searching back-
ward from the current line and stopping at the first line containing a string that matches
the regular expression. If necessary the search wraps around to the end of the buffer.

3

7. An address followed by a plus sign ‘+’ or a minus sign ‘—’ followed by a decimal
number specifies that address plus (resp. minus) the indicated number of lines. The
plus sign may be omitted.

8. If an address begins with ‘+’ or ‘—’ the addition or subtraction is taken with respect to
the current line; e.g. ‘=5’ is understood to mean ‘.—5".

9. If an address ends with ‘+’ or ‘=, then 1 is added (resp. subtracted). As a conse-
quence of this rule and rule 8, the address ‘—" refers to the line before the current line.
Moreover, trailing ‘+’ and ‘—’ characters have cumulative effect, so ‘——" refers to
the current line less 2.

10. To maintain compatibility with earlier versions of the editor, the character **’ in

addresses is equivalent to ‘—’.

Commands may require zero, one, or two addresses. Commands which require no addresses
regard the presence of an address as an error. Commands which accept one or two addresses
assume default addresses when insufficient are given. If more addresses are given than such a
command requires, the last one or two (depending on what is accepted) are used.

L)

Addresses are separated from each other typically by a comma °,’. They may also be separated
by a semicolon ‘;’. In this case the current line ‘.’ is set to the previous address before the
next address is interpreted. This feature can be used to determine the starting line for forward
and backward searches (‘/’, ‘?’). The second address of any two-address sequence must
correspond to a line following the line corresponding to the first address. The special form ‘%’

is an abbreviation for the address pair ‘1,$".

In the following list of ed commands, the default addresses are shown in parentheses. The
parentheses are not part of the address, but are used to show that the given addresses are the
default.

As mentioned, it is generally illegal for more than one command to appear on a line. However,
most commands may be suffixed by ‘p’ or by ‘I’, in which case the current line is either printed
or listed respectively in the way discussed below. Commands may also be suffixed by ‘n’,

3rd Berkeley Distribution 14 September 1979 2

ED (1) UNIX Programmer’s Manual ED (1)

meaning the output of the command is to be line numbered. These suffixes may be combined
in any order.

(a

<text>
The append command reads the given text and appends it after the addressed line. ‘.’ is
left on the last line input, if there were any, otherwise at the addressed line. Address ‘0’
is legal for this command; text is placed at the beginning of the buffer.

(.,Jc
<text>

The change command deletes the addressed lines, then accepts input text which replaces

these lines. ‘.’ is left at the last line input; if there were none, it is left at the line preced-
ing the deleted lines.

(.,.)d
The delete command deletes the addressed lines from the buffer. The line originally after
the last line deleted becomes the current line; if the lines deleted were originally at the
end, the new last line becomes the current line.

e filename
The edit command causes the entire contents of the buffer to be deleted, and then the
named file to be read in. ‘.’ is set to the last line of the buffer. The number of characters
read is typed. ‘filename’ is remembered for possible use as a default file name in a subse-

quent r or wcommand. If ‘filename’ is missing, the remembered name is used.

E filename
This command is the same as e, except that no diagnostic results when no w has been
given since the last buffer alteration.

f filename
The filename command prints the currently remembered file name. If ‘filename’ is given,
the currently remembered file name is changed to ‘filename’.

(1,8) g/regular expression/command list

In the global command, the first step is to mark every line which matches the given regu-
lar expression. Then for every such line, the given command list is executed with *." ini-
tially set to that line. A single command or the first of multiple commands appears on the
same line with the global command. All lines of a multi-line list except the last line must
be ended with ‘\’. A4, i and ¢ commands and associated input are permitted; the ‘.’ ter-
minating input mode may be omitted if it would be on the last line of the command list.
The commands g and v are not permitted in the command list.

()i
<text>

This command inserts the given text before the addressed line. .’ is left at the last line
input, or, if there were none, at the line before the addressed line. This command differs
from the a command only in the placement of the text.

(o). +D)j
This command joins the addressed lines into a single line; intermediate newlines simply

‘9

disarpear. ‘.’ is left at the resulting line.

(.)kx
The mark command marks the addressed line with name x, which must be a lower-case

3rd Berkeley Distribution 14 September 1979 3

PPN

ED (1) UNIX Programmer’s Manual ED(1)

letter. The address form “x’ then addresses this line.
(.,)1

The list command prints the addressed lines in an unambiguous way: non-graphic charac-
ters are printed in two-digit octal, and long lines are folded. The / command may be
placed on the same line after any non-i/o command.

(.,.)ma
The move command repositions the addressed lines after the line addressed by a. The
last of the moved lines becomes the current line.

(.,.)n

The number command prints the addressed lines with line numbers and a tab at the left.

(.,)p
The print command prints the addressed lines. is left at the last line printed. The p
command may be placed on the same line after any non-i/o command.

(.,.)P
This command is a synonym for p.

(38)

q The quit command causes ed to exit. No automatic write of a file is done.

Q This command is the same as ¢, except that no diagnostic results when no w has been
given since the last buffer alteration.

($) r filename
The read command reads in the given file after the addressed line. If no file name is
given, the remembered file name, if any, is used (see e and fcommands). The file name
is remembered if there was no remembered file name already. Address ‘0’ is legal for r
and causes the file to be read at the beginning of the buffer. If the read is successful, the

[}

number of characters read is typed. ‘.’ is left at the last line read in from the file.

(., .)s/regular expression/replacement/ or,

(., .)s/regular expression/replacement/g
The substitute command searches each addressed line for an occurrence of the specified
regular expression. On each line in which a match is found, all matched strings are
replaced by the replacement specified, if the global replacement indicator ‘g’ appears after
the command. If the global indicator does not appear, only the first occurrence of the
matched string is replaced. It is an error for the substitution to fail on all addressed lines.
Any punctuation character may be used instead of ‘/’ to delimit the regular expression

(3]

and the replacement. ‘.’ is left at the last line substituted.

An ampersand ‘&’ appearing in the replacement is replaced by the string matching the
regular expression. The special meaning of ‘&’ in this context may be suppressed by
preceding it by ‘\’. The characters ‘\n’ where n is a digit, are replaced by the text
matched by the n-th regular subexpression enclosed between ‘\(* and *\)’. When nested,
parenthesized subexpressions are present, »n is determined by counting occurrences of ‘\(’
starting from the left.

Lines may be split by substituting new-line characters into them. The new-line in the
replacement string must be escaped by preceding it by ‘\’.

One or two trailing delimiters may be omitted, implying the ‘p’ suffix. The special form
‘s’ followed by no delimiters repeats the most recent substitute command on the
addressed lines. The ‘s’ may be followed by the letters r (use the most recent regular
expression for the left hand side, instead of the most recent left hand side of a substitute
command), p (complement the setting of the p suffix from the previous substitution), or
g (complement the setting of the g suffix). These letters may be combined in any order.

(.,.)ta

3rd Berkeley Distribution 14 September 1979 4

ED (1)

UNIX Programmer’s Manual ED (1)

This command acts just like the m command, except that a copy of the addressed lines is
placed after address a (which may be 0). ‘.’ is left on the last line of the copy.

(.,Ju
The undo command restores the buffer to it’s state before the most recent buffer modify-
ing command. The current line is also restored. Buffer modifying commands are aq, ¢, d,
g i, k, and v. For purposes of undo, g and v are considered to be a single buffer modifying
command. Undo is its own inverse.

When ed runs out of memory (at about 8000 lines on any 16 bit mini-computer such as
the PDP-11) This full undo is not possible, and u can only undo the effect of the most
recent substitute on the current line. This restncted undo also applies to editor scripts
when ed is invoked with the - option.

(1, $) v/regular expression/command list _
This command is the same as the global command g except that the command list is exe-
cuted g with ‘.’ initially set to every line excepr those matching the regular expression.

(1, $) w filename
The write command writes the addressed lines onto the given file. If the file does not
exist, it is created. The file name is remembered if there was no remembered file name
already. If no file name is given, the remembered file name, if any, is used (see e and f
commands). ‘. is unchanged. If the command is successful, the number of characters
written is printed.

(1, $) W filename
This command is the same as w, except that the addressed lines are appended to the file.

(1, $) wq filename
This command is the same as w except that afterwards a ¢ command is done, exiting the
editor after the file is written.

X A key string is demanded from the standard input. Later r, ¢ and w commands will
encrypt and decrypt the text with this key by the algorithm of crypt(1). An explicitly
empty key turns off encryption. (. +1)z or,

(.+Dzn
This command scrolls through the buffer starting at the addressed line. 22 (or n, if given)
lines are printed. The last line printed becomes the current line. The value n is sticky, in
that it becomes the default for future z commands.

%) =

The line number of the addressed line is typed.

<

.” is unchanged by this command.

! <shell command >
The remainder ot the line after the
‘.’ is unchanged.

(.+1,.+1) <newline>
An address alone on a line causes the addressed line to be printed. A blank line alone is
equivalent to ‘.+1p’; it is useful for stepping through text. If two addresses are present
with no intervening semicolon, ed prints the range of lines. If they are separated by a
semicolon, the second line is printed.

"’

is sent to sh(1) to be interpreted as a command.

If an interrupt signal (ASCII DEL) is sent, ed prints ‘?interrupted’ and returns to its command
level.

Some size limitations: 512 characters per line, 256 characters per global command list, 64 char-
acters per file name, and, on mini computers, 128K characters in the temporary file. The limit
on the number of lines depends on the amount of core: each line takes 2 words.

3rd Berkeley Distribution 14 September 1979) 5

ED (1) 'UNIX Programmer’s Manual ED (1)

When reading a file, ed discards ASCII NUL characters and all characters after the last newline.
It refuses to read files containing non-ASCII characters.

FILES
/tmp/ex
edhup: work is saved here if terminal hangs up

SEE ALSO
B. W. Kernighan, 4 Tutorial Introduction to the ED Text Editor
B. W. Kernighan, Advanced editing on UNIX
ex(1), sed(1), crypt(1)

DIAGNOSTICS
‘name’ for inaccessible file; ‘?self-explanatory message’ for other errors.

To protect against throwing away valuable work, a ¢ or e command is considered to be in error,
unless a w has occurred since the last buffer change. A second q or e will be obeyed regardless.

BUGS
The / command mishandles DEL.
The undo command causes marks to be lost on affected lines.
The x command, -x option, and special treatment of hangups only work on UNIX.

3rd Berkeley Distribution 14 September 1979 6

EX (1)

NAME

UNIX Programmer’s Manual EX (1)

ex, edit — text editor

SYNOPSIS

ex[=1[=v][—ttag] [=r] [+command] [—1] name ...
edit [ex options]

DESCRIPTION

Ex is the root of a family of editors: edit, ex and vi. Ex is a superset of ed, with the most notable
extension being a display editing facility. Display based editing is the focus of vi.

If you have not used ed, or are a casual user, you will find that the editor edit is convenient for
you. It avoids some of the complexities of ex used mostly by systems programmers and per-
sons very familiar with ed.

If you have a CRT terminal, you may wish to use a display based editor; in this case see vi(1),
which is a command which focuses on the display editing portion of ex.

DOCUMENTATION

The document Edit: A tutorial provides a comprehensive introduction to edir assuming no previ-
ous knowledge of computers or the UNIX system.

The Ex Reference Manual — Version 3.5 is a comprehensive and complete manual for the com-
mand mode features of ex, but you cannot learn to use the editor by reading it. For an intro-
duction to more advanced forms of editing using the command mode of ex see the editing
documents written by Brian Kernighan for the editor ed; the material in the introductory and
advanced documents works also with ex.

An Introduction to Display Editing with Vi introduces the display editor vi and provides reference
material on vi. All of these documents can be found in volume 2¢ of the Programmer’s Manual.
In addition, the Vi Quick Reference card summarizes the commands of vi in a useful, functional
way, and is useful with the Introduction.

FILES
/usr/lib/ex?.7strings error messages
/usr/lib/ex?.?recover recover command
/usr/lib/ex?.7preserve preserve command
/etc/termcap describes capabilities of terminals
~/.exrc editor startup file
/tmp/Exnnnnn editor temporary
/tmp/Rxnnnnn named buffer temporary
/usr/preserve preservation directory

SEE ALSO

awk(1), ed(1), grep(1), sed(1), grep(1), vi(1), termcap(5), environ(7)

AUTHOR

BUGS

Originally written by William Joy
Mark Horton has maintained the editor since version 2.7, adding macros, support for many
unusual terminals, and other features such as word abbreviation mode.

The undo command causes all marks to be lost on lines changed and then restored if the
marked lines were changed.)

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical lines. More than a screen full
of output may result if long lines are present.

4th Berkeley Distribution 26 August 1980 : 1

EX (1) UNIX Programmer’s Manual EX (1)

File input/output errors don’t print a name if the command line ‘=" option is used.
There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before exiting the edi-
tor.
Null characters are discarded in input files, and cannot appear in resultant files.

4th Berkeley Distribution 26 August 1980 2

EXPAND (1) ‘ UNIX Programmer’s Manual EXPAND (1)

NAME
expand, unexpand — expand tabs to spaces, and vice versa

SYNOPSIS
expand [— tabstop | [— tabl,tab2,...,tabn | [file ...]
unexpand [— a] [file ... |

DESCRIPTION
Ezxpand processes the named files or the standard input writing the standard output with tabs
changed into blanks. Backspace characters are preserved into the output and decrement the
column count for tab calculations. Ezpand is useful for pre-processing character files (before
sorting, looking at specific columns, etc.) that contain tabs.

If a single tabstop argument is given then tabs are set tabstop spaces apart instead of the default
8. If multiple tabstops are given then the tabs are set at those specific columns.

Unexpand puts tabs back into the data from the standard input or the named files and writes the
result on the standard output. By default only leading blanks and tabs are reconverted to maxi-
mal strings of tabs. If the — a option is given, then tabs are inserted whenever they would
compress the resultant file by replacing two or more characters.

18 January 1983 : 1

EXPR (1) UNIX Programmer’s Manual EXPR (1)

NAME
expr — evaluate arguments as an expression

SYNOPSIS
exprarg...

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is written on the stan-
dard output. Each token of the expression is a separate argument.

The operators and keywords are listed below. The list is in order of increasing precedence, with
equal precedence operators grouped.

expr | expr
yields the first expr if it is neither null nor ‘0’, otherwise yields the second expr.

expr & expr
yields the first expr if neither expr is null or ‘0’, otherwise yields ‘0’

expr relop expr
where relop is one of < <= = l= >= > yields ‘1’ if the indicated comparison is
true, ‘0’ if false. The comparison is numeric if both expr are integers, otherwise lexico-
graphic.

expr + expr

expr — expr
addition or subtraction of the arguments.

expr « expr

expr | expr

expr % expr
multiplication, division, or remainder of the arguments.

expr : expr
The matching operator compares the string first argument with the regular expression
second argument; regular expression syntax is the same as that of ed(1). The \(...\)

pattern symbols can be used to select a portion of the first argument. Otherwise, the
matching operator yields the number of characters matched (‘0’ on failure).

(expr)
parentheses for grouping.

Examples:
To add 1 to the Shell variable a:
a="expr $a + 1°

To find the filename part (least significant part) of the pathname stored in variable a, which
may or may not contain ‘/’:

expr $a:"#/\(.s\)" [$a
Note the quoted Shell metacharacters.

SEE ALSO
sh(1), test(1)
DIAGNOSTICS
Expr returns the following exit codes:
0 if the expression is neither null nor ‘0’,
1 if the expression is null or ‘0’,
2 for invalid expressions.

7th Edition 18 January 1983 1

FALSE (1) UNIX Programmer’s Manual FALSE (1)

NAME
false, true — provide truth values

SYNOPSIS
true

false

DESCRIPTION
True and false are usually used in a Bourne shell script. They test for the appropriate status
"true” or "false" before running (or failing to run) a list of commands.

EXAMPLE
while false
do
command list
done
SEE ALSO
csh(1), sh(1), true(1)
DIAGNOSTICS

False has exit status nonzero.

7th Edition 11 January 1982 1

FILE(1) UNIX Programmer’s Manual FILE(1)

NAME
file — determine file type

SYNOPSIS
file file ...

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it. If an argument
appears to be ascii, file examines the first 512 bytes and tries to guess its language.

BUGS
It often makes mistakes. In particular it often suggests that command files are C programs.

Does not recognize Pascal or LISP.

7th Edition 18 January 1983 : 1

FIND (1) UNIX Programmer’s Manual FIND (1)

NAME
find — find files

SYNOPSIS
find pathname-list expression

DESCRIPTION
Find recursively descends the directory hierarchy for each pathname in the pathname-list (i.e.,
one or more pathnames) seeking files that match a boolean expression written in the primaries
given below. In the descriptions, the argument 7 is used as a decimal integer where +n means
more than n, —n means less than n and n means exactly n.

—name filename
True if the filename argument matches the current file name. Normal Shell argu-
ment syntax may be used if escaped (watch out for ‘[’, ‘?’ and ‘+’).

—perm onum ,
True if the file permission flags exactly match the octal number onum (see
chmod(1)). If onum is prefixed by a minus sign, more flag bits (017777, see stat(2))
become significant and the flags are compared: (flags&onum) = =onum.

—type ¢ True if the type of the file is ¢, where cis b, ¢, d, f or 1 for block special file, charac-
ter special file, directory, plain file, or symbolic link.

—links n True if the file has » links.

—user uname
True if the file belongs to the user uname (login name or numeric user ID).

—group gname
True if the file belongs to group gname (group name or numeric group ID).

—size n True if the file is n blocks long (512 bytes per block).
=inum n True if the file has inode number n.
—atime n True if the file has been accessed in » days.

—mtime n
True if the file has been modified in n days.

-exec command
True if the executed command returns a zero value as exit status. The end of the
command must be punctuated by an escaped semicolon. A command argument ‘{}’
is replaced by the current pathname.

=0k command
Like —exec except that the generated command is written on the standard output,
then the standard input is read and the command executed only upon response y.

—print Always true; causes the current pathname to be printed.

—newer file
True if the current file has been modified more recently than the argument file.

The primaries may be combined using the following operators (in order of decreasing pre-
cedence):

1) A parenthesized group of primaries and operators (parentheses are special to the Shell and
must be escaped).

2) The negation of a primary (‘! is the unary nor operator).

3) Concatenation of primaries (the and operation is implied by the juxtaposition of two pri-
maries).

7th Edition 18 January 1983 1

FIND (1) UNIX Programmer’s Manual FIND (1)

4) Alternation of primaries (‘—o’ is the or operator).

EXAMPLE
To remove all files named ‘a.out’ or ‘=.0’ that have not been accessed for a week:

find / \(—name a.out —0 —name ’+.0’ \) —atime +7 —exec rm {} \;

FILES
/étc/passwd
/etc/group

SEE ALSO
sh(1), test(1), fs(5)

BUGS
The syntax is painful.

7th Edition 18 January 1983 2

GET(1) : GET(1)

NAME
get — get a version of an SCCS file

SYNOPSIS
get [—rSID] [—ccutoff] [—ilist] [—xlist] [—aseq-no.] [—=k] [—e]
(—1p]] (=p] [=m] [=n] [=s] [=b] [—g] [—t] file ...

DESCRIPTION

Ger generates an ASCII text file from each named SCCS file according to the
specifications given by its keyletter arguments, which begin with —. The
arguments may be specified in any order, but all keyletter arguments apply
to all named SCCS files. If a directory is named, get behaves as though
each file in the directory were specified as a named file, except that non-
SCCS files (last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of — is given, the standard
input is read; each line of the standard input is taken to be the name of an
SCCS file to be processed. Again, non-SCCS files and unreadable files are
silently ignored.

The generated text is normally written into a file called the g-file whose
name is derived from the SCCS file name by simply removing the leading
s.; (see also FILES, below).

Each of the keyletter arguments is explained below as though only one
SCCS file is to be processed, but the effects of any keyletter argument
applies independently to each named file.

—rSID The SCCS IDentification string (SID) of the version (delta) oi
an SCCS file to be retrieved. Table 1 below shows, for the most
useful cases, what version of an SCCS file is retrieved (as well
as the SID of the version to be eventually created by delta(1) if
the —e keyletter is also used), as a function of the SID
specified.

—ccutoff Cutoff date-time, in the form:
YY[MM[DD(HH[MM(SS]]]]]

No changes (deltas) to the SCCS file which were created after
the specified cutoff date-time are included in the generated ASCII
text file. Units omitted from the date-time default to their
maximum possible values; that is, —c7502 is equivalent to
—¢750228235959. Any number of non-numeric characters may
separate the various 2 digit pieces of the cutoff date-time. This
feature allows one to specify a cutoff date in the form:
"—c77/2/2 9:22:25". Note that this implies that one may use
the %E% and %U% identification keywords (see below) for
nested gets within, say the input to a send(1C) command:

“lget "—c%E% %U%" s.file

—e Indicates that the get is for the purpose of editing or making a
change (delta) to the SCCS file via a subsequent use of delta(1).
The —e keyletter used in a ger for a particular version (SID) of
the SCCS file prevents further gers for editing on the same SID
until delta is executed or the j (joint edit) flag is set in the SCCS
file (see admin(1)). Concurrent use of get —e for different
SIDs is always allowed. '

If the g-file generated by get with an —e keyletter is accidentally
ruined in the process of editing it, it may be regenerated by re-
executing the getr command with the —k keyletter in place of
the —e keyletter.

GET(1)

—ilist

—xlist

GET(1)

SCCS file protection specified via the ceiling, floor, and author-
ized user list stored in the SCCS file (see admin(1)) are enforced
when the —e keyletter is used.

Used with the —e keyletter to indicate that the new delta
should have an SID in a new branch as shown in Table 1. This
keyletter is ignored if the b flag is not present in the file (see
admin(1)) or if the retrieved delta is not a leaf delta. (A leaf
delta is one that has no successors on the SCCS file tree.)

Note: A branch delta may always be created from a non-leaf
delia.

A list of deltas to be included (forced to be applied) in the
creation of the generated file. The /ist has the following syntax:

<list> 1= <range> | <list> , <range>
<range> ::= SID | SID — SID

SID, the SCCS Identification of a delta, may be in any form
shown in the ‘‘SID Specified’’ column of Table 1. Partial SIDs
are interpreted as shown in the “SID Retrieved’” column of
Table 1.

A list of deltas to be excluded (forced not to be applied) in the
creation of the generated file. See the —i keyletter for the lisz
format.

Suppresses replacement of identification keywords (see below)
in the retrieved text by their value. The —k keyletter is
implied by the —e keyletter.

Causes a delta summary to be written into an /file. If —lp is
used then an /-file is not created; the delta summary is written
on the standard output instead. See FILES for the format of the
I-file.

Causes the text retrieved from the SCCS file to be written on
the standard output. No g-file is created. All output which nor-
mally goes to the standard output goes to file descriptor 2
instead, unless the —s keyletter is used, in which case it disap-
pears.

Suppresses all output normally written on the standard output.
However, fatal error messages (which always go to file descrip-
tor 2) remain unaffected.

Causes each text line retrieved from the SCCS file to be pre-
ceded by the SID of the delta that inserted the text line in the
SCCS file. The format is: SID, followed by a horizontal tab, fol-
lowed by the text line.

Causes each generated text line to be preceded with the %M%
identification keyword value (see below). The format is: ZM%
value, followed by a horizontal tab, followed by the text line.
When both the —m and —n keyletters are used, the format is:
%M% value, followed by a horizontal tab, followed by the —m
keyletter generated format.

Suppresses the actual retrieval of text from the SCCS file. It is
primarily used to generate an /-file, or to verify the existence of
a particular SID.

Used to access the most recently created (‘‘top’’) delta in a
given release (e.g., —rl), or release and level (e.g., —r1.2).

-2

GET(1) GET(1)

—aseg-no. The delta sequence number of the SCCS file delta (version) to
be retrieved (see sccsfile(5)). This keyletter is used by the
comb(1) command; it is not a generally useful keyletter, and
users should not use it. If both the —r and —a keyletters are
specified, the —a keyletter is used. Care should be taken when
using the —a keyletter in conjunction with the —e keyletter, as
the SID of the delta to be created may not be what one expects.
The —r keyletter can be used with the —a and —e keyletters to
control the naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID
being accessed and with the number of lines retrieved from the SCCS file.

If the —e keyletter is used, the SID of the delta to be made appears after
the SID accessed and before the number of lines generated. If there is
more than one named file or if a directory or standard input is named, each
file name is printed (preceded by a new-line) before it is processed. If the
—i keyletter is used included deltas are listed following the notation ‘‘Inclu-
ded”’; if the —x keyletter is used, excluded deltas are listed following the
notation ‘‘Excluded”.

TABLE 1. Determination of SCCS Identification String

SID* —b Keyletter Other SID SID of Delta
Specified ~ Usedt Conditions Retrieved to be Created
Mci no R defaults to mR mR.mL mR.(mL -TT) T
nonet ~ yes ~ Rdefaultsto mR mR.mL mR.mL.(mB+1).1
R no R > mR mR.mL R.1***

R no R = mR mR.mL mR.(mL+1)

R yes R > mR mR.mL mR.mL.(mB+1).1

R yes R = mR mR.mL mR.mL.(mB+1).1

R - R < mR and BR.mL** hR.mL.(mB+1).1
R does not exist) T ’
Trunk succ.#

R - in release > R R.mL R.mL.(mB—+1).1
and R exists

R.L no No trunk succ. R.L R.(L+1)

R.L yes No trunk succ. R.L R.L.(mB+1).1
Trunk succ.

R.L - in release = R R.L R.L.(mB+1).1

R.L.B no No branch succ. R.LB.mS R.LB.(mS+1)

R.L.B yes No branch succ. R.L.B.mS R.L.(mB+1).1

R.LBS no No branch succ. __ R.L.B.S R.LB.(S+1)

R.L.B.S yes No branch succ. R.L.B.S R.L.(mB+1).1

R.L.BS - Branch suce. R.L.B.S R.L.(mB+1).1

* “R”, *“L”, “B’, and ‘S’ are the ‘‘release’’, “‘level”, ‘‘branch’’, and
‘“‘sequence’’ components of the SID, respectively; ‘“‘m’’ means ‘‘max-
imum”. Thus, for example, “R.mL’’ means ‘‘the maximum level
number within release R’; “R.L.(mB+1).1"" means ‘‘the first
sequence number on the new branch (i.e., maximum branch number
plus one) of level L within release R’’. Note that if the SID specified
is of the form “R.L”, “R.L.B”’, or *“R.L.BS"’, each of the specified
components must exist.

** “hR” is the highest existing release that is lower than the specified,
nonexistent, release R.

GET(1) GET(1)

*** This is used to force creation of the first delta in a new release.

Successor.

t The —b keyletter is effective only if the b flag (see admin(1)) is
present in the file. An entry of — means “‘irrelevant’.

% This case applies if the d (default SID) flag is not present in the file. If
the d flag is present in the file, then the SID obtained from the d flag is
interpreted as if it had been specified on the command line. Thus,
one of the other cases in this table applies.

IDENTIFICATION KEYWORDS

FILES

Identifying information is inserted into the text retrieved from the SCCS file
by replacing identification keywords with their value wherever they occur.
The following keywords may be used in the text stored in an SCCS file:

Keyword Value

%M % Module name: either the value of the m flag in the file (see
admin(1)), or if absent, the name of the SCCS file with the
leading s. removed.

%1% SCCS identification (SID) (%R%.%L%.%B%.%S%) of the
retrieved text.

%R % Release.

% L% Level.

%B% Branch.

%S% Sequence.

% D% Current date (YY/MM/DD).

%H% Current date (MM/DD/YY).

%T % Current time (HH:MM:SS).
%E% Date newest applied deita was created (YY/MM/DD).
%G % Date newest applied delta was created (MM/DD/YY).

%U% Time newest applied delta was created (HH:MM:SS).

%Y % Module type: value of the t flag in the SCCS file (see admin(1)).

%F% SCCS file name.

%P % Fully qualified SCCS file name.

% Q% The value of the q flag in the file (see admin(1)).

% C% Current line number. This keyword is intended for identifying
messages output by the program such as ‘‘this shouldn’t have
happened” type errors. It is not intended to be used on every
line to provide sequence numbers.

%Z % The 4-character string @(#) recognizable by what(1).

%W % A shorthand notation for constructing what(1) strings for UNIX
program files. W% = %Z%%M%<horizontal-tab>%I%

% A% Another shorthand notation for constructing what(1) strings for
non-UNIX program files. %A% = %Z%%Y % %M% %1% %Z%

Several auxiliary files may be created by get, These files are known generi-
cally as the g-file, I-file, p-file, and z-file. The letter before the hyphen is
called the tag. An auxiliary file name is formed from the SCCS file name:
the last component of all SCCS file names must be of.the form s.module-
name, the auxiliary files are named by replacing the leading s with the tag.
The g-file is an exception to this scheme: the g-file is named by removing
the s. prefix. For example, s.xyz.c, the auxiliary file names would be
xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the current
directory (unless the —p keyletter is used). A g-file is created in all cases,
whether or not any lines of text were generated by the ger. It is owned by
the real user. If the —k keyletter is used or implied its mode is 644; oth-
erwise its mode is 444. Only the real user need have write permission in

-4-

GET(1) GET(1)

the current directory.

The [-file contains a table showing which deltas were applied in generating
the retrieved text. The /-file is created in the current directory if the —1
keyletter is used; its mode is 444 and it is owned by the real user. Only the
real user need have write permission in the current directory.

Lines in the /-file have the following format:

a. A blank character if the delta was applied;
* otherwise.
b. A blank character if the delta was applied or wasn’t applied

and ignored;
* if the delta wasn’t applied and wasn’t ignored.
c. A code indicating a ‘‘special’’ reason why the delta was or
was not applied:
“I”’: Included.
“X’’: Excluded.
“C’": Cut off (by a —c keyletter).
Blank.
SCCS identification (SID).
Tab character.
Date and time (in the form YY/MM/DD HH:MM:SS) of
creation.
Blank.
Login name of person who created delta.

o @ moe A

The comments and MR data follow on subsequent lines, indented
one horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an —e
keyletter along to delta. Its contents are also used to prevent a subsequent
execution of ger with an —e keyletter for the same SID until delta is execu-
ted or the joint edit flag, j, (see admin(1)) is set in the SCCS file. The p-file
is created in the directory containing the SCCS file and the effective user
must have write permission in that directory. Its mode is 644 and it is
owned by the effective user. The format of the p-file is: the gotten SID, fol-
lowed by a blank, followed by the SID that the new delta will have when it
is made, followed by a blank, followed by the login name of the real user,
followed by a blank, followed by the date-time the ger was executed, fol-
lowed by a blank and the —i keyletter argument if it was present, followed
by a blank and the —x keyletter argument if it was present, followed by a
new-line. There can be an arbitrary number of lines in the p-file at any
time; no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its
contents are the binary (2 bytes) process ID of the command (i.e., ger) that
created it. The z-file is created in the directory containing the SCCS file for
the duration of get. The same protection restrictions as those for the p-file
apply for the z-file. The z-file is created mode 444,

SEE ALSO

admin(1), delta(1), help(1), prs(1), what(1), sccsfile(5).
Source Code Control System User’s Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS

BUGS

Use help(1) for explanations.

If the effective user has write permission (either explicitly or implicitly) in
the directory containing the SCCS files, but the real user doesn’t, then only
one file may be named when the —e keyletter is used.

-5-

RN

GETLINE(1V) UNIX Programmer’s Manual GETLINE(1V)

NAME

getline — get a line from stdin
SYNOPSIS

getline

DESCRIPTION
getline retrieves a line of text from the standard input device (normally a terminal), waiting for
a carraige return or newline to signal the end of input. It is useful for handling user input to
shell scripts.

EXAMPLE
a shell script to retrieve a user’s name and acknowledge it:

echo -n "enter your name: ”

username = ‘getline’
echo Hello $username

SEE ALSO
sh(1), esh(1)

7th Edition Valid 7 DECEMBER 1984 1

GREP (1) UNIX Programmer’s Manual GREP(1)

NAME
grep, egrep, fgrep — search a file for a pattern

SYNOPSIS
grep [option] ... expression [file] ...

egrep [option] ... [expression] [file] ...
fgrep [option] ... [strings] [file]

DESCRIPTION
Commands of the grep family search the input files (standard input default) for lines matching a
pattern. Normally, each line found is copied to the standard output. Grep patterns are limited
regular expressions in the style of ex(1); it uses a compact nondeterministic algorithm. Egrep
patterns are full regular expressions; it uses a fast deterministic algorithm that sometimes needs
exponential space. Fgrep patterns are fixed strings; it is fast and compact. The following
options are recognized.

-y All lines but those matching are printed.

-X (Exact) only lines matched in their entirety are printed (fgrep only).

-c Only a count of matching lines is printed.

-1 The names of files with matching lines are listed (once) separated by newlines.
-n Each line is preceded by its relative line number in the file.

-b Each line is preceded by the block number on which it was found. This is sometimes
useful in locating disk block numbers by context.

-i The case of letters is ignored in making comparisons — that is, upper and lower case
are considered identical. This applies to grep and fgrep only.

-s Silent mode. Nothing is printed (except error messages). This is useful for checking
the error status.

-w The expression is searched for as a word (as if surrounded by ‘\<’ and ‘\>’, see
ex(1).) (grep only)

—e expression
Same as a simple expression argument, but useful when the expression begins with a —.

—f file The regular expression (egrep) or string list (fgrep) is taken from the file.

In all cases the file name is shown if there is more than one input file. Care should be taken
when using the characters $ » [“| () and \ in the expression as they are also meaningful to the
Shell. It is safest to enclose the entire expression argument in single quotes " .

Fgrep searches for lines that contain one of the (newline-separated) strings.

Egrep accepts extended regular expressions. In the following description ‘character’ excludes
newline:

A\ followed by a single character other than newline matches that character.

The character * matches the beginning of a line.

The character $ matches the end of a line.

A . (period) matches any character.

A single character not otherwise endowed with special meaning matches that character.

A string enclosed in brackets [] matches any single character from the string. Ranges
of ASCII character codes may be abbreviated as in ‘a—z0—9’. A] may occur only as
the first character of the string. A literal — must be placed where it can’t be mistaken

4th Berkeley Distribution 11 August 1980 1

GREP (1) UNIX Programmer’s Manual GREP (1)

as a range indicator.

A regular expression followed by an s (asterisk) matches a sequence of 0 or more
matches of the regular expression. A regular expression followed by a -+ (plus)
matches a sequence of 1 or more matches of the regular expression. A regular expres-
sion followed by a ? (question mark) matches a sequence of 0 or 1 matches of the reg-
ular expression.

Two regular expressions concatenated match a match of the first followed by a match of
the second.

Two regular expressions separated by | or newline match either a match for the first or a
match for the second.

A regular expression enclosed in parentheses matches a match for the regular expres-
sion.

The order of precedence of operators at the same parenthesis level is [] then «+? then con-
catenation then | and newline.

Ideally there should be only one grep, but we don’t know a single algorithm that spans a wide
enough range of space-time tradeoffs.
SEE ALSO
ex(1), sed(1), sh(1)
DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files.

BUGS
Lines are limited to 256 characters; longer lines are truncated.

4th Berkeley Distribution 11 August 1980 2

GROUPS (1) UNIX Programmer’s Manual GROUPS (1)

NAME

groups — show group memberships
SYNOPSIS

sroups [user]
DESCRIPTION

The groups command shows the groups to which you or the optionally specified user belong.
Each user belongs to a group specified in the password file /erc/passwd and possibly to other
groups as specified in the file /etc/group. 1f you do not own a file but belong to the group which
it is owned by then you are granted group access to the file.
When a new file is created it is given the group of the containing directory.

SEE ALSO
setgroups(2)

FILES
/etc/passwd, /etc/group

BUGS
More groups should be allowed.

4th Berkeley Distribution 30 May 1983 : 1

HEAD (1) UNIX Programmer’s Manual HEAD (1)

NAME

head — give first few lines
SYNOPSIS

head [—count] [file ...]
DESCRIPTION

This filter gives the first count lines of each of the specified files, or of the standard input. If
count is omitted it defaults to 10.

SEE ALSO
tail(1)

3rd Berkeley Distribution 24 February 1979 1

HOSTID (1) UNIX Programmer’s Manual HOSTID (1)

NAME

hostid — set or print identifier of current host system
SYNOPSIS

hostid [identifier]
DESCRIPTION

The hostid command prints the identifier of the current host. This numeric value is expected to
be unique across all hosts and is normally set to the host’s Internet address. The super-user
can set the hostid by giving an argument; this is usually done in the startup script /etc/rc.local.

SEE ALSO
gethostid(2), sethostid(2)

4th Berkeley Distribution 1 April 1983 1

HOSTNAME (1) UNIX Programmer’s Manual HOSTNAME (1)

NAME

hostname — set or print name of current host system
SYNOPSIS

hostname [nameofhost]
DESCRIPTION

The hostname command prints the name of the current host, as given before the ‘‘login”
prompt. The super-user can set the hostname by giving an argument; this is usually done in
the startup script /etc/rc.local.

SEE ALSO
gethostname(2), sethostname(2)

4th Berkeley Distribution 13 March 1982 1

INSTALL (1) UNIX Programmer’s Manual INSTALL (1)

NAME

install — install binaries
SYNOPSIS

instal [—c] [—mmode] [—oowner] [—ggroup] [—s] binary destination
DESCRIPTION

Binary is moved (or copied if —c is specified) to destination. If destination already exists. it is
removed before binary is moved. If the destination is a directory then binary is moved into the
destination directory with its original file-name.

The mode for Destination is set to 755; the —m mode option may be used to specify a different
mode.

Destination is changed to owner root; the —o owner option may be used to specify a different
owner.

Destination is changed to group staff; the —g group option may be used to specify a different
group.

If the —s option is specified the binary is stripped after being installed.
Install refuses to move a file onto itself.

SEE ALSO
chgrp(1), chmod(1), cp(1), mv(1), strip(1), chown(8)

4th Berkeley Distribution 22 April 1983 1

IOSTAT (1) UNIX Programmer’s Manual IOSTAT (1)

NAME
iostat — report 1/0 statistics

SYNOPSIS
iostat [interval [count]]

DESCRIPTION
lostar iteratively reports the number of characters read and written to terminals, and, for each
disk, the number of seeks transfers per second,_kilobytes transfered per second, and the mil-
liseconds per average seek. It also gives the percentage of time the system has spent in user
mode, in user mode running low priority (niced) processes, in system mode, and idling.
To compute this information, for each disk, seeks and data transfer completions and number of
words transferred are counted: for terminals collectively, the number of input and output char-
acters are counted. Also, each sixtieth of a second, the state of each disk is examined and a
tally is made if the disk is active. From these numbers and given the transfer rates of the dev-
ices it is possible to determine average seek times for each device.
The optional interval argument causes iostat to report once each interval seconds. The first
report is for all time since a reboot and each subsequent report is for the last interval only.
The optional counrargument restricts the number of reports.

FILES
/dev/kmem
/vmunix

SEE ALSO
vmstat(1)

4th Berkeley Distribution 18 January 1983 1

JOIN (1) UNIX Programmer’s Manual JOIN (1)

NAME
join — relational database operator

SYNOPSIS
join [options] filel file2

DESCRIPTION
Join forms, on the standard output, a join of the two relations specified by the lines of filel and
file2. If filel is ‘=, the standard input is used.

Filel and file2 must be sorted in increasing ASCII collating sequence on the fields on which
they are to be joined, normally the first in each line.

There is one line in the output for each pair of lines in filel and file2 that have identical join
fields. The output line normally consists of the common field, then the rest of the line from
filel, then the rest of the line from file2.

Fields are normally separated by blank, tab or newline. In this case, muitiple separators count
as one, and leading separators are discarded.

These options are recognized:

—an In addition to the normal output, produce a line for each unpairable line in file n,
where nis 1 or 2.

—e s Replace empty output fields by string s.
—jn m Join on the mth field of file n. If nis missing, use the mth field in each file.

-0 list Each output line comprises the fields specified in list, each element of which has the
form n.m, where n is a file number and m is a field number.

—tc Use character ¢ as a separator (tab character). Every appearance of c¢ in a line is
significant.

SEE ALSO
sort(1), comm(1), awk(1)

BUGS

With default field separation, the collating sequence is that of sort —b; with —t, the sequence is
that of a plain sort.

The conventions of join, sort, comm, unig, look and awk(1) are wildly incongruous.

7th Edition 18 January 1983 : 1

\\

KILL (1) UNIX Programmer’s Manual KILL (1)

NAME

kill — terminate a process with extreme prejudice
SYNOPSIS

kill [—sig] processid ...

kill =1
DESCRIPTION

Kill sends the TERM (terminate, 15) signal to the specified processes. If a signal name or
number preceded by ‘—" is given as first argument, that signal is sent instead of terminate (see
sigvec(2)). The signal names are listed by ‘kill —I°, and are as given in Jusr/include/signal.h,
stripped of the common SIG prefix.

The terminate signal will kill processes that do not catch the signal; ‘kill —9 ..." is a sure kill. as
the KILL (9) signal cannot be caught. By convention, if process number 0 is specified. all
members in the process group (i.e. processes resulting from the current login) are signaled (but
beware: this works only if you use sh(1); not if you use csh(1).) The killed processes must
belong to the current user unless he is the super-user.

The process number of an asynchronous process started with ‘&’ is reported by the shell. Pro-
cess numbers can also be found by using Kill is a built-in to csh(1); it allows job specifiers
“%...”" so process id’s are not as often used as killarguments. See csh(1) for details.

SEE ALSO

BUGS

csh(l), ps(1), kill(2), sigvec(2)

An option to kill process groups ala killpg(2) should be provided; a replacement for **kill 0*" for
csh(1) users should be provided.

4th Berkeley Distribution 18 January 1983 1

LAST (1) UNIX Programmer’s Manual LAST(1)

NAME

last — indicate last logins of users and teletypes

SYNOPSIS

last [=N] [name..]I [tty ..]

DESCRIPTION

FILES

Last will look back in the wtmp file which records all logins and logouts for information about a
user, a teletype or any group of users and teletypes. Arguments specify names of users or tele-
types of interest. Names of teletypes may be given fully or abbreviated. For example ‘last 0’ is
the same as ‘last tty0’. If multiple arguments are given, the information which applies to any
of the arguments is printed. For example ‘last root console’ would list all of "root’s" sessions as
well as all sessions on the console terminal. Lasr will print the sessions of the specified users
and teletypes, most recent first, indicating the times at which the session began, the duration of
the session, and the teletype which the session took place on. If the session is still continuing

or was cut short by a reboot, /lastso indicates.

The pseudo-user reboot logs in at reboots of the system, thus
last reboot

will give an indication of mean time between reboot.

Last with no arguments prints a record of all logins and logouts, in reverse order. The —N
option limits the report to N lines. :

If lastis interrupted, it indicates how far the search has progressed in wimp. If interrupted with
a quit signal (generated by a control-\) last indicates how far the search has progressed so far,
and the search continues.

/usr/adm/wtmp login data base
/usr/adm/shutdownlog which records shutdowns and reasons for same

SEE ALSO

wtmp(5), ac(8), lastcomm(1)

AUTHOR

Howard Katseff

4th Berkeley Distribution 1 April 1981 1

LD (1) UNIX Programmer’s Manual LD (1)

NAME

1d — link editor
SYNOPSIS

1d [option] ... file ...
DESCRIPTION

Ld combines several object programs into one, resolves external references, and searches
libraries. In the simplest case several object files are given, and /d combines them, producing an
object module which can be either executed or become the input for a further /d run. (In the.
latter case, the —r option must be given to preserve the relocation bits.) The output of /d is
left on a.out. This file is made executable only if no errors occurred during the load.

The argument routines are concatenated in the order specified. The entry point of the output is
the beginning of the first routine (unless the —e option is specified).

If any argument is a library, it is searched exactly once at the point it is encountered in the
argument list. Only those routines defining an unresolved external reference are loaded. If a
routine from a library references another routine in the library, and the library has not been
processed by ranlib(1), the referenced routine must appear after the referencing routine in the
library. Thus the order of programs within libraries may be important. The first member of a
library should be a file named ‘__.SYMDEF’, which is understood to be a dictionary for the
library as produced by ranlib(1); the dictionary is searched iteratively to satisfy as many refer-
ences as possible.

y ¢

The symbols _etext’, ‘_edata’ and ‘_end’ (‘etext’, ‘edata’ and ‘end’ in C) are reserved, and if
referred to, are set to the first location above the program, the first location above initialized
data, and the first location above all data respectively. It is erroneous to define these symbols.

Ld understands several options. Except for —I1, they should appear before the file names.

—A This option specifies incremental loading, i.e. linking is to be done in a manner so that
the resulting object may be read into an already executing program. The next argument
is the name of a file whose symbol table will be taken as a basis on which to define
additional symbols. Only newly linked material will be entered into the text and data
portions of a.out, but the new symbol table will reflect every symbol defined before and
after the incremental load. This argument must appear before any other object file in
the argument list. The —T option may be used as well, and will be taken to mean that
the newly linked segment will commence at the corresponding address (which must be
a multiple of 1024). The default value is the old value of _end.

—D Take the next argument as a hexadecimal number and pad the data segment with zero
bytes to the indicated length.

—-d Force definition of common storage even if the —r flag is present.

—e The following argument is taken to be the name of the entry point of the loaded pro-
gram; location 0 is the default.

=lx This option is an abbreviation for the library name ‘/lib/libx.a’, where x is a string. If
that does not exist, /d tries ‘/usr/lib/libx.a’ A library is searched when its name is
encountered, so the placement of a —1 is significant.

=M produce a primitive load map, listing the names of the files which will be loaded.
=N Do not make the text portion read only or sharable. (Use "magic number" 0407.)

-n Arrange (by giving the output file a 0410 "magic aumber") that when the output file is
executed, the text portion will be read-only and shared among all users executing the
file. This involves moving the data areas up to the first possible 1024 byte boundary
following the end of the text.

4th Berkeley Distribution 18 January 1983 1

LD (1)

UNIX Programmer’s Manual LD (1)

-0 The name argument after —o is used as the name of the /d output file, instead of a.out.

-r Generate relocation bits in the output file so that it can be the subject of another /d run.
This flag also prevents final definitions from being given to common symbols, and
suppresses the ‘undefined symbol’ diagnostics.

-S ‘Strip’ the output by removing all symbols except locals and globals.

—s - ‘Strip’ the output, that is, remove the symbol table and relocation bits to save space
(but impair the usefulness of the debuggers). This information can also be removed by
strip(1).

-~T The next argument is a hexadecimal number which sets the text segment origin. The
default origin is 0.

-t ("trace") Print the name of each file as it is processed.

—u Take the following argument as a symbol and enter it as undefined in the symbol table.
This is useful for loading wholly from a library, since initially the symbol table is empty
and an unresolved reference is needed to force the loading of the first routine.

—X Save local symbols except for those whose names begin with ‘L’. This option is used
by cc(1) to discard internally-generated labels while retaining symbols local to routines.

-X Do not preserve local (non-.globl) symbols in the output symbol table; only enter
external symbols. This option saves some space in the output file.

~—ysym Indicate each file in which sym appears, its type and whether the file defines or refer-
ences it. Many such options may be given to trace many symbols. (It is usually neces-
sary to begin sym with an ‘_’, as external C, FORTRAN and Pascal variables begin with
underscores.)

-z Arrange for the process to be loaded on demand from the resulting executable file (413
format) rather than preloaded. This is the default. Results in a 1024 byte header on
the output file followed by a text and data segment each of which have size a multiple
of 1024 bytes (being padded out with nulls in the file if necessary). With this format
the first few BSS segment symbols may actually appear (from the output of size(1)) to
live in the data segment; this to avoid wasting the space resulting from data segment
size roundup.

FILES

/1ib/lib=.a libraries

/usr/lib/lib=.a more libraries

/usr/local/lib/libs.a still more libraries

a.out output file

SEE ALSO
as(1), ar(1), cc(1), ranlib(1)
BUGS '

There is no way to force data to be page aligned. Ld pads images which are to be demand
loaded from the file system to the next page boundary to avoid a bug in the system.

4th Berkeley Distribution 18 January 1983 2

LEX (1) UNIX Programmer’s Manual LEX (1)

NAME
lex — generator of lexical analysis programs

SYNOPSIS
lex [~tvfn] [file] ...

DESCRIPTION
Lex generates programs to be used in simple lexical analyis of text. The input files (standard
input default) contain regular expressions to be searched for, and actions written in C to be
executed when expressions are found.

A C source program, ’lex.yy.c’ is generated, to be compiled thus:
cc lex.yy.c —=ll

This program, when run, copies unrecognized portions of the input to the output, and executes
the associated C action for each regular expression that is recognized.

The options have the following meanings.

-t Place the result on the standard output instead of in file "lex.yy.c".
-v Print a one-line summary of statistics of the generated analyzer.
-n Opposite of —v; —n is default.

-f "Faster" compilation: don’t bother to pack the resulting tables; limited to small pro-
grams.
EXAMPLE
lex lexcommands

would draw lex instructions from the file lexcommands, and place the output in lex.yy.c

%%

[A—Z] putchar(yytext[0] +'a"—"A");
[1+$

[1+ putchar(" *);

is an example of a lex program that would be put into a /ex command file. This program con-
verts upper case to lower, removes blanks at the end of lines, and replaces multiple blanks by
single blanks.

SEE ALSO
yacc(1), sed(1)
M. E. Lesk and E. Schmidt, LEX — Lexical Analyzer Generator

7th Edition 7 February 1983 1

LINT (1) UNIX Programmer’s Manual LINT (1)

NAME
lint — a C program verifier

SYNOPSIS
lint [—abchnpuvx] file ...

DESCRIPTION

Lint attempts to detect features of the C program files which are likely to be bugs, or non-
portable, or wasteful. It also checks the type usage of the program more strictly than the com-
pilers. Among the things which are currently found are unreachable statements, loops not
entered at the top, automatic variables declared and not used, and logical expressions whose
value is constant. Moreover, the usage of functions is checked to find functions which return
values-in some places and not in others, functions called with varying numbers of arguments,
and functions whose values are not used.

By default, it is assumed that all the files are to be loaded together; they are checked for mutual
compatibility. Function definitions for certain libraries are available to lint; these libraries are
referred to by a conventional name, such as ‘—Im’, in the style of /d(1). Arguments ending in
.In are also treated as library files. To create lint libraries, use the —C option:

lint —Cfoo files . . .

where files are the C sources of library foo. The result is a file /lib-lfoo.In in the correct library
format suitable for linting programs using foo.

Any number of the options in the following list may be used. The =D, —U, and —1I options of
cc(1) are also recognized as separate arguments.

] Attempt to check portability to the IBM and GCOS dialects of C.

h Apply a number of heuristic tests to attempt to intuit bugs, improve style, and reduce
waste.

b Report break statements that cannot be reached. (This is not the default because,

unfortunately, most lex and many yacc outputs produce dozens of such comments.)

v Suppress complaints about unused arguments in functions.

X Report variables referred to by extern declarations, but never used.

a Report assignments of long values to int variables.

c Complain about casts which have quéstionable portability.

u Do not complain about functions and variables used and not defined, or defined and
not used (this is suitable for running /int on a subset of files out of a larger program).

n Do not check compatibility against the standard library.

z Do not complain about structures that are never defined (e.g. using a structure pointer

without knowing its contents.).
Exit(2) and other functions which do not return are not understood; this causes various lies.
Certain conventional comments in the C source will change the behavior of lint:

/*NOTREACHED+/
at appropriate points stops comments about unreachable code.

/*VARARGSn+/
suppresses the usual checking for variable numbers of arguments in the following func-
tion declaration. The data types of the first n arguments are checked; a missing n is
- taken to be 0. :

/*NOSTRICT»/ :
shuts off strict type checking in the next expression.

4th Berkeley Distribution 7 March 1983 , 1

LINT (1) UNIX Programmer’s Manual LINT (1)

/*ARGSUSED+/
turns on the —v option for the next function.

/*LINTLIBRARY+/
at the beginning of a file shuts off complaints about unused functions in this file.

AUTHOR
S.C. Johnson. Lint library construction implemented by Edward Wang.

FILES
/usr/lib/lint/1int[12] programs
/usr/lib/lint/llib-lc.In declarations for standard functions
/usr/lib/lint/1lib-lc human readable version of above
/usr/lib/lint/1lib-port.In declarations for portable functions
/usr/lib/lint/llib-port human readable . . .

llib-1+.1n library created with —C
SEE ALSO

cc(1)

S. C. Johnson, Lint, a C Program Checker

BUGS
There are some things you just can’t get lint to shut up about.

4th Berkeley Distribution 7 March 1983 2

LN (1)

NAME

UNIX Programmer’s Manual LN (1)

In — make links

SYNOPSIS

In [—=s] namel [name2]
In name ... directory

DESCRIPTION

A link is a directory entry referring to a file; the same file (together with its size, all its protec-
tion information, etc.) may have several links to it. There are two kinds of links: hard links
and symbolic links.

By default /n makes hard links. A hard link to a file is indistinguishable from the original direc-
tory entry, any changes to a file are effective independent of the name used to reference the
file. Hard links may not span file systems and may not refer to directories.

The —s option causes In to create symbolic links. A symbolic link contains the name of the file
to which it is linked. The referenced file is used when an open(2) operation is performed on
the link. A stat(2) on a symbolic link will return the linked-to file; an /stat(2) must be done to
obtain information about the link. The read!link(2) call may be used to read the contents of a
symbolic link. Symbolic links may span file systems and may refer to directories.

Given one or two arguments, /n creates a link to an existing file namel. If name? is given, the
link has that name; name2 may also be a directory in which to place the link; otherwise it is
placed in the current directory. If only the directory is specified, the link will be made to the
last component of namel.

Given more than two arguments, /n makes links to all the named files in the named directory.
The links made will have the same name as the files being linked to.

SEE ALSO

rm(1), cp(1), mv(1), link(2), readlink(2), stat(2), symlink(2)

4th Berkeley Distribution 17 March 1982 1

LOGIN (1) UNIX Programmer’s Manual LOGIN (1)

NAME

login — sign on

SYNOPSIS

login [username]

DESCRIPTION

FILES

The login command is used when a user initially signs on, or it may be used at any time to
change from one user to another. The latter case is the one summarized above and described
here. See ‘‘How to Get Started” for how to dial up initially.

If login is invoked without an argument, it asks for a user name, and, if appropriate, a pass-
word. Echoing is turned off (if possible) during the typing of the password, so it will not
appear on the written record of the session.

After a successful login, accounting files are updated and the user is informed of the existence
of mail, and the message of the day is printed, as is the time he last logged in (unless he has a
‘“.hushlogin” file in his home directory — this is mostly used to make life easier for non-
human users, such as uucp).

Login initializes the user and group IDs and the working directory, then executes a command
interpreter (usually sh(1)) according to specifications found in a password file. Argument 0 of
the command interpreter is ‘‘—sh’’, or more generally the name of the command interpreter
with a leading dash (‘‘—"’) prepended.

Login also initializes the environment environ(7) with information specifying home directory,
command interpreter, terminal type (if available) and user name.

If the file /etc/nologin exists login prints its contents on the user’s terminal and exits. This is
used by shutdown(8) to stop users logging in when the system is about to go down.

Login is recognized by sh(1) and csh(1) and executed directly (without forking).

/etc/utmp accounting
/usr/adm/wtmp accounting
/usr/spool/mail/* mail

/etc/motd message-of-the-day

/etc/passwd password file

/etc/nologin stops logins

.hushlogin makes login quieter

/etc/securetty lists ttys that root may log in on
SEE ALSO

init(8), getty(8), mail(1), passwd(1), passwd(5), environ(7), shutdown(8)

DIAGNOSTICS

BUGS

“‘Login incorrect,”’ if the name or the password is bad.

9 6

*‘No Shell”’, “‘cannot open password file’’, ‘‘no directory’’: consult a programming counselor.

An undocumented option, —r is used by the remote login server, rlogind(8C) to force login to
enter into an initial connection protocol.

4th Berkeley Distribution 1 April 1981 1

LOOK (1) UNIX Programmer’s Manual LOOK (1)

NAME
look — find lines in a sorted list

SYNOPSIS
look [—df] string [file]

DESCRIPTION
Look consults a sorted file and prints all lines that begin with string. It uses binary search.

The options d and f affect comparisons as in sort(1):

d ‘Dictionary’ order: only letters, digits, tabs and blanks participate in comparisons.
f Fold. Upper case letters compare equal to lower case.

If no file is specified, /usr/dict/words is assumed with collating sequence —df.

FILES
/usr/dict/words

SEE ALSO
sort(1), grep(1)

7th Edition 18 January 1983 ' 1

LORDER(1) UNIX Programmer’s Manual LORDER (1)

NAME
lorder — find ordering relation for an object library

SYNOPSIS
loxder file ...

DESCRIPTION
The input is one or more object or library archive (see ar(1)) files. The standard output is a list
of pairs of object file names, meaning that the first file of the pair refers to external identifiers

defined in the second. The output may be processed by tsort(1) to find an ordering of a library
suitable for one-pass access by id(1).

This brash one-liner intends to build a new library from existing ‘.0’ files.
ar cr library *lorder .0 | tsort’

The need for lorder may be vitiated by use of ranlib(1), which converts an ordered archive into
a randomly accessed library.

FILES

ssymref, »symdef

nm(1), sed(1), sort(1), join(1)
SEE ALSO

tsort(1), 1d(1), ar(1), ranlib(1)
BUGS

The names of object files, in and out of libraries, must end with ‘.0’; nonsense results other-
wise.

4th Berkeley Distribution 18 January 1983 1

LPQ (1) UNIX Programmer’s Manual LPQ (1)

NAME

Ipq — spool queue examination program

SYNOPSIS

Ipql +[n]][-1]1[—Pprinter] [job # ...] [user ...]

DESCRIPTION

Ipg examines the spooling area used by [pd(8) for printing files on the line printer, and reports
the status of the specified jobs or all jobs associated with a user. [pg invoked without any argu-
ments reports on any jobs currently in the queue. A —P flag may be used to specify a particu-
lar printer, otherwise the default line printer is used (or the value of the PRINTER variable in
the environment). If a + argument is supplied, /pg displays the spool queue until it empties.
Supplying -a number immediately after the + sign indicates that /pg should sleep n seconds in
between scans of the queue. All other arguments supplied are interpreted as user names or job
numbers to filter out only those jobs of interest.

For each job submitted (i.e. invocation of Ipr(1)) Ipg reports the user’s name, current rank in
the queue, the names of files comprising the job, the job identifier (a number which may be
supplied to Iprm(1) for removing a specific job), and the total size in bytes. The —1 option
causes information about each of the files comprising the job to be printed. Normally. only as
much information as will fit on one line is displayed. Job ordering is dependent on the algo-
rithm used to scan the spooling directory and is supposed to be FIFO (First in First Out). File
names comprising a job may be unavailable (when Ipr(1) is used as a sink in a pipeline) in
which case the file is indicated as *‘(standard input)".

If Ipg warns that there is no daemon present (i.e. due to some malfunction), the [pc(8) com-
mand can be used to restart the printer daemon.

FILES
/etc/termcap for manipulating the screen for repeated display
/etc/printcap to determine printer characteristics
/usr/spool/ * the spooling directory, as determined from printcap
/usr/spool/*/cf* control files specifying jobs
/usr/spool/*/lock the lock file to obtain the currently active job
SEE ALSO
lpr(1), Iprm(1), 1pc(8), 1pd(8)
BUGS
Due to the dynamic nature of the informaticn in the spooling directory Ilpq may report unreli-
ably. Output formatting is sensitive to the line length of the terminal; this can results in widely
spaced columns.
DIAGNOSTICS

Unable to open various files. The lock file being malformed. Garbage files when there is no
daemon active, but files in the spooling directory.

4th Berkeley Distribution 18 July 1983 1

A

LPR (1) UNIX Programmer’s Manual LPR (1)

NAME
Ipr — off line print

SYNOPSIS
lpr [=Pprinter] | =#num) [=C class] [=J job] [=T title] [=1 [numcols)] [—1234 fon:
] [=wnum] [—pltndgvefrmhs] [name ...]

DESCRIPTION
Lpr uses a spooling daemon to print the named files when facilities become available. If no
names appear, the standard input is assumed. The —P option may be used to force output to a
specific printer. Normally, the default printer is used (site dependent), or the value of the
environment variable PRINTER is used.

The following single letter options are used to notify the line printer spooler that the files are
not standard text files. The spooling daemon will use the appropriate filters to print the data
accordingly.

=p Use pr(1) to format the files (equivalent to print).

—]1 Use a filter which allows control characters to be printed and suppresses page breaks.
—t The files are assumed to contain data from troff(1) (cat phototypesetter commands).
—n The files are assumed to contain data from ditroff (device independent troff).

—d The files are assumed to contain data from tex(1) (DVI format from Stanford).

—g The files are assumed to contain standard plot data as produced by the plor(3X) routines
(see also plot(1G) for the filters used by the printer spooler).

—v The files are assumed to contain a raster image for devices like the Benson Varian.
—c The files are assumed to contain data produced by cifplot(1).

—f Use a filter which interprets the first character of each line as a standard FORTRAN car-
riage control character.

The remaining single letter options have the following meaning.

—r Remove the file upon completion of spooling or upon completion of printing (with the
—s option).

-=m Send mail upon completion.
—h Suppress the printing of the burst page.
—s Use symbolic links. Usually files are copied to the spool directory.

The —C option takes the following argument as a job classification for use on the burst page.
For example,

Ipr —C EECS foo.c

causes the system name (the name returned by hostname(1)) to be replaced on the burst page
by EECS, and the file foo.c to be printed.

The —J option takes the following argument as the job name to print on the burst page. Nor-
mally, the first file’s name is used.

The —T option uses the next argument as the title used by pr(1) instead of the file name.

To get multiple copies of output, use the —#num option, where num is the number of copies
desired of each file named. For example,

Ipr —#3 foo.c bar.c more.c

4th Berkeley Distribution 28 July 1983 1

LPR (1) UNIX Programmer’s Manual LPR (1)

would result in 3 copies of the file foo.c, followed by 3 copies of the file bar.c, etc. On the
other hand,

cat foo.c bar.c more.c | Ipr —#3
will give three copies of the concatenation of the files.

The —1i option causes the output to be indented. If the next argument is numeric, it is used as
the number of blanks to be printed before each line; otherwise, 8 characters are printed.

The —w option takes the immediately following number to be the page width for pr.

The =—s option will use symlink(2) to link data files rather than trying to copy them so large
files can be printed. This means the files should not be modified or removed until they have
been printed.

The option —1234 Specifies a font to be mounted on font position i The daemon will con-
struct a .railmag file referencing /usr/lib/vfont/name.size.

FILES
/etc/passwd personal identification
/etc/printcap printer capabilities data base
/usr/lib/1pde line printer daemons
/usr/spool/# directories used for spooling
/usr/spool/s/cf daemon control files
/usr/spool/»/df« data files specified in "cf” files
/usr/spool/s/tf» temporary copies of "cf" files

SEE ALSO
1pq(1), lprm(1), pr(1), symlink(2), printcap(5), 1pc(8), Ipd(8)

DIAGNOSTICS
If you try to spool too large a file, it will be truncated. Lpr will object to printing binary files. If
a user other than root prints a file and spooling is disabled, /pr will print a message saying so
and will not put jobs in the queue. If a connection to /pd on the local machine cannot be made,
Ipr will say that the daemon cannot be started. Diagnostics may be printed in the daemon’s log
file regarding missing spool files by /pd.

BUGS

Fonts for troff and tex reside on the host with the printer. It is currently not possible to use
local font libraries.

4th Berkeley Distribution 28 July 1983 . 2

LPRM (1) UNIX Programmer’s Manual LPRM (1)

NAME

Iprm — remove jobs from the line printer spooling queue

SYNOPSIS

lprm [—Pprinter] [— 1 [job # ... 1 [user...]

DESCRIPTION

FILES

Lprm will remove a job, or jobs, from a printer’s spool queue. Since the spooling directory is
protected from users, using /prm is normally the only method by which a user may remove a
job.

Lprm without any arguments will delete the currently active job if it is owned by the user who
invoked /prm.

If the — flag is specified, /prm will remove all jobs which a user owns. If the super-user
employs this flag, the spool queue will be emptied entirely. The owner is determined by the
user’s login name and host name on the machine where the /pr command was invoked.

Specifying a user’s name, or list of user names, will cause lprm to attempt to remove any jobs
queued belonging to that user (or users). This form of invoking [prm is useful only to the
super-user.

A user may dequeue an individual job by specifying its job number. This number may be
obtained from the Ipg(1) program, e.g.

% Ipq —1

Ist: ken [job #013ucbarpal
(standard input) 100 bytes

% lprm 13

Lprm will announce the names of any files it removes and is silent if there are no jobs in the
queue which match the request list.

Lprm will kill off an active daemon, if necessary, before removing any spooling files. If a dae-
mon is killed, a new one is automatically restarted upon completion of file removals.

The —P option may be usd to specify the queue associated with a specific printer (otherwise
the default printer, or the value of the PRINTER variable in the environment is used).

/etc/printcap printer characteristics file
/usr/spool/* spooling directories
/usr/spool/+/lock lock file used to obtain the pid of the current
daemon and the job number of the currently active job

SEE ALSO

Ipr(1), 1pq(1), Ipd(8)

DIAGNOSTICS

BUGS

““‘Permission denied" if the user tries to remove files other than his own.

Since there are race conditions possible in the update of the lock file, the currently active job

- may be incorrectly identified.

4th Berkeley Distribution 28 July 1983 1

LS (1)

NAME

UNIX Programmer’s Manual LS (1)

Is — list contents of directory

SYNOPSIS

Is [—acdfgilqrstul ACLFR] name ...

DESCRIPTION

For each directory argument, Is lists the contents of the directory; for each file argument, Is
repeats its name and any other information requested. By default, the output is sorted alpha-
betically. When no argument is given, the current directory is listed. When several arguments
are given, the arguments are first sorted appropriately, but file arguments are processed before
directories and their contents.

There are a large number of options:

-1

—-g
-t

—a

-q

List in long format, giving mode, number of links, owner, size in bytes, and time of
last modification for each file. (See below.) If the file is a special file the size field will
instead contain the major and minor device numbers. If the file is a symbolic link the
pathname of the linked-to file is printed preceded by “‘—>"".

Include the group ownership of the file in a long output.
Sort by time modified (latest first) instead of by name.

List all entries; in the absence of this option, entries whose names begin with a period
(.) are not listed.

Give size in kilobytes of each file.

If argument is a directory, list only its name; often used with —1 to get the status of a
directory.

If argument is a symbolic link, list the file or directory the link references rather than
the link itself.

Reverse the order of sort to get reverse alphabetic or oldest first as appropriate.

Use time of last access instead of last modification for sorting (with the —t option)
and/or printing (with the —1 option).

Use time of file creation for sorting or printing.
For each file, print the i-number in the first column of the report.

Force each argument to be interpreted as a directory and list the name found in each
slot. This option turns off —1, —t, —s, and —r, and turns on —a; the order is the
order in which entries appear in the directory.

cause directories to be marked with a trailing ‘/°, sockets with a trailing ‘=", symbolic
links with a trailing ‘@’, and executable files with a trailing ‘+’.

recursively list subdirectories encountered.

force one entry per line output format; this is the default when output is not to a termi-
nal.

force multi-column output; this is the default when output is to a terminal.

force printing of non-graphic characters in file names as the character ‘?’; this is the
default when output is to a terminal.

The mode printed under the —1 option contains 11 characters which are interpreted as follows:
the first character is

d if the entry is a directory;
b if the entry is a block-type special file;

4th Berkeley Distribution 28 July 1983 1

LS (1) UNIX Programmer’s Manual LS(1)

if the entry is a character-type special file;
if the entry is a symbolic link;

if the entry is a socket, or

if the entry is a plain file.

|m'-'0

The next 9 characters are interpreted as three sets of three bits each. The first set refers to
owner permissions; the next to permissions to others in the same user-group: and the last to all
others. Within each set the three characters indicate permission respectively to read, to write,
or to execute the file as a program. For a directory, ‘execute’ permission is interpreted to mean
permission to search the directory. The permissions are indicated as follows:

r if the file is readable;

w if the file is writable;

x if the file is executable;

— if the indicated permission is not granted.

The group-execute permission character is given as s if the file has the set-group-id bit set; like-
wise the user-execute permission character is given as s if the file has the set-user-id bit set.

The last character of the mode (normally ‘x> or ‘—") is t if the 1000 bit of the mode is on. See
chmod(1) for the meaning of this mode.

When the sizes of the files in a directory are listed, a total count of blocks, including indirect
blocks is printed.

FILES
/etc/passwd to get user id’s for ‘Is —1I.
/etc/group to get group id’s for ‘Is —g’.

BUGS
Newline and tab are considered printing characters in file names.

The output device is assumed to be 80 columns wide.

The option setting based on whether the output is a teletype is undesirable as ‘‘Is —s’’ is much
different than ‘‘ls —s|Ipr”’. On the other hand, not doing this setting would make old shell
scripts which used /s almost certain losers.

4th Berkeley Distribution 28 July 1983 2

MAIL (1) UNIX Programmer’s Manual MAIL (1)

NAME

mail - send or receive mail among users
SYNOPSIS

mail [+ | [- 1] [person] ...

mail [+] [-i] - ffile
DESCRIPTION

Mad with no argument prints a user’s mail, message-by-message, in last-in, first-out order; the
optional argument + causes first-in, first-out order. For each message, it reads a line from the
standard input to direct disposition of the message.

newline
Go on to next message.
d Delete message and go on to the next.
p Print message again.
- Go back to previous message.

s file] ..

Save the message in the named files (‘mbox’ default).
w [file] ..
Save the message, without a header, in the named files (‘mbox’ default).

m [person | ...
Mail the message to the named persons (yourself is default).

EOT (control-D)
Put unexamined mail back in the mailbox and stop.
q Same as EOT.

!{command
Escape to the Shell to do command.

* Print a command summary.

An interrupt normally causes termination of the command; the mail file is unchanged. The
optional argument — i causes mad to continue after interrupts.

When persons are named, mad takes the standard input up to an end-of-file (or a line with just
¢’) and adds it to each person’s ‘mail’ file. The message is preceded by the sender’s name and a
postmark. Lines that look like postmarks are prepended with ‘>’. A person is usually a user
name recognized by login(1).

The — f option causes the named file, e.g. ‘mbox’, to be printed as if it were the mail file.
When a user logs in he is informed of the presence of mail.

FILES
/etc/passwd to identify sender and locate persons
/u0/spool/mail post office for incoming mail

mbox saved mail
/tmp/max temp file
/usr/mail/*lock lock for mail directory
dead.letter unmailable text

SEE ALSO
write(1)

7th Edition 1

MAIL (1) UNIX Programmer’s Manual MAIL(1)

BUGS
Race conditions sometimes result in a failure to remove a lock file.

Normally anybody can read your mail. An installation can overcome this by making mail a set-
user-id command that owns the mail directory.

7th Edition 2

MAKE(1) UNIX Programmer’s Manual MAKE(1)

NAME

make — maintain program groups
SYNOPSIS

make | — f makefile | [option | ... file ...
DESCRIPTION

Make executes commands in makefile to update one or more target names. Name is typically a
program. If no — f option is present, ‘makefile’ and ‘Makefile’ are tried in order. If makefile is
‘~ 7, the standard input is taken. More than one — f option may appear

Make updates a target if it depends on prerequisite files that have been modified since the tar-
get was last modified, if the target does not exist, or if the keyword ALWAYS is specified in
the dependency list.

Makefile contains a sequence of entries that specify dependencies. The first line of an entry is a
blank-separated list of targets, then a colon, then a list of prerequisite files. Text following a
semicolon, and all following lines that begin with a tab, are shell commands to be executed to
update the target. If a name appears on the left of more than one ‘colon’ line, then it depends
on all of the names on the right of the colon on those lines, but only one command sequence
may be specified for it. If a name appears on a line with a double colon :: then the command
sequence following that line is performed only if the name is out of date with respect to the
names to the right of the double colon, and is not affected by other double colon lines on
which that name may appear.

Two special forms of a name are recognized. A name like a(b) means the file named b stored
in the archive named a. A name like a((b)) means the file stored in archive a containing the
entry point b.

Sharp and newline surround comments.

The following makefile says that ‘pgm’ depends on two files ‘a.0’ and ‘b.o’, and that they in
turn depend on ‘.c’ files and a common file ‘incl’.

pgm: a.0 b.o
cc a.0 b.o — Im - o pgm
a.0: incl a.c

cc— cac
b.o: incl b.c
cc—cb.c

Makefile entries of the form
stringl = string?2

are macro definitions. Subsequent appearances of $(stringl) or ${stringl} are replaced by
string2. If stringl is a single character, the parentheses or braces are optional.

Make infers prerequisites for files for which makefile gives no construction commands. For
example, a ‘.c’ file may be inferred as prerequisite for a ‘.0’ file and be compiled to produce the
‘.0’ file. Thus the preceding example can be done more briefly:

pgm: a.o b.o

cc a.0 b.o - Im - o pgm
a.0 b.o: incl

Prerequisites are inferred according to selected suffixes listed as the ‘prerequisites’ for the spe-
cial name ‘.SUFFIXES’; multiple lists accumulate; an empty list clears what came before.
Order is significant; the first possible name for which both a file and a rule as described in the
next paragraph exist is inferred. The default list is

SUFFIXES: out.o .c.e .r.f.y.ls.p

7th Edition 18 January 1983 1

MAKE(1) UNIX Programmer’s Manual MAKE(1)

The rule to create a file with suffix s2 that depends on a similarly named file with suffix s is
specified as an entry for the ‘target’ s1s2. In such an entry, the special macro $* stands for the
target name with suffix deleted, $@ for the full target name, $ < for the complete list of prere-
quisites, and $? for the list of prerequisites that are out of date. For example, a rule for mak-
ing optimized ‘.o’ files from ‘.c’ files is

.co:j;cc—c— O~ 08@ $x.c
Certain macros are used by the default inference rules to communicate optional arguments to
any resulting compilations. In particular, ‘CFLAGS’ is used for cc(1) options, ‘FFLAGS’ for
J77(1) options, ‘PFLAGS’ for pc(1) options, and ‘LFLAGS’ and ‘YFLAGS’ for lez and yace(1)
options. In addition, the macro ‘MFLAGS’ is filled in with the initial command line options
supplied to make. This simplifies maintaining a hierarchy of makefiles as one may then invoke
make on makefiles in subdirectories and pass along useful options such as — k.

Command lines are executed one at a time, each by its own shell. A line is printed when it is
executed unless the special target ‘.SILENT’ is in makefile, or the first character of the com-
mand is ‘@°.

Commands returning nonzero status (see intro(1)) cause make to terminate unless the special
target . IGNORE’ is in makefile or the command begins with <tab> <hyphen>.

Interrupt and quit cause the target to be deleted unless the target is a directory or depends on
the special name ‘. PRECIOUS’.

Other options:
-1 Equivalent to the special entry ‘. IGNORE:’.

-k When a command returns nonzero status, abandon work on the current entry, but con-
tinue on branches that do not depend on the current entry.

-n Trace and print, but do not execute the commands needed to update the targets.
-t Touch, i.e. update the modified date of targets, without executing any commands.
-r Equivalent to an initial special entry ¢.SUFFIXES:’ with no list.

-8 Equivalent to the special entry ‘. SILENT:’.

FILES

makefile, Makefile
SEE ALSO

sh(1), touch(1), f77(1), pe(1)

S. 1. Feldman Make - A Program for Mamtaining Computer Programs
BUGS

Some commands return nonzero status inappropriately. Use — i to overcome the difficulty.
Commands that are directly executed by the shell, notably ¢d(1), are ineffectual across newlines
in make.

7th Edition 18 January 1983 2

MAN(1) UNIX Programmer’s Manual MAN (1)

NAME

man — find manual information by keywords; print out the manual

SYNOPSIS

man —k keyword ...
man —f file ...
man [=] [=t] [section] title ...

DESCRIPTION

FILES

Man is a program which gives information from the programmers manual. It can be asked for
one line descriptions of commands specified by name, or for all commands whose description
contains any cf a set of keywords. It can also provide on-line access to the sections of the
printed manual.

When given the option —k and a set of keywords, man prints out a one line synopsis of each
manual sections whose listing in the table of contents contains that keyword.

When given the option —f and a list of file names, man attempts to locate manual sections
related to those files, printing out the table of contents lines for those sections.

When neither —k nor —f is specified, man formats a specified set of manual pages. If a section
specifier is given man looks in the that section of the manual for the given titles. Section is an
Arabic section number (3 for instance). The number may followed by a single letter classifier
(1g for instance) indicating a graphics program in section 1. If section is omitted, man searches
all sections of the manual, giving preference to commands over subroutines in system libraries,
and printing the first section it finds, if any.

If the standard output is a teletype, or if the flag — is given, man pipes its output through
cat(1) with the option =s to crush out useless blank lines, u/(1) to create proper underlines for
different terminals, and through more(1) to stop after each page on the screen. Hit a space to
continue, a control-D to scroll 11 more lines when the output stops.

The —t flag causes man to arrange for the specified section to be troff’ed to a suitable raster out-
put device; see vtroff(1).

/usr/man/man?/«
/usr/man/cat?/=

SEE ALSO

BUGS

more(1), ul(1), whereis(1), catman(8)

The manual is supposed to be reproducible either on the phototypesetter or on a typewriter.
However, on a typewriter some information is necessarily lost.

4th Berkeley Distribution 18 January 1983 1

MESG (1) UNIX Programmer's Manual MESG (1)

NAME

mesg — permit or deny messages
SYNOPSIS

mesg [n][y]
DESCRIPTION

Mesg with argument n forbids messages via write and talk(1) by revoking non-user write per-
mission on the user’s terminal. Mesg with argument y reinstates permission. All by itself,
mesg reports the current state without changing it.

FILES
/dev/tty*

SEE ALSO
write(1), talk(1)

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

7th Edition 18 July 1983 ’ 1

MKDIR(1) MKDIR(1)

NAME

mkdir — make a directory
SYNOPSIS

mkdir dirname ...
DESCRIPTION

Mkdir creates specified directories in mode 777. Standard entries, ., for the
directory itself, and .., for its parent, are made automatically.

Mkdir requires write permission in the parent directory.
SEE ALSO
rm(1).

DIAGNOSTICS
Mkdir returns exit code O if all directories were successfully made; oth-
erwise, it prints a diagnostic and returns non-zero.

MORE (1) UNIX Programmer’s Manual MORE (1)

NAME

more, page — file perusal filter for crt viewing

SYNOPSIS

more [—cdflsu] [—n) [+linenumber] [+/pattern] [name ...]
page more options

DESCRIPTION

More is a filter which allows examination of a continuous text one screenful at a time on a
soft-copy terminal. It normally pauses after each screenful, printing --More-- at the bottom of
the screen. If the user then types a carriage return, one more line is displayed. If the user hits
a space, another screenful is displayed. Other possibilities are enumerated later.

The command line options are:

-n An integer which is the size (in lines) of the window which more will use instead of the
default.

-C More will draw each page by beginning at the top of the screen and erasing each line
just before it draws on it. This avoids scrolling the screen, making it easier to read
while more is writing. This option will be ignored if the terminal does not have the
ability to clear to the end of a line.

-d More will prompt the user with the message "Hit space to continue, Rubout to abort" at
the end of each screenful. This is useful if more is being used as a filter in some set-
ting, such as a class, where many users may be unsophisticated.

-f This causes more to count logical, rather than screen lines. That is, long lines are not
folded. This option is recommended if nroff output is being piped through u/, since the
latter may generate escape sequences. These escape sequences contain characters which
would ordinarily occupy screen positions, but which do not print when they are sent to
the terminal as part of an escape sequence. Thus more may think that lines are longer
than they actually are, and fold lines erroneously.

-1 Do not treat "L (form feed) specially. If this option is not given, more will pause after
any line that contains a "L, as if the end of a screenful had been reached. Also, if a file
begins with a form feed, the screen will be cleared before the file is printed.

-8 Squeeze multiple blank lines from the output, producing only one blank line. Espe-
cially helpful when viewing nroff output, this option maximizes the useful information
present on the screen.

-u Normally, more will handle underlining such as produced by nroff in a manner appropri-
ate to the particular terminal: if the terminal can perform underlining or has a stand-
out mode, more will output appropriate escape sequences to enable underlining or
stand-out mode for underlined information in the source file. The —u option
suppresses this processing.

+ linenumber
Start up at linenumber.

<+ /pattern
Start up two lines before the line containing the regular expression pattern.

If the program is invoked as page, then the screen is cleared before each screenful is printed
(but only if a full screenful is being printed), and & — 1 rather than k — 2 lines are printed in
each screenful, where k is the number of lines the terminal can display.

More looks in the file fetc/termcap to determine terminal characteristics, and to determine the
default window size. On a terminal capable of displaying 24 lines, the default window size is 22
lines.

4th Berkeley Distribution 27 April 1981 1

MORE (1) UNIX Programmer’s Manual MORE(1)

More looks in the environment variable MORE to pre-set any flags desired. For example, if
you prefer to view files using the —c mode of operation, the csh command setenv MORE -c or
the sh command sequence MORE="-c’ ; export MORE would cause all invocations of mocre ,
including invocations by programs such as man and msgs , to use this mode. Normally, the
user will place the command sequence which sets up the MORE environment variable in the
.cshre or .profile file.

If more is reading from a file, rather than a pipe, then a percentage is displayed along with the
--More-- prompt. This gives the fraction of the file (in characters, not lines) that has been read
- so far.

Other sequences which may be typed when more pauses, and their effects, are as follows (i is an
optional integer argument, defaulting to 1) :

i <space>

display i more lines, (or another screenful if no argument is given)
‘D display 11 more lines (a *‘scroll”). If iis given, then the scroll size is set to i.
d same as "D (control-D)
iz same as typing a space except that i, if present, becomes the new window size.
is skip / lines and print a screenful of lines
if skip i screenfuls and print a screenful of lines

q or Q Exit from more.

= Display the current line number.
v Start up the editor vi at the current line.
h Help command; give a description of all the more commands.

ilexpr search for the i-th occurrence of the regular expression expr. If there are less than /
occurrences of expr, and the input is a file (rather than a pipe), then the position in the
file remains unchanged. Otherwise, a screenful is displayed, starting two lines before
the place where the expression was found. The user’s erase and kill characters may be
used to edit the regular expression. Erasing back past the first column cancels the
search command.

in search for the i-th occurrence of the last regular expression entered. .

(single quote) Go to the point from which the last search started. If no search has
been performed in the current file, this command goes back to the beginning of the file.

lcommand .
invoke a shell with command. The characters ‘%’ and ‘!’ in "command" are replaced
with the current file name and the previous shell command respectively. If there is no
current file name, ‘%’ is not expanded. The sequences "\%" and "\!" are replaced by
"%" and "!" respectively.

in skip to the i-th next file given in the command line (skips to last file if n doesn’t make
“sense)
ip skip to the i-th previous file given in the command lire. If this command is given in

the middle of printing out a file, then more goes back to the beginning of the file. If /
doesn’t make sense, more skips back to the first file. If more is not reading from a file,
the bell is rung and nothing else happens.

f display the current file name and line number.

4th Berkeley Distribution 27 April 1981 2

MORE (1) UNIX Programmer’s Manual MORE (1)

:qor:Q
exit from more (same as q or Q).

(dot) repeat the previous command.

The commands take effect immediately, i.e., it is not necessary to type a carriage return. Up to
the time when the command character itself is given, the user may hit the line kill character to
cancel the numerical argument being formed. In addition, the user may hit the erase character
to redisplay the --More--(xx%) message.

At any time when output is being sent to the terminal, the user can hit the quit key (normally
control—\). More will stop sending output, and will display the usual --More-- prompt. The
user may then enter one of the above commands in the normal manner. Unfortunately, some
output is lost when this is done, due to the fact that any characters waiting in the terminal’s
output queue are flushed when the quit signal occurs.

The terminal is set to noecho mode by this program so that the output can be continuous.
What you type will thus not show on your terminal, except for the / and ! commands.

If the standard output is not a teletype, then more acts just like car, except that a header is
printed before each file (if there is more than one).

A sample usage of more in previewing nroff output would be
nroff —ms +2 doc.n | more -s

AUTHOR

Eric Shienbrood, minor revisions by John Foderaro and Geoffrey Peck
FILES

/etc/termcap Terminal data base

/usr/lib/more.help Help file
SEE ALSO

csh(1), man(1), msgs(1), script(1), sh(1), environ(7)

4th Berkeley Distribution 27 April 1981 3

MV (1) UNIX Programmer’s Manual MV (1)

NAME
mv — move or rename files

SYNOPSIS
mv|—i][—f][~-]filel file2

mv[—i][—f][~—1]file.. directory
DESCRIPTION
Mv moves (changes the name of) filel to file2.

If file2 already exists, it is removed before filel is moved. If file2 has a mode which forbids
writing, mv prints the mode (see chmod(2)) and reads the standard input to obtain a line; if the
line begins with y, the move takes place; if not, mv exits.

In the second form, one or more files (plain files or directories) are moved to the directory with
their original file-names.

Mpv refuses to move a file onto itself.

Options:

-1 stands for interactive mode. Whenever a move is to supercede an existing file, the user
is prompted by the name of the file followed by a question mark. If he answers with a
line starting with ’y’, the move continues. Any other reply prevents the move from
occurring.

-f stands for force. This option overrides any mode restrictions or the —i switch.

- means interpret all the following arguments to mv as file names. This allows file names
starting with minus.

SEE ALSO
cp(1), In(1)

BUGS
If filel and file2 lie on different file systems, mv must copy the file and delete the original. In
this case the owner name becomes that of the copying process and any linking relationship with
other files is lost.

4th Berkeley Distribution 1 April 1981 1

NEWGRP(1) NEWGRP(1)

NAME

newgrp — log in to a new group
SYNOPSIS

newgrp [group]
DESCRIPTION

Newgrp changes the group identification of its caller, analogously to
login(1). The same person remains logged in, and the current directory is
unchanged, but calculations of access permissions to files are performed
with respect to the new group ID.

Newgrp without an argument changes the group identification to the group
in the password file; in effect it changes the group identification back to the
caller’s original group.

A password is demanded if the group has a password and the user himself
does not, or if the group has a password and the user is not listed in
/etc/group as being a member of that group.

When most users log in, they are members of the group named other.

FILES
/etc/group
/etc/passwd
SEE ALSO
login(1), group(5).
BUGS
There is no convenient way to enter a password into /etc/group.
Use of group passwords is not encouraged, because, by their very nature,

they encourage poor security practices. Group passwords may disappear in
the future.

NICE (1) UNIX Programmer’s Manual : NICE (1)

NAME

nice, nohup — run a command at low priority (sh only)

SYNOPSIS

nice [— number] command [arguments]
nohup command [arguments]

DESCRIPTION

FILES

Nice executes command with low scheduling priority. If the number argument is present, the
priority is incremented (higher numbers mean lower priorities) by that amount up to a limit of
20. The default number is 10.

The super-user may run commands with priority higher than normal by using a negative prior-
ity, e.g. ‘——10°.

Nohup executes command immune to hangup and terminate signals from the controlling termi-
nal. The priority is incremented by 5. Nohup should be invoked from the shell with ‘&’ in
order to prevent it from responding to interrupts by or stealing the input from the next person
who logs in on the same terminal. The syntax of nice is also different.

nohup.out standard output and standard error file under nohup

SEE ALSO

csh(1), setpriority(2), renice(8)

DIAGNOSTICS

BUGS

Nice returns the exit status of the subject command.

Nice and nohup are particular to sh(1). If you use csh(1), then commands executed with “&”
are automatically immune to hangup signals while in the background. There is a builtin com-
mand nohup which provides immunity from terminate, but it does not redirect output to
nohup.out.

Nice is built into csh(1) with a slightly different syntax than described here. The form ‘‘nice
410" nices to positive nice, and ‘‘nice —10’’ can be used by the super-user to give a process
more of the processor.

4th Berkeley Distribution 18 January 1983 » 1

NM (1) UNIX Programmer’s Manual NM (1)

NAME
nm — print name list

SYNOPSIS
nm [—gnopru] [file ...]

DESCRIPTION
Nm prints the name list (symbol table) of each object file in the argument list. If an argument

is an archive, a listing for each object file in the archive will be produced. If no file is given,
the symbols in "a.out" are listed.

Each symbol name is preceded by its value (blanks if undefined) and one of the letters U
(undefined), A (absolute), T (text segment symbol), D (data segment symbol), B (bss segment
symbol), C (common symbol), f file name, or — for sdb symbol table entries (see =a below).

If the symbol is local (non-external) the type letter is in lower case. The output is sorted alpha-
betically.

Options are:

—g Print only global (external) symbols.

-n Sort numerically rather than alphabetically.

-0 Prepend file or archive element name to each output line rather than only once.
-p Don’t sort; print in symbol-table order.

-r Sort in reverse order.

-u Print only undefined symbols.

SEE ALSO
ar(1), ar(5), a.out(5), stab(5)

4th Berkeley Distribution 7 February 1983 ' 1

NROFF (1)

UNIX Programmer’s Manual NROFF (1)

NAME

nroff — text formatting
SYNOPSIS

nroff [option] ... [file] ...
DESCRIPTION

FILES

Nroff formats text in the named files for typewriter-like devices. See also troff(1). The full capa-

bilities of

nroff are described in the NroffiTroff User’s Manual.

If no file argument is present, the standard input is read. An argument consisting of a single
minus (=) is taken to be a file name corresponding to the standard input.

The options, which may appear in any order so long as they appear before the files, are:

—olist

—mname
—=raN
—i

-q

—T name

-e

/tmp/ta*

Print only pages whose page numbers appear in the comma-separated /isr of numbers
and ranges. A range N—M means pages N through M, an initial —N means from
the beginning to page N; and a final N— means from N to the end.

Number first generated page N.

Stop every N pages. Nroff will halt prior to every N pages (default N=1) to allow
paper loading or changing, and will resume upon receipt of a newline.

Prepend the macro file /usr/lib/tmac/tmac.name to the input files.

Set register a (one-character) to N.

Read standard input after the input files are exhausted.

Invoke the simultaneous input-output mode of the rd request.

Prepare output for specified terminal. Known names are 37 for the (default) Tele-
type Corporation Model 37 terminal, tn300 for the GE TermiNet 300 (or any termi-

nal without half-line capability), 300S for the DASI-300S, 300 for the DASI-300, and
450 for the DASI-450 (Diablo Hyterm).

Produce equally-spacéd words in adjusted lines, using full terminal resolution.

Use output tabs during horizontal spacing to speed output and reduce output charac-
ter count. Tab settings are assumed to be every 8 nominal character widths.

temporary file

/usr/lib/tmac/tmac.» standard macro files
/usr/lib/term/=* terminal driving tables for nroff

SEE ALSO
J. F. Ossanna, NroffiTroff user’s manual
B. W. Kernighan, A TROFF Tutorial
troff (1), eqn(1), tbl(1), ms(7), me(7), man(7), col(1)

7th Edition

26 January 1982 1

oD (1)

NAME

UNIX Programmer’s Manual oD (1)

od — octal, decimal, hex, ascii dump

SYNOPSIS

od [—format] [file] [[+]offset[.][b] [label]]

DESCRIPTION

Od displays file, or it’s standard input, in one or more dump formats as selected by the first
argument. If the first argument is missing, —o is the default. Dumping continues until end-
of-file.

The meanings of the format argument characters are:

a Interpret bytes as characters and display them with their ACSII names. If the p character
is given also, then bytes with even parity are underlined. The P character causes bytes
with odd parity to be underlined. Otherwise the parity bit is ignored.

b Interpret bytes as unsigned octal.

c Interpret bytes as ASCII characters. Certain non-graphic characters appear as C escapes:
null=\0, backspace=\b, formfeed=\f, newline=\n, return=\r, tab=\t; others appear as
3-digit octal numbers. Bytes with the parity bit set are displayed in octal.

d Interpret (short) words as unsigned decimal.

f Interpret long words as floating point.

h Interpret (short) words as unsigned hexadecimal.

e

Interpret (short) words as signed decimal.

I

Interpret long words as signed decimal.
o Interpret (short) words as unsigned octal.

s[n] Look for strings of ascii graphic characters, terminated with a null byte. N specifies the
minimum length string to be recognized. By default, the minimum length is 3 characters.
v Show all data. By default, display lines that are identical to the last line shown are not out-

(XN A1

put, but are indicated with an *“*”’ in column 1.

w(n] Specifies the number of input bytes to be interpreted and displayed on each output line. If
w is not specified, 16 bytes are read for each display line. If nis not specified, it defaults
to 32.

X Interpret (short) words as hexadecimal.
An upper case format character implies the long or double precision form of the object.

The offser argument specifies the byte offset into the file where dumping is to commence. By
default this argument is interpreted in octal. A different radix can be specified; If ‘. is
appended to the argument, then qffser is interpreted in decimal. If offser begins with “‘x’" or
“0x, it is interpreted in hexadecimal. If “b™ (‘‘B”’) is appended, the offset is interpreted as a
block count, where a block is 512 (1024) bytes. If the file argument is omitted, an offSet argu-
ment must be preceded by ““‘+".

The radix of the displayed address will be the same as the radix of the offset, if specified; other-
wise it will be cctal.

Label will be interpreted as a pseudo-address for the first byte displayed. It will be shown in
() following the file offset. It is intended to be used with core images to indicate the real
memory address. The syntax for label is identical to that for offser.

SEE ALSO

adb(1)

4th Berkeley Distribution 16 February 83 1

oD (1) UNIX Programmer’s Manual oD (1)

BUGS
A file name argument can’t start with ‘““+°'. A hexadecimal offset can’t be a block count.
Only one file name argument can be given.

It is an historical botch to require specification of object, radix, and sign representation in a sin-
gle character argument.

4th Berkeley Distribution 16 February 83 2

PAGESIZE (1) UNIX Programmer’s Manual A PAGESIZE (1)

NAME

pagesize — print system page size
SYNOPSIS

pagesize

DESCRIPTION
Pagesize prints the size of a page of memory in bytes, as returned by getpagesize(2). This pro-
gram is useful in constructing portable shell scripts.

SEE ALSO
getpagesize (2)

4th Berkeley Distribution 3 April 1983 1

PASSWD (1) UNIX Programmer’s Manual PASSWD (1)

NAME

passwd — change login password

SYNOPSIS

passwd [name]

DESCRIPTION

FILES

This command changes (or installs) a password associated with the user name (your own name
by default).

The program prompts for the old password and then for the new one. The caller must supply
both. The new password must be typed twice, to forestall mistakes.

New passwords must be at least four characters long if they use a sufficiently rich alphabet and
at least six characters long if monocase. These rules are relaxed if you are insistent enough.

Only the owner of the name or the super-user may change a password; the owner must prove
he knows the old password.

/etc/passwd

SEE ALSO

BUGS

login(1), passwd(5), crypt(3)
Robert Morris and Ken Thompson, UNIX password security

The password file information should be kept in a different data structure allowing indexed
access; dbm(3X) would probably be suitable.

4th Berkeley Distribution 18 January 1983 1

PLOT (1G) UNIX Programmer’s Manual PLOT (1G)

NAME

plot — graphics filters
SYNOPSIS

plot [—Tterminal [raster]]
DESCRIPTION

These commands read plotting instructions (see plot(5)) from the standard input, and in gen-
eral produce plotting instructions suitable for a particular rerminal on the standard output.

If no terminal type is specified, the environment parameter STERM (see environ(7)) is used.
Known terminals are:

4014 Tektronix 4014 storage scope.

450 DASI Hyterm 450 terminal (Diablo mechanism).
300 DASI 300 or GSI terminal (Diablo mechanism).
300S DASI 300S terminal (Diablo mechanism).

ver Versatec D1200A printer-plotter. This version of plor places a scan-converted image in
‘/usr/tmp/raster’ and sends the result directly to the plotter device rather than to the
standard output. The optional argument causes a previously scan-converted file raster
to be sent to the plotter.

FILES
/usr/bin/tek
/usr/bin/t450
/usr/bin/t300
/usr/bin/t300s
/usr/bin/vplot
/usr/tmp/raster

SEE ALSO
plot(3X), plot(5)

BUGS
There is no lockout protection for /usr/tmp/raster.

7th Edition 18 January 1983 1

PR (1) UNIX Programmer’s Manual PR (1)

NAME
pr — print file

SYNOPSIS
pr [option] ... [file] ..

DESCRIPTION
Pr produces a printed listing of one or more files. The output is separated into pages headed by
a date, the name of the file or a specified header, and the page number. If there are no file
arguments, pr prints its standard input.

Options apply to all following files but may be reset between files:
-n Produce n-column output.

+n Begin printing with page n.

—h Take the next argument as a page header.

—wn For purposes of multi-column output, take the width of the page to be n characters
instead of the default 72.

-f Use formfeeds instead of newlines to separate pages. A formfeed is assumed to use up
two blank lines at the top of a page. (Thus this option does not affect the effective
page length.)

—ln Take the length of the page to be # lines instead of the default 66.
-t Do not print the 5-line header or the S-line trailer normally supplied for each page.

—sc Separate columns by the single character ¢ instead of by the appropriate amount of
white space. A missing c is taken to be a tab.

—m Print all files simultaneously, each in one column,
Inter-terminal messages via write(1) are forbidden during a pr.

FILES
/dev/tty? to suspend messages.

SEE ALSO
cat(1)

DIAGNOSTICS
There are no diagnostics when pr is printing on a terminal.

4th Berkeley Distribution 18 January 1983 1

PRINTENV (1) UNIX Programmer’s Manual PRINTENV (1)

NAME

printenv — print out the environment
SYNOPSIS

printenv [name]
DESCRIPTION

Printeny prints out the values of the variables in the environment. If a name is specified, only
its value is printed.

If a name is specified and it is not defined in the environment, printenv returns exit status 1,
else it returns status 0.

SEE ALSO
sh(1), environ(7), csh(1)

3rd Berkeley Distribution 24 February 1979 1

PROF (1) , UNIX Programmer’s Manual PROF (1)

NAME

prof — display profile data

SYNOPSIS

prof [—al[=1][=n][=z][=s)][=v[=lowl[=high]]][aout[mon.out..]]

DESCRIPTION

FILES

Prof interprets the file produced by the monitor subroutine. Under default modes, the symbol
table in the named object file (a.out default) is read and correlated with the profile file (mon.out
default). For each external symbol, the percentage of time spent executing between that sym-
bol and the next is printed (in decreasing order), together with the number of times that rou-
tine was called and the number of milliseconds per call. If more than one profile file is
specified, the output represents the sum of the profiles.

In order for the number of calls to a routine to be tallied, the —p option of cc, /77 or pc must
have been given when the file containing the routine was compiled. This option also arranges
for the profile file to be produced automatically.

Options are:

-a all symbols are reported rather than just external symbols.
-1 the output is sorted by symbol value.

-n the output is sorted by number of calls

-s a summary profile file is produced in mon.sum. This is really only useful when more
than one profile file is specified.

-v all printing is suppressed and a graphic version of the profile is produced on the stan-
dard output for display by the ploz(1) filters. When plotting, the numbers low and high,
by default 0 and 100, may be given to cause a selected percentage of the profile to be
plotted with accordingly higher resolution.

-2 routines which have zero usage (as indicated by call counts and accumulated time) are
nevertheless printed in the output.

mon.out for profile
a.out for namelist
mon.sum for summary profile

SEE ALSO

BUGS

monitor(3), profil(2), cc(1), plot(1G)

Beware of quantization errors.
Is confused by f77 which puts the entry points at the bottom of subroutines and functions.

4th Berkeley Distribution 18 January 1983 1

PS (1)

NAME

UNIX Programmer’s Manual PS(1)

ps — process status

SYNOPSIS

ps [acegklstuvwx#]

DESCRIPTION

Ps prints information about processes. Normally, only your processes are candidates to be
printed by ps; specifying a causes other users processes to be candidates to be printed; specify-
ing x includes processes without control terminals in the candidate pool.

All output formats include, for each process, the process id PID, control terminal of the pro-
cess TT, cpu time used by the process TIME (this includes both user and system time), the
state STAT of the process, and an indication of the COMMAND which is running. The state is
given by a sequence of four letters, e.g. ““RWNA”’. The first letter indicates the runnability of
the process: R for runnable processes, T for stopped processes, P for processes in page wait, D
for those in disk (or other short term) waits, S for those sleeping for less than about 20
seconds, and I for idle (sleeping longer than about 20 seconds) processes. The second letter
indicates whether a process is swapped out, showing W if it is, or a blank if it is loaded (in-
core); a process which has specified a soft limit on memory requirements and which is exceed-
ing that limit shows >; such a process is (necessarily) not swapped. The third letter indicates
whether a process is running with altered CPU scheduling priority (nice); if the process priority
is reduced, an N is shown, if the process priority has been artificially raised then a ‘<’ is
shown; processes running without special treatment have just a blank. The final letter indicates
any special treatment of the process for virtual memory replacement; the letters correspond to
options to the vadvise(2) call; currently the possibilities are A standing for VA_ANOM. S for
VA_SEQL and blank for VA_NORM,; an A typically represents a /isp(1) in garbage collection, S
is typical of large image processing programs which are using virtual memory to sequentially
address voluminous data.

Here are the options:

a asks for information about all processes with terminals (ordinarily only one’s own
processes are displayed).

c prints the command name, as stored internally in the system for purposes of accounting,
rather than the command arguments, which are kept in the process’ address space. This
is more reliable, if less informative, since the process is free to destroy the latter informa-
tion.

e Asks for the environment to be printed as well as the arguments to the command.

3

g Asks for all processes. Without this option, ps only prints ‘‘interesting’ processes.
Processes are deemed to be uninteresting if they are process group leaders. This normally
eliminates top-level command interpreters and processes waiting for users to login on free
terminals.

k causes the file /vmcore is used in place of /devikmem and /devimem. This is used for post-
mortem system debugging.

1 asks for a long listing, with fields PPID, CP, PRI, NI, ADDR, SIZE, RSS and WCHAN as
described below.

s Adds the size SSIZ of the kernel stack of each process (for use by system maintainers) to
the basic output format.

tx res}ricts output to processes whose controlling tty is x (which should be specified as
printed by ps, e.g. 3 for tty3, tco for console, td0 for ttydO, r? for processes with no tty, r
for processes at the current tty, etc). This option must be the last one given.

u A user oriented output is produced. This includes fields USER, %CPU, NICE, SIZE, and

4th Berkeley Distribution 13 April 1983 1

PS (1)

X

#

UNIX Programmer’s Manual PS(1)

RSS as described below.

A version of the output containing virtual memory statistics is output. This includes
fields RE, SL, PAGEIN, SIZE, RSS, LIM, TSIZ, TRS, %CPU and %MEM, described
below.

Use a wide output format (132 columns rather than 80); if repeated, e.g. ww, use arbi-
trarily wide output. This information is used to decide how much of long commands to
print.

asks even about processes with no terminal.

A process number may be given, (indicated here by #), in which case the output is res-
tricted to that process. This option must also be last.

A second argument tells ps where to look for core if the k option is given, instead of /vmcore.

A thi

rd argument is the name of a swap file to use instead of the default /dev/drum. If a

fourth argument is given, it is taken to be the file containing the system’s namelist. Otherwise,

/vmu

nix is used.

Fields which are not common to all output formats:
USER name of the owner of the process
%CPU cpu utilization of the process; this is a decaying average over up to a minute of pre-

NICE
SIZE
RSS
LIM

TSIZ
TRS
%ME
RE
SL

vious (real) time. Since the time base over which this is computed varies (since
processes may be very young) it is possible for the sum of all %CPU fields to exceed
100%.
(or NI) process scheduling increment (see setpriority(2))
virtual size of the process (in 1024 byte units)
real memory (resident set) size of the process (in 1024 byte units)
soft limit on memory used, specified via a call to serrlimit(2); if no limit has been
specified then shown as xx
size of text (shared program) image
size of resident (real memory) set of text
M percentage of real memory used by this process.
residency time of the process (seconds in core)
sleep time of the process (seconds blocked)

PAGEIN number of disk i/0’s resulting from references by the process to pages not loaded in

uUID
PPID
Cp
PRI
ADD
WCH

core.
numerical user-id of process owner
numerical id of parent of process
short-term cpu utilization factor (used in scheduling)
process priority (non-positive when in non-interruptible wait)
R swap address of the process
AN event on which process is waiting (an address in the system), with the initial part of
the address trimmed off e.g. 80004000 prints as 4000.

flags associated with process as in <sys/proc.h>:
SLOAD 000001 in core
SSYS 000002 swapper or pager process
SLOCK 000004 process being swapped out
SSWAP 000008 save area flag
STRC 000010 process is being traced
SWTED 000020 another tracing flag
SULOCK 000040 user settable lock in core
SPAGE 000080 process in page wait state
SKEEP 000100 another flag to prevent swap out

4th Berkeley Distribution 13 April 1983 : 2

PS(1) UNIX Programmer’s Manual PS(1)

SDLYU 000200 delayed unlock of pages

SWEXIT 000400 working on exiting

SPHYSIO 000800 doing physical i/o (bio.c)

SVFORK 001000 process resulted from vfork()
SVFDONE 002000 another vfork flag

SNOVM 004000 no vm, parent in a vfork()

SPAGI 008000 init data space on demand from inode
SANOM 010000 system detected anomalous vm behavior
SUANOM 020000 user warned of anomalous vm behavior
STIMO 040000 timing out during sleep

SDETACH 080000 detached inherited by init

SOUSIG 100000 using old signal mechanism

A process that has exited and has a parent, but has not yet been waited for by the parent is
marked <defunct>; a process which is blocked trying to exit is marked <exiting>; Ps makes
an educated guess as to the file name and arguments given when the process was created by
examining memory or the swap area. The method is inherently somewhat unreliable and in any
event a process is entitled to destroy this information, so the names cannot be counted on too

much.
FILES

/vmunix system namelist

/dev/kmem kernel memory

/dev/drum swap device

/vmcore core file

/dev searched to find swap device and tty names
SEE ALSO

kill(1), w(1)
BUGS

Things can change while ps is running; the picture it gives is only a close approximation to real-
ity. :

4th Berkeley Distribution 13 April 1983 3

PWD (1) UNIX Programmer’s Manual PWD (1)

NAME
pwd — working directory name

SYNOPSIS

pwd
DESCRIPTION

Pwd prints the pathname of the working (current) directory.
SEE ALSO

cd(1), csh(1), getwd(3)

BUGS
In csh(1) the command dirs is always faster (although it can give a different answer in the rare
case that the current directory or a containing directory was moved after the shell descended
into it).

4th Berkeley Distribution 18 January 1983 1

REV (1) UNIX Programmer’s Manual REV (1)

NAME
rev — reverse lines of a file

SYNOPSIS
rev [file] ...

DESCRIPTION :
Rev copies the named files to the standard output, reversing the order of characters in every
line. If no file is specified, the standard input is copied.

7th Edition 18 January 1983 1

RLOGIN(1C) UNIX Programmer’s Manual RLOGIN(1C)

NAME

rlogin — remote login

SYNOPSIS

rlogin rhost [— ec] [— | username |
rhost [— ec] [— | username |

DESCRIPTION

Rlogin connects your terminal on the current local host system lhost to the remote host system
rhost.

Each host has a file Jetc/hosts.equiv which contains a list of rhost’s which which it shares account
names. (The host names must be the standard names as described in rsh(1lc) and printed by
login(1).) When you rlogin as the same user on an equivalent host, you don’t need to give a
password. Each user may also have a private equivalence list in a file .rhosts in his login direc-
tory. Each line in this file should contain a rhost and a username separated by a space, giving
additional cases where logins without passwords are to be permitted. If the originating user is
not equivalent to the remote user, then a login and password will be prompted for on the
remote machine as in login(1).

Your remote terminal type is the same as your local terminal type (as given in your environ-
ment TERM variable). All echoing takes place at the remote site, so that (except for delays)
the rlogin is transparent. Flow control via S and “Q and flushing of input and output on inter-
rupts are handled properly. A line of the form ‘‘".”’ disconnects from the remote host, where
™ is the escape character. A different escape character may be specified by the — e option.

SEE ALSO

FILES

BUGS

7th Edition 10 February 1983 1

rsh(1c), rlogind(8c¢)
/usr/hosts /* for rhost version of the command

More terminal characteristics should be propagated.

RM (1)

UNIX Programmer’s Manual RM (1)

NAME

rm, rmdir — remove (unlink) files or directories
SYNOPSIS

m([—f][-r][=1][=]fie..

rmdir dir ...
DESCRIPTION

Rm removes the entries for one or more files from a directory. If an entry was the last link to
the file, the file is destroyed. Removal of a file requires write permission in its directory, but
neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a terminal, its permissions are printed
and a line is read from the standard input. If that line begins with ‘y’ the file is deleted, other-
wise the file remains. No questions are asked and no errors are reported when the —f (force)
option is given.

If a designated file is a directory, an error comment is printed unless the optional argument =r
has been used. In that case, rm recursively deletes the entire contents of the specified direc-
tory, and the directory itself.

If the —1i (interactive) option is in effect, rm asks whether to delete each file, and, under -r,
whether to examine each directory.

The null option — indicates that all the arguments following it are to be treated as file names.
This allows the specification of file names starting with a minus.

Rmdir removes entries for the named directories, which must be empty.

SEE ALSO

rm(1), unlink(2), rmdir(2)

4th Berkeley Distribution 1 April 1981 1

RMDEL(1) RMDEL(1)

NAME

rmdel — remove a deita from an SCCS file

SYNOPSIS

rmdel —rSID files

DESCRIPTION

Rmdel removes the delta specified by the SID from each named SCCS file.
The delta to be removed must be the newest (most recent) delta in its
branch in the delta chain of each named SCCS file. In addition, the
specified must not be that of a version being edited for the purpose of mak-
ing a delta (i. e., if a p-file (see get(1)) exists for the named SCCS file, the
specified must not appear in any entry of the p-file).

If a directory is named, rmdel behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of — is given, the standard input is read; each line of
the standard input is taken to be the name of an SCCS file to be processed;
non-SCCS files and unreadable files are silently ignored.

The exact permissions necessary to remove a delta are documented in the
Source Code Control System User’'s Guide. Simply stated, they are either (1)
if you make a delta you can remove it; or (2) if you own the file and direc-
tory you can remove a delta.

FILES

x-file (see delta(1))

z-file (see delta(1))
SEE ALSO

delta(1), get(1), help(1), prs(1), sccsfile(5).

Source Code Control System User’s Guide by L. E. Bonanni and C. A. Salemi.
DIAGNOSTICS

Use help(1) for explanations.

.

RMDIR (1) UNIX Programmer’s Manual RMDIR (1)

NAME

rmdir, rm — remove (unlink) directories or files

SYNOPSIS

rmdir dir ...
m[=f][=r][=i][=]file..

DESCRIPTION

Rmdir removes entries for the named directories, which must be empty.

Rm removes the entries for one or more files from a directory. If an entry was the last link to
the file, the file is destroyed. Removal of a file requires write permission in its directory, but
neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a terminal, its permissions are printed
and a line is read from the standard input. If that line begins with ‘y’ the file is deleted, other-
wise the file remains. No questions are asked and no errors are reported when the —f (force)
option is given.

If a designated file is a directory, an error comment is printed unless the optional argument —r
has been used. In that case, rm recursively deletes the entire contents of the specified direc-
tory, and the directory itself.

If the —1i (interactive) option is in effect, rm asks whether to delete each file, and, under —r,
whether to examine each directory.

The null option — indicates that all the arguments following it are to be treated as file names.
This allows the specification of file names starting with a minus.

SEE ALSO

rm(1), unlink(2), rmdir(2)

7th Edition 1 April 1981 1

RSH (1

NAME

C) UNIX Programmer’s Manual RSH(1C)

rsh — remote shell

SYNOPSIS

rsh host [— 1 username | [— n] command
host [— 1 username | [— n | command

DESCRIPTION

FILES

Rsh connects to the specified host, and executes the specified command. Rsh copies its standard
input to the remote command, the standard output of the remote command to its standard out-
put, and the standard error of the remote command to its standard error. Interrupt, quit and
terminate signals are propagated to the remote command; rsh normally terminates when the
remote command does.

The remote username used is the same as your local username, unless you specify a different
remote name with the — 1 option. This remote name must be equivalent (in the sense of
rlogin(1c)) to the originating account; no provision is made for specifying a password with a
command.

If you omit command, then instead of executing a single command, you will be logged in on the
remote host using rlogin(1c).

Shell metacharacters which are not quoted are interpreted on local machine, while quoted meta-
characters are interpreted on the remote machine. Thus the command

rsh otherhost cat remotefile > > localfile

appends the remote file remotefile to the localfile localfile, while
rsh otherhost cat remotefile 7> >” otherremotefile

appends remotefile to otherremotefile.

Host names are given in the file /etc/hosts. Each host has one standard name (the first name
given in the file), which is rather long and unambiguous, and optionally one or more nick-
names. The host names for local machines are also commands in the directory /usr/hosts; if
you put this directory in your search path then the rsh can be omitted.

/etc /hosts
/usr/hosts /*

SEE ALSO

BUGS

rlogin(1c), rshd(8¢)

If you are using csh(1) and put a rsh(1c) in the background without redirecting its input away
from the terminal, it will block even if no reads are posted by the remote command. If no
input is desired you should redirect the input of rsh to /dev/null using the — n option.

You cannot run an interactive command (like rogue(6) or v{(1)); use rlogin(1c).

Stop signals stop the local rsh process only; this is arguably wrong, but currently hard to fix for
reasons too complicated to explain here.

7th Edition 17 March 1982 1

RUPTIME (1C) UNIX Programmer’s Manual RUPTIME (1C)

NAME

ruptime — show host status of local machines
SYNOPSIS

ruptime [—a] [=1] [=t] [—u]
DESCRIPTION

Ruptime gives a status line like uptime for each machine on the local network; these are formed
from packets broadcast by each host on the network once a minute.

Machines for which no status report has been received for 5 minutes are shown as being down.
Users idle an hour or more are not counted unless the —a flag is given.

Normally, the listing is sorted by host name. The —1, —t , and —u flags specify sorting by
load average, uptime, and number of users, respectively.

FILES
/usr/spool/rwho/whod.» data files

SEE ALSO
rwho(1C)

4th Berkeley Distribution 8 March 1982 1

SHOWNET(1V) UNIX Programmer’s Manual SHOWNET(1V)

NAME
shownet — show VALID node status

SYNOPSIS
shownet

DESCRIPTION
shownet displays the set of currently reachable VALID nodes on the local Ethernet. Also
displayed is the set of nodes that have been reachable in the past but are no longer active on
the net. This information can also be extracted from the conn(8V) show command. The
advantage of the shownet program is that the display is denser and only shows reachability, since
that is what most users need.

DIAGNOSTICS
shownet: failure reading node list (5, I/O error)
Usually caused by version mismatch between shownet and the kernel.

shownet: cannot open (13, Permission denied) /net

shownet was not installed by root with the set user and set group on execution permis-
sions.

7th Edition Valid 11 December 1984 1

RWHO (1C) UNIX Programmer’s Manual RWHO (1C)

NAME
rwho — who’s logged in on local machines

SYNOPSIS
rwho [—a]

DESCRIPTION
The rwho command produces output similar to who, but for all machines on the local network.
If no report has been received from a machine for 5 minutes then rwho assumes the machine is
down, and does not report users last known to be logged into that machine.

If a users hasn’t typed to the system for a minute or more, then rwho reports this idle time. If
a user hasn’t typed to the system for an hour or more, then the user will be omitted from the
output of rwho unless the —a flag is given.

FILES
/usr/spool/rwho/whod.» information about other machines

SEE ALSO
ruptime(1C), rwhod (8C)

BUGS
This is unwieldy when the number of machines on the local net is large.

4th Berkeley Distribution 23 March 1982 1

SCCSHELP(1) SCCSHELP(1)

NAME

sccshelp - ask for help with Source Code Control System

SYNOPSIS

sccshelp [args]

DESCRIPTION

FILES

Sccshelp finds information to explain a message from a command or to
explain the use of a command. Zero or more arguments may be supplied. If
no arguments are given, sccshelp will prompt for an argument,

The arguments may be either message numbers (which normally appear in
parentheses following messages) or command names of one of the following
types:
type 1 Begins with non-numerics, ends in numerics. The non-
numeric prefix is usually an abbreviation for the program
or set of routines that produced the message (e.g., geb,
for message 6 from the get command).
type 2 Does not contain numerics (as a command such as get).

type 3 Is all numeric (e.g., 212).

The response of the program will be the explanatory information related to
the argument, if there is any.

When all else fails, try "sccshelp stuck.”

/usr/1ib/sccshelp directory containing files of message text.

DIAGNOSTICS

Use sccshelp(l) for explanations.

7

SCRIPT (1) UNIX Programmer’s Manual SCRIPT (1)

NAME
script — make typescript of terminal session

SYNOPSIS
script [—a] [file]

DESCRIPTION
Script makes a typescript of everything printed on your terminal. The typescript is written to
file, or appended to file if the —a option is given. It can be sent to the line printer later with
Ipr. If no file name is given, the typescript is saved in the file ¢ypescript.

The script ends when the forked shell exits.

This program is useful when using a crt and a hard-copy record of the dialog is desired, as for a
student handing in a program that was developed on a crt when hard-copy terminals are in short
supply.

BUGS
Script places everything in the log file. This is not what the naive user expects.

4th Berkeley Distribution 26 March 1982 1

SED (1) ; UNIX Programmer’s Manual SED (1)

NAME

sed — stream editor

SYNOPSIS

sed [=n] [—escript) [~fsfile] [file] ..

DESCRIPTION

Sed copies the named files (standard input default) to the standard output, edited according to a

script of commands. The =—f option causes the script to be taken from file gfile; these options

accumulate. If there is just one —e option and no —f’s, the flag —e may be omitted. The —n
option suppresses the default output.

A script consists of editing commands, one per line, of the following form:
[address [, address]] function [arguments]

In normal operation sed cyclically copies a line of input into a pattern space (unless there is
something left after a ‘D’ command), applies in sequence all commands whose addresses select
that pattern space, and at the end of the script copies the pattern space to the standard output
(except under —n) and deletes the pattern space.

An address is either a decimal number that counts input lines cumulatively across files, a ‘$’
that addresses the last line of input, or a context address, ‘/regular expression/’, in the style of
ed(1) modified thus:

The escape sequence ‘\n’ matches a newline embedded in the pattern Space;
A command line with no addresses selects every pattern space.
A command line with one address selects each pattern space that matches the address.

A command line with two addresses selects the inclusive range from the first pattern space that
matches the first address through the next pattern space that matches the second. (If the
second address is a number less than or equal to the line number first selected, only one line is
selected.) Thereafter the process is repeated, looking again for the first address.

Editing commands can be applied only to non-selected pattern spaces by use of the negation
function ‘!’ (below).

In the following list of functions the maximum number of permissible addresses for each func-
tion is indicated in parentheses.

An argument denoted text consists of one or more lines, all but the last of which end with \’ to
hide the newline. Backslashes in text are treated like backslashes in the replacement string of

n ‘s’ command, and may be used to protect initial blanks and tabs against the stripping that is
done on every script line.

An argument denoted rfile or wfile must terminate the command line and must be preceded by
exactly one blank. Each wfile is created before processing begins. There can be at most 10 dis-
tinct wfile arguments.

(1) a\

text
Append. Place rext on the output before reading the next input line.

(2) b label
Branch to the ‘. command bearing the label. If label is empty, branch to the end of the
script.

(2) c\

text

Change. Delete the pattern space. With 0 or 1 address or at the end of a 2-address
range, place fext on the output. Start the next cycle.

7th Edition 18 January 1983 1

SED (1) UNIX Programmer’s Manual SED (1)

(2)d Delete the pattern space. Start the next cycle.

(2) D Delete the initial segment of the pattern space through the first newline. Start the next
cycle.

(2)g Replace the contents of the pattern space by the contents of the hold space.

(2) G Append the contents of the hold space to the pattern space.

(2) h Replace the contents of the hold space by the contents of the pattern space.

(2)H Append the contents of the pattern space to the hold space.

(D i\

text
Insert. Place fext on the standard output.

(2)n Copy the pattern space to the standard output. Replace the pattern space with the next
line of input.

(2) N Append the next line of input to the pattern space with an embedded newline. (The
current line number changes.)

(2)p Print. Copy the pattern space to the standard output.

(2)P Copy the initial segment of the pattern space through the first newline to the standard
output.

(1)q Quit. Branch to the end of the script. Do not start a new cycle.
(2) r rfile

Read the contents of rfile. Place them on the output before reading the next input line.

(2) s/regular expression/replacement/flags
Substitute the replacement string for instances of the regular expression in the pattern
space. Any character may be used instead of ‘/’. For a fuller description see ed(1).
Flags is zero or more of

g Global. Substitute for all nonoverlapping instances of the regular expression
rather than just the first one.

p Print the pattern space if a replacement was made.
w wfile Write. Append the pattern space to wfile if a replacement was made.

(2) t label
Test. Branch to the ‘.’ command bearing the label if any substitutions have been made
since the most recent reading of an input line or execution of a ‘t’. If label is empty,
branch to the end of the script.

(2) w wfile
Write. Append the pattern space to wfile.

(2) x Exchange the contents of the pattern and hold spaces.

(2) y/stringl/string2/
Transform. Replace all occurrences of characters in string! with the corresponding
character in string2. The lengths of stringl and string2 must be equal.

(2)! function
Don’t. Apply the function (or group, if function is ‘) only to lines not selected by the
address(es).

(0) : label
This command does nothing; it bears a /abel for ‘b’ and ‘t’ commands to branch to.

(1) = Place the current line number on the standard output as a line.

7th Edition 18 January 1983 2

SED (1) UNIX Programmer’s Manual SED (1)

(2){ Execute the following commands through a niatching ‘}> only when the pattern space is
selected.

0) An empty command is ignored.

SEE ALSO
ed(1), grep(1), awk(1), lex(1)

7tb Edition ‘ 18 January 1983 3

SH(1)

NAME

UNIX Programmer’s Manual SH(1)

sh, for, case, if, while, :, ., break, continue, cd, eval, exec, exit, export, login, read, readonly,
set, shift, times, trap, umask, wait — command language

SYNOPSIS

sh [—ceiknrstuvx] [arg] ...

DESCRIPTION

Sh is a command programming language that executes commands read from a terminal or a file.
See invocation for the meaning of arguments to the shell.

Commands.

A simple-command is a sequence of non blank words separated by blanks (a blank is a tab or a
space). The first word specifies the name of the command to be executed. Except as specified
below the remaining words are passed as arguments to the invoked command. The command
name is passed as argument 0 (see execve(2)). The value of a simple-command is its exit status
if it terminates normally or 200+ status if it terminates abnormally (see sigvec(2) for a list of
status values).

A pipeline is a sequence of one or more commands separated by |. The standard output of each
command but the last is connected by a pipe(2) to the standard input of the next command.
Each command is run as a separate process; the shell waits for the last command to terminate.

A list is a sequence of one or more pipelines separated by ;, &, && or |l and optionally ter-
minated by ; or &. ; and & have equal precedence which is lower than that of && and ||, &&
and |1 also have equal precedence. A semicolon causes sequential execution; an ampersand
causes the preceding pipeline to be executed without waiting for it to finish. The symbol &&
(1) causes the /st following to be executed only if the preceding pipeline returns a zero (non
zero) value. Newlines may appear in a /ist, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. The value returned by a com-
mand is that of the last simple-command executed in the command.

for name [in word ...]1 do list done
Each time a for command is executed name is set to the next word in the for word list
If in word ... is omitted, in "$@" is assumed. Execution ends when there are no more
words in the list.

case word in [pattern [| pattern] ...) list ;;] ... esac
A case command executes the /ist associated with the first pattern that matches word.
The form of the patterns is the same as that used for file name generation.

if list then list [elif list then list] ... [else list] fi
The list following if is executed and if it returns zero the /ist following then is executed.
Otherwise, the list following elif is executed and if its value is zero the list following
then is executed. Failing that the else /ist is executed.

while list [do list] done
A while command repeatedly executes the while /ist and if its value is zero executes
the do list; otherwise the loop terminates. The value returned by a while command is
that of the last executed command in the do /ist. until may be used in place of while to
negate the loop termination test.

(list) Execute list in a subshell.

{ tist } listis simply executed.

The following words are only recognized as the first word of a command and when not quoted.
if then else elif fi case in esac for while until do done { }

7th Edition 7 February 1983 1

SH(1) UNIX Programmer’s Manual SH(1)

Command substitution.
The standard output from a command enclosed in a pair of back quotes (**) may be used as
part or all of 2 word; trailing newlines are removed.

Parameter substitution.
The character $ is used to introduce substitutable parameters. Positional parameters may be
assigned values by set. Variables may be set by writing

name=value | name=value] ...

$ {parameter}

A parameter is a sequence of letters, digits or underscores (a name), a digit, or any of
the characters * @ # ? — $!. The value, if any, of the parameter is substituted. The
braces are required only when parameter is followed by a letter, digit, or underscore that
is not to be interpreted as part of its name. If parameter is a digit, it is a positional
parameter. If parameter is *+ or @ then all the positional parameters, starting with $1,
are substituted separated by spaces. $0 is set from argument zero when the shell is
invoked.

$ {parameter —word)
If parameter is set, substitute its value; otherwise substitute word.

$ {parameter= word}
If parameter is not set, set it to word; the value of the parameter is then substituted.
Positional parameters may not be assigned to in this way.

$ { parameter ? word)
If parameter is set, substitute its value; otherwise, print word and exit from the shell. If
word is omitted, a standard message is printed.

$ {parameter +word)
If paramerer is set, substitute word; otherwise substitute nothing.

In the above word is not evaluated unless it is to be used as the substituted string. (So that, for
example, echo ${d—"pwd’} will only execute pwd if d is unset.)

The following parameters are automatically set by the shell.

The number of positional parameters in decimal.

Options supplied to the shell on invocation or by set.

The value returned by the last executed command in decimal.
The process number of this shell.

The process number of the last background command invoked.

R) | :&

The following parameters are used but not set by the shell.

HOME The default argument (home directory) for the ¢d command.

PATH The search path for commands (see execution).

MAIL If this variable is set to the name of a mail file, the shell informs the user of
the arrival of mail in the specified file.

PS1 Primary prompt string, by default °S °.

PS2 Secondary prompt string, by default > °.

IFS Internal field separators, normally space, tab, and newline.

Blank interpretation.

After parameter and command substitution, any results of substitution are scanned for internal
field separator characters (those found in $IFS) and split into distinct arguments where such
characters are found. Explicit null arguments (" or ™) are retained. Implicit null arguments
(those resulting from parameters that have no values) are removed.

7th Edition 7 February 1983 2

SH(1) UNIX Programmer’s Manual SH(1)

File name generation.

Following substitution, each command word is scanned for the characters =, ? and [. If one of
these characters appears, the word is regarded as a pattern. The word is replaced with alphabet-
ically sorted file names that match the pattern. If no file name is found that matches the pat-
tern, the word is left unchanged. The character . at the start of a file name or immediately fol-
lowing a /, and the character /, must be matched explicitly.

. Matches any string, including the null string.

? Matches any single character.

[...]1 Matches any one of the characters enclosed. A pair of characters separated by —
matches any character lexically between the pair.

Quoting.
The following characters have a special meaning to the shell and cause termination of a word
unless quoted.

; & () | < > newline space tab

A character may be quoted by preceding it with a \. \newline is ignored. All characters
enclosed between a pair of quote marks ("), except a single quote, are quoted. Inside double
quotes ("") parameter and command substitution occurs and \ quotes the characters \ * " and $.

"$+" is equivalent to "$1 $2 ..." whereas
"$@" is equivalent to "$1" "$2"

Prompting.

When used interactively, the shell prompts with the value of PS1 before reading a command. If
at any time a newline is typed and further input is needed to complete a command, the secon-
dary prompt ($PS2) is issued.

Input output.

Before a command is executed its input and output may be redirected using a special notation
interpreted by the shell. The following may appear anywhere in a simple-command or may pre-
cede or follow a command and are not passed on to the invoked command. Substitution occurs
before word or digit is used.

< word Use file word as standard input (file descriptor 0).

> word Use file word as standard output (file descriptor 1). If the file does not exist, it is
created; otherwise it is truncated to zero length.

>> word
Use file word as standard output. If the file exists, output is appended (by seeking to
the end); otherwise the file is created.

<< word
The shell input is read up to a line the same as word, or end of file. The resulting
document becomes the standard input. If any character of word is quoted, no interpre-
tation is placed upon the characters of the document; otherwise, parameter and com-
mand substitution occurs, \newline is ignored, and \ is used to quote the characters \ $
* and the first character of word.

< & digit
The standard input is duplicated from file descriptor digit; see dup(2). Similarly for the
standard output using > .

< & — The standard input is closed. Similarly for the standard output using > .

If one of the above is preceded by a digit, the file descriptor created is that specified by the digit
(instead of the default 0 or 1). For example,

7th Edition 7 February 1983 3

SH(1) UNIX Programmer’s Manual SH (1)

L 2>&1
creates file descriptor 2 to be a duplicate of file descriptor 1.

If a command is followed by & then the default standard input for the command is the empty
file (/dev/null). Otherwise, the environment for the execution of a command contains the file
descriptors of the invoking shell as modified by input output specifications.

Environment.

The environment is a list of name-value pairs that is passed to an executed program in the
same way as a normal argument list; see execve(2) and environ(7). The shell interacts with the
environment in several ways. On invocation, the shell scans the environment and creates a
parameter for each name found, giving it the corresponding value. Executed commands inherit
the same environment. If the user modifies the values of these parameters or creates new ones,
none of these affects the environment unless the export command is used to bind the shell’s
parameter to the environment. The environment seen by any executed command is thus com-
posed of any unmodified name-value pairs originally inherited by the shell, plus any
modifications or additions, all of which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it with one or more
assignments to parameters. Thus these two lines are equivalent

TERM =450 cmd args
(export- TERM; TERM=450; cmd args)

If the —k flag is set, all keyword arguments are placed in the environment, even if the occur
after the command name. The following prints 'a=b ¢’ and 'c’:

echoa=bc

set —k

echoa=bc¢

Signals.

The INTERRUPT and QUIT signals for an invoked command are ignored if the command is
followed by &; otherwise signals have the values inherited by the shell from its parent. (But
see also trap.)

Execution. '
Each time a command is executed the above substitutions are carried out. Except for the spe-
cial commands’ listed below a new process is created and an attempt is made to execute the
command via an execve(2).

The shell parameter SPATH defines the search path for the directory containing the command.
Each alternative directory name is separated by a colon (:). The default path is :/bin:/usr/bin.
If the command name contains a /, the search path is not used. Otherwise, each directory in
the path is searched for an executable file. If the file has execute permission but is not an a.our
file, it is assumed to be a file containing shell commands. A subshell (i.e., a separate process)
is spawned to read it. A parenthesized command is also executed in a subshell.

Special commands.
The following commands are executed in the shell process and except where specified no input
output redirection is permitted for such commands.

No effect; the command does nothing.
. file Read and execute commands from file and return. The search path SPATH is used to
find the directory containing file.
break [n]
Exit from the enclosing for or while loop, if any. If nis specified, break n levels.
continue [n] .
Resume the next iteration of the enclosing for or while loop. If n is specified, resume

7th Edition 7 February 1983 , 4

SH(1)

UNIX Programmer’s Manual SH(1)
at the n-th enclosing loop.
cd [argl :
Change the current directory to arg. The shell parameter SHOME is the default arg.
eval [arg...]

The arguments are read as input to the shell and the resulting command(s) executed.
exec [arg...]
The command specified by the arguments is executed in place of this shell without
creating a new process. Input output arguments may appear and if no other arguments
are given cause the shell input output to be modified.
exit [n]
Causes a non interactive shell to exit with the exit status specified by n. If nis omitted,
the exit status is that of the last command executed. (An end of file will also exit from
the shell.)
export [name ...}
The given names are marked for automatic export to the environment of subsequently-
executed commands. If no arguments are given, a list of exportable names is printed.
login [arg...]
Equivalent to ’exec login arg ...".
read name ...
One line is read from the standard input; successive words of the input are assigned to
the variables name in order, with leftover words to the last variable. The return code is
0 unless the end-of-file is encountered.
readonly [name ...1
The given names are marked readonly and the values of the these names may not be
changed by subsequent assignment. If no arguments are given, a list of all readonly
names is printed.
set [—eknptuvx [arg...]]
—e If non interactive, exit immediately if a command fails.
—k All keyword arguments are placed in the environment for a command, not just
those that precede the command name.
-—n Read commands but do not execute them.
-t Exit after reading and executing one command.
—u Treat unset variables as an error when substituting.
—v Print shell input lines as they are read.
—x Print commands and their arguments as they are executed.
- Turn off the —x and —v options.

‘These flags can also be used upon invocation of the shell. The current set of flags may
be found in $—.

Remaining arguments are positional parameters and are assigned, in order, to $1, $2.
etc. If no arguments are given, the values of all names are printed.

shift The positional parameters from $2... are renamed $1...
times Print the accumulated user and system times for processes run from the shell.

trap [arg]l [n] ...

Arg is a command to be read and executed when the shell receives signal(s) n. (Note
that arg is scanned once when the trap is set and once when the trap is taken.) Trap
commands are executed in order of signal number. If arg is absent, all trap(s) n are
reset to their original values. If argis the null string, this signal is ignored by the shell
and by invoked commands. If nis 0, the command arg is executed on exit from the
shell, otherwise upon receipt of signal »n as numbered in sigvec(2). Trap with no argu-
ments prints a list of commands associated with each signal number.

7th Edition 7 February 1983 5

SH(1) UNIX Programmer’s Manual SH(1)

umask [nnn]
The user file creation mask is set to the octal value nnn (see umask(2)). If nnn is omit-
ted, the current value of the mask is printed.

wait [n]
Wait for the specified process and report its termination status. If » is not given, all
currently active child processes are waited for. The return code from this command is
that of the process waited for.

Invocation.

If the first character of argument zero is —, commands are read from SHOME/. profile, if such a
file exists. Commands are then read as described below. The following flags are interpreted by
the shell when it is invoked.

—c string If the —c flag is present, commands are read from string.

-s If the —s flag is present or if no arguments remain then commands are read from
the standard input. Shell output is written to file descriptor 2.
-i If the —i flag is present or if the shell input and output are attached to a terminal

(as told by gry) then this shell is interactive. In this case the terminate signal
SIGTERM (see sigvec(2)) is ignored (so that ’kill 0’ does not kill an interactive
shell) and the interrupt signal SIGINT is caught and ignored (so that wait is inter-
ruptible). In all cases SIGQUIT is ignored by the shell.

The remaining flags and arguments are described under the set command.

FILES
SHOME/ . profile
/tmp/sh=*
/dev/null

SEE ALSO
csh(1), test(1), execve(2), environ(7)

DIAGNOSTICS
Errors detected by the shell, such as syntax errors cause the shell to return a non zero exit
status. If the shell is being used non interactively then execution of the shell file is abandoned.
Otherwise, the shell returns the exit status of the last command executed (see also exit).

BUGS
If << is used to provide standard input to an asynchronous process invoked by &, the shell gets
mixed up about naming the input document. A garbage file /tmp/sh« is created, and the shell
complains about not being able to find the file by another name.

7th Edition 7 February 1983 6

SIZE (1) UNIX Programmer’s Manual SIZE (1)

NAME
size — size of an object file

SYNOPSIS
size [object ...]

DESCRIPTION
Size prints the (decimal) number of bytes required by the text, data, and bss portions, and their
sum in hex and decimal, of each object-file argument. If no file is specified, a.out is used.

SEE ALSO
a.out(5)

7th Edition 18 January 1983 1

SLEEP (1) UNIX Programmer’s Manual SLEEP (1)

NAME
sleep — suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION
Sleep suspends execution for time seconds. It is used to execute a command after a certain
amount of time as in:

(sleep 105; command) &
or to execute a command every so often, as in:

while true
do
command
sleep 37
done

SEE ALSO
setitimer(2), alarm(3C), sleep(3)

BUGS
Time must be less than 2,147,483,647 seconds.

7th Edition 10 February 1983 1

SORT (1) UNIX Programmer’s Manual SORT (1)

NAME

sort — sort or merge files

SYNOPSIS

sort [—mubdfinrtx] [+pos! [=pos2]]... [—o name] [=T directory] [name] ...

DESCRIPTION

Sort sorts lines of all the named files together and writes the result on the standard output. The
name ‘—’ means the standard input. If no input files are named, the standard input is sorted.

The default sort key is an entire line. Default ordering is lexicographic by bytes in machine
collating sequence. The ordering is affected globally by the following options, one or more of
which may appear.

b Ignore leading blanks (spaces and tabs) in field comparisons.
‘Dictionary’ order: only letters, digits and blanks are significant in comparisons.

d

f Fold upper case letters onto lower case.

i Ignore characters outside the ASCII range 040-0176 in nonnumeric comparisons.
n

An initial numeric string, consisting of optional blanks, optional minus sign, and zero or
more digits with optional decimal point, is sorted by arithmetic value. Option n implies
option b.

r Reverse the sense of comparisons.
tx ‘Tab character’ separating fields is x.

The notation +pos! — pos2 restricts a sort key to a field beginning at pos! and ending just
before pos2. Posl and pos2 each have the form m.n, optionally followed by one or more of the
flags bdfinr, where m tells a number of fields to skip from the beginning of the line and n tells
a number of characters to skip further. If any flags are present they override all the global ord-
ering options for this key. If the b option is in effect n is counted from the first nonblank in
the field; b is attached independently to pos2. A missing .n means .0; a missing — pos2 means
the end of the line. Under the —tx option, fields are strings separated by x; otherwise fields
are nonempty nonblank strings separated by blanks.

When there are multiple sort keys, later keys are compared only after all earlier keys compare
equal. Lines that otherwise compare equal are ordered with all bytes significant.

These option arguments are also understood:

¢ Check that the input file is sorted according to the ordering rules; give no output unless
the file is out of sort.

m Merge only, the input files are already sorted.

0 The next argument is the name of an output file to use instead of the standard output.
This file may be the same as one of the inputs.

The next argument is the name of a directory in which temporary files should be made.

u Suppress all but one in each set of equal lines. Ignored bytes and bytes outside keys do
not participate in this comparison.

EXAMPLES

Print in alphabetical order all the unique spellings in a list of words. Capitalized words differ
from uncapitalized.

sort —u +0f +0 list
Print the password file (passwd(5)) sorted by user id number (the 3rd colon-separated field).

7th Edition 10 February 1983 S

SORT (1) UNIX Programmer’s Manual SORT (1)

sort —t: +2n /etc/passwd

Print the first instance of each month in an already sorted file of (month day) entries. The
options —um with just one input file make the choice of a unique representative from a set of
equal lines predictable.

sort —um +0 —1 dates

FILES
/usr/tmp/stms, /tmp/+ first and second tries for temporary files

SEE ALSO
uniq(1), comm(1), rev(1), join(1)

DIAGNOSTICS
Comments and exits with nonzero status for various trouble conditions and for disorder
discovered under option —c.

BUGS
Very long lines are silently truncated.

7th Edition 10 February 1983 2

SPELL (1) UNIX Programmer’s Manual SPELL (1)

NAME

spell, spellin, spellout — find spelling errors

SYNOPSIS

spell [=v][=b][—=x][—dhlist] [=s hstop] [=h spellhist] [file] ...
spellin [list]
spellout [—d] list

DESCRIPTION

Spell collects words from the named documents, and looks them up in a spelling list. Words
that neither occur among nor are derivable (by applying certain inflections, prefixes or suffixes)
from words in the spelling list are printed on the standard output. If no files are named, words
are collected from the standard input.

Spell ignores most troff, thl and egn(1) constructions.

Under the =—v option, all words not literally in the spelling list are printed, and plausible deriva-
tions from spelling list words are indicated.

Under the —b option, British spelling is checked. Besides preferring centre, colour, speciality,
travelled, etc., this option insists upon -ise in words like standardise, Fowler and the OED to the
contrary notwithstanding.

Under the —x option, every plausible stem is printed with ‘=" for each word.

The spelling list is based on many sources. While it is more haphazard than an ordinary dic-
tionary, it is also more effective with proper names and popular technical words. Coverage of
the specialized vocabularies of biology, medicine and chemistry is light.

The auxiliary files used for the spelling list, stop list, and history file may be specified by argu-
ments following the —d, —s, and —h options. The default files are indicated below. Copies of
all output may be accumulated in the history file. The stop list filters out misspellings (e.g.
thier=thy—y+ier) that would otherwise pass.

Two routines help maintain the hash lists used by spell. Both expect a set of words, one per
line, from the standard input. Spellin combines the words from the standard input and the
preexisting /ist file and places a new list on the standard output. If no /ist file is specified, the
new list is created from scratch. Speliout looks up each word from the standard input and prints
on the standard output those that are missing from (or present on, with option —d) the hashed
list file. For example, to verify that hookey is not on the default spelling list, add it to your own
private list, and then use it with spell,

echo hookey | spellout /usr/dict/hlista
echo hookey | spellin /usr/dict/hlista > myhlist
spell —d myhlist huckfinn

FILES
/usr/dict/hlist[ab] hashed spelling lists, American & British, default for —d
/usr/dict/hstop hashed stop list, default for —s
/dev/null history file, default for —=h
/tmp/spell.$3+ temporary files
/usr/lib/spell
SEE ALSO
deroff(1), sort(1), tee(1), sed(1)
BUGS

The spelling list’s coverage is uneven; new installations will probably wish to monitor the out-
put for several months to gather local additions.
British spelling was done by an American.

7th Edition 12 September 1983 ' 1

SPLIT (1) UNIX Programmer’s Manual SPLIT (1)

NAME

split — split a file into pieces
SYNOPSIS

split [—n] [file [name]]

DESCRIPTION
Split reads file and writes it in n-line pieces (default 1000), as many as necessary, onto a set of
output files. The name of the first output file is name with aa appended, and so on lexicograph-
ically. If no output name is given, x is default.

If no input file is given, or if = is given in its stead, then the standard input file is used.

7th Edition 18 January 1983 1

STRINGS (1) UNIX Programmer’s Manual STRINGS (1)

NAME

strings — find the printable strings in a object, or other binary, file
SYNOPSIS

strings [— 1 [—o] [—number] file ...
DESCRIPTION

Strings looks for ascii strings in a binary file. A string is any sequence of 4 or more printing
characters ending with a newline or a null. Unless the — flag is given, strings only looks in the
initialized data space of object files. If the —o flag is given, then each string is preceded by its
offset in the file (in octal). If the — number flag is given then number is used as the minimum
string length rather than 4.

Strings is useful for identifying random object files and many other things.

SEE ALSO
od(1)

BUGS
The algorithm for identifying strings is extremely primitive

3rd Berkeley Distribution 24 February 1979 : 1

STRIP (1) UNIX Programmer’s Manual STRIP (1)

NAME
strip — remove symbols and relocation bits

SYNOPSIS
strip name ...

DESCRIPTION
Strip removes the symbol table and relocation bits ordinarily attached to the output of the
assembler and loader. This is useful to save space after a program has been debugged.
The effect of strip is the same as use of the —s option of /d.

FILES
/tmp/stm? temporary file

SEE ALSO

1d(1)

7th Edition 18 January 1983 1

STTY (1)

NAME

UNIX Programmer’s Manual STTY (1)

stty — set terminal options

SYNOPSIS

stty [option ...]

DESCRIPTION

Sty sets certain 1/0 options on the current output terminal, placing its output on the diagnostic
output. With no argument, it reports the speed of the terminal and the settings of the options
which are different from their defaults. With the argument “‘all’’, all normally used option set-
tings are reported. With the argument ‘“‘everything’’, everything stty knows about is printed.
The option strings are selected from the following set:

even
—even
odd
—odd
raw

—raw
cooked
cbreak

—cbreak
=nl

nl

echo
—echo
Icase
—Icase
tandem

—tandem
—tabs
tabs

ek

allow even parity input

disallow even parity input

allow odd parity input

disallow odd parity input

raw mode input (no input processing (erase, kill, interrupt, ...); parity bit passed
back)

negate raw mode

same as ‘—raw’

make each character available to read(2) as received; no erase and kill processing,
but all other processing (interrupt, suspend, ...) is performed

make characters available to read only when newline is received

allow carriage return for new-line, and output CR-LF for carriage return or new-line
accept only new-line to end lines

echo back every character typed

do not echo characters

map upper case to lower case

do not map case

enable flow control, so that the system sends out the stop character when its internal
queue is in danger of overflowing on input, and sends the start character when it is
ready to accept further input

disable flow control

replace tabs by spaces when printing

preserve tabs

set erase and kill characters to # and @

For the following commands which take a character argument ¢, you may also specify c as the
“‘u” or “‘undef™’, to set the value to be undefined. A value of ““"x’’, a 2 character sequence, is
also interpreted as a control character, with *“"?”’ representing delete.

erase ¢
kill ¢
intr ¢
quit ¢
start ¢
stop ¢
eof ¢
brk ¢

set erase character to ¢ (default ‘#’, but often reset to "H.)

set kill character to ¢ (default ‘@’, but often reset to “U.)

set interrupt character to ¢ (default DEL or "? (delete), but often reset to "C.)

set quit character to ¢ (default control \.)

set start character to ¢ (default control Q.)

set stop character to ¢ (default control S.)

set end of file character to ¢ (default control D.)

set break character to ¢ (default undefined.) This character is an extra wakeup caus-
ing character.

cr0 crl cr2 cr3

select style of delay for carriage return (see ioct/(2))

nl0 nll1 nl2 ni3

select style of delay for linefeed

tab0 tabl tab2 tab3

4th Berkeley Distribution 11 May 1981 1

STTY (1) UNIX Programmer’s Manual STTY (1)

select style of delay for tab
IO ff1 select style of delay for form feed
bs0 bsl select style of delay for backspace

tty33 set all modes suitable for the Teletype Corporation Model 33 terminal.

tty37 set all modes suitable for the Teletype Corporation Model 37 terminal.

vt05 set all modes suitable for Digital Equipment Corp. VTO05 terminal

dec set all modes suitable for Digital Equipment Corp. operating systems users; (erase,
kill, and interrupt characters to “?, “U, and “C, decctlq and ‘“‘newcrt’’.)

tn300 set all modes suitable for a General Electric TermiNet 300

ti700 set all modes suitable for Texas Instruments 700 series terminal

tek set all modes suitable for Tektronix 4014 terminal

0 hang up phone line immediately

50 75 110 134 150 200 300 600 1200 1800 2400 4800 9600 exta extb
Set terminal baud rate to the number given, if possible. (These are the speeds sup-
ported by the DH-11 interface).

A teletype driver which supports the job control processing of csh(1) and more functionality
than the basic driver is fully described in #y(4). The following options apply only to it.

new Use new driver (switching flushes typeahead).
crt Set options for a CRT (crtbs, ctlecho and, if > = 1200 baud, crterase and crtkill.)
crtbs Echo backspaces on erase characters.

prterase For printing terminal echo erased characters backwards within “‘\’* and **/"".

crterase Wipe out erased characters with ‘‘backspace-space-backspace.”

—crterase Leave erased characters visible; just backspace.

crtkill Wipe out input on like kill ala crterase.

—crtkill Just echo line kill character and a newline on line kill.

ctlecho Echo control characters as *“"x’’ (and delete as ***?"".) Print two backspaces follow-
ing the EOT character (control D).

—ctlecho Control characters echo as themselves; in cooked mode EOT (control-D) is not
echoed.

decctly After output is suspended (normally by “S), only a start character (normally "Q) will
restart it. This is compatible with DEC’s vendor supplied systems.

—decctlg After output is suspended, any character typed will restart it; the start character will
restart output without providing any input. (This is the default.)

tostop Background jobs stop if they attempt terminal output.

—tostop Output from background jobs to the terminal is allowed.

tilde Convert ™’ to ™’ on output (for Hazeltine terminals).

~tilde Leave poor ™" alone.

flusho Output is being discarded usually because user hit control O (internal state bit).

—flusho Output is not being discarded.

pendin Input is pending after a switch from cbreak to cooked and will be re-input when a
read becomes pending or more input arrives (internal state bit).

—pendin Input is not pending.

intrup Send a signal (SIGTINT) to the terminal control process group whenever an input

: record (line in cooked mode, character in cbreak or raw mode) is available for read-

ing.

—intrup Don’t send input available interrupts.

mdmbuf Start/stop output on carrier transitions (not implemented).

~mdmbuf
Return error if write attempted after carrier drops.

litout Send output characters without any processing.

4th Berkeley Distribution 11 May 1981 2

STTY (1) UNIX Programmer’s Manual STTY (1)

—litout Do normal output processing, inserting delays, etc.

nohang Don’t send hangup signal if carrier drops.

—nohang Send hangup signal to control process group when carrier drops.
etxack Diablo style etx/ack handshaking (not implemented).

The following special characters are applicable only to the new teletype driver and are not nor-
mally changed.

susp ¢ set suspend process character to ¢ (default control Z).

dsusp ¢ set delayed suspend process character to ¢ (default control Y).
rprnt ¢ set reprint line character to ¢ (default control R).

flush ¢ set flush output character to ¢ (default control O).

werase ¢ set word erase character to ¢ (default control W).

Inext ¢ set literal next character to ¢ (default control V).

SEE ALSO
ioctl(2), tabs(1), tset(1), tty(4)

4th Berkeley Distribution 11 May 1981 3

Su(1) UNIX Programmer’s Manual - SuU(1)

NAME
su — substitute user id temporarily

SYNOPSIS
su [userid]

DESCRIPTION
Su demands the password of the specified userid, and if it is given, changes to that userid and
invokes the Shell sh(1) without changing the current directory. The user environment is
unchanged except for HOME and SHELL, which are taken from the password file for the user
being substituted (see environ(7)). The new user ID stays in force until the Shell exits.

If no userid is specified, ‘root’ is assumed. To remind the super-user of his responsibilities, the
Shell substitutes ‘#’ for its usual prompt.

SEE ALSO
sh(1)

BUGS
Local administrative rules cause restrictions to be placed on who can su to ‘root’, even with the
root password. These rules vary from site to site.

3rd Berkeley Distribution 16 November 1979 1

VRN

SUM(1) UNIX Programmer’s Manual SUM (1)

NAME
sum — sum and count blocks in a file

SYNOPSIS
sum file

DESCRIPTION
Sum calculates and prints a 16-bit checksum for the named file, and also prints the number of
blocks in the file. It is typically used to look for bad spots, or to validate a file communicated
over some transmission line.

SEE ALSO
we(l)

DIAGNOSTICS
‘Read error’ is indistinguishable from end of file on most devices; check the block count.

7th Edition 18 January 1983 1

TAIL (1) UNIX Programmer’s Manual TAIL (1)

NAME
tail — deliver the last part of a file

SYNOPSIS
tail [=number[lbe]lfr]] [file]

DESCRIPTION
Tail copies the named file to the standard output beginning at a designated place. If no file is
named, the standard input is used.

Copying begins at distance +number from the beginning, or —number from the end of the
input. Number is counted in units of lines, blocks or characters, according to the appended
option 1, b or ¢. When no units are specified, counting is by lines.

Specifying r causes tail to print lines from the end of the file in reverse order. The default for r
is to print the entire file this way. Specifying f causes zail to not quit at end of file, but rather
wait and try to read repeatedly in hopes that the file will grow.

SEE ALSO
dd(1)

BUGS
Tails relative to the end of the file are treasured up in a buffer, and thus are limited in length.

Various kinds of anomalous behavior may happen with character special files.

4th Berkeley Distribution 18 January 1983 _ 1

TAR (1)

NAME

UNIX Programmer’s Manual TAR (1)

tar — tape archiver

SYNOPSIS

tar [key] [name ...]

DESCRIPTION

Tar saves and restores multiple files on a single file (usually a magnetic tape, but it can be any
file). Tar’s actions are controlled by the key argument. The key is a string of characters con-
taining at most one function letter and possibly one or more function modifiers. Other argu-
ments to tar are file or directory names specifying which files to dump or restore. In all cases,
appearance of a directory name refers to the files and (recursively) subdirectories of that direc-

tory.

The function portion of the key is specified by one of the following letters:

r
X

P

The named files are written on the end of the tape. The ¢ function implies this.

The named files are extracted from the tape. If the named file matches a directory
whose contents had been written onto the tape, this directory is (recursively)
extracted. The owner, modification time, and mode are restored (if possible). If no
file argument is given, the entire content of the tape is extracted. Note that if multiple
entries specifying the same file are on the tape, the last one overwrites all earlier.

The names of the specified files are listed each time they occur on the tape. If no file
argument is given, all of the names on the tape are listed.

The named files are added to the tape if either they are not already there or have been
modified since last put on the tape.

Create a new tape; writing begins on the beginning of the tape instead of after the last
file. This command implies r.

On output, tar normally places information specifying owner and modes of directories
in the archive. Former versions of tar, when encountering this information will give
error message of the form

"<name>/: cannot create".
This option will suppress the directory information.

This option says to restore files to their original modes, ignoring the present umask(2).
Setuid and sticky information will also be restored to the super-user.

The following characters may be used in addition to the letter which selects the function

desired.
0 ..,9

7th Edition

This modifier selects an alternate drive on which the tape is mounted. The default
is drive 0 at 1600 bpi, which is normally /dev/rmt8.

Normally tar does its work silently. The v (verbose) option make tar type the name
of each file it treats preceded by the function letter. With the t function, the ver-
bose option gives more information about the tape entries than just their names.

Tar prints the action to be taken followed by file name, then wait for user
confirmation. If a word beginning with ‘y’ is given, the action is done. Any other
input means don’t do it.

Tar uses the next argument as the name of the archive instead of /dev/rmt?. If the
name of the file is ‘—’, tar writes to standard output or reads from standard input,
whichever is appropriate. Thus, far can be used as the head or tail of a filter chain.
Tar can aiso be used to move hierarchies with the command

cd fromdir; tar cf - . | (cd todir; tar xf -)

13 January 1983 1

TAR (1) UNIX Programmer’s Manual TAR (1)

b Tar uses the next argument as the blocking factor for tape records. The default is 20
(the maximum). This option should only be used with raw magnetic tape archives
(See f above). The block size is determined automatically when reading tapes (key
letters ‘x’ and ‘t’).

1 tells tar to complain if it cannot resolve all of the links to the files dumped. If this is

not specified, no error messages are printed.
- m tells tar not to restore the modification times. The modification time will be the

time of extraction.

h Force tar to follow symbolic links as if they were normal files or directories. Nor-
mally, tar does not follow symbolic links.

B Forces input and output blocking to 20 blocks per record. This option was added so
that tar can work across a communications channel where the blocking may not be
maintained.

If a file name is preceded by —C, then tar will perform a chdir(2) to that file name. This allows
multiple directories not related by a close common parent to be archived using short relative
path names. For example, to archive files from /usr/include and from /etc, one might use

tar ¢ -C /usr include -C / etc

Previous restrictions dealing with rar’s inability to properly handle blocked archives have been
lifted.

FILES
/dev/rmt?
/tmp/tar»

DIAGNOSTICS
Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

BUGS
There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The current limit on file name length is 10" characters.
There is no way to selectively follow symbolic links.

7th Edition 13 January 1983 2

TEE (1) UNIX Programmer’s Manual TEE (1)

NAME

tee — pipe fitting
SYNOPSIS

tee [—1][—a][file]..

DESCRIPTION
Tee transcribes the standard input to the standard output and makes copies in the files. Option

-{ ignores interrupts; option —a causes the output to be appended to the files rather than
overwriting them.

7th Edition 18 January 1983 1

TEST (1) UNIX Programmer’s Manual TEST (1)

NAME
test — condition command

SYNOPSIS
test expr

DESCRIPTION
test evaluates the expression expr, and if its value is true then returns zero exit status; other-
wise, a non zero exit status is returned. fest returns a non zero exit if there are no arguments.

The following primitives are used to construct expr.

—r file true if the file exists and is readable.

—w file true if the file exists and is writable.

—f file true if the file exists and is not a directory.

—d file true if the file exists exists and is a directory.

—g file true if the file exists and has a size greater than zero.

~t [fildes]
true if the open file whose file descriptor number is fildes (1 by default) is associated
with a terminal device.

-~z sl true if the length of string s/ is zero.

=n sl true if the length of the string s/ is nonzero.
sl = s2 true if the strings s/ and s2 are equal.

s1 != s2 true if the strings s/ and s2 are not equal.

sl true if sl is not the null string.

nl —eq n2

true if the integers nl and n2 are algebraically equal. Any of the comparisons =—ne,
—gt, —ge, —It, or —le may be used in place of —eq.

These primaries may be combined with the following operators:
! unary negation operator

-q binary and operator

-0 binary or operator

(expr)

parentheses for grouping.
—a has higher precedence than —o. Notice that all the operators and flags are separate argu-
ments to test. Notice also that parentheses are meaningful to the Shell and must be escaped.

SEE ALSO
sh(1), find(1)

7th Edition 18 January 1983 1

TIME (1) UNIX Programmer’s Manual TIME (1)

NAME
time — time a.command

SYNOPSIS
time command

DESCRIPTION
The given command is executed; after it is complete, time prints the elapsed time during the
.command, the time spent in the system, and the time spent in execution of the command.
Times are reported in seconds.

On a PDP-11, the execution time can depend on what kind of memory the program happens to
land in; the user time in MOS is often half what it is in core.

The times are printed on the diagnostic output stream.
Time is built in to csh(1), using a different output format.

BUGS
Elapsed time is accurate to the second, while the CPU times are measured to the 100th second.
Thus the sum of the CPU times can be up to a second larger than the elapsed time.

Time is a built-in command to csh(1), with a much different syntax. This command is available
as ‘‘/bin/time’’ to csh users.

4th Berkeley Distribution 18 January 1983 1

TOUCH (1) UNIX Programmer’s Manual TOUCH (1)

NAME
touch — update date last modified of a file

SYNOPSIS
touch [—c] [—f] file ...

DESCRIPTION
Touch attempts to set the modified date of each file. If a file exists, this is done by reading a
character from the file and writing it back. If a file does not exist, an attempt will be made to
create it unless the =—c¢ option is specified. The —f option will attempt to force the touch in
spite of read and write permissions on a file.

SEE ALSO
utimes(2)

7th Edition 18 January 1983 1

TP (1)

NAME

UNIX Programmer’s Manual TP (1)

tp — manipulate tape archive

SYNOPSIS

tp [key] [name ...]

DESCRIPTION

Tp saves and restores files on DECtape or magtape. Its actions are controlled by the key argu-
ment. The key is a string of characters containing at most one function letter and possibly one
or more function modifiers. Other arguments to the command are file or directory names
specifying which files are to be dumped, restored, or listed. In all cases, appearance of a direc-
tory name refers to the files and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r

The named files are written on the tape. If files with the same names already exist,
they are replaced. ‘Same’ is determined by string comparison, so ‘./abc’ can never be
the same as ‘/usr/dmr/abc’ even if ‘/usr/dmr’ is the current directory. If no file argu-
ment is given, ‘.’ is the default.

updates the tape. u is like r, but a file is replaced only if its modification date is later
than the date stored on the tape; that is to say, if it has changed since it was dumped.
u is the default command if none is given.

deletes the named files from the tape. At least one name argument must be given.
This function is not permitted on magtapes.

extracts the named files from the tape to the file system. The owner and mode are
restored. If no file argument is given, the entire contents of the tape are extracted.

lists the names of the specified files. If no file argument is given, the entire contents
of the tape is listed.

The following characters may be used in addition to the letter which selects the function

desired.
m
0,...,7

7th Edition

Specifies magtape as opposed to DECtape.

This modifier selects the drive on which the tape is mounted. For DECtape, x is
default; for magtape ‘0’ is the default.

Normally tp does its work silently. The v (verbose) option causes it to type the
name of each file it treats preceded by the function letter. With the t function, v
gives more information about the tape entries than just the name.

means a fresh dump is being created; the tape directory is cleared before beginning.
Usable only with r and u. This option is assumed with magtape since it is impossible
to selectively overwrite magtape.

Errors reading and writing the tape are noted, but no action is taken. Normally,
€ITors cause a return to the command level.

Use the first named file, rather than a tape, as the archive. This option currently
acts like m; i.e. r implies ¢, and neither d nor u are permitted.

causes fp to pause before treating each file, type the indicative letter and the file
name (as with v) and await the user’s response. Response y means ‘yes’, so the file
is treated. Null response means ‘no’, and the file does not take part in whatever is
being done. Response x means ‘exit’; the fp command terminates immediately. In
the x function, files previously asked about have been extracted already. With r, u,
and d no change has been made to the tape.

18 January 1983 deprecated . 1

TP(1) UNIX Programmer’s Manual TP(1)

FILES
/dev/tap?
/dev/rmt?

SEE ALSO
ar(1), tar(1)

DIAGNOSTICS
Several, the non-obvious one is ‘Phase error’, which means the file changed after it was
selected for dumping but before it was dumped.

BUGS
A single file with several links to it is treated like several files.

Binary-coded control information makes magnetic tapes written by #p difficult to carry to other
machines; far(1) avoids the problem.

7th Edition 18 January 1983 deprecated ' 2

TR (1) UNIX Programmer’s Manual TR (1)

NAME
tr — translate characters

SYNOPSIS
tr [—cds] [stringl [string2]]

DESCRIPTION

Tr copies the standard input to the standard output with substitution or deletion of selected
characters. Input characters found in stringl are mapped into the corresponding characters of
string2. When string2 is short it is padded to the length of stringl by duplicating its last charac-
ter. Any combination of the options —cds may be used: —c¢ complements the set of characters
in stringl with respect to the universe of characters whose ASCII codes are 01 through 0377
octal; —d deletes all input characters in stringl; —s squeezes all strings of repeated output char-
acters that are in szring2 to single characters.

In either string the notation a— 5 means a range of characters from a to b in increasing ASCII
order. The character ¢\’ followed by 1, 2 or 3 octal digits stands for the character whose ASCII
code is given by those digits. A \’ followed by any other character stands for that character.

The following example creates a list of all the words in ‘filel’ one per line in ‘file2’, where a
word is taken to be a maximal string of alphabetics. The second string is quoted to protect ‘\’
from the Shell. 012 is the ASCII code for newline.

tr —cs A—Za—z '\012" <filel >file2

SEE ALSO
ed(1), ascii(7), expand(1)

BUGS
Won'’t handle ASCII NUL in stringl or string2; always deletes NUL from input.

7th Edition 18 January 1983 1

TROFF (1) UNIX Programmer’s Manual TROFF (1)

NAME

troff, nroff — text formatting and typesetting

SYNOPSIS

troff [option] ... [file] ...
nroff [option] ... [file] ...

DESCRIPTION

Troff formats text in the named files for printing on a Graphic Systems C/A/T phototypesetter;
nroff is used for for typewriter-like devices. Their capabilities are described in the NrofTTroff
user’s manual.

If no file argument is present, the standard input is read. An argument consisting of a single
minus (=) is taken to be a file name corresponding to the standard input. The options, which
may appear in any order so long as they appear before the files, are:

—olist Print only pages whose page numbers appear in the comma-separated list of numbers
and ranges. A range N—AM means pages N through M; an initial —N means from
the beginning to page N; and a final N— means from N to the end.

-=nN Number first generated page N.

-sN Stop every N pages. Nroff will halt prior to every N pages (default N=1) to allow
paper loading or changing, and will resume upon receipt of a newline. Troff will stop
the phototypesetter every N pages, produce a trailer to allow changing cassettes, and
resume when the typesetter’s start button is pressed.

—muname Prepend the macro file /usr/lib/tmac/tmac. name to the input files.
=raN Set register a (one-character) to N.

-i Read standard input after the input files are exhausted.

-q Invoke the simultaneous input-output mode of the rd request.

Troff only

-t Direct output to the standard output instead of the phototypesetter.

-f Refrain from feeding out paper and stopping phototypesetter at the end of the run.
-W Wait until phototypesetter is available, if currently busy.

-b Report whether the phototypesetter is busy or available. No text processing is done.
-1 Send a printable ASCII approximation of the results to the standard output.

=pN Print all characters in point size N while retaining all prescribed spacings and
motions, to reduce phototypesetter elapsed time.

If the file /fusrladmftracct is writable, troff keeps phototypesetter accounting records there. The
integrity of that file may be secured by making troffa ’set user-id’ program.

FILES
/tmp/tas= temporary file
/usr/lib/tmac/tmac.» standard macro files
/usr/lib/term/» terminal driving tables for nroff
/usr/lib/font/s font width tables for troff
/dev/cat phototypesetter
/usr/adm/tracct accounting statistics for /dev/cat
SEE ALSO

J. F. Ossanna, NroffiTroff user’s manual
B. W. Kernighan, 4 TROFF Tutorial
eqn(1), tbl(1), ms(7), me(7), man(7), col(1)

7th Edition 7 February 1983 1

TRUE(1) UNIX Programmer’s Manual TRUE(1)

NAME
true, false — provide truth values

'SYNOPSIS
true

false

DESCRIPTION
True and faise are usually used in a Bourne shell script. They test for the appropriate status
"true” or "false” before running (or failing to run) a list of commands.

EXAMPLE
while true
do
command list
done
SEE ALSO
csh(1), sh(1), false(1)
DIAGNOSTICS

True has exit status zero.

7th Edition 11 January 1982 1

TSORT (1) UNIX Programmer’s Manual TSORT (1)

NAME
tsort — topological sort

SYNOPSIS
tsort [file]

DESCRIPTION
Tsort produces on the standard output a totally ordered list of items consistent with a partial
ordering of items mentioned in the input file. If no file is specified, the standard input is
understood.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of different
items indicate ordering. Pairs of identical items indicate presence, but not ordering.

SEE ALSO
lorder(1)

DIAGNOSTICS
QOdd data: there is an odd number of fields in the input file.

BUGS
Uses a quadratic algorithm; not worth fixing for the typical use of ordering a library archive file.

7th Edition 18 January 1983 1

TTY (1) UNIX Programmer’s Manual TTY (1)

NAME
tty — get terminal name
SYNOPSIS
tty [-s]
DESCRIPTION :

Tty prints the pathname of the user’s terminal unless the —s (silent) is given. In either case,
the exit value is zero if the standard input is a terminal and one if it is not.

DIAGNOSTICS
‘not a tty’ if the standard input file is not a terminal.

7th Edition | 10 February 1983 1

UNGET(1) UNGET(1)

NAME

unget — undo a previous get of an SCCS file
SYNOPSIS

unget [—rSID] [—s] [—n] files
DESCRIPTION

Unget undoes the effect of a get —e done prior to creating the intended
new delta. If a directory is named, unget behaves as though each file in the
directory were specified as a named file, except that non-SCCS files and
unreadable files are silently ignored. If a name of — is given, the standard
input is read with each line being taken as the name of an SCCS file to be
processed. ' '

Keyletter arguments apply independently to each named file.

—rSID Uniquely identifies which delta is no longer intended.
(This would have been specified by get as the ‘“‘new
delta’). The use of this keyletter is necessary only if
two or more outstanding gets for editing on the same
SCCS file were done by the same person (login name).
A diagnostic results if the specified SID is ambiguous, or
if it is necessary and omitted on the command line.

—s Suppresses the printout, on the standard output, of the
intended delta’s SID.
—n Causes the retention of the gotten file which would nor-
mally be removed from the current directory.
SEE ALSO
delta(1), get(1), sact(1).
DIAGNOSTICS

Use help(1) for explanations.

UNIQ(1) UNIX Programmer’s Manual UNIQ(1)

NAME
uniq — report repeated lines in a file

SYNOPSIS
uniq [=ude [+n] [=n]] [input [output]]

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In the normal case, the second and succeed-
ing copies of repeated lines are removed; the remainder is written on the output file. Note that
repeated lines must be adjacent in order to be found; see sort(1). If the —u flag is used, just
the lines that are not repeated in the original file are output. The —d option specifies that one
copy of just the repeated lines is to be written. The normal mode output is the union of the
—u and -—d mode outputs.

The —c option supersedes —u and —d and generates an output report in default style but with
each line preceded by a count of the number of times it occurred.

The n arguments specify skipping an initial portion of each line in the comparison:

-n The first n fields together with any blanks before each are ignored. A field is defined
as a string of non-space, non-tab characters separated by tabs and spaces from its
neighbors.

+n The first n characters are ignored. Fields are skipped before characters.

SEE ALSO
sort(1), comm(1)

7th Edition 10 February 1983 1

UNITS (1) UNIX Programmer’s Manual UNITS (1)

NAME

units — conversion program

SYNOPSIS

units

DESCRIPTION

FILES

BUGS

Units converts quantities expressed in various standard scales to their equivalents in other
scales. It works interactively in this fashion:

You have: inch

You want: cm
* 2.54000e+00
/ 3.93701e—01

A quantity is specified as a multiplicative combination of units optionally preceded by a numeric
multiplier. Powers are indicated by suffixed positive integers, division by the usual sign:

You have: 15 pounds force/in2
You want: atm

s 1.0206%e+00

/ 9.79730e—01

Units only does multiplicative scale changes. Thus it can convert Kelvin to Rankine, but not
Centigrade to Fahrenheit. Most familiar units, abbreviations, and metric prefixes are recog-
nized, together with a generous leavening of exotica and a few constants of nature including:

pi ratio of circumference to diameter
c speed of light

e charge on an electron

g acceleration of gravity

force same as g

mole Avogadro’s number

water pressure head per unit height of water
au astronomical unit

‘Pound’ is a unit of mass. Compound names are run together, e.g. ‘lightyear’. British units
that differ from their US counterparts are prefixed thus: ‘brgallon’. Currency is denoted ‘belgi-
umfranc’, ‘britainpound’, ...

For a complete list of units, ‘cat /usr/lib/units’.

/usr/lib/units

Don’t base your financial plans on the currency conversions.

Tth Edition 18 January 1983 1

VFONTINFO (1) ~ UNIX Programmer’s Manual VFONTINFO (1)

NAME |
vfontinfo — inspect and print out information about UNIX fonts
SYNOPSIS
vfontinfo [—v] fontname [characters]
DESCRIPTION

Vfontinfo allows you to examine a font in the UNIX format. It prints out all the information in
the font header and information about every non-null (width > 0) glyph. This can be used to
make sure the font is consistent with the format.

The fontname argument is the name of the font you wish to inspect. It writes to standard out-
put. If it can’t find the file in your working directory, it looks in /usr/lib/vfont (the place most of
the fonts are kept).

The characters, if given, specify certain characters to show. If omitted, the entire font is
shown.

If the —v (verbose) flag is used, the bits of the glyph itself are shown as an array of X’s and
spaces, in addition to the header information.

SEE ALSO

vpr(1), vfont(5)

The Berkeley Font Catalog
AUTHORS

Mark Horton
Andy Hertzfeld

4th Berkeley Distribution 11 April 1980 1

VI(1) UNIX Programmer’s Manual VI(1)

NAME
vi — screen oriented (visual) display editor based on ex

SYNOPSIS
vi[=ttag] [=r][+command] [=1] [—wn] name ...

DESCRIPTION

Vi (visual) is a display oriented text editor based on ex(1). Ex and vi run the same code; it is
possible to get to the command mode of ex from within vi and vice-versa.

The Vi Quick Reference card and the Introduction to Display Editing with Vi provide full details on
using vi.

FILES
See ex(1).

SEE ALSO
ex (1), edit (1), Vi Quick Reference” card, ‘“‘An Introduction to Display Editing with Vi’

AUTHOR
William Joy
Mark Horton added macros to visual mode and is maintaining version 3

BUGS .
Software tabs using “T work only immediately after the qutoindent.

Left and right shifts on intelligent terminals don’t make use of insert and delete character
operations in the terminal.

The wrapmargin option can be fooled since it looks at output columns when blanks are typed.
If a long word passes through the margin and onto the next line without a break, then the line
won’t be broken.

Insert/delete within a line can be slow if tabs are present on intelligent terminals, since the ter-
minals need help in doing this correctly.

Saving text on deletes in the named buffers is somewhat inefficient.

The source command does not work when executed as :source; there is no way to use the
:append, :change, and :insert commands, since it is not possible to give more than one line of
input to a : escape. To use these on a :global you must Q to ex command mode, execute
them, and then reenter the screen editor with vi or open.

3rd Berkeley Distribution 2 December 1979 1

VPL (1V) UNIX Programmer’s Manual VPL(1V)

NAME

vpl — send plot file to plott<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>