
900-00038 Rev C

SCALDsystem1
M

UNIX TM

PROGRAMMER'S

MANUAL

2820 Orchard Parkway
San Jose, CA 95134
408/945·9400
Telex 371 9004

Copyright 1979, Bell Telephone Laboratories,
Incorporated. Holders of a UNIXT~32V software
license are permitted to copy this document,
or any portion thereof, as necessary for licensed
use of the software, provided this copyright
notice and statement of permission are included.

PREFACE

This manual describes the UNIX operating system as implemented
in SCALDsystem. While a majority of the commands, system calls,
subroutines, and maintenance facilities are based on the 4.2
Berkeley Software Distribution, features from Western Electric
System 3 and Bell Laboratories Version 7 also are included. In
addition, a number of unique "private" extensions have been
developed by Valid Logic Systems Incorporated and embodied
within SCALDsystem UNIX.

TABLE OF CONTENTS

VOLUME 1

1. COllll&nds and Application Prograas

intro •
adb •
admin •
ar •
at •

•

awk •
basename •
bdiff • •
cal •
calendar •
cat •
cb •
cc •

•

cd •
chgrp •
chmod •
chsh •
clear •
cmp •
col •
comb •
comm •
cp •
cpio •
cptree •
crypt •
csh •
ctags •
date •
dd •
delta •
derof f •
df ••
diff •
diff3 •
du •
echo •
ed • • •
ex •
expand •
expr •

•
•
•

•

•

• •
•

• •

•

•

• •

•

•
•

•
•

• •

•
•

•
• • •

•

•
•

•

•
• •

• • •
•

•

•

•

•

pattern

differential

• •

• •

•

•

• •
•

introduction to commands
debugger

create and administer secs files
• archive and library maintainer
execute commands at a later date
scanning and processing language

strip filename affixes
file comparator for large files

print calendar
reminder service

catenate and print
C program beautifier

•
•

• C compiler
change working directory

change group
• change mode

change default login shell
clear terminal screen

compare two files
filter reverse line feeds

combine SCCS deltas
select or reject lines common to two sorted files

copy
copy file archives in and out

directory tree file copy utility

•

• • encode/decode
a shell (command interpreter) with C-like syntax

•
•

•

•

•

• • •
• make a delta
remove nroff,

create a tags
print and set the

convert and copy a
(change) to an SCCS

file
date
file
file

troff, and eqn
•

constructs
disk free

differential file and directory comparator
3-way differential file comparator

• • •

•

• •

i

• • summarize disk usage
echo arguments

text editor
text editor

expand tabs to spaces and vice versa
evaluate arguments as an expression

Table of Contents

false •
file •
find •

•
•

•

get • •
getline •

•
•

grep • •
groups •
head ••
hostid •
hostname •
install •

•
•
•

iostat •
join ••
kill ••
last •
ld • •
lex •
lint •

•

ln •
login •
look •

•
•

•
lorder •
lpq •
lpr •
lprm ••
ls • • •
mail •

• make •
man •
mesg •
mkdir •
more •
mv • •
newgrp •
nice •
nm • •
nroff •

•

•

•
•

•

•
•

•

•

•
•
•

•
od ••
pagesize •
passwd •
plot •
pr • •
printenv •
prof • •
ps • •
pwd •
rev •
rlogin •
rm •

•

• rmdel •
rmdir •
rsh • •
ruptime •

•

• •
• •
• • •

• • •
•

• •
• • •
•

•
• • •

• • •

• • •
• • •
• • •

• •
• •
•
• •

• •
•

• •

• • •
•

•
• •

• •
• •

• •
•

• •
• •
•

•

•

• •
• •
•
• •

• •

• • •
•

• • •
• •
• • •

• •
• •
• • •

• •
• •

• •
• • •

•
•

•

• • •
• •

• •
•

•

• •
• •

•

•

• •
•

•
•

• •

• •

•
•

•
• •

•

• •
•
•

• •
• •
• • •

•

•

•

•

•

•
•

• •
• •
• •

• •
•
• •

• •
•

•

• •
•
• •

•

•

•

•
•
•

• •
• •
• •
•

• •

• •
•

•
•

• •
•

• •

•
• •

•
•

•

•

•
•

•
•
•

•

•

•
•

•
•

•

•

•
•

•
•

• • • • • •
• • • • • •

• • •

• • •
• •
• •

• •
•

provide truth tables
determine file type

• • • find files
• • • • • • get a version of an secs file

• • • • • • • • • • get input line
• • • • • • • • search a file for a pattern
• • • • • • • show group memberships

• • • • • • • • • • • give first few lines
set or print identifier of current host system

• set or print name of current host system
• • • • install binar~es

• • • • • • • report I/O statistics
• relational database operator

• • terminate a process with extreme prejudice
indicate last logins of users and teletypes

• •

•
• • • • • • • • • • • link editor

• generator of lexical analysis programs
• • • • • • a C program verifier

• • make links
• • • • • • • • • • • • • • • sign on

• • find files in a sorted list
find ordering relation for an object library

• spool queue examination program
• • • • • • • • • off line print

remove jobs from the line printer spooling queue
• • • • • • • list contents of directory
• • . • • • • send and receive mail

• • • • • • • ' • • maintain program groups
find manual information by keywords; print out the manual

• • • • • • • • • • print or deny messages

•
•

•

•

•

•

•
•

• • • • • • • • • • • make a directory

•
• • • •

•
• • • •

• • •
• • •
•
• • •

• • •
•

• • • •

• • •
• • •
• •

• • •
•

• • • • • •
•

• file perusal filter for crt viewing
• • • • move or rename files
• • • • • log in to a new group

run a command at low priority (sh only)
•

•

•

•
•

•

•

• •
•

ii

•
• •

• •
•
• • •

•

•

• • print name list
• • text formatting

octal, decimal, hex, ascii dump

• • •
• •

•

•

•

•

•
print system page size

change login password
• • graphics filters
pr to the line printer

print out the environment
display profile data

• • process status
working directory name

• • reverse lines of a file
• • • • • • • • • remote login
remove (unlink) files or directories

remove a delta from an SCCS file
remove (unlink) directories or files

• • • • • • • • re~ote shell
show host status of local machines

• •
• •

rwho ••••
sccshelp • •
script • • •
sed • • • • • • •
sh • • • •
shownet • •
size • • •

•

sleep • • • •
sort ••••

• •

•

• •
•
•

•
•

•
• •

•

spell •
split • • •
strings
strip • •
stty • • •

• • •

SU • • • •
• sum ••

tail • • • • • •
tar •• . . • • •

• •
• • • •

tee •
test •
time •
touch • • •
tp • • • •
tr • • •

• • • troff •
true •
tsort • . .
tty • • •
unget • • •
uniq •
units •
vfontinfo •
vi •
vpl •

• • •
•

vpr • •
vtroff •
wall • • •
WC •

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•

Table of Contents

• • • • • • • • • • • who's logged in on local machines
• • • • • • • • • • • • • • ask for SCCS help
• • • • • • • • • • make typescript of terminal session

• • • • • . . • • • • • • ••• stream editor
• • • • • • • • • • • • • • • command language

• • • • • • • • • • show Valid node status
• • • • • • • • • • • size of an object file

• • • suspend execution for an interval
• • • • • • • • • • • • sort or merge files

• • • . . • • • • • find spelling errors
• • • • • • • • • • split a file into pieces

find printable strings in an object, or other binary, file
• • • •

• • •
•

•
• •

•

• •
• • •

• • •
•
•

• . .
•

• •
•

• • •

• •

•
• • •

• •

•
•

• •
•

• . .
remove symbols and relocation bits
• set terminal options
• • substitute user id temporarily

. . • • • • • • •
sum and count blocks in a file

d~liver the last part of a file

•

•

•

•

•

•

• • •

•
• •

• • •

•

•

. .
•

• • •
• • •

• •
• •
• •

• ••• tape archiver
• • • • • • • • • • pipe fitting

condition command
• time a command

• • update date last modified of a file
• • • • • • • •

• • manipulate tape archiver
• • • • • translate characters

• • text formatting and typesetting

• • •

• • • provide truth tables
topological sort

• • • • get terminal na~e
• •• undo a previous get of an SCCS file

• • report repeated lines in a file
• • • • • • • conversion program

inspect and print out information about UNIX fonts
screen oriented (visual) display editor based on ex
• •• copy a spooled plot to raster printer/plotter
• • • • • • • • · raster printer/plotter spooler

• • troff to raster plotter
• • • • • • • • • • • write to all users

• • • • word count
what • show what versions of object modules were used to construct a file
who •• • • •
whoami •••
write • • • •
xstr • • • •
yacc • • • • •

•

yes • • • • • •

•

•

• • • • • • • • who is on the system
• • • print effective current user id

• • • • • • • write to another user
• extract strings from C programs to implement shared strings
• • • • • • • • • • • yet another compiler-compiler
• • • • • ••••• be repetitively affirmative

iii

Table of Contents

2. Syatea Calls

• • • • • • • • • introduction to system calls and error numbers intro ••
accept • . . . • • • • • • • • • accept a connection on a socket
access
bind •
brk ••
chdir •
chmod •

• •
•
• •
• •
•

•
•
•
•
•

• • • •
• • • •

• •
• • •

• • • • • • • • • • • determine accessibility of file
• • • • • • • • • • • • • • • • bind a name to a socket

• • • • • • • • • • • • change data segment size
• • • • • • • • • • • • change current working dire~tory

• • • • • • . . • •
chown • •
chroot ••
close • •

• • • • • • • • • • • • • • • • • •
• • • • • • change mode of file

change owner and group of a file

connect •
creat • •
dup ••
execve
exit •
flock •
fork •

•
• •
• •

. .

•
•
•

• • • •
• •
• • • •

• •
• • •

• • •
• •

•
• • •

•
• •

•
• •
• •

• • • • • • • •
• • • • • • • • • •
• • • • • • • • • • •
• • • • • • • •
• • • • • • • • •

• • • • • • • • • • • •

•
• •

•
• •
• •
• •

• • • change root directory
• • • • • • delete a descriptor

initiate a connection on a socket
• • •
•

• •
•

• •

• • create a new file
duplicate a descriptor
• • • • execute a file

• • •
• • • • • • • • • • • • terminate a process

apply or remove an advisory lock on an open file
• . . • • • • •
• • synchronize a file's
• • • • • •

• • • • • • • • • • •
• • •

• • • . . • • get/set
•

f sync • • • • •
getdtablesize •
getgid ••••
getgroups • •
gethostid •
gethostname •
getitimer •
getpagesize •
getpgrp • • •
getpid •••
getpriority •
getrlimit ••
getrusage • •
getsockopt • •
gettimeofday •
getuid • •

. . • • • • • • . .

• • • create a new process
in-core state with that on a disk

• get descriptor table size
• • • • • • get group identity

• ••• get group access list
unique identifier of current host

get/set name of current host
• get/set value of interval timer

•

ioctl • • •
kill • • • • •
killpg • • •
link • • • •
listen • •
!seek ••
mkdir • • • •

•

mknod •
mount •

•

•

open • • • •
pipe • • • • •
prof il • • •
ptrace • • • •
read • • • •
readlink ••
reboot • •
recv ••
rename • •

•
• •
•

• • • • • • • • • •
•

• • • • . . .
• • • • •

• • • • • • • • • • •
• • • • • • • •

• • • •
• • • • • •

• . . . • • •
• • • • •

• • • • • • • • •
• • • • • • •

• • • • •
• • • • • • • • •

• • • • • •
• • • • •
• • . . •

• • • •
• • • • • • • • get system page size
• • • • • • • • • • • • get process group

• • get process identification
• •••• get/set program scheduling priority
• control maximum system resource consumption
• get information about resource utilization

• • • • • get and set options on sockets
• • • • • • • • • • get/set date and time
• • • • • • • get user identity

• • • • • • • • • • • control device
•
• •
•
• •

• •
•

•
•

• • send signal to a process
• send signal to a process group

• • • make a hard link to a file
• • listen for connections on a socket

• • • •• move read/write pointer
• • • • • • make a directory file

• • • • make a special file
• • • • • • • • • • • • mount or remove file system

for reading or writing1 or create a new file
create an interprocess communication channel

• • • open a file
• • • • • • • • •

• . ' . . • •
• • • • • • • • • •
• • • • • • • • •

• • • • • • • • •
• • • • • •
• • • • • • • •

• . . .• • •

• • • • • • execution time profile
• • • • •
• • • •
• • • • •

• •
• • • • •

• • •

iv

•
•
•
•
•

• • • • process trace
• • • • • • • • • read input
• • read value of symbolic link
reboot system or halt processor
receive a message from a socket

• change the name of a file

\

\

nndir • • •
send • • •
set groups •
setpgrp • •
set reg id • •
setreuid • •
shutdown • •
socket • • •
stat • •
symlink •

• •
•

sync • • • •
syscall ••
truncate •
umask • • •
unlink •••

• utimes •
vfork • •
vhangup • •
wait • • •
write •••

•

• •
•

• •
• •
•
•
•

•
• •
•

•
•
•
•

• •
• •
•

• •

• • • •
• • • •
• • • •
• • • •

• • • • •
• • • • •

• • •
• • •

• • •
• • •
• • •
• . •

•

•
•

• • • •
• • • •

• • •

Table of Contents

• • • • • • • remove a directory file
• • • • • send a message from a socket

• • • • • • • • • set group access list
• • • • • • • • • • • • • set process group

• • • • • set real and effective group ID
• • • • • • • set real and effective user ID's

• • • • • • • • • • • shut down part of a full-duplex connection
• • • • • • • • • .• • create an endpoint for communication
• get file status

• • • • • • • • • • make symbolic link to a file
• update super-block

• • • • • • • • • • • • • indirect system call • • • • • truncate a file to a specified length

•
•

•

• • • • . . . • • • • • • set file creation mode mask
• •
• •

• •
•

• •
• • •

• • • • • • • • • • • • • • • • • • remove directory entry
• • • • • • • • • • • • • • set file times

• • spawn new process in a virtual memory efficient way
• • • virtually "hangup" the current control terminal

• • • • • • • • • • • • wait for process to terminate
• • • • • • • • • • • • • • • • • write on a file

v

Table of Contents

3. C Li~rary Sabroatiaea

intro • • • •
abort •
abs • •

• •
• •

•
•

• •
• •
• •
•

• • • • •
• • • • •
• • . . •

• • • • •

• • •
• • •

• •
• • •

• • • • • • •
• • • • • • • • •
• • • • •
• • • • • • • •

•
• •

•
• •

•
•
• •

• •
•
• •

• •
• •
•
• •

•

•

•

• introduction to library functions
• • • • • • • • generate a fault
• • • • • • integer absolute value

• • • convert ASCII to numbers
• • bit and byte string operations
• • • • • • • • • DES encryption

• convert date and time to ASCII
• • character classification macros

atof •••••
bstring • • • •
crypt • • • • •
ctime • • ••
ctype • • • • •
directory • • •

• • ecvt •
end •• . .
execl • • •
exit • • •

•

•
•

•
• • •

• • •
• •

• • • • • • • • • • . . •
• • • • • • • • • • • • • •

• • directory operations
• • • • output conversion
last locations in program

• • • • • • execute a file
terminate a process after flushing any pending output

• • • • • • • • • • •
• •

f rexp • • •
getenv •••
getgrent • •
getlogin •
getpass • •
getpwent • •
getwd • • •
malloc • • •

•

•

•
•
•

•
mktemp •
monitor
nlist •

• • •
• • ..
• • •

•
perror •
popen •
psignal • • •

• • • •
• •

• • •
•

• • •
•

• • •
•

• • •

• • • •
•

• • • •
• • • •

• • • •
• • • •
• • • . .

• • •
• • • • • •

• • • •
• • • • •

• • • •
• • •

• • • . . split into mantissa and exponent
• • • • value for environment name

• • • • • • • • • • • • get group file entry
• • • • •

•
•

•
•

•

•

•

•

. .
•
•

• • • • • • • get login name
• • • • • read a password

• • • • get password file entry
get current working directory pathname

• • •
•

•
•

• •

• • memory .allocator
• • • • • make a unique filename

• prepare execution profile
get entries from name list • •

system error messages
• • • • • initiate I/O to/from a process

• ~ • • • system signal messages
qsort • • •
random ••
regex • • •
scandir • •
setjmp •
setuid •
sleep • • •
string •
swab ••
system •
ttyname • •
varargs • •

• quicker sort
• better random number

• • • • • • • • • • •
• • • • • • •

• • • • • • • • •
• • • • •

• • • • • • •
• • . . . •

• • • • • • •
• •

• • • • • • • •
• • • •

generator; routines for changing generators
• • • • • regular expression handler

• • • • • scan a directory
• • • • • • • • • • • non-local goto

• set user and group ID
• • suspend execution for interval

• • • • • • string operations
• • • • • • • • • • • • • • swap bytes
• • • • issue a shell command

• • • • • • • find name of a terminal
• variable argument list

3M. Math Library

intro •
exp ••
floor •
gamma •
hypot •
jO •
sin ••
sinh •

•

. . • • • . . . • • • • • • •
•

• • • • • • • • • •
• • • • . .

• • • • • • • • • •
• • • • •

introduction to mathematical library functions
exponential, logarithm, power, square root

absolute value, floor, ceiling functions .
• • • • • • • • • • • log gamma function

•

• • • • • • Euclidean distance
• • • • • • • • • • • • bessel functions

• • • • •
• • • • • • • • • • • • • • • • • •

• • trigonometric functions
• • hyperbolic functions

vi

Table of Contents

3N. Internet Network Library

byteorder • • • • • • • • • convert values between host and network byte order
gethostent • get network host entry
getnetent • get network entry
getprotoent • get protocol entry
getservent • get service entry
inet • • • • • • • • • • • • • • • • • Internet address manipulation routines

JS. C Standard I/O Library Subroutines

intro • • • • • • • • • • • • • • • standard buffered input/output package
f close • close or flush a stream
ferror ••••••••••••••••••••••••• stream status inq.uires
fopen •••••••••••••••••••••••••••••• open a stream
fread • buffered binary input/output
fseek • reposition a stream
getc • • • • • • • • • • • • • • • • • • get character or word from stream
gets ••• get a string from a stream
printf • formatted output conversion
putc • put character or word on a stream
puts • put a string on a stream
scanf •••••••••••••••••• , • • • • formatted input conversion
setbuf • assign buffering to a stream
ungetc • • • • • • • • • • • • • • • • • push character back into input stream

JX. Other Libraries

intro • • • • • • • • • • • • • introduction to miscellaneous library functions
curses • • • • • • • • • • • • • screen functions with "optimal" cursor motion
getfsent • • • • • • • • • • • • • • get file system descriptor file entry
initgroups • initialize group access list
termcap • • • • • • • ••••••••• terminal independent operation routines

Jc. Compatibility Library Subroutines

intro ••••••••••••• introduction to compatibility library functions
alarm. • • • • • • • • • • • • • • • • • schedule signal after specified time
getpw • get name from uid
nice • set program priority
pause • stop until signal
rand , • random number generat.or
signal • • • • • • • • • • • • • • • • simplified software signal facilities
stty • • • • • • • • • • • • • • • • • • • set and get terminal state (defunct)
time • get date and time
times • get process times
utime • set file times
vlimit • • • • • • • • • • • • • • control maximum system resource consumption
vtimes • • • • • • • • • • • • • • • get information about resource utilization

vii

Table of Contents

4. Special Piles

intro • • • • • • introduction to special files and hardware support
drum • • • • • • • • • • paging device
ec • • 3Com lOMb/s Ethernet interface
ip • • • • • • • • internet protocol
lo • • • software loopback network interface
lp • • • • • • • • line printer
mem • • • • • • • . main memory
mtio . • • • • • • • UNIX magtape interface
null • • • • • data sink
pty • • • • • • • • • • • • • pseudo terminal driver
tty • • general terminal interface
va • • • • Benson-Varian interface
vp • • . Versatec interface

5. File Foraats

a.out . • assembler and link editor output
ar • • archive (library) file format
core . • format of memory image file
dir • • • • • format of directories
disktab . • disk description file
dump • • • • • • • • • incremental dump format
fs . • format of file system volume
fstab • static information about the filesystems
group • • group file
hosts • • • • • host name data base
mtab . mounted file system table
passwd . • • password file
protocols • protocol name data base
services • • • • • • • service name data base
stab . • • symbol table types
tar • • tape archive file format
termcap • • • terminal capability data base
ttys . • • • • • • • • terminal initialization data
ttytype . . data base of terminal types by port
types • primitive system data types
utmp • • login records
vf ont . • font formats for the Benson-Varian or Versatec

7. Miscellaneous

intro . miscellaneous useful information pages
ascii • • • • • • • • map of ASCII character set
environ • user environment
eqnchar • • • • • • • special character definitions for eqn
hi er • file system hierarchy
mailaddr • • • • • • mail addressing description
man • • macros to typeset manual
me • • • • • • • • • • • . macros for formatting papers

viii

ms •
term •

• • • •
• • • • • • •

• • • • • • •
• • • • • • •

• • • text formatting macros
• • • • conventional names for terminals

8. Systea Maiuteaaace

intro • • • • •
ac • • • • •
backup • • • •
chkhosts • • •

• •
• •
• • •

chown ••
chuid • • •
clri • •

• •
• •

• •
conn • • • • • •
crash •• • • •
cron • • • • •
dcheck •
dmesg •
dump •
ef sioctl •
ether •
fsck • • •
getf s • •

•
• • . .

•

• •

getty • • •
halt ••
icheck . .

• •
ini t ••
lpd •
makekey •
mkconfig •
mkfs •

• •

• •

mklost+found •
mknod •
mkproto • •
mkusr • . .
mount ••
ncheck ••
newfs ••
pstat •
re •
reboot •
restor •
rimioctl •
rlogind •
rshd •
rwhod •
savecore •
shutdown •
sync • •
tunef s •
update ••

•

•

•

•

•

•
• •

•

•

•

•
•
•

•

•

•
•

•
•

•
•
• •

• •

•
•

• •

• •

• •
•
•
•

• •
• •

• •
• •

•

•

•
• •

•

introduction to system
• • • • • • • • •
• • • • • • • •
• • • • • • • • •

maintenance and operation commands
• • • • login accounting

•
• user-friendly backup procedure

• maintain network host tables
• • • • • change owner
• • • • • • • change user/group ids on directory trees
• • • • • • • . . •· .
• • • • • • • • •

• • clear i-node
• • administer extended file system
what happens when the system crashes

• clock daemon
• • • • file system directory consistency check . . collect system diagnostic messages to form error log

• • • • • • • incremental file system dump
• • • • • • • • • EFS superuser access control

• • • • • •• 3Com 3C400 driver control program
• • file system consistency check and interactive repair

• • • • list file systems
• • • • • • • • • • • • • set terminal mode

• • • • • . .
• • • • stop the processor
file system storage consistency check

• process control initialization
• • • • • • • • • • line printer daemon

• •
• • •
• •

• • • • •
• • • • . . .
• • • •

• •
• • • •

• • •
• • • •

•
• • • • •

• • • • •
• • • • • • •

• •
• • •

• • • •
• • • • •
• • •

•

•
• •

• •
•

• •

• • • generate encryption key
• • maintain configuration file

construct a file system
• make a lost+found directory for fsck

build special file
• • construct a prototype file system

procedure for adding new users
mount and dismount file system

generate names from i-numbers
• • • construct a new file sys·tem

print system files
• command script for auto-reboot and daemons
• • • • reboot or halt system
• • • • incremental file system restore

send ioctl commands to Rimfire controller
• • • • • remote login server

• • • • remote shell server
• • • • • • • system status server

• save a core dump of the operating system
• • close down the system at a specific time

• • • • • update the super block
• • • • tune up an existing file system

periodically update the super block

ix

Table of Contents

VOLUME 2

An Introduction to the C Shell

An Introduction to Display Editing with Vi

Kl.OPP/Tl.OFF User's Manual

x

INTRODUCTION TO VOLUME 1

This volume gives descriptions of the publicly available features of the UNIX/32Vt system, as
extended to provide a virtual memory environment and other enhancements at U. C. Berkeley.
It does not attempt to provide perspective or tutorial information upon the UNIX operating sys­
tem, its facilities, or its implementation. Various documents on those topics are contained in
Volume 2. In particular, for an overview see 'The UNIX Time-Sharing System' by Ritchie and
Thompson; for a tutorial see 'UNIX for Beginners' by Kernighan, and for an guide to the new
features of this virtual version, see 'Getting started with Berkeley Software for UNIX on the
v AX' in volume 2C.

Within the area it surveys, this volume attempts to be timely, complete and concise. Where
the latter two objectives conflict, the obvious is often left unsaid in favor of brevity. It is
intended that each program be described as it is, not as it should be. Inevitably, this means
that various sections will soon be out of date.

The volume is divided into eight sections:

1. Commands
2. System calls
3. Subroutines
4. Special files
5. File formats and conventions
6. Games
7. Macro packages and language conventions
8. Maintenance commands and procedures

Commands are programs intended to be invoked directly by the user, in contradistinction to
subroutines, which are intended to be called by the user's programs. Commands generally
reside in directory /bin (for binary programs). Some programs also reside in I usrl bin, or in
lusr/ucb, to save space in /bin. These directories are searched automatically by the command
interpreters.

System calls are entries into the UNIX supervisor. The system call interface is identical to a C
language procedure call; the equivalent C procedures are described in Section 2.
An assortment of subroutines is available; they are described in section 3. The primary
libraries in which they are kept are described in intro(3). The functions are described in terms
of C, but most will work with Fortran as well.
The special files section 4 discusses the characteristics of each system 'file' that actually refers
to an 1/0 device. The names in this section ref er to the DEC device names for the hardware,
instead of the names of the special files themselves.

The file formats and conventions section S documents the structure of particular kinds of files;
for example, the form of the output of the loader and assembler is given. Excluded are files
used by only one command, for example the assembler's intermediate files.
Games have been relegated to section 6 to keep them from contaminating the more staid infor­
mation of section 1.

t UNIX is ;i tr11'111mark of Bell Laboratories.

Section 7 is a miscellaneous collection of information necessary to writing in various specialized
languages: character codes, macro packages for typesetting, etc.

The maintenance section 8 discusses commands and procedures not intended for use by the
ordinary user. The commands and files described here are almost all kept in the directory /etc.

Each section consists of a number of independent entries of a page or so each. The name of
the entry is in the upper corners of its pages, together with the section number, and sometimes
a letter characteristic of a subcategory, e.g. graphics is lG, and the math library is 3M. Entries
within each section are alphabetized. The page numbers of each entry start at I; it is infeasible
to number consecutively the pages of a document like this that is republished in many variant
forms.

All entries are based on a common format, not all of whose subsections will always appear.

The name subsection lists the exact names of the commands and subroutines covered
under the entry and gives a very short description of their purpose.

The synopsis summarizes the use of the program being described. A few conventions are
used, particularly in the Commands subsection:

Boldface words are considered literals, and are typed just as they appear.

Square brackets [] around an argument indicate that the argument is optional.
When an argument is given as 'name', it always refers to a file name.

Ellipses ' ... ' are used to show that the previous argument-prototype may be
repeated.

A final convention is used by the commands themselves. An argument beginning
with a minus sign '-' is often taken to mean some sort of option-specifying argu­
ment even if it appears in a position where a file name could appear. Therefore, it is
unwise to have files whose names begin with ' - '.

The description subsection discusses in detail the subject at hand.

The files subsection gives the names of files which are built into the program.

A see also subsection gives pointers to related information.

A diagnostics subsection discusses the diagnostic indications which may be produced.
Messages which are intended to be self-explanatory are not listed.

The bugs subsection gives known bugs and sometimes deficiencies. Occasionally also the
suggested fix is described.

At the beginning of the volume is a table of contents, organized by section and alphabetically
within each section. There is also a permuted index derived from the table of contents. Within
each index entry, the title of the writeup to which it refers is followed by the appropriate sec­
tion number in parentheses. This fact is important because there is considerable name duplica­
tion among the sections, arising principally from commands which exist only to exercise a par­
ticular system call.

·HOW TO GET STARTED

This section sketches the basic information you need to get started on UNIX how to log in and
log out, how to communicate through your terminal, and how to run a program. See 'UNIX for
Beginners' in Volume 2 for a more complete introduction to the system;

Logging in. You must call UNIX from an appropriate terminal. Almost any ASCII terminal
capable of full duplex operation and generating the entire character set can be used. You must
also have a valid user name, which may be obtained, together with necessary telephone
numbers, from the system administration. After a data connection is established, the login pro­
cedure depends on what kind of terminal you are using and local system conventions. The fol­
lowing examples are typical.

300-baud terminals: Such terminals include the GE Terminet 300, and most display terminals
run with popular modems. These terminals generally have a speed switch which should be set
at '300' (or '30' for 30 characters per second) and a half/full duplex switch which should be set
at full-duplex. (This switch will often have to be changed since many other systems require
half-duplex). When a connection is established, the system types 'login:'; you type your user
name, followed by the 'return' key. If you have a password, the system asks for it and turns
off the printer on the terminal so the password will not appear. After you have logged in, the
'return', 'new line', or 'linefeed' keys will give exactly the same results.

1200- and 150-baud terminals: If there is a half/full duplex switch, set it at full-duplex. When
you have established a data connection, the system types out a few garbage characters (the
'login:' message at the wrong speed). Depress the 'break' (or 'interrupt') key; this is a speed­
independent signal to UNIX that a different speed terminal is in use. The system then will type
'login:,' this time at another speed. Continue depressing the break key until 'login:' appears in
clear, then respond with your user name. From the TTY 37 terminal, and any other which has
the 'newline' function (combined carriage return and linefeed), terminate each line you type
with the 'new line' key, otherwise use the 'return' key.

Hard-wired terminals. Hard-wired terminals usually begin at the right speed, up to 9600 baud;
otherwise the preceding instructions apply.

For all these terminals, it is important that you type your name in lower-case if possible; if you
type upper-case letters, UNIX will assume that your terminal cannot generate lower-case letters
and will translate all subsequent upper-case letters to lower case.

The evidence that you have successfully logged in is that a shell program will type a prompt ('$'
or '%') to you. (The shells are described below under 'How to run a program.')

For more information, consult tset(l), and stty(l), which tell how to adjust terminal behavior,
getty(8), which discusses the login sequence in more detail, and tty(4), which discusses termi­
nal 1/0.

Logging out. There are three ways to log out:

By typing an end-of-file indication (EOT character, control-d) to the Shell. The Shell will
terminate and the 'login: ' message will appear again.

You can log in directly as another user by giving a login (1) command.

If worse comes to worse, you can simply hang up the phone; but beware - some
machines may lack the necessary hardware to detect that the phone has been hung up.
Ask your system administrator if this is a problem on your machine.

How to communicate through your terminal. When you type characters, a gnome deep in the sys­
tem gathers your characters and saves them in a secret place. The characters will not be given
to a program until you type a return (or newline), as described above in Logging in.

UNIX terminal 1/0 is full-duplex. It has full read-ahead, which means that you can type at any.
time, even while a program is typing at you. Of course, if you type during output, the printed
output will have the input characters interspersed. However, whatever you type will be saved
up and interpreted in correct sequence. There is a limit to the amount of read-ahead, but it is
generous and not likely to be exceeded unless the system is in trouble. When the read-ahead
limit is exceeded, the system throws away all the saved characters (or beeps, if your prompt was
a%).
The character '@' in typed input kills all the preceding characters in the line, so typing mistakes
can be repaired on a single line. Also, the character '#' erases the last character typed. (Most
users prefer to use a backspace rather than '#', and many prefer control-U instead of '@';
tset(l) or stty(l) can be used to arrange this.) Successive uses of'#' erase characters back to,
but not beyond, the beginning of the line. '@' and '#' can be transmitted to a program by
preceding them with'\'. (So, to erase '\',you need two '#'s).

The 'break' or 'interrupt' key causes an interrupt signal, as does the ASCII 'delete' (or 'rubout')
character, which is not passed to programs. This signal generally causes whatever program you

are running to terminate. It is typically used to stop a long printout that you don't want. How­
ever, programs can arrange either to ignore this signal altogether, or to be notified when it hap­
pens (instead of being terminated). The editor, for example, catches interrupts and stops what
it is doing, instead of terminating, so that an interrupt can be used to halt an editor printout
without losing the file being edited. Many users change this interrupt character to be AC
(contrcl-C) using stty(l).

It is also possible to suspend output temporarily using AS (control-s) and later resume output
with AQ. In a newer terminal driver, it is possible to cause output to be thrown away without
interrupting the program by typing AO; see tty(4).

The quit signal is generated by typing the ASCII FS character. (FS appears many places on
different terminals, most commonly as control-\ or control-I.) It not only causes a running pro­
gram to terminate but also generates a file with the core image of the terminated process. Quit
is useful for debugging.
Besides adapting to the speed of the terminal, UNIX tries to be intelligent about whether you
have a terminal with the newline function or whether it must be simulated with carriage-return
and line-feed. In the latter case, all input carriage returns are turned to newline characters (the
standard line delimiter) and both a carriage return and a line feed are echoed to the terminal.
If you get into the wrong mode, the reset(I) command will rescue you.

Tab characters are used freely in UNIX source programs. If your terminal does not have the tab
function, you can arrange to have them turned into spaces during output, and echoed as spaces
during input. The system assumes that tabs are set every eight columns. Again, the tset(l) or
stty{l) command will set or reset this mode. Tset(l) can be used to set the tab stops automati­
cally when necessary.

How to run a program; the shells. When you have successfully logged in, a program called a
shell is listening to your terminal. The shell reads typed-in lines, splits them up into a com­
mand name and arguments, and executes the command. A command is simply an executable
program. The Shell looks in several system directories to find the command. You can also
place commands in your own directory and have the shell find them there. There is nothing
special about system-provided commands except that they are kept in a directory where the
shell can find them.

The command name is always the first word on an input line; it and its arguments are separated
from one another by spaces.

When a program terminates, the shell will ordinarily regain control and type a prompt at you to
indicate that it is ready for another command.

The shells have many other capabilities, which are described in detail in sections sh(l) and
csh(l). If the shell prompts you with '$', then it is an instance of sh(l) the standard Bell-labs
provided shell. If it prompts with '%' then it is an instance of csh(l), a shell written at Berke­
ley. The shells are different for all but the most simple terminal usage. Most users at Berkeley
choose csh(l) because of the history mechanism and the alias feature, which greatly enhance
its power when used interactively. Csh also supports the job-control facilities; see csh(l) or the
Csh introduction in volume 2C for details.

You can change from one shell to the other by using the chsh (1) command, which takes effect
at your next login.

The current directory. UNIX has a file system arranged in a hierarchy of directories. When the
system administrator gave you a user name, he also created a directory for you (ordinarily with
the same name as your user name). When you log in, any file name you type is by default in
this directory. Since you are the owner of this directory, you have full permission to read,
write, alter, or destroy its contents. Permissions to have your will with other directories and
files will have been granted or denied to you by their owners. As a matter of observed fact,
few UNIX users protect their files from perusal by other users.

To change the current directory (but not the set of permissions you were endowed with at
login) use cd(l).

Path names. To ref er to files not in the current directory, you must use a path name. Full
path names begin with '/', the name of the root directory of the whole file system. After the
slash comes the name of each directory containing the next sub-directory (followed by a '/')
until finally the file name is reached. For example, /usr/fem/fifex refers to the file filex in the
directory fem,· fem is itself a subdirectory of usr; usr springs directly from the root directory.

If your current directory has subdirectories, the path names of files therein begin with the name
of the subdirectory with no prefixed '/'.

A path name may be used anywhere a file name is required.

Important commands which modify the contents of files are cp(l), mv(l), and rm(l), which
respectively copy, move (i.e. rename) and remove files. To find out the status of files or direc­
tories, use /s(l). See mkdir(l) for making directories and rmdir (in rm(l)) for destroying
them.

For a fuller discussion of the file system, see 'The UNIX Time-Sharing System,' by Ken
Thompson and Dennis Ritchie. It may also be useful to glance through section 2 of this
manual, which discusses system calls, even if you don't intend to deal with the system at that
level.

Writing a program. To enter the text of a source program into a UNIX file, use the editor exO)
or its display editing alias vi(l). (The old standard editor ed(l) is also available.) The principal
languages in UNIX are provided by the C compiler cc(l), the Fortran compiler j77(1), the Pas­
cal compiler pc(l), and interpreter pi(l) and px(l), and the Lisp system lisp(l). User contri­
buted software in the latest release of the system supports APL, the Functional Programming
language, and Icon. Refer to apl(l), jjJ{l), and icon(l), respectively for more information
about each. After the program text has been entered through the editor and written on a file,
you can give the file to the appropriate language processor as an argument. The output of the
language processor will be left on a file in the current directory named 'a.out'. (If the output is
precious, use mv to move it to a less exposed name soon.)

When you have finally gone through this entire process without provoking any diagnostics, the
resulting program can be run by giving its name to the shell in response to the shell ('$' or '%')
prompt.

Your programs can receive arguments from the command line just as system programs do, see
execve(2).

Text processing. Almost all text is entered through the editor ex(l) (often entered via vi(l)).
The commands most often used to write text on a terminal are: cat, pr, more and nroff, all in
section 1.

The cat command simply dumps ASCII text on the terminal, with· no processing at all. The pr
command paginates the text, supplies headings, and has a facility for multi-column output.
Nroff is an elaborate text formatting program. Used naked, it requires careful forethought, but
for ordinary documents it has been tamed; see me(7) and ms(7).

Troff prepares documents for a· Graphics Systems phototypesetter or a Versatec Plotter; it is
very similar to nroff, and often works from exactly the same source text. It was used to pro­
duce this manual.

Script(l) lets you keep a record of your session in a file, which can then be printed, mailed, etc.
It provides the advantages of a hard-copy terminal even when using a display terminal.

More(l) is useful for preventing the output of a command from zipping off the top of your
screen. It is also well suited to perusing files.

Status inquiries. Various commands exist to provide you with useful information. w(l) prints
a list of users presently logged in, and what they are doing. date(l) prints the current time and
date. /s(l) will list the files in your directory or give summary information about particular

files.
Surprises. Certain commands provide inter-user communication. Even if you do not plan to ·
use them, it would be well to learn something about them, because someone else may aim
them at you.

To communicate with another user currently logged in, write(l) is used; mail(l) will leave a
message whose presence will be announced to another user when he next logs in. The write­
ups in the manual also suggest how to respond to the two commands if you are a target.

If you use csh(l) the key AZ (control-Z) will cause jobs to "stop". If this happens before you
learn about it, you can simply continue by saying ''fg" (for foreground) to bring thejob back.

When you log in, a message-of-the-day may greet you before the first prompt.

CONVERTING FROM THE 6TH EDITION

There follows a catalogue of significant, mostly incompatible, changes that will affect old users
converting from the sixth edition on a PDP-11. No attempt is made to list all new facilities, or
even all minor, but easily spotted changes, just the bare essentials without which it will be
almost impossible to do anything.

Addressing files. Byte addresses in files are now long (32-bit) integers. Accordingly seek has
been replaced by lseek(2). Every program that contains a seek must be modified. Stat and
fstat(2) have been affected similarly, since file lengths are now 32- rather than 24-bit quantities.

Assembly language. This language is dead. Necromancy will be severely punnished.

Stty and gtty. These system calls have been extensively altered, see ioct/(2) and tty(4).

C language, lint. The syntax for initialization requires an equal sign == before an initializer,
and brackets {) around compound initial values; arrays and structures are now initialized
honestly. Assignment operators such as -= + and = - are now written in the reverse order:
+ - , - "". This removes the possibility of ambiguity in constructs such as x-= - 2, y == •p, and
a-/*b. You will also certainly want to learn about

long integers
type definitions
casts (for type conversion)
unions (for more honest storage sharing)
#include <filename> (which searches in standard places)

The program lint(l) checks for obsolete syntax and does strong type checking of C programs,
singly or in groups that are expected to be loaded together. It is indispensable for conversion
work.

Fortran. The old fc is replaced by j77, a true compiler for Fortran 77, compatible with C.
There are substantial changes in the language; see 'A Portable Fortran 77 Compiler' in Volume
2.
Stream editor. The program sed(l) is adapted to massive, repetitive editing jobs of the sort
encountered in converting to the new system. It is well worth learning.

Standard 1/0. The old /open, getc, putc complex and the old· -Ip package are both dead, and
even getchar has changed. All have been replaced by the clean, highly efficient, stdio package,
intro(3S). The first things to know are that getchar(3) returns the integer EOF (-1) (which is
not a possible byte value) on end of file, that S 18-byte buffers are out, and that there is a
defined FILE data type.

Make. The program make(l) handles the recompilation and loading of software in an orderly
way from a 'makefile' recipe given for each piece of software. It remakes only as much as the
modification dates of the input files show is necessary. The makefiles will guide you in building
your new system.

Shell, chdir. F. L. Bauer once said Algol 68 is the Everest that must be climbed by every com­
puter scientist because it is there. So it is with the shell for UNIX users. Everything beyond
simple command invocation from a terminal is different. Even chdir is now spelled ed. If you
wish to use sh (as opposed to csh) then you will want to study sh(l) long and hard:

C shell. Csh(l), developed at Berkeley, has features comparible to sh. It includes a history
mechanism that saves you from retyping all or part of previous commands, as well as an
efficient aliasing (macro) mechanism. The job control facilities of the system, which make the
system much more pleasant to use, are currently available only with csh. See csh(l) for a
description. These features make csh pleasant to use interactively. Csh programs have a syn­
tax reminiscent of C, while sh command programs have a syntax reminiscent of ALGOL-68.

Debugging. Sdb is a far more capable replacement for the debugger cdb, and debugs C and
Fortran at the source level. For machine language debugging, adb replaces db. The first-time
user should be especially careful about distinguishing I and ? in adb commands, and watching
to make sure that the x whose value he asked for is the real x, and not just some absolute loca­
tion equal to the stack offset of some automatic x. You can always use the 'true' name, _x, to
pin down a C external variable.

Dsw. This little-known, but indispensable facility has been taken over by rm -ri.

Boot procedures. Needless to say, these are all different. See section 8 of this volume, and the
other documentation you should have received with your tape.

CONVERTING FROM THE DECEMBER, 1979 BERKELEY DISTRIBUTION

There have been a number of significant changes and improvements in the system. This
list just gives the bare essentials:

C language changes. The C compiler now accepts and checks essentially arbitrary length
identifiers and preprocessor names. There is a new type available in type casts: void which
signifies that a value is to be ignored. It is useful in keeping lint happy about values which are
not used (especially values returned from procedures). Finally, the language has been changed
so that field names need not be unique to structures; on the other hand, the compiler insists
that you be more honest about types involved in pointer constructs or it will warn you.

Object file format. The object file format has been changed to include a string table, so that
language compilers may have names longer than 8 characters in their resulting a.out files. Old
.o files must be recreated. A.out files will still run on both this and the December 1979 version
of the system; only the symbol tables are incompatible.

Archive format and table of contents. The archive format has been changed to one which is port­
able between the VAX and other machines (e.g. the PDP-11). Old v AX archives should be
converted with arcv(8); loader archives should just be recreated since the object files are also
obsolete. Loader archives should have table-of-contents added by ran!ib(l); if they dont the
loader will gripe when they are used.

New tty driver, job control facilities and csh. Hand in hand are new job control facilities, a new
tty driver and a new version of the C shell which supports and uses all of this. See tty(4) and
csh(l) for a quick introduction.

Pascal compiler. There is a true Pascal compiler, pc(l) which allows separate compilation as
well as mixing in of FORTRAN and C code.

Error analyzer. There is an error analyzer program error(!), which takes a set of error message
and merges them back into the source files at the point of error. It can be used interactively to
avoid inserting errors which are uninteresting. This program eliminates once and for all making
lists of errors on small scraps of paper.

Mail forwarding. The system now provides mail forwarding and distribution facilities. Group
and aliases are defined in the file /usr/lib/aliases see aliases(5). If you change this file you will
have to rerun newaliasesO). For any particular system a table in the source of the delivermail
postman program may have to be changed so that it knows about the gateways on the local

machine.
System bootstrap procedures. These are totally changed; the system performs automatic reboots
and preens the disks automatically at reboot. You should reread the appropriate pages in sec­
tion 8 if you deal with system reboots.

CONVERTING FROM THE JUNE, 1981 BERKELEY DISTRIBUTION
Many many changes have been made. This list indicates those which are most visible to

users.
Directory format. Directory entries are no longer fixed length. This forces user programs
which read directories to be modified to use the directory(3) package.

Signals. A new signal package has replaced the previous signal mechanism as well as the "jobs
library". When using the compatible signal(3C) interface routine, the two most important
changes are: signal handlers are not reset to SIG_DFL when a process receives a signal, and
while a signal handler is processing a signal, that signal is blocked until the handler returns.
This has implications, in particular, for programs which process the suspend character typed at
the terminal. Ref er to sigvec, sigblock, sigpause, sigstack, and sigsetmask (2) for information
about the new signal facilities.

File and path names. File names may now be up to 255 characters in length. Path names are
restricted to be at most 1024 characters. These two constants are provides as MAXNAMLEN
and MAXPATHLEN in <sys/dir.h> and <sys/param.h>, respectively.

System time. System time is provided in microsecond precision with 10 millisecond accuracy.
The new system call gettimeofday(2) supplants the old time(3) call which is now a library rou­
tine. The major impact of this change is that programs are now written in a fashion which is
independent of the line clock frequency.

Groups. A user may now be in many groups simultaneously. This has obviated the need for
the newgrp command. See getgroups(2) for more information.

Stat and fetat return value. The structure returned by the stat and fetat system calls is now
larger. This is due to inode numbers growing to 32-bits, time stamps expanding to 64-bits and
other information being included in the return value. Consult stat(2) for more information.

Mail forwarding. The system now provides general internetwork mail forwarding and distribu­
tion facilities. The sendmai/(8) program replaces the old delivermail facility.

Debuggers. The previous C source language debugger, sdb, has been replaced by a new one,
dbx(l). Adb(l) has been extended to simplify debugging of the operating system.

Networking support. Many new user programs provide access to the networking facilities. The
rlogin(lC) and rsh(lC) programs are intended for communicating between UNIX systems. The
telnet(lC) and ftp(lC) programs support the DARPA Internet standard protocols. The
netstat(l) program is useful in watching network activity.

(

INTRO(l) UNIX Programmer's Manual INTRO (1)

NAME
intro - introduction to commands

DESCRIPTION
This section describes publicly accessible commands in alphabetic order. Certain distinctions of
purpose are made in the headings:

(1) Commands of general utility.

(lC) Commands for communication with other systems.

(lG) Commands used primarily for graphics and computer-aided design.

N.B.: Commands related to system maintenance used to appear in section 1 manual pages and
were distinguished by (lM) at the top of the page. These manual pages now appear in section
8.

SEE ALSO
Section (6) for computer games.

How to get started, in the Introduction.

DIAGNOSTICS
Upon termination each command returns two bytes of status, one supplied by the system giving
the cause for termination, and (in the case of 'normal' termination) one supplied by the pro­
gram, see wait and exit(2). The former byte is 0 for normal termination, the latter is cus­
tomarily 0 for successful execution, nonzero to indicate troubles such as erroneous parameters,
bad or inaccessible data, or other inability to cope with the task at hand. It is called variously
'exit code', 'exit status' or 'return code', and is described only where special conventions are
involved. ·

7th Edition 18 January 1983 1

ADB(l) UNIX Programmer's Manual ADB (1)

NAME
adb - debugger

SYNOPSIS 1

adb [-w] [-k] [-Idir] [objfil [corfil]]

DESCRIPTION
Adb is a general purpose debugging program. It may be used to examine files and to provide a
controlled environment for the execution of UNIX programs.

Obj/ii is normally an executable program file, preferably containing a symbol table; if not then
the symbolic features of adb cannot be used although the file can still be examined. The
default for obj/ii is a.out. Cor:fil is assumed to be a core image file produced after executing
obj/it, the default for corfilis core.

Requests to adb are read from the standard input and responses are to the standard output. If
the -w flag is present then both obj/ii and corfil are created if necessary and opened for reading
and writing so that files can be modified using adb.

The - k option makes adb do UNIX kernel memory mapping; it should be used when core is a
UNIX crash dump or /devlmem ·

The -I option specifies a directory where files to be read with$< or$<< (see below) will be
sought; the default is /usr/libladb.

Adb ignores QUIT; INTERRUPT causes return to the next adbcommand.

In general requests to adb are of the form

[address] [, count] [command] [;]

If address is present then dot is set to address. Initially dot is set to 0. For most commands
count specifies how many times the command will be executed. The default count is 1. Address
and count are expressions.

The interpretation of an address depends on the context it is used in. If a subprocess is being
debugged then addresses are interpreted in the usual way in the address space of the subpro­
cess. If the operating system is being debugged either post-mortem or using the special file
/dev/mem to interactive examine and/or modify memory the maps are set to map the kernel vir­
tual addresses which start at Ox80000000 (on the VAX). ADDRESSES.

EXPRESSIONS

+

ff

integer

The value of dot.

The value of dot incremented by the current increment.

The value of dotdecremented by the current increment.

The last address typed.

A number. The prefixes Oo and 00 ("zero oh") force interpretation in octal radix; the
prefixes Ot and OT force interpretation in decimal radix; the prefixes Ox and OX force
interpretation in hexadecimal radix. Thus Oo20 = Ot16 = OxlO = sixteen. If no
prefix appears, then the default radix is used; see the $d command. The default radix is
initially hexadecimal. The hexadecimal digits are 0123456789abcdef ABCDEF with the
obvious values. Note that a hexadecimal number whose most significant digit would
otherwise be an alphabetic character must have a Ox (or OX) prefix (or a leading zero if
the default radix is hexadecimal).

integer .fraction
A 32 bit floating point number.

• cccc' The ASCII value of up to 4 characters. \ may be used to escape a ·.

4th Berkeley Distribution 18 July 1983

ADB (1) UNIX Programmer's Manual ADB (I)

<name
The value of name, which is either a variable name or a register name. Adb maintains a
number of variables (see VARIABLES) named by single letters or digits. If name is a
register name then the value of the register is obtained from the system header in
corfil. The register names are those printed by the $r command.

symbol A symbol is a sequence of upper or lower case letters, underscores or digits, not starting
with a digit. The backslash character \ may be used to escape other characters. The
value of the symbol is taken from the symbol table in objfil. An initial _ will be
prepended to symbol if needed.

_symbol
In C, the 'true name' of an external symbol begins with_. It may be necessary to utter
this name to distinguish it from internal or hidden variables of a program.

routine.name
The address of the variable name in the specified C routine. Both routine and name are
symbols. If name is omitted the value is the address of the most recently activated C
stack frame corresponding to routine. (This form is currently broken on the VAX; local
variables can be examined only with dbx(l).)

(exp) The value of the expression exp.

Monadic operators

•exp The contents of the location addressed by exp in c01:fil.

@exp The contents of the location addressed by exp in objfil.

- exp Integer negation.

-exp Bitwise complement.

#exp Logical negation.

Dyadic operators are left associative and are less binding than monadic operators.

e 1 + e2 Integer addition.

e 1- e2 Integer subtraction.

e1*e2 Integer multiplication.

el%e2 Integer division.

el&e2 Bitwise conjunction.

eJle2 Bitwise disjunction.

el#e2 El rounded up to the next multiple of e2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of modifiers. The following
verbs are available. (The commands '?' and '/' may be followed by '•'; see ADDRESSES for
further details.)

?f Locations starting at address in objfil are printed according to the format .f dot is incre­
mented by the sum of the increments for each format letter (q.v.).

If Locations starting at address in cor.fil are printed according to the format f and dot is
incremented as for '?'.

= f The value of address itself is printed in the styles indicated by the format f <For i for­
mat'?' is printed for the parts of the instruction that reference subsequent words.)

4th Berkeley Distribution 18 July 1983 2

ADB (1) UNIX Programmer's Manual ADB (l)

A format consists of one or more characters that specify a style of printing. Each format charac­
ter may be preceded by a decimal integer that is a repeat count for the format character. While
stepping through a format dot is incremented by the amount given for each format letter. If no
format is given then the last format is used. The format letters available are as follows.

newline

o 2 Print 2 bytes in octal. All octal numbers output by adb are preceded by 0.
0 4 Print 4 bytes in octal.
q 2 Print in signed octal.
Q 4 Print long signed octal.
d 2 Print in decimal.
D 4 Print long decimal.
x 2 Print 2 bytes in hexadecimal.
X 4 Print 4 bytes in hexadecimal.
u 2 Print as an unsigned decimal number.
U 4 Print long unsigned decimal.
f 4 Print the 32 bit value as a floating point number.
F 8 Print double floating point.
b 1 Print the addressed byte in octal.
c 1 Print the addressed character.
C 1 Print the addressed character using the standard escape convention where con­

trol characters are printed as ·x and the delete character is printed as ·?.
s n Print the addressed characters until a zero character is reached.
S n Print a string using the • X escape convention (see C above). n is the length of

y 4
i n

a 0

I
?

the string including its zero terminator.
Print 4 bytes in date format (see ctimeO)).
Print as machine instructions. n is the number of bytes occupied by the
instruction. This style of printing causes variables 1 and 2 to be set to the
offset parts of the source and destination respectively.
Print the value of dot in symbolic form. Symbols are checked to ensure that
they have an appropriate type as indicated below.

local or global data symbol
local or global text symbol
local or global absolute symbol

p 4 Print the addressed value in symbolic form using the same rules for symbol
lookup as a.

0 When preceded by an integer tabs to the next appropriate tab stop. For exam-
ple, St moves to the next 8-space tab stop.

r 0 Print a space.
n 0 Print a newline.
" ... " 0 Print the enclosed string.

Dot is decremented by the current increment. Nothing is printed.
+ Dot is incremented by 1. Nothing is printed.

Dot is decremented by 1. Nothing is printed.

Repeat the previous command with a count of 1.

[?/]I value mask
Words starting at dot are masked with mask and compared with value until a match is
found. If L is used then the match is for 4 bytes at a time instead of 2. If no match is
found then dot is unchanged; otherwise dot is set to the matched location. If mask is
omitted then -1 is used.

[?/]w value ...

4th Berkeley Distribution 18 July 1983 3

ADB (1) UNIX Programmer's Manual ADB (I)

Write the 2-byte value into the addressed location. If the command is W, write 4 bytes.
Odd addresses are not allowed when writing to the subprocess address space.

[?/]m bl el fl[?/]
New values for (bl, el, fl} are recorded. If less than three expressions are given then
the remaining map parameters are left unchanged. If the '?' or 'I' is followed by · *'
then the second segment (b2, e2, fl) of the mapping is changed. If the list is ter­
minated by '?' or '/' then the file (obj{il or cor.fil respectively) is used for subsequent
requests. (So that, for example, '/m?' will cause'/' to refer to obj/ii.)

>name Dot is assigned to the variable or register named.

A shell (/bin/sh) is called to read the rest of the line following '!'.

$modifier
Miscellaneous commands. The available modifiers are:

<f Read commands from the file f If this command is executed in a file, further
commands in the file are not seen. If f is omitted, the current input stream is
terminated. If a count is given, and is zero, the command will be ignored. The
value of the count will be placed in variable 9 before the first command in /is
executed.

< <f Similar to < except it can be used in a file of commands without causing the
file to be closed. Variable 9 is saved during the execution of this command,
and restored when it completes. There is a (small) finite limit to the number
of < < files that can be open at once.

> f Append output to the file f, which is created if it does not exist. If /is omitted,
output is returned to the terminal.

? Print process id, the signal which caused stoppage or termination, as well as the
registers as $r. This is the default if modifier is omitted.

r Print the general registers and the instruction addressed by pc. Dot is set to pc.
b Print all breakpoints and their associated counts and commands.
c C stack backtrace. If address is given then it is taken as the address of the

current frame instead of the contents of the frame-pointer register. If C is
used then the names and (32 bit) values of all automatic and static variables are
printed for each active function. (broken on the VAX). If count is given then

·only the first count frames are printed.
d Set the default radix to address and report the new value. Note that address is

interpreted in the (old) current radix. Thus "I 0$d" never changes the default
radix. To make decimal the default radix, use "Ot 10$d".

e The names and values of external variables are printed.
w Set the page width for output to address (default 80).
s Set the limit for symbol matches to address (default 255).
o All integers input are regarded as octal.
q Exit from adb.
v Print all non zero variables in octal.
m Print the address map.
p (Kernel debugging) Change the current kernel memory mapping to map the

designated user structure to the addrt:ss given by the symbol _u. The address
argument is the address of the user's user page table entries (on the VAX).

:modifier
Manage a subprocess. Available modifiers are:

be Set breakpoint at address. The breakpoint is executed counr-1 times before
causing a stop. Each time the breakpoint is encountered the command c is exe­
cuted. If this command is omitted or sets dot to zero then the breakpoint

4th Berkeley Distribution 18 July 1983 4

ADB (1) UNIX Programmer's Manual ADB (1)

causes a stop.

d Delete breakpoint at address.

r Run obj/ii as a subprocess. If address is given explicitly then the program is
entered at this point; otherwise the program is entered at its siandard entry
point. count specifies how many breakpoints are to be ignored before stopping.
Arguments to the subprocess may be supplied on the same line as the com­
mand. An argument starting with < or > causes the standard input or output
to be established for the command.

cs The subprocess is continued with signal s, see sigvec(2). If address is given
then the subprocess is continued at this address. If no signal is specified then
the signal that caused the subprocess to stop is sent. Breakpoint skipping is the
same as for r.

ss As for c except that the subprocess is single stepped count times. If there is no
current subprocess then objfil is run as a subprocess as for r. In this case no
signal can be sent; the remainder of the line is treated as arguments to the sub­
process.

k The current subprocess, if any, is terminated.

VARIABLES
Adb provides a number of variables. Named variables are set initially by adb but are not used
subsequently. Numbered variables are reserved for communication as follows.

0 The last value printed.
I The last offset part of an instruction source.
2 The previous value of variable 1.
9 The count on the last$< or $< < command.

On entry the following are set from the system header in the cor:fil. If cor:/il does not appear to
be a core file then these values are set from obj/ii.

b The base address of the data segment.
d The data segment size.
e The entry point.
m The 'magic' number (0407, 0410 or 0413).
s The stack segment size.
t The text segment size.

ADDRESSES

FILES

The address in a file associated with a written address is determined by a mapping associated
with that file. Each mapping is represented by two triples (bl, el, fl) and (b2, e2, j2) and the
file address corresponding to a written address is calculated as follows.

bl<:. address< e 1 = > file address= address+ fl - b 1, otherwise,

b2<:. address< e2 -=> .file address= address+ j2-b2,

otherwise, the requested address is not legal. In some cases (e.g. for programs with separated I
and D space) the two segments for a file may overlap. If a ? or I is followed by an • then only
the second triple is used.

Th~ initial setting of both mappings is suitable for normal a.out and core files. If either file is
not of the kind expected then, for that file, bl is set to 0, el is set to the maximum file size and
fl is set to 0; in this way the whole file can be examined with no address translation.

a.out
core

4th Berkeley Distribution 18 July 1983 5

ADB (1) UNIX Programmer's Manual ADB (1)

SEE ALSO
cc(l), dbx(l), ptrace(2), a.out(5), core(S)

DIAGNOSTICS

BUGS

'Adb' when there is no current command or format. Comments about inaccessible files, syntax
errors, abnormal termination of commands, etc. Exit status is 0, unless last command failed or
returned nonzero status.

Since no shell is invoked to interpret the arguments of the :r command, the customary wild­
card and variable expansions cannot occur.

4th Berkeley Distribution 18 July 1983 6

ADMIN(l) ADMIN(1)

NAME
admin - create and administer SCCS files

SYNOPSIS
ad min [- n] [-i[name]]
[-dfiag[ftag-val]] [-alogin]
[- h] [- z] files

[-rrel]
[-elogin]

[-t[name]]
[- m [mrlist]]

[-ffiag[fiag-val]]
[-y[comment])

DESCRIPTION
Admin is used to create new SCCS files and change parameters of existing
ones. Arguments to admirz, .which may appear in any order, consist of
keyletter arguments, which begin with - , and named files (note that SCCS
file names must begin with the character.s s.). If a named file doesn't exist,
it is created, and its parameters are initialized according to the specified
keyletter arguments. Parameters not initialized by a keyletter argument are
assigned a default value. If a named file does exist, parameters correspon­
ding to specified keyletter arguments are changed, and other parameters are
left as is.

If a directory is named, admin behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of
the standard input is taken to be the name of an SCCS file to be processed.
Again, non-SCCS files and unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only
one named file is to be processed since the effects of the arguments apply
independently to each named file.

-o

-i[name]

-rrel

-t[name]

This keyletter indicates that a new SCCS file is to be
created.

The name of a file from which the text for a new
SCCS file is to be taken. The text constitutes the first
delta of the file (see -r keyletter for delta numbering
scheme). If the i keyletter is used, but the file name
is omitted, the text is obtained by reading the stan­
dard input until an end-of-file is encountered. If this
keyletter is omitted, then the SCCS file is created
empty. Only one SCCS file may be created by an
admin command on which the i keyletter is supplied.
Using a single admin to create two or more secs files
require that they be created empty (no -i keyletter).
Note that the -i keyletter implies the - n keyletter.

The re/ease into which the initial delta is inserted.
This keyletter may be used only if the -i keyletter is
also used. If the -r keyletter is not used, the initial
delta is inserted into release 1. The level of the ini­
tial delta is always 1 (by default initial deltas are
named 1.1).

The name of a file from which descriptive text for the
secs file is to be taken. If the - t keyletter is used
and admin is creating a new SCCS file (the - n and/or
-i keyletters also used), the descriptive text file
name must also be ,supplied. In the case of existing
SCCS files: (l) a -t keyletter without a file name
causes removal of descriptive text (if any) currently
in the SCCS file, and (2) a -t keyletter with a file

- 1 -

\

\

ADMIN(I) ADMIN(l)

name causes text (if any) in the named file to replace
the descriptive text (if any) currently in the SCCS file.

-fjlag This keyletter specifies a flag, and, possibly, a value
for the flag, to be placed in the secs file. Several f
keyletters may be supplied on a single admin com­
mand line. The allowable flags and their values are:

b Allows use of the -b keyletter on a get(1) command
to create branch deltas.

cceil The highest release (i.e., "ceiling"), a number less
than or equal to 9999, which may be retrieved by a
get(!) command for editing. The default value for
an unspecified c flag is 9999.

!floor The lowest release (i.e., "floor"), a number greater
than 0 but less than 9999, which may be retrieved by
a get(!) command for editing. The default value for
an unspecified f flag is 1.

dSID The default delta number (SID) to be used by a
get (1) command.

Causes the "No id keywords (ge6)" message issued by
get (1) or delta (1) to be treated as a fatal error. In
the absence of this flag, the message is only a war­
ning. The message is issued if no SCCS identification
keywords (see get(l)) are found in the text retrieved
or stored in the SCCS file.

j Allows concurrent get(l) commands for editing on
the same SID of an SCCS file. This allows multiple
concurrent updates to the same version of the SCCS
file.

llist A list of releases to which deltas can no longer be
made (get -e against one of these "locked" releases
fails). The list has the following syntax:

<list> ::= <range> I <list> , <range>
<range> ::= RELEASE NUMBER I a

The character a in the list is equivalent to specifying
ail releases for the named SCCS file.

n Causes delta(!) to create a "null" delta in each of
those releases (if any) being skipped when a delta is
made in a new release (e.g., in making delta 5.1 after
delta 2.7, releases 3 and 4 are skipped). These null
deltas serve as "anchor points" so that branch deltas
may later be created from them. The absence of this
flag causes skipped releases to be non-existent in the
SCCS file preventing branch deltas from being created
from them in the future.

qtext User definable text substituted for all occurrences of
the %Q% keyword in SCCS file text retrieved by
get(l).

mmod Module name of the SCCS file substituted for all
occurrences of the 3M% keyword in SCCS file text
retrieved by get(l). If the m flag is not specified, the
value assigned is the name of the SCCS file with the

- 2 -

ADMIN(1) ADMIN(1)

leading s. ·removed.

ttype Type of module in the SCCS file substituted for all
occurrences Of % Y% keyword in SCCS file text
retrieved by get(1). ·

v[pgm] Causes delta(l) to prompt for Modification Request
(MR) numbers as the reason for creating a delta.
The optional value specifies the name of an MR num­
ber validity checking program (see delta(l)). (If this
flag is set when creating an secs file, the m keyletter
must also be used even if its value is null).

-djlag Causes removal (deletion) of the specified flag from
an SCCS file. The -d keyletter may be specified only
when processing existing SCCS files. Several -d
keyletters may be supplied on a single admin com­
mand. See the -f keyletter for allowable flag names.

llist A list of releases to be "unlocked". See the -f
keyletter for a description of the I flag and the syntax
of a list.

-alogin A login name, or numerical UNIX group ID, to be
added to the list of users which may make deltas
(changes) to the SCCS file. A group ID is equivalent
to specifying all login names common to that group
ID. Several a keyletters may be used on a single
admin command line. As many logins, or numerical
group IDs, as desired may be on the list simul­
taneously. If the list of users is empty, then anyone
may add deltas.

-elogin A login name, or numerical group ID, to be erased
from the list of users allowed to make deltas
(changes) to the SCCS file. Specifying a group ID is
equivalent to specifying all login names common to
that group ID. Several e keyletters may be used on a
single admin command line.

-y[comment] The comment text is inserted into the SCCS file as a
comment for the initial delta in a manner identical to
that of delta(l). Omission of the -y keyletter results
in a default comment line being inserted in the form:

-m[mrlist]

-h

date and time created YY/MM /DD HH:MM..SS by login

The -y keyletter is valid only if the -i and/ or - n
keyletters are specified (i.e., a new SCCS file is being
created).

The list of Modification Requests (MR) numbers is
inserted into the SCCS file as the reason for creating
the initial delta in a manner identical to delta (1).
The v flag must be set and the MR numbers are vali­
dated if the v flag has a value (the name of an MR
number validation program). Diagnostics will occur
if the v flag is not set or MR validation fails.

Causes admin to check the structure of the SCCS file
(see sccsfile(5)), and to compare a newly computed
check-sum (the sum of all the characters in the secs
file except those in the first line) with the check-sum

- 3 -

ADMIN(l) ADMIN(1)

FILES

-z

that is stored in the first line of the SCCS file,
Appropriate error diagnostics are produced.

This keyletter inhibits writing on the file, so that it
nullifies the effect of any other keyletters supplied,
and is, therefore, only meaningful when processing
existing files.

The SCCS file check-sum is. recomputed and stored in
the first line of the SCCS file (see -h, above).

Note that use of this keyletter on a truly corrupted
file may prevent future detection of the corruption.

The last component of all SCCS file names must be of the form s.file-name.
New SCCS files are given mode 444 (see chmod(l)). Write permission in
the pertinent directory is, of course, required to create a file. All writing
done by admin is to a temporary x-file, called x.file-name, (see get(l)),
created with mode 444 if the admin command is creating a new SCCS file,
or with the same mode as the SCCS file if it exists. After successfui execu­
tion of admin, the SCCS file is removed (if it exists), and the x-file is
renamed with the name of the SCCS file. This ensures that changes are
made to the secs file only if no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and
that SCCS files themselves be mode 444. The mode of the directories
allows only the owner to modify SCCS files contained in the directories.
The mode of the SCCS files prevents any modification at all except by SCCS
commands.

If it should be necessary to patch an SCCS file for any reason, the mode
may be changed to 644 by the owner allowing use of ed(l). Care must be
taken! The edited file should always be processed by an admin - h to check
for corruption followed by an ad min - z to generate a proper check-sum.
Another ad min - h is recommended to ensure the SCCS file is valid.

Admin also makes use of a transient lock file (called z.jile-name), which is
used to prevent simultaneous updates to the SCCS file by different users.
See get(l) for further information.

SEE ALSO
delta(!), ed(l), get(l), help(l), prs(l), what(l), sccsfile(5).
Source Code Control System User's Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS
Use help(1) for explanations.

- 4 -

AR(1) UNIX Programmer's Manual AR(1)

NAME
ar - archive and library maintainer

SYNOPSIS
ar key [posname] afile name ...

DESCRIP1ION

FILES

Ar maintains groups of files combined into a single archive file. Its main use is to create and
update library files as used by the loader. It can be used, though, for any similar purpose.

Key is one character from the set drqtpmx, optionally concatenated with one or more of vuaib­
clo. Afile is the archive file. The namea are constituent files in the archive file. The meanings
of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u is used with r,
then only those files with 'last-modified' dates later than the archive files are replaced.
If an optional positioning character from the set abi is used, then the poaname argument
must be present and specifies that new files are to be placed after (a) or before (b or i)
poaname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive file. Optional positioning
characters are invalid. The command does not check whether the added members are
already in the archive. Useful only to avoid quadratic behavior when creating a large
archive piece-by-piece.

t Print a table of contents of the archive file. If no names are given, all files in the
archive are tabled. If names are given, only those files are tabled.

p Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning character is present,
then the poaname argument must be present and, as in r, specifies where the files are to
be moved.

x Extract the named files. If no names a.re given, all files in the archive a.re extracted. In
neither case does x alter the archive file. Normally the 'last-modified' date of each
extracted file is the date when it is extracted. However, if o is used, the 'last-modified'
date is reset to the date recorded in the archive.

v Verbose. Under the verbose option, ar gives a file-by-file description of the making of
a new archive file from the old archive and the constituent files. When used with t, it
gives a long listing of all information about the files. When used with p, it precedes
each file with a name.

c Create. Normally ar will create afile when it needs to. The create option suppresses
the normal message that is produced when afile is created.

Local. Normally ar places its temporary files in the directory /tmp. This option causes
them to be placed in the local directory.

/tmp/v* temporaries

SEE ALSO
lord er(1), Id(1), ar(5)

BUGS
If the same file is mentioned twice in an argument list, it may be put in the archive twice.

7th Edition 24 February 1979 1

(

(

AR(1) UNIX Programmer's Manual AR(1)

The 'last-modified' date of a file will not be altered by the o option if the user is not the owner
of the extracted file, or the super-user.

7th Edition 24 February 1979 2

AS (1) UNIX Programmer's Manual AS (1)

NAME
as - V AX-11 assembler

SYNOPSIS
as [-dl24 1 [-L 1 [-W 1 [-V 1 [-J] [-R 1 [-t directory l [-o objfile 1 [name ... 1

DESCRIPTION

FILES

As assembles the named files, or the standard input if no file name is specified. The available
flags are:

-d Specifies the number of bytes to be assembled for offsets which involve forward or
external references, and which have sizes unspecified in the assembly language. The
default is -d4.

- L Save defined labels beginning with a 'L', which are normally discarded to save space in
the resultant symbol table. The compilers generate such temporary labels.

- V Use virtual memory for some intermediate storage, rather than a temporary file.

- W Do not complain about errors.

-J Use long branches to resolve jumps when byte-displacement branches are insufficient.
This must be used when a compiler-generated assembly contains branches of more than
32k bytes.

- R Make initialized data segments read-only, by concatenating them to the text segments.
This obviates the need to run editor scripts on assembly code to make initialized data
read-only and shared.

-t Specifies a directory to receive the temporary file, other than the default /tmp.

All undefined symbols in the assembly are treated as global.

The output of the assembly is left on the file obj/ile; if that is omitted, a.out is used.

/tmp/as•
a.out

default temporary files
default resultant object file

SEE ALSO
ldO), nm(l), adbO), dbxO), a.out(S)
Auxiliary documentation Assembler Reference Manual.

AUTHORS

BUGS

John F. Reiser
Robert R. Henry

-J should be eliminated; the assembler should automatically choose among byte, word and
long branches.

4th Berkeley Distribution July 1, 1983

AT (1) UNIX Programmer's Manual AT(l)

NAME
at - execute commands at a later time

SYNOPSIS
at. time [day] [file]

DESCRIPTION

FILES

At squirrels away a copy of the named file (standard input default) to be used as input to sh(l)
(or csh(l) if you normally use it) at a specified later time. A cd command to the current direc­
tory is inserted at the beginning, followed by assignments to all environment variables (except­
ing the variable TERM, which is useless in this context.) When the script is run, it uses the
user and group ID of the creator of the copy file.

The time is 1 to 4 digits, with an optional following 'A', 'P', 'N' or 'M' for AM, PM, noon or
midnight. One and two digit numbers are taken to be hours, three and four digits to be hours
and minutes. If no letters follow the digits, a 24 hour clock time is understood.

The optional day is either (1) a month name followed by a day number, or (2) a day of the
week; if the word 'week' follows invocation is moved seven days further off. Names of months
and days may be recognizably truncated. Examples of legitimate commands are

at Sam jan 24
at 1530 fr week

At programs are executed by periodic execution of the command /usr/liblatrun from cron(8).
The granularity of at depends upon how often atrun is executed.

Standard output or error output is lost unless redirected.

/usr/lib/atrun

in /usr/spool/at:
yy.ddd.hhhh.•
lasttimedone
past

executor (run by cron (8)).

activity for year yy, day dd, hour hhhh.
last hhhh
activities in progress

SEE ALSO
calendar(!), pwd(l), sleep(l), cron(8)

DIAGNOSTICS

BUGS

Complains about various syntax errors and times out of range.

Due to the granularity of the execution of /usr/liblatrun, there may be bugs in scheduling things
almost exactly 24 hours into the future.

4th Berkeley Distribution 18 January 1983

AWK(l) UNIX Programmer's Manual AWK (1)

NAME
awk - pattern scanning and processing language

SYNOPSIS
awk [- F c] [prog] [file 1 ...

DESCRIPTION
Awk scans each input file for lines that match any of a set of patterns specified in prog. With
each pattern in prog there can be an associated action that will be performed when a line of a
file matches the pattern. The set of patterns may appear literally as prog, or in a file specified as
-f file.

Files are read in order; if there are no files, the standard input is read. The file name ' - '
means the standard input. Each line is matched against the pattern portion of every pattern­
action statement; the associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by
using FS, vide infra.) The fields are denoted $1, $2, ... ; $0 refers to the entire line.

A pattern-action statement has the form

pattern { action }

A missing { action } means print the line; a missing pattern always matches.

An action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement J
while (conditional) statement
for (expression ; conditional ; expression) statement
break
continue
{ [statement] ...)
variable = expression
print [expression-list] [>expression]
printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, newlines or right braces. An empty expression-list
stands for the whole line. Expressions take on string or numeric values as appropriate, and are
built using the operators +, - , •, I, %, and concatenation (indicated by a blank). The C
operators + +, - - , + =, - =, • =, I=, and % = are also available in expressions. Variables
may be scalars, array elements (denoted x[i]) or fields. Variables are initialized to the null
string. Array subscripts may be any string, not necessarily numeric; this allows for a form of
associative memory. String constants are quoted" ... ".

The print statement prints its arguments on the standard output (or on a file if >file is present),
separated by the current output field separator, and terminated by the output record separator.
The print/statement formats its expression list according to the format (see printf(3S)).

The built-in function length returns the length of its argument taken as a string, or of the whole
line if no argument. There are also built-in functions exp, log, sqrt, and im. The last truncates
its argument to an integer. substds. m, n) returns the n-character substring of s that begins at
position m. The function sprintf(fmt, expr, expr, ...) formats the expressions according to the
printf(3S) format given by fmt and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, II, &&, and parentheses) of regular expressions
and relational expressions. Regular expressions must be surrounded by slashes and are as in
egr.ep. Isolated regular expressions in a pattern apply to the entire line. Regular expressions
may also occur in relational expressions.

7th Edition 18 January 1983
1

AWK(l) UNIX Programmer's Manual AWK (1)

A pattern may consist of two patterns separated by a comma; in this case, the action is per­
formed for all lines between an occurrence of the first pattern and the next occurrence of the
second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either - (for contains)
or r (for does not contain). A conditional is an arithmetic expression, a relational expression,
or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first input line
is read and after the last. BEGIN must be the first pattern, END the last.

A single character c may be used to separate the fields by starting the program with

BEGIN (FS == "c"}

or by using the - F c option.

Other variable names with special meanings include NF, the number of fields in the current
record; NR, the ordinal number of the current record; FILENAME, the name of the current
input file; OFS, the output field separator (default blank); ORS, the output record separator
(default newline); and OFMT, the output format for numbers (default "%.6g").

EXAMPLES
Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:

{ print $2, $1 }

Add up first column, print sum and average:

{ s + = $1 }
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:

(for (i ==NF; i > O; --i) print $i}

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 ! ... prev { print; prev == $1 }

SEE ALSO

BUGS

lex(l), sed(l)
A. V. Aho, B. W. Kernighan, P. J. Weinberger, Awk - a pattern scanning and processing
language

There are no explicit conversions between numbers and strings. To force an expression to be
treated as a number add 0 to it; to force it to be treated as a string concatenate "" to it.

7th Edition 18 January 1983 2

BASENAME (1) UNIX Programmer's Manual

NAME
basename - strip filename affixes

SYNOPSIS
basename string [suffix 1

DESCRIPTION

BASENAME (l)

Basename deletes any prefix ending in '/' and the sl(ffix, if present in string, from string, and
prints the result on the standard output. It is normally used inside substitution marks ' • in
shell procedures.

This shell procedure invoked with the argument /usr/srclbinlcat.c compiles the named file and
moves the output to cat in the current directory:

SEE ALSO
sh(l)

7th Edition

cc $1
mv a.out 'basename $1 .c·

1 April 1981

(

BDIFF(I) BDIFF(1)

NAME
bdiff - big diff

SYNOPSIS
bdiff filel file2 [n] [-s]

DESCRIPTION

FILES

Bdiff is used in a manner analogous to diff(l) to find which lines must be
changed in two files to bl;"ing them into agreement. Its purpose is to allow
processing of files which are too large for di.ff. Bdiff ignores lines common
to the beginning of both files, splits the remainder of each file into n-line
segments, and invokes di.ff upon corresponding segments. The value of n
is 3500 by default. If the optional third argument is given, and it is
numeric, it is used as the value for n. This is useful in those cases in
which 3500-line segments are too large for di.ff, causing it to fail. If file/
(fi/e2) is - , the standard input is read. The optional -s (silent) argument
specifies that no diagnostics are to be printed by bdi.ff (note, however, that
this does not suppress possible exclamations by di.ff. If both optional
arguments are specified, they must appear in the order indicated above.

The output of bdiff is exactly that of di.ff; with line numbers adjusted to
account for the segmenting of the files (that is, to make it look as if the
files had been processed whole). Note that because of the segmenting of
the files, bdiff does not necessarily find a smallest sufficient set of file
differences.

/tmp/bd?????

SEE Al.SO
diff(l).

DIAGNOSTICS
Use help(!) for explanations.

- 1 -

CAL (1)

NAME
cal - print calendar

SYNOPSIS
cal [month] year

DESCRIPTION

UNIX Programmer's Manual CAL (1)

Cal prints a calendar for the specified year. If a month is also specified, a calendar just for that
month is printed. Year can be between 1 and 9999. The month is a number between 1 and 12.
The calendar produced is that for England and her colonies.

BUGS
Try September 1752.

The year is always considered to start in January even though this is historically naive.
Beware that 'cal 78' refers to the early Christian era, not the 20th century.

7th Edition 29 March 1982

CALENDAR (1) UNIX Programmer's Manual CALENDAR (1)

NAME
calendar - reminder service

SYNOPSIS
calendar [-]

DESCRIPTION

FILES

Calendar consults the file 'calendar' in the current directory and prints out lines that contain
today's or tomorrow's date anywhere in the line. Most reasonable month-day dates such as
'Dec. 7,' 'december 7,' '12/7,' etc., are recognized, but not '7 December' or '7/12'. If you
give the month as "•" with a date, i.e. "• l ", that day in any month will do. On weekends
'tomorrow' extends through Monday.

When an argument is present, calendar does its job for every user who has a file 'calendar' in
his login directory and sends him any positive results by mail(!). Normally this is done daily in
the wee hours under control of cron(8).

The file 'calendar' is first run through the "C" preprocessor, /lib/cpp, to include any other
calendar files specified with the usual "#include" syntax. Included calendars will usually be
shared by all users, maintained and documented by the local administration.

calendar
/usr/lib/calendar to figure out today's and tomorrow's dates
/etc/passwd
/tmp/cal•
/lib/cpp, egrep, sed, mail as subprocesses

SEE ALSO
at(l), cron(8), mail(!)

BUGS
Calendar's extended idea of 'tomorrow' doesn't account for holidays.

Provisional 4.2 BSD 29 March 1982

CAT(l) UNIX Programmer's Manual CAT (I)

NAME
cat - catenate and print

SYNOPSIS
cat [-u] [-n] [-s] [-v] file ...

DESCRIPTION
Cat reads each file in sequence and displays it on the standard output. Thus

cat file

displays the file on the standard output, and

cat filel file2 >file3

concatenates the first two files and places the result on the third.

If no input file is given, or if the argument ' - ' is encountered, cat reads from the standard
input file. Output is buffered in 1024-byte blocks unless the standard output is a terminal, in
which case it is line buffered. The -u option makes the output completely unbuffered .

. The -n option displays the output lines preceded by lines numbers, numbered sequentially
from 1. Specifying the -b option with the -n option omits the line numbers from blank lines.

The -s option crushes out multiple adjacent empty lines so that the output is displayed single
spaced.

The -v option displays non-printing characters so that they are visible. Control characters
print like AX for control-x; the delete character (octal 0177) prints as A?. Non-ascii characters
(with the high bit set) are printed as M- (for meta) followed by the character of the low 7 bits.
A -e option may be given with the -v option, which displays a '$' character at the end of
each line. Specifying the -t option with the -v option displays tab characters as AI.

SEE ALSO
cp(l), ex(l), more(l), pr(l), tail(l)

BUGS
Beware of 'cat a b >a' and 'cat a b > b ', which destroy the input files before reading them.

4th Berkeley Distribution 18 January 1983 1

(

CB (1)

NAME
cb - C program beautifier

SYNOPSIS
cb

DESCRIPTION

UNIX Programmer's Manual CB (I)

Cb places a copy of the C program from the standard input on the standard output with spacing
and indentation that displays the structure of the program.

7th Edition 18 January 1983

cc (1) UNIX Programmer's Manual CC(l >

NAME
cc - C compiler

SYNOPSIS
cc [option l ... file ...

DESCRIPTION
Cc is the UNIX C compiler. Cc accepts several types of arguments:

Arguments whose names end with '.c' are taken to be C source programs; they are compiled,
and each object program is left on the file whose name is that of the source with '.o' substituted
for '.c'. The '.o' file is normally deleted, however, if a single C program is compiled and
loaded all at one go.

In the same way, arguments whose names end with '.s' are taken to be assembly source pro­
grams and are assembled, producing a '.o' file.

The following options are interpreted by cc. See fd(l) for load-time options.

-c Suppress the loading phase of the compilation, and force an object file to be produced
even if only one program is compiled.

-g Have the compiler produce additional symbol table information for dbx(I). Also pass
the - lg flag to /d(l) .

-go Have the compiler produce additional symbol table information for the obsolete
debugger sdb(l). Also pass the - lg flag to fd(l).

-w Suppress warning diagnostics.

-p Arrange for the compiler to produce code which counts the number of times each rou-
tine is called. If loading takes place, replace the standard startup routine by one which
automatically calls monitor(3) at the start and arranges to write out a mon.out file at
normal termination of execution of the object program. An execution profile can then
be generated by use of prof(I) .

-pg Causes the compiler to produce counting code in the manner of - p, but invokes a
run-time recording mechanism that keeps more extensive statistics and produces a
gmon.out file at normal termination. Also, a profiling library is searched, in lieu of the
standard C library. An execution profile can then be generated by use of gproj(I J.

-0 Invoke an object-code improver.

- R Passed on to as, making initialized variables shared and read-only.

-s Compile the named C programs, and leave the assembler-language output on
corresponding files suffixed '.s'.

- E Run only the macro preprocessor on the named C programs, and send the result to the
standard output.

-c prevent the macro preprocessor from eliding comments.

-o output
Name the final output file output. If this option is used the file 'a.out' will be left
undisturbed.

-Dname=def
-D name

- ll name

Define the name to the preprocessor, as if by '#define'. If no definition is given, the
name is defined as "l".

Remove any initial definition of name.

4th Berkeley Distribution 9 February 1982

cc (1)

FILES

UNIX Programmer's Manual CC(I l

-ldir '#include' files whose names do not begin with'/' are always sought first in the dim:­
tory of the file argument, then in directories named in - I options, then in directories
on a standard list.

-&string
Find substitute compiler passes in the files named string with the suffixes cpp, ccom
and c2. If string is empty, use a standard backup version.

-t[p012]
Find only the designated compiler passes in the files whose names are constructed by a
-B option. In the absence of a - B option, the string is taken to be '/usr/c/'.

Other arguments are taken to be either loader option arguments, or C-compatible object pro­
grams, typically produced by an earlier cc run, or perhaps libraries of C-compatible routines.
These programs, together with the results of any compilations specified, are loaded (in the
order given) to produce an executable program with name a.out.

file.c input file
file.o object file
a.out loaded output
/tmp/ctm? temporary
/lib/cpp preprocessor
/lib/ccom compiler
/usr/c/occom backup compiler
/usr/c/ocpp backup preprocessor
/lib/c2 optional optimizer
/lib/crtO.o runtime startoff
/lib/mcrtO.o startoff for profiling
/usr/lib/gcrtO.ostartoff for gprof-profiling
/lib/libc.a standard library, see inrro(3)
I usr/lib/li bc _p.aprofili ng library, see intro<3)
/usr/include standard directory for '#include' files
mon.out file produced for analysis by prof(1 J
gmon.out file produced for analysis by gprof(I)

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The C Programming language, Prentice-Hall, 1978
B. W. Kernighan, Programming in C-a tutorial
D. M. Ritchie, C Reference Manual
monitor(3), prof(l), gprof(l), adb(l), Id(}), dbx(l), as())

DIAGNOSTICS

BUGS

The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages
may be produced by the assembler or loader.

The compiler currently ignores advice to put char, unsigned char, short or unsigned short
variables in registers. It previously produced poor. and in some cases incorrect, code for such
declarations.

4th Berkeley Distribution 9 February 1982 2

CD(l) UNIX Programmer's Manual CD (1)

NAME
cd - change working directory

SYNOPSIS
eel directory

DESCRIPTION
Directory bec.omes the new working directory. The process must have execute (search) permis­
sion in directory.

Because a new process is created to execute each command, cd would be ineffective if it were
written as a normal command. It is therefore recognized and executed by the shells. In csh(l)
you may specify a list of directories in which directory is to be sought as a subdirectory if it is
not a subdirectory of the current directory; see the description of the cdparh variable in csh(l).

SEE ALSO
csp(l), sh(l), pwd(l), chdir(2)

4th Berkeley Distribution 5 April 1980

I
I

\

CHG RP (1)

NAME
chgrp - change group

SYNOPSIS
chgrp [-f] group file ...

DESCRIPTION

UNIX Programmer's Manual CHGRP (I l

Chgrp changes the group-ID of the .files to group. The group may be either a decimal G ID or a
group name found in the group-ID file.

The user invoking chgrp must belong to the specified group and be the owner of the file, or be
the super-user.

No errors are reported when the - f (force) option is given.

FILES
/etc/group

SEE ALSO
chown(2), passwd(5), group(S)

4th Berkeley Distribution 28 April 1982

CHMOD (1) UNIX Programmer's Manual CHMOD (1)

NAME
chmod - change mode

SYNOPSIS
chmod mode file ...

DESCRIPTION
The mode of each named file is changed according to mode, which may be absolute or symbolic.
An absolute mode is an octal number constructed from the OR of the following modes:

4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit, see chmod(2)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:

[who] op permission [op permission] ...

The who part is a combination of the letters u (for user's permissions), g (group) and o (other).
The letter a stands for all, or ugo. If who is omitted, the default is a but the setting of the file
creation mask (see umask(2)) is taken into account.

Op can be + to add permission to the file's mode, - to take away permission and = to assign
permission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), s (set owner or
group id) and t (save text - sticky). Letters u, g or o indicate that permission is to be taken
from the current mode. Omitting permission is only useful with = to take away all permissions.

EXAMPLES
The first example denies write permission to others, the second makes a file executable:

chmod o-w file
ch mod + x file

Multiple symbolic modes separated by commas may be given. Operations are performed in the
order specified. The letters is only useful with u or g.

Only the owner of a file (or the super-user) may change its mode.

SEE ALSO
ls(l), chmod(2), stat(2), umask(2), chown(8)

7th Edition 18 January 1983

CHSH (1) UNIX Programmer's Manual

NAME
chsh - change default login shell

SYNOPSIS
chsh name [shell]

DESCRIPTION

CHSH (1)

Chsh is a command similar to passwd(l) except that it is used to change the login shell field of
the password file rather than the password entry. If no shell is specified then the shell reverts to
the default login shell /bin/sh. Otherwise only lbin/csh, lbin/oldcsh, or /usr/new/csh can be specified
as the shell unless you are the super-user.

An example use of this command would be

chsh bill /bin/csh

SEE ALSO
csh(l), passwd(l), passwd(5)

4th Berkeley Distribution 21 October 1980

CLEAR(l)

NAME
clear - clear terminal screen

SYNOPSIS
clear

DESCRIPTION

UNIX Programmer's Manual CLEAR (I)

Clear clears your screen if this is possible. It looks in the environment for the terminal type
and then in /etc/termcap to figure out how to clear the screen.

FILES
/etc/termcap terminal capability data base

3rd Berkeley Distribution 24 February 1979

CMP (1)

NAME
cmp - compare two files

SYNOPSIS
cmp [-1] [-s] filel file2

DESCRIPTION

UNIX Programmer's Manual CMP (1)

The two files are compared. (If .ft/el is '- ', the standard input is used.) Under default options,
cmp makes no comment if the files are the same; if they differ, it announces the byte and line
number at which the difference occurred. If one file is an initial subsequence of the other, that
fact is noted.

Options:

-1 Print the byte number (decimal) and the differing bytes (octal) for each difference.

-s Print nothing for differing files; return codes only.

SEE ALSO
diff(l), comm(l)

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessible or miss­
ing argument.

7th Edition 18 January 1983 1

COL (1) UNIX Programmer's Manual COL (1)

NAME
col - filter reverse line feeds

SYNOPSIS
col [-bfx]

DESCRIPTION
Col reads the standard input and writes the standard output. It performs the line overlays
implied by reverse line feeds (ESC-7 in ASCII) and by forward and reverse half line feeds
(ESC-9 and ESC-8). Col is particularly useful for filtering multicolumn output made with the
'.rt' command of nroff and output resulting from use of the tb/(1) preprocessor.

Although col accepts half line motions in its input, it normally does not emit them on output.
Instead, text that would appear between lines is moved to the next lower full line boundary.
This treatment can be suppressed by the -f (fine) option; in this case the output from col may
contain forward half line feeds (ESC-9), but will still never contain either kind of reverse line
motion.

If the -b option is given, col assumes that the output device in use is not capable of backspac­
ing. In this case, if several characters are to appear in the same place, only the last one read
will be taken.

The control characters SO (ASCII code 017), and SI (016) are assumed to start and end text in
an alternate character set. The character set (primary or alternate) associated with each printing
character read is remembered; on output, SO and SI characters are generated where necessary
to maintain the correct treatment of each character.

Col normally converts white space to tabs to shorten printing time. If the -x option is given,
this conversion is suppressed.

All control characters are removed from the input except space, backspace, tab, return, new­
line, ESC (033) followed by one of 7, 8, 9, SI, SO, and VT (013). This last character is an
alternate form of full reverse line feed, for compatibility with some other hardware conven­
tions. All other non-printing characters are ignored.

SEE ALSO
troff (1), tbl (1)

BUGS
Can't back up more than 128 lines.
No more than 800 characters, including backspaces, on a line.

7th Edition 18 January 1983

COMB(I) COMB(I)

NAME
comb - combine SCCS deltas

SYNOPSIS
comb [-o] [-s] [-psid] [-clist] files

DESCRIPTION

FILF.S

Comb generates a shell procedure (see sh (1)) which, when run, will recon­
struct the given SCCS files. The reconstructed files will, hopefully, be smal­
ler than the original files. The arguments may be specified in any order,
but all keyletter arguments apply to all named SCCS files. If a directory is
named, comb behaves as though each file in the directory were specified as
a named file, except that non-SCCS files (last component of the path name
does not begin with s.) and unreadable files are silently ignored. If a name
of - is given, the standard input is read; each line of the standard input is
taken to be the name of an SCCS file to be processed; non-SCCS files and
unreadable files are silently ignored.

The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only
one named file is to be processed, but the effects of any keyletter argument
apply independently to each named file.

-pSlD The SCCS /Dentification string (SID) of the oldest delta to be
preserved. All older deltas are discarded in the reconstructed file.

-clist A list (see get(l) for the syntax of a list) of deltas to be preserved.
All other deltas are discarded.

-o For each get -e generated, this argument causes the reconstructed
file to be accessed at the release of the delta to be created, oth­
erwise the reconstructed file would be accessed at the most recent
ancestor. Use of the -o keyletter may decrease the size of the
reconstructed SCCS file. It may also alter the shape of the delta
tree of the original file.

-s This argument causes comb to generate a shell procedure which,
when run, will produce a report giving, for each file: the file name,
size (in blocks) after combining, original size (also in blocks), and
percentage change computed by:

100 •(original - combined) /original
It is recommended that before any SCCS files are actually com­
bined, one should use this option to determine exactly how much
space is saved by the combining process.

If no keyletter arguments are specified, comb will preserve only leaf deltas
and the minimal number of ancestors needed to preserve the tree.

s.COMB
comb?'??'??

The name of the reconstructed SCCS file.
Temporary.

SEE ALSO
admin(l), delta(l), get(l), help(l), prs(l), sccsfile(5).
Source Code Control System User's Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS

BUGS

Use he/p(l) for explanations.

Comb may rearrange the shape of the tree of deltas. It may not save any
space; in fact, it is possible for the reconstructed file to actually be larger
than the original.

- l -

COMM(l) UNIX Programmer's Manual

NAME
comm - select or reject lines common to two sorted files

SYNOPSIS
comm [- [123]] filel file2

DESCRIPTION

COMM(l)

Comm reads filel and file2, which should be ordered in ASCII collating sequence, and produces
a three column output: lines only in filel,· lines only in file2,· and lines in both files. The
filename • - ' means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm -12 prints only
the lines common to the two files; comm -23 prints only lines in the first file but not in the
second; comm -123 is a no-op.

SEE ALSO
cmp(l), dift'(l), uniq(l)

7th Edition 18 January 1983 1

CP(l) UNIX Programmer's Manual CP (1)

NAME
cp - copy

SYNOPSIS
cp [-l] [-r 1 filel file2

cp [-l] [-r] file ... directory

DESCRIPTION
Fi/el is copied onto file]. The mode and owner of file] are preserved if it already existed; the
mode of the source file is used otherwise.

In the second form, one or more files are copied into the directory with their original file-names.

Cp refuses to copy a file onto itself.

If the -l option is specified, cp will prompt the user with the name of the file whenever the
copy will cause an old file to be overwritten. An answer of 'y' will cause cp to continue. Any
other answer will prevent it from overwriting the file.

If the -r option is specified and any of the source files are directories, cp copies each subtree
rooted at that name; in this case the destination must be a directory.

SEE ALSO
cat(l), pr(l), mv(l)

4th Berkeley Distribution 1 April 1982 1

CPIO(1) UNIX Programmer's Manual CPIO (1)

NAME
cpio - copy file archives in and out (to & from tape)

SYNOPSIS
cpio - o [acBSv J

cpio - i [BcdfinMrtuv6q J [patterns J

cpio - p [adlmMSruvq J directory

DESCRIPTION
Cpio - o (copy out) reads the standard input to obtain a list of path names and copies those
files onto the standard output together with path name and status informii.tion.

Cpio - i (copy in) extracts from the standard input (which is assumed to be the product of a
previous cpio - o) the names of files selected by zero or more patterna given in the name­
generating notation of sh (1). In patterns , meta-characters ? , • , and [•••] match the slash (/)
character. A pattern can be omitted by using ! pattern. The default for patterna is • (i.e., select
all files).

Cpio - p (pass) copies out and in in a single operation. Destination path names a.re interpreted
relative to the named directory.

Options:

a Reset access times of input files after they have been copied.

B Input/output is to be blocked 5,120 bytes (10 UNIX blocks) to the record. Note that this
is different from the default that t.a.r uses (20 UNIX blocks). This does not apply to the
pass option; meaningful only with data directed to or from tape.

c Write header information in ASCII character form for portability.

d Directories are to be created as needed. This option is only necessary if the directories do
not exist in the archive and do not exist in the destination directory. If the directories
were placed in the archive, you do not need this option.

f Take as a parameter a file containing a list of file names to extract. For example:

cpio - iBf ftist < /dev /rmtO

will extract from /dev/rmtO the files whose names are listed, one per line, in the file
"flist." No pattern metacharacters are recognized here. This option does not work with
cpio - p or cpio - o.

Link files rather than copying, where possible. Usable only with the - p option. Cpio
always preserves links.

m Retain previous file modification time. This option is ineffective on directories that are
being copied.

M Change mode and ownership of existing directories to match mode and ownership of
corresponding directories on tape.

q Take the next argument as a filename. Cpio quits when the given filename is found.

r Interactively rename files. If the user types a null line, the file is skipped. Entering con­
trol d assumes a null line for the remaining files. This option is not available with cpio
- p.

s Swabs the file bodies (but not the headers). Try it if file names come out scrambled.

t Print a table of contents of the input. No files are created. This list of files does not con­
tain any "junk" and is suitable input to cpio.

1

CPIO(1) UNIX Programmer's Manual CPIO(l)

u Copy unconditionally (normally, an older file will not replace a newer file with the same
name).

S Causes symbolic links to be followed as if they are real files

v Verbose: causes a list of file names to be printed. When used with the t option, the table
of contents looks like the output of an ls - I command (see ls (1)).

EXAMPLES

NO'IES

BUGS

The first example below copies the contents of a directory into an archive (tape); the second
duplicates a directory hierarchy:

find . - print cpio - oB > /dev /rmtJJ

cd olddir
find . - print cpio - pdl newdir

The first example can be handled more efficiently by:

find . - cpio /dev /rmtJJ

To copy an archive (tape) in, use:

cpio - iBdmu < /dev /rmt!J

Cpio can archive special files (devices) if you are logged on as the super-user. Tar can not
archive special files.

There is no way, short of using - r interactively, of unrooting a cpio archive made with rooted
file names (ones that start with '/').

Cpio changes modification dates by default; tar leaves them alone by default.

If you use pattern matching with the - i option, cpio always searches the whole archive (or
tape) even if it has already found all the files listed. There is no way to use the rename (- r)
option from a file instead of interactively.

With the - o option, if you have a directory file as input, it adds the directory to the tape but
does not recursively add the directory's files (unlike tar).

2

CPTREE(lV)

NAME
cptree - copy directory tree

SYNOPSIS
cptree fromdir todir

DESCRlPTION

UNIX Programmer's Manual CPTREE(lV)

cptree recursively copies a directory hierarchy to another existing directory. fromdir is the top of
the hierarchy to be copied and todir represents the top of the resulting directory tree.

EXAMPLE
mkdir /tmp/newdir
cptree /usr/adm /tmp/newdir

SEE ALSO
tar(1)

7th Edition Valid 7 DECEMBER 1984 1

(

(
'

(

CRYPT(l) UNIX Programmer's Manual CRYPT(l)

NAME
crypt - encode/decode

SYNOPSIS
crypt [password]

DESCRIPTION

FILES

Crypt reads from the standard input and writes on the standard output. The password is a key
that selects a particular transformation. If no password is given, crypt demands a key from the
terminal and turns off printing while the key is being typed in. Crypt encrypts and decrypts with
the same key:

crypt key <clear >cypher
crypt key <cypher I pr

will print the clear.

Files encrypted by crypt are compatible with those treated by the editor ed in encryption mode.

The security of encrypted files depends on three factors: the fundamental method must be hard
to solve; direct search of the key space must be infeasible; 'sneak paths' by which keys or clear­
text can become visible must be minimized.

Crypt implements a one-rotor machine designed along the lines of the German Enigma, but
with a 256-element rotor. Methods of attack on such machines are known, but not widely;
moreover the amount of work required is likely to be large.

The transformation of a key into the internal settings of the machine is deliberately designed to
be expensive, i.e. to take a substantial fraction of a second to compute. However, if keys are
restricted to (say) three lower-case letters, then encrypted files can be read by expending only a
substantial fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible to users executing
ps(l) or a derivative. To minimize this possibility, crypt takes care to destroy any record of the
key immediately upon entry. No doubt the choice of keys and key security are the most
vulnerable aspect of crypt.

/dev/tty for typed key

SEE ALSO

BUGS

ed(l), makekey(8)

There is no warranty of merchantability nor any warranty of fitness for a particular purpose nor
any other warranty, either express or implied, as to the accuracy of the enclosed materials or as
to their suitability for any particular purpose. Accordingly, Bell Telephone Laboratories
assumes no responsibility for their use by the recipient. Further, Bell Laboratories assumes no
obligation to furnish any assistance of any kind whatsoever, or to furnish any additional infor­
mation or documentation.

7th Edition 18 January 1983

CSH (1) UNIX Programmer's Manual CSH (1)

NAME
csh - a shell (command interpreter) with C-like syntax

SYNOPSIS
csh [-cefinstvVxX] [arg ...]

DESCRIPTION
Csh is a first implementation of a command language interpreter incorporating a history
mechanism (see History Substitutions) job control facilities (see Jobs) and a C-like syntax.
So as to be able to use its job control facilities, users of csh must (and automatically) use the
new tty driver fully described in rry(4). This new tty driver allows generation of interrupt char­
acters from the keyboard to tell jobs to stop. See stryO) for details on setting options in the
new tty driver.

An instance of csh begins by executing commands from the file '.cshrc' in the home directory of
the invoker. If this is a login shell then it also executes commands from the file '.login' there.
It is typical for users on crt's to put the command "stty crt" in their .login file, and to also
invoke tset(1) there.

In the normal case, the shell will then begin reading commands from the terminal, prompting
with •<Yo '. Processing of arguments and the use of the shell to process files containing com­
mand scripts will be described later.

The shell then repeatedly performs the following actions: a line of command input is read and
broken into words. This sequence of words is placed on the command history list and then
parsed. Finally each command in the current line is executed.

When a login shell terminates it executes commands from the file '.logout' in the users home
directory.

Lexical structure

The shell splits input lines into words at blanks and tabs with the following exceptions. The
characters'&' ·r ';' '<' '>' '('')'form separate words. If doubled in'&&', 'II','<<' or
'> >' these pairs form single words. These parser metacharacters may be made part of other
words, or prevented their special meaning, by preceding them with '\'. A newline preceded by
a'\' is equivalent to a blank.

In addition strings enclosed in matched pairs of quotations, ,., , ''' or "", form parts of a word~
metacharacters in these strings, including blanks and tabs, do not form separate words. These
quotations have semantics to be described subsequently. Within pairs of,., or "" characters a
newline preceded by a '\' gives a true newline character.

When the shell's input is not a terminal, the character'#' introduces a comment which contin­
ues to the end of the input line. It is prevented this special meaning when preceded by '\' and
in quotations using•'','", and"".

Commands

A simple command is a sequence of words, the first of which specifies the command to be exe­
cuted. A simple command or a sequence of simple commands separated by ·r characters forms
a pipeline. The output of each command in a pipeline is connected to the input of the next.
Sequences of pipelines may be separated by ';', and are then executed sequentially. A
sequence of pipelines may be executed without immediately waiting for it to terminate by fol­
lowing it with an'&'.

Any of the above may be placed in '(' ')' to form a simple command (which may be a com­
ponent of a pipeline, etc.) It is also possible to separate pipelines with 'I I' or '&&' indicating, as
in the C language, that the second is to be executed only if the first fails or succeeds respec­
tively. (See Expressions)

4th Berkeley Distribution 18 July 1983

CSH (1) UNIX Programmer's Manual CSH (I)

Jobs

The shell associates a job with each pipeline. It keeps a table of current jobs, printed by the jobs
command, and assigns them small integer numbers. When a job is started asynchronously with
'&', the shell prints a line which looks like:

[l] 1234

indicating that the jobs which was started asynchronously was job number 1 and had one (top­
level) process, whose process id was 1234.

If you are running a job and wish to do something else you may hit the· key AZ (control-ZJ
which sends a STOP signal to the current job. The shell will then normally indicate that the job
has been 'Stopped'. and print another prompt. You can then manipulate the state of this job,
putting it in the background with the bg command, or run some other commands and then
eventually bring the job back into the foreground with the foreground command fg A AZ takes
effect immediately and is like an interrupt in that pending output and unread input are dis­
carded when it is typed. There is another special key Ay which does not generate a STOP signal
until a program attempts to read(2) it. This can usefully be typed ahead when you have
prepared some commands for a job which you wish to stop after it has read them.

A job being run in the background will stop if it tries to read from the terminal. Background
jobs are normally allowed to produce output, but this can be disabled by giving the command
"stty tostop". If you set this tty option. then background jobs will stop when they try to pro­
duce output like they do when they try to read input.

There are several ways to refer to jobs in the shell. The character '% • introduces a job name.
If you wish to refer to job number 1, you can name it as ' 1Vtd '. Just naming a job brings it to
the foreground: thus '% l' is a synonym for 'fg % l ', bringing job I back into the foreground.
Similarly saying '% 1 & ' resumes job 1 in the background. Jobs can also be named by prefixes
of the string typed in to start them, if these prefixes are unambiguous. thus '%ex' would nor­
mally restart a suspended exO) job, if there were only one suspended job whose name began
with the string 'ex'. It is also possible to say '%?string' which specifies a job whose text con­
tains string, if there is only one such job.

The shell maintains a notion of the current and previous jobs. In output pertaining to jobs, the
current job is marked with a '+' and the previous job with a ' - '. The abbreviation '% +'
refers to the current job and •<lfc1-' refers to the previous job. For close analogy with the syntax
of the history mechanism (described below), '%%' is also a synonym for the current job.

Status reporting

This shell learns immediately whenever a process changes state. It normally informs you when­
ever. a job becomes blocked so that no further progress is possible, but only just before it prints
a prompt. This is done so that it does. not otherwise disturb your work. If, however, you set
the shell variable notifY, the shell will notify you immediately of changes of status in back­
ground jobs. There is also a shell command notifY which marks a single process so that its
status changes will be immediately reported. By default notifY marks the current process: simply
say 'notify' after starting a background job to mark it.

When you try to leave the shell while jobs are stopped, you will be warned that 'You have
stopped jobs.' You may use the jobs command to see what they are. If you do this or immedi­
ately try to exit again, the shell will not warn you a second time, and the suspended jobs will be
terminated.

4th Berkeley Distribution 18 July 1983 2

CSH (1) UNIX Programmer's Manual CSH (1)

Substitutions

We now describe the various transformations the shell performs on the input in the order in
which they occur.

History substitutions

History substitutions place words from previous command input as portions of new commands,
making it easy to repeat commands, repeat arguments of a previous command in the current
command, or fix spelling mistakes in the previous command with little typing and a high degree
of confidence. History substitutions begin with the character '!' and may begin anywhere in the
input stream (with the proviso that they do not nest.) This '!' may be preceded by an '\' to
prevent its special meaning; for convenience, a '!' is passed unchanged when it is followed by a
blank, tab, newline, '=' or '('. (History substitutions also occur when an input line begins
with T. This special abbreviation will be described later.) Any input line which contains his­
tory substitution is echoed on the terminal before it is executed as it could have been typed
without history substitution·.

Commands input from the terminal which consist of one or more words are saved on the his­
tory list. The history substitutions reintroduce sequences of words from these saved commands
into the input stream. The size of which is controlled by the history variable; the previous com­
mand is always retained, regardless of its value. Commands are numbered sequentially from 1.

For definiteness, consider the following output from the history command:

9 write michael
10 ex write.c
11 cat oldwrite.c
12 diff •write.c

The commands are shown with their event numbers. It is not usually necessary to use event
numbers, but the current event number can be made part of the prompt by placing an '!' in the
prompt string.

With the current event 13 we can refer to previous events by event number • ! 11 ', relatively as
in '!-2' (referring to the same event>, by a prefix of a command word as in '!d' for event 12
or · !wri' for event 9, or by a string contained in a word in the command as in '! ?mic?' also
referring to event 9. These forms, without further modification, simply reintroduce the words
of the specified events, each separated by a single blank. As a special case'!!' refers to the pre­
vious command; thus '! !' alone is essentially a redo.

To select words from an event we can follow the event specification by a ':' and a designator for
the desired words. The words of a input line are numbered from 0, the first (usually com­
mand) word being 0, the second word (first argument) being 1, etc. The basic word designa­
tors are:

0 first (command) word
n n'th argument
l first argument, i.e. 'l'
$ last argument
% word matched by (immediately preceding) ? s? search
x- y range of words
- y abbreviates '0-y'
* abbreviates 't-$', or nothing if only 1 word in event
x~ abbreviates 'x-$'
x- like 'x*' but omitting word'$'

4th Berkeley Distribution 18 July 1983 3

CSH (1) UNIX Programmer's Manual CSH (I >

The ':' separating the event specification from the word designator can be omitted if the argu­
ment selector begins with a T, '$', '*''-'or ·<~h'. After the optional word designator can be
placed a sequence of modifiers, each preceded by a':'. The following modifiers are defined:

h
r
e
s/ II rl
t
&
g
p
q
x

Remove a trailing pathname component, leaving the head.
Remove a trailing '.xxx' component, leaving the root name.
Remove all but the extension '.xxx' part.
Substitute /for r
Remove all leading pathname components. leaving the tail.
Repeat the previous substitution.
Apply the change globally, prefixing the above, e.g. 'g&'.
Print the new command but do not execute it.
Quote the substituted words, preventing further substitutions.
Like q, but break into words at blanks, tabs and newlines.

Unless preceded by a 'g' the modification is applied only to the first modifiable word. With
substitutions, it is an error for no word to be applicable.

The left hand side of substitutions are not regular expressions in the sense of the editors. but
rather strings. Any character may be used as the delimiter in place of'/': a '\' quotes the del­
imiter into the I and r strings. The character '&' in the right hand side is replaced by the text
from the left. A '\' quotes '&' also. A null I uses the previous string either from a I or from a
contextual scan string sin '!? s?'. The trailing delimiter in the substitution may be omitted if a
newline follows immediately as may the trailing '?' in a contextual scan.

A history reference may be given without an event specification, e.g. '!$'. In this case the
reference is to the previous command unles:s a previous history reference occurred on the same
line in which case this form repeats the previous reference. Thus '!?foo?f !$' gives the first
and last arguments from the command matching '?foo ?'.

A special abbreviation of a history reference occurs when the first non-blank character of an
input line is a T. This is equivalent to '!:sf' providing a convenient shorthand for substitu­
tions on the text of the previous line. Thus 'llbllib' fixes the spelling of 'lib' in the previous
command. Finally, a history substitution may be surrounded with '!' and 'l' if necessary to
insulate it from the characters which follow. Thus. after 'ls -Id "paul' we might do '!Illa' to"
do 'Is -Id "paula', while '!la' would look for a command starting 'la'.

Quotations with· and "

The quotation of strings by "' and "" can be used to prevent all or some of the remaining sub­
stitutions. Strings enclosed in ,., are prevented any further interpretation. Strings enclosed in
"" may be expanded as described below.

In both cases the resulting text becomes (all or part of) a single word: only in one special case
(see Command Substitition below) does a "'' quoted string yield parts of more than one word: •··
quoted strings never do.

Alias substitution

The shell maintains a list of aliases which can be established. displayed and modified by the
alias and unalias commands. After a command line is scanned, it is parsed into distinct com­
mands and the first word of each command, left-to-right, is checked to see if it has an alias. If
it does, then the text which is the alias for that command is reread with the history mechanism
available as though that command were the previous input line. The resulting words replace
the command and argument list. If no reference is made to the history list, then the argument
list is left unchanged.

4th Berkeley Distribution 18 July 1983 4

CSH (1) UNIX Programmer's Manual CSH (I)

Thus if the alias for 'Is' is 'Is -I' the command 'ls /usr' would map to 'Is -I /usr', the argu­
ment list here being undisturbed. Similarly if the alias for 'lookup' was 'grep !f /etc/passwc.l'
then 'lookup bill' would map to 'grep bill /etc/passwd'.

If an alias is found, the word transformation of the input text is performed and the aliasing pro­
cess begins again on the reformed input line. Looping is prevented if the first word of the new
text is the same as the old by flagging it to prevent further aliasing. Other loops are detected
and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax. Thus we can 'alias
print 'pr\!• I lpr'' to make a command which pr's its arguments to the line printer.

Variable substitution

The shell maintains a set of variables, each of which has as value a list of zero or more words.
Some of these variables are set by the shell or referred to by it. For instance, the argl' variable
is an image of the shell's argument list, and words of this variable's value are referred to in
special ways.

The values of variables may be displayed and changed by using the set and unset commands. Of
the variables referred to by the shell a number are toggles; the shell does not care what their
value is .• only whether they are set or not. For instance, the verbose variable is a toggle which
causes command input to be echoed. The setting of this variable results from the - v com­
mand line option.

Other operations treat variables numerically. The '@' command permits numeric calculations
to be performed and the result assigned to a variable. Variable values are, however, always
represented as (zero or more) strings. For the purposes of numeric operations, the null string
is considered to be zero, and the second and subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is executed, variable sub­
stitution is performed keyed by '$' characters. This expansion can be prevented by preceding
the '$' with a '\' except within ""s where it always occurs, and within •''s where it ne,·er
occurs. Strings quoted by '" are interpreted later (see Command substitution below) so '$' sub­
stitution does not occur there until later, if at all. A '$' is passed unchanged if followed by a
blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are variable expanded
separately. Otherwise, the command name and entire argument list are expanded together. It
is thus possible for the first (command) word to this point to generate more than one word. the
first of which becomes the command name, and the rest of which become arguments.

Unless enclosed in "" or given the • :q' modifier the results of variable substitution may eventu­
ally be command and filename substituted. Within "" a variable whose value consists of multi­
ple words expands to a (portion of) a single word, with the words of the variables value
separated by blanks. When the ':q' modifier is applied to a substitution the variable will expand
to multiple words with each word separated by a blank and quoted to prevent later command or
filename substitution.

The following metasequences are provided for introducing variable values into the shell input.
Except as noted, it is an error to reference a variable which is not set.

$name
$(name)

Are replaced by the words of the value cif variable name, each separated by a blank.
Braces insulate name from following characters which would otht:rwise be part of it. Shell
variables have names consisting of up to 20 letters and digits starting with a letter. The
underscore character is considered a letter.
If name is not a shell variable, but is set in the environment, then that value is returned

4th Berkeley Distribution 18 July 1983 5

CSH (1) UNIX Programmer's Manual

(but : modifiers and the other forms given below are not available in this case).

$name [selector 1
$(name [selector] l

CSH (I >

May be used to select only some of the words from the value of name. The selector is
subjected to '$' substitution and may consist of a single number or two numbers separated
by a ' - '. The first word of a variables value is numbered '1 '. If the first number of a
range is omitted it defaults to 'l '. If the last member of a range is omitted it defaults to
'$#name'. The selector '•' selects all words. It is not an error for a range to be empty if
the second argument is omitted or in range.

$#name
$(#name)

Gives the number of words in the variable. This is useful for later use in a '[selector]'.

$0
Substitutes the name of the file from which command input is being read. An error
occurs if the name is not known.

$number
$I number)

Equivalent to '$argv[number1'.

Equivalent to '$argv[•l'.

The modifiers ':h', ':t', ':r', ':q' and ':x' may be applied to the substitutions above as may ':gh',
':gt' and ':gr'. If braces 'I' 'l' appear in the command form then the modifiers must appear
within the braces. The current implementation allows only one ':' modifier on each '$'
expansion.

The following substitutions may not be modified with ':' modifiers.

$?name
$(?name)

Substitutes the string 'l' if name is set. ·o· if it is not.

$?0
Substitutes 'I' if the current input filename is known, 'O' if it is not.

$$
Substitute the (decimal) process number of the (parent) shell.

$<
Substitutes a line from the standard input, with no further interpretation thereafter. It
can be used to read from the keyboard in a shell script.

Command and filename substitution

The remaining substitutions, command and filename substitution, are applied selectively to the
arguments of builtin commands. This means that portions of expressions which are not
evaluated are not subjected to these expansions. For commands which are not internal to the.
shell, the command name is substituted separately from the argument list. This occurs very
late. after input-output redirection is performed, and in a child of the main shell.

Command substitution

Command substitution is indicated by a command enclosed in "'. The output from such a
command is normally broken into separate words at blanks, tabs and newlines, with null words
being discarded, this text then replacing the original string. Within ""s, only newlines force
new words; blanks and tabs are preserved.

4th Berkeley Distribution 18 July 1983 6

CSH (1) UNIX Programmer's Manual CSH (1 >

In any case, the single final newline does not force a new word. Note that it is thus possible for
a command substitution to yield only part of a word, even if the command outputs a complete
line.

Filename substitution

If a word contains any of the characters '*', '?', '[' or 'I' or begins with the character '_,, then
that word is a candidate for filename substitution, also known as 'globbing'. This word is then
regarded as a pattern, and replaced with an alphabetically sorted list of file names which match
the pattern. In a list of words specifying filename substitution it is an error for no pattern to
match an existing file name, but it is not required for each pattern to match. Only the meta­
characters '*', '?'and '[' imply pattern matching, the characters·-· and 'I' being more akin to
abbreviations.

In matching filenames, the character '.' at the beginning of a filename or immediately following
a '/', as weil as the character '/' must be matched explicitly. The character '*' matches any
string of characters, including the null string. The character '?' matches any single character.
The sequence'[. ..]' matches any one of the characters enclosed. Within'!...]', a pair of charac­
ters separated by ' - ' matches any character lexically between the two.

The character ·-· at the beginning of a filename is used to refer to home directories. Standing
alone, i.e. ·-· it expands to the invokers home directory as reflected in the value of the variable
home. When followed by a name consisting of letters, digits and ' - ' characters the shell
searches for a user with that name and substitutes their home directory; thus '-ken' might
expand to '/usr/ken' and '-ken/chmach' to '/usr/ken/chmach'. If the character ·-· is followed
by a character other than a letter or '/' or appears not at the beginning of a word, it is left
undisturbed.

The metanotation 'a{b,c,d}e' is a shorthand for 'abe ace ade'. Left to right order is preserved.
with results of matches being sorted separately at a low level to preserve this order. This con­
struct may be nested. Thus ·-source/sl/[oldls,ls).c' expands to '/usr/source/sl/oldls.c
/usr/source/sl/ls.c' whether or not these files exist without any chance of error if the home
directory for 'source' is '/usr/source'. Similarly ' . ./(memo,•boxl' might expand to ' .. /memo
. ./box .. /mbox'. (Note that 'memo' was not sorted with the results of matching '•box'.) As •t

special case '(', 'l' and '()' are passed undisturbed.

Input/output

The standard input and standard output of a command may be redirected with the following
syntax:

<name
Open file name (which is first variable, command and filename expanded) as the standard
input.

<<word
Read the shell input up to a line which is identical to word. Word is not subjected to vari­
able, filename or command substitution, and each input line is compared to word before
any substitutions are done on this input line. Unless a quoting '\', "", •'' or ''' appears in
word variable and command substitution is performed on the intervening lines, allowing
'\' to quote '$', '\' and '". Commands which are substituted have all blanks, tabs, and
newlines preserved, except for the final newline which is dropped. The resultant text is
placed in an anonymous temporary file which is given to the command as standard input.

>name
>!name
>&name

4th Berkeley Distribution 18 July 1983 7

CSH (1) UNIX Programmer's Manual CSH (I)

>&!name
The file name is used as standard output. If the file does not exist then it is created: if the
file exists, its is truncated, its previous contents being lost.

If the variable noclobber is set, then the file must not exist or be a character special file
(e.g. a terminal or '/dev/null') or an error results. This helps prevent accidental destruc­
tion of files. In this case the • !' forms can be used and suppress this check.

The forms involving '&' route the diagnostic output into the specified file as well as the
standard output. Name is expanded in the same way as '<' input filenames are.

>>name
>>&name
>>!name
>>&!name

Uses file name as standard output like '>' but places output at the end of the file. If the
variable noclobber is set, then it is an error for the file not to exist unless one of the • !'
forms is given. Otherwise similar to • > '.

A command receives the environment in which the shell was invoked as modified by the
input-output parameters and the presence of the command in a pipeline. Thus. unlike some
previous shells, commands run from a file of shell commands have no access to the text of the
commands by default; rather they receive the original standard input of the shell. The • < <'
mechanism should be used to present inline data. This permits shell command scripts to func­
tion as components of pipelines and allows the shell to block read its input. Note that the
default standard input for a command run detached is not modified to be the empty file
'/dev/null': rather the standard input remains as the original standard input of the shell. If this
is a terminal and if the process attempts to read from the terminal, then the process will block
and the user will be notified (see Jobs above.)

Diagnostic output may be directed through a pipe with the standard output. Simply use the
form 'I&' rather than just ·r.
Expressions

A number of the builtin commands (to be described subsequently) take expressions, in which
the operators are similar to those of C, with the same precedence. These expressions appear in
the @. exit, if, and while commands. The following operators are available:

11 && 1 r & = = ! = = - !- < = > = < > < < > > + - • / % ! - < >

Here the precedence increases to the right, • = =' • ! =' • =-· and • !-', • < =' '> =' • <' and
• > ', • < <' and • > > ', '+' and • -', '•' '/' and '%' being, in groups, at the same level. The
• = =' • ! =' • =-· and '!-' operators compare their arguments as strings: all others operate on
numbers. The operators • = -· and '!-' are like '! =' and '= =' except that the right hand side is
a pattern (containing. e.g. '•'s, '?'sand instances of•[...]') against which the left hand operand
is matched. This reduces the need for use of the switch statement in shell scripts when all that
is really needed is pattern matching.

Strings which begin with '0' are considered octal numbers. Null or missing arguments are con­
sidered 'O'. The result of all expressions are strings, which represent decimal numbers. It is
important to note that no two components of an expression can appear in the same word:
except when adjacent to components of expressions which are syntactically significant to the
parser (' & · ·r ' <' · >' · (' ')') they should be surrounded by spaces.

Also available in expressions as primitive operands are command executions enclosed in • (' and
•)'and file enquiries of the form'- I name' where /is one of:

4th Berkeley Distribution 18 July 1983 8

CSH (1) UNIX Programmer's Manual CSH (1)

r read access
w write access
x execute access
e existence
0 ownership
z zero size
f plain file
d directory

The specified name is command and filename expanded and then tested to see if it has the
specified relationship to the real user. If the file does not exist or is inaccessible then all
enquiries return false, i.e. '0'. Command executions succeed, returning true. i.e. 'l ', if the
command exits with status 0, otherwise they fail, returning false, i.e. 'O'. If more detailed
status information is required then the command should be executed outside of an expression
and the variable status examined.

Control flow

The shell contains a number of commands which can be used to regulate the flow of control in
command files (shell scripts) and On limited but useful ways) from terminal input. These com­
mands all operate by forcing the shell to reread or skip in its input and. due to the implementa­
tion. restrict the placement of some of the commands.

The foreach, switch. and while statements, as well as the if-then-else form of the if statement
require that the major keywords appear in a single simple command on an input line as shown
below.

If the shell's input is not seekable, the shell buffers up input whenever a loop is being read and
performs seeks in this internal buffer to accomplish the rereading implied by the loop. (To the
extent that this allows, backward goto 's will succeed on non-seekable inputs.)

Builtin commands

Buillin commands are executed within the shell. If a builtin command occurs as any com­
ponent of a pipeline except the last then it is executed in a subshell.

alias
alias name
alias name wordlist

alloc

bg

The first form prints all aliases. The second form prints the alias for name. The final
form assigns the specified wordlist as the alias of name; wordlisr is command and filename
substituted. Name is not allowed to be alias or unalias.

Shows the amount of dynamic core in use, broken down into used and free core. and
address of the last location in the heap. With an argument shows each used and free
block on the internal dynamic memory chain indicating its address. size, and whether it is
used or free. This is a debugging command and may not work in production versions of
the shell; it requires a modified version of the system memory allocator.

bg %job ...
Puts the current or specified jobs into the background. continuing them if they were
stopped.

break
Causes execution to resume after the end of the nearest enclosing .foreach or while. The
remaining commands on the current line are executed. Multi-level breaks are thus possi­
ble by writing them all on one line.

4th Berkeley Distribution 18Julyl983 9

CSH (1) UNIX Programmer's Manual CSH (1 >

breaksw
Causes a break from a switch. resuming after the endsw.

case label:
A label in a switch statement as discussed below.

cd
cd name
chdir
chdir name

Change the shells working directory to directory name. If no argument is given then
change to the home directory of the user.
If name is not found as a subdirectory of the current directory (and does not begin with
'/', './' or '../'), then. each component of the variable cdpath is checked to see if it has a
subdirectory name. Finally, if all else fails but name is a shell variable whose value begins
with'/'. then this is tried to see if it is a directory.

continue
Continue execution of the nearest enclosing while or foreach. The rest of the commands
on the current line are executed.

default:

di rs

Labels the default case in a switch statement. The default should come after all case
labels.

Prints the directory stack: the top of the stack is at the lefL the first directory in the stack
being the current directory.

echo wordlist
echo - n wordlist

The specified words are written to the shells standard output, separated by spaces, and ter­
minated with a newline unless the - n option is specified.

else
end
end if
endsw

See the description of the foreach. if. switch. and while statements below.

eval arg ...
(As in shO).) The arguments are read as input to the shell and the resulting command(s)
executed in the context of the current shell. This is usually used to execute commands
generated as the result of command or variable substitution, since parsing occurs before
these substitutions. See rset(I) for an example of using eval.

exec command
The specified command is executed in place of the current shell.

exit
exit(expr)

The shell exits either with the value of the starusvariable (first form) or with the value of
the specified expr (second form).

f g
fg %job ...

Brings the current or specified jobs into the foreground, continuing them if they were
stopped.

4th Berkeley Distribution 18 July 1983 10

CSH (1) UNIX Programmer's Manual CSH (J)

foreach name (wordlist)

end
The variable name is successively set to each member of word/ist and the sequence of
commands between this command and the matching end are executed. (Both foreach and
end must appear alone on separate lines.)

The builtin command continue may be used to continue the loop prematurely and the buil­
tin command break to terminate it prematurely. When this command is read from the
terminal, the loop is read up once prompting with '?'·before any statements ip the loop
are executed. If you make a mistake typing in a loop at the terminal you can rub it out.

glob wordlist
Like echo but no '\' escapes are recognized and words are delimited by null characters in
the output. Useful for programs which wish to use the shell to filename expand a list of
words.

goto word
The specified word is filename and command expanded to yield a string of the form
'label'. The shell rewinds its input as much as possible and searches for a line of the form
'label:' possibly preceded by blanks or tabs. Execution continues after the specified line.

hashstat
Print a statistics line indicating how effective the internal hash table has been at locating
commands (and avoiding exec's). An exec is attempted for each component of the path
where the hash function indicates a possible hit, and in each component which does not
begin with a'/'.

history
history n
history -r n
history -h n

Displays the history event list: if n is given only the n most recent events are printed.
The -r option reverses the order of printout to be most recent first rather than oldest
first. The - h option causes the history list to be printed without leading numbers. This
is used to produce files suitable for sourceing using the - h option to source.

if (ex pr) command
If the specified expression evaluates true, then the single commandwith arguments is exe­
cuted. Variable substitution on command happens early, at the same time it does for the
rest of the if command. Command must be a simple command. not a pipeline, a com­
mand list. or a parenthesized command list. Input/output redirection occurs even if expr
is false, when command is not executed (this is a bug).

if (ex pr) then

else if (expr2) then

else

end if
If the specified expr is true then the commands to the first else are executed; else if expr2
is true then the commands to the second else are executed, etc. Any number uf else-if'
pairs are possible; only one endifis needed. The else part is likewise optional. (The words
else and endif must appear at the beginning of input lines; the if must appear alone on its
input line or after an else.J

4th Berkeley Distribution 18 July 1983 11

/
(

\

(
\

(

CSH (1) UNIX Programmer's Manual CSH (I >

jobs
jobs - I

Lists the active jobs; given the - I options lists process id's in addition to the normal
information.

kill %job
kill -sig %job ...
kill pid
kill -sig pid ...
kill - I

limit

Sends either the TERM (terminate) signal or the specified signal to the specified jobs or
processes. Signals are either given by number or by names (as given in
/usrlinclude/signal. h, stripped of the prefix "SIG"). The signal names are listed by "kill
-1". There is no default, saying just 'kill' does not send a signal to the current job. If
the signal being sent is TERM (terminate) or HUP (hangup), then the job or process will
be sent a CONT (continue) signal as well.

limit resource
limit resource maximum-use

Limits the consumption by the current process and each process it creates to not individu­
ally exceed maximum-use on the specified resource. If no maximum-use is given, then the
current limit is printed; if no resource is given, then all limitations are given.

Resources controllable currently include cputime (the maximum number of cpu-seconds to
be used by each process), file size (the largest single file which can be created), datasi::e
(the maximum growth of the data +stack region via sbrk(2) beyond the end of the pro­
gram text), stacksize (the maximum size of the automatically-extended stack region), and
coredumpsize (the size of the largest core dump that will be created).

The maximum-use may be given as a (floating point or integer) number followed by a
scale factor. For all limits other than cputime the default scale is 'k' or 'kilobytes' (1024
bytes); a scale factor of 'm' or 'megabytes' may also be used. For cpurime the default
scaling is 'seconds', while 'm' for minutes or 'h' for hours, or a time of the form 'mm:ss'
giving minutes and seconds may be used.

For both resource names and scale factors, unambiguous prefixes of the names suffice.

login
Terminate a login shell, replacing it with an instance of /bin/login. This is one way to log
off, included for compatibility with shO).

logout
Terminate a login shell. Especially useful if ignoreeofis set.

nice
nice +number
nice command
nice +number command

The first form sets the nice for this shell to 4. The second form sets the nice to the given
number. The final two forms run command at priority 4 and number respectively. The
super-user may specify negative niceness by using 'nice -number .. .'. Command is
always executed in a sub-shell, and the restrictions place on commands in simple i/state­
ments apply.

nohup

4th Berkeley Distribution 18 July 1983 12

CSH (1) UNIX Programmer's Manual CSH (1 J

nohup command
The first form can be used in shell scripts to cause hangups to be ignored for the
remainder of the script. The second form causes the specified command to be run with
hangups ignored. All processes detached with '&' are effectively nohup'ed.

notify
notify %job ...

Causes the shell to notify the user asynchronously when the status of the current or
specified jobs changes; normally notification is presented before a prompt. This is
automatic if the shell variable notify is set.

onintr
onintr -
onintr label

Control the action of the shell on interrupts. The first form restores the default action of
the shell on interrupts which is to terminate shell scripts or to return to the terminal com­
mand input level. The second form 'onintr - ' causes all interrupts to be ignored. The
final form causes the shell to execute a 'goto label' when an interrupt is received or a
child process terminates because it was interrupted.

In any case, if the shell is running detached and interrupts are being ignored, all forms of
onintr have no meaning and interrupts continue to be ignored by the shell and all invoked
commands.

po pd
popd +n

Pops the directory stack, returning to the new top directory. With a argument '+ n' dis­
cards the nth entry in the stack. The elements of the directory stack are numbered from
0 starting at the top.

pushd
pushd name
pushd +n

With no arguments, pushdexchanges the top two elements of the directory stack. Given a
name argument, pushd changes to the new directory (ala cd) and pushes the old current
working directory (as in csw) onto the directory stack. With a numeric argument, rotates
the nth argument of the directory stack around to be the top element and changes to it.
The members of the directory stack are numbered from the top starting at 0.

rehash
Causes the internal hash table of the contents of the directories in the path variable to be
recomputed. This is needed if new commands are added to directories in the parh while
you are logged in. This should only be necessary if you add commands to one of your
own directories, or if a systems programmer changes the contents of one of the system
directories.

repeat count command
The specified command which is subject to the same restrictions as the command in the
one line if statement above. is executed count times. 1/0 redirections occur exactly once,
even if count is 0.

set
set name
set name= word
set name [index] -word
set name= (wordlist)

The first form of the command shows the value of all shell variables. Variables which

4th Berkeley Distribution 18 July 1983 13

CSH (1) UNIX Programmer's Manual CSH (1 l

have other than a single word as value print as a parenthesized word list. The second
form sets name to the null string. The third form sets name to the single word. The
fourth form sets the index'th component of name to word; this component must already
exist. The final form sets name to the list of words in wordlist. In all cases the value is
command and filename expanded.

These arguments may be repeated to set multiple values in a single set command. Note
however, that variable expansion happens for all arguments before any setting occurs.

setenv name value

shift

Sets the value of environment variable name to be value, a single string. The most com­
monly used environment variable USER, TERM, and PA TH are automatically imported
to and exported from the csh variables user, term, and path; there is no need to use serenr
for these.

shift variable
The members of argv are shifted to the left, discarding argv[l]. It is an error for arg1• not
to be set or to have less than one word as value. The second form performs the same
function on the specified variable.

source name
source - h name

stop

The shell reads commands from name. Source commands may be nested: if they are
nested too deeply the shell may run out of file descriptors. An error in a source at any
level terminates all nested source commands. Normally input during source commands is
not placed on the history list: the -h option causes the commands to be placed in the his·
tory list without being executed.

stop tV.~ob ...
Stops the current or specified job ~hich is executing in the background.

suspend
Causes the shell to stop in its tracks, much as if it had been sent a stop signal with ~z.
This is most often used to stop shells started by su(I).

switch (string)
case strl:

breaksw

default!

breaksw
endsw

time

Each case label is successively matched, against the specified string which is first command
and filename expanded. The file metacharacters '*','?'and·[. ..]' may be used in the case.
labels. which are variable expanded. If none of the labels match before a 'default' label is
found, then the execution begins after the default label. Each case label and the default
label must appear at the beginning of a line. The command breaksw causes execution to
continue after the endsw. Otherwise control may fall through case labels and default labels
as in C. If no label matches and there is no default. execution continues after the cmlsw.

, time command
With no argument, a summary of time used by this shell and its children is printed. If

4th Berkeley Distribution 18 July 1983 14

CSH (1) UNIX Programmer's Manual CSH C 1 l

arguments are given the specified simple command is timed and a time summary as
described under the time variable is printed. If necessary, an extra shell is creuted to print
the time statistic when the command completes.

umask
umask value

The file creation mask is displayed (first form) or set to the specified value (second form l.
The mask is given in octal. Common values for the mask are 002 giving all access to the
group and read and execute access to others or 022 giving all access except no write access
for users in the group or others.

unalias pattern
All aliases whose names match the specified pattern are discarded. Thus all aliases are
removed by 'unalias •'. It is not an error for nothing to be unaliased.

unhash
Use of the internal hash table to speed location of executed programs is disabled.

unlimit resource
unlimit

Removes the limitation on resource. If no resource is specified, then all resource limita­
tions are removed.

unset pattern
All variables whose names match the specified pattern are removed. Thus all variables
are removed by 'unset •'; this has noticeably distasteful side-effects. It is not an error for
nothing to be unset.

unsetenv pattern

wait

Removes all variables whose name match the specified pattern from the environment.
See also the setem• command above and primenvO).

All background jobs are waited for. It the shell is interactive, then an interrupt can dis­
rupt the wait, at which time the shell prints names and job numbers of all jobs known to
be outstanding.

while (expr)

end

%job

While the specified expression evaluates non-zero, the commands between thei1whi/e and
the matching end are evaluated. Break and continue may be used to terminate or continue
the loop prematurely. (The while and end must appear alone on their input lines. l
Prompting occurs here the first time through the loop as for the .foreach statement if the
input is a terminal.

Brings the specified job into the foreground.

%job &
Continues the specified job in the background.

@

@name = expr
@ name[index] = expr

The first form prints the values of all the shell variables. The second form sets the
specified name to the value of expr. If the expression contains'<','>','&' or·~ then at
least this part of the expression must be placed within '(' ')'. The third form assigns the
value of expr to the index'rh argument of name. Both name and its index'rh component

4th Berkeley Distribution 18 July 1983 15

/

\

\

(

\

CSH (1) UNIX Programmer's Manual CSH (I l

must already exist.

The operators'•=',·+=', etc are available as in C. The space separating the name from
the assignment operator is optional. Spaces are, however, mandatory in separating com­
ponents of expr which would otherwise be single words.

Special postfix • + +' and ' - - ' operators increment and decrement name respectively,
i.e.'@ i++·.

Pre:-defined and en,·ironment variables

The following variables have special meaning to the shell. Of these, argi', cwd, home, path,
prompt, shell and status are always set by the shell. Except for cwd and status this setting occurs
only at initialization; these variables will not then be modified unless this is done explicitly by
the user.

This shell copies the environment variable USER into the variable user, TERM into term, and
HOME into home, and copies these back into the environment whenever the normal shell vari­
ables are reset. The environment variable PA TH is likewise handled; it is not necessary to
worry about its setting other than in the file .cshrc as inferior csh processes will import the
definition of path from the environment, and re-export it if you then change it.

argv

cdpath

cwd

echo

histchars

history

home

ignoreeof

mail

Set to the arguments to the shell. it is from this variable that positional param­
eters are substituted, i.e. '$1' is replaced by '$argv[ll', etc.

Gives a list of alternate directories searched to find subdirectories in chdir com­
mands.

The full pathname of the current directory.

Set when the -x command line option is given. Causes each command and
its arguments to be echoed just before it is executed. For non-builtin com­
mands all expansions occur before echoing. Builtin commands are echoed
before command and filename substitution, since these substitutions are then
done selectively.

Can be given a string value to change the characters used in history substitu­
tion. The first character of its value is used as the history substitution charac­
ter, replacing the default character !. The second character of its value replaces
the character l in quick substitutions.

Can be given a numeric value to control the size of the history list. Any com­
mand which has been referenced in this many events will not be discarded.
Too large values of history may run the shell out of memory. The last exe­
cuted command is always saved on the history list.

The home directory of the invoker, initialized from the environment. The
filename expansion of ·-· refers to this variable.

If set the shell ignores end-of-file from input devices which are terminals.
This prevents shells from accidentally being killed by control-D's.

The files where the shell checks for mail. This is done after each command
completion which will result in a prompt, if a specified interval has elapsed.
The shell says 'You have new mail.' if the file exists with an access time not
greater than its modify time.

If the first word of the value of mail is numeric it specifies a different mail
checking interval. in seconds, than the default, which is 10 minutes.

If multiple mail files are specified, then the shell says 'New mail in name'
when there is mail in the file name.

4th Berkeley Distribution 18 July I983 16

CSH (1)

noclobber

noglob

nonomatch

notify

path

prompt

save hist

shell

status

time

verbose

UNIX Programmer's Manual CSH (1 >

As described in the section on /npur/output, restrictions are placed on output
redirection to insure that files are not accidentally destroyed, and that · > >'
redirections refer to existing files.

If set, filename expansion is inhibited. This is most useful in shell scripts
which are not dealing with filenames, or after a list of filenames has been
obtained and further expansions are not desirable.

If set, it is not an error for a filename expansion to not match any existing
files; rather the primitive pattern is returned. It is still an error for the primi-
tive pattern to be malformed, i.e. 'echo [' still gives an error.

If set, the shell notifies asynchronously of job completions. The default is to
rather present job completions just before printing a prompt.

Each word of the path variable specifies a directory in which commands are to
be sought for execution. A null word specifies the curren~ directory. If there
is no path variable then only full path names will execute. The usual search
path is'.', '/bin' and '/usr/bin', but this may vary from system to system. For
the super-user the default search path is '/etc', '/bin' and '/usr/bin'. A shell
which is given neither the -c nor the -t option will normally hash the con­
tents of the directories in the path variable after reading .cshrc, and each time
the path variable is reset. If new commands are added to these directories
while the shell is active, it may be necessary to give the rehash or the com­
mands may not be found.

The string which is printed before each command is read from an interactive
terminal input. If a '!' appears in the string it will be replaced by the current
event number unless a preceding '\' is given. Default is '1Vt1 ', or '# ' for the
super-user.

is given a numeric value to control the number of entries of the history list
that are saved in -/.history when the user logs out. Any command which has
been referenced in this many events will be saved. During start up the shell
sources -/.history into the history list enabling history to be saved across
logins. Too large values of sa1•ehist will slow down the shell during start up.

The file in which the shell resides. This is used in forking shells to interpret
files which have. execute bits set. but which are not executable by the system.
(See the description of Non-builtin Command Execution below. l Initialized to
the (system-dependent) home of the shell.

The status returned by the last command. If it terminated abnormally. then
0200 is added to the status. Builtin commands which fail return exit status · 1 ·,
all other builtin commands set status ·o·.
Controls automatic timing of commands. If set, then any command which
takes more than this many cpu seconds will cause a line giving user, system.
and real times and a utilization percentage which is the ratio of user plus sys­
tem times to real time to be printed when it terminates.

Set by the -v command line option, causes the words of each command to be
printed after history substitution.

Non-builtin command execution

When a command to be executed is found to not be a builtin command the shell attempts to
execute the command via execve(2 J. Each word in the variable path names a directory from
which the shell will attempt to execute the command. If it js given neither a -c nor a -t
option, the shell will hash the names in these directories into an internal table so that it will

4th Berkeley Distribution 18July 1983 17

CSH (1) UNIX Programmer's Manual CSH < 1 l

only try an exec in a directory if there is a possibility that the command resides there. This
greatly speeds command location when a large number of directories are present in the search
path. If this mechanism has been turned off (via unhash>, or if the shell was given a -c or - t
argument, and in any case for each directory component of path which does not begin with a
'/',the shell concatenates with the given command name to form a path name of a file which it
then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus '(cd ; pwdl ; pwd' prints the
home directory; leaving you where you were (printing this after the home directory), while 'cd ;
pwd' leaves you in the home directory. Parenthesized commands are most often used to
prevent chdir from affecting the current shell.

If the file has execute permissions but is not an executable binary to the system, then it is
assumed to be a file containing shell commands and a new shell is spawned to read it.

If there is an alias for shell then the words of the alias will be prepended to the argument list to
form the shell command. The first word of the alias should be the full path name of the shell
(e.g. '$shell'). Note that this is a special, late occurring, case of alias substitution, and only
allows words to be prepended to the argument list without modification.

Argument list processing

If argument 0 to the shell is ' - ' then this is a login shell. The flag arguments are interpreted
as follows:

-c Commands are read from the (single) following argument which must be present. Any
remaining arguments are placed in argi'.

-e The shell exits if any invoked command terminates abnormally or yields a non-zero exit
status.

-f The shell will start faster, because it will neither search for nor execute commands from
the file '.cshrc' in the invokers home directory.

- i The shell is interactive and prompts for its top-level input, even if it appears to not be a
terminal. Shells are interactive without this option if their inputs and outputs are termi­
nals.

- n Commands are parsed, but not executed. This aids in syntactic checking of shell scripts.

-s Command input is taken from the standard input.

- t A single line of input is read and executed. A '\' may be used to escape the newline at
the end of this line and continue onto another line.

- v Causes the verbose variable to be set, with the effect that command input is echoed after
history substitution.

- x Causes the echo variable to be set. so that commands are echoed immediately before exe-
cution.

-V Causes the verbose variable to be set even before '.cshrc' is executed.

- X Is to - x as - V is to - v.

After processing of flag arguments if arguments remain but none of the - c, - i, - s, or - t
options was given the first argument is taken as the name of a file of commands to be executed.
The shell opens this ·file, and saves its name for possible resubstitution by '$0'. Since many
systems use either the standard version 6 or version 7 shell:; whose sheli scripts are not compa­
tible with this shell, the shell will execute such a 'standard' shell if the first character of a script
is not a '#', i.e. if the script does not start with a comment. Remaining arguments initialize the
variable argv.

4th Berkeley Distribution 18 July 1983 18

CSH (1) UNIX Programmer's Manual CSH (l)

Signal handling

The shell normally ignores quit signals. Jobs running detached (either by ·& · or the bK or 1\'41 ...

& commands) are immune to signals generated from the keyboard, including hangups. Other
signals have the values which the shell inherited from its parent. The shells handling of inter­
rupts and terminate signals in shell scripts can be controlled by oninrr. Login shells catch the
terminate signal: otherwise this signal is passed on to children from the state in the shell's
parent. In no case are interrupts allowed when a login shell is reading the file ".logout'.

Al!THOR

FILES

William Joy. Job control and directory stack features first implemented by J.E. Kulp of
I.I.A.S.A, Laxenburg, Austria, with different syntax than that used now.

-; .cshrc
-/.login
-/.logout
/bin/sh
/tmp/sh*
/etc/passwd

Read at beginning of execution by each shell.
Read by login shell, after '.cshrc' at login.
Read by login shell, at logout.
Standard shell, for shell scripts not starting with a '#'.
Temporary file for '< < ·.
Source of home directories for ·-name'.

LIMITATIONS
Words can be no longer than 1024 characters. The system limits argument lists to 10240 char­
acters. The number of arguments to a command which involves filename expansion is limited
to l/6'th the number of characters allowed in an argument list. Command substitutions may
substitute no more characters than are allowed in an argument list. To detect looping, the shell
restricts the number of alias substitutions on a single line to 20.

SEE ALSO

BUGS

sh(l), access(2), execve(2), fork(2), killpg(2), pipe(2), sigvec(2), umask(2), setrlimid2l.
wait(2), tty(4), a.out(5), environ(?), 'An introduction to the C shell'

When a command is restarted from a stop, the shell prints the directory it started in if this is
different from the current directory: this can be misleading (i.e. wrong) as the job may have
changed directories internally.

Shell builtin functions are not stoppable/ restartable. Command sequences of the form ·a : b :
c' are also not handled gracefully when stopping is attempted. If you suspend "b'. the shell will
then immediately execute "c'. This is especially noticeable if this expansion results from an
alias. It suffices to place the sequence of commands in () 's to force it to a subshell. i.e. • (a : b
: c)'.

Control over tty output after processes are started is primitive: perhaps this will inspire some­
one to work on a good virtual terminal interface. In a virtual terminal interface much more
interesting things could be done with output control.

Alias substitution is most often used to clumsily simulate shell procedures: shell procedures
should be provided rather than aliases.

Commands within loops, prompted for by • ?', are not placed in the history list. Control struc­
ture should be parsed rather than being recognized as built-in commands. This would allow
control commands to be placed anywhere, to be combined with 't, and to be used with'&' and
':' metasyntax.

It should be possible to use the ':' modifiers on the output of command substitutions. All and
more than one ·:' modifier should be allowed on'$' substitutions.

4th Berkeley Distribution 18 July 1983 19

CSH (1) UNIX Programmer's Manual CSH (I l

Symbolic links fool the shell. In particular, dirs and 'cd .. ' don't work properly once you've
crossed through a symbolic link.

4th Berkeley Distribution 18 July 1983 20

CTAGS(l) UNIX Programmer's Manual CTAGS(l)

NAME
ctags - create a tags file

SYNOPSIS
ctags [- BFatuwvx] name ...

DESCRIPTION

FILES

Ctags makes a tags file for ex(l) from the specified C, Pascal and Fortran sources. A tags file
gives the locations of specified objects (in this case functions and typedefs) in a group of files.
Each line of the tags file contains the object name, the file in which it is defined, and an address
specification for the object definition. Functions are searched with a pattern, typedefs with a line
number. Specifiers are given in separate fields on the line, separated by blanks or tabs. Using
the tags file, ex can quickly find these objects definitions.

If the -x flag is given, ctags produces a list of object names, the line number and file name on
which each is defined, as well as the text of that line and prints this on the standard output.
This is a simple index which can be printed out as an off-line readable function index.

If the -v flag is given, an index of the form expected by vgrind(l) is produced on the standard
output. This listing contains the function name, file name, and page number (assuming 64 line
pages). Since the output will be sorted into lexicographic order, it may be desired to run the
output through sort -f. Sample use:

ctags -v files I sort -f > index
vgrind - x index

Files whose name ends in .c or .h are assumed to be C source files and are searched for C rou­
tine and macro definitions. Others are first examined to see if they contain any Pascal or For­
tran routine definitions; if not, they are processed again looking for C definitions.

Other options are:

-F use forward searching patterns (/ .. ./) (default).

- B use backward searching patterns (? ... ?).

-a append to tags file.

-t create tags for typedefs.

-w suppressing warning diagnostics.

-u causing the specified files to be updated in tags, that is, all references to them are deleted,
and the new values are appended to the file. (Beware: this option is implemented in a
way which is rather slow; it is usually faster to simply rebuild the tags file.)

The tag main is treated specially in C programs. The tag formed is created by prepending M to
the name of the file, with a trailing .c removed, if any, and leading pathname components also
removed. This makes use of ctags practical in directories with more than one program.

tags

SEE ALSO

output tags file

ex(l), vi (1)

AUTHOR

BUGS

Ken Arnold; FORTRAN added by Jim Kleckner; Bill Joy added Pascal and -x, replacing cxref;
C typedefs added by Ed Pelegri-Llopart.

Recognition of functions, subroutines and procedures for FORTRAN and Pascal is done is a
very simpleminded way. No attempt is made to deal with block structure; if you have two Pas­
cal procedures in different blocks with the same name you lose.

4th Berkeley Distribution 25 August 1982 1

CTAGS (1) ONlX Programmer's Manual CTAGS(l)

The method of deciding whether to look for C or Pascal and FORTRAN functions is a hack.

Does not know about #if def s.

Should know about Pascal types. Relies on the input being well formed to detect typedefs. Use
of -tx shows only the last line of typedefs.

4th Berkeley Distribution 25 August 1982 2

DATE(l) UNIX Programmer's Manual DATE(l)

NAME
date - print and set the date

SYNOPSIS
date [-u] [yymmddhhmm [.ss]]

DESCRIPTION

FILES

If no arguments are given, the current date and time are printed. If a date is specified, the
current date is set. The -u flag is used to display the date in GMT (universal) time. This flag
may also be used to set GMT time. ~is the last two digits of the year; the first mm is the
month number; dd is the day number in the month; hh is the hour number (24 hour system);
the second mm is the minute number; .ss is optional and is the seconds. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The year, month and day may be omitted, the current values
being the defaults. The system operates in GMT. Date takes care of the conversion to and
from local standard and daylight time.

/usr/adm/wtmp to record time-setting

SEE ALSO
utmp(5)

DIAGNOSTICS

BUGS

'Failed to set date: Not owner' if you try to change the date but are not the super-user.

The system attempts to keep the date in a format closely compatible with VMS. VMS, how­
ever, uses local time (rather than GMT) and does not understand daylight savings time. Thus
if you use both UNIX and VMS, VMS will be running on GMT.

4th Berkeley Distribution 1April1983 1

(

\

DD(l) UNIX Programmer's Manual DD (1)

NAME
dd - convert and copy a file

SYNOPSIS
dd [option-value] ...

DESCRIPTION
Dd copies the specified input file to the specified output with possible conversions. The stan­
dard input and output are used by default. The input and output block size may be specified to
take advantage of raw physical 1/0.

option
if­
of­
ibs-n
obs-n
bs-n

cbs ... n
skip-n
files=-n

seek-n
count-n
conv-ascii

ebcdic
ibm
block
unblock
lease
ucase
swab
noerror
sync
... , ...

values
input file name; standard input is default
output file name; standard output is default
input block size n bytes (default 512)
output block size (default 512)
set both input and output block size, superseding ibs and obs; also, if no
conversion is specified, it is particularly efficient since no copy need be done
conversion buffer size
skip n input records before starting copy
copy n input files before terminating (makes sense only where input is a
magtape or similar device).
seek n records from beginning of output file before copying
copy only n input records
convert EBCDIC to ASCII
convert ASCII to EBCDIC
slightly different map of ASCII to EBCDIC
convert variable length records to fixed length
convert fixed length records to variable length
map alphabetics to lower case
map alphabetics to upper case
swap every pair of bytes
do not stop processing on an error
pad every input record to ibs
several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end with k, b or w to
specify multiplication by 1024, 512, or 2 respectively; a pair of numbers may be separated by x
to indicate a product.

Cbs is used only if ascii, unblock, ebcdic, ibm, or block conversion is specified. In the first two
cases, cbs characters are placed into the conversion buff er, any specified character mapping is
done, trailing blanks trimmed and new-line added before sending the line to the output. In the
latter three cases, characters are read into the conversion buffer, and blanks added to make up
an output record of size cbs.

After completion, dd reports the number of whole and partial input and output blocks.

For example, to read an EBCDIC tape blocked ten 80-byte EBCDIC card images per record into
the ASCII file x:

dd if=/dev/rmtO of-x ibs-800 cbs=-80 conv-ascii,lcase

Note the use of raw magtape. Dd is especially suited to 110 on the raw physical devices because
it allows reading and writing in arbitrary record sizes.

4th Berkeley Distribution 18 January 1983 1

DD(l) UNIX Programmer's Manual DD (1)

SEE ALSO
cp(l), tr(l)

DIAGNOSTICS

BUGS

f +p records in(out): numbers of full and partial records read(written)

The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the CACM
Nov, 1968. The 'ibm' conversion, while less blessed as a standard, corresponds better to cer­
tain IBM print train conventions. There is no universal solution.
One must specify "conv-noerror,sync" when copying raw disks with bad sectors to insure dd
stays synchronized.

4th Berkeley Distribution 18 January 1983 2

DELTA(l) DELTA(l)

NAME
delta - make a delta (change) to an secs file

SYNOPSIS
delta [-rSID] [-s] [-n] [-glist] [-m[mrlist]] [-y[comment]] [-p]
files

DESCRIPTION
Delta is used to permanently introduce into the named SCCS file changes
that were made to the file retrieved by get(l) (called the g-file, or generated
file).

Delta makes a delta to each named SCCS file. If a directory is named, delta
behaves as though each file in the directory were specified as a named file,
except that non-SCCS files (last component of the path name does not
begin with s.) and unreadable files are silently ignored. If a name of - is
given, the standard input is read (see WARNINGS); each line of the stan­
dard input is taken to be the name of an SCCS file to be processed.

Delta may issue prompts on the standard output depending upon certain
keyletters specified and flags (see admin (I)) that may be present in the
SCCS file (see - m and -y keyletters below).

Keyletter arguments apply independently to each named file.

-rSID Uniquely identifies which delta is to be made to the
SCCS file. The use of this keyletter is necessary only
if two or more outstanding gets for editing (get -e)
on the same SCCS file were done by the same person
(login name). The SID value specified with the -r
keyletter can be either the SID specified on the get
command line or the SID to be made as reported by
the get command (see get(I)). A diagnostic results if
the specified SID is ambiguous, or, if necessary and
omitted on the command line.

-s Suppresses the issue, on the standard output, of the
created delta's SID, as well as the number of lines
inserted, deleted and unchanged in the SCCS file.

-n

-glist

- m[mrlist]

Specifies retention of the edited g-file (normally
removed at completion of delta processing).

Specifies a list (see get(l) for the definiti<'n of list) of
deltas which are to be ignored when the file is
accessed at the change level (SID) created by this
delta.

If the SCCS file has the v tlag set (see admin (I)) then
a Modification Request (MR) number must be sup­
plied as the reason for creating the new deita.

If - m is not used and the standard input is a ter­
minal, the prompt MRs? is issued on the standard
output before the standard input is read; if the stan­
dard input is not a terminal, no prompt is issued.
The MRs? prompt always precedes the comments?
prompt (see -y keyletter).

MRs. in a list are separated by blanks and/or tab
characters. An unescaped new-line character ter­
minates the MR list.

- 1 -

DELTA(l) DELTA(l)

FILES

Note that if the v flag has a value (see admin(l)), it
is taken to be the name of a program (or shell pro·
cedure) which will validate the correctness of the MR
numbers. If a non-zero exit status is returned from
MR number validation program, delta terminates (it
is assumed that the MR numbers were not all valid).

-y[comment] Arbitrary text used to describe the reason for making
the delta. A null string is considered a valid comment.

-p

If -y is not specified and the standard input is a ter­
minal, the prompt comments? is issued on the stan­
dard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued.
An unescaped new-line character terminates the com­
ment text.

Causes delta to print (on the standard output) the
SCCS file differences before and after the delta is
applied in a di.ff(1) format.

All files of the form ?-file are explained in the Source Code Control System
User's Guide. The naming convention for these files is also described there.

g-file Existed before the execution of delta; removed after com-
pletion of delta.

p-file Existed before the execution of delta; may exist after com­
pletion of delta.

q-file Created during the execution of delta; removed after com­
pletion of delta.

x-file Created during the execution of delta; renamed to SCCS file
after completion of delta.

z-file Created during the execution of delta; removed during the
execution of delta.

d-file Created during the execution of delta; removed after com­
pletion of delta.

/usr/bin/bdiff Program to compute differences between the "gotten" file
and the g-file.

WARNINGS
Lines beginning with an SOH ASCII character (binary 001) cannot be placed
in th'e SCCS file unless the SOH is escaped. This character has special
meaning to SCCS (see sccsfile(5)) and will cause an error.

A get of many SCCS files, followed by a delta of those files, should be
avoided when the get generates a large amount of data. Instead, multiple
get/delta sequences should be used.

If the standard input (-) is specified on the delta command line, the - m
(if necessary) and -y keyletters must also be present. Omission of these
keyletters causes an error to occur.

SEE ALSO
admin(l), bdiff(l), get(l), help(l), prs(l), sccsfile(S).
Source Code Control System User's Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS
Use help(l) for explanations.

- 2 -

DEROFF(l) UNIX Programmer's Manual DEROFF(1)

NAME
deroff - remove nroff, troff, tbl and eqn constructs

SYNOPSIS
deroff [-w] file ...

DESCRIPTION
Deroffreads each file in sequence and removes all nroff and troff command lines, backslash con­
structions, macro definitions, eqn constructs (between '.EQ' and '.EN' lines or between delim­
iters), and table descriptions and writes the remainder on the standard output. Deroff follows
chains of included files ('.so' and '.nx' commands); if a file has already been included, a '.so' is
ignored and a '.nx' terminates execution. If no input file is given, deroff reads from the stan­
dard input file.

If the -w flag is given, the output is a word list, one 'word' (string of letters, digits, and apos­
trophes, beginning with a letter; apostrophes are removed) per line, and all other characters
ignored. Otherwise, the output follows the original, with the deletions mentioned above.

SEE ALSO

BUGS

troff(l), eqn(l), tbl(l)

Deroff is not a complete troff interpreter, so it can be confused by subtle constructs. Most
errors result in too much rather than too little output.

7th Edition 18 January 1983 1

DF(l)

NAME
df - disk free

SYNOPSIS

UNIX Programmer's Manual

df [-1] [filesystem ...] [file ...]

DESCRIPTION

OF (1)

DJ prints out the amount of free disk space available on the specified filesystem, e.g.
"/dev/rpOa", or on the filesystem in which the specified.file, e.g. "$HOME", is contained. If
no file system is specified, the free space on all of the normally mounted file systems is printed.
The reported numbers are in kilobytes.

Other options are:

-1 Report also the number of inodes which are used and free.

FILES
/etc/fstab list of normally mounted filesystems

SEE ALSO
fstab(S), icheck(8), quot(8)

4th Berkeley Distribution 18 January 1983 1

DIFF (1) UNIX Programmer's Manual DIFF (1)

NAME
diff - differential file and directory comparator

SYNOPSIS
dlff [-1] [-r] [-s 1 [-cefh] [-b] dirl dir2
dlff [-cefh I (-b 1 filel file2
dlff [-Dstring] [-b] filel file2

DESCRIPTION
If both arguments are directories, diff sorts the contents of the directories by name, and then
runs the regular file diff algorithm (described below) on text files which are different. Binary
files which differ, common subdirectories, and files which appear in only one directory are
listed. Options when comparing directories are:

-1 long output format; each text file diff is piped through pr(l) to paginate it, other
differences are remembered and summarized after all text file differences are reported.

-r causes application of diffrecursively to common subdirectories encountered.

- s causes diff to report files which are the same, which are otherwise not mentioned.

-Sname
starts a directory diffin the middle beginning with file name.

When run on regular files, and when comparing text files which differ during directory com­
parison, difftells what lines must be changed in the files to bring them into agreement. Except
in rare circumstances, diff finds a smallest sufficient set of file. differences. If neither filel nor
file2 is a directory, then either may be given as ' - ', in which case the standard input is used.
If filel is a directory, then a file in that directory whose file-name is the same as the file-name
of file2 is used (and vice versa).

There are several options for output format; the default output format contains lines of these
forms:

nl a n3,n4
nl,n2 d nJ
nl,n2 c n3,n4

These lines resemble ed commands to convert filel into file2. The numbers after the letters
pertain to file2. In fact, by exchanging 'a' for 'd' and reading backward one may ascertain
equally how to convert file2 into filel. As in ed, identical pairs where nl ... n2 or nJ - n4 are
abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged by '< ',
then all the lines that are affected in the second file flagged by '> '.
Except for -b, which may be given with any of the others, the following options are mutually
exclusive:

-e producing a script of a, c and d commands for the editor ed, which will recreate file2
from file]. In connection with -e, the following shell program may help maintain
multiple versions of a file. Only an ancestral file ($1) and a chain of version-to­
version ed scripts ($2,$3, .. .) made by diffneed be on hand. A 'latest version' appears
on the standard output.

(shift; cat$•; echo 'l,$p') I ed - $1

Extra commands are added to the output when comparing directories with -e, so
that the result is a sh(l) script for converting text files which are common to the two
directories from their state in dirl to their state in dir2. ·

-f produces a script similar to that of -e, not useful with ed, and in the opposite order.

4th Berkeley Distribution 18 January 1983 1

DIFF (1) UNIX Programmer's Manual DIFF (1)

FILES

-c produces a diff with lines of context. The default is to present 3 lines of context and
may be changed, e.g to 10, by -clO. With -c the output format is modified slightly:
the output beginning with identification of the files involved and their creation dates
and then each change is separated by a line with a dozen • 's. The lines removed
from filel are marked with '-'; those added to file2 are marked '+ '. Lines which are
changed from one file to the other are marked in both files with '!'.

-h does a fast, half-hearted job. It works only when changed stretches are short and well
separated, but does work on files of unlimited length.

-Dstring
causes diff to create a merged version of filel and file2 on the standard output, with C
preprocessor controls included so that a compilation of the result without defining
string is equivalent to compiling fl/el, while defining string will yield file2.

-b causes trailing blanks (spaces and tabs) to be ignored, and other strings of blanks to
compare equal.

/tmp/d?????
/usr/lib/diffh for -h
/bin/pr

SEE ALSO
cmp(l), cc(l), comm(l), ed(l), diff3 (1)

DIAGNOSTICS

BUGS

Exit status is 0 for no differences, 1 for some, 2 for trouble.

Editing scripts produced under the -e or -f option are naive about creating lines consisting of
a single '. '.

When comparing directories with the -b option specified, diff first compares the files ala cmp,
and then decides to run the diff algorithm if they are not equal. This may cause a small amount
of spurious output if the files then turn out to be identical because the only differences are
insignificant blank string differences.

4th Berkeley Distribution 18 January 1983 2

DIFF3 (1) UNIX Programmer's Manual DIFF3 (1)

NAME
dift'3 - 3-way differential file comparison

SYNOPSIS
dlff3 [- ex3] file 1 file2 file3

DESCRIPTION

FILES

DiffJ compares three versions of a file, and publishes disagreeing ranges of text flagged with
these codes:

--------1 ----2 ----3

all three files differ

jilel is different

file2 is different

fi/eJ is different

The type of change suffered in converting a given range of a given file to some other is indi­
cated in one of these ways:

/: nl a Text is to be appended after line number nl in file/, where/- l, 2, or 3.

f: nl, n2 c Text is to be changed in the range line nl to line n2. If nl - n2, the range
may be abbreviated to nl.

The original contents of the range follows immediately after a c indication. When the contents
of two files are identical, the contents of the lower-numbered file is suppressed.

Under the -e option, diffJ publishes a script for the editor ed that will incorporate into filel all
changes between jile2 and jileJ, i.e. the changes that normally would be flagged - - - - and
- - - -3. Option -x (-3) produces a script to incorporate only changes flagged - - - -
(- - - -3). The following command will apply the resulting script to 'file!'.

(cat script; echo '1,Sp') I ed - filel

/tmp/d3?????
/usr/lib/diff3

SEE ALSO
diff(l)

BUGS
Text lines that consist of a single '.' will defeat -e.

7th Edition 18 January 1983 1

DU(l) UNIX Programmer's Manual DU (1)

NAME
du - summarize disk usage

SYNOPSIS
du [-s] [-a] [name ... 1

DESCRIPTION
Du gives the number of kilobytes contained in all files and, recursively, directories within each
specified directory or file name. If name is missing, '.' is used.

The argument -s causes only the grand total to be given. The argument -a causes an entry
to be generated for each file. Absence of either causes an entry to be generated for each direc­
tory only.

A file which has two links to it is only counted once.

SEE ALSO
df(l), quot(8)

BUGS
Non-directories given as arguments (not under -a option) are not listed.
If there are too many distinct linked files, du counts the excess files multiply.

4th Berkeley Distribution 17 March 1982 1

(

\

(
\

I
I
\

ECHO(l)

NAME
echo - echo arguments

SYNOPSIS
echo [-n] [arg 1 ...

DESCRIPTION

UNIX Programmer's Manual ECHO (1)

Echo writes its arguments separated by blanks and terminated by a newline on the standard out­
put. If the flag -n is used, no newline is added to the output.

Echo is useful for producing diagnostics in shell programs and for writing constant data on
pipes. To send diagnostics to the standard error file, do 'echo ... 1 >&2'.

7th Edition 18 January 1983 1

ED (1) UNIX Programmer's Manual ED (1)

NAME
ed - text editor

SYNOPSIS
eel [-] [- x] [name]

DESCRIPTION
Ed is the standard text editor.

If a name argument is given, e.d simulates an e command (see below) on the named file; that is
to say, the file is read into ed's buffer so that it can be edited. If-xis present, an x command
is simulated first to handle an encrypted file. The optional - suppresses the printing of expla­
natory output and should be used when the standard input is an editor script.

Ed operates on a copy of any file it is editing; changes made in the copy have no effect on the
file until a w (write) command is given. The copy of the text being edited resides in a tem­
porary file called the bzeffer.

Commands to ed have a simple and regular structure: zero or more addresses followed by a sin­
gle character command, possibly followed by parameters to the command. These addresses
specify one or more lines in the buffer. Missing addresses are supplied by default.

In general, only one command may appear on a line. Certain commands allow the addition of
text to the buffer. While ed is accepting text, it is said to be in input mode. In this mode, no
commands are recognized; all input is merely collected. Input mode is left by typing a period
'.' alone at the beginning of a line.

Ed supports a limited form of regular expression notation. A regular expression specifies a set of
strings of characters. A member of this set of strings is said to be matched by the regular
expression. In the following specification for regular expressions the word 'character' means
any character but newline.

1. Any character except a special character matches itself. Special characters are the regu-
lar expression delimiter plus \ [. and sometimes A • $.

2. A . matches \lnY character.

3. A\ followed by any character except a digit or () matches that character.

4. A nonempty string s bracketed [s] (or rs]) matches any character in (or not in) s. In
s, \has no special meaning, and] may only appear as the first letter. A substring a-b,
with a and bin ascending ASCII order, stands for the inclusive range of ASCII charac­
ters.

5. A regular expression of form 1-4 followed by • matches a sequence of 0 or more
matches of the regular expression.

6. A regular expression, x, of form 1-8, bracketed\(x\) matches what x matches.

7. A \ followed by a digit n matches a copy of the string that the bracketed regular expres­
sion beginning with the nth \ (matched.

8. A regular expression of form 1-8, x, followed by a regular expression of form 1-7, y
matches a match for x followed by a match for y, with the x match being as long as pos­
sible while still permitting a y match.

9. A regular expression of form 1-8 preceded by A (or followed by $), is constrained to
matches that begin at the left (or end at the right) end of a line.

10. A regular expression of form 1-9 picks out the longest among the leftmost matches in a
line.

11. An empty regular expression stands for a copy of the last regular expression encoun­
tered.

3rd Berkeley Distribution 14 September 1979 1

(
\.

"'

/
\

ED (1) UNIX Programmer's Manual ED (I)

Regular expressions are used in addresses to specify lines and in one command (see s below)
to specify a portion of a line which is to be replaced. If it is desired to use one of the regular
expression metacharacters as an ordinary character, that character may be preceded by '\'. This
also applies to the character bounding the regular expression (often '/') and to '\' itself.

To understand addressing in ed it is necessary to know that at any time there is a current line.
Generally speaking, the current line is the last line affected by a command; however, the exact
effect on the current line is discussed under the description of the command. Addresses are
constructed as follows.

I. The character '.' addresses the current line.

2. The character '$' addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buff er.

4. "x' addresses the line marked with the name x, which must be a lower-case letter.
Lines are marked with the k command described below.

5. A regular expression enclosed in slashes '/' addresses the line found by searching for­
ward from the current line and stopping at the first line containing a string that matches
the regular expression. If necessary the search wraps around to the beginning of the
buffer.

6. A regular expression enclosed in queries '?' addresses the line found by searching back­
ward from the current line and stopping at the first line containing a string that matches
the regular expression. If necessary the search wraps around to the end of the buff er.

7. An address followed by a plus sign '+' or a minus sign '-' followed by a decimal
number specifies that address plus (resp. minus) the indicated number of lines. The
plus sign may be omitted.

8. If an address begins with '+' or ' - ' the addition or subtraction is taken with respect to
the current line; e.g. '-5' is understood to mean '. -5'.

9. If an address ends with '+' or '- ', then I. is added (resp. subtracted). As a conse­
quence of this rule and rule 8, the address ' - ' refers to the line before the current line.
Moreover, trailing '+' and ' - ' characters have cumulative effect, so ' - - ' refers to
the current line less 2.

10. To maintain compatibility with earlier versions of the editor, the character ,., in
addresses is equivalent to ' - '.

Commands may require zero, one, or two addresses. Commands which require no addresses
regard the presence of an address as an error. Commands which accept one or two addresses
assume default addresses when insufficient are given. If more addresses are given than such a
command requires, the last one or two (depending on what is accepted) are used.

Addresses are separated from each other typically by a comma ','. They may also be separated
by a semicolon ';'. In this case the current line '.' is set to the previous address before the
next address is interpreted. This feature can be used to determine the starting line for forward
and backward searches ('/', '?'). The second address of any two-address sequence must
correspond to a line following the line corresponding to the first address. The special form '%'
is an abbreviation for the address pair 'I,$'.

In the following list of ed commands, the default addresses are shown in parentheses. The
parentheses are not part of the address, but are used to show that the given addresses are the
default.

As mentioned, it is generally illegal for more than one command to appear on a line. However,
most commands may be suffixed by 'p' or by 'I', in which case the current line is either printed
or listed respectively in the way discussed below. Commands may also be suffixed by 'n',

3rd Berkeley Distribution 14 September 1979 2

ED (1) UNIX Programmer's Manual ED (1)

meaning the output of the command is to be line numbered. These suffixes may be combined
in any order.

(.)a
<text>

The append command reads the given text and appends it after the addressed line. '.' is
left on the last line input, if there were any, otherwise at the addressed line. Address 'O'
is legal for this command; text is placed at the beginning of the buff er.

(.,.)c
<text>

The change command deletes the addressed lines, then accepts input text which replaces
these lines. '.' is left at the last line input; if there were none, it is left at the line preced­
ing the deleted lines.

(., .)d
The delete command deletes the addressed lines from the buff er. The line originally after
the last line deleted becomes the current line; if the lines deleted were originally at the
end, the new last line becomes the current line.

e filename
The edit command causes the entire contents of the buff er to be deleted, and then the
named file to be read in. '.' is set to the last line of the buff er. The number of characters
read is typed. 'filename' is remembered for possible use as a default file name in a subse­
quent r or w command. If 'filename' is missing, the remembered name is used.

E filename
This command is the same as e, except that no diagnostic results when no w has been
given since the last buffer alteration.

f filename
The filename command prints the currently remembered file name. If 'filename' is given,
the currently remembered file name is changed to 'filename'.

(1, $) g/ regular expression/ command list
In the global command, the first step is to mark every line which matches the given regu­
lar expression. Then for every such line, the given command list is executed with '. · ini­
tially set to that line. A single command or the first of multiple commands appears on the
same line with the global command. All lines of a multi-line list except the last line must
be ended with '\'. A, i, and c commands and associated input are permitted; the '.' ter­
minating input mode may be omitted if it would be on the last line of the command list.
The commands g and v are not permitted in the command list.

(.) i

<text>

This command inserts the given text before the addressed line. '.' is left at the last line
input, or, if there were none, at the line before the addressed line. This command differs
from the a command only in the placement of the text.

(., .+l)j
This command joins the addressed lines into a single line; intermediate newlines simply
disarpear. '.' is left at the resulting line.

(.) kx
The mark command marks the addressed line with name x, which must be a lower-case

3rd Berkeley Distribution 14 September 1979 3

ED(l) UNIX Programmer's Manual ED (I)

letter. ihe address form "x then addresses this line.

(., .) I
The list command prints the addressed lines in an unambiguous way: non-graphic charac­
ters are printed in two-digit octal, and long lines are folded. The I command may be
placed on the same line after any non-i/o command.

(.,.)ma
The move command repositions the addressed lines after the line addressed by a. The
last of the moved lines becomes the current line.

(.,.)n
The number command prints the addressed lines with line numbers and a tab at the left.

(.' •) p
The print command prints the addressed lines. •.' is left at the last line printed. The p
command may be placed on the same line after any non-i/o command.

(.,.)P
This command is a synonym for p.

q The quit command causes ed to exit. No automatic write of a file is done.

Q This command is the same as q, except that no diagnostic results when no w has been
given since the last buff er alteration.

($) r filename
The read command reads in the given file after the addressed line. If no file name is
given, the remembered file name, if any, is used (see e and /commands). The file name
is remembered if there was no remembered file name already. Address 'O' is legal for r
and causes the file to be read at the beginning of the buffer. If the read is successful, the
number of characters read is typed. •.' is left at the last line read in from the file.

(. , .) s/regular expression/replacement/ or,
(. , .) s/regular expression/replacement/g

The substitute command searches each addressed line for an occurrence of the specified
regular expression. On each line in which a match is found, all matched strings are
replaced by the replacement specified, if the global replacement indicator 'g' appears after
the command. If the global indicator does not appear, only the first occurrence of the
matched string is replaced. It is an error for the substitution to fail on all addressed lines.
Any punctuation character may be used instead of '/' to delimit the regular expression
and the replacement. •.' is left at the last line substituted.

An ampersand '&' appearing in the replacement is replaced by the string matching the
regular expression. The special meaning of '&' in this context may be suppressed by
preceding it by '\ '. The characters '\n' where n is a digit, are replaced by the text
matched by the n-th regular subexpression enclosed between '\ (' and '\) '. When nested,
parenthesized subexpressions are present, n is determined by counting occurrences of '\ ('
starting from the left.

Lines may be split by substituting new-line characters into them. The new-line in the
replacement string must be escaped by preceding it by '\'.

One or two trailing delimiters may be omitted, implying the 'p' suffix. The special form
's' followed by no delimiters repeats the most recent substitute command on the
addressed lines. The 's' may be followed by the letters r (use the most recent regular
expression for the left hand side, instead of the most recent left hand side of a substitute
command), p (complement the setting of the p suffix from the previous substitution), or
g (complement the setting of the g suffix). These letters may be combined in any order.

(.,.)ta

3rd Berkeley Distribution 14 September 1979 4

ED (1) UNIX Programmer's Manual ED (1)

This command acts just like the m command, except that a copy of the addressed lines is
placed after address a (which may be 0). '.' is left on the last line of the copy.

(.' .) u
The undo command restores the buffer to it's state before the most recent buffer modify­
ing command. The current line is also restored. Buff er modifying commands are a, c, d.
g, i, k, and v. For purposes of undo, g and v are considered to be a single buff er modifying
command. Undo is its own inverse.

When ed runs out of memory (at about 8000 lines on any 16 bit mini-computer such as
the PDP-11) This full undo is not possible, and u can only undo the effect of the most
recent substitute on the current line. This restricted undo also applies to editor scripts
when ed is invoked with the - option.

(1, $) v/regular expression/command list
This command is the same as the global command g except that the command list. is exe­
cuted g with '.' initially set to every line except those matching the regular expression.

(1, $) w filename
The write command writes the addressed lines onto the given file. If the file does not
exist, it is created. The file name is remembered if there was no remembered file name
already. If no file name is given, the remembered file name, if any, is used (see e and f
commands) . '.' is unchanged. If the command is successful, the number of characters
written is printed.

(1, $) W filename
This command is the same as w, except that the addressed lines are appended to the file.

(1, $) wq filename
This command is the same as w except that afterwards a q command is done, exiting the
editor after the file is written.

x A key string is demanded from the standard input. Later r, e and w commands will
encrypt and decrypt the text with this key by the algorithm of crypt(l). An explicitly
empty key turns off encryption. (. + 1) z or,

(. + 1) zn

($) =

This command scrolls through the buffer starting at the addressed line. 22 (or n, if given)
lines are printed. The last line printed becomes the current line. The value n is sticky, in
that it becomes the default for future z commands.

The line number of the addressed line is typed. '.' is unchanged by this command.

! <shell command>
The remainder of the line after the '!' is sent to sh(l) to be interpreted as a command.
'.' is unchanged.

(.+ 1, .+ 1) <newline>
An address alone on a line causes the addressed line to be printed. A blank line alone is
equivalent to '. + lp'; it is useful for stepping through text. If two addresses are present
with no intervening semicolon, ed prints the range of lines. If they are separated by a
semicolon, the second line is printed.

If an interrupt signal (ASCII DEL) is sent, ed prints '?interrupted' and returns to its command
level.

Some size limitations: 512 characters per line, 256 characters per global command list, 64 char­
acters per file name, and, on mini computers, 128K characters in the temporary file. The limit
on the number of lines depends on the amount of core: each line takes 2 words.

3rd Berkeley Distribution 14 September 1979 5

ED(l)

FILES

. UNIX Programmer's Manual ED (1)

When reading a file, ed discards ASCII NUL characters and all characters after the last newline.
It refuses to read files containing non-ASCII characters.

/tmp/e•
edhup: work is saved here if terminal hangs up

SEE ALSO
B. W. Kernighan, A Tutorial Introduction to the ED Text Editor
B. W. Kernighan, Advanced editing on UNIX
ex(l), sed(l), crypt(l)

DIAGNOSTICS
'?name' for inaccessible file; '?self-explanatory message' for other errors.

To protect against throwing away valuable work, a q or e command is considered to be in error,
unless a w has occurred since the last buffer change. A second q or e will be obeyed regardless.

BUGS
The I command mishandles DEL.
The undo command causes marks to be lost on affected lines.
The x command, -x option, and special treatment of hangups only work on UNIX.

3rd Berkeley Distribution 14 September 1979 6

EX(l) UNIX Programmer's Manual EX(l)

NAME
ex, edit - text editor

SYNOPSIS
ex[-] [-v] [-ttag] [-r] [+command] [-I] name ...
edit [ex options]

DESCRIPTION
Ex is the root of a family of editors: edit, ex and vi. Ex is a superset of ed, with the most notable
extension being a display editing facility. Display based editing is the focus of vi.

If you have not used ed, or are a casual user, you will find that the editor edit is convenient for
you. It avoids some of the complexities of ex used mostly by systems programmers and per­
sons very familiar with ed.

If you have a CRT terminal, you may wish to use a display based editor; in this case see vi(l),
which is a command which focuses on the display editing portion of ex.

DOCUMENTATION

FILES

The document Edit: A tutorial provides a comprehensive introduction to edit assuming no previ­
ous knowledge of computers or the UNIX system.

The Ex Reference Manual - Version 3.5 is a comprehensive and complete manual for the com­
mand mode features of ex, but you cannot learn to use the editor by reading it. For an intro­
duction to more advanced forms of editing using the command mode of ex see the editing
documents written by Brian Kernighan for the editor ed,· the material in the introductory and
advanced documents works also with ex.

An Introduction to Display Editing with Vi introduces the display editor vi and provides reference
material on vi. All of these documents can be found in volume 2c of the Programmer's Manual.
In addition, the Vi Quick Reference card summarizes the commands of vi in a useful, functional
way, and is useful with the Introduction.

/usr/lib/ex?. ?strings
/usr/lib/ex?. ?recover
/usr/lib/ex?. ?preserve
/etc/termcap
-1.exrc
ltmp/Exnnnnn
/tmp/Rxnnnnn
I usr I preserve

error messages
recover command
preserve command
describes capabilities of terminals
editor startup file
editor temporary
named buff er temporary
preservation directory

SEE ALSO
awk(l), ed(l), grep(l), sed(l), grep(l), vi(l), termcap(S), environ(7)

AUTHOR

BUGS

Originally written by William Joy
Mark Horton has maintained the editor since version 2.7, adding macros, support for many
unusual terminals, and other features such as word abbreviation mode.

The undo command causes all marks to be lost on lines changed and then restored if the
marked lines were changed.

Undo never clears the buff er modified condition.

The z command prints a number of logical rather than physical lines. More than a screen full
of output may result if long lines are present.

4th Berkeley Distribution 26 August 1980 1

(
\

EX (1) UNIX Programmer's Manual

File input/output errors don't print a name if the command line'-' option is used.
There is no easy way to do a single scan ignoring case.

EX(l)

The editor does not warn if text is placed in named buffers and not used before exiting the edi­
tor.
Null characters are discarded in input files, and cannot appear in resultant files.

4th Berkeley Distribution 26 August 1980 2

EXPAND (1) UNIX Programmer's Manual EXPAND (1)

NAME
expand, unexpand - expand tabs to spaces, and vice versa

SYNOPSIS
expand [- tabstop] [- tabl,tab2, .. .,tabn] [file ...
unexpand [- a] [file . . .]

DESCRIPTION
Expand processes the named files or the standard input writing the standard output with tabs
changed into blanks. Backspace characters are preserved into the output and decrement the
column count for tab calculations. Expand is useful for pre-processing character files (before
sorting, looking at specific columns, etc.) that contain tabs.

If a single tab.stop argument is given then tabs are set tabstop spaces apart instead of the default
8. If multiple tabstops are given then the tabs are set at those specific columns.

Unexpand puts tabs back into the data from the standard input or the named files and writes the
result on the standard output. By default only leading blanks and tabs are reconverted to maxi­
mal strings of tabs. If the - a option is given, then tabs are inserted whenever they would
compress the resultant file by replacing two or more characters.

18 January 1983 1

\

EXPR(l) UNIX Programmer's Manual EXPR (1)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arg •.•

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is written on the stan­
dard output. Each token of the expression is a separate argument.

The operators and keywords are listed below. The list is in order of increasing precedence, with
equal precedence operators grouped.

exprl expr
yields the first expr if it is neither null nor 'O', otherwise yields the second expr.

expr & expr
yields the first expr if neither expr is null or 'O', otherwise yields '0'.

expr re/op expr
where re/op is one of < < - - ! - > - >, yields 'l' if the indicated comparison is
true, 'O' if false. The comparison is numeric if both expr are integers, otherwise lexico­
graphic.

expr + expr
expr - expr

addition or subtraction of the arguments.

expr • expr
expr I expr
expr % expr

multiplication, division, or remainder of the arguments.

expr: expr
The matching operator compares the string first argument with the regular expression
second argument; regular expression syntax is the same as that of ed(l). The \ (... \)
pattern symbols can be used to select a portion of the first argument. Otherwise, the
matching operator yields the number of characters matched ('0' on failure).

(expr)
parentheses for grouping.

Examples:

To add 1 to the Shell variable a:

a-= 'expr $a + 1'

To find the filename part (least significant part) of the pathname stored in variable a, which
may or may not contain '/':

expr $a : '.•/\(,.\)' ·r $a

Note the quoted Shell metacharacters.

SEE ALSO
sh(l), test(l)

DIAGNOSTICS
Expr returns the following exit codes:

0 if the expression is neither null nor 'O',
1 if the expression is null or 'O',
2 for invalid expressions.

7th Edition 18 January 1983 1

FALSE(l) UNIX Programmer's Manual

NAME
false, true - provide truth values

SYNOPSIS
true

false

DESCRIPTION

FALSE (1)

True and false are usually used in a Bourne shell script. They test for the appropriate status
"true" or "false" before running (or failing to run) a list of commands.

EXAMPLE

SEE ALSO

while false
do

command list
done

csh(l), sh(l), true(l)

DIAGNOSTICS
False has exit status nonzero.

7th Edition 11 January 1982 1

FILE(l) UNIX Programmer's Manual FILE (1)

NAME
file - determine file type

SYNOPSIS
flle file ...

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it. If an argument
appears to be ascii, file examines the first 512 bytes and tries to guess its language.

BUGS
It often makes mistakes. In particular it often suggests that command files are C programs.

Does not recognize Pascal or LISP.

7th Edition 18 January 1983 1

FIND (1) UNIX Programmer's Manual FIND (1)

NAME
find - find files

SYNOPSIS
find pathname-list expression

DESCRIPTION
Find recursively descends the directory hierarchy for each pathname in the pathname-list (i.e.,
one or more pathnames) seeking files that match a boolean expression written in the primaries
given below. In the descriptions, the argument n is used as a decimal integer where +n means
more than n, -n means less than n and n means exactly n.

-name filename
True if the filename argument matches the current file name. Normal Shell argu­
ment syntax may be used if escaped (watch out for '[', '?' and'•').

-perm onum .
True if the file permission flags exactly match the octal number onum (see
chmod(l)). If onum is prefixed by a minus sign, more flag bits (017777, see stat(2))
become significant and the flags are compared: (/fags&onum)- -onum.

-type c True if the type of the file is c, where c is b, c, d, f or I for block special file, charac­
ter special file, directory, plain file, or symbolic link.

- links n True if the file has n links.

-user uname
True if the file belongs to the user uname (login name or numeric user ID).

-group gname
True if the file belongs to group gname (group name or numeric group ID).

-size n True if the file is n blocks long (512 bytes per block).

-inum n True if the file has inode number n.

-atime n True if the file has been accessed in n days.

-mtime n
True if the file has been modified in n days.

-exec command
True if the executed command returns a zero value as exit status. The end of the
command must be punctuated by an escaped semicolon. A command argument '{}'
is replaced by the current pathname.

-ok command
Like -exec except that the generated command is written on the standard output,
then the standard input is read and the command executed only upon response y.

-print Always true; causes the current pathname to be printed.

-newer file
True if the current file has been modified more recently than the argument file.

The primaries may be combined using the following operators (in order of decreasing pre­
cedence):

1) A parenthesized group of primaries and operators (parentheses are special to the Shell and
must be escaped).

2) The negation of a primary (' ! ' is the unary not operator).

3) Concatenation of primaries (the and operation is implied by the juxtaposition of two pri­
maries).

7th Edition 18 January 1983 1

FIND(l) UNIX Programmer's Manual

4) Alternation of primaries ('-o' is the or operator).

EXAMPLE
To remove all files named 'a.out' or '•.o' that have not been accessed for a week:

find I\(-name a.out -o -name '•.o' \) -atime +7 -exec rm {} \;

FILES
/etc/passwd
/etc/group

SEE ALSO
sh(l), test(l), fs(S)

BUGS
The syntax is painful.

7th Edition 18 January 1983

FIND (1)

2

GET(l) GBT(l)

NAME
get - get a version of an SCCS file

SYNOPSIS
get [-rSID] [-ccutoff] [-ilist] [-xlist] [-aseq-no.] [-k] [-e]
[-l[p]] [-p] [-m] [-n] [-s] [-b] [-g] [-t] file ...

DESCRIPTION
Get generates an ASCII text file from each named SCCS file according to the
specifications given by its keyletter arguments, which begin with - . The
arguments may be specified in any order, but all keyletter arguments apply
to all named SCCS files. If a directory is named, get behaves as though
each file in- the directory were specified as a named file, except that non­
SCCS files (last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the standard
input is read; each line of the standard input is taken to be the name of an
secs file to be processed. Again, non-SCCS files and unreadable files are
silently ignored.

The generated text is normally written into a file called the g-file whose
name is derived from the SCCS file name by simply removing the leading
s.; (see also FILES, below).

Each of the keyletter arguments is explained below as though only one
SCCS file is to be processed, but the effects of any keyletter argument
applies independently to each named file.

-rSID The SCCS /Dentification string (SID) of the version (delta) oi
an SCCS file to be retrieved. Table 1 below shows, for the most
useful cases, what version of an SCCS file is retrieved (as well
as the SID of the version to be eventually created by delta (I) if
the -e keyletter is also used), as a function of the SID
specified.

-ccutoff Cutoff date-time, in the form:

YY[MM[DD[HH[MM[SS]]]]]

No changes (deltas) to the SCCS file which were created after
the specified cutoff date-time are included in the generated ASCII
text file. Units omitted from the date-time default to their
maximum possible values; that is, -c7502 is equivalent to
-c750228235959. Any number of non-numeric characters may
separate the various 2 digit pieces of the cutoff date-time. This
feature allows one to specify a cutoff date in the form:
"-c77/2/2 9:22:25". Note that this implies that one may use
the %E% and %U% identification keywords (see below) for
nested gets within, say the input to a send(lC) command:

"!get "-c%E% %U%" s.file

- e Indicates that the get is for the purpose of editing or making a
change (delta) to the· SCCS file via a subsequent use of de/ta(l).
The - e key letter used in a get for a particular version (SID) of
the secs file prevents further gets for editing on the same SID
until delta is executed or the j Uoint edit) flag is set in the SCCS
file (see admin(l)). Concurrent use of get -e for different
SIDs is always allowed. ·

If the g-file generated by get with an -e keyletter is accidentally
ruined in the process of editing it, it may be regenerated by re­
executing the get command with the - k keyletter in place of
the -e keyletter.

. I -

GET(I)

-b

-ilist

-xlist

-k

-l[p]

-p

-s

-m

-n

-g

-t

GET(l)

SCCS file protection specified via the ceiling, floor, and author­
ized user list stored in the SCCS file (see admin (1)) are enforced
when the -e keyletter is used.

Used with the -e keylettcr to indicate that the new delta
should have an SID in a new branch as shown in Table 1. This
keyletter is ignored if the b flag is not present in the file (sec
admin (1)) or if the retrieved delta is not a leaf delta. (A leaf
delta is one that has no successors on the SCCS file tree.)
Note: A branch delta may always be created from a non-leaf
delta.

A list of deltas to be included (forced to be applied) in the
creation of the generated file. The list has the following syntax:

<list> ::= <range> I <list> , <range>
<range> ::=SID I SID - SID

SID, the SCCS Identification of a delta, may be in any form
shown in the "SID Specified" column of Table 1. Partial SIDs
are interpreted as shown in the "SID Retrieved" column of
Table 1.

A list of deltas to be excluded (forced not to be applied) in the
creation of the generated file. See the -i keyletter for the list
format.

Suppresses replacement of identification keywords (see below)
in the retrieved text by their value. The -k keyletter is
implied by the -e keyletter.

Causes a delta summary to be written into an I-file. If -Ip is
used then an I-file is not created; the delta summary is written
on the standard output instead. See FILES for the format of the
I-file.

Causes the text retrieved from the SCCS file to be written on
the standard output. No g-file is created. All output which nor­
mally goes to the standard output goes to file descriptor 2
instead, unless the -s keyletter is used, in which case it disap­
pears.

Suppresses all output normally written on the standard output.
However, fatal error messages (which always go to file descrip­
tor 2) remain unaffected.

Causes each text line retrieved from the SCCS file to be pre­
ceded by the SID of the delta that inserted the text line in the
SCCS file. The format is: SID, followed by a horizontal tab, fol­
lowed by the text line.

Causes each generated text line to be preceded with the 3M%
identification keyword value (see below). The format is: 3M%
value, followed by a horizontal tab, followed by the text line.
When both the - m and - n keyletters are used, the format is:
3M% value, followed by a horizontal tab, followed by the - m
keyletter generated format.

Suppresses the actual retrieval of text from the SCCS file. It is
primarily used to generate an I-file, or to verify the existence of
a particular SID.

Used to access the most recently created ("top") delta in a
given release (e.g., -rl), or release and level (e.g., -rl.2).

- 2 -

GBT(l)

SID*

GBT(l)

-aseq-no. The delta sequence number of the SCCS file delta (version) to
be retrieved (see sccsfile(S)). This keyletter is used by the
comb(l) command; it is not a generally useful keyletter, and
users should not use it. If both the -r and -a keyletters are
specified, the -a keyletter is used. Care should be taken when
using the -a keyletter in conjunction with the -e keyletter, as
.the SID of the delta to be created may not be what one expects.
The -r keyletter can be used with the -a and -e keyletters to
control the naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID
being accessed and with the number of lines retrieved from the SCCS file.

If the -e keyletter is used, the SID of the delta to be made appears after
the SID accessed and before the number of lines generated. If there is
more than one named file or if a directory or standard input is named, each
file name is printed (preceded by a new-line) before it is processed. If the
-i keyletter is used included deltas are listed following the notation "Inclu­
ded"; if the -x keyletter is used, excluded deltas are listed following the
notation "Excluded".

TABLE I. Determination of SCCS Identification String
- b Keyletter Other SID SID of Delta

Specified Usedt Conditions Retrieved to be Created

none;
none:j:

R
R
R
R

R

R

R.L
R.L

R.L

R.L.B
R.L.B

R.L.B.S
R.L.B.S
R.L.B.S

*

••

no R defaults to mR mR.mL mR.(mL+l)
yes R defaults to mR mR.mL mR.mL.(mB + 1).1

no R>mR mR.mL R.l ***
no R = mR mR.mL mR.(mL+l)
yes R> mR mR.mL mR.mL.(mB + 1).1
yes R == mR mR.mL mR.mL.(mB + 1).1

R < mR and hR.mL** hR.mL.(mB + 1).1
R does not exist
Trunk succ.#
in release > R R.mL R.mL.(mB + 1).1
and R exists

no No trunk succ. R.L R.(L+l)
yes No trunk succ. R.L R.L.(mB+l).l

Trunk· succ. R.L R.L.(mB+l).l
in release ~ R

no No branch succ. R.L.B.mS R.L.B.(mS+I)
yes No branch succ. R.L.B.mS R.L.(mB + 1).1

no No branch succ. R.L.B.S R.L.B.(S +I)
yes No branch succ. R.L.B.S R.L.(mB +I). I

Branch succ. R.L.B.S R.L.(mB + 1).1

"R", "L", "B", and "S" are the "release", "level", "branch", and
"sequence" components of the SID, respectively; "m" means "max­
imum". Thus, for example, "R.mL" means "the maximum level
number within release R"; "R.L.(mB+ 1).l" means "the first
sequence number on the new branch (i.e., maximum branch number
plus one) of level L within release R". Note that if the SID specified
is of the form .. R.L", ''R.L.B", or "R.L.B.S", each of the specified
components mu.st exist.
"hR" is the highest existing release that is lower than the specified,
nonexistent, release R.

- 3 -

/
\

I
\

GET(I) GET(I)

••• This is used to force creation of the first delta in a new release.
I Successor.
t The -b keyletter is effective only if the b ftag (see admin (I)) is

present in the file. An entry of - means "irrelevant".
t This case applies if the d (default SID) ftag is not present in the file. If

the d ftag is present in the file, then the SID obtained from the d ftag is
interpreted as if it had been specified on the command line. Thus,
one of the other cases in this table applies.

IDENTIFICATION KEYWORDS

FILF.S

Identifying information is inserted into the text retrieved from the SCCS file
by replacing identification keywords with their value wherever they occur.
The following keywords may be used in the text stored in an SCCS file:

Keyword Value
%M% Module name: either the value of the m ftag in the file (see

admin (I)), or if absent, the name of the SCCS file with the
leading s. removed.

%1% SCCS identification (SID) (%R%.%L%.%B%.%S%) of the

%R%
%L%
%8%
%S%
%0%
%H%
%T%
%E%
%G%
%U%
%Y%
%F%
%P%
%Q%
%C%

%Z%
%W%

%A%

retrieved text.
Release.
Level.
Branch.
Sequence.
Current date (YY/MM/DD).
Current date (MM/DD/YY).
Current time (HH:MM:SS).
Date newest applied delta was created (YY/MM/DD).
Date newest applied delta was created (MM/DD/YY).
Time newest applied delta was created (HH:MM:SS).
Module type: value of the t ftag in the SCCS file (see admin(l)).
SCCS file name.
Fully qualified SCCS file name.
The value of the q ftag in the file (see admin(I)).
Current line number. This keyword is intended for identifying
messages output by the program such as "this shouldn't have
happened" type errors. It is not intended to be used on every
line to provide sequence numbers.
The 4-character string@(I) recognizable by what(l).
A shorthand notation for constructing what(l) strings for UNIX
program files. %W% = %Z%%M%<horizontal-tab>%I%
Another shorthand notation for constructing what(1) strings for
non-UNIX program files. %A%= %Z%%Y% %M% %I%%Z%

Several auxiliary files may be created by get, These files are known generi­
cally as the g-file, I-file, p-file, and z-file. The letter before the hyphen is
called the tag. An auxiliary file name is formed from the SCCS file name:
the last component of all SCCS file names must be of. the form s.module­
name, the auxiliary files are named by replacing the leading s with the tag.
The g-file is an exception to this scheme: the g-file is named by removing
the s. prefix. For example, s.xyz.c, the auxiliary file names would be
xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the current
directory (unless the -p keyletter is used). Ag-file is created in all cases,
whether or not any lines of text were generated by the get. It is owned by
the real user. If the -k keyletter is used or implied its mode is 644; oth­
erwise its mode is 444. Only the real user need have write permission in

- 4 -

GET(1) GET(1)

the current directory.

The I-file contains a table showing which deltas were applied in generating
the retrieved text. The I-file is created in the current directory if the -I
keyletter is used; its mode is 444 and it is owned by the real user. Only the
real user need have write permission in the current directory.

Lines in the I-file have the following format:

a. A blank character if the delta was applied;
• otherwise.

b. A blank character if the delta was applied or wasn't applied
and ignored;
•if the delta wasn't applied and wasn't ignored.

c. A code indicating a "special" reason why the delta was or
was not applied:

"I": Included.
"X": Excluded.
"C": Cut off (by a -c keyletter).

d. Blank.
e. secs identification (SID).
f. Tab character.
g. Date and time (in the form YY/MM/DD HH:MM:SS) of

creation .
. h. Blank.

i. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented
one horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an -e
keyletter along to delta. Its contents are also used to prevent a subsequent
execution of get with an -e keyletter for the same SID until delta is execu­
ted or the joint edit flag, j, (see admin (1)) is set in the SCCS file. The p-file
is created in the directory containing the SCCS file and the effective user
must have write permission in that directory. Its mode is 644 and it is
owned by the effective user. The format of the p-file is: the gotten SID, fol­
lowed by a blank, followed by the SID that the new delta will have when it
is made, followed by a blank, followed by the login name of the real user,
followed by a blank, followed by the date-time the get was executed, fol­
lowed by a blank and the -i key letter argument if it was present, followed
by a blank and the - x keyletter argument if it was present, followed by a
new-line. There can be an arbitrary number of lines in the p-file at any
time; no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its
contents are the binary (2 bytes) process ID of the command (i.e., get) that
created it. The z-file is created in the directory containing the SCCS file for
the duration of get. The same protection restrictions as those for the p-file
apply for the z-file. The z-file is created mode 444.

SEE ALSO
admin(l), delta(l), help(l), prs(l), what(l), sccsfile(S).
Source Code Control System User's Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS

BUGS

Use help(l) for explanations.

If the effective user has write permission (either explicitly or implicitly) in
the directory containing the SCCS files, but the real user doesn't, then only
one file may be named when the -e keyletter is used.

- 5 -

(

GETLINE(lV) UNIX Programmer's Manual

NAME
getline - get a line from stdin

SYNOPSIS
getJ.ine

DESCRIPTION

GETLINE(lV)

getline retrieves a line of text from the standard input device (normally a terminal), waiting for
a carraige return or newline to signal the end of input. It is useful for handling user input to
shell scripts.

EXAMPLE
a shell script to retrieve a user's name and acknowledge it:

echo -n "enter your name: "
username = 'getline'
echo Hello $username

SEE ALSO
sh(1), csh(1)

7th Edition Valid 7 DECEMBER 1984 1

GREP(l) UNIX Programmer's Manual GREP (1)

NAME
grep, egrep, fgrep - search a file for a pattern

SYNOPSIS
grep [option] ... expression [file] ...

egrep [option] ... [expression] [file] ...

f grep [option] . . . [strings 1 [file]

DESCRIPTION
Commands of the grep family search the input files (standard input default) for lines matching a
pattern. Normally, each line found is copied to the standard output. Grep patterns are limited
regular expressions in the style of ex(l); it uses a compact nondeterministic algorithm. Egrep
patterns are full regular expressions; it uses a fast deterministic algorithm that sometimes needs
exponential space. Fgrep patterns are fixed strings; it is fast and compact. The following
options are recognized.

-v All lines but those matching are printed.

-x (Exact) only lines matched in their entirety are printed (/grep only).

-c Only a count of matching lines is printed.

-1 The names of files with matching lines are listed (once) separated by newlines.

-n Each line is preceded by its relative line number in the file.

-b Each line is preceded by the block number on which it was found. This is sometimes

-i

-s

useful in locating disk block numbers by context.

The case of letters is ignored in making comparisons - that is, upper and lower case
are considered identical. This applies to grep and jgrep only.

Silent mode. Nothing is printed (except error messages). This is useful for checking
the error status.

-w The expression is searched for as a word (as if surrounded by '\ <' and '\ > ', see
ex(l).) (grep only)

-e expression
Same as a simple expression argument, but useful when the expression begins with a - .

-f file The regular expression (egrep) or string list (jgrep) is taken from the file.

In all cases the file name is shown if there is more than one input file. Care should be taken
when using the characters S • [" I () and \ in the expression as they are also meaningful to the
Shell. It is safest to enclose the entire expression argument in single quotes ' '.

Fgrep searches for lines that contain one of the (newline-separated) strings.

Egrep accepts extended regular expressions. In the following description 'character' excludes
newline:

A\ followed by a single character other than newline matches that character.

· The character " matches the beginning of a line.

The character S matches the end of a line.

A • (period) matches any character.

A single character not otherwise endowed with special meaning matches that character.

A string endosed in brackets [] matches any single character from the string. Ranges
of ASCII character codes may be abbreviated as in 'a-z0-9'. A) may occur only as
the first character of the string. A literal - must be placed where it can't be mistaken

4th Berkeley Distribution 11 August 1980 1

c

\

GREP(l) UNIX Programmer's Manual GREP (1)

as a range indicator.

A regular expression followed by an • (asterisk) matches a sequence of 0 or more
matches of the regular expression. A regular expression followed by a + (plus)
matches a sequence of 1 or more matches of the regular expression. A regular expres­
sion followed by a ? (question mark) matches a sequence of 0 or 1 matches of the reg­
ular expression.

Two regular expressions concatenated match a match of the first followed by a match of
the second.

Two regular expressions separated by I or newline match either a match for the first or a
match for the second.

A regular expression enclosed in parentheses matches a match for the regular expres­
sion.

The order of precedence of operators at the same parenthesis level is [] then • +? then con­
catenation then I and newline.

Ideally there should be only one grep, but we don't know a single algorithm that spans a wide
enough range of space-time tradeoffs.

SEE ALSO
ex(l), sed(l), sh(l)

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files.

BUGS
Lines are limited to 256 characters; longer lines are truncated.

4th Berkeley Distribution 11 August 1980 2

GROUPS (1) UNIX Programmer's Manual

NAME
groups - show group memberships

SYNOPSIS
groups (user)

DESCRIPTION

GROUPS (I)

The groups command shows the groups to which you or the optionally specified user belong.
Each user belongs to a group specified in the password file /etc!passwd and possibly to other
groups as specified in the file /etc/group. If you do not own a file but belong to the group which
it is owned by then you are granted group access to the file.

When a new file is created it is given the group of the containing directory.

SEE ALSO
setgroups (2)

FILES
/etc/passwd, /etc/group

BUGS
More groups should be allowed.

4th Berkeley Distribution 30 May 1983

HEAD(l)

NAME
head - give first few lines

SYNOPSIS
head [-count] [file ...]

DESCRIPTION

UNIX Programmer's Manual HEAD (1)

This filter gives the first count lines of each of the specified files, or of the standard input. If
count is omitted it defaults to 10.

SEE ALSO
tail (1)

3rd Berkeley Distribution 24 February 1979 1

HOSTID (1) UNIX Programmer's Manual

NAME
hostid - set or print identifier of current host system

SYNOPSIS
bostld [identifier]

DESCRIPTION

HOSTID (1)

The hostid command prints the identifier of the current host. This numeric value is expected to
be unique across all hosts and is normally set to the host's Internet address. The super-user
can set the hostid by giving an argument; this is usually done in the startup script /etc/re.local.

SEE ALSO
gethostid (2), sethostid (2)

4th Berkeley Distribution 1 April 1983 1

HOSTNAME (1) UNIX Programmer's Manual

NAME
hostname - set or print name of current host system

SYNOPSIS
hostname [nameofhost]

DESCRIPTION

HOSTNAME { 1)

The hostname command prints the name of the current host, as given before the "login"
prompt. The super-user can set the hostname by giving an argument; this is usually done in
the startup script /etc/re.local.

SEE ALSO
gethostname(2), sethostname(2)

4th Berkeley Distribution 13 March 1982 1

INSTALL (1) UNIX Programmer's Manual INSTALL (I)

NAME
install - install binaries

SYNOPSIS
install [-c 1 [- m mode 1 [-o owner 1 [-g group l [- s] binary destination

DESCRIPTION
Binary is moved (or copied if -c is specified) to destination. If destination already exists, it is
removed before binary is moved. If the destination is a directory then binary is moved into the
destination directory with its original file-name.

The mode for Destination is set to 755; the - m mode option may be used to specify a different
mode.

Destination is changed to owner root; the -o owner option may be used to specify a different
owner.

Destination is changed to group staff; the -g group option may be used to specify a different
group.

If the - s option is specified the binary is stripped after being installed.

lnstallrefuses to move a file onto itself.

SEE ALSO
chgrp(l), chmodO), cp(l), mvO), strip(}), chown(8)

4th Berkeley Distribution 22 April 1983

IOSTAT (I) UNIX Programmer's Manual IOSTAT (I)

NAME
iostat - report 1/0 statistics

SYNOPSIS
iostat [interval [count l l

DESCRIPTION

FILES

lostat iteratively reports the number of characters read and written to terminals, and, for each
disk, the number of seeks transfers per second, kilobytes transfered per second, and the mil­
liseconds per average seek. It also gives the percentage of time the system has spent in user
mode, in user mode running low priority (niced) processes, in system mode, and idling.

To compute this information, for each disk, seeks and data transfer completions and number of
words transferred are counted: for terminals collectively, the number of input and output char­
acters are counted. Also, each sixtieth of a second, the state of each disk is examined and a
tally is made if the disk is active. From these numbers and given the transfer rates of the dev­
ices it is possible to determine average seek times for each device.

The optional interval argument causes iosrat to report once each interval seconds. The first
report is for all time since a reboot and each subsequent report is for the last interval only.

The optional counr argument restricts the number of reports.

/dev/kmem
/vmunix

SEE ALSO
vmstat (I)

4th Berkeley Distribution 18 January 1983

JOIN (1) UNIX Programmer's Manual JOIN (1)

NAME
join - relational database operator

SYNOPSIS
Join [options] filel file2

DESCRIPTION
Join forms, on the standard output, a join of the two relations specified by the lines of filel and
file2. If filel is ' - ', the standard input is used.

Fi/el and fiie2 must be sorted in increasing ASCII collating sequence on the fields on which
they are to be joined, normally the first in each line.

There is one line in the output for each pair of lines in fiiel and file} that have identical join
fields. The output line normally consists of the common field, then the rest of the line from
filel, then the rest of the line from file2.

Fields are normally separated by blank, tab or newline. In this case, multiple separators count
as one, and leading separators are discarded.

These options are recognized:

-an In addition to the normal output, produce a line for each unpairable line in file n,
where n is 1 or 2.

-e s Replace empty output fields by string s.

-Jn m Join on the mth field of file n. If n is missing, use the mth field in each file.

-o list Each output line comprises the fields specified in list, each element of which has the
form n.m, where n is a file number and mis a field number.

-tc Use character c as a separator (tab character). Every appearance of c in a line is
significant.

SEE ALSO

BUGS

sort(l), comm(l), awk(l)

With default field separation, the collating sequence is that of sort -b; with -t, the sequence is
that of a plain sort.

The conventions of join, sort, comm, uniq, look and awk(l) are wildly incongruous.

7th Edition 18 January 1983 1

KILL (1) UNIX Programmer's Manual KILL (I)

NAME
kill - terminate a process with extreme prejudice

SYNOPSIS
kill [-sig l processid ...
kill - I

DESCRIPTION
Kill sends the TERM (terminate, 15) signal to the specified processes. If a signal name or
number preceded by ' - ' is given as first argument, that signal is sent instead of terminate (see
sigvec(2)). The signal names are listed by 'kill - I', and are as given in /usr/i11cluddsig11a/. h,
stripped of the common SIG prefix.

The terminate signal will kill processes that do not catch the signal; 'kill -9 ... ' is a sure kill. as
the KILL (9) signal cannot be caught. By convention, if process number 0 is specified, all
members in the process group (i.e. processes resulting from the current login) are signaled (but
beware: this works only if you use shO); not if you use cshO).) The killed processes must
belong to the current user unless he is the super-user.

The process number of an asynchronous process started with '&' is reported by the shell. Pro­
cess numbers can also be found by using Kill is a built-in to csh(l); it allows job specifiers
"(Yti ... " so process id's are not as often used as kill arguments. See csh(I) for details.

SEE ALSO

BUGS

csh(i), psO), kill(2), sigvec(2)

An option to kill process groups ala kil/pg(2) should be provided; a replacement for "kill O" for
csh(I) users should be provided.

4th Berkeley Distribution 18 January 1983

LAST (1) UNIX Programmer's Manual LAST (1)

NAME
last - indicate last logins of users and teletypes

SYNOPSIS
last [- N] [name ...] [tty ...]

DESCRIPTION

FILES

Last will look back in the wtmp file which records all logins and logouts for information about a
user, a teletype or any group of users and teletypes. Arguments specify names of users or tele­
types of interest. Names of teletypes may be given fully or abbreviated. For example 'last O' is
the same as 'last ttyO'. If multiple arguments are given, the information which applies to any
of the arguments is printed. For example 'last root console' would list all of "root's" sessions as
well as all sessions on the console terminal. Last will print the sessions of the specified users
and teletypes, most recent first, indicating the times at which the session began, the duration of
the session, and the teletype which the session took place on. If the session is still continuing
or was cut short by a reboot, last so indicates.

The pseudo-user reboot logs in at reboots of the system, thus

last reboot

will give an indication of mean time between reboot.

Last with no arguments prints a record of all logins and logouts, in reverse order. The - N
option limits the report to N lines.

If last is interrupted, it indicates how far the search has progressed in wrmp. If interrupted with
a quit signal (generated by a control-\) last indicates how far the search has progressed so far.
and the search continues.

/usr/adm/wtmp login data base
/usr/adm/shutdownlog which records shutdowns and reasons for same

SEE ALSO
wtmp(5), ad8), lastcommO)

AUTHOR
Howard Katseff

4th Berkeley Distribution 1 April 1981

LD (1) UNIX Programmer's Manual LD (I)

NAME
Id - link editor

SYNOPSIS
Id [option 1 ... file ...

DESCRIPTION
Ld combines several object programs into one, resolves external references, and searches
libraries. In the simplest case several object files are given, and Id combines them, producing an
object module which can be either executed or become the input for a further Id run. (In the
latter case, the -r option musr be given to preserve the relocation bits.) The output of Id is
left on a.out. This file is made executable only if no errors occurred during the load.

The argument routines are concatenated in the order specified: The entry point of the output is
the beginning of the first routine (unless the -e option is specified).

If any argument is a library, it is searched exactly once at the point it is encountered in the
argument list. Only those routines defining an unresolved external reference are loaded. If a
routine from a library references another routine in the library, and the library has not been
processed by ranlib(l), the referenced routine must appear after the referencing routine in the
library. Thus the order of programs within libraries may be important. The first member of a
library should be a file named ' __ .SYMDEF', which is understood to be a dictionary for the
library as produced by ranlib(l); the dictionary is searched iteratively to satisfy as many refer­
ences as possible.

The symbols '_etext', '_edata' and '_end' ('etext', 'edata' and 'end' in C) are reserved, and if
referred to, are set to the first location above the program, the first location above initialized
data, and the first location above all data respectively. It is erroneous to define these symbols.

Ld understands several options. Except for -I, they should appear before the file names.

-A This option specifies incremental loading, i.e. linking is to be done in a manner so that
the resulting object may be read into an already executing program. The next argument
is the name of a file whose symbol table will be taken as a basis on which to define
additional symbols. Only newly linked material will be entered into the text and data
portions of a.out, but the new symbol table will reflect every symbol defined before and
after the incremental load. This argument must appear before any other object file in
the argument list. The -T option may be used as well, and will be taken to mean that
the newly linked segment will commence at the corresponding address (which must be
a multiple of 1024). The default value is the old value of _end.

-D Take the next argument as a hexadecimal number and pad the data segment with zero
bytes to the indicated length.

-d Force definition of common storage even if the -r flag is present.

-e The following argument is taken to be the name of the entry point of the loaded pro-
gram; location 0 is the default.

-lx This option is an abbreviation for the library name '/Iib/Iibx.a', where xis a string. If
that does not exist, Id tries '/usr/Iib/Iibx.a' A library is searched when its name is
encountered, so the placement of a -1 is significant.

- M produce a primitive load map, listing the names of the files which will be loaded.

-N Do not make the text portion read only or sharable. (Use "magic number" 0407 .)

-n Arrange (by giving the output file a 0410 "magic number") that when the output file is
executed, the text portion will be read-only and shared among all users executing the
file. This involves moving the data areas up to the first possible 1024 byte boundary
following the end of the text.

4th Berkeley Distribution 18 January 1983

LD (1)

FILES

UNIX Programmer's Manual LD (1)

-o The name argument after -o is used as the name of the Id output file, instead of a.out.

-r Generate relocation bits in the output file so that it can be the subject of another Id run.
This flag also prevents final definitions from being given to common symbols, and
suppresses the 'undefined symbol' diagnostics.

-S 'Strip' the output by removing all symbols except locals and globals.

-s · 'Strip' the output~ that is, remove the symbol table and relocation bits to save space
(but impair the usefulness of the debuggers). This information can also be removed by
strip(l).

-T The next argument is a hexadecimal number which sets the text segment origin. The
default origin is 0.

-t ("trace") Print the name of each file as it is processed.

-u Take the following argument as a symbol and enter it as undefined in the symbol table.
This is useful for loading wholly from a library, since initially the symbol table is empty
and an unresolved reference is needed to force the loading of the first routine.

- X Save local symbols except for those whose names begin with 'L '. This option is used
by cc(l) to discard internally-generated labels while retaining symbols local to routines.

-x Do not preserve local (non-.globl) symbols in the output symbol table; only enter
external symbols. This option saves some space in the output file.

-ysym Indicate each file in which sym appears, its type and whether the file defines or refer­
ences it. Many such options may be given to trace many symbols. (It is usually neces­
sary to begin sym with an '_', as external C, FORTRAN and Pascal variables begin with
underscores.)

-z Arrange for the process to be loaded on demand from the resulting executable file (413
format) rather than preloaded. This is the default. Results in a 1024 byte header on
the output file followed by a text and data segment each of which have size a multiple
of 1024 bytes (being padded out with nulls in the file if necessary). With this format
the first few BSS segment symbols may actually appear (from the output of size(l)) to
live in the data segment; this to avoid wasting the space resulting from data segment
size roundup.

/lib/lib•.a libraries
/usr/lib/lib•.a more libraries
/usr/local/lib/lib•.a still more libraries
a.out output file

SEE ALSO

BUGS

as(l), ar(l), cc(l), ranlib(l)

There is no way to force data io be page aligned. Ld pads images which are to be demand
loaded from the file system to the next page boundary to avoid a bug in the system.

4th Berkeley Distribution 18 January 1983 2

LEX (1) UNIX Programmer's Manual LEX (1)

NAME
lex - generator of lexical analysis programs

SYNOPSIS
lex [-tvfn] [file] ...

DESCRIPTION
Lex generates programs to be used in simple lexical analyis of text. The input files (standard
input default) contain regular expressions to be searched for, and actions written in C to be
executed when expressions are found.

AC source program, 'lex.yy.c' is generated, to be compiled thus:

cc lex.yy.c -11

This program, when run, copies unrecognized portions of the input to the output, and executes
the associated C action for each regular expression that is recognized.

The options have the following meanings.

-t Place the result on the standard output instead of in file "lex.yy.c".

-v Print a one-line summary of statistics of the generated analyzer.

-n Opposite of -v; -n is default.

-f "Faster" compilation: don't bother to pack the resulting tables; limited to small pro-
grams.

EXAMPLE
lex lexcommands

would draw lex instructions from the file lexcommands, and place the output in lex.yy.c

%%
[A-Z] putchar(yytext [O] +·a' - ·A');
l 1 +s
[] + putcharr ');

is an example of a lex program that would be put into a lex command file. This program con­
verts upper case to lower, removes blanks at the end of lines, and replaces multiple blanks by
single blanks.

SEE ALSO
yacc(l), sed(l)
M. E. Lesk and E. Schmidt, LEX - Lexical Analyzer Generator

7th Edition 7 February 1983 1

LINT(l) UNIX Programmer's Manual LINT(l)

NAME
lint - a C program verifier

SYNOPSIS
lint [-abchnpuvx 1 file ...

DESCRIPTION
Lint attempts to detect features of the C program files which are likely to be bugs, or non­
portable, or wasteful. It also checks the type usage of the program more strictly than the com­
pilers. Among the things which are currently found are unreachable statements, loops not
entered at the top, automatic variables declared and not used, and logical expressions whose
value is constant. Moreover, the. usage of functions is checked to find functions which return
values -in some places and not in others, functions called with varying numbers of arguments,
and functions whose values are not used.

By default, it is assumed that all the files are to be loaded together; they are checked for mutual
compatibility. Function definitions for certain libraries are available to lint; these libraries are
referred to by a conventional name, such as '-lm', in the style of ld(l). Arguments ending in
.In are also treated as library files. To create lint libraries, use the -C option:

lint -Cfoo files ...

where files are the C sources of library Joo. The result is a file llib-lfoo.ln in the correct library
format suitable for linting programs using Joo.

Any number of the options in the following list may be used. The -D, -u, and -I options of
cc(l) are also recognized as separate arguments.

p Attempt to check portability to the IBM and GCOS dialects of C.

h Apply a number of heuristic tests to attempt to intuit bugs, improve style, and reduce
waste.

b Report break statements that cannot be reached. (This is not the default because,
unfortunately, most lex and many yacc outputs produce dozens of such comments.}

v Suppress complaints about unused arguments in functions.

x Report variables ref erred to by extern declarations, but never used.

a Report assignments of long values to int variables.
'

c Complain about casts which have questionable portability.

u Do not complain about functions and variables used and not defined, or defined and
not used (this is suitable for running lint on a subset of files out of a larger program).

n Do not check compatibility against the standard library.

z Do not comp!?.in about structures that are never defined (e.g. using a structure pointer
without knowing its contents.).

Exit(2) and other functions which do not return are not understood; this causes various lies.

Certain conventional comments in the C source will change the behavior of lint:

/•NOTREACHED•/
at appropriate points stops comments about unreachable code.

/•VARARGSn•/
suppresses the usual checking for variable numbers of arguments in the following func­
tion declaration. The data types of the first n arguments are checked; a missing n is

. taken to be 0.

/•NOSTRICT•/
shuts off strict type checking in the next expression.

4th Berkeley Distribution 7 March 1983 1

LINT(l) UNIX Programmer's Manual LINT (I)

/•ARGSUSED•/
turns on the -v option for the next function.

/•LINTLIBRARY•/
at the beginning of a file shuts off complaints about unused functions in this file.

AUTHOR
S.C. Johnson. Lint library construction implemented by Edward Wang.

FILES
/usr/lib/lint/lint[l2]
/usr/lib/lint/llib-lc.ln
/usr/lib/lint/llib-lc
/usr/lib/lint/llib-port.ln
/usr/lib/lint/llib-port
llib-1•.ln

SEE ALSO
cc(l)

programs
declarations for standard functions
human readable version of above
declarations for portable functions
human readable ...
library created with -C

S. C. Johnson, Lint, a C Program Checker

BUGS
There are some things you just can't get lint to shut up about.

4th Berkeley Distribution 7 March 1983 2

LN (1) UNIX Programmer's Manual LN (1)

NAME
In - make links

SYNOPSIS
In [-s 1 namel [name2}
In name ... directory

DESCRIPTION
A link is a directory entry referring to a file; the same file (together with its size, all its protec­
tion information, etc.) may have several links to it. There are two kinds of links: hard links
and symbolic links.

By default In makes hard links. A hard link to a file is indistinguishable from the original direc­
tory entry; any changes to a file are effective independent of the name used to reference the
file. Hard links may not span file systems and may not ref er to directories.

The -s option causes In to create symbolic links. A symbolic link contains the name of the file
to which it is linked. The referenced file is used when an open(2) operation is performed on
the link. A stat(2) on a symbolic link will return the linked-to file; an lstat(2) must be done to
obtain information about the link. The readlink(2) call may be used to read the contents of a
symbolic link. Symbolic links may span file systems and may ref er to directories.

Given one or two arguments, In creates a link to an existing file name]. If name2 is given, the
link has that name; name2 may also be a directory in which to place the link; otherwise it is
placed in the current directory. If only the directory is specified, the link will be made to the
last component of name].

Given more than two arguments, In makes links to all the named files in the named directory.
The links made will have the same name as the files being linked to.

SEE ALSO
rm(l), cp(l), mv(l), link(2), readlink(2), stat(2), symlink(2)

4th Berkeley Distribution 17 March 1982 1

LOGIN (1) UNIX Programmer's Manual LOGIN (1)

NAME
login - sign on

SYNOPSIS
login [username 1

DESCRIPTION

FILES

The login command is used when a user initially signs on, or it may be used at any time to
change from one user to another. The latter case is the one summarized above and described
here. See "How to Get Started" for how to dial up initially.

If login is invoked without an argument, it asks for a user name, and, if appropriate, a pass­
word. Echoing is turned off (if possible) during the typing of the password, so it will not
appear on the written record of the session.

After a successful login, accounting files are updated and the user is informed of the existence
of mail, and the message of the day is printed, as is the time he last logged in (unless he has a
".hushlogin" file in his home directory - this is mostly used to make life easier for non­
human users, such as uucp).

Login initializes the user and group IDs and the working directory, then executes a command
interpreter (usually sh(l)) according to specifications found in a password file. Argument 0 of
the command interpreter is "-sh", or more generally the name of the command interpreter
with a leading dash (" - ") prepended.

Login also initializes the environment environ(?) with information specifying home directory,
command interpreter, terminal type (if available) and user name.

If the file /etc/nologin exists login prints its contents on the user's terminal and exits. This is
used by shutdown(8) to stop users logging in when the system is about to go down.

Login is recognized by sh(l) and csh(l) and executed directly (without forking).

/etc/utmp
/usr/adm/wtmp
/usr/spool/mail/•
/etc/motd
/etc/passwd
/etc/nologin
.hushlogin
/etc/securetty

accounting
accounting
mail
message-of-the-day
password file
stops logins
makes login quieter
lists ttys that root may log in on

SEE ALSO
init(8), getty(8), mail(l), passwd(l), passwd(S), environ(7), shutdown(8)

DIAGNOSTICS
"Login incorrect," if the name or the password is bad.
"No Shell", "cannot open password file", "no directory": consult a programming counselor.

BUGS
An undocumented option, -r is used by the remote login server, rlogind(8C) to force login to
enter into an initial connection protocol.

4th Berkeley Distribution 1 April 1981 1

LOOK(l) UNIX Programmer's Manual LOOK(l)

NAME
look· - find lines in a sorted list

SYNOPSIS
look [-df] string [file]

DESCRIPTION
Look consults a sorted file and prints all lines that begin with string. It uses binary search.

FILES

The options d and f affect comparisons as in sorr(l):

d 'Dictionary' order: only letters, digits, tabs and blanks participate in comparisons.

f Fold. Upper case letters compare equal to lower ~ase.

If no file is specified, /usr/dictlwords is assumed with collating sequence -df.

/usr I diet/words

SEE ALSO
sort(l), grep(l)

7th Edition 18 January 1983 1

LORDER(l) UNIX Programmer's Manual LORDER (1)

NAME
!order - find ordering relation for an object library

SYNOPSIS
I order file ...

DESCRIPTION

FILES

The input is one or more object or library archive (see ar(l)) files. The standard output is a list
of pairs of object file names, meaning that the first file of the pair refers to external identifiers
defined in the second. The output may be processed by tsort(l) to find an ordering of a library
suitable for one-pass access by /d(l).

This brash one-liner intends to build a new library from existing '.o' files.

ar er library ' !order •.o I tsort'

The need for !order may be vitiated by use of ranlib(l), which converts an ordered archive into
a randomly accessed library.

•symref, •symdef
nm(l), sed(l), sort(l), join(l)

SEE ALSO

BUGS

tsort(l), Id(l), ar(l), ranlib(l)

The names of object files, in and out of libraries, must end with '.o'; nonsense results other­
wise.

4th Berkeley Distribution 18 January 1983 1

LPQ (1) UNIX Programmer's Manual LPQ (l J

NAME
lpq - spool queue examination program

SYNOPSIS
lpq [+ [n]] [-1] [-Pprinter 1 [job # ...] [user ... l

DESCRIPTION

FILES

lpq examines the spooling area used by /pd(8) for printing files on the line printer, and reports
the status of the specified jobs or all jobs associated with a user. lpq invoked without any argu­
ments reports on any jobs currently in the queue. A - P flag may be used to specify a particu­
lar printer, otherwise the default line printer is used (or the value of the PRINTER variable in
the environment). If a + argument is supplied, lpq displays the spool queue until it empties.
Supplying a number immediately after the + sign indicates that lpq should sleep /1 seconds in
between scans of the queue. All other arguments supplied are interpreted as user names or job
numbers to filter out only those jobs of interest.

For each job submitted Ci.e. invocation of lprO)) !pq reports the user's name, current rank in
the queue, the names of files comprising the job, the job identifier (a number which may be
supplied to lprmO) for removing a specific job), and the total size in bytes. The -1 option
causes information about each of the files comprising the job to be printed. Normally, only as
much information as will fit on one line is displayed. Job ordering is dependent on the algo­
rithm used to scan the spooling directory and is supposed to be FIFO (First in First Out). File
names comprising a job may be unavailable (when lprO) is used as a sink in a pipeline) in
which case the file is indicated as "(standard input)".

If fpq warns that there is no daemon present Ci.e. due to some malfunction), the fpc(S) com­
mand can be used to restart the printer daemon.

I etc/ termcap
/etc/printcap
/usr/spool/•
I usr/ spool/•/ cf•
/usr/spool/ •/lock

for manipulating the screen for repeated display
to determine printer characteristics
the spooling directory, as determined from printcap
control files specifying jobs
the lock file to obtain the currently active job

SEE ALSO

BUGS

lpr(l), lprmO), lpc(8), lpd(8)

Due to the dynamic nature of the information in the spooling directory lpq may report unreli­
ably. Output formatting is sensitive to the line length of the terminal; this can results in widely
spaced columns.

DIAGNOSTICS
Unable to open various files. The lock file being malformed. Garbage files when there is no
daemon active, but files in the spooling directory.

4th Berkeley Distribution 18 July 1983

LPR (1) UNIX Programmer's Manual LPR (1)

NAME
lpr - off line print

SYNOPSIS
lpr [-Pprinter] [-#num] [-C class] [-Jjob] [-T title] [-I [numcols]] [-1234/ont
] [-wnum] [-pltndgvcfrmhs] [name ...]

DESCRIPTION
Lpr uses a spooling daemon to print the named files when facilities become available. If no
names appear, the standard input is assumed. The -P option may be used to force output to a
specific printer. Normally, the default printer is used (site dependent), or the value of the
environment variable PRINTER is used.

The following single letter options are used to notify the line printer spooler that the files are
not standard text files. The spooling daemon will use the appropriate filters to print the data
accordingly.

-p Use pr(l) to format the files (equivalent to print).

-I Use a filter which allows control characters to be printed and suppresses page breaks.

-t The files are assumed to contain data from troff(I) (cat phototypesetter commands).

-n The files are assumed to contain data from ditroff (device independent troff).

-d The files are assumed to contain data from tex(I) (DYi format from Stanford).

-g The files are assumed to contain standard plot data as produced by the plot(3X) routines
(see also plot(l G) for the filters used by the printer spooler).

-v The files are assumed to contain a raster image for devices like the Benson Varian.

-c The files are assumed to contain data produced by cifplot(I).

-f Use a filter which interprets the first character of each line as a standard FORTRAN car-
riage control character.

The remaining single letter options have the following meaning.

-r Remove the file upon completion of spooling or upon completion of printing (with the
-s option).

- m Send mail upon completion.

-h Suppress the printing of the burst page.

-s Use symbolic links. Usually files are copied to the spool directory.

The -C option takes the following argument as a job classification for use on the burst page.
For example,

!pr -C EECS foo.c

causes the system name (the name returned by hostname(l)) to be replaced on the burst page
by EECS, and the file foo.c to be printed.

The -J option takes the following argument as the job name to print on the burst page. Nor­
mally, the first file's name is used.

The -T option uses the next argument as the title used by pr(l) instead of the file name.

To get multiple copies of output, use the -#num option, where num is the number of copies
desired of each file naMed. For example,

!pr -#3 foo.c bar.c more.c

4th Berkeley Distribution 28 July 1983 1

LPR(l) UNIX Programmer's Manual LPR (1)

FILES

would result in 3 copies of the file foo.c, followed by 3 copies of the file bar.c, etc. On the
other hand,

cat foo.c bar.c more.c I lpr -#3
will give three copies of the concatenation of the files.

The -1 option causes the output to be indented. If the next argument is numeric, it is used as
the number of blanks to be printed before each line; otherwise, 8 characters are printed.

The -w option takes the immediately following number to be the page width for pr.

The -s option will use symlink(2) to link data files rather than trying to copy them so large
files can be printed. This means the files should not be modified or removed until they have
been printed.

The option -1234 Specifies a font to be mounted on font position i. The daemon will con­
struct a .railmag file referencing /usr/liblvfont/name.size.

/etc/passwd
/etc/printcap
/usr/lib/lpd•
/usr/spool/•
/usr/spool/•/cf •
/usr/spool/•/df•
/usr/spool/•/tf •

personal identification
printer capabilities data base
line printer daemons
directories used for spooling
daemon control files
data files specified in "cf' files
temporary copies of "cf" files

SEE ALSO
lpq(l), lprm(l), pr(l), symlink(2), printcap(S), lpc(8), lpd(8)

DIAGNOSTICS

BUGS

If you try to spool too large a file, it will be truncated. Lpr will object to printing binary files. If
a user other than root prints a file and spooling is disabled, !pr will print a message saying so
and will not put jobs in the queue. If a connection to /pd on the local machine cannot be made,
/pr will say that the daemon cannot be started. Diagnostics may be printed in the daemon's log
file regarding missing spool files by !pd.

Fonts for troff and tex reside on the host with the printer. It is currently not possible to use
local font libraries.

4th Berkeley Distribution 28 July 1983 2

LPRM (1) UNIX Programmer's Manual LPRM (1)

NAME
lprm - remove jobs from the line printer spooling queue

SYNOPSIS
lprm [- P printer] [-] [job # ...] [user . ..]

DESCRIPTION

FILES

Lprm will remove a job, or jobs, from a printer's spool queue. Since the spooling directory is
protected from users, using lprm is normally the only method by which a user may remove a
job.

Lprm without any arguments will delete the currently active job if it is owned by the user who
invoked lprm.

If the - flag is specified, lprm will remove all jobs which a user owns. If the super-user
employs this flag, the spool queue will be emptied entirely. The owner is determined by the
user's login name and host name on the machine where the /pr command was invoked.

Specifying a user's name, or list of user names, will cause lprm to attempt to remove any jobs
queued belonging to that user (or users). This form of invoking lprm is useful only to the
super-user.

A user may dequeue an individual job by specifying its job number. This number may be
obtained from the lpq(l) program, e.g.

% lpq -I

1st: ken
(standard input)

% lprm 13

(job #013ucbarpa]
100 bytes

Lprm will announce the names of any files it removes and is silent if there are no jobs in the
queue which match the request list.

Lprm will kill off an active daemon, if necessary, before removing any spooling files. If a dae­
mon is killed, a new one is automatically restarted upon completion of file removals.

The -P option may be usd to specify the queue associated with a specific printer (otherwise
the default printer, or the value of the PRINTER variable in the environment is used).

I etc/ prin tcap
/usr/spool/•
/usr/spool/ •/lock

printer characteristics file
spooling directories
lock file used to obtain the pid of the current
daemon and the job number of the currently active job

SEE ALSO
lpr(l), lpq(l), lpd(8)

DIAGNOSTICS

BUGS

"Permission denied" if the user tries to remove files other than his own.

Since there are race conditions possible in the update of the lock file, the currently active job
may be incorrectly identified.

4th Berkeley Distribution 28 July 1983

LS (1) UNIX Programmer's Manual LS (1)

NAME
ls - list contents of directory

SYNOPSIS
ls [-acdfgilqrstulACLFR] name ...

DESCRIPTION
For each directory argument, Is lists the contents of the directory; for each file argument, Is
repeats its name and any other information requested. By default, the output is sorted alpha­
betically. When no argument is given, the current directory is listed. When several arguments
are given, the arguments are first sorted appropriately, but file arguments are processed before
directories and their contents.

There are a large number of options:

-1 List in long format, giving mode, number of links, owner, size in bytes, and time of
last modification for each file. (See below.) If the file is a special file the size field will
instead contain the major and minor device numbers. If the file is a symbolic link the
pathname of the linked-to file is printed preceded by " - > ".

-g Include the group ownership of the file in a long output.

-t Sort by time modified (latest first) instead of by name.

-a List all entries; in the absence of this option, entries whose names begin with a period
(.) are not listed.

-s Give size in kilobytes of each file.

-d If argument is a directory, list only its name; often used with - I to get the status of a
directory.

- L If argument is a symbolic link, list the file or directory the link references rather than
the link itself.

-r Reverse the order of sort to get reverse alphabetic or oldest first as appropriate.

-u Use time of last access instead of last modification for sorting (with the -t option)
and/ or printing (with the - I option).

-c Use time of file creation for sorting or printing.

-i For each file, print the i-number in the first column of the report.

-r Force each argument to be interpreted as a directory and list the name found in each
slot. This option turns off -I, -t, -s, and -r, and turns on -a; the order is the
order in which entries appear in the directory.

- F cause dire~tnri~" to be marked with a trailing '/', sockets with a trailing '= ', symbolic
links with a trailing'@', and executable files with a trailing'•'.

- R recursively list subdirectories encountered.

-1 force one entry per line output format; this is the default when output is not to a termi-
nal.

-C force multi-column output; this is the default when output is to a terminal.

-q force printing of non-graphic characters in file names as the character '?'; this is the
default when output is to a terminal.

The mode printed under the -I option contains 11 characters which are interpreted as follows:
the first character is

d if the entry is a directory;
b if the entry is a block-type special file;

4th Berkeley Distribution 28 July 1983

LS (1)

FILES

BUGS

UNIX Programmer's Manual

c if the entry is a character-type special file;
I if the entry is a sy!'llbolic link;
s if the entry is a socket, or

if the entry is a plain file.

LS (1)

The next 9 characters are interpreted as three sets of three bits each. The first set refers to
owner permissions; the next to permissions to others in the same user-group: and the last to all
others. Within each set the three characters indicate permission respectively to read, to write,
or to execute the file as a program. For a directory, 'execute' permission is interpreted to mean
permission to search the directory. The permissions are indicated as follows:

r if the file is readable;
w if the file is writable;
x if the file is executable;

if the indicated permission is not granted.

The group-execute permission character is given as s if the file has the set-group-id bit set; like­
wise the user-execute permission character is given as s if the file has the set-user-id bit set.

The last character of the mode (normally 'x' or ' - ') is t if the 1000 bit of the mode is on. See
chmod(l) for the meaning of this mode.

When the sizes of the files in a directory are listed, a total count of blocks, including indirect
blocks is printed.

/etc/passwd to get user id's for 'ls -I'.
/etc/group to get group id's for 'ls -g'.

Newline and tab are considered printing characters in file names.

The output device is assumed to be 80 columns wide.

The option setting based on whether the output is a teletype is undesirable as "ls -s" is much
different than "ls -s I lpr". On the other hand, not doing this setting would make old shell
scripts which used Is almost certain losers.

4th Berkeley Distribution 28 July 1983 2

MAIL (1) UNIX Programmer's Manual MAIL (1)

NAME
mail - send or receive mail among users

SYNOPSIS
mail [+] [- i] [person]
mail [+] [- i] - f file

DESCRJPTION

FILES

Mail with no argument prints a user's mail, message-by-message, in last-in, first-out order; the
optional argument+ causes first-in, first-out order. For each message, it reads a line from the
standard input to direct disposition of the message.

newline
Go on to next message.

d Delete message and go on to the next.

p Print message again.

Go back to previous message.

s [file] ...
Save the message in the named files ('mbox' default).

w [file] ...
Save the message, without a header, in the named files ('mbox' default).

m [person] ...
Mail the message to the named persons (yourself is default).

EOT (control-D)
Put unexamined mail back in the mailbox and stop.

q Same as EOT.

!command
Escape to the Shell to do command.

* Print a command summary.

An interrupt normally causes termination of the command; the mail file is unchanged. The
optional argument - i causes mail to continue after interrupts.

When persons are named, mail takes the standard input up to an end-of-file (or a line with just
'. ') and adds it to each person's 'mail' file. The message is preceded by the sender's name and a
postmark. Lines that look like postmarks are prepended with '> '. A person is usually a user
name recognized by login(1).

The - f option causes the named file, e.g. 'mbox', to be printed a..<1 if it were the mail file.

When a user logs in he is informed of the presence of mail.

/etc/passwd to identify sender and locate persons
/uO/spool/mail post office for incoming mail
m box saved mail
/tmp/ma* temp file
/usr/mail/•.lock lock for mail directory
dead.letter unmailable text

SEE ALSO
write(1)

7th Edition 1

MAIL (1) UNIX Programmer's Manual MAIL (1)

BUGS
Race conditions sometimes result in a failure to remove a lock file.

Normally anybody can read your mail. An installation can overcome this by making mail a set­
user-id command that owns the mail directory.

7th Edition 2

MAKE(I) UNIX Programmer's Manual MAKE(1)

NAME
make - maintain program groups

SYNOPSIS
make [- f makefile] [option] ... file ...

DESCRJPTION
Make executes commands in makefile to update one or more target names. Name is typically a
program. If no - f option is present, 'makefile' and 'Makefile' are tried in order. If makefile is
'- ', the standard input is taken. More than one - f option may appear

Make updates a target if it depends on prerequisite files that have been modified since the tar­
get was last modified, if the target does not exist, or if the keyword ALWAYS is specified in
the dependency list.

Makefile contains a sequence of entries that specify dependencies. The first line of an entry is a
blank-separated list of targets, then a colon, then a list of prerequisite files. Text following a
semicolon, and all following lines that begin with a tab, are shell commands to be executed to
update the target. If a name appears on the left of more than one 'colon' line, then it depends
on all of the names on the right of the colon on those lines, but only one command sequence
may be specified for it. If a name appears on a line with a double colon : : then the command
sequence following that line is performed only if the name is out of date with respect to the
names to the right of the double colon, and is not affected by other double colon lines on
which that name may appear.

Two special forms of a name are recognized. A name like a(b) means the file named b stored
in the archive named a. A name like a((b)) means the file stored in archive a containing the
entry point b.

Sharp and newline surround comments.

The following makefile says that 'pgm' depends on two files 'a.o' and 'b.o', and that they in
turn depend on '.c' files and a common file 'incl'.

pgm: a.o b.o
cc a.o b.o - lm - o pgm

a.o: incl a.c
cc - c a.c

b.o: incl b.c
cc - c b.c

Makefile entries of the form

stringl = string2

are macro definitions. Subsequent appearances of $(stri"ng1) or ${str£ng1} are replaced by
string2. If string1 is a single character, the parentheses or braces are optional.

Make infers prerequisites for files for which makefile gives no construction commands. For
example, a' .c' file may be inferred as prerequisite for a' .o' file and be compiled to produce the
'.o' file. Thus the preceding example can be done more briefly:

pgm: a.o b.o
cc a.o b.o - lm - o pgm

a.o b.o: incl

Prerequisites are inferred according to selected suffixes listed as the 'prerequisites' for the spe­
cial name '.SUFFIXES'; multiple lists accumulate; an empty list clears what came before.
Order is significant; the first possible name for which both a file and a rule as described in the
next paragraph exist is inferred. The default list is

.SUFFIXES: .out .o .c .e .r .f .y .l .s .p

7th Edition 18 January 1983 1

MAKE(1) UNIX Programmer's Manual MAKE(1)

FILES

The rule to create a file with suffix s2 that depends on a similarly named file with suffix sl is
specified as an entry for the 'target' s1s2. In such an entry, the special macro $*stands for the
target name with suffix deleted, $@ for the full target name, $ < for the complete list of prere­
quisites, and $? for the list of prerequisites that are out of date. For example, a rule for mak­
ing optimized '.o' files from '.c' files is

.c.o: ; cc - c - 0 - o $@ $*.c

Certain macros are used by the default inference rules to communicate optional arguments to
any resulting compilations. In particular, 'CFLAGS' is used for cc(1) options, 'FFLAGS' for
/77(1) options, 'PFLAGS' for pc(l) options, and 'LFLAGS' and 'YFLAGS' for lex and yacc(I)
options. In addition, the macro 'MFLAGS' is filled in with the initial command line options
supplied to make. This simplifies maintaining a hierarchy of makefiles as one may then invoke
make on makefiles in subdirectories and pass along useful options such as - k.

Command lines are executed one at a time, each by its own shell. A line is printed when it is
executed unless the special target '.SILENT' is in makefile, or the first character of the com­
mand is'@'.

Commands returning nonzero status (see intro(1)) cause make to terminate unless the special
target' .IGNORE' is in makefile or the command begins with <tab> <hyphen>.

Interrupt and quit cause the target to be deleted unless the target is a directory or depends on
the special name '.PRECIOUS'.

Other options:

- i Equivalent to the special entry '.IGNORE:'.

- k When a command returns nonzero status, abandon work on the current entry, but con-
tinue on branches that do not depend on the current entry.

- n Trace and print, but do not execute the commands needed to update the targets.

- t Touch, i.e. update the modified date of targets, without executing any commands.

- r Equivalent to an initial special entry' .SUFFIXES:' with no list.

- s Equivalent to the special entry '.SILENT:'.

makefile, Makefile

SEE ALSO

BUGS

sh(l), touch(I), f77(1), pc(l)
S. I. Feldman Make - A Program for Maintaining Computer Programs

Some commands return nonzero status inappropriately. Use - i to overcome the difficulty.
Commands that are directly executed by the shell, notably cd(1), are ineffectual across newlines
in make.

7th Edition 18 January 1983 2

MAN(l) UNIX Programmer's Manual MAN(l)

NAME
man - find manual information by keywords; print out the manual

SYNOPSIS
man - k keyword ...
man -f file ...
man [-] [-t] [section] title ...

DESCRIPTION

FILES

Man is a program which gives information from the programmers manual. It can be asked for
one line descriptions of commands specified by name, or for all commands whose description
contains any of a set of keywords. It can also provide on-line access to the sections of the
printed manual.

When given the option -k and a set of keywords, man prints out a one line synopsis of each
manual sections whose listing in the table of contents contains that keyword.

When given the option -f and a list of file names, man attempts to locate manual sections
related to those files, printing out the table of contents lines for those sections.

When neither -k nor -f is specified, man formats a specified set of manual pages. If a section
specifier is given man looks in the that section of the manual for the given titles. Section is an
Arabic section number (3 for instance). The number may followed by a single letter classifier
(lg for instance) indicating a graphics program in section 1. If section is omitted, man searches
all sections of the manual, giving preference to commands over subroutines in system libraries,
and printing the first section it finds, if any.

If the standard output is a teletype, or if the flag - is given, man pipes its output through
cat(l) with the option -s to crush out useless blank lines, u/(l) to create proper underlines for
different terminals, and through more(l) to stop after each page on the screen. Hit a space to
continue, a control-0 to scroll 11 more lines when the output stops.

The -t flag causes man to arrange for the specified section to be troif'ed to a suitable raster out­
put device; see vtroff(1).

/usr/man/man? I•
/usr/man/cat? /•

SEE ALSO

BUGS

more(l), ul(l), whereis(l), catman(8)

The manual is supposed to be reproducible either on the phototypesetter or on a typewriter.
However, on a typewriter some information is necessarily lost.

4th Berkeley Distribution 18 January 1983 1

MESG (1) UNIX Programmer's Manual

NAME
mesg - permit or deny messages

SYNOPSIS
mesg [n] [y]

DESCRIPTION

MESG (I)

Mesg with argument n forbids messages via write and talk(l) by revoking non-user write per­
mission on the user's terminal. Mesg with argument y reinstates permission. All by itself,
mesg reports the current state without changing it.

FILES
/dev/tty•

SEE ALSO
write(l), talk(l)

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

7th Edition 18 July 1983

MKDIR(1)

NAME
mkdir - make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION

MKDIR(l)

Mkdir creates specified directories in mode 777. Standard entries, ., for the
directory itself, and •• , for its parent, are made automatically.

Mkdir requires write permission in the parent directory.

SEE ALSO
rm(l).

DIAGNOSTICS
Mkdir returns exit code 0 if all directories were successfully made; oth­
erwise, it prints a diagnostic and returns non-zero.

- 1 -

' MORE(1) UNIX Programmer's Manual MORE (1)

NAME
more, page - file perusal filter for crt viewing

SYNOPSIS
more [-cdftsu] [- n] [+line number] [+I pattern 1 [name ...

page more options

DESCRIPTION
More is a filter which allows examination of a continuous text one screenful at a time on a
soft-copy terminal. It normally pauses after each screenful, printing --More-- at the bottom of
the screen. If the user then types a carriage return, one more line is displayed. If the user hits
a space, another screenful is displayed. Other possibilities are enumerated later.

The command line options are:

- n An integer which is the size (in lines) of the window which more will use instead of the
default.

-c More will draw each page by beginning at the top of the screen and erasing each line
just before it draws on it. This avoids scrolling the screen, making it easier to read
while more is writing. This option will be ignored if the terminal does not have the
ability to clear to the end of a line.

-d More will prompt the user with the message "Hit space to continue, Rubout to abort" at
the end of each screenful. This is useful if more is being used as a filter in some set­
ting, such as a class, where many users may be unsophisticated.

-f This causes more to count logical, rather than screen lines. That is, long lines are not
folded. This option is recommended if nroff output is being piped through ul, since the
latter may generate escape sequences. These escape sequences contain characters which
would ordinarily occupy screen positions, but which do not print when they are sent to
the terminal as part of an escape sequence. Thus more may think that lines are longer
than they actually are, and fold lines erroneously.

-1 Do not treat AL (form feed) specially. If this option is not given, more will pause after
any line that contains a AL, as if the end of a screenf ul had been reached. Also, if a file
begins with a form feed, the screen will be cleared before the file is printed.

-s Squeeze multiple blank lines from the output, producing only one blank line. Espe­
cially helpful when viewing nroff output, this option maximizes the useful information
present on the screen.

-u Normally, more will handle underlining such as produced by nroff in a manner appropri­
ate to the particular terminal: if the terminal can perform underlining or has a stand­
out mode, more will output appropriate escape sequences to enable underlining or
stand-out mode for underlined information in the source file. The -u option
suppresses this processing.

+ linenumber
Start up at linenumber.

+!pattern
Start up two lines before the line containing the regular expression pattern.

If the program is invoked as page, then the screen is cleared before each screenful is printed
(but only if a full screenful is being printed), and k - 1 rather than k - 2 lines are printed in
each screenful, where k is the number of lines the terminal can display.

More looks in the file /etc/termcap to determine terminal characteristics, and to determine the
default window size. On a terminal capable of displaying 24 lines, the default window size is 22
lines. ·

4th Berkeley Distribution 27 April 1981 1

MORE(l) UNIX Programmer's Manual MORE(1)

More looks in the environment variable MORE to pre-set any flags desired. For example, if
you pref er to view files using the -c mode of operation, the csh command setenv MORE -c or
the sh command sequence MORE- '-c' ,·export MORE would cause all invocations of more,
including invocations by programs such as man and msgs , to use this mode. Normally, the
user will place the command sequence which sets up the MORE environment variable in the
.cshrc or .profile file.

If more is reading from a file, rather than a pipe, then a percentage is displayed along with the
--More-- prompt. This gives the fraction of the file (in characters, not lines) that has been read
so far.

Other sequences which may be typed when more pauses, and their effects, are as follows (;is an
optional integer argument, defaulting to 1) :

i<space>
display i more lines, (or another screenful if no argument is given)

AD display 11 more lines (a "scroll"). If i is given, then the scroll size is set to i.

d same as AD (control-D)

iz same as typing a space except that i, if present, becomes the new window size.

is skip i lines and print a screenful of lines

if skip i screenfuls and print a screenful of lines

q or Q Exit from more.

- Display the current line number.

v Start up the editor vi at the current line.

h Help command; give a description of all the more commands.

i/expr search for the i-th occurrence of the regular expression expr. If there are less than i
occurrences of expr, and the input is a file (rather than a pipe), then the position in the
file remains unchanged. Otherwise, a screenful is displayed, starting two lines before
the place where the expression was found. The user's erase and kill characters may be
used to edit the regular expression. Erasing back past the first column cancels the
search command.

in search for the i-th occurrence of the last regular expression entered.

(single quote) Go to the point from which the last search started. If no search has
been performed in the current file, this command goes back to the beginning of the file.

!command .
invoke a shell with command. The characters '%' and '!' in "command" are replaced
with the current file name and the previous shell command respectively. If there is no
current file name, '%' is not expanded. The sequences "\%" and "\!" are replaced by
"%" and"!" respectively.

i:n skip to the i-th next file given in the command line (skips to last file if n doesn't make
·sense)

i:p skip to the i-th previous file given iri the command line. If this command is given in
the middle of printing out a file, then more goes back to the beginning of the file. If i
doesn't make sense, more skips back to the first file. If more is noi reading from a file,
the bell is rung and nothing else happens.

:f display the current file name and line number.

4th Berkeley Distribution 27 April 1981 2

(

MORE(1) UNIX Programmer's Manual MORE (1)

:q or :Q
exit from more (same as q or Q).

(dot) repeat the previous command.

The commands take effect immediately, i.e., it is not necessary to type a carriage return. Up to
the time when the command character itself is given, the user may hit the line kill character to
cancel the numerical argument being formed. In addition, the user may hit the erase character
to redisplay the --More--(xx%) message.

At any time when output is being sent to the terminal, the user can hit the quit key (normally
control-\). More will stop sending output, and will display the usual --More-- prompt. The
user may then enter one of the above commands in the normal manner. Unfortunately, some
output is lost when this is done, due to the fact that any characters waiting in the terminal's
output queue are flushed when the quit signal occurs.

The terminal is set to noecho mode by this program so that the output can be continuous.
What you type will thus not show on your terminal, except for the I and ! commands.

If the standard output is not a teletype, then more acts just like cat, except that a header is
printed before each file (if there is more than one).

A sample usage of more in previewing nroff output would be

nroff - ms + 2 doc.n I more -s

AUTHOR
Eric Shienbrood, minor revisions by John Foderaro and Geoffrey Peck

FILES
/etc/termcap
/usr/lib/rnore.help

SEE ALSO

Terminal data base
Help file

csh(l), rnan(l), msgs(l), script(l), sh(l), environ(7)

4th Berkeley Distribution 27 April 1981 3

MV(l) UNIX Programmer's Manual MV(l)

NAME
mv - move or rename files

SYNOPSIS
mv l -1 1 [-f 1 [- 1 filel file2

mv [-1 1 [-f] [-] file ... directory

DESCRIPTION
Mv moves (changes the name oO filel to file2.

If file2 already exists, it is removed before filel is moved. If file2 has a mode which forbids
writing, mv prints the mode (see chmod(2)) and reads the standard input to obtain a line; if the
line begins with y, the move takes place; if not, mv exits.

In the second form, one or more files (plain files or directories) are moved to the directory with
their original file-names.

Mv refuses to move a file onto itself.

Options:

-1 stands for interactive mode. Whenever a move is to supercede an existing file, the user
is prompted by the name of the file followed by a question mark. If he answers with a
line starting with 'y', the move continues. Any other reply prevents the move from
occurring.

-f stands for force. This option overrides any mode restrictions or the -i switch.

means interpret all the following arguments to mv as file names. This allows file names
starting with minus.

SEE ALSO

BUGS

cp(l), ln(l)

If filel and file2 lie on different file systems, mv must copy the file and delete the original. In
this case the owner name becomes that of the copying process and any linking relationship with
other files is lost.

4th Berkeley Distribution 1 April 1981 1

NEWGRP(l) NEWGRP(l)

NAME
newgrp - log in to a new group

SYNOPSIS
newgrp [group]

DESCRIPTION

FILES

Newgrp changes the group identification of its caller, analogously to
login (1). The same person remains logged in, and the current directory is
unchanged, but calculations of access permissions to files are performed
with respect to the new group ID.

Newgrp without an argument changes the group identification to the group
in the password file; in effect it changes the group identification back to the
caller's original group.

A password is demanded if the group has a password and the user himself
does not, or if the group has a password and the user is not listed in
/etc/group as being a member of that group.

When most users log in, they are members of the group named other.

/etc/group
/etc/passwd

SEE ALSO

BUGS

login(l), group(5).

There is no convenient way to enter a password into /etc/group.
Use of group passwords is not encouraged, because, by their very nature,
they encourage poor security practices. Group passwords may disappear in
the future.

- I -

NICE(l) UNIX Programmer's Manual NICE (1)

NAME
nice, nohup - run a command at low priority (sh only)

SYNOPSIS
nice [- number] command [arguments 1
nohup command [arguments]

DESCRIPTION

FILES

Nice executes command with low scheduling priority. If the number argument is present, the
priority is incremented (higher numbers mean lower priorities) by that amount up to a limit of
20. The default number is 10.

The super-user may run commands with priority higher than normal by using a negative prior­
ity, e.g. '- -10'.

Nohup executes command immune to hangup and terminate signals from the controlling termi­
nal. The priority is incremented by 5. Nohup should be invoked from the shell with '&' in
order to prevent it from responding to interrupts by or stealing the input from the next person
who logs in on the same terminal. The syntax of nice is also different.

nohup.out standard output and standard error file under nohup

SEE ALSO
csh (1), setpriority(2), renice (8)

DIAGNOSTICS

BUGS

Nice returns the exit status of the subject command.

Nice and nohup are particular to sh (1). If you use csh (1), then commands executed with " & "
are automatically immune to hangup signals while in the background. There is a builtin com­
mand nohup which provides immunity from terminate, but it does not redirect output to
nohup.out.

Nice is built into csh(l) with a slightly different syntax than described here. The form "nice
+ 10" nices to positive nice, and "nice -10" can be used by the super-user to give a process
more of the processor.

4th Berkeley Distribution 18 January 1983 1

NM(l) UNIX Programmer's Manual NM(l)

NAME
nm - print name list

SYNOPSIS
nm [-gnopru] [file ... 1

DESCRIPTION
Nm prints the name list (symbol table) of each object file in the argument list. If an argument
is an archive, a listing for each object file in the archive will be produced. If no file is given,
the symbols in "a.out" are listed.

Each symbol name is preceded by its value (blanks if undefined) and one of the letters U
(undefined), A (absolute), T (text segment symbol), D (data segment symbol), B (bss segment
symbol), C (common symbol), f file name, or - for sdb symbol table entries (see -a below).
If the symbol is local (non-external) the type letter is in lower case. The output is sorted alpha­
betically.

Options are:

-g Print only global (external) symbols.

-n Sort numerically rather than alphabetically.

-o Prepend file or archive element name to each output line rather than only once.

-p Don't sort; print in symbol-table order.

-r Sort in reverse order.

-u Print only undefined symbols.

SEE ALSO
ar(l), ar(5), a.out(5), stab(5)

4th Berkeley Distribution 7 February 1983 1

NROFF(1) UNIX Programmer's Manual NROFF (1)

NAME
nroff - text formatting

SYNOPSIS
nroff [option] ... [file l ...

DESCRIPTION

FILES

Nroff formats text in the named files for typewriter-like devices. See also troff(}). The full capa­
bilities of nroff are described in the NrojJ!Troff User's Manual.

If no file argument is present, the standard input is read. An argument consisting of a single
minus (-) is taken to be a file name corresponding to the standard input.

The options, which may appear in any order so long as they appear before the files, are:

-olist

-nN

-sN

Print only pages whose page numbers appear in the comma-separated list of numbers
and ranges. A range N- M means pages N through M; an initial - N means from
the beginning to page N; and a final N - means from N to the end.

Number first generated page N.

Stop every N pages. Nroff will halt prior to every N pages (default N =I) to allow
paper loading or changing, and will resume upon receipt of a newline.

-mname Prepend the macro file /usr/lib/tmac/tmac.name to the input files.

-raN Set register a (one-character) to N.

-i Read standard input after the input files are exhausted.

-q Invoke the simultaneous input-output mode of the rd request.

-Tname Prepare output for specified terminal. Known names are 37 for the (default) Tele-
type Corporation Model 37 terminal, tn300 for the GE TermiNet 300 (or any termi­
nal without half-line capability), JOOS for the DASI-300S, 300 for the DASI-300, and
450 for the DASI-450 (Diablo Hyterm).

-e Produce equally-spaced words in adjusted lines, using full terminal resolution.

-h Use output tabs during horizontal spacing to speed output and reduce output charac-
ter count. Tab settings are assumed to be every 8 nominal character widths.

/tmp/ta• temporary file
/usr/lib/tmac/tmac.• standard macro files
/usr/lib/term/• terminal driving tables for nroff

SEE ALSO
J. F. Ossanna, NroffJTroff user's manual
B. W. Kernighan, A TROFF Tutorial
troff(l), eqn(l), tbl(l), ms(7), me(7), man(7), col(l)

7th Edition 26 January 1982

OD (1) UNIX Programmer's Manual OD (1)

NAME
od - octal, decimal, hex, ascii dump

SYNOPSIS
od [-format] [file J [[+]offset[.][b] [label}]

DESCRIPTION
Od displays file, or it's standard input, in one or more dump formats as selected by the first
argument. If the first argument is missing, -o is the default. Dumping continues until end­
of-file.

The meanings of the format argument characters are:

a Interpret bytes as characters and display them with their ACSII names. If the p character
is given also, then bytes with even parity are underlined. The P character causes bytes
with odd parity to be underlined. Otherwise the parity bit is ignored.

b Interpret bytes as unsigned octal.

c Interpret bytes as ASCII characters. Certain non-graphic characters appear as C escapes:
null =\O, backspace =\b, formfeed=\f, newline =\n, return =\r, tab= \t; others appear as
3-digit octal numbers. Bytes with the parity bit set are displayed in octal.

d Interpret (short) words as unsigned decimal.

f Interpret long words as floating point.

h Interpret (short) words as unsigned hexadecimal.

Interpret (short) words as signed decimal.

Interpret long words as signed decimal.

o Interpret (short) words as unsigned octal.

s [n] Look for strings of ascii graphic characters, terminated with a null byte. N specifies the
minimum length string to be recognized. By default, the minimum length is 3 characters.

v Show all data. By default, display lines that are identical to the last line shown are not out­
put, but are indicated with an "*" in column 1.

w[n] Specifies the number of input bytes to be interpreted and displayed on each output line. If
w is not specified, 16 bytes are read for each display line. If n is not specified, it defaults
to 32.

x Interpret (short) words as hexadecimal.

An upper case format character implies the long or double precision form of the object.

The offset argument specifies the byte offset into the file where dumping is to commence. By
default this argument is interpreted in octal. A different radix can be specified; If "." is
appended to the argument, then offset is interpreted in decimal. If offset begins with "x" or
"Ox", it is interpreted in hexadecimal. If "b" ("B") is appended, the offset is interpreted as a
block count, where a block is 512 0024) bytes. If the file argument is omitted, an offset argu­
ment must be preceded by "+ ".

The radix of the displayed address will be the same as the radix of the offset, if specified; other­
wise it will be octal.

Label will be interpreted as a pseudo-address for the first byte displayed. It will be shown in
"0" following the file off set. It is intended to be used with core images to indicate the real
memory address. The syntax for label is identical to that for offset.

SEE ALSO
adb(l)

4th Berkeley Distribution 16 February 83

OD (1)

BUGS

UNIX Programmer's Manual OD (1)

A file name argument can't start with "+ ". A hexadecimal offset can't be a block count.
Only one file name argument can be given.

It is an historical botch to require specification of object, radix, and sign representation in a sin­
gle character argument.

4th Berkeley Distribution 16 February 83 2

PAGESIZE (1) UNIX Programmer's Manual

NAME
pagesize - print system page size

SYNOPSIS
pagesize

DESCRIPTION

PAGESIZE (1)

Pagesize prints the size of a page of memory in bytes, as returned by getpagesize(2). This pro­
gram is useful in constructing portable shell scripts.

SEE ALSO
getpagesize (2)

4th Berkeley Distribution 3 April 1983

PASSWD (1) UNIX Programmer's Manual PASSWD (l)

NAME
passwd - change login password

SYNOPSIS
passwd [name]

DESCRIPTION

FILES

This command changes (or installs) a password associated with the user name (your own name
by default).

The program prompts for the old password and then for the new one. The caller must supply
both. The new password must be typed twice, to forestall mistakes.

New passwords must be at least four characters long if they use a sufficiently rich alphabet and
at least six characters long if monocase. These rules are relaxed if you are insistent enough.

Only the owner of the name or the super-user may change a password; the owner must prove
he knows the old password.

/etc/passwd

SEE ALSO

BUGS

login(l), passwd(5), crypt(3)
Robert Morris and Ken Thompson, UNIX password security

The password file information should be kept in a ditf erent data structure allowing indexed
access; dbm(3X) would probably be suitable.

4th Berkeley Distribution 18 January 1983

PLOT (lG) UNIX Programmer's Manual PLOT (IG)

NAME
plot - graphics filters

SYNOPSIS
plot [-Tterminal [raster 1 1

DESCRIPTION

FILES

These commands read plotting instructions (see plot(5)) from the standard input, and in gen·
era! produce plotting instructions suitable for a particular terminal on the standard output.

If no terminal type is specified, the environment parameter $TERM (see environ (7)) is used.
Known terminals are:

4014 Tektronix 4014 storage scope.

450 DASI Hyterm 450 terminal (Diablo mechanism).

300 DASI 300 or GSI terminal (Diablo mechanism).

JOOS DASI 300S terminal (Diablo mechanism).

ver Versatec D1200A printer-plotter. This version of plot places a scan-converted image in
'/usr/tmp/raster' and sends the result directly to the plotter device rather than to the
standard output. The optional argument causes a previously scan-converted file raster
to be sent to the plotter.

/usr /bin/tek
/usr /bin/t450
/usr /bin/t300
/usr /bin/t300s
/usr /bin/vplot
/usr/tmp/raster

SEE ALSO
plot(3X), plot(5)

BUGS
There is no lockout protection for /usr/tmp/raster.

7th Edition 18 January 1983

PR (1) UNIX Programmer's Manual PR (I)

NAME
pr - print file

SYNOPSIS
pr [option] ... [file] ...

DESCRIPTION

FILES

Pr produces a printed listing of one or more files. The output is separated into pages headed by
a date, the name of the file or a specified header, and the page number. If there are no file
arguments, pr prints its standard input.

Options apply to all following files but may be reset between files:

- n Produce n-column output.

+ n Begin printing with page n.

-h Take the next argument as a page header.

-wn For purposes of multi-column output, take the width of the page to be n characters
instead of the default 72.

-f Use forrnfeeds instead of newlines to separate pages. A formfeed is assumed to use up
two blank lines at the top of a page. (Thus this option does not affect the effective
page length.)

- ln Take the length of the page to be n lines instead of the default 66.

-t Do not print the 5-line header or the 5-line trailer normally supplied for each page.

-sc Separate columns by the single character c instead of by the appropriate amount of
white space. A missing c is taken to be a tab.

-m Print all files simultaneously, each in one column,

Inter-terminal messages via writeO) are forbidden during a pr.

/dev/tty? to suspend messages.

SEE ALSO
cat(1)

DIAGNOSTICS
There are no diagnostics when pr is printing on a terminal.

4th Berkeley Distribution 18 January 1983

PRINTENV (1) UNIX Programmer's Manual

NAME
printenv - print out the environment

SYNOPSIS
prlntenv [name]

DESCRIPTION

PRINTENV (1)

Printenv prints out the values of the variables in the environment. If a name is specified, only
its value is printed.

If a name is specified and it is not defined in the environment, printenv returns exit status 1,
else it returns status 0.

SEE ALSO
sh(l), environ(7), csh(l)

3rd Berkeley Distribution 24 February 1979 1

PROF(l) UNIX Programmer's Manual PROF(l)

NAME
prof - display profile data

SYNOPSIS
prof[-a] [-I] [-n] [-z] [-s] [-v [-low [-high]]] [a.out [mon.out ...]]

DESCRIPTION

FILES

Prof interprets the file produced by the monitor subroutine. Under default modes, the symbol
table in the named object file (a.out default) is read and correlated with the profile file (man.out
default). For each external symbol, the percentage of time spent executing between that sym­
bol and the next is printed (in decreasing order), together with the number of times that rou­
tine was called and the number of milliseconds per call. If more than one profile file is
specified, the output represents the sum of the profiles.

In order for the number of calls to a routine to be tallied, the -p option of cc, j77 or pc must
have been given when the file containing the routine was compiled. This option also arranges
for the profile file to be produced automatically.

Options are:

-a all symbols are reported rather than just external symbols.

-I the output is sorted by symbol value.

-n the output is sorted by number of calls

-s a summary profile file is produced in mon.sum. This is really only useful when more
than one profile file is specified.

-v all printing is suppressed and a graphic version of the profile is produced on the stan­
dard output for display by the p/ot(l) filters. When plotting, the numbers low and high,
by default O and 100, may be given to cause a selected percentage of the profile to be
plotted with accordingly higher resolution.

-z routines which have zero usage (as indicated by call counts and accumulated time) are
nevertheless printed in the output.

mon.out for profile
a.out for namelist
man.sum for summary profile

SEE ALSO
monitor (3), profi.1(2), cc (1), plot (1 G)

BUGS
Beware of quantization errors.

Is confused by j77 which puts the entry points at the bottom of subroutines and functions.

4th Berkeley Distribution 18 January 1983 1

PS (1) UNIX Programmer's Manual PS (1)

NAME
ps - process status

SYNOPSIS
ps [acegklstuvwx#]

DESCRIPTION
Ps prints information about processes. Normally, only your processes are candidates to be
printed by ps; specifying a causes other users processes to be candidates to be printed; specify­
ing x includes processes without control terminals in the candidate pool.

All output formats include, for each process, the process id PID, control terminal of the pro­
cess TT, cpu time used by the process TIME (this includes both user and system time), the
state ST AT of the process, and an indication of the COMMAND which is running. The state is
given by a sequence of four letters, e.g. "RWNA". The first letter indicates the runnability of
the process: R for runnable processes, T for stopped processes, P for processes in page wait, D
for those in disk (or other short term) waits, S for those sleeping for less than about 20
seconds, and I for idle (sleeping longer than about 20 seconds) processes. The second letter
indicates whether a process is swapped out, showing W if it is, or a blank if it is loaded Gn­
core); a process which has specified a soft limit on memory requirements and which is exceed­
ing that limit shows >; such a process is (necessarily) not swapped. The third letter indicates
whether a process is running with altered CPU scheduling priority (nice); if the process priority
is reduced, an N is shown, if the process priority has been artificially raised then a '<' is
shown; processes running without special treatment have just a blank. The final letter indicates
any special treatment of the process for virtual memory replacement; the letters correspond to
options to the vadvise(2) call; currently the possibilities are A standing for V A_ANOM, S for
V A_SEQL and blank for V A_NORM; an A typically represents a lisp(l) in garbage collection, S
is typical of large image processing programs which are using virtual memory to sequentially
address voluminous data.

Here are the options:

a asks for information about all processes with terminals (ordinarily only one's own
processes are displayed).

c prints the command name, as stored internally in the system for purposes of accounting,
rather than the command arguments, which are kept in the process' address space. This
is more reliable, if less informative, since the process is free to destroy the latter informa­
tion.

e Asks for the environment to be printed as well as the arguments to the command.

g Asks for all processes. Without this option, ps only prints "interesting" processes.
Processes are deemed to be uninteresting if they are process group leaders. This normally
eliminates top-level command interpreters and processes waiting for users to login on free
terminals.

k causes the file /vmcore is used in place of /dev/kmem and /dev/mem. This is used for post­
mortem system debugging.

asks for a long listing, with fields PPID, CP, PRI, NI, ADDR, SIZE, RSS and WCHAN as
described below.

s Adds the size SSIZ of the kernel stack of each process (for use by system maintainers) to
the basic output format.

tx restricts output to processes whose controlling tty is x (which should be specified as
printed by ps, e.g. t3 for tty3, tco for console, tdO for ttydO, t? for processes with no tty. r
for processes at the current tty, etc). This option must be the last one given.

u A user oriented output is produced. This includes fields USER, %CPU, NICE, SIZE, and

4th Berkeley Distribution 13 April 1983

PS (1) UNIX Programmer's Manual PS (1)

RSS as described below.

v A version of the output contammg virtual memory statistics is output. This includes
fields RE, SL, PAGEIN, SIZE, RSS, LIM, TSIZ, TRS, %CPU and %MEM, described
below.

w Use a wide output format 032 columns rather than 80); if repeated, e.g. ww, use arbi­
trarily wide output. This information is used to decide how much of long commands to
print.

x asks even about processes with no terminal.

A process number may be given, (indicated here by #), in which case the output is res-
tricted to that process. This option must also be last.

A second argument tells ps where to look for core if the k option is given, instead of /vmcore.
A third argument is the name of a swap file to use instead of the default /dev/drum. If a
fourth argument is given, it is taken to be the file containing the system's namelist. Otherwise,
/vmunix is used.

Fields which are not common to all output formats:
USER
%CPU

NICE
SIZE
RSS
LIM

TSIZ
IRS
%MEM
RE
SL
PAGEIN

urn
PPID
CP
PRI
ADDR
WCHAN

name of the owner of the process
cpu utilization of the process; this is a decaying average over up to a minute of pre­
vious (real) time. Since the time base over which this is computed varies (since
processes may be very young) it is possible for the sum of all %CPU fields to exceed
100%.
(or NI) process scheduling increment (see setpriority(2))
virtual size of the process (in 1024 byte units)
real memory (resident set) size of the process (in 1024 byte units)
soft limit on memory used, specified via a call to setrlimit(2); if no limit has been
specified then shown as xx
size of text (shared program) image
size of resident (real memory) set of text
percentage of real memory used by this process.
residency time of the process (seconds in core)
sleep time of the process (seconds blocked)
number of disk i/o's resulting from references by the process to pages not loaded in
core.
numerical user-id of process owner
numerical id of parent of process
short-term cpu utilization factor (used in scheduling)
process priority (non-positive when in non-interruptible wait)
swap address of the process
event on which process is waiting (an address in the system), with the initial part of
the address trimmed off e.g. 80004000 prints as 4000.

F flags associated with process as in < sys/proc.h >:
SLOAD 000001 in core
SSYS 000002 swapper or pager process
SLOCK 000004 process being swapped out
SSW AP 000008 save area flag
STRC 000010 process is being traced
SWTED 000020 another tracing flag
SULOCK 000040 user settable lock in core
SPAGE 000080 process in page wait state
SKEEP 000100 another flag to prevent swap out

4th Berkeley Distribution 13 April 1983 2

PS (1)

FILES

SDLYU
SWEXIT
SPHYSIO
SVFORK
SVFDONE
SNOVM
SPAGI
SANOM
SUANOM
STIMO
SDETACH
SOUSIG

UNIX Programmer's Manual

000200 delayed unlock of pages
000400 working on exiting
000800 doing physical i/o (bio.c)
001000 process resulted from vforkO
002000 another vfork flag
004000 no vm, parent in a vforkO
008000 init data space on demand from inode
010000 system detected anomalous vm behavior
020000 user warned of anomalous vm behavior
040000 timing out during sleep
080000 detached inherited by init
100000 using old signal mechanism

PS (1)

A process that has exited and has a parent, but has not yet been waited for by the parent is
marked <defunct>; a process which is blocked trying to exit is marked <exiting>; Ps makes
an educated guess as to the file name and arguments given when the process was created by
examining memory or the swap area. The method is inherently somewhat unreliable and in any
event a process is entitled to destroy this information, so the names cannot be counted on too
much.

/vmunix
/dev/kmem
/dev/drum
/vmcore
/dev

system namelist
kernel memory
swap device
core file
searched to find swap device and tty names

SEE ALSO

BUGS

kill (1) ' w (1)

Things can change while psis running; the picture it gives is only a close approximation to real­
ity.

4th Berkeley Distribution 13 April 1983 3

PWD (1) UNIX Programmer's Manual

NAME
pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION
Pwd prints the pathname of the working (current) directory.

SEE ALSO
cd(l), csh(l), getwd(3)

BUGS

PWD (1)

In csh(l) the command dirs is always faster (although it can give a different answer in the rare
case that the current directory or a containing directory was moved after the shell descended
into it). ·

4th Berkeley Distribution 18 January 1983 1

(

\

\

(

\

REV (1)

NAME
rev - reverse lines of a file

SYNOPSIS
rev [file 1 ...

DESCRIPTION

UNIX Programmer's Manual REV(1)

Rev copies the named files to the standard output, reversing the order of characters in every
line. If no file is specified, the standard input is copied.

7th Edition 18 January 1983 1

RLOGIN(lC) UNIX Programmer's Manual RLOGIN(lC)

NAME
rlogin - remote login

SYNOPSIS
rlogin rhost [- e c] [- I username J

rhost [- ec] [- I username]

DESCRlPTION
Rlogin connects your terminal on the current local host system lho8t to the remote host system
rho8t.

Each host has a file /etcjho8"8.equiv which contains a list of rho8fs which which it shares account
names. (The host names must be the standard names as described in rBh(le) and printed by
login(l).) When you rlogin as the same user on an equivalent host, you don't need to give a
password. Each user may also have a private equivalence list in a file .rhosts in his login direc­
tory. Each line in this file should contain a rho8t and a u8ername separated by a space, giving
additional cases where logins without passwords are to be permitted. If the originating user is
not equivalent to the remote user, then a login and password will be prompted for on the
remote machine as in login(1).

Your remote terminal type is the same as your local terminal type (as given in your environ­
ment TERM variable). All echoing takes place at the remote site, so that (except for delays)
the rlogin is transparent. Flow control via ·s and ·Q and flushing of input and output on inter­
rupts are handled properly. A line of the form "-." disconnects from the remote host, where
"-,, is the escape character. A cliff erent escape character may be specified by the - e option.

SEE ALSO
rsh(lc), rlogind(8c)

FILES
/usr/hosts/* for rho8t version of the command

BUGS
More terminal characteristics should be propagated.

7th Edition 10 February 1983 1

(

\

RM(l) UNIX Programmer's Manual RM(l)

NAME
rm, rmdir - remove (unlink) files or directories

SYNOPSIS
rm [-f] [-r] [-I] [-] file ...

rmdlr dir ...

DESCRIPTION
Rm removes the entries for one or more files from a directory. If an entry was the last link to
the file, the file is destroyed. Removal of a file requires write permission in its directory, but
neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a terminal, its permissions are printed
and a line is read from the standard input. If that line begins with 'y' the file is deleted, other­
wise the file remains. No questions are asked and no errors are reported when the -f (force)
option is given.

If a designated file is a directory, an error comment is printed unless the optional argument - r
has been used. In that case, rm recursively deletes the entire contents of the specified direc­
tory, and the directory itself.

If the -I (interactive) option is in effect, rm asks whether to delete each file, and, under -r,
whether to examine each directory.

The null option - indicates that all the arguments following it are to be treated as file names.
This allows the specification of file names starting with a minus.

Rmdir removes entries for the named directories, which must be empty.

SEE ALSO
rm(l), unlink(2}, rmdir(2)

4th Berkeley Distribution 1 April 1981 1

RMDEL(l) RMDEL(1)

NAME
rmdel - remove a delta from an secs file

SYNOPSIS
rmdel -rSID files

DESCRIPTION

FILES

Rmde/ removes the delta specified by the SID from each named SCCS file.
The delta to be removed must be the newest (most recent) delta in its
branch in the delta chain of each named SCCS file. In addition, the
specified must not be that of a version being edited for the purpose of mak­
ing a delta (i. e., if a p-file (see get(1)) exists for the named SCCS file, the
specified must not appear in any entry of the p-file).

If a directory is named, mute/ behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of
the standard input is taken to be the name of an SCCS file to be processed;
non-SCCS files and unreadable files are silently ignored.

The exact permissions necessary to remove a delta are documented in the
Source Code Control System User's Guide. Simply stated, they are either (I)
if you make a delta you can remove it; or (2) if you own the file and direc­
tory you can remove a delta.

x-file (see delta (1))
z-file (see delta (1))

SEE ALSO
delta(l), get(l), help(!), prs(l), sccsfile(5).
Source Code Control System User's Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS
Use help(l) for explanations.

- 1 -

RMDIR (1) UNIX Programmer's Manual RMDIR (1)

NAME
rmdir, rm - remove (unlink) directories or files

SYNOPSIS
rmdlr dir ...

rm [-f] [-r] [-1] [-] file ...

DESCRIPTION
Rmdir removes entries for the named directories, which must be empty.

Rm removes the entries for one or more files from a directory. If an entry was the last link to
the file, the file is destroyed. Removal of a file requires write permission in its directory, but
neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a terminal, its permissions are printed
and a line is read from the standard input. If that line begins with 'y' the file is deleted, other­
wise the file remains. No questions are asked and no errors are reported when the -f (force)
option is given.

If a designated file is a directory, an error comment is printed unless the optional argument -r
has been used. In that case, rm recursively deletes the entire contents of the specified direc­
tory, and the directory itself.

If the -1 (interactive) option is in effect, rm asks whether to delete each file, and, under -r,
whether to examine each directory.

The null option - indicates that all the arguments following it are to be treated as file names.
This allows the specification of file names starting with a minus.

SEE ALSO
rm(l), unlink(2), rmdir(2)

7th Edition 1 April 1981 1

RSH (10) UNIX Programmer's Manual RSH (10)

NAME
rsh - remote shell

SYNOPSIS
rsh host [- I username] [- n] command
host [- I username] [- n] command

DESCRIPTION
Rsh connects to the specified host, and executes the specified command. Rsh copies its standard
input to the remote command, the standard output of the remote command to its standard out­
put, and the standard error of the remote command to its standard errqr. Interrupt, quit and
terminate signals are propagated to the remote command; rsh normally terminates when the
remote command does.

The remote username used is the same as your local username, unless you specify a different
remote name with the - I option. This remote name must be equivalent (in the sense of
rlogin(le)) to the originating account; no provision is made for specifying a password with a
command.

If you omit command, then instead of executing a single command, you will be logged in on the
remote host using rlogin(le).

Shell metacharacters which are not quoted are interpreted on local machine, while quoted meta­
characters are interpreted on the remote machine. Thus the command

rsh otherhost cat remotefile > > localfile

appends the remote file remotefile to the localfile localfile, while

rsh otherhost cat remotefile "> >" otherremotefile

I

\

appends remotefile to otherremotefile. \

FILES

Host names are given in the file /etc/hosts. Each host has one standard name (the first name
given in the file), which is rather long and unambiguous, and optionally one or more nick­
names. The host names for local machines are also commands in the directory /usr/hosts; if
you put this directory in your search path then the rsh can be omitted.

/etc/hosts
/usr /hosts/*

SEE ALSO

BUGS

rlogin(lc), rshd(8c)

If you are using csh(l) and put a rsh(lc) in the background without redirecting its input away
from the terminal, it will block even if no reads are posted by the remote command. If no
input is desired you should redirect the input of rsh to /dev /null using the - n option.

You cannot run an interactive command (like rogue(6) or vi(1)); use rlogin(le).

Stop signals stop the local rsh process only; this is arguably wrong, but currently hard to fix for
reasons too complicated to explain here.

7th Edition 17 March 1982 1

RUPTIME (IC) UNIX Programmer's Manual RUPTIME (IC)

NAME
ruptime - show host status of local machines

SYNOPSIS
ruptlme [-a 1 [-I 1 [-t 1 [-u 1

DESCRIPTION
Ruptime gives a status line like uptime for each machine on the local network; these are formed
from packets broadcast by each host on the network once a minute.

Machines for which no status report has been received for S minutes are shown as being down.

Users idle an hour or more are not counted unless the -a flag is given.

Normally, the listing is sorted by host name. The -I , -t , and -u flags specify sorting by
load average, uptime, and number of users, respectively.

FILES
/usr/spool/rwho/whod.•

SEE ALSO
rwho(lC)

4th Berkeley Distribution

data files

8 March 1982 1

SHOWNET(lV) UNIX Programmer's Manual SHOWNET(lV)

NA.ME
shownet - show VALID node status

SYNOPSIS
shown et

DESCRIPTION
shownet displays the set of currently reachable VALID nodes on the local Ethernet. Also
displayed is the set of nodes that have been reachable in the past but are no longer active on
the net. This information can also be extracted from the conn(BV} show comma.Ild. The
advantage of the shownet program is that the display is denser and only shows reachability, since
that is what most users need.

DIAGNOSTICS
shownet: failure reading node list (5, 1/0 error)

Usually caused by version mismatch between shownet and the kernel.

shownet: cannot open (13, Permission denied) /net

7th Edition

shownet was not installed by root with the set user and set group on execution permis­
sions.

Valid 11December1984 1

(i
I
\"'

/

\

I

\

RWHO(lC) UNIX Programmer's Manual

NAME
rwho - who's logged in on local machines

SYNOPSIS
rwho [-a 1

DESCRIPTION

RWHO(lC)

The rwho command produces output similar to who, but for all machines on the local network.
If no report has been received from a machine for S minutes then rwho assumes the machine is
down, and does not report users last known to be logged into that machine.

FILES

If a users hasn't typed to the system for a minute or more, then rwho reports this idle time. If
a user hasn't typed to the system for an hour or more, then the user will be omitted from the
output of rwho unless the -a flag is given.

/usr/spool/rwho/whod.•

SEE ALSO

information about other machines

ruptime(lC), rwhod(8C)

BUGS
This is unwieldy when the number of machines on the local net is large.

4th Berkeley Distribution 23 March 1982 1

SCCSHELP(l) SCCSHELP(l)

NAME
sccshelp - ask for help with Source Code Control System

SYNOPSIS
sccshelp [args]

DESCRIPTION

FILES

Sccshelp finds information to explain a message from a connnand or to
explain the use of a command. Zero or more arguments may be supplied. If
no arguments are given, sccshelp will prompt for an argument.

The arguments may be either message numbers (which normally appear in
parentheses following messages) or command names of one of the following
types:

type 1

type 2

type 3

Begins with non-numerics, ends in numerics. The non­
numeric prefix is usually an abbreviation for the program
or set of routines that produced the message (e.g., ge6,
for message 6 from the get command).

Does not contain numerics (as a command such as get).

Is all numeric (e.g., 212).

The response of the program will be the explanatory information related to
the argument, if there is any.

When all else fails, try "sccshelp stuck."

/usr/lib/sccshelp directory containing files of message text.

DIAGNOSTICS
Use sccshelp(l) for explanations.

-1-

(

/

\

(
\

SCRIPT { 1) UNIX Programmer's Manual SCRIPT (1)

NAME
script - make typescript of terminal session

SYNOPSIS
script [-a) [file 1

DESCRIPTION

BUGS

Script makes a typescript of everything printed on your terminal. The typescript is written to
file, or appended to file if the -a option is given. It can be sent to the line printer later with
/pr. If no file name is given, the typescript is saved in the file typescript.

The script ends when the forked shell exits.

This program is useful when using a crt and a hard-copy record of the dialog is desired, as for a
student handing in a program that was developed on a crt when hard-copy terminals are in short
supply.

Script places everything in the log file. This is not what the naive user expects.

4th Berkeley Distribution 26 March 1982 1

SED (1) UNIX Programmer's Manual SED (1)

NAME
sed - stream editor

SYNOPSIS
sed [-n 1 [-e script 1 [-f stile 1 [file 1 ...

DESCRIPTION
Sed copies the named files (standard input default) to the standard output, edited according to a
script of commands. The -f option causes the script to be taken from file efile; these options
accumulate. If there is just one -e option and no -rs, the flag -e may be omitted. The -n
option suppresses the default output.

A script consists of editing commands, one per line, of the following form:

[address [, address]] function [argumehts]

In normal operation sed cyclically copies a line of input into a pattern space (unless there is
something left after a 'D' command), applies in sequence all commands whose addresses select
that pattern space, and at the end of the script copies the pattern space to the standard output
(except under -n) and deletes the pattern space.

An address is either a decimal number that counts input lines cumulatively across files, a '$'
that addresses the last line of input, or a context address, '/regular expression/', in the style of
ed(l) modified thus:

The escape sequence '\n' matches a newline embedded in the pattern space.

A command line with no addresses selects every pattern space.

A command line with one address selects each pattern space that matches the address.

A command line with two addresses sele~ts the inclusive range from the first pattern space that

I

\

matches the first address through the next pattern space that matches the second. (If the \
second address is a number less than or equal to the line number first selected, only one line is
selected.) Thereafter the process is repeated, looking again for the first address.

Editing commands can be applied only to non-selected pattern spaces by use of the negation
function '!' (below).

In the following list of functions the maximum number of permissible addresses for each func­
tion is indicated in parentheses.

An argument denoted text consists of one or more lines, all but the last of which end with '\' to
hide the newline. Backslashes in text are treated like backslashes in the replacement string of
an 's' command, and may be used to protect initial blanks and tabs against the stripping that is
done on every script line.

An argument denoted rfi/e or wfile must terminate the command line and must be preceded by
exactly one blank. Each wfile is created before processing begins. There can be at most 10 dis­
tinct wfile arguments.

(1) a\
text

Append. Place text on the output before reading the next input line.

(2) b label

(2) c\
text

7th Edition

Branch to the':' command bearing the label. If label is empty, branch to the end of the
script.

Change. Delete the pattern space. With 0 or 1 address or at the end of a 2-address
range, place text on the output. Start the next cycle.

18 January 1983 1

(

SEO (1) UNIX Programmer's Manual SEO (1)

(2) d Delete the pattern space. Start the next cycle.

(2) D Delete the initial segment of the pattern space through the first newline. Start the next
cycle.

(2) g Replace the contents of the pattern space by the contents of the hold space.

(2) G Append the contents of the hold space to the pattern space.

(2) h Replace the contents of the hold space by the contents of the pattern space.

(2) H Append the contents of the pattern space to the hold space.

(1) i\
text

Insert. Place text on the standard output.

(2) n Copy the pattern space to the standard output. Replace the pattern space with the next
line of input.

(2) N Append the next line of input to the pattern space with an embedded newline. (The
current line number changes.)

(2) p Print. Copy the pattern space to the standard output.

(2) P Copy the initial segment of the pattern space through the first newline to the standard
output.

(1) q Quit. Branch to the end of the script. Do not start a new cycle.

(2) r rfile
Read the contents of rfile. Place them on the output before reading the next input line.

(2) s/regula; expression/replacement/flags
Substitute the replacement string for instances of the regular expression in the pattern
space. Any character may be used instead of '/'. For a fuller description see ed(l).
Flags is zero or more of

g Global. Substitute for all nonoverlapping instances of the regular expression
rather than just the first one.

p Print the pattern space if a replacement was made.

w wfile Write. Append the pattern space to wfile if a replacement was made.

(2) t label
Test. Branch to the ':' command bearing the label if any substitutions have been made
since the most recent reading of an input line or execution of a 't'. If label is empty,
branch to the end of the script.

(2) w wfile
Write. Append the pattern space to wfile.

(2) x Exchange the contents of the pattern and hold spaces.

(2) y/stringl/string2/
Transform. Replace all occurrences of characters in string] with the corresponding
character in string2. The lengths of string] and string2 must be equal.

(2) ! function
Don't. Apply the function (or group, if function is '{') only to lines not selected by the
address (es).

(0) : label
This command does nothing; it bears a label for 'b' and 't' commands to branch to.

(1) == Place the current line number on the standard output as a line.

7th Edition 18 January 1983 2

SEO (1) UNIX Programmer's Manual SEO (1)

(2) { Execute the following commands through a matching '}' only when the pattern space is
selected.

(0) An empty command is ignored.

SEE ALSO
ed(l), grep(l), awk(l), lex(l)

7th Edition 18 January 1983 3

(

SH (1)

NAME

UNIX Programmer's Manual SH (1)

sh, for, case, if, while, :, ., break, continue, cd, eval, exec, exit, export, login, read, readonly,
set, shift, times, trap, umask, wait - command language

SYNOPSIS
sh [-ceiknrstuvx] [arg] ...

DESCRIPTION
Sh is a command programming language that executes commands read from a terminal or a file.
See Invocation for the meaning of arguments to the shell.

Commands.
A simple-command is a sequence of non blank words separated by blanks (a blank is a tab or a
space). The first word specifies the name of the command to be executed. Except as specified
below the remaining words are passed as arguments to the invoked command. The command
name is passed as argument 0 (see execve(2)). The value of a simple-command is its exit status
if it terminates normally or 200 +status if it terminates abnormally (see sigvec(2) for a list of
status values).

A pipeline is a sequence of one or more commands separated by I. The standard output of each
command but the last is connected by a pipe(2) to the standard input of the next command.
Each command is run as a separate process; the shell waits for the last command to terminate.

A list is a sequence of one or more pipelines separated by ;, &, && or 11 and optionally ter­
minated by ; or&. ; and & have equal precedence which is lower than that of && and 11, &&
and 11 also have equal precedence. A semicolon causes sequential execution; an ampersand
causes the preceding pipeline to be executed without waiting for it to finish. The symbol &&
(11) causes the list following to be executed only if the preceding pipeline returns a zero (non
zero) value. Newlines may appear in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. The value returned by a com­
mand is that of the last simple-command executed in the command.

for name [in word ...] do list done
Each time a for command is executed name is set to the next word in the for word list
If In word... is omitted, in "$@" is assumed. Execution ends when there are no more
words in the list.

case word in [pattern [I pattern] ...) list;;] ... esac
A case command executes the list associated with the first pattern that matches word.
The form of the patterns is the same as that used for file name generation.

if list then list [elif list then list] .. . [else list] ft
The list following if is executed and if it returns zero the list following then is executed.
Otherwise, the list following elif is executed and if its value is zero the list following
then is executed. Failing that the else list is executed.

while list [do list] done
A while command repeatedly executes the while list and if its value is zero executes
the do list; otherwise the loop terminates. The value returned by a while command is
that of the last executed command in the do list. until may be used in place of while to
negate the loop termination test.

(list) Execute list in a subshell.

{ list } list is simply executed.

The following words are only recognized as the first word of a command and when not quoted.

if then else elif ft case in esac for while until do done { }

7th Edition 7 February 1983

SH (1) UNIX Programmer's Manual SH (1)

Command substitution.
The standard output from a command enclosed in a pair of back quotes (' ') may be used as
part or all of a word; trailing newlines are removed.

Parameter substitution.
The character $ is used to introduce substitutable parameters. Positional parameters may be
assigned values by set. Variables may be set by writing

name= value [name= value] ...

$ {parameter}
A parameter is a sequence of letters, digits or underscores (a name), a digit, or any of
the characters • @ # ? - $! . The value, if any, of the parameter is substituted. The
braces are required only when parameter is followed by a letter, digit, or underscore that
is not to be interpreted as part of its name. If parameter is a digit, it is a positional
parameter. If parameter is • or @ then all the positional parameters, starting with St,
are substituted separated by spaces. SO is set from argument zero when the shell is
invoked.

$ {parameter -word}
If parameter is set, substitute its value; otherwise substitute word.

${parameter== word}
If parameter is not set, set it to word; the value of the parameter is then substituted.
Positional parameters may not be assigned to in this way.

$ {parameter ? word}
If parameter is set, substitute its value; otherwise, print word and exit from the shell. If
word is omitted, a standard message is printed.

$ {parameter+word}
If parameter is set, substitute word; otherwise substitute nothing.

In the above word is not evaluated unless it is to be used as the substituted string. (So that, for
example, echo ${d-'pwd'} will only execute pwdif dis unset.)

The following parameters are automatically set by the shell.

The number of positional parameters in decimal.
Options supplied to the shell on invocation or by set.

? The value returned by the last executed command in decimal.
$ The process number of this shell.

The process number of the last background command invoked.

The following parameters are used but not set by the shell.

HOME The default argument (home directory) for the cd command.
PATH The search path for commands (see execution).
MAIL If this variable is set to the name of a mail file, the shell informs the user of

the arrival of mail in the specified file.
PSI Primary prompt string, by default '$ '.
PS2 Secondary prompt string, by default '> '.
IFS Internal field separators, normally space, tab, and newline.

Blank interpretation.
After parameter and command substitution, any results of substitution are scanned for internal
field separator characters (those found in SIFS) and split into distinct arguments where such
characters are found. Explicit· null arguments ("" or ") are retained. Implicit null arguments
(those resulting from parameters that have no values) are removed.

7th Edition 7 February 1983 2

SH (1) UNIX Programmer's Manual SH (1)

File name generation.
Following substitution, each command word is scanned for the characters •, ? and (. If one of
these characters appears, the word is regarded as a pattern. The word is replaced with alphabet­
ically sorted file names that match the pattern. If no file name is found that matches the pat­
tern, the word is left unchanged. The character • at the start of a file name or immediately fol­
lowing a I, and the character I, must be matched explicitly.

• Matches any string, including the null string.
? Matches any single character.
I ... I Matches any one of the characters enclosed. A pair of characters separated by -

matches any character lexically between the pair.

Quoting.
The following characters have a special meaning to the shell and cause termination of a word
unless quoted.

; & () I < > newline space tab

A character may be quoted by preceding it with a \. \newline is ignored. All characters
enclosed between a pair of quote marks ("), except a single quote, are quoted. Inside double
quotes (" ") parameter and command substitution occurs and \ quotes the characters \ ' " and $.

"$•" is equivalent to "$1 $2 ... " whereas
"$@" is equivalent to "$1" "$2"

Prompting.
When used interactively, the shell prompts with the value of PSI before reading a command. If
at any time a newline is typed and further input is needed to complete a command, the secon­
dary prompt (SPS2) is issued.

Input output.
Before a command is executed its input and output may be redirected using a special notation
interpreted by the shell. The following may appear anywhere in a simple-command or may pre­
cede or follow a command and are not passed on to the invoked command. Substitution occurs
before word or digit is used.

< word Use file word as standard input (file descriptor 0).

> word Use file word as standard output (file descriptor 1). If the file does not exist, it is
created; otherwise it is truncated to zero length.

>>word
Use file word as standard output. If the file exists, output is appended (by seeking to
the end); otherwise the file is created.

<<word
The shell input is read up to a line the same as word, or end of file. The resulting
document becomes the standard input. If any character of word is quoted, no interpre­
tation is placed upon the characters of the document; otherwise, parameter and com­
mand substitution occurs, \newline is ignored, and \ is used to quote the characters \ $
' and the first character of word.

< & digit
The standard input is duplicated from file descriptor digit; see dup(2). Similarly for the
standard output using > .

< & - The standard input is closed. Similarly for the standard output using > .

If one of the above is preceded by a digit, the file descriptor created is that specified by the digit
(instead of the default 0 or 1). For example,

7th Edition 7 February 1983 3

SH (1) UNIX Programmer's Manual SH (1)

... 2>&1

creates file descriptor 2 to be a duplicate of file descriptor 1.

If a command is followed by & then the default standard input for the command is the empty
file (/dev/null). Otherwise, the environment for the execution of a command contains the file
descriptors of the invoking shell as modified by input output specifications.

Environment.
The environment is a list of name-value pairs that is passed to an executed program in the
same way as a normal argument list; see execve(2) and environ(7). The shell interacts with the
environment in several ways. On invocation, the shell scans the environment and creates a
parameter for each name found, giving it the corresponding value. Executed commands inherit
the same environment. If the user modifies the values of these parameters or creates new ones,
none of these affects the environment unless the export command is used to bind the shell's
parameter to the environment. The environment seen by any executed command is thus com­
posed of any unmodified name-value pairs originally inherited by the shell, plus any
modifications or additions, all of which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it with one or more
assignments to parameters. Thus these two lines are equivalent

TERM=450 cmd args
(exportTERM; TERM=450; cmd args)

If the - k flag is set, all keyword arguments are placed in the environment, even if the occur
after the command name. The following prints 'a=b c' and 'c':
echo a=b c
set -k
echo a=b c

Signals.
The INTERRUPT and QUIT signals for an invoked command are ignored if the command is
followed by &; otherwise signals have the values inherited by the shell from its parent. <But
see also trap.)

Execution.
Each time a command is executed the above substitutions are carried out. Except for the 'spe­
cial commands' listed below a new process is created and an attempt is made to execute the
command via an execve(2).

The shell parameter SPATH defines the search path for the directory containing the command.
Each alternative directory name is separated by a colon (:). The default path is :/bin:/usr/bin.
If the command name contains a I, the search path is not used. Otherwise, each directory in
the path is searched for an executable file. If the file has execute permission but is not an a.out
file, it is assumed to be a file containing shell commands. A subshell (i.e., a separate process)
is spawned to read it. A parenthesized command is also executed in a subshell.

Special commands.
The following commands are executed in the shell process and except where specified no input
output redirection is permitted for such commands.

No effect; the command does nothing .
. file Read and execute commands from file and return. The search path SPATH is used to

find the directory containing file.
break [n]

Exit from the enclosing for or while loop, if any. If n is specified, break n levels.
continue [n]

Resume the next iteration of the enclosing for or while loop. If n is specified, resume

7th Edition 7 February .1983 4

SH (1) UNIX Programmer's Manual

at the n-th enclosing loop.
cd [arg]

SH (1)

Change the current directory to arg. The shell parameter $HOME is the default arg.
eval [arg ...]

The arguments are read as input to the shell and the resulting command(s) executed.
exec [arg ...]

The command specified by the arguments is executed in place of this shell without
creating a new process. Input output arguments may appear and if no other arguments
are given cause the shell input output to be modified.

exit [n]
Causes a non interactive shell to exit with the exit status specified by n. If n is omitted,
the exit status is that of the last command executed. (An end of file will also exit from
the shell.)

export [name ...]
The given names are marked for automatic export to the environment of subsequently­
executed commands. If no arguments are given, a list of exportable names is printed.

login [arg ...]
Equivalent to 'exec login arg ... '.

read name ...
One line is read from the standard input; successive words of the input are assigned to
the variables name in order, with leftover words to the last variable. The return code is
0 unless the end-of-file is encountered.

readonly [name ...]
The given names are marked readonly and the values of the these names may not be
changed by subsequent assignment. If no arguments are given, a list of all readonly
names is printed.

set [-eknptuvx [arg ...]]
-e If non interactive, exit immediately if a command fails.
-k All keyword arguments are placed in the environment for a command, not just

those that precede the command name.
-n Read commands but do not execute them.
-t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.

Turn off the -x and -v options.

These flags can also be used upon invocation of the shell. The current set of flags may
·be found in $-.

Remaining arguments are positional parameters and are assigned, in order, to $1, $2.
etc. If no arguments are given, the values of all names are printed.

shift The positional parameters from $2... are renamed $1...

times Print the accumulated user and system times for processes run from the shell.

trap [arg] [n] ...
Arg is a command to be read and executed when the shell receives signal (s) n. (Note
that arg is scanned once when the trap is set and once when the trap is taken.) Trap
commands are executed in order of signal number. If arg is absent, all trap(s) n are
reset to their original values. If arg is the null string, this signal is ignored by the shell
and by invoked commands. If n is 0, the command arg is executed on exit from the
shell, otherwise upon receipt of signal n as numbered in sigvec(2). Trap with no argu­
ments prints a list of commands associated with each signal number.

7th Edition 7 February 1983 5

SH (1) UNIX Programmer's Manual SH (1)

(

~~[~] l

FILES

The user file creation mask is set to the octal value nnn (see umask(2)). If nnn is omit-
ted, the current value of the mask is printed.

wait [n]
Wait for the specified process and report its termination status. If n is not given, all
currently active child processes are waited for. The return code from this command is
that of the process waited for.

Invocation.
If the first character of argument zero is - , commands are read from SHOME/. profile, if such a
file exists. Commands are then read as described below. The following flags are interpreted by
the shell when it is invoked.
-c string If the -c flag is present, commands are read from string.
-s If the -s flag is present or if no arguments remain then commands are read from

the standard input. Shell output is written to file descriptor 2.
-i If the -i flag is present or if the shell input and output are attached to a terminal

(as told by gtty) then this shell is interactive. In this case the terminate signal
SIG TERM (see sigvec(2)) is ignored (so that 'kill O' does not kill an interactive
shell) and the interrupt signal SIGINT is caught and ignored (so that wait is inter­
ruptible). In all cases SIGQUIT is ignored by the shell.

The remaining flags and arguments are described under the set command.

$HOME/. profile
/tmp/sh•
/dev/null

SEE ALSO
csh (1), test (1), execve (2), environ (7)

DIAGNOSTICS

BUGS

Errors detected by the shell, such as syntax errors cause the shell to return a non zero exit
status. If the shell is being used non interactively then execution of the shell file is abandoned.
Otherwise, the shell returns the exit status of the last command executed (see also exit).

If < < is used to provide standard input to an asynchronous process invoked by &, the shell gets
mixed up about naming the input document. A garbage file /tmp/sh• is created, and the shell
complains about not being able to find the file by another name.

7th Edition 7 February 1983 6

I

\

SIZE (1)

NAME
size - size of an object file

SYNOPSIS
size [object ...]

DESCRIPTION

UNIX Programmer's Manual SIZE (1)

Size prints the (decimal) number of bytes required by the text, data, and bss portions, and their
sum in hex and decimal, of each object-file argument. If no file is specified, a.out is used.

SEE ALSO
a.out(5)

7th Edition 18 January 1983 1

SLEEP (1) UNIX Programmer's Manual

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION

SLEEP(l)

Sleep suspends execution for time seconds. It is used to execute a command after a certain
amount of time as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true
do

done

command
sleep 37

SEE ALSO
setitimer(2), alarm (3C), sleep(3)

BUGS
Time must be less than 2,147,483,647 seconds.

7th Edition 10 February 1983

SORT (1) UNIX Programmer's Manual SORT (1)

NAME
sort - sort or merge files

SYNOPSIS
sort [-mubdfinrtx] [+posl [-pos2]] ... [-o name] [-T directory] [name] ...

DESCRIPTION
Sort sorts lines of all the named files together and writes the result on the standard output. The
name ' - ' means the standard input. If no input files are named, the standard input is sorted.

The default sort key is an entire line. Default ordering is lexicographic by bytes in machine
collating sequence. The ordering is affected globally by the following options, one or more of
which may appear.

b Ignore leading blanks (spaces and tabs) in field comparisons.

d 'Dictionary' order: only letters, digits and blanks are significant in comparisons.

f Fold upper case letters onto lower case.

l Ignore characters outside the ASCII range 040-0176 in nonnumeric comparisons.

n An initial numeric string, consisting of optional blanks, optional minus sign, and zero or
more digits with optional decimal point, is sorted by arithmetic value. Option n implies
option b.

r Reverse the sense of comparisons.

tx 'Tab character' separating fields is x.

The notation + posl - pos2 restricts a sort key to a field beginning at posl and ending just
before pos2. Posl and pos2 each have the form m.n, optionally followed by one or more of the
flags bdfinr, where m tells a number of fields to skip from the beginning of the line and n tells
a number of characters to skip further. If any flags are present they override all the global ord­
ering options for this key. If the b option is in effect n is counted from the first nonblank in
the field; bis attached independently to pos2. A missing .n means .O; a missing -pos2 means
the end of the line. Under the -tx option, fields are strings separated by x; otherwise fields
are nonempty nonblank strings separated by blanks.

When there are multiple sort keys, later keys are compared only after all earlier keys compare
equal. Lines that otherwise compare equal are ordered with all bytes significant.

These option arguments are also understood:

c Check that the input file is sorted according to the ordering rules; give no output unless
the file is out of sort.

m Merge only, the input files are already sorted.

o The next argument is the name of an output file to use instead of the standard output.
This file may be the same as one of the inputs.

T The next argument is the name of a directory in which temporary files should be made.

u Suppress all but one in each set of equal lines. Ignored bytes and bytes outside keys do
not participate in this comparison.

EXAMPLES
Print in alphabetical order all the unique spellings in a list of words. Capitalized words differ
from uncapitalized.

sort -u +Of +o list

Print the password file (passwd(S)) sorted by user id number (the 3rd colon-separated field).

7th Edition 1 o February 1983 1

SORT(l) UNIX Programmer's Manual SORT(l)

sort -t: +2n /etc/passwd

Print the first instanc~ of each month in an already sorted file of (month day) entries. The
options -um with j1,1.st one input file make the choice of a unique representative from a set of
equal lines predictable.

sort -um +o -1 dates

FILES
/usr/tmp/stm•, /tmp/• first and second triesfor temporary files

SEE ALSO
uniq(l), comm(l), rev(l), join(l)

DIAGNOSTICS
Comments and exits with nonzero status for various trouble conditions and for disorder
discovered under option -c.

BUGS
Very long lines are silently truncated.

7th Edition 10 February 1983 2

SPELL (1) UNIX Programmer's Manual SPELL (1)

NAME
spell, spellin, spellout - find spelling errors

SYNOPSIS
spell [-v 1 [-b 1 [-x] [-d hlist] [-s hstop 1 [-h spellhist 1 [file 1 ...
spellln [list l
spellout [-d 1 list

DESCRIPTION

FILES

Spell collects words from the named documents, and looks them up in a spelling list. Words
that neither occur among nor are derivable (by applying certain inflections, prefixes or suffixes)
from words in the spelling list are printed on the standard output. If no files are named, words
are collected from the standard input.

Spell ignores most troff, tbl and eqn(l) constructions.

Under the -v option, all words not literally in the spelling list are printed, and plausible deriva­
tions from spelling list words are indicated.

Under the -b option, British spelling is checked. Besides preferring centre, colour, speciality;
travelled, etc., this option insists upon -ise in words like standardise, Fowler and the OED to the
contrary notwithstanding.

Under the -x option, every plausible stem is printed with·-· for each word.

The spelling list is based on many sources. While it is more haphazard than an ordinary dic­
tionary, it is also more effective with proper names and popular technical words. Coverage of
the specialized vocabularies of biology, medicine and chemistry is light.

The auxiliary files used for the spelling list, stop list, and history file may be specified by argu­
ments following the -d, -s, and -h options. The default files are indicated below. Copies of
all output may be accumulated in the history file. The stop list filters out misspellings (e.g.
thier-thy-y+ier) that would otherwise pass.

Two routines help maintain the hash lists used by spell. Both expect a set of words, one per
line, from the standard input. Spellin combines the words from the standard input and the
preexisting list file and places a new list on the standard output. If no list file is specified, the
new list is created from scratch. Spel/out looks up each word from the standard input and prints
on the standard output those that are missing from (or present on, with option -d) the hashed
list file. For example, to verify that hookey is not on the default spelling list, add it to your own
private list, and then use it with spell,

echo hookey I spellout /usr/dict/hlista
echo hookey spellin /usr/dict/hlista > myhlist
spell -d myhlist huckfinn

/usr/dict/hlist[ab]
/usr I dict/hstop
/dev/null
/tmp/spell.SS•
/usr/lib/spell

hashed spelling lists, American & British, default for -d
hashed stop list, default for - s
history file, default for -h
temporary files

SEE ALSO

BUGS

deroff (1), sort (1), tee (1), sed (1)

The spelling list's coverage is uneven; new installations will probably wish to monitor the out­
put for several months to gather local additions.
British spelling was done by an American.

7th Edition 12 September 1983 1

SPLIT(l)

NAME
split - split a file into pieces

SYNOPSIS
split [- n] [file [name]]

DESCRIPTION

UNIX Programmer's Manual SPLIT (1)

Split reads file and writes it in n-line pieces (default 1000), as many as necessary, onto a set of
output files. The name of the first output file is name with aa appended, and so on lexicograph­
ically. If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input file is used.

7th Edition 18 January 1983 1

(

\

(

STRINGS (1) UNIX Pi:ogrammer's Manual

NAME
strings - find the printable strings in a object, or other binary, file

SYNOPSIS
strings [- 1 [-o] [- number] file ...

DESCRIPTION

STRINGS (1)

Strings looks for ascii strings in a binary file. A string is any sequence of 4 or more printing
characters ending with a newline or a null. Unless the - flag is given, strings only looks in the
initialized data space of object files. If the -o flag is given, .then each string is preceded by its
offset in the file (in octal). If the - number flag is given then number is used as the minimum
string length rather than 4.

Strings is useful for identifying random object files and many other things.

SEE ALSO
od(l)

BUGS
The algorithm for identifying strings is extremely primitive

3rd Berkeley Distribution 24 February 1979 1

STRIP (1) UNIX Programmer's Manual

NAME
strip - remove symbols and relocation bits

SYNOPSIS
strip name ...

DESCRIPTION

STRIP(l)

Strip removes the symbol table and relocation bits ordinarily attached to the output of the
assembler and loader. This is useful to save space after a program has been debugged.

The effect of strip is the same as use of the -s option of Id.

FILES
/tmp/stm?

SEE ALSO
ld(l)

7th Edition

temporary file

18 January 1983 1

STTY (1) UNIX Programmer's Manual STTY (1)

NAME
stty - set terminal options

SYNOPSIS
stty [option ...]

DESCRIPTION
Stty sets certain 1/0 options on the current output terminal, placing its output on the diagnostic
output. With no argument, it reports the speed of the terminal and the settings of the options
which are different from their defaults. With the argument "all", all normally used option set­
tings are reported. With the argument "everything", everything stty knows about is printed.
The option strings are selected from the following set:

even
-even
odd
-odd
raw

-raw
cooked
cbreak

-cbreak
-nl
nl
echo
-echo
lease
-lease
tandem

allow even parity input
disallow even parity input
allow odd parity input
disallow odd parity input
raw mode input (no input processing (erase, kill, interrupt, .. .) ; parity bit passed
back)
negate raw mode
same as '-raw'
make each character available to read(2) as received; no erase and kill processing,
but all other processing (interrupt, suspend, .. .) is performed
make characters available to read only when newline is received
allow carriage return for new-line, and output CR-LF for carriage return or new-line
accept only new-line to end lines
echo back every character typed
do not echo characters
map upper case to lower case
do not map case
enable flow control, so that the system sends out the stop character when its internal
queue is in danger of overflowing on input, and sends the start character when it is
ready to accept further input

-tandem disable flow control
-tabs replace tabs by spaces when printing
tabs preserve tabs
ek set erase and kill characters to # and @
For the following commands which take a character argument c, you may also specify c as the
"u" or "under', to set the value to be undefined. A value of ""x", a 2 character sequence, is
also interpreted as a control character, with ""?" representing delete.

erase c set erase character to c (default '#', but often reset to "H.)
kill c set kill character to c (default'@', but often reset to "U.)
intr c set interrupt character to c (default DEL or"? (delete), but often reset to "C.)
quit c set quit character to c (default control \.)
start c set start character to c (default control Q.)
stop c set stop character to c (default control S.)
eof c set end of file character to c (default control D.)
brk c set break character to c (default undefined.) This character is an extra wakeup caus­

ing character.
crO crl cr2 cr3

select style of delay for carriage return (see ioct/(2))
nlO nil nl2 nl3

select style of delay for linefeed
tabO tabl tab2 tab3

4th Berkeley Distribution 11 May 1981

STTY (1) UNIX Programmer's Manual STTY (1)

ffO ff1
bsO bsl

select style of delay for tab
select style of delay for form feed
select style of delay for backspace

set all modes suitable for the Teletype Corporation Model 33 terminal.
set all modes suitable for the Teletype Corporation Model 37 terminal.
set all modes suitable for Digital Equipment Corp. VTOS terminal

tty33
tty37
vt05
dee set all modes suitable for Digital Equipment Corp. operating systems users; (erase,

kill, and interrupt characters to A?, AU, and AC, decctlq and "newcrt".}

tn300 set all modes suitable for a General Electric TermiNet 300
ti700 set all modes suitable for Texas Instruments 700 series terminal
tek set all modes suitable for Tektronix 4014 terminal
0 hang up phone line immediately
SO 75 110 134 150 200 300 600 1200 1800 2400 4800 9600 exta extb

Set terminal baud rate to the number given, if possible. (These are the speeds sup­
ported by the DH-11 interface).

A teletype driver which supports the job control processing of csh(l) and more functionality
than the basic driver is fully described in tty(4). The following options apply only to it.

new Use new driver (switching flushes typeahead).
crt Set options for a CRT (crtbs, ctlecho and, if > = 1200 baud, crterase and crtkill.)
crtbs Echo backspaces on erase characters.
prterase For printing terminal echo erased characters backwards within "\" and "/".
crterase Wipe out erased characters with "backspace-space-backspace."
-crterase Leave erased characters visible; just backspace.
crtkill Wipe out input on like kill ala crterase.
-crtkill Just echo line kill character and a newline on line kill.
ctlecho Echo control characters as "Ax" (and delete as "A?".) Print two backspaces follow­

ing the EOT character (control D).
-ctlecho Control characters echo as themselves; in cooked mode EOT (control-D) is not

echoed.

decctlq After output is suspended (normally by AS), only a start character (normally "Q) will
restart it. This is compatible with DEC's vendor supplied systems.

-decctlq After output is suspended, any character typed will restart it; the start character will
restart output without providing any input. (This is the default.)
Background jobs stop if they attempt terminal output.
Output from background jobs to the terminal is allowed.
Convert ... ,, to '"" on output (for Hazeltine terminals).
Leave poor ... ,, alone.
Output is being discarded usually because user hit control 0 (internal state bit).
Output is not being discarded.

tostop
-tostop
tilde
-tilde
ft us ho
-ftusho
pendin Input is pending after a switch from cbreak to cooked and will be re-input when a

read becomes pending or more input arrives (internal state bit).
- pendin Input is not pending.
intrup Send a signal (SIGTINT) to the terminal control process group whenever an input

record Oine in cooked mode, character in cbreak or raw mode) is available for read­
ing.

-intrup Don't send input available interrupts.
mdmbuf Start/stop output on carrier transitions (not implemented).
-mdmbuf

litout
Return error if write attempted after carrier drops.
Send output characters without any processing.

4th Berkeley Distribution 11 May 1981 2

(

(

\

STTY (1)

-litout
nohang
-nohang
etxack

UNIX Programmer's Manual

Do normal output processing, inserting delays, etc.
Don't send hangup signal if carrier drops.
Send hangup signal to control process group when carrier drops.
Diablo style etx/ack handshaking (not implemented).

STTY (1)

The following special characters are applicable only to the new teletype driver and are not nor­
mally changed.

susp c
dsusp c
rprnt c
flush c
werase c
lnext c

SEE ALSO

set suspend process character to c (default control Z).
set delayed suspend process character to c (default control Y).
set reprint line character to c (default control R).
set flush output character to c (default control 0).
set word erase character to c (default control W).
set literal next character to c (default control V).

ioctl(2), tabs(!), tset(l), tty(4)

4th Berkeley Distribution 11 May 1981 3

SU (1) UNIX Programmer's Manual SU (1)

NAME
su - substitute user id temporarily

SYNOPSIS
su [userid]

DESCRIPTION
Su demands the password of the specified userid, and if it is given, changes to that userid and
invokes the Shell sh(l) without changing the current directory. The user environment is
unchanged except for HOME and SHELL, which are taken from the password file for the user
being substituted (see environ(1)). The new user ID stays in force until the Shell exits.

If no userid is specified, 'root' is assumed. To remind the super-user of his responsibilities, the
Shell substitutes '#' for its usual prompt.

SEE ALSO
sh(l)

BUGS
Local administrative rules cause restrictions to be placed on who can su to 'root', even with the
root password. These rules vary from site to site.

3rd Berkeley Distribution 16 November 1979 1

i
\

SUM(l) UNIX Programmer's Manual

NAME
sum - sum and count blocks in a file

SYNOPSIS
sum file

DESCRIPTION

SUM(l)

Sum calculates and prints a 16-bit checksum for the named file, and also prints the number of
blocks in the file. It is typically used to look for bad spots, or to validate a file communicated
over some transmission line.

SEE ALSO
wc(l)

DIAGNOSTICS
'Read error' is indistinguishable from end of file on most devices; check the block count.

7th Edition 18 JanulU}' 1983 1

TAIL (1) UNIX Programmer's Manual TAIL (1)

NAME
tail - deliver the last part of a file

SYNOPSIS
tail [±number[lbc] [fr]] [file]

DESCRIPTION
Tail copies the named file to the standard output beginning at a designated place. If no file is
named, the standard input is used.

Copying begins at distance +number from the beginning, or - number from the end of the
input. Number is counted in units of lines, blocks or characters, according to the appended
option I, b or c. When no units are specified, counting is by lines.

Specifying r causes tail to print lines from the end of the file in reverse order. The default for r
is to print the entire file this way. Specifying f causes tail to not quit at end of file, but rather
wait and try to read repeatedly in hopes that the file will grow.

SEE ALSO
dd(l)

BUGS
Tails relative to the end of the file are treasured up in a buffer, and thus are limited in length.

Various kinds of anomalous behavior may happen with character special files.

4th Berkeley Distribution 18 January 1983 1

TAR (1) UNIX Programmer's Manual TAR (1)

NAME
tar - tape archiver

SYNOPSIS
tar [key] [name ... 1

DESCRIPTION
Tar saves and restores multiple files on a single file (usually a magnetic tape, but it can be any
file). Tar's actions are controlled by the key argument. The key is a string of characters con­
taining at most one function letter and possibly one or more function modifiers. Other argu­
ments to tar are file or directory names specifying which files to dump or restore. In all cases,
appearance of a directory name refers to the files and (recursively) subdirectories of that direc­
tory.

The function portion of the key is specified by one of the following letters:

r The named files are written on the end of tlie tape. The c function implies this.

x The named files are extracted from the tape. If the named file matches a directory
whose contents had been written onto the tape, this directory is (recursively)
extracted. The owner, modification time, and mode are restored (if possible). If no
file argument is given, the entire content of the tape is extracted. Note that if multiple
entries specifying the same file are on the tape, the last one overwrites all earlier.

t The names of the specified files are listed each time they occur on the tape. If no file
argument is given, all of the names on the tape are listed.

u The named files are added to the tape if either they are not already there or have been
modified since last put on the tape.

c Create a new tape; writing begins on the beginning of the tape instead of after the last
file. This command implies r.

o On output, tar normally places information specifying owner and modes of directories
in the archive. Former versions of tar, when encountering this information will give
error message of the form

"<name> I: cannot create".
This option will suppress the directory information.

p This option says to restore files to their original modes, ignoring the present umask (2).
Setuid and sticky information will also be restored to the super-user.

The following characters may be used in addition to the letter which selects the function
desired.

0, ... , 9 This modifier selects an alternate drive on which the tape is mounted. The default
is drive 0 at 1600 bpi, which is normally /dev/rmt8.

v Normally tar does its work silently. The v (verbose) option make tar type the name
of each file it treats preceded by the function letter. With the t function, the ver­
bose option gives more information about the tape entries than just their names.

w Tar prints the action to be taken followed by file name, then wait for user
confirmation. If a word beginning with 'y' is given, the action is done. Any other
input means don't do it.

f Tar uses the next argument as the name of the archive instead of /dev/rmt?. If the
name of the file is ' - ', tar writes to standard output or reads from standard input,
whichever is appropriate. Thus, tar can be used as the head or tail of a filter chain.
Tar can also be used to move hierarchies with the command

cd fromdir; tar cf - . I (cd todir; tar xf ·)

7th Edition 13 January 1983 1

TAR (1) UNIX Programmer's Manual TAR (1)

FILES

b Tar uses the next argument as the blocking factor for tape records. The default is 20
(the maximum). This option should only be used with raw magnetic tape archives
(See f above). The block size is determined automatically when reading tapes (key
letters 'x' and 't').

tells tar to complain if it cannot resolve all of the links to the files dumped. If this is
not specified, no error messages are printed.

m tells tar not to restore the modification times. The modification time will be the
time of extraction.

h Force tar to follow symbolic links as if they were normal files or directories. Nor­
mally, tar does not follow symbolic links.

B Forces input and output blocking to 20 blocks per record. This option was added so
that tar can work across a communications channel where the blocking may not be
maintained.

If a file name is preceded by -C, then tar will perform a chdir(2) to that file name. This allows
multiple directories not related by a close common parent to be archived using short relative
path names. For example, to archive files from /usr/include and from /etc, one might use

tar c -C /usr include -C I etc

Previous restrictions dealing with tar's inability to properly handle blocked archives have been
lifted.

/dev/rmt?
/tmp/tar•

DIAGNOSTICS

BUGS

Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The current limit on file name length is 10" characters.
There is no way to selectively follow symbolic links.

7th Edition 13 January 1983 2

TEE(l) UNIX Programmer's Manual TEE(l)

NAME
tee - pipe fitting

SYNOPSIS
tee [-1] [-a] [file 1 ...

DESCRIPTION
Tee transcribes the standard input to the standard output and makes copies ill the files. Option
-1 ignores interrupts; option -a causes the output to be appended to the files rather than
overwriting them.

7th Edition 18 January 1983 1

TEST(l) UNIX Programmer's Manual TEST (1)

NAME
test - condition command

SYNOPSIS
test expr

DESCRIPTION
test evaluates the expression expr, and if its value is true then returns zero exit. status; other­
wise, a non zero exit status is returned. test returns a non zero exit if there are no arguments.

The following primitives are used to construct expr.

- r file true if the file exists and is readable.

-w file true if the file exists and is writable.

-f file true if the file exists and is not a directory.

-d file true if the file exists exists and is a directory.

-s file true if the file exists and has a size greater than zero.

-t [fildes]
true if the open file whose file descriptor number is fl/des (1 by default) is associated
with a terminal device.

-z sl true if the length of string sl is zero.

-n sl true if the length of the string sl is nonzero.

s 1 • s2 true if the strings sl and s2 are equal.

sl ! • s2 true if the strings sl and s2 are not equal.

sl true if sl is not the null string.

nl -eq n2
true if the integers nl and n2 are algebraically equal. Any of the comparisons -ne,
-gt, -ge, -lt, or -le may be used in place of -eq.

These primaries may be combined with the following operators:

unary negation operator

- a binary and operator

-o binary or operator

(expr)
parentheses for grouping.

-a has higher precedence than -o. Notice that all the operators and flags are separate argu­
ments to test. Notice also that parentheses are meaningful to the Shell and must be escaped.

SEE ALSO
sh(l), find(l)

7th Edition 18 January 1983 1

(

TIME(l) UNIX Programmer's Manual TIME (1)

NAME
time - time a.command

SYNOPSIS
time command

DESCRIPTION

BUGS

The given command is· executed; after it is complete, time prints the elapsed time during the
. command, the time spent in the system, and the time spent in execution of the command.
Times are reported in seconds.

On a PDP-11, the execution time can depend on what kind of memory the program happens to
land in; the user time in MOS is often half what it is in core.

The times are printed on the diagnostic output stream.

Time is built in to csh(l), using a different output format.

Elapsed time is accurate to the second, while the CPU times are measured to the 1 OOth second.
Thus the sum of the CPU times can be up to a second larger than the elapsed time.

Time is a built-in command to csh(l), with a much different syntax. This command is available
as "/bin/time" to csh users.

4th Berkeley Distribution 18 January 1983 1

TOUCH(l) UNIX Programmer's Manual

NAME
touch - update date last modified of a file

SYNOPSIS
touch [- c] [-f] file ...

DESCRIPTION

TOUCH (1)

Touch attempts to set the modified date of each file. If a file exists, this is done by reading a
character from the file and writing it back. If a file does not exist, an attempt will be made to
create it unless the -c option is specified. The -f option will attempt to force the touch in
spite of read and write permissions on a file.

SEE ALSO
utimes(2)

7th Edition 18 January 1983 1

TP(l) UNIX Programmer's Manual TP(l)

NAME
tp - manipulate tape archive

SYNOPSIS
tp [key] [name . ..]

DESCRIPTION
Tp saves and restores files on DECtape or magtape. Its actions are controlled by the key argu­
ment. The key is a string of characters containing at most one function letter and possibly one
or more function modifiers. Other arguments to the command are file or directory names
specifying which files are to be dumped, restored, or listed. In all cases, appearance of a direc­
tory name refers to the files and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the fallowing letters:

r The named files are written on the tape. If files with the same names already exist,
they are replaced. 'Same' is determined by string comparison, so './abc' can never be
the same as '/usr/dmr/abc' even if '/usr/dmr' is the current directory. If no file argu­
ment is given, '.' is the default.

u updates the tape. u is like r, but a file is replaced only if its modification date is later
than the date stored on the tape; that is to say, if it has changed since it was dumped.
u is the default command if none is given.

d deletes the named files from the tape. At least one name argument must be given.
This function is not permitted on magtapes.

x extracts the named files from the tape to the file system. The owner and mode are
restored. If no file argument is given, the entire contents of the tape are extracted.

t lists the names of the specified files. If no file argument is given, the entire contents
of the tape is listed.

The following characters may be used in addition to the letter which selects the function
desired.

m
0, ••• ,7

c

Specifies magtape as opposed to DECtape.

This modifier selects the drive on which the tape is mounted. For DECtape, x is
default; for magtape 'O' is the default.

Normally tp does its work silently. The v (verbose) option causes it to type the
name of each file it treats preceded by the function letter. With the t function, v
gives more information about the tape entries than just the name.

means a fresh dump is being created; the tape directory is cleared before beginning.
Usable only with r and u. This option is assumed with magtape since it is impossible
to selectively overwrite magtape.

Errors reading and writing the tape are noted, but no action is taken. Normally,
errors cause a return to the command level.

f Use the first named file, rather than a tape, as the archive. This option currently
acts like m; i.e. r implies c, and neither d nor u are permitted.

w causes tp to pause before treating each file, type the indicative letter and the file
name (as with v) and await the user's response. Response y means 'yes', so the file
is treated. Null response means 'no', and the file does not take part in whatever is
being done. Response x means 'exit'; the tp command terminates immediately. In
the x function, files previously asked about have been extracted already. With r, u,
and d no change has been made to the tape.

7th Edition 18 January 1983 deprecated 1

TP(l)

FILES
/dev/tap?
/dev/rmt?

UNIX Programmer's Manual TP(l)

SEE ALSO
ar(l), tar{l)

DIAGNOSTICS

BUGS

Several; the non-obvious one is 'Phase error', which means the file changed after it was
selected for dumping but before it was dumped.

A single file with several links to it is treated like several files.

Binary-coded control information makes magnetic tapes written by tp difficult to carry to other
machines; tar(l) avoids the problem.

7th Edition 18 January 1983 deprecated 2

TR(l) UNIX Programmer's Manual TR(l)

NAME
tr - translate characters

SYNOPSIS
tr [-eds] [string! [string2]]

DESCRIPTION
Tr copies the standard input to the standard output with substitution or deletion of selected
characters. Input characters found in string] are mapped into the corresponding characters of
string]. When string] is short it is padded to the length of string] by duplicating its last charac­
ter. Any combination of the options -eds may be used: -c complements the set of characters
in string] with respect to the universe of characters whose ASCII codes are 01 through 0377
octal; -d deletes all input characters in string]; -s squeezes all strings of repeated output char­
acters that are in string] to single characters.

In either string the notation a-b means a range of characters from a to bin increasing ASCII
order. The character '\' followed by 1, 2 or 3 octal digits stands for the character whose ASCII
code is given by those digits. A '\' followed by any other character stands for that character.

The following example creates a list of all the words in 'filel' one per line in 'file2', where a
word is taken to be a maximal string of alphabetics. The second string is quoted to protect '\'
from the Shell. 012 is the ASCII code for newline.

tr -cs A-Za-z '\012' <filel >file2

SEE ALSO
ed (1), ascii (7), expand (1)

BUGS
Won't handle ASCII NUL in string] or string2; always deletes NUL from input.

7th Edition 18 January 1983 1

TROFF(1) UNIX Programmer's Manual TROFF(1)

NAME
troff, nroff - text formatting and typesetting

SYNOPSIS
troff [option] ... [file] .. .

nroff [option] .. . [file] .. .

DESCRIPTION

FILES

Troff formats text in the named files for printing on a Graphic Systems Cl A/T phototypesetter;
nroff is used for for typewriter-like devices. Their capabilities are described in the NrofflTroff
user's manual.

If no file argument is present, the standard input is read. An argument consisting of a single
minus (-) is taken to be a file name corresponding to the standard input. The options, which
may appear in any order so long as they appear before the files, are:

-olist

-nN
-sN

Print only pages whose page numbers appear in the comma-separated list of numbers
and ranges. A range N-M means pages N through M; an initial -N means from
the beginning to page N; and a final N- means from N to the end.

Number first generated page N.

Stop every N pages. Nroff will halt prior to every N pages (default N =-1) to allow
paper loading or changing, and will resume upon receipt of a newline. Troff will stop
the phototypesetter every N pages, produce a trailer to allow changing cassettes, and
resume when the typesetter's start button is pressed.

-mname Prepend the macro file /usr/Ub/tmac/tmac.name to the input files.

-raN Set register a (one-character) to N.

-i Read standard input after the input files are exhausted.

-q Invoke the simultaneous input-output mode of the rd request.

Troff only

-t Direct output to the standard output instead of the phototypesetter.

-f Refrain from feeding out paper and stopping phototypesetter at the end of the run.

-w Wait until phototypesetter is available, if currently busy.

-b Report whether the phototypesetter is busy or available. No text processing is done.

-a Send a printable ASCII approximation of the results to the standard output.

-pN Print all characters in point size N while retaining all prescribed spacings and
motions, to reduce phototypesetter elapsed time.

If the file /usrladm/tracct is writable, troff keeps phototypesetter accounting records there. The
integrity of that file may be secured by making troff a 'set user-id' program.

/tmp/ta•
/usr/lib/tmac/tmac.•
/usr/lib/term/•
/usr/lib/font/•
/dev/cat
/usr/adm/tracct

temporary file
standard macro files
terminal driving tables for nroff
font width tables for troff
phototypesetter
accounting statistics for /dev/cat

SEE ALSO
J. F. Ossanna, NrojJTTroff user's manual
B. W. Kernighan, A TROFF Tutorial
eqn(l), tbl(l), ms(7), me(7), man(7), col(!)

7th Edition 7 February 1983 1

TRUE(l) UNIX Programmer's Manual

NAME
true, false - provide truth values

SYNOPSIS
true

false

DESCRIPTION

TRUE (1)

True and false are usually used in a Bourne shell script. They test for the appropriate status
"true" or "false" before running (or failing to run) a list of commands.

EXAMPLE

SEE ALSO

while true
do

command list
done

csh(l), sh(l), false(l)

DIAGNOSTICS
True has exit status zero.

7th Edition 11 January 1982 1

TSORT(l)

NAME
tsort - topological sort

SYNOPSIS
tsort [tile]

DESCRIPTION

UNIX Programmer's Manual TSORT(l)

Tsort produces on the standard output a totally ordered list of items consistent with a partial
ordering of items mentioned in the input file. If no file is specified, the standard input is
understood.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of different
items indicate ordering. Pairs of identical items indicate presence, but not ordering.

SEE ALSO
lorder(l)

DIAGNOSTICS
Odd data: there is an odd number of fields in the input file.

BUGS
Uses a quadratic algorithm; not worth fixing for the typical use of ordering a library archive file.

7th Edition 18 January 1983

TIY(l)

NAME
tty - get terminal name

SYNOPSIS
tty (•S)

DESCRIPTION

UNIX Programmer's Manual TIY(l)

Tty prints the pathname of the user's terminal unless the -s (silent) is given. In either case,
the exit value is zero if the standard input is a terminal and one if it is not.

DIAGNOSTICS
'not a tty' if the standard input file is not a terminal.

7th Edition 10 February 1983 1

UNGET(l) UNGET(l)

NAME
unget - undo a previous get of an SCCS file

SYNOPSIS
unget [-rSID] [-s] [-n] files

DESCRIPTION
Unget undoes the effect of a get -e done prior to creating the intended
new delta. If a directory is named, unget behaves as though each file in the
directory were specified as a named file, except that non-SCCS files and
unreadable files are silently ignored. If a name of - is given, the standard
input is read with each line being taken as the name of an SCCS file to be
processed.

Keyletter arguments apply independently to each named file.

-rSJD

-s

-n

SEE ALSO

Uniquely identifies which delta is no longer intended.
(This would have been specified by get as the "new
delta"). The use of this keyletter is necessary only if
two or more outstanding gets for editing on the same
SCCS file were done by the same person (login name).
A diagnostic results if the specified SID is ambiguous, or
if it is necessary and omitted on the command line.

Suppresses the printout, on the standard output, of the
intended delta's SID.

Causes the retention of the gotten file which would nor­
mally be removed from the current directory.

delta(l), get(l), sact(l).

DIAGNOSTICS
Use help(l) for explanations.

- l -

UNIQ(l) UNIX Programmer's Manual UNIQ(l)

NAME
uniq - report repeated lines in a file

SYNOPSIS
unlq [-udc [+n] [-n]] [input [output]]

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In the normal case, the second and succeed­
ing copies of repeated lines are removed; the remainder is written on the output file. Note that
repeated lines must be adjacent in order to be found; see sort{l). If the -u flag is used, just
the lines that are not repeated in the original file are output. The -d option specifies that one
copy of just the repeated lines is to be written. The normal mode output is the union of the
-u and -d mode outputs.

The -c option supersedes -u and -d and generates an output report in default style but with
each line preceded by a count of the number of times it occurred.

The n arguments specify skipping an initial portion of each line in the comparison:

- n The first n fields together with any blanks before each are ignored. A field is defined
as a string of non-space, non-tab characters separated by tabs and spaces from its
neighbors.

+ n The first n characters are ignored. Fields are skipped before characters.

SEE ALSO
sort(l), comm(l)

7th Edition 10 February 1983 1

UNITS (1) UNIX Programmer's Manual UNITS (1)

NAME
units - conversion program

SYNOPSIS
units

DESCRIPTION

FILES

BUGS

Units converts quantities expressed in various standard scales to their equivalents in other
scales. It works interactively in this fashion:

You have: inch
You want: cm

• 2.54000e+OO
I 3.93701e-Ol

A quantity is specified as a multiplicative combination of units optionally preceded by a numeric
multiplier. Powers are indicated by suffixed positive integers, division by the usual sign:

You have: 15 pounds force/in2
You want: atm

• J.02069e+OO
I 9. 79730e-OJ

Units only does multiplicative scale changes. Thus it can convert Kelvin to Rankine, but not
Centigrade to Fahrenheit. Most familiar units, abbreviations, and metric prefixes are recog­
nized, together with a generous leavening of exotica and a few constants of nature including:

pi ratio of circumference to diameter
c speed of light
e charge on an electron
g acceleration of gravity
force same as g
mole Avogadro's number
water pressure head per unit height of water
au astronomical unit

'Pound' is a unit of mass. Compound names are run together, e.g. 'lightyear'. British units
that differ from their US counterparts are prefixed thus: 'brgallon'. Currency is denoted 'belgi­
umfranc', 'britainpound', ...

For a complete list of units, 'cat /usr/lib/units'.

/usr/lib/units

Don't base your financial plans on the currency conversions.

7th Edition 18 January 1983 1

VFONTINFO (1) UNIX Programmer's Manual VFONTINFO (1)

NAME
vfontinf o - inspect and print out information about UNIX fonts

SYNOPSIS
vfontlnfo [-v) fontname [characters]

DESCRIPTION
Vfontinfo allows you to examine a font in the UNIX format. It prints out all the information in
the font header and information about every non-null (width > 0) glyph. This can be used to
make sure the font is consistent with the format.

The fontname argument is the name of the font you wish to inspect. It writes to standard out­
put. If it can't find the file in your working directory, it looks in /usr/liblvfont (the place most of
the fonts are kept).

The characters, if given, specify certain characters to show. If omitted, the entire font is
shown.

If the -v (verbose) flag is used, the bits of the glyph itself are shown as an array of X's and
spaces, in addition to the header information.

SEE ALSO
vpr(l), vfont(5)
The Berkeley Font Catalog

AUTHORS
Mark Horton
Andy Hertzfeld

4th Berkeley Distribution 11 April 1980 1

VI(l) UNIX Proarammer's Manual Vl(l)

NAME
vi - screen oriented (visual) display editor based on ex

SYNOPSIS
vi [-t tag l [-r l [+command} [-1 l [-wn] name ...

DESCRIPTION

FILES

Vi (visual) is a display oriented text editor based on ex(l). Ex and vi run the same code; it is
possible to get to the command mode of ex from within vi and vice-versa.

The Vi Quick Reference card and the Introduction to Display Editing with Vi provide full details on
using vi.

See ex(l).

SEE ALSO
ex (1), edit (1), "Vi Quick Reference" card, "An Introduction to Display Editing with Vi".

AUTHOR

BUGS

William Joy
Mark Horton added macros to visual mode and is maintaining version 3

Software tabs using "T work only immediately after the autoindent.

Left and right shifts on intelligent terminals don't make use of insert and delete character
operations in the terminal.

The wrapmargin option can be fooled since it looks at output columns when blanks are typed.
If a long word passes through the margin and onto the next line without a break, then the line
won't be broken.

Insert/delete within a line can be slow if tabs are present on intelligent terminals, since the ter­
minals need help in doing this correctly.

Saving text on deletes in the named buffers is somewhat inefficient.

The source command does not work when executed as :source; there is no way to use the
:append, :change, and :insert commands, since it is not possible to give more than one line of
input to a : escape. To use these on a :global you must Q to ex command mode, execute
them, and then reenter the screen editor with vi or open.

3rd Berkeley Distribution 2 December 1979 1

VPL (lV) UNIX Programmer's Manual VPL(IV)

NAME
vpl - send plot file to plotter

SYNOPSIS
vpl name ...

DESCRlPTION
vpl is a shell script which calls and passes it's command line arguments to Vpr. vpl is used to
plot files of the type created by ged, the graphics editor program.

EXAMPLE
vpl /uO/chris/vw.spool

SEE ALSO
vpr(1)

7th Edition Valid 7 DECEMBER 1984 1

VPR(1) UNIX Programmer's Manual VPR(1)

NAME
vpr, vprm, vpq, Vpr, Vprm, Vpq - Versatec spooler

SYNOPSIS
vpr [-m] [-r] [name •••]

Vpr [-m] [-r] [name .•.]

DESCRIPTION

FILES

vpr causes the named text files to be queued for printing on the Versatec plotter.

Vpr spools the named plot files of the type created by ged, the graphics editor, for plotting on
the Verstec.

The -m option causes notification via mau(l) to be sent when the job completes. The -r option
causes the file to be removed when printing is complete.

fvVjprm removes an entry from the plotter queue. The id, filename or owner should be that
reported by fv Vjpq. All appropriate files will be removed. The id of each file removed from
the queue will be printed.

(vV/pq shows the files in the Versatec queue. The id printed is useful for removing specific files
from the queue via fvV/prm.

/usr/lib/[vV] pd
/usr/lib/[vV] pf
/uO /spool/[vV] pd/*
/uO/spool/[vVpd] /cf*
/uO/spool/[vVpd] /df*
/uO/spool/[vVpd] /tf*

plotter daemon
plotter filter
spool area
daemon control files
data files specified in "cf" files
temporary copies of "cf" files

SEE ALSO
lpr(1)

7th Edition 1

VTROFF(1) UNIX Programmer's Manual

NAME
vtroff, rvtroff - troff to a raster plotter

SYNOPSIS
vtroff [troff arguments] name ...

rvUofl' [troff arguments] name ...

DESCRIPTION

V1ROFF(1)

vtroffruns troD{l) sending its output through various programs to produce typeset output on a
raster plotter such as a Benson-Varian or or a Versatec.

rvtroff is identical to vtroff except that the output is rotated by ninety degrees.

FILES
/usr/lib/tmac/tmac.vcat
/usr/lib/fontinfo/*
/usr/lib/vfont

SEE ALSO
troff(l), vfont(5), vpr(l)

7th Edition

default font mounts and bug fixes
fixes for other fonts
directory containing fonts

8/28/80 1

WALL(l)

NAME
wall - write to all users

SYNOPSIS
wall

DESCRIPTION

UNIX Programmer's Manual WALL (l)

Wall reads its standard input until an end-of-file. It then sends this message, preceded by
'Broadcast Message ... ', to all logged in users.

The sender should be super-user to override any protections the users may have invoked.

FILES
/dev/tty?
/etc/utmp

SEE ALSO
mesg(l), write(l)

DIAGNOSTICS
'Cannot send to ... ' when the open on a user's tty file fails.

4th Berkeley Distribution 18 January 1983 1

(
\

WC (1) UNIX Programmer's Manual WC (1)

NAME
wc - word count

SYNOPSIS
we [- lwc 1 [name ... 1

DESCRIPTION

BUGS

We counts lines, words and characters in the named files, or in the standard input if no name
appears. A word is a maximal string of characters delimited by spaces, tabs or newlines.

If an argument beginning with one of "lwc" is present, the specified counts (lines, words, or
characters) are selected by the letters I, w, or c. The default is - lwc.

4th Berkeley Distribution 1 June 1983

WHAT(l) UNIX Programmer's Manual WHAT (1)

NAME
what - show what versions of object modules were used to construct a file

SYNOPSIS
what name ...

DESCRIPTION

BUGS

What reads each file and searches for sequences of the form "@(#)" as inserted by the source
code control system. It then prints the remainder of the string after this marker, up to a null
character, newline, double quote, or ">" character.

As SCCS is not licensed with UNIX/32V, this is a rewrite of the what command which is part
of SCCS, and may not behave exactly the same as that command does.

4th Berkeley Distribution 18 January 1983

WHO(l) UNIX Programmer's Manual WHO (I)

NAME
who - who is on the system

SYNOPSIS
who [who-file] [am I]

DESCRIPTION

FILES

Who, without an argument, lists the login name, terminal name, and login time for each
current UNIX user.

Without an argument, who examines the letc/11tmp file to obtain its information. If a file is
given, that file is examined. Typically the given file will be /usr/adm/wtmp, which contains a
record of all the logins since it was created. Then who lists logins, logouts, and crashes since
the creation of the wtmp file. Each login is listed with user name, terminal name (with '/dev/'
suppressed), and date and time. When an argument is given, logouts produce a similar line
without a user name. Reboots produce a line with 'x' in the place of the device name, and a
fossil time indicative of when the system went down.

With two arguments, as in 'who am I' (and also 'who are you'), who tells who you are logged
in as.

/etc/utmp

SEE ALSO
getuid(2), utmp(S)

7th Edition 18 January 1983

WHOAMI (1) UNIX Programmer's Manual

NAME
whoami - print effective current user id

SYNOPSIS
whoami

DESCRIPTION

WHOAMI (1)

Whoami prints who you are. It works even if you are su'd, while 'who am i' does not since it
uses /etc/utmp.

FILES
/etc/passwd

SEE ALSO
who (1)

Name data base

3rd Berkeley Distribution 24 February 1979

WRITE (1) UNIX Programmer's Manual WRITE (1)

NAME
write - write to another user

SYNOPSIS
write user [ttyname]

DESCRIPTION

FILES

Write copies lines from your terminal to that of another user. When first called, it sends the
message

Message from yoursystem!yourname yourttyname ...

The recipient of the message should write back at this point. Communication continues until
an end of file is read from the terminal or an interrupt is sent. At that point write writes 'EOT'
on the other terminal and exits.

If you want to write to a user who is logged in more than once, the 11y11ame argument may be
used to indicate the appropriate terminal name.

Permission to write may be denied or granted by use of the mesg command. At the outset writ­
ing is allowed. Certain commands, in particular nroff and pr(1) disallow messages in order to
prevent messy output.

If the character '!' is found at the beginning of a line, write calls the shell to execute the rest of
the line as a command.

The following protocol is suggested for using write: when you first write to another user, wait
for him to write back before starting to send. Each party should end each message with a dis­
tinctive signat-{o) for 'over' is conventional-that the other may reply. (oo) for 'over and
out' is suggested when conversation is about to be terminated.

/etc/utmp to find user
/bin/sh to execute '!'

SEE ALSO
mesg(l), who(l), mail(l)

7th Edition 18 January 1983

XSTR (1) UNIX Programmer's Manual XSTR (1)

NAME
xstr - extract strings from C programs to implement shared strings

SYNOPSIS
xstr [-c] [-] [file]

DESCRIPTION

FILES

Xstr maintains a file strings into which strings in component parts of a large program are hashed.
These strings are replaced with references to this common area. This serves to implement
shared constant strings, most useful if they are also read-only.

The command

xstr -c name

will extract the strings from the C source in name, replacing string references by expressions of
the form (&xstr[number]) for some number. An appropriate declaration of xs1r is prepended to
the file. The resulting C text is placed in the file x.c, to then be compiled. The strings from
this file are placed in the strings data base if they are not there already. Repeated strings and
strings which are suffices of existing strings do not cause changes to the data base.

After all components of a large program have been compiled a file xs.c declaring the common
xstr space can be created by a command of the form

xstr

This xs.c file should then be compiled and loaded with the rest of the program. If possible, the
array can be made read-only (shared) saving space and swap overhead.

Xstr can also be used on a single file. A command

xstr name

creates files x.c and xs.c as before, without using or affecting any strings file in the same direc­
tory.

It may be useful to run xs1r after the C preprocessor if any macro definitions yield strings or if
there is conditional code which contains strings which may not, in fact, be needed. Xs1r reads
from its standard input when the argument ' - ' is given. An appropriate command sequence
for running xstr after the C preprocessor is:

cc -E name.c \ xstr -c -
cc -c x.c
mv x.o name.o

Xstr does not touch the file strings unless new items are added, thus make can avoid remaking
xs.o unless truly necessary.

strings
x.c
XS.C

/tmp/xs•

Data base of strings
Massaged C source
C source for definition of array 'xstr'
Temp file when 'xstr name' doesn't touch strings

SEE ALSO
mkstr(l)

AUTHOR

BUGS

William Joy

If a string is a suffix of another string in the data base, but the shorter string is seen first by xs1r
both strings will be placed in the data base, when just placing the longer one there will do.

3rd Berkeley Distribution 24 February 1979

YACC (1) UNIX Programmer's Manual YACC (1)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yacc [-vd] grammar

DESCRIPTION

FILES

Yacc converts a context-free grammar into a set of tables for a simple automaton which exe­
cutes an LR (1) par!ling algorithm. The grammar may be ambiguous; specified precedence rules
are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a program yyparse.
This program must be loaded with the lexical analyzer program, yylex, as well as main and })'er­
ror, an error handling routine. These routines must be supplied by the user; Lex(1) is useful
for creating lexical analyzers usable by yacc.

If the -v flag is given, the file y.output is prepared, which contains a description of the parsing
tables and a report on conflicts generated by ambiguities in the grammar.

If the -d flag is used, the file y.tab.h is generated with the de.fine statements that associate the
yacc-assigned 'token codes' with the user-declared 'token names'. This allows source files other
than y.tab.c to access the token codes.

y.output
y.tab.c
y.tab.h defines for token names
yacc.tmp, yacc.acts temporary files
/usr/Iib/yaccpar parser prototype for C programs

SEE ALSO
/ex(l)
LR Parsing by A. V. Aho and S. C. Johnson, Computing Surveys, June, 1974.
YACC - Yet Another Compiler Compiler by S. C. Johnson.

DIAGNOSTICS

BUGS

The number of reduce-reduce and shift-reduce conflicts is reported on the standard output; a
more detailed report is found in the y. output file. Similarly, if some rules are not reachable
from the start symbol, this is also reported.

Because file names are fixed, at most one yacc process can be active in a given directory at a
time.

7th Edition 18 January 1983

YES (1) UNIX Programmer's Manual YES (l)

NAME
yes - be repetitively affirmative

SYNOPSIS
yes [expletive 1

DESCRIPTION
Yes repeatedly outputs "y", or if expletive is given, that is output repeatedly. Termination is by
rubout.

4th Berkeley Distribution 18 January 1983

INTRO (2) UNIX Programmer's Manual INTRO (2)

NAME
intro - introduction to system calls and error _numbers

SYNOPSIS
#include <errno.h >

DESCRIPTION
This section describes all of the system calls. Most of these calls have one or more error
returns. An error condition is indicated by an otherwise impossible return value. This is
almost always -1; the individual descriptions specify the details.

As with normal arguments, all return codes and values from functions are of type integer
unless otherwise noted. An error number is also made available in the external variable errno,
which is not cleared on successful calls. Thus err no should be tested only after an error has
occurred.

The following is a complete list of the errors and their names as given in < errno. h >.
0 Error 0

Unused.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except
to its owner or super-user. It is also returned for attempts by ordinary users to do
things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn't, or
when one of the directories in a path name does not exist.

3 ESRCH No such process
The process whose number was given to kill and ptrace does not exist, or is already
dead.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch,
occurred during a system call. If execution is resumed after processing the signal, it
will appear as if the interrupted system call returned this error condition.

5 EIO 1/0 error
Some physical 1/0 error occurred during a read or write. This error may in some cases
occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
1/0 on a special file refers to a subdevice which does not exist, or beyond the limits of
the device. It may also occur when, for example, an illegal tape drive unit number is
selected or a disk pack is not loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 10240 bytes is presented to execve.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions,
does not start with a valid magic number, see a.out(5).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write) request is made to
a file which is open only for writing (resp. reading).

10 ECHILD No children
Wait and the process has no living or unwaited-for children.

4th Berkeley Distribution 12 February 1983

INTRO (2) UNIX Programmer's Manual INTRO (2)

11 EAGAIN No more processes
In a fork, the system's process table is full or the user is not allowed to create any more
processes.

12 ENOMEM Not enough core
During an execve or break, a program asks for more core or swap space than the system
is able to supply. A lack of swap space is normally a temporary condition, however a
lack of core is not a temporary condition; the maximum size of the text, data, and stack
segments is a system parameter.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 EF A ULT Bad address
The system encountered a hardware fault in attempting to access the arguments of a
system call.

15 ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g. in mount.

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted or an attempt was made to
dismount a device on which there is an active file directory. (open file, current direc­
tory, mounted-on file, active text segment).

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g. link.

18 EXDEV Cross-device link
A hard link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a
write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path name
or as an argument to chdir.

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINV AL Invalid argument
Some invalid argument: dismounting a non-mounted device, mentioning an unknown
signal in signal, reading or writing a file for which seek has generated a negative pointer.
Also set by math functions, see intro(3).

23 ENFILE File table overflow
The system's table of open files is full, and temporarily no more opens can be accepted.

24 EMFILE Too many open files
Customary configuration limit is 20 per process.

25 ENOTTY Not a typewriter
The file mentioned in an ioctl is not a terminal or one of the other devices to which
these calls apply.

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writing
(or reading!). Also an attempt to open for writing a pure-procedure program that is
being executed.

4th Berkeley Distribution 12 February 1983 2

INTRO (2) UNIX Programmer's Manual INTRO (2)

27 EFBIG File too large
The size of a file exceeded the maximum (about 109 bytes).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device.

29 ESPIPE Illegal seek
An /seek was issued to a pipe. This error may also be issued for other non-seekable
devices.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than 32767 hard links to a file.

32 EPIPE Broken pipe
A write on a pipe or socket for which there is no process to read the data. This condi­
tion normally generates a signal; the error is returned if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the domain of the
function.

34 ERANGE Result too large
The value of a function in the math package (3M) is unrepresentable within machine
precision.

35 EWOULDBLOCK Operation would block
An operation which would cause a process to block was attempted on a object in non­
blocking mode (see ioctl (2)).

36 EINPROGRESS Operation now in progress
An operation which takes a long time to complete (such as a connect (2)) was
attempted on a non-blocking object (see ioctl (2)).

37 EALREADY Operation already in progress
An operation was attempted on a non-blocking object which already had an operation in
progress.

38 ENOTSOCK Socket operation on non-socket
Self-explanatory.

39 ED EST ADDRREQ Destination address required
A required address was omitted from an operation on a socket.

40 EMSGSIZE Message too long
A message sent on a socket was larger than the internal message buffer.

41 £PROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support the semantics of the socket type
requested. For example you cannot use the ARPA Internet UDP protocol with type
SOCK_ STREAM.

42 ENOPROTOOPT Bad protocol option
A bad option was specified in a getsockopt(2) or setsockopt(2) caJI.

43 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no implementation for it
exists.

4th Berkeley Distribution 12 February 1983 3

INTR0(2) UNIX Programmer's Manual INTRO (2)

44 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system or no imple­
mentation for it exists.

45 EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a datagram socket.

46 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no implementation for
it exists.

47 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used. For example, you
shouldn't necessarily expect to be able to use PUP Internet addresses with ARP A Inter­
net protocols.

48 EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

49 EADDRNOT AV AIL Can't assign requested address
Normally results from an attempt to create a socket with an address not on this
machine.

50 ENETDOWN Network is down
A socket operation encountered a dead network.

51 ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

52 ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted.

53 ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

54 ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from the peer exe­
cuting a shutdown (2) call.

55 ENOBUFS No buffer space available
An operation on a socket or pipe was not performed because the system lacked
sufficient buff er space.

56 EISCONN Socket is already connected
A connect request was made on an already connected socket; or, a sendto or sendmsg
request on a connected socket specified a destination other than the connected party.

57 ENOTCONN Socket is not connected
An request to send or receive data was disallowed because the socket is not connected.

58 ESHUTDOWN Can't send after socket shutdown
A request to send data was disallowed because the socket had already been shut down
with a previous shutdown (2) call. ·

59 unused

60 ETIMEDOUT Connection timed out
A connect request failed because the connected party did not properly respond after a
period of time. (The timeout period is dependent. on the communication protocol.)

61 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused it. This usu­
ally results from trying to connect to a service which is inactive on the foreign host.

4th Berkeley Distribution 12 February 1983 4

(
I
\

INTR0(2) UNIX Programmer's Manual INTRO (2)

62 ELOOP Too many levels of symbolic links
A path name lookup involved more than 8 symbolic links.

63 ENAMETOOLONG File name too long
A component of a path name exceeded 255 characters, or an entire path name
exceeded 1023 characters.

64 ENOTEMPTY Directory not empty
A directory with entries other than "." and " .. " was supplied to a remove directory or
rename call.

DEFINITIONS
Process ID

Each active process in the system is uniquely identified by a positive integer called a pro­
cess ID. The range of this ID is from 0 to {PROC MAX}.

Parent process ID
A new process is created by a currently active process; see fork(2). The parent process ID
of a process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group that is identified by a positive integer
called the process group ID. This is the process ID of the group leader. This grouping
permits the signalling of related processes (see kil/pg(2)) and the job control mechanisms
of csh(l).

Tty Group ID
Each active process can be a member of a terminal group that is identified by a positive
integer called the tty group ID. This grouping is used to arbitrate between multiple jobs
contending for the same terminal; see csh(l), and tty(4).

Real User ID and Real Group ID
Each user on the system is identified by a positive integer termed the real user ID.

Each user is also a member of one or more groups. One of these groups is distinguished
from others and used in /mplementing accounting facilities. The positive integer
corresponding to this distinguished group is termed the real group ID.

All processes have. a real user ID and real group ID. These are initialized from the
equivalent attributes of the process which created it.

Effective User Id; Effective Group Id, and Access Groups
Access to system resources is governed by three values: the effective user ID, the
effective group ID, and the group access list.

The effective user ID and effective group ID are initially the process's real user ID and
real group ID respectively. Either may be modified through execution of a set-user-ID or
set-group-ID file (possibly by one its ancestors); see execve(2).

The group access list is an additional set of group ID's used only in determining resource
accessibility. Access checks are performed as described below in "File Access Permis­
sions".

Super-user
A process is recognized as a super-user process and is granted special privileges if its
effective user ID is 0.

Special Processes
The processes with a process ID's of 0, 1, and 2 are special. Process 0 is the scheduler.
Process 1 is the initialization process init, and is the ancestor of every other process in the
system. It is used to control the process structure. Process 2 is the paging daemon.

4th Berkeley Distribution 12 February 1983 5

INTRO (2) UNIX Programmer's Manual INTRO (2)

Descriptor
An integer assigned by the system when a file is referenced by open(2), dup(2), or pipe(2)
or a socket is referenced by socket(2) or socketpair(2) which uniquely identifies an access
path to that file or socket from a given process or any of its children.

File Name
Names consisting of up to {FILENAME_MAX} characters may be used to name an ordi­
nary file, special file, or directory.

These characters may be selected from the set of all ASCII character excluding 0 (null)
and the ASCII code for I (slash). (The parity bit, bit 8, must be O.)

Note that it is generally unwise to use •, ? , [or] as part of file names because of the spe­
cial meaning attached to these characters by the shell.

Path Name .
A path name is a null-terminated character string starting with an optional slash (/), fol­
lowed by zero or more directory names separated by slashes, optionally followed by a file
name. The total length of a path name must be less than {PATHNAME_MAX} charac­
ters.

If a path name begins with a slash, the path search begins at the root directory. Other­
wise, the search begins from the current working directory. A slash by itself names the
root directory. A null pathname refers to the current directory.

Directory
A directory is a special type of file which contains entries which are references to other
files. Directory entries are called links. By convention, a directory contains at least two
links, . and .. , referred to as dot and dot-dot respectively. Dot refers to the directory itself
and dot-dot refers to its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current working
directory for the purpose of resolving path name searches. A process's root directory
need not be the root directory of the root file system.

File Access Permissions
Every file in the file system has a set of access permissions. These permissions are used
in determining whether a process may perform a requested operation on the file (such as
opening a file for writing). Access permissions are established at the time a file is created.
They may be changed at some later time through the chmod(2) call.

File access is broken down according to whether a file may be: read, written, or executed.
Directory files use the execute permission to control if the directory may be searched.

File access permissions are interpreted by the system as they apply to three different
classes of users: the owner of the file, those users in the file's group, anyone else. Every
file has an independent set of access permissions for each of these classes. When an
access check is made, the system decides if permission should be granted by checking the
access information applicable to the caUer.

Read, write, and execute/search permissions on a file are granted to a process if:

The process's effective user ID is that of the super-user.

The process's effective user ID matches the user ID of the owner of the file and the
owner permissions allow the access.

The process's effective user ID does not match the user ID of the owner of the file, and
either the process's effective group ID matches the group ID of the file, or the group ID
of.the file is in the process's group access list, and the group permissions allow the access.

4th Berkeley Distribution 12 February 1983 6

INTR0(2) UNIX Programmer's Manual INTR0(2)

Neither the effective user ID nor effective group ID and group access list of the process
match the corresponding user ID and group ID of the file, but the permissions for "other
users" allow access.

Otherwise, permission is denied.

Sockets and Address Families

SEE ALSO

A socket is an endpoint for communication between processes. Each socket has queues
for sending and receiving data.

Sockets are typed according to their communications properties. These properties include
whether messages sent and received at a socket require the name of the partner, whether
communication is reliable, the format used in naming message recipients, etc.

Each instance of the system supports some collection of socket types; consult socket(2)
for more information about the types available and their properties.

Each instance of the system supports some number of sets of communications protocols.
Each protocol set supports addresses of a certain format. An Address Family is the set of
addresses for a specific group of protocols. Each socket has an address chosen from the
address family in which the socket was created.

intro(3), perror(3)

4th Berkeley Distribution 12 February 1983 7

ACCEPT (2) UNIX Programmer's Manual ACCEPT (2)

NAME
accept - accept a connection on a socket

SYNOPSIS
#include < sys/types.h>
#include < sys/socket.h>

ns = accept(s, addr, addrlen)
int ns, s;
struct sockaddr •addr;
int •addrlen;

DESCRIPTION
The argument sis a socket which has been created with socket(2), bound to an address with
bind(2), and is listening for connections after a /isten(2). Acceptextracts the first connection on
the queue of pending connections, creates a new socket with the same properties of sand allo­
cates a new file descriptor, ns, for the socket. If no pending connections are present on the
queue, and the socket is not marked as non-blocking, accept blocks the caller until a connection
is present. If the socket is marked non-blocking and no pending connections are present on the
queue, accept returns an error as described below. The accepted socket, ns, may not be used to
accept more connections. The original socket s remains open.

The argument addr is a result parameter which is filled in with the address of the connecting
entity, as known to the communications layer. The exact format of the addr parameter is deter­
mined by the domain in which the communication is occurring. The addrlen is a value-result
parameter; it should initially contain the amount of space pointed to by addr, on return it will
contain the actual length (in bytes) of the address returned. This call is used with connection­
based socket types, currently with SOCK_STREAM.

It is possible to select(2) a socket for the purposes of doing an accept by selecting it for read.

RETURN VALUE
The call returns -1 on error. If it succeeds it returns a non-negative integer which is a descrip­
tor for the accepted socket.

ERRORS
The acceptwill fail if:

[EBADF] The descriptor is invalid.

[ENOTSOCK] The descriptor references a file, not a socket.

[EOPNOTSUPP] The referenced socket is not of type SOCK_STREAM.

[EF AUL Tl The addr parameter is not in a writable part of the user address space.

[EWOULDBLOCK] The socket is marked non-blocking and no connections are present to be
accepted.

SEE ALSO
bind(2), connect(2), listen(2), select(2), socket(2)

4th Berkeley Distribution 7 July 1983

ACCESS (2) UNIX Programmer's Manual ACCESS (2)

NAME
access - determine accessibility of file

SYNOPSIS
#include < sys/file.h>

#define R_ OK 4 /• test for read permission • /
/• test for write permission •/ #define W _OK 2

#define X_OK 1 I• test for execute (search) permission •/
/• test for presence of file•/ #define F_OK 0

accessible - access (path, mode)
int accessible;
char •path;
int mode;

DESCRIPTION
Access checks the given file path for accessibility according to mode, which is an inclusive or of
the bits R OK, W OK and X OK. Specifying mode as F OK (i.e. 0) tests whether the direc­
tories leadlng to the file can be-searched and the file exists:-

The real user ID and the group access list (including the real group ID) are used in verifying
permission, so this call is useful to set-UID programs.

Notice that only access bits are checked. A directory may be indicated as writable by access,
but an attempt to open it for writing will fail (although files may be created there); a file may
look executable, but execve. will fail unless it is in proper format.

RETURN VALUE
If path cannot be found or if any of the desired access modes would not be granted, then a -1
value is returned; otherwise a 0 value is returned.

ERRORS
Access to the file is denied if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENO ENT]

[ENO ENT]

[EPERM]

[ELOOP]

[EROFS]

[ETXTBSY]

[EACCES]

[EFAULT]

SEE ALSO

The argument path name was too long.

Read, write, or execute (search) permission is requested for a null path name
or the named file does not exist.

The argument contains a byte with the high-order bit set.

Too many symbolic links were encountered in translating the pathname.

Write access is requested for a file on a read-only file system.

Write access is requested for a pure procedure (shared text) file that is being
executed.

Permission bits of the file mode do not permit the requested access; or search
permission is denied on a component of the path prefix. The owner of a file
has permission checked with respect to the "owner" read, write, and execute
mode bits, members of the file's group other than the owner have permission
checked with respect to the "group" mode bits, and all others have permis­
sions checked with respect to the "other" mode bits.

Path points outside the process's allocated address space.

chmod(2), stat(2)

4th Berkeley Distribution 18 July 1983

BIND (2) UNIX Programmer's Manual BIND (2)

NAME
bind - bind a name to a socket

SYNOPSIS
#include < sys/types.h >
#include < sys/socket.h >
bind (s, name, namelen)
int s;
struct sockaddr •name;
int namelen;

DESCRIPTION

NOTES

Bind assigns a name to an unnamed socket. When a socket is created with socket(2) it exists in
a name space (address family) but has no name assigned. Bind requests the name, be assigned
to the socket.

Binding a name in the UNIX domain creates a socket in the file system which must be deleted
by the caller when it is no longer needed (using unlink(2)). The file created is a side-effect of
the current implementation, and will not be created in future versions of the UNIX ipc domain.

The rules used in name binding vary between communication domains. Consult the manual
entries in section 4 for detailed information.

RETURN VALUE
If the bind is successful, a 0 value is returned. A return value of -1 indicates an error, which
is further specified in the global errno.

ERRORS
The bind call will fail if:

[EBADF] Sis not a valid descriptor.

[ENOTSOCK] S is not a socket.

[EADDRNOTAV AIL]
The specified address is not available from the local machine.

The specified address is already in use.

The socket is already bound to an address.

[EADDRINUSE]

[EINVAL]

[EACCESS] The requested address is protected, and the current user has inadequate
permission to access it.

[EFAULT] The name parameter is not in a valid part of the user address space.

SEE ALSO
connect(2), listen(2), socket(2), getsockname(2)

4th Berkeley Distribution 27 July 1983 1

BRK (2) UNIX Programmer's Manual BRK (2)

NAME
brk, sbrk - change data segment size

SYNOPSIS
caddr_t brk(addr)
caddr_t addr;

caddr_t sbrkUncr)
int incr;

DESCRIPTION
Brk sets the system's idea of the lowest data segment location not used by the program (called
the break) to addr (rounded up to the next multiple of the system's page size). Locations
greater than addr and below the stack pointer are not in the address space and wiil thus cause a
memory violation if accessed.

In the alternate function sbrk, incr more bytes are added to the program's data space and a
pointer to the start of the new area is returned.

When a program begins execution via execve the break is set at the highest location defined by
the program and data storage areas. Ordinarily, therefore, only programs with growing data
areas need to use sbrk.

The getrlimit(2) system call may be used to determine the maximum permissible size of the
data segment; it will not be possible to set the break beyond the rlim_max value returned from
a call to getrlimit, e.g. "etext + rlp-rlim_max." (See endO) for the definition of etextJ

RETURN VALUE
Zero is returned if the brk could be set; -1 if the program requests more memory than the sys­
tem limit. Sbrk returns -1 if the break could not be set.

ERRORS
Sbrk will fail and no additional memory will be allocated if one of the following are true:

[ENOMEM] The limit, as set by setrlimit(2), was exceeded.

[ENOMEM]

[ENOMEM]

The maximum possible size of a data segment (compiled into the system) was
exceeded.

Insufficient space existed in the swap area to support the expansion.

SEE ALSO

BUGS

execve(2), getrlimit(2), malloc(3), end(3)

Setting the break may fail due to a temporary lack of swap space. It is not possible to distin·
guish this from a failure caused by exceeding the maximum size of the data segment without
consulting getrlimir.

4th Berkeley Distribution 27 July 1983

CHOIR (2) UNIX Programmer's Manual CHOIR (2)

NAME
chdir - change current working directory

SYNOPSIS
chdir(path)
char •path;

DESCRIPTION
Path is the pathname of a directory. Chdir causes this directory to become the current working
directory, the starting point for path names not beginning with "/".

In order for a directory to become the current directory, a process must have execute (search)
access to the directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Chdir will fail and the current working directory will be unchanged if one or more of the follow­
ing are true:

[ENOTDlR]

[ENO ENT]

[ENO ENT]

[EPERM]

[EACCES]

[EFAULT)

[ELOOP]

SEE ALSO
chroot(2)

A component of the pathname is not a directory.

The named directory does not exist.

The argument path name was too long.

The argument contains a byte with the high-order bit set.

Search permission is denied for any component of the path name.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

4th Berkeley Distribution 2 July 1983

CHMOD (2) UNIX Programmer's Manual CH MOD (2)

[EROFS] The file resides on a read-only file system.

SEE ALSO
open(2), chown(2)

4th Berkeley Distribution 2 July 1983 2

CHMOD (2) UNIX Programmer's Manual CHMOD (2)

NAME
chmod - change mode of file

SYNOPSIS
chmod(path, mode)
char •path;
int mode;

fchmod (fd, mode)
int fd, mode;

DESCRIPTION
The file whose name is given by path or referenced by the descriptor fd has its mode changed to
mode. Modes are constructed by or'ing together some combination of the following:

04000 set user ID on execution
02000 set group ID on execution
01000 save text image after execution
00400 read by owner
00200 write by owner
00100 execute (search on directory) by owner
00070 read, write, execute (search) by group
00007 read, write, execute (search) by others

If an executable file is set up for sharing (this is the default) then mode 1000 prevents the sys­
tem from abandoning the swap-space image of the program-text portion of the file when its last
user terminates. Ability to set this bit is restricted to the super-user.

Only the owner of a file (or the super-user) may change the mode.

Writing or changing the owner of a file turns off the set-user-id and set-group-id bits. This
makes the system somewhat more secure by protecting set-user-id (set-group-id) files from
remaining set-user-id (set-group-id) if they are modified, at the expense of a degree of compati­
bility.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Chmodwill fail and the file mode will be unchanged if:

[EPERM] The argument contains a byte with the high-order bit set.

[ENOTDIR]

[ENO ENT]

[ENO ENT]

[EACCES]

[EPERM]

[EROFS]

A component of the path prefix is not a directory.

The pathname was too long.

The named file does not exist.

Search permission is denied on a component of the path prefix.

The effective user ID does not match the owner of the file and the effective
user ID is not the super-user.

The named file resides on a read-only file system.

[EF AUL Tl Path points outside the process's allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

Fchmodwill fail if:

[EBADF]

[EINVAL]

The descriptor is not valid.

Fd refers to a socket, not to a file.

4th Berkeley Distribution 2 July 1983

CHOWN (2) UNIX Programmer's Manual CHOWN (2)

NAME
chown - change owner and group of a file

SYNOPSIS
chown(path, owner, group)
char •path;
int owner, group;

fchown(fd, owner, group)
int fd, owner, group;

DESCRIPTION
The file which is named by path or referenced by fd has its owner and group changed as
specified. Only the super-user may execute this call, because if users were able to give files
away, they could def eat the file-space accounting procedures.

On some systems, chown clears the set-user-id and set-group-id bits on the file to prevent
accidental creation of set-user-id and set-group-id programs owned by the super-user.

Fchown is particularly useful when used in conjunction with the file locking primitives (see
flock(2)).

Only one of the owner and group id's may be set by specifying the other as -1.

RETURN VALUE
Zero is returned if the operation was successful; -1 is returned if an error occurs, with a more
specific error code being placed in the global variable errno.

ERRORS
Chown will fail and the file will be unchanged if:

[EINV AL] The argument path does not refer to a file.

[EN OT DIR]

[ENOENT]

[EPERM]

[ENO ENT]

[EACCES]

[EPERM]

[EROFS]

A component of the path prefix is not a directory.

The argument pathname is too long.

The argument contains a byte with the high-order bit set.

The named file does not exist.

Search permission is denied on a component of the path prefix.

The effective user ID. does not match the owner of the file and the effective
user ID is not the super-user.

The named file resides on a read-only file system.

[EFAULT] Path points outside the process's allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

Fchown will fail if:

[EBADF]

[EINVAL]

Fddoes not refer to a valid descriptor.

Fdrefers to a socket, not a file.

SEE ALSO
chmod(2), flock(2)

4th Berkeley Distribution 27 July 1983

CHROOT (2) UNIX Programmer's Manual CijROOT(2)

NAME
chroot - change root directory

SYNOPSIS
ch root (dirname)
char •dirname;

DESCRIPTION
Dirname is the address of the pathname of a directory, terminated by a null byte. Chrootcauses
this directory to become the root directory, the starting point for path names beginning with
""/''.

In order for a directory to become the root directory a process must have execute (search)
access to the directory.

This call is restricted to the super-user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of - I is returned and
errno is set to indicate an error.

ERRORS
Chroot will fail and the root directory will be unchanged if one or more of the following are
true:

[ENOTDIR]

[ENO ENT]

[EPERM]

[ENO ENT]

[EACCES]

[EFAULT]

[ELOOP]

SEE ALSO
chdid2)

A component of the path name is not a directory.

The pathname was too long.

The argument contains a byte with the high-order bit set.

The named directory does not exist.

Search permission is denied for any component of the path name ..

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

4th Berkeley Distribution 2 July 1983

CLOSE (2) UNIX Programmer's Manual CLOSE (2)

NAME
close - delete a descriptor

SYNOPSIS
close(d)
int d;

DESCRIPTION
The close call deletes a descriptor from the per-process object reference table. If this is the last
reference to the underlying object, then it will be deactivated. For example, on the last close of
a file the current seek pointer associated with the file is lost; on the last close of a socket(2)
associated naming information and queued data are discarded; on the last close of a file holding
an advisory lock the lock is released; see further ffock(2).

A close of all of a process's descriptors is automatic on exit, but since there is a limit on the
number of active descriptors per process, close is necessary for programs which deal with many
descriptors.

When a process forks (see fork(2)), all descriptors for the new child process reference the same
objects as they did in the parent before the fork. If a new process is then to be run using
execve(2), the process would normally inherit these descriptors. Most of the descriptors can be
rearranged with dup2(2) or deleted with close before the execve is attempted, but if some of
these descriptors will still be needed if the execve fails, it is necessary to arrange for them to be
closed if the execve succeeds. For this reason, the call "fcntl (d, F SETFD, I)'' is provided
which arranges that a descriptor will be closed after a successful execve; the call "fcntl (d,
F _SETFD, 0)" restores the default, which is to not close the descriptor.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
the global integer variable errno is set to indicate the error.

ERRORS
Close will fail if:

[EBADF] Dis not an active descriptor.

SEE ALSO
accept(2), flock(2), open(2), pipe(2), socket(2), socketpair(2), execve(2), fcntH2J

4th Berkeley Distribution 27 July 1983

CONNECT(2) UNIX Programmer's Manual CONNECT (2 >

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include < sys/types.h>
#include <sys/ socket. h>

connect(s, name, namelen)
int s;
struct sockaddr •name;
int namelen;

DESCRIPTION
The parameter s is a socket. If it is of type SOCK_DGRAM, then this call permanently
specifies the peer to which datagrams are to be sent; if it is of type SOCK_STREAM, then this
call attempts to make a connection to another socket. The other socket is specified by name
which is an address in the communications space of the socket. Each communications space
interprets the name parameter in its own way.

RETURN VALUE
If the connection or binding succeeds, then 0 is returned. Otherwise a -1 is returned, and a
more specific error code is stored in errno.

ERRORS
The call fails if:

[EBADF) Sis not a valid descriptor.

[ENOTSOCK) Sis a descriptor for a file, not a socket.

[EADDRNOT AV AIL)
The specified address is not available on this machine.

[EAFNOSUPPORT] Addresses in the specified address family cannot be used with this socket.

[EISCONN]

[ETIMEDOUT]

The socket is already connected.

Connection establishment timed out without establishing a connection.

[ECONNREFUSED) The attempt to connect was forcefully rejected.

[ENETUNREACH]

[EADDRINUSE]

[EFAULT)

[EWOULDBLOCK]

SEE ALSO

The network isn't reachable from this host.

The address is already in use.

The name parameter specifies an area outside the process address space.

The socket is non-blocking and the and the connection cannot be com­
pleted immediately. It is possible to select(2) the socket while it is con­
necting by selecting it for writing.

accept (2), select(2), socket (2), getsockname (2)

4th Berkeley Distribution 7 July 1983

CREAT (2) UNIX Programmer's Manual CREAT (2)

NAME
creat - create a new file

SYNOPSIS
creat(name, mode)
char •name;

DESCRIPTION

NOTES

This interface is obsoleted by open (2).

Creat creates a new file or prepares to rewrite an existing file called name, given as the address
of a null-terminated string. If the file did not exist, it is given mode mode, as modified by the
process's mode mask (see umask(2)). Also see chmod(2) for the construction of the mode
argument.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.

The file is also opened for writing, and its file descriptor is returned.

The mode given is arbitrary; it need not allow writing. This feature has been used in the past
by programs to construct a simple exclusive locking mechanism. It is replaced by the 0 EXCL
open mode, or Jlock(2) facilitity. -

RETURN VALUE
The value -1 is returned if an error occurs. Otherwise, the call returns a non-negative descrip·
tor which only permits writing.

ERRORS
Creat will fail and the file will not be created or truncated if one of the following occur:

[EPER..\1] The argument contains a byte with the high-order bit set.

[ENOTDIR]

[EACCES]

[EACCES]

[EACCES]

[EIS DIR]

[EM FILE]

[EROFS]

[ENXIO]

[ETXTBSY)

[EFAULT]

A component of the path prefix is not a directory.

A needed directory does not have search permission.

The file does not exist and the directory in which it is to be created is not writ­
able.

The file exists, but it is unwritable.

The file is a directory.

There are already too many files open.

The named file resides on a read-only file system.

The file is a character special or block special file, and the associated device
does not exist.

The file is a pure procedure (shared text) file that is being executed.

Name points outside the process's allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EOPNOTSUPP]
The file was a socket (not currently implemented).

SEE ALSO
open(2), write(2), close(2), chmod(2), umask(2)

4th Berkeley Distribution 2 July 1983

DUP(2) UNIX Programmer's Manual DUP (2)

NAME
dup, dup2 - duplicate a descriptor

SYNOPSIS
newd = dup(oldd)
Int newd, oldd;

dup2 (oldd, newd)
Int oldd, newd;

DESCRIPTION
Dup duplicates an existing object descriptor. The argument oldd is a sman non-negative integer
index in the per-process descriptor table. The value must be less than the size of the table,
which is returned by getdtablesize(2). The new descriptor newd returned by the can is the
lowest numbered descriptor which is not currently in use by the process.

The object referenced by the descriptor does not distinguish between references using oldd and
newd in any way. Thus if newd and o/dd are duplicate references to an open file, read(2),
write(2) and lseek(2) calls all move a single pointer into the file. If a separate pointer into the
file is desired, a different object reference to the file must be obtained by issuing an additional
open (2) call.

In the second form of the can, the value of newd desired is specified. If this descriptor is
already in use, the descriptor is first deanocated as if a close(2) can had been done first.

RETURN VALUE
The value -1 is returned if an error occurs in either can. The external variable errno indicates
the cause of the error.

ERRORS
Dup and dup2 fail if:

[EBADF] Oldd or newd is not a valid active descriptor

[EMFILE] Too many descriptors are active.

SEE ALSO
accept (2), open (2), close (2), pipe (2), socket (2), socketpair(2), getdtablesize(2)

4th Berkeley Distribution 12 February 1983

EXECVE (2) UNIX Programmer's Manual EXECVE (2)

NAME
execve - execute a file

SYNOPSIS
execve(name, argv, envp)
char •name, •argvll, •envpll;

DESCRIPTION
Execve transforms the calling process into a new process. The new process is constructed from
an ordinary file called the new process .file. This file is either an executable object file, or a file
of data for an interpreter. An executable object file consists of an identifying header, followed
by pages of data representing the initial program (text) and initialized data pages. Additional
pages may be specified by the header to be initialize with zero data. See a.our(5).

An interpreter file begins with a line of the form "#! interpreter'; When an interpreter file is
execve'd, the system execve's the specified interpreter, giving it the name of the originally
exec'd file as an argument, shifting over the rest of the original arguments.

There can be no return from a successful execve because the calling core image is lost. This is
the mechanism whereby different process images become active.

The argument argv is an array of character pointers to null-terminated character strings. These
strings constitute the argument list to be made available to the new process. By convention, at
least one argument must be present in this array, and the first element of this array should be
the name of the executed program (i.e. the last component of name).

The argument envp is also an array of character pointers to null-terminated strings. These
strings pass information to the new process which are not directly arguments to the command,
see environ(?).

Descriptors open in the calling process remain open in the new process, except for those for
which the close-on-exec flag is set; see close(2). Descriptors which remain open are unaffected
by execve.

Ignored signals remain ignored across an execl'e, but signals that are caught are reset to their
default values. The signal stack is reset to be undefined; see sigvecC2) for more information.

Each process has real user and group IDs and a effective user and group IDs. The real ID
identifies the person using the system; the effective ID determines his access privileges. Excn'c
changes the effective user and group ID to the owner of the executed file if the file has the
"set-user-ID" or "set-group-ID" modes. The realuser ID is not affected.

The new process also inherits the following attributes from the calling process:

process ID see getpid(2)
parent process ID see getppid(2)
process group ID see getpgrp(2)
access groups see getgroups(2)
working directory see chdir(2)
root directory see chroot(2)
control terminal see t(v(4)
resource usages see getrusage (2)
interval timers see getitimer(2)
resour:ce limits see getrlimit(2)
file mode mask see umask (2)
signal mask see sigl'ec(2)

When the executed program begins, it is called as follows:

4th Berkeley Distribution 27 July 1983

EXECVE(2) UNIX Programmer's Manual EXECVE(2)

main(argc, argv, envp)
int argc;
char uargv' **envp;

where argc is the number of elements in argv (the "arg count") and argv is the array of charac­
ter pointers to the arguments themselves.

Envp is a pointer to an array of strings that constitute the environment of the process. A pointer
to this array is also stored in the global variable "environ". Each string consists of a name, an
"= ", and a null-terminated value. The array of pointers is terminated by a null pointer. The
shell shO) passes an environment entry for each global shell variable defined when the pro­
gram is called. See environ(?) for some conventionally used names.

RETURN VALUE
If execve returns to the calling process an error has occurred; the return value will be -1 and
the global variable errno will contain an error code.

ERRORS
Execve will fail and return to the calling process if one or more of the following are true:

[ENOENT) One or more components of the new process file's path name do not exist.

[ENOTDIR) A component of the new process file is not a directory.

[EACCES) Search permission is denied for a directory listed in the new process file's path
prefix.

[EACCES) The new process file is not an ordinary file.

[EACCES) The new process file mode denies execute permission.

[ENOEXEC) The new process file has the appropriate access permission, but has an invalid
magic number in its header.

[ETXTBSY) The new process file is a pure procedure (shared text) file that is currently
open for writing or reading by some process.

[ENOMEM) The new process requires more virtual memory than is allowed by the imposed
maximum (getr/imit(2)).

[E2BIG) The number of bytes in the new process's argument list is larger than the
system-imposed limit of (ARG_MAXI bytes.

[EF AULT) The new process file is not as long as indicated by the size values in its header.

[EFAUL Tl Path, argv, or envp point to an illegal address.

CAVEATS
If a program is setuidto a non-super-user, but is executed when the real uidis "root'', then the
program has the powers of a super-user as well.

SEE ALSO
exit(2), fork(2), execl(3), environ(?)

4th Berkeley Distribution 27 July 1983 2

(

\

EXIT (2)

NAME
_exit - terminate a process

SYNOPSIS
_exit (status)
int status;

DESCRIPTION

UNIX Programmer's Manual

_exitterminates a process with the following consequences:

All of the descriptors open in the calling process are closed.

EXIT (2)

If the parent process of the calling process is executing a wait or is interested in the SIGCHLD
signal, then it is notified of the calling process's termination and the low-order eight bits of
status are made available to it~ see wait(2). ·

The parent process ID of all of the calling process's existing child processes are also set to I.
This means that the initialization process (see intro(2)) inherits each of these processes as well.

Most C programs call the library routine exit(3) which performs cleanup actions in the standard
i/o library before calling _exit.

RETURN VALUE
This call never returns.

SEE ALSO
fork(2), wait(2), exit<J)

4th Berkeley Distribution 27 July 1983

FLOCK (2) UNIX Programmer's Manual FLOCK (2)

NAME
flock - apply or remove an advisory lock on an open file

SYNOPSIS
#include < sys/file.h >
#defineLOCK_SH 1
#defineLOCK_EX 2
#defineLOCK_NB 4
#defineLOCK_UN 8

flock (fd, operation)
int fd, operation;

I• shared lock •/
I• exclusive lock •/
I• don't block when locking •/
I• unlock•/

DESCRIPTION

NOTES

Flock applies or removes an advisory lock on the file associated with the file descriptor fd. A
lock is applied by specifying an operation parameter which is the inclusive or of LOCK_SH or
LOCK_EX and, possibly, LOCK_NB. To unlock an existing lock operation should be
LOCK_UN.

Advisory locks allow cooperating processes to perform consistent operations on files, but do not
guarantee consistency (i.e. processes may still access files without using advisory locks possibly
resulting in inconsistencies).

The locking mechanism allows two types of locks: shared locks and exclusive locks. At any time
multiple shared locks may be applied to a file, but at no time are multiple exclusive, or both
shared and exclusive, locks allowed simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the
appropriate lock type; this results in the previous lock being released and the new lock applied
(possibly after other processes have gained and released the lock).

Requesting a lock on an object which is already locked normally causes the caller to blocked
until the lock may be acquired. If LOCK_NB is included in operation, then this will not hap­
pen; instead the call will fail and the error EWOULDBLOCK will be returned.

Locks are on files, not file descriptors. That is, file descriptors duplicated through dup(2) or
fork(2) do not result in multiple instances of a lock, but rather multiple references to a single
lock. If a process holding a lock on a file forks and the child explicitly unlocks the file, the
parent will lose its lock.

Processes blocked awaiting a lock may be awakened by signals.

RETURN VALUE
Zero is returned if the operation was successful; on an error a -1 is returned and an error code
is left in the global location errno.

ERRORS
The flock call fails if:

[EWOULDBLOCK]

[EBADF]

[EINVALJ

SEE ALSO

The file is locked and the LOCK_NB option was specified.

The argument fd is an invalid descriptor.

The argument fd refers to an object other than a file.

open(2), close(2), dup(2), execve(2), fork(2)

4th Berkeley Distribution 27 July 1983

FORK (2) UNIX Programmer's Manual FORK (2)

NAME
fork - create a new process

SYNOPSIS
pld •fork()
int pld;

DESCRIPTION
Fork causes creation of a new process. The new process (child process) is an exact copy of the
calling process except for the following:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the process ID of the parent pro-
cess). ·

The child process has its own copy of the parent's descriptors. These descriptors refer­
ence the same underlying objects, so that, for instance, file pointers in file objects are
shared between the child and the parent, so that a lseek(2) on a descriptor in the child
process can affect a subsequent read or write by the parent. This descriptor copying is also
used by the shell to establish standard input and output for newly created processes as
well as to set up pipes.

The child processes resource utilizations are set to O; see setrlimit(2).

R.ETUR.N VALUE
Upon successful completion, fork returns a value of 0 to the child process and returns the pro­
cess ID of the child process to the parent process. Otherwise, a value of -1 is returned to the
parent process, no child process is created, and the global variable errno is set to indicate the
error.

ER.R.OR.S
Fork will fail and no child process will. be created if one or more of the following are true:

[EAGAIN] The system-imposed limit {PROC_MAX} on the total number of processes
under execution would be exceeded.

[EAGAIN] The system-imposed limit {KID _MAX} on the total number of processes
under execution by a single user would be exceeded.

SEE ALSO
execve (2), wait (2)

4th Berkeley Distribution 12 February 1983 1

FSYNC (2) UNIX Programmer's Manual

NAME
fsync - synchronize a file's in-core state with that on disk

SYNOPSIS
fsync(fd)
int fd;

DESCRIPTION

FSYNC (2)

Fsync causes all modified data and attributes of fd to be moved to a permanent storage device.
This normally results in all in-core modified copies of buffers for the associated file to be writ­
ten to a disk.

Fsync should be used by programs which require a file to be in a known state; for example in
building a simple transaction facility.

RETURN VALUE
A 0 value is returned on success. A -1 value indicates an error.

ERRORS
The /sync fails if:

[EBADF] Fd is not a valid descriptor.

[EINV AL] Fd refers to a socket, not to a file.

SEE ALSO
sync(2), sync(8), update(8)

BUGS
The current implementation of this call is expensive for large files.

4th Berkeley Distribution 12 February 1983 1

(
\

'·

GETDT ABLESIZE (2) UNIX Programmer's Manual

NAME
getdtablesize - get descriptor table size

SYNOPSIS
nds • getdtablesizeO
int nds;

DESCRIPTION

GETDT ABLESIZE (2)

Each process has a fixed size descriptor table which is guaranteed to have at least 20 slots. The
entries in the descriptor table are numbered with small integers starting at 0. The call getdta­
blesize returns the size of this table.

SEE ALSO
close (2), dup (2), open (2)

4th Berkeley Distribution 12 February 1983 1

GETGID(2) UNIX Programmer's Manual

NAME
getgid, getegid - get group identity

SYNOPSIS
aid • 1et1id 0
int gid;

egid • 1etegid 0
int egid;

DESCRIPTION

GETGID (2)

Getgid returns the real group ID of the current process, getegid the effective group ID.

The real group ID is specified at login time.

The effective group ID is more transient, and determines additional access permission during
execution of a "set-group-ID" process, and it is for such processes that getgid is most useful.

SEE ALSO
getuid (2) , setregid (2), setgid (3)

4th Berkeley Distribution 12 February 1983 1

GETGROUPS (2) UNIX Programmer's Manual GETGROUPS (2)

NAME
getgroups - get group access list

SYNOPSIS
#include < sys/param.h >
getgroups(ngroups, gidset)
int •ngroups, •gidset;

DESCRIPTION
Getgroups gets the current group access list of the user process and stores it in the array gidset.
The parameter ngroups indicates ·the number of entries which may be placed in gidset and is
modified on return to indicate the actual number of groups returned. No more than NGRPS,
as defined in <sys/param.h>, will ever be returned.

RETURN VALUE
A value of 0 indicates that the call succeeded, and that the number of elements of gidset and
the set itself were returned. A value of -1 indicates that an error occurred, and the error code
is stored in the global variable errno.

ERRORS
The possible errors for getgroup are:

[EFAUL Tl The arguments ngroups or gidset specify invalid addresses.

SEE ALSO
setgroups(2), initgroups(3)

4th Berkeley Distribution 7 July 1983

GETHOSTID (2) UNIX Programmer's Manual

NAME
gethostid, sethostid - get/set unique identifier of current host

SYNOPSIS
bostid • getbostid 0
int bostld;

setbostid (bostld)
int bostid;

DESCRIPTION

GETHOSTID (2)

Sethostid establishes a 32-bit identifier for the current processor which is intended to be unique
among all UNIX systems in existence. This is normally a DARPA Internet address for the
local machine. This call is allowed only to the super-user and is normally performed at boot
time.

Gethostid returns the 32-bit identifier for the current processor.

SEE ALSO
hostid (1), gethostname (2)

BUGS
32 bits for the identifier is too small.

4th Berkeley Distribution 12 February 1983 1

GETHOSTNAME (2) UNIX Programmer's Manual

NAME
gethostname, sethostname - get/set name of current host

SYNOPSIS
gethostname(name, namelen)
char •name;
int namelen;

sethostname(name, namelen)
char •name;
int namelen;

DESCRIPTION

GETHOSTNAME (2)

Gethostname returns the standard host name for the current processor, as previously set by
sethostname. The parameter name/en specifies the size of the name array. The returned name is
null-terminated unless insufficient space is provided.

Sethostname sets the name of the host machine to be name, which has length name/en. This
call is restricted to the super-user and is normally used only when the system is bootstrapped.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a value of -1 is returned and
an error code is placed int the global location errno.

ERRORS
The following errors may be returned by these calls:

[EFAULT] The name or name/en parameter gave an invalid address.

[EPERM]

SEE ALSO
gethostid (2)

BUGS

The caller was not the super-user.

Host names are limited to 255 characters.

4th Berkeley Distribution 12 February 1983 1

GETITIMER (2) UNIX Programmer's Manual G ETITIMER (2)

NAME
getitimer, setitimer - get/set value of interval timer

SYNOPSIS
#include < sys/time.h >
#define ITIMER_REAL 0
#define ITIMER_ VIRTUAL 1
#define ITIMER_PROF 2

getitimer(which, value)
int which;
struct itimerval •value;

setitimer(which, value, ovalue)
int which;
struct itimerval •value, •ovalue;

I• real time intervals •/
I• virtual time intervals •/
I• user and system virtual time •/

DESCRIPTION

NOTES

The system provides each process with three interval timers, defined in <sys/time. h >. The
getitimer call returns the current value for the timer specified in which, while the setitimer call
sets the value of a timer (optionally. returning the previous value of the timer).

A timer value is defined by the itimerval structure:

struct itimerval {

};

struct timeval it_interval;
struct timeval it_ value;

I• timer interval •/
I• current value •/

If it_value is non-zero, it indicates the time to the next timer expiration. If it_interval is non­
zero, it specifies a value to be used in reloading it_ value when the timer expires. Setting
it value to 0 disables a timer. Setting it interval to 0 causes a timer to be disabled after its next
expiration (assuming it_ value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this resolution
(on the VAX, 10 microseconds).

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is delivered when this
timer expires.

The ITIMER_ VIRTUAL timer decrements in process virtual time. It runs only when the pro­
cess is executing. A SIGVT ALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is run­
ning on behalf of the process. It is designed to be used by interpreters in statistically profiling
the execution of interpreted programs. Each time the ITIMER_PROF timer expires, the SIG­
PROF signal is delivered. Because this signal may interrupt in-progress system calls, programs
using this timer must be prepared to restart interrupted system calls.

Three macros for manipulating time values are defined in <sys/time. h >. Ti mere/ear sets a time
value to zero, timerisset tests if a time value is non-zero, and timercmp compares two time
values (beware that > = and < = do not work with this macro).

RETURN VALUE
If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is returned, and
a more precise error code is placed in the global variable errno.

4th Berkeley Distribution 27 July 1983

G ETITIMER (2) UNIX Prosrammer's Manual GETITIMER (2)

ERRORS
The possible errors are:

[EFAULT] The value structure specified a bad address.

[EINVAL] A value structure specified a time was too large to be handled.

SEE ALSO
sigvec(2), gettimeof day (2)

4th Berkeley Distribution 27 July 1983 2

GETPAGESIZE (2) UNIX Programmer's Manual

NAME
getpagesize - get system page size

SYNOPSIS
pagesize = getpagesizeO
Int pagesize;

DESCRIPTION

GETPAGESIZE (2)

Getpagesize returns the number of bytes in a page. Page granularity is the granularity of many
of the memory management calls.

The page size is a system page size and may not be the same as the underlying hardware page
size.

SEE ALSO
sbrk(2), pagesize(l)

4th Berkeley Distribution 18 July 1983 1

GETPGRP (2) UNIX Programmer's Manual GETPGRP (2)

NAME
getpgrp - get process group

SYNOPSIS
pgrp = getpgrp (pid)
int prgp;
int pid;

DESCRIPTION
The process group of the specified process is returned by getpgrp. If pid is zero, then the call
applies to the current process.

Process groups are used for distribution of signals, and by terminals to arbitrate requests for
their input: processes which have the same process group as the terminal are foreground and
may read, while others will block with a signal if they attempt to read.

This call is thus used by programs such as csh(l) to create process groups in implementing job
control. The TIOCGPGRP and TIOCSPGRP calls described in tty(4) are used to get/set the
process group of the control terminal.

SEE ALSO
setpgrp(2), getuid(2), tty(4)

4th Berkeley Distribution 2 July 1983 1

GETPID (2) UNIX Programmer's Manual

NAME
getpid, getppid - get process identification

SYNOPSIS
pld • getpld 0
long pld;

ppld • getppid 0
long ppid;

DESCRIPTION

GETPID (2)

Getpid returns the process ID of the current process. Most often it is used with the host
identifier gethostid(2) to generate uniquely-named temporary files.

Getppid returns the process ID of the parent of the current process.

SEE ALSO
gethostid (2)

4th Berkeley Distribution 12 February 1983 1

GETPRIORITY (2) UNIX Programmer's Manual GETPRIORITY (2)

NAME
getpriority, setpriority - get/set program scheduling priority

SYNOPSIS
#include < sys/resource.h >
#define PRIO_PROCESS O
#define PRIO_PGRP 1
#define PRIO_USER 2

prio = getpriority(which, who)
int prio, which, who;

setpriority(which, who, prio)
int which, who, prio;

DESCRIPTION

I• process •/
I• process group •/
I• user id •/

The scheduling priority of the process, process group, or user, as indicated by which and who is
obtained with the getpriority call and set with the setpriority call. Which is one of
PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted relative to which (a
process identifier for PRIO PROCESS, process group identifier for PRIO PGRP, and a user ID
for PRIO _USER). Prio is -a value in the range -20 to 20. The defa~lt priority is O; lower
priorities cause more favorable scheduling.

The getpriority call returns the highest priority (lowest numerical value) enjoyed by any of the
specified processes. The setpriority call sets the priorities of all of the specified processes to the
specified value. Only the super-user may lower priorities.

RETURN VALUE
Since getpriority can legitimately return the value -1, it is necessary to clear the external vari­
able errno prior to the call, then check it afterward to determine if a -1 is an error or a legiti·
mate value. The setpriority call returns 0 if there is no error, or -1 if there is.

ERRORS
Getpriority and setpriority may return one of the following errors:

[ESRCH] No process(es) were located using the which and who values specified.

[EINVAL] Which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

In addition to the errors indicated above, setpriority may fail with one of the following errors
returned:

[EACCES]

[EACCES]

SEE ALSO

A process was located, but neither its effective nor real user ID matched the
effective user ID of the caller.

A non super-user attempted to change a process priority to a negative value.

nice(l), fork(2), renice(8)

4th Berkeley Distribution 18 July 1983 1

GETRLIMIT (2) UNIX Programmer's Manual GETRLIMIT (2)

NAME
getrlimit, setrlimit - control maximum system resource consumption

SYNOPSIS
#include <sys/time.h>
#include < sys/resource.h >

getrlimit (resource, rip)
int resource;
struct rlimit •rip;

setrlimit (resource, rip)
int resource;
struct rlimit •rip;

DESCRIPTION
Limits on the consumption of system resources by the current process and each process it
creates may be obtained with the getrlimit call, and set with the setrlimit call.

The resource parameter is one of the following:

RLIMIT_CPU the maximum amount of cpu time (in milliseconds) to be used by each pro­
cess.

RLIMIT_FSIZE the largest size, in bytes, of any single file which may be created.

RLIMIT_DATA the maximum size, in bytes, of the data segment for a process; this defines
how far a program may extend its break with the sbrk(2) system call.

RLIMIT_STACK the maximum size, in bytes, of the stack segment for a process; this defines
how far a program's stack segment may be extended, either automatically by
the system, or explicitly by a user with the sbrk(2) system call.

RLIMIT_CORE the largest size, in bytes, of a core file which may be created.

RLIMIT_RSS the maximum size, in bytes, a process's resident set size may grow to. This
imposes a limit on the amount of physical memory to be given to a process;
if memory is tight, the system will pref er to take memory from processes
which are exceeding their declared resident set size.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a
process may receive a signal (for example, if the cpu time is exceeded), but it will be allowed
to continue execution until it reaches the hard limit (or modifies its resource limit). The rlimit
structure is used to specify the hard and soft limits on a resource,

struct rlimit {
int
int

}:

rlim_cur;
rlim_max;

I• current (soft) limit •/
I• hard limit •/

Only the super-user may raise the maximum limits. Other users may only alter rlim_cur within
the range from 0 to rlim_max or (irreversibly) lower rlim_max.

An "infinite" value for a limit is defined as RLIMIT_INFINITY (Ox7fffffff).

Because this information is stored in the per-process information, this system call must be exe­
cuted directly by the shell if it is to affect all future processes created by the shell; limit is thus a
built-in command to csh(l).

The system refuses to extend the data or stack space when the limits would be exceeded in the
normal way: a break call fails if the data space limit is reached, or the process is killed when the
stack limit is reached (since the stack cannot be extended, there is no way to send a signal!).

4th Berkeley Distribution 7 July 1983 1

I

\

(

(
\

GETRLIMIT (2) UNIX Programmer's Manual GETRLIMIT (2)

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ to
be generated, this normally terminates the process, but may be caught. When the soft cpu time
limit is exceeded, a signal SIGXCPU is sent to the offending process.

RETURN VALUE
A 0 return value indicates that the call succeeded, changing or returning the resource limit. A
return value of -1 indicates that an error occurred, and an error code is stored in the global
location errno.

ERRORS
The possible errors are:

[EFAULT] The address specified for rip is invalid.

[EPERM] The limit specified to setrlimit would have
raised the maximum limit value, and the caller is not the super-user.

SEE ALSO
csh(l), quota(2)

BUGS
There should be limit and unlimit commands in sh (1) as well as in csh.

4th Berkeley Distribution 7 July 1983 2

GETRUSAGE (2) UNIX Programmer's Manual GETRUSAGE (2)

NAME
getrusage - get information about resource utilization

SYNOPSIS
#include < sys/time.h >
#include < sys/resource.h >
#deftne RUSAGE_SELF 0
#deftne RUSAGE_CHILDREN ·1

I• callln1 process •/
I• terminated child processes•/

1etrusa1e(who, rusage)
int who;
struct rusa1e •rusage;

DESCRIPTION
Getrusage returns information describing the resources utilized by the current process, or all its
terminated .child processes. The who parameter is one of RUSAGE SELF and
RUSAGE:....CHILDREN. If rusage is non-zero, the buffer it points to will be filled in with the
following structure:

struct rusage {

};

struct timeval ru _ utime;
struct timeval ru_stime;
int ru_maxrss;
int ru_ixrss;
int ru_idrss;
int ru isrss;
int ru -minflt;
int ru_majflt;
int ru_nswap;
int ru_inblock;
int ru_oublock;
int ru_msgsnd;
int ru_msgrcv;
int ru_nsignals;
int ru_nvcsw;
int ru_nivcsw;

I• user time used•/
I• system time used•/

I• integral shared memory size•/
I• integral unshared data size •/
I• integral unshared stack size •/
I• page reclaims • /
I• page faults •/
I• swaps•/
I• block input operations •/
I• block output operations •/
I• messages sent •/
I• messages received •/
I• signals received •I
I• voluntary context switches •/
I• involuntary context switches •/

The fields are interpreted as follows:

ru_utime

ru_stime

ru_maxrss

ru_ixrss

ru_idrss

ru_isrss

ru_minflt

the total amount of time spent executing in user mode.

the total amount of time spent in the system executing on behalf of the
process(es).

the maximum resident set size utilized (in kilobytes).

an "integral" value indicating the amount of memory used which was also
shared among other processes. This value is expressed in units of kilobytes •
seconds-of-execution and is calculated by summing the number of shared
memory pages in use each time the internal system clock ticks and then
averaging over 1 second intervals.

an integral value of the amount of unshared memory residing in the data seg·
ment of a process (expressed in units of kilobytes• seconds-of-execution).

an integral value of the amount of unshared memory residing in the stack seg­
ment of a process (expressed in units of kilobytes • seconds-of-execution).

the number of page faults serviced without any i/o activity; here i/o activity is

4th Berkeley Distribution 18 July 1983 1

GETRUSAGE (2) UNIX Programmer's Manual GETRUSAGE (2)

NOTES

ru_majflt

ru_nswap

ru_inblock

ru_outblock

ru_msgsnd

ru_msgrcv

ru_nsignals

ru_nvcsw

ru_nivcsw

avoided by "reclaiming" a page frame from the list of pages awaiting realloca­
tion.

the number of page faults serviced which required i/o activity.

the number of times a process was "swapped" out of main memory.

the number of times the file system had to perform input.

the number of times the file system had to perform output.

the number of ipc messages sent.

the number of ipc messages received.

the number of signals delivered.

the number of times a context switch resulted due to a process voluntarily giv­
ing up the processor before its time slice was completed (usually to await avai­
lability of a resource).

the number of times a context switch resulted due to a higher priority process
becoming runnable or because the current process exceeded its time slice.

The numbers ru_inblock and ru_outblock account only for real i/o; data supplied by the cacheing
mechanism is charged only to the first process to read or write the data.

SEE ALSO
gettimeof day (2), wait (2)

BUGS
There is no way to obtain information about a child process which has not yet terminated.

4th Berkeley Distribution 18 July 1983 2

GETSOCKOPT (2) UNIX Programmer's Manual GETSOCKOPT (2)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include < sys/types.h >
#include <sys/socket.h>

getsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char •optval;
int •optlen;

setsockopt (s, level, optname, optval, optlen)
int s, level, optname;
char •optval;
int optlen;

DESCRIPTION
Getsockopt and setsockopt manipulate options associated with a socket. Options may exist at mul­
tiple protocol levels; they are always present at the uppermost "socket" level.

When manipulating socket options the level at which the option resides and the name of the
option must be specified. To manipulate options at the "socket" level, level is specified as
SOL_SOCKET. To manipulate options at any other level the protocol number of the appropri­
ate protocol controlling the option is supplied. For example, to indicate an option is to be
interpreted by the TCP protocol, level should be set to the protocol number of TCP; see
getprotoent(3N).

The parameters optva/ and opt/en are used to access option values for setsockopt. For getsockopt
they identify a buff er in which the value for the requested option (s) are to be returned. For
getsockopt, opt/en is a value-result parameter, initially containing the size of the buffer pointed
to by optval, and modified on return to indicate the actual size of the value returned. If no
option value is to be supplied or returned, optva/ may be supplied as 0.

Optname and any specified options are passed uninterpreted to the appropriate protocol module
for interpretation. The include file < sys/socket.h> contains definitions for "socket" level
options; see socket(2). Options at other protocol levels vary in format and name, consult the
appropriate entries in (4P).

RETURN VALUE
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] The argument sis not a valid descriptor.

[ENOTSOCK] The arguments is a file, not a socket.

[ENOPROTOOPT] The option is unknown.

[EF AULT] The options are not in a valid part of the process address space.

SEE ALSO
socket (2), getprotoent (3N)

4th Berkeley Distribution 7 July 1983 1

(

GETTIMEOFDA Y (2) UNIX Programmer's Manual GETTIMEOFDA Y (2)

NAME
gettimeofday, settimeofday - get/set date and time

SYNOPSIS
#include < sys/time.h >
gettimeofday(tp, tzp)
struct timeval •tp;
struct timezone •tzp;

settimeofday(tp, tzp)
struct timeval •tp;
struct timezone •tzp;

DESCRIPTION
Gettimeofday returns the system's notion of the current Greenwich time and the current time
zone. Time returned is expressed relative in seconds and microseconds since midnight January
1, 1970.

The structures pointed to by tp and tzp are defined in < sys/time.h> as:

struct timeval {
u_long tv _sec;
long tv _ usec;

} ;

struct timezone [

I• seconds since Jan. 1, 1970 •/
I• and microseconds •/

int tz_minuteswestJ• of Greenwich •/
int tz_dsttime; /• type of dst correction to apply •/

} ;

The timezone structure indicates the local time zone (measured in minutes of time westward
from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies locally
during the appropriate part of the year.

Only the super-user may set the time of day.

RETURN
A 0 return value indicates that the call succeeded. A - 1 return value indicates an error
occurred, and in this case an error code is stored into the global variable errno.

ERRORS
The following error codes may be set in errno:

[EFAULT] An argument address referenced invalid memory.

[EPERM] A user other than the super-user attempted to set the time.

SEE ALSO

BUGS

date (1), ctime (3)

Time is never correct enough to believe the microsecond values. There should a mechanism
by which, at least, local clusters of systems might synchronize their clocks to millisecond granu­
larity.

4th Berkeley Distribution 27 July 1983

GETUID (2) UNIX Programmer's Manual

NAME
getuid, geteuid - get user identity

SYNOPSIS
uld • getuld 0
Int uld;

euld • geteuld 0
Int euld;

DESCRIPTION

GETUID (2)

Getuid returns the real user ID of the current process, geteuid the effective user ID.

The real user ID identifies the person who is logged in. The effective user ID gives the process
additional permissions during execution of "set-user-ID" mode processes, which use getuid to
determine the real-user-id of the process which invoked them.

SEE ALSO
getgid (2), setreuid (2)

4th Berkeley Distribution 12 February 1983 1

IOCTL (2) UNIX Programmer's Manual IOCTL (2)

NAME
ioctl - control device

SYNOPSIS
#include <sys/ioctl.h>

ioctl (d, request, argp)
int d, request;
char •argp;

DESCRIPTION
Ioctl performs a variety of functions on open descriptors. In particular, many operating charac­
teristics of character special files (e.g. terminals) may be controlled with ioctl requests. The
writeups of various devices in section 4 discuss how ioctl applies to them.

An ioctl request has encoded in it whether the argument is an "in" parameter or "out" param­
eter, and the size of the argument argp in bytes. Macros and defines used in specifying an ioctl
request are located in the file < sys/ioctl.h>.

RETURN VALUE
If an error has occurred, a value of -1 is returned and errno is set to indicate the error.

ERRORS
Ioctl will fail if one or more of the following are true:

[EBADF] Dis not a valid descriptor.

[ENOTTY]

[ENOTTY]

[EINVAL]

SEE ALSO

D is not associated with a character special device.

The specified request does not apply to the kind of object which the descriptor
d references.

Request or argp is not valid.

execve(2), fcnt1(2), mt(4), tty(4), intro(4N)

4th Berkeley Distribution 7 July 1983

KILL (2) UNIX Programmer's Manual KILL (2)

NAME
kill - send signal to a process

SYNOPSIS
kill (pid, sig)
int pid, sig;

DESCRIPTION
Kill sends the signal sig to a process, specified by the process number pid. Sig may be one of
the signals specified in sigvec(2), or it may be 0, in which case error checking is performed but
no signal is actually sent. This can be used to check the validity of pid.

The sending and receiving processes must have the same effective user ID, otherwise this call
is restricted to the super-user. A single exception is the signal SIGCONT which may always be
sent to any child or grandchild of the current process.

If the process number is 0, the signal is sent to all other processes in the sender's process
group; this is a variant of killpg(2).

If the process number is -1, and the user is the super-user, the signal is broadcast universally
except to system processes and the process sending the signal.

Processes may send signals to themselves.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Kill will fail and no signal will be sent if any of the following occur:

(EINVAL] Sig is not a valid signal number.

(ESRCH] No process can be found corresponding to that specified by pid.

(EPERM] The sending process is not the super-user and its effective user id does not
match the effective user-id of the receiving process.

SEE ALSO
getpid(2), getpgrp(2), killpg(2), sigvec(2)

4th Berkeley Distribution 27 July 1983 1

I
I
\

I
\

KILLPG (2) UNIX Programmer's Manual

NAME
killpg - send signal to a process group

SYNOPSIS
kill pg (pgrp, sig)
int pgrp, sig;

DESCRIPTION

KILLPG (2)

Kil/pg sends the signal sig to the process group pgrp. See sigvec(2) for a list of signals.

The sending process and members of the process group must have the same effective user ID,
otherwise this call is restricted to the super-user. As a single special case the continue signal
SIGCONT may be sent to any process which is a descendant of the current process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
the global variable errno is set to indicate the error.

ERRORS
Kil/pg will fail and no signal will be sent if any of the following occur:

[EINV AL] Sig is not a valid signal number.

[ESRCH] No process can be found corresponding to that specified by pid.

[EPERM]

SEE ALSO

The sending process is not the super-user and one or more of the target
processes has an effective user ID different from that of the sending process.

kill (2), getpgrp (2), sigvec(2)

4th Berkeley Distribution 27 July 1983

LINK(2) UNIX Programmer's Manual LINK (2)

NAME
link - make a hard link to a file

SYNOPSIS
link<namel, name2)
char •namel, •name2;

DESCRIPTION
A hard link to name} is created; the link has the name name2. Name] must exist.

With hard links, both name] and name2 must be in the same file system. Unless the caller is
the super-user, name] must not be a directory. Both the old and the new link share equal
access and rights to the underlying object.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is retu,rned and
errno is set to indicate the error.

ERRORS
Link will fail and no link will be created if one or more of the following are true:

[EPERM] Either pathname contains a byte with the high-order bit set.

[ENO ENT]

[ENOTDIR]

[ENO ENT]

[EACCES]

[ENO ENT]

[EEXIST]

[EPERM]

[EXDEV]

[EACCES]

[EROFS]

[EFAULT]

[ELOOP]

SEE ALSO

Either pathname was too long.

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permission.

The file named by name} does not exist.

The link named by name2 does exist.

The file named by name 1 is a directory and the effective user ID is not super­
user.

The link named by name2 and the file named by name} are on different file
systems.

The requested link requires writing in a directory with a mode that denies write
permission.

The requested link requires writing in a directory on a read-only file system.

One of the pathnames specified is outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

symlink(2), unlink (2)

4th Berkeley Distribution 12 February 1983

LISTEN (2) UNIX Programmer's Manual

NAME
listen - listen for connections on a socket.

SYNOPSIS
listen (s, backlog)
int s, backlog;

DESCRIPTION

LISTEN (2)

To accept connections, a socket is first created with socket(2), a backlog for incoming connec­
tions is specified with listen(2) and then the connections are accepted with accept(2). The listen
call applies only to sockets of type SOCK_ STREAM or SOCK_PKTSTREAM.

The backlog parameter defines the maximum length the queue of pending connections may
grow to. If a connection request arrives with the queue full the client will receive an error with
an indication of ECONNREFUSED.

RETURN VALUE
A 0 return value indicates success; -1 indicates an error.

ERRORS
The call fails if:

[EBADF]

[ENOTSOCK]

[EOPNOTSUPP]

SEE ALSO

The argument sis not a valid descriptor.

The argument s is not a socket.

The socket is not of a type that supports the operation listen.

accept (2), connect (2), socket (2)

BUGS
The backlog is currently limited (silently) to 5.

4th Berkeley Distribution 12 February 1983 1

LSEEK (2) UNIX Programmer's Manual LSEEK (2)

NAME
lseek - move read/write pointer

SYNOPSIS
#define L_SET 0 /• set the seek pointer •/
#define L_INCR 1 /• increment the seek pointer •/
#define L_XTND 2 /•extend the file size •I

pos = lseek (d, offset, whence)
int pos;
int d, offset, whence;

DESCRIPTION

NOTES

The descriptor d refers to a file or device open for reading and/or writing. Lseek sets the file
pointer of d as follows:

If whence is L_SET, the pointer is set to offset bytes.

If whence is L_INCR, the pointer is set to its current location plus offset.

If whence is L_XTND, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location as measured in bytes from beginning
of the file is returned. Some devices are incapable of seeking. The value of the pointer associ­
ated with such a device is undefined.

Seeking._f ar beyond the end of a file, then writing, creates a gap or "hole", which occupies no
physical space and reads as zeros.

RETURN VALUE
Upon successful completion, a non-negative integer, the current file pointer value, is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
Lseek will fail and the file pointer will remain unchanged if:

[EBADF] Fi/des is not an open file descriptor.

[ES PIPE]

[EINVAL]

[EINVAL]

Fi/des is associated with a pipe or a socket.

Whence is not a proper value.

The resulting file pointer would be negative.

SEE ALSO
dup(2), open(2)

BUGS
This document's use of whence is incorrect English, but maintained for historical reasons.

4th Berkeley Distribution 7 July 1983 1

MKDIR (2) UNIX Programmer's Manual MKDIR (2)

NAME
mkdir - make a directory file

SYNOPSIS
mkdir(path, mode)
char •path;
int mode;

DESCRIPTION
Mkdir creates a new directory file with name path. The mode of the new file is initialized from
mode. (The protection part of the mode is modified by the process's mode mask; see
umask(2)).

The directory's owner ID is set to the process's effective user ID. The directory's group ID is
set to that of the parent directory in which it is created.

The low-order 9 bits of mode are modified by the process's file mode creation mask: all bits set
in the process's file mode creation mask are cleared. See umask(2).

RETURN VALUE
A 0 return value indicates success. A -1 return value indicates an error, and an error code is
stored in errno.

ERRORS
Mkdir will fail and no directory will be created if:

[EPERM] The process's effective user ID is not super-user.

[EPERM] The path argument contains a byte with the high-order bit set.

[ENOTDIR]

[ENO ENT]

[EROFS]

[EEXIST]

[EFAULT]

[ELOOP]

[EIO]

SEE ALSO

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

The named file resides on a read-only file system.

The named file exists.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

An 1/0 error occured while writing to the file system.

chmod(2), stat(2), umask(2)

4th Berkeley Distribution 27 July 1983

MKNOD(2) UNIX Programmer's Manual MKNOD(2)

NAME
mknod - make a special file

SYNOPSIS
mknod(path, mode, dev)
char •path;
Int mode, dev;

DESCRIPTION
Mknod creates a new file whose name is path. The mode of the new file (including special file
bits) is initialized from mode. (The protection part of the mode is modified by the process's
mode mask; see umask(2)). The first block pointer of the i-node is initialized from dev and is
used to specify which device the special file refers to.

If mode indicates a block or character special file, dev is a configuration dependent specification
of .a character or block 1/0 device. If mode does not indicate a block special or character special
device, dev is ignored.

Mknod may be invoked only by the super-user.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Mk nod will fail and the file mode will be unchanged if:

[EPERM] The process's effective user ID is not super-user.

[EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR]

[ENO ENT]

[EROFS]

[EEXIST]

[EFAULT]

[ELOOP]

SEE ALSO

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

The named file resides on a read-only file system.

The named file exists.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

chmod(2), stat(2), umask(2)

4th Berkeley Distribution 2 July 1983

MOUNT (2) UNIX Programmer's Manual MOUNT(2)

NAME
mount, umount - mount or remove file system

SYNOPSIS
mount(special, name, rwftag)
char •special, •name;
int rwftag;

umount (special)
char •special;

DESCRIPTION
Mount announces to the system that a removable file system has been mounted on the block­
structured special file special; from now on, references to file name will refer to the root file on
the newly mounted file system. Special and name are pointers to null-terminated strings con­
taining the appropriate path names.

Name must exist already. Name must be a directory. Its old contents are inaccessible while the
file system is mounted.

The rwflag argument determines whether the file system can be written on; if it is 0 writing is
allowed, if non-zero no writing is done. Physically write-protected and magnetic tape file sys­
tems must be mounted read-only or errors will occur when access times are updated, whether
or not any explicit write is attempted.

Umount announces to the system that the special file is no longer to contain a removable file
system. The associated file reverts to its ordinary interpretation.

RETURN VALUE
Mount returns 0 if the action occurred, -1 if special is inaccessible or not an appropriate file, if
name does not exist, if special is already mounted, if name is in use, or if there are already too
many file systems mounted.

Umount returns 0 if the action occurred; -1 if if the special file is inaccessible or does not have
a mounted file system, or if there are active files in the mounted file system.

ERRORS
Mount will fail when one of the following occurs:

[NO DEV)

[NOD EV)

[ENOTBLK)

[ENXIO)

[EPERM)

[ENOTDIR)

[EROFS)

[EBUSY)

[EBUSY)

[EBUSY)

[EBUSY)

[EBUSY)

The caller is not the super-user.

Special does not exist.

Special is not a block device.

The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).

The pathname contains a character with the high-order bit set.

A component of the path prefix in name is not a directory.

Name resides on a read-only file system.

Name is not a directory, or another process currently holds a reference to it.

No space remains in the mount table.

The super block for the file system had a bad magic number or an out of range
block size.

Not enough memory was available to read the cylinder group information for
the file system.

An i/o error occurred while reading the super block or cylinder group informa­
tion.

4th Berkeley Distribution 27 July 1983 1

MOUNT(2) UNIX Programmer's Manual MOUNT(2)

Umount may fail with one of the following errors:

[NODEV] The caller is not the super-user.

[NODEV] Special does not exist.

Special is not a block device. [ENOTBLK]

[ENXIO] The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).

[EINVAL]

[EBUSY]

The requested device is not in the mount table.

A process is holding a reference to a file located on the file system.

SEE ALSO
mount(8), umount(8)

BUGS
The error codes are in a state of disarray; too many errors appear to the caller as one value.

4th Berkeley Distribution 27 July 1983 2

OPEN (2) UNIX Programmer's Manual OPEN (2)

NAME
open - open a file for reading or writing, or create a new file

SYNOPSIS
#include < sys/file.h >
open (path, flags, mode)
char •path;
int flags, mode;

DESCRIPTION
Open opens the file path for reading and/or writing, as specified by the flags argument and
returns a descriptor for that file. The flags argument may indicate the file is to be created if it
does not already exist (by specifying the O_CREAT flag), in which case the file is created with
mode mode as described in chmod(2) and modified by the process' umask value (see
umask(2)).

Path is the address of a string of ASCII characters representing a path name, terminated by a
null character. The flags specified are formed by or'ing the following values

O_RDONL Y open for reading only
O _ WRONL Y open for writing only
O_RDWR open for reading and writing
O_NDELAY do not block on open
O_APPEND append on each write
O _ CREAT create file if it does not exist
O_TRUNC truncate size to 0
O_EXCL error if create and file exists

Opening a file with O_APPEND set causes each write on the file to be appended to the end. If
O_TRUNC is specified and the file exists, the file is truncated to zero length. If O_EXCL is set
with 0 CREAT, then if the file already exists, the open returns an error. This can be used to
implement a simple exclusive access locking mechanism. If the 0 ND ELA Y flag is specified
and the open call would result in the process being blocked for so~e reason (e.g. waiting for
carrier on a dial up line), the open returns immediately. The first time the process attempts to
perform i/o on the open file it will block (not currently implemented).

Upon successful completion a non-negative integer termed a file descriptor is returned. The file
pointer used to mark the current position within the file is set to the beginning of the file.

The new descriptor is set to remain open across execve system calls; see close(2).

No process may have more than {OPEN_MAX} file descriptors open simultaneously.

ERRORS
The named file is opened unless one or more of the following are true:

[EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR]

[ENO ENT]

[EACCES]

[EACCES]

[EISDIR]

[EROFS]

A component of the path prefix is not a directory.

O _CREA T is not set and the named file does not exist.

A component of the path prefix denies search permission.

The required permissions (for reading and/or writing) are denied for the
named flag.

The named file is a directory, and the arguments specify it is to be opened for
writting.

The named file resides on a read-only file system, and the file is to be
modified.

4th Berkeley Distribution 2 July 1983 1

OPEN (2)

[EMFILE]

[ENXIO]

[ETXTBSY]

[EFAULT]

[ELOOP]

[EEXIST]

[ENXIO]

UNIX Programmer's Manual OPEN (2)

{OPEN_MAX} file descriptors are currently open.

The named file is a character special or block special file, and the device associ­
ated with this special file does not exist.

The file is a pure procedure (shared text) file that is being executed and the
open call requests write access.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

O _EXCL was specified and the file exists.

The O_NDELAY flag is given, and the file is a communications device on
which their is no carrier present.

[EOPNOTSUPP]
An attempt was made to open a socket (not currently implemented).

SEE ALSO
chmod(2), close(2), dup(2), lseek(2), read(2), write(2), umask(2)

4th Berkeley Distribution 2 July 1983 2

I

\

(

PIPE (2) UNIX Programmer's Manual PIPE (2)

NAME
pipe - create an interprocess communication channel

SYNOPSIS
pipe(flldes)
int flldes(2);

DESCRIPTION
The pipe system call creates an 110 mechanism called a pipe. The file descriptors returned can
be used in read and write operations. When the pipe is written using the descriptor fildes[l] up
to 4096 bytes of data are buffered before the writing process is suspended. A read using the
descriptor fildes[O] will pick up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created
by subsequent fork calls) will pass data through the pipe with read and write calls.

The shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors
closed) returns an end-of-file.

Pipes are really a special case of the socketpair(2) call and, in fact, are implemented as such in
the system.

A signal is generated if a write on a pipe with only one end is attempted.

RETURN VALUE
The function value zero is returned if the pipe was created; -1 if an error occurred.

ERRORS
The pipe call will fail if:

[EMFILE] Too many descriptors are active.

[EFAULT] The fildes buffer is in an invalid area of the process's address space.

SEE ALSO
sh(l), read(2), write(2), fork(2), socketpair(2)

BUGS
Should more than 4096 bytes be necessary in any pipe among a loop of processes, deadlock will
occur.

4th Berkeley Distribution 12 February 1983 1

PROFIL (2) UNIX Programmer's Manual PROFIL (2 >

NAME
profit - execution time profile

SYNOPSIS
profiHbuff, bufsiz, offset, scale)
char •buff;
int bufsiz, offset, scale;

DESCRIPTION
Bt(ff'points to an area of core whose length (in bytes) is given by bufsiz. After this call, the
user's program counter (pc) is examined each clock tick (IO milliseconds); offset is subtracted
from it, and the result multiplied by scale. If the resulting number corresponds to a word
inside biiff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left:
OxlOOOO gives a 1-1 mapping of pc's to words in bidf; Ox8000 maps each pair of instruction
words together. Ox2 maps all instructions onto the beginning of bt{ff (producing a non­
interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bufsi=of
0. Profiling is turned off when an execve is executed, but remains on in child and parent both
after a fork. Profiling is turned off if an update in bl.(ff'would cause a memory fault.

RETU.RN VALUE
A 0, indicating success, is always returned.

SEE ALSO
gprof(l), setitimer(2), monitor(3)

4th Berkeley Distribution 12 February 1983

PTRACE (2) UNIX Programmer's Manual PTRACE (2)

NAME
ptrace - process trace

SYNOPSIS
#include < signal.h>

ptrace(request, pid, addr, data)
int request, pid, •addr, data;

DESCRIPTION
Ptrace provides a means by which a parent process may control the execution of a child process.
and examine and change its core image. Its primary use is for the implementation of break­
point debugging. There are four arguments whose interpretation depends on a request argu­
ment. Generally, pid is the process ID of the traced process, which must be a child (no more
distant descendant) of the tracing process. A process being traced behaves normally until it
encounters some signal whether internally generated like "illegal instruction" or externally gen­
erated like "interrupt". See sigvec(2) for the list. Then the traced process enters a stopped
state and its parent is notified via wait(2). When the child is in the stopped state, its core
image can be examined and modified using ptrace. If desired, another ptrace request can then
cause the child either to terminate or to continue, possibly ignoring the signal.

The value of the request argument determines the precise action of the call:

0 This request is the only one used by the child process; it declares that the process is to be
traced by its parent. All the other arguments are ignored. Peculiar results will ensue if the
parent does not expect to trace the child.

1,2 The word in the child process's address space at addr is returned. If I and D space are
separated (e.g. historically on a pdp-11), request 1 indicates I space, 2 D space. Addr must
be even. The child must be stopped. The input data is ignored.

3 The word of the system's per-process data area corresponding to addr is returned. Addr
must be even and Jess than 512. This space contains the registers and other information
about the process; its layout corresponds to the user structure in the system.

4,5 The given data is written at the word in the process's address space corresponding to addr,
which must be even. No useful value is returned. If I and D space are separated, request
4 indicates I space, 5 D space. Attempts to write in pure procedure fail if another process
is executing the same file.

6 The process's system data is written, as it is read with request 3. Only a few locations can
be written in this way: the general registers, the floating point status and registers, and cer­
tain bits of the processor status word.

7 The data argument is taken as a signal number and the child's execution continues at loca­
tion addr as if it had incurred that signal. Normally the signal number will be either 0 to
indicate that the signal that caused the stop should be ignored, or that value fetched out of
the process's image indicating which signal caused the stop. If addr is (int *) 1 then execu­
tion continues from where it stopped.

8 The traced process terminates.

9 Execution continues as in request 7; however, as soon as possible after execution of at
least one instruction, execution stops again. The signal number from the stop is
SIG TRAP. (On the V AX-11 the T-bit is used and just one instruction is executed.) This is
part of the mechanism for implementing breakpoints.

As indicated, these calls (except for request 0) can be used only when the subject process has
stopped. The wait call is used to determine when a process stops; in such a case the "termina­
tion" status returned by wait has the value 0177 to indicate stoppage rather than genuine termi­
nation.

4th Berkeley Distribution 2 July 1983

PTRACE (2) UNIX Programmer's Manual PTRACE (2)

To forestall possible fraud, ptrace inhibits the set-user-id and set-group-id facilities on subse­
quent execve(2) calls. If a traced process calls execve, it will stop before executing the first
instruction of the new image showing signal SIGTRAP.

On a VAX-11, "word" also means a 32-bit integer, but the "even" restriction does not apply.

RETURN VALUE
A 0 value is returned if the call succeeds. If the call fails then a -1 is returned and the global
variable errno is set to indicate the error.

ERRORS
[EINVAL] The request code is invalid.

[EINVAL]

[EINVAL]

[EFAULT]

[EPERM]

The specified process does not exist.

The given signal number is invalid.

The specified address is out of bounds.

The specified process cannot be traced.

SEE ALSO

BUGS

wait(2), sigvec(2), adb(l)

Ptrace is unique and arcane; it should be replaced with a special file which can be opened and
read and written. The control functions could then be implemented with ioct/(2) calls on this
file. This would be simpler to understand and have much higher performance.

The request 0 call should be able to specify signals which are to be treated normally and not
cause a stop. In this way, for example, programs with simulated floating point (which use "ille­
gal instruction" signals at a very high rate) could be efficiently debugged.

The error indication, -1, is a legitimate function value; ermo, see intro(2), can be used to
disambiguate.

It should be possible to stop a process on occurrence of a system call; in this way a completely
controlled environment could be provided.

4th Berkeley Distribution 2 July 1983 2

READ (2) UNIX Programmer's Manual READ (2 l

NAME
read, readv - read input

SYNOPSIS
cc = read (d, buf, nbytes)
int cc, d;
char •buf;
int nbytes;

#include < sys/types.h>
#include < sys/uio.h>

cc = readv (d, iov, iovcnt)
int cc, d;
struct iovec • iov;
int iovcnt;

DESCRIPTION
Read attempts to read nbytes of data from the object referenced by the descriptor d into the
buffer pointed to by buf Readv performs the same action, but scatters the input data into the
iovcntbuffers specified by the members of the iovecarray: iov[O], iov[l], ... , iov[iovcnt - ll.
For readv, the iovec structure is defined as

struct iovec I
caddr_t iov_base;
int iov _len;

Each iovec entry specifies the base address and length of an area in memory where data should
be placed. Readv will always fill an area completely before proceeding to the next.

On objects capable of seeking, the read starts at a position given by the pointer associated with
d, see lseek(2). Upon return from read, the pointer is incremented by the number of bytes
actually read.

Objects that are not capable of seeking always read from the current position. The value of the
pointer associated with such a object is undefined.

Upon successful completion, read and readv return the number of bytes actually read and placed
in the buffer. The system guarantees to read the number of bytes requested if the descriptor
references a file which has that many bytes left before the end-of-file, but in no other cases.

If the returned value is 0, then end-of-file has been reached.

RETURN VALUE
If successful, the number of bytes actually read is returned. Otherwise, a -1 is returned and
the global variable errno is set to indicate the error.

ERRORS
Read and readv will fail if one or more of the following are true:

[EBADF] Fi/des is not a valid file descriptor open for reading.

[EF AUL Tl Bu/points outside the allocated address space.

[EINTR] A read from a slow device was interrupted before any data arrived by the
delivery of a signal.

In addition, readv may return one of the following errors:

[EINVAL]

[EINVAL]

lovcnt was less than or equal to 0, or greater than 16.

One of the iov /en values in the iov array was negative.

4th Berkeley Distribution 27 July 1983

READ (2) UNIX Programmer's Manual READ (2)

[EINVAL] The sum of the iov_len values in the iov array overflowed a 32-bit integer.

SEE ALSO
dup(2), open(2), pipe(2), socket(2), socketpair(2)

4th Berkeley Distribution 27 July 1983 2

READ LINK (2) UNIX Programmer's Manual READ LINK (2 >

NAME
readlink - read value of a symbolic link

SYNOPSIS
cc = read link (path, buf, bufsiz)
int cc;
char •path, •buf;
int bufsiz;

DESCRIPTION
Read/ink places the contents of the symbolic link name in the buffer buf which has size bufsi:.
The contents of the link are not null terminated when returned.

RETURN VALUE
The call returns the count of characters placed in the buff er if it succeeds, or a -1 if an error
occurs, placing the error code in the global variable errno.

ERRORS
Read/ink will fail and the file mode will be unchanged if:

[EPERM] The path argument contained a byte with the high-order bit set.

[ENO ENT]

[ENOTDIR]

[ENO ENT]

[ENXIO]

[EACCES]

[EPERM]

[EINVAL]

[EFAULT]

[ELOOP]

SEE ALSO

The pathname was too long.

A component of the path prefix is not a directory.

The named file does not exist.

The named file is not a symbolic link.

Search permission is denied on a component of the path prefix.

The effective user ID does not match the owner of the file and the effective
user ID is not the super-user.

The named file is not a symbolic link.

Bufextends outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

stat(2), !stat (2), symlink (2)

4th Berkeley Distribution 2 July 1983

REBOOT (2) UNIX Programmer's Manual REBOOT(2)

NAME
reboot - reboot system or halt processor

SYNOPSIS
#include < sys/reboot.h>

reboot(howto)
int howto;

DESCRIPTION
Reboot reboots the system, and is invoked automatically in the event of unrecoverable system
failures. Howto is a mask of options passed to the bootstrap program. The system call interface
permits only RB_HALT or RB_AUTOBOOT to be passed to the reboot program; the other flags
are used in scripts stored on the console storage media, or used in manual bootstrap pro­
cedures. When none of these options (e.g. RB_AUTOBOOT) is given, the system is rebooted
from file "vmunix" in the root file system of unit 0 of a disk chosen in a processor specific
way. An automatic consistency check of the disks is then normally performed.

The bits of howto are:

'RB HALT
the processor is simply halted; no reboot takes place. RB_HALT should be used with
caution.

RB ASKNAME
Interpreted by the bootstrap program itself, causing it to inquire as to what file should
be booted. Normally, the system is booted from the file "xx(O,O)vmunix" without
asking.

RB SINGLE
Normally, the reboot procedure involves an automatic disk consistency check and then
multi-user operations. RB _SINGLE prevents the consistency check, rather simply
booting the systell'.I with a single-user shell on the console. RB_SINGLE is interpreted
by the inir(8) program in the newly booted system. This switch is not available from
the system call interface.

Only the super-user may reboot a machine.

RETURN VALUES
If successful, this call never returns. Otherwise, a -1 is returned and an error is returned in
the global variable errno.

ERRORS
[EPERM] The caller is not the super-user.

SEE ALSO
crash(8), halt(8), init(8), reboot(8)

BUGS
The notion of "console medium", among other things, is specific to the VAX.

4th Berkeley Distribution 18 July 1983

RECV (2) UNIX Programmer's Manual RECV (2 >

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#include < sys/types.h>
#include < sys/socket.h>

cc = recv (s, buf, len, flags)
int cc, s;
char •buf;
int len, flags;

cc == recvfrom (s, buf, len, flags, from, fro mien)
int cc, s;
char •buf;
int len, flags;
struct sockaddr •from;
int •fromlen;

cc = recvmsg(s, msg, flags)
int cc, s;
struct msghdr msgll;
int flags;

DESCRIPTION
Recv, recvfrom, and recvmsg are used to receive messages from a socket.

The , recv call may be 'Used only on a connected socket (see connect(2)), while recvj;om and
recvmsg may be used to receive data on a socket whether it is in a connected state or not.

If from is non-zero, the source address of the message is filled in. From/en is a value-result
parameter, initialized to the size of the buffer associated with from, and modified on return to
indicate the actual size of the address stored there. The length of the message is returned in cc.
If a message is too long to fit in the supplied buffer, excess bytes may be discarded depending
on the type of socket the message is received from; see socket(2).

If no messages are available at the socket, the receive call waits for a message to arrive, unless
the socket is nonblocking (see ioct/(2)) in which case a cc of -1 is returned with the external
variable errno set to EWOULDBLOCK.

The select(2) call may be used to determine when more data arrives.

The .flags argument to a send call is formed by or'ing one or more of the values,

#defineMSG_PEEK Oxl /•peek at incoming message•/
#defineMSG_OOB Ox2 /•process out-of-band data •/

The recvmsg call uses a msghdr structure to minimize the number of directly supplied parame­
ters. This structure has the following form, as defined in < sys/socket. h> :

struct msghdr {
caddr_t msg_name; /•optional address *1
int msg_namelen; /•size of address •/
struct iov •msg_iov; I• scatter/gather array •/
int msg_iovlen; /•#elements in msg_iov •/
caddr_t msg_accrights; /•access rights sent/received•/
int msg_accrightslen;

};

4th Berkeley Distribution 7 July 1983

RECV (2) UNIX Programmer's Manual RECV (2)

Here msg_name and msg_namelen specify the destination address if the socket is unconnected;
msg_name may be given as a null pointer if no names are desired or required. The msg_io1• and
msg iovlen describe the scatter gather locations, as described in read(2). Access rights to be
sentalong with the message are specified in msg_accrights, which has length msg_accrightslen.

RETURN VALUE
These calls return the number of bytes received, or ~ 1 if an error occurred.

ERRORS
The calls fail if:
[EBADF] The argument sis an invalid descriptor.

[ENOTSOCK] The argument sis not a socket.

[EWOULDBLOCK] The socket is marked non-blocking and the receive operation would
block.

[EINTR]

[EFAULT]

SEE ALSO

The receive was interrupted by delivery of a signal before any data was
available for the receive.

The data was specified to be received into a non-existent or protected
part of the process address space.

read(2), send(2), socket(2)

4th Berkeley Distribution 7 July 1983 2

(
\
\

RENAME (2) UNIX Programmer's Manual RENAME (2)

NAME
rename - change the name of a file

SYNOPSIS
rename(from, to)
char •from, •to;

DESCRIPTION
Rename causes the link named from to be renamed as to. If ro exists, then it is first removed.
Both from and to must be of the same type (that is, both directories or both non-directories),
and must reside on the same file system.

Rename guarantees that an instance of to will always exist, even if the system should crash in
the middle of the operation.

CAVEAT
The system can deadlock if a loop in the file system graph is present. This loop takes the form
of an entry in directory "a", say "a/foo", being a hard link to directory "b", and an entry in
directory "b", say "b/bar", being a hard link to directory "a". When such a loop exists and
two separate processes attempt to perform "rename a/foo b/bar" and "rename b/bar a/foo",
respectively, the system may deadlock attempting to lock both directories for modification.
Hard links to directories should be replaced by symbolic links by the system administrator.

RETURN VALUE
A 0 value is returned if the operation succeeds, otherwise rename returns -1 and the global
variable errno indicates the reason for the failure.

ERRORS
Rename will fail and neither of the argument files will be affected if any of the following are
true:

[ENOTDIR]

[ENO ENT]

[EACCES]

[ENOENT]

[EPERM]

[EX DEV]

[EACCES]

[EROFS]

[EFAULT]

[EINVAL]

SEE ALSO
open(2)

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permission.

The file named by from does not exist.

The file named by from is a directory and the effective user ID is not super­
user.

The link named by to and the file named by from are on different logical dev­
ices (file systems). Note that this error code will not be returned if the imple­
mentation permits cross-device links.

The requested link requires writing in a directory with a mode that denies write
permission.

The requested link requires writing in a directory on a read-only file system.

Parh points outside the process's allocated address space.

From is a parent directory of to.

4th Berkeley Distribution 12 February 1983

RMDIR (2) UNIX Programmer's Manual

NAME
rmdir - remove a directory file

SYNOPSIS
rmdir(path)
char •path;

DESCRIPTION

RM DIR (2 l

Rmdir removes a directory file whose name is given by path. The directory must not have any
entries other than "." and " .. ".

RETURN VALUE
A 0 is returned if the remove succeeds; otherwise a -1 is returned and an error code is stored
in the global location errno.

ERRORS
The named file is removed unless one or more of the following are true:

[ENOTEMPTY]

[EPERM]

[ENO ENT]

[ENOTDIR]

[ENO ENT]

[EACCES]

[EACCES]

[EBUSY]

[EROFS]

[EFAULT]

[ELOOP]

SEE ALSO

The named directory contains files other than "." and " .. " in it.

The pathname contains a character with the high-order bit set.

The pathname was too long.

A component of the path prefix is not a directory.

The named file does not exist.

A component of the path prefix denies search permission.

Write permission is denied on the directory containing the link to be removed.

The directory to be removed is the mount point for a mounted file system.

The directory entry to be removed resides on a read-only file system.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

mkdir(2), unlink(2)

4th Berkeley Distribution 2 July 1983

SEND (2) UNIX Programmer's Manual SEND (2)

NAME
send, sendto, sendmsg - send a message from a socket

SYNOPSIS
#include < sys/types.h >
#include < sys/socket.h >
cc = send (s, msg, len, flags)
int cc, s;
char •msg;
int len, flags;

cc = sendto(s, msg, len, flags, to, tolen)
int cc, s;
char •msg;
int len, flags;
struct sockaddr •to;
int tolen;

cc = sendmsg (s, msg, flags)
int cc, s;
struct msghdr msgll;
int flags;

DESCRIPTION
Send, sendto, and sendmsg are used to transmit a message to another socket. Send may be used
only when the socket is in a connected state, while sendto and sendmsg may be used at any time.

The address of the target is given by to with to/en specifying its size. The length of the message
is given by /en. If the message is too long to pass atomically through the underlying protocol,
then the error EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Return values of -1 indicate some
locally detected errors.

If no messages space is available at the socket to hold the message to be transmitted, then send
normally blocks, unless the socket has been placed in non-blocking i/o mode. The select(2) call
may be used to determine when it is possible to send more data.

The flags parameter may be set to SOF OOB to send "out-of-band" data on sockets which sup­
port this notion (e.g. SOCK STREAMf

See recv(2) for a description of the msghdr structure.

RETURN VALUE
The call returns the number of characters sent, or -1 if an error occurred.

ERRORS
[EBADF]

[ENOTSOCK]

[EFAULT]

[EMSGSIZE]

An invalid descriptor was specified.

The argument s is not a socket.

An invalid user space address was specified for a parameter.

The socket requires that message be sent atomically, and the size of the
message to be sent made this impossible.

[EWOULDBLOCK] The socket is marked non-blocking and the requested operation would
block.

SEE ALSO
recv(2), socket (2)

4th Berkeley Distribution 20 September 1983

SETGROUPS (2) UNIX Programmer's Manual

NAME
setgroups - set group access list

SYNOPSIS
#include < sys/param.h>

setgroups(ngroups, gidset)
int ngroups, •gidset;

DESCRIPTION

SETGROUPS (2)

Setgroups sets the group access list of the current user process according to the array gidser. The
parameter ngroups indicates the number of entries in the array and must be no more than
NG RPS, as defined in <sys/pa ram. h>.

Only the super-user may set new groups.

RETURN VALUE
A 0 value is returned on success, -1 on error, with a error code stored in errno.

ERRORS
The setgroups call will fail if:

[EPERM] The caller is not the super-user.

[EFAULT] The address specified for gidset is outside the process address space.

SEE ALSO
getgroups(2), initgroups(3X)

4th Berkeley Distribution 7 July 1983

SETPGRP (2) UNIX Programmer's Manual SETPGRP (2 >

NAME
setpgrp - set process group

SYNOPSIS
setpgrp(pid, pgrp)
int pid, pgrp;

DESCRIPTION
Setpgrp sets the process group of the specified process pid to the specified pgrp. If pid is zero,
then the call applies to the current process.

If the invoker is not the super-user, then the affected process must have the same effective
user-id as the invoker or be a descendant of the invoking process.

RETURN VALUE
Setpgrp returns when the operation was successful. If the request failed, -1 is returned and the
global variable errno indicates the reason.

ERRORS
Setpgrp will fail and the process group will not be altered if one of the following occur:

[ESRCH] The requested process does not exist.

[EPERM]

SEE ALSO
getpgrp(2)

The effective user ID of the requested process is different from that of the
caller and the process is not a descendent of the calling process.

4th Berkeley Distribution 12 February 1983

SETREGID (2) UNIX Programmer's Manual SETREGID (2)

NAME
setregid - set real and effective group ID

SYNOPSIS
setreaid (raid, eaid)
int raid, eaid;

DESCRIPTION
The real and effective group ID's of the current process are set to the arguments. Only the
super-user may change the real group ID of a process. Unpriviledged users may change the
effective group ID to the real group ID, but to no other.

Supplying a value of -1 for either the real or effective group ID forces the system to substitute
the current ID in place of the -1 parameter.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
err no is set to indicate the error.

ERRORS
[EPERM]

SEE ALSO

The current process is not the super-user and a change other than changing the
effective group-id to the real group-id was specified.

getgid (2), setreuid (2), setgid (3)

4th Berkeley Distribution 12 February 1983 1

SETREUID (2) UNIX Programmer's Manual

NAME
setreuid - set real ~d effective user ID's

SYNOPSIS
setreuld Cruld, euld)
Int raid, euld;

DESCRIPTION

SETREUID (2)

The real and effective user ID's of the current process are set according to the arguments. If
ruid or euid is -1, the current uid is filled in by the system. Only the super-user may modify
the real uid of a process. Users other than the super-user may change the effective uid of a
process only to the real uid.

IETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error. ·

ERRORS
[EPERM] The current process is not the super-user and a change other than changing the

effective user-id to the real user-id wu specified.
SEE ALSO

getuid(2), setregid(2), setuid(3)

4th Berkeley Distribution 12 February 1983 1

SHUTDOWN (2) lJNIX P~ogramrner's Manual

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
shutdown(s, how)
int s, how;

DESCRIPTION

SHUTDOWN'(2)

Tbe shutdown call causes all or part of a full-ouplex connection on the socket associated with s
to be shut down. If how is 0, then further receives will be disallowed. If how is 1, then further
sends will be disallowed. If h~w is: 2; therf further sends and receives will be disallowed.

DIAGNOSTICS
A 0 is returned ff the caHsucceeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] Sis not a valid descriptor;

[ENOTSOCK] Sis a file·, not a socket.

[ENOTCONN] The specified socket is not connected.

SEE ALSO
connect(2), socket(2)

4th Berkeley Distribution 27 July 1983

(
\

SOCKET (2) UNIX Programmer's Manual SOCKET (2)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include < sys/types.h>
#include < sys/socket.h>

s - socket(af, type, protocol)
int s, af, type, protocol;

DESCRIPTION
Socketcreates an endpoint for communication and returns a descriptor.

The a/parameter specifies an address format with which addresses specified in later operations
using the socket should be interpreted. These formats are defined in the include file
< syslsocket.h>. The currently understood formats are

AF UNIX (UNIX path names),
AF-INET (ARPA Internet addresses),
AF-PUP (Xerox PUP-I Internet addresses), and
AF)MPLINK (IMP "host at IMP" addresses).

The socket has the indicated type which specifies the semantics of communication. Currently
defined types are:

SOCK STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK ROM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte streams
with an out-of-band data transmission mechanism. A SOCK OGRAM socket supports
datagrams (connectionless, unreliable messages of a fixed (typically small) maximum length).
SOCK_RA W sockets provide access to internal network interfaces. The types SOCK_RA W.
w.hich is available only to the super-user, and SOCK_SEQPACKET and SOCK_RDM. which
are planned, but not yet implemented, are not described here.

The protocol specifies a particular protocol to be used with the socket. Normally only a single
protocol exists to support a particular socket type using a given address format. However. it is
possible thl\t many protocols may exist in which case a particular protocol must be specified in
this manner. The protocol number to use is particular to the "communication domain" in
which communication is to take place; see services(3N) and protocols(3N).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream
socket must be in a connectedstate before any data may be sent or received on it. A connection
to another socket is created with a connect(2) call. Once connected, data may be transferred
using read(2) and write(2) calls or some variant of the send(2) and recv(2) calls. When a ses­
sion has .been completed a close(2) may be performed. Out-of-band data may also be transmit­
ted as described in send(2) and received as described in ren•(2).

The communications protocols used to implement a SOCK_STREAM insure that data is not
lost or duplicated. If a piece of data for which the peer protocol has buff er space cannot be suc­
cessfully transmitted within a reasonable length of time, then the connection is considered bro­
ken and calls will indicate an error with -1 returns and with ETIMEDOUT as the specific code
in the global variable errno. The protocols optionally keep sockets "warm" by forcing
transmissions roughly every minute in the absence of other activity. An error is then indicated
if no response can be elicited on an otherwise idle connection for a extended period (e.g. 5
minutes). A SIGPIPE signal is raised if a process sends on a broken stream; this causes naive

4th Berkeley Distribution 18 July 1983

SOCKET (2) UNIX Programmer's Manual SOCKET (2 >

processes, which do not handle the signal, to exit.

SOCK_DGRAM and SOCK_RA W sockets allow sending of datagrams to correspondents named
in send(2) calls. It is also possible to receive datagrams at such a socket with recv(2).

An fent/(2) call can be used to specify a process group to receive a SIGURG signal when the
out-of-band data arrives.

The operation of sockets is controlled by socket level options. These options are defined in the
file < sys!socket.h> and explained below. Setsockopt and getsockopt(2) are used to set and get
options, respectively.

SO DEBUG turn on recording of debugging information
SO REUSEADDR allow local address reuse
SO KEEPALIVE keep connections alive
SO_DONTROUTE do no apply routing on outgoing messages
SO _LINGER linger on close if data present
SO_DONTLINGER do not linger on close

SO DEBUG enables debugging in the underlying protocol modules. SO REUSEADDR indi­
cates the rules used in validating addresses supplied in a bind(2) call should allow reuse of local
addresses. SO_ KEEP ALIVE enables the periodic transmission of messages on a connected
socket. Should the connected party fail to respond to these messages, the connection is con­
sidered broken and processes using the socket are notified via a SIGPIPE signal.
SO _DONTROUTE indicates that outgoing messages should bypass the standard routing facili­
ties. Instead, messages are directed to the appropriate network interface according to the net­
work portion of the destination address. SO LINGER and SO DONTLINGER control the
actions taken when unsent messags are queued on socket and a ~lose(2) is performed. If the
socket promises reliable delivery of data and SO _LINGER is set, the system will block the pro­
cess on the close attempt until it is able to transmit the data or until it decides it is unable to
deliver the information (a timeout period, termed the linger interval, is specified in the ser­
sockopt call when SO_LINGER is requested). If SO_DONTLINGER is specified and a close is
issued, the system will process the close in a manner which allows the process to continue as
quickly as possible.

RETURN VALUE
A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing the
socket.

ERRORS
The socket call fails if:

[EAFNOSUPPORT] The specified address family is not supported in this version of the sys­
tem.

[ESOCKTNOSUPPORT]
The specified socket type is not supported in this address family.

[EPROTONOSUPPORT]

[EMFILE]

[ENOBUFS]

SEE ALSO

The specified protocol is not supported.

The per-process descriptor table is full.

No buffer space is available. The socket cannot be created.

accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), listen(2), recv(2l.
select(2), send(2), shutdown(2), socketpaid2)
"A 4.2BSD Interprocess Communication Primer".

4th Berkeley Distribution 18 July 1983 2

SOCKET (2) UNIX Programmer's Manual SOCKET (2)

BUGS
The use of keepalives is a questionable feature for this layer.

4th Berkeley Distribution 18 July 1983 3

STAT (2) UNIX Programmer's Manual STAT (2)

NAME
stat, lstat, fstat - get file status

SYNOPSIS
#include < sys/types.h>
#include < sys/stat.h>

stat(path, buf)
char •path;
struct stat •buf;

ls tat (path, buf)
char •path;
struct stat •buf;

fstat(fd, buf)
int fd;
struct stat •buf;

DESCRIPTION
Stat obtains information about the file path. Read, write or execute permission of the named
file is not required, but all directories listed in the path name leading to the file must be reach­
able.

Lstat is like stat except in the case where the named file is a symbolic link, in which case /stat
returns information about the link, while stat returns information about the file the link refer­
ences.

Fstat obtains the same information about an open file referenced by the argument descriptor,
such as would be obtained by an open call.

Buf is a pointer to a stat structure into which information is placed concerning the file. The
contents of the structure pointed to by buf

struct stat I

st atime

dev t
ino t
u short
short
short
short
dev t
off t
time t
int
time t
int
time_t
int
long
long
long

st_dev;
st_ino;
st_mode;
st_nlink;
st_uid;
st_gid;
st_rdev;
st_size;
st_atime;
st_spare I;

I* device inode resides on *I
I* this inode's number *I
I* protection */
I• number or hard links to the file *I
I* user-id of owner *I
I• group-id of owner *I
I* the device type, for inode that is device */
I* total size of file */
I* file last access time *I

st_mtime; I* file last modify time •/
st_spare2;
st_ctime;
st_spare3;

I* file last status change time •/

st_blksize; /*optimal blocksize for file system i/o ops */
st blocks; I* actual number of blocks allocated •/
st - spare4 [2];

Time when file data was last read or modified. Changed by the following system
calls: mknod(2), utimes(2), read(2), and wrire(2). For reasons of efficiency,
st_atime is not set when a directory is searched, although this would be more logi­
cal.

4th Berkeley Distribution 27 July 1983

STAT (2) UNIX Programmer's Manual STAT (2)

st_mtime Time when data was last modified. It is not set by changes of owner, group, link
count, or mode. Changed by the following system calls: mknod(2), utimcs(2),
write(2).

st_ctime Time when file status was last changed. It is set both both by writing and chang­
ing the i-node. Changed by the following system calls: chmod(2) chow11<2),
link(2), mknod(2), unlink(2), utimes(2), write(2).

The status information word st_ mode has bits:
#define S_IFMT 0170000 /•type of file •/
#define S _IFDIR 0040000 I* directory •/
#define S _IFCHR 0020000 I* character special •/
#define S_IFBLK 0060000 /• block special •/
#define S IFREG 0100000 /•regular •/
#define (IFLNK 0120000 /•symbolic link •/
#define S_IFSOCK 0140000 /•socket•/
#define S_ISUID 0004000 I• set user id on execution •/
#define S_ISGID 0002000 /•set group id on execution •/
#define S_ISVTX 0001000 /•save swapped text even after use •/
#define S_IREAD 0000400 /•read permission, owner •/
#define S_IWRITE 0000200 /•write permission, owner •/
#define S_IEXEC 0000100 I• execute/search permission, owner •/

The mode bits 0000070 and 0000007 encode group and others permissions (see chmod(2)).

When fd is associated with a pipe, /stat reports an ordinary file with an i-node number, res­
tricted permissions, and a not necessarily meaningful length.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of - I is returned and
errno is set to indicate the error.

ERRORS
Stat and lstatwill fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The pathname contains a character with the high-order bit set.

[ENOENT] The pathname was too long.

[ENOENT]

[EA CC ES]

The named file does not exist.

Search permission is denied for a component of the path prefix.

[EF AUL Tl Bufor name points to an invalid address.

Fstatwill fail if one or both of the following are true:

[EBADF] Fi/des is not a valid open file descriptor.

[EFAULT]

[ELOOP]

CAVEAT

Bu/points to an invalid address.

Too many symbolic links were encountered in translating the pathname.

The fields in the stat structure currently marked st_sparcl, st_spare2, and st_spare3 are present
in preparation for inode time stamps expanding to 64 bits. This, however, can break certain
programs which depend on the time stamps being contiguous On calls to utimes(2)).

SEE ALSO
ch mod (2), chown (2), utimes (2)

4th Berkeley Distribution 27 July 1983 2

STAT (2) UNIX Programmer's Manual STAT (2 >

BUGS
Applying /stat to a socket returns a zero'd buffer.

The list of calls which modify the various fields should be carefully checked with reality.

4th Berkeley Distribution 27 July 1983 3

SYMLINK(2) UNIX Programmer's Manual SYMLINK (2)

NAME
symlink - make symbolic link to a file

SYNOPSIS
symllnk(namel, name2)
char •namel, •name2;

DESCRIPTION
A symbolic link name] is created to namel (name] is the name of the file created, namel is the
string used in creating the symbolic link). Either name may be an arbitrary path name; the files
need not be on the same file system.

RETURN VALUE
Upon successful completion, a zero value is returned. If an error occurs, the error code is
stored in errno and a -1 value is returned.

ERRORS
The symbolic link is made unless on or more of the following are true:

[EPERM] Either namel or name2 contains a character with the high-order bit set.

[ENOENT] One of the pathnames specified was too long.

[ENOTDIR]

[EEXIST]

[EACCES]

[EROFS]

[EFAULT]

[ELOOP]

SEE ALSO

A component of the name2 prefix is not a directory.

Name] already exists.

A component of the name2 path prefix denies search permission.

The file name2 would reside on a read-only file system.

Namel or name2 points outside the process's allocated address space.

Too may symbolic links were encountered in translating the pathname.

link (2), In (1), unlink (2)

4th Berkeley Distribution 27 July 1983 I

SYNC (2)

NAME
sync - update super-block

SYNOl'SIS
syncO

DESCRIPTION

UNIX Programmer's Manual SYNC (2)

Sync causes all information in core memory that should be on disk to be written out. This
includes modified super blocks, modified i-nodes, and delayed block 110.

Sync should be used by programs which examine a file system, for example fsck, df, etc. Sync is
mandatory before a boot.

SEE ALSO
fsync(2), sync(8), update(8)

BUGS
The writing, although scheduled, is not necessarily complete upon return from sync.

4th Berkeley Distribution 12 February 1983 1

SYSCALL(2) UNIX Programmer's Manual SYSCALL(2)

NAME
syscall - indirect system call

SYNOPSIS
syscall(number, arg, •••) (VAX-11)

DESCRIPTION
Syscall performs the system call whose assembly language interface has the specified number,
register arguments rO and rl and further arguments arg.

The rO value of the system call is returned.

DIAGNOSTICS
When the C-bit is set, sysca//returns -1 and sets the external variable errno (see intro(2)).

BUGS
There is no way to simulate system calls such as pipe(2), which return values in register rl.

4th Berkeley Distribution 12 February 1983 1

TRUNCATE (2) UNIX Programmer's Manual TRUNCATE (2)

NAME
truncate - truncate a file to a specified length

SYNOPSIS
truncate(path, length)
char •path;
int length;

ftruncate (f d, length)
int fd, leng_th;

DESCRIPTION
Truncate causes the file named by path 9r referenced by fd to be truncated to at most length
bytes in size. If the file previously was larger than this size, the extra data is lost. With ftrun­
cate, the file must be open for writing.

RETURN VALUES
A value of 0 is returned if the call succeeds. If the call fails a -1 is returned, and the global
variable errno specifies the error.

ERRORS
Truncate succeeds unless:

[EPERM] The pathname contains a character with the high-order bit set.

[ENO ENT]

[ENOTDIR]

[ENO ENT]

[EACCES]

[EISDIR]

[EROFS]

[ETXTBSY]

[EFAULT]

The pathname was too long.

A component of the path prefix of path is not a directory.

The named file does not exist.

A component of the path prefix denies search permission.

The named file is a directory.

The named file resides on a read-only file system.

The file is a pure procedure (shared text) file that is being executed.

Name points outside the process's allocated address space.

Ftruncate succeeds unless:

[EBADF]

[EINVAL]

SEE ALSO
open(2)

BUGS

The fd is not a valid descriptor.

The fd references a socket, not a file.

Partial blocks discarded as the result of truncation are not zero filled; this can result in holes in
files which do not read as zero.

These calls should be generalized to allow ranges of bytes in a file to be discarded.

4th Berkeley Distribution 7 July 1983 1

UMASK(2) UNIX Programmer's Manual

NAME
umask - set file creation mode mask

SYNOPSIS
oumask • umask Cnumask)
Int oumask, numask;

DESCRIPTION

UMASK (2)

Umask sets the process's file mode creation mask to numask and returns the previous value of
the mask. The low-order 9 bits of numask are used whenever a file is created, clearing
corresponding bits in the file mode (see chmod(2)). This clearing allows each user to restrict
the default access to his files.

The value is initially 022 (write access for owner only). The mask is inherited by child
processes.

RETURN VALUE
The previous value of the file mode mask is returned by the call.

SEE ALSO
chmod(2), mknod(2), open(2)

4th Berkeley Distribution 12 February 1983 1

UNLINK(2) UNIX Programmer's Manual UNLINK (2)

NAME
unlink - remove directory entry

SYNOPSIS
unlink (path)
char •path;

DESCRIPTION
Unlink removes the entry for the file path from its directory. If this entry was the last link to
the file, and no process has· the file open, then all resources associated with the file are
reclaimed. If, however, the file was open in any process, the actual resource reclamation is
delayed until it is closed, even though the directory entry has disappeared.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
The unlink succeeds unless:

[EPERM] The path contains a character with the high-order bit set.

[ENOENT] The path name is too long.

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied for a component of the path prefix.

[ENOTDIR]

[ENO ENT]

[EACCES]

[EACCES]

[EPERM]

Write permission is denied on the directory containing the link to be removed.

The named file is a directory and the effective user ID of the process is not the
super-user.

[EBUSY]

[EROFS]

[EFAULT]

[ELOOP]

SEE ALSO

The entry to be unlinked is the mount point for a mounted file system.

The named file resides on a read-only file system.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

close (2), link (2), rmdir (2)

4th Berkeley Distribution 2 July 1983 1

UTIMES (2) UNIX Programmer's Manual UTIMES (2)

NAME
utimes - set file times

SYNOPSIS
#include <sys/time.b>
utlmes (file, tvp)
char •file;
struct tlmeval •tvp(2);

DESCRIPTION
The utimes call uses the "accessed" and "updated" times in that order from the tvp vector to
set the corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The "inode-changed" time of the
file is set to the current time.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Utime will fail if one or more of the following are true:

[EPERM] The pathname contained a character with the high-order bit set.

The pathname was too long.

The named file does not exist.

A component of the path prefix is not a directory.

A component of the path prefix denies search permission.

The process is not super-user and not the owner of the file.

[ENO ENT]

[ENO ENT]

[ENOTDIR]

[EACCES]

[EPERM]

[EACCES] The effective user ID is not super-user and not the owner of the file and times
is NULL and write access is denied.

[EROFS]

[EFAULT]

[ELOOP]

SEE ALSO
stat(2)

The file system containing the file is mounted read-only.

Tvp points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

4th Berkeley Distribution 2 July 1983 1

VFORK (2) UNIX Programmer's Manual VFORK (2)

NAME
vfork - spawn new process in a virtual memory efficient way

SYNOPSIS
pid = vforkO
int pid;

DESCRIPTION
Vfork can be used to create new processes without fully copying the address space of the old
process, which is horrendously inefficient in a paged environment. It is useful when the pur­
pose of fork(2) would have been to create a new system context for an execve. Vfork differs
from fork in that the child borrows the parent's memory and thread of control until a call to
execve(2) or an exit (either by a call to exit(2) or abnormally.) The parent process is suspended
while the child is using its resources.

Vfork returns 0 in the child's context and Oater) the pid of the child in the parent's context.

Vfork can normally be used just like fork. It does not work, however, to return while running in
the childs context from the procedure which called vfork since the eventual return from vfork
would then return to a no longer existent stack frame. Be careful, also, to call _exit rather than
exit if you can't execve, since exit will flush and close standard 1/0 channels, and thereby mess
up the parent processes standard 1/0 data structures. (Even with fork it is wrong to call exit
since buffered data would then be flushed twice.)

SEE ALSO
fork (2), execve (2), sigvec(2), wait (2),

DIAGNOSTICS

BUGS

Same as for fork.

This system call will be eliminated when proper system sharing mechanisms are implemented.
Users should not depend on the memory sharing semantics of vfork as it will, in that case, be
made synonymous to fork.

To avoid a possible deadlock situation, processes which are children in the middle of a vfork are
never sent SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed and input
attempts result in an end-of-file indication.

4th Berkeley Distribution 2 July 1983

VHANGUP(2) UNIX Programmer's Manual VHANGUP(2)

NAME
vhangup - virtually "hangup" the current control terminal

SYNOPSIS
vbangupO

DESCRIPTION
Vhangup is used by the initialization process init(8) (among others) to arrange that users are
given "clean'" terminals at login, by revoking access of the previous users' processes to the
terminal. To effect this, vhangup searches the system tables for references to the control termi­
nal of the invoking process, revoking access permissions on each instance of the terminal which
it finds. Further attempts to access the terminal by the affected processes will yield i/o errors
(EBADF). Finally, a hangup signal (SIGHUP) is sent to the process group of the control ter­
minal.

SEE ALSO
init (8)

BUGS
Access to the control terminal via /dev /tty is still possible.

This call should be replaced by an automatic mechanism which takes place on process exit.

4th Berkeley Distribution 12 Febuary 1983

WAIT(2) UNIX: Programmer's Manual WAIT (2)

NAME
wait, wait3 - wait for process to terminate

SYNOPSIS
#include < sys/wait.h >
pid = wait (status)
int pid;
union wait •status;

pid = wait(O)
int pid;

#include < sys/time.h >
#include < sys/resource.h >
pid = waf.t3 (status, options, rusage)
int pid;
union wait •status;
int options;
struct rusage •rusage;

DESCRIPTION

NOTES

Wait causes its caller to delay until a signal is received or one of its child processes terminates.
If any child has died since the last wait, return is immediate, returning the process id and exit
status of one of the terminated children. If there are no children, return is immediate with the
value -1 returned.

On return from a successful wait call, status is nonzero, and the high byte of status contains the
low byte of the argument to exit supplied by the child process; the low byte of status contains
the termination status of the process. A more precise definition of the status word is given in
<sys/wait.h>.

Wait3 provides an alternate interface for programs which must not block when collecting the
status of child processes. The status parameter is defined as above. The options parameter is
used to indicate the call should not block if there are no processes which wish to report status
(WNO HANG), and/ or that only children of the current process which are stopped due to a
SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP signal should have their status reported (WUN­
TRACED). If rusage is non-zero, a summary of the resources used by the terminated process
and all its children is returned (this information is currently not available for stopped
processes).

When the WNOHANG option is specified and no processes wish to report status, wait3 returns
a pid of 0. The WNOHANG and WUNTRACED options may be combined by or'ing the two
values.

See sigvec (2) for a list of termination statuses (signals); 0 status indicates normal termination.
A special status (0177) is returned for a stopped process which has not terminated and can be
restarted; see ptrace(2). If the 0200 bit of the termination status is set, a core image of the
process was produced by the system.

If the parent process terminates without waiting on its children, the initialization process (pro­
cess ID = 1) inherits the children.

Wait and wait3 are automatically restarted when a process receives a signal while awaiting termi­
nation of a child process.

RETURN VALUE
If wait returns due to a stopped or terminated child process, the process ID of the child is
returned to the calling process. Otherwise, a value of -1 is returned and errno is set to

4th Berkeley Distribution 27 July 1983

WAIT(2) UNIX Programmer's Manual WAIT(2)

indicate the error.

Wait3 returns -1 if there are no children not previously waited for; 0 is returned if
WNOHANG is specified and there are no stopped or exited children.

ERRORS
Wait will fail and return immediately if one or more of the following are true:

[ECHILD] The calling process has no existing unwaited-for child processes.

[EFAULT]

SEE ALSO
exit(2)

The status or rusage arguments point to an illegal address.

4th Berkeley Distribution 27 July 1983 2

WRITE (2) UNIX Programmer's Manual WRITE (2)

NAME
write, writev - write on a file

SYNOPSIS
write(d, buf, nbytes)
int d;
char •buf;
int nbytes;

#include < sys/types.h >
#include < sys/uio.h >
writev (d, iov, ioveclen)
int d;
struct iovec •iov;
int ioveclen;

DESCRIPTION
Write attempts to write nbytes of data to the object referenced by the descriptor d from the
buff er pointed to by bu/. Writev performs the same action, but gathers the output data from
the iovlen buffers specified by the members of the iovec array: iov[O], iov[l], etc.

On objects capable of seeking, the write starts at a position given by the pointer associated with
d, see lseek(2). Upon return from write, the pointer is incremented by the number of bytes
actually written.

Objects that are not capable of seeking always write from the current position. The value of the
pointer associated with such an object is undefined.

If the real user is not the super-user, then write clears the set-user-id bit on a file. This
prevents penetration of system security by a user who "captures" a writable set-user-id file
owned by the super-user.

RETURN VALUE
Upon successful completion the number of bytes actually writen is returned. Otherwise a -1 is
returned and errno is set to indicate the error.

ERRORS
Write will fail and the file pointer will remain unchanged if one or more of the following are
true:

[EBADF]

[EPIPE]

[EPIPE]

[EFBIG]

[EFAULT]

SEE ALSO

D is not a valid descriptor open for writing.

An attempt is made to write to a pipe that is not open for reading by any pro­
cess.

An attempt is made to write to a socket of type SOCK_STREAM which is not
connected to a peer socket.

An attempt was made to write a file that exceeds the process's file size limit or
the maximum file size.

Part of iov or data to be written to the file points outside the process's allocated
address space.

lseek(2), open(2), pipe(2)

4th Berkeley Distribution 27 July 1983

INTRO (J) UNIX Programmer's Manual INTRO(J)

NAME
intro - introduction to library functions

DESCRIPTION

FILES

This section describes functions that may be found in various libraries. The library functions
are those other than the functions which directly invoke UNIX system primitives, described in
section 2. This section has the libraries physically grouped together. This is a departure from
older versions of the UNIX Programmer's Reference Manual, which did not group functions by
library. The functions described in this section are grouped into various libraries:

(J) and (JS)
The straight "J" functions are the standard C library functions. The C library also
includes all the functions described in section 2. The JS functions comprise the standard
1/0 library. Together with the (3N), (3X), and (3C) routines, these functions constitute
library libc, which is automatically loaded by the C compiler cc(l), the Pascal compiler
pc(l), and the Fortran compiler j77(1). The link editor /d(l) searches this library under
the '-le' option. Declarations for some of these functions may be obtained from
include files indicated on the appropriate pages.

(3F) The 3F functions are all functions callable from FORTRAN. These functions perform
the same jobs as do the straight "3" functions.

(3M) These functions constitute the math library, libm. They are automatically loaded as
needed by the Pascal compiler pc(l) and the Fortran compiler j77(1). The link editor
searches this library under the '-Im' option. Declarations for these functions may be
obtained from the include file <math.h>.

(JN) These functions constitute the internet network library,

(JS) These functions constitute the 'standard 1/0 package', see intro(3S). These functions
are in the library libc already mentioned. Declarations for these functions may be
obtained from the include file <stdio.h>.

(3X) Various specialized libraries have not been given distinctive captions. Files in which
such libraries are found are named on appropriate pages.

(JC) Routines included for compatibility with other systems. In particular, a number of sys­
tem call interfaces provided in previous releases of 4BSD have been included for source
code compatibility. The manual page entry for each compatibility routine indicates the
proper interface to use.

/lib/libc.a
/usr/lib/libm.a
/usr/lib/libc_p.a
/usr/lib/libm_p.a

SEE ALSO
intro(3C), intro(3S), intro(3F), intro(3M), intro(3N), nm(l), ld(l), cc(l), n7(1), intro(2)

DIAGNOSTICS
Functions in the math library (3M) may return conventional values when the function is
undefined for the given arguments or when the value is not representable. In these cases the
external variable errno (see intro(2)) is set to the value EDOM (domain error) or ERANGE
(range error). The values of EDOM and ERANGE are defined in the include file <math.h>.

LIST OF FUNCTIONS
Name

abort
abort

4th Berkeley Distribution

Appears on Page

abort.3
abort.3f

Description

generate a fault
terminate abruptly with memory image

2 April 1983 1

INTRO (3) UNIX Pro1rammer•s Manual INTR0(3)

abs abs.3 integer absolute value
access access.3f determine accessability of a file
acos sin.3m tri1onometric functions
alarm alarm.Jc schedule sianal after specified time
alarm alarm.3f execute a subroutine after a specified time
alloca malloc.3 memory allocator
arc plot.3x araphics interface
asctime ctime.3 convert date and time to ASCII
asin sin.3m triaonometric functions
assert assert.3x program verification
a tan sin.3m triaonometric functions
atan2 sin.3m trigonometric functions
atof atof.3 convert ASCII to numbers
atoi atof.3 convert ASCII to numbers
atol atof.3 convert ASCII to numbers
bcmp bstring.3 bit and byte string operations
bcopy bstring.3 bit and byte string operations
bessel bessel.3f of two kinds for integer orders
bit bit.3f and, or, xor, not, rshift, !shift bitwise functions
bzero bstring.3 bit and byte string operations
cabs hypot.3m Euclidean distance
calloc malloc.3 memory allocator
ceil floor.3m absolute value, floor, ceiling functions
chdir chdir.3f change default directory
chmod chmod.3f change mode of a file
circle plot.3x graphics interface
clearerr ferror.3s stream status inquiries
closedir directory.3 directory operations
closelog syslog.3 control system log
close pl plot.3x graphics interface
cont plot.3x graphics interface
cos sin.3m trigonometric functions
co sh sinh.3m hyperbolic functions
crypt crypt.3 DES encryption
ctime ctime.3 convert date and time to ASCII
ctime time.3f return system time
curses curses.3x screen functions with "optimal" cursor motion
dbminit dbm.3x data base subroutines
delete dbm.3x data base subroutines
dtfrac flmin.3f return extreme values
dflmax flmin.3f return extreme values
dflmax range.3f return extreme values
dflmin flmin.3f return extreme values
dflmin range.3f return extreme values
drand rand.3f return random values
dtime etime.3f return elapsed execution time
ecvt ecvt.3 output conversion
edata end.3 last locations in program
encrypt crypt.3 DES encryption
end end.3 last locations in program
endfsent getfsent.3x get file system descriptor file entry
endgrent getgrent.3 get group file entry

4th Berkeley Distribution 2 April 1983 2

INTR0(3) UNIX Programmer's Manual INTRO (3)

endhostent gethostent.3n get network host entry
endnetent getnetent.3n get network entry
endprotoent getprotoent.3n get protocol entry
endpwent getpwent.3 get password file entry
endservent getservent.3n get service entry
environ execl.3 execute a file
erase plot.3x graphics interface
etext end.3 last locations in program
etime etime.3f return elapsed execution time
exec execl.3 execute a file
exece execl.3 execute a file
exec! execl.3 execute a file
execle execl.3 execute a file
execlp execl.3 execute a file
exect execl.3 execute. a file
execv execl.3 execute a file
execvp execl.3 execute a file
exit exit.3 terminate a process after flushing any pending output
exit exit.3f terminate process with status
exp exp.3m exponential, logarithm, power, square root
fabs floor.3m absolute value, floor, ceiling functions
fclose fclose.3s close or flush a stream
fcvt ecvt.3 output conversion
fdate fdate.3f return date and time in an ASCII string
feof ferror.3s stream status inquiries
ferror ferror.3s stream status inquiries
fetch dbm.3x data base subroutines
ffiush fclose.3s close or flush a stream
ffrac flmin.3f return extreme values
ffs bstring.3 bit and byte string operations
fgetc getc.3f get a character from a logical unit
fgetc getc.3s get character or word from stream
fgets gets.3s get a string from a stream
fileno ferror.3s stream status inquiries
firstkey dbm.3x data base subroutines
fl max flmin.3f return extreme values
flmax range.3f return extreme values
flmin flmin.3f return extreme values
fl min range.3f return extreme values
floor floor.3m absolute value, floor, ceiling functions
flush flush.3f flush output to a logical unit
fork fork.3f create a copy of this process
fpecnt trpfpe.3f trap and repair floating point faults
fprintf printf.3s formatted output conversion
fputc putc.3f write a character to a fortran logical unit
fputc putc.3s put character or word on a stream
fputs puts.3s put a string on a stream
fread fread.3s buffered binary input/output
free malloc.3 memory allocator
frexp frexp.3 split into mantissa and exponent
fscanf scanf.3s formatted input conversion
fseek fseek.3f reposition a file on a logical unit

4th Berkeley Distribution 2 April 1983 3

INTRO (3)

fseek
fstat
ftell
ftell
ftime
fwrite
gamma
gcvt
gerror
getarg
getc
getc
getchar
getcwd
getdiskbyname
getenv
getenv
getfsent
getfsfile
getfsspec
getfstype
getgid
getgrent
getgrgid
getgrnam
gethostbyaddr
gethostbyname
gethostent
getlog
getlogin
getnetbyaddr
getnetbyname
getnetent
get pass
getpid
getprotobyname
getprotobynumber
getprotoent
getpw
getpwent
getpwnam
getpwuid
gets
getservbyname
getservbyport
getservent
getuid
getw
getwd
gm time
gmtime
gtty

4th Berkeley Distribution

UNIX Programmer's Manual

fseek.3s
stat.3f
fseek.3f
fseek.3s
time.Jc
fread.3s
gamma.3m
ecvt.3
perror.3f
getarg.3f
getc.3f
getc.3s
getc.3s
getcwd.3f
getdisk.3x
getenv.3
getenv.3f
getfsent.3x
getfsent.3x
getfsent.3x
getf sent.3x
getuid.3f
getgrent.3
getgrent.3
getgrent.3
gethostent.3n
gethostent.3n
gethosten t. 3 n
getlog.3f
getlogin.3
getnetent.3n
getnetent.3n
getnetent.3n
getpass.3
getpid.3f
getprotoent.3n
getprotoent.3n
getprotoent.3n
getpw.3
getpwent.3
getpwent.3
getpwent.3
gets.3s
getservent.3n
getservent.3n
getservent.3n
getuid.3f
getc.3s
getwd.3
ctime.3
time.3f
stty.3c

reposition a stream
get file status
reposition a file on a logical unit
reposition a stream
get date and time
buffered binary input/output
log gamma function
output conversion
get system error messages
return command line arguments
get a character from a logical unit
get character or word from stream
get character or word from stream
get pathname of current working directory
get disk description by its name
value for environment name
get value of environment variables
get file system descriptor file entry
get file system descriptor file entry
get file system descriptor file entry
get file system descriptor file entry
get user or group ID of the caller
get group file entry
get group file entry
get group file entry
get network host entry
get network host entry
get network host entry
get user's login name
get login name
get network entry
get network entry
get network entry
read a password
get process id
get protocol entry
get protocol entry
get protocol entry
get name from uid
get password file entry
get password file entry
get password file entry
get a string from a stream
get service entry
get service entry
get service entry
get user or group ID of the caller
get character or word from stream
get current working directory pathname
convert date and time to ASCII
return system time
set and get terminal state (defunct)

2 April 1983

INTRO (3)

4

INTR0(3) UNIX Programmer's Manual INTR0(3)

endhostent gethostent.3n get network host entry
endnetent getnetent.3n get network entry
endprotoent getprotoent.3n get protocol entry
endpwent getpwent.3 get password file entry
endservent getservent.3n get service entry
environ execl.3 execute a file
erase plot.3x graphics interface
etext end.3 last locations in program
etime etime.3f return elapsed execution time
exec execl.3 execute a file
exece execl.3 execute a file
exec! execl.3 execute a file
execle execl.3 execute a file
execlp execl.3 execute a file
exect execl.3 execute a file
execv execl.3 execute a file
execvp execl.3 execute a file
exit exit.3 terminate a process after flushing any pending output
exit exit.3f terminate process with status
exp exp.3m exponential, logarithm, power, square root
fabs floor.3m absolute value, floor, ceiling functions
fclose fclose.3s close or flush a stream
fcvt ecvt.3 output conversion
fdate fdate.3f return date and time in an ASCII string
feof ferror.3s stream status inquiries
ferror ferror.3s stream status inquiries
fetch dbm.3x data base subroutines
ffiush fclose.3s close or flush a stream
ffrac flmin,3f return extreme values
ffs bstring.3 bit and byte string operations
fgetc getc.3f get a character from a logical unit
fgetc getc.3s get character or word from stream
fgets gets.3s get a string from a stream
file no ferror.3s stream status inquiries
firstkey dbm.3x data base subroutines
fl max flmin.3f return extreme values
flmax range.3f return extreme values
flmin flmin.3f return extreme values
fl min range.3f return extreme values
floor floor.3m absolute value, floor, ceiling functions
flush flush.3f flush output to a logical unit
fork fork.3f create a copy of this process
fpecnt trpfpe.3f trap and repair floating point faults
fprintf printf.3s formatted output conversion
fputc putc.3f write a character to a fortran logical unit
fputc putc.3s put character or word on a stream
fputs puts.3s put a string on a stream
fread fread.3s buffered binary input/output
free malloc.3 memory allocator
fr exp frexp.3 split into mantissa and exponent
fscanf scanf.3s formatted input conversion
fseek fseek.3f reposition a file on a logical unit

4th Berkeley Distribution 2 April 1983 3

INTRO (3)

fseek
fstat
ftell
ftell
ftime
fwrite
gamma
gcvt
gerror
getarg
getc
getc
getchar
getcwd
getdiskbyname
getenv
getenv
getfsent
getfsfile
getfsspec
getfstype
getgid
getgrent
getgrgid
getgrnam
gethostbyaddr
getho~tbyname
gethostent
getlog
getlogin
getnetbyaddr
getnetbyname
getnetent
get pass
getpid
getprotobyname
getprotobynumber
getprotoent
getpw
getpwent
getpwnam
getpwuid
gets
getservbyname
getservbyport
getservent
getuid
getw
getwd
gmtime
gmtime
gtty

4th Berkeley Distribution

UNIX Proarammer's Manual

fseek.Js
stat.Jf
fseek.3f
fseek.3s
time.Jc
fread.3s
gamma.3m
ecvt.3
perror.3f
aetarg.Jf
getc.3f
getc.3s
aetc.3s
getcwd.3f
getdisk.3x
getenv.3
getenv.3f
getfsent.3x
getfsent.3x
getfsent.3x
getfsent.3x
getuid.3f
getarent.3
getgrent.3
getgrent.3
gethostent.3n
gethostent.3n
gethostent.3n
getlog.3f
getlogin.3
getnetent.3n
getnetent.3n
getnetent.3n
getpass.3
getpid.3f
getprotoent.3n
getprotoent.3n
getprotoent.3n
getpw.3
getpwent.3
aetpwent.3
getpwent.3
gets.JS
getservent.3n
getservent.3n
aetservent.3n
getuid.3f
getc.3s
getwd.3
ctime.3
time.3f
stty.3c

reposition a stream
get file status
reposition a file on a logical unit
reposition a stream
aet date and time
buffered binary input/output
log gamma function
output conversion
aet system error messages
return command line arguments
get a character from a logical unit
get character or word from stream
get character or word from stream
get pathname of current working directory
get disk description by its name
value for environment name
get value of environment variables
get file system descriptor file entry
get file system descriptor file entry
get file system descriptor file entry
get file system descriptor file entry
get user or group ID of the caller
get group file entry
get group file entry
get group file entry
get network host entry
get network host entry
get network host entry
aet user's login name
get login name
get network entry
get network entry
get network entry
read a password
get process id
get protocol entry
get protocol entry
get protocol entry
get name from uid
get password file entry
get password file entry
get password file entry
get a string from a stream
get service entry
get service entry
get service entry
get user or group ID of the caller
get character or word from stream
get current working directory pathname
convert date and time to ASCII
return system time
set and get terminal state (defunct)

2 April 1983

INTRO(J)

4

INTRO(J) UNIX Programmer's Manual INTRO(J)

hostnm hostnm.Jf get name of current host
htonl byteorder.Jn convert values between host and network byte order
htons byteorder.3n convert values between host and network byte order
hypot hypot.3m Euclidean distance
iargc getarg.3f return command line arguments
idate idate.3f return date or time in numerical form
iermo perror.3f get system error messages
index index.Jr tell about character objects
index string.3 string operations
inet_addr inet.3n Internet address manipulation routines
inet_lnaof inet.3n Internet address manipulation routines
inet_makeaddr inet.3n Internet address manipulation routines
inet_netof inet.3n Internet address manipulation routines
inet_network inet.3n Internet address manipulation routines
initgroups initgroups.3x initialize group access list
initstate random.3 better random number generator
in max flmin.3f return extreme values
inmax range.3f return extreme values
insque insque.3 insert/remove element from a queue
ioinit ioinit.3f change n1 110 initialization
irand rand.3f return random values
isalnum ctype.3 character classification macros
isalpha ctype.3 character classification macros
isascii ctype.3 character classification macros
isatty ttynam.3f find name of a terminal port
isatty ttyname.3 find name of a terminal
iscntrl ctype.3 character classification macros
isdigit ctype.3 character classification macros
islo\yer ctype.3 character classification macros
isprint ctype.3 character classification macros
ispunct ctype.3 character classification macros
isspace ctype.3 character classification macros
isupper ctype.3 character classification macros
itime idate.Jf return date or time in numerical form
jO j0.3m bessel functions
jl j0.3m bessel functions
jn j0.3m bessel functions
kill kill.3f send a signal to a process
label plot.3x graphics interface
ldexp frexp.3 split into mantissa and exponent
len index.Jr tell about character objects
lib2648 lib2648.3x subroutines for the HP 2648 graphics terminal
line plot.3x graphics interface
line mod plot.3x graphics interface
link link.3f make a link to an existing file
lnblnk index.3f tell about character objects
loc loc.3f return the address of an object
local time ctime.3 convert date and time to ASCII
log exp.3m exponential, logarithm, power, square root
loglO exp.3m exponential, logarithm, power, square root
long long.3f integer object conversion
longjmp setjmp.3 non-local goto

4th Berkeley Distribution 2 April 1983 5

INTR0(3) UNIX Programmer's Manual INTRO (3)

ls tat stat.3f get file status
ltime time.3f return system time
malloc malloc.J memory allocator
mktemp mktemp.3 make a unique file name
modf frexp.J split into mantissa and exponent
moncontrol monitor.3 prepare execution profile
monitor monitor.J prepare execution profile
monstartup monitor.J prepare execution profile
move plot.3x graphics interface
nextkey dbm.3x data base subroutines
nice nice.Jc set program priority
nlist nlist.J get entries from name list
ntohl byteorder.Jn convert values between host and network byte order
ntohs byteorder.3n convert values between host and network byte order
opendir directory. 3 directory operations
openlog syslog.J control system log
pause pause.Jc stop until signal
pclose popen.3 initiate 1/0 to/from a process
perror perror.J system error messages
perror perror.3f get system error messages
plot: openpl plot.Jx graphics interface
point plot.3x graphics interface
po pen popen.J initiate 1/0 to/from a process
pow exp.Jm exponential, logarithm, power, square root
printf printf.Js formatted output conversion
psignal psignal.3 system signal messages
putc putc.Jf write a character to a fortran logical unit
putc putc.Js put character or word on a stream
putchar putc.3s put character or word on a stream
puts puts.Js put a string on a stream
putw putc.Js put character or word on a stream
qsort qsort.J quicker sort
qsort qsort.Jf quick sort
rand rand.Jc random number generator
rand rand.3f return random values
random random.J better random number generator
rcmd rcmd.Jx routines for returning a stream to a remote command
re_comp regex.3 regular expression handler
re_exec regex.J regular expression handler
readdir directory. J directory operations
realloc malloc.3 memory allocator
remque insque.J insert/remove element from a queue
rename rename.Jf rename a file
rewind fseek.Js reposition a stream
rewinddir directory.3 directory operations
rexec rexec.3x return stream to a remote command
rind ex index.3f tell about character objects
rindex string.3 string operations
rresvport rcmd.3x routines for returning a stream to a remote command
ruserok rcmd.3x routines for returning a stream to a remote command
scandir scandir.3 scan a directory
scanf scanf.3s formatted input conversion

4th Berkeley Distribution 2 April 1983 6

INTR0(3) UNIX Programmer's Manual INTR0(3)

seekdir directory .3 directory operations
setbuf setbuf.3s assign buffering to a stream
set buffer setbuf.3s assign buffering to a stream
setegid setuid.3 set user and group ID
seteuid setuid.3 set user and group ID
setfsent getfsent.3x get file system descriptor file entry
setgid setuid.3 set user and group ID
setgrent getgrent.3 get group file entry
sethostent gethostent.3n get network host entry
setjmp setjmp.3 non-local goto
setkey crypt.3 DES encryption
setlinebuf setbuf.3s assign buffering to a stream
setnetent getnetent.3n get network entry
setprotoent getprotoent.3n get protocol entry
setpwent getpwent.3 get password file entry
setrgid setuid.3 set user and group ID
setruid setuid.3 set user and group ID
setservent getservent.3n get service entry
setstate random.3 better random number generator
setuid setuid.3 set user and group ID
short long.3f integer object conversion
signal signal.3 simplified software signal facilities
signal signal.3f change the action for a signal
sin sin.3m trigonometric functions
sinh sinh.3m hyperbolic functions
sleep sleep.3 suspend execution for interval
sleep sleep.3f suspend execution for an interval
space plot.3x graphics interface
sprintf printf.3s formatted output conversion
sqrt exp.3m exponential, logarithm, power, square root
srand rand.Jc random number generator
srandom random.3 better random number generator
sscanf scanf.3s formatted input conversion
stat stat.3f get file status
stdio intro.3s standard buffered input/output package
store dbm.3x data base subroutines
strcat string.3 string operations
strcmp string.3 string operations
strcpy string.3 string operations
strlen string.3 string operations
strncat string.3 string operations
stmcmp string.3 string operations
stmcpy string.3 string operations
stty stty.3c set and get terminal state (defunct)
swab swab.3 swap bytes
sys_errlist perror.3 system error messages
sys_nerr perror.3 system error messages
sys_siglist psignal.3 system signal messages
syslog syslog.3 control system log
system system.3 issue a shell command
system system.3f execute a UNIX command
tan sin.3m trigonometric functions

4th Berkeley Distribution 2 April 1983 7

INTRO (3)

tanh
tclose
telldir
tgetent
tgetflag
tgetnum
tgetstr
tgoto
time
time
times
timezone
to pen
tputs
traper
trapov
tread
trewin
trpfpe
tskipf
tstate
ttynam
ttyname
ttys lot
twrite
ungetc
unlink
utime
valloc
varargs
vlimit
vtimes
wait
yO
yl
yn

4th Berkeley Distribution

UNIX Programmer's Manual INTRO (3)

sinh.3m
topen.3f
directory .3
termcap.3x
termcap.3x
termcap.3x
termcap.3x
termcap.3x
time.3c
time.3f
times.Jc
ctime.3
topen.3f
terincap.3x
traper.3f
trapov.3f
topen.3f
topen.3f
trpfpe.3f
topen.3f
topen.3f
ttynam.3f
ttyname.3
ttyname.3
topen.3f
ungetc.3s
unlink.3f
utime.3c
valloc.3
varargs.3
vlimit.3c
vtimes.3c
wait.3f
j0.3m
j0.3m
j0.3m

hyperbolic functions
f77 tape 110
directory operations
terminal independent operation routines
terminal independent operation routines
terminal independent operation routirtes
terminal independent operation routines
terminal independent operation routines
get date and time
return system time
get process times
convert date and time to ASCII
f77tape1/0
terminal independent operation routines
trap arithmetic errors
trap and repair floating point overflow
f77 tape 1/0
f77 tape 1/0
trap and repair floating point faults
n1tape1/0
f77 tape 1/0
find name of a terminal port
find name of a terminal
find name of a terminal
f77 tape 1/0
push character back into input stream
remove a directory entry
set file times
aligned memory allocator
variable argument list
control maximum system resource consumption
get information about resource utilization
wait for a process to terminate
bessel functions
bessel functions
bessel functions

2 April 1983 8

ABORT(3)

NAME
abort - generate a fault

DESCRIPTION

UNIX Programmer's Manual ABORT(3)

Abort executes an instruction which is illegal in user mode. This causes a signal that normally
terminates the process with a core dump, which may be used for debugging.

SEE ALSO
adb(l), sigvec(2), exit(2)

DIAGNOSTICS
Usually 'IOT trap - core dumped' from the shell.

BUGS
The abort() function does not flush standard 110 butf ers. Use .Qlush (35).

7th Edition 18 January 1983 1

ABS(3)

NAME
abs - integer absolute value

SYNOPSIS
abs(l)
Int I;

DESCRIPTION

UNIX Programmer's Manual

Abs returns the absolute value of its integer operand.

SEE ALSO
floor(3M) for /abs

BUGS

ABS(3)

Applying the abs function to the most negative integer generates a result which is the most
negative integer. That is,

abs(Ox80000000)

returns Ox80000000 as a result.

7th Edition 18 January 1983 1

ATOF(3) UNIX Programmer's Manual ATOF(3)

NAME
atof, atoi, atol - convert ASCII to numbers

SYNOPSIS
double atof(nptr)
char •nptr;

atoiCnptr)
char •nptr;

lon1 atolCnptr)
char •nptr;

DESCRIPTION
These functions convert a string pointed to by nptr to floating, integer, and Ions integer
representation respectively. The first unrecognized character ends the string.

Aro/recognizes an optional string of spaces, then an optional sign, then a string of digits option­
ally containing a decimal point, then an optional 'e' or 'E' followed by an optionally signed
integer.

Atoi and atol recognize an optional string of spaces, then an optional sign, then a string of
digits.

SEE ALSO
scanf(3S)

BUGS
There are no provisions for overflow.

7th Edition 19 January 1983 1

BSTRIN0(3) UNIX Programmer's ~anual BSTRING (3)

NAME
bcopy, bcmp, bzero, ff s - bit and byte string operations

SYNOPSIS
bcopy(bl, b2, length)
char •bl, •b2;
int length;

bcmp(bl, b2, length)
char •bl, •b2;
int length;

bzero(b, length)
char •b;
int length;

frs(i)
int i;

DESCRIPTION

BUGS

The functions bcopy, bcmp, and bzero operate on variable length strings of bytes. They do not
check for null bytes as the routines in string(3) do.

Bcopy copies length bytes from string bl to the string b2.

Bcmp compares byte string bl against byte string b2, returning zero if they are identical, non­
zero otherwise. Both strings are assumed to be length bytes long.

Bzero places length 0 bytes in the string bl.

Ffs find the first bit set in the argument passed it and returns the index of that bit. Bits are
numbered starting at 1. A return value of -1 indicates the value passed is zero.

The bcmp and bcopy routines take parameters backwards from strcmp and strcpy.

4th Berkeley Distribution 4 March 1983 1

CRYPT(3) UNIX Programmer's Manual CRYPT(3)

NAME
crypt, setkey, encrypt - DES encryption

SYNOPSIS
char •crypt (key, salt) .
char •key, •salt;

setkey(key)
char •key;

encrypt (block, edflag)
char •block;

DESCRIPTION
Crypt is the password encryption routine. It is based on the NBS Data Encryption Standard,
with variations intended (among other things) to frustrate use of hardware implementations of
the DES for key search.

The first argument to crypt is normally a user's typed password. The second is a 2-character
string chosen from the set [a-zA-Z0-9./]. The salt string is used to perturb the DES algorithm
in one of 4096 different ways, after which the password is used as the key to encrypt repeatedly
a constant string. The returned value points to the encrypted password, in the same alphabet as
the salt. The first two characters are the salt itself.

The other entries provide (rather primitive) access to the actual DES algorithm. The argument
of setkey is a character array of length 64 containing only the characters with numerical value 0
and 1. If this string is divided into groups of 8, the low-order bit in each group is ignored,
leading to a 56-bit key which is set into the machine.

The argument to the encrypt entry is likewise a character array of length 64 containing O's and
l's. The argument array is modified in place to a similar array representing the bits of the argu­
ment after having been subjected to .the DES algorithm using the key set by setkey. If e<ffeag is
0, the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO
passwd(l), passwd(5), login(l), getpass(J)

BUGS
The return value points to static data whose content is overwritten by each call.

7th Edition 25 February 1983 1

CTIME (3) tJNIX Programmer's Manual CTIME (3) ,

NAME
ctime, localtime, gmtime, asctime, timezone - convert date and time to ASCII

SYNOPSIS
char •ctime (clock)
Iona •clock;

#include < sys/time.b >
struct tm •localtlme(clock)
long •clock;

struct tm •gmtime(clock)
long •clock;

char •asctime(tm)
struct tm •tm;

char •timezone(zone, dst)

DESCRIPTION
Ctime converts a time pointed to by clock such as returned by time(2) into ASCII and returns a
pointer to a 26-character string in the following form. All the fields have constant width.

Sun Sep 16 01:03:52 1973\n\O

Loco/time and gmtime return pointers to structures containing the broken-down time. Localtime
corrects for the time zone and possible daylight savings time; gmtime converts directly to GMT,
which is the time UNIX uses. Asctime converts a broken-down time to ASCII and returns a
pointer to a 26-character string.

The structure declaration from the include file is:

struct tm {
int

);

int
int
int
int
int
int
int
int

tm_sec;
tm_min;
tm_hour;
tm_mday;
tm_mon;
tm_year;
tm_wday;
tm_yday;
tm_isdst;

These quantities give the time on a 24-hour clock, day of month (l .J l), month of year (0-11).
day of week (Sunday - 0), year - 1900, day of year (0-365), and a flag that is nonzero if day­
light saving time is in effect.

When local time is called for, the program consults the system to determine the time zone and
whether the U.S.A., Australian, Eastern European, Middle European, or Western European
daylight saving time adjustment is appropriate. The program knows about various peculiarities
in time conversion over the past 10-20 years; if necessary, this understanding can be extended.

Timezone returns the name of the time zone associated with its first argument, which is meas­
ured in minutes westward from Greenwich. If the second argument is 0, the standard name is
used, otherwise the Daylight Saving version. If the required name does not appear in a table
built into the routine, the difference from GMT is produced: e.g. in Afghanistan timezone(­
(60-4 +30), 0) is appropriate because it is 4:30 ahead of GMT and the string GMT+4:30 is
produced.

4th Berkeley Distribution 26 June 1983 1

CTIME (3) UNIX Programmer's Manual CTIME (3)

SEE ALSO
gettimeof day (2), time (3)

BUGS
The return values point to static data whose content is overwritten by each call.

4th Berkeley Distribution 26 June 1983 2

CTYPE(3) UNIX Programmer's Manual CTYPE(3)

NAME
isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii - character
classification macros

SYNOPSIS
#Include < ctype.h >
lsalpha(c)

...
DESCRIPTION

These macros classify ASCII-coded integer values by table lookup. Each is a predicate return­
ing .nonzero for true, zero for false. lsascii is defined on all integer values; the rest are defined
only where isascii is true and on the single non-ASCII value EOF (see stdio(3S)).

isalpha

isupper

islower

isdigit

isalnum

isspace

ispunct

isprint

iscntrl

isascii

SEE ALSO
ascii(7)

7th Edition

c is a letter

c is an upper case letter

c is a lower case letter

cis a digit

c is an alphanumeric character

c is a space, tab, carriage return, newline, or formf eed

c is a punctuation character (neither control nor alphanumeric)

cis a printing character, code 040(8) (space) through 0176 (tilde)

c is a delete character (0177) or ordinary control character (less than 040).

c is an ASCII character, code less than 0200

25 February 1983 1

DIRECTORY (3) UNIX Programmer's Manual DIRECTORY (3)

NAME
opendir, readdir, telldir, seekdir, rewinddir, closedir - directory operations

SYNOPSIS
#include <sys/dlr.h>

DIR •opendlr(ftlename)
chu •filename;

struct direct •readdlr(dirp)
DIR •dlrp;

long telldlr(dlrp)
DIR •dlrp;

seekdir (dlrp, loc)
DIR •dlrp;
long loc;

rewlnddlr(dlrp)
DIR •dlrp;

closedlr (dlrp)
DIR •dlrp;

DESCRIPTION
Opendir opens the directory named by filename and associates a directory stream with it. Opendir
returns a pointer to be used to identify the directory stream in subsequent operations. The
pointer NULL is returned if filename cannot be accessed, or if it cannot malloc(3) enough
memory to hold the whole thing.

Readdir returns a pointer to the next directory entry. It returns NULL upon reaching the end
of the directory or detecting an invalid seekdir operation.

Telldir returns the current location associated with the named directory stream.

Seekdir sets the position of the next readdir operation on the directory stream. The new position
reverts to the one associated with the directory stream when the telldir operation was performed.
Values returned by telldir are good only for the lifetime of the DIR pointer from which they are
derived. If the directory is closed and then reopened, the telldir value may be invalidated due
to undetected directory compaction. It is safe to use a previous telldir value immediately after a
call to opendir and before any calls to readdir.

Rewinddir resets the position of the named directory stream to the beginning of the directory.

Closedir closes the named directory stream and frees the structure associated with the DIR
pointer.

Sample code which searchs a directory for entry "name" is:

len - strlen (name);
dirp - opendir(".");
for (dp - readdir(dirp); dp !- NULL; dp - readdir(dirp))

if (dp->d namlen - - len && !strcmp(dp->d name, name)) {
closedir(dirp); -
return FOUND;

}
closedir(dirp);
return NOT_FOUND;

SEE ALSO
open (2), close (2), read (2), lseek (2), dir (5)

4th Berkeley Distribution 25 February 1983 1

ECVT(3) UNIX Programmer's Manual ECVT(3)

NAM!
ecvt, fcvt, gcvt - output conversion

SYNOPSIS
char •e!:vt(value, ndigit, decpt, sign)
double value;
Int ndigit, •decpt, •sign;

char •fcvt(value, ndigit, decpt, sign)
double value;
int ndlgit, •decpt, •sign;

char •gcvt(value, ndigit, buf)
double value;
char •buf;

DESCRIPTION
Ecvt converts the value to a null-terminated string of ndigit ASCII digits and returns a pointer
thereto. The position of the decimal point relative to the beginning of the string is stored
indirectly through decpt (negative means to the left of the returned digits). If the sign of the
result is negative, the word pointed to by sign is non-zero, otherwise it is zero. The low-order
digit is rounded.

Fcvt is identical to ecvt, except that the correct digit has been rounded for Fortran F-format out­
put of the number of digits specified by ndigits.

Gcvt converts the v_alue to a null-terminated ASCII string in buf and returns a pointer to buf. It
attempts to produce ndigit significant digits in Fortran F format if possible, otherwise E format,
ready for printing. Trailing zeros may be suppressed.

SEE ALSO
printf(3)

BUGS
The return values point to static data whose content is overwritten by each call.

7th Edition 19 January 1983 1

END(3) UNIX Programmer's Manual END(3)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names ref er neither to routines nor to locations with interesting contents. The address
of etext is the first address above the program text, edata above the initialized data region, and
end above the uninitialized data region.

When execution begins, the program break coincides with end, but it is reset by the routines
brk(2), malloc(3), standard input/output (stdio(3)), the profile (-p) option of cc(l), etc. The
current value of the program break is reliably returned by 'sbrk(O) ', see brk(2).

SEE ALSO
brk(2), malloc(3)

7th Edition 19 January 1983 1

EXECL(3) UNIX Programmer's Manual· EXECL(3)

NAME
execl, execv, execle, execlp, execvp, exec, exece, exect, environ - execute a file

SYNOPSIS
execHname, argO, argl, ••• , argn, 0)
char •name, •argO, •argl, ••• , •argn;

execv (name, argv)
char •name, •argv();

execle(name, argO, argl, ••• , argn, 0, envp)
char •name, •argO, •argl, .•• , •argn, •envplJ;

exect (name, argv, envp)
char •name, •argv(), •envp();

extern char ••environ;

DESCRIPTION
These routines provide various interfaces to the execve system call. Refer to execve(2) for a
description of their properties; only brief descriptions are provided here.

Exec in all its forms overlays the calling process with the named file, then transfers to the entry
point of the core image of the file. There can be no return from a successful exec; the calling
core image is lost.

The name argument is a pointer to the name of the file to be executed. The pointers arg[O],
arg[l] ... address null-terminated strings. Conventionally arg[O] is the name of the file.

Two interfaces are available. exec/ is useful when a known file with known arguments is being
called; the arguments to exec/ are the character strings constituting the file and the arguments;
the first argument is conventionally the same as the file name (or its last component). A 0
argument must end the argument list.

The execv version is useful· when the number of arguments is unknown in advance; the argu­
ments to execv are the name of the file to be executed and a vector of strings containing the
arguments. The last argument string must be followed by a 0 pointer.

The exect version is used when the executed file is to be manipulated with ptrace(2). The pro­
gram is forced to single step a single instruction giving the parent an opportunity to manipulate
its state. On the V AX-11 this is done by setting the trace bit in the process status longword.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char ••argv, .. envp;

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. As indicated, argc is conventionally at least one and the first member of the array
points to a string containing the name of the file.

Argv is directly usable in another execv because argv[argc] is 0.

Envp is a pointer to an array of strings that constitute the environment of the process. Each
string consists of a name, an .. - ", and a null-terminated value. The array of pointers is ter·
minated by a null pointer. The shell sh(l) passes an environment entry for each global shell
variable defined when the program is called. See environ(1) for some conventionally used
names. The C run-time start-off routine places a copy of envp in the global cell environ, which
is used by execv and exec/ to pass the environment to any subprograms executed by the current
program.

4th Berkeley Distribution 1 April 1981 I

EXECL (3) UNIX Programmer's Manual EXECL(3)

FILES

Execlp and execvp are called with the same arguments as exec/ and execv, but duplicate the
shell's actions in searching for an executable file in a list of directories. The directory list is
obtained from the environment.

/bin/sh shell, invoked if command file found by execlp or execvp

SEE ALSO
execve(2), fork(2), environ(7), csh(l)

DIAGNOSTICS

BUGS

If the file cannot be found, if it is not executable, if it does not start with a valid magic number
(see a.out(S)), if maximum memory is exceeded, or if the arguments require too much space,
a return constitutes the diagnostic; the return value is -1. Even for the super-user, at least
one of the execute-permission bits must be set for a file to be executed.

If execvp is called to execute a file that turns out to be a shell command file, and if it is impossi­
ble to execute the shell, the values of argv[O] and argv[-1] will be modified before return.

4th Berkeley Distribution 1 April 1981 2

EXIT(3) UNIX Programmer's Manual

NAME
exit - terminate a process after flushing any pending output

SYNOPSIS
exlt(status)
int status;

DESCRIPTION

EXIT(3)

Exit terminates a process after calling the Standard 1/0 library function _cleanup to flush any
buft'ered output. Exit never returns.

SEE ALSO
exit(2), intro(3S)

4th Berkeley Distribution 1April1983 1

FREXP (3) UNIX Programmer's Manual

NAME
frexp, ldexp, modf - split into mantissa and exponent

SYNOPSIS
doui>le frexp(value, eptr)
double value;
int •eptr;

double ldexp(value, exp)
double value;

double modf(value, lptr)
double value, •lptr;

DESCRIPTION

FREXP(3)

Frexp returns the mantissa of a double value as a double quantity, x, of magnitude less than 1
and stores an integer n such that value - x• 2n indirectly through eptr.

Ldexp returns the quantity value• PP.
Modf returns the positive fractional part of value and stores the integer part indirectly through
~ .

7th Edition 19 January 1983 1

GET!NV(3) UNIX Programmer's Manual

NAME
getenv - value for environment name

SYNOPSIS
char •aetenv (name)
char •name;

DESCRIPTION

GETENV(3)

Getenv searches the environment list (see environ(?)) for a string of the form name• value and
returns a pointer to the string value if such a string is present, otherwise getenv returns the
value 0 (NULL).

SEE ALSO
environ (7), execve (2)

7th Edition 19 January 1983 1

GETGRENT (3) UNIX Programmer's Manual GETGRENT (3)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file entry

SYNOPSIS
#include < grp.h >
struct group •1et1rent ()

struct 1roup •1etgrgid (aid)
Int aid;

struct croup •1et1mam (name)
char •name;

setarentO

endarentO

DESCRIPTION

FILES

Getgrent, getgrgid and getgrnam each return pointers to an object with the following structure
containing the broken-out fields of a line in the group file.

struct group { /• see getgrent(3) •/
char •gr_name;
char •gr _passwd;
int gr_gid;
char .. gr_mem;

};

struct group •getgrent (), •getgrgid (), •getgrnam ();

The members of this structure are:

gr_name The name of the group.
gr_passwd The encrypted password of the group.
gr_gid The numerical group-ID.
gr_mem Null-terminated vector of pointers to the individual member names.

Getgrent simply reads the next line while getgrgid and getgrnam search until a matching gid or
name is found (or until EOF is encountered). Each routine picks up where the others leave off
so successive calls may be used to search the entire file.

A call to setgrent has the effect of rewinding the group file to allow repeated searches. Endgrent
may be called to close the group file when processing is complete.

/etc/group

SEE ALSO
getlogin(3), getpwent(3), group(S)

DIAGNOSTICS
A null pointer (0) is returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

7th Edition 19 January 1983 1

GETLOGIN (3)

NAME
getlogin - get login name

SYNOPSIS
char •aetlogin 0

DESCRIPTION

UNIX Programmer's Manual GETLOGIN (3)

Getlogin returns a pointer to the login name as found in letclutmp. It may be used in conjunc­
tion with getpwnam to locate the correct password file entry when the same userid is shared by
several login names.

If getlogin is called within a process that is not attached to a typewriter, it returns NULL. The
correct procedure for de~ermining the login name is to first call getlogin and if it fails, to call
getpw(getuid()).

FILES
/etc/utmp

SEE ALSO
getpwent (3), getgrent (3), utmp (5) , getpw (3)

DIAGNOSTICS
Returns NULL (0) if name not found.

BUGS
The return values point to static data whose content is overwritten by each call.

7th Edition 19 January 1983 1

GETPASS(J)

NAME
getpass - read a password

SYNOPSIS
char •getpass (prompt)
char •prompt;

DESCRIPTION

UNIX Programmer's Manual GETPASS(3)

Getpass reads a password from the file /devltty, or if that cannot be opened, from the standard
input, after prompting with the null-terminated string prompt and disabling echoing. A pointer
is returned to a null-terminated string of at most 8 characters.

FILES
/dev/tty

SEE ALSO
crypt(3)

BUGS
The return value points to static data whose content is overwritten by each call.

7th Edition 19 January 1983 1

GETPWENT(3) UNIX Programmer's Manual GETPWENT (3)

NAME
setpwent, getpwuid, getpwnam, setpwent, endpwent - get password file entry

SYNOPSIS
#include <pwd.h>

struct passwd •getpwentO

struct passwd •1etpwuld (uld)
int uld;

struct passwd •getpwnam (name)
char •name;

int setpwentO

Int endpwent 0
DESCRIPTION

FILES

Getpwent, getpwuid and getpwnam each return a pointer to an object with the following structure
containing the broken-out fields of a line in the password file.

struct passwd { /• see getpwent(3) •/
char •pw_name;
char •pw _passwd;
int pw_uid;
int pw_gid;
int pw_quota;
char •pw_comment;
char •pw _secos;
char •pw_dir;

};
char •pw _shell;

struct passwd •getpwentO, •getpwuid(), •getpwnamO;

The fields pw_quota and pw_comment are unused; the others have meanings described in
passwd(S).

Getpwent reads the next line (opening the file if necessary); setpwent rewinds the file; endpwent
closes it.

Gerpwuid and getpwnam search from the beginning until a matching uid or name is found (or
until EOF is encountered).

/etc/passwd

SEE ALSO
getlogin(3), getgrent(3), passwd(S)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

7th Edition 19 January 1983 1

GETWD(3) UNIX Programmer's Manual

NAM!
1etwd - get current working directory pathname

SYNOPSIS
char •1etwd (pathname)
char •pathname;

DESCRIPTION

GETWD(3)

Getwd copies the absolute pathname of the current working directory to pathname and returns a
pointer to the result.

LIMITATIONS
Maximum pathname length is MAXPATHLEN characters (1024).

DIAGNOSTICS
Getwd returns zero and places a message in pathname if an error occurs.

BUGS
Getwd may fail to return to the current directory if an error occurs.

4th Berkeley Distribution 25 February 1983 1

MALLOC(3) UNIX Programmer's Manual MALLOC(3)

NAME
malloc, free, realloc, calloc, alloca - memory allocator

SYNOPSIS
char •mallodsize)
unsigned size;

free(ptr)
char •ptr;

char •reallodptr, size)
char •ptr;
unsigned size;

char •calloc (nelem, elsize)
unsigned nelem, elsize;

char •alloca (size)
int size;

DESCRIPTION
Malloc and free provide a simple general-purpose memory allocation package. Malloc returns a
pointer to a block of at least size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by malloc; this space is made
available for further allocation, but its contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by malloc is overrun or if some
random number is handed to free.

Malloc maintains multiple lists of free blocks according to size, allocating space from the
appropriate list. It calls sbrk (see brk(2)) to get more memory from the system when there is
no suitable space already free.

Rea/Joe changes the size of the block pointed to by ptr to size bytes and returns a pointer to the
(possibly moved) block. The contents will be unchanged up to the lesser of the new and old
sizes.

In order to be compatible with older versions, realloc also works if prr points to a block freed
since the last call of m(ll/oc, realloc or calloc; sequences of free, malloc and realloc were previ­
ously used to attempt storage compaction. This procedure is no longer recommended.

Ca/loc allocates space for an array of nelem elements of size elsize. The space is initialized to
zeros.

Alloca allocates size bytes of space in the stack frame of the caller. This temporary space is
automatically freed on ret\lrn.

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer
coercion) for storage of any type of object.

DIAGNOSTICS

BUGS

Malloc, realloc and calloc return a null pointer (0) if there is no available memory or if the
arena has been detectably corrupted by storing outside the bounds of a block. Malloc may be
recompiled to check the arena very stringently on every transaction; those sites with a source
code license may check the source code to see how this can be done.

When realloc returns 0, the block pointed to by ptr may be destroyed.

Alloca is machine dependent; it's use is discouraged.

4th Berkeley Distribution 19 January 1983

MKTEMP(3) UNIX Programmer's Manual

NAME
mktemp - make a unique file name

SYNOPSIS
char •mktemp (template)
char •template;

DESCRIPTION

MKTEMP(3)

Mktemp replaces template by a unique tile name, and returns the address of the template. The
template should look like a file name with six trailing X's, which will be replaced with the
current process id and a unique letter.

SEE ALSO
getpid(2)

7th Edition 19 January 1983 1

MONITOR(3) UNIX Programmer's Manual MONITOR(3)

NAME
monitor, monstartup, moncontrol - prepare execution profile

SYNOPSIS
monitor(lowpc, highpc, buffer, bufsize, nfunc)
int (•lowpc) 0, (•highpc) 0;
short bufferll;

monstartup(lowpc, highpc)
int (•lowpc) 0, (•highpc) 0;

moncontrol (mode)

DESCRIPTION
There are two different forms of monitoring available: An executable program created by:

cc -p ...

automatically includes calls for the pro.JU) monitor and includes an initial call to its start-up
routine monstartup with default parameters; monitor need not be called explicitly except to gain
fine control over profit buff er allocation. An executable program created by:

cc -pg ...

automatically includes calls for the gprof(l) monitor.

Monstartup is a high level interface to profi/(2). Lowpc and highpc specify the address range that
is to be sampled; the lowest address sampled is that of lowpc and the highest is just below
highpc. Monstartup allocates space using sbrk(2) and passes it to monitor (see below) to record a
histogram of periodically sampled values of the program counter, and of counts of calls of cer­
tain fuhctions, in the buffer. Only calls of functions compiled with the profiling option -p of
cc(l) are recorded.

To profile the entire program, it is sufficient to use

extern etext ();

monstartup((int) 2, etext);

Etext lies just above all the program text, see end(3).

To stop execution monitoring and write the results on the file mon.out, use

monitor(O);

then proj(l) can be used to examine the results.

Moncontrol is used to selectively control profiling within a program. This works with either
prof(l) or gprof(l) type profiling. When the program starts, profiling begins. To stop the col­
lection of histogram ticks and call counts use moncontrol(O); to resume the collection of histo­
gram ticks and call counts use moncontro/(1). This allows the cost of particular operations to be
measured. Note that an output file will be produced upon program exit irregardless of the state
of moncontrol.

Monitor is a low level interface to profi/(2). Lowpc and highpc are the addresses of two func­
tions; br,iffer is the address of a (user supplied) array of bu/size short integers. At most nfunc
call counts can be kept. For the results to be significant, especially- where there are small,
heavily used routines, it is suggested that the buffer be no more than a few times smaller than
the range of locations sampled. Monitor divides the buff er into space to record the histogram of
program counter samples over the range lowpc to highpc, and space to record call counts of
functions compiled with the -p option to cc(l).

4th Berkeley Distribution 19 January 1983 1

MONITOR(3) UNIX Programmer's Manual

FILES

To profile the entire program, it is sufficient to use

extern etext ();

monitor((int) 2, etext, buf, buf size, nfunc);

mon.out

SEE ALSO
cc(l), prof(!), gprof(l), profil(2), sbrk(2)

4th Berkeley Distribution 19 January 1983

MONITOR (3)

2

NLIST(3) UNIX Programmer's Manual

NAME
nlist - get entries from name list

SYNOPSIS
#include <nlist.h>

nlist (filename, nl)
char •filename;
struct nlist nllJ;

DESCRIPTION

NLIST (3)

Nlist examines the name list in the given executable output file and selectively extracts a list of
values. The name list consists of an array of structures containing names, types and values.
The list is terminated with a null name. Each name is looked up in the name list of the file. If
the name is found, the type and value of the name are inserted in the next two fields. If the
name is not found, both entries are set to 0. See a.out(S) for the structure declaration.

This subroutine is useful for examining the system name list kept in the file /vmunix. In this
way programs can obtain system addresses that are up to date.

SEE ALSO
a.out(S)

DIAGNOSTICS
All type entries are set to 0 if the file cannot be found or if it is not a valid namelist.

4th Berkeley Distribution 19 January 1983 1

PERROR(3) UNIX Programmer's Manual PERROR(3)

NAME
perror, sys_errlist, sys_nerr - system error messages

SYNOPSIS
perror(s)
char •s;

Int sys_nerr;
char •sys_errllstll;

DESCRIPTION
Perror produces a short error message on the standard error file describing the last error
encountered during a call to the system from a C program. First the argument string s is
printed, then a colon, then the message and a new-line. Most usefully, the argument string is
the name of the program which incurred the error. The error number is taken from the exter­
nal variable errno (see intro (2)), which is set when errors occur but not cleared when non­
erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings sys_errlist is provided;
errno can be used as an index in this table to get the message string without the newline.
Sys_nerr is the number of messages provided for in the table; it should be checked because new
error codes may be added to the system before they are added to the table.

SEE ALSO
intro(2), psignal(3)

4th Berkeley Distribution 19 January 1983 1

POPEN(3) POPEN(3)

NAME
popen, pclose - initiate 1/0 to/from a process

SYNOPSIS
I include <stdio.b>

FILE •popen (command, type)
char -command, •type;

int pclose (stream)
FILE •stream;

DESCRIPTION
The arguments to popen are pointers to null-terminated strings containing,
respectively, a shell command line and an 1/0 mode, either r for reading or
w for writing. Popen creates a pipe between the calling process and the
command to be executed. The value returned is a stream pointer that can
be used (as appropriate) to write to the standard input of the command or
read from its standard output.

A stream opened by popen should be closed by pclose, which waits for the
associated process to terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input
filter, and a type was an output filter.

SEE Al.SO
pipe(2}, wait(2}, fclose(3S}, fopen(3S), system(3S).

DIAGNOSTICS

BUGS

Popen returns a null pointer if files or processes cannot be created, or if the
shell cannot be accessed.

Pclose returns -1 if stream is not associated with a "popen ed" command.

Only one stream opened by popen can be in use at once.

Buffered reading before opening an input filter may leave the standard
input of that filter mispositioned. Similar problems with an output filter
may be forestalled by careful buffer flushing, e.g. withffiush; seefclose(3S).

- 1 -

QSORT(3) UNIX Programmer's Manual

NAME
qsort - quicker sort

SYNOPSIS
qsort(base, nel, width, compar)
char •base;
int (•compar)O;

DESCRIPTION

QSORT (3)

Qsort is an implementation of the quicker-sort algorithm. The first argument is a pointer to the
base of the data; the second is the number of elements; the third is the width of an element in
bytes; the last is the name of the comparison routine to be called with two arguments which are
pointers to the elements being compared. The routine must return an integer less than, equal
to, or greater than 0 according as the first argument is to be considered less than, equal to, or
greater than the second.

SEE ALSO
sort(l)

4th Berkeley Distribution 19 January 1983 1

RANDOM(3) UNIX Programmer's Manual RANDOM (3)

NAME
random, srandom, initstate, setstate - better random number generator; routines for changing
generators

SYNOPSIS
long random 0
srandom (seed)
int seed;

char •initstate(seed, state, n)
unsigned seed;
char •state;
int n;

char •setstate (state)
char •state;

DESCRIPTION
Random uses a non-linear additive feedback random number generator employing a default
table of size 31 long integers to return successive pseudo-random numbers in the range from 0
to 231 -1. The period of this random number generator is very large, approximately
16•(231 -1).

Random/srandom have (almost) the same calling sequence and initialization properties as
rand/srand. The difference is that rand(3) produces a much less random sequence -- in fact, the
low dozen bits generated by rand go through a cyclic pattern. All the bits generated by random
are usable. For example, "randomO&Ol" will produce a random binary value.

Unlike srand, srandom does not return the old seed; the reason for this is that the amount of
state information used is much more than a single word. (Two other routines are provided to
deal with restarting/changing random number generators). Like rand(3), however, random will
by default produce a sequence of numbers that can be duplicated by calling srandom with 1 as
the seed.

The initstate routine allows a state array, passed in as an argument, to be initialized for future
use. The size of the state array (in bytes) is used by initstate to decide how sophisticated a ran­
dom number generator it should use -- the more state, the better the random numbers will be.
(Current "optimal" values for the amount of state information are 8, 32, 64, 128, and 256
bytes; other amounts will be rounded down to the nearest known amount. Using less than 8
bytes will cause an error). The seed for the initialization (which specifies a starting point for
the random number sequence, and provides for restarting at the same point) is also an argu­
ment. /nitstate returns a pointer to the previous state information array.

Once a state has been initialized, the setstate routine provides for rapid switching between
states. Setstate. returns a pointer to the argument state array is used for further random number
generation until the next call to initstate or setstate.

Once a state array has been initialized, it may be restarted at a different point either by calling
initstate (with the desired seed, the state array, and its size) or by calling both setstate (with the
state array) and srandom (with the desired seed). The advantage of calling both setstate and
srandom is that the size of the state array does not have to be remembered after it is initialized.

With 256 bytes of state information, the period of the random number generator is greater than
269, which should be sufficient for most purposes.

AUTHOR
Earl T. Cohen

4th Berkeley Distribution 19 January 1983

RANDOM(3) UNIX Programmer's Manual RANDOM(3)

DIAGNOSTICS
If initstate is called with less than 8 bytes of state information, or if setstate detects that the state
information has been garbled, error messages are printed on the standard error output.

SEE ALSO
rand(3)

BUGS
About 2/3 the speed of rand(3C).

4th Berkeley Distribution 19 January 1983 2

REGEX(3) UNIX Programmer's Manual REGEX(3)

NAME
re_comp, re_exec - regular expression handler

SYNOPSIS
char •re_comp(s)
char •s;
re_exec(s)
char •s;

DESCRIPTION
Re_comp compiles a string into an internal form suitable for pattern matching. Re_exec checks
the argument string against the last string passed to re_comp.
Re_comp returns 0 if the string s was compiled successfully; otherwise a string containing an er­
ror message is returned. If re_comp is passed 0 or a null string, it returns without changing the
currently compiled regular expression.

Re_exec returns 1 if the string s matches the last compiled regular expression, 0 if the string s
failed to match the last compiled regular expression, and -1 if the compiled regular expression
was invalid (indicating an internal error).

The strings passed to both re_comp and re_exec may have trailing or embedded newline charac­
ters; they are terminated by nulls. The regular expressions recognized are described in the
manual entry for ed(l), given the above difference.

SEE ALSO
ed(l), ex(l), egrep(l), fgrep(l), grep(l)

DIAGNOSTICS
Re_exec returns -1 for an internal error.

Re_comp returns one of the following strings if an error occurs:

No previous regular expression,
Regular expression too long,
unmatched\(,
missing],
too many\ N pairs,
unmatchedV.

4th Berkeley Distribution 29 February 1980 1

SCANDIR(3) UNIX Pro1rammer's Manual SCANDIR(3)

NAME
scandir - scan a directory

SYNOPSIS
#include < sys/types.h >
#include <sys/dir.h>

scandlr(dlrname, namellst, select, compar)
char •dlmame;
struct direct • (•namellst ()) ;
int (•select) 0;
Int (•compar) 0;
alphasort(dl, dl)
struct direct .. dl, .. dl;

DESCRIPTION
Scandir reads the directory dirname and builds an array of pointers to directory entries using
malloc(3). It returns the number of entries in the array and a pointer to the array through
namelist.

The select parameter is a pointer to a user supplied subroutine which is called by scaridir to
select which entries are to be included in the array. The select routine is passed a pointer to a
directory entry and should return a non-zero value if the directory entry is to be included in the
array. If select is null, then all the directory entries will be included.

The compar parameter is a pointer to a user supplied subroutine which is passed to qsort(3) to
sort the completed array. If this pointer is null, the array is not sorted. Alphasort is a routine
which can be used for the compar parameter to sort the array alphabetically.

The memory allocated for the array can be deallocated with free (see malloc(3)) by freeing each
pointer in the array and the array itself.

SEE ALSO
directory(3), malloc(3), qsort(3), dir(S)

DIAGNOSTICS
Returns -1 if the directory cannot be opened for reading or if malloc(3) cannot allocate
enough memory to hold all the data structures.

4th Berkeley Distribution 19 January 1983 1

SETJMP(3) UNIX Programmer's Manual SETJMP (3)"

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#include <setjmp.b>

setjmp(env)
Jmp_buf env;

longjmp(env' van
Jmp_buf env;

_setjmp(env)
Jmp_buf env;

_longjmp(env, val)
Jmp_buf env;

DESCRIPTION
These routines are useful for dealing with errors and interrupts encountered in a low-level sub­
routine of a program.

Se(jmp saves its stack environment in env for later use by longjmp. It returns value 0.

Longjmp restores the environment saved by the last call of se(jmp. It then returns in such a way
that execution continues as if the call of setjmp had just returned the value val to the function
that invoked se(jmp, which must not itself have returned in the interim. All accessible data
have values as of the time /ongjmp was called.

SetjmR and longjmp save and restore the signal mask sigmask(2), while _setjmp and _longjmp
manipulate only the C stack and registers.

SEE ALSO

BUGS

sigvec(2), sigstack(2), signal(3)

Se(jmp does not save current notion of whether the process is executing on the signal stack.
The result is that a longjmp to some place on the signal stack leaves the signal stack state in­
correct.

4th Berkeley Distribution 19 January 1983 1

SETUID (3) UNIX Programmer's Manual

NAME
setuid, seteuid, setruid, setgid, setegid, setrgid - set user and group ID

SYNOPSIS
setuid (uid)
seteuid (euid)
setruid (ruid)

setgid (gid)
setegid (egid)
setrgid (rgid)

DESCRIPTION

SETUID (3)

Seruid (setgid) sets both the real and effective user ID (group ID} of the current process to as
specified.

Sereuid (setegid) sets the effective user ID (group ID} of the current process.

Serruid (setruid) sets the real user ID (group ID) of the current process.

These calls are only permitted to the super-user or if the argument is the real or effective ID.

SEE ALSO
setreuid (2), setregid (2), getuid (2), getgid (2)

DIAGNOSTICS
Zero is returned if the user (group) ID is set~ -1 is returned otherwise.

4th Berkeley Distribution 1 April 1983 1

SLEEP(3) UNIX Pro1rammer's Manual SLEEP(3)

NAME
sleep - suspend execution for interval

SYNOPSIS
sleep (seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of seconds specified by the
argument. The actual suspension time may be up to 1 second less than that requested, because
scheduled wakeups occur at fixed I-second intervals, and an arbitrary amount longer because of
other activity in the system.

The routine is implemented by setting an interval timer and pausing until it occurs. The previ­
ous state of this timer is saved and restored. If the sleep time exceeds the time to the expira­
tion of the previous timer, the process sleeps only until the signal would have occurred, and the
signal is sent 1 second later.

SEE ALSO
setitimer (2), sigpause (2)

BUGS
An interface with finer resolution is needed.

4th Berkeley Distribution 19 January 1983 1

STRING (3) UNIX Programmer's Manual STRING (3)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, index, rindex - string operations

SYNOPSIS
#Include < strings.h >
char •strcat(sl, s2)
char •sl, •s2;

char •strncat(sl, s2, n)
char •sl, •s2;

strcmp(sl, s2)
char •sl, •s2;

stmcmp(sl, s2, n)
char •sl, •s2;

char •strcpy (sl, s2)
char •sl, •s2;

char •strncpy(sl, s2, n)
char •sl, •s2;

strlen(s)
char •s;

char •index (s, c)
char •s, c;

char •rindex (s, c)
char •s, c;

DESCRIPTION
These functions operate on null-terminated strings. They do not check for overflow of any
receiving string.

Streat appends a copy of string s2 to the end of string sl. Strncat copies at most n characters.
Both return a pointer to the null-terminated result.

Strcmp compares its arguments and returns an integer greater than, equal to, or less than 0,
according as sl is lexicographically greater than, equal to, or less than s2. Strncmp makes the
same comparison but looks at at most n characters.

Strcpy copies string s2 to sl, stopping after the null character has been moved. Strncpy copies
exactly n characters, truncating or null-padding s2; the target may not be null-terminated if the
length of s2 is n or more. Both reu,irn sl.

Strlen returns the number of non-null characters in s.

Index (rindex) returns a pointer to the first (last) occurrence of character c in string s, or zero if
c does not occur in the string.

4th Berkeley Distribution 19 January 1983 1

SWAB(3)

NAME
swab - swap bytes

SYNOPSIS
swab (from, to, nbytes)
char •from, •to;

DESCRIPTION

UNIX Programmer's Manual SWAB(3)

Swab copies nbytes bytes pointed to by from to the position pointed to by to, exchanging adja­
cent even and odd bytes. It is useful for carrying binary data between PDPl l's and other
machines. Nbytes should be even.

4th Berkeley Distribution 19 January 1983 1

SYSTEM(3) UNIX Proarammer's Manual

NAME
system - issue a shell command

SYNOPSIS
17stem (strina)
char •1trin1;

DESCRIPTION

SYSTEM(3)

System causes the string to be given to sh(l) as input as if the string had been typed as a com­
mand at a terminal. The current process waits until the shell has completed, then returns the
exit status of the shell.

SEE ALSO
popen(3S), execve(2), wait(2)

DIAGNOSTICS
Exit status 127 indicates the shell couldn't be executed.

7th Edition 19 January 1983 1

TI'YNAME (3) UNIX Proarammer's Manual TI'YNAME (3)

NAME
ttyname, isatty, ttyslot - ftnd name of a terminal

SYNOPSIS
char •ttyname(ftledes)

lsatty (ftledes)

ttyslotO

DESCRIPTION

FILES

Ttyname returns a pointer to the null-terminated path name of the terminal device associated
with file descriptor fi/edes (this is a system file descriptor and has nothing to do with the stan·
dard 1/0 FILE typedeO.

/satty returns 1 if fi/edes is associated with a terminal device, 0 otherwise.

Ttyslot returns the number of the entry in the ttys(S) file for the control terminal of the current
process.

/dev/•
/etc/ttys

SEE ALSO
ioctl(2), ttys(S)

DIAGNOSTICS

BUGS

Ttyname returns a null pointer (0) if filedes does not describe a terminal device in directory
'/dev'.

Ttys/ot returns 0 if '/etc/ttys' is inaccessible or if it cannot determine the control terminal.

The return value points to static data whose content is overwritten by each call.

7th Edition 19 January 1983 1

VARARGS (3) UNIX Programmer's Manual VARARGS (3)

NAME
varargs - variable argument list

SYNOPSIS
#include <varaqs.h>

jimction(n_allst)
n_dcl
n_llst pvar,
n_start(pvar);
f - n_U1(pvar, type);
n_end(pvar);

DESCRIPTION
This set of macros provides a means of writing portable procedures that accept variable argu­
ment lists. Routines having variable argument lists (such as print/(3)) that do not use varargs
are inherently nonportable, since different machines use different argument passing conven­
tions.

n_allst is used in a function header to declare a variable argument list.

n_dcl is a declaration for n_allst; Note that there is no semicolon after n_dcl.

n_llst is a type which can be used for the variable pvar, which is used to traverse the list. One
such variable must always be declared.

n_start(pvar) is called to initialize pvar to the beginning of the list.

Ta_Ul(pvar, type) will return the next argument in the list pointed to by pvar. Type is the type
the argument is expected to be. Different types can be mixed, but it is up to the routine to
know what type of argument is expected, since it cannot be determined at runtime.

n_end(pvar) is used to finish up.

Multiple traversals, each bracketed by n_start ... n_end, are possible.

EXAMPLE

BUGS

#Include <varargs.h>
execl (n_ allst)
Ta dcl
(-

}

n_llst ap;
char •file;
char •args[lOO];
Int argno - O;

n_start (ap);
file - n_111(ap, char•);
while (RJ1s(argno++J • n_U1(1p, char•»

;
n_end(ap);
retum exeCT(flle, arxs);

It is up to the calling routine to determine how many arguments there are, since it is not possi­
ble to determine this from the stack frame. For example, exec/ passes a 0 to signal the end of
the list. Print/ can tell how many arguments are supposed to be there by the format.

7th Edition 19 January 1983 1

INTR0(3M) UNIX Programmer's Manual INTRO (3M)

NAME
intro - introduction to mathematical library functions

DESCRIPTION
These functions constitute the math library, libm. They are automatically loaded as needed by
the Fortran compiler }77(1). The link editor searches this library under the " - Im" option.
Declarations for these functions may be obtained from the include file <math. h >.

LIST OF FUNCTIONS
Name Appears on Page Description

a cos sin.3m trigonometric functions
as in sin.3m trigonometric functions
a tan sin.3m trigonometric functions
atan2 sin.3m trigonometric functions
cabs hypot.3m Euclidean distance
ceil floor.3m absolute value, floor, ceiling functions
cos sin.3m trigonometric functions
co sh sinh.3m hyperbolic functions
exp exp.3m exponential, logarithm, power, square ro9t
fabs floor.3m absolute value, floor, ceiling functions
floor floor.3m absolute value, floor, ceiling functions
gamma gamma.3rn log gamma function
hypot hypot.3m Euclidean distance
jO j0.3m bessel functions
jl j0.3m bessel functions
jn j0.3m bessel functions
log exp.3m exponential, logarithm, power, square root
loglO exp.3m exponential, logarithm, power, square root
pow exp.3m exponential, logarithm, power, square root
sin sin.3m trigonometric functions
sinh sinh.3m hyperbolic functions
sqrt exp.3m exponential, logarithm, power, square root
tan sin.3m trigonometric functions
tanh sinh.3m hyperbolic functions
yO j0.3m bessel functions
yl j0.3m bessel functions
yn j0.3m bessel functions

4th Berkeley Distribution 8 July 1983 1

EXP (3M) UNIX Proarammer's Manual

NAME
exp, log, loglO, pow, sqrt - exponential, logarithm, power, square root

SYNOPSIS
#include <math.h>

double exp(x)
double x;

double log (x)
double x;

double loglO(x)
double x;

double pow(x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
Exp returns the exponential function of x.

Log returns the natural logarithm of x; log JO returns the base 10 logarithm.
Pow returns JI.
Sqrt returns the square root of x.

SEE ALSO
hypot(JM), sinh(JM), intro(JM)

DIAGNOSTICS

EXP (3M)

Exp and pow return a huge value when the correct value would overflow; errno is set to
ERANGE. Pow returns 0 and sets errno to EDOM when the second argument is negative and
non-integral and when both arguments are 0.

Log returns 0 when x is zero or negative; errno is set to EDOM.
Sqrt returns 0 when xis negative; errno is set to EDOM.

7th Edition 18 July 1983 1

FLOOR(3M) UNIX Programmer's Manual

NAME
fabs, floor, ceil - absolute value, floor, ceiling functions

SYNOPSIS
#include < matb.b >
double floor(x)
double x;

double cell (x)
double x;

double fabs (x)
double x;

DESCRIPTION
Fabs returns the absolute value lxl.
Floor returns the largest integer not greater than x.

Ceil returns the smallest integer not less than x.

SEE ALSO
abs(3)

7th Edition 19 January 1983

FLOOR (3M)

1

GAMMA(3M) UNIX Programmer's Manual

NAME
gamma - log gamma function

SYNOPSIS
#include <math.h>

double 1amma (x)
double x;

DESCRIPTION

GAMMA(JM)

Gamma returns ln lrClxl> I. The sign of r<lxl> is returned in the external integer signgam.
The following C program might be used to calculate r:

DIAGNOSTICS

y - gamma(x);
if (y > 88.0)

error();
y - exp(y);
if (signgam)

y - -y;

A huge value is returned for negative integer arguments.

BUGS
There should be a positive indication of error.

7th Edition 19 January 1983 1

HYPOT(3M) UNIX Programmer's Manual

NAM!
hypot, cabs - Euclidean distance

SYNOPSIS
#include <math.h>

double hypot (x, y)
double x, y;

double cabs (z)
struct { double x, y;} z;

DESCRIPTION
Hypot and cabs return

sqrt(x•x + y•y),

taking precautions against unwarranted overflows.

SEE ALSO
exp(3M) for sqrt

7th Edition 19 January 1983

HYPOT(3M)

1

J0(3M) UNIX Programmer's Manual

NAME
jO, jl, jn, yO, yl, yn - bessel functions

SYNOPSIS
#Include < math.h >
double JO (x)
doubles:;
double Jl (s:)
doubles:;
double Jn (n, s:)
doubles:;
double yO(x)
doubles:;

double yl (x)
double x;
double JD (n, x)
double x;

DESCRIPTION

JO (3M)

These functions calculate Bessel functions of the first and second kinds for real arguments and
integer orders.

DIAGNOSTICS
Negative arguments cause yO, yl, and yn to return a huge negative value and set errno to
EDOM.

7th Edition 19 January 1983 1

SIN(3M) UNIX Programmet's Manual

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#include < math.h >
double sin (:d
double x;

double cos (:d
double x;

double asln (x)
double x;

double acos (x)
double x;

double atan (x)
double x;

double atanl(x, y)
double x, y;

DESCRIPTION

SIN(3M)

Sin, cos and tan return trigonometric functions of radian arguments. The magnitude of the ar·
gument should be checked by the caller to make sure the result is meaningful. ·

Asin returns the arc sin in the range -tr/2 to tr/2.

A cos returns the arc cosine in the range 0 to "'.
Atan returns the arc tangent of x in the range -.,,/2 to "tr/2.

Atan2 returns the arc tangent of x/y in the range -.,, to "'·

DIAGNOSTICS

BUGS

Arguments of magnitude greater than 1 cause asin and acos to return Value O; errno is set to
EDOM. The value of tan at its singular points is a huge number, and errno is set to ERANGE.

The value of tan for arguments greater than about 2 .. 31 is garbage.

7th Edition 19 January 1983 1

SINH (3M) UNIX Programmer's Manual

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include < math.h >
double slnh (x)

double cosh (x)
double x;

double tanh (x)
double x;

DESCRIPTION
These functions compute the designated hyperbolic functions for real arguments.

DIAGNOSTICS

SINH(3M)

Sinh and cosh return a huge value of appropriate sign when the correct value would overflow.

7th Edition 19 January 1983 1

BYTEORDER (3N) UNIX Programmer's Manual BYTEORDER (3N)

NAME
htonl, htons, ntohl, ntohs - convert values between host and network byte order

SYNOPSIS
#Include < sys/types.b >
#Include < netlnet/ln.b >
netlon1 • btonl (bostlon1) ;
u_lon1 netlon1, bostlon1;

netshort • btons(bostsbort);
u_sbort netsbort, bostsbort;

bostlon1 • ntobHnetlon1);
11_lon1 hostlon1, netlon1;

bostshort • ntobs (netsbort);
u_sbort bostsbort, netsbort;

DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order and host byte
order. On machines such as the SUN these routines are defined as null macros in the include
file < netinetlin. h >.
These routines are most often used in conjunction with Internet addresses and ports as returned
by gethostent(3N) and getservent(3N).

SEE ALSO

BUGS
gethostent{JN), getservent{3N)

The VAX handles bytes backwards from most everyone else in the world. This is not expected
to be fixed in the near future.

4th Berkeley Distribution 4 March 1983 1

GETHOSTENT (JN) UNIX Programmer's Manual GETHOSTENT (JN)

NAME
gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent - get network host entry

SYNOPSIS
#include <netdb.h>

struct hostent •aethostentO

struct bostent •aethostbynameCname)
char •name;

struct bostent •aethostbyaddr(addr, len, type)
char •addr; int len, type;

setbostent {stayopen)
Int stayopen

endhostent 0

DESCRIPTION

FILES

Gethostent, gethostbyname, and gethostbyaddr each return a pointer to an object with the follow­
ing structure containing the broken-out fields of a line in the network host data base, /etc/hosts.

struct hostent (
char •h_name;
char .. h_aliases;
int h_addrtype;
int h_length;
char • h _ addr;

};

I• official name of host •/
I• alias list •/
I• address type •/
I• length of address •/
I• address •/

The members of this structure are:

h_name Official name of the host.

h_aliases

h_addrtype

h_length

h_addr

A zero terminated array of alternate names for the host.

The type of address being returned; currently always AF _INET.

The length, in bytes, of the address.

A pointer to the network address for the host. Host addresses are returned in net­
work byte order.

Gethosrent reads the next line of the file, opening the file if necessary.

Sethostent opens and rewinds the file. If the stayopen flag is non-zero, the host data base will
not be closed after each call to gethostent (either directly, or indirectly through one of the other
"gethost" calls).

Endhostent closes the file.

Gethostbyname and gethostbyaddr sequentially search from the beginning of the file until a
matching host name or host address is found, or until EOF is encountered. Host addresses are
supplied in network order.

/etc/hosts

SEE ALSO
hosts(5)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

4th Berkeley Distribution 9 February 1983 1

GETHOSTENT (3N) UNIX Prosrammer's Manual GETHOSTENT (JN)

BUGS
All information is contained in a static: area so it must be copied if it is to be saved. Only the
Internet addr~ss format is currently undeDtood.

4th Berkeley Distribution 9 February 1983 2

GETNETENT (3N) UNIX Programmer's Manual GETNETENT (3N)

NAME
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get network entry

SYNOPSIS
#include <netdb.h>

struct netent •1etnetentO

struct netent •1etnetbyn1me(n1me)
char •name;

struct netent •1etnetby1ddr(net)
Iona net;

setnetent (stayopen)
Int stayopen

endnetentO

DESCRIPTION

FILES

Getnetent, getnetbyname, and getnetbyaddr each return a pointer to an object with the following
structure containing the broken-out fields of a line in the network data base, /etc/networks.

struct netent {
char
char
int
long

};

•n_name;
.. n_aliases;
n_addrtype;
n_net;

The members of this structure are:

I• official name of net •/
I• alias list •/
I• net number type•/
I• net number •/

n_name The official name of the network.

n_aliases A zero terminated list of alternate names for the network.

n_addrtype The type of the network number returned; currently only AF _INET.

n_net The network number. Network numbers are returned in machine byte order.

Getnetent reads the next line of the file, opening the file if necessary.

Setnetent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not
be closed after each call to getnetent (either directly, or indirectly through one of the other
"getnet" calls).

Endnetent closes the file.

Getnetbyname and getnetbyaddr sequentially search from the beginning of the file until a match­
ing net name or net address is found, or until EOF is encountered. Network numbers are sup­
plied in host order.

/etc/networks

SEE ALSO
networks(5)

DIAGNOSTICS

BUGS

Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved. Only Inter­
net network numbers are currently understood. Expecting network numbers to fit in no more
than 32 bits is probably naive.

4th Berkeley Distribution 9 February 1983 1

GETPROTOENT (JN) UNIX Programmer's Manual GETPROTOENT (JN)

NAME
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent - get protocol entry

SYNOPSIS
#Include < netdb.h >
struct protoent •1etprotoentO

struct protoent •getprotobyname(name)
chu •name;

struct protoent •getprotobynumber(proto)
Int proto;

setprotoent (stayopen)
Int stayopen

endprotoent 0
DESCRIPTION

FILES

Getprotoent, getprotobyname, and getprotobynumber each return a pointer to an object with the
following structure containing the broken-out fields of a line in the network protocol data base,
/etc/protocols.

struct protoent {
char •p_name;
char .. p_aliases;

};
long p _pro to;

The members of this structure are:

I• official name of protocol •/
I• alias list •/
I• protocol number•/

p _name The official name of the protocol.

p_aliases A zero terminated list of alternate names for the protocol.

p_proto The protocol number.

Getprotoent reads the next line of the file, opening the file if necessary.

Setprotoent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will
not be closed after each call to getprotoent (either directly, or indirectly through one of the other
"getproto" calls).

Endprotoent closes the file.

Getprotobyname and getprotobynumber sequentially search from the beginning of the file until a
matching protocol name or protocol number is found, or until EOF is encountered.

I etc/ protocols

SEE ALSO
protocols(S)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved. Only the
Internet protocols are currently understood.

4th Berkeley Distribution 9 February 198J 1

GETSERVENT (3N) UNIX Programmer's Manual GETSERVENT (3N)

NAME
getservent, getservbyport, getservbyname, setservent, endservent - get service entry

SYNOPSIS
#Include < netdb.h >
struct se"ent •getse"entO
struct se"ent •getse"byname(name, proto)
char •name, •proto;

struct se"ent •getse"byport (port, proto)
Int port; char •proto;

setse"ent (stayopen)
Int stayopen

endse"entO

DESCRIPTION

FILES

Getservent, getservbyname, and getservbyport each return a pointer to an object with the following
structure containing the broken-out fields of a line in the network services data base,
/etc/services.

struct servent (
char •s_name;
char .. s_aliases;
long s_port;
char •s_proto;

};
The members of this structure are:

I• official name of service •/
I• alias list •/
I• port service resides at •/
I• protocol to use •/

s_name The official name of the service.

s_aliases A zero terminated list of alternate names for the service.

s_port The port number at which the service resides. Port numbers are returned in network
byte order.

s_proto The name of the protocol to use when contacting the service.

Getservent reads the next line of the file, opening the file if necessary.

Setservent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not
be closed after each call to getservent (either directly, or indirectly through one of the other
"getserv" calls).

Endservent closes the file.
I

Getservbyname and getservbyport sequentially search from the beginning of the file until a match­
ing protocol name or port number is found, or until EOF is encountered. If a protocol name is
also supplied (non-NULL), searches must also match the protocol.

/etc/services

SEE ALSO
getprotoent(3N), services(S)

DIAGNOSTICS

BUGS

Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved. Expecting
port numbers to fit in a 32 bit quantity is probably naive.

4th Berkeley Distribution 9 February 1983

INET (JN) UNIX Programmer's Manual INET (JN)

NAME
inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof - Internet address
manipulation routines

SYNOPSIS
#include <sys/socket.b>
#include < netinet/in.h >
#include < arpa/inet.h >

struct in_addr inet_addr(cp)
char •cp;

int inet_network (cp)
char •cp;

char •inet_ntoa(in)
struct inet_addr in;

struct in_addr inet_makeaddr(net, Ina)
int net, Ina;

int inet_lnaof(in)
struct in_addr in;

int inet_netof(in)
struct in_addr in;

DESCRIPTION
The routines inet addr and inet network each interpret character strings representing numbers
expressed in the Internet standard "." notation, returning numbers suitable for use as Internet
addresses and Internet network numbers, respectively. The routine inet_nroa takes an Internet
address and returns an ASCII string representing the address in "." notation. The routine
inet_makeaddr takes an Internet network number and a local network address and constructs an
Internet address from it. The routines inet_netof and inet_lnaof break apart Internet host
addresses, returning the network number and local network address part, respectively.

All Internet address are returned in network order (bytes ordered from left to right). All net­
work numbers and local address parts are returned as machine format integer values.

INTERNET ADDRESSES
Values specified using the "." notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned, from left to
right, to the four bytes of an Internet address. Note that when an Internet address is viewed as
a 32-bit integer quantity on the VAX the bytes referred to above appear as "d.c.b.a". That is,
VAX bytes are ordered from right to left.

When a three part address is specified, the last part is interpreted as a 16-bit quantity and placed
in the right most two bytes of the network address. This makes the three part address format
convenient for specifying Class B network addresses as "128.net.host".

When a two part address is supplied, the last part is interpreted as a 24-bit quantity and placed
in the right most three bytes of the network address. This makes the two .part address format
convenient for specifying Class A network addresses as "net.host".

When only one part is given, the value is stored directly in the network address without any
byte rearrangement.

4th Berkeley Distribution 18 July 1983

INET(3N) UNIX Programmer's Manual INET(3N)

All numbers supplied as "parts" in a "." notation may be decimal, octal, or hexadecimal. as
specified in the C language (i.e. a leading Ox or OX implies hexadecimal; otherwise, a leading 0
implies octal; otherwise, the number is interpreted as decimal).

SEE ALSO
gethostent(3N), getnetent(3N), hosts(S), networks(S),

DIAGNOSTICS

BUGS

The value -1 is returned by inet_addr and inet_network for malformed requests.

The problem of host byte ordering versus network byte ordering is confusing. A simple way to
specify Class C network addresses in a manner similar to that for Class B and Class A is
needed. The string returned by inet_ntoa resides in a static memory area.

4th Berkeley Distribution 18 July 1983 2

INTRO (3S) UNIX Pro1rammer's Manual INTRO (35)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include < stdio.h >
FILE •stdin;
FILE •stdout;
FILE •stderr;

DESCRIPTION
The functions described in section 3S constitute a user-level buffering scheme. The in-tine
macros getc and putc(3S) handle characters quickly. The higher level routines gets, /gets, scan/,
ftcanf, fread, puts, /puts, print/, /print/, /write all use gerc and pure; they can be freely intermixed.

A file with associated buffering is called a stream, and is declared to be a pointer to a defined
type FILE. Fopen(3S) creates certain descriptive data for a stream and returns a pointer to
designate the stream in all further transactions. There are three normally open streams with
constant pointers declared in the include file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant 'pointer' NULL (0) designates no stream at all.

An integer constant EOF (-1) is returned upon end of file or error by integer functions that
deal with streams.

Any routine that uses the standard input/output package must include the header file
< stdio.h > of pertinent macro definitions. The functions and constants mentioned in sections
labeled 35 are declared in the include file and need no further declaration. The constants, and
the following 'functions' are implemented as macros; redeclaration of these names is perilous:
getc, getchar, pure, putchar, feof, /error, fileno.

SEE ALSO
open(2), close(2), read(2), write(2), fread(3S), fseek(3S), f•(3S)

DIAGNOSTICS

BUGS

The value EOF is returned uniformly to indicate that a FILE pointer has not been initialized
with /open, input (output) has been attempted on an output (input) stream, or a FILE pointer
designates corrupt or otherwise unintelligible FILE data.

For purposes of efficiency, this implementation of the standard library has been changed to line
buff er output to a terminal by default and attempts to do this transparently by flushing the out­
put whenever a read(2) from the standard input is necessary. This is almost always tran­
sparent, but may cause confusion or malfunctioning of programs which use standard i/o rou­
tines but use read(2) themselves to read from the standard input.

In cases where a large amount of computation is done after printing part of a line on an output
terminai, it is necessary to fflush(3S) the standard output before going off and computing so
that the output will appear.

The standard buffered functions do not interact well with certain other library and system func­
tions, especially vfork and abort.

LIST OF FUNCTIONS
Name

clearerr
fclose

Appears on Page Description

ferror.3s stream status inquiries
fclose.3s close or flush a stream

4th Berkeley Distribution 18 July 1983

INTR0(3S)

feof
ferror
mush
fgetc
fgets
fileno
fprintf
fputc
fputs
fread
fscanf
fseek
ftell
fwrite
getc
getchar
gets
getw
printf
putc
putchar
puts
putw
rewind
scanf
setbuf
setbuffer
setlinebuf
sprintf
sscanf
ungetc

ferror.3s
ferror.3s
fclose.3s
getc.3s
gets.3s
ferror.3s
printf.3s
putc.3s
puts.3s
fread.3s
scanf.3s
fseek.3s
fseek.3s
fread.3s
getc.3s
getc.3s
gets.3s
getc.3s
printf.3s
putc.3s
putc.3s
puts.3s
putc.3s
fseek.3s
scanf.3s
setbuf.3s
setbuf.3s
setbuf.3s
printf.3s
scanf.3s
ungetc.3s

4th Berkeley Distribution

UNIX Programmer's Manual

stream status inquiries
stream status inquiries
close or flush a stream
get character or word from stream
get a string from a stream
stream status inquiries
formatted output conversion
put character or word on a stream
put a string on a stream
buffered binary input/output
formatted input conversion
reposition a stream
reposition a stream
buffered binary input/output
get character or word from stream
get character or word from stream
get a string from a stream
get character or word from stream
formatted output conversion
put character or word on a stream
put character or word on a stream
put a string on a stream
put character or word on a stream
reposition a stream
formatted input conversion
assign buffering to a stream
assign buffering to a stream
assign buffering to a stream
formatted output conversion
formatted input conversion
push character back into input stream

18 July 1983

INTRO (35)

2

PCLOSE(JS) UNIX Prosrammer's Manual PCLOSE(3S)

NAME
fclose, mush - close or flush a stream

SYNOPSIS
#Include < stdlo.h >
fdose(stream)
FILE •stream;

mush (stream)
FILE •stream;

DESCRIPTION
Fc/ose causes any buffers for the named stream to be emptied, and the file to be closed. Buffers
allocated by the standard input/output system are freed.

Fc/ose is performed automatically upon calling exit(3).

Fjlush causes any buffered data for the named output stream to be written to that file. The
stream remains open.

SEE ALSO
close (2), fopen (JS), setbuf(3S)

DIAGNOSTICS
These routines return EOF if stream is not associated with an output file, or if buffered data
cannot be transferred to that file.

7th Edition 19 January 1983 1

FERROR(3S) UNIX Programmer's Manual

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#include < stdio.h >
feof (stream)
FILE •stream;

f error (stream)
FILE •stream

clearerr (stream)
FILE •stream

flleno (stream)
FILE •stream;

DESCRIPTION

FERROR (3S)

Feo/retums non-zero when end of file is read on the named input stream, otherwise zero.

Ferror returns non-zero when an error has occurred reading or writing the named stream, other­
wise zero. Unless cleared by clearerr, the error indication lasts until the stream is closed.

Clrerr resets the error indication on the named stream.

Fileno returns the integer file descriptor associated with the stream, see open(2).

These functions are implemented as macros; they cannot be redeclared.

SEE ALSO
fopen (3S), open (2)

4th Berkeley Distribution 19 January 1983 1

FOPEN (35) UNIX Proarammer's Manual FOPEN (3S)

NAME
f open, freopen, f do pen - open a stream

SYNOPSIS
#Include < stdio.h >
FILE •fopen (filename, type)
char •filename, •type;

FILE •freopen (fllename, type, stream)
char •filename, •type;
FILE •stream;

FILE •f do pen (ft Ides, type)
char •type;

DESCRIPTION
Fopen opens the file named by filename and associates a stream with it. Fopen returns a pointer
to be used to identify the stream in subsequent operations.

Type is a character string having one of the following values:

"r" open for reading

"w" create for writing

"a" append: open for writing at end of file, or create for writing

In addition, each type may be followed by a '+' to have the file opened for reading and writing.
"r+" positions the stream at the beginning of the file, "w+" creates or truncates it, and "a+"
positions it at the end. Both reads and writes may be used on read/write streams, with the limi­
tation that an jseek, rewind, or reading an end-of-file must be used between a read and a write
or vice-versa.

Freopen substitutes the named file in place of the open stream. It returns the original value of
stream. The original stream is closed.

Freopen is typically used to attach the preopened constant names, stdio, stdout, stderr, to
specified files.

Fdopen associates a stream with a file descriptor obtained from open, dup, creat, or pipe(2). The
type of the stream must agree with the mode of the open file.

SEE ALSO
open(2), fclose(3)

DIAGNOSTICS

BUGS

Fopen and freopen return the pointer NULL if filename cannot be accessed.

Fdopen is not portable to systems other than UNIX.

The read/write types do not exist on all systems. Those systems without read/write modes will
probably treat the type as if the '+' was not present. These are unreliable in any event.

4th Berkeley Distribution 1 April 1981

FREAD(JS) UNIX Programmer's Manual FREAD (JS)

NAME
fread, fwrite - buffered binary input/output

SYNOPSIS
#Include < stdlo.b >
fread(ptr, slzeof(•ptr), nltems, stream)
FILE •stream;

fwrlte(ptr, slzeof(•ptr), nltems, stream)
FILE •stream;

DESCRIPTION
Fread reads, into a block beginning at ptr, nitems of data of the type of •ptr from the named
input stream. It returns the number of items actually read.

If stream is stdio and the standard output is line buffered, then· any partial output line will be
flushed before any call to read(2) to satisfy the /read.

Fwrite appends at most nitems of data of the type of •ptr beginning at ptr to the named output
stream. It returns the number of items actually written.

SEE ALSO
read(2), write(2), fopen (JS), getc(3S), putc(JS), gets(3S), puts(JS), printf(JS), scanf(3S)

DIAGNOSTICS
Fread and /write return 0 upon end of file or error.

4th Berkeley Distribution 19 January 1983 1

FSEEK(3S) UNIX Programmer's Manual

NAME
fseek, ftell, rewind - reposition a stream

SYNOPSIS
#include < stdlo.h >
fseek (stream, off set, ptrname)
FILE •stream;
Iona offset;

long ftell (stream)
FILE •stream;

rewind (stream)

DESCRIPTION

FSEEK (3S)

Fseek sets the position of the next input or output operation on the stream. The new position is
at the signed distance offset bytes from the beginning, the current position, or the end of the
file, according as ptrname has the value 0, l, or 2.

Fseek undoes any effects of ungetc(3S).

Ftell returns the current value of the offset relative to the beginning of the file associated with
the named stream. It is measured in bytes on UNIX; on some other systems it is a magic
cookie, and the only foolproof way to obtain an offset for jseek.

Rewind(stream) is equivalent to fseek(stream, OL, 0).

SEE ALSO
!seek (2), fopen (3S)

DIAGNOSTICS
Fseek returns -1 for improper seeks.

7th Edition 19 January 1983 1

GETC (JS) UNIX Programmer's Manual GETC (JS)

NAME
getc, getchar, fgetc, getw - get character or word from stream

SYNOPSIS
#include < stdio.b >
int aetc(stream)
FILE •stream;

int aetcharO

int f1etc(stream)
FILE •stream;

int getw(stream)
FILE •stream;

DESCRIPTION
Getc returns the next character from the named input stream.

GetcharO is identical to getc(stdin).

Fgetc behaves like getc, but is a genuine function, not a macro; it may be used to save object
text.

Getw returns the next word (in a 32-bit integer on a VAX-11) from the named input stream. It
returns the constant EOF upon end of file or error, but since that is a good integer value, feof
and /error(J5) should be used to check the success of getw. Getw assumes no special alignment
in the file.

SEE ALSO
fopen (JS), putc (J5), gets (J5), scanf (JS), fread (J5), ungetc (JS)

DIAGNOSTICS

BUGS

These functions return the integer constant EOF at end of file or upon read error.

A stop with message, 'Reading bad file', means an attempt has been made to read from a
stream that has not been opened for reading by /open.

The end-of-file return from getchar is incompatible with that in UNIX editions 1-6.

Because it is implemented as a macro, getc treats a stream argument with side effects incorrectly.
In particular, 'getc(•f++);' doesn't work sensibly.

7th Edition 19 January 198J 1

GETS (3S) UNIX Programmer's Manual

NAME
gets, f gets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char •aets (s)
char •s;
char •fgets (s, n, stream)
char •s;
FILE •stream;

DESCRIPTION

GETS (3S)

Gers reads a string into s from the standard input stream stdin. The string is terminated by a
newline character, which is replaced in s by a null character. Gets returns its argument.

Fgets reads n-1 characters, or up to a newline character, whichever comes first, from the
stream into the string s. The last character read into s is followed by a null character. Fgers
returns its first argument.

SEE ALSO
puts(3S), getc(3S), scanf(3S), fread(3S), ferror(3S)

DIAGNOSTICS
Gers and /gets return the constant pointer NULL upon end of file or error.

BUGS
Gets deletes a newline, /gets keeps it, all in the name of backward compatibility.

7th Edition 19 January 1983 1

PRINTF (3S) UNIX Programmer's Manual PRINTF (35)

NAME
printf, fprintf, sprintf - formatted output conversion

SYNOPSIS
#include <stdio. h >

printf(format [, arg] ...
char •format;

fprintf(stream, format [, arg] ...
FILE •stream;
char •format;

sprintf(s, format [, arg] ...
char •s, format;

#include <varargs.h>
_doprnt (format, args, stream)
char •format;
va_list •args;
FILE •stream;

DESCRIPTION
Printf places output on the standard output stream stdout. Fprintf places output on the named
output stream. Sprint/ places 'output' in the string s, followed by the character '\O'. All of
these routines work by calling the internal routine _doprnt, using the variable-length argument
facilities of varargs(3).

Each of these functions converts, formats, and prints its arguments after the first under control
of the first argument. The first argument is a character string which contains two types of
objects: plain characters, which are simply copied to the output stream, and conversion
specifications, each of which causes conversion and printing of the next successive arg print/.

Each conversion specification is introduced by the character %. Following the %, there may be

• an optional minus sign ' - ' which specifies left adjustment of the converted value in the
indicated field;

• an optional digit string specifying a field width; if the converted value has fewer charac­
ters than the field width it will be blank-padded on the left (or right, if the left­
adjustment indicator has been given) to make up the field width; if the field width
begins with a zero, zero-padding will be done instead of blank-padding;

• an optional period '.' which serves to separate the field width from the next digit string;

• an optional digit string specifying a precision which specifies the number of digits to
appear after the decimal point, for e- and f-conversion, or the maximum number of
characters to be printed from a string;

• an optional '#' character specifying that the value should be converted to an "alternate
form". For c, d, s, and u, conversions, this option has no effect. For o conversions,
the precision of the number is increased to force the first character of the output string
to a zero. For x(X) conversion, a non-zero result has the string Ox(OX) prepended to
it. For e, E, f, g, and G, conversions, the result will always contain a decimal point,
even if no digits follow the point (normally, a decimal point only appears in the results
of those conversions if a digit follows the decimal point). For g and G conversions,
trailing zeros are not removed from the result as they would otherwise be.

• the character I specifying that a following d, o, x, or u corresponds to a long integer
arg.

• a character which indicates the type of conversion to be applied.

7th Edition 1 April 1981 1

PRINTF(3S) UNIX Programmer's Manual PRINTF (35)

A fteld width or precision may be '•' instead of a digit string. In this case an integer arg sup·
plies the fteld width or precision.

The conversion characters ii.nd their meanings are

dox The integer arg is converted to decimal, octal, or hexadecimal notation respectively.

f The float or double arg is converted to decimal notation in the style ' [....]ddd.ddd'
where the number of d's after the decimal point is equal to the precision specification
for the argument. If the precision is missing, 6 digits are given; if the precision is
explicitly 0, no digits and no decimal point are printed.

e The float or double arg is converted in the style '[-]d.ddde±dd' where there is one
digit before the decimal point and the number after is equal to the precision
specification for the argument; when the precision is missing, 6 digits are produced.

g The float or double arg is printed in style d, in style f, or in style e, whichever gives full
precision in minimum space.

c The character arg is printed.

s Arg is taken to be a string (character pointer) and characters from the string are printed
until a null character or until the number of characters indicated by the precision
specification is reached; however if the precision is 0 or missing all characters up to a
null are printed.

u The unsigned integer arg is converted to decimal and printed (the result will be in the
range 0 through MAXUINT, where MAXUINT equals 4294967295 on a VAX-11 and
65535 on a PDP-11).

o/o Print a '%'; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; padding takes
place only if the specified field width exceeds the actual width. Characters generated by print/
are printed by putc(3S).

Examples
To print a date and time in the form 'Sunday, July 3, 10:02', where weekday and month are
pointers to null-terminated strings:

printf("o/os, o/os O/od, O/o02d:O/o02d", weekday, month, day, hour, min);

To print Tr to S decimals:

printf("pi - %.Sr, 4•atan(l.0));

SEE ALSO
putc(3S), scanf(3S), ecvt(3)

BUGS
Very wide fields (> 128 characters) fail.

7th Edition 1 April 1981 2

PUTC (JS) UNIX Programmer's Manual PUTC (JS)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#Include < stdlo.h >
Int putc(c, stream)
char c;
FILE •stream;

putchar(c)

fputc(c, stream)
FILE •stream;

putw(w, stream)
FILE •stream;

DESCRIPTION
Putc appends the character c to the named output stream. It returns the character written.

Putchar(c) is defined as putc(c, stdout).

Fputc behaves like putc, but is a genuine function rather than a macro.

Putw appends word (that is, Int) w to the output stream. It returns the word written. Putw nei­
ther assumes nor causes special alignment in the file.

SEE ALSO
fopen (35), f close (JS), getc (35), puts (JS), printf(3S), fread (3S)

DIAGNOSTICS

BUGS

These functions return the constant EOF upon error. Since this is a good integer, ferror(3S)
should be used to detect putw errors.

Because it is implemented as a macro, putc.treats a stream argument with side effects improper­
ly. In particular

putc(c, •f + +);
doesn't work sensibly.

Errors can occur long after the call to putc.

7th Edition 19 January 198J 1

PUTS (3S) UNIX Proarammer's Manual

NAME
puts, fputs - put a strin1 on a stream

SYNOPSIS
#include <stdlo.h>
puts(s)
char •s;
fputs Cs, stream)
char •s;
FILE •stream;

DESCRIPTION

PUTS (3S)

Puts copies the null-terminated string s to the standard output stream stdout and appends a
newline character.

Fputs copies the null-terminated string s to the named output stream.

Neither routine copies the terminal null character.

SEE ALSO

BUGS

fopen(3S), gets(3S), putc(3S), printf(3S), ferror(3S)
fread(3S) for /write

Puts appends a newline, /puts does not, all in the name of backward compatibility.

7th Edition 19 January 1983 1

SCANF(3S) UNIX Programmer's Manual SCANF (3S)

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#include < stdto.h >
scanf (format [, pointer 1 . . .)
char •format;

fscanf (stream, format [, pointer] . . .)
FILE •stream;
char •format;

sscanf(s, format [, pointer] . . .)
char •s, •format;

DESCRIPTION
Scan/reads from the standard input stream stdin. Fscanf reads from the named input stream.
Sscanf reads from the character string s. Each function reads characters, interprets them ac­
cording to a format, and stores the results in its arguments. Each expects as arguments a con­
trol string format, described below, and a set of pointer arguments indicating where the convert­
ed input should be stored.

The control string usually contains conversion specifications, which are used to direct interpre­
tation of input sequences. The control string may contain:

1. Blanks, tabs or newlines, which match optional white space in the input.

2. An ordinary character (not %) which must match the next character of the input stream.

3. Conversion specifications, consisting of the character %, an optional assignment suppress-
ing character •, an optional numerical maximum field width, and a conversion character.

A conversion specification directs the conversion of the next input field; the result is placed in
the variable pointed to by the corresponding argument, unless assignment suppression was indi­
cated by •. An input field is defined as a string of non-space characters; it extends to the next
inappropriate character or until the field width, if specified, is exhausted.

The conversion character indicates the interpretation of the input field; the corresponding
pointer argument must usually be of a restricted type. The following conversion characters are
legal:

% a single '%' is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an integer pointer.

o an octal integer is expected; the corresponding argument should be a integer pointer.

x a hexadecimal integer is expected; the corresponding argument should be an integer
pointer.

s a character string is expected; the corresponding argument should be a character pointer
pointing to an array of characters large enough to accept the string and a terminating '\O',
which will be added. The input field is terminated by a space character or a newline.

c a character is expected; the corresponding argument should be a character pointer. The
normal skip over space characters is suppressed in this case; to read the next non-space
character, try '%ls'. If a field width is given, the corresponding argument should refer to a
character array, and the indicated number of characters is read.

e a floating point number is expected; the next field is converted accordingly and stored
f through the corresponding argument, which should be a pointer to a float. The input for­

mat for floating point numbers is an optionally signed string of digits possibly containing a
decimal point, followed by an optional exponent field consisting of an E or e followed by

7th Edition 19 January 1983 1

SCANF(3S) UNIX Programmer's Manual SCANF(3S)

an optionally signed integer.

indicates a string not to be delimited by space characters. The left bracket is followed by a
set of characters and a right bracket; the characters between the brackets define a set of
characters making up the string. If the first character is not circumflex ("), the input field
is all characters until the first character not in the set between the brackets; if the first char­
acter after the left bracket is ", the input field is all characters until the first character which
is in the remaining set of characters between the brackets. The corresponding argument
must point to a character array.

The conversion characters d, o and x may be capitalized or preceded by I to indicate that a
pointer to long rather than to int is in the argument list. Similarly, the conversion characters e
or f may be capitalized or preceded by I to indicate a pointer to double rather than to float. The
conversion characters d, o and x may be preceded by h to indicate a pointer to short rather than
to int.

The scan/functions return the number of successfully matched and assigned input items. This
can be used to decide how many input items were found. The constant EOF is returned upon
end of input; note that this is different from 0, which means that no conversion was done; if
conversion was intended, it was frustrated by an inappropriate character in the input.

For example, the call

inti; float x; char name[50];
scanf("%d%fo/os", &i, &x, name);

with the input line

25 54.32E-l thompson

will assign to ithe value 25, xthe value 5.432, and name will contain 'thompson\O'. Or,

int i; float x; char name[50];
scanf("%2d%f%•d%[1234567890]", &i, &x, name);

with input

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip '0123', and place the string '56\0' in name. The next call to
getchar will return 'a'.

SEE ALSO
atof(3), getc(3S), printf(3S)

DIAGNOSTICS

BUGS

The scan/ functions return EOF on end of input, and a short count for missing or illegal data
items.

The success of literal matches and suppressed assignments is not directly determinable.

7th Edition 19 January 1983 2

SETBUF(3S) UNIX Programmer's Manual SETBUF(3S)

NAME
setbuf, setbuff er, setlinebuf - assign buffering to a stream

SYNOPSIS
#Include < stdlo.h >
setbuf(stream, buf)
FILE •stream;
char •buf;

setbufl'er(stream, buf, size)
FILE •stream;
char •buf;
Int size;

setllnebuf (stream)
FILE •stream;

DESCRIPTION
The three types of buffering available are unbuffered, block buffered, and line buffered. When
an output stream is unbuffered, information appears on the destination file or terminal as soon
as written; when it is block buffered many characters are saved up and written as a block; when
it is line buffered characters are saved up until a newline is encountered or input is read from
stdin. Fjlush (see fclose(3S)) may be used to force the block out early. Normally all files are
block buffered. A buffer is obtained from malloc(3) upon the first getc or putc(3S) on the file.
If the standard stream stdout refers to a terminal it is line buffered. The standard stream stderr
is always unbuffered.

Setbufis used after a stream has been opened but before it is read or written. The character ar­
ray bu/is used instead of an automatically allocated buffer. If bu/is the constant pointer NULL,
input/output will be completely unbuffered. A manifest constant BUFSIZ tells how big an array
is needed:

char buf[BUFSIZ];

Setb'4ffer, an alternate form of setbrif, is used after a stream has been opened but before it is
read or written. The character array bu/whose size is determined by the size argument is used
instead of an automatically allocated buffer. If bu/ is the constant pointer NULL, input/output
will be completely unbuffered.

Setlinebuf is used to change stdout or stderr from block buffered or unbuffered to line buffered.
Unlike setbufand setb'4ffer it can be used at any time that the file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered by using /reopen (see
fopen(3S)). A file can be changed from block buffered or line buffered to unbuffered by using
/reopen followed by setbufwith a buffer argument of NULL.

SEE ALSO
fopen(3S), getc(3S), putc(3S), malloc(3), fclose(3S), puts(3S), printf(3S), fread(3S)

BUGS
The standard error stream should be line buffered by default.

The setb'4ffer and setlinebujfunctions are not portable to non 4.2 BSD versions of UNIX.

4th Berkeley Distribution 19 January 1983 1

UNGETC(3S) UNIX Proarammer's Manual

NAM!
ungetc - push character back into input stream

SYNOPSIS
#include < stdlo.h >
un1ete<c, stream)
FILE •stream;

DESCRIPTION

UNGETC (3S)

Ungetc pushes the character c back on an input stream. That character will be returned by the
next getc call on that stream. Ungetc returns c.

One character of push back is guaranteed provided something has been read from the stream
and the stream is actually butrered. Attempts to push EOF are rejected.

Fseek(3S) erases all memory of pushed back characters.

SEE ALSO
getc (3S), setbuf(3S), fseek (3S)

DIAGNOSTICS
Ungetc returns EOF if it can't push a character back.

7th Edition 19 January 1983 1

INTRO (3X) UNIX Programmer's Manual INTRO (3X)

NAME
intro - introduction to miscellaneous library functions

DESCRIPTION

FILES

These functions constitute minor libraries and other miscellaneous run-time facilities. Most are
available only when programming in C. The list below includes libraries which provide device
independent plotting functions, terminal independent screen management routines for two
dimensional non-bitmap display terminals, functions for managing data bases with inverted
indexes, and sundry r:outines used in executing commands on remote machines. The routines
getdiskbyname, rcmd, rresvport, ruserok, and rexec reside in the standard C run-time library
" - le". All other functions are located in separate libraries indicated in each manual entry.

/lib/Ii be.a
/usr/lib/libdbm.a
/usr/lib/libtermcap.a
/usr /lib/libcurses.a
/usr/1ib/lib2648.a
/usr/lib/libplot.a

LIST OF FUNCTIONS
Name Appears on Page Description

arc plot.3x graphics interface
assert assert.3x program verification
circle plot.3x graphics interface
close pi piot.3x graphics interface
cont plot.3x graphics interface
curses curses.3x screen functions with "optimal" cursor motion
dbminit dbm.3x data base subroutines
delete dbm.3x data base subroutines
endfsent getfsent.3x get file system descriptor file entry
erase plot.3x graphics interface
fetch dbm.3x data base subroutines
firstkey dbm.3x data base subroutines
getdiskbyname getdisk.3x get disk description by its name
getfsent getfsent.3x get file system descriptor file entry
getfsfile getfsent.3x get file system descriptor file entry
getfsspec getfsent.3x get file system descriptor file entry
getfstype getfsent.3x get file system descriptor file entry
initgroups initgroups. 3 x initialize group access list
label plot.3x graphics interface
lib2648 lib2648.3x subroutines for the HP 2648 graphics terminal
line plot.3x graphics interface
line mod plot.3x graphics interface
move plot.3x graphics interface
nextkey dbm.3x data base subroutines
plot: openpl plot.3x graphics interface
point plot.3x graphics interface
rcmd rcmd.3x routines for returning a stream to a remote command
rexec rexec.3x return stream to a remote command
rresvport rcmd.3x routines for returning a stream to a remote command
ruserok rcmd.3x rou~ines for returning a stream to a remote command
setfsent getfsent.3x get file system descriptor file entry
space plot.3x graphics interface

4th Berkeley Distribution 8 July 1983

INTR0(3X)

store
tgetent
tgetflag
tgetnum
tgetstr
tgoto
tputs

4th Berkeley Distribution

UNIX Programmer's Manual

dbm.3x
termcap.3x
termcap.3x
termcap.3x
termcap.3x
termcap.3x
termcap.3x

data base subroutines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines

8 July 1983

INTRO (JX)

2

CURSES(3X) UNIX Programmer's Manual CURSES (3X)

NAME
curses - screen functions with "optimal" cursor motion

SYNOPSIS
cc [flags] files -lcurses -ltermcap [libraries]

DESCRIPTION
These routines give the user a method of updating screens with reasonable optimization. They
keep an image of the current screen, and the user sets up an image of a new one. Then the
refresh() tells the routines to make the current screen look like the new one. In order to initial­
ize the routines, the routine initscrO must be called before any of the other routines that deal
with windows and screens are used. The routine endwinO should be called before exiting.

SEE ALSO
Screen Updating and Cursor Movement Optimization: A Library Package, Ken Arnold,
ioctl(2), getenv(3), tty(4), termcap(S)

AUTHOR
Ken Arnold

FUNCTIONS
addch(ch)
addstr(str)
box (win, vert,hor)
crrnodeO
clear()
clearok (scr, boolO
clrtobotO
clrtoeolO
delchO
deletelnO
delwin(win)
echo()
endwinO
erase()
getch()
getcap(name)
getstr(str)
gettmode()
getyx(win,y,x)
inch()
initscrO
insch(c)
insertlnO
lea veok (win, boolf)
longname(terrnbuf,name)
move(y,x)
mvcur (lasty ,lastx,newy ,newx)
newwin(lines,cols,begin_y,begin_x)
nIO
nocrrnode()
noecho()
non!()
noraw()
overlay(winl, win2)
overwrite(winl,win2)

4th Berkeley Distribution

add a character to stdscr
add a string to stdscr
draw a box around a window
set cbreak mode
clear stdscr
set clear flag for scr
clear to bottom on stdscr
clear to end of line on stdscr
delete a character
delete a line
delete win
set echo mode
end window modes
erase stdscr
get a char through stdscr
get terminal capability name
get a string through stdscr
get tty modes
get (y ,x) co-ordinates
get char at current (y ,x) co-ordinates
initialize screens
insert a char
insert a line
set leave flag for win
get long name from termbuf
move to (y ,x) on stdscr
actually move cursor
create a new window
set newline mapping
unset cbreak mode
unset echo mode
unset newline mapping
unset raw mode
overlay winl on win2
overwrite winl on top of win2

19 January 1983 1

CURSES (3X) UNIX Programmer's Manual CURSES (3X)

BUGS

printw(fmt,argl ,arg2, .. .)
raw()
refresh()
resetty()
savetty()
scanw(fmt,argl,arg2, .. .)
scroll(win)
scrollok (win, boolf)
setterm (name)
standend()
standout()
subwin(win,lines,cols,begin_y,begin_x)
touch win (win)
unctrl(ch)
waddch (win, ch)
waddstr(win,str)
wclear(win)
wclrtobot(win)
wclrtoeol (win)
wdelch (win, c)
wdeleteln (win)
werase (win)
wgetch (win)
wgetstr(win,str)
winch(win)
winsch(win,c)
winsertln (win)
wmove(win,y,x)
wprintw (win,f mt,argl ,arg2, ...)
wrefresh (win)
wscanw(win,fmt,argl,arg2, ...)
wstandend (win)
wstandout (win)

printf on stdscr
set raw mode
make current screen look like stdscr
reset tty flags to stored value
stored current tty flags
scanf through stdscr
scroll win one line
set scroll flag
set term variables for name
end standout mode
start standout mode
create a subwindow
"change" all of win
printable version of ch
add char to win
add string to win
clear win
clear to bottom of win
clear to end of line on win
delete char from win
delete line from win
erase win
get a char through win
get a string through win
get char at current (y,x) in win
insert char into win
insert line into win
set current (y,x) co-ordinates on win
printf on win
make screen look like win
scanf through win
end standout mode on win
start standout mode on win

4th Berkeley Distribution 19 January 1983 2

GETFSENT (3X) UNIX Programmer's Manual GETFSENT (3X)

NAME
getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent - get file system descriptor file entry

SYNOPSIS
#include < fstab.h >
struct f stab •getfsent 0
struct fstab •getfsspecCspec)
char •spec;

struct fstab •getfsftle(ftle)
char •file;

struct fstab •getfstype(type)
char •type;

int setf sent 0
int endfsentO

DESCRIPTION

FILES

Getfsent, getfsspec, getfstype, and getf$file each return a pointer to an object with the following
structure containing the broken-out fields of a line in the file system description file,
<fstab.h>.

struct fstab{
char
char
char

};

int
int

•fs_spec;
•fs file· - ' •fs_type;
fs_freq;
fs_passno;

The fields have meanings described in fstab{5).

Getfsent reads the next line of the file, opening the file if necessary.

Setfsent opens and rewinds the file.

Endjsent closes the file.

Getfsspec and getfsfiie sequentially search from the beginning of the file until a matching special
file name or file system file name is found, or until EOF is encountered. Getfstype does like­
wise, matching on the file system type field.

/etc/fstab

SEE ALSO
fstab(5)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

4th Berkeley Distribution 19 January 1983

INITGROUPS (3X) UNIX Proarammer's Manual

NAME
initgroups - initialize aroup access list

SYNOPSIS
lnlt1roups (name, basegld)
char •name;
int basegid;

DESCRIPTION

INITGROUPS (3X)

lnitgroups reads through the group file and sets up, using the setgroups(2) call, the group access
list for the user specified in name. The basegid is automatically included in the groups list.
Typically this value is given as the group number from the password file.

FILES
/etc/group

SEE ALSO
setgroups (2)

DIAGNOSTICS
lnitgroups returns -1 if it was not invoked by the super-user.

BUGS
lnitgroups uses the routines based on getgrent(3). If the invoking program uses any of these
routines, the group structure will be overwritten in the call to initgroups.

Noone seems to keep /etc/group up to date.

4th Berkeley Distribution 25 February 1983 1

TERMCAP (3X) UNIX Programmer's Manual TERMCAP (3X)

NAME
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - terminal independent operation routines

SYNOPSIS
char PC;
char •BC;
char •UP;
short ospeed;

tgetent (bp, name)
char •bp, •name;

tgetnum (id)
char •id;

tgetflag (id)
char •id;

char•
tgetstr(ld, arez)
char •id, .. area;

char•
tgoto(cm, destcol, destline)
char •cm;

tputs (cp, aft'cnt, outc)
register char •cp;
Int aft'cnt;
int (•outc) 0;

DESCRIPTION
These functions extract and use capabilities from the terminal capability data base termcap(S).
These are low level routines; see curses(3X) for a higher level package.

Tgetent extracts the entry for terminal name into the buff er at bp. Bp should be a character
buffer of size 1024 and must be retained through all subsequent calls to tgetnum, tge(/fag, and
tgetstr. Tgetent returns -1 if it cannot open the termcap file, 0 if the terminal name given does
not have an entry, and I if all goes well. It will look in the environment for a TERMCAP vari­
able. If found, and the value does not begin with a slash, and the terminal type name is the
same as the environment string TERM, the TERMCAP string is used instead of reading the
termcap file. If it does begin with a slash, the string is used as a path name rather than
/etc/termcap. This can speed up entry into programs that call tgetent, as well as to help debug
new terminal descriptions or to make one for your terminal if you can't write the file
/etc/termcap.

Tgetnum gets the numeric value of capability id, returning -1 if is not given for the terminal.
Tge(/fag returns 1 if the specified capability is present in the terminal's entry, 0 if it is not.
Tgetstr gets the string value of capability id, placing it in the buff er at area, advancing the area
pointer. It decodes the abbreviations for this field described in termcap(S), except for cursor
addressing and padding information.

Tgoto returns a cursor addressing string decoded from cm to go to column destcol in line destline.
It uses the external variables UP (from the up capability) and BC (if be is given rather than bs)
if necessary to avoid placing \n, "D or "@ in the returned string. (Programs which call tgoto
should be sure to tum off the XTABS bit(s), since tgoto may now output a tab. Note that pro­
grams using termcap should in general turn off XT ABS anyway since some terminals use con­
trol I for other functions, such as nondestructive space.) If a o/o sequence is given which is not
understood, then tgoto returns "OOPS".

4th Berkeley Distribution 9 February 1983 1

TERMCAP (3X) UNIX Programmer's Manual TERMCAP (3X)

FILES

Tputs decodes the leading padding information of the string cp; Qffcnt gives the number of lines
affected by the operation, or 1 if this is not applicable, outc is a routine which is called with
each character in turn. The external variable ospeed should contain the output speed of the ter­
minal as encoded by srty(3). The external variable PC should contain a pad character to be
used (from the pc capability) if a null C-@) is inappropriate.

/usr/lib/libtermcap.a -!termcap library
/etc/termcap data base

SEE ALSO
ex(l), curses(3X), termcap(S)

AUTHOR
William Joy

4th Berkeley Distribution 9 February 1983 2

INTRO (JC) UNIX Programmer's Manual INTRO (3C)

NAME
intro - introduction to compatibility library functions

DESCRIPTION
These functions constitute the compatibility library portion of libc. They are automatically
loaded as needed by the C compiler cc(l). The link editor searches this library under the
"-le" option. Use of these routines should, for the most part, be avoided. Manual entries for
the functions in this library describe the proper routine to use.

LIST OF FUNCTIONS
Name

alarm
ftime
getpw
gtty
nice
pause
rand
signal
srand
stty
time
times
utime
vlimit
vtimes

Appears on Page Description

alarm.3c schedule signal after specified time
time.3c get date and time
getpw.3c get name from uid
stty.Jc set and get terminal state (defunct)
nice.Jc set program priority
pause.3c stop until signal
rand.Jc random number generator
signal.3c simplified software signal facilities
rand.3c random number generator
stty.3c set and get terminal state (defunct)
time.3c get date and time
times.3c get process times
utime.3c set file times
vlimit.3c control maximum system resource consumption
vtimes.3c get information about resource utilization

4th Berkeley Distribution 18 July 1983 1

ALARM(3C) UNIX Programmer's Manual ALARM{3C)

NAME
alarm - schedule signal after specified time

SYNOPSIS
alarm (seconds)
unsigned seconds;

DESCRIPTION
This interface is obsoleted by setitimer(2).

Alarm causes signal SIGALRM, see signa/(3C), to be sent to the invoking process in a number
of seconds given by the argument. Unless caught or ignored, the signal terminates the process.

Alarm requests are not stacked; successive calls reset the alarm clock. If the argument is 0, any
alarm request is canceled. Because of scheduling delays, resumption of execution of when the
signal is caught may be delayed an arbitrary amount. The longest specifiable delay time is
2147483647 seconds.

The return value is the amount of time previously remaining in the alarm clock.

SEE ALSO
sigpause(2), sigvec(2), signal(3C), sleep(3)

7th Edition 18 July 1983

GETPW(3C)

NAME
getpw - get name from uid

SYNOPSIS
getpw (uid, buf)
char •buf;

DESCRIPTION

UNIX Programmer's Manual

Getpw is obsoleted by getpwuid (3),

GETPW (3C)

Getpw searches the password file for the (numerical) uid, and fills in bu/with the corresponding
line~ it returns non-zero if uid could not be found. The line is null-terminated.

FILES
/etc/passwd

SEE ALSO
getpwent (3), passwd (5)

DIAGNOSTICS
Non-zero return on error.

7th Edition 19 January 1983

NICE(JC) UNIX Programmer'~ Manual NICE (JC)

NAME
nice - set program priority

SYNOPSIS
iike(incr>

DESCRIPTION
This interface is obsoleted by setpriority (2).

The sc;heduling priority of the process is augmented by incr. Positive priorities get less service
than normal. Priority 10 is recommended to users who wish to execute long-running programs
without flak from the administration. ·
Negative .increments are ignored except on behalf of the super-user. The priority is limited to
the range - 20 (most urgent) to 20 (least).
The priority of a process is passed to a child process by fork(2). For a privileged process to
return to normal priority from an unknown state, nice should be called successively with argu­
ments -40 (goes to priority -20 because of truncation), 20 (to get to 0), then 0 (to maintain
compatibility with previous versions of this- call).

SEE ALSO
nice(!), setpriority(2), fork(2), renice(8)

4th Berkeley Distribution l April 1983

PAUSE (JC)

NAME
pause - stop until signal

SYNOPSIS
pause()

DESCRIPTION

UNIX Programmer's Manual PAUSE (3C)

Pause never returns normally. It is used to give up control while waiting for a signal from
ki/1(2) or an interval timer, see setitimer(2). Upon termination of a signal handler started dur­
ing a pause, the pause call will return.

RETURN VALUE
Always returns -1.

ERRORS
Pause always returns:

[EINTR] The call was interrupted.

SEE ALSO
kill (2), select(2), sigpause (2)

4th Berkeley Distribution 18 July 1983

RAND (3C) UNIX Programmer's Manual

NAME
rand, srand - random number generator

SYNOPSIS
srand (seed)
int seed;

rand()

DESCRIPTION

RAND (3C)

The newer random (3) should be used in new applications; rand remains for compatibilty.

Rand uses a multiplicative congruential random number ~enerator with period 232 to return suc­
cessive pseudo-random numbers in the range from 0 to 2 1-1.

The generator is reinitialized by calling srand with 1 as argument. It can be set to a random
starting point by calling srand with whatever you like as argument.

SEE ALSO
random(3)

7th Edition 19 January 1983

SIGNAL(3C) UNIX Programmer's Manual SIGNAL (JC)

NAME
signal - simplified software signal facilities

SYNOPSIS
#Include < slgnal.h >
(•signal (slg, func)) 0
void (•func) () ;

DESCRIPTION
Signal is a simplified interface to the more general sigvec(2) facility.

A signal is generated by some abnormal event, initiated by a user at a terminal (quit, interrupt,
stop), by a program error (bus error, etc.), by request of another program (kill), or when a pro­
cess is stopped because it wishes to access its control terminal while in the background (see
tty(4)). Signals are optionally generated when a process resumes after being stopped, when the
status of child processes changes, or when input is ready at the control terminal. Most signals
cause termination of the receiving process if no action is taken; some signals instead cause the
process receiving them to be stopped, or are simply discarded if the process has not requested
otherwise. Except for the SIG KILL and SIGSTOP signals, the signal call allows signals either to
be ignored or to cause an interrupt to a specified location. The following is a list of all signals
with names as in the include file <signal.h>:

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3• quit
SIGILL 4• illegal instruction
SIGTRAP 5• trace trap
SIGIOT 6• IOT instruction
SIGEMT 7• EMT instruction
SIGFPE 8• floating point exception
SIGKILL 9 kill (cannot be caught or ignored)
SIGBUS 10• bus error
SIGSEG V 11 • segmentation violation
SIGSYS 12• bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGURG 16• urgent condition present on socket
SIGSTOP 17f stop (cannot be caught or ignored)
SIGTSTP 18f stop signal generated from keyboard
SIGCONT 19• continue after stop
SIGCHLD 20• child status has changed
SIGTTIN 21 t background read attempted from control terminal
SIGTTOU 22f background write attempted to control terminal
SIGIO 23• i/o is possible on a descriptor (see fcnt/(2))
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2))
SIGXFSZ 25 file size limit exceeded (see setrlimit(2))
SIGVT ALRM 26 virtual time alarm (see setitimer(2))
SIGPROF 27 profiling timer alarm (see setitimer(2))

The starred signals in the list above cause a core image if not caught or ignored.

If jUnc is SIG _DFL, the def a ult action for signal sig is reinstated; this def a ult is termination
(with a core image for starred signals) except for signals marked with • or f. Signals marked
with • are discarded if the action is SIG_DFL; signals marked with t cause the process to stop.
If jUnc is SIG_IGN the signal is subsequently ignored and pending instances of the signal are

4th Berkeley Distribution 15 June 1983 1

SIGNAL (JC) UNIX Programmer's Manual SIGNAL (3C)

discarded. Otherwise, when the signal occurs further occurences of the signal are automatically
blocked and fune is called.

A return from the function unblocks the handled signal and continues the process at the point
it was interrupted. Unlike previous signal faclllties, the handler fune remains Installed after
a signal has been delivered.

If a caught signal occurs during certain system calls, causing the call to terminate prematurely,
the call is automatically restarted. In particular this can occur during a read or write(2) on a
slow device (such as a terminal; but not a file) and during a wait(2).

The value of signal is the previous (or initial) value of fune for the particular signal.

After a fork(2) or vfork(2) the child inherits all signals. Exeeve(2) resets all caught signals to
the default action; ignored signals remain ignored.

RETURN VALUE
The previous action is returned on a successful call. Otherwise, -1 is returned and errno is set
to indicate the error.

ERRORS
Signal will fail and no action will take place if one of the following occur:

[EINV AL] Sig is not a valid signal number.

[EINV AL] An attempt is made to ignore or supply a handler for SIG KILL or SIGSTOP.

[EINVAL] An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

SEE ALSO
kill(l), ptrace(2), kill (2), sigvec(2), sigblock(2), sigsetmask(2), sigpause(2), sigstack(2),
setjmp(3), tty(4)

NOTES (V AX-11)
The handler routine can be declared:

handler(sig, code, scp)

Here sig is the signal number, into which the hardware faults and traps are mapped as defined
below. Code is a parameter which is either a constant as given below or, for compatibility
mode faults, the code provided by the hardware. Sep is a pointer to the struet sigeontext used by
the system to restore the process context from before the signal. Compatibility mode faults are
distinguished from the other SIGILL traps by having PSL_CM set in the psl.

The following defines the mapping of hardware traps to signals and codes. All of these symbols
are defined in <signal.h>:

Hardware condition

Arithmetic traps:
Integer overflow
Integer division by zero
Floating overflow trap
Floating/decimal division by zero
Floating underflow trap
Decimal overflow trap
Subscript-range
Floating overflow fault
Floating divide by zero fault
Floating underflow fault

Length access control
Protection violation

4th Berkeley Distribution

Signal

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGSEGV
SIG BUS

15 June 1983

Code

FPE_INTOVF _TRAP
FPE_INTDIV _TRAP
FPE_FL TOVF _TRAP
FPE_FL TDIV _TRAP
FPE_FL TUND _TRAP
FPE_DECOVF _TRAP
FPE_SUBRNG_TRAP
FPE FL TOVF FAULT
FPE=FL TDIV .} AULT
FPE_FL TUND _FAULT

2

SIGNAL (3C)

Reserved instruction
Customer-reserved instr.
Reserved operand
Reserved addressing
Trace pending
Bpt instruction
Compatibility-mode
Chme
Chms
Chmu

4th Berkeley Distribution

UNIX Programmer's Manual

SI GILL
SIG EMT
SIGILL
SIGILL
SIG TRAP
SIG TRAP
SIGILL
SIGSEGV
SIGSEGV
SIGSEGV

15 June 1983

ILL_RESAD_FAULT

ILL_PRIVIN_FAULT
ILL_RESOP _FAULT

hardware supplied code

SIGNAL (JC)

3

STIY (JC) UNIX Programmer's Manual

NAME
stty, gtty - set and get terminal state (defunct)

SYNOPSIS
#include <sgtty.h>

stty (fd, buf)
int fd;
struct sgttyb •buf;

gtty (f d, buf)
int fd;
struct sgttyb •buf;

DESCRIPTION
This interface is obsoleted by ioctl (2).

STIY (3C)

Stty sets the state of the terminal associated with fd. Gtty retrieves the state of the terminal
associated with fd. To set the state of a terminal the call must have write permission.

The stty call is actually "ioctl(fd, TIOCSETP, buf)'', while the gtty call is "ioctl{fd,
TIOCGETP, buf)". See ioct/(2) and tty(4) for an explanation.

DIAGNOSTICS
If the call is successful 0 is returned, otherwise -1 is returned and the global variable errno
contains the reason for the failure.

SEE ALSO
ioctl(2), tty(4)

4th Berkeley Distribution 1 April 1983 1

TIME (3C) UNIX Programmer's Manual

NAME
time, ftime - get date and time

SYNOPSIS
long time(O)

long time (tloc)
long •tloc;

#include < sys/types.h >
#include < sys/timeb.h >
ftime(tp)
struct timeb · •tp;

DESCRIPTION
These interfaces are obsoleted by gettimeofday(2).

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds.

If tloc is nonnull, the return value is also stored in the place to which tloc points.

TIME (JC)

The ftime entry fills in a structure pointed to by its argument, as defined by < sysltimeb. h >:
I• timeb.h 6.183/07/29•/

I•
• Structure returned by ftime system call
•I

struct timeb
{

} ;

time_t time;
unsigned short millitm;
short timezone;
short dstflag;

The structure contains the time since the epoch in seconds, up to 1000 milliseconds of more­
precise interval, the local time zone (measured in minutes of time westward from Greenwich),
and a flag that, if nonzero, indicates that Daylight Saving time applies locally during the
appropriate part of the year.

SEE ALSO
date (1), gettimeofday(2), settimeofday(2), ctime(3)

4th Berkeley Distribution 1 April 1983 1

TIMES (JC)

NAME
times - get process times

SYNOPSIS
#include < sys/types.h >
#include <sys/times.h>

times (buffer)
struct tms •buffer;

DESCRIPTION

UNIX Programmer's Manual

This interface is obsoleted by getrusage(2).

TIMES (3C)

Times returns time-accounting information for the current process and for the terminated child
processes of the current process. All times are in 1/HZ seconds, where HZ is 60.

This is the structure returned by times:

I• times.h 6.1 83/07 /29

I•
• Structure returned by times()
•I

struct tms {
time_t tms_utime;
time_t tms_stime;
time_t tms_cutime;
time_t tms_cstime;

I• user time •/
I• system time •/
I• user time, children •/
I• system time, children •/

The children times are the sum of the children's process times and their children's times.

SEE ALSO
time(l), getrusage(2), wait3(2), time(3)

4th Berkeley Distribution 1 April 1983

UTIME(3C) UNIX Programmer's Manual UTIME (3C)

NAME
utime - set file times

SYNOPSIS
#include < sys/types.h >
utime(ftle, timep)
char •file;
time_t timepl2l;

DESCRIPTION
This interface is obsoleted by utimes (2).

The utime call uses the 'accessed' and 'updated' times in that order from the timep vector to set
the corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The 'inode-changed' time of the file
is set to the current time.

SEE ALSO
utimes(2), stat(2)

4th Berkeley Distribution 1 April 1983

VLIMIT(3C) UNIX Programmer's Manual VLIMIT(JC)

NAME
vlimit - control maximum system resource consumption

SYNOPSIS
#include <sys/vlimit.h>

vlimit <resource, value)

DESCRIPTION
This facility is superseded by getrlimit (2).

Limits the consumption by the current process and each process it creates to not individually
exceed value on the specified resource. If value is specified as -1, then the current limit is
returned and the limit is unchanged. The resources which are currently controllable are:

LIM NORAISE A pseudo-limit; if set non-zero then the limits may not be raised. Only the
- super-user may remove the noraise restriction.

LIM_ CPU the maximum number of cpu-seconds to be used by each process

LIM_FSIZE the largest single file which can be created

LIM_DATA the maximum growth of the data+stack region via sbrk(2) beyond the end of
the program text

LIM_STACK the maximum size of the automatically-extended stack region

LIM_ CORE the size of the largest core dump that will be created.

LIM_MAXRSS a soft limit for the amount of physical memory (in bytes) to be given to the
program. If memory is tight, the system will prefer to take memory from
processes which are exceeding their declared LIM_MAXRSS.

Because this information is stored in the per-process information this system call must be exe­
cuted directly by the shell if it is to affect all future processes created by the shell; limit is thus a
built-in command to csh(l).

The system refuses to extend the data or stack space when the limits would be exceeded in the
normal way; a break call fails if the data space limit is reached, or the process is killed when the
stack limit is reached (since the stack cannot be extended, there is no way to send a signal!).

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ to
be generated, this normally terminates the process, but may be caught. When the cpu time
limit is exceeded, a signal SIGXCPU is sent to the offending process; to allow it time to process
the signal it is given 5 seconds grace by raising the cpu time limit.

SEE ALSO
csh(l)

BUGS
If LIM_NORAISE is set, then no grace should be given when the cpu time limit is exceeded.

There should be limit and unlimit commands in sh(l) as well as in csh.

This call is peculiar to this version of UNIX. The options and specifications of this system call
and even the call itself are subject to change. It may be extended or replaced by other facilities
in future versions of the system.

4th Berkeley Distribution 18 July.1983 1

(
\

VTIMES (3C) UNIX Programmer's Manual VTIMES (3C)

NAME
vtimes - get information about resource utilization

SYNOPSIS
vtimes(par_vm, ch_vm)
struct vtimes •par_vm, •ch_vm;

DESCRIPTION
This facility is superseded by getrusage(2).

Vtimes returns accounting information for the current process and for the terminated child
processes of the current process. Either par_vm or ch_vm or both may be 0, in which case only
the information for the pointers which are non-zero is returned.

After the call, each buffer contains information as defined by the contents of the include file
/usr/i nclude/sys/vtimes. h:

struct vtimes {
int vm_utime; /•user time (•HZ) •/
int vm_stime; /• system time (•HZ) •/
I• divide next two by utime+stime to get averages•/
unsigned vm_idsrss; /•integral of d+s rss •/
unsigned vm_ixrss; /• integral of text rss •/
int vm_maxrss; /• maximum rss •/
int vm_majflt; /• major page faults •I
int vm_minflt; /• minor page faults •/
int vm_nswap; /• number of swaps •/
int vm_inblk; /• block reads •/
int vm_oublk; /• block writes •/

};

The vm_utime and vm_stime fields give the user and system time respectively in 60ths of a
second (or 50ths if that is the frequency of wall current in your locality.} The vni_idrss and
vm_ixrss measure memory usage. They are computed by integrating the number of memory
pages in use each over cpu time. They are reported as though computed discretely, adding the
current memory usage (in 512 byte pages) each time the clock ticks. If a process used 5 core
pages over 1 cpu-second for its data and stack, then vm_idsrss would have the value 5•60, where
vm_utime+vm_stime would be the 60. Vm_idsrss integrates data and stack segment usage, while
vm_ixrss integrates text segment usage. Vm_maxrss reports the maximum instantaneous sum of
the text+data+stack core-resident page count.

The vm_majflt field gives the number of page faults which resulted in disk activity; the
vm_minflt field gives the number of page faults incurred in simulation of reference bits;
vm_nswap is the number of swaps which occurred. The number of file system input/output
events are reported in vm_inblk and vm_oub/k These numbers account only for real i/o; data
supplied by the caching mechanism is charged only to the first process to read or write the data.

SEE ALSO

BUGS

time (2), wait3 (2)

This call is peculiar to this version of UNIX. The options and specifications of this system call
are subject to change. It may be extended to include additional information in future versions
of the system.

4th Berkeley Distribution 13 June 1983

INTRO (4) UNIX Programmer's Manual INTRO (4)

NAME
intro - introduction to special flies and hardware support

DESCRIPTION
This section describes the special files, related driver functions, and networking support avail­
able in the system. In this part of the manual, the SYNOPSIS section of each configurable dev­
ice gives a sample specification for use in constructing a system description for the co'!fig(8)
program. The DIAGNOSTICS section lists messages which may appear on the console and in
the system error log /usr/admlmessages due to errors in device operation.

This section contains both devices which may be configured into the system, "4" entries, and
network related information, "4N", "4P", and "4F" entries; The networking support is intro­
duced in intro(4N).

VAX DEVICE SUPPORT
This section describes the hardware supported on the DEC V AX-11. Software support for
these devices comes in two forms. A hardware device may be supported with a character or
block device driver, or it may be used within the networking subsystem and have a network inter­
face driver. Block and character devices are accessed through files in the file system of a special
type; c.f. mknod(8). Network interfaces are indirectly acce.ssed through the interprocess com­
munication facilities provided by the system; see socket(2).

A hardware device is identified to the system at configuration time and the appropriate device
or network interface driver is then compiled into the system. When the resultant system is
booted, the autoconfiguration facilities in the system probe for the device on either the
UNIBUS or MASSBUS and, if found, enable the software support for it. If a UNIBUS device
does not respond at autoconfiguration time it is not accessible at any time afterwards. To
enable a UNIBUS device which did not autoconfigure, the system will have to be rebooted. If a
MASSBUS device comes "on-line" after the autoconfiguration sequence it will be dynamically
autoconfigured into the running system.

The autoconfiguration system is described in autocoef(4). VAX specific device support is
described in "4V" entries. A list of the supported devices is given below.

SEE ALSO
intro(4), intro(4N), autoconf(4), config(8)

LIST OF DEVICES
The devices listed below are supported in this incarnation of the system. Devices are indicated
by their functional interface. If second vendor products provide functionally identical interfaces
they should be usable with the supplied software. (Beware however that we promise the
softwue works ONLY with the hardware lndlcated on the appropriate manual page.)

ace
ad
css
ct
dh
dmc
dmf
dn
dz
ec
en
kg
fl
hk

ACC LH/DH IMP communications interface
Data translation AID interface
DEC IMP-1 lA communications interface
Cl AIT phototypesetter
DH-11 emulators, terminal multiplexor
DEC DMC-11/DMR-ll point-to-point communications device
DEC DMF-32 terminal multiplexor
DEC DN-11 autodialer interface
DZ-11 terminal multiplexor
3Com lOMbls Ethernet controller
Xerox 3Mbls Ethernet controller (obsolete)
KL-11/DL-llW line clock
V AX-11/780 console floppy interface
RK.6-111RK06 and RK07 moving head disk

4th Berkeley Distribution 27 July 1983 1

INTRO (4)

hp
ht
hy
ik
il
lp
mt
pcl
ps
rx
tm
ts
tu
uda
un
up
ut
uu
va
vp
vv

UNIX Programmer's Manual

MASSBUS disk interface (with RP06, RM03, RM05, etc.)
TM03 MASSBUS tape drive interface (with TE-16, TU-45, TU-77)
DR-llB or GI-13 interface to an NSC Hyperchannel
lkonas frame buff er graphics device interface
lnterlan lOMb/s Ethernet controller
LP-11 parallel line printer interface
TM78 MASSBUS tape drive interface
DEC PCL-11 communications interface
Evans and Sutherland Picture System 2 graphics interface
DEC RX02 floppy interface
TM-11/TE-10 tape drive interface
TS-11 tape drive interface
V AX-111730 TU58 console cassette interface
DEC UDA-50 disk controller
DR-llW interface to Ungermann-Bass
Emulex SC-21 V UNIBUS disk controller
UNIBUS TU-45 tape drive interface
TU58 dual cassette drive interface (DLl 1)
Benson-Varian printer/plotter interface
Versatec printer/plQtter interface
Proteon proNET lOMb/s ring network interface

4th Berkeley Distribution 27 July 1983

INTR0(4)

2

INTRO (4N) UNIX Programmer's Manual INTR0(4N)

NAME
networking - introduction to networking facilities

SYNOPSIS
#include <sys/socket.h>
#include <net/route.h>
#include <net/lf.h>

DESCRIPTION
This section briefly describes the networking facilities available in the system. Documentation
in this part of section 4 is broken up into three areas: protocol-families, protocols, and network
interfaces. Entries describing a protocol-family are marked "4F", while entries describing pro­
tocol use are marked "4P". Hardware support for network interfaces are found among the
standard "4" entries.

All network protocols are associated with a specific protocol-family. A protocol-family provides
basic services to the protocol implementation to allow it to function within a specific network
environment. These services may include packet fragmentation and reassembly, routing,
addressing, and basic transport. A protocol-family may support multiple methods of addressing,
though the current protocol implementations do not. A protocol-family is normally comprised
of a number of protocols, one per socket(2) type. It is not required that a protocol-family sup­
port all socket types. A protocol-family may contain multiple protocols supporting the same
socket abstraction.

A protocol supports one of the socket abstractions detailed in socket(2). A specific protocol
may be accessed either by creating a socket of the appropriate type and protocol-family, or by
requesting the protocol explicitly when creating a socket Protocols normally accept only one
type of address format, usually determined by the addressing structure inherent in the design of
the protocol-family/network architecture. Certain semantics of the basic socket abstractions are
protocol specific. All protocols are expected to support the basic model for their particular
socket type, but may, in addition, provide non-standard facilities or extensions to a mechanism.
For example, a protocol supporting the SOCK_STREAM abstraction may allow more than one
byte of out-of-band data to be transmitted per out-of-band message.

A network interface is similar to a device interface. Network interfaces comprise the lowest
layer of the networking subsystem, interacting with the actual transport hardware. An interface
may support one or more protocol families, and/or address formats. The SYNOPSIS section of
each network interface entry gives a sample specification of the related drivers for use in pro­
viding a system description to the col'(fig(8) program. The DIAGNOSTICS section lists mes­
sages which may appear on the console and in the system error log /usr/admlmessages due to
errors in device operation.

PROTOCOLS
The system currently supports only the DARPA Internet protocols fully. Raw socket interfaces
are provided to IP protocol layer of the DARPA Internet, to the IMP link layer (1822), and to
Xerox PUP-1 layer operating on top of 3Mb/s Ethernet interfaces .. Consult the appropriate
manual pages in this section for more information regarding the support for each protocol fam­
ily.

ADDRESSING
Associated with each protocol family is an address format. The following address formats are
used by the system:

#define AF_ UNIX
#define AF _!NET
#define AF _IMPLINK
#define AF _PUP

4th Berkeley Distribution

1
2
3
4

I• local to host (pipes, portals) •/
I• internetwork: UDP, TCP, etc. •/
I• arpmet imp addresses•/
I• pup protocols: e.g. BSP •/

7 July 1983 1

INTR0(4N) UNIX Programmer's Manual INTR0(4N)

ROUTING
The network facilities provided limited packet routing. A simple set of data structures comprise
a "routing table" used in selecting the appropriate network interface when transmitting packets.
This table contains a single entry for each route to a specific network or host. A user process,
the routing daemon, maintains this data base with the aid of two socket specific ioct/(2) com­
mands, SIOCADDRT and SIOCDELRT. The commands allow the addition and deletion of a
single routing table entry, respectively. Routing table manipulations may only be carried out by
super-user.

A routing table entry has the foil owing form, as defined in <net/route. h >;

struct rtentry {
u_tong
struct
struct
short
short
u_tong
struct

};

rt_hash;
sockaddr rt_dst;
sockaddr rt_gateway;
rt_flags; ·
rt_refcnt;
rt use· - ' ifnet •rt_ifp;

with _rt_,ftags defined from,

#define RTF_ UP
#define RTF GATEWAY
#define RTF=HOST

'

Oxl
Ox2
Ox4

I• route usable •/
I• destination is a gateway •/
I• host entry (net otherwise) •/

Routing table entries come in three flavors: for a specific host, for all hosts on a specific net-
work, for any destination not matched by entries of the first two types (a wildcard route). When
the system is booted, each network interface autoconfigured installs a routing table entry when
it wishes to have packets sent through it. Normally the interface specifies the route through it
is a "direct" connection to the destination host or network. If the route is direct, the transport
layer of a protocol family usually requests the packet be sent to the same host specified in the
packet. Otherwise, the interface may be requested to address the packet to an entity different
from the eventual recipient (i.e. the packet is forwarded).

Routing table entries installed by a user process may not specify the hash, reference count, use,
or interface fields; these are tilled in by the routing routines. If a route is in use when it is
deleted (rt_refent is non-zero), the resources associated with it will not be reclaimed until
further references to it are released.

The routing code returns EEXIST if requested to duplicate an existing entry, ESRCH if
requested to delete a non-existant entry, or ENOBUFS if insufficient resources were available to
install a new route.

User processes read the routing tables through the /dev/kmem device.

The rt_use field contains the number of packets sent along the route. This value is used to
select among multiple routes to the same destination. When multiple routes to the same desti­
nation exist, the least used route is selected.

A wildcard routing entry is specified with a zero destination address value. Wildcard routes are
used only when the system fails to find a route to the destination host and network. The com­
bination of wildcard routes and routing redirects can provide an economical mechanism for
routing traffic.

4th Berkeley Distribution 7 July 1983 2

INTR0(4N) UNIX Programmer's Manual INTR0(4N)

INTERFACES
Each network interface in a system corresponds to a path through which messages may be sent
and received. A network interface. usually has a hardware device associated with it, though cer­
tain interfaces such as the loopback interface, /o(4), do not.

At boot time each interface which has underlying hardware support makes itself known to the
system during the autoconfiguration process. Once the interface has acquired its address it is
expected to install a routing table entry so that messages may be routed through it. Most inter­
faces require some part of their address specified with an SIOCSIF ADDR ioctl before they will
allow traffic to flow through them. On interfaces where the network-link layer address mapping
is static, only the network number is taken from the ioctl; the remainder is found in a hardware
specific manner. On interfaces which provide dynamic network-link layer address mapping
facilities (e.g. lOMb/s Ethernets), the entire address specified in the ·ioctl is used.

The following ioctl calls may be used to manipulate network interfaces. Unless specified other­
wise, the request takes an ifrequest structure as its parameter. This structure has the form

struct if req {
char ifr name[16];
union { -

struct
struct
short

I• name of interface (e.g. "ecO") •/

} ifr_ifru;

sockaddr ifru_addr;
sockaddr ifru_ dstaddr;
ifru_flags;

#defineifr_addrifr_ifru.ifru_addr /• address •/
#defineifr_dstaddr ifr_ifru.ifru_dstaddr /• other end of p-to-p link •/
#defineifr_flagsifr_ifru.ifru_tlags /• flags •/
}; .

SIOCSIFADDR
Set interface address. Following the address assignment, the "initialization" routine
for the interface is called.

SIOCGIFADDR
Get interface address.

SIOCSIFDSTADDR
Set point to point address for interface.

SIOCGIFDSTADDR
Get point to point address for interface.

SIOCSIFFLAGS
Set interface flags field. If the interface is marked down, any processes currently rout­
ing packets through the interface are notified.

SIOCGIFFLAGS
9et interface flags.

SIOCGIFCONF
Get interface configuration list. This request takes an ifcorif structure (see below) as a
value-result parameter. The ifc_len field should be initially set to the size of the buffer
pointed to by ifc_br,if. On return it will contain the length, in bytes, of the configuration
list.

I•
• Structure used in SIOCGIFCONF request.
• Used to retrieve interface configuration
•for machine (useful for programs which

4th Berkeley Distribution 7 July 1983 3

INTR0(4N) UNIX Programmer's Manual

• must know all networks accessible).
•I

struct ifconf {
int ifc ten; /• size of associated buffer •/
union (-

caddr .. J ifcu_buf;
struct ifreq •ifcu_req;

} ifc_ifcu;
#defineifc buf ifc ifcu.ifcu buf /• buffer address •/
#defineifc:req ifc:ifcu.ifcu:req/• array of structures returned •/
};

SEE ALSO
socket(2), ioctl(2), intro(4), config(8), routed(8C)

4th Berkeley Distribution 7 July 1983

INTR0(4N)

4

DRUM(4) UNIX Programmer's Manual DRUM (4)

NAME
drum - paging device

DESCRIPTION

FILES

BUGS

This file refers to the paging device in use by the system. This may actually be a subdevice of
one of the disk drivers, but in .a system with paging interleaved across multiple disk drives it
provides an indirect driver for the multiple drives.

/dev/drum

Reads from the drum are not allowed across the interleaving boundaries. Since these only
occur every .SM bytes or so, and since the system never allocates blocks across the boundary,
this is usually not a problem.

4th Berkeley Distribution 10 May 1981 1

EC(4) UNIX Proarammer's Manual EC(4)

NAME
ec - 3Com 10 Mb/s Ethernet interface

SYNOPSIS
device ecO at ubaO csr 161000 vector ecrint eccolllde ecxint

DESCRIPTION
The ec interface provides access to a 10 Mb/s Ethernet network through a 3com controller.

The hardware has 32 kilobytes of dual-ported memory on the UNIBUS. This memory is used
for internal buffering by the board, and the interface code reads the buffer contents directly
through the UNIBUS.

The host's Internet address is specified at boot time with an SIOCSIF ADDR ioctl. The ec
interface employs the address resolution protocol described in arp(4P) to dynamically map
between Internet and Ethernet addresses on the local network.

The interface software implements an exponential backotf algorithm when notified of a collision
on the cable. This algorithm utilizes a 16-bit mask and the V AX-11 's interval timer in calculat­
ing a series of random back off' values. The algorithm is as follows:

1. Initialize the mask to be all l's.

2. If the mask is zero, 16 retries have been made and we give up.

3. Shift the mask left one bit and formulate a backotf by masking the interval timer with the
mask (this is actually the two's complement of the value).

4. Use the value calculated in step 3 to delay before retransmitting the packet. The delay is
done in a software busy loop.

The interface normally tries to use a "trailer" encapsulation to minimize copying data on input
and output. This may be disabled, on a per-interface basis, by setting the IFF _NOTRAILERS
flag with an SIOCSIFFLAGS ioctl.

DIAGNOSTICS
ec%d: send error. After 16 retransmissions using the exponential backoff' algorithm described
above, the packet was dropped.

ecM: input error (offset•M). The hardware indicated an error in reading a packet off' the
cable or an illegally sized packet. The buffer offset value is printed for debugging purposes.

dd: can't handle afVod. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

SEE ALSO

BUGS

intro(4N), inet(4F), arp(4P)

The PUP protocol family should be added.

The hardware is not capable of talking to itself. The software implements local sending and
broadcast by sending such packets to the loop interface. This is a kludge.

Bi.ckotf delays are done in a software busy loop. This can degrade the system if the network
experiences frequent collisions.

4th Berkeley Distribution 27 July 1983 1

IP (4P) UNIX Programmer's Manual IP (4P)

NAME
ip - Internet Protocol

SYNOPSIS
#Include <sys/socket.h>
#include < netinet/ln.h >

s • socket(AF_INET, SOCK._RAW, 0);

DESCRIPTION
IP is the transport layer protocol used by the Internet protocol family. It may be accessed
through a "raw socket" when developing new protocols, or special purpose applications. IP
sockets are connectionless, and are normally used with the sendto and recvfrom calls, though the
connect(2) call may also be used to fix the destination for future packets (in which case the
read(2) or recv(2) and write(2) or send(2) system calls may be used).

Outgoing packets automatically have an IP header prepended to them (based on the destination
address and the protocol number the socket is created with). Likewise, incoming packets have
their IP header stripped before being sent to the user.

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a socket which already has one, or
when trying to send a datagram with the destination address specified and the
socket is already connected;

[ENOTCONN] when trying to send a datagram, but no destination address is specified, and
the socket hasn't been connected;

[ENOBUFS] when the system runs out of memory for an internal data structure;

[EADDRNOTAV AIL]
when an attempt is made to create a socket with a network address for which
no network interface exists.

SEE ALSO

BUGS

send(2), recv(2), intro(4N), inet(4F)

One should be able to send and receive ip options.

The protocol should be settable after socket creation.

4th Berkeley Distribution 25 March 1982 1

L0(4) UNIX Programmer's Manual L0(4)

NAME
lo - software loopback network interface

SYNOPSIS
pseudo-device loop

DESCRIPTION
The loop interface is a software loop back mechanism which may be used for performance
analysis, software testing, and/or local communication. By default, the loopback interface is
accessible at address 127.0.0.1 (non.standard); this address may be changed with the SIOCSI­
FADDR ioctl.

DIAGNOSTICS
loM: can't handle af%d. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

SEE ALSO

BUGS

intro(4N), inet(4F)

It should handle all address and protocol families. An approved network address should be
reserved for this interface.

4th Berkeley Distribution 26 March 1982 1

LP(4) UNIX Programmer's Manual LP(4)

NAME
Ip - line printer

SYNOPS!S
device lpO at ubaO csr 0177514 vector lplntr

DESCRIPTION

FILES

Lp provides the interface to any of the standard DEC line printers on an LP· 11 parallel inter·
face. When it is opened or closed, a suitable number of page ejects is generated. Bytes written
are printed.

The unit number of the printer is specified by the minor device after removing the low 3 bits,
which act as per-device parameters. Currently only the lowest of the low three bits is inter­
preted: if it is set. the device is treated as having a 64-character set, rather than a full 96·
character set. In the resulting half-ASCII mode, lower case letters are turned into upper case
and certain characters are escaped according to the following table:

{ (
}) . .
I +

The driver correctly interprets carriage returns, backspaces, tabs, and form feeds. Lines longer
than the maximum page width are truncated. The default page width is 132 columns. This
may be overridden by specifying, for example, "flags 256" .

/dev/lp

SEE ALSO
lpr(l)

DIAGNOSTICS
None.

4th Berkeley Distribution 27 July 1983 1

MEM(4) UNIX Programmer's Manual MEM (4)

NAME
mem, kmem - main memory

DESCRIPTION

FILES

BUGS

Mem is a special file that is an image of the main memory of the computer. It may be used, for
example, to examine (and even to patch) the system.

Byte addresses in mem are interpreted as physical memory addresses. References to non­
existent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected results when read-only
or write-only bits are present.

The file kmem is the same as mem except that kernel virtual memory rather than physical
memory is accessed.

On PDPI l's, the 1/0 page begins at location 0160000 of kmem and per-process data for the
current process begins at 0140000. On VAX 111780 the 1/0 space begins at physical address
20000000(16); on an 111750 1/0 space addresses are of the form fxxxxx(16); on all VAX'en
per-process data for the current process is at virtual 7ffff000(16).

/dev/mem
/dev/kmem

On PDPI l's and VAX's, memory files are accessed one byte at a time, an inappropriate
method for some device registers.

4th Berkeley Distribution 9 February 1983 1

MTI0(4) UNIX Programmer's Manual MTI0(4)

NAME
mtio - UNIX magtape interface

DESCRIPTION
The files mtO, mtl 5 ref er to the UNIX magtape drives, which may be on the MASS BUS
using the TM03 formatter ht(4), or TM78 formatter, mt(4), or on the UNIBUS using either
the TMll or TSll formatters tm(4), TU45 compatible formatters, ut(4), or ts(4). The follow­
ing description applies to any of the transport/controller pairs. The files mtO, mt7 are
800bpi, mt8, mt15 are 1600bpi, and mt16, ... , mt23 are 6250bpi. (But note that only 1600
bpi is available with .the TS 11.) The files mtO, ... , mtJ, mt8, ... , mtll, and mtl 6, ... , mtl 9 are
rewound when closed; the others are not. When a file open for writing is closed, two end-of·
files are written. If the tape is not to be rewound it is positioned with the head between the two
tapemarks.

A standard tape consists of a series of 1024 byte records terminated by an end-of-file. To the
extent possible, the system makes it possible, if inefficient, to treat the tape like any other file.
Seeks have their usual meaning and it is possible to read or write a byte at a time. Writing in
very small units is inadvisable, however, because ~t tends to create monstrous record gaps.

The mt files discussed above are useful when it is desired to access the tape in a way compatible
with ordinary files. When foreign tapes are to be dealt with, and especially when long records
are to be read or written, the 'raw' interface is appropriate. The associated files are named
rmtO, ... , rmt23, but the same minor-device considerations as for the regular files still apply. A
number of other ioctl operations are available on raw magnetic tape. The following definitions
are from < syslmtio. h >:
I•
•Structures and definitions for mag tape io control commands
•I

I• structure for MTIOCTOP ·mag tape op command•/
struct mtop {

short mt_op;
daddr_t mt_ count;

I• operations •/
#define MTWEOF
#define MTFSF
#define MTBSF
#define MTFSR
#define MTBSR
#define MTREW
#define MTOFFL
#define MTNOP

0
1
2
3
4
s
6
7

I• operations defined below •/
I• how many of them•/

I• write an end-of-file record •/
I• forward space file •/
I• backward space file •/
I• forward space record •/
I• backward space record•/
I• rewind•/
I• rewind and put the drive oftline •/
I• no operation, sets status only •/

I• structure for MTIOCGET ·mag tape get status command•/

struct mtget {
short mt_ type; /•type of magtape device •/

I• the following two registers are grossly device dependent•/
short mt_dsreg; /• "drive status" register•/
short mt_erreg; /• "error" register•/

I• end device-dependent registers •/
short mt_resid; /•residual count •/

4th Berkeley Distribution 27 July 1983 1

MTI0(4) UNIX Programmer's Manual MTI0(4)

FILES

I• the following two are not yet implemented•/
daddr_t mt_fileno; /• file number of current position •/
daddr_t mt_blkno; /• block number of current position •/

I• end not yet implemented•/
};

1•
•Constants for mt_type byte
•I

#defineMT_ISTS OxOl
#defineMT_ISHT Ox02
#defineMT_ISTM Ox03
#defineMT_ISMT Ox04
#defineMT ISUT Ox05
#defineMT-ISCPC ·Ox06
#defineMT)SAR Ox07

I• mag tape io control commands•/
#defineMTIOCTOP IOW(m, 1, struct mtop)
#defineMTIOCGET)OR(m, 2, struct mtget)

#ifndef KERNEL
#define DEFf APE
#endif

"/dev/rmtl2"

I• do a mag tape op •/
I• get tape status •/

Each read or write call reads or writes the next record on the tape. In the write case the record
has the same length as the buff er given. During a read, the record size is passed back as the
number of bytes read, provided it is no greater than the buffer size; if the record is long, an
error is indicated. In raw tape 110 seeks are ignored. A zero byte count is returned when a
tape mark is read, but another read will fetch the first record of the new tape file.

/dev/mt?
/dev/rmt?

SEE ALSO
mt(l), tar(l), tp(l), ht(4), tm(4), ts(4), mt(4), ut(4)

BUGS
The status should be returned in a device independent format.

4th Berkeley Distribution 27 July 1983 2

NULL(4)

NAME
null - data sink

DESCRIPTION

UNIX Programmer's Manual

Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

7th Edition 9 February 1983

NULL (4)

1

PTY(4) UNIX Prosrammer's Manual PTY(4)

NAME
pty - pseudo terminal driver

SYNOPSIS
pseudo-device pty

DESCRIPTION
The pty driver provides support for a device· pair termed a pseudo terminal. A pseudo terminal
is a pair of character devices, a master device and a slave device. The slave device provides
processes an interface identical to that described in tty(4). However, whereas all other devices
which provide the interface described in tty(4) have a hardware device of some sort behind
them, the slave device has, instead, another process manipulating it through the master half of
the pseudo terminal. That is, anything written on the master device is given to the slave device
as input and anything written on the slave device is presented as input on the master device.

In configuring, if no optional "count" is given in the specification, 16 pseudo terminal pairs are
configured.

The fallowing ioctl calls apply only to pseudo terminals:

TIOCSTOP
Stops output to a terminal (e.g. like typing "S). Takes no parameter.

TIOCSTART
Restarts output (stopped by TIOCSTOP or by typing "S). Takes no parameter.

TIOCPKT
Enable/disable packet mode. Packet mode is enabled by specifying (by reference) a
nonzero parameter and disabled by specifying (by reference) a zero parameter. When
applied to the master side of a pseudo terminal, each subsequent read from the terminal
will return data written on the slave part of the pseudo terminal preceded by a zero byte
(symbolically defined as TIOCPKT_DATA), or a single byte reflecting control status
information. In the latter case, the byte is an inclusive·or of zero or more of the bits:

TIOCPKT_FLUSHREAD
whenever the read queue for the terminal is flushed.

TIOCPKT_FLUSHWRITE
whenever the write queue for the terminal is flushed.

TIOCPKT STOP
whenever output to the terminal is stopped a la "S.

TIOCPKT_START
whenever output to the terminal is restarted.

TIOCPKT DOSTOP
whenever t_stopc is "Sand t_startc is '"Q.

TIOCPKT NOSTOP
whenever the start and stop characters are not "SrQ.

This mode is used by rlogin(lC) and rlogind(8C) to implement a remote.echoed, locally
"S/"Q flow.controlled remote login with proper back·flushing of output; it can be used
by other similar prosrams.

TIOCREMOTE
A mode for the master half of a pseudo terminal, independent of TIOCPKT. This
mode causes input to the pseudo terminal to be flow controlled and not input edited
(regardless of the terminal mode). Each write to the control terminal produces a record
boundary for the process reading the terminal. In normal usage, a write of data is like
the data typed as a line on the terminal; a write of 0 bytes is like typing an end·of-fiJe

4th Berkeley Distribution 7 July 1983 1

PTY(4) UNIX Programmer's Manual PTY(4)

character. TIOCREMOTE can be used when doing remote line editing in a window
manager, or whenever flow controlled input is required.

FILES
I dev /pty [p-r] [0-9a-f]
/dev/tty[p-r] [0-9a-t1

DIAGNOSTICS
None.

BUGS

master pseudo terminals
slave pseudo terminals

It is not possible to send an EOT.

4th Berkeley Distribution 7 July 1983 2

TIY(4) UNIX Programmer's Manual TIY (4)

NAME
tty general terminal interface

SYNOPSIS
#include < sgtty.h>

DESCRJPTION
This section describes both a particular special file /dev/tty and the terminal drivers used for
conversational cornpuling.

Line disciplines.

The system provides different line disciplines for controlling communications lines. In this ver­
sion of the system there are three disciplines available:

old The old (standard) terminal driver. This is used when using the standard shell sh(1)
and for compatibility with other standard version 7 UNIX systems.

new A newer terminal driver, with features for job control; this must be used when using
cshO),

.net A line discipline used for networking and loading data into the system over communi­
cations lines. It allows high speed input at very low overhead, and is described in
bk(4). .

Line discipline switching is accomplished with the TIOCSETD ioctl:

int ldisc • LDISC; ioctHfiledes, TJOCSETD, &ldisc);

where LDISC is OTTYDISC for the standard tty driver, NTTYDISC for the new driver and
NETLDISC for the networking discipline. The standard (currently old). tty driver is discipline 0
by convention. The current line discipline can be obtained with the TIOCGETD ioctl. Pending
input is discarded when the line discipline is changed.

All of the low-speed asynchronous communications ports can use any of the available line dis­
ciplines, no matter what hardware is involved. The remainder of this section discusses the
"old" and "new" disciplines.

The control terminal.

When a terminal file is opened, it causes the process to wait until a connection is established.
In practice, user programs seldom open these files; they are opened by inir(8) and become a
user's standard input and output file.

If a process which has no control terminal opens a terminal file, then that terminal file becomes
the control terminal for that process. The control terminal is thereafter inheriteq by a child
process during a fork(2), even if the control terminal is closed.

The file /dev /tty is. in each process, a synonym for a control terminal associated with that pro­
cess. It is useful for programs that wish to be sure of writing messages on the terminal no
matter how output has been redirected. It can also be used for programs that demand a file
name for output, when typed output is desired and it is tiresome to find out which terminal is
currently in use.

Process groups.

Command processors such as csh(1) can arbitrate the terminal between different jobs by placing
related jobs in a single process group and associating this process group with the terminal. A
terminals associated process group may be set using the TIOCSPGRP ioct/(2):

ioctHfildes, TIOCSPGRP, &pgrp)

4th Berkeley Distribution 9 February 1983

TTY(4) UNIX Programmer's Manual TTY(4)

or examined using TIOCGPGRP rather than TIOCSPGRP, returning the current process group
in pgrp. The new terminal driver aids in this arbitration by restricting access to the terminal by
processes which are not in the current process group; see Job access control below.

Modes.

The terminal drivers have three major modes, characterized by the amount of processing on the
input and output characters:

cooked The normal mode. In this mode lines of input are collected and input editing is
done. The edited line is made available when it is completed by a newline or when
an EOT (control-D, hereafter "D) is entered. A carriage return is usually made
synonymous with newline in this mode, and replaced with a newline whenever it is
typed. All driver functions (input editing, interrupt generation, output processing
such as delay generation and tab expansion. etc.) are available in this mode.

CBREAK This mode eliminates the character, word, and line editing input facilities, making
the input character available to the user program as it is typed. Flow control.
literal-next and interrupt processing are still done in this mode. Output processing is
done.

RAW This mode eliminates all input processing and makes all input characters available as
they are typed; no output processing is done either.

The style of input processing can also be very different when the terminal is put in non­
blocking i/o mode; see fcnt/(2). In this case a read(2) from the control terminal will never
block, but rather return an error indication (EWOULDBLOCK) if there is no input available.

A process may also request a SIGIO signal be sent it whenever input is present. To enable this
mode the F ASYNC flag should be set using fcnt/(2).

Input editing.

A UNIX terminal ordinarily operates in full-duplex mode. Characters may be typed at any
time, even while output is occurring, and are only lost when the system's character input
buffers become completely choked, which is rare, or when the user has accumulated the max­
imum allowed number of input characters that have not yet been read by some program.
Currently this limit is 256 characters. In the old terminal driver all the saved characters are
thrown away when the limit is reached, without notice; the new driver simply refuses to accept
any further input, and rings the terminal bell.

Input characters are normally accepted in either even or odd parity with the parity bit being
stripped off before the character is given to the program. By clearing either the EVEN or ODD
bit in the flags word it is possible to have input characters with that parity discarded (see the
Summary below.)

In all of the line disciplines, it is possible to simulate terminal input using the TIOCSTI ioctl.
which takes, as its third argument, the address of a character. The system pretends that this
character was typed on the argument terminal, which must be the control terminal except for
the super-user (this call is not in standard version 7 UNIX).

Input characters are normally echoed by putting them in an output queue as they arrive. This
may be disabled by clearing the ECHO bit in the flags word using the stty(3) call or the
TIOCSETN or TIOCSETP ioctls (see the Summary below).

In cooked mode, terminal input is processed in units of lines. A program attempting to read
will normally be suspended until an entire line has been received (but see the description of
SIGTTIN in Modes above and FIONREAD in Summary below.> No matter how many charac­
ters are requested in the read call, at most one line will be returned. It is not, however, neces­
sary to read a whole line at once; any number of characters may be requested in a read, even
one, without losing information.

4th Berkeley Distribution 9 February 1983 2

TTY (4) UNIX Programmer's Manual TTY (4)

During input, line editing is normally done. with the character '#' logically erasing the last
character typed and the character '@' logically erasing the entire current input line. These are
often reset on crt's, with "H replacing #, and ·u replacing @. These characters never erase
beyond the beginning of the current input line or an "D. These characters may be entered
literally by preceding them with '\ ': in the aid teletype driver both the '\' and the character
entered literally will appear on the screen: in the new driver the '\' will normally disappear.

The drivers normally treat either a carriage return or a newline character as terminating an
input line, replacing the return with a newline and echoing a return and a line feed. If the
CRMOD bit is <::teared in the local mode word then the processing for carriage return is dis·
abled, and it is simply echoed as a return, and does not terminate cooked mode input.

In the new driver there is a literal-next character ·v which can be typed in both cooked and
CBREAK moqe preci:ding any character to prevent its special meaning. This is to be pref erred
to the use of'\' escaping erase and kill characters, but '\' is (at least temporarily) retained with
its old function in the new driver for historical reasons.

The new terminal driver also provides two other editing characters in normal mode. The
word-erase character, normally ·w, erases the preceding word, but not any spaces before it.
For the purposes of ·w. a word is defined as a sequence of non-blank characters, with tabs
counted as blanks. Finally, the reprint character, normally "R, retypes the pending input begin­
ning on a new line. Retyping occurs automatically in cooked mode if characters which would
normally be erased from the screen are fouled by program output.

Input echoing and redisplay

In the old termin!ll driver, nothing special occurs when an erase character is typed: the erase
character is simply echoed. When a kill character is typed it is echoed followed by a new-line
(even if the character is not killing the line. because it was preceded by a '\ '!.)

The new terminal driver has several modes for handling the echoing of terminal input, con­
trolled by bits in a local mode word.

Hardcopy terminals. When a hardcopy terminal is in use. the LPRTERA bit is normally set in
the local mode word. Characters which are logically erased are then printed out backwards pre­
ceded by '\'and followed by '/' in this mode.

Crt terminals. When a crt terminal is in use, the LCRTBS bit is normally set in the local mode
word. The terminal driver then echoes the proper number of erase characters when input is
erased; in the normal case where the erase character is a "H this causes the cursor of the termi­
nal to back up to where it was before the logically erased character was typed. If the input has
become fouled due to interspersed asynchronous output, the input is automatically retyped.

Erasing characters from a err. When a crt terminal is in use, the LCRTERA bit may be set to
cause input to be erased from the screen with a "backspace-space-backspace" sequence when
character or word deleting sequences are µsed. A LCRTKIL bit may be set as well, causing the
input to be erased in this manner on line kill sequences as well.

Echoing of control characters. If the LCTLECH bit is set in the local state word. then non­
printing (control) characters are normally echoed as ·x (for some X> rather than being echoed
unmodified: delete is echoed as "?.

The normal modes for using the new terminal driver on crt terminals are speed dependent. At
speeds Jess than 1200 baud. the LCRTERA and LCRTKILL processing is painfully slow, so
suy(l) normally just sets LCRTBS and LCTLECH: at speeds of 1200 baud or greater all of
these bits are normally set. Srry(l) summarizes these option settings and the use of the new
terminal driver as "newcrt."

4th Berkeley Distribution 9 February 1983 3

TI'Y(4) UNIX Programmer's Manual TTY (4)

Output processing.

When one or more characters are written, they are actually transmitted to the terminal as soon
as previously-written characters have finished typing. (As noted above, input characters are
normally echoed by putting them in the output queue as they arrive.) When a process produces
characters more rapidly than they can be typed, it will be suspended when its output queue
exceeds some limit. When the queue has drained down to some threshold the program is
resumed. Even parity is normally generated on output. The EOT character is not transmitted
in cooked mode to prevent terminals that respond to it from hanging up; programs using raw or
cbreak mode should be careful.

The terminal drivers provide necessary processing for cooked and CBREAK mode output
including delay generation for certain special characters and parity generation. Delays are
available after backspaces "H, form feeds "L, carriage returns "M, tabs ·1 and newlines ·1. The
driver will also optionally expand tabs into spaces, where the tab stops are assumed to be set
every eight columns. These functions are controlled by bits in the tty flags word; see Summary
below.

The terminal drivers provide for mapping between upper and lower case on terminals lacking
tower case, and for other special processing on deficient terminals.

Finally, in the new terminal driver, there is a output flush character, normally ·o, which sets
the LFLUSHO bit in the local mode word, causing subsequent output to be flushed until it is
cleared by a program or more input is typed. This character has effect in both cooked and
CBREAK modes and causes pending input to be retyped if there is any pending input. An ioctl
to flush the characters in the input and output queues TIOCFLUSH, is also available.

Upper case terminals and Hazeltines

If the LCASE bit is set in the tty flags, then all upper-case letters are mapped into the
corresponding lower-case letter. The upper-case letter may be generated by preceding it by '\'.
If the new terminal driver is being used, then upper case letters are preceded by a '\ • when
output. In addition, the following escape sequences can be generated on output and accepted
on input:

for I I I
use \ • \ ! \ - \ (\)

To deal with Hazeltine terminals. which do not understand that - has been made into an ASCll
character, the LTILDE bit may be set in the local mode word when using the new terminal
driver; in this case the character - will be replaced with the character · on output.

Flow control.

There are two charncter<; (the stop character, normally ·s, and the start character. normally "Ql
which cause output to be suspended and resumed respectively. Extra stop characters typed
when output is already stopped have no effect, unless the start and stop characters are made the
same, in which case output resumes.

A bit in the flags word may be set to put the terminal into TANDEM mode. In this mode the
system produces a stop character (default "S) when the input queue is in danger of overflowing.
and a start character (default "Q) when the input has drained sufficiently. This mode is useful
when the terminal is actually another machine that obeys the conventions.

Line control and breaks.

There are several ioctl calls available to control the state of the terminal line. The TIOCSBRK
ioctl will set the break bit in the hardware interface causing a break condition to exist; this can
be cleared (usually after a delay with sleep(3)) by TIOCCBRK. Break conditions in the input
are reflected as a null character in RAW mode or as the interrupt character in cooked or
CBREAK mode. The TIOCCDTR ioctl will clear the data terminal ready condition; it can be

4th Berkeley Distribution 9 February 1983 4

TTY (4) UNIX Programmer's Manual TTY(4)

set again by TIOCSDTR.

When the carrier signal from the dataset drops (usually because the user has hung up his termi­
nal) a SIGHUP hangup signal is sent to the processes in the distinguished process group of the
terminal; this usually causes them to terminate (the SIGHUP can be suppressed by setting the
LNOHANG bit in the local state word of the driver.> Access to the terminal by other processes
is then normally revoked, so any further reads will fail, and programs that read a terminal and
test for end-of-file on their input will terminate appropriately.

When using an ACU it is possible to ask that the phone line be hung up on the last close with
the TIOCHPCL ioctl; this is normally done on the outgoing line.

J nterrupt characters.

There are several characters that generate interrupts in cooked and CBREAK mode; all are sent
the processes in the control group of the terminal, as if a TIOCGPGRP ioctl were done to get
the process group and then a killpg(2) system call were done, except that these characters also
flush pending input and output when typed at a terminal Ui 'la TIOCFLUSH). The characters
shown here are the defaults; the field names in the structures (given below) are also shown.
The characters may be changed, although this is not often done. . ')

'\

·y

t_intrc <Delete) generates a SIGINT signal. This is the normal way to stop a process
which is no longer interesting, or to regain control in an interactive program.

t_quitc (FS) generates a SIGQUIT signal. This is used to cause a program to terminate
and produce a core image, if possible, in the file core in the current directory.

t_suspc (EM) generates a SIGTSTP signal. which is used to suspend the current pro­
cess group.

t_dsuspc (SUB) generates a SIGTSTP signal as ·z does, but the signal is sent when a
program attempts to read the ·y, rather than when it is typed.

Job access control.

When using the new terminal driver, if a process which is not in the distinguished process
group of its control terminal attempts to read from that terminal its process group is sent a
SIGTTIN signal. This signal normally causes the members of that process group to stop. If,
however, the process is ignoring SIGTTIN, has SIGTTIN blocked, is an orphan process, or is in
the middle of process creation using vfork(2)), it is instead returned an end-of-file. (An orphan
process is a process whose parent has exited and has been inherited by the inir(8) process.>
Under older UNIX systems these processes would typically have had their input files reset to
/dev/null, so this is a compatible change.

When using the new terminal driver with the LTOSTOP bit set in the local modes, a process is
prohibited from writing on its control terminal if it is not in the distinguished process group for
that terminal. Processes which are holding or ignoring SIGTTOU signals, which are orphans, or
which are in the middle of a vfork(2) are excepted and allowed to produce output.

Summary of modes.

Unfortunately, due to the evolution of the terminal driver, there are 4 different structures
which contain various portions of the driver data. The first of these (sgttyb) contains that part
of the information largely common between version 6 and version 7 UNIX systems. The
second contains additional control characters added in version 7. The third is a word of local
state peculiar to the new terminal driver, and the fourth is another structure of special charac­
ters added for the new driver. In the future a single structure may be made available to pro­
grams which need to access all this information; most programs need not concern themselves
with all this state.

4th Berkeley Distribution 9 February 1983 5

ITY (4) UNIX Programmer's Manual

Basic modes: sgtty.

The basic ioct!s use the structure defined in < sgtry.h>:

struct sgttyb {
char sg_ispeed;
char sg_ospeed;
char sg_erase;
char sg_kill;
short sg_ftags;

} ;

ITY C 4 >

The sg_ispeed and sg_ospeed fields describe the input and output speeds of the device according
to the following table, which corresponds to the DEC DH-11 interface. If other hardware is
used, impossible speed changes are ignored. Symbolic values in the table are as defined in
< sgtry.h>.

BO 0 (hang up dataphone)
850 1 50 baud
B75 2 75 baud
B 110 3 110 baud
Bl34 4 134.5 baud
8150 5 150 baud
8200 6 200 baud
B300 7 300 baud
8600 8 600 baud
81200 9 1200 baud
B 1800 10 1800 baud
82400 11 2400 baud
84800 12 4800 baud
89600 13 9600 baud
EXTA 14 External A
EXTB 15 External B

In the current configuration, only 110, 150, 300 and 1200 baud are really supported on dial-up
lines. Code conversion and line control required for IBM 2741 's (134.5 baud) must be imple­
mented by the user's program. The half-duplex line discipline required for the 202 .dataset
0 200 baud) is not supplied; full-duplex 212 datasets work fine.

The sg_erase and sg_kilf fields of the argument structure specify the erase and kill characters
respectively. (Defaults are #and @.)

The sgjfags field of the argument structure contains several bits that determine the system ·s
treatment of the terminal:

ALLDELA Y 0177400 Delay algorithm selection
BSDELAY 0100000 Select backspace delays (not implemented):
BSO 0
BSl 0100000
VTDELA Y 0040000 Select form-feed and vertical-tab delays:
FFO 0
FFl 0100000
CR DELAY 0030000 Select carriage-return delays:
CRO O
CRI 0010000
CR2 0020000
CR3 0030000

4th Berkeley Distribution 9 February 1983 6

TIY (4)

TBDELAY
TABO
TABl
TAB2
XTABS
NLDELAY
NLO
NLI
NL2
NU
EVE NP
ODDP
RAW
CR MOD
ECHO
LC ASE
CBREAK
TANDEM

UNIX Programmer's Manual

0006000 Select tab delays:
0
0001000
0004000
0006000
0001400 Select new-line delays:
0
0000400
0001000
0001400
0000200 Even parity allowed on input (most terminals)
0000100 Odd parity allowed on input
0000040 Raw mode: wake up on all characters. 8-bit interface
0000020 Map CR into LF: echo LF or CR as CR-LF
0000010 Echo (full duplex)
0000004 Map upper case to lower on input
0000002 Return each character as soon as typed
0000001 Automatic flow control

TIY (4)

The delay bits specify how long transmission stops to allow for mechanical or other movement
when certain characters are sent to the terminal. In all cases a value of 0 indicates no delay.

Backspace delays are currently ignored but might be used for Terminet 300's.

If a form-feed/vertical tab delay is specified, it lasts for about 2 seconds.

Carriage-return delay type I lasts about .08 seconds and is suitable for the Terminet 300. Delay
type 2 lasts about .16 seconds and is suitable for the VTOS and the TI 700. Delay type 3 is suit­
able for the concept-100 and pads lines to be at least 9 characters at 9600 baud.

New-line delay type 1 is dependent on the current column and is tuned for Teletype model
37's. Type 2 is useful for the VTOS and is about . l 0 seconds. Type 3 is unimplemented and is
0.

Tab delay type I is dependent on the amount of movement and is tuned to the Teletype model
37. Type 3, called XT ABS, is not a delay at all but causes tabs to be replaced by the appropri­
ate number of spaces on output.

Input characters with the wrong parity, as determined by bits 200 and 100, are ignored in
cooked and CBREAK mode.

RAW disables all processing save output flushing with LFLUSHO: full 8 bits of input are given
as soon as it is available; all 8 bits are passed on output. A break condition in the input is
reported as a null character. If the input queue overflows in raw mode it is discarded: this
applies to both new and old drivers.

CRMOD causes input carriage returns to be turned into new-lines: input of either CR or LF
causes LF-CR both to be echoed (for terminals with a new-line function).

CBREAK is a sort of half-cooked <rare?) mode. Programs can read each character as soon as
typed, instead of waiting for a full line: all processing is done except the input editing: character
and word erase and line kill, input reprint, and the special treatment of\ or EOT are disabled.

TANDEM mode causes the system to produce a stop character (default "S) whenever the input
queue is in danger of overflowing, and a start character (default "Q) when the input queue has
drained sufficiently. It is useful for flow control when the 'terminal' is really another computer
which understands the conventions.

4th Berkeley Distribution 9 February 1983 7

ITY (4) UNIX Programmer's Manual ITY (4 >

Basic ioctls

In addition to the TIOCSETD and TIOCGETD disciplines discussed in Line disciplines above.
a large number of other ioct!(2) calls apply to terminals, and have the general form:

#include < sgtty.h>

ioctl<fildes, code, arg)
struct sgttyb •arg;

The applicable codes are:

TIOCGETP Fetch the basic parameters associated with the terminal, and store in the
pointed-to sgttyb structure.

TIOCSETP Set the parameters according to the pointed-to sgttyb structure. The interface
delays until output is quiescent, then throws away any unread characters.
before changing the modes.

TIOCSETN Set the parameters like TIOCSETP but do not delay or flush input. Input is
not preserved. however, when changing to or from RAW.

With the following codes the arg is ignored.

TIOCEXCL Set "exclusive-use" mode: no further opens are permitted until the file has
been closed.

TIOCNXCL Turn off "exclusive-use" mode.

TIOCHPCL When the file is closed for the last time. hang up the terminal. This is useful
when the line is associated with an ACU used to place outgoing calls.

TIOCFLUSH All characters waiting in input or output queues are flushed.

The remaining calls are not available in vanilla version 7 UNIX. In cases where arguments are
required, they are described; arg should otherwise be given as 0.

TIOCSTI

TIOCSBRK

TIOCCBRK

TIOCSDTR

TIOCCDTR

TIOCGPGRP

TIOCSPGRP

FIONREAD

Tchars

the argument is the address of a character which the system pretends was typed
on the terminal.

the break bit is set in the terminal.

the break bit is cleared.

data terminal ready is set.

data terminal ready is cleared.

arg is the address of a word into which is placed the process group number of
the control terminal.

arg i-, a word (typically a process id) which becomes the process group for the
control terminal.

returns in the long integer whose address is arg the number of immediately
readable characters from the argument unit. This works for files, pipes. and
terminals, but not (yet) for multiplexed channels.

The second structure associated with each terminal specifies characters that are special in both
the old and new terminal interfaces: The following structure 1s defined in < syslioctl.h>, which
is automatically included in < sgtry.h>:

struct tchars {
char
char

t_intrc;
t_quitc;

4th Berkeley Distribution

/• interrupt •I
/• quit •/

9 February 1983 8

TIY (4) UNIX Programmer's Manual TTY (4)

} ;

char
char
char
char

t_startc;
t_stopc;
t_eofc;
t_brkc;

I• start output•/
/• stop output•/
/• end-of-file •I
/• input delimiter (like nD •/

The default values for these characters are ·?. "\. "Q, ·s. ·o, and -1. A character value of
-1 eliminates the effect of that character. The t_brkc character, by default -1. acts like a
new-line in that it terminates a 'line,' is echoed, and is passed to the program. The 'stop' and
'start' characters may be the same, to produce a toggle effect. It is probably counterproductive
to make other special characters (including erase and kill) identical. The applicable ioctl calls
are:

TIOCGETC Get the special characters and put them in the specified structure.

TIOCSETC Set the special characters to those given in the structure.

Local mode

The third structure associated with each terminal is a local mode word; except for the
LNOHANG bit, this word is interpreted only when the new driver is in use. The bits of the
local mode word are:

LCRTBS
LPRTERA
LCRTERA
LTILDE
LMOMBUF
LLITOUT
LTOSTOP
LFLUSHO
LNOHANG
LETXACK
LCRTKIL
LINTRUP
LCTLECH
LPENDIN
LDECCTQ

000001 Backspace on erase rather than echoing erase
000002 Printing terminal erase mode
000004 Erase character echoes as backspace-space-backspace
000010 Convert - to ' on output (for Hazeltine terminals)
000020 Stop/start output when carrier drops
000040 Suppress output translations
000100 Send SIGTTOU for background output
000200 Output is being flushed
000400 Don't send hangup when carrier drops
001000 Diablo style buffer hacking (unimplemented)
002000 BS-space-BS erase entire line on line kill
004000 Generate interrupt SIGTINT when input ready to read
010000 Echo input control chars as ·x. delete as"?
020000 Retype pending input at next read or input character
040000 Only "Q restarts output after ·s. like DEC systems

The applicable ioctl functions are:

TIOCLBIS

TIOCLBIC

TIOCLSET

TIOCLGET

arg is the address of a mask which is the bits to be set in the local mode word.

arg is the address of a mask of bits to be cleared in the local mode word.

arg is the address of a mask to be placed in the local mode word.

arg is the address of a word into which the current mask is placed.

Local special chars

The final structure associated with each terminal is the ltchars structure which defines interrupt
characters for the new terminal driver. Its structure is:

struct ltchars (
char
char
char
char

t_suspc;
t_dsuspc;
t_rprntc;
t_flushc;

4th Berkeley Distribution

/• stop process signal •I
/• delayed stop process signal •I
/• reprint line •I
I• flush output (toggles) •I

9 February 1983 9

TIY(4) UNIX Programmer's Manual TIY(4)

FILES

char t_ wera~c;
char t_lnextc;

/• word erase•/
/• literal next character •I

The default values for these characters are ·z. ·y, "R, ·o. ·w. and ·v. A vaiue of - I disables
the character.

The applicable ioct/functions are:

TIOCSL TC args is the address of a ltchars structure which defines the new local special charac­
ters.

TIOCGL TC args is the address of a ltchars structure into which is placed the current set of
local special characters.

/dev/tty
/dev/ttY*
/dev/console

SEE ALSO
cshO), stty0), ioctH2>. sigvec(2), stty(JC), getty(8), init(8)

BUGS
Half-duplex terminals are not supported.

4th Berkeley Distribution 9 February 1983 10

VA (4) UNIX Programmer's Manual VA (4)

NAME
va - Benson-Varian interface

SYNOPSIS
~ntroller vaO at ubaO csr 0164000 vector vaintr
disk vzO at vaO drive 0

DESCRIPTION

FILES

(NOTE: the configuration description, while counter-intuitive, is actually as shown abo,e.>

The Benson-Varian printer/plotter in normally used with the programs vpr(l), vprimO> or
vtroff(l). This description is designed for those who wish to drive the Benson-Varian directly.

In print mode, the Benson-Varian uses a modified ASCII character set. Most control characters
print various non-ASCII graphics such as daggers, sigmas, copyright symbols. etc. Only LF and
FF are used as format effectors. LF acts as a newline, advancing to the beginning of the next
line, and FF advances to the top of the next page.

In plot mode, the Benson-Varian prints one raster line at a time. An entire raster line of bits
(2112 bits = 264 bytes) is sent, and then the Benson-Varian advances to the next raster line.

Note: The Benson-Varian must be sent an even number of bytes. If an odd number is sent,
the last byte will be lost. Nulls can be used in print mode to pad to an even number of bytes.

To use the Benson-Varian yourself. you must realize that you cannot open the device. /del'/l'aO
if there is a daemon active. You can see if there is an active daemon by doing a lpq(l) and
seeing if there are any files being printed.

To set the Benson-Varian into plot mode include the file < syslvcmd.h> and use the following
ioct/(2) call

ioctHfileno(va), VSETSTATE, plotmd);

where plotmd is defined to be

int plotmdU - I VPLOT. 0, O l:
and va is the result of a call to /open on stdio. When you finish using the Benson-Varian in plot
mode you should advance to a new page by sending it a FF after putting it back into print
mode, i.e. by

int prtmd[] -= { VPRINT. 0, 0 l:

ffiush(va);
ioctHfileno(va), VSETSTATE. prtmd):
write(fileno(va). "\f\0", 2>;

N.B.: If you use thf" ct~iridard 1/0 library with the Benson-Varian you must do

setbuf (vp, vpbuf>;

where vpbufis declared

char vpbuf[BUFSIZ];

otherwise the standard 1/0 library. thinking that the Benson-Varian is a terminal (since it is a
character special file) will not adequately buffer the data you are sending to the Benson-Varian.
This will cause it to run extremely slowly and tend to grind the system to a halt.

/dev/vaO

SEE ALSO
vfont(S), lpr(l), lpd(8), vtroff(l), vp(4)

4th Berkeley Distribution 27 March 1983

VA(4) UNIX Programmer's Manual VA (4)

DIAGNOSTICS

BUGS

The following error numbers are significant at the time the device is opened.

[ENXIO] The device is already in use.

[EIO] The device is offiine.

The following message may be printed on the console.

vaO/od: npr timeout. The device was not able to get data from the UNIBUS within the timeout
period, most likely because some other device was hogging the bus. (But see BUGS below>.

The l's (one's) and l's (lower-case el's) in the Benson-Varian's standard character set look very
similar~ caution is advised.

The interface hardware is rumored to have problems which can play havoc with the UNIBUS.
We have intermittent minor problems on the UNIBUS where our va lives, but haven't ever
been able to pin them down completely.

4th Berkeley Distribution 27 March 1983 2

VP(4) UNIX Programmer's Manual VP(4)

NAME
vp - Versatec interface

SYNOPSIS
device vpO at ubaO csr 0177510 vector vpintr vpintr

DESCRIPTION

FILES

The Versatec printer/plotter is normally used with the programs vpr(l). vprinrO) or l'frQ/!(1).

This description is designed for those who wish to drive the Versatec directly.

To use the Versatec yourself, you must realize that you cannot open the device. ldel'!l'pO if
there is a daemon active. You can see if there is a daemon active by doing a /pq(l), and seeing
if there are any files being sent.

To set the Versatec.into plot mode you should include < syslvcmd.h> and use the ioct/(2) call

ioctl(fileno(vp), VSETSTATE, plotmd):

where plotmd is defined to be

int plotmd[] - I VPLOT, 0, 0):

and vp is the result of a call to }open on stdio. When you finish using the Versatec in plot mode
you should eject paper by sending it a EQT after putting it back into print mode, i.e. by

int prtmd[] == I VPRINT, 0, 0 l:

ffiush(vp);
ioctl(fileno(vp), VSETSTATE, prtmd);
write{fileno(vp), "\04", I):

N.B.: If you use the standard 1/0 library with the Versatec you must do

setbuf(vp, vpbuf):

where vpbufis declared

char vpbuf[BUFSIZ];

otherwise the standard 1/0 library, thinking that the Versatec is a terminal (since it is a charac­
ter special file) will not adequately buffer the data you are sending to the Versatec. This will
cause it to run extremely slowly and tends to grind the system to a halt.

/dev/vpO

SEE ALSO
vfont(5), lpr(l), lpd{8), vtrotf(l), va(4)

DIAGNOSTICS

BUGS

The following error numbers are significant at the time the device is opened.

[ENXIO] The device is already in use.

[EIO] The device is offiine.

The configuration part of the driver assumes that the device is set up to vector print mode
through 0174 and plot mode through 0200. As the configuration program can't be sure which
vector interrupted at boot time, we specify that it has two interrupt vectors, and if an interrupt
comes through 0200 it is reset to 0174. This is safe for devices with one or two vectors at
these two addresses. Other configurations with 2 vectors may require changes in the driver.

4th Berkeley Distribution 27 July 1983

A.OUT(S) UNIX Programmer's Manual A.OUT (S)

NAME
a.out - assembler and link editor output

SYNOPSIS
#include < a.out.h >

DESCRIPTION
A.out is the output file of the assembler as(l) and the link editor /d(l). Both programs make
a.out executable if there were no errors and no unresolved external references. Layout infor­
mation as given in the include file for the V AX-11 is:

I•
• Header prepended to each a.out file.
•I

struct exec {

};

long
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

a_magic;
a_ text;
a_data;
a_bss;
a_syms;
a_entry;
a_trsize;
a_drsize;

#define OMAGIC 0407
#define NMAGIC 0410
#define ZMAGIC 0413

I•

I• magic number •/
I• size of text segment•/
I• size of initialized data •/
I• size of uninitialized data•/
I• size ofsymbol table •/
I• entry point •/
I• size of text relocation •/
I• size of data relocation •/

I• old impure format•/
I• read-only text •/
I• demand load format •/

• Macros which take exec structures as arguments and tell whether
• the file has a reasonable magic number or offsets to textjsymbolslstrings.
•I

#define N BADMAG(x) \
(((x).a_magic)!-OMAGIC && ((x).a_magic)!-NMAGIC && ((x).a_magic)!-ZMAGIC)

#define N TXTOFF(x) \
((x).a_magic- -ZMAGIC ? 1024 : sizeof (struct exec})

#define N SYMOFF(x) \
(N TXTOFF(x) + (x).a text+(x).a data+ (x).a trsize+(x).a drsize)

#define N STROFF(x) \ - - - -
(N_SYMOFF(x) + (x).a_syms)

The file has five sections: a header, the program text and data, relocation information, a symbol
table and a string table (in that order). The last three may be omitted if the program was
loaded with the •-s' option of Id or if the symbols and relocation have been removed by
strip(l).

In the header the sizes of each section are given in bytes. The size of the header is not
included in any of the other sizes.

When an a.out file is executed, three logical segments are set up: the text segment, the data
segment (with uninitialized data, which starts off as all 0, following initialized), and a stack.
The text segment begins at 0 in the core image; the header is not loaded. If the magic number
in the header is OMAGIC (0407), it indicates that the text segment is not to be write-protected
and shared, so the data segment is immediately contiguous with the text segment. This is the

4th Berkeley Distribution 25 February 1983 1

A.OUT(S) UNIX Programmer's Manual A.OUT(S)

oldest kind of executable program and is rarely used. If the magic number is NMAGIC (0410)
or ZMAGIC (0413), the data segment begins at the first 0 mod 1024 byte boundary following
the text segment, and the text segment is not writable by the program; if other processes are
executing the same file, they will share the text segment. For ZMAGIC format, the text seg­
ment begins at a 0 mod 1024 byte boundary in the a. out file, the remaining bytes after the
header in the first block are reserved and should be zero. In this case the text and data sizes
must both be multiples of 1024 bytes, and the pages of the file will be brought into the running
image as needed, and not pre-loaded as with the other formats. This is especially suitable for
very large programs and is the default format produced by ld(l).

The stack will occupy the highest possible locations in the core image: growing downwards from
Ox7ffff000. The stack is automatically extended as required. The data segment is only
extended as requested by brk(2).

After the header in the file follow the text, data, text relocation data relocation, symbol table
and string table in that order. The text begins at the byte 1024 in the file for ZMAGIC format
or just after the header for the other formats. The N_TXTOFF macro returns this absolute file
position when given the name of an exec structure as argument. The data segment is contigu­
ous with the text and immediately followed by the text relocation and then the data relocation
information. The symbol table follows all this; its position is computed by the N_SYMOFF
macro. Finally, the string table immediately follows the symbol table at a position which can be
gotten easily using N_STROFF. The first 4 bytes of the string table are not used for string
storage, but rather contain the size of the string table; this size INCLUDES the 4 bytes, the
minimum string table size is thus 4.

The layout of a symbol table entry and the principal flag values that distinguish symbol types
are given in the include file as follows:

I•
• Format of a symbol table entry.
•I

struct nlist {
union {

char
long

} n un;

•n_name; /• for use when in-core •/
n_strx; /• index into file string table •/

unsigned char n_type; I• type flag, i.e. N_TEXT etc; see below •/
char n_other;
short n_desc; I• see <stab.h> •/
unsigned n_ value; I• value of this symbol (or offset) •/

};
#define n_hash n_desc /• used internally by Id •I

I•
• Simple values for n_type.
•I

#define N_UNDF
#define N_ABS
#define N _TEXT
#define N_DATA
#define N _BSS
#define N _COMM
#define N_FN

#define N_EXT

4th Berkeley Distribution

OxO
Ox2
Ox4
Ox6
Ox8
Ox12
Oxlf

01

I• undefined •I
I• absolute •/
I• text•/
I• data•/
I• bss •/
I• common (internal to Id) •/
I• file name symbol •/

I• external bit, or'ed in •/

25 February 1983 2

A.OUT(5) UNIX Programmer's Manual A.OUT(S)

#define N_TYPE Ox le I• mask for all the type bits •/

I•
• Other permanent symbol table entries have some of the N _STAB bits set.
• These are given in < stab.h >
•I

#define N_STAB OxeO /•if any of these bits set, don't discard•/

I•
• Format for namelist values.
•I

#define N _FORMAT "%08x"

In the a.out file a symbol's n_un.n_strx field gives an index into the string table. A n_strx
value of 0 indicates that no name is associated with a particular symbol table entry. The field
n un.n name can be used to ref er to the symbol name only if the program sets this up using
n:strx md appropriate data from the string table.

If a symbol's type is undefined external, and the value field is non-zero, the symbol is inter­
preted by the loader Id as the name of a common region whose size is indicated by the value of
the symbol.

The value of a byte in the text or data which is not a portion of a reference to an undefined
external symbol is exactly that value which will appear in memory when the file is executed. If
a byte in the text or data involves a reference to an undefined external symbol, as indicated by
the relocation information, then the value stored in the file is an offset from the associated
external symbol. When the file is processed by the link editor and the external symbol
becomes defined, the value of the symbol will be added to the bytes in the file.

If relocation information is present, it amounts to eight bytes per relocatable datum as in the
following structure:

I•
• Format of a relocation datum.
•I

struct relocation_info {
int r_address;
unsigned r_symbolnum:24,

r_pcrel:l,
r_length:2,
r _extern: l,
:4;

I• address which is relocated •/
I• local symbol ordinal •/
I• was relocated pc relative already •/
I• O-byte, I-word, 2-long •/
I• does not include value of sym referenced •/
I• nothing, yet •/

There is no relocation information if a trsize+a drsize- -o. If r extern is 0, then
r_symbolnum is actually a n_type for the relocation (i.e. N_TEXT meaning relative to segment
text origin.)

SEE ALSO

BUGS

adb(l), as(l), ld(l), nrn(l), dbx(l), stab(S), strip(l)

Not having the size of the string table in the header is a loss, but expanding the header size
would have meant stripped executable file incompatibility, and we couldn't hack this just now.

4th Berkeley Distribution 25 February 1983 3

AR(5) UNIX Programmer's Manual AR(5)

NAME
ar - archive (library) file format

SYNOPSIS
#include < ar.h>

DESCRIP'II ON
The archive command ar combines several files into one. Archives are used mainly as libraries
to be searched by the link-editor Id.

A file produced by ar has a magic string at the start, followed by the constituent files, each pre­
ceded by a file header. The magic number and header layout as described in the include file
are:

#defineARMAG 0177545
#define SARMAG 8

#define ARFMAG "\n"

struct ar_hdr {
char
long
char
char
short
long

};

ar_name[14];
ar_date;
ar_uid;
ar_gid;
ar_mode;
ar_size;

The name is a blank-padded string. The arJmag field contains ARFMAG to help verify the
presence of a header. The other fields are left-adjusted, blank-padded numbers. They are
decimal except for ar_mode, which is octal. The date is the modification date of the file at the
time of its insertion into the archive.

Each file begins on a even (0 mod 2) boundary; a new-line is inserted between files if neces­
sary. Nevertheless the size given reflects the actual size of the file exclusive of padding.

There is no provision for empty areas in an archive file.

SEE ALSO

BUGS

ar(l), ld(l), nm(l)

File names lose trailing blanks. Most software dealing with archives takes even an included
blank as a name terminator.

7th Edition 15 January 1983 1

A.OUT(S) UNIX Programmer's Manual A.OUT (5)

#define N_TYPE Oxle I• mask for all the type bits •/

I•
•Other permanent symbol table entries have some of the N_STAB bits set.
•These are given in <stab.h>
•I

#define N_STAB OxeO /• if any of these bits set, don't discard•/

I•
• Format for namelist values.
•I

#define N_FORMAT "%08x"

In the a.out file a symbol's n_un.n_strx field gives an index into the string table. A n_strx
value of 0 indicates that no name is associated with a particular symbol table entry. The field
n_un.n_name can be used to refer to the symbol name only if the program sets this up using
n_strx and appropriate data from the string table.

If a symbol's type is undefined external, and the value field is non-zero, the symbol is inter­
preted by the loader id as the name of a common region whose size is indicated by the value of
the symbol.

The value of a byte in the text or data which is not a portion of a reference to an undefined
external symbol is exactly that value which will appear in memory when the file is executed. If
a byte in the text or data involves a reference to an undefined external symbol, as indicated by
the relocation information, then the value stored in the file is an off set from the associated
external symbol. When the file is processed by the link editor and the external symbol
becomes defined, the value of the symbol will be added to the bytes in the file.

If relocation information is present, it amounts to eight bytes per relocatable datum as in the
following structure:

I•
• Format of a relocation datum.
•I

struct relocation_info {

};

int r_address;
unsigned r_symbolnum:24,

r_pcrel:l,
r_length:2,
r_extem:l,
:4;

I• address which is relocated •/
I• local symbol ordinal •/
I• was relocated pc relative already •/
I• O-byte, 1-word, 2-Iong •/
I• does not include value of sym referenced •/
I• nothing, yet •/

There is no relocation information if a trsize+a drsize- -o. If r extern is 0, then
r_syrnbolnurn is actually a n_type for the relocation (i.e. N_TEXT meaning relative to segment
text origin.)

SEE ALSO

BUGS

adb(l), as(l), ld(l), nm(l), dbx(l), stab(5), strip(!)

Not having the size of the string table in the header is a loss, but expanding the header size
would have meant stripped executable file incompatibility, and we couldn't hack this just now.

4th Berkeley Distribution 25 February 1983 3

AR(5) UNIX Programmer's Manual AR(5)

NAME
ar - archive (library) file format

SYNOPSIS
#include < ar.h>

DESCRIPTION
The archive command ar combines several files into one. Archives are used mainly as libraries
to be searched by the link-editor Id.

A file produced by ar has a magic string at the start, followed by the constituent files, each pre­
ceded by a file header. The magic number and header layout as described in the include file
are:

#defineARMAG 0177545
#define SARMAG 8

#define ARFMAG "\n"

struct ar_hdr {
char
long
char
char
short
long

};

ar_name[14];
ar_date;
ar_uid;
ar__gid;
ar_mode;
ar_size;

The name is a blank-padded string. The arJmag field contains ARFMAG to help verify the
presence of a header. The other fields are left-adjusted, blank-padded numbers. They are
decimal except for ar_mode, which is octal. The date is the modification date of the file at the
time of its insertion into the archive.

Each file begins on a even (0 mod 2) boundary; a new-line is inserted between files if neces­
sary. Nevertheless the size given reflects the actual size of the file exclusive of padding.

There is no provision for empty areas in an archive file.

SEE ALSO

BUGS

ar(l), ld(l), nm(l)

File names lose trailing blanks. Most software dealing with archives takes even an included
blank as a name terminator.

7th Edition 15 January 1983 1

CORE (5) UNIX Programmer's Manual CORE(5)

NAME
core - format of memory image file

SYNOPSIS
#include < machine/param.h>

DESCRIPTION
The UNIX System writes out a memory image of a terminated process when any of various
errors occur. See sigvec(2) for the list of reasons; the most common are memory violations.
illegal instructions, bus errors, and user-generated quit signals. The memory image is called
'core' and is written in the process's working directory (provided it can be; normal access con­
trols apply).

The maximum size of a core file is limited by setrlimit(2). Files which would be larger than the
limit are not created.

The core file consists of the u. area, whose size (in pages) is defined by the UPAG ES manifest
in the < machine/param.h> file. The u. area starts with a user structure as given in
< sysluser.h>. The remainder of the core file consists first of the data pages and then the stack
pages of the process image. The amount of data space image in the core file is given (in pages>
by the variable u_d~ize in the u. area. The amount of stack image in the core file is given (in
pages) by the variable u_ssize in the u. area.

In general the debugger adbO) is sufficient to deal with core images.

SEE ALSO
adb(l), dbxO), sigvec(2), setrlimit(2)

7th Edition 27 July 1983

DIR(5) UNIX Programmer's Manual DIR(5)

NAME
dir - format of directories

SYNOPSIS
#include < sys/types.h >
#Include <sys/dlr.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry; see
ft(5). The structure of a directory entry as given in the include file is:

I•
• A directory consists of some number of blocks of DIRBLKSIZ
•bytes, where DIRBLKSIZ is chosen such that it can be transferred
• to disk in a single atomic operation (e.g. 512 bytes on most machines) .
•
• Each DIRBLKSIZ byte block contains some number of directory entry
• structures, which are of variable length. Each directory entry has
• a struct direct at the front of it, containing its inode number,
•the length of the entry, and the length of the name contained in
•the entry. These are followed by the name padded to a 4 byte boundary
• with null bytes. All names are guaranteed null terminated.
•The maximum length of a name in a directory is MAXNAMLEN .
•
•The macro DIRSIZ(dp) gives the amount of space required to represent
• a directory entry. Free space in a directory is represented by
•entries which have dp->d_reclen > DIRSIZ(dp). All DIRBLKSIZ bytes
• in a directory block are claimed by the directory entries. This
• usually results in the last entry in a directory having a large
• dp·>d_reclen. When entries are deleted from a directory, the
• space is returned to the previous entry in the same directory
•block by increasing its dp·>d_reclen. If the first entry of
•a directory block is free, then its dp->d_ino is set to 0.
• Entries other than the first in a directory do not normally have
• dp·>d_ino set to 0.
•I

#ifdef KERNEL
#define DIRBLKSIZ DEV _BSIZE
#else
#define DIRBLKSIZ 512
#endif

#define MAXNAMLEN 255

I•
• The DIRSIZ macro gives the minimum record length which will hold
• the directory entry. This requires the amount of space in struct direct
• without the d_name field, plus enough space for the name with a terminating
•null byte (dp->d_namlen+l), rounded up to a 4 byte boundary.
•I

#undef DIRSIZ
#define DIRSIZ(dp) \

((sizeof (struct direct)· (MAXNAMLEN+l)) + (((dp)->d narnlen+l + 3) &· 3))

4th Berkeley Distribution 15 January 1983 1

DIR (S) UNIX Programmer's Manual

struct direct {
u_lona d_ino;
short d_reclen;
short d_namlen;
char d_name[MAXNAMLEN + l];
I• typically shorter•/

};

struct _ dirdesc {
int
long
long
char

};

dd_fd;
dd_loc;
dd_size;
dd_buf[DIRBLKSIZ];

DIR (5)

By convention. the first two entries in each directory are for'.' and' . .'. The first is an entry for
the directory itself. The second is for the parent directory. The meaning of' .. ' is modified for
the root directory of the master file system ("/"),where' . .' bas the same meaning as'.'.

SEE ALSO
fs(S)

4th Berkeley Distribution 15 January 1983 2

DISKTAB (S) UNIX Programmer's Manual

NAME
disktab - disk description file

SYNOPSIS
#include <dlsktab.h>

DESCRIPTION

DISKTAB (S)

Disktab is a simple date base which describes disk geometries and disk partition characteristics.
The format is patterned after the termcap(S) terminal data base. Entries in disktab consist of a
number of':' separated fields. The first entry for each disk gives the names which are known
for the disk, separated by ·r characters. The last name given should be a long name fully iden­
tifying the disk.

The following list indicates the normal values stored for each disk entry.

Name Type Description
ns num Number of sectors per track
nt num Number of tracks per cylinder
nc num Total number of cylinders on the disk
ba num Block size for partition 'a' (bytes)
bd num Block size for partition 'd' (bytes)
be num Block size for partition 'e' (bytes)
bf num Block size for partition •r (bytes)
bg num Block size for partition 'g' (bytes)
bh num Block size for partition 'h' (bytes)
fa num Fragment size for partition 'a' (bytes)
fd num Fragment size for partition 'd' (bytes)
fe num Fragment size for partition 'e' (bytes)
tr num Fragment size for partition •r (bytes)
fg num Fragment size for partition 'g' (bytes)
flt num Fragment size for partition 'h' (bytes)
pa num Size of partition 'a' in sectors
pb num Size of partition 'b' in sectors
pc num Size of partition 'c' in sectors
pd num Size of partition 'd' in sectors
pe num Size of partition 'e' in sectors
pf num Size of partition •r in sectors
pg num Size of partition 'g' in sectors
ph num Size of partition 'h' in sectors
se num Sector size in bytes
ty str Type of disk (e.g. removable, winchester)

Disktab entries may be automatically generated with the diskpart program.

FILES
/etc/disktab

SEE ALSO
newfs(8), diskpart(8)

BUGS
This file shouldn't exist, the information should be stored on each disk pack.

4th Berkeley Distribution 2 March 1983 1

DUMP (5) UNIX Programmer's Manual

NAME
dump, dumpdates - incremental dump format

SYNOPSIS
#include < sys/types.h>
#include < sys/inode.h>
#include <dumprestor.h>

DESCRIPTION
Tapes used by dumpand restore(8) contain:

a header record
two groups of bit map records
a group of records describing directories
a group of records describing files

DUMP (5 >

The format of the header record and of the first record of each description as given in the
include file < dumprestor. h> is:

#define NTREC 10
#define MLEN 16
#define MSIZ 4096

#define TS TAPE
#define T(INODE
#define TS_BITS
#define TS ADDR
#define TS-END
#define TS-CLRI
#define MAGIC
#define CHECKSUM

struct spcl (
int
time_t
time_t
int
daddr_t
ino_t
int
int

1
2
3
4
5
6
(int) 60011
Cint) 84446

c_type;
c_date;
c_ddate;
c_volume;
c_tapea;
c_inumber;
c_magic;
c_checksum;

struct di node c_dinode;

l spcl;

struct

l;

int
char

idates (
char
char
time_t

c count;
c=addr[BSIZEJ;

id_name[l6];
id_incno;
id_ddate;

#defineDUMPOUTFMT "(Yo- l 6s %c %s"

#defineDUMPINFMT "%16s %c %["\n]\n"

I• for printf •/
I• name, incno, ctime(date) •/
I• inverse for scanf •/

4th Berkeley Distribution 18 July 1983

DUMP (5) UNIX Programmer's Manual DUMP (5 >

FILES

NTREC is the number of 1024 byte records in a physical tape block. MLEN is the number of
bits in a bit map word. MSIZ is the number of bit map words.

The TS_ entries are used in the c_rype field to indicate what sort of header this is. The types
and their meanings are as follows:

TS_TAPE Tape volume label
TS_INODE A file or directory follows. The c dinode field is a copy of the disk inode and

contains bits telling what sort of file-this is.
TS BITS
TS ADDR
TS END
TS_CLRI

A bit map follows. This bit map has a one bit for each inode that was dumped.
A subrecord of a file description. See c_addr below.
End of tape record.
A bit map follows. This bit map contains a zero bit for all inodes that were
empty on the file system when dumped.

MAGIC All header records have this number in c_magic.
CHECKSUM Header records checksum to this value.

The fields of the header structure are as follows:

c_type The type of the header.
c_date The date the dump was taken.
c_ddate The date the file system was dumped from.
c_volume The current volume number of the dump.
c_tapea The current number of this (1024-byte) record.
c_inumber The number of the inode being dumped if this is of type TS_INODE.
c_magic This contains the value MAGIC above, truncated as needed.
c_checksum This contains whatever value is needed to make the record sum to CHECKSUM.
c_dinode This is a copy of the inode as it appears on the file system; see .fs(5).
c_count The count of characters in c_addr.
c_addr An array of characters describing the blocks of the dumped file. A character is

zero if the block associated with that character was not present on the file sys­
tem, otherwise the character is non-zero. If the block was not present on the file
system, no block was dumped; the block will be restored as a hole in the file. If
there is not sufficient space in this record to describe all of the blocks in a file.
TS ADDR records will be scattered through the file, each one picking up where
the-last left off.

Each volume except the last ends with a tapemark (read as an end of file). The last volume
ends with a TS_END record and then the tapemark.

The structure idates describes an entry in the file letcldumpdates where dump history is kept.
The fields of the structure are:

id_name
id_incno
id_ddate

The dumped filesystem is '/dev/ id nam'.
The level number of the dump tap~; see dump(8).
The date of the incremental dump in system format see rypes(S).

I etc/ dumpdates

SEE ALSO
dump(8), restore(8), fs(5), types(5)

4th Berkeley Distribution 18 July 1983 2

FS(5) UNIX Programmer's Manual FS (5)

NAME
f s, in ode - format of file system volume

SYNOPSIS
#include < sys/types.h >
#include <sys/fs.h>
#include < sys/lnode.h >

DESCRIPTION
Every file system storage volume (disk, nine-track tape, for instance) has a common format for
certain vital information. Every such volume is divided into a certain number of blocks. The
block size is a parameter of the file system. Sectors 0 to 15 on a file system are used to contain
primary and secondary bootstrapping programs.

The actual file system begins at sector 16 with the super block. The layout of the super block as
defined by the include file <syslfs.h> is:

#defineFS MAGIC Ox011954
struct fs f

struct fs •fs_link; /• linked list of file systems •/
struct fs •fs_rlink; I• used for incore super blocks •/
daddr_t fs_sblkno; /• addr of super-block in filesys •/
daddr_t fs_cblkno; /• offset of cyl-block in filesys •/
daddr_t fs_iblkno; /• offset of inode-blocks in filesys •/
daddr_t fs_dblkno; /• offset of first data after cg •/
long fs_cgoffset; /• cylinder group offset in cylinder •/
long fs_cgmask; /• used to calc mod fs_ntrak •/
time_t fs_time; /• last time written •/
long fs_size; /• number of blocks in fs •/
long fs_dsize; /• number of data blocks in fs •/
long fs_ncg; /• number of cylinder groups •/
long fs_bsize; /• size of basic blocks in fs •I
long fs_fsize; /• size of frag blocks in fs •I
long fs_frag; /• number of frags in a block in fs •/

I• these are configuration parameters •/
long fs_minfree; /• minimum percentage of free blocks •/
long fs_rotdelay; /• num of ms for optimal next block •/
long fs rps; I• disk revolutions per second •/

I• these fields can-be computed from the others •i
long fs_bmask; /• "blkoff" calc of blk offsets •/
long fs_fmask; /• "fragoff" calc of frag offsets •/
long fs bshift; /• "lblkno" calc of logical blkno •/
long fs)shift; /• "numfrags" calc number of frags •/

I• these are configuration parameters •/
long fs_maxcontig; /•max number of contiguous blks •/
long fs_maxbpg; /• max number of blks per cyl group •/

I• these fields can be computed from the others •/
long fs_fragshift; /• block to frag shift •/
long fs_fsbtodb; /• fsbtodb and dbtofsb shift constant •/
long fs_sbsize; /• actual size of super block •/
long fs_csmask; /• csum block offset•/
long fs_csshift; I• csum block number•/
long fs_nindir; /• value of NINDIR •/
long fs_inopb; /• value of INOPB •/
long fs_nspf; /• value of NSPF •/

4th Berkeley Distribution 18 July 1983 1

FS(S) UNIX Programmer's Manual FS (S)

long fs_sparecon[6); /•reserved for future constants •/
I• sizes determined by number of cylinder groups and their sizes•/

daddr_t fs_csaddr; /• blk addr of cyl grp summary area •/
long fs_cssize; /• size of cyl grp summary area •/
long fs_cgsize; /• cylinder group size •/

I• these fields should be derived from the hardware•/
long fs_ntrak; /• tracks per cylinder •/
long fs_nsect; /• sectors per track •/
long fs_spc; /• sectors per cylinder•/

I• this comes from the disk driver partitioning•/
long fs_ncyl; /•cylinders in file system •/

I• these fields can be computed from the others•/
long fs_cpg; /•cylinders per group •/
long fs_ipg; /• inodes per group •/
long fs_fpg; /• bloc.ks per group • fs_frag •/

I• this data must be re-computed after crashes•/
struct csum fs_cstotal;/• cylinder summary information•/

I• these fields are cleared at mount time •/
char fs_fmod; /•super block modified flag•/
char fs_clean; /• file system is clean flag •/
char fs_ronly; /•mounted read-only flag•/
char fs_flags; /• currently unused flag •/
char fs_fsmnt[MAXMNTLEN]; /• name mounted on •/

I• these fields retain the current block allocation info •/
long fs_cgrotor; /• last cg searched •/
struct csum •fs_csp[MAXCSBUFS];/• list of fs_cs info buffers •/
long fs_cpc; /• cyl per cycle in postbl •/
short fs_postbl[MAXCPG][NRPOS];/• head of bloc.ks for each rotation •/
long fs_magic; /• magic number •/
u_char fs_rotbl[l]; /•list of blocks for each rotation •/

I• actually longer•/
};
Each disk drive contains some number of file systems. A file system consists of a number of
cylinder groups. Each cylinder group has inodes and data.

A file system is described by its super-block, which in tum describes the cylinder groups. The
super-block is critical data and is replicated in each cylinder group to protect against catastrophic
loss. This is done at file system creation time and the critical super-block data does not change,
so the copies need not be referenced further unless disaster strikes.

Addresses stored in inodes are capable of addressing fragments of 'bloc.ks'. File system bloc.ks
of at most size MAXBSIZE can be optionally broken into 2, 4, or 8 pieces, each of which is
addressable; these pieces may be DEV _BSIZE, or some multiple of a DEV _BSIZE unit.

Large files consist of exclusively large data blocks. To avoid undue wasted disk space, the last
data block of a small file is allocated as only as many fragments of a large block as are neces­
sary. The file system format retains only a single pointer to such a fragment, which is a piece
of a single large block that bas been divided. The size of such a fragment is determinable from
information in the inode, using the "bl.ksize(fs, ip, lbn)" macro.

The file system records space availability at the fragment level; to determine block availability,
aligned fragments are examined.

4th Berkeley Distribution 18 July 1983 2

FS(S) UNIX Programmer's Manual FS (5)

The root inode is the root of the flle system. lnode 0 can't be used for normal purposes and
historically bad blocks were linked to inode 1, thus the root inode is 2 (inode 1 is no longer
used for this purpose, however numerous dump tapes make this assumption, so we are stuck
with it). The lost+/ound directory is given the next available inode when it is initially created
by m/ifs.
fs_mirifree gives the minimum acceptable percentage of file system blocks which may be free. If
the freelist drops below this level only the super-user may continue to allocate blocks. This may
be set to 0 if no reserve of free blocks is deemed necessary, however severe performance
degradations will be observed if the flle system is run at greater than 90% full; thus the default
value of fs_mirifree is 10%.

Empirically the best trade-off between block fragmentation and overall disk utilization at a load­
ing of 90% comes with a fragmentation of 4, thus the def a ult fragment size is a fourth of the
block size.

Cylinder group related limits: Each cylinder keeps track of the availability of blocks at different
rotational positions, so that sequential blocks can be laid out with minimum rotational latency.
NRPOS is the number of rotational positions which are distinguished. With NRPOS 8 the reso­
lution of the summary information is 2ms for a typical 3600 rpm drive.

fs_rotdelay gives the minimum number of milliseconds to initiate another disk transfer on the
same cylinder. It is used in determining the rotationally optimai layout for disk blocks within a
flle; the default value for fs_rotde/ay is 2ms.

Each flle system has a statically allocated number of inodes. An inode is allocated for each
NBPI bytes of disk space. The inode allocation strategy is extremely conservative.

MAXIPG bounds the number of inodes per cylinder group, and is needed only to keep the
structure simpler by having the only a single variable size element (the free bit map).

N.B.: MAXIPG must be a multiple of INOPB(fs).

MINBSIZE is the smallest allowable block size. With a MINBSIZE of 4096 it is possible to
create files of size 2"32 with only two levels of indirection. MINBSIZE must be big enough to
hold a cylinder group block, thus changes to (struct cg) must keep its size within MINBSIZE.
MAXCPG is limited only to dimension an array in (struct cg); it can be made larger as long as
that structure's size remains within the bounds dictated by MINBSIZE. Note that super blocks
are never more than size SBSIZE.

The path name on which the file system is mounted is maintained in fsJsmnt. MAXMNTLEN
defines the amount of space allocated in the super block for this name. The limit on the
amount of summary information per file system is defined by MAXCSBUFS. It is currently
parameterized for a maximum of two million cylinders.

Per cylinder group information is summarized in blocks allocated from the first cylinder group's
data blocks. These blocks are read in from fs_csaddr (size fs_cssize) in addition to the super
block.

N.B.: sizeof (struct csum) must be a power of two in order for the "fs_cs" macro to work.

Super block for a file system: MAXBPC bounds the size of the rotational layout tables and is lim­
ited by the fact that the super block is of size SBSIZE. The size of these tables is Inversely
proportional to the block size of the file system. The size of the tables is increased when sector
sizes are not powers of two, as this increases the number of cylinders included before the rota­
tional pattern repeats (fs_cpc). The size of the rotational layout tables is derived from the
number of bytes remaining in (struct f s).

MAXBPG bounds the number of blocks of data per cylinder group, and is limited by the fact
that cylinder groups are at most one block. The size of the free block table is derived from the
size of blocks and the number of remaining bytes in the cylinder group structure (struct cg).

4th Berkeley Distribution 18 July 1983 3

FS(S) UNIX Programmer's Manual FS(S)

/node: The inode is the focus of all file activity in the UNIX file system. There is a unique
inode allocated for each active file, each current directory, each mounted-on file, text file, and
the root. An inode is 'named' by its device/i-number pair. For further ·information, see the
include file <sys/inode.h>.

4th Berkeley Distribution 18 July 1983 4

FSTAB(S) UNIX Programmer's Manual FSTAB(S)

NAME
fstab - static information about the filesystems

SYNOPSIS
#include <fstab.h>

DESCRIPTION

FILES

The file letc/fttab contains descriptive information about the various file systems. letc/fttab is
only read by programs, and not written; it is the duty of the system administrator to properly
create and maintain this file. The order of records in /etc/fttab is important because fsck, mount,
and umount sequentially iterate through letc/fttab doing their thing.

The special file name is the block special file name, and not the character special file name. If a
program needs the character special file name, the program must create it by appending a "r"
after the last "/" in the special file name.

If fs_type is "rw" or "ro" then the file system whose name is given in the fs_Jile field is nor­
mally mounted read-write or read-only on the specified special file. If ft_ type is "rq", then the
file system is normally mounted read-write with disk quotas enabled. The fsJreq field is used
for these file systems by the dump(8) command to determine which file systems need to be
dumped. The fs_;assno field is used by the fsck(8) program to determine the order in which
file system checks are done at reboot time. The root file system should be specified with a
fs_passno of 1, and other file systems should have larger numbers. File systems within a drive
should have distinct numbers, but file systems on different drives can be checked on the same
pass to utilize parallelism available in the hardware.

If fs_type is "sw" then the special file is made available as a piece of swap space by the
swapon(8) command at the end of the system reboot procedure. The fields other than fs_spec
and fs_type are not used in this case.

If fs_type is "rq" then at boot time the file system is automatically processed by the quota­
check(8) command and disk quotas are then enabled with quotaon(8). File system quotas are
maintained in a file "quotas", which is located at the root of the associated file system.

If ft_type is specified as "xx" the entry is ignored. This is useful to show disk partitions which
are currently not used.

#detineFSTAB_RW "rw"
#defineFSTAB RO "ro"
#defineFSTAB=RQ "rq"
#defineFSTAB SW "sw"
#define FST AB)OC "xx"

struct f stab {

I• read-write device •/
I• read-only device •/
I• read-write with quotas •/
I• swap device •/
I• ignore totally •/

char
char
char
int
int

•fs spec; /• block special device name •/
•fs-file; /• file system path prefix •/
•fs-type; /• rw,ro,sw or xx•/
fs_freq; /• dump frequency, in days •/

h
fs_passno; /• pass number on parallel dump •/

The proper way to read records from /etc/ft tab is to use the routines getf sent 0, getf sspec 0,
getfstype(), and getfsfileO.

/etc/fstab

4th Berkeley Distribution 26 June 1983 1

FSTAB(5)

SEE ALSO
getfsent(3X)

4th Berkeley Distribution

UNIX Programmer's Manual FSTAB(S)

26 June 1983 2

GROUP(5) UNIX Proarammer's Manual GROUP (5)

NAME
group - group file

DESCRIPTION
Group contains for each group the following information:

group name
encrypted password
numerical group ID
a comma separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; Each group is separated from the next
by a new-line. If the password field is null, no password is demanded.

This file resides in directory /etc. Because of the encrypted passwords, it can and does have
general read permission and can be used, for example, to map numerical group ID's to names.

FILES
/etc/group

SEE ALSO
setgroups(2), initgroups(3X), crypt(3), passwd(l), passwd(5)

BUGS
The passwd(l) command won't change the passwords.

7th Edition 15 January 1983 1

HOSTS (5) UNIX Programmer's Manual HOSTS (5)

NAME
hosts - host name data base

DESCRIPTION

FILES

The hosts file contains information regarding the known hosts on the DARPA Internet. For
each host a single line should be present with the following information:

official host name
Internet address
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates the
beginning of a comment; characters up to the end of the line are not interpreted by routines
which search the file. This file is normally created from the official host data base maintained at
the Network Information Control Center (NIC), though local changes may be required to bring
it up to date regarding unofficial aliases and/ or unknown hosts.

Network addresses are specified in the conventional "." notation using the inet_addr() routine
from the Internet address manipulation library, inet(3N). Host names may contain any print­
able character other than a field delimiter, newline, or comment character.

/etc/hosts

SEE ALSO
gethostent(3N)

BUGS
A name server should be used instead of a static file. A binary indexed file format should be
available for fast access.

7th Edition 15 January 1983 1

MTAB(S) UNIX Programmer's Manual MTAB (5)

NAME
mtab - mounted file system table

SYNOPSIS
#include < fstab.h >
#include <mtab.h>

DESCRIPTION

FILES

Mtab resides in directory /etc and contains a table of devices mounted by the mount command.
Umount removes entries.

The table is a series of mtab structures, as defined in < mtab.h >. Each entry contains the
null-padded name of the place where the special file is mounted, the null-padded name of the
special file, and a type field, one of those defined in <fstab.h>. The special file has all its
directories stripped away; that is. everything through the last '/' is thrown away. The type field
indicates if the file system is mounted read-only, read-write, or read-write with disk quotas
enabled.

This table is present only so people can look at it. It does not matter to mount if there are
duplicated entries nor to umount if a name cannot be found.

/etc/mtab

SEE ALSO
mount(8)

4th Berkeley Distribution 26 June 1983

PASSWD(S) UNIX Programmer's Manual PASSWD (S)

NAME
passwd - password file

DESCRIPTION

FILES

Passwd contains for each user the foil owing information:

name {login name, contains rto upper case)
encrypted password
numerical user ID
numerical group ID
user's real name, office, extension, home phone.
initial working directory
program to use as Shell

The name may contain '&', meaning insert the login name. This information is set by the
clifn(l) command and used by the finger(!) command.

This is an ASCII file. Each field within each user's entry is separated from the next by a colon.
Each user is separated from the next by a new-line. If the password field is null, no password is
demanded; if the Shell field is null, then /bin/sh is used.

This file resides in directory /etc. Because of the encrypted passwords, it can and does have
general read permission and can be used, for example, to map numerical user ID's to names.

Appropriate precautions must be taken to lock the file against changes if it is to be edited with a
text editor; vipw(8) does the necessary locking.

/etc/passwd

SEE ALSO

BUGS

getpwent(3), login(l), crypt(3), passwd(l), group(S), chfn(l), finger(!), vipw(S), adduser(8)

A binary indexed file format should be available for fast access.

User information (name, office, etc.) should be stored elsewhere.

7th Edition 15 January 1983 1

PROTOCOLS (5) UNIX Programmer's Manual PROTOCOLS (5)

protocols - protocol name data base

DESCRIPTION

FILES

The protocols file contains information regarding the known protocols used in the DARPA
Internet. For each protocol a single line should be present with the following information:

official protocol name
protocol number
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates the
beginning of a comment; characters up to the end of the line are not interpreted by routines
which search the file.

Protocol names may contain any printable character other than a field delimiter, newline, or
comment character.

/etc/protocols

SEE ALSO
getprotoent(JN)

BUGS
A name server should be used instead of a static file. A binary indexed file format should be
available for fast access.

7th Edition 15 January 1983

SERVICES (S) UNIX Programmer's Manual SERVICES(S)

NAMI
services - service name data base

DESCRIPTION

FILES

The services file contains information regarding the known services available in the DARPA
Internet. For each service a single line should be present with the following information:

official service name
pon number
protocol name
aliases

Items are separated by any number of blanks and/or tab characters. The port number and pro­
tocol name are considered a single item; a "/" is used to separate the port and protocol (e.g.
"512/tcp"). A "#" indicates the beginning of a comment; characters up to the end of the line
are not interpreted by routines which search the file.

Service names may contain any printable character other than a field delimiter, newline, or
comment character.

/etc/services

SEE ALSO

BUGS
getservent (3 N)

A name server should be used instead of a static file. A binary indexed file format should be
available for fast access.

4th Berkeley Distribution lS January 1983

STAB(S) UNIX Programmer's Manual STAB (5)

NAME
stab - symbol table types

SYNOPSIS
#include <stab.h>

DESCRIPTION
Stab.h defines some values of the n type field of the symbol table of a.out files. These are the
types for permanent symbols (i.e. not local labels, etc.) used by the old debugger sdb and the
Berkeley Pascal compiler pc(l). Symbol table entries can be produced by the .stabs assembler
directive. This allows one to specify a double-quote delimited name, a symbol type, one char
and one short of information about the symbol, and an unsigned long (usually an address). To
avoid having to produce an explicit label for the address field, the .stabd directive can be used
to implicitly address the current location. If no name is needed, symbol table entries can be
generated using the .stabn directive. The loader promises to preserve the order of symbol table
entries produced by .stab directives. As described in a.out(S), an element of the symbol table
consists of the following structure:

I•
• Format of a symbol table entry.
•I

struct nlist (
union {

char •n_name; /• for use when in-core •/

};

long n_strx; /• index into file string table •/
} n_un;
unsigned char n_type;
chaf n_other;
short n_desc;
unsigned n_ value;

I• type flag •/
I• unused•/
I• see struct desc, below •I
I• address or offset or line •/

The low bits of the n_type field are used to place a symbol into at most one segment, according
to the following masks, defined in <a.out.h>. A symbol can be in none of these segments by
having none of these segment bits set.

I•
• Simple values for n_type.
•I

#define N_UNDF OxO /•undefined•/
#define N_ABS Ox2 /• absolute •/
#define N_TEXT Ox4 /•text•/
#define N_DATA Ox6 /•data•/
#define N_BSS Ox8 /• bss •/

#define N_EXT 01 /• external bit, or'ed in •/

The n_value field of a symbol is relocated by the linker, /d(l) as an address within the appropri­
ate segment. N_value fields of symbols not in any segment are unchanged by the linker. In
addition, the linker will discard certain symbols, according to rules of its own, unless the n_type
field has one of the following bits set:

I•
• Other permanent symbol table entries have some of the N STAB bits set.
•These are given in <stab.h> -
•I

#define N_STAB OxeO/• if any of these bits set, don't discard•/

4th Berkeley Distribution 1 April 1983 l

STAB(S) UNIX Programmer's Manual STAB(S)

This allows up to 112 (7 • 16) symbol types, split between the various segments. Some of
these have already been claimed. The old symbolic debugger, sdb, uses the following n_type
values:

#define N_GSYM Ox20 /• global symbol: name,,0,type,O •/
#define N_FNAME Ox22 /•procedure name (f77 kludge): name,,O •/
#define N_FUN Ox24 /•procedure: name,.0,linenumber,address •/
#define N_STSYM Ox26 /• static symbol: name,,0,type,address •/
#define N_LCSYM Ox28 I• .lcomm symbol: name,,0,type,address •/
#define N_RSYM Ox40 /•register sym: name,,0,type,register •/
#define N_SLINE Ox44 /• src line: 0,,0,linenumber,address •/
#define N_SSYM Ox60 /• structure elt: name,,0,type,struct_offset •/
#define N_SO Ox64 /•source file name: name,,0,0,address •/
#define N_LSYM Ox80 /• local sym: name,,0,type,offset •/
#define N_SOL Ox84 /• #included file name: name,,0,0,address •/
#define N_PSYM OxaO /• parameter: name,,0,type,offset •/
#define N ENTRY Oxa4 /•alternate entry: name,linenumber,address •/
#define N=LBRAC OxcO /• left bracket: 0,,0,nesting level,address •/
#define N_RBRAC OxeO /• right bracket: 0,,0,nesting level,address •/
#define N BCOMMOxe2 I• begin common: name,,•/
#define N-ECOMM0xe4 I• end common: name,,•/
#define N-ECOML Oxe8 /•end common (local name): ,,address•/
#define N_LENG Oxfe /•second stab entry with length information•/

where the comments give sdb conventional use for .stabs and the n_name, n_other, n_desc, and
n_ value fields of the given n_type. Sdb uses the n_desc field to hold a type specifier in the form
used by the Portable C Compiler, cc(l), in which a base type is qualified in the following struc­
ture:

struct desc {

};

short q6:2,
q5:2,
q4:2,
q3:2,
q2:2,
q1:2,
basic:4;

There are four qualifications, with ql the most significant and q6 the least significant:
0 none
1 pointer
2 function
3 array

The sixteen basic types are assigned as follows:
0 undefined
1 function argument
2 character ·•
3 short
4 int
5 long
6 float
7 double
8 structure
9 union

4th Berkeley Distribution 1 April 1983 2

STAB(S) UNIX Programmer's Manual STAB(5)

10 enumeration
11 member of enumeration
12 unsigned character
13 unsigned short
14 unsigned int
15 unsigned long

The Berkeley Pascal compiler, pc(l), uses the following n_type value:

#defineN_PC Ox30 /• giobal pascal symbol: name.,0,subtype,line •/

and uses the following subtypes to do type checking across separately compiled files:
1 source file name
2 included file name
3 global label
4 global constant
S global type
6 global variable
7 global function
8 global procedure
9 external function
10 external procedure
11 library variable
12 library routine

SEE ALSO

BUGS

as(l), ld(l), dbx(l), a.out(5)

Sdb assumes that a symbol of type N _ GSYM with name name is located at address _name.
More basic types are needed.

4th Berkeley Distribution 1 April 1983 3

TAR(5) UNIX Programmer's Manual TAR(5)

NAME
tar - tape archive file format

DESCRIPTION
Tar, (the tape archive command) dumps several files into one, in a medium suitable for tran­
sportation.

A "tar tape" or file is a series of blocks. Each block is of size TBLOCK. A file on the tape is
represented by a header block which describes the file, followed by zero or more blocks which
give the contents of the file. At the end of the tape are two blocks filled with binary zeros, as
an end-of-file indicator.

The blocks are grouped for physical I/O operations. Each group of n blocks (where n is set by
the b keyletter on the tar(l) command line - default is 20 blocks) is written with a single sys­
tem call; on nine-track tapes, the result of this write is a single tape record. The last group is
always written at the full size, so blocks after the two zero blocks contain random data. On
reading, the specified or default group size is used for the first read, but if that read returns less
than a full tape block, the reduced block size is used for further reads.

The header block looks like:

#define TBLOCK 512
#define NAMSIZ 100

union hblock (

};

char dummy [TBLOCK];
struct header (

char name[NAMSIZ);
char mode(S];
char uid[S];
char gid[S];
char size[l2];
char mtime[l2];
char chksum[8);
char linkflag;
char linkname [NAMSIZ];

} dbuf;

Name is a null-terminated string. The other fields are zero-filled octal numbers in ASCII. Each
field (of width w) contains w-2 digits, a space, and a null, except size and mtime, which do not
contain the trailing null. Name is the name of the file, as specified on the tar command line.
Files dumped because they were in a directory which was named in the command line have the
directory name as prefix and /filename as suffix. Mode is the file mode, with the top bit masked
off. Uid and gid are the user and group numbers which own the file. Size is the size of the file
in bytes. Links and symbolic links are dumped with this field specified as zero. Mtime is the
modification time of the file at the time it was dumped. Chksum is a decimal ASCII value
which represents the sum of all the bytes in the header block. When calculating the checksum,
the chksum field is treated as if it were all blanks. Linl(ffag is ASCII 'O' if the file is "normal"
or a special file, ASCII 'l' if it is an hard link, and ASCII '2' if it is a symbolic link. The name
linked-to, if any, is in linkname, with a trailing null. Unused fields of the header are binary
zeros (and are included in the checksum).

The first time a given i-node number is dumped, it is dumped as a regular file. The second and
subsequent times, it is dumped as a link instead. Upon retrieval, if a link entry is retrieved,
bqt not the file it was linked to, an error message is printed and the tape must be manually re­
scanned to retrieve the linked-to file.

7th Edition 15 January 1983

TAR(S) UNIX Programmer's Manual

The encoding of the header is designed to be portable across machines.
SEE ALSO

tar(l)

BUGS

TAR(S)

Names or linknames longer than NAMSIZ produce error reports and cannot be dumped.

7th Edition 15 January 1983 2

TERMCAP(Sl UNIX Programmer's Manual TERMCAP(S)

NAME
termcap - terminal capability data base

SYNOPSIS
/etc/termcap

DESCRIPTION
Termcap is a data base describing terminals, used, e.g., by v;(l) and curses(3X). Terminals are
described in termcap by giving a set of capabilities which they have, and by describing how
operations are performed. Padding requirements and initialization sequences are included in
termcap.

Entries in termcap consist of a number of ':' separated fields. The first entry for each terminal
gives the names which are known for the terminal, separated by 'I' characters. The first name is
always 2 characters long and is used by older version 6 systems which store the terminal type in
a 16 bit word in a systemwide data base. The second name given is the most common abbrevi­
ation for the terminal, and the last name given should be a long name fully identifying the ter­
minal. The second name should contain no blanks; the last name may well contain blanks for
readability.

CAPABILITIES
(P) indicates padding may be specified
(P•) indicates that padding may be based on no. lines affected

Name Type Pad? Description
ae str (P) End alternate character set
al str (P•) Add new blank line
am bool Terminal has automatic margins
as str (P) Start alternate character set
be str Backspace if not '"H
bs bool Terminal can backspace with '"H
bt str (P) Back tab
bw bool Backspace wraps from column 0 to last column
cc str Command character in prototype if terminal settable
cd str (P•) Clear to end of display
ce str (P) Clear to end of line
ch str (P) Like cm but horizontal motion only, line stays same
cl str (P•) Clear screen
cm str (P) Cursor motion
co num Number of columns in a line
er str (P•) Carriage return, (default '"M)
cs str (p) Change scrolling region (vtlOO), like cm
CV str (P) Like ch but vertical only.
da bool Display may be retained above
dB num Number of millisec of bs delay needed
db boo! Display may be retained below
dC num Number of millisec of er delay needed
de str (P•) Delete character
dF num Number of millisec of ff delay needed
di str (P•) Delete line
dm str Delete mode (enter)
dN num Number of millisec of nl delay needed
do str Down one line
dT num Number of millisec of tab delay needed
ed str End delete mode

3rd Berkeley Distribution 10 May 1980 1

TERMCAP(5) UNIX Programmer's Manual TERMCAP(5)

ei str Ertd insert mode; give ":ei-:" if le
eo str Can erase overstrikes with a blank
ff str (P•) Hardcopy terminal page eject (default ·1)
he bool Hardcopy terminal
hd str Half·line down (forward 1/2 linefeed)
ho str Home cursor (if no cm)
hu str Half-line up (reverse 1/2 linefeed)
hz str Hazeltine; can't print -·s
ic str (P) Insert character
if str Name of file containing is
im boo I Insert mode (enter); give ":im-:" if ic
in boo I Insert mode distinguishes nulls on display
ip str (P•) Insert pad after character inserted
is str Terminal initialization string
k0-k9 str Sent by "other" function keys 0-9
kb str Sent by backspace key
kd str Sent by terminal down arrow key
ke str Out of ••keypad transmit" mode
kh str Sent by home key
kl str Sent by terminal left arrow key
kn num Number of "other" keys
ko str Termcap entries for other non-function keys
kr str Sent by terminal right arrow key
ks str Put terminal in "keypad transmit" mode
ku str Sent by terminal up arrow key
10-19 str Labels on ••other" function keys
Ii num Number of lines on screen or page
11 str Last line, first column (if no cm)
ma str Arrow key map, used by vi version 2 only
mi boo! Safe to move while in insert mode
ml str Memory lock on above cursor.
ms boo I Safe to move while in standout and underline mode
mu str Memory unlock (turn off memory lock).
nc boot No correctly working carriage return (DM2500,H2000)
nd str Non-destructive space (cursor right)
nl str (P•) Newline character (default \n)
ns boo! Terminal is a CRT but doesn't scroll.
OS boo! Terminal overstrikes
pc str Pad character (rather than null)
pt boo! Halt hardware tabs (may need to be set with is)
se str End stand out mode
sf str (P) Scroll forwards
sg num Number of blank chars left by so or se
so str Begin stand out mode
sr str (P) Scroll reverse (backwards)
ta str (P) Tab (other than ·1 or with padding)
tc str Entry of similar terminal - must be last
te str String to end programs that use cm
ti str String to begin programs that use cm
UC str Underscore one char and move past it
ue str End underscore mode
ug num Number of blank chars left by us or ue

3rd Berkeley Distribution 10 May 1980 2

TERMCAP (5) UNIX Programmer's Manual TERMCAP (5)

ul bool Terminal underlines even though it doesn't overstrike
up str Upline (cursor up)
us str Start underscore mode
vb str Visible bell (may not move cursor)
ve str Sequence to end open/visual mode
VS str Sequence to start open/visual mode
xb bool Beehive (fl-escape, f2-ctrl C)
xn boo I A newline is ignored after a wrap (Concept)
xr bool Return acts like ce \r \n (Delta Data)
XS bool Standout not erased by writing over it (HP 264 ?)
xt bool Tabs are destructive, magic so char (Teleray 1061)

A Sample Entry

The following entry, which describes the Concept-100, is among the more complex entries in
the termcap file as of this writing. (This particular concept entry is outdated, and is used as an
example only.)

cl lclOO!conceptlOO:is-\EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200:\
:al-3•\EAR:am:bs:cd-16•\E .. C:ce-16\E .. S:cl-2• .. L:cm-\EaO/o+ %+ :co#80:\
:dc-16\E .. A:dl-3•\E .. B:ei-\E\200:eo:im -\E .. P:in:ip-= l 6•:1i#24:mi:nd-\E- :\
:se-\Ed\Ee:so -\ED\EE:ta .. 8\t:ul:up-\E; :vb-\Ek\EK:xn: ·

Entries may continue onto multiple lines by giving a \ as the last character of a line, and that
empty fields may be included for readability (here between the last field on a line and the first
field on the next). Capabilities in termcap are of three types: Boolean capabilities which indicate
that the terminal has some particular feature, numeric capabilities giving the size of the termi­
nal or the size of particular delays, and string capabilities, which give a sequence which can be
used to perform particular terminal operations.

Types of Capabilities

All capabilities have two letter codes. For instance, the fact that the Concept has "automatic
margins" (i.e. an automatic return and linefeed when the end of a line is reached) is indicated
by the capability am. Hence the description of the Concept includes am. Numeric capabilities
are followed by the character '#' and then the value. Thus co which indicates the number of
columns the terminal has gives the value '80' for the Concept.

Finally, string valued capabilities, such as ce (clear to end of line sequence) are given by the
two character code, an '-', and then a string ending at the next following ':'. A delay in mil­
liseconds may appear after the ' - ' in such a capability, and padding characters are supplied by
the editor after the remainder of the string is sent to provide this delay. The delay can be
either a integer, e.g. '20', or an integer followed by an '•', i.e. '3•'. A '•' indicates that the
padding required is proportional to the number of lines affected by the operation, and the
amount given is the per-affected-unit padding required. When a'•' is specified, it is sometimes
useful to give a delay of the form '3.5' specify a delay per unit to tenths of milliseconds.

A number of escape sequences are provided in the string valued capabilities for easy encoding
of characters there. A \E maps to an ESCAPE character, .. x maps to a control-x for any
appropriate x, and the sequences \n \r \t \b \f give a newline, return, tab, backspace and
formfeed. Finally, characters may be given as three octal digits after a \, and the characters ..
and \ may be given as \" and \ \. If it is necessary to place a : in a capability it must be escaped
in octal as \072. If it is necessary to place a null character in a string capability it must be
encoded as \200. The routines which deal with termcap use C strings, and strip the high bits of
the output very late so that a \200 comes out as a \000 would.

3rd Berkeley Distribution 10 May 1980 3

TERMCAP (5) UNIX Programmer's Manual TERMCAP(S)

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most effective way to prepare a
terminal description is by imitating the description of a similar terminal in termcap and to build
up a description gradually, using partial descriptions with ex to check that they are correct. Be
aware that a very unusual terminal may expose deficiencies in the ability of the termcap file to
describe it or bugs in ex. To easily test a new terminal description you can set the environment
variable TERMCAP to a pathname of a file containing the description you are working on and
the editor will look there rather than in /etc/termcap. TERMCAP can also be set to the termcap
entry itself to avoid reading the file when starting up the editor. (This only works on version 7
systems.)

Basic capabilities

The number of columns on each line for the terminal is given by the co numeric capability. If
the terminal is a CRT, then the number of lines on the screen is given by the II capability. If
the terminal wraps around to the beginning of the next line when it reaches the right margin,
then it should have the am capability. If the terminal can clear its screen, then this is given by
the cl string capability. If the terminal can backspace, then it should have the bs capability,
unless a backspace is accomplished by a character other than AH (ugh) in which case you
should give this character as the be string capability. If it overstrikes (rather than clearing a
position when a character is struck over) then it should have the os capability.

A very important point here is that the local cursor motions encoded in termcap are undefined
at the left and top edges of a CRT terminal. The editor will never attempt to backspace around
the left edge, nor will it attempt to go up locally off the top. The editor assumes that feeding
off the bottom of the screen will cause the screen to scroll up, and the am capability tells
whether tpe cursor sticks at the right edge of the screen. If the terminal has switch selectable
automatic margins, the termcap file usually assumes that this is on, i.e. am.

These capabilities suffice to describe hardcopy and "glass-tty" terminals. Thus the model 33
teletype is described as

t3 l33 jtty33:co#72:os

while the Lear Siegler ADM-3 is described as

cl I adm3~~si adm3:am:bs:cl- AZ:li#24:co#80

Cursor addressing

Cursor addressing in the terminal is described by a cm string capability, with printf(3S) like
escapes %x in it. These substitute to encodings of the current line or column position, while
other characters are passed through unchanged. If the cm string is thought of as being a func­
tion, then its arguments are the line and then the column to which motion is desired, and the
% encodings have the following meanings:

%d as in print/, 0 origin
%2 like %2d
%3 like %3d
%. like O/oc
o/o + x adds x to value, then %.
% > xy if value > x adds y, no output.
o/or reverses order of line and column, no output
%i increments line/column (for 1 origin)
%% gives a single %
%n exclusive or row and column with 0140 (DM2500)
%B BCD 06•(x/IO)) + (xo/olO), no output.
%D Reverse coding (x-2•{xo/o16)), no output. (Delta Data).

3rd Berkeley Distribution 10 May 1980 4

TERMCAP(S) UNIX Programmer's Manual TERMCAP(S)

Consider the HP264S, which, to get to row 3 and column 12, needs to be sent \E&al2c03Y
padded for 6 milliseconds. Note that the order of the rows and columns is inverted here, and
that the row and column are printed as two digits. Thus its cm capability is
"cm-6\E&%r%2c%2Y". The Microterm ACT-IV needs the current row and column sent pre­
ceded by a "T, with the row and column simply encoded in binary, "cm-AT%.%.". Terminals
which use "%." need to be able to backspace the cursor (bs or be), and to move the cursor up
one line on the screen (up introduced below). This is necessary because it is not always safe to
transmit \t, \n "D and \r, as the system may change or discard them.

A final example is the LSI ADM-3a, which uses row and column offset by a blank character, thus
"cm-\E-%+ %+ ".

Cursor motions

If the terminal can move the cursor one position to the right, leaving the character at the
current position unchanged, then this sequence should be given as nd (non-destructive space).
If it can move the cursor up a line on the screen in the same column, this should be given as
up. If the terminal has no cursor addressing capability, but can home the cursor (to very upper
left comer of screen) then this can be given as ho; similarly a fast way of getting to the lower
left hand corner can be given as II; this may involve going up with up from the home position,
but the editor will never do this itself (unless 11 does) because it makes no assumption about
the effect of moving up from the home position.

Area clears

If the terminal can clear from the current position to the end of the line, leaving the cursor
where it is, this should be given as ce. If the terminal can clear from the current position to
the end of the display, then this should be given as ed. The editor only uses cd from the first
column of a line.

Insert/delete line

If the terminal can open a new blank line before the line where the cursor is, this should be
given as al; this is done only from the first position of a line. The cursor must then appear on
the newly blank line. If the terminal can delete the line which the cursor is on, then this
should be given as di; this is done only from the first position on the line to be deleted. If the
terminal can scroll the screen backwards, then this can be given as sb, but just al suffices. If
the terminal can retain display memory above then the da capability should be given; if display
memory can be retained below then db should be given. These let the editor understand that
deleting a line on the screen may bring non-blank lines up from below or that scrolling back
with sb may bring down non-blank lines.

Insert/delete character

There are two basic kinds of intelligent terminals with respect to insert/delete character which
can be described using icrmcap. The most common insert/delete character operations affect only
the characters on the current line and shift characters off the end of the line rigidly. Other ter­
minals, such as the Concept 100 and the Perkin Elmer Owl, make a distinction between typed
and untyped blanks on the screen, shifting upon an insert or delete only to an untyped blank on
the screen which is either eliminated, or expanded to two untyped blanks. You can find out
which kind of terminal you have by clearing the screen and then typing text separated by cursor
motions. Type "abc der' using local cursor motions (not spaces) between the "abc" and the
"der'. Then position the cursor before the "abc" and put the terminal in insert mode. If typ­
ing characters causes the rest of the line to shift rigidly and characters to fall off the end, then
your terminal does not distinguish between blanks and untyped positions. If the "abc" shifts
over to the "der' which then move together around the end of the current line and onto the
next as you insert, you have the second type of terminal, and should give the capability in,
which stands for "insert null". If your terminal does something different and unusual then you

3rd Berkeley Distribution 10 May 1980 s

TERMCAP(S) UNIX Programmer's Manual TERMCAP(S)

may have to modify the editor to get it to use the insert mode your terminal defines. We have
seen no terminals which have an insert mode not not falling into one of these two classes.

The editor can handle both terminals which have an insert mode, and terminals which send a
simple sequence to open a blank position on the current line. Give as im the sequence to get
into insert mode, or give it an empty value if your terminal uses a sequence to insert a blank
position. Give as ei the sequence to leave insert mode (give this, with an empty value also if
you gave im so). Now give as ic any sequence needed to be sent just before sending the char­
acter to be inserted. Most terminals with a true insert mode will not give ic, terminals which
send a sequence to open a screen position should give it here. (Insert mode is preferable to the
sequence to open a position on the screen if your terminal has both.) If post insert padding is
needed, give this as a number of milliseconds in ip (a string option). Any other sequence
which may need to be sent after an insert of a single character may also be given in ip.

It is occasionally necessary to move around while in insert mode to delete characters on the
same line (e.g. if there is a tab after the insertion position). If your terminal allows motion
while in insert mode you can give the capability mi to speed up inserting in this case. Omitting
mi will affect only speed. Some terminals (notably Datamedia's) must not have mi because of
the way their insert mode works.

Finally, you can specify delete mode by giving dm and ed to enter and exit delete mode, and de
to delete a single character while in delete mode.

Highlighting, underlining, and visible bells

If your terminal has sequences to enter and exit standout mode these can be given as so and se
respectively. If there are several flavors of standout mode (such as inverse video, blinking, or
underlining - half bright is not usually an acceptable "standout" mode unless the terminal is
in inverse video mode constantly) the preferred mode is inverse video by itself. If the code to
change into or out of standout mode leaves one or even two blank spaces on the screen, as the
TVI 912 and Teleray 1061 do, then ug should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as us and ue respectively. If the
terminal has a code to underline the current character and move the cursor one space to the
right, such as the Microterm Mime, this can be given as uc. (If the underline code does not
move the cursor to the right, give the code followed by a nondestructive space.) ·

Many terminals, such as the HP 2621, automatically leave standout mode when they move to a
new line or the cursor is addressed. Programs using standout mode should exit standout mode
before moving the cursor or sending a newline.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement)
then this can be given as vb; it must not move the cursor. If the terminal should be placed in a
different mode during open and visual modes of ex, this can be given as vs and ve, sent at the
start and end of tbc::.c mvut:s respectively. These can be used to change, e.g., from a underline
to a block cursor and back.

If the terminal needs to be in a special mode when running a program that addresses the cur­
sor, the codes to enter and exit this mode can be given as ti and te. This arises, for example,
from terminals like the Concept with more than one page of memory. If the terminal has only
memory relative cursor addressing and not screen relative cursor addressing, a one screen-sized
window must be fixed into the terminal for cursor addressing to work properly.

If your terminal correctly generates underlined characters (with no special codes needed) even
though it does not overstrike, then you should give the capability ul. If overstrikes are erasable
with a blank, then this should be indicated by giving eo.

3rd Berkeley Distribution 10 May 1980 6

TERMCAP(S) UNIX Programmer's Manual TERMCAP(S)

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed, this information
can be given. Note that it is not possible to handle terminals where the keypad only works in
local (this applies, for example, to the unshifted HP 2621 keys). If the keypad can be set to
transmit or not transmit, give these codes as ks and ke. Otherwise the keypad is assumed to
always transmit. The codes sent by the left arrow, right arrow, up arrow, down arrow, and
home keys can be given as kl, kr, ku, kd, and kh respectively. If there are function keys such
as fO, fl, ... , f9, the codes they send can be given as kO, kl, .•• , k9. If these keys have labels
other than the default fO through f9, the labels can be given as 10, 11, ••• , 19. If there are other
keys that transmit the same code as the terminal expects for the corresponding function, such
as clear screen, the termcap 2 letter codes can be given in the ko capability, for example,
":ko-cl,11,sf ,sb:", which says that the terminal has clear, home down, scroll down, and scroll
up keys that transmit the same thing as the cl, 11, sf, and sb entries.

The ma entry is also used to indicate arrow keys on terminals which have single character arrow
keys. It is obsolete but still in use in version 2 of vi, which must be run on some minicomput­
ers due to memory limitations. This field is redundant with kl, kr, ku, kd, and kb. It consists
of groups of two characters. In each group, the first character is what an arrow key sends, the
second character is the corresponding vi command. These commands are h for kl, j for kd, k
for ku, l for kr, and H for kh. For example, the mime would be :ma="KrzkAXl: indicating
arrow keys left rm. down ("K), up ("Z), and right ("X). (There is no home key on the
mime.)

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this can be given as pc.

If tabs on the terminal require padding, or if the terminal uses a character other than "I to tab,
then this can be given as ta.

Hazeltine terminals, which don't allow •-• characters to be printed should indicate hz.
Datamedia terminals, which echo carriage-return linefeed for carriage return and then ignore a
following linefeed should indicate nc. Early Concept terminals, which ignore a linefeed
immediately after an am wrap, should indicate xn. If an erase-eol is required to get rid of stan­
dout (instead of merely writing on top of it), xs should be given. Teleray terminals, where tabs
turn all characters moved over to blanks, should indicate xt. Other specific terminal problems
may be corrected by adding more capabilities of the form xx.

Other capabilities include is, an initialization string for the terminal, and if, the name of a file
containing long initialization strings. These strings are expected to properly clear and then set
the tabs on the terminal, if the terminal has settable tabs. If both are given, is will be printed
before if. This is useful where if is /usr/lib/tabsetlstd but is clears the tabs first.

Similar Terminals

If there are two very similar terminals, one can be defined as being just like the other with cer­
tain exceptions. The string capability tc can be given with the name of the similar terminal.
This capability must be last and the combined length of the two entries must not exceed 1024.
Since termlib routines search the entry from left to right, and since the tc capability is replaced
by the corresponding entry, the capabilities given at the left override the ones in the similar ter­
minal. A capability can be canceled with xx@ where xx is the capability. For example, the
entry

hnl2621nl:ks@:ke@:tc-2621:

defines a 2621nl that does not have the ks or ke capabilities, and hence does not turn on the
function key labels when in visual mode. This is useful for different modes for a terminal, or
for different user preferences.

3rd Berkeley Distribution 10 May 1980 7

TERMCAP(S) UNIX Programmer's Manual

FILES
/etc/termcap file containing terminal descriptions

SEE ALSO
ex(l), curses(3X), termcap(3X), tset(l), vi(l), ul(l), more(!)

AUTHOR
William Joy
Mark Horton added underlining and keypad support

BUGS

TERMCAP(S)

Ex allows only 256 characters for string capabilities, and the routines in termcap(3X) do not
check for overflow of this buffer. The total length of a single entry (excluding only escaped
newlines) may not exceed 1024.

The ma, vs, and ve entries are specific to the vi program.

Not all programs support all entries. There are entries that are not supported by any program.

3rd Berkeley Distribution 10 May 1980 8

TIYS(S) UNIX Programmer's Manual TTYS (S)

NAME
ttys - terminal initialization data

DESCRIPTION

FILES

The ttys file is read by the /nit program and specifies which terminal special files are to have a
process created for them so that people can log in. There is one line in the ttys file per special
file.

The first character of a line in the ttys file is either '0' or '1 '. If the first character on the line is
a '0', the init program ignores that line. If the first character on the line is a 'l ', the init pro­
gram creates a login process for that line. The second character on each line is used as an argu­
ment to getty(8), which performs such tasks as baud-rate recognition, reading the login name,
and calling login. For normal lines, the character is 'O'; other characters can be used, for exam­
ple, with hard-wired terminals where speed recognition is unnecessary or which have special
characteristics. (Getty will have to be fixed in such cases.) The remainder of the line is the
terminal's entry in the device directory, /dev.

/etc/ttys

SEE ALSO
gettytab(5), init(8), getty(8), login(l)

7th Edition 18 July 1983 1

TIYTYPE(5) UNIX Programmer's Manual

NAME
ttytype - data base of terminal types by port

SYNOPSIS
/etc/ttytype

DESCRIPTION

TIYTYPE(5}

Ttytype is a database containing, for each tty port on the system, the kind of terminal that is
attached to it. There is one line per port, containing the terminal kind (as a name listed in
termcap (5)), a space, and the name of the tty, minus /dev/.

This information is read by tset(l) and by login(l) to initialize the TERM variable at login time.

SEE ALSO
tset(l), login(l)

BUGS
Some lines are merely known as "dialup" or "plugboard".

7th Edition 25 October 1979 1

TYPES (5) UNIX Programmer's Manual TYPES (5)

NAME
types - primitive system data types

SYNOPSIS
#include < sys/types.h >

DESCRIPTION
The data types defined in the include file are used in UNIX system code; some data of these
types are accessible to user code:

I• types.h 6.1 83/07 /29•/

I•
•Basic system types and major/minor device constructing/busting macros.
•I

I• major part of a device •/
#define major(x) ((int) (((unsigned)(x) > >8)&0377))

I• minor part of a device •/
#define minor(x) ((int) ((x)&0377))

I• make a device number •/
#define makedev(x,y) ((dev_t)(((x)< <8) I (y)))

typedef unsigned char
typedef unsigned short
typedef unsigned int
typedef unsigned long
typedef unsigned short

u_char;
u_short;
u_int;
u_long;
ushort;/• sys III compat •/

#ifdef vax
typedef struct
typedef struct

} label t;
#endif

int

typedef struct
typedef long
typedef char •
typedef u_long
typedef long
typedef int
typedef int
typedef short
typedef int

typedef struct

_physadr { int r[l]; } •physadr;
label t {
val[14];

_quad { long val [2]; } quad;
daddr_t;
caddr_t;
ino_t:
swblk_t;
size_t;
time_t;
dev_t;
off t· _,

fd_set { int fds_bits[l]; } fd_set;

The form daddr_t is used for disk addresses except in an i-node on disk, see ft(S). Times are
encoded in seconds since 00:00:00 GMT, January l, 1970. The major and minor parts of a
device code specify kind and unit number of a device and are installation-dependent. Offsets
are measured in bytes from the beginning of a file. The label_t variables are used to save the
processor state while another process is running.

4th Berkeley Distribution 1 April 1983 1

TYPES (5) UNIX Programmer's Manual TYPES (5)

SEE ALSO
fs(5), time(3), lseek(2), adb(l)

4th Berkeley Distribution 1 April 1983 2

UTMP(S) UNIX Programmer's Manual UTMP(S)

NAME
utmp, wtmp - login records

SYNOPSIS
#include <utmp.h>

DESCRIPTION

FILES

The utmp file records information about who is currently using the systern. The file is a
sequence of entries with the following structure declared in the include file:

I• utmp.h 4.2 83105122 •I

I•
• Structure of utmp and wtmp files .
•
• Assuming the number 8 is unwise.
•I

struct utmp (
char
char
char
long

};

ut_line[8];
ut_name[8];
ut_host[l6];
ut_time;

I• tty name •/
I• user id•/
I• host name, if remote•/
I• time on•/

This structure gives the name of the special file associated with the user's terminal, the user's
login name, and the time of the login in the form of time(3C).

The wtmp file records all logins and logouts. A null user name indicates a logout on the associ·
ated terminal. Furthermore, the terminal name ,_, indicates that the system was rebooted at
the indicated time; the adjacent pair of entries with terminal names 'I' and •}' indicate the
system-maintained time just before and just after a date command has changed the system's
idea of the time.

Wtmp is maintained by login(l) and init(8). Neither of these programs creates the file, so if it
is removed record-keeping is turned off. It is summarized by ac(8).

/etc/utmp
. /usr/adm/wtmp

SEE ALSO
login(l), init(8), who(l), ac(8)

4th Berkeley Distribution 26 July 1983 1

VFONT(S) UNIX Programmer's Manual VFONT(S)

NAME
vfont - font formats for the Benson-Varian or Versatec

SYNOPSIS
/usr/llb/vfont/•

DESCRIPTION

FILES

The fonts for the printer/plotters have the following format. Each file contains a header, an
array of 256 character description structures, and then the bit maps for the characters them­
selves. The header has the following format:

struct header {
short magic;
unsigned short size;

} header;

short
short
short

maxx;
maxy;
xtnd;

The magic number is 0436 (octal). The maxx, maxy, and xtnd fields are not used at the current
time. Maxx and maxy are intended to be the maximum horizontal and vertical size of any
glyph in the font, in raster lines. The size is the size of the bit maps for the characters in bytes.
Before the maps for the characters is an array of 256 structures for each of the possible charac­
ters in the font. Each element of the array has the form:

struct dispatch {
unsigned short
short
char
char
char
char
short

};

addr;
nbytes;
up;
down;
left;
right;
width;

The nbytes field is nonzero for characters which actually exist. For such characters, the addr
field is an off set into the rest of the file where the data for that character begins. There are
up+down rows of data for each character, each of which has left+right bits, rounded up to a

· number of bytes. The width field is not used by vcat, although it is to make width tables for
troff. It represents the logical width of the glyph, in raster lines, and shows where the base
point of the next glyph would be.

/usr /lib/vf ont/ •

SEE ALSO
troff(l), pti(l), vpr(l), vtroff(l), vfontinfo(l)

7th Edition 26 February 1979 1

INTR0(7) UNIX Programmer's Manual

NAME
miscellaneous - miscellaneous useful information pages

DESCRIPTION

INTR0(7)

This section contains miscellaneous documentation, mostly in the area of text processing macro
packages for troff(!).

ascii
environ
eqnchar
hi er
mailaddr
man
me
ms
term

4th Berkeley Distribution

map of ASCII character set
user environment
special character definitions for eqn
file system hierarchy
mail addressing description
macros to typeset manual pages
macros for formatting papers
macros for formatting manuscripts
conventional names for terminals

9 February 1983 1

ASCil(7) UNIX Programmer's Manual

NAME
ascii - map of ASCII character set

SYNOPSIS
cat /usr/pub/ascil

DESCRIPTION

FILES

Ascii is a map of the ASCil character set, to be printed as needed. It contains:

IOOO nullOOl sohl002 stxl003 etxl004 eotlOOS enql006 ack!007 bell
1010 bs 1011 ht 1012 nl 1013 vt 1014 np IOlS er 1016 so 1017 si I
1020 dlel021 dcll022 dc2I023 dc3I024 dc4I02S nakl026 synl027 etbl
1030 canl031 em !032 subl033 escl034 fs 1035 gs 1036 rs 1037 us I
1040 sp 1041 ! 1042 " 1043 # I044 s lo4s % I046 & 1041 • I
1oso < 1051 > 1os2 • 1os3 + 1os4 , 1oss - I056 . 1os1 1 I
1060 o 1061 1 1062 2 I063 3 1064 4 lo6s s I066 6 1061 1 I
1010 8 1011 9 1012 : 1013 ; 1014 < 101s - 1016 > 1011 ? I
I 100 @ I 101 A I 102 B I 103 C I 104 D I lOS E I 106 F I 107 G I
1110 H 1111 I 1112 J 1113 K 1114 L 111s .M 1116 N 1117 0 I
1120 p 1121 Q 1122 R 1123 s 1124 T 112s u 1126 v 1127 w I
1130 x 1131 Y 1132 z lt33 [1134 \ lt3s 1 1136 • 1131 _ I
I 140 ' I 141 a I 142 b I 143 c I 144 d I 145 e I 146 f I 147 g I
I ISO h I lSl i I 1S2 j I 1S3 k I 154 1 I lSS m I 156 n I 1S7 o I
lt6o P !161 q 1162 r 1163 s 1164 t 1165 u lt66 v 1167 w I
1110 x 1111 y 1112 z 1113 { 1114 I 111s l 1116 - 1111 dell

00 null 01 sohl 02 stxl 03 etx 04 eot I 05 enq 06 ackl 07 bel
08 bs I 09 ht I Oa nl I Ob vt Oc np I Od er Oe so I Of si
10 dlel 11 dell 12 dc21 13 dc3 14 dc4 I 15 nak 16 syn! 17 etb
18 canl 19 em I la subl lb esc le fs I ld gs le rs I 1f us
20 sp I 21 1 I 22 " 23 # 24 s I 25 % 26 & I 27

.
28 < I 29 > I 2a • 2b + 2c , I 2d - 2e . 2f I
30 o I 31 1 I 32 2 33 3 34 4 I 3s 5 36 6 I 37 7
38 8 I 39 9 I 3a lb

' 3c < I 3d - 3e > I 3f ?
40 @ I 41 A I 42 B 43 c 44 D I 4S E 46 F I 47 G
48 H I 49 I I 4a J 4b K 4c L I 4d M 4e NI 4f 0
so P I 51 QI 52 R S3 s S4 T I SS u S6 v I s1 w
S8 X I S9 Y I Sa z Sb [Sc \ I Sd] Se .. I Sf
60 · I 61 a I 62 b 63 c 64 d I 65 e 66 r I 67 g
68 h I 69 i I 6a j 6b k 6c I I 6d m 6e n I 6r 0
70 P I 11 q I 12 r 73 s 74 t I 1s u 76 v I 11 w I
78 x I 19 y I 7a z 7b (7c I I 7d } 7e - I 7f de 11

/usr/pub/ascii

7th Edition 1 February 1983

ASCil(7)

1

ENVIRON(7) UNIX Programmer's Manual ENVIRON (7)

NAME
environ - user environment

SYNOPSIS
extern char ••environ;

DESCRIPTION
An array of strings called the 'environment' is made available by execve(2) when a process
begins. By convention these strings have the form 'name- value'. The following names are
used by various commands:

PATH The sequence of directory prefixes that sh, time, nice(l), etc., apply in searching for
a file known by an incomplete path name. The prefixes are separated by ':'.
Login(!) sets PATH-:/usr/ucb:/bin:/usr/bin.

HOME

TERM

SHELL

A user's login directory, set by login(l) from the password file passwd(5).

The kind of terminal for which output is to be prepared. This information is used
by commands, such as nroff or plotOG), which may exploit special terminal capa­
bilities. See /etc/termcap (termcap(5)) for a list of terminal types.

The file name of the users login shell.

TERMCAP The string describing the terminal in TERM, or the name of the termcap file, see
termcap(5), termcap(3X).

EXINIT A startup list of commands read by ex(l), edit(l), and vi(l).

USER The login name of the user.

PRINTER The name of the default printer to be used by lpr(I), /pq(l), and lprm(l).

Further names may be placed in the environment by the export command and 'name-value'
arguments in sh(l), or by the setenv command if you use csh(l). Arguments may also be
placed in the environment at the point of an execve(2). It is unwise to conflict with certain
sh(l) variables that are frequently exported by '.profile' files: MAIL, PSI, PS2, IFS.

SEE ALSO
csh(l), ex(l), login(l), sh(l), execve(2), system(3), termcap(3X), termcap(5)

4th Berkeley Distribution 5 February 1983

EQNCHAR(7)

NAME

FILES
/usr/pub/eqnchar

SEE ALSO
trotr(l), eqn(l)

3rd Berkeley Distribution

UNIX Proarammer's Manual EQNCHAR(7)

1 February 1983 1

HIER(7) UNIX Programmer's Manual

NAME
hier - file system hierarchy

DESCRIPTION
The following outline gives a quick tour through a representative directory hierarchy.

I root
/vmunix

the kernel binary (UNIX itselO
/lost+found

directory for connecting detached files for ftck(8)
/dev/ devices (4)

MAKEDEV
shell script to create special files

MAKEDEV.local
site specific part of MAKEDEV

console
main console, tty(4)

tty• terminals, tty(4)
hp• disks, hp(4)
rhp• raw disks, hp(4)
up• UNIBUS disks up(4)

/bin/ utility programs, cf /usr/bin/ (1)
as assembler
cc C compiler executive, cf /lib/ccom, /lib/cpp, /lib/c2
csh C shell

/lib/ . object libraries and other stuff, cf /usr/lib/
Ube.a system calls, standard 1/0, etc. (2,3,3S)

ccom C compiler proper
cpp C preprocessor
c2 C code improver

/etc/ essential data and maintenance utilities; sect (8)
dump dump program dump(8)
passwd password file, passwd(S)
group group file, group(S)
motd message of the day, login(!)
termcap

description of terminal capabilities, termcap(S)
ttytype table of what kind of terminal is on each port, ttytype(S)
mtab mounted file table, mtab(S)
dumpdates

dump history, dump(8)
fstab file system con.figuration table fttab(S)
disktab disk characteristics and partition tables, disktab(S)
hosts host name to network address mapping file, hosts(S)
networks

network name to network number mapping file, networks(S)
protocols

protocol name to protocol number mapping file, protocols(S)
services

4th Berkeley Distribution 1 February 1983

HIER (7)

1

HIER(7) UNIX Programmer's Manual

network services definition file, services(S)
remote names and description of remote hosts for tip(IC), remote(S)
phones private phone numbers for remote hosts, as described in phones(S)
ttys properties of terminals, nys(S)
getty part of login, geny(8)
init the parent of all processes, init(8)
re shell program to bring the system up
re.local site dependent portion of re
cron the clock daemon, cron(8)
mount mount(8)

/sys/ system source
hi header (include) files

acct.h acct(S)
stat.h stat(2)

sys/ machine independent system source
init_main.c
uipc_socket.c
ufs_syscalls.c

conf / site configuration files
GENERIC

net/ general network source
netinet/

netimp/
DARPA Internet network source

network code related to use of an IMP
if_imp.c
if _imphost.c
if _imphost.h

vax/ source specific to the VAX
locore.s
machdep.c

vaxuba/
device drivers for hardware which resides on the UNIBUS
uba.c
dh.c
up.c

vaxmba/
device drivers for hardware which resides on the MAS BUS
mba.c
hp.c
ht.c

vaxif network interface drivers fer the VAX
if_en.c
if_ec.c

4th Berkeley Distribution 1 February 1983

HIER(7)

2

HIER(7) UNIX Programmer's Manual

if_vv.c

/tmp/ temporary files, usually on a fast device, cf /usr/tmp/
e• used by ed(l)
ctm• used by cc(l)

/usr/ general-pupose directory, usually a mounted tile system
adm/ administrative information

/usr /bin

wtmp login history, utmp(S)
messages

hardware error messages
tracct phototypesetter accounting, troff(l)
lpacct line printer accounting ,Pr(l)
vaacct, vpacct

varian and versatec accounting vpr(l), vtroff(l), pac(S)

utility programs, to keep /bin/ small
tmp/ temporaries, to keep /tmp/ small

stm• used by sort(l)
raster used by plot(lG)

diet/ word lists, etc.

games/

words principal word list, used by /ook(l)
spellhist

history tile for spe/1(1)

hangman
lib/ library of stuff for the games

quiz.kl what quiz(6) knows
index category index
af rica countries and capitals

include/
standard #include files
a.out.h object tile layout, a.out(S)
stdio.h standard I/O, intro(3S)
math.h (3M)

sys/ system-defined layouts, cf /sys/h
net/ symbolic link to sys/net
machine/

symbolic link to sys/machine

lib/ object libraries and stuff, to keep /lib/ small
atrun scheduler for at(l)
lint/ utility tiles for lint

4th Berkeley Distribution

lint[l2]
subprocesses for lint{l)

llib-lc dummy declarations for /lib/Ube.a, used by lint(l)
llib-lm dummy declarations for /lib/libc.m

1 February 1983

HIER(7)

3

HIER(7) UNIX Programmer's Manual

struct/ passes of s1ruc1(1)

tmac/ macros for troff(l)
tmac.an

macros for man(7)
tmac.s macros for ms(7)

font/ fonts for troff(l)
ftR Times Roman
ftB Times Bold

uucp/ programs and data for uucp(lC)
L.sys remote system names and numbers
uucico the real copy program

units conversion tables for unit.s{l)
eign list of English words to be ignored by ptx(l)

/usr/ man/
volume 1 of this manual, man(l)

manO/ general
intro introduction to volume 1, ms(7) format
xx template for manual page

man 1/ chapter 1
as.I
mount.Im

catl/ pref ormatted pages for section 1

msgs/ messages, cf msgs(l)
bounds highest and lowest message

new/ binaries of new versions of proarams
preserve/

editor temporaries preserved here after crashes/hangups
public/ binaries of user programs • write permission to everyone
spool/ delayed execution ftles

at/ used by at(l)
lpd/ used by q,r(l)

lock present when line printer is active
cf• copy of file to be printed, if necessary
df • daemon control file, Jpd(8)
tf • transient control flle, while /pr is working

uucp/ work files and staging area for uucp(lC)
LOG FILE

summary log
LOG.• log flle for one transaction

mail/ mailboxes for mai/(1)
name mail file for user name
name.lock

lock file while name is receiving mail
secretmail/

like mail/

4th Berkeley Distribution 1 February 1983

HIER(7)

4

HIER (7) UNIX Programmer's Manual HIER (7)

uucp/ work files and staging area for uucp(lC)
LOG FILE

summary log
LOG.• log file for one transaction
mqueue/

mail queue for sendmai/(8)
wd initial working directory of a user, typically wd is the user's login name

.profile set environment for sh (1), environ (7)

.project
what you are doing (used by (finger(!))

.cshrc startup file for csh (1)

.exrc startup file for ex(l)

.plan what your short-term plans are (used by finger(!))

.netrc startup file for various network programs

.msgsrc
startup file for msgs(l)

.mailrc startup file for mai/(1)
calendar

user's datebook for calendar(!)
doc/ papers, mostly in volume 2 of this manual, typically in ms(1) format

as/ assembler manual
c C manual

/usr/ src/
source programs for utilities, etc.
bin/ source of commands in /bin

usr.bin/

as/ assembler
ar.c source for ar(l)

source for commands in /usr/bin
troff/ source for nroff and troff(l)

font/ source for font tables, /usr/lib/font/
ftR.c Roman

term/ terminal characteristics tables, /usr/lib/term/
tab300.c

DASI 300

ucb source for programs in /usr/ucb
games/ source for /usr/games
lib/ source for programs and archives in /lib

libel C runtime library
csu/ startup and wrapup routines needed with every C program

crtO.s regular startup
mcrtO.s modified startup for cc - p

sys/ system calls (2)
access.s
brk.s

stdio/ standard 1/0 functions (3S)

4th Berkeley Distribution 1 February 1983 s

HIER(7)

SEE ALSO

UNIX Programmer's Manual

fgets.c
fopen.c

gen/ other functions in (3)
abs.c

net/ network functions in (JN)
gethostbyname.c

local/ source which isn't normally distributed
new/ source for new versions of commands and library routines
old/ source for old versions of commands and library routines
ucb/ binaries of programs developed at UCB

edit editor for beginners
ex command editor for experienced users

mail mail reading/sending subsystem
man on line documentation

pi Pascal translator
px Pascal interpreter

vi visual editor

HIER(7)

ls(l), apropos(l), whatis(l), whereis{l), finger(l), which(l), ncheck(8), find(l), 1rep{l)
BUGS

The position of files is subject to change without notice;

4th Berkeley Distribution 1 February 1983 6

(
\

I

MAILADDR(7) UNIX Programmer's Manual MAILADDR (7)

NAME
mailaddr - mail addressing description ·

DESCRIPTION
Mail addresses are based on the ARP ANET protocol listed at the end of this manual page.
These addresses are in the general format

user@domain

where a domain is a hierarchical dot separated list of subdomains. For example, the address

eric@monet.Berkeley.ARP A

is normally interpreted from right to left: the message should go to the ARP A name tables
(which do not correspond exactly to the physical ARPANET), then to the Berkeley gateway,
after which it should go to the local host monet. When the message reaches monet it is
delivered to the user "eric".

Unlike some other forms of addressing, this does not imply any routing. Thus, although this
address is specified as an ARP A address, it might travel by an alternate route if that was more
convenient or efficient. For example, at Berkeley the associated message would probably go
directly to monet over the Ethernet rather than going via the Berkeley ARP ANET gateway.

Abbreviation. Under certain circumstances it may not be necessary to type the entire domain
name. In general anything following the first dot may be omitted if it is the same as the
domain from which you are sending the message. For example, a user on
"calder.Berkeley.ARPA" could send to "eric@monet" without adding the ".Berkeley.ARPA"
since it is the same on both sending and receiving hosts.

Certain other abbreviations may be permitted as special cases. For example, at Berkeley
ARPANET hosts can be referenced without adding the ".ARPA" as long as their names do not
conflict with a local host name.

Compatibility. Certain old address formats are converted to the new format to provide compati­
bility with the previous mail system. In particular,

host:user

is converted to

user@host

to be consistent with the rcp(lC) command.

Also, the syntax:

host!user

is converted to:

user@host.UUCP

This is normally converted back to the "host!user" form before being sent on for compatibility
with older UUCP hosts.

The current implementation is not able to route messages automatically through the UUCP net­
work. Until that time you must explicitly tell the mail system which hosts to send your mes­
sage through to get to your final destination.

Case Distinctions. Domain names (i.e., anything after the "@" sign) may be given in any mix­
ture of. upper and lower case with the exception of UUCP hostnames. Most hosts accept any
mixture of case in user names, with the notable exception of MULTICS sites.

Differences with ARP A Protoco/3. Although the UNIX addressing scheme is based on the ARP A
mail addressing protocols, there are some significant differences.

4th Berkeley Distribution 1

MAILADDR (7) UNIX Programmer's Manual MAILADDR(7)

At the time of this writing the only "top level" domain defined by ARPA is the ".ARPA"
domain itself. This is further restricted to having only one level of host specifier. That is, the
only addresses that ARP A accepts at this time must be in the format "user@host.ARP A"
(where "host" is one word). In particular, addresses such as:

eric@monet.Berkeley.ARP A

are not currently legal under the ARP A protocols. For this reason, these addresses are con­
verted to a different format on output to the ARP ANET, typically:

eric%monet@Berkeley.ARP A

Route-addrs. Under some circumstances it may be necessary to route a message through several
hosts to get it to the final destination. Normally this routing is done automatically, but some­
times it is desirable to route the message manually. An address that shows these relays are
termed "route-addrs." These use the syntax:

<@hosta,@hostb:user@hostc >
This specifies that the message should be sent to hosta, from there to hostb, and finally to
hostc. This path is farced even if there is a more efficient path to hostc.

Route-addrs occur frequently on return addresses, since these are generally augmented by the
software at each host. It is generally possible to ignore all but the "user@host" part of the
address to determine the actual sender.

Postmaster. Every site is required to have a user or user alias designated "postmaster" to which
problems with the mail system may be addressed.

CSNET. Messages to CSNET sites can be sent to "user.host@UDel-Relay".
\

BERKELEY
The foil owing comments apply only to the Berkeley environment.

Host Names. Many of the old familiar host names are being phased out. In particular, single
character names as used in Berknet are incompatible with the larger world of which Berkeley is
now a member. For this reason the following names are being obsoleted. You should notify
any correspondents of your new address as soon as possible.

OLD NEW j ingvax
p ucbcad r arpavax
v csvax ucbernie
n ucbkim y

The old addresses will be rejected as unknown hosts sometime in the near future.

What's My Address? If you are on a local machine, say monet, your address is

yourname@monet.Berkeley.ARP A

ucbingres
ucbarpa

ucbcory

However, since most of the world does not have the new software in place yet, you will have to
give correspondents slightly ditrerent addresses. From the ARP ANET, your address would be:

youmame%monet@Berkeley.ARP A

From UUCP, your address would be:

ucbvax!yourname%monet

Computer Center. The Berkeley Computer Center is in a subdcmain of Berkeley. Messages to
the computer center should be addressed to:

user%host.CC@Berkeley.ARP A

4th Berkeley Distribution 2

MAILADDR (7) UNIX Programmer's Manual MAILADDR (7)

The alternate syntax:

user@host.CC

may be used if the message is sent from inside Berkeley.

For the time being Computer Center hosts are known within the Berkeley domain, i.e., the
".CC" is optional. However, it is likely that this situation will change with time as both the
Computer Science department and the Computer Center grow.

Bitnet. Hosts on bitnet may be accessed using:

user@host.BITNET

SEE ALSO
mail(l), sendmail(8); Crocker, D. H., Standard for the Format of Arpa Internet Text Messages,
RFC822.

4th Berkeley Distribution 3

MAN(7) UNIX Programmer's Manual MAN(7)

NAME
man - macros to typeset manual

SYNOPSIS
nroff - man file .. .

troff -man file .. .

DESCRIPTION

FILES

These macros are used to lay out pages of this manual. A skeleton page may be found in the
file /usr/man/manO/xx.

Any text argument t may be zero to six words. Quotes may be used to include blanks in a
'word'. If text is empty, the special treatment is applied to the next input line with text to be
printed. In this way .I may be used to italicize a whole line, or .SM followed by .B to make
small bold letters.

A prevailing indent distance is remembered between successive indented paragraphs, and is
reset to default value upon reaching a non-indented paragraph. Default units for indents i are
ens.

Type font and size are reset to default values before each paragraph, and after processing font
and size setting macros.

These strings are predefined by -man:

\•R '•','(Reg)' in nroff.

\•S Change to default type size.

/usr/lib/tmac/tmac.an
/usr/man/manO/xx

SEE ALSO
trotr(l), man(l)

BUGS
Relative indents don't nest.

REQUESTS
Request

. B t

. BI t

. BR t

. DT

.HP i

.I t

.IB t

.IP xi

.IR t

. LP

.PD d

.PP

. RE

. RB t

. RI t

.RS i

. SH t

7th Edition

Cause If no Explanation
Break Argument
no r-n.t.l.• Text tis bold .
no r-n.t.1. Join words oft alternating bold and italic .
no r-n.t.l. Join words oft alternating bold and Roman .
no .Si li... Restore default tabs .
yes i-p.i.• Set prevailing indent to i. Begin paragraph with hanging indent.
no r-n.t.l. Text tis italic .
no r-n.t.1. Join words oft alternating italic and bold .
yes x-"" Same as .TP with tag x .
no r-n.t.1. Join words oft alternating italic and Roman .
yes Same as .PP .
no d- .4v Interparagraph distance is d.
yes Begin paragraph. Set prevailing indent to .Si.
yes End of relative indent. Set prevailing indent to amount of starting .RS .
no r-n.t.l. Join words oft alternating Roman and bold .
no r-n.t.l. Join words oft alternating Roman and italic .
yes ;-p.i. Start relative indent, move left margin in distance i. Set prevailing

indent to .Si for nested indents.
yes r-n.t.l. Subhead .

7 March 1983 1

MAN(7)

.SM r no r-n.t.l.

. TH n c x v m yes

.TP i yes ;-p.i.

UNIX Programmer's Manual MAN(7)

Text r is small.
Begin page named n of chapter c: x is extra commentary, e.g. 'local', for
page foot center; v alters page foot left, e.g. '4th Berkeley Distribution';
m alters page head center, e.g. 'Brand X Programmer's Manual'. Set
prevailing indent and tabs to .Si.
Set prevailing indent to i. Begin indented paragraph with hanging tag
given by next text line. If tag doesn't fit, place it on separate line.

• n.t.l. - next text line; p.i. - prevailing indent

7th Edition 7 March 1983 2

ME(7) UNIX Programmer's Manual ME(7)

NAME
me - macros for formatting papers

SYNOPSIS
nroff -me [options] file .. .
troff - me [options] file .. .

DESCRIPTION

FILES

This package of nroff and trojfmacro definitions provides a canned formatting facility for tech­
nical papers in various formats. When producing 2-column output on a terminal, filter the
output through co/(l).

The macro requests are defined below. Many nroffand trojfrequests are unsafe in conjunction
with this package, however these requests may be used with impunity after the first .pp:

.bp begin new page

.br break output line here

.sp n insert n spacing lines

.ls n (line spacing) n-1 single, n-2 double space

.na no alignment of right margin

.ce n center next n lines

.ul n underline next n lines

.sz + n add n to point size

Output of the eqn, neqn, refer, and tb/(1) preprocessors for equations and tables is acceptable as
input.

/usr/liq/tmac/tmac.e
/usr/lib/me/•

SEE ALSO
eqn{l), troff(l), refer(l), tbl(l)
- me Reference Manual, Eric P. Allman
Writing Papers with Nroff Using -me

REQUESTS
In the following list, "initialization" refers to the first .pp, .Ip, .ip, .np, .sh, or .uh macro. This
list is incomplete; see The -me Reference Manual for interesting details.

Request Initial Cause Explanation
Value Break

.(c

.(d

.(f

.(1

.(q

.(xx

.(z

.)c

.)d

.)f

.)l

.)q

.)x

.)z

.++ m H-

yes Begin centered block
no Begin delayed text
no Begin footnote
yes Begin list
yes Begin major quote
no Begin indexed item in index x
no Begin floating keep
yes End centered block
yes End delayed text
yes End footnote
yes End list
yes End major quote
yes End index item
yes End floating keep
no Define paper section. m defines the part of the paper, and can be C (chapter),

A (appendix), P (preliminary, e.g., abstract, table of contents, etc.), B

3rd Berkeley Distribution 16 November 1979 1

ME(7)

. +c T

.le
• 2c
. EN
.EQ x y

. TE

. TH

. TSx

.ac AN

. bx

.ba +n

.be

.bi x

. bxx

.ef 'xii

.eh 'xii

.ro 'xft

. hx

.he 'xji

.hl

.ix

.ip xy

.lp

.lo

.np

.of 'xji

.oh 'xii

.pd

. pp

.r

.re

.SC

.sh n x

. sk

.sz +n

. th

. tp

. ux

. uh

. xpx

yes
1 yes
1 yes

yes
yes

yes
yes
yes
no

no no
0 yes

no yes
no no
no no

no
no
no
no

' no
yes

no no
no yes
yes yes

no

1 yes
no
no
yes

no yes
yes no

no
no no

yes

no no
lOp no
no no
no yes

no
yes
no

UNIX Programmer's Manual ME(7)

(bibliography), RC (chapters renumbered from page one each chapter), or RA
(appendix renumbered from page one).
Begin chapter (or appendix, etc., as set by . + +). Tis the chapter title .
One column format on a new page.
Two column format .
Space after equation produced by eqn or neqn .

Precede equation; ·break out and add space. Equation number is y. The
optional argument x may be I to indent equation (default), L to left-adjust the
equation, or C to center the equation.
End table .
End heading section of table .
Begin table; if x is H table has repeated heading .
Set up for ACM style output. A is the Author's name(s), N is the total

number of pages. Must be given before the first initialization.
Print x in boldface; if no argument switch to boldface .
Augments the base indent by n. This indent is used to set the indent on regular
text (like paragraphs).
Begin new column
Print x in bold italics (nofill only)
Print x in a box (nofill only) .
Set even footer to x y z
Set even header to x y z
Set footer to x y z
Suppress headers and footers on next page .
Set header to x y z
Draw a horizontal line
Italicize x; if x missing, italic text follows .
Start indented paragraph, with hanging tag x. Indentation is y ens (default 5) .
Start left-blocked paragraph .
Read in a file of local macros of the form .•x. Must be given before
initialization.
Start numbered paragraph.
Set odd footer to x y z
Set odd header to x y z
Print delayed text.
Begin paragraph. First line indented .
Roman text follows.
Reset tabs to default values.
Read in a file of special characters and diacritical marks. Must be given before
initialization.
Section head follows, font automatically bold. n is level of section, x is title of
section.
Leave the next page blank. Only one page is remembered ahead .
Augment the point size by n points.
Produce the paper in thesis format. Must be given before initialization .
Begin title page .
Underline argument (even in trojJ). (Nofill only) .
Like .sh but unnumbered .
Print index x .

3rd Berkeley Distribution 16 November 1979 2

MS(7) UNIX Programmer's Manual MS(7)

NAME
ms - text formatting macros

SYNOPSIS
nroff - ms [options] ftle .. .
troff -ms [options] ftle .. .

DESCRIPTION

FILES

This package of nroff and troff macro definitions provides a formatting facility for various styles
of articles, theses, and books. When producing 2-column output on a terminal or lineprinter,
or when reverse line motions are needed, ftlter the output through co/(l). All external -ms
macros are defined below. Many nroff and troff requests are unsafe in conjunction with this
package. However, the ftrstfour requests below may be used with impunity after initialization,
and the last two may be used even before initialization:

.bp begin new page

.br break output line

.sp n insert n spacing lines

.ce n center next n lines

.ls n line spacing: n-1 single, n-2 double space

.na no alignment of right margin
Font and point size changes with \f and \s are also allowed; for example, "\flword\fR" will
italicize word. Output of the tbl, eqn, and refer(l) preprocessors for equations, tables, and
references is acceptable as input.

/usr/lib/tmac/tmac.x
/usr/lib/ms/x. ???

SEE ALSO
eqn(l), refer(l), tbl(l), troft'(l)

REQUESTS
Macro Initial Break? Explanation
Name Value Reset?

.ABx y begin abstract; if x-no don't label abstract

.AE y end abstract

.AI y author's institution

.AM n better accent mark definitions

.AU y author's name

.Bx n embolden x; if no x, switch to boldface

.Bl y begin text to be enclosed in a box

.B2 y end boxed text and print it

.BT date D bottom title, printed at foot of page

.BXx n print word x in a box

.CM if t D cut mark between pages

.CT y,y chapter title: page number moved to CF (TM only)

.DAx if n n force date x at bottom of page; today if no x

.DE y end display (unftlled text) of any kind

.DSxy I y begin display with keep; x -1,L,C,B; y -indent

.my 8n,.Si y indented display with no keep; y-indent

.LD y left display with no keep

.CD y centered display with no keep

.BO y block display; center entire block

.EF x n even page footer x (3 part as for .tl)

.EHx n even page header x (3 part as for .tl)

4th Berkeley Distribution 18 July 1983 1

MS(7) UNIX Programmer's Manual MS(7)

.EN y end displayed equation produced by eqn

.EQxy y break out equation; x-L,l,C; y-equation number

.FE n end footnote to be placed at bottom of page

.FP n numbered footnote paragraph; may be redefined

.FS x n start footnote; x is optional footnote label

.HD undef n optional page header below header margin

.I x n italicize x; if no x, switch to italics

.IP xy y,y indented paragraph, with hanging tag x; y-indent

.IX xy y index words x y and so on (up to S levels)

.KE n end keep of any kind

.KF n begin floating keep; text fills remainder of page

.KS y begin keep; unit kept together on a single page

.LG n larger; increase point size by 2

. LP y,y left (block) paragraph .

.Mex y,y multiple columns; x-column width

.NDx if t n no date in page footer; x is date on cover

.NHxy y,y numbered header; x-level, x-0 resets, x-S sets toy

.NL lOp n set point size back to normal

.OFx n odd page footer x (3 part as for .tl)
:OH x n odd page header x (3 part as for .ti)
.Pl ifTM n print header on 1st page
.PP y,y paragraph with first line indented
.PT - % - n page title, printed at head of page
.PXx y print index (table of contents); x-no suppresses title
.QP y,y quote paragraph (indented and shorter)
.R on n return to Roman font
.RE Sn y,y retreat: end level of relative indentation
.RPx n released paper format; x-no stops title on 1st page
.RS Sn y,y right shift: start level of relative indentation
.SH y,y section header, in bold.face
.SM n smaller; decrease point size by 2
.TA 8n,Sn n set tabs to Sn 16n ... (nroff) Sn lOn ... (troff)
.Tex y print table of contents at end; x -no suppresses title
.TE y end of table processed by tbl
.TH y end multi-page header of table
.TL y title in bold.face and two points larger
.TM off n UC Berkeley thesis mode
.TS x y,y begin table; if x - H table has multi-page header
.ULx n underline x, even in troff
.UXx n UNIX; trademark message first time; x appended
.XAxy y another index entry; x-page or no for none; y-indent
.XE y end index entry (or series of .IX entries)
.XP y,y paragraph with first line exdented, others indented
.XS xy y begin index entry; x-page or no for none; y-indent
JC on y,y one column format, on a new page
.2C y,y begin two column format
.J- n beginning of refer reference
.[0 n end of unclassifiable type of reference
.[N n N- 1 :journal-article, 2:book, J:book-article, 4:report

4th Berkeley Distribution 18 July 1983 2

MS(7) UNIX Programmer's Manual MS (7)

REGISTERS

BUGS

Formatting distances can be controlled in -ms by means of built·in number registers. For
example, this sets the line length to 6.S inches:

.nr LL 6.Si
Here is a table of number registers and their def a ult values:

Name Register Controls Takes Effect Default

PS point size paragraph 10
VS vertical spacing paragraph 12
LL line length paragraph 6i
LT title length next page same as LL
FL footnote length next .FS S.Si
PD paragraph distance paragraph 1 v (if n), .3v (if t)
DD display distance displays 1 v (if n), .Sv (if t)
PI paragraph indent paragraph Sn
QI quote indent next .QP Sn
FI footnote indent next .FS 2n
PO page offset next page 0 (if n), - li (if t)
HM header margin next page 1i
FM footer margin next page li
FF footnote format next .FS 0 (1, 2, 3 available)

When resetting these values, make sure to specify the appropriate units. Setting the line length
to 7, for example, will result in output with one character per line. Setting FF to 1 suppresses
footnote superscripting; setting it to 2 also suppresses indentation of the first line; and setting it
to 3 produces an .IP-like footnote paragraph.

Here is a list of string registers available in -ms; they may be used anywhere in the text:

Name String's Function

\•Q
\•U
\•­
\•(MO
\•(DY
\•• , .. , ..
\•­
\•,
\•:
\•-

quote (• in nroff, " in troff)
unquote (" in nroff, " in troff)
dash (-- in nroff, - in troff)
month (month of the year)
day (current date)
automatically numbered footnote
acute accent (before letter)
grave accent (before letter)
circumflex (before letter)
cedilla (before letter)
umlaut (before letter)
tilde (before letter)

When using the extended accent mark definitions available with .AM, these strings should
come after, rather than before, the letter to be accented.

Floating keeps and regular keeps are diverted to the same space, so they cannot be mixed
together with predictable results.

4th Berkeley Distribution 18 July 1983 3

TERM(7) UNIX Programmer's Manual TERM (7)

NAME
term - conventional names for terminals

DESCRIPTION
Certain commands use these terminal names. They are maintained as part of the shell environ­
ment (see sh(1),environ(1)).

adm3a Lear Seigler Adm-3a
2621 Hewlett-Packard HP262? series terminals
hp Hewlett-Packard HP264? series terminals
clOO Human Designed Systems Concept 100
h19 Heathkit H19
mime Microterm mime in enhanced ACT IV mode
1620 DIABLO 1620 (and others using HyType II)
300 DASI/DTC/GSI 300 (and others using HyType I)
33 TELETYPE8 Model 33
37 TELETYPE Model 37
43 TELETYPE Model 43
735 Texas Instruments TI735 (and TI725)
745 Texas Instruments Tl745
dumb terminals with no special features
dialup a terminal on a phone line with no known characteristics
network a terminal on a network connection with no known characteristics
4014 Tektronix 4014
vt52 Digital Equipment Corp. VT52

The list goes on and on. Consult /etc/termcap (see termcap(5)) for an up-to-date and locally
correct list.

Commands whose behavior may depend on the terminal either consult TERM in the environ­
ment, or accept arguments of the form -Tterm, where term is one of the names given above.

SEE ALSO

BUGS

stty{l), tabs(l), plot(lG), sh(l), environ(7) ex(l), clear(l), more(l), ul(l), tset(l),
termcap(5), termcap(3X), ttytype(5)
trotf(l) for nroff

The programs that ought to adhere to this nomenclature do so only fitfully.

4th Berkeley Distribution 1 February 1983 1

INTRO (8) UNIX Programmer's Manual INTRO(8)

NAME
intro - introduction to system maintenance and operation commands

DESCRIPTION
This section contains information related to system operation and maintenance. In particular,
commands used to create new file systems, newfs, mkfs, and verify the integrity of the file sys­
tems, fsck, icheck, dcheck, and ncheck are described here. The section format should be con­
sulted when formatting disk packs. The section crash should be consulted in understanding
how to interpret system crash dumps.

LIST OF PROGRAMS
Program Appears on Page

ac ac.8
accton sa.8
add user adduser.8
analyze analyze.8
arcv arcv.8
arft' arft'.Sv
badl44 badl44.8
badsect badsect.8
bugfiler bugfiler.8
catman catman.8
ch own chown.8
clri clri.8
comsat comsat.8c
config config.8
crash crash.8v
cron cron.8
dcheck dcheck.8
diskpart diskpart.8
dmesg dmesg.8
drtest drtest.8
dump dump.8
dumpfs dumpfs.~
edquota edquota.8
fast boot fastboot.8
fasthalt fastboot.8
flcopy arft'.8v
format format.8v
fsck fsck.8
ft pd ftpd.8c
gettable gettable.Sc
getty getty.8
halt halt.8
htable htable.8
icheck icheck.8
ifconfig ifconfig.8c
implog implog.8c
implogd implogd.8c
init init.8
kgmon kgmon.8
lpc lpc.8
lpd lpd.8

4th Berkeley Distribution

Description

login accounting
system accounting
procedure for adding new users
Virtual UNIX postmortem crash analyzer
convert archives to new format
archiver and copier for floppy
read/write dee standard 144 bad sector information
create files to contain bad sectors
file bug reports in folders automatically
create the cat files for the manual
change owner
clear i-node
bift' server
build system configuration files
what happens when the system crashes
clock daemon
file system directory consistency check
calculate default disk partition sizes
collect system diagnostic messages to form error log
standalone disk test program ·
incremental file system dump
dump file system information
edit user quotas
reboot/halt the system without checking the disks
reboot/halt the system without checking the disks
archiver and copier for floppy
how to format disk packs
file system consistency check and interactive repair
DARPA Internet File Transfer Protocol server
get NIC format host tables from a host
set terminal mode
stop the processor
convert NIC standard format host tables
file system storage consistency check
configure network interface parameters
IMP log interpreter
IMP logger process
process control initialization
generate a dump of the operating systems profile buft'ers
line printer control program
line printer daemon

18 July 1983 1

INTR0(8) UNIX Programmer's Manual INTRO (8)

makedev makedev.8 make system special files
make key makekey.8 generate encryption key
mkfs mkfs.8 construct a file system
mklost +found mklost +found. 8 make a lost+found directory for fsck
mknod mknod.8 build special file
mkproto mkproto.8 construct a prototype file system
mount mount.8 mount and dismount file system
ncheck ncheck.8 generate names from i-numbers
newfs newfs.8 construct a new file system
pac pac.8 printer/ploter accounting information
pstat pstat.8 print system facts
quot quot.8 summarize file system ownership
quotacheck quotacheck. 8 file system quota consistency checker
quotaoff quotaon.8 turn file system quotas on and off
quotaon quotaon.8 tum file system quotas on and off
re rc.8 command script for auto-reboot and daemons
rd ump rdump.8c file system dump across the network
reboot reboot.8 UNIX bootstrapping procedures
re nice renice.8 alter priority of running processes
repquota repquota.8 summarize quotas for a file system
restore restore.8 incremental file system restore
rexecd rexecd.8c remote execution server
rlogind rlogind.8c remote login server
rmt rmt.8c remote magtape protocol module
route route.Sc manually manipulate the routing tables
routed, routed.Sc network routing daemon
rrestore rrestore.8c restore a file system dump across the network
rshd rshd.8c remote shell server
rwhod rwhod.8c system status server
rxformat rxformat.8v format floppy disks
sa sa.8 system accounting
savecore savecore.8 save a core dump of the operating system
sendmail sendmail.8 send mail over the internet
shutdown shutdown.8 close down the system at a given time
sticky sticky.8 executable files with persistent text
swapon swapon.8 specify additional device for paging and swapping
sync sync.8 update the super block
sys log syslog.8 log systems messages
telnetd telnetd.8c DARPA TELNET protocol server
tftpd tftpd.8c DARPA Trivial File Transfer Protocol server
trpt trpt.8c transliterate protocol trace
tunefs tunefs.8 tune up an existing file system
umount mount.8 mount and dismount file system
update update.8 periodically update the ·super block
uuclean uuclean.8c uucp spool directory clean-up
uusnap uusnap.8c show snapshot of the UUCP system
vipw vipw.8 edit the password file

4th Berkeley Distribution 18 July 1983 2

AC(8) UNIX Programmer's Manual AC(8)

NAME
ac - login accounting

SYNOPSIS
/etc/ac [-w wtmp] [-p] [-d] [people] ...

DESCRIPTION

FILES

Ac produces a printout giving connect time for each user who has logged in during the life of
the current wtmp file. A total is also produced. -w is used to specify an alternate wtmp file.
-p prints individual totals; without this option, only totals are printed. -d causes a printout
for each midnight to midnight period. Any people will limit the printout to only the specified
login names. If no wtmp file is given, /usr/adm/wtmp is used.

The accounting file /usr/adm/wtmp is maintained by init and login. Neither of these programs
creates the file, so if it does not exist no connect-time accounting is done. To start accounting,
it should be created with length 0. On the other hand if the file is left undisturbed it will grow
without bound, so periodically any information desired should be collected and the file trun­
cated.

/usr I adm/wtmp

SEE ALSO
init(8), sa(8), login(!), utmp(S).

4th Berkeley Distribution 4 February 1983 1

BACKUP(8V) UNIX Programmer's Manual BACKUP(8V)

NAME
backup - make backup tapes

SYNOPSIS
backup

DESCRIPTION

FILES

Backup is an interactive front-end to the UNIX dump program, dump(8). Its user is prompted
as to the type of dump (daily/weekly/ monthly), whether to dump the root file system (this
usually doesn't change -- no need to make frequent backups), and whether or not to invoke
fsck(8) to check the file systems before dumping. The file systems will only be checked if the
system is running single user. (Note: races can develop between users of files and dumpers; to
ensure that all files are backed up when they should be, we recommend that backup be run
from the single user shell). Backup proceeds by calling getfs(8) to produce a list of all file sys­
tems in the system; it calls dump on each one of these in turn, prompting the user to change
tapes as required.

/etc/fstab - file system data base
/etc/dump - actual dump program

DIAGNOSTICS
Are intended to be self-explanatory; mostly about invalid typed input.

7th Edition Valid 12/20/84 1

(
\
\

CHKHOSTS(8V) UNIX Programmer's Manual CHKH OSTS (8V)

NAME
chkhosts - update /etc/hosts, /etc/.rhosts, and /etc/hosts.equiv data bases.

SYNOPSIS
chkhosts
chkhosts -clean
chkhosts -add <hostname > <hostaddress>
chk.hosts -delete <hostname> ...

DESCRIPTION

FILES

Chkhosf,s maintains the data base files used by the Berkeley TCP/IP based facilities rlogin(1} and
rsh{1). The default invocation (no argument) is to have /etc/hosts add to the growing list of
address-to-names by querying the incore connection table. New address/name pairs can be
explicitly added using the -add option. Address/name pairs can be deleted using the -delet.e
option. The -clean option clears out all the data bases and inserts a dummy entry for the local
machine in each file.

Currently, /etc/hosts.equiv and /.rhosts reflect the current state of /etc/hosts {i.e., each time
chkhosts is run, these two files are rebuilt from the same information that is used to build the
/etc/hosts file. With the /.rhosts file, the name list associated with each host, if applicable, is
saved.

/etc/hosts
/etc/hosts.equiv
/.rhosts
/tmpjhosts,tmp
/tmpjhosts.equiv, tmp
/tmp/rhosts,tmp

SEE ALSO

BUGS

rlogin(1), rsh(1}, hosts(5), rlogind(8), rshd(8)

The program should handle internetting.

The program should allow the user to manipulate the /.rhosts name lists.

The program should allow the user to specify if the /etc/hosts.equiv file should be an image of
/etc/hosts.

7th Edition 1

CHOWN(8)

NAME
chown - change owner

SYNOPSIS

UNIX Programmer's Manual

/etc/chown [-f 1 owner file ...

DESCllIPTION

CHOWN(8)

Chown changes the owner of the files to owner. The owner may be either a decimal UID or a
login name found in the password file.

Only the super-user can change owner, in order to simplify accounting procedures. No errors
are reported when the -f (force) option is given.

FILES
/etc/passwd

SEE ALSO
chgrp(l), chown(2), passwd(S), group(S)

4th Berkeley Distribution 18 July 1983 1

CHUID (8V) UNIX Programmer's Manual CHUID (8V)

NAME
chuid - changes uid/gid's on directory trees according to command line arguments.

SYNOPSIS
chuid [- d directory tree] [- D] [- o old password file] [- n new password file] [- I logfile]
[- r restart file] [- u user olduid]

DESCRIPTION
Chuid executes a wholesale chown(2} on the entire directory tree. It does this by constructing a
map of old to new uid and gid's, following the directory tree, logging nodes touched, and cal­
ling chown(2} for each accessible file that should be changed. The user has the option of either
changing the ownerships of only one user or of the entire password domain. Chuid is not for
the faint of heait.

Chuid has the following command line arguments:

-d directory tree
Use directory tree as the root for chuid. The user must specify a directory tree with each
invocation of chuid.

-D Open a debugging file which will contain the names of every changed file and its new
uid and gid. The name of the file will be of the form:

/tmp/chdbXX:XXXX
where XXXXXXis a unique 6 digit number.

-o old passwd file
Use old password file as the name of the previous password file. Only the super-user is
allowed to use this option. Default is /etc/passwd.old.

-n new passwd file

-1 logfile

Use new passwd file as the name of the new password file. Only the super-user is
allowed to use this option. Default is /etc/passwd.

Use /ogfile as the name of the logging file. The default is a file of the form:
/tmp/chlgX:XXXXX

where XXXXXXis a unique 6 digit number.

-u user olduid
Change only those files with a uid of olduid to the uid for user

-r restart file
Restart using the previous log file restart file. Note that logfile and restart file should not
be the same file. Chuid allows the user to restart from a previous log file in case of pro­
gram or system failure. In this case, the user should give as a command line argument,
the name of the restart file and all other arguments from the first execution. The com­
mand line information is not saved in the log file.

If chuid is run with privileged (i.e. root) permission, chuid prints an entry in the file
"/etc/defunct.log" for each file it encounters which does not have an entry in the new password
file. This entry is of the form

<name of file> <user id> <group id>
Chuid does not change the ownerships of these files nor does it create a defunct user entry in
the password file.

SEE ALSO
chown(2), chown(8), chgrp(8)

DIAGNOSTICS

04/11/84 1

OHUID (8V) UNIX Programmer's Manual OHUID (8V)

Ghuid uses extensively the facilities of perror{S} in reporting errors.

Unable to open logfile:
the file used as the logfile was inaccessible for writi;ng. If it cannot open another file for
logging (see next diagnostic), the error is fatal.

Using logfile as the log file:
a new file was created for logging because the first one was inaccessible.

Cannot open log file for reading:
chuid was unable to open the log file for reading. This is a fatal error.

Only super user allowed to use option:
the user was not the super-user. Occurs with -n and -o.

Error in loading password file:
chuid was unable to load either the new or the old password file for mapping. This is a
fatal error.

Creating password entry:
chuid has found a file with an unknown owner. It has created a password entry in the
new password file for the defunct owner.

User not in password file:
there is a user who is not in both the old and the new password file. This is done
mostly as a consistency check.

RES'IRim'IONS

BUGS

When changing the entire password domain (i.e. not using the - u option), chuid should be run
single user. The result of password file manipulation or file system manipulation with a con­
current execution of chuid is undefined.

Argument handling is a real pain.

The defunct file is over written with each execution.

AUTIIOR
Scott Schoenthal

04/11/84 2

CLRI (8) UNIX Programmer's Manual CLRI (8)

NAME
clri - clear i-node

SYNOPSIS
/etc/clrl filesystem i-number ...

DESCRIPTION
N .B.: Clri is obsoleted for normal file system repair work by fsck(8).

Clri writes zeros on the i-nodes with the decimal i-numbers on the fl/esystem. After clri, any
blocks in the affected file will show up as 'missing' in an icheck(8) of the fllesystem.

Read and write permission is required on the specified file system device. The i-node becomes
allocatable.

The primary purpose of this routine is to remove a file which for some reason appears in no
directory. If it is used to zap an i-node which does appear in a directory, care should be taken
to track down the entry and remove it. Otherwise, when the i-node is reallocated to some new
file, the old entry will still point to that file. At that point removing the old entry will destroy
the new file. The new entry will again point to an unallocated i-node, so the whole cycle is
likely to be repeated again and again.

SEE ALSO
icheck(8)

BUGS
If the file is open, clri is likely to be ineffective.

4th Berkeley Distribution 4 February 1983 1

CONN(8V) UNIX Programmer's Manual CONN(8V)

NAME
conn - Valid network management program

SYNOPSIS
conn [disable] [enable] [listen] [nolsten] [show] [shutdown period] [remove nodeName]

DESCRIPTION

FILES

Conn is used to maintain the network connection for the Extended File System. Di6able stops
the periodic broadcast of "I am alive" message. Enable starts the periodic broadcast of "I am
alive" messsage. Li8ten starts the connection manager listening to the net. Noli8ten makes our
system stop listening to the net. Show displays a list of known nodes and their status. Shut­
down period lets node keep any inpending 1/0 active for the specified period, allowing a graceful
shutdown. Remove nodename removes those nodes who have either crashed or are shutdown.

The connection manager maintains the incore host table. If a node does not broadcast "I am
alive" message for 90 seconds, it is marked inactive. If a node is inactive for 90 seconds, it is
considered to be down.

A node should check that no other active node has the same name as itself before announcing
its presence to everyone on the net. For this reason a node should listen to the net for at least
30 seconds before broadcasting the first "I am alive" message.

conn.h

DIAGNOSTICS
/net can not be opened

SEE ALSO
chkhosts(8V)

BUGS
None

7th Edition 12/20/84 1

CRASH(8V) UNIX Prosrammer's Manual CRASH(8V)

NAME
crash - what happens when the system crashes

DESCllJPTION
This section explains what happens when the system crashes and how you can analyze crash
dumps.

When the system crashes voluntarily it prints a message of the form

panic: why i pve up the ahost

on the console, takes a dump on a mass storage peripheral, and then invokes an automatic
reboot procedure as described in reboot(8). (If auto-reboot is disabled on the front panel of the
machine the system will simply halt at this point.) Unless some unexpected inconsistency is
encountered in the state of the tile systems due to hardware or software failure the system will
then resume multi-user operations.

The system has a large number of internal consistency checks; if one of these fails, then it will
panic with a very short message indicating which one failed.

The most common cause of system failures is hardware failure, which can reflect itself in dif­
ferent ways. Here are the messages which you are likely to encounter, with some hints as to
causes. Left unstated in all cases is the possibility that hardware or software error produced the
message in some unexpected way.

IO err in push
bard IO err in swap

The system encountered an error trying to write to the paging device or an error in
reading critical information from a disk drive. You should fix your disk if it is broken
or unreliable.

timeout table onrllow
This really shouldn't be a panic, but until we fix up the data structure involved, run·
ning out of entries causes a crash. If this happens, you should make the timeout table
bigger.

KSP not nlid
SBI fault
CHM? in kernel

These indicate either a serious bug in the system or, more often, a glitch or failing
hardware. If SBI faults recur, check out the hardware or call field service. If the other
faults recur, there is likely a bug somewhere in the system, although these can be
caused by a flakey processor. Run processor microdiagnostics.

machine check ~s;:
description

machine dependent machine-check information
We should describe machine checks, and will someday. For now, ask someone who
knows {like your friendly field service people).

trap type ~d, cocle•'-d, pc•'-s
A unexpected trap has occurred within the system; the trap types are:

0 reserved addressing fault
1 privileged instruction fault
2 reserved operand fa ult
3 bpt instruction fault
4 xf c instruction fault
S system call trap

4th Berkeley Distribution 1 September 1981 1

CRASH(8V) UNIX Proarammer's Manual CRASH (8V)

6 arithmetic trap
7 ut delivery trap
8 segmentation fa ult
9 protection fa ult
10 trace trap
11 compatibility mode fault
12 pqe fault
13 paae table fa ult

The favorite trap types in system crashes are trap types 8 and 9, indicating a wild refer­
ence. The code is the referenced address, and the pc at the time of the fault is printed.
These problems tend to be euy to track down if they are kernel bugs since the proces­
sor stops cold, bu• random flakiness seems to cause this sometimes.

lDlt died
The system initialization process hu exited. This is bad news, as no new users will
then be able to 101 in. Rebootin1 is the only fix, so the system just does it right away.

That completes the list of panic types you are likely to see.

When the system crashes it writes (or at leut attempts to write) an image of memory into the
back end of the primary swap area. After the system is rebooted, the proararn savecore(8) runs
and preserves a copy of this core image and the current system in a specified directory for later
perusal. See savecore(8) for details.

To analyze a dump you should begin by running adb(l) with the -k fla1 on the core dump.
Normally the command "•(intstack-4)Sc" will pr~vide a stack trace from the point of the crash
and this will provide a clue as to what went wrong. A more complete discussion of system
debugging is impossible here. See, however, "Usina ADB to Debua the UNIX Kernel".

SEE ALSO
adb(l), analyze(8), reboot(8)
VAX 111780 System Maintenance Guide for more information about machine checks.
Using ADB to Debug the UNIX Kernel

4th Berkeley Distribution 1 September 1981 2

I
I
i

CRON(8) UNIX Programmer's Manual CRON(8)

NAME
cron - clock daemon

SYNOPSIS
/ek/cron

DESCRlPTION

FILES

Cron executes commands at specified dates and times according to the instructions in the files
/usr/lib/crontab and /usr/lib/crontab.local. Any site dependent commands should be added to
this latter file.

Since cron never exits, it should only be executed once. This is best done by running cron from
the initialization process through the file /etc/re; see init(8).

Crontab and crontab.local consist of lines of six fields each. The fields are separated by spaces
or tabs. The first five are integer patterns to specify the minute (0-59), hour (0-23), day of the
month (1-31), month of the year (1-12), and day of the week (1-7 with l=Monday). Each of
these patterns may contain a number in the range above; two numbers separated by a minus
meaning a range inclusive; a list of numbers separated by commas meaning any of the
numbers; or an asterisk meaning all legal values. The sixth field is a string that is executed by
the Shell at the specified times. A percent character in this field is translated to a new-line
character. Only the first line (up to a % or end of line) of the command field is executed by
the Shell. The other lines are made available to the command as standard input.

Crontab and crontab.local are examined by cron every minute.

/usr /lib/ cron tab
/usr/lib/crontab.local

7th Edition 4 February 1983 1

DCHECK(8) UNIX Programmer's Manual DCHECK(S)

NAME
dcheck - file system directory consistency check

SYNOPSIS
/etc/dcheck [-I numbers] [filesystem]

DESCRIPTION

FILES

N.B.: Dcheckis obsoleted for normal consistency checking by ftck(8).

Dcheck reads the directories in a file system and compares the link-count in each i-node with
the number of directory entries by which it is referenced. If the file system is not specified, a
set of default file systems is checked.

The -1 flag is followed by a list of i-numbers; when one of those i-numbers turns up in a
directory, the number, the i-number of the directory, and the name of the entry are reported.

The program is fastest if the raw version of the special file is used, since the i-list is read in
large chunks.

Default file systems vary with installation.

SEE ALSO
fsck(8), icheck(8), fs(S), clri(8), ncheck(S)

DIAGNOSTICS

BUGS

When a file turns up for which the link-count and the number of directory entries disagree, the
relevant facts are reported. Allocated files which have 0 link-count and no entries are also
listed. The only dangerous situation occurs when there are more entries than links; if entries
are removed, so the link-count drops to 0, the remaining entries point to thin air. They should
be removed. When there are more links than entries, or there is an allocated file with neither
links nor entries, some disk space may be lost but the situation will not degenerate.

Since dcheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied
to active file systems.

Dcheck is obsoleted by fsck and remains for historical reasons.

4th Berkeley Distribution 4 February 1983 1

DMESG (8) UNIX Programmer's Manual DMESG(S)

NAME
dmesg - collect system diagnostic messages to form error log

SYNOPSIS
. /etc/dmesg [-]

DESCRIPTION

FILES

BUGS

Dmesg looks in a system buff er for recently printed diagnostic messages and prints them on the
standard output. The messages are those printed by the system when device (hardware) errors
occur and (occasionally) when system tables overflow non-fatally. If the - flag is given, then
dmesg computes (incrementally) the new messages since the last time it was run and places
these on the standard output. This is typically used with cron(8) to produce the error log
/usr/adrn/messages by running the command

/etc/dmesg - > > /usr/adm/messages

every 10 minutes.

/usr/adm/messages
/usr/adm/msgbuf

error log (conventional location)
scratch tile for memory of - option

The system error message buffer is of small finite size. As dmesg is run only every few
minutes, not all error messages are guaranteed to be logged. This can be construed as a bless­
ing rather than a curse.

Error diagnostics generated immediately before a system crash will never get logged.

4th Berkeley Distribution 4 February 1983 1

DUMP(8) UNIX Programmer's Manual DUMP(8)

NAME
dump - incremental file system dump

SYNOPSIS
/etc/dump [key [argument ...] filesystem]

DESCRIPTION
Dump copies to magnetic tape all files changed after a certain date in the filesystem. The key
specifies the date and other options about the dump. Key consists of characters from the set
0123456789fusd'\Vn.

0-9 This number is the 'dump level'. All files modified since the last date stored in the file
/etcldumpdates for the same filesystem at lesser levels will be dumped. If no date is deter­
mined by the level, the beginning of time is assumed; thus the option 0 causes the entire
filesystem to be dumped.

f Place the dump on the next argument file instead of the tape. If the name of the file is
" - ", dump writes to standard output.

u If the dump completes successfully, write the date of the beginning of the dump on file
letcldumpdates. This file records a separate date for each filesystem and each dump level.
The format of /etc/dumpdates is readable by people, consisting of one free format record
per line: filesystem name, increment level and ctime(J) format dump date. /etc/dumpdates
may be edited to change any of the fields, if necessary.

s The size of the dump tape is specified in feet. The number of feet is taken from the next
argument. When the specified size is reached, dump will wait for reels to be changed. The
default tape size is 2300 feet.

d The density of the tape, expressed in BPI, is taken from the next argument. This is used
in calculating the amount of tape used per reel. The default is 1600.

'\V Dump tells the operator what file systems need to be dumped. This information is gleaned
from the files /etc/dumpdates and letc/fstab. The '\V option causes dump to print out, for
each file system in letcldumpdates the most recent dump date and level, and highlights
those file systems that should be dumped. If the '\V option is set, all other options are
ignored, and dump exits immediately.

w Is like W, but prints only those filesystems which need to be dumped.

n Whenever dump requires operator attention, notify by means similar to a wa//(l) all of the
operators in the group "operator".

If no arguments are given, the key is assumed to be 9u and a default file system is dumped to
the def a ult tape.

Dump requires operator intervention on these conditions: end of tape, end of dump, tape write
error, tape open error or disk read error (if there are more than a threshold of 32). In addition
to alerting all operators implied by the n key, dump interacts with the operator on dump 's con­
trol terminal at times when dump can no longer proceed, or if something is grossly wrong. All
questions dump poses must be answered by typing "yes" or "no", appropriately.

Since making a dump involves a lot of time and effort for full dumps, dump checkpoints itself
at the start of each tape volume. If writing that volume fails for some reason, dump will, with
operator permission, restart itself from the checkpoint after the old tape has been rewound and
removed, and a new tape has been mounted.

Dump tells the operator what is going on at periodic intervals, including usually low estimates of
the number of blocks to write; the number of tapes it will take, the time to completion, and the
time to the tape change. The output is verbose, so that others know that the terminal control­
ling dump is busy, and will be for some time.

4th Berkeley Distribution 4 February 1983 1

DUMP(8) UNIX Programmer's Manual DUMP(8)

FILES

Now a short suggestion on how to perform dumps. Start with a full level 0 dump

dump Oun

Next, dumps of active file systems are taken on a daily basis, using a modified Tower of Hanoi
algorithm, with this sequence of dump levels:

3254769899 ...
For the daily dumps, a set of 10 tapes per dumped file system is used on a cyclical basis. Each
week, a level 1 dump is taken, and the daily Hanoi sequence repeats with 3. For weekly
dumps, a set of S tapes per dumped file system is used, also on a cyclical basis. Each month, a
level 0 dump is taken on a set of fresh tapes that is saved forever.

/dev/rrplg
/dev/rmt8
/etc/ddate
/etc/dumpdates
/etc/fstab
/etc/aroup

default filesystem to dump from
default tape unit to dump to
old format dump date record (obsolete after -J option)
new format dump date record
dump table: file systems and frequency
to find group operator

SEE ALSO
restor (8), dump(S), fstab(S)

DIAGNOSTICS

BUGS

Many, and verbose.

Sizes are based on 1600 BPI blocked tape; the raw magtape device has to be used to approach
these densities. Fewer than 32 read errors on the filesystem are ignored. Each reel requires a
new process, so parent processes for reels already written just hang around until the entire tape
is written.

It would be nice if dump knew about the dump sequence, kept track of the tapes scribbled on,
told the operator which tape to mount when, and provided more assistance for the operator
runnina restor .

4th Berkeley Distribution 4 February 1983 2

EFSIOOTL (8V) UNIX Programmer's Manual EFSIOOTL (8V)

NAME
efsioctl - EFS Superuser Access Control

SYNOPSIS
efsioctl {suuid <uid> lsufew lsumost}

DESCRlPTION

FILES

When a superuser accesses a remote system's files through the Extended File System (EFS),
the access rights are defined on the remote system. These rights are settable on each system by
using the program efsioctl. Each system can determine how all other system's superuser (uid of
0) is interpreted during file access. The superuser's uid is either used as is (0) or is changed to
a locally defined value.

efsioctl sumost

This command specifies that all superusers on other machines are to be treated as the
local superuser during access control checks.

efsioctl sufew

This command specifies that when a superuser on another machine accesses the local
machine the uid will be changed before access control checks. The default uid for this
transformation is 11.

efsioctl suuid <uid>

This command specifies the uid used for the transformation when sufew is in effect.

/net - EFS network interface device file

DIAGNOSTICS
ef sioctl - cannot open /net

efsioctl - ioctl failed

Valid 29 January 1985 1

ETIIER(8V) UNIX Programmer's Manual ETIIER(8V)

NAME
ether - 3Com 3C400 driver control program

SYNOPSIS
ether <verb> [<object> [<arguments>]]

DESCRlPTION
This program allows a user to control and observe the actions of the 3Com Ethernet driver and
controller. Each command consists of an action verb and an object of the driver. Some com­
mands also take parameter arguments after the object to qualify the action performed. Key­
words in all commands can be abbreviated and are not case-sensitive.

The verbs supported by ether are clear, disable, enable, help, set, and show. The complete
command syntax is:

clear {counters I distribution I multicast I statistics}
{disable I enable}

{de bug I multicast <address> I
mode {distribution I normal I promiscuous I trailer}}

help

set address <address>

show {address !counters !debug I
distribution I mode Im ulticast I version}

\

COUNTERS

The counters maintained by the driver show how received and transmitted packets have been
processed. Total counts of interrupts, packets successfully processed, and packets discarded are
shown. The verbs show and clear are permitted on the counters object.

DISTRIBUTION

When the distribution mode of the driver is enabled the driver collects packet size information.
This is maintained based on Ethertype and packet size. Separate information is collected for
received and transmitted packets. The verbs show and clear are permitted on the distribution
object. In addition the enable/disable verb on the driver mode (see mode below) is used to
control whether this information is collected.

7th Edition Valid 11December1984 1

ETHER(8V) UNIX Programmer's Manual ETHER(8V)

STA'I1S"ll CS

The statistics object is the union of the counter and distribution objects. The only verb allowed
on this object is clear. It is used to synchronize the data contained in the counters and packet
distribution data bases.

ADDRESS

The physical Ethernet object of the controller can be displayed and set using the verbs show
and set address respectively. For the set verb, the address is specified as six (6) hexadecimal 2
digit values separated by hypens (e.g., 02-60-Sc-12-34-56). When the address is set, the con­
troller is reset and the address will propagate through all software using the controller.

MULTICAST

The driver supports multicast receive filtering of an arbitrary set of multicast addresses. The
verbs supported by the multicast object are enable, disable, clear, and show. The enable and
disable verbs operate on single entries in the multicast filter. A multicast address is specified as
six (6) hexadecimal 2 digit values separated by hypens (e.g., FF-01-02-65-43-21). The clear
verb disables all entries in the multicast filter instead of having to perform individual disable
operations for each.

MODE

The mode object controls actions of the driver during packet processing. The three verbs that
the mode object support are: enable, disable, and show. The enable and disable verbs take an
extra parameter after the mode object to qualify what part of the driver mode should be
affected. The distribution qualifier controls whether the driver collects packet size distribution
statistics. The nonna.l qualifier controls whether the driver proceses normal packets or just dis­
cards them. The trailer qualifier controls whether the LAN t'Failer protocol is used on IP pack­
ets. The promiscuous qualifier controls whether all packets on the net are received. The only
packets that are passed to higher protocol levels for processing are those that pass address
match tests. In promiscuous mode, all packets received contribute to counters and distribution
data

VERSION

The version object only supports the show verb. The information shown consists of the ver­
sions of the 3Com driver in the kernel and the version of the ether program itself.

7th Edition Valid 11December1984 2

ETHER(8V) UNIX Programmer's Manua.l ETHER(8V)

DEBUG

The debug object controls the debugging flags internal to the 3Com driver. Currently the verbs
supported are enable, disable, and show.

7th Edition Valid 11December1984 3

FSCK(8) UNIX Programmer's Manual FSCK(8)

NAME
fsck - file system consistency check and interactive repair

SYNOPSIS
/etc/fsck -p [filesystem ... 1
/etc/fsck [-b block# 1 [-y) [-n 1 [filesystem 1 ...

DESCRIPTION
The first form of fsck preens a standard set of filesystems or the specified file systems. It is
nornially used in the script /etc/re during automatic reboot. In this case fsck reads the table
/etc/fstab to determine which file systems to check. It uses the information there to inspect
groups of disks in parallel taking maximum advantage of i/o overlap to check the file systems as
quickly as possible. Normally, the root file system will be checked on pass l, other "root"
("a" partition) file systems on pass 2, other small file systems on separate passes (e.g. the "d"
file systems on pass 3 and the "e" file systems on pass 4), and finally the large user file systems
on the last pass, e.g. pass 5. A pass number of 0 in fstab causes a disk to not be checked; simi­
larly partitions which are not shown as to be mounted "rw" or "ro" are not checked.

The system takes care that only a restricted class of innocuous inconsistencies can happen
unless hardware or software failures intervene. These are limited to the following:

Unreferenced inodes

Link counts in inodes too large

Missing blocks in the free list

Blocks in the free list also in files

Counts in the super-block wrong

These are the only inconsistencies which fsck with the -p option will correct; if it encounters
other inconsistencies, it exits with an abnormal return status and an automatic reboot will then
fail. For each corrected inconsistency one or more lines will be printed identifying the file sys­
tem on which the correction will take place, and the nature of the correction. After success­
fully correcting a file system, fsck will print the number of files on that file system and the
number of used and free blocks.

Without the -p option, fsck audits and interactively repairs inconsistent conditions for file sys­
tems. If the file system is inconsistent the operator is prompted for concurrence before each
correction is attempted. It should be noted that a number of the corrective actions which are
not fixable under the -p option will result in some loss of data. The amount and severity of
data lost may be determined from the diagnostic output. The default action for each con·
sistency correction is to wait for the operator to respond yes or no. If the operator does not
have write permission fsck will default to a -n action.

Fsck has more consistency checks than its predecessors check, dcheck, /check, and icheck com­
bined.

The following flags are interpreted by fsck.

-b Use the block specified immediately after the flag as the super block for the file system.
Block 32 is always an alternate super block.

-y Assume a yes response to all questions asked by fsck; this should be used with great cau­
tion as this is a free license to continue after essentially unlimited trouble has been
enco·.mtered.

-n Assume a no response to all questions asked by fsck; do not open the file system for
writing.

4th Berkeley Distribution 4 February 1983 1

FSCK(8) UNIX Programmer's Manual FSCK (8)

FILES

If no filesystems are given to jsck then a default list of file systems is read from the file
/etc/fstab.

Inconsistencies checked are as follows:

1. Blocks claimed by more than one inode or the free list.
2. Blocks claimed by an inode or the free list outside the range of the file system.
3. Incorrect link counts.
4. Size checks:

Directory size not of proper format.
S. Bad inode format.
6. Blocks not accounted for anywhere.
7. Directory checks:

File pointing to unallocated inode.
lnode number out of range.

8. Super Block checks:

More blocks for inodes than there are in the file system.
9. Bad free block list format.
10. Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the operator's con­
currence, reconnected by placing them in the lost+found directory. The name assigned is the
inode number. The only restriction is that the directory lost+found must preexist in the root of
the filesystem being checked and must have empty slots in which entries can be made. This is
accomplished by making lost+found, copying a number of files to the directory, and then
removing them (before fsck is executed).

Checking the raw device is almost always faster.

/etc/fstab contains default list of file systems to check.

DIAGNOSTICS
The diagnostics produced by fsck are intended to be self-explanatory.

SEE ALSO

BUGS

fstab(S), fs(S), newfs(8), mkfs(8), crash(SV), reboot(8)

lnode numbers for • and .. in each directory should be checked for validity.

There should be some way to start a fsck -p at pass n.

4th Berkeley Distribution 4 February 1983 2

GETFS(8) UNIX Programmer's Manual

NAME
getfs - print list of file systems and directories

SYNOPSIS
/etc/getfs

DESCRIPTION

GETFS(8)

Getfs reads the file system data base /stab(5) and writes on its standard output the device name
{minus its starting /dev/) and mount directory of each file system that it finds there. The chief
use of this program is in maintenance scripts such as backup(SY).

FILES
/etc/fstab - file system data base

DIAGNOSTICS
Returns non-zero if it cannot read /stab.

7th Edition SCALD/VMUNIX 7.0 1

GETTY(8) UNIX Programmer's Manual GETTY(8)

NAME
getty - set terminal mode

SYNOPSIS
/ek/getty [char]

DESCRIPTION
Getty is invoked by ini(8) immediately after a terminal is opened. It reads the user's login
name and calls login(1) with the name as argument. While reading the name getty attempts to
adapt the system to the speed and type of terminal being used.

The char argument, which init reads from the ttys file, /etc/ttys, specifies the name of a circular
list, internal to getty, of data rates and initial characteristics of the user's terminal. Normally,
getty sets the speed of the interface to 9600 baud, specifies that raw mode is to be used (break
on every character), that echo is to be suppressed, and either parity allowed. If a loginbanner
file exists, getty reads it and prints a login banner (see loginb anner{_ 5)), otherwise getty types
the 'login:' message. Special banner requests such as clearing the screen, inverse video, and
the like are handled by obtaining the terminal capabilities from the /etc/termcap file. The
user's name is read and echoed, a character at a time. If a null character is received, it is
assumed to be the result of the user pushing the 'break' ('interrupt') key, and getty sets the
terminal to another speed and re-types the 'login:' message. Further breaks cause getty to cycle
through its circular list of speeds, attempting to match the data rate of the user's terminal.

The user's name is terminated by a new-line or carriage-return character. The latter results in
the system being set to treat carriage returns appropriately (see ioctl(2)).

The user's name is scanned to see if it contains any lower-case alphabetic characters; if not, and
if the name is nonempty, the system is told to map any future upper-case characters into the
corresponding lower-case characters.

The following arguments from the ttys file are recognized by getty as valid speeds.

0 Cycles through 300-1200-150-110 baud.

110 baud.

1 150 baud.

2 Intended for an on-line 9600 baud terminal.

3 Starts at 1200 baud, cycles to 300 and back.

4 Intended for 300 baud DECwriter console

5 Same as '3' but starts at 300 baud.

6 2400 baud.

7 4800 baud.

8 Starts at 9600 baud, cycles to 300 and back.

9 Same as '8' but starts at 300 baud.

p Cycles through 9600-300-1200 baud.

q Same as 'p' but starts at 300 baud.

r Same as 'p' but starts at 1200 baud.

SEE ALSO
init(8), login(l), ioctl(2), ttys(5), loginbanner(5), termcap(5)

7th Edition 7th Valid Distribution

HALT(8) UNIX Programmer's Manual HALT(8)

NAME
halt - stop the processor

SYNOPSIS
. /eU:/halt

DESCRIPTION
Halt syncs the disks and then stops the processor. The machine does not reboot, even if the
auto-reboot switch is set on the console.

SEE ALSO
reboot(8), shutdown(8)

BU~

It is very difficult to halt a VAX, as the machine wants to then reboot itself. A rather tight
loop suffices.

7th Edition 11May1981 1

(
\.
\

ICHECK (8) UNIX Programmer's Manual !CHECK (8)

NAME
icheck - file system storage consistency check

SYNOPSIS
/etc/icheck [-s] [-b numbers] [filesystem]

DESCRIPTION

FILES

N.B.: /check is obsoleted for normal consistency checking by ftck(8).

/check examines a file system, builds a bit map of used blocks, and compares this bit map
against the free list maintained on the file system. If the file system is not specified, a set of
default file systems is checked. The normal output of icheck includes a report of

The total number of files and the numbers of regular, directory, block special and char·
acter special files.

The total number of blocks in use and the numbers of single-, double-, and triple­
indirect blocks and directory blocks.

The number of free blocks.

The number of blocks missing; i.e. not in any file nor in the free list.

The -s option causes icheck to ignore the actual free list and reconstruct a new one by rewrit­
ing the super-block of the file system. The file system should be dismounted while this is
done; if this is not possible (for example if the root file system has to be salvaged) care should
be taken that the system is quiescent and that it is rebooted immediately afterwards so that the
old, bad in-core copy of the super-block will not continue to be used. Notice also that the
words in the super-block which indicate the size of the free list and of the i-list are believed. If
the super-block has been curdled these words will have to be patched. The - s option causes
the normal output reports to be suppressed.

Following the -b option is a list of block numbers; whenever any of the named blocks turns
up in a file, a diagnostic is produced.

/check is faster if the raw version of the special file is used, since it reads the i-list many blocks
at a time.

Default file systems vary with installation.

SEE ALSO
fsck(8), dcheck(8), ncheck(8), fs(5), clri(8)

DIAGNOSTICS

BUGS

For duplicate blocks and bad blocks (which lie outside the file system) icheck announces the
difficulty, the i-number, and the kind of block involved. If a read error is encountered, the
block number of the bad block is printed and icheck considers it to contain 0. 'Bad freeblock'
means that a block number outside the available space was encountered in the free list. 'n dups
in free' means that n blocks were found in the free list which duplicate blocks either in some
file or in the earlier part of the free list.

Since icheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied
to active file systems.

It believes even preposterous super-blocks and consequently can get core images.

The system should be fixed so that the reboot after fixing the root file system is not necessary.

4th Berkeley Distribution 4 February 1983 1

INIT(S) UNIX Programmer's Manual INIT(8)

NAME
init - process control initialization

SYNOPSIS
/etc/lnlt

DESCRIPTION
/nit is invoked inside UNIX as the last step in the boot procedure. It normally then runs the
automatic reboot sequence as described in reboot(8), and if this succeeds, begins multi-user
operation. If the reboot fails, it commences single user operation by giving the super-user a
shell on the console. It is possible to pass parameters from the boot program to init so that sin­
gle user operation is commenced immediately. When such single user operation is terminated
by killing the single-user shell (i.e. by hitting '"D), init runs /etc/re without the reboot parameter.
This command file performs housekeeping operations such as removing temporary files, mount­
ing file systems, and starting daemons.

In multi-user operation, init 's role is to create a process for each terminal port on which a user
may log in. To begin such operations, it reads the file /etc/ttys and forks several times to create
a process for each terminal specified in the file.. Each of these processes opens the appropriate
terminal for reading and writing. These channels thus receive file descriptors 0, 1 and 2, the
standard input and output and the diagnostic output. Opening the terminal will usually involve
a delay, since the open is not completed until .someone is dialed up and carrier established on
the channel. If a terminal exists but an error occurs when trying to open the terminal init com­
plains by writing a message to the system console; the message is repeated every 10 minutes for
each such terminal until the terminal is shut off in /etc/ttys and init notified (by a hangup, as
described below), or the terminal becomes accessible (init checks again every minute). After
an open succeeds, /etc/getty is called with argument as specified by the second character of the
ttys file line. Getty reads the user's name and invokes login to log in the user and execute the
Shell.

Ultimately the Shell will terminate because of an end-of-file either typed explicitly or generated
as a result of hanging up. The main path of init, which has been waiting for such an event,
wakes up and removes the appropriate entry from the file utmp, which records current users,
and makes an entry in /usr/adm/wtmp, which maintains a history of logins and logouts. The
wtmp entry is made only if a user logged in successfully on the line. Then the appropriate ter­
minal is reopened and getty is reinvoked.

/nit catches the hangup signal (signal SIGHUP) and interprets it to mean that the file !etc/ttys
should be read again. The Shell process on each line which used to be active in ttys but is no
longer there is terminated; a new process is created for each added line; lines unchanged in the
file are undisturbed. Thus it is possible to drop or add phone lines without rebooting the sys­
tem by changing the ttys file and sending a hangup signal to the init process: use 'kill - HUP 1.'

/nit will terminate multi-user operations and resume single-user mode if sent a terminate
(TERM) signal, i.e. "kill -TERM l ". If there are processes outstanding which are deadlocked
(due to hardware or software failure), init will not wait for them all to die (which might take
forever), but will time out after 30 seconds and print a warning message.

/nit will cease creating new getty's and allow the system to slowly die away, if it is sent a termi­
nal stop (TSTP) signal, i.e. "kill -TSTP l ". A later hangup will resume full multi-user opera­
tions, or a terminate will initiate a single user shell. This hook is used by reboot(8) and ha/t(8).

/nit's role is so critical that if it dies, the system will reboot itself automatically. If, at bootstrap
time, the init process cannot be located, the system will loop in user mode at location Oxl3.

DIAGNOSTICS
lnlt: tty: cannot open. A terminal which is turned on in the re file cannot be opened, likely
because the requisite lines are either not configured into the system or the associated device

4th Berkeley Distribution 1 April 1981 1

(

INIT(8) UNIX Programmer's Manual INIT(8)

was not attached during boot-time system configuration.

WARNING: Sometbln1 ls bun1 (wont die); ps axl advised. A process is hung and could not
be killed when the system was shutting down. This is usually caused by a process which is
stuck in a device driver due to a persistent device error conditiQn.

FILES
/dev/console, /dev/tty•, /etc/utmp, /usr/adm/wtmp, /etc/ttys, /etc/re

SEE ALSO
login(l), kill(l), sh(l), ttys(S), crash(8V), getty(8), rc(8), reboot(8), balt(8), shutdown(8)

4th Berkeley Distribution 1 April 1981 2

LPD(8) UNIX Programmer's Manual LPD (8)

NAME
lpd - line printer <;iaemon

SYNOPSIS
/usr/llb/lpd [-1] [-L logfile] [port #]

DESCRIPTION
Lpd is the line printer daemon (spool area handler) and is normally invoked at boot time from
the rc(8) file. It makes a single pass through the printcap(S) file to find out about the existing
printers and prints any files left after a crash. It then uses the system calls listen(2) and
accept(2) to receive requests to print files in the queue, transfer files to the spooling area,
display the queue, or remove jobs from the queue. In each case, it forks a child to handle the
request so the parent can continue to listen for more requests. The Internet port number used
to rendezvous with other processes is normally obtained with getservbyname(3) but can be
changed with the port# argument. The - L option changes the file used for writing error condi­
tions from the system console to logfile. The -1 flag causes /pd to log valid requests received
from the network. This can be useful for debugging purposes.

Access control is provided by two means. First, All requests must come from one of the
machines listed in the file letdhosts.equiv. Second, if the "rs" capability is specified in the
printcap entry for the printer being accessed, /pr requests will only be honored for those users
with accounts on the machine with the printer.

The file lock in each spool directory is used to prevent multiple daemons from becoming active
simultaneously, and to store information about the daemon process for ljlr(l), iPq(l), and
ljlrm(l). After the daemon has successfully set the lock, it scans the directory for files begin­
ning with cf. Lines in each cf file specify files to be printed or non-printing actions to be per­
formed. Each such line begins with a key character to specify what to do with the remainder of
the line.

J Job Name. String to be used for the job name on the burst page.

C Classification. String to be used for the· classification line on the burst page.

L Literal. The line contains identification info from the password file and causes the
banner page to be printed.

T Title. String to be used as the title for pr(l).

H Host Name. Name of the machine where ljlr was invoked.

P Person. Login name of the person who invoked ljlr. This is used to verify ownership
by ljlrm.

M Send mail to the specified user when the current print job completes.

f Formatted File. Name of a file to print which is already formatted.

Like "r' but passes control characters and does not make page breaks.

p Name of a file to print using pr(l) as a filter.

t Troff File. The file contains troff(l) output (cat phototypesetter commands).

, d DVI Ftle. The file contains Tex(l) output (DVI format from Standford).

g Graph File. The file contains data produced by plot(3X).

c Cifplot File. The file contains data produced by cifP/ot.

v The file contains a raster image.

r The file contains text data with FORTRAN carriage control characters.

1 Troff Font R. Name of the font file to use instead of the default.

4th Berkeley Distribution 18 July 1983 1

LPD (8) UNIX Programmer's Manual LPD (8)

FILES

2 Troff Font I. Name of the font file to use instead of the default.

3 Troff Font B. Name of the font file to use instead of the default.

4 Troff Font S. Name of the font file to use instead of the default.

W Width. Changes the page width (in characters) used by pr(l) and the text filters.

I Indent. The number of characters to indent the output by (in ascii).

U Unlink. Name of file to remove upon completion of printing.

N File name. The name of the file which is being printed, or a blank for the standard
input (when !pr is invoked in a pipeline).

If a file can not be opened, a message will be placed in the log file (normally the console). Lpd
will try up to 20 times to reopen a file it expects to be there, after which it will skip the file to
be printed.

Lpd uses jlock(2) to provide exclusive access to the lock file and to prevent multiple deamons
from becoming active simultaneously. If the daemon should be killed or die unexpectedly, the
lock file need not be removed. The lock file is kept in a readable ASCII form and contains two
lines. The first is the process id of the daemon and the second is the control file name of the
current job being printed. The second line is updated to reflect the current status of /pd for the
programs /pq(l) and /prm(l).

/etc/printcap
/usr/spool/•
/dev/lp•
/dev/printer
/etc/hosts.equiv

printer description file
spool directories
line printer devices
socket for local requests
lists machine names allowed printer access

SEE ALSO
lpc(8), pac(l), lpr(l), lpq(l), lprm(l), printcap(S)
4.2BSD Line Printer Spooler Manual

4th Berkeley Distribution 18 July 1983 2

MAKEKEY(S) UNIX Programmer's Manual MAKEKEY(S)

NAME
makekey - generate encryption key

SYNOPSIS
/usr/llb/1nakekey

DESCRIPTION
Makekey improves the usefulness of encryption schemes depending on a key by increasing the
amount of time required to search the key space. It reads 10 bytes from its standard input, and
writes 13 bytes on its standard output. The output depends on the input in a way intended to
be difficult to compute (that is, to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters. The last two (the
salt) are best chosen from the set of digits, upper· and lower-case letters, and '.' and '/'. The
salt characters are repeated as the first two characters of the output. The remaining 11 output
characters are chosen from the same set as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to select one of 4096
cryptographic machines all based on the National Bureau of Standards DES algorithm, but
modified in 4096 different ways. Using the input key as key, a constant string is fed into the
machine and recirculated a number of times. The 64 bits that come out are distributed into the
66 useful key bits in the result.

Makekey is intended for programs that perform encryption (for instance, ed and c.rypt(l)).
Usually makekey's input and output will be pipes.

SEE ALSO
crypt(l), ed(l)

7th Edition 4 February 1983 1

MKFS (8) UNIX Programmer's Manual MKFS(8)

NAME
mkfs - construct a file system

SYNOPSIS
/etc/mkfs special size [nsect] [ntrack 1 [blksize] [fragsize 1 [ncpg] [minfree 1 [rps 1

DESCRIPTION
N.B.: file system are normally created with the newft(8) command.

MlifS constructs a file system by writing on the special file special. The numeric size specifies the
number of sectors in the file system. M/ifs builds a file system with a root directory and a
lost+ found directory. (see ftck(8)) The number of i-nodes is calculated as a function of the file
system size. No boot program is initialized by mlifs (see newft(8).)

The optional arguments allow fine tune control over the parameters of the file system. N sect
specify the number of sectors per track on the disk. Ntrack specify the number of tracks per
cylinder on the disk. Blksize gives the primary block size for files on the file system. It must
be a power of two, currently selected from 4096 or 8192. Fragslze gives the fragment size for
files on the file system. The fragsize represents the smallest amount of disk space that will be
allocated to a file. It must be a power of two currently selected from the range 512 to 8192.
Ncpg specifies the number of disk cylinders per cylinder group: This number must be in the
range 1 to 32. Minfree specifies the minimum p~rcentage of free disk space allowed. Once the
file system capacity reaches this threshold, only the super-user is allowed to allocate disk blocks.
The default value is 10%. If a disk does not revolve at 60 revolutions per second, the rps
parameter may be specified. Users with special demands for their file systems are referred to
the paper cited below for a discussion of the tradeoffs in using different configurations.

SEE ALSO

BUGS

fs(S), dir(S), fsck(8), newfs(8), tunefs(8)

McKusick, Joy, Leffler; "A Fast File System for Unix", Computer Systems Research Group,
Dept of EECS, Berkeley, CA 94720; TR #7, September 1982.

There should be some way to specify bad blocks.

4th Berkeley Distribution 10 May 1981 1

MKLOST+ FOUND (8) UNIX Programmer's Manual

NAME
mklost+found - make a lost+found directory for fsck

SYNOPSIS
/etc/mklost +found

DESCRIPTION

MKLOST +FOUND (8)

A directory lost+found is created in the current directory and a number of empty files are
created therein and then removed so that there will be empty slots for ftck(8). This command
should not normally be needed since m/¢(8) automatically creates the lost+found directory
when a new file system is created.

SEE ALSO
fsck(8), mkfs(8)

4th Berkeley Distribution 25 February 1983

MKNOD(8)

NAME
mknod - build special file

SYNOPSIS

UNIX Programmer's Manual

/etc/mknod name (c] (b] major minor

DESCRIPTION

MKNOD(8)

Mknod makes a special file. The first argument is the name of the entry. The second is b if the
special file is block-type (disks, tape) or c if it is character-type (other devices). The last two
arguments are numbers specifying the mqjor device type and the minor device (e.g. unit, drive,
or line number).

The assignment of major device numbers is specific to each system. They have to be dug out
of the system source file conf.c.

SEE ALSO
mknod(2)

4th Berkeley Distribution 4 February 1983 1

MKPROT0(8) UNIX Programmer's Manual MKPROT0(8)

NAME
mkproto - construct a prototype file system

SYNOPSIS
/etc/mkproto special proto

DESCRIPTION
Mkproto is used to bootstrap a new file system. First a new file system is created using
newft(8). Mkproto is then used to copy files from the old file system into the new file system
according to the directions found in the prototype file proto. The prototype file contains tokens
separated by spaces or new lines. The first tokens comprise the specification for the root direc·
tory. File specifications consist of tokens giving the mode, the user-id, the group id, and the
initial contents of the file. The syntax of the contents field depends on the mode.

The mode token for a file is a 6 character string. The first character specifies the type of the
file. (The characters -bed specify regular, block special, character special and directory files
respectively.) The second character of the type is either u or - to specify set-user-id mode or
not. The third is 11 or - for the set-group-id mode. The rest of the mode is a three digit octal
number giving the owner, group, and other read, write, execute permissions, see chmod(l).

Two decimal number tokens come after the mode; they specify the user and group ID's of the
owner of the file.

If the file is a regular file, the next token is a pathname whence the contents and size are
copied.

If the file is a block or character special file, two decimal number tokens follow which give the
major and minor device numbers.

If the file is a directory, mkproto makes the entries • and •• and then reads a list of names and
(recursively) file specifications for the entries in the directory. The scan is terminated with the
token S.
A sample prototype specification follows:

d--777 3 1
usr d--777 3 1

$

sh ---155 3 l /bin/sh
ken d--755 6 1

$
bO b--644 3 100
cO c- -644 3 1 0 0
$

SEE ALSO

BUGS

fs(5), dir(5), fsck(8), newfs(8)

There should be some way to specify links.

There should be some way to specify bad blocks.

Mkproto can only be run on virgin file systems. It should be possible to copy files into existent
file systems.

4th Berkeley Distribution 10 May 1981 1

MKUSR(8V)

NAME
mkusr - make a new user

SYNOPSIS
mkusr

DESCRIPTION

UNIX Programmer's Manual MKUSR(8V)

Mkusr creates a new user on the system by prompting for information about the new user and
then updating the /etc/passwd and /etc/group files. Mkusr then calls the script /etcjmkscaldusr to
build the new user's home directory and set up default files needed by the Scald software, the C
shell and the Bourne shell.

FILES
/etc/mknewpwentry
/etc/mkscaldusr
/uO/user/*

DIAGNOSTICS

creates password and group entries
script to set up user directory
directory for default startup files

Error messages are meant to be self explanatory.

7th Edition Valid 19 DECEMBER 1984 1

MOUNT(8) UNIX Programmer's Manual MOUNT(8)

NAME
mount, umount - mount and dismount file system

SYNOPSIS
/etc/mount [special name [-r 1 1
/etc/mount -a

/etc/umount special

/etc/umount -a

DESCRIPTION

FILES

Mount announces to the system that a removable file system is present on the device special.
The file name must exist already; it must be a directory (unless the root of the mounted file
system is not a directory). It becomes the name of the newly mounted root. The optional
argument -r indicates that the file system is to be mounted read-only.

Umount announces to the system that the removable file system previously mounted on device
special is to be removed.

If the -a option is present for either mount or umount, all of the file systems described in
/etc/fttab are attempted to be mounted or unmounted. In this case, special and name are taken
from /etc/fttab. The special file name from letclfstab is the block special name.

These commands maintain a table of mounted devices in letclmtab. If invoked without an argu­
ment, mount prints the table.

Physically write-protected and magnetic tape file systems must be mounted read-only or errors
will occur when access times are updated, whether or not any explicit write is attempted.

/etc/mtab
/etc/fstab

mount table
file system table

SEE ALSO
mount(2), mtab(5), fstab(5)

BUGS
Mounting file systems full of garbage will crash the system.
Mounting a root directory on a non-directory makes some apparently good pathnames invalid.

4th Berkeley Distribution 4 February 1983 1

NCHECK(8) UNIX Programmer's Manual NCHECK(8)

NAME
ncheck - generate names from i-numbers

SYNOPSIS
/etc/ncheck [-l numbers 1 [-a) [-s 1 [filesystem 1

DESCRIPTION
N.B.: For most normal file system maintenance, the function of ncheck is subsumed by ftck(8).

Ncheck with no argument generates a pathname vs. i-number list of all files on a set of default
file systems. Names of directory files are followed by '/.'. The -l option reduces the report to
only those files whose i-numbers follow. The -a option allows printing of the names •.' and
' • .', which are ordinarily suppressed. The -s option reduces the report to special files and files
with set-user-ID mode; it is intended to discover concealed violations of security policy.

A file system may be specified.

The report is in no useful order, and probably should be sorted.

SEE ALSO
sort(l), dcheck(S), fsck(8), icheck(8)

DIAGNOSTICS
When the filesystem structure is improper, '??' denotes the 'parent' of a parentless file and a
pathname beginning with • ... ' denotes a loop.

4th Berkeley Distribution 4 February 1983 1

NEWFS (8) UNIX Programmer's Manual NEWFS (8)

NAME
newf s - construct a new file system

SYNOPSIS
/etc/newfs [-v] [-n] [mkfs-options] special disk-type

DESCRIPTION

FILES

Newfs is a "friendly" front-end to the mkfs(8) program. Newfs will look up the type of disk a
file system is being created on in the disk description file /erc/disktab, calculate the appropriate
parameters to use in calling mkfs, then build the file system by forking mkfs and, if the file sys­
tem is a root partition, install the necessary bootstrap programs in the initial 8 sectors of the
device. The -n option prevents the bootstrap programs from being installed.

If the -v option is supplied, newfs will print out its actions, including the parameters passed to
mkfs.

Options which may be used to override default parameters passed to mkfs are:

- s size The size of the file system in sectors.

-b block-size
The block size of the file system in bytes.

-f frag-size
The fragment size of the file system in bytes.

-t #tracks/cylinder

-c #cylinders/group
The number of cylinders per cylinder group in a file system. The default value used
is 16~

-m free space%
The percentage of space reserved from normal users; the minimum free space
threshhold. The default value used is 10%.

-r revolutions/minute
The speed of the disk in revolutions per minute (normally 3600).

-S sector-size
The size of a sector in bytes (almost never anything but 512).

-i number of bytes per inode
This specifies the density of inodes in the file system. The default is to create an
inode for each 2048 bytes of data space. If fewer inodes are desired, a larger
number should be used; to create more inodes a smaller number should be given.

/etc/disktab
/etc/mkfs
/usr/mdec

for disk geometry and file system partition information
to actually build the file system
for boot strapping programs

SEE ALSO

BUGS

disktab(S), fs(S), diskpart(8), fsck(8), format(8), mkfs(8), tunefs(8)

McKusick, Joy, Leffler; "A Fast File System for Unix", Computer Systems Research Group,
Dept of EECS, Berkeley, CA 94720; TR #7, September 1982.

Should figure out the type of the disk without the user's help.

4th Berkeley Distribution 20 February 1983

PSTAT(8) UNIX Programmer's Manual PSTAT(8)

NAME
pstat - print system facts

SYNOPSIS
/etc/pstat -ab:pturr [suboptions] [system] [corefile]

DESCRIPTION
Pstat interprets the contents of certain system tables. If core/tie is given, the tables are sought
there, otherwise in /dev/kmem. The required namelist is taken from lvmunix unless system is
specified. Options are

-a
-1

LOC
FLAGS

Under -p, describe all process slots rather than just active ones.

Print the inode table with the these headings:

The core location of this table entry.
Miscellaneous state variables encoded thus:
L locked
U update time (/S(5)) must be corrected
A access time must be corrected
M file system is mounted here
W wanted by another process (L flag is on)
T contains a text file
C changed time must be corrected
S shared lock applied
E exclusive lock applied
Z someone waiting for an exclusive lock
Number of open file table entries for this inode.
Major and minor device number of file system in which this inode resides.
Reference count of shared locks on the inode.

CNT
DEV
RDC
WRC Reference count of exclusive locks on the inode (this may be > 1 if, for example, a

file descriptor is inherited across a fork).
INO I-number within the device.
MODE Mode bits, see chmod(2).
NLK Number of links to this inode.
UID User ID of owner.
SIZ/DEV

Number of bytes in an ordinary file, or major and minor device of special file.

- x Print the text table with these headings:

LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:

T ptrace(2) in effect
W text not yet written on swap device
L loading in progress
K locked
w wanted (L flag is on)
P resulted from demand-page-from-inode exec format (see execve(2))

DADDR Disk address in swap, measured in multiples of 512 bytes.

CADDR Head of a linked list of loaded processes using this text segment.

SIZE Size of text segment, measured in multiples of 512 bytes.

IPTR Core location of corresponding inode.

CNT Number of processes using this text segment.

CCNT Number of processes in core using this text segment.

4th Berkeley Distribution 1 April 1981 1

PSTAT(8)

-p

LOC
s

F

UNIX Programmer's Manual

Print process table for active processes with these headings:

The core location of this table entry.
Run state encoded thus:
0 no process
1 waiting for some event
3 runnable
4 being created
S being terminated
6 stopped under trace
Miscellaneous state variables, or-ed together (hexadecimal):
000001 loaded
000002 the scheduler process.
000004 locked for swap out
000008 swapped out
000010 traced
000020 used in tracing
000080 in page-wait
000100 prevented from swapping during /ork(2)
000200 gathering pages for raw i/o
000400 exiting
001000 process resulted from a v/ork(2) which is not yet complete
002000 another flag for vfork(2)

PSTAT (8)

004000 process has no virtual memory, as it is a parent in the context of vfork(2)
008000 process is demand paging data pages from its text inode.
010000 process has advised of anomalous behavior with vadvise(2).
020000 process has advised of sequential behavior with vadvise(2).
040000 process is in a sleep which will timeout.
080000 a parent of this process has exited and this process is now considered

detached.
100000 process used 4.lBSD compatibility mode signal primitives, no system calls

will restart.
200000 process is owed a profiling tick.

POIP number of pages currently being pushed out from this process.
PRI Scheduling priority, see setpriority (2).
SIGNAL Signals received (signals 1-32 coded in bits 0-31),
UID Real user ID.
SLP Amount of time process has been blocked.
TIM Time resident in seconds; times over 127 coded as 127.
CPU Weighted integral of CPU time, for scheduler.
NI Nice level, see setpriority(2).
PGRP Process number of root of process group (the opener of the controlling terminal).
PIO The process ID number.
PPID The process ID of parent process.
ADDR If in core, the page frame number of the first page of the 'u-area' of the process. If

swapped out, the position in the swap area measured in multiples of 512 bytes.
RSS Resident set size - the number of physical page frames allocated to this process.
SRSS RSS at last swap (0 if never swapped).
SIZE Virtual size of process image (data+stack) in multiples of 512 bytes.
WCHAN Wait channel number of a waiting process.
LINK Link pointer in list of runnable processes.
TEXTP If text is pure, pointer to location of text table entry.
CLKT Countdown for real interval timer, setitimer(2) measured in clock ticks (10

4th Berkeley Distribution 1 April 1981 2

PSTAT(8) UNIX Programmer's Manual PSTAT (8)

FILES

-t

RAW
CAN
OUT
MODE
ADDR
DEL
COL
STATE

PGRP
DISC

-u

-f

milliseconds).

Print table for terminals with these headings:

Number of characters in raw input queue.
Number of characters in canonicalized input queue.
Number of characters in putput queue.
See ny(4).
Physical device address.
Number of delimiters (newlines) in canonicalized input queue.
Calculated column position of terminal.
Miscellaneous state variables encoded thus:
W waiting for open to complete
0 open
S has special (output) start routine
C carrier is on
B busy doing output
A process is awaiting output
X open for exclusive use
H hangup on close
Process group for which this is controlling terminal.
Line discipline; blank is old tty OTTYDISC or "new tty" for NTTYDISC or "net"
for NETLDISC (see bk(4)).

print information about a user process; the next argument is its address as given by
ps(l). The process must be in main memory, or the file used can be a core image
and the address 0.

Print the open file table with these headings:

LOC The core location of this table entry.

TYPE The type of object the file table entry points to.
FLG Miscellaneous state variables encoded thus:

R open for reading
W open for writing
A open for appending

CNT Number of processes that know this open file.
INO The location of the inode table entry for this file.
OFFS/SOCK

The file offset (see lseek(2}), or the core address of the associated socket structure.

-s print information about swap space usage: the number of (lk byte) pages used and free is
given as well as the number of used pages which belong to text images.

-T prints the number of used and free slots in the several system tables and is useful for
checking to see how full system tables have become if the system is under heavy load.

/vmunix namelist
/dev/kmem default source of tables

SEE ALSO

BUGS

ps(l), stat(2), fs(5)
K. Thompson, UNIX Implementation

It would be very useful if the system recorded "maximum occupancy" on the tables reported
by -T; even more useful if these tables were dynamically allocated.

4th Berkeley Distribution 1 April 1981 3

RC(8) UNIX Programmer's Manual RC(8)

NAME
re - command script for auto-reboot and daemons

SYNOPSIS
/etc/re
I etc/re.local

DESCRIPTION
Re is the command script which controls the automatic reboot and re.local is the script holding
commands which are pertinent only to a specific site.

When an automatic reboot is in progress, re is invoked with the argument autoboot and runs a
fsek with option -p to "preen" all the disks of minor inconsistencies resulting from the last
system shutdown and to check for serious inconsistencies caused by hardware or software
failure. If this auto-check and repair succeeds, then the second part of re is run ..

The second part of re, which is run after a ·auto-reboot succeeds and also if re is invoked when a
single user shell terminates (see init(8)), starts all the daemons on the system, preserves editor
files and clears the scratch directory /tmp. Re.local is executed immediately before any other
commands after a successful fsck. Normally, the first commands placed in the re. local file
define the machine's name, using hostname(l), and save any possible core image that might
have been generated as a result of a system crash, saveeore(S). The latter command is included
in the re.local file because the directory in which core dumps are saved is usually site specific.

SEE ALSO
init(8), reboot(8), savecore(8)

BUGS

4th Berkeley Distribution 4 February 1983 1

REBOOT(SV) UNIX Programmer's Manual

NAME
reboot- reboot or halt system

SYNOPSIS
/et~,/reboot [-h] [-s]

DESCRIPTION

REBOOT(SV)

Reboot reboots, or with the -h option, halt.s the system without syncing. If -s is specified the
disks are synced before reboot or halt.

SEE.ALSO
reboot(2), halt(S)

7th Edition 14 December 1984 1

RESTOR(8) UNIX Programmer's Manual RESTOR(8)

NAME
restor - incremental file system restore

SYNOPSIS
/efu/restJ:>r key [name ...]

DESCRIPTION
Restor is used to read tapes dumped with the dump(8) command. Its actions are controlled by
the key argument. The key is a string of characters containing at most one function letter and
possibly one or more function modifiers. Other arguments to the command are file or directory
names specifying which files are to be restored. Unless the - h flag is specified (see below),
the appearance of a directory name refers to the files and (recursively) subdirectories of that
directory.

The function portion of the key is specified by one of the following letters:

x If file names are specified, the named files are extracted from the tape. If the named
file matches a directory whose contents had been written onto the tape, this directory is
(recursively) extracted. The owner, modification time, and mode are restored (if possi­
ble). If no file argument is given, the entire content of the tape is extracted.

t The names of the specified files are listed if they occur on the tape. If no file argument
is given, all of the names on the tape are listed. Note that this key replaces the func­
tion of dumpdir(8).

The following characters may be used in addition to the letter which selects the function
desired.

v Normally restor does its work silently. The v (verbose) option causes it to type the
name of each file it treats preceded by the function letter. [With the t function, v gives
more information about the tape entries than just the name.]

f causes restor to use the next argument as the name of the archive instead of /dev /rmt?.
[If the name of the file is '- ', restor reads from standard input. Thus, dump(8) and
restor can be used in a pipeline to dump and restore a file system with the command

dump Of - /usr I (cd /mn t; res tor xf -)]

y tells restor not to complain if gets a tape error, but simply to skip over the bad tape
blocks and continue as best it can.

m causes restor to extract by inode numbers rather than by file name.

h causes restor to extract the actual directory, rather than the files that it references.

s causes restor to use the next argument as the number of the dump on the tape to skip
to. This option is used for a tape with multiple dumps on it.

SEE ALSO

FILES

dump(8), mkfs(8)

/dev/rmt?
rst*

the default tape drive
the temporary file used by restor

DIAGNOSTICS
Complaints about bad key characters.

Complaints if it gets a read error. If - y has been specified, or the user responds "y'', restor will
attempt to continue the restore.

If the dump extends over more than one tape, restor will ask the user to change tapes.

7th Edition 18 DECEMBER 1984 1

RIMIOCTL (8V) UNIX Programmer's Manual

NAME
rimioctl - send ioctl commands to the Rimfire 44/45 controller

SYNOPSIS
rimioctl {device} option [{arguments}]

DESCRIPTION

RIMIOCTL (8V)

The rimioctJ utility is used to perform disk or tape operations for devices that are attached to the
Ciprico Rimfire 44 or 45 disk/tape controller. The options supported by rimioctl are map,
rmbad, tracktype, badtraclcs, fsize, diskinfo, and errorcount. The complete command syntax
is:

rimioctl /dev/rrim06 map {cyl} {head}

rimioctl /dev /rrim06 rmbad {inode}

rimioctl /dev /rrim06 tracktype {cyl} {head}

rimioctl /dev /rrim06 badtracks

rimioctl /dev /rrim06 fsize

rimioctl /dev /rrim06 diskinfo

rimioctl /dev /rctfJ errorcount

In the above, the files "/dev /rrim06" and "/dev /rctfJ" are representative examples of the special
character devices that would be used during a typical rimioctl operation. Each of these options
is described below.

Map
Option map remaps a bad track, specified by cyl and head, to another track.

Rmba.d
Option rmbad removes bad block markings associated with inode inode .

Tra.cktype
Option tracktype prints out information about the specified track.

Ba.dtra.cks
Option badtracks prints out a list of bad tracks on the given device.

Fsize
Option /size prints information about the given filesystem including its size in blocks.

Disk info
Option diskinfo prints out information about each filesystem on the disk where device is located.

Errorcount
Option errorcount dumps all error counters associated with the given tape device. NOTE: This
option only works with cartridge tape drives.

SEE, ALSO
conn(5)

DIAGNOSTICS
/net can not be opened

1/29/85 1

RLOGIND (SC) UNIX Programmer's Manual RLOGIND (8C)

NAME
rlogind - remote login server

SYNOPSIS
/etc/rlogind [-d 1

DESCRIPTION
Rlogind is the server for the rlogin(IC) program. The server provides a remote login facility
with authentication based on privileged port numbers.

Rlogind listens for service requests at the port indicated in the .. login" service specification; see
services(S). When a service request is received the following protocol is initiated:

1) The server checks the client's source port. If the port is not in the range 0-1023, the
server aborts the connection.

2) The server checks the client's source address. If the address is associated with a host
for which no corresponding entry exists in the host name data base (see hosts(S)), the
server aborts the connection.

Once the source port and address have been checked, rlogind allocates a pseudo terminal (see
pty(4)), and manipulates file descriptors so that the slave half of the pseudo terminal becomes
the stdln , stdout , and stderr for a login process. The login process is an instance of the
/ogin(l) program, invoked with the -r option. The login process then proceeds with the
authentication process as described in rshd(8C), but if automatic authentication fails, it
reprompts the user to login as one finds on a standard terminal line.

The parent of the login process manipulates the master side of the pseduo terminal, operating
as an intermediary between the login process and the client instance of the r/ogin program. In
normal operation, the packet protocol described in pty(4) is invoked to provide AsrQ type facil­
ities and propagate interrupt signals to the remote programs. The login process propagates the
client terminal's baud rate and terminal type, as found in the environment variable, .. TERM";
see environ(1).

DIAGNOSTICS

BUGS

All diagnostic messages are returned on the connection associated with the stderr, after which
any network connections are closed. An error is indicated by a leading byte with a value of 1.

"Hostname for your address unknown."
No entry in the host name database existed for the client's machine.

"Try again."
A fork by the server failed.

"/bin/ sh: ... "
The user's login shell could not be started.

The authentication procedure used here assumes the integrity of each client machine and the
connecting medium. This is insecure, but is useful in an "open" environment.

A facility to allow all data exchanges to be encrypted should be present.

4th Berkeley Distribution 4 March 1983 1

RSHD(8C) UNIX Programmer's Manual RSHD(8C)

NAME
rshd - remote shell server

SYNOPSIS
/etc/rshd

DESCRIPTION
Rshd is the server for the rcmd(3X) routine and, consequently, for the rsh(lC) program. The
server provides remote execution facilities with authentication based on privileged port
numbers.

Rshd listens for service requests at the port indicated in the "cmd" service specification; see
services(S). When a service req~est is received the following protocol is initiated:

1) The server checks the client's source port. If the port is not in the range 0-1023, the
server aborts the connection.

· 2) The server .reads characters from the socket up to a null ('\0') byte. The resultant
string is interpreted as an ASCII number, base 10.

3) If the number received in step 1 is non-zero, it is interpreted as the port number of a
secondary stream to be used for the stderr. A second connection is then created to the
specified port on the client's machine. The source port of this second connection is
also in the range 0-1023.

4) The server checks the client's source address. If the address is associated with a host
for which no corresponding entry exists in the host name data base (see.hosts(S)), the
server aborts the connection.

5) A null terminated user name of at most 16 characters is retrieved on the initial socket.
This user name is interpreted as a user identity to use on the se"er's machine.

6) A null terminated user name of at most 16 characters is retrieved on the initial socket.
This user name is interpreted as the user identity on the client's machine.

7) A null terminated command to be passed to a shell is retrieved on the initial socket.
The length of the command is limited by the upper bound on the size ot: the system's
argument list.

8) Rshd then validates the user according to the following steps. The remote user name is
looked up in the password file and a chdir is performed to the user's home directory. If
either the lookup or chdir fail, the connection is terminated. If the user is not the
super-user, (user id 0), the file /etc/hosts.equiv is consulted for a list of hosts considered
"equivalent". If the client's host name is present in this file, the authentication is con·
sidered successful. If the lookup fails, or the user is the super-user, then the file .rhosts
in the home directory of the remote user is checked for the machine name and identity
of the user on the client's machine. If this lookup fails, the connection is terminated.

9) A null byte is returned on the connection associated with the stderr and the command
line is passed to the normal login shell of the user. The shell inherits the network con·
nections established by rshd.

DIAGNOSTICS
All diagnostic messages are returned on the connection associated with the stderr, after which
any network connections are closed. An error is indicated by a leading byte with a value of 1
(0 is returned in step 9 above upon successful completion of all the steps prior to the command
execution).
0 locuser too Iona"
The name of the user on the client's machine is longer than 16 characters.

4th Berkeley Distribution 4 March 1983 1

RSHD(SC) UNIX Programmer's Manual RSHD(8C)

"remuser too Iona"
The name of the user on the remote machine is longer than 16 characters.

"command too lon1 "
The command line passed exceeds the size of the argument list (as configured into the system).

"Hostname for :your address unknown."
No entry in the host name database existed for the client's machine.

"Login incorrect."
No password file entry for the user name existed.

"No remote directory."
The chdir command to the home directory failed.

"Permission denied."
The authentication procedure described above failed.

"Can't make pipe."
The pipe needed for the stderr, wasn't created.

"Try aaaln."
A fork by the server failed.

"/bin/ sh: ••• "
The user's login shell could not be started.

SEE ALSO
rsh(lC), rcmd(3X)

BUGS
The authentication procedure used here assumes the integrity of each client machine and the
connecting medium. This is insecure, but is useful in an "open" environment.

A facility to allow all data exchanges to be encrypted should be present.

4th Berkeley Distribution 4 March 1983 2

/
I
\

RWHOD(SC) UNIX Programmer's Manual RWHOD(SC)

NAME
rwhod - system status server

SYNOPSIS
/etc/rwhod

DESCRIPTION
Rwhod is the server which maintains the database used by the rwho(IC) and ruptime(lC) pro­
grams. Its operation is predicated on the ability to broadcast messages on a network.

Rwhod operates as both a producer and consumer of status information. As a producer of
information it periodically queries the state of the system and constructs status messages which
are broadcast on a network. As a consumer of information, it listens for other rwhod servers'
status messages, validating them, then recording them in a collection of files located in the
directory /usr/spooUrwho.

The rwho server transmits and receives messages at the port indicated in the "rwho" service
specification, see services(5). The messages sent and received, are of the form:

struct outmp (
char out_line[8];/• tty name •/
char out_name[8];/• user id •/
long out_time;/• time on •/

} ;

struct whod {
char wd_vers;
char wd type;
char wd-fill[2];
int wd_sendtime;
int wd recvtime;
char wd-hostname[32];
int wd -loadav[3];
int wd boottime;
struct whoent (

struct outmp we_utmp;
int we idle;

} wd we [1024 I sizeof (struct whoent) 1;
};

All fields are converted to network byte order prior to transmission. The load averages are as
calculated by the w(l) program, and represent load averages over the 5, 10, and 15 minute
intervals prior to a server's transmission. The host name included is that returned by the
gethostname(2) system call. The array at the end of the message contains information about the
users logged in to the sending machine. This information includes the contents of the utmp(5)
entry for each non-idle terminal line and a value indicating the time since a character was last
received on the terminal line.

Messages received by the rwho server are discarded unless they originated at a rwho server's
port. In addition, if the host's name, as specified in the message, contains any unprintable
ASCII characters, the message is discarded. Valid messages received by rwhod are placed in
files named whod.hostname in the directory /usr/spooUrwho. These files contain only the most
recent message, in the format described above.

Status messages are generated approximately once every 60 seconds. Rwhod performs an
nlist(3) on /vmunix every 10 minutes to guard against the possibility that this file is not the
system image currently operating.

4th Berkeley Distribution 4 March 1983 1

RWHOD(8C) UNIX Programmer's Manual RWHOD (8C)

SEE ALSO
rwho(lC), ruptime(lC)

BUGS
Should relay status information between networks. People often interpret the server dieing as a
machine going down.

4th Berkeley Distribution 4 March 1983 2

SA VECORE (8) UNIX Programmer's Manual SA VECORE (8)

NAME
savecore - save a core dump of the operating system

SYNOPSIS
/etc/savecore dirname [system]

DESCRIPTION

FILES

BUGS

Savecore is meant to be called near the end of the /etc/re file. Its function is to save the core
dump of the system (assuming one was made) and to write a reboot message in the shutdown
log.

Savecore checks the core dump to be certain it corresponds with the current running unix. If it
does it saves the core image in the file dirname/vmcore.n and it's brother, the namelist,
dirname/vmunix.n The trailing ".n" in the pathnames is replaced by a number which grows
every time savecore is run in that directory.

Before savecore writes out a core image, it reads a number from the file dirnamelminfree. If
there are fewer free blocks on the filesystem which contains dirname than the number obtained
from the minf ree file, the core dump is not done. If the minfree file does not exist, savecore
always writes out the core file (assuming that a core dump was taken).

Savecore also writes a reboot message in the shut down log. If the system crashed as a result of
a panic, savecore records the panic string in the shut down log too.

lf the core dump was from a system other than /vmunix, the name of that system must be sup­
plied as sysname.

/usr/adm/shutdownlog shut down log
/vmunix current UNIX

Can be fooled into thinking a core dump is the wrong size.

4th Berkeley Distribution 28 April 1981 1

SHUTDOWN (8) UNIX Programmer's Manual SHUTDOWN (8)

NAME
shutdown - close down the system at a given time

SYNOPSIS
/etc/shutdown [-k] [-r] [-h l time [warning-message ...]

DESCRIPTION

nLES

Shutdown provides an automated shutdown procedure which a super-user can use to notify
users nicely when the system is shutting down, saving them from system administrators, hack­
ers, and gurus, who would otherwise not bother with niceties.

Time is the time at which shutdown will bring the system down and may be the word now (indi­
cating an immediate shutdown) or specify a ·ruture time in one of two formats: +number and
hour:min. The first form brings the system down in number minutes and the second brings the
system down at the time of day indicated (as a 24-hour clock).

At intervals which get closer together as apocalypse approaches, warning messages are displayed
at the terminals of all users on the system. Five minutes before shutdown, or immediately if
shutdown is in less than S minutes, logins are disabled by creating /etc/nologin and writing a
message there. If this file exists when a user attempts to log in, login(l) prints its contents and
exits. The file is removed just before shutdown·exits.

At shutdown time a message is written in the file /usr/adm/shutdownlog, containing the time
of shutdown, who ran shutdown and the reason. Then a terminate signal is sent at init to bring
the system down to single-user state. Alternatively, if -r, -h, or -k was used, then shutdown
will exec reboot(8), ha/t(8), or avoid shutting the system down (respectively). (If it isn't obvi­
ous, - k is to make people think the system is going down!)

The time of the shutdown and the warning message are placed in /etc/nologin and should be
used to inform the users about when the system will be back up and why it is going down (or
anything else).

/etc/nologin tells login not to let anyone log in
/usr/adm/shutdownlog log file for successful shutdowns.

SEE ALSO

BUGS
login(l), reboot(8)

Only allows you to kill the system between now and 23:59 if you use the absolute time for
shutdown.

4th Berkeley Distribution 1April1981 1

(

'\

SYNC(8) UNIX Programmer's Manual

NAME
sync - update the super block

SYNOPSIS
/etc/sync

DESCRIPTION

SYNC (8)

Sync executes the sync system primitive. Sync can be called to insure all disk writes have been
completed before the processor is halted in a way not suitably done by reboot(8) or ha/t(8).

See sync(2) for details on the system primitive.

SEE ALSO
sync(2), fsync(2), halt(8), reboot(8), update(8)

. 4th Berkeley Distribution 4 February 1983 1

TUNEFS (8) UNIX Programmer's Manual TUNEFS (8 J

NAME
tunefs - tune up an existing file system

SYNOPSIS
/etc/tunefs tuneup-options speciaJfilesys

DESCRIPTION
Tunefs is designed to change the dynamic parameters of a file system which affect the layout
policies. The parameters which are to be changed are indicated by the flags given below:

-a maxcontig
This specifies the maximum number of contiguous blocks that will be laid out before
forcing a rotational delay (see -d below). The default value is one. since most device
drivers require an interrupt per disk transfer. Device drivers that can chain several
buffers together in a single transfer should set this to the maximum chain length.

-d rotdelay
This specifies the expected time (in milliseconds) to service a transfer completion inter­
rupt and initiate a new transfer on the same disk. It is used to decide how much rota­
tional spacing to place between successive blocks in a file.

-e maxbpg
This indicates the maximum number of blocks any single file can allocate out of a
cylinder group before it is forced to begin allocating blocks from another cylinder
group. Typically this value is set to about one quarter of the total blocks in a cylinder
group. The intent is to prevent any single file from using up all the blocks in a single
cylinder group, thus degrading access times for all files subsequently allocated in that
cylinder group. The effect of this limit is to cause big files to do long seeks more fre­
quently than if they were allowed to allocate all the blocks in a cylinder group before
seeking elsewhere. For file systems with exclusively large files, this parameter should
be set higher.

-m minfree
This value specifies the percentage of space held back from normal users; the minimum
free space threshold. The default value used is 10%. This value can be set to zero,
however up to· a factor of three in throughput will be lost over the performance
obtained at a 10% threshold. Note that if the value is raised above the current usage
level, users will be unable to allocate files until enough files have been deleted to get
under the higher threshold.

SEE ALSO

BUGS

fs(5), newfs(8). mkfs(8l

~cKusick, Joy, Leffler: "A Fast File System for Unix". Computer Systems Research Group.
Dept of EECS. Berkeley, CA 94 720: TR #7. September 1982.

This program should work on mounted and active file systems. Because the super-block is not
kept in the buffer cache. the program will only take effect if it is run on dismounted file sys­
tems. (if run on the root file system, the system must be rebooted)

You can tune a file system. but you can't tune a fish.

4th Berkeley Distribution 20 February 1983

UPDATE (8) UNIX Programmer's Manual UPDATE (8)

NAME
update - periodically update the super block

SYNOPSIS
/etc/update

DESCRIPTION
Update is a program that executes the sync(2) primitive every 30 seconds. This insures that the
file system is fairly up to date in case of a crash. This command should not be executed
directly, but should be executed out of the initialization shell command file.

SEE ALSO

BUGS

sync(2), sync(8), init (8), rc(8)

With update running, if the CPU is halted just as the sync is executed, a file system can be dam­
aged. This is partially due to DEC hardware that writes zeros when NPR requests fail. A fix
would be to have synd8) temporarily increment the system time by at least 30 seconds to
trigger the execution of update. This would give 30 seconds grace to halt the CPU.

7th Edition 4 February 1983

An introduction to the C shell

William Joy

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California. Berkeley
Berkeley, California 94720

ABSTRACT

Csh is a new command language interpreter for Ul'ilXt systems. It incor·
porates 1ood features of other shells and a history mechanism similar to the redo
of INTERLISP. While incorporating many features of other shells which make
writing shell programs (shell scripts) easier. most of the features unique to csil
are designed more for the interactive UNIX user.

UNIX use~ who have read a general introduction to the system will find a
valuable basic explanation of the shell here. Simple terminal interaction with
csh is possible after reading just the first section of this document. The second
section describes the shells capabilities which you can explore after you have
begun lo become acquainted with the shell. Later sections introduce features
which are useful. but not necessary for all users of the shell.

Back matter includes an appendix listing special characters of the shell and
a glossary of terms and commands introduced in this manual.

November 8. 1980

tUNIX is a Trademark of Bell Laboratories.

Introduction

An introduction to the C shell

William Joy

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California. Berkeley
Berkeley. California 94720

A shell is a command language interpreter. Csh is the name of one particular command
interpreter on UNIX. The primary purpose of csh is to translate command lines typed at a termi­
nal into system actions. such as invocation of other programs. Csh is a user program just like
any you might write. Hopefully, csh will be a very useful program for you in interacting with
the UNIX system.

In addition to this document, you will want to refer to a copy of the UNIX programmer·s
manual. The csh documentation in the manual provides a full description of all features of the
shell and is a final reference for questions about the shell.

Many words in this document are shown in i1alics. These are important words: names of
commands. and words which have special meaning in discussing the shell and Ul'IX. Many of
the words are defined in a glossary at the end of this document. If you don't know what is
meant by a word, you should look for it in the glossary.

Acknowledgements

Numerous people have provided good input about previous versions of csh and aided in
its debugging and in the debugging of its documentation. I would especially like to thank
Michael Ubell who made the crucial observation that history commands could be done well
over the word structure of input text. and implemented a prototype history mechanism in an
older version of the shell. Eric Allman has also provided a large number of useful commenLs
on the shell. helping to unify those concepts which are present and to identify and eliminate
useless and marginally useful features. Mike O'Brien suggested the pathname hashing mechan­
ism which speeds command execution. Jim Kulp added the job control and directory stack
primitives and added their documentation to this introduction.

- 2 -

1. Terminal usage of the shell

1.1. The basic notion of commands

A shell in UNIX acts mostly as a medium through which other proxrams are invoked.
While it has a set of builtin functions which it performs directly. most commands cause execu­
tion of programs that are. in fact. external to the shell. The shell is thus distinguished from the
command interpreters of other systems both by the fact that it is just a user program. and by
the fact that it is used almost exclusively as a mechanism for invoking other programs.

Commands in the UNIX system consist of a list of strings or M:ords interpreted as a mm­
mand name followed by argumems. Thus the command

mail bill

consists of two words. The first word mail names the command to be executed. in this case the
mail program which sends messages to other users. The shell uses the name of the command
in attempting to execute it for you. It will look in a number of directories for a file with the
name mail which is expected to contain the mail program.

The rest of the words of the command are given as argumems to the command itself when
it is executed. In this case we specified also the argument bill which is interpreted by the mail
program to be the name of a user to whom mail is to be sent. In normal terminal usage we
might use the mail command as follows.

% mail bill
I have a question about the csh documentation.
My document seems to be missing page 5.
Does a page five exist?

EOT
%

Bill

Here we typed a message to send to bill and ended this message with a j D which sent an
end-of-file to the mail program. (Here and throughout this document. the notation "ix" is to
be read "control-x" and represents the striking of the x key while the conlrol key is held
down.) The mail program then echoed lhe characters 'EOT and transmitted our message. The
characters '% ' were printed before and after the mail command by the shell to indicale that
input was needed.

After typing the '% ' prompt the shell was reading command input from our terminal.
We typed a complete command 'mail bill'. The shell then executed the mail program with
argument bill and went dormant waiting for it to complete. The mail program lhen read input
from our terminal until we signalled an end-of -file via typing a TD after which the shell noticed
that mail had completed and signaled us that it was ready to read from the terminal again by
printing another '% ' prompt.

This is the essential pattem of all interaction with UNIX through the shell. A compiete
command is typed at the terminal, the shell executes the command and when this execution
completes. it prompts for a new command. If you run the editor for an hour. the shell will
patiently wait for you to finish editing and obediently prompt you again whenever you finish
editing.

An example of a useful command you can execute now is the tset command. which sets
the default erase and kill characters on your terminal - the erase character erases the last char­
acter you typed and the kill character erases the entire line you have entered so far. By default.
the erase character is '#' and the kill character is '@'. Most people who use CRT displars
prerer to use the backspace (TH) character as their erase character since it is then easier to see
what you have typed so far. You can make this be true by typing

• 3 •

tset -e

which tells the program tset to set the erase character, and its default setting for this character is
a backspace.

1.l. Flag arguments
A useful notion in UNIX is that or a flag argument. While many arguments to commands

specify file names or user names some arguments rather specify an optional capability of the
command which you wish to invoke. By convention. such arguments begin with the character
• - • (hyphen). Thus the command

ls

will produce a list of the files in the current "1:orki11g directory. The option -sis the size option.
and

ls -s

causes Is to also give. for each file the size or the file in blocks of 512 characters. The manual
section for each command in the UNIX reference manual gives the available options for each
command. The Is command has a large number or useful and interesting options. Most other
commands have either no options or only one or two options. It is hard to remember options
of commands which are not used very frequently, so most UNIX utilities perform only one or
two functions rather than having a large number of hard to remember options.

1.3. Output to files
Commands that normally read input or write output on the terminal can also be executed

with this input and/or output done to a file.
Thus suppose we wish to save the current date in a file called 'now'. The command

date

will print the current date on our terminal. This is because our terminal is the default s1a11dard
output for the date command and the date command prints the date on its standard outpul. The
shell lets us redirect the standard output of a command through a notation using the metocharor·
ter • >' and the name of the file where output is to be placed. Thus the command

date> now

runs the dare command such that its standard output is the file 'now' rather than the terminal.
Thus this command places the current date and time into the file 'now'. It is important to
know that the date command was unaware that its output was going to a file rather than to the
terminal. The shell performed this redirecrio11 before the command began executing.

One other thing to note here is that the file 'now' need not have existed before the da1<?
command was executed; the shell would have created the file if it did not exist. And if the fiie
did exist? If it had existed previously these previous contents would have been discarded! A
shell option 11oclobber exists to prevent this from happening accidentally: it is discussed in sec·
tion 2.2.

The system normally keeps files which you create with '> · and all other files. Thus the
default is for files to be permanent. If you wish to create a file which will be removed automal·
ically. you can begin its name with a '#' character. this 'scratch· character denotes the fact that
the file will be a scratch file.• The system will remove such files after a couple of days. or

•Nole that if your erase character is a'#'. you will have to precede the"#" wilh a'\'. The fac:t that the·::·
c:harac:ter is the old (pre<llT) standard erase charac:ter means that it seldom appe3rs in 3 file name. and allo...-s
this convention to be used for sc:ratc:h files. If you are using a CltT. your erase character should be a !11. as
we demonstraled in section I.I how this c:ould be set up.

• 4 .

sooner if file space becomes very tight. Thus. in running the dare command above. we don·1
really want to save the output forever. so we would more likely do

date > #now

1.4. Metacharacters in the shell
The shell has a large number of special characters (like '> ') which indicate special func­

tions. We say that these notations have symacric and semantic meaning to the shell. In general.
most characters which are neither letters nor digits have special meaning to the shell. We shall
shortly learn a means of quora11on which allows us to use meracharacrers without the shell treat­
ing them in any special way.

Metacharacters normally have effect only when the shell is reading our input. We need
not worry about placing shell metacharacters in a letter we are sending via mail. or when we are
typing in text or data to some other program. Note that the shell is only reading input when it
has prompted with '% •.

1.5. Input from files; pipelines

We learned above how to redirect the standard output of a command to a file. It is also
possible to redirect the s1a11dard input of a command from a file. This is not often necessary
since most commands will read from a file whose name is given as an argument. We can give
the command

sort < data

to run the sort command with standard input. where the command normally reads iCs input.
from the file 'data'. We would more likely say

sort data

letting the sort command open the file 'data' for i11put itself since this is less to type.

We should note that if we just typed

sort

then the sort program would sort lines from its standard input. Since we did not redirect the
standard input, it would sort lines as we typed them on the terminal until we typed a r D to
indicate an end·of ·file.

A most useful capability is the ability to combine the standard output of one command
with the standard input of another. i.e. to run the commands in a sequence known as a pipeline.
For instance the command

Is -s

normally produces a list of the files in our directory with the size of each in blocks of 512 char·
acters. If we are interested in learning which of our files is largest we may wish 10 have this
sorted by size rather than by name. which is the default way in which Is sorts. We could look at
the many options of Is to see if there was an option to do this but would eventually discover
that there is not. Instead we can use a couple of simple options of the sort command. combin­
ing it with Is to get what we want.

The -n option of sort specifies a numeric sort rather than an alphabetic sort. Thus

Is -s I sort -n

specifies that the output of the Is command run with the option -sis to be piped to the com­
mand sort run with the numeric sort option. This would give us a sorted list of our files by
size, but with the smallest first. We could then use the -r reverse sort option and the head
command in combination with the previous command doing

• s -

ls -s I sort -n -r I head -5

Here we have taken a list of our files sorted alphabetically. each with the size in blocks. We
have run this to the standard input of the sorr command asking it to sort numerically in reverse
order (largest first). This output has then been run into the command head which gives us the
first few lines. In this case we have asked head for the first 5 lines. Thus this command gives
us the names and sizes of our S largest files.

The notation introduced above is called the pipe mechanism. Commands separated by · ! ·
characters are connected together by the shell and the standard output of each is run into the
standard input of the next. The leftmost command in a pipeline will normally take its standard
input from the terminal and the rightmost will place its standard output on the terminal. Other
examples of pipelines will be given later when we discuss the history mechanism: one important
use of pipes which is illustrated there is in the routing of information to the line printer.

1.6. Filenames
Many commands to be executed will need the names of files as arguments. UNIX path­

names consist of a number of components separated by • /'. Each component except the last
names a directory in which the next component resides. in effect specifying the path of direc­
tories to follow to reach the file. Thus the pathname

/etc/motd

specifies a file in the directory 'etc' which is a subdirectory of the root directory • /'. Within this
directory the file named is 'motd' which stands for 'message of the day'. A pathname that
begins with a slash is said to be an absolute pathname since it is specified from the absolute top
of the entire directory hierarchy of the system (the root!. Pathnames which do not begin with
'I' are interpreted as starting in the current working directory, which is. by default. your hnme
directory and can be changed dynamically by the cd change directory command. Such path­
names are said to be relative to the working directory since they are found by starting in the
working directory and descending to lower levels of directories for each compo11e11r of the path­
name. If the pathname contains no slashes at all then the file is contained in the working direc·
tory itself and the pathname is merely the name of the file in this directory. Absolu1e path­
names have no relation to the working directory.

Most filenames consist of a number of alphanumeric characters and '.'s (periods). In fact.
all printing characters except '/' (slash) may appear in filenames. It is inconvenient to have
most non-alphabetic characters in filenames because many of these have special meaning to the
shell. The character '.' (period) is not a shell-metacharacter and is often used to separate the
extension of a file name from the base of the name. Thus

prog.c prog.o prog.errs prog.output

are four related files. They share a base portion of a name (a base portion being that part of the
name that is left when a trailing '.' and following characters which are not ·. • are stripped off).
The file 'prog.c' might be the source for a C program. the file 'prog.o' the corresponding object
file. the file 'prog.errs' the errors resulting from a compilation of the program and the file
'prog.output' the output of a run of the program.

If we wished to ref er to all four of these files in a command. we could use the notation

prog.•

This word is expanded by the shell, before the command to which it is an argument is exe­
cuted, into a list of names which begin with 'prog.'. The character ·•• here matches any
sequence (including the empty sequence) of characters in a fiie name. The names which !T!atch
are alphabetically sorted and placed in the argumem list of the command. Thus the command

echo prog.•

will echo the names

• 6 •

prog.c prog.errs prog.o prog.output

Note that the names are in sorted order here. and a different order than we listed them above.
The echo command receives four words as arguments. even though we only typed one word as
as argument directly. The four words were generated by .filename expa11s1011 of the one input
word.

Other notations for .filename expansion are also available. The character '?' matches any
single character in a filename. Thus

echo ? ?? ???

will echo a line of filenames; first those with one character names. then those with two charac­
ter names. and finally those with three character names. The names of each length will be
independently sorted.

Another mechanism consists of a sequence of characters between • [' and · J'. This
metasequence matches any single character from the enclosed set. Thus

prog.fco]

will match

prog.c prog.o

in the example above. We can also place two characters around a · - ' in this notation 10 denote
a range. Thus

chap.[1-S)

might match files

chap. I chap.2 chap.3 chap.4 chap.5

if they existed. This is shorthand for

chap. [12345]

and otherwise equivalent.
An important point to note is that if a list of argument words to a command (an arK11me111

list) contains filename expansion syntax. and if this filename expansion syntax fails to match
any existing file names. then the shell considers this to be an error and prints a diagnostic

No match.

and does not execute the command.
Another very important point is that files with the character • .' at the beginning are

treated specially. Neither ••• or '?' or the '[' 'J' mechanism will match it. This prevents
accidental matching of the filenames •.' and • .. ' in the working directory which have special
meaning to the system. as well as other files such as .cshrc which are not normally visible. We
will discuss the special role of the file .cshrc later.

Another filename expansion mechanism gives access to the pathname of the home direc·
tory of other users. This notation consists of the character ·-· (tilde) followed by another users·
login name. For instance the word ·-bill' would map to the pathname '/usr/bill' if the home
directory for 'bill' was • /usr/bill'. Since. on large systems. users may have login directories
scattered over many different disk volumes with different prefix directory names. this notation
provides a reliable way of accessing the files of other users.

A special case of this notation consists of a ·-· alone. e.g. ·-1mbox'. This notation is
expanded by the shell into the file 'mbox' in your home directory. i.e. into '/usr/bill/mbox· for
me on Ernie Co-vax. the UCB Computer Science Department VAX machine. where this docu­
ment was prepared. This can be very useful if you have used cd to change to another directory
and have found a file you wish to copy using cp. If l give the command

cp thatfile ..

the shell will expand this command to

cp thatfile /usr /bill

since my home directory is /usr/bill.

• 7 •

There also exists a mechanism using the characters 'I' and 'I' for abbreviating a set of
words which have common parts but cannot be abbreviated by the above mechanisms because
they are not files. are the names of files which do not yet exist. are not thus conveniemly
described. This mechanism will be described much later. in section 4.2. as it is used less fre­
quently.

1. 7. Quotation

We have already seen a number of metacharacters used by the shell. These metacharac·
ters pose a problem in that we cannot use them directly as parts of words. Thus the command

echo•

will not echo the character •••. It will either echo an sorted list of filenames in the current
11·orki11~ direr:rory, or print the message 'No match' if there are no files in the working directory.

The recommended mechanism for placing characters which are neither numbers. digits.
'r. ·. · or • - ' in an argument word to a command is to enclose it with single quotation charac·
ters •••• i.e.

echo···

There is one special character '!' which is used by the history mechanism of the shell and which
cannot be escaped by placing it within ••• characters. It and the character •·• itself can be pre­
ceded by a single '\' to prevent their special meaning. Thus

echo\'\!

prints . ,
These two mechanisms suffice to place any printing character into a word which is an argument
to a shell command. They can be combined. as in

echo, ••••

which prints ..
since the first '\' escaped the first ... and the ••• was enclosed between •" characters.

1.8. Terminating commands

When you are executing a command and the shell is waiting for it to complete there are
several ways to force it to stop. For instance if you type the command

cat /etc/passwd

the system will print a copy of a list of aJl users of the system on your terminal. This is likely
to continue for several minutes unless you stop it. You can send an INTERRUPT s1~11al to the car
command by typing the DEL or RUBOUT key on your terminal.• Since car does not take any pre·
cautions to avoid or otherwise handle this signal the INTERRUPT will cause it to terminate. The
shell notices that car has terminated and prompts you again with '% '. If you hit INTERRL"PT

"Many users \ISe stl,\-< I> to c:hange the interrupt character 10 TC.

• 8 •

again. the shell will just repeat its prompt since it handles INTERRUPT signals and chooses to
continue to execute commands rather than terminating like cat did. which would have the effect
of logging you out.

Another way in which many programs terminate is when they get an end-of-file from their
standard input. Thus the mail program in the first example above was terminated when we
typed a TD which generates an end-of-file from the standard input. The shell also terminates
when it gets an end-of-file printing ·1ogout'; UNIX then logs you off the system. Since this
means that typing too many TD's can accidentally log us off. the shell has a mechanism for
preventing this. This ignoreeof option will be discussed in section 2.2.

If a command has its standard input redirected from a file. then it will normally terminate
when it reaches the end of this file. Thus if we execute

mail bill < prepared.text

the mail command will terminate without our typing a TD. This is because it read to the end­
of-file of our file 'prepared.text' in which we placed a message for 'bill' with an editor program.
We could also have done

cat prepared.text I mail bill

since the cat command would then have written the text through the pipe to the standard input
of the mail command. When the cat command completed it would have terminated. closing
down the pipeline and the mail command would have received an end-of-file from it and ter·
minated. Using a pipe here is more complicated than redirecting input so we would more likely
use the first form. These commands could also have been stopped by sending an 1r-;TERRL'PT.

Another possibility for stopping a command is to suspend its execution temporarily. with
the possibility of continuing execution later. This is done by sending a STOP signal via typing a
TZ. This signal causes all commands running on the terminal (usually one but more if a pipe·
line is executing) to become suspended. The shell notices that the command(sl have been
suspended. types 'Stopped' and then prompts ·for a new command. The previously executing
command has b~n suspended, but otherwise unatf ected by the STOP signal. Any other com­
mands can be executed while the original command remains suspended. The suspended com­
mand can be continued using the Jg command with no arguments. The shell will then retype
the command to remind you which command is being continued. and cause the command to
resume execution. Unless any input files in use by the suspended command have been
changed in the meantime. the suspension has no effect whatsoever on the execution of the
command. This feature can be very useful during editing. when you need to look at another
file before continuing. An example of command suspension follows.

% mail harold
Someone just copied a big file into my directory and its name is
TZ
Stopped
% Is
funnyfile
prog.c
prog.o
% jobs
[1) + Stopped mail harold
% fg
mail harold
funnytile. Do you know who did it?
EOT
%

In this example someone was sending a message to Harold and forgot the name of the file he
wanted to mention. The mail command was suspended by typing T Z. When the shell nouced

• 9 •

that the mail program was suspended. it typed •stopped' and prompted for a new command.
Then the Is command was typed to find out the name of the file. The Jobs command was run to
find out which command was suspended. At this time the Jg command was typed to continue
execution of the mail program. Input to the mail program was then continued and ended with
a TD which indicated the end of the message at which time the mail program typed EOT. The
jobs command will show which commands are suspended. The t Z should only be typed al the
beginning of a line since everything typed on the current line is discarded when a signal is sent
from the keyboard. This also happens on INTERRUPT. and QUIT signals. More information on
suspending jobs and controlling them is given irt section 2.6.

If you write or run programs which are not fully debugged then it may be necessary to
stop them somewhat ungracefully. This can be done by sending them a OUIT signal. sent by
typing a f\. This will usually provoke the shell to produce a message like:

Quit (Core dumped)

indicating that a file 'core' has been created containing information about the program 'a.out"s
state when it terminated due to the QUIT signal. You can examine this file yourself. or forward
information to the maintainer of the program telling him/her where the core file is.

If you run background commands (as explained in section 2.6) then these commands will
ignore INTERRUPT and QUIT signals at ·the terminal. To stop them you must use the kill com·
mand. See section 2.6 for an example.

If you want to examine the output of a command without having it move off the screen as
the output of the

cat /etc/passwd

command will. you can use the command

more /etc/passwd

The more program pauses after each complete screenful and types • - -More- - ' at which
point you can hit a space to get another screenfui. a return to get another line. or a 'q' to end
the more program. You can also use more as a filter. i.e.

cat /etc/passwd I more

works just like the more simple more command above.

For stopping output of commands not involving more you can use the rs key to stop the
typeout. The typeout will resume '-'hen you hit TQ or any other key. but TQ is normally used
because it only restarts the output and does not become input to the program which is running.
This works well on low-speed terminals. but at 9600 baud it is hard to type rs and rQ fast
enough to paginate the output nicely, and a program like more is usually used.

An additional possibility is to use the TO flush output character; when this character is
typed. all output from the current command is thrown away (quickly) until the next input read
occurs or until the next shell prompt. This can be used to allow a command to complete
without having to suffer through the output on a slow terminal~ ro is a toggle. so flushing can
be turned off by typing ro again while output is being flushed.

1.9. What now?

We have so far seen a number of mechanisms of the shell and learned a lot about the way
in which it operates. The remaining sections will go yet further into the internals of the shell.
but you will surely want to try using the shell before you go any further. To try it you can log
in to UNIX and type the following command to the system:

chsh myname /bin/csh

Here 'myname' should be replaced by the name you typed to the system prompt of 'login:· to
1et onto the system. Thus I would use 'chsh bill /bin/csh'. You only have to do this once: ir

• 10.

takes effect at next login. You are now ready to try using csh.

Before you do the 'chsh' command. the shell you are using when you log into the s>·stem
is •/bin/sh'. In fac:t. much of the above disc1,1ssion is applicable to •/bin/sh'. The next section
will introduee many features particular to csh so you should change your sheJI to csil before you
bqin reading it.

• 11 •

2. Details on the shell for terminal users

2.1. Shell startup and termination
When you login. the shell is started by the system in your home directory and begins by

reading commands from a file .cshrc in this directory. All shells which you may start during
your terminal session will read from this file. We will later see what kinds of commands are
usefully placed there. For now we need not have this file and the shell does not complain
about its absence.

A logi11 shell. executed after you login to the system. will. after it reads commands from
.cshrc. read commands from a file .logi11 also in your home directory. This file contains com­
mands which you wish to do each time you login to the UNIX system. My .log111 file looks
something like:

set ignoreeof
set mail- (/usr/spool/mail/bill)
echo "Slpromptlusers" ; users
alias ts\ ·

·set noglob ; eval 'tset -s - m dialup:c l 00rv4pna - m plugboard: ?hp2621 nl ... :
ts: stty intr TC kill f U crt
set time- IS history- 1 O
msgs -f
if (-e Smail) then

echo "S{promptlmail"
mail

This file contains several commands to be executed by UNIX each time I login. The first is
a ser command which is interpreted directly by the shell. It sets the shell variable ignoreeof
which causes the shell to not log me off if I hit f D. Rather. I use the lo~ou1 command to log
off of the system. By setting the mail variable. I ask the shell to watch for incoming mail to
me. Every S minutes the shell looks for this file and tells me if more mail has arrived there.
An alternative to this is to put the command

biff y

in place of this ser: this will cause me to be notified immediately when mail arrives. and to be
shown the first few lines of the new message.

Next I set the shell variable 'time' to '15' causing the shell to automatically print out
statistics lines for commands which execute for at least 15 seconds of CPU time. The variable
'history' is set to 10 indicating that I want the shell to remember the last 10 commands I type
in its history list. (described later).

I create an alias "ts" which executes a rser (1) command setting up the modes of the ter­
minal. The parameters to rser indicate the kinds of terminal which I usually use when not on a
hardwired port. I then execute "ts" and also use the srry command to change the interrupt
character to f C and the line kill character to f U.

I then run the 'msgs' program. which provides me with any system messages which I
have not seen before; the '-r option here prevents it from telling me anything if there are no
new messages. Finally. if my mailbox file exists. then I run the 'mair program to process my
mail.

When the 'mail' and 'msgs' programs finish. the shell will finish processing my .log111 file
and begin reading commands from the terminal. prompting for each with '% •. When I log off
(by giving the logout command) the sheil will print 'logout' and execute commands from the
file '.logout' if it exists in my home directory. After that the shell will termi_nate and t:'.'ilX will
log me off the system. If the system is not going down, I will receive a new login message. In

I
\

• 12.

any c:ase. after the •1ogout' messa1e the shell is committed to terminating and will take no
further input from my terminal.

2.l. Shell variables
The shell maintains a set of variables. We saw above the variables history and' rim~ which

had values ·10· and •1s•. Jn fact. each shell variable has as value an array of zero or more
strings. Shell variables may be assigned values by the set command. It has several forms. the
most useful of which was liven above and is

set name-value

Shell variables may be used to store values which are to be used in commands later
through a substitution mechanism. The shell variables most commonly referenced are. how­
ever. those which the shell itself refers to. By changing the values of these variables one can
directly affect the behavior of the shell.

One of the most important variables is the variable path. This variable contains a
sequence of directory names where the shell searches for commands. The set command with
no arguments shows the value of all variables currently defined (we usually say set) in the shell.
The default value for path will be shown by set to be

% set
ar1v
c:wd
home
path
prompt
shell
Status
term
user
%

()

/usr/bill
/usr/bill
(. /usr/ucb /bin /usr/bin)
%
/bin/c:sh
0
cl00rv4pna
bill

This output indicates that the variable path points to the current directory ·.' and then
'/usr/ucb'. •/bin' and '/usr/bin'. Commands which you may write might be in '.' (usually one
of your directories). Commands developed at Berkeley. live in '/usr/ucb' while commands
developed at Bell Laboratories live in '/bin' and •/usr/bin'.

A number of locally developed programs on the system live in the directory '/usr/tocal'.
If we wish that all shells which we invoke to have access to these new programs we can place
the command

set path-(. /usr/ucb /bin /usr/bin /usr/local)

in our file .cshrdn our home directory. Try doing this and then logging out and back in and do

set

again to see that the value assigned to path has changed.
One thing you should be aware of is that the shell examines each directory which you

insert into your path and determines which commands are contained there. E~cept for the
current directory •. '. which the shell treats specially. this means that if commands are added to
a directory in your search path after you have started the shell. they will not necessarily be
found by the shell. If you wish to use a command which has been added in this way. you
should give the command

rehash

to the shell. which will cause it to recompute its intemal table of command locations. so that it
wilt find the newly added command. Since the shell has to look in the current directory ·. · on

• 13 •

each command. placing it at the end of the path specification usually works equivalently and
reduces overhead.

Other useful built in variables are the variable home which shows your home directory.
cwd which contains your current working directory. the variable ignorreqf which can ·be set in
your .login file to tell the shell not to exit when it receives an end-of ·file from a terminal (as
described above). The variable 'ignoreeor is one of several variables which the shell does not
care about the value of. only whether they are set or u11se1. Thus to set this variable you simply
do

set ignoreeof

and to unset it do

unset ignoreeof

These give the variable 'ignoreeor no value. but none is desired or required.

Finally. some other built-in shell variables of use are the variables nodobber and mail.
The metasyntax

>filename

which redirects the standard output of a command will overwrite and destroy the previous con­
tents of the named file. In this way you may accidentally overwrite a file which is valuable. If
you would pref er that the shell not overwrite files in this way you can

set noclobber

in your .login file. Then trying to do

date> now

would cause a diagnostic if 'now' existed already. You could type

date>! now

if you really wanted to overwrite the contents of 'now'. The '> !' is a special metasyntax indi­
cating that clobbering the file is ok. t

2.J. The shell's history list
The shell can maintain a history list into which it places the words of previous commands.

It is possible to use a notation to reuse commands or words from commands in forming new
commands. This mechanism can be used to repeat previous commands or to correct minor typ­
ing mistakes in commands.

The following figure gives a sample session involving typical usage of the history mechan­
ism of the shell. In this example we have a very simple C program which has a bug (or two) in
it in the file 'bug.c', which we 'cat' out on o.ur terminal. We then try to run the C compiler on
it. referring to the file again as '!S•. meaning the last argument to the previous command. Here
the '!' is the history mechanism invocation metacharacter. and the ·s· stands for the last argu­
ment. by analogy to ·s· in the editor which stands for the end of the line. The shell echoed the
command. as it would have been typed . without use of the history mechanism. and then exe­
cuted it. The compilation yielded error diagnostics so we now run the editor on the file we
were trying to compile. fix the bug. and run the C compiler again. this time referring to this
command simply as '!c'. which repeats the last command which started with the letter 'c'. If
there were other commands starting with •(:• done recently· we could have said '!cc' or even
'!cc:p' which would have printed the last command starting with 'cc· without executing it.

tThe Sl)lce between the "!' and the word 'now" is critical here. as '!now· would be an invoca1ion or the h1smn·
mechanism. and have a totally dilferenl el'f ect.

% cat bug.c
main()

printf("heilo);
I
% cc !S
cc: bug.c

• 14 •

·bug.c". line 4: newline in string or char constant
·bug.c". line S: syntax error
% ed !S
ed bug.c
29
4s/) ;/" &/p

printf("hello");
w
30
q
% !c
cc bug.c
% a.out
hello% !e
ed bug.c
30
4s/lo/lo\ \n/p

printf{"hello\n");
w
32
q
% !c -o bug
cc bug.c -o bug
% size a.out bug
a.out: 2i84+364+1028 - 4176b - OxlOSOb
bug: 2784+364+1028 - 4176b - Oxl050b
% ls -I!•
ls -I a.out bug
-rwxr-xr-x 1 bill
-rwxr-xr-x 1 bill
% bug
hello
% num bug.c I spp

3932 Dec 19 09:41 a.out
3932 Dec 19 09:42 bug

spp: Command not found.
% fsppf ssp
num bug.c I ssp

1 main()
3 I
4
s J

% !! I !pr
num bug.c I ssp j lpr
%

• 15 •

After this recompilation. we ran the resulting •a.out' file. and then noting that there still
was a buc. ran the editor again. After fixing the program we ran the C compiler again. but
tacked onto the command an extra • -o bug• telling the compiler to place the resultant binary
in the file •bug• rather than •a.out'. In general. the history mechanisms may be used anywhere
in the formation of new commands and other characters may be placed before and after the
substituted commands.

We then ran the •size' command to see how large the binary program images we have
created were. and then an •ts -I' command with the same argument list. denoting the argu­
ment list ·••. Finally we ran the program •bug' to see that its output is indeed correct.

To make a numbered listing of the program we ran the 'num' command on the file
'bug.c'. In order to compress out blank lines in the output of 'num' we ran the output through
the filter ·ssp'. but misspelled it as spp. To correct this we used a shell substitute. placing the
old text and new text between T characters. This is similar to the substitute command in the
editor. Finally. we repeated the same command with '!!'. but sent its output to the line printer.

There are other mechanisms available for repeating commands. The h1srory command
prints out a number of previous commands with numbers by which they can be referenced.
There is a way to refer to a previous command by searching for a string which appeared in it.
and there are other. less useful. ways to select arguments to include in a new command. A
complete description of all these mechanisms is given in the C shell manual pages in the u~1x
Programmers Manual.

2.4. Aliases
The shell has an alias mechanism which can be used to make transformations on input

commands. This mechanism can be used to simplify the commands you type. to supply default
arguments to commands, or to perform transformations on commands and their arguments.
The alias facility is. similar to a macro facility. Some of the features obtained by aliasing can be
obtained also using shell command files. but these take place in another instance of the shell
and cannot directly affect the current shells environment or involve commands such as cd
which must be done in the current shell.

As an example. suppose that there is a new version of the mail program on the system
called 'newmail' you wish to use, rather than the standard mail program which is called ·mail".
If you place the shell command

alias mail newmail

in your .cshrc file, the shell will transform an input line of the form

mail bill

into a call on 'newmail'. More generally. suppose we wish the command 'Is' to always show
sizes of files. that is to always do • -s'. We can do

alias Is Is -s

or even

alias dir Is -s

creating a new command syntax 'dir' which does an 'ls -s'. If we say

dir oill

then the shell will translate this to

ls -s /mnt/bill

Thus the alias mechanism can be used to provide short names for commands. to provide
default arguments, and to define new short commands in terms of other commands. It is also
possible to define aliases which contain multiple commands or pipelines. showing where the

• 16.

arguments to the original command are to be substituted usin1 the facilities of the hislor)
mechanism. Thus the definition

alias cd • cd \!• ; ls •

would do an Is command after each change directory cd command. We enclosed the· entire alias
definition in ••• characters to prevent most substitutions from occurring and the character ·: ·
from being recognized as a metacharac:ter. The '!' here is escaped with a '\' to prevent it from
being interpreted when the alias command is typed in. The '\!•' here substitutes the entire
argument list to the pre-aliasing cd command. without giving an error if there were no argu­
ments. The •;' separating commands is used here to indicate that one command is to be done
and then the next. Similarly the definition

alias whois 'grep \!l /etc/passwd'

defines a command which looks up its first argument in the password file.

Warning: The shell currently reads the .cshrc file each time it starts up. If you place a
large number of commands there. shells will tend to start slowly. A mechanism for saving lhe
shell environment after reading the .cshrc tile and quickly restoring it is under development. bul
for now you should try to limit the number of aliases you have to a reasonable number ... 10 or
15 is reasonable. SO or 60 will cause a noticeable delay in starting up shells. and make the sys­
tem seem sluggish when you execute commands from within the editor and other programs.

2.5. More redirection; > > and >&
There are a few more notations useful to the terminal user which have not been intro·

duced yet.

In addition to the standard output, commands aiso have a diagnostic output which is nor·
mally directed to the terminal even when the standard output is redirected to a file or a pipe. It
is occasionally desirable to direct the diagnostic output along with the standard output. For
instance if you want to redirect the output of a long running command into a file and wish to
have a record of any error diagnostic it produces you can do

command > & file

The • > & • here tells the shell to route both the diagnostic output and the standard output into
'file·. Similarly you can give the command

command !& !pr

to route both standard and diagnostic output through the pipe to the line printer daemon !pr.#

Finally. it is possible to use the form

command > > file

to place output at the end of an existing file. t

#A c;ommand form

command>&! file

exists. and is used when 11oclobber is set and file already exisLs.
tlf 1mc:ioblx!r is set. then an error will result if file does not exist. 01herwise Lhe shell will create /ilC' if 11

doesn't exist. A form

command > > ! file

makes ii not be an error for file 10 not exist when 11oclobber is set.

• 17 •

2.6. Jobs: Background. Foreground. or Suspended
When one or more commands are typed together as a pipeline or as a sequence of com­

mands separated by semicolons. a single job is created by the shell consisting of these com­
mands together as a unit. Single commands without pipes or semicolons create the simplest
jobs. Usually. every line typed lo the shell creates a job. Some lines that create jobs lone per
line) are

sort < data
ls -s I sort -n I head -5
mail harold

If the metacharacter • & ' is typed at the end of the commands. then the job is started as a
background job. This means that the shell does not wait for it to complete bul immedi:ue!y
prompts and is ready for another command. The job runs m the background at the same time
that normal jobs. called foregrou11d jobs. continue to be read and executed by the shell one al a
time. Thus

du> usage &

would run the du program. which reports on the disk usage of your working directory (as well
as any directories below it). put the output into the file 'usage' and return immediately with a
prompt for the next command without out waiting for du to finish. The du program would con­
tinue executing in the background until it finished. even though you can type and execute more
commands in the mean time. When a background job terminates. a message is typed by the
shell just before the next prompt telling you that the job has completed. Jn the following
example the du job finishes sometime during the execution of the mail command and its com·
pletion is reported just before the prompl after the mail job is finished.

% du >usage &
(1] 503
% mail bill
How do you know when a background job is finished?
EOT
[1] - Done du > usage
%

If the job did not terminate normally the 'Done' message might say something else like
'Killed'. If you want the terminations of background jobs lo be reported at the time they occur
(possibly interrupting the output of other foreground jobs). you can set the 11out)· variable. In
the previous example this would mean that the 'Done' message might have come right in the
middle of the message to Bill. Background jobs are unaffected by any signals from the key­
board like the STOP. INTERRUPT. or QUIT signals mentioned earlier.

Jobs are recorded in a table inside the shell until they terminate. In this table. the shell
remembers the command names. arguments and the process numbers of all commands in the job
as well as the working directory where the job was started. Each job in the table is either run­
ning in the joreground with the shell waiting for it to terminate. running in rhe backs:round. or
suspended. Only one job can be running in the foreground at one time. but several jobs can be
suspended or running in the background at once. As each job is started. it is assigned a small
identifying number called the job number which can be used later to ref er to the job in the com­
mands described below. Job numbers remain the same until the job terminates and then are
re-used.

When a job is started in the backgound using ' & '. its number. as well as the process
numbers of all its (top level) commands. is typed by the shell before prompting you for another
command. For example.

% ls -s I sort -n > usage &
(21 2034 2035
%

runs the 'ls' program with the ·-s' options. pipes this output into the 'sort' program with the
·-n' option which puts its output into the file 'usage'. Since the'&' was at the end of the line.
these two programs were started together as a background job. After starting the job. the shell
prints the job number in brackets (2 in this case) followed by the process number of each pro­
gram started in the job. Then the shell immediates prompts for a new command. leaving the
job running simultaneously.

As mentioned in section 1.8, foreground jobs become suspended by typing TZ which sends
a STOP signal to the currently running foreground job. A background job can become
suspended by using the stop command described below. When jobs are suspended they merely
stop any further progress until started again. either in the foreground or the backgound. The
shell notices when a job becomes stopped and reports this fact. much like it reports the termi­
nation of background jobs. For foreground jobs this looks like

% du> usage
TZ
Stopped
%

'Stopped' message is typed by the shell when it notices that the du program stopped. For back­
ground jobs. using the stop command. it is

% sort usage &
[1] 2345
% stop %1
[1] + Stopped (signal) sort usage
%

Suspending foreground jobs can be very useful when you need to temporarily change what you
are doing (execute other commands) and then return to the suspended job. Also. foreground
jobs can be suspended and then continued as background jobs using the bg command. allowing
you to continue other work and stop waiting for the foreground job to finish. Thus

% du> usage
rz
Stopped
% bg
[l] du > usage &
%

starts 'du' in the foreground. stops it before it finishes. then continues it in the background
allowing more foreground commands to be executed. This is especially helpful when a fore·
ground job ends up taking longer than you expected and you wish you had started it in the
backgound in the beginning.

All job control commands can take an argumei:it that identifies a particular job. All job
name arguments begin with the character '%'. since some of the job control commands also
accept process numbers (printed by the ps command.) The default job (when no argument is
given) is called the current job and is identified by a • + · in the output of the jobs command.
which shows you which jobs you have. When only one job is stopped or running in the back­
ground (the usual case) it is always the current job thus no argument is needed. If a job is
stopped while running in the foreground it becomes the currem job and the existing current job
becomes the previous job - identified by a ' - ' in the output of jobs. When the current job ter­
minates. the previous job becomes the current job. When given. the argument is either '%- ·
(indicating the previous job)~ '%#'. where # is the job number~ '%pref where pref is some

• 19.

unique prefix of the command name and arguments of one of the jobs~ or •%?' followed by
some strin& found in only one of the jobs.

The jobs command types the table of jobs. giving the job number. commands and status
('Stopped' or 'Runnin&') of each backgound or suspended job. With the ·-r option the pro­
cess numbers are also typed.

% du> usage &
[1) 3398
% ls -s I sort -n > myfile &
[2] 3405
% mail bill
rz
Stopped
o/o jobs
[l) - Running
(2) Runnin&
[3] + Stopped
% fg %ls
ls -s I sort -n > myfile
o/o more myfile

du> usage
ls -s I sort -n > myfile
mail bill

The Jg command runs a suspended or background job in the foreground. It is used to res­
tart a previously suspended job or change a background job to run in the foreground (allowing
signals or input from the terminal). In the above example we used fg to change the ·is· job
from the background to the foreground since we wanted to wait for it to finish before looking at
its output file. The bg command runs a suspended job in the background. It is usually used
after stopping the currently running foreground job with the STOP signal. The combination of
the STOP signal and the bg command changes a foreground job into a background job. The srop
command suspends a background job.

The kill command terminates a background or suspended job immediately. In addition to
jobs. it may be given process numbers as arguments. as printed by ps. Thus. in the example
above. the running du command could have been terminated by the command

o/o kill o/o 1
[1] Terminated
%

du> usage

The notify command (not the variable mentioned earlier) indicates that the termination of
a specific job should be reported at the time it finishes instead of waiting for the next prompt.

If a job running in the background tries to read input from the terminal it is automatically
stopped. When such a job is then run in the foreground. input can be given to the job. If
desired. the job can be run in the background again until it requests input again. This is illus­
trated in the following sequence where the •s' command in the text editor might take a long
time.

% ed bigfile
120000
1.Ss/thisword/thatword/
TZ
Stopped
% bg
[1] ed bigfile &
o/o
. . . some foreground commands
[1] Stopped (tty input) ed bigfile
o/o fg

\

ed bigfile
w
120000
q
%

• 20.

So· after the ·s· command was issued. the •ecJ· job was Slopped with rz and then put in the
background using bg. Some time later when the •s' command was finished. ed tried to read
another command and was stopped because jobs in the backgound cannot read from the termi­
nal. The fK command returned the 'ed' job to the foreground where it could once again accept
commands from the terminal.

The command

stty tostop

causes all background jobs run on your terminal to stop when they are about to write output to
the terminal. This prevents messages from background jobs from interrupting foreground job
output and allows you to run a job in the background without losing terminal outpul. It also
can be used for interactive programs that sometimes have long periods without interaction.
Thus each time it outputs a prompt for more input it will stop before the prom pl. It can then
be run in the foreground using Jg. more input can be given and. if necessary stopped and
returned to the background. This st~v command might be a good thing to put in your ./0~111 file
if you do not like output from background jobs interrupting your work. It also can reduce the
need 'for redirecting the output of background jobs if the output is not very big:

% stty tostop
% wc hugefile &
[l] 10387
% ed text
... some time later
q
[1} Stopped (tty output) we hugefile
% fg we
we hugefile

13371 30123 302577
% stty -tostop

Thus after some time the 'we' command. which counts the lines. words and characters in a file.
had one line of output. When it tried to write this to the terminal it stopped. By restarting it in
the foreground we allowed it to write on the terminal exactly when we were ready to look at its
output. Programs which attempt to change the mode of the terminal will also block. whether or
not 1os1op is set. when they are not in the foregrouhd. as it would be very unpleasant to have a
background job change the state of the terminal.

Since the jobs command only prints jobs started in the currently executing shell. it knows
nothing about background jobs started in other login sessions or within shell files. The ps can
be used in this case to find out about background jobs not started in the current shell.

,
2. 7. Working Directories

As mentioned in section 1.6. the shell is always in a particular working directory. The
'change direttory' command chdir (its short form cd may also be used) changes the working
directory of the shell. that is. changes the directory you are located in.

It is useful to make a directory for each project you wish to work on and to place all files
related to that projett in that directory. The 'make directory' command. mkdir. cre:nes a new
directory. The pwd ('print working directory') command reports the absolute pathname of the
working directory of the shell. that is. the directory you are located in. Thus in the example
below:

o/opwd
/usr/bill
o/o mJcdir newpaper
% c:hdir newpaper
o/opwd
/usr/bill/newpaper
%

• 21 •

the user has created and moved to the directory newpaper. where. for example. he might place
a group of related files.

No matter where you have moved to in a directory hierarchy. you can return to your
'home' login directory by doing just

cd

with no arguments. The name • . .' always means the directory above the current one in the
hierarchy, thus

cd .•

changes the shell's working directory to the one directly above the current one. The name • .. ·
can be used in any pathname. thus.

cd . ./programs

means change to the directory 'programs' contained in the directory above the current one. If
you have several directories for different projects under. say. your home directory. this short­
hand notation permits you to switch easily between them.

The shell always remembers the pathname of its current working directory in the variable
~d. The shell can also be requested to remember the previous directory when you change to a
new working directory. If the 'push directory' command pushd is used in place of the cd com­
mand. the shell saves the name of the current working directory on a directory stack before
changing to the new one. You can see this list at any time by typing the 'directories' command
di rs.

% pushd newpaper/references
• 1newpaper/references •
o/o pushd /usr/lib/tmac
/usr/lib/tmac ·1newpaper/references •
o/o dirs
/usr/lib/tmac • tnewpaper/references •
% popd
·1newpaper/references •
o/o popd

o/o

The list is printed in a horizontal line. reading left to right. with a tilde n as shorthand for
your home directory-in this case '/usr/bill'. The directory stack is printed whenever there is
more than one entry on it and it changes. It is also printed by a dirs command. Dirs is usually
faster and more informative than pwd since it shows the current working directory as well as
any other directories remembered in the stack.

The pushd command with no argument alternates the current directory with the first direc·
tory in the list. The 'pop directory' popd command without an argument returns you to the
directory you were in prior to the current one. discarding the previous current directory from (
the stack (forgetting it>. Typing popd several times in a series takes you backward through the '\
directories you had been in (changed to) by pushd command. There are other options to pusl1d
and popd to manipulate the contents of the directory stack and to change to directories not at
the top of the stack: see the csh manual page for details.

Since the shell remembers the working directory in which each job was started. it warns
you when you might be confused by restarting a job in the foreground which has a different
working directory than the current working directory of the shell. Thus if you start a back­
ground job. then change ihe Shell's working directory and then cause the background job lO run
in the foreground. the shell warns you that the working directory of the currently ninning fore­
ground job is different from that of the shell.

% dirs -I
/mnt/bill
% cd myproject
% dirs
-/myproject
% ed prog.c
1143
TZ
Stopped
% cd .•
% Is
myproject
textfile
% fg
ed prog.c (wd: -/myproject)

This way the shell warns you when there is an implied change of working directory. even
though no cd command was issued. In the above example the 'ed· job was still in
'/mnt/bill/project' even though the shell had changed to '/mnt/bill'. A similar warning is
given when such a foreground job terminates or is suspended (using the STOP signal) since the
return to the shell again implies a change of working directory.

% fg
ed prog.c (wd: • /myproject)
... after some editing

q
(wd now:-)
%

These messages are sometimes confusing if you use programs that change their own working
directories. since the shell only remembers which directory a job is started in. and assumes it
stays there. The •-I' option of jobs will type the working directory of suspended or background
jobs when it is different from the current working directory of the shell.

2.8. Useful built-in commands

We now give a few of the useful built-in commands of the shell describing how they are
used.

The alias command described above is used to assign new aliases and to show the existing
aliases. With no arguments it prints the current aliases. It may also be given only one argu­
ment such as

alias Is

to show the current alias for, e.g .• 'Is'.

The echo command prints its arguments. It is often used in shell scripts or as an interac­
tive command to see what filename expansions will produce.

The history command will show the contents of the history list. The numbers given with
the history events can be used to reference previous events which are difficult to ref ere nee
using the contextual mechanisms introduced above. There is also a shell variable called prompt.

By placing a •!' character in its value the shell will there substitute the number of the current
command in the history list. You can use this number to refer to this command in a history
substitution. Thus you Ct)Uld

set prompt•\! '% •

Note that the '!' cha.raeter had to be escaped here even within ••• characters.
The linrit command i$ used to restrict use of resources. With no arguments it prints the

current limitations:

c:putime
ftlesize
dataSiZt
stacksize
coredumpsize

unlimited
unlimited
5616 kbytes
512 kbytes
unlimited

Limits can be set. e.g.:

limit coredumpsize 128k

Most reasonable units abbreviations will work; see the r:sh manual page for more details.
The logout command can be used to terminate a login shell which has ig11orttQlsel.

The rehash command causes the shell to recompute a table of where commands are
located. This is necessary if you add a command to a directory in the current shetrs search
path and wish the shell to ftnd it. since otherwise the hashing algorithm may tell the shell that
the command wasn't in that direetory when the hash table was computed.

The repeat command can be us~ to repeat a command several times. Thus to make 5
copies of the file 011e in the tile five you could do .

repeat S cat one > > five

The settnv command can be used to set variables in the environment. Thus

sctenv TERM admJa

will set the value of the environment variable TERM to 'adm3a'. A user program pr111re111· exists
which will print out the environment. It might then show:

Thus

% printeqv
HOME-/usr/bill
SHaL-/bin/csh
P ATH-:/usr/ucb:/bin:/usr/bin:/usr /local
TERM-admJa
USER-bill
%

The source command can be used to force the current shell to read commands from a tile.

source .c:shrc:

can be used after editing in a ~hange to the .r:shrr: file which you wish to take effect before the
next time you login.

The time command can be used to ause a command to be timed no matter how much
CPU ~ime it takes. Thus

• 24.

% time cp /etc/re /usr/bill/rc
O.Ou O.ls 0:01 8% 2+ lk 3+2io lpf +Ow
% time we /etc/re /usr/bill/rc

52 178 1347 /etc/rc
52 178 1347 /usr/bill/rc

l 04 356 2694 total
0.lu O.ls 0:00 13% 3+3k 5 +3io 7pf +Ow
%

indicates that the cp command used a negligible amount of user time (u) and about I/10th of a
system time (s); the elapsed time was 1 second <0:01). there was an average memory usage of
2k bytes of program space and t k bytes of data space over the cpu time involved (2 +I k): the
program did three disk reads and two disk writes (3 + 2io). and took one page fault and was not
swapped (lpf+Ow). The word count command "'"on the other hand used 0.1 seconds of user
time and 0.1 seconds of system time in less than a second of elapsed time. The percentage
"13%' indicates that over the period when it was active the command ·we' used an average of
13 percent of the available CPU cycles of the machine.

The unalias and unset commands can be used to remove aliases and variable definitions
from the shell. and unsetenv removes variables from the environment.

2.9. What else?
This concludes the basic discussion of the shell for terminal users. There are more

features of the shell to be discussed here. and all features of the shell are discussed in its
manual pages. One useful feature which is discussed later is the .foreach built-in command
which can be used to run the same command seQuence with a number of different arguments.

If you intend to use UNIX a lot you you should look through the rest of this document and
the shell manual pages to become familiar with the other facilities which are available to you.

• 25.

3. Shell control structures and command scripts

3.1. Introduction
It is possible to place commands in files and to cause shells to be invoked to read and exe­

cute commands from these files. which are called shell scripts. We here detail those features of
the shell useful to the writers of such scripts.

3 • .2. Make
It is important to first note what shell scripts are 1101 useful for. There is a program called

make which is very useful for maintaining a group of related files or performing sets of opera­
tions on related files. For instance a large program consisting of one or more files can have its
dependencies described in a makefile which contains definitions of the commands used to create
these different files when changes occur. Definitions of the means for printing listings. cleaning
up the directory in which the files reside. and installing the resultant programs are easily. and
most appropriately placed in this makefile. This format is superior and preferable to maintain­
ing a group of shell procedures to maintain these files.

Similarly when working on a document a makefile may be created which defines how
different versions of the document are to be created and which options of nroff or rrojf· are
appropriate.

3.3. Invocation and the argv variable
A ah command script may be interpreted by saying

% csh script ...

where script is the name of the file containing a group of csh commands and • ... • is replaced by a
sequence of arguments. The shell places these arguments in the variable argv and then begins
to read commands from the script. These parameters are then available through the same
mechanisms which are used to reference any other shell variables.

If you make the file 'script' executable by doing

chmod 155 script

and place a shell comment at the beginning of the shell script (i.e. begin the file with a · #'
character) then a '/bin/csh' will automatically be invoked to execute 'script' when you type

script

If the file does not begin with a '#' then the standard shell '/bin/sh· will be used to execute it.
This allows you to convert your older shell scripts to use csh at your convenience.

3.4. Variable substitution

After each input line is broken into words and history substitutions are done on it. the
input line is parsed into distinct commands. Before each command is executed a mechanism
know as variable substitution is done on these words. Keyed by the character ·s· this substitu·
tion replaces the names of variables by their values. Thus

echo Sargv

when placed in a command script would cause the current value of the variable argl' to be
echoed to the output of the shell script. It is an error for argv to be unset at this point.

A number of notations are provided for accessing components and attributes of variables.
The notation

S?name

expands to 'l' if name is ser or to 'O' if name is not ser. It is the fundamental mechanism used

• 26.

for checking whether particular variables have been assigned values. All olher forms of ref er·
ence to undefined variables cause errors.

The notation

S#name

expands to the number of elements in the variable name. Thus

% set argv-(a b c)
% echo S?argv
1
% echo S#argv
3
% unset argv
% echo S?argv
0
% echo Sargv
Undefined variable: argv.
%

It is also possible to access the components of a variable which has several values. Thus

Sargv[l]

gives the first component of arg\• or in the example above 'a'. Similarly

Sargv [S#argv]

would give 'c'. and

Sargv(l -2]

would give 'ab'. Other notations useful in shell scripts are

Sn

where 11 is an integer as a shorthand for

Sargv (n]

the 11th parameter and

s·
which is a shorthand for

Sargv

The form

SS

expands to the process number of the current shell. Since this process number is unique in the
system it can be used in generation of unique temporary file names. The form

S<

is quite special and is replaced by the next line of input read from the shell's standard input
(not the scripl it is reading). This is useful for writing shell scripts that are interactive. reading
commands from the terminal. or even writing a shell scripl that acts as a filter. reading lines
from its input file. Thus the sequence

echo 'yes or no?\c'
set a-(S<)

would write out the prompt 'yes or no?' without a newline and then read the answer into the

• 27.

variable •a•. In this case 'S#a' would be ·o· if either a blank line or end-of ·file (TD I was typed.
One minor difference between '$11' and 'Sargv [11]' should be noted here. The form

'Sargv[11]' will yield an error if n is not in the range '1-S#argv' while 'Sn' will never ;-ield an
out of range subscript error. This is for compatibility with the way older shells handled parame·
ters.

Another important point is that it is never an error to give a subrange of the form ·n - ·:
if there are Jess than n components of the given variable then no words are substituted. A
range of the form •m-n' likewise returns an empty vector without giving an error when 111

exceeds the number of elements of the given variable, provided the subscript /1 is in range.

3.5. Expressions
In order for interesting shell scripts to be constructed it must be possible to evaluate

expressions in the shell based on the values of variables. In fact. all the arithmetic operations
of the language C are available in the shell with the same precedence that they have in C. In
particular. the operations·--· and'!-' compare strings and the operators'&&' and l!' imple·
ment the boolean and/or operations. The special operators · - -· and '!·' are similar to · - - ·
and '!-' except that the string on the right side can have pattern matching characters (like •. ?
or []) and the test is whether the string on the left matches the pattern on the right.

The shell also allows file enquiries of the form

-? filename

where '?' is replace by a number of single characters. For instance the expression primitive

-e filename

tell whether ,i 1e file 'filename' exists. Other primitives test for read. write and execute access
to the file, whether it is a directory, or has non-zero length.

It is possible to test whether a comma,;ij terminates normally, by a primitive of the form
'I command)' which returns true. i.e. 'l' if the command succeeds exiting normally with exit
status 0. or ·o· if the command terminates abnormally or with exit status non-zero. If more
detailed information about the execution status of a command is required. it can be executed
and the variable 'Sstatus' examined in the next command. Since 'Sstatus' is set by every com·
mand, it is very transient. It can be saved if it is inconvenient to use it only in the single
immediately following command.

For a full list of expression components available see the manual section for the shell.

3.6. Sample shell script

A sample shell script which makes use of the expression mechanism of :he shell and
some of its control structure follows:

% cat c:opyc

- 28.

Copyc copies those C programs in the specified list
to the directory -/backup if they differ from the files
already in -/backup

set noglob
foreach i (Sargv)

end

if (Si !- • .c) continue # not a .c file so do nothing

if(! -r ·/backup/Si:t) then

end if

echo Si:t not in backup ... not cp\"ed
continue

cmp -s Si ·/backup/Si:t #to set Sstatus

if ($status !- 0) then
echo new backup of Si
cp Si • tbackup/Si:t

endif

This script makes use of the foreadr command. which causes the shell to execute the com­
mands between the foreach and the matching end for e:ich of the values given between • (• and
T with the named variable. in this case ·r set to successive values in the list. Within this IOop
we may use the command break to stop executing the loop and commue to prematurely ter­
minate one iteration and begin the next. After the forear:h loop the ileration variable (/ in this
case) has the value at the last iteration.

We set the variable noglob here to prevent filename expansion of the members of arg1·.
This is a good idea. in general, ir the arguments to a shell script are filenames which have
already been expanded or if the arguments may contain filename expansion metacharacters. It
is also possible to quote each use of a ·s· variable expansion. but this is harder and less reliable.

The other control construct used here is a statement of the form

if (expression) then
command

endlf

The placement of the keywords here is not flexible due to the current implementation of the
shell. t

~The following two formats are not c:urrentl}" acceptable to the shell:

and

if I exi>ression J
then

command

tndif

Won't work!

if I exi>ri:ssion l then command endif # Won't work

• 29.

The shell does have another form of the if statement of the form

If (expression) command

which can be written

If (expression) \
command

Here we have escaped the newline for the sake of appearance. The command must not involve
•!'. •&• or •;• and must not be another control command. The second form requires the final
'\ • to immediately precede the end-of ·line.

The more general ifstatements above also admit a sequence of else-ifpairs followed by a
single else and an endi/. e.g.:

if (expression) then
commands

el"se If (expression) then
commands

else
commands

end if

Another important mechanism used in shell scripts is the ':' modifier. We can use the
modifier ':r' here to extract a root of a filename or ':e· to extract the exte11s1011. Thus if the
variable i has the value '/mnt/foo.bar' then

% echo Si Si:r Si:e
/mnt/foo.bar /mnt/foo bar
%

shows how the ':r' modifier strips off the trailing ';bar' and the the ':e' modifier leaves only the
'bar•. Other modifiers will take off the last component of a pathname leaving the head ':h' or
all but the last component of a pathname leaving the tail ':t'. These modifiers are fully
described in. the csh manual pages in the programmers manual. It is also possible to use the
command substitution mechanism described in the next major section to perform modifications
on strings to then reenter the shells environment. Since each usage of this mechanism involves
the creation of a new process. it is much more expensive to use than the ':' modification
mechanism.# Finally. we note that the character '#' lexically introduces a shell comment in
sheJl scripts {but not from the terminal). All subsequent characters on the input line after a
'#' are discarded by the shell. This character can be quoted using ••• or '\' to place it in an
argument word.

#It is also important to noie that the current implementation of the shell limitS the number of ':' modifiers
on a ·s· substitution lo 1. Thus

% echo Si Si:h:t
/a/b/c /a/b:t
%

does not do what one would expect.

• 30.

J. 7. Other control structures
The shell also has control structures y.·hile and SM'itch similar to those of C. These take the

forms

and

while (expression)
commands

end

switch (word)

case strl:
commands
breaksw

case stm:
commands
breaksw

default:

endsw

commands
breaksw

For details see the manual section for csh. C prolJ"ammers should note that we use breaks11· to
exit from a switch while break exits a 14·hi/e or foreach loop. A common mistake to make in csh
scripts is to use break rather than breaksw in switches.

Finally. csh allows a goto statement. with labels looking like they do in C. i.e.:

loop:
commands
goto loop

3.8. Supplying input to commands

Commands run from shell scripts reeeive by default the standard input of the shell which
is running the script. This is different from previous shells running under UNIX. It allows shell
scripts to fully panicipate in pipelines. but mandates extra notation for commands which are to
take inline data.

Thus we need a metanotation for supplying inline data to commands in shell scripts. As
an example. consider this script which runs the editor to delete leading blanks from the lines in
each argument file

- 31 •

% cat deblank
deblank - - remove leading blanks
foreac:h i (Sargv)
ed - Si < < ':EOF'
1.Ss/T[J• /1
w
q
'EOF'
end
%

The notation • < < 'EOF'' means that the standard input for the ea command is to come from
the text in the sheil script file up to the next line consisting of e:uctly "EOF'". The fact that
the 'EOF' is enclosed in ··• chancters. i.e. quoted. causes the shell to not perform variable sub­
stitution on the intervening lines. In general. if any part of the word following the · < < · which
the shell uses to terminate the text to be given to the command is quoted then these substitu­
tions wi)J not be performed. In this case since we used the form '1.S' in our editor script we
needed to insure that this ·s· was not variable substituted. We could also have insured this by
preceding the ·s· here with a '\ •. i.e.:

1.\Ss/T[1·11
but quoting the 'EOF' terminator is a more reliable way of achieving the same thing.

3.9. Catching interrupts

If our shell script creates temporary files. we may wish to catch interruptions of the shell
script so that we can clean up these files. We can then do

onintr label

where label is a label in our program. If an interrupt is received the shell will do a 'goto label'
and we can remove the temporary files and then do an exit command (which is buiit in to the
shell) to exit from the shell script. If we wish to exit with a non-zero status we can do

exit(})

e.g. to exit with status T.

3.10. What else?
There are other features of the shell useful to writers of shell procedures. The 1•erbos<'

and echo options and the related -1• and -x command line options can be used to help trace
the actions of the shell. The -n option causes the shell only to read commands and not to
execute them and may sometimes be of use.

One other thing to note is that csh will not execute shell scripts which do not begin with
the character '#', that is sheU scripts that do not begin with a comment. Similarly. the
'/bin/sh' on your system may well defer to 'csh' to interpret shell scripts which begin with · # ·.
This allows shell scripts for both shells to live in harmony.

There is also another quotation mechanism using ·~· which allows only some of the
expansion mechanisms we have so far discussed to occur on the quoted string and serves to
make this string into a single word as ••• does.

• 32.

4. Other, less commonly used, shell features

4.1. Loops at the terminal; variables as vectors

It is occasionally useful to use the foreach control structure at the terminal to. aid in per·
forming a number of similar commands. For instance. there were at one point three shells in
use on the Cory UNIX system at Cory Hall. •/bin/sh', '/bin/nsh'. and '/bin/csh'. To count the
number of persons using each shell one could have issued the commands

% grep -c cshS /etc/passwd
27
% grep -c nshS /etc/passwd
128
% grep -c -v shS /etc/passwd
430
%

Since these commands are very similar we can use foreach to do this more easily.

% foreach i C"shS' 'cshS' · -v shS')
? grep -c Si /etc/passwd
? end
27
128
430
%

Note here that the shell prompts for input with '? ' when reading the body of the loop.

Very useful with loops are variables which contain lists of filenames or other words. You
can. for example. do

% set a-rts')
% echo Sa
csh.n csh.rm
% ls
csh.n
csh.rm
% echo S#a
2
%

The set command here gave the variable a a list of all the filenames in the current directory as
value. We can then iterate over these names to perform any chosen function.

The output of a command within •·• characters is converted by the shell to a list of words.
You can also place the "' quoted string within characters to take each (non-empty) line as a
component of the variable~ preventing the lines from being split into words at blanks and tabs.
A modifier ':x' exists which can be used later to expand each component of the variable into
another variable splitting it into separate words at embedded blanks and tabs.

4.2. Braces I ... l in argument expansion

Another form of filename expansion. alluded to before involves the characters • (' and ·) '.
These characters specify that the contained strings. separated by •,' are to be consecutively sub­
stituted into the containing characters and the results expanded left to right. Thus

A I str l ,str 2 •... strn l B

expands to

• 33.

AstrlB Astr2B ..• AstmB

This expansion occurs before the other filename expansions. and may be applied recursively \
(i.e. nested). The results of each expanded string are sorted separately. left to right order being
preserved. The resulting filenames are not required lo exist if no other expansion mechanisms
are used. This means that this mechanism can be used to generate arguments which are not
filenames. but which have common parts.

A typical use of this would be

mkdir • tlhdrs.retrofit.c:sh}

to make subdirectories 'hdrs'. •retrofit' and 'csh' in your home directory. This mechanism is
most useful when the common prefix is longer than in this example. i.e.

chown root /usr/lucb/lex.editl.lib/lex?. ?•.how _exll

4.3. Command substitution

A command enclosed in ••• characters is replaced. just before filenames are expanded. by
the output from that command. Thus it is possible to do

set pwd-'pwd'

to save the current directory in the variable pM·d or to do

ex 'grep -1 TRACE •.c·

to run the editor ex supplying as arguments those files whose names end in • .c' which have the
string 'TRACE' in them.•

4.4. Other details not covered here
In particular circumstances it may be necessary to know the exact nature· and order of

diff'erent substitutions performed by the shell. The exact meaning of certain combinations of
quotations is also occasionally important. These are detailed fuJly in its manual s~tion.

The shell has a number of c9mmand line option flags mostly of use in writing UNIX pro­
grams. and debugging shell scripts. See the shells manual section for a list of these options.

•command expansion also occurs in input redireaed with • < < · and within ••• quotations. Refer to th~ shell
manual section for full details.

• 34.

Appendix - Special characters

The following table lists the special characters of csh and the UNIX system. giving for each the
section(s) in which it is discussed. A number of these characters also have special meaning in
expressions. See the cslr manual section for a complete list.
Syntactic metacharacters

, 2.4 separates commands to be ex~uted sequentially
I 1.5 separates commands in a pipeline
() 2.2.3.6 · brackets expressions and variable values
&. 2.5 follows commands to be executed without waiting for completion

Filename metacharacters

I .,
•
[]

I J

1.6
1.6
1.6
1.6
1.6
4.2

separates components of a file's pathname
expansion character matching any single character
expansion character matching any sequence of characters
expansion sequence matching any single character from a set
used at the beginning of a filename to indicate home directories
used to specify groups of argumentS with common parts

Quotation metacharacters

\ 1.7
1.7
4.3

preventS meta-meaning of following single character
prevents meta-meaning of a group of characters
like ·• but allows variable and command expansion

Input/output metacharacters

<
>

I.S
1.3

indicates redirected input
indicates redirected output

Expansion/substitution metacharacters

s

T .

3.4
2.3
3.6
2.3
4.3

indicates variable substitution
indicates history substitution
precedes substitution modifiers
used in special forms of history substitution
indicates command substitution

Other metacharacters

1.3.3.6 begins scratch file names: indicates shell comments
1.2 prefixes option (flag) arguments to commands

% 2.6 prefixes job name specifications

• 35 •

Glossary

This gJossary lists the most important terms introduced in the introduction to the shell
and gives references to sections of the shell document for further information about them.
References of the form 'pr (l)' indicate that the command pr is in the UNIX programmer"s
manual in section 1. You can get an online copy of its manual page by doing

man 1 pr

References of the form (2.5} indicate that more information can be found in section 2.5 of this
manual.

·a.out

Your current directory has the name '.' as well as the name printed by the
command pwd: see also dirs. The current directory '.' is usually the first com­
ponent of the search path contained in the variable path, thus commands which
are in '.' are found first (2.2). The character • .' is also used in separating com­
ponents of filenames (1.6). The character'.' at the beginning of a compommr of
a pathname is treated specially and not matched by the j;Jename expa11sm11 meta·
characters'?'.···. and'[' ']' pairs (1.6>.

Each directory has a file '..' in it which is a reference to its parent directory.
After changing into the directory with chdir. i.e.

chdir paper

you can return to the parent directory by doing

chdir ..

The current directory is printed by P"'d (2.7).

Compilers which create executable images create them. by default. in the file
a.our. for historical reasons (2.3>.

absolute pathname

alias

argument

argv

background

base

A pathname which begins with a '/' is absolute since it specifies the path of
directories from the beginning of the entire directory system - called the rnm
directory. Pathnames which are not absolute are called relatll'(! (see definition of
relative pathname) (1.6).

An alias specifies a shorter or different name for a u~1x command. or a
transformation on a command to be performed in the shell. The shell has a
command alias which establishes aliases and can print their current values.
The command unalias is used to remove aliases (2.4).

Commands in UNIX receive a list of ar1n1me11t words. Thus the command

echo ab c

consists of the command name 'echo' and three argume111 words ·a·. 'b. and ·c".
The set of argumenrs after the command name is said to be the ar!(ume111 llSI of
the command (1.1).

The list of arguments to a command written in the shell language (a shell
script or shell procedure) is stored in a variable called ar/(\' within the shell.
This name is taken from the conventional name in the C programming
language (.3.4).

Commands started without waiting for them to complete are c:illed background
commands (2.6).

A filename is sometimes thought of as consisting of a base part. before any · ·
character. and an ex1ens1011 - the part after the ·. '. See filename and ex1e11s1011

0 .6)

bin

break

breaksw

builtin

case

cat

cd

chdir

chsh

cmp

command

• 36.

The bg command causes a suspended job to continue execution in the bac·k·
ground (2.6).

A directory containing binaries of programs and shell scripts to be executed is
typically called a bin directory. The standard system bi11 directories are '/bin·
containing the most heavily used commands and '/usr/bin' which contains
most other user programs. Programs developed at UC Berkeley live in
'/usr/ucb', while locally written programs live in '/usr/local'. Games are kept
in the directory '/usr/games'. You can place binaries in any directory. If you
wish to execute them often. the name of the directories should be a compo11e111
of the variable path.

Break is a builtin command used to exit from loops within the control struc·
ture of the shell (3.7}.

The breaks'M' builtin command is used to exit from a switch control structure.
like a break exits from loops (3.7).

A command executed directly by the shell is called a builri11 command. Most
commands in UNIX are not built into the shell. but rather exist as files in bm
directories. These commands are accessible because the directories in which
they reside are named in the path variable.
A case command is used as a label in a switch statement in the shell's control
structure. similar to that of the language C. Details are given in the shell
documentation 'csh(l)' (3.7}.

The cat program catenates a list of specified files on the standard output. It is
usually used to look at the contents of a single file on the terminal. to •cat a
file' (1.8. 2.3).

The cd command is used to change the M:Orki11g directory. With no arguments.
cd changes your i..·orking directory to be your home directory (2.4. 2. 7).
The chdir command is a synonym for ed. Cd is usually used because it is easier
to type.
The chsh command is used to change the shell which you use on UNIX. By
default. you use an different version of the shell which resides in '/bin/sh'.
You can change your shell to '/bin/csh' by doing

chsh your-login-name /bin/csh

Thus I would do

chsh biU /bin/csh

It is only necessary to do this once. The next time you log in to U'.'lllX after
doing this command. you will be using csh rather than the shell in '/bin/sh·
(1.9).

Cmp is a program which compares files. It is usually used on binary files. or to
see if two files are identical (3.6). For comparing text files the program aaf:
described in 'diff (1)' is used.
A function performed by the system. either by the shell (a builtin comma11d'J
or by a program residing in a file in a directory within the UNIX system. is
called a command (1.1).

command name.
When a command is issued. it consists of a command name. which is the first
word of the command. followed by arguments. The convention on U'.'lllX is
that the first word of a command names the function to be performed (1.1).

• 37 -

command substitution (

component

continue

control·

core dump

csh
.cshrc

cwd

date
debugging

default:

DELE:TE

detached

diagnostic

The replacement of a command enclosed in ···characters by the text output b)' ,
that command is called command substitution (4.J).

A part of a parhnamt between • /" characters is called a compo11tm of that path·
name. A variable which has multiple strings as value is said to have several
components; each string is a componem of the variable.
A builtin command which causes execution of the enclosing foreach or "·hil<'
loop to cycle prematurely. Similar to the co111inue command in the program­
ming language C (3.6).
Certain special characters. called control characters. are produced by holding
down the CONTROL key on your terminal and simultaneously pressing another
character. much like the SHIFT key is used to produce upper case characters.
Thus conrrol-c is produced by holding down the CONTROL key while pressing
the 'c' key. Usually UNIX prints an up-arrow <T) followed by the corresponding
letter when you type a control character (e.g. 'TC' for conrrol-c (1.8).

When a program terminates abnormally, the system places an image of its
current state in a file named 'core'. This core dump can be examined with the
system debugger 'adb(l)' or 'sdb(l)' in order to determine what went wrong
with the program (1.8). If the shell produces a message of the form

Illegal instruction (core dumped)

(where 'Illegal instruction' is only one of several possible messages). you
should report this to the author of the program or a system administrator. sav­
ing the 'core' file.
The cp (copy) program is used to copy the contents of one file into another
file. It is one of the most commonly used UNIX commands (1.6).

The name of the shell program that this document describes.
The file .cshrc in your homt directory is read by each shell as it begins execu­
tion. It is usually used to change the setting of the variable path and to set
alias parameters which are to take effect globally (2.1).
The cwd variable in the shell holds the absolutt parhnamt of the current work­
ing directory. It is changed by the shell whenever your current .,.,.orking direcrory
changes and should not be changed otherwise (2.2).

The date command prints the current date and time (1.J).

Debugging is the process of correcting mistakes in programs and shell scripts.
The shell has several options and variables which may be used to aid in shell
debugging (4.4).

The label dt/ault: is used within shell switch statements, as it is in the C
language to label the code to be executed if none of the case labels matches
the value switched on (3.7).

The DELETE or RUBOUT key on the terminal normally causes an interrupt to be
sent to the current job. Many users change the interrupt character to be JC.
A command that continues running in the background after you logout is said
to be detached.

An error message produced by a program is often referred to as a diag11osm·.
Most error messages are not written to the standard output, since that is often
directed away from the terminal (1.3. 1.5). Error messsages are inste3d writ· ,
ten to the diagnostic output which may be directed away from the terminal. but
usually is not. Thus diagnostics will usually appear on the terminal (2.5).

directory

directory stack

di rs
du

echo
else

endif

EOF

escape

/etc/passwd

exit

exit status

• 38.

A strucu,ire which contains files. At any time you are in one particular direr:rnr"
whose names can be printed by the command p'M'd. The chd1r command wiil
chanae you to another directory. and make the files in that dirtr:tory visible. The
directory in which you are when you first login is your homt directory (1.1.
2.7).
The shell saves the names of previous M.·orki11g directories in the dirtetory s10,·k
when you change your current worki11g dirtctory via the pushd command. The
directory stack can be printed by using the dirs command. which includes your
current M:orking directory as the first directory name on the left (2. 7).

The dirs command prints the shell's directory stack (2. 7).

The du command is a program (described in 'du (1) ') which prints the number
of disk blocks is all directories below and including your current K·ork111g d1rer-
1ory (2.6).

The echo command prints its arguments (1.6. 3.6).
The else command is part of the 'if·then-else-endir control command con­
struct (3.6).
If an ifstatement is ended with the word rhe11. all lines following the ttup to a
line starting with the word endif or else are executed if the condition between
parentheses after the ifis true (3.6).
An end-of flit is generated by the terminal by a control-d. and whenever a
command reads to the end of a file which it has been given as input. Com­
mands receiving input from a pipe receive an e11d-0,1:.fi/e when the command
sending them input completes. Most commands terminate when they receive
an end-offile. The shell has an option to i1nore end-o.f-file from a terminal
input which may help you keep from logging out accidentally by typing too
many control-d's (1.1, 1.8. 3.8).
A character '\' used to prevent the special meaning of a metacharacter is said
to escape the character from its special meanin1. Thus

echo\•

will echo the character ·•• while just

echo•

will echo the names of the file in the current directory. In this example. \
tscapes ••• (1. 7). There is also a non-printing character called escape. usually
labelled ESC or ALTMODE on terminal keyboards. Some older UNIX systems use
this character to indicate that output is to be suspended. Most systems use
control-s to stop the output and control-q to start it.
This file contains information about the accounts currently on the system. It
consists of a line for each account with fields separated by ·:· characters (1.8).
You can look at this file by saying

cat /etc/passwd

The commands fingtr and grep are often used to search for information in this
file. See 'finger(!)'. 'passwd(S)', and 'iJ'ep(l)' for more details.
The exit command is used to force termination of a shell script. and is built
into the sheil (3.9).
A command which discovers a problem may reflect this back to the command
(such as a shell) which invoked (executed) it. It does this by returning a
non-zero number as its exit status. a status of zero being considered ·normal
termination'. The exit command can be used to force a shell command script

expansion

expressions

extension

filename

• 39.

to live a non-zero exit srarus (J.6).

The replacement of strings in the shell input which contain metacharacters by
other strings is referred to as the process of expansion. Thus the replacement
of the word ••• by a sorted list of files in the current directory is a 'filename
expansion'. Similarly the replacement of the characters '!!' by the· text of the
last command is a 'history expansion'. Expa11sio11s are also referred to as substi·
rutions {1.6. 3.4. 4.2).

Expressions are used in the shell to control the conditional structures used in
the writing of shell scripts and in calculating values for these scripts. The
operators available in shell expressions are those of the language C C3.5).
Filenames often consist of a base name and an exte11sion separated by the char·
ac:ter •.'. By convention. groups of related files often share the same ron1
name. Thus if 'prog.c' were a C program. then the object file for this program
would be stored in 'prog.o'. Similarly a paper written with the ·-me' nroff
macro package might be stored in 'paper.me' while a formatted version of this
paper might be kept in 'paper.out' and a list of spelling errors in 'paper.errs'
(1.6).

The job control command Jg is used to run a background or suspended job in the
foreground (1.8. 2.6).

Each file in UNIX Qas a name consisting of up to 14 characters and not includ­
ing the character '/' which is used in pathname building. Most filenames do not
begin with the character '.'. and contain only letters and digits with perhaps a
'.' separatin1 the base portion of the filename from an exre11sio11 (1.6).

filename expansion
. Filename expansion uses the metacharacters '*'. • ?' and · (' and •]' to provide a

convenient mechanism for naming files. Using filename expa11s1011 it is easy to
name all the files in the current directory, or all files which have a common
root name. Other filename expansion mechanisms use the metacharacter ••• and
allow files in other users' directories to be named easily (1.6, 4.2).

flag

foreac:h

foreground

goto

grep

Many UNIX commands accept arguments which are not the names of files or
other users but are used to modify the action of the commands. These are
referred to as flag options. and by convention consist of one or more letters
preceded by the character • - ' (1.2). Thus the Is (list files) command has an
option '-s' to list the sizes of files. This is specified

ls -s

The foreach command is used in shell scripts and at the terminal to specify
repetition of a sequence of commands while the value of a certain shell vari­
able ranges through a specified list (3.6, 4.1).

When commands are executing in the normal way such that the shell is waiting
for them to finish before prompting for another command they are said to be
foreground Jobs or running in the foreground. This is as opposed to background.
Foreground jobs can be stopped by signals from the terminal caused by typing
different control characters at the keyboard (1.8. 2.6).

The shell has a command goro used in shell scripts to transfer control to a
liven label (3. 7).

The grep command searches through a list of argument files for a specified
string. Thus

grep bill /etc/passwd

will print each line in the file /erdpass}4,vi which contains the string 'bill'.

head

history

home directory

if

ignoreeof

input

interrupt

job

• 40.

Actually. grep scans for regular expressions in the sense of the editors 'ed f 1 l ·
and 'ex(l)'. Grepstands for '&Jobally find regular expression and print' (2.4t.

The head command prints the first few lines of one or more files. If you have
a bunch of files containing text which you are wondering about it is sometimes
useful to run head with these files as arguments. This will usually show
enough of what is in these files to let you decide which you are interested in
(1.5).
Head is also used to describe the part of a pathname before and including the
last ·r character. The tail of a pathname is the part after the last ·r. The ':h'
and ':t' modifiers allow the head or tail of a pathname stored in a shell variable
to be used (3.6).

The histol')' mechanism of the shell allows previous commands to be repeated.
possibly after modification to correct typing mistakes or to change the meaning
of the command. The shell has a histol')' list where these commands are kept,
and a history variable which controls how large this list is (2 • .3>.

Each user has a home directory. which is given in your entry in the password
file. letc/passwd. This is the directory which you are placed in when you first
login. The cd or chdir command with no arguments takes you back to this
directory. whose name is recorded in the shell variable home. You can also
access the home directories of other users in forming filenames using a .filename>
expansion notation and the ch~acter ••• (1.6).

A conditional command within the shell. the if command is used in shell com­
mand scripts to make decisions about what course of action to take next <3.6).
Normally. your shell will exit. printing 'logout' if you type a control-d at a
prompt of '% '. This is the way ou usually log off the system. You can set
the ignoret(!fvariable if you wish in your .logm file and then use the command
logout to logout. This is useful if you sometimes accidentally type too many
control-d characters. logging yourself otr (2.2).

Many commands on UNIX take information from the terminal or from files
which they then act on. This information is called input. Commands normally
read for input from their standard input which is. by default. the terminal. This
standard input can be redirected from a file using a shell metanotation with the
character • < '. Many commands will also read from a file specified as argu•
ment. Commands placed in pipelines will read from the output of the previous
command in the pipeline. The leftmost command in a pipeline reads from the
terminal if you neither redirect its input nor give it a filename to use as sra11·
dard input. Special mechanisms exist for supplying input to commands in shell
scripts (I.S. 3.8>.
An interrupt is a signal to a program that is generated by hitting the RUBOUT or
DEl.ETE key (although users can and often do change the interrupt character.
usually to TC). It causes most programs to stop execution. Certain programs.
such as the shell and the editors. handle an interrupt in special ways. usually by
stopping what they are doing and prompting for another command. While the
shell is executing another command and waiting for it to finish. the shell does
not listen to interrupts. The shell often wakes up when you hit 1111errup1
because many commands die when they receive an imerrupt (1.8. 3.9).

One or more commands typed on the same input line separated by ·1· or ·: ·
characters are run together and are called a job. Simple commands run by
themselves without any 'I' or ';' characters are the simplest Jobs. Jobs are
classified as foreground. background, or suspended (2.6).

job control

job number

jobs

kill
.login

login shell

loaout

.logout

lpr

ls

mail

make

makefile
manual

metacharacter

• 41 •

The builtin functions that control the execution of jobs are called job comrol (
commands. These are bg, Jg, stop, kill {2.6). \
When each job is started it is assigned a small number called a job 11umber
which is printed next to the job in the output of the jobs command. This
number. preceded by a •%'character. can be used as an argument to job comrol
commands to indicate a specific job (2.6).
The jobs command prints a table showing jobs that are either running in the
background or are suspended {2.6).

A command which sends a signal to a job causing it to terminate (2.6).

The file .login in your home directory is read by the shell each time you login to
UNIX and the commands there are executed. There are a number of com­
mands which are usefully placed here. especially set commands to the shell
itself (2.1). ·

The shell that is started on your terminal when you login is called your login
shell. It is different from other shells which you may run (e.g. on shell scripts>
in that it reads the .login file before reading commands from the terminal and it
reads the .logout file after you logout (2.1).

The logout command causes a login shell to exit. Normally. a login shell will
exit when you hit control·d generating an e11d·o.fofile. but if you have set
ignoreeof in you .logi11 file then this will not work and you must use logout to
Jog off the UNIX system (2.8).

When you log off of UNIX the shell will execute commands from the tile . lo![out
in your home directory after it prints ·1ogout'.
The command /pr is the line printer daemon. The standard input of /pr spooled
and printed on the UNIX line printer. You can also give /pr a list of filenames
as arguments to be printed. It is most common to use /pr as the last com­
ponent of a pipeline (2.3).

The Is (list files) command is one of the most commonly used UNIX com­
mands. With no argument filenames it prints the names of the files in the
current directory. It has a number of useful flag arguments. and can also be
given the names of directories as arguments. in which case it lists the names of
the files in these directories (1.2).

The mail program is used to send and receive messages from other UNIX users
(1.1. 2.1).

The make command is used to maintain one or more related files and to organ·
ize functions to be performed on these files. In many ways make is easier to
use. and more helpful than shell command scripts (3.2).
The file containing commands for make is called make.file (.3.2).
The manual often referred to is the 't;NIX programmer's manual'. It contains a
number of sections and a description of each UNIX program. An online version
of the manual is accessible through the man command. Its documentation can
be obtained online via

man man

Many characters which are neither letters nor digits have special meaning
either to the shell or to UNIX. These characters are called· metacharacrers. If it /
is necessary to place these characters in arguments to commands without them \
having their special meaning then they must be quoted. An example of a meta·
character is the character • >' which is used to indicate placement of output

mkdir
modifier

more

noclobber

noglob

notify

onintr

output

pushd

path

• 42.

into a file. For the purposes of the history mechanism. most unquoted mC'ta­
characrers form separate words (1.4). The appendix to this user's manual lists
the metacharacters in groups by their function.
The mkdir command is used to create a new directory.

Substitutions with the history mechanism. keyed by the character '!' or of vari·
ables using the metacharacter ·s·. are often subjected to modifications. indi·
cued by placing the character ':' after the substitution and following this with
the modifier itself. The command substitution mechanism can also be used to
perform modification in a similar way. but this notation is less clear (3.6>.
The program more writes a file on your terminal allowing you to control how
much text is displayed at a time. More can move through the file screenful by
screenful. line by line. search forward for a string. or start again at the begin·
ning of the file. It is generally the easiest way of viewing a file (1.8).

The shell has a variable noclobber which may be set in the file .login to prevent
accidental destruction of files by the • > • output redirection metasyntax of the
shell (2.2. 2.5).

The shell variable noglob is set to suppress the .filename expa11s1011 of arguments
containing the metacharacters ·-·. •••, '?'. '[' and ']' (3.6).

The notify command tells the shell to report on the termination of a specific
background job at the exact time it occurs as opposed to waiting until just
before the next prompt to report the termination. The 11ot(fy variable. if set.
causes the shell to always report the termination of background jobs exactly
when they occur (2.6).

The onintr command is built into the shell and is used to control the action of
a shell command script when an imerrupt signal is received (3.9).

Many commands in UNIX result in some lines of text which are called their ot11·
put. This output is usuaUy placed on what is known as the standard owpm
which is normally connected to the user's terminal. The shell has a syntax
using the metacharacter • >' for redirecting the standard output of a command
to a file (1.3). Using the pipe mechanism and the metacharacter ·r it is also
possible for the standard output of one command to become the standard 111pur
of another command (1.5). Certain commands such as the line printer dae·
mon p do not place their results on the standard output but rather in more use·
ful places such as on the line printer (2.3). Similarly the ·rite command places
its output on another user's terminal rather than its standard our put (2.3).
Commands also have a diagnostic output where they write their error messages.
Normally these go to the terminal even if the standard ourput has been sent to
a file or another command. but it is possible to direct error diagnostics along
with standard output using a special metanotation (2.5).

The pushd command. which means 'push directory'. changes the shell's work­
ing directory and also remembers the current ·orking directory before the change
is made. allowing you to return to the same directory via the popd command
later without retyping its name (2. 7).

The shell has a variable path which gives the names of the directories in which
it searches for the commands which it is given. It always checks first to see if
the command it is given is built into the shell. If it is. then it need not search
for the command as it can do it internally. If the command is not builtin. then
the shell searches for a file with the name given in e3ch of the directories in
the parh variable. left to right. Since the normal definition of the path variable
is

pathname

pipeline

po pd

port

pr

printenv

• 43.

path (. /usr/uc:b /bin /usr/bin)

the shell normally looks in the current directory. and then in the standard svs·
tem directories •/usr/uc:b'. '/bin' and •/usr/bin' for the named comm~nd
(2.2). If the command cannot be found the shell will print an error diagnostic.
Scripts of shell commands will be executed using another shell to interpret
them if they have •execute• permission set. This is normally true because a
command of the form

chmod 755 script

was. executed to tum this execute permission on (3.3). Ir you add new com·
mands to a directory in the path. you should issue the command rehash <2.2l.
A list of names. separated by ·r characters. forms a pa1h11ame. Each ,·om·
pone111. between successive '/' characters. names a directory in which the next
component file resides. Pathnames which begin with the character '/' are inter·
preted relative to the root directory in the filesystem. Other parlr11ames are
interpreted relative to the current directory as reported by pwd. The last com·
ponent of a path11ame may name a directory. but usually names a file.
A group of commands which are connected together. the standard ourpur of
each connected to the standard i11pu1 of the next. is called a pipeli11e. The pipe
mechanism used to connect these commands is indicated by the shell meta·
character 'I' (1.5. 2.3).
The popd command changes the shell's 'l\"Orking directory to the directory you
most recently left using the pushd command. It returns to the directory
without having to type its name. forgetting the name of the current M:orkm~
direct01'' before doing so (2.7).
The part of a computer system to which each terminal is connected is oiled a
port. Usually the system has a fixed number of ports. some of which are con·
nected to telephone lines for dial-up access. and some of which are per·
manently wired directly to specific: terminals.
The pr command is used to prepare listings of the contents of files with
headers giving the name of the file and the date and time at which the file was
last modified (2.3).
The printen11.command is used to print the current setting of variables in the
environment {2.8).

process An instance of a running program is called a process (2.6). UNIX assigns each
process a unique number when it is started - called the process num~r. Pro·
cess num~rs can be used to stop individual processes using the kill or stop com­
mands when the processes ar.e part of a detached background job.

program Usually synonymous with command:. a binary file or shell command script
which performs a useful function is often called a program.

programmer's manual

prompt

Also referred to as the manual. See the glossary entry for 'manual'.
Many programs will print a prompt on the terminal when they expect input.
Thus the editor 'ex(l)' will print a':' when it expects input. The shell prompts
for input with •Ofo ' and oc:casionally with '? ' when reading commands from
the terminal {1.1). The shell has a variable prompt which may be set to a
different value to change the shell's main prompt. This is mostly used when
debugging the shell (2.8).

ps

pwd

quit

quotation

redirection

• 44 •

The ps command is used to show the processes you are currently running.
Each process is shown with its unique process number. an indication of the
terminal name it is attached to. an indication of the state of the process
(whether it is running. stopped. awaiting some event (sleeping). and whether
it is swapped out). and the amount of CPU time it has used so far. The com­
mand is identified by printing some of the words used when it was invoked
(2.6). Shells. such as the csh you use to run the ps command. are not nor­
mally shown in the output.

The pwd command prints the full pathname of the current 11.·orki11g directory.
The dirs builtin command is usually a better and faster choice.

The quit signal. generated by a control·\, is used to terminate programs which
are behaving unreasonably. It normally produces a core image file {1.8L

The process by which metacharacters are prevented their special meaning. usu­
ally by using the character •• in pairs. or by using the character '\'. is ief erred
to as quotation (1.7).

The routing of input or output from or to a file is known as redirection of input
or output (l.J).

rehash The rehash command tells the shell to rebuild its internal table of which com­
mands are found in which directories in your path. This is necessary when a
new program is installed in one of these directories (2.8).

relative pathname

repeat

root

R.UBOL'i

scratch tile

script

set

A pathnamt which does not begin with a '/' is called a relatil'e pathname since it
is interpreted relative to the current working directory. The first componem of
such a pathname refers to some file or directory in the K·orkmg directory. and
subsequent componems between • 1· characters refer to directories be!ow the
.,,..·orking directory. Pathnames that are not relative are called absolute pathtrames
(1.6).

The repeat command iterates another command a specified number of times.

The directory that is at the top of the entire directory structure is called the
root directory since it is the 'root' of the entire tree structure of directories.
The name used in pathnames to indicate the root is '/'. Pathnames starting with
'/' are said to be absolute sine: they start at the root directory. Root is also
used as the part of a pathname that is left after removing the exre11s1on. See
filename for a further ex~lanation (1.6).

The RUBOt..'T or DELETE key sends an inte:TUpt to the current job. Most
interactive commands return to their command level upon receipt of an inter·
rupt. while non-interactive commands usuaJly terminate. returning control to
the shell. Users often change interrupt to be generated by r C rather than
DELETE by using the slTy command.

Files whose names begin with a '#' are referred to as scratch files. since they
are automatic:ally removed by the system after a couple of days of non-use. or
more frequently if disk space becomes tight (l.J).

Sequences of shell commands placed in a file are cailed shell command scnprs.
It is often possible to perform simple tasks using these scnprs without writing a
program in a language such as C. by using the shell to selectively run other
programs (3.J. 3.10).

The builtin set command is used to assign new values to she!! variables and to
show the values of the current variables. Many shell variables have special
meaning to the shell itself. Thus by using the set command the behavior of
the shell can be affected (2.1) .

setenv

shell

shell script
signal

sort

source

special character

standard

status

Stop

string

stty

substitution

suspended

switch

termination

then

Variables in the environment •environ(S)" can be changed by using the serenr 1

builtin command (2.8). The prinrenv command can be. used to print the value 1\

of the variables in the environment.
A shell is a command language interpreter. It is possible to write and run your
own shell., as shells are no different than any other programs as far as the sys­
tem is concemed. This manual deals with the der.ails of one particular shell.
called ah.
See script (3.3. 3.10).

A signal in UNIX is a short message that is sent to a running program which
causes something to happen to that process. Sig11als are sent either by typing
special control characters on the keyboard or by using the kill or stop commands
(1.8. 2.6).
The sort program sortS a sequence of lines in ways that can be controlled by
argument flags (1.5).

The source command causes the shell to read commands from a specified file.
It is most useful for reading files such as .cshrc after changing them (2.8 >.

See nretacharacren and the appendix to this manual.
We refer often to the standard input and standard output of commands. See
input and output (1.3. 3.8).
A command normally returns a status when it finishes. By convention a s1aws
of zero indicates that the command succeeded. Commands may return non·
zero sratus to indicate that some abnormal event has occurred. The shell vari· /
able srarus is set to the status returned by the last command. It is most useful !c

in shell commmand scripts (3.6). '
The srop command causes a backgrou11d job to become suspended (2.6).
A sequential group of characters taken together is called a string. Strml(s can
contain any printable characters (2.2).
The srty program changes certain parameters inside tJNIX which determine how
your terminal is handled. See 'stty(l)' for a complete description (2.6).
The shell implements a number or substi1Uli011S where sequences indicated b~·
metac:harac:ters are replac:d by other sequences. Notable examples of this are
history substitution keyed by the metacharacter '!• and variable subs1i1u1io11 indi·
cated by ·s·. We also refer to subs1i1u1io11s as e:cpa11sions (3.4).
A job ~omes suspended after a STOP signal is sent to it. either by typing a
control-z at the terminal (for foreground jobs) or by using the srop command
(for background jobs); When suspended. a job temporarily stops running until it
is restarted by either the Jg or bg command (2.6).
The switch command of the shell allows the shell to select one of a number of
sequences of commands based on an argument string. It is similar to the
switch statement in the language C (3.7).
When a command which is being executed finishes we say it undergoes rem11·
!fation or 1erminates. Commands normally terminate when they read an end·
of.file from their standard input. It is also possible to terminate commands by
sending them an interrupt or quit signal (1.8). The kill program terminates
specified jobs (2.6). /

I

The then command is part or the sheu·s 'if-then-else-endir control construct\
used in command scripts (3.6).

time

tset

tty

unalias
UNIX

unset

• 46.

The time command c:an be used to measure the amount of CPt'. and real time
consumed by a specified command as well as the amount of disk ilo. memory
utilized. and number of page f au Its and swaps taken by the command (2.1.
2.8).
The tset program is used to set standard erase and kill characters and to tell the
system what kind of terminal you are using. It is often invoked in a .logm file
{2.l).

The word try is a h'istoric:al abbreviation for "teletype' which is frequently used
in UNIX to indicate the port to which a given terminal is connected. The r~r
command will print the name of the rry or port to which your terminal is
presently connected.
The unalias command removes aliases {2.8).
UNIX is an operating system on which csh runs. UNIX provides facilities which
allow csh to invoke other programs such as editors and text formatters which
you may wish to use.
The unset command removes the definitions of shell variables (2.2. 2.8>.

variable expansion

variables

verbose

we

while
word

Se: variables and expa11sion (2.2. 3.4).
Variables in csh hold one or more strings as value. The most common use of
variables is in controlling the behavior of the shell. See path. 11oclobber. and
ig11oreeof for examples. Variables such as argt• are also used in writing shell
programs (shell command scripts) (2.2).
The verbose shell variable can be set to cause commands to be echoed after
they are history expanded. This is often useful in debugging shell scripts. The
verbose variable is set by the shell's -v command line option (3.10>.

The it·c program calculates the number of characters. words. and lines in the
files whose names are given as arguments (2.6).
The while builtin control construct is used in shell command scripts (3. i).

A sequence of characters which forms an argument to a command is called a
it·ord. Many characters which are neither letters. digits. • - '. '.' nor '/' form
M'Ords an by themselves even if they are not surrounded by blanks. Any
sequence of characters may be made into a M'Ord by surrounding it with ···
characters except for the characters ••• and '!' which require special treatment
(1.1). This process of placing special characters in 11·ords without their special
meaning is called quo1111g. ·

working directory

write

At any given time you are in one particular directory, called your 11'0rkin!(direr·
rory. This directory's name is printed by the p"·d command and the files listed
by Is are the ones in this directory. You can change 11·ork1111t direcrones using
chdir.

The M"rite command is used to communicate with other users who are logged in
to UNIX.

An Introduction to Display Editing with Vi

William Joy

Revised.for versio11s J.511./J by
Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California. Berkeley
Berkeley, Ca. 94720

ABSTRACT

Vi (visual) is a display oriented interactive text editor. When using vi the
screen of your terminal acts as a window into the file which you are editing.
Changes which you make to the file are reflected in what you see.

Using vi you can insert new text any place in the file quite easily. Most of
the commands to vi move the cursor around in the file. There are commands
to move the cursor forward and backward in units of characters. words. sen­
tences and paragraphs. A small set of operators, like d for delete and c for
change. are combined with the motion commands to form operations such as
delete word or change paragraph. in a simple and natural way. This regularity
and the mnemonic assignment of commands to keys makes the editor com­
mand set easy to remember and to use.

Vi will work on a large number of display terminals. and new terminals
are easily driven after editing a terminal description file. While it is advanta­
geous to have an intelligent terminal which can locally insert and delete lines
and characters from the display, the editor will function quite well on dumb ter­
minals over slow phone lines. The editor makes allowance for the low
bandwidth in these situations and uses smaller window sizes and different
display updating algorithms to make best use of the limited speed available.

It is also possible to use the command set of vi on hardcopy terminals.
storage tubes and .. glass tty's" using a one line editing window~ thus vi's com­
mand set is available on all terminals. The full command set of the more tradi­
tional, line oriented editor ex is available within vi; it is quite simple to switch
between the two modes of editing.

September 16, 1980

An Introduction to Display Editing with Vi

William Joy

Revised.tor vt'rsio11s J.511.JJ by
Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California. Berkeley
Berkeley, Ca. 94 720

1. Getting started
This document provides a quick introduction to vi. (Pronounced vee-eye.) You should be

running vi on a file you are familiar with while you are reading this. The first part of this docu­
ment (sections 1 through 5) describes the basics of using vi. Some topics of special interest are
presented in section 6, and some nitty-gritty details of how the editor functions are saved for
section 7 to avoid cluttering the presentation here.

There is also a short appendix here, which gives for each character the special meanings
which this character has in vi. Attached to this document should be a quick reference card.
This card summarizes the commands of vi in a very compact format. You should have the card
handy while you are learning vi.

1.1. Specifying terminal type

Before you can start vi you must tell the system what kind of terminal you are using.
Here is a (necessarily incomplete) list of terminal type codes. If your terminal does not appear
here, you should consult with one of the staff members on your system to find out the code for
your terminal. If your terminal does not have a code, one can be assigned and a description for
the terminal can be created.

Code Full name Type
2621 Hewlett-Packard 2621A/P Intelligent
2645 Hewlett-Packard 264x Intelligent
act4 Microterm ACT-IV Dumb
acts Microterm ACT -V Dumb
adm3a Lear Siegler ADM-3a Dumb
adm31 Lear Siegler ADM-31 Intelligent
clOO Human Design Concept 100 Intelligent
dm1520 Datamedia 1520 Dumb
dm2500 Datamedia 2500 Intelligent
dm302S Datamedia 3025 Intelligent
fox Perkin-Elmer Fox Dumb
hlSOO Hazeltine 1500 Intelligent
h19 Heathkit hl9 Intelligent
ilOO Infoton 100 Intelligent
mime Imitating a smart act4 Intelligent

The financial support of an IBM Graduate Fellowship and the National Science Foundation under grants
MCS74-07644-A03 and MCS78-0729l is gratefully acknowled1ed.

!
I
\

tl061
vt52

T~leray 1061
Dec VT-52

• 2 •

Intelligent
Dumb

Suppose for example that you have a Hewlett-Packard HP2621A terminal. The code used
by the system for this termina1 is ·2621 '. In this case you can use one of the following com­
mands to tell the system the type of your terminal:

% setenv TERM 2621

This command works with the shell csh on both version 6 and 7 systems. If you are using the
standard version 7 shell then you should give the commands ·

S TERM=2621
S export TERM

If you want to arrange to have your terminal type set up automatically when you log in,
you can use the rser program. If you dial in on a mime, but often use hardwired ports, a typical
line for your .login file (if you use csh) would be

setenv TERM 'tset - -d mime'

or for your .profile file (if you use sh)

TERM•'tset - -d mime'

Tser knows which terminals are hardwired to each port and needs only to be told that when you
dial in you are probably on a mime. Tser is usually used to change the erase and kill characters.
too.

1.2. Editing a file
After telling the system which kind of terminal you have, you should make a copy of a

file you are familiar with, and run vi on this file. giving the command

% vi name

replacing name with the name of the copy file you just created. The screen should clear and the
text of your file should appear on the screen. If something else happens refer to the footnote.;

1.3. The editor's copy: the buffer

The editor does not directly modify the file which you are editing. Rather, the editor
makes a copy of this file, in a place called the buffer. and remembers the file's name. You do
not affect the contents of the file unless and until you write the changes you make back into the
original file.

i If you gave the system an incorrect terminal type code then the editor may have just made a mess out of
your screen. This happens when ii sends control codes for one kind of terminal to some other kind of termi·
nal. In this case hit the keys :q <c:olon and the q key) and then hit the RET\JRN key. This should iiet you back
to the command level interpreter. Figure out what you did wrong (ask someone else if nec:essaryl and try
again.

Another thing which can go wrong is that you typed the wrong file name and the editor just printed an
error diagnostic:. In this case you should follow the above procedure for setting out of the editor. and try
again this time spelling the file name correctly.

If the editor doesn't seem to respond to the commands which you type here. try sending an interrupl to it
by hitting the DEL or RUB key on your terminal. and then hitting the :q command apin followed by a carriage
return.

• 3 •

1.4. Notational conventions

In our examples. input which must be typed as is will be presented in bold face. Text
which should be replaced with appropriate input will be given in italics. We will represent spe­
cial characters in SMALL CAPITALS. .

1.S. Arrow keys

The editor command set is independent of the terminal you are using. On most terminals
with cursor positioning keys. these keys will also work within the editor. If you don't have cur·
sor positioning keys. or even if you do. you can use the h j k and I keys as cursor positioning
keys (these are labelled with arrows on an admJa). •.

(Particular note for the HP2621: on this terminal the function keys must be shifted (ick)
to send to the machine, otherwise they only act locally. Unshifted use will leave the cursor
positioned incorrectly.)

1.6. Special characters: ESC, CR and DEL

Several of these special characters are very important. so be sure to find them right now.
Look on your keyboard for a key labelled ESC or ALT. It should be near the upper left corner of
your terminal. Try hitting this key a few times. The editor will ring the bell to indicate .that it
is in a quiescent state.i Partially formed commands are cancelled by ESC. and when you insert
text in the file you end the text insertion with ESC. This key is a fairly harmless one to hit. so
you can just hit it ifyou don't know what is going on until the editor rings the bell.

The CR or RETURN key is important because it is used to terminate certain commands. It
is usually at the right side of the keyboard. and is the same command used at the end of each
shell command.

Another very useful key is the DEL or RUB key. which generates an interrupt, telling the
editor to stop what it is doing. It is a forceful way of making the editor listen to you. or to
return it to the quiescent state if you don't know or don't like what is going on. Try hitting the
'/' key on your terminal. This key is used when you want to specify a string to be searched for.
The cursor should now be positioned at the bottom line of the terminal after a '/' printed as a
prompt. You can get the cursor back to the current position by hitting the DEL or RUB key; try
this now.• From now on we will simply refer to hitting the DEL or RUB key as ••sending an
interrupt.·•••

The editor often echoes your commands Qn the last line of the terminal. If the cursor is
on the first position of this last line. then the editor is performing a computation. such as com·
puting a new position in the file after a search or running a command to reformat part of the
buffer. When this is happening you can stop the editor by sending an interrupt.

1. 7. Getting out of the editor

After you have worked with this introduction for a while. and you wish to do something
else. you can give the command ZZ to the editor. This will write the contents of the editor's
buffer back into the file yod are editing, if you made any changes, and then quit from the edi­
tor. You can also end an editor session by giving the command :q!CR;t this is a dangerous but
occasionally essential command which ends the editor session and discards all your changes.
You need to know about this command in case you change the editor's copy of a file you wish

• As we will see later. h moves back to the left (like control·h which is .. backspace). j moves down lin the
same column>. k moves up (in the same column>. and I moves to the right. * On sman terminals where it is possible. the editor will quietly flash the screen rather than ringing the bell.
• Backspacing over the '/' will also cancel the search.
•• On some systems. this interruptibility comes at a price: you cannot type ahead when the editor is comput·
ing with the cursor on the bollom line.
t All commands which read from· the last diSlllay line can also be terminated with a ESC as well as an CR.

. 4 •

only to look at. Be very careful not to give this command when you really want to save the
changes you have made.

2. Moving around in the file

2.1. Scrolling and paging

The editor has a number of commands for moving around in the file. The most useful of
these is generated by hitting the control and D keys at the same time. a control·D or ··o·. We
will use this two character notation for referring to these co.ntrol keys from now on. You may
have a key labelled ••• on your terminal. This key will be represented as 't' in this document;
••• is exclusively used as part of the ··x· notation for control characters.*

As you know now if you tried hitting ·n. this command scrolls down in the file. The D
thus stands for down. Many editor commands are mnemonic and this makes them much easier
to remember. For instance the command to scroll up is ·u. Many dumb terminals can't scroll
up at all, in which case hitting ·u clears the screen and refreshes it with a line which is farther
back in the file at the top.

If you want to see more of the file below where you are. you can hit "E to expose one
more line at the bottom of the screen, leaving the cursor where it is. ** The command ·y
(which is hopelessly non-mnemonic, but next to ·u on the keyboard) exposes one more line at
the top of the screen.

There are other ways to move around in the file; the keys "F and "B * move forward and
backward a page. keeping a couple of lines of continuity between screens so that it is possible to
read through a file using these rather than ·n and ·u if you wish.

Notice the difference between scrolling and paging. If you are trying to read the text in a
file, hitting "F to move forward a page will leave you only a little context to look back at.
Scrolling on the other hand leaves more context. and happens more smoothly. You can con­
tinue to read the text as scrolling is taking place.

2.2. Searchin1, goto, and previous context

Another way to position yourself in the file is by giving the editor a string to search for.
Type the character I followed by a string of characters terminated by CR. The editor will posi­
tion the cursor at the next occurrence of this string. Try hitting n to then go to the next
occurrence of this string. The character ? will search backwards from where you are. and is
otherwise like /. t

If the search string you give the editor is not present in the file the editor will print a diag­
nostic on the last line of the screen. and the cursor will be returned to its initial position.

If you wish the search to match only at the beginning of a line, begin the search string
with an T. To match only at the end of a line. end the search string with a S. Thus /fsearchCR
will search for the word •search' at the beginning of a line, and /lastScR searches for the word
'last' at the end of a line.•

; If you don't have a ••• key on your terminal then there is probably a key labelled 'f'; in any c-Jse Lhese
characters are one and the same.
t; Version J only.
t Not available in all v2 editors due to memory constraints.
t These searches will normally wrap around the end of the file. and thus find the string even if il is not on a
line in the direction you search provided it is anywhere else in the file; You can disable 1his wraparound in
scans by giving the command :se nownpscancR. or more briefly :se nowscR.
•Actually. the string you aive to search ror here can be a fFtlU/ar e.Ypression in the sense of Lhe editors <•.'((IJ
and ed(I). If you don't wish to team about this yet, you can disable this more gener.il facility by doing
:se nomqiccR~ by putting this command in EXINIT in your environment. you can have Lhis always be in
effect (more about £.'</N/Tlater.>

The command G, when preceded by a number will position the cursor at that line in the
file. Thus lG will move the cursor to the first line of the file. lf you give G no count. then it
moves to the end of the file.

If you are near the end of the file, and the last line is not at the bottom of the screen. the
editor will place only the character ·-· on each remaining line. This indicates that the last line
in the file is on the screen~ that is, the ·-· lines are past the end of the file.

You can find out the state of the file you are editing by typing a ~G. The editor will show
you the name of the file you are editing, the number of the current line, the number of lines in
the buffer, and the percentage of the way through the buffer which you are. Try doing this
now, and remember the number of the line you are on. Give a G command to get to the end
and then another G command to get back where you were.

You can also get back to a previous position by using the command " (two back quotes).
This is often more convenient than G because it requires no advance preparation. Try giving a
G or a search with I or ? and then a " to get back to where you were. If you accidentally hit n
or any command which moves you far away from a context of interest, you can quickly get
back by hitting ".

2.3. Moving around on the screen

Now try just moving the cursor around on the screen. If your terminal has arrow keys (4
or 5 keys with arrows going in each direction) try them and convince yourself that they work.
(On certain terminals using v2 editors, they won't.) If you don't have working arrow keys, you
can always use h, j, k, and I. Experienced users of vi pref er these keys to arrow keys, because
they are usually right underneath their fingers.

Hit the + key. Each time you do. notice that the cursor advances to the next line in the
file, at the first non-white position on the line. The - key is like + but goes the other way.

These are very common keys for moving up and down lines in the file. Notice that if you
go off the bottom or top with these keys then the screen will scroll down (and up if possible) to
bring a line at a time into view. The RETURN key has the same effect as the + key.

Vi also has commands to take you to the top, middle and bottom of the screen. H will
take you to the top (home) line on the screen. Try preceding it with a number as in 3H. This
will take you to the third line on the screen. Many vi commands take preceding numbers and
do interesting things with them. Try M, which takes you to the middle line on the screen. and
L. which takes you to the last line on the screen. L also takes counts, thus SL will take you to
the fifth line from the bottom.

2.4. Moving within a line

Now try picking a word on some line on the screen, not the first word on the line. move
the cursor using RETURN and - to be on the line where the word is. Try hitting the w key.
This will advance the cursor to the next word on the line. Try hitting the b key to back up
words in the line. Also try the e key which advances you to the end of the current word rather
than to the beginning of the next word. Also try SPACE (the space bar) which moves right one
character and the BS (backspace or ·H) key which moves left one character. The key h works
as ·H does and is useful if you don't have a BS key. (Also. as noted just above, I will move to
the right.)

If the line had punctuation in it you may have noticed that that the w and b keys stopped
at each group of punctuation. You can also go back and forwards words without stopping at
punctuation by using W and B rather than the lower case equivalents. Think of these as bigger
words. Try these on a few lines with punctuation to see how they differ from the lower case w
and b.

The word keys wrap around the end of line, rather than stopping at the end. Try moving
to a word on a line below where you are by repeatedly hitting w.

• 6 •

2.S. Summary

SPACE advance the cursor one position
·u backwards to previous page
AD scrolls down in the file
AE exposes another line at the bottom (v3)
AF forward to next page
AG tell what is going on
AH backspace the cursor
AN next line. same column
AP previous line. same column
Au scrolls up in the file
Ay exposes another line at the top (v3)
+ next line, at the beginning

previous line, at the beginning
I scan for a following string forwards ., scan backwards .
B back a word, ignoring punctuation
G go to specified line, last default
H home screen line
M middle screen line
L last screen line
w forward a word, ignoring punctuation
b back a word
e end of current word
n scan for next instance of I or ? pattern
w word after this word

2.6. View*

If you want to use the editor to look at a file. rather than to make changes. invoke it as
view instead of vi. This will set the readonly option which will prevent you from accidently
overwriting the file.

3. Making simple changes

3.1. Inserting

One of the most useful commands is the i (insert) command. After you type i. every­
thing you type until you hit ESC is inserted into the file. Try this now: position yourself to
some word in the file and try inserting text before this word. If you are on an dumb terminal it
will seem, for a minute, that some of the characters in your line have been overwritten. but
they will reappear when you hit ESC.

Now try finding a word which can. but does not. end in an 's'. Position yourself at this
word and type e (move to end of word), then a for append and then 'sESc' to terminate the
textual insert. This sequence of commands can be used to easily pluralize a word.

Try inserting and appending a few times to make sure you understand how this works: i
placing text to the left of the cursor, a to the right.

It is often the case that you want to add new lines to the file you are editing, before or
after some specific line in the file. Find a line where this makes sense and then give the com­
mand o to create a new line after the line you are on. or the command 0 to create a new line
before the line you are on. After you create a new line in this way, text you type up to an ESC

* Not available in all v2 editors due to memory constraints.

- 7 •

is inserted on the new line.

Many related editor commands are invoked by the same letter key and differ only in that
one is given by a lower case key and the other is given by an upper case key. In these cases.
the upper case key often differs from the lower case key in its sense of direction. with the
upper case key working backward and/or up, while the lower case key moves forward and/or
down.

Whenever you are typing in text. you can give many lines of input or just a few charac­
ters. To type in more than one line of text. hit a RETURN at the middle of your input. A new
line will be created for text. and you can continue to type. If you are on a slow and dumb ter­
minal the editor may choose to wait to redraw the tail of the screen, and will let you type over
the existing screen lines. This avoids the lengthy delay which would occur if the editor
attempted to keep the tail of the screen always up to date. The tail of the screen will be fixed
up, and the missing lines will reappear, when you hit ESC.

While you are inserting new text. you can use the characters you normally use at the sys­
tem command level (usually ·H or #) to backspace over the last character which you typed.
and the character which you use to kill input lines (usually @, ·x. or ·u) to erase the input
you have typed on the current line. t The character ·w will erase a whole word and leave you
after the space after the previous word; it is useful for quickly backing up in an insert.

Notice that when you backspace during an insertion the characters you backspace over are
not erased; the cursor moves backwards. and the characters remain on the display. This is
often useful if you are planning to type in something similar. In any case the characters disap­
pear when when you hit ESC; if you want to get rid of them immediately, hit an ESC and then a
again.

Notice also that you can't erase characters which you didn't insert, and that you can't
backspace around the end of a line. If you need to back up to the previous line to make a
correction. just hit ESC and move the cursor back to the previous line. After making the
correction you can return to where you were and use the insert or append command again.

3.2. Making small corrections
You can make small corrections in ex1stmg text quite easily. Find a single character

which is wrong or just pick any character. Use the arrow keys to find the character. or get near
the character with the word motion keys and then either backspace (hit the BS key or "H or
even just h) or SPACE (using the space bar) until the cursor is on the character which is wrong.
If the character is not needed then hit the x key~ this deletes the character from the file. [t is
analogous to the way you x out characters when you make mistakes on a typewriter (except it's
not as messy).

If the character is incorrect, you can replace it with the correct character by giving the
command re. where c is replaced by the correct character. Finally if the character which is
incorrect should be replaced by more than one character. give the command s which substitutes
a string of characters. ending with ESC, for it. If there are a small number of characters which
are wrong you can precede s with a count of the number of characters to be replaced. Counts
are also useful with x to specify the number of characters to be deleted.

3.3. More corrections: operators
You already know almost enough to make changes at a higher level. All you need to

know now is that the d key acts as a delete operator. Try the command dw to delete a word.
Try hitting • a few times. Notice that this repeats the effect of the dw. The command • repeats
the last command which made a change. You can remember it by analogy with an ellipsis' .. .'.

t In fact. the character 'H (backspace) always works to erase the last input character here. regardless of what
your erase character is.

• 8 •

Now try db. This deletes a word backwards, namely the preceding word. Try dSPACE.

This deletes a single character, and is equivalent to the x command.
Another very useful operator is c or change. The command cw thus changes the text of a

single word. You follow it by the replacement text ending with an ESC. Find a word which you
can change to another, and try this now. Notice that the end of the text to be changed was
marked with the character '$' so that you can see this as you are typing in the new material.

3.4. Operating on lines
It is often the case that you want to operate on lines. Find a line which you want to

delete. and type dd, the d operator twice. This will delete the line. If you are on a dumb ter­
minal, the editor may just erase the line on the screen. replacing it with a line with only an @
on it. This line does not correspond to any line in your file. but only acts as a place holder. It
helps to avoid a lengthy redraw of the rest of the screen which would be necessary to close up
the hole created by the deletion on a terminal without a delete line capability.

Try repeating the c operator twice; this will change a whole line, erasing its previous con­
tents and replacing them with text you type up to an ESC. t

You can delete or change more than one line by preceding the dd or cc with a count, i.e.
Sdd deletes 5 lines. You can also give a command like dL to delete all the lines up to and
including the last line on the screen, or d3L to delete through the third from the bottom line.
Try some commands like this now.* Notice that the editor lets you know when you change a
large number of lines so that you can see the extent of the change. The editor will also always
tell you when a change you make affects text which you cannot see.

3.5. Undoing

Now suppose that the last change which you made was incorrect; you could use the insert,
delete and append commands to put the correct materi.,., back. However, since it is often the
case that we regret a change or make a change incorrectly, the editor provides au (undo) com­
mand to reverse the last change which you made. Try this a few times, and give it twice in a
row to notice that an u also undoes a u.

The undo command lets you reverse only a single change. After you make a number of
changes to a line, you may decide that you would rather have the original state of the line back.
The U command restores the current line to the state before you started changing it

You can recover text which you delete, even if undo will not bring it back; see the section
on recovering lost text below.

3.6. Summary

SPACE
"H
·w
erase
kill

0
u
a
c

advance the cursor one position
backspace the cursor
erase a word during an insert
your erase (usually ·Hor#), erases a character during an insert
your kill (usually @, ·x. or "U), kills the insert on this line
repeats the changing command
opens and inputs new lines, above the current
undoes the changes you made to the current line
appends text after the cursor
changes the object you specify to the following text

t The command S is a convenient synonym for for cc. by analogy with s. Think of S as a substitute on
lines. while s is a substitute on characters.
• One subtle point here involves using the I search after a d. This will normally delete char-.u:ters from the
current position to the point of the match. If what is desired is to delete whole lines including the two points.
give the pattern as /par/+O. a line address.

d
i
0

u

- 9 -

deletes the object you specify
inserts text before the cursor
opens and inputs new lines. below the current
undoes the last change

4. Moving about; rearranging and duplicating text

4.1. Low level character motions
Now move the cursor to a line where there is a punctuation or a bracketing character such

as a parenthesis or a comma or period. Try the command fx where xis this character. This
command finds the next x character to the right of the cursor in the current line. Try then hit­
ting a ;. which finds the next instance of the same character. By using the f command and then
a sequence of ;'s you can often get to a particular place in a line much faster than with a
sequence of word motions or SP AC Es. There is also a F command. which is like f. but searches
backward. The ; command repeats F also.

When you are operating on the text in a line it is often desirable to deal with the charac­
ters up to, but not including, the first instance of a character. Try dfx for some x now and
notice that the x character is deleted. Undo this with u and then try dt.~ the t here stands for
to, i.e. delete up to the next x, but not the x. The command T is the reverse of t.

When working with the text of a single line. an j moves the cursor to the first non-white
position on the line, and a $ moves it to the end of the line. Thus Sa will append new text at
the end of the current line.

Your file may have tab (.I) characters in it. These characters are represented as a number
of spaces expanding to a tab stop, where tab stops are every 8 positions.• When the cursor is at
a tab. it sits on the last of the several spaces which represent that tab. Try moving the cursor
back and forth over tabs so you understand how this works.

On rare occasions. your file may have nonprinting characters in it. These characters are
displayed in the same way they are represented in this document. that is with a two character
code. the first character of which is ,., . On the screen non-printing characters resemble a •••
character adjacent to another, but spacing or backspacing over the character will reveal that the
two characters are, like the spaces representing a tab character. a single character.

The editor sometimes discards control characters, depending on the character and the set·
ting of the beautify option, if you attempt to insert them in your file. You can get a control
character in the file by beginning an insert and then typing a ·v before the control character.
The ·v quotes the following character, causing it to be inserted directly into the file.

4.2. Higher level text objects
In working with a document it is often advantageous to work in terms of sentences. para­

graphs, and sections. The operations (and) move to the beginning of the previous and next
sentences respectively. Thus the command d) will delete the rest of the current sentence; like­
wise d (will delete the previous sentence if you are at the beginning of the current sentence, or
the current sentence up to where you are if you are not at the beginning of the current sen­
tence.

A sentence is defined to end at a '.', '!' or '?' which is followed by either the end of a
line, or by two spaces. Any number of closing ')'. •]', '"' and "' characters may appear after
the '. ', '!' or '?' before the spaces or end of line.

The operations I and l move over paragraphs and the operations II and II move over sec­
tions. t
• This is settable by a command of the form :se ts•.xt:R, where .v: is 4 to set tabstops every four columns.
This has effect on the screen representation within the editor.
t The II and II operations require the operation character to be doubled because they can move the cursor far

- 10 -

A paragraph begins after each empty line, and also at each of a set of paragraph macros.
specified by the pairs of characters in the definition of the string vaiued option paragraphs. The
default setting for this option defines the paragraph macros of the -ms and -mm macro pack·
ages, i.e. the •.IP', '.LP', •.PP' and '.QP'. • .P' and '.LI' macros.; Each paragraph boundary is
also a sentence boundary. The sentence and paragraph commands can be given counts to
operate over groups of sentences and paragraphs.

Sections in the editor begin after each macro in the sections option, normally •.NH', '.SH'.
• .H' and •.HU', and each line with a formf eed ·L in the first column. Section boundaries are
always line and paragraph boundaries also.

Try experimenting with the sentence and paragraph commands until you are sure how
they work. If you have a large document, try looking through it using the section commands.
The section commands interpret a preceding count as a different window size in which to
redraw the screen at the new location, and this window size is the base size for newly drawn
windows until another size is specified. This is very useful if you are on a slow terminal and
are looking for a particular section. You can give the first section command a small count to
then see each successive section heading in a small window.

4.3. Rearranging and duplicating text

The editor has a single unnamed buff er where the last deleted or changed away text is
saved. and a set of named buffers a-z which you can use to save copies of text and to move
text around in your file and between files.

The operator y yanks a copy of the object which follows into the unnamed buffer. If pre·
ceded by a buffer name. "xy. where x here is replaced by a letter a-z. it places the text in the
named buffer. The text can then be put back in the file with the commands p and P; p puts
the text after or below the cursor. while P puts the text before or above the cur5or.

If the text which you yank forms a part of a line, or is an object such as a sentence which
partially spans more than one line. then when you put the text back. it will be placed after the
cursor (or before if you use P). If the yanked text forms whole lines, they will be put back as
whole lines, without changing the current line. In this case. the put acts much like a o or 0
command.

Try the command YP. This makes a copy of the current line and leaves you on this copy,
which is placed before the current line. The command Y is a convenient abbreviation for yy.
The command Yp will also make a copy of the current line, and place it after the current line.
You can give Y a count of lines to yank. and thus duplicate several lines; try 3YP.

To move text within the buffer, you need to delete it in one place, and put it back in
another. You can precede a delete operation by the name of a buffer in which the text is to be
stored as in "a5dd deleting S lines into the named buffer a. You can then move the cursor to
the eventual resting place of the these lines and do a "ap or "aP to put them back. In fact. you
can switch and edit another file before you put the lines back, by giving a command of the form
:e 11amecR where name is the name of the other file you want to edit. You will have to write
back the contents of the current editor buff er (or discard them) if you have made changes
before the editor will let you switch to the other file. An ordinary delete command saves the
text in the unnamed buffer, so that an ordinary put can move it elsewhere. However, the
unnamed buff er is lost when you change files, so to move text from one file to another you
should use an unnamed buffer.

from where it currently is. While it is easy to get back with the command ••, these commands would still be
frustrating if they were easy to hit accidentally.
* You can easily change or extend this set of macros by assigning a different string to the para11rapl1s option
in your EXINIT. See section 6.2 for details. The ·.bp' directive is also considered to start a paragr.aph.

4.4. Summary.

T
s
)

I
))
(
{
II
f x
p
y
tx
Fx
p
Tx

first non.white on line
end of line
forward sentence
forward paragraph
forward section
backward sentence
backward paragraph
backward section
find x forward in line

• 11 •

put text back. after cursor or below current line
yank operator, for copies and moves
up to x forward, for operators
f backward in line
put text back, before cursor or above current line
t backward in line

5. High level commands

S.1. Writing, quitting, editinc new files
So far we have seen how to enter vi and to write out our file using either ZZ or :wcR.

The first exits from the editor. (writing if changes were made), the second writes and stays in
the editor.

If you have changed the editor's copy of the file but do not wish to save your changes.
either because you messed up the file or decided that the changes are not an improvement to
the file. then you can give the command :q!CR to quit from the editor without writing the
changes. You can also reedit the same file (starting over) by giving the command :e!CR. These
commands should be used only rarely. and with caution. as it is not possible to recover the
changes you have made after you discard them in this manner.

You can edit a different file without leaving the editor by giving the command :e 11amecR.
If you have not written out your file before you try to do this. then the editor will tell you this.
and delay editing the other file. You can then give the command :wcR to save your work and
then the :e namecR command a1ain. or carefully give the command :e? 11amecR. which edits
the other file discardin1 the changes you have made to the current file. To have the editor
automatically save changes, include set autowrite in your EXINIT. and use :n instead of :e.

5.2. Escaping to a shell
You can get to a shell to execute a single command by giving a vi command of the form

:!cmcCR. The system will run the sin1le command cmd and when the command finishes. the
editor will ask you to hit a RETURN to continue. When you have finished looking at the output
on the screen. you should hit RETURN and the editor will clear the screen and redraw it. You
can then continue editin1. You can also give another : command when it asks you for a
RETURN~ in this case the screen will not be redrawn.

If you wish to execute more than one command in the shell. then you can give the com­
mand :shcR. This will 1ive you a new shell, and when you finish with the shell, ending it by
typing a ·n. the editor will clear the screen and continue.

On systems which support it, '"Z will suspend the editor and return to the (top level)
shell. When the editor is resumed. the scre~m will be redrawn.

I
i

\

• 12 •

5.3. Marking and returning

The command .. returned to the previous place after a motion of the cursor by a com­
mand such as/, ? or G. You can also mark lines in the file with single letter tags and return to
these marks later by naming the tags. Try marking the current line with the command mx.
where you should pick some letter for x, say 'a'. Then move the cursor to a different line (any
way you like) and hit 'a. The cursor will return to the place which you marked. Marks last
only until you edit another file.

When using operators such as d and referring to marked lines. it is often desirable to
delete whole lines rather than deleting to the exact position in the line marked by m. In this
case you can use the form 'x rather than 'x. Used without an operator, 'x will move to the first
non-white character of the marked line~ similarly " moves to the first non-white character of
the line containing the previous context mark ...

5.4. Adjusting the screen

If the screen image is messed up because of a transmission error to your terminal, or
because some program other than the editor wrote output to your terminal, you can hit a ·L.
the ASCII form-feed character, to cause the screen to be refreshed.

On a dumb terminal, if there are @ lines in the middle of the screen as a result of line
deletion, you may get rid of these lines by typing ·R to cause the editor to retype the screen,
closing up these holes.

Finally, if you wish to place a certain line on the screen at the top middle or bottom of
the screen. you can position the cursor to that line, and then give a z command. You should
follow the z command with a RETURN if you want the line to appear at the top of the window, a
• if you want it at the center. or a - if you want it at the bottom. (z .• z-, and z+ are not avail­
able on all v2 editors.)

6. Special topics

6.1. Editing on slow terminals

When you are on a slow terminal, it is important to limit the amount of output which is
generated to your screen so that you will not sutf er long delays, waiting for the screen to be
refreshed. We have already pointed out how the editor optimizes the updating of the screen
during insertions on dumb terminals to limit the delays, and how the editor erases lines to @
when they are deleted on dumb terminals.

The use of the slow terminal insertion mode is controlled by the slowopen option. You
can force the editor to use this mode even on faster terminals by giving the command :se
slowcR. If your system is sluggish this helps lessen the amount of output coming to your ter­
minal. You can disable this option by :se noslowCR.

The editor can simulate an intelligent terminal on a dumb one. Try giving the command
:se redrawCR. This simulation generates a great deal of output and is generally tolerable only
on lightly loaded systems and fast terminals. You can disable this by giving the command
:se noredrawCR.

The editor also makes editing more pleasant at low speed by starting editing in a small
window, and letting the window expand as you edit. This works particularly well on intelligent
terminals. The editor can expand the window easily when you insert in the middle of the
screen on these terminals. If possible, try the editor on an intelligent terminal to see how this
works.

You can control the size of the window which is redrawn each time the screen is cleared
by giving window sizes as argument to the commands which cause large screen motions:

:/?1111''

Thus if you are searching for a particular instance of a common string in a file you can precede

• 13.

the first search command by a small number. say 3, and the editor will draw three line windows
around each instance of the string which it locates.

You can easily expand or contract the window. placing the current line as you choose. by
giving a number on a z command. after the z and before the following RETURN, • or - . Thus
the command z5. redraws the screen with the current line in the center of a five line window. t

If the editor is redrawing or otherwise updating large portions of the display. you can
interrupt this updating by hitting a DEL or RUB as usual. If you do this you may partially con­
fuse the editor about what is displayed on the screen. You can still edit the text on the screen
if you wish; clear up the confusion by hitting a "L; or move or search again, ignoring the
current state of the display.

See section 7.8 on open mode for another way to use the vi command set on slow termi­
nals.

6.2. Options, set, and editor startup files
The editor has a set. of options, some of which have been mentioned above. The most

useful options are given in the following table.

Name Default Description
autoindent
autowrite
ignorecase
lisp
list
magic
number
paragraphs
redraw
sections
shiftwidth
showmatch
slowopen
term

noai
noaw
noic
no lisp
riolist
no magic
no nu
para-IPLPPPQPbpP LI
no re
sect- NHSHH HU
sw-8
nosm
slow
dumb

Supply indentation automatically
Automatic write before :n, :ta, ·r. !
Ignore case in searching
({) } commands deal with S-expressions
Tabs print as "I; end of lines marked with S
The characters . [and • are special in scans
Lines are displayed prefixed with line numbers
Macro names which start paragraphs
Simulate a smart terminal on a dumb one
Macro names which start new sections
Shift distance for <. > and input ·o and "T
Show matching (or { as) or } is typed
Postpone display updates during inserts
The kind of terminal you are using.

The options are of three kinds: numeric options. string options. and toggle options. You
can set numeric and string options by a statement of the form

set opt=val

and toggle options can be set or unset by statements of one of the forms

set opt
set noopt

These statements can be placed in your EXINIT in your environment, or given while you are
running vi by preceding them with a : and following them with a CR.

You can get a list of all options which you have changed by the command :setCR, or the
value of a single option by the command :set opt?CR. A list of all possible options and their
values is generated by :set allCR. Set can be abbreviated se. Multiple options can be placed on
one line, e.g. :se ai aw nucR.

Options set by the set command only last while you stay in the editor. It is common to
want to have certain options set whenever you use the editor. This can be accomplished by
creating a list of ex commandst which are to be run every time you start up ex. edit, or vi. A

t Note that the command Sz. has an entirely different elfec:t. placing line S in the c:enter of a new window.
t All commands whic:h start with : are e:c c:ommands.

/"

\

(

• 14 •

typical list includes a set command. and possibly a few map commands (on v3 editors). Since
it is advisable to get these commands on one line. they can be separated with the I character. for
example:

set ai aw terse!map @ dcilrnap # x

which sets the options autoi11dent, autowrite, terse, (the set command). makes @ delete a line.
(the first map), and makes # delete a character. (the second map). (See section 6.9 for a
description of the map command. which only works in version 3.) This string should be placed
in the variable EXINIT in your environment. If you use csh. put this line in the file .login in
your home directory:

setenv EX IN IT 'set ai aw terselmap @ ddlmap # x'

If you use the standard v7 shell, put these lines in the file .profile in your home directory:

EXINIT-'set ai aw terselmap@ dcilrnap # x'
export EXINIT

On a version 6 system. the concept of environments is not present. In this case. put the line in
the file .exrc in your home directory.

set ai aw terselmap @ dcilrnap # x

Of course. the particulars of the line would depend on which options you wanted to set.

6.3. Recovering lost lines

You might have a serious problem if you delete a number of lines and then regret that
they were deleted. Despair not. the editor saves the last 9 deleted blocks of text in a set of
numbered registers 1-9. You can get the n'th previous deleted text back in your file by the
command "n p. The " here says that a buff er name is to follow. n is the number of the buff er
you wish to try (use the number 1 for now), and p is the put command. which puts text in the
buffer after the cursor. If this doesn't bring back the text you wanted. hit u to undo this and
then • (period) to repeat the put command. In general the . command will repeat the last
change you made. As a special case, when the last command refers to a numbered text buffer.
the . command increments the number of the buffer before repeating the command. Thus a
sequence of the form

"lpu.u.u.

will, if repeated long enough, show you all the deleted text which has been saved for you. You
can omit the u commands here to gather up all this text in the buffer, or stop after any . com­
mand to keep just the then recovered text. The command P can also be used rather than p to
put the recovered text before rather than after the cursor.

6.4. Recovering lost flies

If the system crashes. you can recover the work you were doing to within a few changes.
You will normally receive mail when you next login giving you the name of the file which has
been saved for you. You should then change to the directory where you were when the system
crashed and give a command of the form:

% vi -r name

replacing name with the name of the file which you were editing. This will recover your work
to a point near where you left off. t
t In rare cases. some of the lines of the tile may be lost. The editor will give you the numbers of these lines
and the text of the lines will be replaced by the string 'LOST'. These lines will almost always be among the
last few which you changed. You can either choose to discard the changes which you made (if they are easy
to remake) or to replace the few lost lines by hand.

• 15.

You can get a listina of the files which are saved for you by giving the command:

% Yi -r

Jf there is more than one instance of a particular file saved. the editor gives you the newest
instance each time you recover it. You can thus get an older saved copy back by first recover­
ina the newer copies.

For this feature to work. vi must be correctly installed by a super user on your system.
and the mail program must exist to receive mail. The invocation ••vi ., .. will not always list all
saved tiles, but they can be recovered even if they are not listed.

6.!. Continuous text inpur
Wben you are typing in large amounts of text it is convenient to have lines broken near

the riaht marain automatically. You can cause this to happen by giving the command :se
wm•lOCJl. This causes all lines to be broken at a space at least 10 columns from the right
hand edge of the screen.•

Jf the editor breaks an input line and you wish to put it back together you can tell it to
join the lines with J. You can give J a count of the number of lines to be joined as in 3J to
join 3 lines. The editor supplies white space. if appropriate, at the juncture of the joined lines.
and leaves the cursor at this white space. You c:an kill the white space with x if you don't want
iL

6.6. Features for editing prognms

The editor has a number of commands for editing programs. The thing that most distin­
guishes editing of programs from editing of text is the desirability of maintaining an indented
structure to the body of the program. The editor has a autoindent facility for helping you gen­
erate correctly indented programs.

To enable this facility you can give the command :se aiCR. Now try opening a new line
with o and type some characters on the line after a few tabs. If you now start another line.
notice that the editor supplies white space at the begiMing of the line to line it up with the pre­
vious line. You cannot backspace over this indentation, but you can use ·n key to backtab
over the supplied indentation.

Each time you type ·n you back up one position, normally to an 8 column boundary.
This amount is settable~ the editor has an option called shiftwidth which you can set to change
this value. Try givina the command :se sw•4CR and then experimenting with autoindent
apin.

For shifting lines in the program left and riaht, there are operators < and >. These shift
the lines you specify right or left by one shiftwidth. Try < < and > > which shift one line left
or riaht. and < L and > L shifting the rest of the display left and right.

If you have a complicated expression and wish to see how the parentheses match. put the
cursor at a left or riaht parenthesis and hit o/t. This will show you the matching parenthesis.
This works also for braces { and } , and brackets [and) .

If you are editing C programs. you c:an use the II and 11 keys to advance or retreat to a
line Starting with a I. i.e. a function declaration at a time. When 11 is used with an operator it
stops after a line which starts with }; this is sometimes useful with yJ).

•This feature is not available on some v2 editors. In v2 editors where ii is available. the break an only oc·
c:ur to the riaht of the sl*illed boundary instead of to the left.

- 16 -

6. 7. Filtering portions of the buffer

You can run system commands over portions of the buffer using the operator !. You can
use this to sort lines in the buffer. or to reformat portions of the buffer with a pretty-printer.
Try typing in a list of random words. one per line and ending them with a blank line. Back up
to the beginning of the list, and then give the command !lsortCR. This says to sort the next
paragraph of material. and the blank line ends a paragraph.

6.8. Commands for editing LISPt

If you are editing a LISP program you should set the option lisp by doing :se llspCR. This
changes the (and) commands to move backward and forward over s-expressions. The { and I
commands are like (and) but don't stop at atoms. These can be used to skip to the next list,
or through a comment quickly.

The auroindenr option works differently for LISP, supplying indent to align at the first argu­
ment to the last open list. If there is no such argument then the indent is two spaces more
than the last level.

There is another option which is useful for typing in LISP, the showmatch option. Try set­
ting it with :se smCR and then try typing a • (' some words and then a ') '. Notice that the cur­
sor shows the position of the '(' which matches the ')' briefly. This happens only if the match­
ing • (' is on the screen, and the cursor stays there for at most one second.

The editor also has an operator to realign existing lines as though they had been typed in
with lisp and auroindenr set. This is the • operator. Try the command =o/e at the beginning of
a function. This will realign all the lines of the function declaration.

When you are editing LISP., the II and 11 advance and retreat to lines beginning with a (.
and are useful for dealing with entire function definitions.

6.9. Macrosi

Vi has a parameterless macro facility, which lets you set it up so that when you hit a single
keystroke, the editor will act as though you had hit some longer sequence of keys. You can set
this up if you find yourself typing the same sequence of commands repeatedly.

Briefly, there are two flavors of macros:

a) Ones where you put the macro body in a buffer register, say x. You can then type @x to
invoke the macro. The @ may be followed by another @ to repeat the last macro.

b) You can use the map command from vi (typically in your EX!Nrn with a command of the
form:

:map fhs rh!CR

mapping fhs into rhs. There are restrictions: lhs should be one keystroke (either I charac­
ter or one function key) since it must be entered within one second (unless 1101imeollf is
set, in which case you can type it as slowly as you wish. and vi will wait for you to finish it
before it echoes anything). The lhs can be no longer than 10 characters, the rhs no longer
than 100. To get a space, tab or newline into fhs or rhs you should escape them with a ·v.
(It may be necessary to double the ·v if the map command is given inside vi, rather than
in ex.) Spaces and tabs inside the rhs need not be escaped.

Thus to make the q key write and exit the editor, you can give the command

:map q :wq·v·vcR CR

which means that whenever you type q, it will be as though you had typed the four characters
:wqCR. A ·v·s is needed because without it the CR would end the : command. rather than

t The LISP features are not available on some v2 editors due to memory constraints.
* The macro feature is available only in version 3 editors.

- 17 -

becoming part of the map definition. There are two AV's because from within vi, two ·v·s must
be typed to get one. The first CR is part of the rhs. the second terminates the : command.

Macros can be deleted with

unmap lhs

If the lhs of a macro is "#0" through "#9", this maps the particular function key instead
of the 2 character "#" sequence. So that terminals without function keys can access such
definitions. the form "#x" will mean function key x on all terminals (and need not be typed
within one second.) The character"#" can be changed by using a macro in the usual way:

:map Av·v·1 #

to use tab, for example. (This won't affect the map command, which still uses #, but just the
invocation from visual mode.

The undo command reverses an entire macro call as a unit, if it made any changes.

Placing a '!' after the word map causes the mapping to apply to input mode. rather than
command mode. Thus, to arrange for AT to be the same as 4 spaces in input mode, you can
type:

:map AT AVlU!lSlS

where I is a blank. The AV is necessary to prevent the blanks from being taken as white space
between the lhs and rhs.

7. Word Abbreviations :1::1:

A feature similar to macros in input mode is word abbreviation. This allows you to type a
short word and have it expanded into a longer word or words. The commands are :abbreviate
and :unabbreviate (:ab and :una) and have the same syntax as :map. For example:

:ab eecs Electrical Engineering and Computer Sciences

causes the word 'eecs' to always be changed into the phrase 'Electrical Engineering and Com­
puter Sciences'. Word abbreviation is different from macros in that only whole words are
affected. If 'eecs' were typed as part of a larger word, it would be left alone. Also. the partial
word is echoed as it is typed. There is no need for an abbreviation to be a single keystroke. as
it should be with a macro.

7 .1. Abbreviations

The editor has a number of short commands which abbreviate longer commands which we
have introduced here. You can find these commands easily on the quick reference card. They
often save a bit of typing and you can learn them as convenient.

8. Nitty-gritty details

8.1. Line representation in the display

The editor folds long logical lines onto many physical lines in the display. Commands
which advance lines advance logical lines and will skip over all the segments of a line in one
motion. The command I moves the cursor to a specific column. and may be useful for getting
near the middle of a long line to split it in half. Try Soj on a line which is more than 80
columns long. t

The editor only puts full lines on the display; if there is not enough room on the display
to fit a logical line, the editor leaves the physical line empty. placing only an @ on the line as a

u Version J only.
t You can make long lines very easily by using J to join together short lines.

/
I
\"

- 18 -

place holder. When you delete lines on a dumb terminal, the editor will often just clear the
lines to @ to save time (rather than rewriting the rest of the screen.) You can always maximize
the information on the screen by giving the ·a command.

If you wish, you can have the editor place line numbers before each line on the display.
Give the command :se nuCR to enable this, and the command :se nonuCR to turn it off. You
can have tabs represented as ·1 and the ends of lines indicated with ·s· by giving the command
:se listCR; :se nolistCR turns this off.

Finally, lines consisting of only the character ·-· are displayed when the last line in the file
is in the middle of the screen. These represent physical lines which are past the logical end of
file.

8.2. Counts

Most vi commands will use a preceding count to affect their behavior in some way. The
following table gives the common ways in which the counts are used:

new window size
scroll amount
line/column number
repeat effect

:/?((JI
·n ·u
z GI
most of the rest

The editor maintains a notion of the current default window size. On terminals which run
at speeds greater than 1200 baud the editor uses the full terminal screen. On terminals which
are slower than 1200 baud (most dialup Jines are in this group) the editor uses 8 Jines as the
default window size. At 1200 baud the default is 16 lines.

This size is the size used when the editor clears and refills the screen after a search or
other motion moves far from the edge of the current window. The commands which take a
new window size as count all often cause the screen to be redrawn. If you anticipate this. but
do not need as large a window as you are currently using. you may wish to change the screen
size by specifying the new size before these commands. In any case, the number of lines used
on the screen will expand if you move off the top with a - or similar command or off the bot·
tom with a command such as RETURN or ·n. The window will revert to the last specified size
the next time it is cleared and refilled. t

The scroll commands ·n and ·u likewise remember the amount of scroll last specified.
using half the basic window size initially. The simple insert commands use a count to specify a
repetition of the inserted text. Thus lOa+----ESC will insert a grid-like string of text. A
few commands also use a preceding count as a line or column number.

Except for a few commands which ignore any counts (such as "R). the rest of the editor
commands use a count to indicate a simple repetition of their effect. Thus Sw advances five
words on the current line, while 5RETURN advances five lines. A very useful instance of a
count as a repetition is a count given to the . command, which repeats the last changing com­
mand. If you do dw and then J,, you will delete first one and then three words. You can then
delete two more words with 2 •.

8.3. More file manipulation commands

The following table lists the file manipulation commands which you can use when you are
in vt: All of these commands are followed by a CR or ESC. The most basic commands are :w
and :e. A normal editing session on a single file will end with a ZZ command. If you are edit­
ing for a long period of time you can give :w commands occasionally after major amounts of
editing, and then finish with a ZZ. When you edit more than one file. you can finish with one

t But not by a "L which just redraws the screen as ii is.

:w
:wq
:x
:e name
:e!
:e + 11ame
:e +n
:e #
:w name
:w! name
:x,yw name
:r name
:r !cmd
:n
:n!
:n args
:ta rag

write back changes
write and quit

• 19 •

write (if necessary) and quit (same as ZZ>.
edit file name
reedit, discarding changes
edit, starting at end
edit, starting at tine n
edit alternate file
write file name
overwrite file name
write lines x through y to name
read file name into buffer
read output of cmd into buff er
edit next file in argument list
edit next file, discarding changes to current
specify new argument list
edit file containing tag tag, at tag

with a :w and start editing a new file by giving a :e command. or set autowrite and use :n
<file>.

If you make changes to the editor's copy of a file, but do not wish to write them back.
then you must give an ! after the command you would otherwise use~ this forces the editor to
discard any changes you have made. Use this carefully.

The :e command can be given a + argument to start at the end of the file. or a + n argu­
ment to start at line n. In actuality, n may be any editor command not containing a space, use­
fully a scan like +I pat or +?pat. In forming new names to the e command, you can use the
character 1Yo which is replaced by the current file name, or the character # which is replaced by
the alternate file name. The alternate file name is generally the last name you typed other than ·
the current file. Thus if you try to do a :e and get a diagnostic that you haven't written the file,
you can give a :w command and then a :e # command to redo the previous :e.

You can write part of the buff er to a file by finding out the lines that bound the range to
be written using AG. and giving these numbers after the : and before the w, separated by ,'s.
You can also mark these lines with m and then use an address of the form 'x,'y on thew com­
mand here.

You can read another file into the buffer after the current line by using the :r command.
You can similarly read in the output from a command, just use !cmd instead of a file name.

If you wish to edit a set of files in succession, you can give all the names on the command
line. and then edit each one in turn using the command :n. It is also possible to respecify the
list of files to be edited by giving the :n command a list of file names, or a pattern to be
expanded as you would have given it on the initial vi command.

If you are editing large programs. you will find the :ta command very useful. It utilizes a
data base of function names and their locations, which can be created by programs such as
ctags, to quickly find a function whose name you give. If the :ta command will require the edi­
tor to switch files. then you must :w or abandon any changes before switching. You can repeat
the :ta command without any arguments to look for the same tag again. (The tag feature is not
available in some v2 editors.)

8.4. More about searching for strings

When you are searching for strings in the file with I and ? , the editor normally places you
at the next or previous occurrence of the string. If you are using an operator such as d. c or y,
then you may well wish to affect lines up to the line before the line containing the pattern.

- 20 -

You can give a search of the form I pat/- n to ref er to the 11'th line before the next line con­
taini'ng pat, or you can use + instead of - to ref er to the lines after the one containing par. If
you don't give a line offset, then the editor will affect characters up to the match place. rather
than whole lines; thus use •• +0" to affect to the line which matches.

You can have the editor ignore the case of words in the searches it does by giving the
command :se iCCR. The command :se noicCR turns this off.

Strings given to searches may actually be regular expressions. If you do not want or need
this facility, you should

set nomagic

in your EXINIT. In this case, only the characters T and S are special in patterns. The character
\ is also then special (as it is most everywhere in the system). and may be used to get at the an
extended pattern matching facility. It is also necessary to use a\ before a I in a forward scan
or a ? in a backward scan, in any case. The following table gives the extended forms when
magic is set.

T
$

\<
\>
[str]
[f stil
[x-y]
•

at beginning of pattern, matches beginning of line
at end of pattern, matches end of line
matches any character
matches the beginning of a word
matches the end of a word
matches any single character in str
matches any single character not in str
matches any character between x and y
matches any number of the preceding pattern

If you use nomagic mode. then the • (and • primitives are given with a preceding \.

8.5. More about input mode

There are a number of characters which you can use to make corrections during input
mode. These are summarized in the following table.

·a deletes the last input character
·w deletes the last input word, defined as by b
erase your erase character. same as ·a
kill your kill character, deletes the input on this line
\ escapes a following ·a and your erase and kill
ESC ends an insertion
DEL interrupts an insertion, terminating it abnormally
CR starts a new line
·n backtabs over autoindent
o·n kills all the autoindent
rn same as o·n. but restores indent next line
·v quotes the next non-printing character into the file

The most usual way of making corrections to input is by typing ·a to correct a single
character. or by typing one or more "W's to back over incorrect words. If you use # as your
erase character in the normal system, it will work like -H.

Your system kill cba(acter. normally @. ·x or "U, will erase all the input you have given
on the current line. In general. you can neither erase input back around a line boundary nor
can you erase characters which you did not insert with this insertion command. To make
corrections on the previous line after a new line has been started you can hit ESC to end the
insertion. move over and make the correction. and then return to where you were to continue.

- 21 -

The command A which appends at the end of the current line is often useful for continuing.

If you wish to type in your erase or kill character (say # or @) then you must precede it
with a \, just as you would do at the normal system command level. A more general way of
typing non-printing characters into the file is to precede them with a ·y. The ·y echoes as a f
character on which the cursor rests. This indicates that the editor expects you to type a control
character. In fact you may type any character and it will be inserted into the file at that point.*

If you are using autoindent you can backtab over the indent which it supplies by typing a
·o. This backs up to a shijiwidth boundary. This only works immediately after the supplied
autoindent.

When you are using auroindent you may wish to place a label at the left margin of a line.
The way to do this easily is to type T and then ·o. The editor will move the cursor to the left
margin for one line, and restore the previous indent on the next. You can also type a 0 fol­
lowed immediately by a ·o if you wish to kill all the indent and not have it come back on the
next line.

8.6. Upper case only terminals

If your terminal has only upper case, you can still use vi by using the normal system con­
vention for typing on such a terminal. Characters which you normally type are converted to
lower case, and you can type upper case letters by preceding them with a \. The characters I - l
I · are not available on such terminals. but you can escape them as \ (\ f \) \ ! \'. These charac­
ters are represented on the display in the same way they are typed.i i

8.7. Vi and ex
Vi is actually one mode of editing within the editor ex. When you are running vi yo.u can

escape to the line oriented editor of ex by giving the command Q. All of the : commands
which were introduced above are available in ex. Likewise. most ex commands can be invoked
from vi using :. Just give them without the : and follow them with a CR.

In rare instances, an internal error may occur in vi. In this case you will get a diagnostic
and be left in the command mode of ex. You can then save your work and quit if you wish by
giving a command x after the : which ex prompts you with, or you can reenter vi by giving ex a
vi command.

There are a number of things which you can do more easily in ex than in vi. Systematic
changes in line oriented material are particularly easy. You can read the advanced editing docu­
ments for the editor ed to find out a lot more about this style of editing. Experienced users
often mix their use of ex command mode and vi command mode to speed the work they are
doing.

8.8. Open mode: vi on hardcopy terminals and "glass tty's" i

If you are on a hardcopy terminal or a terminal which does not have a cursor which can
move off the bottom line, you can still use the command set of vi. but in a different mode.
When you give a vi command, the editor will tell you that it is using open mode. This name
comes from the open command in ex. which is used to get into the same mode.

The only difference between visual mode and open mode is the way in which the text is

• This is not quite true. The implementation of the editor does not allow the NULL C'@J character to appear
in files. Also the LF (linefeed or "J) character is used by the editor to separate lines in the file. so it cannot
appear in. the middle of a line. You can insert any other character. however. if you wait for the editor to
echo the f before you type the character. In fact. the editor will treat a following teuer as a request for the
corresponding control character. This is the only way to type ·s or "Q. since the system normally uses them
to suspend and resume ou1put and never gives them to the editor to process.
* The \ character you give will not echo until you type another key.
* Not available in all v2 editors due to memory constraints.

- 22 -

displayed.

In open mode the editor uses a single line window into the file. and moving backward and
forward in the file causes new lines to be displayed. always below the current line. Two com­
mands of vi work differently in open: z and "R. The z command does not take parameters. but
rather draws a window of context around the current line and then returns you to the current
line.

If you are on a hardcopy terminal. the "R command will retype the current line. On such
terminals. the editor normally uses two lines to represent the current line. The first line is a
copy of the line as you started to edit it, and you work on the line below this line. When you
delete characters, the editor types a number of\ 's to show you the characters which are deleted.
The editor also reprints the current line soon after such changes so that you can see what the
line looks like again.

It is sometimes useful to use this mode on very slow terminals which can support vi in the
full screen mode. You can do this by entering ex and using an open command.

Acknowledgements

Bruce Englar encouraged the early development of this display editor. Peter Kessler
helped bring sanity to version 2's command layout. Bill Joy wrote versions I and 2.0 through
2. 7. and created the framework that users see in the present editor. Mark Horton added macros
and other features and made the editor work on a large number of terminals and Unix systems.

- 23 •

Appendix: character functions

This appendix gives the uses the editor makes of each character. The characters are
presented in their order in the ASCII character set: Control characters come first. then most
special characters. then the digits, upper and then lower case characters.

For each character we tell a meaning it has as a command and any meaning it has during
an insert. If it has only meaning as a command, then only this is discussed. Section numbers
in parentheses indicate where the character is discussed: a ·r after the section number means
that the character is mentioned in a footnote.
"@

·c
·o

"E

"F

"G

"H (BS)

"I (TAB)

• J (LF)

"K

"L

"M (CR)

"N
·o

Not a command character. If typed as the first character of an insertion it is
replaced with the last text inserted, and the insert terminates. Only 128 char-

. acters are saved from the last insert: if more characters were inserted the
mechanism is not available. A "@ cannot be part of the file due to the editor
implementation (7 .Sf).

Unused.

Backward window. A count specifies repetition. Two lines of continuity are
kept if possible (2.1. 6.1, 7 .2).

Unused.

As a command, scrolls down a half-window of text. A count gives the number
of (logical) lines to scroll, and is remembered for future ·o and ·u commands
(2.1, 7.2). During an insert, backtabs over autoindent white space at the begin­
ning of a line (6.6, 7.5): this white space cannot be backspaced over.

Exposes one more line below the current screen in the file, leaving the cursor
where it is if possible. (Version 3 only.)

Forward window. A count specifies repetition. Two lines of continuity are
kept if possible (2.1, 6.1, 7 .2).

Equivalent to :fcR, printing the current file, whether it has been modified, the
current line number and the number of lines in the file, and the percentage of
the way through the file that you are.

Same as left arrow. (See h). During an insert, eliminates the last input char­
acter, backing over it but not erasing it; it remains so you can see what you
typed if you wish to type something only slightly different (3. I, 7 .5).

Not a command character. When inserted it prints as some number of spaces.
When the cursor is at a tab character it rests at the last of the spaces which
represent the tab. The spacing of tabstops is controlled by the rabstop option
(4.1, 6.6) .

Same as down arrow (see j).

Unused.

The ASCII formfeed character, this causes the screen to be cleared and redrawn.
This is useful after a transmission error, if characters typed by a program other
than the editor scramble the screen. or after output is stopped by an interrupt
(5.4, 7.2f).

A carriage return advances to the next line, at the first non-white position in
the line. Given a count, it advances that many lines (2.3). During an insert, a
CR causes the insert to continue onto another line (3.1).

Same as down arrow (see j).

Unused.

"R

·s
"T

·u

·v

·w

·x
·y

·z

" ((ESC)

.,

. ,

SPACE

Same as up arrow (see k).

Not a command character. In input mode. "Q quotes the next character. the
same as ·v, except that some teletype drivers will eat the "Q so that the editor
never sees it.
Redraws the current screen, eliminating logical lines not corresponding to phy­
sical lines (lines with only a single @ character on them). On hardcopy termi·
nals in open mode, retypes the current line (5.4, 7.2, 7.8).

Unused. Some teletype drivers use ·s to suspend output until "Qis
Not a command character. During an insert, with auroi11de111 set and at the
beginning of the line, inserts shiftwidth white space.

Scrolls the screen up, inverting ·n which scrolls down. Counts work as they
do for ·n. and the previous scroll amount is common to both. On a dumb ter·
minal, ·u will often necessitate clearing and redrawing the screen further back
in the file (2.1, 7 .2).

Not a command character. In input mode, quotes the next character so that it
is possible to insert non-printing and special characters into the file (4.2, 7 .5).

Not a command character. During an insert, backs up as b would in command
mode; the deleted characters remain on the display (see "H) (7.5).

Unused.

Exposes one more line above the current screen, leaving the cursor where it is
if possible. (No mnemonic value for this key; however, it is next to ·u which
scrolls up a bunch.) (Version 3 only.)

If supported by the Unix system, stops the editor. exiting to the top level shell.
Sarne as :stopCR. Otherwise, unused.
Cancels a partially formed command. such as a z when no following character
has yet been given~ terminates inputs on the last line (read by commands such
as : I and ?); ends insertions of new text into the buffer. If an ESC is given
when quiescent in command state, the editor rings the bell or flash~s the
screen. You can thus hit ESC if you don't know what is happening till the edi­
tor rings the bell. If you don't know if you are in insert mode you can type
ESca. and then material to be input; the material will be inserted correctly
whether or not you were in insert mode when you started (1.5, 3.1. 7.5).

Unused .
Searches for the word which is after the cursor as a tag. Equivalent to typing
:ta. this word, and then a CR. Mnemonically, this command is "go right to"
(7.3).

Equivalent to :e #CR, returning to the previous position in the last edited file.
or editing a file which you specified if you got a 'No write since last change
diagnostic' and do not want to have to type the file name again (7.3). (You
have to do a :w before ·r will work in this case. If you do not wish to write
the file you should do :e! #CR instead.)

Unused. Reserved as the command character for the Tektronix 4025 and 4027
terminal.
Sarne as right arrow (see I).

An operator, which processes lines from the buffer with reformatting com­
mands. Follow ! with the object to be processed, and then the command name
terminated by CR. Doubling ! and preceding it by a count causes count lines to
be filtered: otherwise the count is passed on to the object after the !. Thus
2!l/m1CR reformats the next two paragraphs by running them through the pro­
gram /mt. If you are working on LISP, the command !0/ngrinc.t'R, • given at the

"Bo1h .Jim and grind are Berkeley programs and may not be present at all installa1ions.

"

s

(

)

*
+

• 25.

beginning of a function. will run the text of the function through the LISP
grinder (6.7, 7.3). To read a file or the output of a command into the buffer
use :r (7.3). To simply execute a command use :! (7.3).
Precedes a named buffer specification. There are named buffers 1-9 used for
saving deleted text and named buffers a-z into which you can place text (4.3.
6.3)
The macro character which. when followed by a number, will substitute for a
function key on terminals without function keys (6.9). In input mode. if this
is your erase character, it will delete the last character you typed in input
mode. and must be preceded with a\ to insert it, since it normally backs over
the last input character you gave.
Moves to the end of the current line. If you :se listCR. then the end of each
line will be shown by printing a $ after the end of the displayed text in the
line. Given a count, advances to the count'th following end of line; thus 2S
advances to the end of the following line.
Moves to the parenthesis or brace {) which balances the parenthesis or brace
at the current cursor position.
A synonym for :&cR. by analogy with the e.'C & command.
When followed by a • returns to the previous context at the beginning of a
line. The previous context is set whenever the current line is moved in a
non-relative way. When followed by a letter a-z. returns to the line which
was marked with this letter with a m command. at the first non-white character
in the line. (2.2. 5.3). When used with an operator such as d, the operation
takes place over complete lines; if you use •• the operation takes place from the
exact marked place to the current cursor position within the line.
Retreats to the beginning of a sentence. or to the beginning of a LISP s­
expression if the lisp option is set. A sentence ends at a • ! or ? which is fol­
lowed by either the end of a line or by two spaces. Any number of closing) I
" and • characters may appear after the • ! or ? • and before the spaces or end of
line. Sentences also begin at paragraph and section boundaries (see I and II
below). A count advances that many sentences (4.2, 6.8).
Advances to the beginning of a sentence. A count repeats the effect. See (
above for the definition of a sentence (4.2. 6.8).
Unused.
Same as CR when used as a command.
Reverse of the last f F t or T command, looking the other way in the current
line. Especially useful after bitting too many ; characters. A count repeats the
search.
Retreats to the previous line at the first non-white character. This is the
inverse of + and RETURN. If the line moved to is not on the screen. the
screen is scrolled, or cleared and redrawn if this is not possible. If a large
amount of scrolling would be required the screen is also cleared and redrawn.
witb the current line at the center (2.3).
Repeats the last command which changed the buffer. Especially useful when
deleting words or lines; you can delete some words/lines and then hit . to
delete more and more words/lines. Given a count, it passes it on to the com­
mand being repeated. Thus after a 2dw. 3. deletes three words (3.3, 6.3. 7.2.
7.4).

I

0

1-9

<

-
>

.,

@

A

B

c
D

• 26.

Reads a string from the last line on the screen. and scans forward for the next
occurrence of this string. The normal input editing sequences may be used
during the input on the bottom line; an returns to command state without ever
searching. The search begins when you hit CR to terminate the pattern; the
cursor moves to the beginning of the last line to indicate that the search is in
progress; the search may then be terminated with a DEL or RUB. or by back·
spacing when at the beginning of the bottom line. returning the cursor to its
initial position. Searches normally wrap end-around to find a string anywhere
in the buff er.

When used with an operator the enclosed region is normally affected. By men­
tioning an offset from the line matched by the pattern you can force whole
lines to be affected. To do this give a pattern with a closing a closing I and
then an offset + n or - n.
To include the character I in the search string, you must escape it with a
preceding \. A T at the beginning of the pattern forces the match to occur at
the beginning of a line only; this speeds the search. A S at the end of the pat­
tern forces the match to occur at the end of a line only. More extended pat­
tern matching is available, see section 7.4; unless you set nomagic in yoiir
.e:crc file you will have to preceed the characters • I * and • in the search pat­
tern with a \ to get them to work as you would naively expect (l.S. 2.2. 6.1.
7.2. 7.4).

Moves to the first character on the current line. Also used. in forming
numbers, after an initial 1-9.

Used to form numeric arguments to commands (2.3, 7.2).

A prefix to a set of commands for file and option manipulation and escapes to
the system. lnpu·t is given on the bottom line and terminated with an CR, and
the command then executed. You can return to where you were by hitting
DEL or RUB if you hit : accidentally (see primarily 6.2 and 7.3).

Repeats the last single character find which used f F t or T. A count iterates
the basic scan (4.1).

An operator which shifts lines left one sh(/iwidth, normally 8 spaces. like all
operators, affects lines when repeated, as in < <. Counts are passed through
to the basic object. thus 3< < shifts three lines (6.6, 7.2).

Reindents line for LISP, as though they were typed in with lisp and autoi11de111
set (6.8).

An operator which shifts lines right one sh(/twidth, normally 8 spaces. Affects
lines when repeated as in > >. Counts repeat the basic object (6.6. 7.2>.

Scans backwards, the opposite of/. See the I description above for details on
scanning (2.2, 6.1, 7.4).

A macro character (6.9). If this is your kill character. you must escape it with
a \ to type it in during input mode, as it normally backs over the input you
have given on the current line (3.1, 3.4. 7.5).

Appends at the end of line. a synonym for Sa (7.2).

Backs up a word, where words are composed of non-blank sequences. placing
the cursor at the beginning of the word. A count repeats the effect (2.4).

Changes the rest of the text on the current line; a synonym for cS.
Deletes the rest of the text on the current line; a synonym for dS.

E

F

G

H

I

J

K
L

M

N

0

p

Q

R

s

T

u
v

• 27.

Moves forward to the end of a word, defined as blanks and non-blanks. like B
and W. A count repeats the effect.
Finds· a single following character. backwards in the current line. A count
repeats this search that many times (4.1) .
Goes to the line number given as preceding argument, or the end of the file if
no preceding'count is given. The screen is redrawn with the new current line
in the center if necessary (7.2).

Home arrow. Homes the cursor to the top line on the screen. If a count is
given, then the cursor is moved to the count'th line on the screen. In any case
the cursor is moved to the first non-white character on the line. If used as the
target of an operator, full lines are affected (2.3, 3.2).
Inserts at the beginning of a line; a synonym for Ti.
Joins together lines, supplying appropriate white space: one space between
words, two spaces after a ., and no spaces at all if the first character of the
joined on line is) . A count causes that many lines to be joined rather than the
default two (6.S, 7.10.
Unused.
Moves the cursor to the first non-white character of the last line on the screen.
With a count, to the first non-white of the count'th line from the bottom.
Operators affect whole lines when used with L (2.3).
Moves the cursor to the middle line on the screen, at the first non-white posi­
tion on the line (2.3).
Scans for the next match of the last pattern given to I or ? , but in the reverse
direction; this is the reverse of n.
Opens a new line above the current line and inputs text there up to an ESC. A
count can be used on dumb terminals to specify a number of lines to be
opened; this is generally obsolete, as the slowopen option works better (3.1).

Puts the last deleted text back before/above the cursor. The text goes back as
whole lines above the cursor if it was deleted as whole lines. Otherwise the
text is inserted between the characters before and at the cursor. May be pre·
ceded by a named buffer specification "x to retrieve the contents of the buffer;
buffers 1-9 contain deleted material, buffers a-z are available for general use
(6.3). .

Quits from vi to ex command mode. In this mode, whole lines form com­
mands, ending with a RETURN. You can give all the : commands; the editor
supplies the : as a prompt (7.7).

Replaces characters on the screen with characters you type (overlay fashion>.
Terminates with an ESC.

Changes whole lines, a synonym for cc. A count substitutes for that many
lines. The lines are saved in the numeric buffers, and erased on the screen
before the substitution begins.
Takes a single following character, locates the character before the cursor in
the current line, and places the cursor just after that character. A count
repeats the effect. Most useful with operators such as d (4.1).
Restores the current line to its state before you started changing it (3.5).
Unused.

w

x

y

zz
((

\
JI
T

a

b

c

d

e

f

I

• 28.

Moves forward to the beginning of a word in the current line. where words are
defined as sequences of blank/non-blank characters. A count repeats the elf ect
(2.4).

Deletes the character before the cursor. A count repeats the effect, but only
characters on the current line are deleted.

Yanks a copy of the current line into the unnamed buffer, to be put back by a
later p or P; a very useful synonym for yy. A count yanks that many lines.
May be preceded by a buffer name to put lines in that buffer (7.4).

Exits the editor. (Same as :xcR.) If any changes have been made. the buffer is
written out to the current file. Then the editor quits.

Backs up to the previous section boundary. A section begins at each macro in
the sections option, normally a '.NH' or •.SH' and also at lines which which
start with a formfeed ·L .. Lines beginning with { also stop II; this makes it
useful for looking backwards, a function at a time, in C programs. If the
option lisp is set, stops at each (at the beginning of a line, and is thus useful
for moving backwards at the top level LISP objects. (4.2, 6.1, 6.6. 7 .2).

Unused.

Forward to a section boundary, see ([for a definition (4.2, 6.1. 6.6. 7.2).

Moves to the first non-white position on the current line (4.4).

Unused.

When followed by a • returns to the previous context. The previous context is
set whenever the current line is moved in a non-relative way. When followed
by a letter a-z, returns to the position which was marked with this letter with
a m command. When used with an operator such as d. the operation takes
place from the exact marked place to the current position within the line; if
you use·. the operation takes place over complete lines (2.2. 5.3).

Appends arbitrary text after the current cursor position; the insert can continue
onto multiple lines by using RETURN within the insert. A count causes the
inserted text to be replicated, but only if the inserted text is all on one line.
The insertion terminates with an ESC (3.1. 7.2).

Backs up to the beginning of a word in the current line. A word is a sequence
of alphanumerics. or a sequence of special characters. A count repeats the
effect (2.4).

An operator which changes the following object. replacing it with the following
input text up to an ESC. If more than part of a single line is affected. the text
which is changed away is saved in the numeric named buffers. If only part of
the current line is affected, then the last character to be changed away is
marked with a $. A count causes that many objects to be affected, thus both
3c) and c3) change the following three sentences (7.4).

An operator which deletes the following object. If more than part of a line is
affected. the text is saved in the numeric buffers. A count causes that many
objects to be affected; thus 3dw is the same as d3w (3.3, 3.4. 4.1. 7.4).

Advances to the end of the next word. defined as for b and w. A count
repeats the effect (2.4, 3.1).

Finds the first instance of the next character following the cursor on the
current line. A count repeats the find (4.1).

Unused.

Arrow keys h, j, k. I. and H.

h

j

k

m

n
0

p

q

r

s

t

u

v

w

x

y

- 29 -

Left arrow. Moves the cursor one character to the left. Like the other arrow
keys. either h. the left arrow key. or one of the synonyms (AH) has the same
effect. On v2 editors. arrow keys on certain kinds of terminals (those which
send escape sequences. such as vt52. clOO, or hp) cannot be used. A counl
repeats the effect (3.1. 7.5).

Inserts text before the cursor. otherwise like a (7.2).

Down arrow. Moves the cursor one line down in the same column. If the
position does not exist. vi comes as close as possible to the same column.
Synonyms include AJ (linefeed) and AN.
Up arrow. Moves the cursor one line up. AP is a synonym.

Right arrow. Moves the cursor one character to the right. SPACE is a
synonym.

Marks the current position of the cursor in the mark register which is specified
by the next character a-z. Return to this position or use with an operator
using· or· (5.3).

Repeats the last I or ? scanning commands (2.2).

Opens new lines below the current line; otherwise like 0 (3.1>.

Puts text after/below the cursor; otherwise like P (6.3).

Unused.

Replaces the single character at the cursor with a single character you type.
The new character may be a RETURN; this is the easiest way co split lines. A
count replaces each of the following count characters with the single character
given; see R above which is the more usually useful iteration of r (3.2).

Changes the single character under the cursor to the text which follows up to
an ESC; given a count. that many characters from the current line are changed.
The last character to be changed is marked with Sas inc (3.2).

Advances the cursor upto the character before the next character typed. Most
useful with operators such as d and c to delete the characters up to a following
character. You can use • to delete more if this doesn't delete enough the first
time (4.1).

Undoes the last change made to the current buffer. If repeated. will alternate
between these two states. thus is its own inverse. When used after an insert
which inserted text on more than one line. the lines are saved in the numeric
named buffers (3.5).

Unused.

Advances to the beginning of the next word. as defined by b (2.4).

Deletes the single character under the cursor. With a count deletes deletes
that many characters forward from the cursor position. but only on the current
line (6.5).

An operator. yanks the following object into the unnamed temporary buffer. If
preceded by a named buffer specification. "x. the text is placed in that buffer
also. Text can be recovered by a later p or P (7.4).

Redraws the screen with the current line placed as specified by the following
character: RETURN specifies the top of the screen •• the center of the screen.
and - at the bottom of the screen. A count may be given after the z and
before the following character to specify the new screen size for the redraw. A
count before the z gives the number of the line to place in the center of the
screen instead of the default current line. (5.4)

*? (DEL)

- 30 -

Retreats to the beginning of the beginning of the preceding paragraph. A para­
graph begins at each macro in the paragraphs option. normally •.IP'. ·.LP'.
'.PP'. '.QP' and '.bp'. A paragraph also begins after a completely empty line,
and at each section boundary (see II above) (4.2. 6.8. 7.6).

Places the cursor on the character in the column specified by the count (7.1.
7.2).

Advances tQ the beginning of the next paragraph. See I for the definition Qf
paragraph (4.2, 6.8. 7.6).

Unused.

Interrupts the editor, returning_it to command accepting state (1.5. 7.5)

Introduction

NROFF/TROFF User's Manual

Joseph F. Ossanna

Bell Laboratories
Murray Hill, New Jersey 07974

NROFF and TROFF are text processors under the PDP-11 UNIX Time-Sharing Systeml that format text
for typewriter-like terminals and for a Graphic Systems phototypesetter, respectively. They accept lines
of text interspersed with lines of format control information and format the text into a printable,
paginated document having a user-designed style. NROFF and TROFF offer unusual freedom in docu­
ment styling, including: arbitrary style headers and footers; arbitrary style footnotes; multiple automatic
sequence numbering for paragraphs, sections, etc; multiple column output; dynamic font and point-size
control; arbitrary horizontal and vertical local motions at any point; and a family of automatic overstrik­
ing, bracket construction, and line drawing functions.

NROFF ·and TROFF are highly compatible with each other and it is almost always possible to prepare
input acceptable to both. Conditional input is provided that enables the user to embed input expressly
destined for either program. NROFF can prepare output directly for a variety of terminal types and is
capable of utilizing the full resolution of each terminal.

Usage

The general .form of invoking NROFF (or TROFF) at UNIX command level is

nroff options files (or troff options files)

where options represents any of a number of option arguments and files represents the list of tiles con­
taining the document to be formatted. An argument consisting of a single minus (-) is taken to be a
file name corresponding to the standard input. If no file names are given input is taken from the stan·
dard input. The options, which may appear in any order so long as they appear before the files, are:

Option

-olist

-nN
-sN

-mname

-raN

-i

-q

Effect

Print only pages whose page numbers appear in list, which consists of comma­
separated numbers and number ranges. A number range has the form N-M and
means pages N through M: a initial - N means from the beginning to page N; and
a final N - means from N to the end.

Number first generated page N.

Stop every N pages. NROFF will halt prior to every N pages (default N-1) to
allow paper loading or changing, and will resume upon receipt of a newline.
TROFF will stop the phototypesetter every N pages, produce a trailer to allow
changing cassettes, and will resume after the phototypesetter ST ART button is
pressed.

Prepends the macro file /usr/lib/tmac.name to the input files.

Register a (one-character) is set to N.

Read standard input after the input files are exhausted.

Invoke the simultaneous input-output mode of the rd request.

- 1 -

NROFF/TROFF User's Manual
October 11, 1976

NROFF Only

-T name Specifies the name of the output terminal type, Currently defined names are 3'7
for the (default) Model 37 Teletype•, tn300 for the GE TermiNet 300 (or any ter·
minal without half-line capabilities), JOOS for the DASI-JOOS, 300 for the DASI·
JOO, and 450 for the DASI-450 (Diablo Hyterm).

-e Produce equally-spaced words in adjusted lines, usin~ full terminal resolution.

TROFF Only

-t Direct output to the standard output instead of the phototypesetter.

-f Refrain from reeding out paper and stopping phototypesetter at the end of the run.

-w Wait until phototypesetter is available, if currently busy.

-b TROFF will repon whether the phototypesetter is busy or available. No text pro·
cessing is done.

-a Send a printable (ASCII) approximation of the results to the standard output.

-pN Print all characters in point size N while retaining all prescribed spacinp and
motions, to reduce phototypesetter clasped time.

-1 Prepare output for the Murray Hill Computation Center phototypesetter and direct
it to the standard output.

Each option is invoked as a separate argument; for example,

nroff -04,8-10 -T JOOS -mabc filel file2

requests formatting of pages 4, 8, 9, and 10 of a document contained in the files named filel and file],
specifies the output terminal as a DASI-JOOS, and invokes the macro package abc.

Various pre· and post-processors are available for use with NROFF and TROFF. These include the
equation preprocessors NEQN and EQN2 (for NROFF and TROFF respectively), and the table·
construction preprocessor TBLJ. A reverse-line postprocessor COL 4 is available for multiple-column
NROFF output on terminals without reverse-li~e ability; COL expects . the Model 37 Teletype escape
sequences that NROFF produces by default. TK4 is a 37 Teletype simulator postprocessor for printing
NROFF output on a Tektronix 4014. TCAT4 is phototypesetter-simulator postprocessor for TROFF that
produces an approximation of phototypesetter output on a Tektronix 4014. For exaniple, in

tbl files I eqn I troff - t options I teat

the first I indicates the piping of TBL's output to EQN's input; the second the piping of EQN's output to
TROFF'S input; and the third indicates the piping of TROFF's output to TCAT. GCAT4 can be used to
send TROFF (-1) output to the Murray Hill Computation Center.

The remainder of this manual consists of: a Summary and Index; a Reference Manual keyed to the
index; and a set of Tutorial Examples. Another tutorial is [S].

Joseph F. Ossanna

References

[1] K. Thompson, D. M. Ritchie, UNIX Programmer's Manual, Sixth Edition (May 1975).

(2) B. W. Kernighan. L. L. Cherry, Typesetting Mathematics - User's Guide (Second Edition), Bell Laboratories
internal memorandum.

(3) M. E. Lesk, Tbl - A Program to Format Tables, Bell Laboratories internal memorandum.

(4) Internal on-line documentation, on UNIX.

[SI B. W. Kernighan, A TROFF Tutorial, Bell Laboratories internal memorandum .

• 2 •

NROFF/TROFF User's Manual
October 11, 1976

SUMMARY AND INDEX

If No Request
Form

Initial
Value• Arrument Notes# Explanation

1. General Explanation

2. Font and Character Size Control

.ps ±N lOpoint .previous E

.ss N 12/36 em ignored E

.cs FNM off P

.bd F N off P

.bd SF N off P

.ft F Roman previous E

. fp N F R,I,B,S ignored

3. Page Control

.pl ±N 11 in 11 in y

.bp ±N .N-1 B*,v

.pn ±N .N-1 ignored

. po ±N O; 26/27 in previous y

.ne N N-1V D,v

.mkR none internal D

. rt ±N none internal D,v

4. Text Filling, Adjusting, and Centering

.br B

. fl fill B,E

. nf fill B,E

. ad c adj,both adjust E

. na adjust E

.ce N oft' N-1 B,E

5. Vertical Spacing .

. vs N 1/6in; 12pts

.ls N N-l

.sp N

.SYN

• os
.ns space
.rs

previous
previous
N-lV
N-lV

6. Line Length and Indenting

E,p
E
B,v
y

D
D

Point size; also \s ± N. 't
Space-character size set to N/36 em. t
Constant character space (width) mode (font F). t
Embolden font Fby N-1 units.t
Embolden Special Font when current font is F.t
Change to font F - x, .xx, or 1-4. Also \fx, \f(xx, \fN.
Font named F mounted on physical position 1~N~4 .

Page length.
Eject current page; next page number N.
Next page number N.
Page off set .
Need N vertical space (V - vertical spacing).
Mark current vertical place· in register R.
Return (upward only) to marked vertical place .

Break .
Fill output lines.
No filling or adjusting of output lines .
Adjust output lines with mode c .
No output line adjusting .
Center following N inp1H text lines.

Vertical base line spacing (V).
Output N-1 Vs after each text output line.
Space vertical distance N in either direction.
Save vertical distance N.
Output saved vertical distance .
Turn no-space mode on.
Restore spacing; turn no-space mode off.

.11 ± N 6.5 in previous E,m Line length .
• in :±; N N-0 previous B,E,m Indent.
.ti ± N ignored B,E,m Temporary indent.

7. Macros, Strings, Diversion, and Position Traps

.de .xx yy .yy-.. Define or redefine macro .xx; end at call of yy .
• am .xx yy .yy-.. Append to a macro .
• ds .xx string - ignored Define a string .xx containing string .
• as .xx string - ignored Append string to string xx. ·

"Values separated by •;• are for NROFF and TROFF respectively.

#Notes are explained at the end of this Summary and Index
tNo effect in NROFF.

ffhe use of • • • as control character (instead of •. •) suppresses the break function.

-3-

NROFPITROFP User's Manual
October 11. 1976

Requut Initial UNo
Fonn Ya/w "'''""""" Noia .F.;cplollllllon

.rm xx ignored Remove request. macro, or string.

.rn xxyy ignort!d Rename request, macro, or string xx to yy.

.di xx end 0 Divert output to macro xx.

.da xx end D Diveft and append to xx.

.wb N·xx 'f Set location trap; negative is w .r.t. page bottom.
• ch xx N .,. Change trap location •
• dt N xx off D,Y Set a diversion trap .
• it N xx off E Set an input-line count trap •
.em xx none none End macro is xx.

8. Number Resisters

.nr R :t;N M 11 Define and set number register R; auto-increment by M.
• af R· c aflbic
.rr R

Assi1n format to register R (c-1, l, I, a, A) .
Remove register R.

9. Tabs, Leaders, and Fields

• ta Nt ••• 0.8; O.Sin none E,m Tab settings; left type, unless t .. R(right), C(centered) •
• tc c none none

none
off

E Tab repetition character .
• le c
.fc ab

E Leader repetition character .
off Set field delimiter a and pad character b.

10. Input and Output ConYenttons ud Chanct., Translations

.ec c \ \ Set escape character .
• eo on Turn off escape character mechanism .
• 11 N -; on on Ligature mode on if N>O •
• ul N off N-1 E Underline (italicize in TROFF) Ninput lines .
• ca N off N-1 E Continuous underline in NllOFF; like 111 in TllOFF •
• at F Italic Italic Underline font set to F (to be switched to by ql) •
• cc c • E Set control character to c .
• cl c • E Set nobreak control character to c.
.tr abed.... none 0 Translate a to b, etc. on output.

11. Local Horizontal and Vertical Motions, and tbe Width Function

12. 0Yentrlke, Bracket, Llae"4lra'ttiu1, and. Zero-width Functions

13. Hyphenation •

• ub hyphenate • E
• bf N hyphenate hyphenate E
• be c \" \" E
.bw wordl ... ignored

1-4. Three Part Titles •

• ti • 1e/t' cente,. right•
• pc c " off
• It :t; N 6.S in previous E,m
15. Output Line Numberin1 •

• nm :. NM SI off E
.nn N • N-1 E.

16. Conditional Ac:eept•nce of Input

.If c anything

No hyphenation .
Hyphenate; N - mode .
Hyphenation indicator character c.
Exception words,

Three part title .
Page number character.
Length of title .

Number mode on or off. set parameters.
Do not number next Nlines.

If condition c true, accept anything as input,
for multi-line use \{anything\} •

• 4.

NROFF/TROFF User's Manual
October 11, 1976

I/No Request
Form

Initial
Value Argument Notes Explanation

• if ! c anything
• if N anything
.if !N anything
• if ·string]' string]' anything
• if ! 'string]' string]' anything
. ie c anything
• el anything

17. Environment Switching.

• ev N N-0 previous

u
u

u

18. Insertions from the Standard Input

• rd prompt - prompt-BEL-
• ex

19. Input/Output File Switchinc

• so filename
.nx filename
• pi program

end-of-file -

If condition c false, accept anything .
If expression N > 0, accept anything .
If expression N :El; 0, accept anything .
If string] identical to string], accept anything .
If string] not identical to string], accept anything .
If portion of if-else; all above forms (ljke if) .
Else portion of if-else .

Environment switched (push down) .

Read insertion .
Exit from NROFF/TROFF .

Switch source file (push down) .
Next file.
Pipe output to program (NROFF only) .

20. Miscellaneous

.me cN E,m Set margin character c and separation N.

.tm string
• 11 yy

off
newline
.yy-••

Print string on terminal (UNIX standard message output).
Ignore till call of yy .

.pm t all Print macro names and sizes;
if t present, print only total of sizes.

. n B Flush output buffer .

21. Output and Error Messages

Notes·

B Request normally causes a break.
D Mode or relevant parameters associated with current diversion level.
E Relevant parameters are a part of the current environment.
0 Must stay in effect until logical output.
p Mode must be still or again in effect at the time of physical output.

v ,p,m,u Default scale indicator; if not specified, scale indicators are ignored.

Alphabetical Request and Section Number Cross Reference

ad 4 cc 10 ds 7 fc: 9 ie 16 II 6 nh 13 pi 19 m 7 ta 9 VS s
af 8 c:e 4 dt 7 ft 4 if 16 Is s nm IS pl 3 rr 8 tc: 9 wh 7
am 7 c:h 7 ec: 10 n 20 ig 20 It 14 nn IS pm20 rs s ti 6
as 7 c:s 2 el 16 fp 2 in 6 mc:20 nr 8 pn 3 rt 3 ti 14
bd 2 c:u 10 em 7 ft 2 it 7 mk 3 ns s po 3 so 19 tm 20
bp 3 da 7 co 10 he: 13 le 9 na 4 nx 19 ps 2 sp s tr 10
br 4 de 7 ev 17 hw 13 lg 10 ne 3 OS s rd 18 SS 2 uf 10
c:2 10 di 7 ex 18 by 13 Ii 10 nf 4 pc: 14 rm 7 SY s ul 10

- 5 -

NROFF/TROFF User's Manual
October 11, 1976

Escape Sequences for Characters, Indicators, and Functions

Section
Referenu

10.1
10.1
2.1
2.1
2.l
7

11.1
11.1
11.1
11.1
4.1

10.6
10.7
7.3

13
2.1
7.1
9.1

12.3
4.2

11.1
2.2

11.1
11.3
12.4
12.4
8

12.1
4.1

11.1
2.3
9.1

11.1
11.1
11.2

S.2
12.2
16
16
10.7

&cape
&quence

\\
\e ,. ,.
\-
\.
\(space)
\0
\I
\"
\&:
\! ,.
\SN
\'le
\(xx
\•x, \•(xx
\a
\b' abc ••• •
\c
\d
\fx, \f(.xx-, \fN
\h'N'
\kx
\I' Ne'
\L' Ne'
\nx,\n(xx
\o' abc ••• •
\p
\r
\sN,\s±N
\t
\u
\v'N'
\w'string·
\x'N'
\ze
\(
\}
\(newline)
\X

Meaning

\ (to prevent or delay the interpretation of\)
Printable version of the cu"ent escape character.
• (acute accent); equivalent to \ (aa
• (grave accent); equivalent to \(p
- Minus sign in the cu"ent font
Period (dot) (see de)
Unpaddable space-size space character
Digit width space
1/6 em narrow space character (zero width in NROFF)
1/12 em half-narrow space character (zero width in NROFF)
Non-printing, zero width character
Transparent line indicator
Beginning of comment
Interpolate argument 1 ~ N~ 9
Def a ult optional hyphenation character
Character named xx
Interpolate string x or xx
Non-interpreted leader character
Bracket building function
Interrupt text processing
Forward (down) 1/2 em venical motion (1/2 line in NROFF)
Change to font named x or .xx-, or position N.
Local horizontal motion; move right N (negatlw left)
Mark horizontal input place in register x
Horizontal line drawing function (optionally with e)
Vertical line drawing function (optionally with e)
Interpolate number register x or xx
Overstrike characters a, b, c, ...
Break and spread output line
Reverse 1 em vertical motion (reverse line in NROFF)
Point-size change function
Non-interpreted horizontal tab
Reverse (up) 1/2 em venical motion (1/2 line in NROFF)
Local venical motion; move down N (negative up)
Interpolate width of string
Extra line-space function (negative before, positive after)
Print c with zero width (without spacing)
Begin conditional input
End conditional input
Concealed (ignored) newline
X, any character not listed above

The escape sequences\\,\.,\•,\$,\•, \a, \n. \t, and \(newline) are interpreted in copy mode (§7.2).

. 6 -

' \

NROFF/TROFF User's Manual
October 11, 1976

Predefined General Number Resisters

Section
Reference

3
11.2
7.4
7.4

11.3
15

4.1
11.2
11.2

Register
Name Dtscrlp!lon

'le Current page number.
ct Character type (set by width function).
di Width (maximum} of last completed diversion.
do Height (vertical size) of last completed diversion.
dw Current day of the week 0-7).
dy Current day of the month {1-31}.
hp Current horizontal place on input line.
In Output line number.
mo Current month 0-12).
nl Vertical position of last printed text base-line.
sb Depth of string below base line (generated by width function}.
st Height of string above base line (generated by width function).
yr Last two digits of current year.

Predefined Read-Only Number Registers

Section Register
Reference Name

7.3 .$
. A

11.1 .H
• T

11.1 . v
5.2 .a

• c
7.4 .d
2.2 .f
4 • b
6 .i
6 .I
4 • n
3 • o
3 • p
2.3 .s
7.5 • t
4.1 .u
5.1 • v

11.2 . w
• x
• y

7.4 • z

Description

Number of arguments available at the current macro level.
Set to 1 in TROFF, if -a option used; always 1 in NROFF .
Available horizontal resolution in basic units .
Set to 1 in NROFF, if -T option used; always 0 in TROFF .
Available vertical resolution in basic units.
Post-line extra line-space most recently utilized using \x' N'.
Number of lines read from current input file .
Current vertical place in current diversion; equal to nl, if no diversion.
Current font as physical quadrant 0-4).
Text base-line high-water mark on current page or diversion .
Current indent.
Current line length.
Length of text portion on previous output line .
Current page off set .
Current page length .
Current point size.
Distance to the next trap .
Equal to 1 in fill mode and 0 in nofill mode.
Current vertical line spacing .
Width of previous character .
Reserved version-dependent register .
Reserved version-dependent register .
Name of current diversion .

- 7 .

NROFF/TROFF User's Manual
October 11, 1976

1. General E:q1lanatton

REFERENCE MANUAL

1.1. Form of input. Input consists of text lines, which are destined to be printed, interspersed with control
lines, which set parameters or otherwise contrQl subsequent processing. Control lines begin with a con­
trol character-normally • (period) or • (acute accent)-followed by a one or two character name that
specifies a basic request or the substitution of a user-defined macro in place of the control line. The
control character • suppresses the break function-the forced output of a panially filled line-caused by
certain requests. The control character may be separated from the request/macro name by white space
(spaces and/or tabs) for esthetic reasons. Names must be followed by either space or newline. Control
lines with unrecognized names are ignored.

Various special functions may be introduced anywhere in the input by means of an escape character,
normally \. For example, the function \nR causes the interpolation of the contents of the number regis­
ter R in place of the function; here R is either a single character name as in \n.x, or left-parenthesis-
introduced, two-character name as in \n (.xx:. · ·

1.2. Formatter and device resolution. TROFF internally uses 432 units/inch, corresponding to the Graphic
Systems phototypesetter which has a horizontal resolution of 1/432 inch and a vertical resolution of
1/144 inch. NROFF internally uses 240 units/inch, corresponding to the least common multiple of the
horizontal and vertical · resolutions of various typewriter-like output devices. TROFF rounds
horizontal/vertical numerical parameter input to the actual horizontal/vertical resolution of the Graphic
Systems typesetter. NROFF similarly rounds numerical input to the actual resolution of the output dev­
ice indicated by the -T option (default Model 37 Teletype).

1.3. Numerical parameter input. Both NROFF and TROFF accept numerical input with the appended scale
indicators shown in the following table, where Sis the current type size in points, Vis the current verti­
cal line spacing in basic units, and C is a nominal character width in basic units.

Scale Number of basic units
Indicator Meaning TROFF NROFF

I Inch 432 240
c Centimeter 432x50/127 240><50/127
p Pica • 1/6 inch 72 .· 240/6
m Em ... Spoints 6xS c
D En - Em/2 3xS C. same as Em
p Point - 1/72 inch 6' 240/72
u Basic unit 1 1
'f Vertical line space y y

none Def a ult, see below

In NROFF, both the em and the en are taken to be equal to the C, which is output-device dependent;
common values are 1/10 and 1/12 inch. Actual character widths in NROFF need not be all the same
and constructed characters such as - > (-) are often extra wide. The def a ult scaling is ems for the
horizontally-oriented requests and functions 11, in, ti, ta, It, po, me, \h, and \l; Vs for the vertically­
oriented requests and functions pl, wb, ch, cit, sp, SY, ne, rt, \Y, \x, and \L; p for the vs request; and
u for the requests nr, if; and le. All other requests ignore any scale indicators. When a number regis­
ter containing an already appropriately scaled number is interpolated to provide numerical input, the
unit scale indicator u may need to be appended to prevent an additional inappropriate def auJt scaling.

- g.

NROFF/TROFF User's Manual
October 11, 1976

The number, N, may be specified in decimal-fraction form but the parameter finally stored is rounded
to an integer number of basic units.

The absolute position indicator I may be prepended to a number N to generate the distance to the vertical
or horizontal place N. For vertically-oriented requests and functions, IN becomes the distance in basic
units from the current vertical place on the page or in a diversion (§1.4) to the the vertical place N. For
all other requests and functions, IN becomes the distance from the current horizontal place on the input
line to the horizontal place N. For example,

.sp l3.2c

will space in the required direction to 3.2 centimeters from the top of the page.

1.4. Numerical expressions. Wherever numerical input is expected an expression involving parentheses,
the arithmetic operators+, -, /, •, o/o (mod), and the logical operators <, >, '<-. >-, - (or--),
& (and), : (or) may be used. Except where controlled by parentheses, evaluation of expressions is
left-to-right; there is no operator precedence. In the case of certain requests, an initial + or - is
stripped and interpreted as an increment or decrement indicator respectively. In the presence of default
scaling, the desired scale indicator must be attached to every number in an expression for which the
desired and default scaling differ. For example, if the number register x contains 2 and the current
point size is 10, then

.11 (4.2Si+\nxP+3) /2u

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points.

1.5. Notation. Numerical parameters are indicated in this manual in two ways. ±N means that the
argument may take the forms N, +N, or -N and that the corresponding effect is to set the affected
parameter to N, to increment it by N, or to decrement it by N respectively. Plain N means that an ini­
tial algebraic sign is not an increment indicator, but merely the sign of N. Generally, unreasonable
numerical input is either ignored or truncated to a reasonable value. For example, most requests
expect to set parameters to non-negative values; exceptions are sp, wh, ch, nr, and if. The requests
ps, ft, po, vs, ls, 11, in, and It restore the previous parameter value in the absence of an argument.

Single character arguments are indicated by single lower case letters and one/two character arguments
are indicated by a pair of lower case letters. Character string arguments are indicated by multi-character
mnemonics.

2. Font and Character Size Control

2.1. Character set. The TROFF character set consists of the Graphics Systems Commercial II character
set plus a Special Mathematical Font character set-each having 102 characters. These character sets
are shown in the attached Table I. All ASCII characters are included, with some on the Special Font.
With three exceptions, the ASCII characters are input as themselves, and non-ASCII characters are input
in the form \(xx where xx is a two-character name given in the attached Table II. The three ASCII
exceptions are mapped as follows:

ASCII Input Printed by TROFF
Character Name Character Name

' acute accent ' close quote . grave accent ' open quote
- minus - hyphen

The characters',·, and - may be input by\',\', and\- respectively or by their names (Table II).
The ASCII characters @, #, •, ·, ·, <, >, \, {, }, ·, A, and_ exist only on the Special Font and are
printed as a 1-em space if that Font is not mounted'.

NROFF understands the entire TROFF character set, but can in general print only ASCII characters,
additional characters as may be available on the output device, such characters as may be able to be
constructed by overstriking or other combination, and those that can reasonably be mapped into other
printable characters. The exact behavior is determined by a driving table prepared for each device. The

- 9 -

NROFF/TROFF User's Manual
October 11, 1976

characters ·, ·, and _ print as themselves. \

2.2. Fontt. The default mounted fonts are Times Roman (R), Times Italic (I), Times Bold (B), and
the Special Mathematical Font (S) on physical typesetter positions 1, 2, 3, and 4 respectively. These
fonts are used in this document. . The cu"ent font, initially Roman, may be changed (among the
mounted fonts) by use of the ft request, or by imbedding at any desired point either \fx, \f(.xx:, or \fN
where x and xx are the name of a mounted font and N is a numerical font position. It is not necessary
to change to the Special font; characters on that font are automatically handled. A request for a named
but not-mounted font is ignored. TROFF can be informed that any particular font is mounted by use of
the fp request. The list of known fonts is installation dependent. In the subsequent discussion of
font-related requests, F represents either a one/two-character font name or the numerical font position,
1-4. The current font is available (as numerical position) in the read-only number register .f.

NROFF understands font control and normally underlines Italic characters (see §10.5).

2.3. Character size. Character point sizes available on the Graphic Systems typesetter are 6, 7, 8, 9, 10,
11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. This is a range of 1/12 inch to 1/2 inch. The ps request is
used to change or restore the point size. Alternatively the point size may be changed between any two
characters by imbedding a \sN at the desired point to set the size to N, or a \s±N O<N<9) to
increment/decrement the size by N:, \sO restores the previous size. Requested point size values that are
between two valid sizes yield the larger of the two. The current size is available in the .s register.
NROFF ignores type size control.

Request Initial If No
Fonn Yalue Argument

.ps ± N lO point previous

.ss N 12/36 em ignored

.cs FNM oft'

.bd F N off'

Nata• Explanation

E Point size set to ± N. Alternatively imbed \sN or \s ± N.

E

p

p

Any positive size value may be requested; if invalid, the
next larger valid size will result, with a maximum of 36.
A paired sequence + N, - N will work because the previ­
ous requested value is also remembered. Ignored in
NROFF.

Space-character size is set to N/36 ems. This size is the
minimum word spacing in adjusted text. Ignored in
NROFF.

Constant character space (width) mode is set on for font
F (if mounted); the width of every character will be
taken to be N/36 ems. If Mis absent, the em is that of
the character's point size; if M is given, the em is M­
points. All affected characters are centered in this space,
including those with an actual width larger than this
space. Special Font characters occurring while the
current font is F are also so. treated. If N is absent, the
mode is turned off. The mode must be still or again in
effect when the characters are physically printed. Ignored
in NROFF.

The characters in font F will be artificially emboldened by
printing each one twice, separated by N-1 basic units. A
reasonable value for N is 3 when the character size is in
the vicinity of 10 points. If N is missing the embolden
mode is turned off. The column heads above were
printed with .bd I 3. The mode must be still or again in
effect when the characters are physically printed. Ignored
in NROFF.

"Notes are explained at tile end of tile Summary and Index above.

- 10 -

NROFF/TROFF User's Manual
October 11, 1976

.bd SF N off

.ft F Roman previous

.fp NF R,I,B,S ignored

3. Page control

p

E

The characters in the Special Font will be emboldened
whenever the current font is F. This manual was printed
with .bd SB 3. The mode must be still or again in effect
when the characters are physically printed.

Font changed to F. Alternatively, imbed \f F. The font
name P is reserved to mean the previous font.

Font position. This is a statement that a font named Fis
mounted on position N 0-4). It is a fatal error if F is
not known. The phototypesetter has four fonts physically
mounted. Each font consists of a film strip which can be
mounted on a numbered quadrant of a wheel. The
default mounting sequence assumed by TROFF is R, I, B,
and S on positions 1, 2, 3 and 4.

Top and bottom margins are not automatically provided; it is conventional to define two macros and to
set traps for them at vertical positions 0 (top) and -N (N from the bottom). See §7 and Tutorial
Examples §T2. A pseudo-page transition onto the first page occurs either when the first break occurs or
when the first non-diverted text processing occurs. Arrangements for a trap to occur at the top of the
first page must be completed before this transition. In the following, references to the current diversion
(§7.4) mean that the mechanism being described works during both ordinary and diverted output (the
former considered as the top diversion level).

The useable page width on the Graphic Systems phototypesetter is about 7.54 inches, beginning about
1/27 inch from the left edge of the 8 inch wide, continuous roll paper. The physical limitations on
NROFF output are output-device dependent.

Request Initial If No
Form Value Argument Notes Explanation

.pl ±N 11 in 11 in

• bp ±N N-1

.pn ±N N-1 ignored

.po ±N O; 26/27 int previous

. ne N N-1 V

v Page length set to ±N. The internal limitation is about
75 inches in TROFF and about 136 inches in NROFF.
The current page length is available in the .p register .

a• ,v Begin page. The current page is ejected and a new page
is begun. If ± N is given, the new page number will be
± N. Also see request ns.

v

D,v

Page number. The next page (when it occurs) will have
the page number ±N. A po must occur before the ini­
tial pseudo-page transition to effect the page number of
the first page. The current page number is in the %
register.

Page offset. The current le.ft margin is set to ± N. The
TROFF initial value provides about 1 inch of paper mar­
gin including the physical typesetter margin of 1/27 inch.
In TROFF the maximum (line-length)+ (page-offset) is
about 7.54 inches. See §6. The current page· offset is
available in the .o register .

Need N vertical space. If the distance, D, to the next
trap position (see §7.5) is less than N, a forward vertical
space of size D occurs, which will spring the trap. If
there are no remaining traps on the page, D is the

0 The use of· • • as control character (instead of •. ") suppresses the break function.

tValues separated by ";" are for NROFF and TROFF respectively.

~ 11 -

NROFF/TROFF User's Manual
October 11, 1976

.mk R none internal

.rt ±N none internal

D

D,T

distance to the bottom of the page. If D < Y, another
line could still be output and spring the trap. In a diver­
sion, D is the . distance to the diversion trap, if any, or is
very large.

Mark the current venical place in an internal register
(both associated with the current diversion level), or in
register R. if given. See rt request.

Return upward only to a marked vertical place in the
current diversion. If ± N (w .r. t current place) is given,
the place is ± N from the top of the page or diversion or,
if N is absent, to a place marked by a previous mk. Note
that the sp request (§5.3) may be used in all cases
instead of rt by spacing to the absolute place stored in a
explicit register; e. g. using the sequence .mk R
.sp l\nRu.

4. Text Filling, Adjusting, and Centering

4.1. Filling and adjusting. Normally, words are collected from input text lines and assembled into a out­
put text line until some word doesn't tit An attempt is then made the hyphenate the word in effort to
assemble a part of it into the output line. The spaces between the words on the output line are then
increased to spread out the line to the current line length minus any current indent. A word is any string
of characters delimited by the space character or the beginning/ end of the input line. Any adjacent pair
of words that must be kept together (neither split across output lines nor spread apan in the adjustment
process) can be tied together by separating them with the unpaddable space character "\ " (backslash­
space). The adjusted word spacings are uniform in TROFF and the minimum interword spacing can be
controlled with the ss request (§2). In NROFF, they are normally nonuniform because of quantization
to character-size spaces; however, the command line option -e causes uniform spacing with full output
device resolution. Filling, adjustment, and hyphenation (§13) can all be prevented or controlled. The
text length on the last line output is available in the .a register, and text base-line position on the page
for this line is in the nl register. The text base-line high-water mark (lowest place) on the current page
is in the .h register.

An input text line ending with . , ? , or ! is taken to be the end of a sentence, and an additional space
character is automatically provided during filling. Multiple inter-word space characters found in the
input are retained, except for trailing spaces; initial spaces also cause a break.

When filling is in etrect, a \p may be imbedded or attached to a word to cause a break at the end of the
word and have the resulting output line spread out to fill the current line length.

A text input line that happens to begin with a control character can be made to not look like a control
line by prefacing it with the non-printing, zero-width filler character \.t. Still another way is to specify
output translation of some convenient character into the control character using tr (§10.5).

4.2. Interrupted text. The copying of a input line in no.fill (non-fill) mode can be interrupted by terminat­
ing the panial line with a \c. The next encountered input text line will be considered to be a continua­
tion of the same line of input text. Similarly, a word within filled text may be interrupted by terminat­
ing the word (and line) with \c; the next encountered text will be taken as a continuation of the inter­
rupted word. If the intervening control lines cause a break, any panial line will be forced out along
with any panial word.

Requat Initial
Form Yalue

.br

I/No
AT111ment Nota .Explanation

B Break. The filling of the line currently being collected is
stopped and the line is output without adjustment. Text
lines beginning with spaC!: characters and empty text
lines (blank lines) also cause a break. ·

- 12.

NROFF/TROFF User's Manual
October 11, 1976

.fi fill on

.nf fill on

.ad c adj, both adjust

.na adjust

.ce N oft' N-1

5. Vertical Spacinc

B,E

B,E

E

E

B,E

Fill subsequent output lines. The register .u is 1 in fill
mode and 0 in nofill mode.

Nofill. Subsequent output lines are neither filled nor
adjusted. Input text lines are copied directly to output
lines without regard for the current line length.

Line adjustment is begun. If fill mode is not on, adjust­
ment will be deferred until fill mode is back on. If the
type indicator c is present, the adjustment type is
changed as shown in the following table.

Indicator Adjust Type

I adjust left margin only
r adjust right margin only
c center

born adjust both margins
absent unchanged

Noadjust. Adjustment is turned oft'; the right margin will
be ragged. The adjustment type for ad. is not changed.
Output line filling still occurs if fill mode is on.

Center the next N input text lines within the current
(line-length minus indent). If N-0, any residual count
is cleared. A break occurs after each of the N input
lines. If the input line is too long, it will be left adjusted.

5.1. Base-line spacing. The vertical spacing (V) between the base-lines of successive output lines can be
set using the vs request with a resolution of 1/144 inch -1/2 point in TROFF, and to the output device
resolution in NROFF. V must be large enough to accommodate the character sizes on the affected out­
put lines. For the common type sizes (9-12 points), usual typesetting practice is to set V to 2 points
greater than the point size; TROFF default is 10-point type on a 12-point spacing (as in this document).
The current Vis available in the .v register. Multiple- V line separation (e.g. double spacing) may be
requested with Is.

5.2. Exira line-space. If a word contains a vertically tall construct requiring the output line containing it
to have extra vertical space before and/or after it, the extra-line-space function \x' N' can be imbedded
in or attached to that word. In this and other functions having a pair of delimiters around their parame­
ter (here ·), the delimiter cholce is arbitrary, except that it can't look like the continuation of a number
expression for N. If N is negative, the output line containing the word will be preceded by N extra
vertical space; if N is positive, the output line containing the word will be followed by N extra vertical
space. If successive requests for extra space apply to the same line, the maximum values are used.
The most recently utilized post-line extra line-space is available in the .a register.

5.3. Blocks of vertical space. A block of vertical space is ordinarily requested using sp, which honors the
no-space mode and which does not space past a trap. A contiguous block of vertical space may be
reserved using sv.

Requat Initial
Form Value

JJNo
Argument

.vs N l/6in;l2pts previous

.ls N N-1 previous

Notes Explanation

E,p

E

Set vertical base-line spacing size V. Transient extra
vertical space available with \x' N' (see above).

Line spacing set to ± N. N-1 Vs (blank lines) are
appended to each output text line. Appended blank lines
are omitted, if the text or previous appended blank line

- 13 -

NROFF/TROFF User's Manual
October 11, 1976

.sp N N-lV

.sv N N-lV

.os

.ns space

.rs space

Blank text line.

6. Line Lensth and Indenting

B,v

T

D

D

B

reached a trap position.

Space vertically in either direction. If N is negative, the
motion. is backward (upward) and is limited to the dis­
tance to the top of the page. Forward (downward)
motion is truncated to the distance to the nearest trap. If
the no-space mode is on, no spacing occurs (see ns, and
rs below).

Save a contiguous vertical block of size N. If the dis­
tance to the next trap is greater than N, N vertical space
is output. No-space mode has no effect. If this distance·
is less than N, no vertical space is immediately output,
but N is remembered for later output (see os). Subse­
quent sv requests will overwrite any still remembered N.

Output saved vertical space. No-space mode has no
efl'ect. Used to finally output a block of vertical space
requested by an earlier ST request.

No-space mode turned on. When on, the no-space mode
inhibits sp requests and bp requests without a next page
number. The no-space mode is turned off when a line of
output occurs, or with rs.

Restore spacing. The no-space mode is turned oft'.

Causes a break and output of a blank line exactly like
sp 1.

The maximum line length for fill mode may be set with 11. The indent may be set with in; an indent
applicable to on(v the next output line may be set with ti. The line length includes indent space but not
page off set space. The line-length minus the indent is the basis for centering with ce. The effect of ll,
in, or ti is delayed, if a partially collected line exists, until after that line is output. In fill mode the
length of text on an output line is less than or equal to the line length minus the indent. The current
line length and indent are available in registers .1 and .l respectively. The length of three-part titles pro­
duced by ti (see §14) is independently set by lt.

Request Initial If No
Form Value Arrument Notes Explanation

.ll ±N 6.S in previous E,m Line length is set to ±N. In TROFF the maximum
(line-length)+ (page-off set) is about 7 .54 inches.

.in ±N N-0

.ti ±N

previous

ignored

B,E,m Indent is set to ± N. The indent is prepended to each
output line.

B,E,m Temporary indent. The next output text line will be
indented a distance ±N with respect to the current
indent. The resulting total indent may not be negative.
The current indent is not changed.

7. Macros, Strings, Diversion, and Position Traps

7.1. Macros and strings. A macro is a named set of arbitrary lines that may be invoked by name or with
a trap. A string is a named string of characters, not including a newline character, that may be interpo­
lated by name at any point. Request, macro, and string names share the same name list. Macro and
string names may be one or two characters long and may usurp previously defined request, macro, or
string names. Any of these entities may be renamed with m or removed with rm. Macros are created
by de and di, and appended to by am and da; di and da cause normal output to be stored in a macro.
Strings are created by ds and appended to by as. A macro is invoked in the same way as a request; a

• 14 •

NROFF/TROFF User's Manual
October 11, 1976

control line beginning .xx will interpolate the contents of macro xx. The remainder of the line may
contain up to nine arguments. The strings x and xx are interpolated at any desired point with \•x and
\•(xx respectively. String references and macro invocations may be nested.

7.2. Copy mode input interpretation. During the definition and extension of strings and macros (not by
diversion) the input is read in copy mode. The input is copied without interpretation except that:

• The contents of number registers indicated by \n are interpolated.
• Strings indicated by\• are interpolated.
• Arguments indicated by\$ are interpolated.
• Concealed newlines indicated by \(newline) are eliminated.
• Comments indicated by \ • are eliminated.
• \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9).
• \\ is interpreted as \.
• \. is interpreted as ".".

These interpretations can be suppressed by prepending a \. For example, since \\ maps into a \, \\n
will copy as \n which will be interpreted as a number register indicator when the macro or string is
reread.

7.J. Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up to
nine arguments. The argument separator is the space character, and arguments may be surrounded by
double-quotes to permit imbedded space characters. Pairs of double-quotes may be imbedded in
double-quoted arguments to represent a single double-quote. If the desired arguments won't fit on a
line, a concealed newline may be used to continue on the next line. ·

When a macro is invoked the input level is pushed down and any arguments available at the previous
level become unavailable until the macro is completely read and the previous level is restored. A
macro's own arguments can be interpolated at any point within the macro with \SN, which interpolates
the Nth argument (1~N~9). If an invoked argument doesn't exist, a null string results. For exam­
ple, the macro x:x may be defined by

.de xx \•begin definition
Today is \\$1 the \\$2.

\•end definition

and called by

.xx Monday 14th

to produce the text

Today is Monday the 14th.

Note that the \$ was concealed in the definition with a prepended \. The number of currently available
arguments is in the .$ register.

No arguments are available at the top (non-macro) level in this implementation. Because string
referencing is implemented as a input-level push down, no arguments are available from within a string.
No arguments are available within a trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for reference. The mechan­
ism does not allow an argument to contain a direct reference to a long string (interpolated at copy time)
and it is advisable to conceal string references (with an extra \) to delay interpolation until argument
reference time.

7.4. Diversions. Processed output may be diverted into a macro for purposes such as footnote processing
(see Tutorial §TS) or determining the horizontal and vertical size of some text for conditional changing
of pages or columns. A single diversion trap may be set at a specified vertical position. The number
registers dn and di respectively contain the vertical and horizontal size of the most recently ended
diversion. Processed text that is diverted into a macro retains the vertical size of each of its lines when
reread in no.fill mode regardless of the current V. Constant-spaced (cs) or emboldened (bd) text that is
diverted can be reread correctly only if these modes are.again or still in effect at reread time. One way

- 15 -

NROFF/TROFF User's Manual
October 11, 1976

to do this is to imbed in the diversion the appropriate cs or bd requests with the transparent mechanism
described in §10.6.

Diversions may be nested and certain parameters and registers are associated with the current diversion
level (the top non-diversion level may be thought of as the 0th diversion level). These are the diver·
sion trap and associated macro, no-space mode, the internally-saved marked place (see mk and rt), the
current vertical place (.d register), the current high-water text base-line (.h register), and the current
diversion name (.z register).

7.5. Traps. Three types of trap mechanisms are available-page traps, a diversion trap, and an input­
line-count trap. Macro-invocation traps may be planted using wb at any page position including the top.
This trap position may be changed using ch. Trap positions at or below the bottom of the page have no
effect unless or until moved to within the page or rendered effective by an increase in page length.
Two traps may be planted at the same position only by first planting them at different positions and
then moving one of the traps; the first planted trap will conceal the second unless and until the first one
is moved (see Tutorial Examples §TS). If the first one is moved back, it again conceals the second
trap. The macro associated with a page trap is automatically invoked when a line of text is output
wh<>se vertical size reachu or sweeps past the trap position. Reaching the bottom of a page springs the
top-of-page trap, if any, provided there is a next page. The distance to the next trap position is avail­
able in the .t register; if there are no traps between the current position and the bottom of the page, the
distance returned is the distance to the page bottom.

A macro-invocation trap effective in the current diversion may be planted using dt. The .t register
works in a diversion; if there is no subsequent trap a large distance is returned. For a description of
input-line-count traps, see it below.

Requut Initial I/ No
Fonn Yalue Al'fllment Notu Explanation

.de xx yy

• am xx yy

.ds xx string •

.as xx string -

.rm xx

.m xxyy

.di xx

.yy-..

. yy-.•

ignored

ignored

ignored

ignored

end D

Define or redefine the macro xx. The contents of the
macro begin on the next input line. Input lines are
copied in copy mode until the definition is terminated by a
line beginning with .yy, whereupon the macro yy is
called. In the absence of yy, the definition is terminated
by a line beginning with " .. •. A macro may contain de
requests provided the terminating macros differ or the
contained definition terminator is concealed. • .. • can be
concealed as \ \.. which will copy as \ .. and be reread as
• •

Append to macro (append version of de) .

Define a string xx containing string. Any initial double·
quote in string is stripped off to permit initial blanks.

Append string to string xx (append version of ds).

Remove request, macro, or string. The name xx is
removed from the name list and any related storage
space is freed. Subsequent references will have no effect.

Rename request, macro, or string xx to yy. If yy exists, it
is first removed.

Divert output to macro xx. Normal text processing
occurs during diversion except that page offsetting is not
done. The diversion ends when the request dl or da is
encountered without an argument; extraneous requests
of this type should not appear when nested diversions are
being used.

- 16 •

NROFF/TROFF User's Manual
October 11, 1976

.da xx

.wh N xx

.ch xx N

.dt N xx

.it N xx

. em xx none

8. Number Registers

end

off

off

none

D

v

v

D,v

E

Divert, appending to xx (append version of di).

Install a trap to invoke xx at page position N; a negative N
will be interpreted with respect to the page bottom. Any
macro previously planted at N is replaced by xx. A zero
N refers to the top of a page. In the absence of xx, the
first found trap at N, if any, is removed.

Change the trap position for macro xx to be N. In the
absence of N, the trap, if any, is removed.

Install a diversion trap at position N in the current diver­
sion to invoke macro xx. Another dt will redefine the
diversion trap. If no arguments are given, the diversion
trap is removed.

Set an input-line-count trap to invoke the macro xx after
N lines of text input have been read (control or request
lines don't count). The text may be in-line text or text
interpolated by inline or trap-invoked macros.

The macro xx will be invoked when all input has ended .
The effect is the same as if the contents of xx had been
at the end of the last file processed.

A variety of parameters are available to the user as predefined, named number registers (see Summary
and Index, page 7). In addition, the user may define his own named registers. Register names are one
or two characters long and do not conflict with request, macro, or string names. Except for certain
predefined read-only registers, a number register can be read, written, automatically incremented or
decremented, and interpolated into the input in a variety of formats. One common use of user-defined
registers is to automatically number sections, paragraphs, lines, etc. A number register may be used
any time numerical input is expected or desired and may be used in numerical expressions (§1.4).

Number registers are created and modified using nr, which specifies the name, numerical value, and
the auto-increment size. Registers are also modified, if accessed with an auto-incrementing sequence.
If the registers x and xx both contain N and have the auto-increment size M, the following access
sequences have the effect shown:

Effect on Value
Sequence Register Interpolated

\nx none N
\n(xx none N
\n+x x incremented by M N+M
\n-x x decremented by M N-M
\n+(xx xx incremented by M N+M
\n-(xx xx decremented by M N-M

When interpolated, a number register is converted to decimal (default), decimal with leading zeros,
lower-case Roman, upper-case Roman, lower-case sequential alphabetic, or upper-case sequential alpha­
betic according to. the format specified by af.

Request Initial U No
Form Value Argument Notes Explanation

.nrR ±NM u The number register R is assigned the value ± N with
respect to the previous value, if any. The increment for
auto-incrementing is set to M

- 17 -

NROFF/TROFF User's Manual
October 11, 1976

.af R c arabic

.rr R ignored

9. Tabs, Leaders, and Fields

Assign format c to register R. The available formats are:

Numbering
Format Sequence

1 O,l,2,3,4,5, ...
001 000,001,002,003,004,00S, ...

1 O,i,ii,iii,iv, v , ...
I 0,1,n,m,IV ,v
a O,a,b,c, ... ,z.,aa,ab, ... ,z.z.,aaa, ...
A 0,A,B,C, ... ,Z,AA,AB, ... ,ZZ,AAA, ...

An arabic f onnat having N digits specifies a field width of
N digits (example 2 above). The read-only registers and
the width function (§11.2) are always arabic.

Remove register R. If many registers are being created
dynamically, it may become necessary to remove no
longer used registers to recapture internal storage space
for newer registers.

9.1. Tabs and leaden. The ASCil horizontal tab character and the ASCII SOH (hereafter known as the
leader character) can both be used to generate either horizontal motion or a string of repeated charac·
ters. The length of the generated entity is governed by internal tab stopJ specifiable with ta. The
default difference is that tabs generate motion and leaders generate a string of periods; tc and le otrer
the choice of repeated character or motion. There are three types of internal tab stops- left adjusting,
right adjusting, and centering. In the foil owing table: D is the distance from the current position on the
input line (where a tab or leader was found) to the next tab stop; next-string consists of the input charac·
ters following the tab (or leader) up to the next tab (or leader) or end of line; and Wis the width of
next-string.

Tab Length of motion or Location of
type repeated characters next-string
Left D Following D

Right D-W Right adjusted within D
Centered D-W/2 Centered on right end of D

The length of generated motion is allowed to be negative, but that of a repeated character string cannot
be. Repeated character strings contain an integer number of characters, and any residual distance is
prepended as motion. Tabs or leaders found after the last tab stop arc ignored, but may be used as
next-string terminators.

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a non-interpreted tab and
leader respectively, and are equivalent to actual tabs and leaders in copy mode.

9.2. Fields. A field is contained between a pair of field delimiter characters, and consists of sub-strings
separated by padding indicator characters. The field length is the distance on the input line from the
position where the field begins to the next tab stop. The difference between the total length of all the
sub-strings and the field length is incorporated as horizontal padding space that is divided among the
indicated padding places. The incorporated padding is allowed to be negative. For example, if the field
delimiter is # and the padding indicator is .. , #'" xxx'" right# specifies a right-adjusted string with the
string xxx centered in the remaining space.

• 18 •

NROFF/TROFF User's Manual
October 11, 1976

Requat
Form

.ta Nt ...

.tc c

.le c

Initial
Value

0.8; O.Sin

none

Q'No
Argument Notes Explanation

none E,m Set tab stops and types. t-R, right adjusting; t-C,
centering; t absent, left adjusting. TROFF tab stops are
preset every O.Sin.; NROFF every 0.8in. The stop values
are separated by spaces, and a value preceded by + is
treated as an increment to the previous stop value.

none E

none E

The tab repetition character becomes c, or is removed
specifying motion.

The leader repetition character becomes c, or is removed
specifying motion .

• fc a b off off The field delimiter is set to a; the padding indicator is set
to the space character or to b, if given. In the absence of
arguments the field mechanism is turned off.

10. Input and Output Conventions and Character Translations

10.1. Input character translations. Ways of inputting the graphic character set were discussed in §2.1.
The ASCII control characters horizontal tab (§9.1), SOH (§9.1), and backspace (§10.3) are discussed
elsewhere. The newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are accepted,
and may be used as delimiters or translated into a graphic with tr (§10.5). All others are ignored.

The escape character \ introduces escape sequences-causes the following character to mean another
character, or to indicate some function. A complete list of such sequences is given in the Summary
and Index on page 6. \ should not be confused with the ASCII control character ESC of the same name.
The escape character \ can be input with the sequence \ \. The escape character can be changed with
ec, and all that has been said about the default \ becomes true for the new escape character. \e can be
used to print whatever the current escape character is. If necessary or convenient, the escape mechan­
ism may be turned off with eo, and restored with ec.

Request Initial U No
Form Yalue Argument Notes Explanation

• ec c \ \ Set escape·character to\, or to c, if given .

.eo on Turn escape mechanism off.

10.2. Ligatures. Five ligatures are available in the current TROFF character set - fl, fl, ff, fft, and fft.
They may be input (even in NROFF) by \(fi, \(fl, \(ff, \(Fi, and \(Fl respectively. The ligature mode
is normally on in TROFF, and automatically invokes ligatures during input.

Requat Initial U No
For,,. Value Argument Notes .Explanation

.lg N off; on on . - Ligature mode is turned on if N is absent or non-zero,
and turned off if N-0. If N-2, only the two-character
ligatures are automatically invoked. Ligature mode is
inhibited for request, macro, string, register, or file
names, and in copy mode. No effect in NROFF.

10.J, Backspacing, underlining, overstriking, etc. Unless in copy mode, the ASCII backspace character is
replaced by a backward horizontal motion having the width of the space character. Underlining as a
form of line-drawing is discussed in §12.4. A generalized overstriking function is described in §12.1.

NROFF automatically underlines characters in the underline font, specifiable with uf, normally that on
font position 2 (normally Times Italic, see §2.2). In addition to ft and \f.F, the underline font may be
selocted by ul and cu. Underlining is restricted to an output-device-dependent subset of reasonable
chal'acters.

- 19 -

NROFF/TROFF User's Manual
October 11, 1976

Requat
Form

.ul N

.cuN

.uf F

Initial
Yalue

off

otl'

Italic

I/No
Argument

N-1

N-1

Italic

Nata Explanation

E Underline in NROFF (italicize in TROFF) the next N
input text lines. Actually, switch to underline font, saving
the current font for later restoration; other font changes
within the span of a ul will take effect, but the restora­
tion will undo the last change. Output generated by tl
(§14) is affected by the font change, but does not decre­
ment N. If N> 1, there is the risk that a trap interpo·
lated macro may provide text lines within the span;
environment switching can prevent this.

E A variant of ul that causes every character to be under­
lined in NROFF. Identical to ul in TROFF.

Underline font set to F. In NROFF, F may not be on
position 1 (initially Times Roman).

10.4. Control characters. Both the control character • and the no-break control character • may be
changed, if desired. Such a change must be compatible with the design of any macros used in the span
of the change, and particularly of any trap-invoked macros.

Requat Initial If No
Form Yahle Argument Nata Explanation

.cc c E The basic control character is set to c. or reset to •. • .

. cl c E The nobreak control character is set to c. or reset to """.

10.S. Output translation. One character can be made a stand-in for another character using tr. All text
processing (e. g. character comparisons) takes place with the input (stand-in) character which appears to
have the width of the final character. The graphic translation occurs at the moment of output (includ·
ing diversion).

Request Initial
Form Y alue

.tr abed.... none

Notes Explanation

0 Translate a into b, c into d. etc. If an odd number of
characters is given, the last one will be mapped into the
space character. To be consistent, a particular translation
must stay in effect from input to output time.

10.6. Transparent throughput. An input line beginning with a \! is read in copy mode and transparently
output (without the initial \!); the text processor is otherwise unaware of the line's presence. This
mechanism may be used to pass control information to a post-processor or to imbed control lines in a
macro created by a diversion.

10. 7. Comments and concealed newlines. An uncomfortably long input line that must stay one line (e. g.
a string definition, or nofilled text) can be split into many physical lines by ending all but the last one
with the escape\. The sequence \(newline) is always ignored-except in a comment. Comments may
be imbedded at the end of any line by prefacing them with \ •. The newline at the end of a comment
cannot be concealed. A line beginning with \ • will appear as a blank line and behave like .sp 1; a com·
ment can be on a line by itself by beginning the line with • \ •.

11. Local Horizontal and Vertical Motions, and the Width Function

11.1. Local Motions. The functions \y' N' and \h' N' can be used for local vertical and horizontal motion
respectively. The distance N may be negative; the positive directions are rightward and downward. A
local motion is one contained within a line. To avoid unexpected vertical dislocations, it is necessary
that the net vertical local motion within a word in filled text and otherwise within a line balance to zero.
The above and certain other escape sequences providing local motion are summarized in the following
table.

- 20 -

NROFF/TROFF User's Manual
October 11, 1976

Vertical Effect in
Local Motion TROFF NROFF

\v'N' Move distance N

\u 1/2 em up If; line up
\d V2 em down If; line down
\r 1 em up 1 line up

Horizontal Effect in
Local Motion TROFF NROFF

\h'N' Move distance N
\(space) Unpaddable space-size space
\0 Digit-size space

\I 1/6 em space ignored
\A 1/12 em space ignored

As an example, E2 could be generated by the sequence E\s-2\v'-0.4m'2\v'0.4m'\s+2; it should be
noted in this example that the 0.4 em vertical motions are at the smaller size.

11.2. Width Function. The width function \vv' string' generates the numerical width of string (in basic
units). Size and font changes may be safely imbedded in string, and will not affect the current environ­
ment. For example, .ti -\w'l. 'u could be used to temporarily indent leftward a distance equal to the
size of the string "1. •.

The width function also sets three number registers. The registers st and sh are set respectively to the
highest and lowest extent of string relative to the baseline; then, for example, the total height of the
string is \n(stu-\n(sbu. In TROFF the number register ct is set to a value between 0 and 3: 0 means
that all of the characters in string were short lower case characters without descenders (like e); 1 means
that at least one character has a descender Oike y); 2 means that at least one character is tall Oike H);
and 3 means that both tall characters and characters with descenders are present.

11.J. Mark horizontal place. The escape sequence \kx will cause the current horizontal position in the
input line to be stored in register x. As an example, the construction \kx word\h' l\nxu + 2u ·word will
embolden word by backing up to almost its beginning and overprinting it, resulting in word.

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions

12.1. Overstriking. Automatically centered overstriking of up to nine characters is provided by the over­
strike function \o' string'. The characters in string overprinted with centers aligned; the total width is
that of the widest character. string should not contain local vertical motion. As examples, \o' e\" pro­
duces e, and \o'\(mo\(sl' produces ~.

12.2. Zero-width characters. The function \zc will output c without spacing over it, and can be used to
produce left-aligned overstruck combinations. As examples, \z\(ci\(pl will produce E&, and
\(br\z\(rn\(ul\(br will produce the smallest possible constructed box O.
12.J. Large Brackets. The Special Mathematical Font contains a number of bracket construction pieces
((l l J i } l l J r l) that can be combined into various bracket styles. The function \b' string' may be used
to pile up vertically the characters in string (the first character on top and the last at the bottom); the
characters are vertically separated by 1 em and the total pile is centered 1/2 em above the current base-

line (V2 line in NROFF). For example, \b'\(lc\Of'E\j\b'\(rc\(rf'\x' -0.Sm'\x'O.Sm' produces [E).

12.4. Line drawing. The function \I' Ne' will draw a string of repeated c 's towards the right for a dis­
tance N. (\I is \(lower case L). If c looks like a continuation of an expression for N, it may insulated
from N with a\&:. If cis not specified, the _ (baseline rule) is used (underline character in NROFF). If
N is negative, a backward horizontal motion of size N is made before drawing the string. Any space
resulting from NI (size of c) having a remainder is put at the beginning (left end) of the string. In the
case of characters that are designed to be connected such as baseline-rule _, underrule , and root­
en - , the remainder space is covered by over-lapping. If N is less than the width of c, a si;gle c is cen­
tered on a distance N. As an example, a macro to underscore a string can be written

.de us
\\Sl\I '·IO\Cul'

• 21 -

NROFF/TROFF User's Manual
October 11, 1976

or one to draw a box around a string

.de bx
\(br\I\ \Sl\l\<br\ l 'IO\(m\ l 'IO\Cul'

such that

.ul •underlined words•

and

.bx •words in a box•

yield underlined words and !words in a box L

The function \L' Ne' will draw a vertical line consisting of the (optional) character c stacked vertically
apart 1 em (1 line in NROFF), with the first two characters overlapped, if necessary, to form a continu­
ous line. The default character is the box rule I (\(br); the other suitable character is the bold vertical I
(\ (bv). The line is begun without any initial motion relative to the current base line. A positive N
specifies a line drawn downward and a negative N specifies a line drawn upward. After the line is drawn
no compensating motions are made; the instantaneous baseline is at the end of the. line.

The horizontal and vertical line drawing functions may be used in combination to produce large boxes.
The zero-width box-rule and the '12-em wide underrule were designed to form comers when using 1-em
vertical spacings. For example the macro

.de eb

.sp -1 \•compensate for next automatic base-line spacin1

.nf \ •&Toid possibly overflowtn1 word buffer
\h'-.5n\L'l\\nau-1\l"\\n(.lu+ln\(al\L'-l\\naa+l"\l'IOu-.5n\(ul' \•draw box
.n

will draw a box around some text whose beginning vertical place was saved in number register a (e. g.
usiqg_ .mk ~as done for thisJtara_g_raJth.

13. Hyphenation.

The automatic hyphenation may be switched off and on. When switched on with by, several variants
may be set. A hyphenation indicator character may be . imbedded in a word to specify desired hyphena­
tion points, or may be prepended to suppress hyphenation. In addition, the user may specify a small
exception word list.

Only words that consist of a central alphabetic string surrounded by (usually null) non-alphabetic
strings are considered candidates for automatic hyphenation. Words that were input containing hyphens
(minus), em-dashes (\(em), or hyphenation indicator characters-such as mother-in-law-are always
subject to splitting after those characters, whether or not automatic hyphenation is on or off.

Request Initial If No
Fann Yalue Argument Notu Explanation

.nh

.hyN

hyphenate •

on.N-1 on,N-1

.he c \% \%

.hw wordl .•• ignored

E

E

E

Automatic hyphenation is turned off.

Automatic hyphenation is turned on for N~l. or off for
N-0. If N-2, last lines (ones that will cause a trap)
are not hyphenated. For N-4 and 8, the last and .first
two characters respectively of a word are not split off.
These values are additive; i. e. N-14 will invoke all
three restrictions.

Hyphenation indicator character is set to c or to the
default\%. The indicator does not appear in the output.

Specify hyphenation points in words with imbedded
minus signs. Versions of a word with terminal s are

• 22.

NROFF/TROFF User's Manual
October 11, 197 6

14. Three Part Titles.

implied; i. e. dig-it implies dig-its. This list is exam·
ined initially and after each suffix stripping. The space
available is small-about 128 characters.

The titling function ti provides for automatic placement of three fields at the left, center, and right of a
line with a title-length specifiable with It. ti may be used anywhere, and is independent of the normal
text collecting process. A common use is in header and footer macros.

Request
Form

Initial
Value

.tl 'left' center' right'

.pc c o/o

.It ±N 6.Sin

If No
Argument

off

previous

15. Output Line Numbering.

Notes Explanation

The strings left, center, and right are respectively left­
adjusted, centered, and right-adjusted in the current
title-length. Any of the strings may be empty, and over­
lapping is permitted. If the page-number character (ini­
tially o/o) is found within any of the fields it is replaced by
the current page number having the format assigned to
register o/o. Any character may be used as the string del­
imiter.

The page number character is set to c, or removed. The
page-number register remains%.

E,m Length of title set to ± N. The line-length and the title­
length are independent. Indents do not apply to titles;
page-offsets do.

Automatic sequence numbering of output lines may be requested with nm. When in effect, a
three-digit, arabic number plus a digit-space is prepended to output text lines. The text lines are

3 thus offset by four digit-spaces, and otherwise retain their line length; a reduction in line length
may be desired to keep the right margin aligned with an earlier margin. Blank lines, other vertical
spaces, and lines generated by ti are not numbered. Numbering can be temporarily suspended with

6 nn, or with an .nm followed by a later .nm +o. In addition, a line number indent /, and the
number-text separation S may be specified in digit-spaces. Further, it can be specified that only
those line numbers that are multiples of some number Mare to be printed (the others will appear

9 as blank number fields).

Request
Form

Initial
Value

.nm ±NM SI

. nn N

I/No
Argument

off

Notes Explanation

E Line number mode. If ±N is given, line numbering is
turn~d on, and the next output line numbered is num­
bered ±N. Default values are M-1, S-1, and I-0.
Parameters corresponding to missing arguments are
unaffected; a non-numeric argument is considered miss­
ing. In the absence of all arguments, numbering is
turned off; the next line number is preserved for possible
further use in number register In.

E The next N text output lines are not numbered .

As an example, the paragraph portions of this section are numbered with M- 3: .nm 1 3 was
placed at the beginning; .nm was placed at the end of the first paragraph; and .nm +O was placed

12 in front of this paragraph; and .nm finally placed at the end. Line lengths were also changed (by
\w'OOOO'u) to keep the right side aligned. Another example is .nm +5 5 x 3 which turns on
numbering with the line number of the next line to be S greater than the last numbered line, with

15 M- S, with spacing S untouched, and with the indent I set to 3.

- 23 •

NROFF/TROFF User's Manual
October 11, 1976

16. Conditional Acceptance of Input

In the following, c is a one-character, built-in condition name, !·signifies not, N is a numerical expres­
sion, stringl and string2 are strings delimited by any non-blank, non-numeric character not in the
strings, and anything represents what is conditionally accepted.

Request Initial U No
Form Value .Argument Note8 Explanation

.if c anything If condition c true, accept anything as input; in multi-line
case use \{anything\} .

• tf ! c anything

• if N anything

.if !N anything

.if • stringl' string2' anything

.lf ! · stringl' string]' anything

• ie c anything

.el anything

u

u

u

The built-in condition names are:

Condition
Name

0

e
t
D

If condition c false, accept anything.

If expression N > 0, accept anything .

If expression N ~ 0, accept anything.

If stringl identical to string2, accept anything.

If stringl not identical to string2, accept anything.

If portion of if-else; all above forms (like if) .

Else portion of if-else.

True If
Current page number is odd
Current page number is even
Formatter is TROFF
Formatter is NROFF

If the condition c is true, or if the number N is greater than zero, or if the strings compare identically
(including motions and character size and font), anything is accepted as input. If a ! precedes the condi·
tion, number, or string comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are slcipped over. The anything can be
either a single input line (text, macro, or whatever) or a number of input lines. In the multi-line case,
the first line must begin with a left delimiter\{ and the last line must end with a right delimiter\}.

The request le (if-else) is identical to if except that the acceptance state is remembered. A subsequent
and matching el (else) request then uses the reverse sense of that state. le • el pairs may be nested.

Some examples are:

.if e .ti ·Even Pa1e ~···

which outputs a title if the page number is even; and

.le \n~>l \{\
'sp O.Si
.ti • Pa1e 'Ye···
'sp l1.2i \}
.el .sp 12.Si

which treats page 1 differently from other pages.

17. Environment Switching.

A number of the parameters that control the text processing are gathered together into an environment,
which can be switched by the user. The environment parameters are those associated with requests
noting E in their Notes column; in addition, partially collected lines and words are in the environment.
Everything else is global; examples are page-oriented parameters, diversion-oriented parameters,

. 24.

NROFF/TROFF User's Manual
October 11, 1976

number registers, and
parameter values.

Request Initial
Form Value

.ev N N-0

macro and string definitions. All environments are initialized with default

I/No
Argument Notes Explanation

previous Environment switched to environment 0 ~ N~ 2. Switch­
ing is done in push-down fashion so that restoring a pre­
vious environment must be done with .ev rather than
specific reference.

18. Insertions from the Standard Input

The input can be temporarily switched to the system standard input with rd, which will switch back
when two newlines in a row are found (the extra blank line is not used). This mechanism is intended
for insertions in form-letter-like documentation. On UNIX, the standard input can be the user's key­
board, a pipe, or a file.

Request Initial
Form Value

.rd prompt

.ex

I/No
.Argument Notes Explanation

prompt-BEL- Read insertion from the standard input until two new­
lines in a row are found. If the standard input is the
user's keyboard, prompt (or a BEL) is written onto the
user's terminal. rd behaves like a macro, and arguments
may be placed after prompt.

Exit from NROFF/TROFF. Text processing is terminated
exactly as if all input had ended.

If insertions are to be taken from the terminal keyboard while output is being printed on the terminal,
the command line option -q will turn off the echoing of keyboard input and prompt only with BEL.
The regular input and insertion input cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the insertions for all the
copies in one file to be used as the standard input, and causing the file containing the letter to reinvoke
itself using nx (§ 19); the process would ultimately be ended by an ex in the insertion file.

19. Input/Output File Switching

Request Initial If No
Form Value .Argument Notes Explanation

.so filename

.nx filename

.pi program

20. Miscellaneous

Request
Form

.me cN

Initial
Value

Switch source file. The top input (file reading) level is
switched to filename. The effect of an so encountered in
a macro is not felt until the input level returns to the file
level. When the new file ends, input is again taken from
the original file. so's may be nested.

end-of-file - Next file is filename. The current file is considered
ended, and the input is immediately switched to filename.

I/No
.Argument

off

Pipe output to program (NROFF only). This request
must occur before any printing occurs. No arguments are
transmitted to program.

Notes Explanation

E,m Specifies that a margin character c appear a distance N to
the right of the right margin after each non-empty text
line (except those produced by tl). If the output line is
too-long (as can happen in nofill mode) the character will

- 25 -

NROFF/TROFF User's Manual
October 11, 1976

.tm string newline

.11 yy .yy-••

.pm t all

.fl

21. Output and Error Messages.

B

be appended to the line. If N is not given, the previous
N is used; the initial N is 0.2 inches in NROFF and 1 em
in TROFF. The margin character used with this para­
graph was a 12-point box-rule.

After skipping initial blanks, string (rest of the line) is
read in copy mode and written on the user's terminal.

Ignore input lines. i& behaves exactly like de (§7) except
that the input is discarded. The input is read in copy
mode, and any auto-incremented registers will be
affected.

Print macros. The names and sizes of all of the defined
macros and strings are printed on the user's terminal; if t
is given, only the total of the sizes is printed. The sizes
is given in blocks of 128 characters.

Flush output buffer. Used in interactive debugging to
force output.

The output from tm, pm, and the prompt from rd, as well as various e"or messages are written onto
UNIX's standard message output. The latter is different from the standard outpUt. where NROFF format­
ted output goes. By default, both are written onto the user's terminal, but they can be independently
redirected.

Various e"°r conditions may occur during the operation of NROFF and TROFF. Certain less serious
errors having only local impact do not cause processing to terminate. Two examples are word overflow,
caused by a word that is too large to fit into the word buff er (in fill mode), and ltne overflow, caused by
an output line that grew too large to fit in the line buffer; in both cases, a message is printed, the
offending excess is discarded, and the affected word or line is marked at the point of truncation with a •
in NROFF and a,. in TROFF. The philosophy is to continue processing, if possible, on the grounds
that output useful for debugging may be produced. If a serious error occurs, processing terminates, and
an appropriate message is printed. Examples are the inability to create, read, or write files, and the
exceeding of certain internal limits that make future output unlikely to be useful.

- 26 -

NROFF/TROFF User's Manual
October 11, 1976

TUTORIAL EXAMPLES

Tl. Introduction

Although NROFF and TROFF have by design a
syntax reminiscent of earlier text processors•
with the intent of easing their use, it is almost
always necessary to prepare at least a small set of
macro definitions to describe most documents.
Such common formatting needs as page margins
and footnotes are deliberately not built into
NROFF and TROFF. Instead, the macro and
string definition, number register, diversion,
environment switching, page-position trap, and
conditional input mechanisms provide the basis
for user-defined implementations.

The examples to be discussed are intended to be
useful and somewhat realistic, but won't neces­
sarily cover all relevant contingencies. Explicit
numerical parameters are used in the examples to
make them easier to read and to illustrate typical
values. In many cases, number registers would
really be used to reduce the number of places
where numerical information is kept, and to con­
centrate conditional parameter initialization like
that which depends on whether TROFF or NROFF
is being used.

Tl. Page Margins

As discussed in §3, header and footer macros are
usually defined to describe the top and bottom
page margin areas respectively. A trap is planted
at page position 0 for the header, and at -N (N
from the page bottom) for the footer. The sim­
plest such definitions might be

.de bd \"define header
'sp 11

.de fo
'bp

.wb 0 bd

.wb -llfo

\"end definition
\•define footer

\"end definition

which provide blank 1 inch top and bottom mar­
gins. The header will occur on the first page,
only if the definition and trap exist prior to the

"For example: P. A. Crisman, Ed., The Compatible Time­
Sharing System, MIT Press, 1965, Section AH9.0l (Descrip­
tion of RUNOFF program on MIT's CTSS system).

initial pseudo-page transition (§3). In fill mode,
the output line that springs the footer trap was
typically forced out because some part or whole
word didn't fit on it. If anything in the footer
and header that follows causes a break, that word
or part word will be forced out. In this and other
examples, requests like bp and sp that normally
cause breaks are invoked using the no-break con­
trol character ' to avoid this. When the
header/footer design contains material requiring
independent text processing, the environment
may be switched, avoiding most interaction with
the running text.

A more realistic example would be

.de hd \"header

.if t .ti '\(m"\(rn' \•troff cut mark

.if \\nl/o > 1 \ {\
'sp IO.Si-1 \•u base at 0.51
.tl " - o/o - •• \"centered page number
.ps \"restore size
.ft \"restore font
. vs \} \"restore vs
'sp lt.Oi \"space to 1.0i
.ns \"tum on no-space mode

.de fo \"footer

.ps 10 \"set footer/header size

.ft R \•set font

. vs 12p \"set base-line spacing

.if \\no/o-1 \{\
'sp l\\n(.pu-0.5i-1 \"ti base 0.5i up
.tl .. - o/o - " \} \"first page number
'bp

.wh 0 hd

.wh -li fo

which sets the size, font, and base-line spacing
for the header/footer material, and ultimately
restores them. The material in this case is a page
number at the bottom of the first page and at the
top of the remaining pages. If TROFF is used, a
cut mark is drawn in the form of root-en's at each
margin. The sp's refer to absolute positions to
avoid dependence on the base-line spacing.
Another reason for this in the footer is that the
footer is invoked by printing a line whose vertical
spacing swept past the trap position by possibly as

- 27 -

NROFF/TROFF User's Manual
October 11, 1976

much as the base-line spacing. The no-space
mode is turned on at the end of bd to render
ineffective accidental occurrences of sp at the top
of the running text.

The above method of restoring size, font, etc.
presupposes that such requests (that set previous
value) are not used in the running text. A better
scheme is save and restore both the current and
previous values as shown for size in the follow­
ing:

. de fo

.nr sl \\n (.s

.ps

.nr s2 \ \n (.s

. -

.de bd

. --

.ps \\n(s2

.ps \\n(sl

\•previous size
\•rest of footer

\•header stuff
\•restore previous size
\•restore current size

Page numbers may be printed in the bottom mar­
gin by a separate macro triggered during the
footer's page ejection:

.de bn \•bottom number

.ti •• - % - .. \•centered page number

. wb -0.Si-lv bn \•tt base O.Si up

T3. Paragraphs and Headings

The housekeeping associated with starting a new
paragraph should be collected in a paragraph
macro that, for example, does the desired
preparagraph spacing, forces the correct font,
size, base-line spacing, and indent, checks that
enough space remains for more than one line, and
requests a temporary indent.

. de Pl \•paragraph

.br \•break

.ft R \ •torce font,

.ps 10 \•size,

. vs 12p \•spacing,
• in 0 \•and indent
.sp 0.4 \ •prespace
.ne 1+\\n(.Vu \•want more than 1 llne
.ti 0.21 \•temp indent

The first break in pg will force out any previous
partial lines, and must occur before the vs. The
forcing of font, etc. is partly a defense against
prior error and partly to permit things like sec­
tion heading macros to set parameters only once .

The prespacing parameter is suitable for TROFF;
a larger space, at least as big as the output device
vertical resolution, would be more suitable in
NROFF. The choice of remaining space to test
for in the ne is the smallest amount greater than
one line (the . V is the available vertical resolu­
tion).

A macro to automatically number section bead­
ings might look like:

.de sc \•section

. --- \ •torce font, etc •

.sp 0.4 \ •prespace

.ne 2.4+\\n(.Vu \"want 2.4+ lines
:n
\\n+S.

.nr S 0 1 \•tnit S

The usage is .sc, followed by the section heading
text, followed by .pg. The ne test value includes
one line of heading, 0.4 line in the following pg,
and one line of the paragraph text. A word con­
sisting of the next section number and a period is
produced to begin the heading line. The format
of the number may be set by af (§8).

Another common form is the labeled, indented
paragraph, where the label protrudes left into the
indent space .

.de Ip
·Pl
.in O.Si
.ta 0.21 O.Si
.ti 0
\t\\$1\t\c

\"labeled paragraph

\"paragraph Indent
\"label, paragraph

\•now Into paragraph

The intended usage is • .lp label"; label will begin
at 0.2 inch, and cannot exceed a length of
0.3 inch without intruding into the paragraph .
The label could be right adjusted against 0.4 inch
by setting the tabs instead with .ta 0.41R 0.51.
The last line of Ip ends with \c so that it will
become a part of the first line of the text that fol­
lows .

T4. Multiple Column Output

The production of multiple column pages
requires the footer macro to decide whether it
was invoked by other than the last column, so
that it will begin a new column rath.er than pro­
duce the bottom margin. The header can initial­
ize a column register that the footer will incre­
ment and test. The following is arranged for two
columns, but is easily modified for more.

• 28 •

NROFF/TROFF User's Manual
October 11, 1976

.de hd

. ---

.nr cl 0 1

.mk

\"header

\ "init column count
\•mark top of text

.de fo \"footer

.ie \\n +(cl< 2 \ {\

.po +3.4i \"next column; 3.1+0.3

.rt \"back to' mark

.ns \} \"no-space mode

.el\{\

.po \\nMu \"restore left margin

. ·--
'bp \}

.ll 3.li \"column width

.nr M \\n (.o \"save left margin

Typically a portion of the top of the first page
contains full width text; the request for the nar­
rower line length, as well as another .mk would
be made where the two column output was to
begin.

TS. Footnote Processing

The footnote mechanism to be described is used
by imbedding the footnotes in the input text at
the point of reference, demarcated by an initial
.fn and· a terminal .ef:

.fn
Footnote ttxt and control lints ...
.ef

In the following, footnotes are processed in a
separate environment and diverted for later
printing in the space immediately prior to the
bottom margin. There is provision for the case
where the last collected footnote doesn't com­
pletely fit in the available space.

.de hd \"header

. ---

.nr x 0 1 \ "init footnote count

.nr y 0-\\nb \"current footer place

.ch fo -\\nbu \"reset footer trap

.if \\n (dn .fz \"leftover footnote

.de fo

.nr dn 0

.if \\nx \{\

\"footer
\"zero last diversion size

.ev 1 \•expand footnotes in evl
• nf \•retain vertical size
.FN \"footnotes
.rm FN \•delete it
.if"\\n(.z"fy" .di \"end overflow diversion
.nr x 0 \"disable fx

.ev \} \•pop environment

. ---
'bp

.de fx \"process footnote overflow

.if \\nx .di fy \"divert overflow

.de fn \•start footnote

.da FN \"divert (append) footnote

.ev 1 \"in environment 1

.if \\n + x = 1 .fs \"if ftrst, include separator

.fi \"fill mode

.de ef \•end footnote

.br \"finish output

.nr z \\n(.v \"save spacing

.ev \"pop ev

.di \•end diversion

.nr y -\\n(dn \"new footer position,

.if\\nx=-1 .nr y -(\\n(.v-\\nz) \
\•uncertainty correction

.ch fo\\nyu \"y is negative

.if (\\n(nl+lv)> (\\n(.p+\\ny) \

.ch fo\\n(nlu+lv\"it didn't ftt

.de fs
\I' li'
.br

\"separator
\"1 inch rule

.de fz \"get leftover footnote

.fn

.nf \"retain vertical size

.fy \"where fx put it

.ef

.nr b 1.0i \"bottom margin size

.wh 0 hd \"header trap

.wh 12i fo \"footer trap, temp position

.wh -\\nbu fx \ "fx at footer position

.ch fo -\\nbu \"conceal fx with fo

The header hd initializes a footnote count. regis­
ter x, and sets both the current footer trap posi­
tion register y and the footer trap itself to a nom­
inal position specified in register b. In addition,
if the register dn indicates a leftover footnote, fz
is invoked to reprocess it. The footnote start
macro fn begins a diversion (append) in environ­
ment 1, and increments the count x; if the count
is one, the footnote separator fs is interpolated .
The separator is kept in a separate macro to per­
mit user redefinition. The footnote end macro ef
restores the previous environment and ends the
diversion after saving the spacing size in register
z. y is then decremented by the size of the

- 29 -

NROFF/TROFF User's Manual
October 11, 1976

footnote, available in dn; then on the first foot·
note, y is further decremented by the dift'erence
in vertical base-line spacings of the two environ·
ments, to prevent the late triggering the footer
trap from causing the last line of the combined
footnotes to overflow. The footer trap is then set
to the lower Con the page) of y or the current
page position (nl) plus one line, to allow for
printing the reference line. If indicated by x, the
footer fo rereads the footnotes from FN in nofill
mode in environment 1, and deletes FN. If the
footnotes were too large to fit, the macro fx will
be trap-invoked to redivert the overflow into tr,
and the register dn will later indicate to the
header whether fy is empty. Both fo and fx are
planted in the nominal footer trap position in an
order that causes fx to be concealed unless the fo
trap is moved. The footer then terminates the
overflow diversion, if necessary, and zeros x to
disable fx, because the uncertainty correction
together with a not-too-late triggering of the
footer can result in the footnote rereading finish·
ing before reaching the fx trap.

A good exercise for the student is to combine
the multiple-column and footnote mechanisms.

T6. The Last Pace

After the last input file has ended, NROFF and
TROFF invoke the end macro (§7), if any, and
when it finishes, eject the remainder of the page.
During the eject, any traps encountered are pro­
cessed normally. At the end of this last page,
processing terminates unless a partial line, word,
or partial word remains. If it is desired that
another page be started, the end-macro

.de en
\c
op

.em en

\•end-macro

will deposit a null partial word, and eft'ect
another last page.

• 30.

NROFF/TROFF User's Manual
October 11, 1976

Table I

Font Style Examples

The following fonts are printed in 12-point, with a vertical spacing of 14-point, and with non­
alphanumeric characters separated by 11' em spa.cc. The Special Mathematical Font was specially
prepared for Bell Laboratories by Graphic Systems, Inc. of Hudson, New Hampshire. The Times
Roman, Italic, and Bold are among the many standard fonts available from that company.

Times Roman

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$%&()"~+-.,/:~-?[11
• 0 - • - t,4 th J,4 ft fl ff ffi m O t I ¢ @ ©

Times Italic

abcdefghfjk/mnopqrstuvwxyz
ABCDEFGH/JKLMNOPQRSTUVWXYZ
1234567890
I $ % & () •• * + ~ . , I: ; - ? [JI
•D - -- ~ 0 3/4.f1.flff.ffi.ffl 0 f 't e ®

Times Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!S%&0"*+-.,/:;=?lll
• 0 - • - l/4 l/z J,4 fi fl ff ffi fH. O t I e @ C

Special Mathematical Font

"'\"_'-/< > {}#@+-=-*
a~y8E{~9tKAµv~o~pu~Tv¢x~w
r~E>AEil!Y<l>'l'n

.J- ~ ~ = - = ~ - -Tl x + ± u n c :::> ~ :2 oo a
§ \/..., f cc 0 E ;ar-.@I orllHJl lJ fl I

• 31 •

NROFF/TROFF User's Manual
October 11, 1976

Table II

Input Naming Conventions for ', ·,and
and for Non-ASCII Special Characters

Non-ASCII characten and minra on the standard fonts.

Input Characur Input Charact•r
Char Nam• Name Char Name Name

close quote ti \(ti ti
open quote ft \(fl ft

\(em 3/4 Em dash tr \(tr tr
hyphen or ffi \(Fi ffi

\(hy hyphen ftl \(Fl m
\- current font minus

,
\(de degree

• \(bu bullet t \(dg dagger
a \(sq square \(fin foot mark

\(ru rule e \(ct cent sign
If.a \(14 1/4 • \(rg registered
an \(12 1/2 • \(co copyright
J/4 \(34 3/4

Non-ASCII characters and ·, •, _, +, -, -, and •on the special font.

The ASCII characters @, #, •, ·, ', <. >. \. {, }. -. ·, and _exist only on the special font and are
printed as a 1-em space if that font is not mounted. The following characters exist only on the special
font except for the upper case Greek letter names followed by t which are mapped into upper case
English letters in whatever font is mounted on font position one (default Times Roman). The special
math plus. minus, and equals are provided to insulate the appearance of equations from the choice of
standard fonts.

Input Character Input Character
Char Name Name Char Name Name

+ \(pl math plus IC \(*k kappa
\(mi math minus). \(•1 lambda - \(eq math equals µ. \(•m mu

• \(.. math star II \(•n nu
§ \(sc section e \(•c xi

\(aa acute accent 0 \(•o omicron
\(ga grave accent 1r \(•p pi
\(ul underrule p \(•r rho

I \(sl slash (matching backslash) <T \(•s sigma
a \(*a alpha s \(ts terminal sigma
13 \(*b beta 'T \(•t tau
y \(•g gamma v \(•u upsilon
B \(*d delta "'

\(*f phi
f \(•e epsilon x \(*x chi

' \(•z zeta

"'
\(•q psi

TJ \(•y eta cu \(•w omega
9 \(*h theta A \(*A Alphat

\(*i iota B \(•B Betat

- 32 -

/

NROFF/TROFF User's Manual
October 11, 1976

Input Character Input Character
Char Name Name Char Name Name
r \(•G Gamma \(br box vertical rule
~ \(•o Delta * \(dd double dagger
E \(•E Epsilont ,,,. \(rh right hand
z \(•z Zetat \Oh left hand
H \(•y Etat @ \(bs Bell System logo
9 \(•H Theta I \(or or
I \ (•1 lotat 0 \ (ci circle
K \(•K Kappat r \ Ot left top of big curly bracket
/\. \(•L Lambda l \(lb left bottom
M \(•M Mut l \{rt right top
N \(•N Nut J \(rb right bot

- \(•c Xi l \Ok left center of big curly bracket
0 \(•o Omicront } \(rk right center of big curly bracket
TI \(•p Pi I \(bv bold vertical
p \(•R Rhot l \(If left floor (left bottom of big
t \(•s Sigma square bracket)
T \(•T Taut J \(rf right floor {right bottom)
y \(•u Upsilon r \(le left ceiling (left top)
<I> \(•F Phi 1 \(re right ceiling {right top)
x \(•x Chit

"' \(•Q Psi
n \(•w Omega
,j \(sr square root

\(rn root en extender
~ \(>- >-
~ \(<- <-
- \ (- - identically equal
- \("- approx -

\(ap approximates
;C \(!- not equal

\(-> right arrow
\(<- left arrow
\(ua up arrow
\(da down arrow

x \(mu multiply
\(di divide

± \(+- plus-minus
u \(cu cup (union)
n \(ca cap (intersection)
c \(sb subset of
::> \(sp superset of
!;;; \(ib improper subset
:2 \(ip improper superset
00 \(if infinity
a \(pd partial derivative

"V \(gr gradient.
\(no not

I \(is integral sign
a: \(pt proportional to
0 \(es empty set
E \(mo member of

- 33 -

.May 15, 1977

Options

-h

-z

Old Requests

.ad c

. so name

New Request

.ab text

.fz F N

Summary of Chances to N/TROFF Since October 1976 Manual

(Nroff' only) Output tabs used during horizontal spacing to speed output as well as
reduce output byte count. Device tab settings assumed to be every 8 nominal character
widths. The default settings of input (logical} tabs is also initialized to every 8 nominal
character widths.

Efficiently suppresses formatted output. Only message output will occur (from "tm•s
and diagnostics).

The adjustment type indicator "c" may now also be a number previously obtained from
the • .j" register (see below).

The contents of tile "name" will be interpolated at the point the "so" is encountered .
Previously, the interpolation was done upon return to the file-reading input level.

Prints "text• on the message output and terminates without further processing. If "text"
is missing, "User Abort.• is printed. Does not cause a break. The output buffer is
flushed.

forces [ont "F" to be in si;,e N. N may have the form N, + N, or -N. For example,
.fz 3 -2

will cause an implicit \s-2 every time font 3 is entered. and a corresponding \s + 2 when
it is left. Special font characters occurring during the· reign of font F will have the same
size modification. If special characters are to be treated differently,

.fz SF N
may be used to specify the size treatment of special characters during font F. For
example,

.fz 3 -3

.fz S 3 -0
will cause automatic reduction of font 3 by 3 points while the special characters would
not be affected. Any ".fp" request specifying a font on some position must precede
".fz" requests relating to that position.

New Predefined Number Registers~

.k

.j

. P

. L

c.

Read-only. Contains the horizontal size of the text portion (without indent) of the
current partially collected output line, if any, in the current environment.

Read-only. A number representing the current adjustment mode and type. Can be
saved and later given to the "ad" request to restore a previous mode.

Read-only. 1 if the current page is being printed, and zero otherwise .

Read-only. Contains the current line-spacing parameter ("ls") .

General register access to the input line-number in the current input tile. Contains the
same value as the read-only ".c• register.

f
\

